

 Faculdade de Engenharia da Universidade do
Porto

Solving Unstructured Classification Problems
with Multicriteria Decision Aiding

Rui Pedro Rodrigues Sebastião

VERSÃO FINAL

Dissertação realizada no âmbito do
Mestrado Integrado em Engenharia Electrotécnica e de Computadores

Major Automação

Orientador: Prof. Dr. José Soeiro Ferreira
Co-orientador: Dra. Iryna Yevseyeva

29/07/2011

ii

© Rui Pedro Rodrigues Sebastião, 2011

iii

Abstract

In the framework of multicriteria decision aiding, a lot of interest has been paid to the
assignment of alternatives to predefined categories, i.e. ordered groups of alternatives. This
will be referred to the multicriteria classification or sorting problem. On the other hand,
similar problem with no information about classes, called ordered clustering problem
received less attention. In this work we will formalize our problem as an optimization
problem and we will propose a related approach, inspired by split and merge processes. Our
approach will be tested on artificial datasets as well as on an example related to the field of
business failure risk.

 Keywords: Multicriteria decision aid, ordered clustering problems, outranking
methods

iv

v

Acknowledgment

I want to direct my first word of thanks to my supervisor, Dr. Iryna Yevseyeva for all the

availability to hear me, for help me in times of doubt and uncertain and for the awakening of

new ideas, that without them, this work would not be possible.

To my parents, thank you very much for always trusted in me and supported me in my

decisions, for always instilled in me a sense of honesty, work and humility and for always

been present in every moment of my life.

I want to thank to my friends, especially to David, who always said words of

encouragement, and always have been present in the moments of greatest difficulty.

Finally, I want to thank INESC Porto and University of Porto, for the availability of

resources and for hosting me.

vi

vii

Contents

Abstract ... iii

Acknowledgment ... v

Contents ... vii

List of figures ... ix

List of tables ... x

Abbreviations ... xi

Chapter 1 ... 1

 Introduction ... 1

Chapter 2 ... 3

 Basic definitions and survey of literature .. 3
 2.1 Alternative ... 3
 2.2 Criteria .. 3
 2.3 Classification problem ... 4
 2.4. Clustering problem .. 5
 2.5 Taxonomy of clustering procedures ... 5
 2.5.1 Criteria dependency ... 6
 2.5.2 Relationa multicriteria clustering ... 7
 2.5.3 Ordered multicriteria clustering .. 7
 2.6 Clustering problem vs ranking problem ... 7

Chapter 3 ... 9

 Outranking methods ... 9
 3.1 ELECTRE III method ... 9
 3.1.1 Electre III algorithm ... 10
 3.1.2 Example .. 12
 3.2 Promethee method ... 14
 3.2.1 Promethee algorithm .. 17
 3.2.2 Example .. 18

viii

Chapter 4 .. 19

 4. Classification and clustering .. 20
 4.1 Electre Tri .. 20
 4.2 Multicriteria clustering (extension of K-means) ... 22
 4.2.1 Multicriteria distance ... 23
 4.2.2 Construction of the centroids .. 23
 4.3 Multicriteria ordered clustering with tabu heuristic 24
 4.3.1 Tabu meta-heuristic ... 23

Chapter 5 ... 7

 The MCOC approach proposed in this work .. 27
 5.1 The MCOC approach proposed in this work... 27
 5.1.1 Split procedure ... 28
 5.1.2 Merge procedure ... 29

Chapter 6 .. 31

 Experimental results and analysis ... 31
 6.1 Example 1 .. 31
 6.2 Example 2 .. 33
 6.3 Example 3 .. 37

Chapter 7 .. 41

 Conclusions and future research .. 41

References .. 42

Appendix .. 45

 Appendix A .. 45

 Appendix B .. 54

ix

List of figures

Figure 2.1 - Taxonomy of clustering procedures ... 6

Figure 3.1 - Electre III partial concordance indices Ck(ai,aj). 10

Figure 3.2 -ELECTRE III partial discordance indices Dk(ai,aj) 11

Figure 3.3 – Preference function number 1 .. 14

Figure 3.4 – Preference function number 2 .. 14

Figure 3.5 – Preference function number 3 .. 14

Figure 3.6 – Preference function number 4 .. 15

Figure 3.7 – Preference function number 5 .. 15

Figure 3.8 – Preference function number 6 .. 16

Figure 4.1 - Assignment procedure of the Electre TRI method 16

Figure 6.1 – Dissemination of clusters in two criteria space for the example 5.1 33

x

List of tables

Table 3.1- Data set and weights for ELECTRE III example 12

Table 3.2- Data set and weights for Promethee example 18

Table 6.1- Data set for the example used in Section 6.1 31

Table 6.2- Parameters for the example used in Section 6. 32

Table 6.3 – parameter of alternatives that are used in example 6.3 34

Table 6.4 - Alternatives evaluated on criteria used in the example 6.2 35

Table 6.5 – Allocation of alternatives from the example 6.2 in ordered groups using
Electre Tri pessimistic and optimistic, and our approaches using Electre III and
Promethee as a basis .. 36

Table 6.6 – Percentage of allocation of alternatives from the example 6.2 in ordered
groups using Electre Tri pessimistic and optimistic, and our approaches using Electre III
and Promethee as a basis ... 37

Table 6.7- Criteria and parameters for the example 6.3 37

Table 6.8 – Potential alternatives for the example 6.3 ... 38

Table 6.9 - Characteristic alternatives for the example 6.3 38

Table 6.10 - Electre Tri-C and our approach results for example 6.3 39

Table 6.11 - Electre Tri-C and our approach results for example 6.3 in percentages 39

xi

Abbreviations

List of abbreviations (in alphabetic order)

DM Decision maker

Electre Elimination Et Choix Traduisant la Realité (Elimination and choice

 expressing reality)

MC Multicriteria

MCDA Multicriteria decision aid

MCOC Multicriteria ordered clustering

Promethee Preference Ranking Organization Method for Enrichment Evaluations

xii

 1

Chapter 1

Introduction

The goal of grouping “similar” objects into homogeneous clusters is commonly

encountered in different fields such as the finance sector, the medical sector, in the

agriculture, in marketing, in image processing, etc. For example based on new unknown

earlier symptoms, the patients may be assigned to groups according to the intensity of

the symptoms to a new type of disease. As a consequence, it has been extensively studied

in this literature.

Generally, two distinct problems can be considered. First one aims to attribute

alternatives to groups that are unknown a priori. In this case, the problem is referred to a

clustering problem and the groups are so-called „clusters‟.

On the other hand, once the groups are defined a priori, with a central element or

boundary alternatives, the problem of assigning an object to one of these groups is

referred to a classification problem and these groups are so-called „classes‟.

Traditional clustering uses attributes, which means that there is no preference order

on scale of attributes and no order between clusters [30],[31]. On the other hand,

multicriteria clustering uses at least criteria. In a special case of MC clustering,

multicriteria ordered clustering (MCOC), there is also order on clusters [2],[40].

Multicriteria Decision Aid (MCDA) is a discipline aimed at supporting decision makers

faced with making numerous and sometimes conflicting evaluations. MCDA aims at

highlighting these conflicts and deriving a way to come to a compromise in a transparent

process. Multicriteria decision aid will permit us to have another insight into these

problems. Moreover, we will see that the groups can be ordered or not. In the context of

multicriteria decision aid, some authors [5] have been interested in assigning objects to

ordered groups.

The study of complex decision problems has been a subject of research and has a long

history back to ancient philosophers. The multicriteria decision aiding support can be

characterized as a set of methods that seek to clarify a problem in which alternatives are

2 Introduction

assessed by multiple criteria, which in most cases are conflicting [23],[32]. According to

Marins and Cozendy [26], this approach does not present an ideal solution for problems,

but among all possible, the most consistent with the scale of values and the method used.

The Decision making is a part of every day, it is present in many activities developed

by man. Naturally, people face situations that require from them some kind of decision.

In these situations multiple alternatives are presented and out of these, the decision that

best satisfies the goal(s) in question should be selected.

Some authors claim that to decide, is to position yourself into the future. Gomes

Araya and Carignano [23] define the decision making as the process of gathering

information attaching importance, then searching for possible alternative solutions and

then making a choice between alternatives. The process of decision making can be seen

as simple tasks faced by humans. For example we may sort “to-do” tasks for the next day

into three classes, such as “must do”, “wish to do” and “can do”.

However, there are many complex issues to be solved by people. For example, the

choice of a country to go on vacation or a house to be bought. In focuses of this thesis

there are complex problems, with alternatives evaluated on two or more conflicting

criteria. Another source of difficulty when making decisions is that they must meet

multiple objectives and their impacts cannot be clearly identified[33].

The aim of this work is to propose a method that helps a decision maker to obtain

what we call “ordered clusters” (i.e. ordered groups of alternatives). This will be

referred to as the “multicriteria ordered clustering” problem.

The structure of our work will be as follows: In chapter 2 basic definitions and survey

of literature are given. Chapter 3 presents two outranking methods (Electre and

Promethee) with examples selected here for more detailed study. Chapter 4 and 5

describe multicriteria decision aid methods, one classification method and two clustering

methods in chapter 4 and one clustering method proposed by us in chapter 5. In chapter 6

the experimental results are discussed and proposed approach is compared to another

clustering/classification methods. Chapter 7 presents the conclusion and future work.

 3

Chapter 2

Basic definitions and survey of literature

2.1 Alternative

The identification of an alternative is a procedure that belongs obviously to the beginning

of the process, as well as the verification of its feasibility. In many cases, the identification is

immediate, but there are situations where it is essential to a priori process the alternatives,

which can be quite complex. On the other hand, there is a class of problems where the

alternatives are only implicitly defined as a combination of values of decision variables,

respecting a set of constraints (equations and inequalities) that define feasibility [29].

From the standpoint of terminology, it is important to clarify that the term "alternative"

is used here as synonymous with "option", "hypothesis", "possible solution" or " potential

action”. From the formal point of view, each alternative in addition to its name will be

characterized by criterion.

2.2 Criteria

The definition of evaluation criterion is a crucial point of the decision process, because it

corresponds to the identification of aspects or points of view relevant to be taken into

account for determining the preference of one alternative over another. A coherent family of

criteria should be [29]:

-Exhaustive: all relevant points of view should be included.

-Consistent: If two alternatives A and B are equivalent except for one criterion k, and if

this criterion ak is better than bk, then A should be considered globally at least as good as B.

4 Basic definitions and survey of literature

-Non-redundant: if we eliminate one of the criteria, the above conditions are no longer

satisfied.

In addition, it is desirable to provide the following additional properties:

- Readability: the number of criteria must be relatively low.

- Operability: the family of criteria must be accepted by interested decision makers.

Once is identified a coherent family of criteria, it is necessary to advance in the

operation, setting the units in which criterion is measured and associated scale. There can be

simple economic criteria, such as cost evaluated in euro, or more complicated criteria

associated with concepts such as quality, risk, environmental or social impact, etc. Another

way do defining criterion scale is with categories that correspond to an overall assessment of

the degree of satisfaction of these criteria (for example, satisfaction of a criterion associated

with the quality "Very High, High, Medium, Low, and Very Low"). In this case, the degrees

should clearly characterize the aspects to take into account and the situations that

correspond to each category to reduce the subjectivity of judging.

At this point, appears to us the concept of decision maker (DM), which is central to these

problems. This is the person (sometimes a representative of an entity) responsible for final

decision. On the one hand, the decision maker defines and specifies the criteria to consider,

possibly with the support of experts. On the other hand, it is not possible to carry out the

decision process without it incorporate the preferences of the decision maker.

