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Abstract 

In the framework of multicriteria decision aiding, a lot of interest has been paid to the 
assignment of alternatives to predefined categories, i.e. ordered groups of alternatives. This 
will be referred to the multicriteria classification or sorting problem. On the other hand, 
similar problem with no information about classes, called ordered clustering problem 
received less attention. In this work we will formalize our problem as an optimization 
problem and we will propose a related approach, inspired by split and merge processes. Our 
approach will be tested on artificial datasets as well as on an example related to the field of 
business failure risk. 

 Keywords: Multicriteria decision aid, ordered clustering problems, outranking 
methods 
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Chapter 1 

Introduction 

The goal of grouping “similar” objects into homogeneous clusters is commonly 

encountered in different fields such as the finance sector, the medical sector, in the 

agriculture, in marketing, in image processing, etc. For example based on new unknown 

earlier symptoms, the patients may be assigned to groups according to the intensity of 

the symptoms to a new type of disease. As a consequence, it has been extensively studied 

in this literature. 

Generally, two distinct problems can be considered. First one aims to attribute 

alternatives to groups that are unknown a priori. In this case, the problem is referred to a 

clustering problem and the groups are so-called „clusters‟. 

On the other hand, once the groups are defined a priori, with a central element or 

boundary alternatives, the problem of assigning an object to one of these groups is  

referred to a classification problem and these groups are so-called „classes‟.  

Traditional clustering uses attributes, which means that there is no preference order 

on scale of attributes and no order between clusters [30],[31]. On the other hand, 

multicriteria clustering uses at least criteria. In a special case of MC clustering, 

multicriteria ordered clustering (MCOC), there is also order on clusters [2],[40]. 

Multicriteria Decision Aid (MCDA) is a discipline aimed at supporting decision makers 

faced with making numerous and sometimes conflicting evaluations. MCDA aims at 

highlighting these conflicts and deriving a way to come to a compromise in a transparent 

process. Multicriteria decision aid will permit us to have another insight into these 

problems. Moreover, we will see that the groups can be ordered or not. In the context of 

multicriteria decision aid, some authors [5] have been interested in assigning objects to 

ordered groups.  

The study of complex decision problems has been a subject of research and has a long 

history back to ancient philosophers. The multicriteria decision aiding support can be 

characterized as a set of methods that seek to clarify a problem in which alternatives are 
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assessed by multiple criteria, which in most cases are conflicting [23],[32]. According to 

Marins and Cozendy [26], this approach does not present an ideal solution for problems, 

but among all possible, the most consistent with the scale of values and the method used.  

The Decision making is a part of every day, it is present in many activities developed 

by man. Naturally, people face situations that require from them some kind of decision. 

In these situations multiple alternatives are presented and out of these, the decision that 

best satisfies the goal(s) in question should be selected. 

Some authors claim that to decide, is to position yourself into the future. Gomes 

Araya and Carignano [23] define the decision making as the process of gathering 

information attaching importance, then searching for possible alternative solutions and 

then making a choice between alternatives. The process of decision making can be seen 

as simple tasks faced by humans. For example we may sort “to-do” tasks for the next day 

into three classes, such as “must do”, “wish to do” and “can do”.  

However, there are many complex issues to be solved by people. For example, the 

choice of a country to go on vacation or a house to be bought. In focuses of this thesis 

there are complex problems, with alternatives evaluated on two or more conflicting 

criteria. Another source of difficulty when making decisions is that they must meet 

multiple objectives and their impacts cannot be clearly identified[33].  

The aim of this work is to propose a method that helps a decision maker to obtain 

what we call “ordered clusters” (i.e. ordered groups of alternatives). This will be 

referred to as the “multicriteria ordered clustering” problem.  

The structure of our work will be as follows: In chapter 2 basic definitions and survey 

of literature are given. Chapter 3 presents two outranking methods (Electre and 

Promethee) with examples selected here for more detailed study. Chapter 4 and 5 

describe multicriteria decision aid methods, one classification method  and two clustering 

methods in chapter 4 and one clustering method proposed by us in chapter 5. In chapter 6 

the experimental results are discussed and proposed approach is compared to another 

clustering/classification methods. Chapter 7 presents the conclusion and future work. 
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Chapter 2 

Basic definitions and survey of literature 

2.1 Alternative 

 

The identification of an alternative is a procedure that belongs obviously to the beginning 

of the process, as well as the verification of its feasibility. In many cases, the identification is 

immediate, but there are situations where it is essential to a priori process the alternatives, 

which can be quite complex. On the other hand, there is a class of problems where the 

alternatives are only implicitly defined as a combination of values of decision variables, 

respecting a set of constraints (equations and inequalities) that define feasibility [29]. 

From the standpoint of terminology, it is important to clarify that the term "alternative" 

is used here as synonymous with "option", "hypothesis", "possible solution" or " potential 

action”. From the formal point of view, each alternative in addition to its name will be 

characterized by criterion. 

 
 

2.2 Criteria 

 

The definition of evaluation criterion is a crucial point of the decision process, because it 

corresponds to the identification of aspects or points of view relevant to be taken into 

account for determining the preference of one alternative over another. A coherent family of 

criteria should be [29]: 

-Exhaustive: all relevant points of view should be included. 

-Consistent: If two alternatives A and B are equivalent except for one criterion k, and if 

this criterion ak is better than bk, then A should be considered globally at least as good as B. 
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-Non-redundant: if we eliminate one of the criteria, the above conditions are no longer 

satisfied. 

In addition, it is desirable to provide the following additional properties: 

- Readability: the number of criteria must be relatively low. 

- Operability: the family of criteria must be accepted by interested decision makers. 

 

Once is identified a coherent family of criteria, it is necessary to advance in the 

operation, setting the units in which criterion is measured and associated scale. There can be 

simple economic criteria, such as cost evaluated in euro, or more complicated criteria 

associated with concepts such as quality, risk, environmental or social impact, etc. Another 

way do defining criterion scale is with categories that correspond to an overall assessment of 

the degree of satisfaction of these criteria (for example, satisfaction of a criterion associated 

with the quality "Very High, High, Medium, Low, and Very Low"). In this case, the degrees 

should clearly characterize the aspects to take into account and the situations that 

correspond to each category to reduce the subjectivity of judging.  

At this point, appears to us the concept of decision maker (DM), which is central to these 

problems. This is the person (sometimes a representative of an entity) responsible for final 

decision. On the one hand, the decision maker defines and specifies the criteria to consider, 

possibly with the support of experts. On the other hand, it is not possible to carry out the 

decision process without it incorporate the preferences of the decision maker. 

 

 

2.3 Classification problem 

 

Assigning a set of alternatives evaluated on a set of criteria into predefined classes is a 

problem that a decision maker faces many times in real life. Classification problems are 

commonly encountered in various application fields such as health care, finance, marketing, 

etc. In classification problem (also known as supervised learning problem), the classes are 

predefined and well-described, on the other hand in clustering problem (also known as 

unsupervised learning problem) there is no a priori information about classes [3]. One good 

example of this kind of classification problem is the medical diagnosis where a patient has to 

be assigned to a known pathology-class on the basis of a set of symptoms. To solve this 

problem, we have some good procedures such as k-nearest neighbor algorithm or the bayes 

classifier.  

A central concept of the classification problem is a class. The class is a collection of 

alternatives that are more similar to each other than the alternatives in neighbor classes. 

When we deal with different classification methods the similarity measure between two 

alternatives and rules of assignment are subjects of discussion [3].There are two types of 
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classification problems: nominal and ordinal. In a nominal classification problem, the classes 

are not ordered. In ordinal classification problem the classes are ordered according to some 

quality.  

 

 

2.4. Clustering problem 

 

There are situations where there may be no information about the groups and the 

purpose is then to extract a structure in the data set. For example, we can consider a 

marketing problem where the aim is to discover similar customer behaviors in the retail 

industry. The most common traditional clustering procedures are the k-means, hierarchical or 

finite mixture densities algorithms [9],[35],[36]. Multicriteria methods have also been 

extended to clustering problems with order between classes. For instance an Electre-like 

clustering procedure based on the L-values Kernels was proposed in [10]. 

 

 

2.5 Taxonomy of clustering procedures 

 

In Figure 2.1 [2], we can see a summary of the clustering procedures. First criteria 

dependency is used to distinguish between classical clustering and multicriteria clustering. 

Then we can separate multicriteria clustering in two other different methods, non-relational 

multicriteria clustering and relational multicriteria clustering.  
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Figure 2.1 - Taxonomy of clustering procedures. 

 

 

2.5.1 Criteria dependency 

 

Some clustering procedures [1], [11] have been proposed in the multicriteria decision aid 

domain. These procedures use criteria instead of attributes that are commonly applied in 

traditional clustering methods. A criterion is an attribute that contains including additional 

information about direction for its values on the set of considered alternative. For example, a 

“price” is an attribute, but for a seller, a “sell price” is a criterion because it has the 

additional information that it should be maximized and for a buyer, a “buy price” is also a 

criterion and have the extra information that this value should be minimize. 
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2.5.2 Relational multicriteria clustering 

 

A multicriteria clustering procedure is a criteria dependent procedure. The presence of a 

relation between clusters one of the points of interest in the criteria-dependant clustering 

procedures. Classical clustering procedures typically do not propose a preferential relation 

between the obtained clusters because they are not criteria-dependant. 

The use of the preference criteria for solving classical clustering problems with no order 

between the clusters induces a loss of information and may be criticized, so a strategy is 

applied for the relational multicriteria clustering usually in this type of procedures. Firstly, to 

obtain the centroid that characterizes each cluster, a classical clustering algorithm is used. 

After that any multicriteria pair wise comparison procedure can be applied to the centroids in 

order to come up with “at least as good” relation on the clusters.  

 

 

2.5.3 Ordered multicriteria clustering 

 

This clustering procedure is a special case of relational multicriteria clustering. Ordered 

multicriteria clustering procedures have advantage over relational multicriteria clustering 

because they have a transitivity propriety that unambiguously implies an order on the 

clusters. 

Ordering clusters can be useful when some hierarchy has to be discovered in the data. For 

example, we can consider a problem where the employees‟ performance is being evaluated. 

Depending on the data, three clusters can be created: above average, average and below 

average performance.  

Usually, his procedure combines the ideas of both the clustering and the ranking 

problematic. First, the data is clustered, and then the centroids are ranked using a 

multicriteria ranking procedure. Conversely, we can apply a ranking procedure on the data, 

and then an ordered partition compatible with that ranking can be built, effectively merging 

some alternatives in the cluster of the same rank. 

 

 

2.6 Clustering problem vs ranking problem 

 

The problem of ranking is closely related to the problem of ordered clustering. The 

ranking problem consists in partition the set of alternatives into partially or totally ordered 

classes with number of clusters close to the number of alternatives. The ordered multicriteria 

clustering procedure can be considered as a particular case of ranking problem. In fact, an 

ordered multicriteria clustering procedure, which partitions the alternatives into ordered 
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classes, can very naturally be seen as just another rank procedure. Despite some similarities 

between these two problematic let us insist on some fundamental differences. 

A rank procedure aims at discriminating the different alternatives, so this procedure 

tends to maximize the number of classes. The preferred case in a ranking procedure is to 

build a linear order whenever possible. In this case the number of alternatives and classes are 

almost the same. 

On the other hand, a clustering procedure tends at discriminating different alternatives 

but at the same time tries to group similar alternatives. The first objective tends to maximize 

the number of classes and the second tries to minimize it, so the clustering solution can 

usually be seen as a compromise between these two objectives. The most common solution is 

to set a priori the number of clusters that is desired. 
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Chapter 3 

Outranking methods 

Bernard Roy [8], was the first to define the outranking relation as follows: An outranking 

relation is a binary relation, defined on the set A | ai S aj  if, given the information about 

the decision maker’s preference, the evaluations of these actions and the nature of the 

problem, there is enough arguments to admit that action ai is at least as good as action aj , 

while there is no argument to deny this consideration. 

Some methods have been developed utilizing this idea for different decision making 

problems, such as selection of the best alternative(s), ranking and classification methods. In 

the next section we will present the two most famous approaches that utilizing outranking 

relation. 

 

 

3.1 ELECTRE III method 

 

Bernard Roy can be considered as the father of the family of the Electre methods, 

exploiting an outranking relation. The estimation of the outranking relations between pairs of 

alternatives is the basis for all methods from the ELECTRE family.  

For the calculation of the outranking index, the decision maker needs to define a set of 

alternatives and a set of criteria on which these alternatives are evaluated. In addition, the 

Electre III [13],[19],[15],[38],[39] method requires the following information for each 

criterion gk: indifference qk, preference pk and veto vk thresholds, and weight wk in addition 

cutting level λ parameter has to be predefined. 

 The indifference threshold qk is the largest difference between two alternatives on the 

criterion gk such that they remain indifferent to the decision maker. The preference threshold 

pj defines the smallest difference between two alternatives such that on alternative is 

preferred to the other one on the criterion gk. The veto threshold vk indicates the smallest 
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difference between two alternatives on the same criterion gk that shows incomparability of 

these two alternatives. The relation between the thresholds must be vk>pk>qk. The weight wk 

of a criterion gk indicates the relative importance of each criterion. The cutting level λ shows 

the smallest value of the outranking index that is sufficient for considering and outranking 

situation between two alternatives. 

The two conditions (concordance and discordance) are used to verify the outranking 

relation of this method. On one hand, the concordance condition requires that for the 

majority of criteria the alternative ai is preferred over aj, on the other hand the discordance 

demands the lack of strong opposition to the first condition in the minority of criteria. The 

partial indices are computed for each condition: concordance Ck(ai,aj), and discordance 

Dk(ai,aj). They allow to calculate the outranking index Sk(ai,aj). 

 

 

 

3.1.1 Electre III algorithm: 

 

First, the partial concordance indices Ck(ai,aj) are calculated for each criterion gk. The 

criterion gk has an increasing direction of preference because a maximization problem is 

under consideration.  

 

 

Figure 3.1 - Electre III partial concordance indices Ck(ai,aj). 

 

As we can see in Figure 3.1, the concordance indices Ck(ai,aj)  are calculated as follows: 
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At the next step the overall concordance index C(ai,aj) is defined as an aggregation of 

partial concordance indices, where n is the number of criteria: 

 

 

 

 

In the third step, the partial discordance indices Dk(ai,aj) are calculated for each criterion 

gk according to the increasing direction of preference. If there is no information about the 

veto threshold, Dk(ai,aj)=0.bg gk(ai)-gk(aj) 

 

 
Figure 3.2 -ELECTRE III partial discordance indices Dk(ai,aj). 

 

 

 As we can see in Figure 3.2, the discordance indices Dk(ai,aj)  are calculated as follows: 

 

 

 

 

In this step the outranking index S(ai,aj) can be calculate that shows outranking credibility 

of ai over aj assuming S(ai,aj)  [0,1] as follows: 

 

 

 

Where k=1,…,n and . 
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In the final step the decision maker defines the value of the cutting level λ  Usually, the 

cutting level belong to the interval [0.5,1]. The minimum value of outranking indices 

accepted for outranking of one alternative over the other one is defined by this level. The 

cutting level is compared with the value of the outranking index. Based on this comparison, 

the preference situation between two alternatives is specified [19]: 

If S(ai,aj) ≥ λ and S(aj,ai) ≥ λ, then the alternative ai and aj are indifferent (aiIaj). 

If S(ai,aj) ≥ λ and S(aj,ai) < λ, then the alternative xi is strongly or weakly preferred to the 

alternative aj (aiPaj or  aiJaj). 

If S(ai,aj) < λ and S(aj,ai) ≥ λ, then the alternative aj is strongly or weakly preferred to the 

alternative ai (ajPai  or ajJai). 

If S(ai,aj) < λ and S(aj,ai) < λ, then the alternatives ai and aj are incomparable (aiJaj). 

 
 

3.1.2 Example: 

 

We will demonstrate an example of outranking indices for the data set with the following 

six alternatives evaluated on five criteria with their weights as basis to build the outranking 

index. 

 
Table 3.1- Data set and weights for ELECTRE III example 

Alternatives 
ai 

g1 g2 g3 g4 g5 

 
a1 

a2 

a3 
a4 

a5 
a6 

 
0.188 
0.125 
0.156 
0.188 
0.188 
0.156 

 
0.172 
0.069 
0.241 
0.034 
0.276 
0.207 

 
0.168 
0.188 
0.134 
0.174 
0.156 
0.18 

 
0.122 
0.244 
0.22 
0.146 
0.171 
0.098 

 
0.114 
0.205 
0.136 
0.159 
0.205 
0.182 

Weights 0.25 0.25 0.1 0.2 0.2 

 

 

To construct the concordance matrix, we have fixed the following parameters: pk=0.05, 

and qk=0.01 for all criteria, although these thresholds are normally different for the different 

criteria. Using these values we obtain the vector for Ck(a1,a2)=[1.00 1.00 0.75 0.00 0.00], with 

the vectors Ck(ai,aj)  we calculate the  following values for the concordance matrix: 
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 Consider now the computation of the single-criterion discordance index with vk=1 and 

pk=0.05, the vector for Dk(a1,a2)=[0.000 0.000 0.000 0.758 0.432]. These values permit us to 

calculate the credibility degree matrix S. The matrix S is thus as follows: 

 

 

 

 

From the credibility matrix we can calculate de outranking index, but first we need to 

define the cutting level λ. In this example we will define two values for λ. Defining λ=0.6 we 

have the outranking relation matrix as follows: 

 

 

 

 

and defining λ=0.7 we have the outranking relation matrix as follows: 

 

 

 

 

Where P+ means preference of first alternative when compared to the second one , I 

means indifference of first alternative when compared to the second one , J means 

incomparability of first alternative when compared to the second one  and P- means 

preference of second alternative when compared to the first one. 
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3.2 Promethee method 

 

Like Electre methods, the Promethee methods are based on a pair wise comparison of the 

alternatives, leading to valued outranking relation. The Promethee method 

[18],[12],[15],[37] encompasses two phases: the construction of an outranking relation, 

aggregating the information about the alternatives and about the criteria, and the 

exploitation of that relation for decision aid.  

At the construction phase of the outranking relation‟s, the preference degree is 

presented by a preference function Pk(x). This function evaluates the preference of an action 

ax when compared to aj as a function of x=gk(ai)- gk(aj).In a generalized point of view, the 

preference functions, when the value of x is negative, Pk(x) is 0, for the remaining values of 

x, the function is non-decreasing with Pk(x) varying between 0 and 1. Six preference functions 

are proposed and they are defined by at most two parameters. The outranking relation can 

be then represented by an oriented valued graph. The value of each arc is the multicriteria 

preference index π(ai,aj), which is defined for all pair of alternatives. These indices may take 

any value between 0 and 1, and they define a fuzzy outranking relation. Considering gk(ai)=ai  

and gk(aj)=aj, we have the following functions: 

 

 
Figure 3.3 – Preference function number 1. 

 

In this preference function, see (Figure 3.3), there are no parameters to be defined and 

the preference situation is resolved in favor of ai if the difference between its comparing 

value on criterion gk(ai) is bigger than 0: 

 ai-aj≤0, Pk(ai,aj)=0  

ai-aj>0,  Pk(ai,aj)=1  

 



Outranking methods   15 

  

 

Figure 3.4 – Preference function number 2. 

 

In this preference function, see (Figure 3.4), exists one indifference threshold (q) that 

must be defined: 

ai-aj≤q, Pk(ai,aj)=0 

ai-aj>q,  Pk(ai,aj)=1  

 

 

 

 
Figure 3.5 – Preference function number 3. 

 

In this preference function, see (Figure 3.5), the preference is increasing until a 

preference threshold (p) is reached: 

ai-aj>p, Pk(ai,aj)=1 

ai-aj<0,  Pk(ai,aj)=0 

0≤ ai-aj ≤p,  Pk(ai,aj)= (1/p)* (ai-aj)  

 

  

 
Figure 3.6 – Preference function number 4. 
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In this preference function, (Figure 3.6), there are 2 thresholds that must be fixed, 

indifference and preference thresholds (q and p respectively).The values locate between 

these thresholds get the average value: 

ai-aj>p, Pk(ai,aj)=1 

ai-aj≤q, Pk(ai,aj)=0 

q< ai-aj ≤ p,  Pk(ai,aj)= 0.5 

  

 

 

Figure 3.7 – Preference function number 5. 

 

In this preference function, see (Figure 3.7), there are two thresholds that must be fixed, 

indifference and preference thresholds (q and p respectively). Similar to previous: 

ai-aj>p, Pk(ai,aj)=1 

ai-aj<q, Pk(ai,aj)=0 

q≤ ai-aj ≤ p, Pk(ai,aj)=( ai-aj -q)/(p-q)  

 

 
Figure 3.8 – Preference function number 6. 

 

In this preference function, see (Figure 3.8), the preference increase following a normal 

distribution, the standard deviation must be defined: 
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3.2.1 Promethee algorithm 

 

Choosing one of the preference functions, for pair wise comparison of alternatives, the 

preference matrix is calculated as follows, taking into account  weights of criteria, wk, where 

the relative importance of each alternative: 

 

 

 

Aggregating a pair wise comparison of two alternatives on al criterion into a global 

preference degree, allows establishing pre-order on a set of alternatives. The main idea is to 

analyze how an alternative is preferred to all the other alternatives and inversely, how others 

are preferred to it. In another words, we will define the globally positive and negative 

outranking flow as follows: 

 

 

 

 

The positive flow  defines the strength of the alternative and the negative flow 

defines the weakness of the alternative. 

The Promethee I method obtains a partial preorder with following relations: P+,P-,I and J, 

where P indicates preference, I indicates indifference and like in the other methods, J 

indicates incomparability relations. With the positive and negative flows, we can obtain the 

outranking relation matrix as follows: 

 

ai outranks aj (aiPaj , aiP
+aj or ajP

-ai),    if  

ai is indifferent to aj (aiIaj), if , 

ai is incomparable to aj (aiJaj), if none of the previous conditions is true. 
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The Promethee II method, on the other hand, produces a complete preorder with 

following relations: P+,P- and I Note that incomparability relation has no place in this method. 

The net flow  allows to evaluate the following situations: 

ai outranks aj  (aiPaj , aiP
+aj or ajP

-ai),   if  

ai is indifferent to aj (aiIaj),  if  

 

 

3.2.2 Example: 

 

We will consider the following six alternatives evaluated on five criteria with their 

weights as basis to build the outranking index (same as used in Electre III Example in Section 

3.1.2). 

 

Table 3.2- Data set and weights for Promethee example 

Alternatives 
ai 

g1 g2 g3 g4 g5 

 
a1 

a2 

a3 
a4 

a5 
a6 

 
0.188 
0.125 
0.156 
0.188 
0.188 
0.156 

 
0.172 
0.069 
0.241 
0.034 
0.276 
0.207 

 
0.168 
0.188 
0.134 
0.174 
0.156 
0.18 

 
0.122 
0.244 
0.22 
0.146 
0.171 
0.098 

 
0.114 
0.205 
0.136 
0.159 
0.205 
0.182 

Weights 0.25 0.25 0.1 0.2 0.2 

 

In the first step we need to choose one of the preference functions, and in this case we 

choose the most common one, the preference function 5. To construct the preference 

matrix, we have fixed the following parameters: pk=0.05, and qk=0.01 for all criteria, 

although these thresholds are normally different for the different criteria. Using these values 

we calculate the following values for the preference matrix: 

  

 

 

Considering now the computation of the positive and negative flows, we have: 
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Having the flows, we can finally calculate the outranking relation matrix, and the result 

is: 

 

 

 

 

Where P+ means preference of first alternative when compared to the second one , I 

means indifference of first alternative when compared to the second one , J means 

incomparability of first alternative when compared to the second one  and P- means 

preference of second alternative when compared to the first one. 
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Chapter 4 

4. Classification and clustering  

We will present in this chapter one algorithm for classification, Electre Tri. And two 

algorithms for clustering.  

 

 

4.1 Electre Tri 

 

Electre Tri is a method for ordinal classification. The estimation of the outranking 

relations between pairs of alternatives is the basis for all methods from the Electre family. 

The Electre Tri [19],[15] procedure assigns the alternatives A to classes L predefined by set of 

boundary alternatives B. The upper and lower bound alternatives are the limits for each 

class. The upper bound alternative of class lq-1 is the lower bound of the class lq. The 

boundary alternatives can be moved to a neighbor class by changing values on at least one 

criterion. 

For the calculation of the outranking index, the decision maker needs to define a set of 

alternatives to be classified and a set of criteria. The decision maker should also define the 

number of classes, their order and the upper and lower boundary alternatives for each class. 

In addition, the Electre Tri method required also the same information that Electre III, that 

was described earlier, for each criterion gj: indifference qj , preference pj, veto vj thresholds, 

weight wj and cutting level λ should be selected. 

 There are two assignment procedures:  optimistic and pessimistic and they consist of a 

comparison of outranking indices to the cutting level λ. The optimistic procedure starts with 

the comparison of an alternative to the upper bound of the lowest class: the outranking 

indices are computed and compared to the cutting level. The pessimistic procedure works in 

the same way but begins with the comparison of an alternative to the lower bound of the 

highest class. The decision maker can select one of the two assignment procedure or apply 

both of them. In order to assign the alternative ai to the class lq+1 according to the optimistic 

procedure (or to the class lp according the pessimistic one), the cutting level λ should be 
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smaller than the value of the outranking index S(ai,bq) and bigger than S(ai,bq+1). Next, the 

algorithm of the ELECTRE TRI method is discussed. 

The algorithm of the Electre Tri method consists in two parts: construction of outranking 

relation and utilization of this relation for the assignment of alternative to classes. In the 

first part, the outranking relation aiSbq is constructed for each alternative ai and each 

boundary alternative bq. This first part the Electre III algorithm is used, and the outranking 

index is obtained. 