2.3 Classification problem

Assigning a set of alternatives evaluated on a set of criteria into predefined classes is a

problem that a decision maker faces many times in real life. Classification problems are

commonly encountered in various application fields such as health care, finance, marketing,

etc. In classification problem (also known as supervised learning problem), the classes are

predefined and well-described, on the other hand in clustering problem (also known as

unsupervised learning problem) there is no a priori information about classes [3]. One good

example of this kind of classification problem is the medical diagnosis where a patient has to

be assigned to a known pathology-class on the basis of a set of symptoms. To solve this

problem, we have some good procedures such as k-nearest neighbor algorithm or the bayes

classifier.

A central concept of the classification problem is a class. The class is a collection of

alternatives that are more similar to each other than the alternatives in neighbor classes.

When we deal with different classification methods the similarity measure between two

alternatives and rules of assignment are subjects of discussion [3].There are two types of

Basic definitions and survey of literature 5

classification problems: nominal and ordinal. In a nominal classification problem, the classes

are not ordered. In ordinal classification problem the classes are ordered according to some

quality.

2.4. Clustering problem

There are situations where there may be no information about the groups and the

purpose is then to extract a structure in the data set. For example, we can consider a

marketing problem where the aim is to discover similar customer behaviors in the retail

industry. The most common traditional clustering procedures are the k-means, hierarchical or

finite mixture densities algorithms [9],[35],[36]. Multicriteria methods have also been

extended to clustering problems with order between classes. For instance an Electre-like

clustering procedure based on the L-values Kernels was proposed in [10].

2.5 Taxonomy of clustering procedures

In Figure 2.1 [2], we can see a summary of the clustering procedures. First criteria

dependency is used to distinguish between classical clustering and multicriteria clustering.

Then we can separate multicriteria clustering in two other different methods, non-relational

multicriteria clustering and relational multicriteria clustering.

6 Basic definitions and survey of literature

Figure 2.1 - Taxonomy of clustering procedures.

2.5.1 Criteria dependency

Some clustering procedures [1], [11] have been proposed in the multicriteria decision aid

domain. These procedures use criteria instead of attributes that are commonly applied in

traditional clustering methods. A criterion is an attribute that contains including additional

information about direction for its values on the set of considered alternative. For example, a

“price” is an attribute, but for a seller, a “sell price” is a criterion because it has the

additional information that it should be maximized and for a buyer, a “buy price” is also a

criterion and have the extra information that this value should be minimize.

Basic definitions and survey of literature 7

2.5.2 Relational multicriteria clustering

A multicriteria clustering procedure is a criteria dependent procedure. The presence of a

relation between clusters one of the points of interest in the criteria-dependant clustering

procedures. Classical clustering procedures typically do not propose a preferential relation

between the obtained clusters because they are not criteria-dependant.

The use of the preference criteria for solving classical clustering problems with no order

between the clusters induces a loss of information and may be criticized, so a strategy is

applied for the relational multicriteria clustering usually in this type of procedures. Firstly, to

obtain the centroid that characterizes each cluster, a classical clustering algorithm is used.

After that any multicriteria pair wise comparison procedure can be applied to the centroids in

order to come up with “at least as good” relation on the clusters.

2.5.3 Ordered multicriteria clustering

This clustering procedure is a special case of relational multicriteria clustering. Ordered

multicriteria clustering procedures have advantage over relational multicriteria clustering

because they have a transitivity propriety that unambiguously implies an order on the

clusters.

Ordering clusters can be useful when some hierarchy has to be discovered in the data. For

example, we can consider a problem where the employees‟ performance is being evaluated.

Depending on the data, three clusters can be created: above average, average and below

average performance.

Usually, his procedure combines the ideas of both the clustering and the ranking

problematic. First, the data is clustered, and then the centroids are ranked using a

multicriteria ranking procedure. Conversely, we can apply a ranking procedure on the data,

and then an ordered partition compatible with that ranking can be built, effectively merging

some alternatives in the cluster of the same rank.

2.6 Clustering problem vs ranking problem

The problem of ranking is closely related to the problem of ordered clustering. The

ranking problem consists in partition the set of alternatives into partially or totally ordered

classes with number of clusters close to the number of alternatives. The ordered multicriteria

clustering procedure can be considered as a particular case of ranking problem. In fact, an

ordered multicriteria clustering procedure, which partitions the alternatives into ordered

8 Basic definitions and survey of literature

classes, can very naturally be seen as just another rank procedure. Despite some similarities

between these two problematic let us insist on some fundamental differences.

A rank procedure aims at discriminating the different alternatives, so this procedure

tends to maximize the number of classes. The preferred case in a ranking procedure is to

build a linear order whenever possible. In this case the number of alternatives and classes are

almost the same.

On the other hand, a clustering procedure tends at discriminating different alternatives

but at the same time tries to group similar alternatives. The first objective tends to maximize

the number of classes and the second tries to minimize it, so the clustering solution can

usually be seen as a compromise between these two objectives. The most common solution is

to set a priori the number of clusters that is desired.

9

Chapter 3

Outranking methods

Bernard Roy [8], was the first to define the outranking relation as follows: An outranking

relation is a binary relation, defined on the set A | ai S aj if, given the information about

the decision maker’s preference, the evaluations of these actions and the nature of the

problem, there is enough arguments to admit that action ai is at least as good as action aj ,

while there is no argument to deny this consideration.

Some methods have been developed utilizing this idea for different decision making

problems, such as selection of the best alternative(s), ranking and classification methods. In

the next section we will present the two most famous approaches that utilizing outranking

relation.

3.1 ELECTRE III method

Bernard Roy can be considered as the father of the family of the Electre methods,

exploiting an outranking relation. The estimation of the outranking relations between pairs of

alternatives is the basis for all methods from the ELECTRE family.

For the calculation of the outranking index, the decision maker needs to define a set of

alternatives and a set of criteria on which these alternatives are evaluated. In addition, the

Electre III [13],[19],[15],[38],[39] method requires the following information for each

criterion gk: indifference qk, preference pk and veto vk thresholds, and weight wk in addition

cutting level λ parameter has to be predefined.

 The indifference threshold qk is the largest difference between two alternatives on the

criterion gk such that they remain indifferent to the decision maker. The preference threshold

pj defines the smallest difference between two alternatives such that on alternative is

preferred to the other one on the criterion gk. The veto threshold vk indicates the smallest

10 Outranking methods

difference between two alternatives on the same criterion gk that shows incomparability of

these two alternatives. The relation between the thresholds must be vk>pk>qk. The weight wk

of a criterion gk indicates the relative importance of each criterion. The cutting level λ shows

the smallest value of the outranking index that is sufficient for considering and outranking

situation between two alternatives.

The two conditions (concordance and discordance) are used to verify the outranking

relation of this method. On one hand, the concordance condition requires that for the

majority of criteria the alternative ai is preferred over aj, on the other hand the discordance

demands the lack of strong opposition to the first condition in the minority of criteria. The

partial indices are computed for each condition: concordance Ck(ai,aj), and discordance

Dk(ai,aj). They allow to calculate the outranking index Sk(ai,aj).

3.1.1 Electre III algorithm:

First, the partial concordance indices Ck(ai,aj) are calculated for each criterion gk. The

criterion gk has an increasing direction of preference because a maximization problem is

under consideration.

Figure 3.1 - Electre III partial concordance indices Ck(ai,aj).

As we can see in Figure 3.1, the concordance indices Ck(ai,aj) are calculated as follows:

Outranking methods 11

At the next step the overall concordance index C(ai,aj) is defined as an aggregation of

partial concordance indices, where n is the number of criteria:

In the third step, the partial discordance indices Dk(ai,aj) are calculated for each criterion

gk according to the increasing direction of preference. If there is no information about the

veto threshold, Dk(ai,aj)=0.bg gk(ai)-gk(aj)

Figure 3.2 -ELECTRE III partial discordance indices Dk(ai,aj).

 As we can see in Figure 3.2, the discordance indices Dk(ai,aj) are calculated as follows:

In this step the outranking index S(ai,aj) can be calculate that shows outranking credibility

of ai over aj assuming S(ai,aj) [0,1] as follows:

Where k=1,…,n and .

12 Outranking methods

In the final step the decision maker defines the value of the cutting level λ Usually, the

cutting level belong to the interval [0.5,1]. The minimum value of outranking indices

accepted for outranking of one alternative over the other one is defined by this level. The

cutting level is compared with the value of the outranking index. Based on this comparison,

the preference situation between two alternatives is specified [19]:

If S(ai,aj) ≥ λ and S(aj,ai) ≥ λ, then the alternative ai and aj are indifferent (aiIaj).

If S(ai,aj) ≥ λ and S(aj,ai) < λ, then the alternative xi is strongly or weakly preferred to the

alternative aj (aiPaj or aiJaj).

If S(ai,aj) < λ and S(aj,ai) ≥ λ, then the alternative aj is strongly or weakly preferred to the

alternative ai (ajPai or ajJai).

If S(ai,aj) < λ and S(aj,ai) < λ, then the alternatives ai and aj are incomparable (aiJaj).

3.1.2 Example:

We will demonstrate an example of outranking indices for the data set with the following

six alternatives evaluated on five criteria with their weights as basis to build the outranking

index.

Table 3.1- Data set and weights for ELECTRE III example

Alternatives
ai

g1 g2 g3 g4 g5

a1

a2

a3
a4

a5
a6

0.188
0.125
0.156
0.188
0.188
0.156

0.172
0.069
0.241
0.034
0.276
0.207

0.168
0.188
0.134
0.174
0.156
0.18

0.122
0.244
0.22
0.146
0.171
0.098

0.114
0.205
0.136
0.159
0.205
0.182

Weights 0.25 0.25 0.1 0.2 0.2

To construct the concordance matrix, we have fixed the following parameters: pk=0.05,

and qk=0.01 for all criteria, although these thresholds are normally different for the different

criteria. Using these values we obtain the vector for Ck(a1,a2)=[1.00 1.00 0.75 0.00 0.00], with

the vectors Ck(ai,aj) we calculate the following values for the concordance matrix:

Outranking methods 13

 Consider now the computation of the single-criterion discordance index with vk=1 and

pk=0.05, the vector for Dk(a1,a2)=[0.000 0.000 0.000 0.758 0.432]. These values permit us to

calculate the credibility degree matrix S. The matrix S is thus as follows:

From the credibility matrix we can calculate de outranking index, but first we need to

define the cutting level λ. In this example we will define two values for λ. Defining λ=0.6 we

have the outranking relation matrix as follows:

and defining λ=0.7 we have the outranking relation matrix as follows:

Where P+ means preference of first alternative when compared to the second one , I

means indifference of first alternative when compared to the second one , J means

incomparability of first alternative when compared to the second one and P- means

preference of second alternative when compared to the first one.

14 Outranking methods

3.2 Promethee method

Like Electre methods, the Promethee methods are based on a pair wise comparison of the

alternatives, leading to valued outranking relation. The Promethee method

[18],[12],[15],[37] encompasses two phases: the construction of an outranking relation,

aggregating the information about the alternatives and about the criteria, and the

exploitation of that relation for decision aid.

At the construction phase of the outranking relation‟s, the preference degree is

presented by a preference function Pk(x). This function evaluates the preference of an action

ax when compared to aj as a function of x=gk(ai)- gk(aj).In a generalized point of view, the

preference functions, when the value of x is negative, Pk(x) is 0, for the remaining values of

x, the function is non-decreasing with Pk(x) varying between 0 and 1. Six preference functions

are proposed and they are defined by at most two parameters. The outranking relation can

be then represented by an oriented valued graph. The value of each arc is the multicriteria

preference index π(ai,aj), which is defined for all pair of alternatives. These indices may take

any value between 0 and 1, and they define a fuzzy outranking relation. Considering gk(ai)=ai

and gk(aj)=aj, we have the following functions:

Figure 3.3 – Preference function number 1.