In the second part, the outranking indices S(ai,bq) are utilized for the classification of 

each alternative in the following way. The assignment procedure is selected by the decision 

maker: Either optimistic, pessimistic or both. Then, the outranking indices calculated for 

each pair (the alternative ai, to be classified and each boundary alternative bq) are compared 

to the cutting level λ with regards to the assignment procedures as it is shown in Figure 4.1 

[19]. 

 

 
Figure 4.1 - Assignment procedure of the Electre TRI method. 

 

In the pessimistic (or conjunctive) procedure, the comparison between the alternative a i 

to the lower bound bq-1 of the highest class lq (q=s,…1) is the starting point. The procedure 

analyzes classes in a decreasing order until a lower bound bq-1 that is outranked by the 

alternative ai ,  aiSbq-1, is found. The outranking index S(ai,bq-1) is calculated, for the 

estimation of the outranking relation aiSbq-1. The outranking index between the alternative ai 
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and the upper bound bq of the class lq: S(ai,bq) is calculated to be classified. The alternative 

ai is assigned to the class lq , if S(ai,bq-1)  λ  and S(ai,bq)<λ. 

On the other hand, in the optimistic (or disjunctive) procedure, the comparison between 

the alternative ai to the upper bound bq of the lowest class lq (q=s,…1) is the starting point. 

The procedure continue to analyze classes in a increasing order until an upper bound bq that 

is strictly preferred to the alternative ai ,  bqPai, is found.  The outranking index S(ai,bq-1) 

between the alternative ai to be classified and the lower bound bq-1 of the class lq: S(ai,bq-1) is 

calculated. The alternative ai is assigned to the class lq if S(ai,bq-1)  λ  and S(ai,bq)<λ. 

Classification according to one of the described produces is unambiguous. An alternative 

can be assigned to different classes if an assignment is considered according to both 

procedures simultaneously. For instance, in the optimistic procedure an alternate  ve can be 

assigned to an upper class when compared to the assignment in the pessimistic procedure. 

This ambiguity must be solved with help of the decision maker or by changing the assignment 

procedure to earlier optimistic or pessimistic one. 

 

 

4.2 Multicriteria clustering (extension of K-means) 

 

This method is an extension of the k-means algorithm with a MCDA background [1]. The 

Multicriteria clustering (MC clustering) method utilizes criteria, and not attributes when 

compared to classic clustering approaches, however, alternatives are assigned to clusters 

that are not ordered. That is why we can say that it is a relational multicriteria clustering 

according taxonomy of clustering methods, see Figure 2.1. The starting point of this approach 

is k centroids that are randomly chosen. The alternative is assigned to a cluster if the 

distance to the centroid of this cluster is smallest when compared to distance to other 

clusters. This distance is calculated using a multicriteria preferences structure discussed 

next. After the assignment of all alternatives, the centroids for all clusters are recalculated 

and the process is repeated until there are no changes in all clusters. In this way all 

alternatives are assigned to k clusters.  

This method compares alternatives using preference modeling that constructs so-called 

profile of each alternative. The comparison between alternatives aj and ai  A, results on one 

of the following relations: Preference (P), Indifference (I) or Incomparability (J). Only one of 

these relations is true between each couple of given alternatives. This clustering model uses 

the idea that inside the same cluster, all the alternatives are similar; this means that these 

alternatives have the same preference relation to more or less the same alternatives. 

 

To build the profiles of the alternatives could be considered outranking methods such as 

Promethee, Electre, etc. The profile of an alternative is only true for one of the follow 
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relations to an alternative: J(ai), P-(ai), I(ai) and P+(ai).  A profile contains four sets of 

alternatives each of which containing alternatives that are in the same relation with the 

studied alternatives (J, I, P- or P+).  For example, J(a1) is a set of all alternatives that are 

incomparable with a1. 

 

 

. 

 

. 

 

 

4.2.1 Multicriteria distance 

 

For multicriteria methods, the concept of distance used in traditional clustering 

algorithms does not seem to be well suited. That is why the MC distance between two 

alternatives ai,aj  A is calculated as difference between 1 and sum of intersections of 

profiles of these alternatives divided by the total number of alternatives. 

 

 

 

 

4.2.2 Construction of the centroids 

 

In the first iteration, the k centroids are chosen randomly from the alternatives A, then 

the rest of alternatives is assigned to the clusters based on distance to the nearest centroid.  

When all alternatives are assigned to clusters, the centroids are recalculated and the 

alternatives are reassigned to the new clusters using the same method of calculating distance 

between the centroids and the alternatives. 

The recalculation of the centroids is based on a voting procedure.  The voting procedure 

starts from finding the profiles of the centroids in the same way as discussed above (for 

construct profiles of alternatives) but evaluating relations between centroid and each 

alternative belonging to this cluster. 

To select centroid for each cluster, the most common profile for the cluster is selected. It 

does not have to be a real alternative, but a virtual one (to be exact only common profile is 

needed). This selection of common profile is called voting since each alternative belonging to 

the cluster “votes” or shows relation to the rest of alternatives [1]. 
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Where 1{A} = 1 if condition A is true, 0 otherwise. If different values of k satisfy the 

previous condition, the final value will be randomly chosen. 

 

 

4.3 Multicriteria ordered clustering with tabu heuristic 
 

MC ordered clustering with tabu heuristic is criteria dependent method and has ordered 

clusters, so we can say that it is an ordered multicriteria clustering according to taxonomy 

presented in Figure 2.1. This is an ordered method, so all the clusters will be ranked. The 

ordered clustering problem [5] consists of detecting the ordered partition of a set of 

alternatives that is the most compatible with the information contained in the preference 

matrix. 

Let A={a1,a2…an} be the set of alternatives evaluated according to a set of criteria G= 

{g1,g2…gn}.  A comparison of these alternatives lead to a preference matrix П=(πij) with πij ≥0 

and πij+πji≤1 ,because the outranking method considered is Promethee, where πij represents 

the preference degree of alternative ai when compared to alternative aj. This matrix can be 

build using classical multicriteria methods such as Electre or Promethee.  

An ordered partition of A in k clusters is noted C= { C1,C2…Cz } is defined as follows: A= ∪  

Ci , with i=1,2,…,m  ; Ci ∩ Cj = ∅  ;  Cz ⊱ Cz-1 ⊱… ⊱ C1 , where the symbol ⊱ denotes 

preference, that means that the alternatives that belong to the cluster Cz are better than the 

alternatives of Cz-1 in this example.  

It is believed that all alternatives belonging to the same cluster should be characterized 

by a relative small preference degree, also known as homogeneity (HI). Ideally, the 

preference degree is zero. If an alternative ai is strongly preferred to aj they cannot be in the 

same cluster that means that the clusters are not coherent and is evaluated with coherence 

index (CI). The symbols HIC and CIC are indicators of the partition P and characterize the 

violation or the satisfaction of two conditions. 

Firstly, for each cluster, a homogeneity indicator will be defined as the maximum value 

of the preference degree between two alternatives belonging to the same cluster, max(πij, 

πji). The smaller homogeneity indicator, the better the cluster Ci from homogeneity point of 

view. The homogeneity indicator related to a given partition P will be equal to the maximum 

homogeneity index of its component, max(HIi) for i=1,…,k. 

Secondly, a coherence indicator is used between each pair of clusters, CIlm. Let us assume 

that two alternatives are assigned to two distinct clusters, ai belongs to cluster a cluster Cl 

and aj belongs to Cm, and Cl is preferred to Cm. If the value of πij is higher than πji ,aj must be 

assigned to a better cluster than aj. The lower CIlm, the better the coherence between the 

two ordered clusters. The coherence indicator between two clusters will be defined as max 

(πij), where ai belongs to Cm, aj belongs to Cl and Cl is preferred to Cm.    

Finally, the quality of the partition P is measured using a fitness indicator, FTC , which is 

the maximum value between its homogeneity and coherence index, max (HIC, CIC). The lower 

the FTC , the better the partition.  
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4.3.1 Tabu meta-heuristic 

 

The total number of ordered partitions C of a set with n elements is, much bigger than 

the total number of not ordered partitions. When n is rising, it is impossible to enumerate all 

the possible partitions. For example, when n is equal to 10, the number of ordered partitions 

is bigger than 100 millions. For that reason, a met- heuristic based on Tabu search approach 

has been developed in [5]. The purpose of this meta-heuristic is to find a partition with small 

optimal values for the indicators without studying all partitions. This meta-heuristic consists 

of two steps: split and merge processes. With these two steps, the clusters are updated at 

each iteration of Tabu search algorithm and the fitness indicator improves leading to a better 

solution. A cluster is splitted in two sub-clusters and then one of the two sub-clusters is 

merged with another existing cluster. The remaining sub-cluster is transformed in a new 

cluster, this way the number of clusters remains the same.  

In the first step, the cluster Ci with the highest homogeneity is selected and then the 

cluster is splitted in 2 sub-clusters SC1i and SC2i. To split the cluster, the two alternatives, ap 

and aq, with highest preference indicators are selected and each one of them goes to the two 

different sub-clusters.  The remaining alternatives are placed in a way that the homogeneity 

index of the formed sub-clusters has the smallest value. This means that the assignment rule 

for a new alternative following az is: if max ( πzp, πpz) ≤max( πzq,  πzp) then az is assigned to 

SC1i, or in SC2i otherwise. 

Having two sub-clusters, one of them is merged with an existing cluster and the other one 

is promoted to a new cluster. The sub-cluster with smallest homogeneity factor is selected to 

be merged. That means that one existing cluster will have all the alternatives of its own 

cluster and the alternatives of the selected sub-cluster and the new cluster which, compared 

from remaining sub-cluster and its alternatives.  The not chosen sub-cluster is promoted then 

to a new cluster. 

Finally, the indices are calculated for new k clusters and are compared to find the cluster 

with the best coherence indicator. This mechanism is continued as long as there is 

improvement of the fitness indicator. When there is no improvement during a certain time, 

the process is stopped. 

To avoid the cycling effect in Tabu search a tabu list is used. Tabu list contains the last T 

partitions (with T being a parameter of the algorithm which varies). The algorithm consists in 

either splitting the cluster randomly (with probability p) or splitting them in order to get two 

sub-clusters with the lowest homogeneity indicators. A distinctive feature of this approach is 

that the value of probability p varies from iteration to iteration of the Tabu search algorithm. 

If the generated partition is already in the Tabu list, p increases, if it does not appear yet in 

Tabu list, p decrease.  

The first step of Tabu search meta-heuristic for finding best partition P consists in 

initializing the parameters (K, Kmax, T, p+
step p

-
step, pmax, p), generating a random partition P 

with k clusters for which FIC is evaluated and defining the stopping criterion, which can be for 

example time or number of iterations. After that, for k=2 to kmax , while the stopping 

criterion is not true, a random value r, is generated and if r<p the cluster is splitted and one 

of the sub-clusters is merged with an existing cluster like it was described earlier, else the 

cluster is splitted randomly and then follows the merging process. All the permutations of k 

clusters are listed, the current partition is now the best of the list according to CIC and the 
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best partition among the best and the current partitions are retained. At this step, if the 

current partition is in Tabu list, p is increased, otherwise p is decreased. This process is 

repeated until some stopping criterion is satisfied, for example, the number of iterations. 



27 

 

 

 

Chapter 5 

 

The MCOC approach proposed in this 
work  

Our focus is the MCDA ordered clustering, so we are going to propose a new approach to 

solve a MCDA ordered clustering problem in 5.1. 

 

 

5.1 The MCOC approach proposed in this work 

 

In this work, multicriteria ordered clustering approach based on split and merge processes 

similar to those that Y.De Smet and L. Montano Guzmán [1] and Nemery and Y. De Smet [5] is 

proposed. MCOC approach proposed in this work is criteria dependent use the order relation 

on set of clusters, so we can say that it is an ordered multicriteria clustering according to 

taxonomy presented in Figure 2.1. 

The idea is to assign each alternative to a cluster based its relation to the rest of the 

alternatives. The relation of order between alternatives is very important in a MCOC 

(multicriteria ordered clustering), that is why preference or outranking relations could be 

used in this approach. 

For a set of alternatives A={a1,a2,…an} ,a set of criterion G={g1,g2,…gn} and a set of 

clusters C={C1,…,Ck} with Cn-1 always worse than Cn , the outranking index is build considering 

the preference, indifference and veto thresholds (pk, qk and vk) and the cutting level λ if the 

Electre III algorithm is used, or only the preference and indifference thresholds if Promethee 

is the applied.  

 In MCDA ordered method proposed by Nemery and Y. De Smet [5] the split and merge 

processes are repeated until some stopping condition is satisfied. The number of clusters 

maintains the same during all process like in the method proposed by Nemery and Y. De Smet 



28   The MCOC approach proposed in this work 

 

 

 

[5]. On the other hand, in the MCOC approach proposed in this work the starting point is one 

cluster with all alternatives belonging to it and then the cluster will be splitted until some 

stopping condition is satisfied and a list of ordered clusters is obtained. 

To illustrate this MCOC approach, the following example is provided. The starting point 

for this method is the outranking index obtained by Electre III or Promethee I method:  

 

 

 

 

 

5.1.1 Split procedure: 

 

In the beginning of this process we have C1= {a1, a2,…an}, let us remember that Cn-1 is 

always worse than Cn. The idea of splitting is to divide one cluster into as many clusters as 

possible. By looking at the outranking relation matrix that provides ordered relations 

(preference, indifference and incomparability) between all pairs of alternatives, we can 

observe witch alternatives are better, indifferent of incomparable to the current one. That 

helps in splitting alternatives in ordered clusters. 

In the first iteration of the splitting process, after comparing the first alternative ( a i, i=1) 

to the rest of alternatives (aj, j>i), we can split all alternatives into 4 clusters: those that are 

better than the alternative a1, those that are worse than the alternative a1, those that are 

indifferent to the alternative a1 and those that are incomparable to the alternative a1. 

We will consider the first line of the outranking relation matrix that shows the relation 

between a1 and all the other alternatives. Only the alternatives belonging to the same cluster 

can be moved to another cluster. At the first iteration, all alternatives are in the same 

cluster and can be moved. Now, we will select the alternatives that are better than 

alternative a1 (aj P a1) and create a new cluster for them ( C2). Similarly, alternatives that are 

worse than the current alternative should be allocated in a worse cluster.  We can see that 

there is no ( P+) in the first line, that means that the result of this iteration all alternatives 

will be better or equally good to this alternative a1. After the first iteration we will have 

ordered clusters C1={a1, a2, a4} and C2={a3, a5, a6}  with C2 better than C1. 

In the second iteration of the split process, for the alternative ai , i=2, we will analyze 

alternatives aj, j>i, and find out what alternatives are worst and what alternatives are better 

than a2. We have ordered clusters C1={a1, a2, a4 } and C2={a3, a5, a6 }, so we can only move 

alternatives from C1 because a2 belongs to C1. At this point we only need to know the 
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outranking index for the current alternative a2 and the not yet analyzed alternative a4 , and 

we know this relation is a2Pa4, so we will split C1 in 2 clusters, one with alternatives worse 

than a2 and one with alternatives that are equally good to a2. To maintain the order, the 

cluster C1 will be splitted in C1 and C2   and all the other clusters that were better than C1 in 

the beginning of this iteration will be increased by 1, because we are creating one new 

cluster by splitting C1. After this iteration we will have the following order of clusters: C1= 

{a4}, C2={a1, a2} and C3={a3, a5, a6 }.  

In the third iteration of the splitting process, the alternative ai , i=3 is compared to all 

alternatives that have not yet been analyzed, aj, j>I and the information about alternatives 

that are worse than a3,  and alternatives that are better than a3 is obtained having: C1={a4} 

,C2={a1, a2} and C3={a3, a5 a6}.  We can only move alternatives from C3 because a3 belongs to 

C3. At this point we only need to know the outranking indices between a3 and a5. Evaluating 

this relation provides us with information about relations a3Pa6 and a5Pa3, so we will split C3 

in three clusters, one for the alternatives worse than a3, one for the alternatives better than 

a3 and one for the alternatives that are equally good to a3. To maintain the order, the cluster 

C3 will be splitted in C3, C4 and C5. All the other clusters will keep the same order because all 

the other clusters are worse than the cluster C5. After this iteration we will have following 

ordered clusters: C1={ a4} ,C2={a1, a2} ,C3={a6}, C4={a3} and C5={a5}.  

In the following steps no changes are made in the order of clusters because the 

alternatives a4, a5 and a6 are the only alternatives in the corresponding clusters. We can 

conclude now the splitting process and we have the alternatives allocated to the maximum 

number of cluster that we can obtain (five alternatives are allocated to five ordered 

clusters). This is important information because we know now the preference order between 

all alternatives. Next the clusters are merged until the specified number of clusters is 

reached. 

 

 

5.1.2 Merge procedure: 

 

The merging process is based on the definition of homogeneity [5] and its objective is to 

merge the clusters until some stopping criterion is satisfied, for example the number of 

clusters defined a priori is reached. For the example introduced earlier in Section 5.3.1, after 

splitting process, the alternatives are allocated in five clusters: C1={ a4} ,C2={a1, a2} ,C3={a6}, 

C4={a3} and C5={a5}. 

Assuming that a priori the number of clusters is defined as three, we have to merge some 

clusters. One way of merging clusters is suggested in [5] and is based on calculating the 

preference matrix. The preference relation between all pairs of alternatives can be 

calculated based on Electre Promethee methods for each criterion. For instance, here we 
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calculated preference relation based on the Promethee I method as was already shown in 

Section 3.2.1. 

Let us assume the overall preference matrix obtained for the example from [15, p.35] is: 

 

 

 

Now we have all the data needed to proceed with the merging process. It is usually 

assumed [5] that alternatives belonging to the same cluster Ci, should be characterized be a 

relatively small preference degree. In the ideal case, the pairwise comparison of alternatives 

belonging to the same cluster, ai and aj belong to Ci, should lead to π(ai,aj)= π(aj,ai)=0. On 

the other hand, if ai is strongly preferred to aj, these two alternatives should be in different 

clusters. For these two alternatives, the cluster that ai belongs to, should be better than the 

cluster that contains the alternative aj. 

In [5], the homogeneity indicator is introduced, which is equal to the maximum value of 

the preference degree between the alternatives belonging to the same cluster Ci. It is 

obvious that the smaller the homogeneity indicator is, the better is the cluster Ci from the 

homogeneity point of view. For example, for the cluster C2, the preference degrees are: π 

(a1,a2)=0.500 and π(a1,a2)=0.425, so the homogeneity indicator is the maximum between 

these two values, 0.500.  

In the merging process we can only merge two neighbor clusters, this guarantees that the 

order is maintained, that means that all the clusters are still ordered after the merging 

process.  In the first iteration of this process, we will calculate the homogeneity indicator for 

all the neighbor clusters; in our case we will calculate the homogeneity indicator for C1 and 

C2, for C2 and C3, for C3 and C4 and for C4 and C5. These values are HIC=[0.546 0.5 0.350 

0.524]. The lowest value of this vector is 0.350, the homogeneity indicator between C3 and 

C4, these are the two clusters to be merged. After this iteration we have four ordered 

clusters C1={ a4} ,C2={ a1,a2} ,C3={a6,a3} and  C4={a5}.  

In the following iterations the same process is repeated until some stopping criterion is 

reached, in this case the number of ordered clusters that we want to have, three. After the 

second iteration we reach our objective, three ordered clusters, and the result of clustering 

process is three following ordered clusters: C1={a4} ,C2={ a1,a2,a6,a3} and C3={a5}. 

Obviously, the number of final clusters must be smaller than the number of clusters 

obtained. If the number of final clusters that we want to have is equal to the number of 

cluster of splitting process, there is no need to perform the merge process. 
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Chapter 6 

Experimental results and analysis 

In this section the results of solving clustering problem on several data sets using the 

algorithm described in 5.3. Using as basic the Promethee I and the Electre III outranking 

procedures, will be presented and compared with results obtained using another methods 

from the multicriteria literature such as Electre Tri [15] and Electre tri-c [16]. Our approach 

was encoded in Java language, using the software Eclipse SDK (version: 3.6.2). The tests were 

done in a Core 2 Duo with 1.66 GHz processor and 1.0 Gb RAM. 

 

6.1 Example 1 

 

For the first example, a small data set with only two criteria will be presented. We will 

consider the following six alternatives evaluated on two criteria with equal weights that 

should be assigned to three ordered using our approach. 

 
Table 6.1- Data set for the example used in Section 6.1 

Alternatives ai g1 g2 

a1 

a2 

a3 

a4 

a5 

a6 

0.172 0.122 

0.069 0.244 

0.241 0.220 

0.034 0.146 

0.276 0.171 

0.207 0.098 

Weights 0.5 0.5 
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The outranking method to be considered is Electre III. The parameters needed for this 

method such as indifference, preference and veto thresholds and cutting level λ are indicated 

in Table 6.1. 

 

Table 6.2- Parameters for the example used in Section 6.1 

Criterion gk qk pk vk λ 

g1 

g2 

0.01 
0.01 

0.05 
0.05 

1 
1 0.6 

 

At this point all needed information is known, that leads us to the first step of the 

algorithm, which is calculation of the outranking index. Following the Electre III algorithm we 

have the following outranking relation matrix: 

 

 

 

 

Where P+ means preference of first alternative when compared to the second one , I 

means indifference of first alternative when compared to the second one , J means 

incomparability of first alternative when compared to the second one  and P- means 

preference of second alternative when compared to the first one. 

Now that we have the outranking relation matrix, we can apply the splitting algorithm. At 

the end of the split algorithm we have four ordered clusters: C1={a4}, C2={a1, a2, a6}, C3={a5} 

and C4={a3}.  

At this point we have four clusters, and we want to have only three, so we need to apply 

the merging algorithm. For the next step, we need the values of outranking index S(ai,aj) that 

provides values of preference of each pair of alternatives. We have then the preference 

matrix as follows:  

 

 

 

As a result of applying merging algorithm to the set of clusters obtained after splitting 

algorithm we have three ordered clusters C1={a4}, C2={a1, a2 , a6} and C3={a5, a3}. 
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In Figure 6.1 in the x axis we have the value of all alternatives on the criterion g1 and in 

the y axis on g2.  

 

 

Figure 6.1 – Dissemination of clusters in two criteria space for the example 5.1 

 

The clustering algorithm joins the alternatives in the same cluster that are equally good 

to each other. The weights of g1 and g2 are the same, and with the values given in Table 6.1 

and Table 6.2 we have this three ordered clusters. We can easily see from the Figure 6.1 that 

C3 is better than C2 and C2 is better than C1.  

Now we are going to compare the proposed algorithm with other clustering and 

classification algorithms from the multicriteria literature. 

 

 

6.2 Example 2 

 

We will present an example of application of our approach in the field of business failure 

risk. It concerns the assignment of firms to different risk categories. The example can be 

found in [15] and [28]. Each firm is evaluated on the basis of seven criteria. The number of 

considered clusters is five and they are: 

•C1: very high risk (the worst cluster) 

•C2: high risk 

•C3: medium risk 

•C4: low risk 
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•C5: very low risk (best cluster) 

 

The 7 criteria are the following: 

• g1 : earning before interest / total assets [to be maximized] 

• g2 : net income / net worth [to be maximized] 

• g3 : total liabilities / total assets [to be minimized] 

• g4 : interest expenses / sales [to be minimized] 

• g5 : general and administrative expenses / sales [to be minimized] 

• g6 : manager work experience [to be maximized] 

• g7 : market niche / position [to be maximized] 

 

In [15] this problem has solved by Electre Tri optimistic and Electre Tri pessimistic 

method as a classification problem. The following parameters presented in Table 6.3 were 

used for the Electre Tri method. 

 

Table 6.3 – parameter of alternatives that are used in example 6.3 

Parameters g1 g2 g3 g4 g5 g6 g7 

b1 

b2 

b3 

b4 

-10 

0 

8 

25 

-60 

-40 

-20 

30 

90 

75 

60 

35 

28 

23 

18 

10 

40 

32 

22 

14 

1 

2 

4 

5 

0 

2 

3 

4 

qk 

pk 

1 

2 

4 

6 

1 

3 

1 

2 

3 

4 

0 

0 

0 

0 

wk 0.01 0.295 0.225 0.01 0.225 0.01 0.225 

 

The Table 6.3 contains preference and indifferent thresholds and the weights for each 

criterion that are the parameters used in this case. The cutting level parameter used in 

Electre III is fixed at 0.85. The alternatives b1,…,bn denote the lower (upper) limits of the 

categories in Electre Tri. 
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Table 6.4 - Alternatives evaluated on criteria used in the example 6.2 

Alternatives g1 g2 g3 g4 g5 g6 g7 

 

a0 

a1 

a2 

a3 

a4 

a5 

a6 

a7 

a8 

a9 

a10 

a11 

a12 

a13 

a14 

a15 

a16 

a17 

a18 

a19 

a20 

a21 

a22 

a23 

a24 

a25 

a26 

a27 

a28 

a29 

a30 

a31 

a32 

a33 

a34 

a35 

a36 

a37 

a38 

a39 

 

35.8 

16.4 

35.8 

20.6 

11.5 

22.4 

23.9 

29.9 

8.9 

25.7 

21.2 

18.3 

20.7 

9.9 

10.4 

17.7 

14.8 

16 

11.7 

11 

15.5 

13.2 

9.1 

12.9 

5.9 

16.9 

16.7 

14.6 

5.1 

24.4 

29.5 

7.3 

23.7 

18.9 

13.9 

-13.3 

6.2 

4.8 

0.1 

13.6 

 

67 

14.5 

24 

61.7 

17.1 

25.1 

34.5 

44 

5.4 

29.7 

24.6 

31.6 

19.3 

3.5 

9.8 

19.8 

15.9 

14.7 

10 

4.2 

8.5 

9.1 

4.1 

1.9 

-27.7 

12..4 

13.1 

9.7 

4.9 

22.3 

8.6 

-64.5 

31.9 

13.5 

3.3 

-31.1 

-3.2 

-3.3 

-9.6 

9.1 

 