In this preference function, see (Figure 3.3), there are no parameters to be defined and

the preference situation is resolved in favor of ai if the difference between its comparing

value on criterion gk(ai) is bigger than 0:

 ai-aj≤0, Pk(ai,aj)=0

ai-aj>0, Pk(ai,aj)=1

Outranking methods 15

Figure 3.4 – Preference function number 2.

In this preference function, see (Figure 3.4), exists one indifference threshold (q) that

must be defined:

ai-aj≤q, Pk(ai,aj)=0

ai-aj>q, Pk(ai,aj)=1

Figure 3.5 – Preference function number 3.

In this preference function, see (Figure 3.5), the preference is increasing until a

preference threshold (p) is reached:

ai-aj>p, Pk(ai,aj)=1

ai-aj<0, Pk(ai,aj)=0

0≤ ai-aj ≤p, Pk(ai,aj)= (1/p)* (ai-aj)

Figure 3.6 – Preference function number 4.

16 Outranking methods

In this preference function, (Figure 3.6), there are 2 thresholds that must be fixed,

indifference and preference thresholds (q and p respectively).The values locate between

these thresholds get the average value:

ai-aj>p, Pk(ai,aj)=1

ai-aj≤q, Pk(ai,aj)=0

q< ai-aj ≤ p, Pk(ai,aj)= 0.5

Figure 3.7 – Preference function number 5.

In this preference function, see (Figure 3.7), there are two thresholds that must be fixed,

indifference and preference thresholds (q and p respectively). Similar to previous:

ai-aj>p, Pk(ai,aj)=1

ai-aj<q, Pk(ai,aj)=0

q≤ ai-aj ≤ p, Pk(ai,aj)=(ai-aj -q)/(p-q)

Figure 3.8 – Preference function number 6.

In this preference function, see (Figure 3.8), the preference increase following a normal

distribution, the standard deviation must be defined:

Outranking methods 17

3.2.1 Promethee algorithm

Choosing one of the preference functions, for pair wise comparison of alternatives, the

preference matrix is calculated as follows, taking into account weights of criteria, wk, where

the relative importance of each alternative:

Aggregating a pair wise comparison of two alternatives on al criterion into a global

preference degree, allows establishing pre-order on a set of alternatives. The main idea is to

analyze how an alternative is preferred to all the other alternatives and inversely, how others

are preferred to it. In another words, we will define the globally positive and negative

outranking flow as follows:

The positive flow defines the strength of the alternative and the negative flow

defines the weakness of the alternative.

The Promethee I method obtains a partial preorder with following relations: P+,P-,I and J,

where P indicates preference, I indicates indifference and like in the other methods, J

indicates incomparability relations. With the positive and negative flows, we can obtain the

outranking relation matrix as follows:

ai outranks aj (aiPaj , aiP
+aj or ajP

-ai), if

ai is indifferent to aj (aiIaj), if ,

ai is incomparable to aj (aiJaj), if none of the previous conditions is true.

18 Outranking methods

The Promethee II method, on the other hand, produces a complete preorder with

following relations: P+,P- and I Note that incomparability relation has no place in this method.

The net flow allows to evaluate the following situations:

ai outranks aj (aiPaj , aiP
+aj or ajP

-ai), if

ai is indifferent to aj (aiIaj), if

3.2.2 Example:

We will consider the following six alternatives evaluated on five criteria with their

weights as basis to build the outranking index (same as used in Electre III Example in Section

3.1.2).

Table 3.2- Data set and weights for Promethee example

Alternatives
ai

g1 g2 g3 g4 g5

a1

a2

a3
a4

a5
a6

0.188
0.125
0.156
0.188
0.188
0.156

0.172
0.069
0.241
0.034
0.276
0.207

0.168
0.188
0.134
0.174
0.156
0.18

0.122
0.244
0.22
0.146
0.171
0.098

0.114
0.205
0.136
0.159
0.205
0.182

Weights 0.25 0.25 0.1 0.2 0.2

In the first step we need to choose one of the preference functions, and in this case we

choose the most common one, the preference function 5. To construct the preference

matrix, we have fixed the following parameters: pk=0.05, and qk=0.01 for all criteria,

although these thresholds are normally different for the different criteria. Using these values

we calculate the following values for the preference matrix:

Considering now the computation of the positive and negative flows, we have:

Outranking methods 19

Having the flows, we can finally calculate the outranking relation matrix, and the result

is:

Where P+ means preference of first alternative when compared to the second one , I

means indifference of first alternative when compared to the second one , J means

incomparability of first alternative when compared to the second one and P- means

preference of second alternative when compared to the first one.

20

Chapter 4

4. Classification and clustering

We will present in this chapter one algorithm for classification, Electre Tri. And two

algorithms for clustering.

4.1 Electre Tri

Electre Tri is a method for ordinal classification. The estimation of the outranking

relations between pairs of alternatives is the basis for all methods from the Electre family.

The Electre Tri [19],[15] procedure assigns the alternatives A to classes L predefined by set of

boundary alternatives B. The upper and lower bound alternatives are the limits for each

class. The upper bound alternative of class lq-1 is the lower bound of the class lq. The

boundary alternatives can be moved to a neighbor class by changing values on at least one

criterion.

For the calculation of the outranking index, the decision maker needs to define a set of

alternatives to be classified and a set of criteria. The decision maker should also define the

number of classes, their order and the upper and lower boundary alternatives for each class.

In addition, the Electre Tri method required also the same information that Electre III, that

was described earlier, for each criterion gj: indifference qj , preference pj, veto vj thresholds,

weight wj and cutting level λ should be selected.

 There are two assignment procedures: optimistic and pessimistic and they consist of a

comparison of outranking indices to the cutting level λ. The optimistic procedure starts with

the comparison of an alternative to the upper bound of the lowest class: the outranking

indices are computed and compared to the cutting level. The pessimistic procedure works in

the same way but begins with the comparison of an alternative to the lower bound of the

highest class. The decision maker can select one of the two assignment procedure or apply

both of them. In order to assign the alternative ai to the class lq+1 according to the optimistic

procedure (or to the class lp according the pessimistic one), the cutting level λ should be

Classification and clustering 21

smaller than the value of the outranking index S(ai,bq) and bigger than S(ai,bq+1). Next, the

algorithm of the ELECTRE TRI method is discussed.

The algorithm of the Electre Tri method consists in two parts: construction of outranking

relation and utilization of this relation for the assignment of alternative to classes. In the

first part, the outranking relation aiSbq is constructed for each alternative ai and each

boundary alternative bq. This first part the Electre III algorithm is used, and the outranking

index is obtained.

In the second part, the outranking indices S(ai,bq) are utilized for the classification of

each alternative in the following way. The assignment procedure is selected by the decision

maker: Either optimistic, pessimistic or both. Then, the outranking indices calculated for

each pair (the alternative ai, to be classified and each boundary alternative bq) are compared

to the cutting level λ with regards to the assignment procedures as it is shown in Figure 4.1

[19].

Figure 4.1 - Assignment procedure of the Electre TRI method.

In the pessimistic (or conjunctive) procedure, the comparison between the alternative a i

to the lower bound bq-1 of the highest class lq (q=s,…1) is the starting point. The procedure

analyzes classes in a decreasing order until a lower bound bq-1 that is outranked by the

alternative ai , aiSbq-1, is found. The outranking index S(ai,bq-1) is calculated, for the

estimation of the outranking relation aiSbq-1. The outranking index between the alternative ai

22 Classification and clustering

and the upper bound bq of the class lq: S(ai,bq) is calculated to be classified. The alternative

ai is assigned to the class lq , if S(ai,bq-1) λ and S(ai,bq)<λ.

On the other hand, in the optimistic (or disjunctive) procedure, the comparison between

the alternative ai to the upper bound bq of the lowest class lq (q=s,…1) is the starting point.

The procedure continue to analyze classes in a increasing order until an upper bound bq that

is strictly preferred to the alternative ai , bqPai, is found. The outranking index S(ai,bq-1)

between the alternative ai to be classified and the lower bound bq-1 of the class lq: S(ai,bq-1) is

calculated. The alternative ai is assigned to the class lq if S(ai,bq-1) λ and S(ai,bq)<λ.

Classification according to one of the described produces is unambiguous. An alternative

can be assigned to different classes if an assignment is considered according to both

procedures simultaneously. For instance, in the optimistic procedure an alternate ve can be

assigned to an upper class when compared to the assignment in the pessimistic procedure.

This ambiguity must be solved with help of the decision maker or by changing the assignment

procedure to earlier optimistic or pessimistic one.

4.2 Multicriteria clustering (extension of K-means)

This method is an extension of the k-means algorithm with a MCDA background [1]. The

Multicriteria clustering (MC clustering) method utilizes criteria, and not attributes when

compared to classic clustering approaches, however, alternatives are assigned to clusters

that are not ordered. That is why we can say that it is a relational multicriteria clustering

according taxonomy of clustering methods, see Figure 2.1. The starting point of this approach

is k centroids that are randomly chosen. The alternative is assigned to a cluster if the

distance to the centroid of this cluster is smallest when compared to distance to other

clusters. This distance is calculated using a multicriteria preferences structure discussed

next. After the assignment of all alternatives, the centroids for all clusters are recalculated

and the process is repeated until there are no changes in all clusters. In this way all

alternatives are assigned to k clusters.

This method compares alternatives using preference modeling that constructs so-called

profile of each alternative. The comparison between alternatives aj and ai A, results on one

of the following relations: Preference (P), Indifference (I) or Incomparability (J). Only one of

these relations is true between each couple of given alternatives. This clustering model uses

the idea that inside the same cluster, all the alternatives are similar; this means that these

alternatives have the same preference relation to more or less the same alternatives.

To build the profiles of the alternatives could be considered outranking methods such as

Promethee, Electre, etc. The profile of an alternative is only true for one of the follow

Classification and clustering 23

relations to an alternative: J(ai), P-(ai), I(ai) and P+(ai). A profile contains four sets of

alternatives each of which containing alternatives that are in the same relation with the

studied alternatives (J, I, P- or P+). For example, J(a1) is a set of all alternatives that are

incomparable with a1.

.

.

4.2.1 Multicriteria distance

For multicriteria methods, the concept of distance used in traditional clustering

algorithms does not seem to be well suited. That is why the MC distance between two

alternatives ai,aj A is calculated as difference between 1 and sum of intersections of

profiles of these alternatives divided by the total number of alternatives.

4.2.2 Construction of the centroids

In the first iteration, the k centroids are chosen randomly from the alternatives A, then

the rest of alternatives is assigned to the clusters based on distance to the nearest centroid.

When all alternatives are assigned to clusters, the centroids are recalculated and the

alternatives are reassigned to the new clusters using the same method of calculating distance

between the centroids and the alternatives.

The recalculation of the centroids is based on a voting procedure. The voting procedure

starts from finding the profiles of the centroids in the same way as discussed above (for

construct profiles of alternatives) but evaluating relations between centroid and each

alternative belonging to this cluster.

To select centroid for each cluster, the most common profile for the cluster is selected. It

does not have to be a real alternative, but a virtual one (to be exact only common profile is

needed). This selection of common profile is called voting since each alternative belonging to

the cluster “votes” or shows relation to the rest of alternatives [1].

24 Classification and clustering

Where 1{A} = 1 if condition A is true, 0 otherwise. If different values of k satisfy the

previous condition, the final value will be randomly chosen.

4.3 Multicriteria ordered clustering with tabu heuristic

MC ordered clustering with tabu heuristic is criteria dependent method and has ordered

clusters, so we can say that it is an ordered multicriteria clustering according to taxonomy

presented in Figure 2.1. This is an ordered method, so all the clusters will be ranked. The

ordered clustering problem [5] consists of detecting the ordered partition of a set of

alternatives that is the most compatible with the information contained in the preference

matrix.

Let A={a1,a2…an} be the set of alternatives evaluated according to a set of criteria G=

{g1,g2…gn}. A comparison of these alternatives lead to a preference matrix П=(πij) with πij ≥0

and πij+πji≤1 ,because the outranking method considered is Promethee, where πij represents

the preference degree of alternative ai when compared to alternative aj. This matrix can be

build using classical multicriteria methods such as Electre or Promethee.

An ordered partition of A in k clusters is noted C= { C1,C2…Cz } is defined as follows: A= ∪

Ci , with i=1,2,…,m ; Ci ∩ Cj = ∅ ; Cz ⊱ Cz-1 ⊱… ⊱ C1 , where the symbol ⊱ denotes

preference, that means that the alternatives that belong to the cluster Cz are better than the

alternatives of Cz-1 in this example.

It is believed that all alternatives belonging to the same cluster should be characterized

by a relative small preference degree, also known as homogeneity (HI). Ideally, the

preference degree is zero. If an alternative ai is strongly preferred to aj they cannot be in the

same cluster that means that the clusters are not coherent and is evaluated with coherence

index (CI). The symbols HIC and CIC are indicators of the partition P and characterize the

violation or the satisfaction of two conditions.

Firstly, for each cluster, a homogeneity indicator will be defined as the maximum value

of the preference degree between two alternatives belonging to the same cluster, max(πij,

πji). The smaller homogeneity indicator, the better the cluster Ci from homogeneity point of

view. The homogeneity indicator related to a given partition P will be equal to the maximum

homogeneity index of its component, max(HIi) for i=1,…,k.

Secondly, a coherence indicator is used between each pair of clusters, CIlm. Let us assume

that two alternatives are assigned to two distinct clusters, ai belongs to cluster a cluster Cl

and aj belongs to Cm, and Cl is preferred to Cm. If the value of πij is higher than πji ,aj must be

assigned to a better cluster than aj. The lower CIlm, the better the coherence between the

two ordered clusters. The coherence indicator between two clusters will be defined as max

(πij), where ai belongs to Cm, aj belongs to Cl and Cl is preferred to Cm.

Finally, the quality of the partition P is measured using a fitness indicator, FTC , which is

the maximum value between its homogeneity and coherence index, max (HIC, CIC). The lower

the FTC , the better the partition.

Classification and clustering 25

4.3.1 Tabu meta-heuristic

The total number of ordered partitions C of a set with n elements is, much bigger than

the total number of not ordered partitions. When n is rising, it is impossible to enumerate all

the possible partitions. For example, when n is equal to 10, the number of ordered partitions

is bigger than 100 millions. For that reason, a met- heuristic based on Tabu search approach

has been developed in [5]. The purpose of this meta-heuristic is to find a partition with small

optimal values for the indicators without studying all partitions. This meta-heuristic consists

of two steps: split and merge processes. With these two steps, the clusters are updated at

each iteration of Tabu search algorithm and the fitness indicator improves leading to a better

solution. A cluster is splitted in two sub-clusters and then one of the two sub-clusters is

merged with another existing cluster. The remaining sub-cluster is transformed in a new

cluster, this way the number of clusters remains the same.

In the first step, the cluster Ci with the highest homogeneity is selected and then the

cluster is splitted in 2 sub-clusters SC1i and SC2i. To split the cluster, the two alternatives, ap

and aq, with highest preference indicators are selected and each one of them goes to the two

different sub-clusters. The remaining alternatives are placed in a way that the homogeneity

index of the formed sub-clusters has the smallest value. This means that the assignment rule

for a new alternative following az is: if max (πzp, πpz) ≤max(πzq, πzp) then az is assigned to

SC1i, or in SC2i otherwise.

Having two sub-clusters, one of them is merged with an existing cluster and the other one

is promoted to a new cluster. The sub-cluster with smallest homogeneity factor is selected to

be merged. That means that one existing cluster will have all the alternatives of its own

cluster and the alternatives of the selected sub-cluster and the new cluster which, compared

from remaining sub-cluster and its alternatives. The not chosen sub-cluster is promoted then

to a new cluster.

Finally, the indices are calculated for new k clusters and are compared to find the cluster

with the best coherence indicator. This mechanism is continued as long as there is

improvement of the fitness indicator. When there is no improvement during a certain time,

the process is stopped.

To avoid the cycling effect in Tabu search a tabu list is used. Tabu list contains the last T

partitions (with T being a parameter of the algorithm which varies). The algorithm consists in

either splitting the cluster randomly (with probability p) or splitting them in order to get two

sub-clusters with the lowest homogeneity indicators. A distinctive feature of this approach is

that the value of probability p varies from iteration to iteration of the Tabu search algorithm.

If the generated partition is already in the Tabu list, p increases, if it does not appear yet in

Tabu list, p decrease.

The first step of Tabu search meta-heuristic for finding best partition P consists in

initializing the parameters (K, Kmax, T, p+
step p

-
step, pmax, p), generating a random partition P

with k clusters for which FIC is evaluated and defining the stopping criterion, which can be for

example time or number of iterations. After that, for k=2 to kmax , while the stopping

criterion is not true, a random value r, is generated and if r<p the cluster is splitted and one

of the sub-clusters is merged with an existing cluster like it was described earlier, else the

cluster is splitted randomly and then follows the merging process. All the permutations of k

clusters are listed, the current partition is now the best of the list according to CIC and the

26 Classification and clustering

best partition among the best and the current partitions are retained. At this step, if the

current partition is in Tabu list, p is increased, otherwise p is decreased. This process is

repeated until some stopping criterion is satisfied, for example, the number of iterations.

27

Chapter 5

The MCOC approach proposed in this
work

Our focus is the MCDA ordered clustering, so we are going to propose a new approach to

solve a MCDA ordered clustering problem in 5.1.

5.1 The MCOC approach proposed in this work

In this work, multicriteria ordered clustering approach based on split and merge processes

similar to those that Y.De Smet and L. Montano Guzmán [1] and Nemery and Y. De Smet [5] is

proposed. MCOC approach proposed in this work is criteria dependent use the order relation

on set of clusters, so we can say that it is an ordered multicriteria clustering according to

taxonomy presented in Figure 2.1.

The idea is to assign each alternative to a cluster based its relation to the rest of the

alternatives. The relation of order between alternatives is very important in a MCOC

(multicriteria ordered clustering), that is why preference or outranking relations could be

used in this approach.

For a set of alternatives A={a1,a2,…an} ,a set of criterion G={g1,g2,…gn} and a set of

clusters C={C1,…,Ck} with Cn-1 always worse than Cn , the outranking index is build considering

the preference, indifference and veto thresholds (pk, qk and vk) and the cutting level λ if the

Electre III algorithm is used, or only the preference and indifference thresholds if Promethee

is the applied.

 In MCDA ordered method proposed by Nemery and Y. De Smet [5] the split and merge

processes are repeated until some stopping condition is satisfied. The number of clusters

maintains the same during all process like in the method proposed by Nemery and Y. De Smet

28 The MCOC approach proposed in this work

[5]. On the other hand, in the MCOC approach proposed in this work the starting point is one

cluster with all alternatives belonging to it and then the cluster will be splitted until some

stopping condition is satisfied and a list of ordered clusters is obtained.

To illustrate this MCOC approach, the following example is provided. The starting point

for this method is the outranking index obtained by Electre III or Promethee I method:

5.1.1 Split procedure:

In the beginning of this process we have C1= {a1, a2,…an}, let us remember that Cn-1 is

always worse than Cn. The idea of splitting is to divide one cluster into as many clusters as

possible. By looking at the outranking relation matrix that provides ordered relations

(preference, indifference and incomparability) between all pairs of alternatives, we can

observe witch alternatives are better, indifferent of incomparable to the current one. That

helps in splitting alternatives in ordered clusters.

In the first iteration of the splitting process, after comparing the first alternative (a i, i=1)

to the rest of alternatives (aj, j>i), we can split all alternatives into 4 clusters: those that are

better than the alternative a1, those that are worse than the alternative a1, those that are

indifferent to the alternative a1 and those that are incomparable to the alternative a1.

We will consider the first line of the outranking relation matrix that shows the relation

between a1 and all the other alternatives. Only the alternatives belonging to the same cluster

can be moved to another cluster. At the first iteration, all alternatives are in the same

cluster and can be moved. Now, we will select the alternatives that are better than

alternative a1 (aj P a1) and create a new cluster for them (C2). Similarly, alternatives that are

worse than the current alternative should be allocated in a worse cluster. We can see that

there is no (P+) in the first line, that means that the result of this iteration all alternatives

will be better or equally good to this alternative a1. After the first iteration we will have

ordered clusters C1={a1, a2, a4} and C2={a3, a5, a6} with C2 better than C1.

In the second iteration of the split process, for the alternative ai , i=2, we will analyze

alternatives aj, j>i, and find out what alternatives are worst and what alternatives are better

than a2. We have ordered clusters C1={a1, a2, a4 } and C2={a3, a5, a6 }, so we can only move

alternatives from C1 because a2 belongs to C1. At this point we only need to know the

The MCOC approach proposed in this work 29

outranking index for the current alternative a2 and the not yet analyzed alternative a4 , and

we know this relation is a2Pa4, so we will split C1 in 2 clusters, one with alternatives worse

than a2 and one with alternatives that are equally good to a2. To maintain the order, the

cluster C1 will be splitted in C1 and C2 and all the other clusters that were better than C1 in

the beginning of this iteration will be increased by 1, because we are creating one new

cluster by splitting C1. After this iteration we will have the following order of clusters: C1=

{a4}, C2={a1, a2} and C3={a3, a5, a6 }.

In the third iteration of the splitting process, the alternative ai , i=3 is compared to all

alternatives that have not yet been analyzed, aj, j>I and the information about alternatives

that are worse than a3, and alternatives that are better than a3 is obtained having: C1={a4}

,C2={a1, a2} and C3={a3, a5 a6}. We can only move alternatives from C3 because a3 belongs to

C3. At this point we only need to know the outranking indices between a3 and a5. Evaluating

this relation provides us with information about relations a3Pa6 and a5Pa3, so we will split C3

in three clusters, one for the alternatives worse than a3, one for the alternatives better than

a3 and one for the alternatives that are equally good to a3. To maintain the order, the cluster

C3 will be splitted in C3, C4 and C5. All the other clusters will keep the same order because all

the other clusters are worse than the cluster C5. After this iteration we will have following

ordered clusters: C1={ a4} ,C2={a1, a2} ,C3={a6}, C4={a3} and C5={a5}.

In the following steps no changes are made in the order of clusters because the

alternatives a4, a5 and a6 are the only alternatives in the corresponding clusters. We can

conclude now the splitting process and we have the alternatives allocated to the maximum

number of cluster that we can obtain (five alternatives are allocated to five ordered

clusters). This is important information because we know now the preference order between

all alternatives. Next the clusters are merged until the specified number of clusters is

reached.

5.1.2 Merge procedure:

The merging process is based on the definition of homogeneity [5] and its objective is to

merge the clusters until some stopping criterion is satisfied, for example the number of

clusters defined a priori is reached. For the example introduced earlier in Section 5.3.1, after

splitting process, the alternatives are allocated in five clusters: C1={ a4} ,C2={a1, a2} ,C3={a6},

C4={a3} and C5={a5}.

Assuming that a priori the number of clusters is defined as three, we have to merge some

clusters. One way of merging clusters is suggested in [5] and is based on calculating the

preference matrix. The preference relation between all pairs of alternatives can be

calculated based on Electre Promethee methods for each criterion. For instance, here we

30 The MCOC approach proposed in this work

calculated preference relation based on the Promethee I method as was already shown in

Section 3.2.1.