19.7 

59.8 

64.9 

75.7 

557.1 

49.8 

48.9 

57.8 

27.4 

46.8 

64.8 

69.3 

19.7 

53.1 

80.9 

52.88 

27.9 

53.5 

42.1 

60.8 

56.2 

74.1 

44.8 

65 

77.4 

60.1 

73.5 

59.5 

28.9 

32.8 

41.8 

67.5 

63.6 

74.5 

78.7 

63 

46.1 

71.1 

42.5 

76 

 

0 

7.5 

2.1 

3.6 

4.2 

5 

2.5 

1.7 

4.5 

4.6 

3.6 

2.8 

2.2 

8.5 

1.4 

7.9 

5.4 

6.8 

12.2 

6.2 

5.5 

6.4 

3.3 

14 

16.6 

5.6 

11.9 

5.6 

2.5 

3.3 

5.2 

30.1 

12.1 

12 

14.7 

21.2 

4.8 

8.6 

12.9 

17.1 

 

0 

5.2 

4.5 

8 

3.7 

7.9 

8 

2.5 

4.5 

3.7 

8 

3 

4 

5.3 

4.1 

6.1 

1.8 

3.8 

4.3 

4.8 

1.8 

5 

10.4 

7.5 

12.7 

5.6 

4.1 

5.6 

46 

5 

6.4 

8.7 

10.2 

8.4 

10.1 

29.1 

10.5 

11.6 

12.4 

10.3 

 

5 

5 

5 

5 

5 

5 

5 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

5 

4 

4 

2 

3 

4 

3 

3 

2 

2 

2 

3 

2 

3 

3 

3 

2 

2 

2 

2 

1 

1 

 

4 

3 

4 

3 

2 

3 

3 

4 

2 

2 

2 

3 

2 

2 

2 

4 

2 

4 

2 

2 

2 

2 

4 

3 

2 

2 

2 

2 

2 

4 

3 

3 

2 

3 

2 

1 

1 

2 

1 

1 
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The results obtained with our approach after merging, using Electre III and Promethee to 

build the outranking index, and Electre-tri [15] pessimist and optimist, are in Table 6.5. 

 

Table 6.5 – Allocation of alternatives from the example 6.2 in ordered groups using Electre Tri 
pessimistic and optimistic, and our approaches using Electre III and Promethee as a basis 

Alternatives Electre-tri (pess) Electre-tri (opt) Our approach (Electre III) Our approach(Prom) 

 

a0 

a1 

a2 

a3 

a4 

a5 

a6 

a7 

a8 

a9 

a10 

a11 

a12 

a13 

a14 

a15 

a16 

a17 

a18 

a19 

a20 

a21 

a22 

a23 

a24 

a25 

a26 

a27 

a28 

a29 

a30 

a31 

a32 

a33 

a34 

a35 

a36 

a37 

a38 

a39 

 

C5 

C4 

C3 

C3 

C3 

C4 

C4 

C4 

C3 

C3 

C3 

C3 

C3 

C3 

C2 

C4 

C3 

C4 

C3 

C3 

C3 

C3 

C4 

C3 

C2 

C3 

C3 

C3 

C1 

C4 

C4 

C2 

C3 

C3 

C2 

C2 

C2 

C3 

C2 

C2 

 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C4 

C5 

C4 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C5 

C3 

C4 

C4 

C4 

C5 

 

C5 

C2 

C2 

C2 

C2 

C4 

C4 

C4 

C3 

C4 

C2 

C3 

C4 

C2 

C1 

C4 

C4 

C4 

C3 

C3 

C2 

C2 

C2 

C3 

C2 

C1 

C2 

C2 

C2 

C2 

C4 

C3 

C2 

C2 

C1 

C1 

C2 

C1 

C2 

C1 

 

C5 

C4 

C4 

C4 

C3 

C4 

C4 

C4 

C3 

C4 

C3 

C4 

C4 

C2 

C1 

C4 

C4 

C4 

C4 

C2 

C3 

C1 

C3 

C2 

C1 

C3 

C2 

C3 

C2 

C4 

C4 

C2 

C3 

C3 

C1 

C1 

C1 

C1 

C1 

C1 

 



Experimental results and analysis   37 

  

 

Table 6.6 – Percentage of the allocation of alternatives from the example 6.2 in ordered groups 
using Electre Tri pessimistic and optimistic, and our approaches using Electre III and Promethee as a 

basis 

 

Since the parameters used in Electre Tri, Electre III and Promethee I, are similar, the 

results obtained for Electre Tri pessimistic procedure and our approach are quite similar. 

There are no assignments made by our approach, with both Electre III and Promethee), is out 

of range defined by Electre tri pessimistic procedure. 

We have thus presented the results for a business failure risk problem obtained with two 

different methods. Electre Tri which is a classification method, uses lower and upper bounds 

given, whereas our clustering approach does not use any information about clusters, uses the 

similarity to clusters. Let us remark that is not always obvious how to construct these 

clusters. It is not easy to define appropriate parameters for the two methods like for example 

cutting level, thresholds, and weights. 

The Electre Tri is a classification method that uses information about classes, such as 

boundary alternatives, to assign the set of alternatives to classes. In case of absence of 

information about classes our method could be applied and give results similar to Electre Tri. 

 

 

6.3 Example 3 

 

Next we will compare our approach to the results of another multicriteria classification 

algorithm, called Electre Tri-C [16]. 

Consider fifteen potential actions, denoted as a1,…,a15 and evaluated on a coherent 

family of seven criteria, denoted G={g1,…,g7} (all the criteria are in increasing preference 

direction and should be maximized), when taking into account the preferences of the 

decision maker (see Table 6.7). The importance of each criterion is defined by the weight. 

The veto thresholds are not considered in this case. 

 
Table 6.7- Criteria and parameters for the example 6.3 

Parameters g1 g2 g3 g4 g5 g6 g7 

qk 

pk 

wk 

4 

8 

0.20 

10 

15 

0.15 

10 

15 

0.10 

2 

4 

0.10 

2 

4 

0.10 

0 

1 

0.15 

0 

1 

0.20 
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Table 6.8 - Potential alternatives for the example 6.3 

alternatives g1 g2 g3 g4 g5 g6 g7 

a1 

a2 

a3 

a4 

a5 

a6 

a7 

a8 

a9 

a10 

a11 

a12 

a13 

a14 

a15 

16 

45 

21 

21 

4 

5 

6 

40 

10 

21 

10 

45 

15 

18 

35 

15 

92 

62 

25 

12 

30 

25 

80 

20 

19 

4 

85 

16 

20 

70 

40 

58 

24 

50 

15 

60 

25 

60 

30 

80 

47 

85 

72 

47 

60 

12 

16 

16 

10 

4 

10 

4 

16 

8 

18 

11 

15 

15 

12 

10 

15 

16 

12 

12 

2 

15 

16 

12 

8 

16 

15 

15 

18 

14 

10 

5 

5 

5 

3 

2 

1 

4 

4 

2 

4 

4 

5 

4 

4 

3 

3 

5 

3 

5 

1 

2 

5 

5 

1 

2 

2 

5 

2 

4 

3 

 

Table 6.9 - Characteristic alternatives for the example 6.3 

Ck bh g1 g2 g3 g4 g5 g6 g7 

 

C1 

C2 

C3 

C4 

C5 

b0 

b1 

b2 

b3 

b4 

b5 

b6 

0 

5 

15 

25 

35 

45 

50 

0 

10 

30 

50 

70 

90 

100 

0 

20 

40 

60 

60 

80 

100 

0 

5 

10 

10 

10 

15 

20 

0 

5 

10 

10 

10 

15 

20 

0 

1 

2 

3 

4 

5 

6 

0 

1 

2 

3 

4 

5 

6 

 

The objective of Electre Tri-C is to assign the alternatives, see (Table 6.8), to a set of 

five categories defined by a set of so-called characteristic alternatives that are basically 

centroids of clusters see, (Table 6.9).  

We are going to compare the results of our approach, using Electre III and Promethee I 

outranking methods, with the results obtained in [16] by the Electre Tri-C method. This time, 

we are going to use two different values of the cutting level λ. For Electre III and Electre Tri-

C the values used for λ are 0.60 and 0.70. The comparative results of our approach using 

Electre III and Promethee I outranking methods and Electre Tri C are provided in Table 6.10. 
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Table 6.10 - Electre Tri-C and our approach results for example 6.3. 

Alternatives ET-C HC ET-C LC  OA E ET-C HC ET-C LC OA E OA P 

λ=0.6 λ=0.7  

a1 

a2 

a3 

a4 

a5 

a6 

a7 

a8 

a9 

a10 

a11 

a12 

a13 

a14 

a15 

C3 

C5 

C3 

C3 

C1 

C2 

C2 

C4 

C1 

C3 

C2 

C5 

C2 

C4 

C3 

C2 

C5 

C3 

C3 

C1 

C2 

C3 

C5 

C2 

C3 

C2 

C5 

C2 

C4 

C4 

C2 

C5 

C3 

C2 

C2 

C2 

C2 

C5 

C1 

C3 

C2 

C5 

C2 

C2 

C4 

C3 

C5 

C3 

C3 

C1 

C2 

C3 

C5 

C2 

C3 

C2 

C5 

C3 

C4 

C4 

C2 

C5 

C3 

C3 

C1 

C2 

C2 

C4 

C1 

C3 

C2 

C5 

C2 

C3 

C3 

C3 

C5 

C4 

C3 

C1 

C2 

C2 

C5 

C1 

C3 

C2 

C5 

C3 

C3 

C4 

C3 

C5 

C4 

C2 

C1 

C2 

C2 

C5 

C1 

C4 

C2 

C5 

C2 

C3 

C3 

 

 

Table 6.11 - Electre Tri-C and our approach results for example 6.3 in percentages. 

 

In Table 6.10, ET-C HC means Electre Tri-C higher category, ET-C LC means Electre Tri-C 

lowest category, OA E means our approach using Electre III outranking method and OA P 

means our approach using Promethee outranking method.  

Once again we have very similar results for our approach and Electre Tri C. Despite the 

fact that our approach does not use information about clusters like characterizing 

alternatives given in advance in Electre Tri C, it provides similar results. The difference of 

the clusters attributed to the alternatives is bigger than one only in one case (for a14, the 

difference for our approach and Electre Tri-C using λ=0.6 is two clusters/classes), showing a 

very good performance of our approach. 
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For both Electre III used in our approach and Electre Tri-C the testes were done with two 

different values of the cutting level, 0.60 and 0.70. We can note small change in results when 

the value of the clustering level increases. We can see that in our approach using Electre III 

with λ= 0.6 and λ=0.7 only four alternatives are in different clusters and for Electre Tri-C for 

the highest category only two alternative are in different clusters and for the lowest category 

there is only one alternative that is not in the same cluster. Construction of these clusters is 

not always obvious; defining appropriate parameters for two methods is not easy but we can 

see that our approach gives very similar results. 
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Chapter 7 

Conclusions and future research 

 

In this paper we have proposed an approach to solve the multicriteria ordered clustering 

problem. In this kind of problems, similar alternatives have to be grouped in ordered clusters. 

The difficulty of this problem is the fact that the clusters are not defined a priori.  

 Different multicriteria decision aiding methods have been presented to assign a set of 

alternatives into clusters. In this work these approaches were discussed and an approach for 

one type of the clustering problems was suggested, in particular, the approach to solve 

ordered clustering problem was introduced.  

Our approach has, successfully, been applied on datasets for which, the obtained results 

have been compared to the results obtained by earlier developed methods represented in 

multicriteria literature. In particular the clustering results obtained by our approach on the 

business failure risk problem with 40 alternatives evaluated on 7 criteria and on other 

hypothetical example with 15 alternatives evaluated on 7 criteria are coherent with the 

results obtained with Electre Tri and Electre Tri-C. This permits us to hope to tackle and 

solve similar problems of this type that appearing in real life. 