Let us assume the overall preference matrix obtained for the example from [15, p.35] is:

Now we have all the data needed to proceed with the merging process. It is usually

assumed [5] that alternatives belonging to the same cluster Ci, should be characterized be a

relatively small preference degree. In the ideal case, the pairwise comparison of alternatives

belonging to the same cluster, ai and aj belong to Ci, should lead to π(ai,aj)= π(aj,ai)=0. On

the other hand, if ai is strongly preferred to aj, these two alternatives should be in different

clusters. For these two alternatives, the cluster that ai belongs to, should be better than the

cluster that contains the alternative aj.

In [5], the homogeneity indicator is introduced, which is equal to the maximum value of

the preference degree between the alternatives belonging to the same cluster Ci. It is

obvious that the smaller the homogeneity indicator is, the better is the cluster Ci from the

homogeneity point of view. For example, for the cluster C2, the preference degrees are: π

(a1,a2)=0.500 and π(a1,a2)=0.425, so the homogeneity indicator is the maximum between

these two values, 0.500.

In the merging process we can only merge two neighbor clusters, this guarantees that the

order is maintained, that means that all the clusters are still ordered after the merging

process. In the first iteration of this process, we will calculate the homogeneity indicator for

all the neighbor clusters; in our case we will calculate the homogeneity indicator for C1 and

C2, for C2 and C3, for C3 and C4 and for C4 and C5. These values are HIC=[0.546 0.5 0.350

0.524]. The lowest value of this vector is 0.350, the homogeneity indicator between C3 and

C4, these are the two clusters to be merged. After this iteration we have four ordered

clusters C1={ a4} ,C2={ a1,a2} ,C3={a6,a3} and C4={a5}.

In the following iterations the same process is repeated until some stopping criterion is

reached, in this case the number of ordered clusters that we want to have, three. After the

second iteration we reach our objective, three ordered clusters, and the result of clustering

process is three following ordered clusters: C1={a4} ,C2={ a1,a2,a6,a3} and C3={a5}.

Obviously, the number of final clusters must be smaller than the number of clusters

obtained. If the number of final clusters that we want to have is equal to the number of

cluster of splitting process, there is no need to perform the merge process.

31

Chapter 6

Experimental results and analysis

In this section the results of solving clustering problem on several data sets using the

algorithm described in 5.3. Using as basic the Promethee I and the Electre III outranking

procedures, will be presented and compared with results obtained using another methods

from the multicriteria literature such as Electre Tri [15] and Electre tri-c [16]. Our approach

was encoded in Java language, using the software Eclipse SDK (version: 3.6.2). The tests were

done in a Core 2 Duo with 1.66 GHz processor and 1.0 Gb RAM.

6.1 Example 1

For the first example, a small data set with only two criteria will be presented. We will

consider the following six alternatives evaluated on two criteria with equal weights that

should be assigned to three ordered using our approach.

Table 6.1- Data set for the example used in Section 6.1

Alternatives ai g1 g2

a1

a2

a3

a4

a5

a6

0.172 0.122

0.069 0.244

0.241 0.220

0.034 0.146

0.276 0.171

0.207 0.098

Weights 0.5 0.5

32 Experimental results and analysis

The outranking method to be considered is Electre III. The parameters needed for this

method such as indifference, preference and veto thresholds and cutting level λ are indicated

in Table 6.1.

Table 6.2- Parameters for the example used in Section 6.1

Criterion gk qk pk vk λ

g1

g2

0.01
0.01

0.05
0.05

1
1 0.6

At this point all needed information is known, that leads us to the first step of the

algorithm, which is calculation of the outranking index. Following the Electre III algorithm we

have the following outranking relation matrix:

Where P+ means preference of first alternative when compared to the second one , I

means indifference of first alternative when compared to the second one , J means

incomparability of first alternative when compared to the second one and P- means

preference of second alternative when compared to the first one.

Now that we have the outranking relation matrix, we can apply the splitting algorithm. At

the end of the split algorithm we have four ordered clusters: C1={a4}, C2={a1, a2, a6}, C3={a5}

and C4={a3}.

At this point we have four clusters, and we want to have only three, so we need to apply

the merging algorithm. For the next step, we need the values of outranking index S(ai,aj) that

provides values of preference of each pair of alternatives. We have then the preference

matrix as follows:

As a result of applying merging algorithm to the set of clusters obtained after splitting

algorithm we have three ordered clusters C1={a4}, C2={a1, a2 , a6} and C3={a5, a3}.

Experimental results and analysis 33

In Figure 6.1 in the x axis we have the value of all alternatives on the criterion g1 and in

the y axis on g2.

Figure 6.1 – Dissemination of clusters in two criteria space for the example 5.1

The clustering algorithm joins the alternatives in the same cluster that are equally good

to each other. The weights of g1 and g2 are the same, and with the values given in Table 6.1

and Table 6.2 we have this three ordered clusters. We can easily see from the Figure 6.1 that

C3 is better than C2 and C2 is better than C1.

Now we are going to compare the proposed algorithm with other clustering and

classification algorithms from the multicriteria literature.

6.2 Example 2

We will present an example of application of our approach in the field of business failure

risk. It concerns the assignment of firms to different risk categories. The example can be

found in [15] and [28]. Each firm is evaluated on the basis of seven criteria. The number of

considered clusters is five and they are:

•C1: very high risk (the worst cluster)

•C2: high risk

•C3: medium risk

•C4: low risk

34 Experimental results and analysis

•C5: very low risk (best cluster)

The 7 criteria are the following:

• g1 : earning before interest / total assets [to be maximized]

• g2 : net income / net worth [to be maximized]

• g3 : total liabilities / total assets [to be minimized]

• g4 : interest expenses / sales [to be minimized]

• g5 : general and administrative expenses / sales [to be minimized]

• g6 : manager work experience [to be maximized]

• g7 : market niche / position [to be maximized]

In [15] this problem has solved by Electre Tri optimistic and Electre Tri pessimistic

method as a classification problem. The following parameters presented in Table 6.3 were

used for the Electre Tri method.

Table 6.3 – parameter of alternatives that are used in example 6.3

Parameters g1 g2 g3 g4 g5 g6 g7

b1

b2

b3

b4

-10

0

8

25

-60

-40

-20

30

90

75

60

35

28

23

18

10

40

32

22

14

1

2

4

5

0

2

3

4

qk

pk

1

2

4

6

1

3

1

2

3

4

0

0

0

0

wk 0.01 0.295 0.225 0.01 0.225 0.01 0.225

The Table 6.3 contains preference and indifferent thresholds and the weights for each

criterion that are the parameters used in this case. The cutting level parameter used in

Electre III is fixed at 0.85. The alternatives b1,…,bn denote the lower (upper) limits of the

categories in Electre Tri.

Experimental results and analysis 35

Table 6.4 - Alternatives evaluated on criteria used in the example 6.2

Alternatives g1 g2 g3 g4 g5 g6 g7

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16

a17

a18

a19

a20

a21

a22

a23

a24

a25

a26

a27

a28

a29

a30

a31

a32

a33

a34

a35

a36

a37

a38

a39

35.8

16.4

35.8

20.6

11.5

22.4

23.9

29.9

8.9

25.7

21.2

18.3

20.7

9.9

10.4

17.7

14.8

16

11.7

11

15.5

13.2

9.1

12.9

5.9

16.9

16.7

14.6

5.1

24.4

29.5

7.3

23.7

18.9

13.9

-13.3

6.2

4.8

0.1

13.6

67

14.5

24

61.7

17.1

25.1

34.5

44

5.4

29.7

24.6

31.6

19.3

3.5

9.8

19.8

15.9

14.7

10

4.2

8.5

9.1

4.1

1.9

-27.7

12..4

13.1

9.7

4.9

22.3

8.6

-64.5

31.9

13.5

3.3

-31.1

-3.2

-3.3

-9.6

9.1

19.7

59.8

64.9

75.7

557.1

49.8

48.9

57.8

27.4

46.8

64.8

69.3

19.7

53.1

80.9

52.88

27.9

53.5

42.1

60.8

56.2

74.1

44.8

65

77.4

60.1

73.5

59.5

28.9

32.8

41.8

67.5

63.6

74.5

78.7

63

46.1

71.1

42.5

76

0

7.5

2.1

3.6

4.2

5

2.5

1.7

4.5

4.6

3.6

2.8

2.2

8.5

1.4

7.9

5.4

6.8

12.2

6.2

5.5

6.4

3.3

14

16.6

5.6

11.9

5.6

2.5

3.3

5.2

30.1

12.1

12

14.7

21.2

4.8

8.6

12.9

17.1

0

5.2

4.5

8

3.7

7.9

8

2.5

4.5

3.7

8

3

4

5.3

4.1

6.1

1.8

3.8

4.3

4.8

1.8

5

10.4

7.5

12.7

5.6

4.1

5.6

46

5

6.4

8.7

10.2

8.4

10.1

29.1

10.5

11.6

12.4

10.3

5

5

5

5

5

5

5

5

5

4

4

4

4

4

4

4

4

4

5

4

4

2

3

4

3

3

2

2

2

3

2

3

3

3

2

2

2

2

1

1

4

3

4

3

2

3

3

4

2

2

2

3

2

2

2

4

2

4

2

2

2

2

4

3

2

2

2

2

2

4

3

3

2

3

2

1

1

2

1

1

36 Experimental results and analysis

The results obtained with our approach after merging, using Electre III and Promethee to

build the outranking index, and Electre-tri [15] pessimist and optimist, are in Table 6.5.

Table 6.5 – Allocation of alternatives from the example 6.2 in ordered groups using Electre Tri
pessimistic and optimistic, and our approaches using Electre III and Promethee as a basis

Alternatives Electre-tri (pess) Electre-tri (opt) Our approach (Electre III) Our approach(Prom)

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16

a17

a18

a19

a20

a21

a22

a23

a24

a25

a26

a27

a28

a29

a30

a31

a32

a33

a34

a35

a36

a37

a38

a39

C5

C4

C3

C3

C3

C4

C4

C4

C3

C3

C3

C3

C3

C3

C2

C4

C3

C4

C3

C3

C3

C3

C4

C3

C2

C3

C3

C3

C1

C4

C4

C2

C3

C3

C2

C2

C2

C3

C2

C2

C5

C5

C5

C5

C5

C5

C5

C5

C5

C5

C5

C5

C5

C5

C5

C5

C5

C5

C5

C5

C5

C5

C4

C5

C4

C5

C5

C5

C5

C5

C5

C5

C5

C5

C5

C3

C4

C4

C4

C5

C5

C2

C2

C2

C2

C4

C4

C4

C3

C4

C2

C3

C4

C2

C1

C4

C4

C4

C3

C3

C2

C2

C2

C3

C2

C1

C2

C2

C2

C2

C4

C3

C2

C2

C1

C1

C2

C1

C2

C1

C5

C4

C4

C4

C3

C4

C4

C4

C3

C4

C3

C4

C4

C2

C1

C4

C4

C4

C4

C2

C3

C1

C3

C2

C1

C3

C2

C3

C2

C4

C4

C2

C3

C3

C1

C1

C1

C1

C1

C1

Experimental results and analysis 37

Table 6.6 – Percentage of the allocation of alternatives from the example 6.2 in ordered groups
using Electre Tri pessimistic and optimistic, and our approaches using Electre III and Promethee as a

basis

Since the parameters used in Electre Tri, Electre III and Promethee I, are similar, the

results obtained for Electre Tri pessimistic procedure and our approach are quite similar.

There are no assignments made by our approach, with both Electre III and Promethee), is out

of range defined by Electre tri pessimistic procedure.

We have thus presented the results for a business failure risk problem obtained with two

different methods. Electre Tri which is a classification method, uses lower and upper bounds

given, whereas our clustering approach does not use any information about clusters, uses the

similarity to clusters. Let us remark that is not always obvious how to construct these

clusters. It is not easy to define appropriate parameters for the two methods like for example

cutting level, thresholds, and weights.

The Electre Tri is a classification method that uses information about classes, such as

boundary alternatives, to assign the set of alternatives to classes. In case of absence of

information about classes our method could be applied and give results similar to Electre Tri.

6.3 Example 3

Next we will compare our approach to the results of another multicriteria classification

algorithm, called Electre Tri-C [16].

Consider fifteen potential actions, denoted as a1,…,a15 and evaluated on a coherent

family of seven criteria, denoted G={g1,…,g7} (all the criteria are in increasing preference

direction and should be maximized), when taking into account the preferences of the

decision maker (see Table 6.7). The importance of each criterion is defined by the weight.

The veto thresholds are not considered in this case.

Table 6.7- Criteria and parameters for the example 6.3

Parameters g1 g2 g3 g4 g5 g6 g7

qk

pk

wk

4

8

0.20

10

15

0.15

10

15

0.10

2

4

0.10

2

4

0.10

0

1

0.15

0

1

0.20

38 Experimental results and analysis

Table 6.8 - Potential alternatives for the example 6.3

alternatives g1 g2 g3 g4 g5 g6 g7

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

16

45

21

21

4

5

6

40

10

21

10

45

15

18

35

15

92

62

25

12

30

25

80

20

19

4

85

16

20

70

40

58

24

50

15

60

25

60

30

80

47

85

72

47

60

12

16

16

10

4

10

4

16

8

18

11

15

15

12

10

15

16

12

12

2

15

16

12

8

16

15

15

18

14

10

5

5

5

3

2

1

4

4

2

4

4

5

4

4

3

3

5

3

5

1

2

5

5

1

2

2

5

2

4

3

Table 6.9 - Characteristic alternatives for the example 6.3

Ck bh g1 g2 g3 g4 g5 g6 g7

C1

C2

C3

C4

C5

b0

b1

b2

b3

b4

b5

b6

0

5

15

25

35

45

50

0

10

30

50

70

90

100

0

20

40

60

60

80

100

0

5

10

10

10

15

20

0

5

10

10

10

15

20

0

1

2

3

4

5

6

0

1

2

3

4

5

6

The objective of Electre Tri-C is to assign the alternatives, see (Table 6.8), to a set of

five categories defined by a set of so-called characteristic alternatives that are basically

centroids of clusters see, (Table 6.9).

We are going to compare the results of our approach, using Electre III and Promethee I

outranking methods, with the results obtained in [16] by the Electre Tri-C method. This time,

we are going to use two different values of the cutting level λ. For Electre III and Electre Tri-

C the values used for λ are 0.60 and 0.70. The comparative results of our approach using

Electre III and Promethee I outranking methods and Electre Tri C are provided in Table 6.10.

Experimental results and analysis 39

Table 6.10 - Electre Tri-C and our approach results for example 6.3.

Alternatives ET-C HC ET-C LC OA E ET-C HC ET-C LC OA E OA P

λ=0.6 λ=0.7

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

C3

C5

C3

C3

C1

C2

C2

C4

C1

C3

C2

C5

C2

C4

C3

C2

C5

C3

C3

C1

C2

C3

C5

C2

C3

C2

C5

C2

C4

C4

C2

C5

C3

C2

C2

C2

C2

C5

C1

C3

C2

C5

C2

C2

C4

C3

C5

C3

C3

C1

C2

C3

C5

C2

C3

C2

C5

C3

C4

C4

C2

C5

C3

C3

C1

C2

C2

C4

C1

C3

C2

C5

C2

C3

C3

C3

C5

C4

C3

C1

C2

C2

C5

C1

C3

C2

C5

C3

C3

C4

C3

C5

C4

C2

C1

C2

C2

C5

C1

C4

C2

C5

C2

C3

C3

Table 6.11 - Electre Tri-C and our approach results for example 6.3 in percentages.

In Table 6.10, ET-C HC means Electre Tri-C higher category, ET-C LC means Electre Tri-C

lowest category, OA E means our approach using Electre III outranking method and OA P

means our approach using Promethee outranking method.

Once again we have very similar results for our approach and Electre Tri C. Despite the

fact that our approach does not use information about clusters like characterizing

alternatives given in advance in Electre Tri C, it provides similar results. The difference of

the clusters attributed to the alternatives is bigger than one only in one case (for a14, the

difference for our approach and Electre Tri-C using λ=0.6 is two clusters/classes), showing a

very good performance of our approach.

40 Experimental results and analysis

For both Electre III used in our approach and Electre Tri-C the testes were done with two

different values of the cutting level, 0.60 and 0.70. We can note small change in results when

the value of the clustering level increases. We can see that in our approach using Electre III

with λ= 0.6 and λ=0.7 only four alternatives are in different clusters and for Electre Tri-C for

the highest category only two alternative are in different clusters and for the lowest category

there is only one alternative that is not in the same cluster. Construction of these clusters is

not always obvious; defining appropriate parameters for two methods is not easy but we can

see that our approach gives very similar results.

41

Chapter 7

Conclusions and future research

In this paper we have proposed an approach to solve the multicriteria ordered clustering

problem. In this kind of problems, similar alternatives have to be grouped in ordered clusters.

The difficulty of this problem is the fact that the clusters are not defined a priori.

 Different multicriteria decision aiding methods have been presented to assign a set of

alternatives into clusters. In this work these approaches were discussed and an approach for

one type of the clustering problems was suggested, in particular, the approach to solve

ordered clustering problem was introduced.

Our approach has, successfully, been applied on datasets for which, the obtained results

have been compared to the results obtained by earlier developed methods represented in

multicriteria literature. In particular the clustering results obtained by our approach on the

business failure risk problem with 40 alternatives evaluated on 7 criteria and on other

hypothetical example with 15 alternatives evaluated on 7 criteria are coherent with the

results obtained with Electre Tri and Electre Tri-C. This permits us to hope to tackle and

solve similar problems of this type that appearing in real life.

Although the results seem to be encouraging, future attention should be paid to analysis

of problems with a larger set of alternatives evaluated in a big set of criteria, study stability

in face of different labels of the input alternatives and make it interactive. One way to work

with large data set is to first select a representative data set and cluster this data set. This

could help to simplify the problem. After this step we can classify the rest of alternatives in

classification problem, by comparing to the centroids obtained.

42

References

[1] Y.De Smet and L. Montano Guzmán. Towards multicriteria clustering: An extension of

the k-means algorithm. European Journal of Operational Research, 158(2):390-398, oct 2004.

[2] Cailloux, O., C. Lamboray, Ph. Nemery , A taxonomy of clustering procedures,

Proceedings of the 66th Meeting of the EWG on MCDA, Marrakech, Maroc, 2007.

[3] Yevseyeva, I., K. Miettinen, P. Salminen, and R. Lahdelma, SMAA-Classification: A new

method for nominal classification, Helsinki School of Economics, Working Paper, 2007.

[4] E. Fernandez, J. Navarro, S. Bernal, Handling multicriteria preferences in cluster

analysis, Eur. J. Oper. Res. 202 (2010) 819–827.

[5] Ph. Nemery and Y. De Smet. Multicriteria ordered clustering. Technical Report

TR/SMG/2005-003, Universit´e Libre de Bruxelles/SMG, 2005.

[6] A. Valls Mateu, CLUSDM: a multiple criteria decision making method for heterogeneous

data sets, Polytechnic University of Catalonia. 2002.

[7] L. Montano-Guzman, FuzzyMeasures and Integrals in the MCDA Sorting Problematic:

Methodology and Application to the Diagnosis of Firms, PhD thesis, Univerisite Libre de

Bruxelles, 2002.

[8] B. Roy. Crit`eres multiples et mod´elisation des pr´ef´erences : l‟apport des relations

de surclassement. Revue d‟Economie Politique, 1974.

[9] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing

Surveys, 31(3):264–323, sep 1999.

[10] R. Bisdorff. Electre-like clustering from a pairwise fuzzy proximity index. European

Journal of Operational Research, 138:320–331, 2002.

[11] J.R. Figueira, Y. De Smet, B. Mareschal, and J.-P. Brans. Mcda methods for sorting

and clustering problems: Promethee tri and promethee cluster. Technical Report IS-MG

2004/02, Universite Libre de Bruxelles/SMG, 2004.

[12] Dias, L. C., J. P. Costa, J. N. Clímaco, "A Parallel Implementation of the PROMETHEE

Method", European Journal of Operational Research, Vol. 104, Nº 3, pp. 521-531, 1998

[13] Almeida-Dias, J., Figueira, and Roy, B., ELECTRE TRI-C: a multiple criteria sorting

method based on characteristic reference actions. Cahier du lamsade 274, may 2008

[14] Nemery, P., On the use of multicriteria ranking methods in sorting problems. PhD

Thesis. Université Libre de Bruxelles, 2008-2009

References 43

[15] Nemery, P., Multicriteria Clustering. Master Thesis. Université Libre de Bruxelles,

2005-2006.

[16] Almeida-Dias, J., Figueira, J.R. and Roy, B., ELECTRE TRI-C: a multiple criteria

sorting method based on characteristic reference actions. European Journal of Operational

Research. v204. 565-580, 2010.

[17] V. Mousseau, J. Figueira, L. C. Dias, C. Gomes da Silva, and J. N. Clímaco. Resolving

inconsistencies among constraints on the parameters of an MCDA model. European Journal of

Operational Research, 147:72-93, 2003.

[18] Bastos, L. N. V., Almeida, A. T. - Utilização do Método Promethee II na Análise das

Propostas de Preços em um Processo de Licitação. In: ENEGEP (Encontro Nacional de

Engenharia de Produção), 2002, Curitiba.

[19] Yevseyeva I., Solving classification problems with multicriteria decision aiding

approaches. Phd Theis. University of Jyvaskyla,2007

[20] Hyde, K., Maier, H., Colby, C., Incorporating uncertainty in the PROMETHEE MCDA

method. Journal of Multi-Criteria Decision Analysis 12, 245–259, 2003.

[21] Ph. Nemery and C. Lamboray. FlowSort: a flow-based sorting method with limiting

and central profiles. TOP, 16:90–113, 2008.

[22] Chou, W. C.; Lin, W. T.; Lin, C. Y., (2007); Application of fuzzy theory and

PROMETHEE technique to evaluate suitable ecotechnology method: A case study in Shihmen

Reservoir Watershed, Taiwan; Ecol. Eng.,; 31 (4), 269-280

[23] GOMES, L. F. M. A.; GOMES, C. F. S. & ALMEIDA, A. T. Tomada de decisão Gerencial:

Enfoque Multicritério. Rio de Janeiro: Atlas, 2002.

[24] CHIAVENATO, Idalberto. Introdução à teoria geral da administração. 5ª Edição, Rio

de Janeiro: Campus, 1999.

[25] GOMES, L. F. M. A.; ARAYA, M. C. G. & CARIGNANO, C. Tomada de decisões em

cenários complexos. São Paulo: Pioneira, 2004.

 [26] MARINS, Cristiano S. & COZENDEY, Manaara I. A metodologia de multicritério como

ferramenta para tomada de decisões gerenciais: um estudo de caso. In: 25º Encontro Nacional

de Engenharia de Produção (ENEGEP). Anais. Porto Alegre / RS, 2005.