Although the results seem to be encouraging, future attention should be paid to analysis 

of problems with a larger set of alternatives evaluated in a big set of criteria, study stability 

in face of different labels of the input alternatives and make it interactive. One way to work 

with large data set is to first select a representative data set and cluster this data set. This 

could help to simplify the problem. After this step we can classify the rest of alternatives in 

classification problem, by comparing to the centroids obtained. 
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Appendix 

Appendix A 

In this appendix we present the source code, made in Java programming language, for the 

approach proposed by us in Section 5.3 using as basis Promethee I outranking method. 

 
public class proposed_approach_using_Promethee_I { 
  
 public static double[][] partialpref (double x [][],double z [][], double  p[], double  
q[],int c){ 
  // calculation of partial preference 
   
  double partpref [][]= new double[x.length][z.length]; 
  int i=0; 
  int j=0; 
   
  while(i<x.length){  
   j=0; 
    
   while(j<z.length){ 
     
    if(z[i][c]-x[j][c]<=q[c] || z[i][c]<=x[j][c])partpref[i][j]=0; 
    if(z[i][c]-x[j][c]> p[c])partpref[i][j]=1; 
    if((z[i][c]-p[c]) <= x[j][c] && x[j][c] < (z[i][c]-q[c] 
))partpref[i][j]=((z[i][c]-x[j][c]- q[c])/(p[c]-q[c])); 
    j++; 
   } 
   i++; 
  } 
  return partpref;   
 } 
 
 public static double[][] overallpref (double x [][],double z [][], double  p[], double  
q[], double w []){ 
  //calculation of overall preference 
   
  double partpref[][] = new double[x.length][z.length]; 
  double prefmat[][] = new double[x.length][z.length]; 
  int c=0; 
 
  while(c<x[0].length)  
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   { 
   if (c==0){ 
    partpref=partialpref(x,z,p,q,c); 
    int i=0,j=0; 
    while (i<partpref.length){ 
     j=0; 
     while(j<partpref.length){ 
      prefmat[i][j]=w[c]*partpref[i][j]; 
      j++; 
     } 
    i++;  
    } 
   }  
   else if (c>0 && c<x[0].length){ 
    partpref=partialpref(x,z,p,q,c); 
    int i=0,j=0; 
    while (i<partpref.length){ 
     j=0; 
     while(j<partpref.length){ 
     
 prefmat[i][j]=prefmat[i][j]+w[c]*partpref[i][j]; 
      j++; 
     } 
    i++;  
    } 
   } 
   c++; 
  } 
   
  return prefmat;   
 } 
 
 public static double[] flowplus (double x [][],double z [][], double  p[], double  q[], 
double w []){ 
  //calculation of positive flow 
   
  double flow[] = new double[x.length]; 
  double overallpref[][] = new double[x.length][x.length]; 
  overallpref=overallpref(x,x,p,q,w); 
   
  int n=0; 
  while (n<x.length) {flow[n]=0;n++;} 
   
  int i=0; 
  while(i<x.length) { 
    
   int j=0; 
   while (j<z.length){ 
     
    flow[i]=flow[i]+overallpref[i][j]; 
     
    j++;  
   } 
     
   i++; 
  }  
   
  return flow; 
 } 
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 public static double[] flowminus (double x [][],double z [][], double  p[], double  q[], 
double w []){ 
  //calculation of negative flow 
   
  double flow[] = new double[z.length]; 
  double overallpref[][] = new double[x.length][x.length]; 
  overallpref=overallpref(x,x,p,q,w); 
   
  int n=0; 
  while (n<x.length) {flow[n]=0;n++;} 
   
  int i=0; 
  while(i<x.length) { 
    
   int j=0; 
   while (j<z.length){ 
     
    flow[i]=flow[i]+overallpref[j][i]; 
     
    j++;  
   } 
     
   i++; 
  } 
    
  return flow; 
 } 
 
 public static double[] flow (double x [][],double z [][], double  p[], double  q[], 
double w []){ 
  //calculation of the overall flow 
   
  double flow[] = new double[z.length]; 
  double flowp[] = new double[z.length]; 
  double flowm[] = new double[z.length]; 
   
  flowp=flowplus(x,z,p,q,w); 
  flowm=flowminus(x,z,p,q,w); 
  
  int i=0; 
  while(i<x.length) {  
   flow[i]=flowp[i]-flowm[i]; 
   i++; 
  } 
   
  return flow; 
 } 
  
 
 public static int[][] pji (double x [][],double z [][], double  p[], double  q[], double w 
[]){ 
  // calculation of  the outranking relation matrix 
  int pji[][] = new int[x.length][z.length]; 
  double flow[] = new double[z.length]; 
  double flowp[] = new double[z.length]; 
  double flowm[] = new double[z.length]; 
   
  flowp=flowplus(x,z,p,q,w); 
  flowm=flowminus(x,z,p,q,w); 
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  flow=flow(x,z,p,q,w); 
   
  int i=0; 
  while(i<flow.length) { 
    
   int j=0; 
   while (j<flow.length){ 
     
    if (flowp[i]==flowp[j] && flowm[i]==flowm[j])  {pji[i][j]=2 ; 
pji[j][i]=2;}   //2 means indifferent 
    else if ((flowp[i]>flowp[j] && flowm[i]<flowm[j]) || 
      (flowp[i]>flowp[j]  && flowm[i]==flowm[j])|| 
      (flowp[i]==flowp[j] && flowm[i]<flowm[j]))  
      {pji[i][j]=4;    //4 
means that the alternative i is better than j 
       pji[j][i]=1;}    //1 
means that the alternative j is better than i 
    else if(pji[j][i]==0){pji[i][j]=3 ; pji[j][i]=3;}   //3 means 
incomparable 
    j++;  
   }  
   i++; 
  } 
    
  return pji; 
 } 
  
 
  
 public static int [] split (double x [][],double z [][], double  p[], double  q[],double w 
[],int c){ 
  // split procedure of the proposed approach 
   
  int pji[][] = new int[x.length][z.length]; 
  int newsplit[] = new int[x.length]; 
  int split[] = new int[x.length]; 
  int i=0,j=0,n=0; 
  pji=pji(x,x,p,q,w); 
  i=0; 
   
  while (n<x.length) {split[n]=1;n++;} 
  n=0; 
  while (n<x.length) {newsplit[n]=1;n++;} 
   
  while (i<x.length){ 
   j=0; 
   n=0; 
   while(j<x.length){ 
    if(j>i){ 
     if(pji[i][j]==1 ){ 
      if (split [i]==split[j]){ 
       n=0; 
       while (n<x.length){ 
        if (split[n]>split[j]){ 
        
 newsplit[n]=split[n]+1; 
        }  
       n++;}  
       newsplit[j]=split[j]+1;   
      }  
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     } 
    } 
     
   j++;  
   } 
   n=0; 
   while (n<x.length) {split[n]=newsplit[n];n++;}  
   //printvector(split); 
    
   j=0; 
   while(j<x.length){ 
    if(j>i){ 
     if(pji[i][j]==4 ){ 
      if (split [i]==split[j]){ 
       n=0; 
       while (n<x.length){ 
        if (split[n]>split[j] 
)newsplit[n]=split[n]+1; 
        else if ( 
split[n]<split[j])newsplit[n]=split[n]; 
        else if ( split[n]==split[i] && 
pji[i][n]!=4 && n>=i )newsplit[n]=split[n]+1; 
        else if ( split[n]==split[i] && 
pji[i][n]!=4 && n>i)newsplit[n]=split[n]; 
       n++; 
       }  
      }  
     } 
    }     
   j++; 
   } 
   n=0; 
   while (n<x.length) {split[n]=newsplit[n];n++;}  
   //printvector(split); 
  i++;  
  } 
  return split;   
 } 
  
 
  
 public static double homogeneity (double x [][],double z [][], double  p[], double  
q[],double w [],int c, int i, int j){ 
  // calculation of homogeneity index for all pairs of actions 
  double homogeneity; 
  double pref[][]= new double [x.length][x.length]; 
   
  pref=overallpref(x,x,p,q,w); 
  homogeneity=pref[i][j]; 
   
  return homogeneity;   
 } 
 
 public static int max(int[] t) { 
     int maximum = t[0];   // start with the first value 
     for (int i=1; i<t.length; i++) { 
         if (t[i] > maximum) { 
             maximum = t[i];   // new maximum 
         } 
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     } 
     return maximum; 
 } 
 
 
 public static int posmin(double[] t) {   // calculation of the position in the minimum 
of a vector double 
     double min = t[0]; 
     int minpos = 0; 
     for (int i=1; i<t.length; i++) { 
         if (t[i] < min) { 
             min = t[i]; 
             minpos=i; 
             } 
     } 
     return minpos; 
 } 
 
 
 public static int [] merge (double x [][],double z [][], double  p[], double  q[],double 
w [],int c, int k){  
  // merge procedure of the proposed approach 
  
  int merge []= new int [x.length]; 
  double homogeneity; 
  double maxhomo; 
  int i,j,t,y,a; 
  merge=split (x,x,p,q,w,c); 
  homogeneity=0; 
  int m; 
   
  while(max(merge)>k){  
   m=1; 
   double memmax[]=new double[max(merge)-1]; 
   a=0; 
   while(a<max(merge)-1){ 
    int count=0; 
    int mem []; 
     
    i=0; 
    while(i<merge.length){ 
     if(merge[i]==m || merge[i]==m+1){ count++;} 
     i++;  
     } 
     
    mem=new int[count]; 
    i=0; 
    j=0; 
     
    while(i<merge.length){ 
     if(merge[i]==m || merge[i]==m+1){ mem[j]=i;j++;} 
     i++;  
    } 
    //printvector(mem); 
     
    t=0; 
    maxhomo=0; 
    while(t<mem.length){ 
     y=0; 
     homogeneity=0; 
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     while(y<mem.length){ 
     
      homogeneity=homogeneity 
(x,x,p,q,w,c,mem[t],mem[y]); 
      if(maxhomo<homogeneity) 
maxhomo=homogeneity; 
      y++;  
     } 
     t++; 
    } 
     
   memmax[m-1]=maxhomo; 
   a++; 
   m++;  
   } 
    
   int n=0; 
   while (n<x.length){ 
    if (merge[n]>posmin(memmax)+1){ 
     merge[n]=merge[n]-1; 
    }  
   n++; 
   } 
   //printvector(merge); 
  }  
   return merge;   
 } 
 
  
 public static void printmatrix(double[][] array) {  //print matrix double 
     int rowSize = array.length; 
     int columnSize = array[0].length; 
  
     for(int i = 0; i < rowSize; i++) { 
      System.out.print("["); 
      for(int j = 0; j < columnSize; j++) {    
       System.out.print(" " + array[i][j]); 
   } 
       System.out.println(" ]"); 
  } 
       System.out.println(); 
 } 
 public static void printmatrixint(int[][] array) {  //print matrix int 
     int rowSize = array.length; 
     int columnSize = array[0].length; 
     for(int i = 0; i < rowSize; i++) { 
      System.out.print("["); 
      for(int j = 0; j < columnSize; j++) { 
      System.out.print(" " + array[i][j]); 
      } 
      System.out.println(" ]"); 
  } 
      System.out.println(); 
  } 
  
 public static void printvector(int[] array) { // print vector int 
     int rowSize = array.length; 
     System.out.print("["); 
     for(int i = 0; i < rowSize; i++) { 
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      System.out.print(" " + array[i]);  
  } 
     System.out.println(" ]");     
     System.out.println(); 
  } 
  
 public static void printvectord(double[] array) { //print vector double 
     int rowSize = array.length; 
     System.out.print("["); 
     for(int i = 0; i < rowSize; i++) { 
       
      System.out.print(" " + array[i]); 
       
  } 
     System.out.println(" ]");     
     System.out.println(); 
  } 
  
  
 public static void main(String[] args) { 
  
  
 double x [][]={ {0.188,0.172,0.168,0.122,0.114},{0.125,0.069,0.188,0.244,0.205}, 
   {0.156,0.241,0.134,0.22,0.136},{0.188,0.034,0.174,0.146,0.159}, 
   {0.188,0.276,0.156,0.171,0.205},{0.156,0.207,0.18,0.098,0.182} }; 
  
 double p[] ={0.05,0.05,0.05,0.05,0.05}; double q[] ={0.01,0.01,0.01,0.01,0.01};  int 
k=3; 
 double w []= {0.25,0.25,0.1,0.2,0.2}; 
  
 double x2 
[][]={{16,15,40,12,15,5,3},{45,92,85,16,16,5,5},{21,62,24,16,12,5,3},{21,25,50,10,12,3,5},{4,
12,15,4,2,2,1},{5,30,60,10,15,1,2},{6,25,25,4,16,4,5},{40,80,60,16,12,4,5},{10,20,30,8,8,2,1}
,{21,19,80,18,16,4,2 },{   10,4,47,11,15,4,2}  ,   {45,85,85,15,15,5,5}    ,{15,16,72,15,18,4,2}    
,{18,20,47,12,14,4,4}  , {35,70,60,10,10,3,3}}; 
  