[27] Helmann, Kurtt Schamne; Marçal, Rui Francisco Martins. Multiple criteria method to

maintenance management decision support: application of electre I method to process critic

equipments election. Campus Ponta Grossa - Paraná – Brasil, Revista Gestão Industrial p. 123-

133, 2007

[28] L. Dias, V. Mousseau, J. Figueira, and J. Climaco. An aggregation/disaggregation

approach to obtain robust conclusions with electre tri. European journal of Operational

Research 138:332-348, 2002.

[29] Matos, Manuel. Ajuda multicriteria à decisão – Introdução. FEUP, 2005

http://mcsc2.ist.utl.pt/biblio/author/mousseau-v.html
http://mcsc2.ist.utl.pt/biblio/author/figueira-j.html
http://mcsc2.ist.utl.pt/biblio/author/dias-lc.html
http://mcsc2.ist.utl.pt/biblio/author/GOMES-DA-SILVA-C.html
http://mcsc2.ist.utl.pt/biblio/author/climaco-jn.html

44 References

[30] A. Sharma, C.W. Omlin. Performance Comparison of Particle Swarm Optimization

with Traditional Clustering Algorithms used in Self-Organizing Map. World Academy of

Science, Engineering and Technology 51, 2009.

[31] A. J. Hartugan, Clustering algorithms. New York: J. Wiley, 1975.

[32] B. Mirkin, Mathematical Classification and Clustering. Dordrecht: Kluwer

Academic Publishers, 1996.

[33] B. Everitt. Cluster Analysis. Heinemann Educational, 1974.

[34] B. Everitt. Cluster Analysis (3rd ed.). Edward Arnold, 1993.

[35] L. Kaufman and P. Rousseeuw. Finding Groups in Data : An introduction to

Cluster Analysis. John Wiley and Sons, New York, 1990.

[36] R. Steuer. Multiple criteria optimization : theory, computation and application.

Wiley, New York, 1986.

[37] Ph. Vincke. Multicriteria Decision Aid. J. Wiley, 1992.

[38] B. Roy. Critéres multiples et modélisation des préférences : l‟apport des

relations de surclassement. Revue d‟Economie Politique, 1974.

[39] B. Roy. Méthodologie multicritére d‟aide à la décision. Econmica, Paris, 1985.

[40] Richard O. Duda, Peter E. Hart, David G. Stork. Pattern Classification (2nd

edition) 2000.

45

Appendix

Appendix A

In this appendix we present the source code, made in Java programming language, for the

approach proposed by us in Section 5.3 using as basis Promethee I outranking method.

public class proposed_approach_using_Promethee_I {

 public static double[][] partialpref (double x [][],double z [][], double p[], double
q[],int c){
 // calculation of partial preference

 double partpref [][]= new double[x.length][z.length];
 int i=0;
 int j=0;

 while(i<x.length){
 j=0;

 while(j<z.length){

 if(z[i][c]-x[j][c]<=q[c] || z[i][c]<=x[j][c])partpref[i][j]=0;
 if(z[i][c]-x[j][c]> p[c])partpref[i][j]=1;
 if((z[i][c]-p[c]) <= x[j][c] && x[j][c] < (z[i][c]-q[c]
))partpref[i][j]=((z[i][c]-x[j][c]- q[c])/(p[c]-q[c]));
 j++;
 }
 i++;
 }
 return partpref;
 }

 public static double[][] overallpref (double x [][],double z [][], double p[], double
q[], double w []){
 //calculation of overall preference

 double partpref[][] = new double[x.length][z.length];
 double prefmat[][] = new double[x.length][z.length];
 int c=0;

 while(c<x[0].length)

46 Appendix

 {
 if (c==0){
 partpref=partialpref(x,z,p,q,c);
 int i=0,j=0;
 while (i<partpref.length){
 j=0;
 while(j<partpref.length){
 prefmat[i][j]=w[c]*partpref[i][j];
 j++;
 }
 i++;
 }
 }
 else if (c>0 && c<x[0].length){
 partpref=partialpref(x,z,p,q,c);
 int i=0,j=0;
 while (i<partpref.length){
 j=0;
 while(j<partpref.length){

 prefmat[i][j]=prefmat[i][j]+w[c]*partpref[i][j];
 j++;
 }
 i++;
 }
 }
 c++;
 }

 return prefmat;
 }

 public static double[] flowplus (double x [][],double z [][], double p[], double q[],
double w []){
 //calculation of positive flow

 double flow[] = new double[x.length];
 double overallpref[][] = new double[x.length][x.length];
 overallpref=overallpref(x,x,p,q,w);

 int n=0;
 while (n<x.length) {flow[n]=0;n++;}

 int i=0;
 while(i<x.length) {

 int j=0;
 while (j<z.length){

 flow[i]=flow[i]+overallpref[i][j];

 j++;
 }

 i++;
 }

 return flow;
 }

Appendix 47

 public static double[] flowminus (double x [][],double z [][], double p[], double q[],
double w []){
 //calculation of negative flow

 double flow[] = new double[z.length];
 double overallpref[][] = new double[x.length][x.length];
 overallpref=overallpref(x,x,p,q,w);

 int n=0;
 while (n<x.length) {flow[n]=0;n++;}

 int i=0;
 while(i<x.length) {

 int j=0;
 while (j<z.length){

 flow[i]=flow[i]+overallpref[j][i];

 j++;
 }

 i++;
 }

 return flow;
 }

 public static double[] flow (double x [][],double z [][], double p[], double q[],
double w []){
 //calculation of the overall flow

 double flow[] = new double[z.length];
 double flowp[] = new double[z.length];
 double flowm[] = new double[z.length];

 flowp=flowplus(x,z,p,q,w);
 flowm=flowminus(x,z,p,q,w);

 int i=0;
 while(i<x.length) {
 flow[i]=flowp[i]-flowm[i];
 i++;
 }

 return flow;
 }

 public static int[][] pji (double x [][],double z [][], double p[], double q[], double w
[]){
 // calculation of the outranking relation matrix
 int pji[][] = new int[x.length][z.length];
 double flow[] = new double[z.length];
 double flowp[] = new double[z.length];
 double flowm[] = new double[z.length];

 flowp=flowplus(x,z,p,q,w);
 flowm=flowminus(x,z,p,q,w);

48 Appendix

 flow=flow(x,z,p,q,w);

 int i=0;
 while(i<flow.length) {

 int j=0;
 while (j<flow.length){

 if (flowp[i]==flowp[j] && flowm[i]==flowm[j]) {pji[i][j]=2 ;
pji[j][i]=2;} //2 means indifferent
 else if ((flowp[i]>flowp[j] && flowm[i]<flowm[j]) ||
 (flowp[i]>flowp[j] && flowm[i]==flowm[j])||
 (flowp[i]==flowp[j] && flowm[i]<flowm[j]))
 {pji[i][j]=4; //4
means that the alternative i is better than j
 pji[j][i]=1;} //1
means that the alternative j is better than i
 else if(pji[j][i]==0){pji[i][j]=3 ; pji[j][i]=3;} //3 means
incomparable
 j++;
 }
 i++;
 }

 return pji;
 }

 public static int [] split (double x [][],double z [][], double p[], double q[],double w
[],int c){
 // split procedure of the proposed approach

 int pji[][] = new int[x.length][z.length];
 int newsplit[] = new int[x.length];
 int split[] = new int[x.length];
 int i=0,j=0,n=0;
 pji=pji(x,x,p,q,w);
 i=0;

 while (n<x.length) {split[n]=1;n++;}
 n=0;
 while (n<x.length) {newsplit[n]=1;n++;}

 while (i<x.length){
 j=0;
 n=0;
 while(j<x.length){
 if(j>i){
 if(pji[i][j]==1){
 if (split [i]==split[j]){
 n=0;
 while (n<x.length){
 if (split[n]>split[j]){

 newsplit[n]=split[n]+1;
 }
 n++;}
 newsplit[j]=split[j]+1;
 }

Appendix 49

 }
 }

 j++;
 }
 n=0;
 while (n<x.length) {split[n]=newsplit[n];n++;}
 //printvector(split);

 j=0;
 while(j<x.length){
 if(j>i){
 if(pji[i][j]==4){
 if (split [i]==split[j]){
 n=0;
 while (n<x.length){
 if (split[n]>split[j]
)newsplit[n]=split[n]+1;
 else if (
split[n]<split[j])newsplit[n]=split[n];
 else if (split[n]==split[i] &&
pji[i][n]!=4 && n>=i)newsplit[n]=split[n]+1;
 else if (split[n]==split[i] &&
pji[i][n]!=4 && n>i)newsplit[n]=split[n];
 n++;
 }
 }
 }
 }
 j++;
 }
 n=0;
 while (n<x.length) {split[n]=newsplit[n];n++;}
 //printvector(split);
 i++;
 }
 return split;
 }

 public static double homogeneity (double x [][],double z [][], double p[], double
q[],double w [],int c, int i, int j){
 // calculation of homogeneity index for all pairs of actions
 double homogeneity;
 double pref[][]= new double [x.length][x.length];

 pref=overallpref(x,x,p,q,w);
 homogeneity=pref[i][j];

 return homogeneity;
 }

 public static int max(int[] t) {
 int maximum = t[0]; // start with the first value
 for (int i=1; i<t.length; i++) {
 if (t[i] > maximum) {
 maximum = t[i]; // new maximum
 }

50 Appendix

 }
 return maximum;
 }

 public static int posmin(double[] t) { // calculation of the position in the minimum
of a vector double
 double min = t[0];
 int minpos = 0;
 for (int i=1; i<t.length; i++) {
 if (t[i] < min) {
 min = t[i];
 minpos=i;
 }
 }
 return minpos;
 }

 public static int [] merge (double x [][],double z [][], double p[], double q[],double
w [],int c, int k){
 // merge procedure of the proposed approach

 int merge []= new int [x.length];
 double homogeneity;
 double maxhomo;
 int i,j,t,y,a;
 merge=split (x,x,p,q,w,c);
 homogeneity=0;
 int m;

 while(max(merge)>k){
 m=1;
 double memmax[]=new double[max(merge)-1];
 a=0;
 while(a<max(merge)-1){
 int count=0;
 int mem [];

 i=0;
 while(i<merge.length){
 if(merge[i]==m || merge[i]==m+1){ count++;}
 i++;
 }

 mem=new int[count];
 i=0;
 j=0;

 while(i<merge.length){
 if(merge[i]==m || merge[i]==m+1){ mem[j]=i;j++;}
 i++;
 }
 //printvector(mem);

 t=0;
 maxhomo=0;
 while(t<mem.length){
 y=0;
 homogeneity=0;

Appendix 51

 while(y<mem.length){

 homogeneity=homogeneity
(x,x,p,q,w,c,mem[t],mem[y]);
 if(maxhomo<homogeneity)
maxhomo=homogeneity;
 y++;
 }
 t++;
 }

 memmax[m-1]=maxhomo;
 a++;
 m++;
 }

 int n=0;
 while (n<x.length){
 if (merge[n]>posmin(memmax)+1){
 merge[n]=merge[n]-1;
 }
 n++;
 }
 //printvector(merge);
 }
 return merge;
 }

 public static void printmatrix(double[][] array) { //print matrix double
 int rowSize = array.length;
 int columnSize = array[0].length;

 for(int i = 0; i < rowSize; i++) {
 System.out.print("[");
 for(int j = 0; j < columnSize; j++) {
 System.out.print(" " + array[i][j]);
 }
 System.out.println("]");
 }
 System.out.println();
 }
 public static void printmatrixint(int[][] array) { //print matrix int
 int rowSize = array.length;
 int columnSize = array[0].length;
 for(int i = 0; i < rowSize; i++) {
 System.out.print("[");
 for(int j = 0; j < columnSize; j++) {
 System.out.print(" " + array[i][j]);
 }
 System.out.println("]");
 }
 System.out.println();
 }

 public static void printvector(int[] array) { // print vector int
 int rowSize = array.length;
 System.out.print("[");
 for(int i = 0; i < rowSize; i++) {