 //double q[]={4,10,10,2,2,0,0};double p[]={8,15,15,4,4,1,1}; int k=5; 
 ///double w[]={0.20,0.15,0.1,0.1,0.1,0.15,0.2}; 
 
 double x3 [][]= {{  35.8 ,67, -19.7 ,0 ,0, 5, 4} , {16.4 ,14.5 ,-59.8 ,-7.5 ,-5.2 ,5 ,3 }, 
{35.8 ,24 ,-64.9 ,-2.1,- 4.5, 5 ,4 }, {20.6 ,61.7 ,-75.7 ,-3.6 ,-8 ,5 ,3 }, {11.5 ,17.1, -57.1 ,-4.2 
,-3.7, 5, 2},  {22.4 ,25.1 ,-49.8 ,-5 ,-7.9, 5 ,3 }, {23.9 ,34.5 ,-48.9 ,-2.5 ,-8 ,5, 3 },{29.9, 44, -
57.8 ,-1.7,- 2.5 ,5 ,4 }, {8.7 ,5.4, -27.4, -4.5, -4.5 ,5 ,2 },{25.7, 29.7, -46.8,- 4.6,- 3.7, 4, 2} 
,{ 21.2 ,24.6 ,-64.8 ,-3.6 ,-8 ,4 ,2 },{ 18.3 ,31.6 ,-69.3 ,-2.8 ,-3 ,4 ,3 }, {20.7 ,19.3 ,-19.7 ,-2.2 
,-4 ,4 ,2 }, {9.9, 3.5 ,-53.1 ,-8.5 ,-5.3 ,4,2 }, {10.4, 9.3 ,-80.9, -1.4 ,-4.1 ,4 ,2 },{17.7 ,19.8 ,-
52.8 ,-7.9 ,-6.1 ,4 ,4 },  {14.8 ,15.9 ,-27.9 ,-5.4 ,-1.8 ,4 ,2 }, {16, 14.7 ,-53.5 ,-6.8 ,-3.8 ,4, 4 
}, {11.7 ,10 ,-42.1 ,-12.2,- 4.3 ,5 ,2 }, {11 ,4.2 ,-60.8 ,-6.2 ,-4.8 ,4 ,2 }, {15.5 ,8.5 ,-56.2 ,-
5.5 ,-1.8, 4 ,2}, {13.2 ,9.1 ,-74.1 ,-6.4 ,-5 ,2 ,2 }, {9.1 ,4.1 ,-44.8 ,-3.3, -10.4 ,3 ,4},  {12.9 
,1.9 ,-65 ,-14 ,-7.5, 4 ,3 }, {5.9, -27.7 ,-77.4 ,-16.6 ,-12.7 ,3 ,2 }, {16.9 ,12.4 ,-60.1, -5.6 ,-5.6 
,3 ,2 }, {16.7 ,13.1 ,-73.5 ,-11.9 ,-4.1 ,2 ,2 }, {14.6 ,9.7 ,-59.5 ,-6.7 ,-5.6 ,2 ,2 }, {5.1 ,4.9 ,-
28.9 ,-2.5 ,-46 ,2 ,2 },  {24.4 ,22.3 ,-32.8 ,-3.3 ,-5 ,3 ,4 }, {29.5 ,8.6 ,-41.8 ,-5.2 ,-6.4, 2, 3 
}, {7.3 ,-64.5 ,-67.5 ,-30.1, -8.7, 3, 3} , {23.7 ,31.9 ,-63.6, -12.1 ,-10.2 ,3 ,2}, {18.9 ,13.5 ,-
74.5 ,-12 ,-8.4 ,3 ,3 }, {13.9 ,3.3 ,-78.7, -14.7, -10.1 ,2, 2} ,{-13.3 ,-31.1 ,-63 ,-21.2 ,-29.1 ,2 
,1}, {6.2 ,-3.2 ,-46.1 ,-4.8 ,-10.5 ,2 ,1 }, {4.8 ,-3.3 ,-71.1 ,-8.6 ,-11.6 ,2 ,2 }, {0.1 ,-9.6 ,-42.5 
,-12.9 ,-12.4 ,1 ,1}, {13.6 ,9.1 ,-76, -17.1 ,-10.3 ,1 ,1 }}; 
  
 //double q[]={1,4,1,1,3,0,0};double p[]={2,6,3,2,4,0,0}; int k=5; 
 //double w []= {0.01,0.295,0.225,0.01,0.225,0.01,0.225}; 
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 double s[][] = new double[x.length][x.length]; 
 int pij[][] = new int[x.length][x.length]; 
  
 double flow[]=new double[x.length]; 
 double flowp[]=new double [x.length]; 
 double flowm[]=new double [x.length]; 
  
 double prefmat[][] = new double[x.length][x.length]; 
 double partialprefmat[][] = new double[x.length][x.length]; 
 int c=0; 
 int split []=new int [x.length]; 
 int merge []=new int [x.length]; 
 double homogeneity; 
  
  
  
 //partialprefmat=partialpref(x,x,p,q,c);printmatrix(partialprefmat); 
 
 //prefmat=overallpref(x,x,p,q,w);printmatrix(prefmat); 
  
 //pij=pji(x,x,p,q,w); printmatrixint(pij); 
 
 //split=split (x,x,p,q,w,c );printvector(split); 
  
 //homogeneity=homogeneity (x,x,p,q,w,c ,0,1); System.out.print(homogeneity); 
  
 //flow=flow(x,x,p,q,w); printvectord(flow); 
 
 //flowm=flowminus(x,x,p,q,w); printvectord(flowm); 
  
 //flowp=flowplus(x,x,p,q,w); printvectord(flowp); 
  
 merge=merge(x,x,p,q,w,c,k);printvector(merge); 
 
 } 
} 
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Appendix B 

In this appendix we present the source code, made in Java programming language, for the 

approach proposed by us in Section 5.3 using as basis Electre III outranking method. 

 
public class proposed_approach_using_Electre_III { 
  
 public static double[][] partialconc (double x [][],double z [][], double  p [], double  q 
[], double v [],int c){ 
  // calculation of partial concordance 
   
  double matrix [][]= new double[x.length][z.length]; 
  int i=0; 
  int j=0; 
   
  while(i<x.length){  
   j=0; 
    
   while(j<z.length){ 
     
    if(z[j][c]-x[i][c]>p[c])matrix[i][j]=0; 
    if(z[j][c]-x[i][c]<=q[c])matrix[i][j]=1; 
    if((z[j][c]-p[c]) <= x[i][c] && x[i][c] < (z[j][c]-q[c] 
))matrix[i][j]=((p[c]-z[j][c]+x[i][c])/(p[c]-q[c])); 
     
    j++; 
   }i++; 
  } 
  return matrix;   
 } 
 
 public static double[][] overallconc (double x [][],double z [][], double  p[], double  
q[], double v[],double w []){ 
  // calculation of overall concordance 
   
  double cpart[][] = new double[x.length][z.length]; 
  double coverall[][] = new double[x.length][z.length]; 
  int c=0; 
 
  while(c<x[0].length)  
   { 
   if (c==0){ 
    cpart=partialconc(x,z,p,q,v,c); 
    int i=0,j=0; 
    while (i<cpart.length){ 
     j=0; 
     while(j<cpart.length){ 
      coverall[i][j]=w[c]*cpart[i][j]; 
      j++; 
     } 
    i++;  
    } 
   }  
   else if (c>0 && c<x[0].length){ 
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    cpart=partialconc(x,z,p,q,v,c); 
    int i=0,j=0; 
    while (i<cpart.length){ 
     j=0; 
     while(j<cpart.length){ 
      coverall[i][j]=coverall[i][j]+w[c]*cpart[i][j]; 
      j++; 
     } 
    i++;  
    } 
   } 
   c++; 
  } 
   
  return coverall;   
 } 
  
  
 public static double[][] partialdisc (double x [][],double z [][], double  p[], double  
q[], double v[],int c){ 
  //calculation of partial discordance 
   
  double matrix [][]= new double[x.length][z.length]; 
  int i=0; 
  int j=0; 
   
  while(i<x.length){  
   j=0; 
    
   while(j<z.length){ 
     
    if(z[j][c]-x[i][c]<=p[c])matrix[i][j]=0; 
    if(z[j][c]-x[i][c]> v[c])matrix[i][j]=1; 
    if((z[j][c]-v[c]) <= x[i][c] && x[i][c] < (z[j][c]-p[c] 
))matrix[i][j]=((z[j][c]-x[i][c]- p[c])/(v[c]-p[c])); 
    j++; 
   } 
   i++; 
  } 
  return matrix;   
 } 
  
 public static double[][] outindex (double x [][],double z [][], double  p[], double  q[], 
double v[],double w []){ 
 //calculation of the outranking index matrix 
  double s [][]= new double[x.length][z.length]; 
   
  double cpart[][] = new double[x.length][z.length]; 
  double coverall[][] = new double[x.length][z.length]; 
  double partialdisc[][] = new double[x.length][z.length]; 
  int c=0; 
  int i=0; 
  while(i<cpart.length) { 
    
   int j=0; 
   while (j<cpart.length){ 
    c=0; 
    coverall=overallconc(x,z,p,q,v,w); 
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    while(c<x[0].length){ 
     cpart=partialconc(x,z,p,q,v,c); 
     partialdisc=partialdisc(x,z,p,q,v,c); 
     if (partialdisc[i][j]>cpart[i][j]) 
coverall[i][j]=coverall[i][j]*(1-partialdisc[i][j])/(1-cpart[i][j]); 
     else coverall[i][j]=coverall[i][j]; 
     c++; 
    } 
     
    s[i][j]=coverall[i][j]; 
    j++;  
   } 
     
   i++; 
  } 
   
   
  return s; 
 } 
  
   
  
  
 public static int[][] pji (double x [][],double z [][], double  p[], double  q[], double 
v[],int c, double lambda, double w[]){ 
 //calculation of outranking relation matrix 
  
  double s [][]= new double[x.length][z.length]; 
  s=outindex(x,x,p,q,v,w); 
   
  int pji[][] = new int[x.length][z.length]; 
   
  int i=0; 
  while(i<s.length) { 
    
   int j=0; 
   while (j<s.length){ 
      
    if (s[i][j]>=lambda && s[j][i]>= lambda)  {pji[i][j]=2 ; 
pji[j][i]=2;}   //2 means indifferent 
    else if (s[i][j]<lambda && s[j][i]>= lambda) pji[i][j]=1 ; 
   //1 means that the alternative j is better than i 
    else if (s[i][j]>=lambda && s[j][i]< lambda) pji[i][j]=4 ; 
   //4 means that the alternative i is better than j 
    else if (s[i][j]<lambda && s[j][i]< lambda) {pji[i][j]=3 ; 
pji[j][i]=3;}  //3 means incomparable 
    //if (s[i][j]==1 && s[j][i]==1) pji[i][j]=0 ; //just a test 
    j++;  
   } 
     
   i++; 
  } 
   
   
   
  return pji; 
 } 
  
 public static double[][] partialpref (double x [][],double z [][], double  p[], double  
q[], double v[],int c){ 



Appendix   57 

  

 

  //calculation of partial preference 
   
  double partpref [][]= new double[x.length][z.length]; 
  int i=0; 
  int j=0; 
   
  while(i<x.length){  
   j=0; 
    
    
   while(j<z.length){ 
     
    //if(z[j][c]-x[i][c]<=q[c])partpref[i][j]=0; 
    //if(z[j][c]-x[i][c]> p[c])partpref[i][j]=1; 
    //if((z[j][c]-p[c]) <= x[i][c] && x[i][c] < (z[j][c]-q[c] 
))partpref[i][j]=((z[j][c]-x[i][c]- q[c])/(p[c]-q[c])); 
     
    if(z[i][c]-x[j][c]<=q[c] || z[i][c]<=x[j][c])partpref[i][j]=0; 
    if(z[i][c]-x[j][c]> p[c])partpref[i][j]=1; 
    if((z[i][c]-p[c]) <= x[j][c] && x[j][c] < (z[i][c]-q[c] 
))partpref[i][j]=((z[i][c]-x[j][c]- q[c])/(p[c]-q[c])); 
    j++; 
   } 
   i++; 
  } 
  return partpref;   
 } 
 
 public static double[][] overallpref (double x [][],double z [][], double  p[], double  
q[], double v[],double w []){ 
  //calculation of overall preference 
   
  double partpref[][] = new double[x.length][z.length]; 
  double prefmat[][] = new double[x.length][z.length]; 
  int c=0; 
 
  while(c<x[0].length)  
   { 
   if (c==0){ 
    partpref=partialpref(x,z,p,q,v,c); 
    int i=0,j=0; 
    while (i<partpref.length){ 
     j=0; 
     while(j<partpref.length){ 
      prefmat[i][j]=w[c]*partpref[i][j]; 
      j++; 
     } 
    i++;  
    } 
   }  
   else if (c>0 && c<x[0].length){ 
    partpref=partialpref(x,z,p,q,v,c); 
    int i=0,j=0; 
    while (i<partpref.length){ 
     j=0; 
     while(j<partpref.length){ 
     
 prefmat[i][j]=prefmat[i][j]+w[c]*partpref[i][j]; 
      j++; 
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     } 
    i++;  
    } 
   } 
   c++; 
  } 
   
  return prefmat;   
 } 
  
 
  
 public static int [] split (double x [][],double z [][], double  p[], double  q[], double 
v[],double w [],int c,  double lambda){ 
 // split procedure of the proposed approach  
  
  int pji[][] = new int[x.length][z.length]; 
  int newsplit[] = new int[x.length]; 
  int split[] = new int[x.length]; 
  int i=0,j=0,n=0; 
  pji=pji(x,x,p,q,v,c,lambda,w); 
  i=0; 
   
  while (n<x.length) {split[n]=1;n++;} 
  n=0; 
  while (n<x.length) {newsplit[n]=1;n++;} 
   
  while (i<x.length){ 
   j=0; 
    
   while(j<x.length){ 
    if(j>i){ 
     if(pji[i][j]==1 ){ 
      if (split [i]==split[j]){ 
       n=0; 
       while (n<x.length){ 
        if (split[n]>split[j]){ 
        
 newsplit[n]=split[n]+1; 
        }  
       n++;}  
       newsplit[j]=split[j]+1;   
      }  
     } 
    } 
     
   j++;  
   } 
   n=0; 
   while (n<x.length) {split[n]=newsplit[n];n++;}  
   //printvector(split); 
   j=0; 
    
   while(j<x.length){ 
    if(j>i){ 
     if(pji[i][j]==4 ){ 
      if (split [i]==split[j]){ 
       n=0; 
       while (n<x.length){ 
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        if (split[n]>split[j] 
)newsplit[n]=split[n]+1; 
        else if ( 
split[n]<split[j])newsplit[n]=split[n]; 
        else if ( split[n]==split[i] && 
pji[i][n]!=4 && n>=i )newsplit[n]=split[n]+1; 
        else if ( split[n]==split[i] && 
pji[i][n]!=4 && n>i)newsplit[n]=split[n]; 
       n++; 
       }   
      }  
     } 
    }     
   j++; 
   } 
   n=0; 
   while (n<x.length) {split[n]=newsplit[n];n++;}  
   //printvector(split); 
  i++;  
  } 
  return split;   
 } 
  
 
   
 public static double homogeneity (double x [][],double z [][], double  p[], double  q[], 
double v[],double w [],int c,  double lambda, int i, int j){ 
  // calculation of homogeneity index for all pairs of actions 
   
  double homogeneity; 
  double pref[][]= new double [x.length][x.length]; 
   
  pref=overallpref(x,x,p,q,v,w); 
  homogeneity=pref[i][j]; 
   
  return homogeneity;   
 } 
  
 public static int max(int[] t) { // get the maximum of one vector 
     int maximum = t[0];   // start with the first value 
     for (int i=1; i<t.length; i++) { 
         if (t[i] > maximum) { 
             maximum = t[i];   // new maximum 
         } 
     } 
     return maximum; 
 } 
  
  
 public static int posmin(double[] t) { 
     double min = t[0]; 
     int minpos = 0; 
     for (int i=1; i<t.length; i++) { 
         if (t[i] < min) { 
             min = t[i]; 
             minpos=i; 
             } 
     } 
     return minpos; 
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 } 
 
 
 public static int [] merge (double x [][],double z [][], double  p[], double  q[], double 
v[],double w [],int c,  double lambda, int k){ 
  // merge procedure of the proposed approach 
   
  int merge []= new int [x.length]; 
  double homogeneity; 
  double maxhomo; 
  int i,j,t,y,a; 
  merge=split (x,x,p,q,v,w,c, lambda); 
  homogeneity=0; 
  int m; 
   
  while(max(merge)>k){  
   m=1; 
   double memmax[]=new double[max(merge)-1]; 
   a=0; 
   while(a<max(merge)-1){ 
    int count=0; 
    int mem []; 
     
    i=0; 
    while(i<merge.length){ 
     if(merge[i]==m || merge[i]==m+1){ count++;} 
     i++;  
     } 
    mem=new int[count]; 
    i=0; 
    j=0; 
     
    while(i<merge.length){ 
     if(merge[i]==m || merge[i]==m+1){ mem[j]=i;j++;} 
     i++;  
    } 
    //printvector(mem); 
    t=0; 
    maxhomo=0; 
     
    
    while(t<mem.length){ 
     y=0; 
     homogeneity=0; 
     while(y<mem.length){ 
     
      homogeneity=homogeneity (x,x,p,q,v,w,c, 
lambda,mem[t],mem[y]); 
      if(maxhomo<homogeneity) 
maxhomo=homogeneity; 
      y++;  
     } 
     t++; 
    } 
     
   memmax[m-1]=maxhomo; 
   a++; 
   m++;  
   } 
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   int n=0; 
   while (n<x.length){ 
    if (merge[n]>posmin(memmax)+1){ 
     merge[n]=merge[n]-1; 
    }  
   n++; 
   } 
   //printvector(merge); 
  
  }  
   return merge;   
 } 
 
 public static void printmatrix(double[][] array) {  //print matrix double 
     int rowSize = array.length; 
     int columnSize = array[0].length; 
  
     for(int i = 0; i < rowSize; i++) { 
      System.out.print("["); 
      for(int j = 0; j < columnSize; j++) {    
       System.out.print(" " + array[i][j]); 
   } 
       System.out.println(" ]"); 
  } 
       System.out.println(); 
 } 
 public static void printmatrixint(int[][] array) {  //print matrix int 
     int rowSize = array.length; 
     int columnSize = array[0].length; 
     for(int i = 0; i < rowSize; i++) { 
      System.out.print("["); 
      for(int j = 0; j < columnSize; j++) { 
      System.out.print(" " + array[i][j]); 
      } 
      System.out.println(" ]"); 
  } 
      System.out.println(); 
  } 
  
 public static void printvector(int[] array) { // print vector int 
     int rowSize = array.length; 
     System.out.print("["); 
     for(int i = 0; i < rowSize; i++) { 
      
      System.out.print(" " + array[i]);  
  } 
     System.out.println(" ]");     
     System.out.println(); 
  } 
  
 public static void printvectord(double[] array) { //print vector double 
     int rowSize = array.length; 
     System.out.print("["); 
     for(int i = 0; i < rowSize; i++) { 
       
      System.out.print(" " + array[i]); 
       
  } 
     System.out.println(" ]");     
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     System.out.println(); 
  } 
  
  
 public static void main(String[] args) { 
  
  
 double x [][]={ {0.188,0.172,0.168,0.122,0.114},{0.125,0.069,0.188,0.244,0.205}, 
{0.156,0.241,0.134,0.22,0.136},{0.188,0.034,0.174,0.146,0.159}, 
{0.188,0.276,0.156,0.171,0.205},{0.156,0.207,0.18,0.098,0.182} }; 
  
 double p[] ={0.05,0.05,0.05,0.05,0.05}; double q[] ={0.01,0.01,0.01,0.01,0.01};  
double v[] ={99,99,99,99,99,99,99};  int k=3; 
 double w []= {0.25,0.25,0.1,0.2,0.2}; 
  
 double x2 
[][]={{16,15,40,12,15,5,3},{45,92,85,16,16,5,5},{21,62,24,16,12,5,3},{21,25,50,10,12,3,5},{4,
12,15,4,2,2,1},{5,30,60,10,15,1,2},{6,25,25,4,16,4,5},{40,80,60,16,12,4,5},{10,20,30,8,8,2,1}
,{21,19,80,18,16,4,2 },{   10,4,47,11,15,4,2}  ,   {45,85,85,15,15,5,5}    ,{15,16,72,15,18,4,2}    
,{18,20,47,12,14,4,4}  , {35,70,60,10,10,3,3}}; 
  
 //double q[]={4,10,10,2,2,0,0};double p[]={8,15,15,4,4,1,1}; double 
v[]={99,99,99,99,99,99,99}; int k=5; 
 ///double w[]={0.20,0.15,0.1,0.1,0.1,0.15,0.2}; 
 
 double x3 [][]= {{  35.8 ,67, -19.7 ,0 ,0, 5, 4} ,{16.4 ,14.5 ,-59.8 ,-7.5 ,-5.2 ,5 ,3 }, 
{35.8 ,24 ,-64.9 ,-2.1,- 4.5, 5 ,4 }, {20.6 ,61.7 ,-75.7 ,-3.6 ,-8 ,5 ,3 }, {11.5 ,17.1, -57.1 ,-4.2 
,-3.7, 5, 2},  {22.4 ,25.1 ,-49.8 ,-5 ,-7.9, 5 ,3 },{23.9 ,34.5 ,-48.9 ,-2.5 ,-8 ,5, 3 },{29.9, 44, -
57.8 ,-1.7,- 2.5 ,5 ,4 },{8.7 ,5.4, -27.4, -4.5, -4.5 ,5 ,2 },{25.7, 29.7, -46.8,- 4.6,- 3.7, 4, 2} ,{ 
21.2 ,24.6 ,-64.8 ,-3.6 ,-8 ,4 ,2 },{ 18.3 ,31.6 ,-69.3 ,-2.8 ,-3 ,4 ,3 }, {20.7 ,19.3 ,-19.7 ,-2.2 ,-
4 ,4 ,2 }, {9.9, 3.5 ,-53.1 ,-8.5 ,-5.3 ,4,2 }, {10.4, 9.3 ,-80.9, -1.4 ,-4.1 ,4 ,2 },{17.7 ,19.8 ,-
52.8 ,-7.9 ,-6.1 ,4 ,4 },  {14.8 ,15.9 ,-27.9 ,-5.4 ,-1.8 ,4 ,2 }, {16, 14.7 ,-53.5 ,-6.8 ,-3.8 ,4, 4 
}, {11.7 ,10 ,-42.1 ,-12.2,- 4.3 ,5 ,2 }, {11 ,4.2 ,-60.8 ,-6.2 ,-4.8 ,4 ,2 }, {15.5 ,8.5 ,-56.2 ,-
5.5 ,-1.8, 4 ,2}, {13.2 ,9.1 ,-74.1 ,-6.4 ,-5 ,2 ,2 }, {9.1 ,4.1 ,-44.8 ,-3.3, -10.4 ,3 ,4},  {12.9 
,1.9 ,-65 ,-14 ,-7.5, 4 ,3 }, {5.9, -27.7 ,-77.4 ,-16.6 ,-12.7 ,3 ,2 }, {16.9 ,12.4 ,-60.1, -5.6 ,-5.6 
,3 ,2 }, {16.7 ,13.1 ,-73.5 ,-11.9 ,-4.1 ,2 ,2 }, {14.6 ,9.7 ,-59.5 ,-6.7 ,-5.6 ,2 ,2 }, {5.1 ,4.9 ,-
28.9 ,-2.5 ,-46 ,2 ,2 },{24.4 ,22.3 ,-32.8 ,-3.3 ,-5 ,3 ,4 }, {29.5 ,8.6 ,-41.8 ,-5.2 ,-6.4, 2, 3 }, 
{7.3 ,-64.5 ,-67.5,-30.1, -8.7, 3, 3} , {23.7 ,31.9 ,-63.6, -12.1 ,-10.2 ,3 ,2},  {18.9 ,13.5 ,-74.5 
,-12 ,-8.4 ,3 ,3 }, {13.9 ,3.3 ,-78.7, -14.7, -10.1 ,2, 2} ,{-13.3 ,-31.1 ,-63 ,-21.2 ,-29.1 ,2 ,1}, 
{6.2 ,-3.2 ,-46.1 ,-4.8 ,-10.5 ,2 ,1 }, {4.8 ,-3.3 ,-71.1 ,-8.6 ,-11.6 ,2 ,2 }, {0.1 ,-9.6 ,-42.5 ,-
12.9 ,-12.4 ,1 ,1}, {13.6 ,9.1 ,-76, -17.1 ,-10.3 ,1 ,1 }}; 
  
 //double q[]={1,4,1,1,3,0,0};double p[]={2,6,3,2,4,0,0}; double v[]={2,6,3,2,4,0,0}; 
int k=5; 
 //double w []= {0.01,0.295,0.225,0.01,0.225,0.01,0.225}; 
 
 double x4 [][]={ {0.172,0.122},{0.0690,0.244}, 
   {0.241,0.22},{0.034,0.146}, 
   {0.276,0.171},{0.207,0.098} }; 
 //double w []= {0.5,0.5}; 
 //double p[] ={0.05,0.05}; double q[] ={0.01,0.01}; double v[] ={1,1}; int k=3;  
  
 double s[][] = new double[x.length][x.length]; 
 int pij[][] = new int[x.length][x.length]; 
  
  
 double prefmat[][] = new double[x.length][x.length]; 
 double partialprefmat[][] = new double[x.length][x.length]; 
 int c=0; 
 int split []=new int [x.length]; 
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 int merge []=new int [x.length]; 
 double homogeneity; 
  
 
  
  
 double lambda=0.6; 
  
 double coverall[][] = new double[x.length][x.length]; 
 double partdisc[][] = new double[x.length][x.length]; 
 double partconc[][] = new double[x.length][x.length]; 
 double s[][] = new double[x.length][x.length]; 
 int pij[][] = new int[x.length][x.length]; 
  
 double prefmat[][] = new double[x.length][x.length]; 
 double partialprefmat[][] = new double[x.length][x.length]; 
  
 int split []=new int [x.length]; 
 int merge []=new int [x.length]; 
 double homogeneity; 
  
 //coverall=overallconc(x,x,p,q,v,w);printmatrix(coverall); 
  
 //partconc=partialconc(x,x,p,q,v,c); printmatrix(partconc); 
 
 //partdisc=partialdisc(x,x,p,q,v,c);printmatrix(partdisc); 
 
 //s=outindex(x,x,p,q,v,w);printmatrix(s); 
  
 //pij=pji(x,x,p,q,v,c,lambda,w); printmatrixint(pij); 
  
 //partialprefmat=partialpref(x,x,p,q,v,c);printmatrix(partialprefmat); 
 
 //prefmat=overallpref(x,x,p,q,v,w);printmatrix(prefmat); 
  
 //split=split (x,x,p,q,v,w,c, lambda);printvector(split); 
  
 //homogeneity=homogeneity (x,x,p,q,v,w,c, lambda,0,1); 
System.out.print(homogeneity); 
  
 merge=merge(x,x,p,q,v,w,c, lambda,k);printvector(merge); 
  
   
  
  
 } 

} 