52 Appendix

 System.out.print(" " + array[i]);
 }
 System.out.println("]");
 System.out.println();
 }

 public static void printvectord(double[] array) { //print vector double
 int rowSize = array.length;
 System.out.print("[");
 for(int i = 0; i < rowSize; i++) {

 System.out.print(" " + array[i]);

 }
 System.out.println("]");
 System.out.println();
 }

 public static void main(String[] args) {

 double x [][]={ {0.188,0.172,0.168,0.122,0.114},{0.125,0.069,0.188,0.244,0.205},
 {0.156,0.241,0.134,0.22,0.136},{0.188,0.034,0.174,0.146,0.159},
 {0.188,0.276,0.156,0.171,0.205},{0.156,0.207,0.18,0.098,0.182} };

 double p[] ={0.05,0.05,0.05,0.05,0.05}; double q[] ={0.01,0.01,0.01,0.01,0.01}; int
k=3;
 double w []= {0.25,0.25,0.1,0.2,0.2};

 double x2
[][]={{16,15,40,12,15,5,3},{45,92,85,16,16,5,5},{21,62,24,16,12,5,3},{21,25,50,10,12,3,5},{4,
12,15,4,2,2,1},{5,30,60,10,15,1,2},{6,25,25,4,16,4,5},{40,80,60,16,12,4,5},{10,20,30,8,8,2,1}
,{21,19,80,18,16,4,2 },{ 10,4,47,11,15,4,2} , {45,85,85,15,15,5,5} ,{15,16,72,15,18,4,2}
,{18,20,47,12,14,4,4} , {35,70,60,10,10,3,3}};

 //double q[]={4,10,10,2,2,0,0};double p[]={8,15,15,4,4,1,1}; int k=5;
 ///double w[]={0.20,0.15,0.1,0.1,0.1,0.15,0.2};

 double x3 [][]= {{ 35.8 ,67, -19.7 ,0 ,0, 5, 4} , {16.4 ,14.5 ,-59.8 ,-7.5 ,-5.2 ,5 ,3 },
{35.8 ,24 ,-64.9 ,-2.1,- 4.5, 5 ,4 }, {20.6 ,61.7 ,-75.7 ,-3.6 ,-8 ,5 ,3 }, {11.5 ,17.1, -57.1 ,-4.2
,-3.7, 5, 2}, {22.4 ,25.1 ,-49.8 ,-5 ,-7.9, 5 ,3 }, {23.9 ,34.5 ,-48.9 ,-2.5 ,-8 ,5, 3 },{29.9, 44, -
57.8 ,-1.7,- 2.5 ,5 ,4 }, {8.7 ,5.4, -27.4, -4.5, -4.5 ,5 ,2 },{25.7, 29.7, -46.8,- 4.6,- 3.7, 4, 2}
,{ 21.2 ,24.6 ,-64.8 ,-3.6 ,-8 ,4 ,2 },{ 18.3 ,31.6 ,-69.3 ,-2.8 ,-3 ,4 ,3 }, {20.7 ,19.3 ,-19.7 ,-2.2
,-4 ,4 ,2 }, {9.9, 3.5 ,-53.1 ,-8.5 ,-5.3 ,4,2 }, {10.4, 9.3 ,-80.9, -1.4 ,-4.1 ,4 ,2 },{17.7 ,19.8 ,-
52.8 ,-7.9 ,-6.1 ,4 ,4 }, {14.8 ,15.9 ,-27.9 ,-5.4 ,-1.8 ,4 ,2 }, {16, 14.7 ,-53.5 ,-6.8 ,-3.8 ,4, 4
}, {11.7 ,10 ,-42.1 ,-12.2,- 4.3 ,5 ,2 }, {11 ,4.2 ,-60.8 ,-6.2 ,-4.8 ,4 ,2 }, {15.5 ,8.5 ,-56.2 ,-
5.5 ,-1.8, 4 ,2}, {13.2 ,9.1 ,-74.1 ,-6.4 ,-5 ,2 ,2 }, {9.1 ,4.1 ,-44.8 ,-3.3, -10.4 ,3 ,4}, {12.9
,1.9 ,-65 ,-14 ,-7.5, 4 ,3 }, {5.9, -27.7 ,-77.4 ,-16.6 ,-12.7 ,3 ,2 }, {16.9 ,12.4 ,-60.1, -5.6 ,-5.6
,3 ,2 }, {16.7 ,13.1 ,-73.5 ,-11.9 ,-4.1 ,2 ,2 }, {14.6 ,9.7 ,-59.5 ,-6.7 ,-5.6 ,2 ,2 }, {5.1 ,4.9 ,-
28.9 ,-2.5 ,-46 ,2 ,2 }, {24.4 ,22.3 ,-32.8 ,-3.3 ,-5 ,3 ,4 }, {29.5 ,8.6 ,-41.8 ,-5.2 ,-6.4, 2, 3
}, {7.3 ,-64.5 ,-67.5 ,-30.1, -8.7, 3, 3} , {23.7 ,31.9 ,-63.6, -12.1 ,-10.2 ,3 ,2}, {18.9 ,13.5 ,-
74.5 ,-12 ,-8.4 ,3 ,3 }, {13.9 ,3.3 ,-78.7, -14.7, -10.1 ,2, 2} ,{-13.3 ,-31.1 ,-63 ,-21.2 ,-29.1 ,2
,1}, {6.2 ,-3.2 ,-46.1 ,-4.8 ,-10.5 ,2 ,1 }, {4.8 ,-3.3 ,-71.1 ,-8.6 ,-11.6 ,2 ,2 }, {0.1 ,-9.6 ,-42.5
,-12.9 ,-12.4 ,1 ,1}, {13.6 ,9.1 ,-76, -17.1 ,-10.3 ,1 ,1 }};

 //double q[]={1,4,1,1,3,0,0};double p[]={2,6,3,2,4,0,0}; int k=5;
 //double w []= {0.01,0.295,0.225,0.01,0.225,0.01,0.225};

Appendix 53

 double s[][] = new double[x.length][x.length];
 int pij[][] = new int[x.length][x.length];

 double flow[]=new double[x.length];
 double flowp[]=new double [x.length];
 double flowm[]=new double [x.length];

 double prefmat[][] = new double[x.length][x.length];
 double partialprefmat[][] = new double[x.length][x.length];
 int c=0;
 int split []=new int [x.length];
 int merge []=new int [x.length];
 double homogeneity;

 //partialprefmat=partialpref(x,x,p,q,c);printmatrix(partialprefmat);

 //prefmat=overallpref(x,x,p,q,w);printmatrix(prefmat);

 //pij=pji(x,x,p,q,w); printmatrixint(pij);

 //split=split (x,x,p,q,w,c);printvector(split);

 //homogeneity=homogeneity (x,x,p,q,w,c ,0,1); System.out.print(homogeneity);

 //flow=flow(x,x,p,q,w); printvectord(flow);

 //flowm=flowminus(x,x,p,q,w); printvectord(flowm);

 //flowp=flowplus(x,x,p,q,w); printvectord(flowp);

 merge=merge(x,x,p,q,w,c,k);printvector(merge);

 }
}

54 Appendix

Appendix B

In this appendix we present the source code, made in Java programming language, for the

approach proposed by us in Section 5.3 using as basis Electre III outranking method.

public class proposed_approach_using_Electre_III {

 public static double[][] partialconc (double x [][],double z [][], double p [], double q
[], double v [],int c){
 // calculation of partial concordance

 double matrix [][]= new double[x.length][z.length];
 int i=0;
 int j=0;

 while(i<x.length){
 j=0;

 while(j<z.length){

 if(z[j][c]-x[i][c]>p[c])matrix[i][j]=0;
 if(z[j][c]-x[i][c]<=q[c])matrix[i][j]=1;
 if((z[j][c]-p[c]) <= x[i][c] && x[i][c] < (z[j][c]-q[c]
))matrix[i][j]=((p[c]-z[j][c]+x[i][c])/(p[c]-q[c]));

 j++;
 }i++;
 }
 return matrix;
 }

 public static double[][] overallconc (double x [][],double z [][], double p[], double
q[], double v[],double w []){
 // calculation of overall concordance

 double cpart[][] = new double[x.length][z.length];
 double coverall[][] = new double[x.length][z.length];
 int c=0;

 while(c<x[0].length)
 {
 if (c==0){
 cpart=partialconc(x,z,p,q,v,c);
 int i=0,j=0;
 while (i<cpart.length){
 j=0;
 while(j<cpart.length){
 coverall[i][j]=w[c]*cpart[i][j];
 j++;
 }
 i++;
 }
 }
 else if (c>0 && c<x[0].length){

Appendix 55

 cpart=partialconc(x,z,p,q,v,c);
 int i=0,j=0;
 while (i<cpart.length){
 j=0;
 while(j<cpart.length){
 coverall[i][j]=coverall[i][j]+w[c]*cpart[i][j];
 j++;
 }
 i++;
 }
 }
 c++;
 }

 return coverall;
 }

 public static double[][] partialdisc (double x [][],double z [][], double p[], double
q[], double v[],int c){
 //calculation of partial discordance

 double matrix [][]= new double[x.length][z.length];
 int i=0;
 int j=0;

 while(i<x.length){
 j=0;

 while(j<z.length){

 if(z[j][c]-x[i][c]<=p[c])matrix[i][j]=0;
 if(z[j][c]-x[i][c]> v[c])matrix[i][j]=1;
 if((z[j][c]-v[c]) <= x[i][c] && x[i][c] < (z[j][c]-p[c]
))matrix[i][j]=((z[j][c]-x[i][c]- p[c])/(v[c]-p[c]));
 j++;
 }
 i++;
 }
 return matrix;
 }

 public static double[][] outindex (double x [][],double z [][], double p[], double q[],
double v[],double w []){
 //calculation of the outranking index matrix
 double s [][]= new double[x.length][z.length];

 double cpart[][] = new double[x.length][z.length];
 double coverall[][] = new double[x.length][z.length];
 double partialdisc[][] = new double[x.length][z.length];
 int c=0;
 int i=0;
 while(i<cpart.length) {

 int j=0;
 while (j<cpart.length){
 c=0;
 coverall=overallconc(x,z,p,q,v,w);

56 Appendix

 while(c<x[0].length){
 cpart=partialconc(x,z,p,q,v,c);
 partialdisc=partialdisc(x,z,p,q,v,c);
 if (partialdisc[i][j]>cpart[i][j])
coverall[i][j]=coverall[i][j]*(1-partialdisc[i][j])/(1-cpart[i][j]);
 else coverall[i][j]=coverall[i][j];
 c++;
 }

 s[i][j]=coverall[i][j];
 j++;
 }

 i++;
 }

 return s;
 }

 public static int[][] pji (double x [][],double z [][], double p[], double q[], double
v[],int c, double lambda, double w[]){
 //calculation of outranking relation matrix

 double s [][]= new double[x.length][z.length];
 s=outindex(x,x,p,q,v,w);

 int pji[][] = new int[x.length][z.length];

 int i=0;
 while(i<s.length) {

 int j=0;
 while (j<s.length){

 if (s[i][j]>=lambda && s[j][i]>= lambda) {pji[i][j]=2 ;
pji[j][i]=2;} //2 means indifferent
 else if (s[i][j]<lambda && s[j][i]>= lambda) pji[i][j]=1 ;
 //1 means that the alternative j is better than i
 else if (s[i][j]>=lambda && s[j][i]< lambda) pji[i][j]=4 ;
 //4 means that the alternative i is better than j
 else if (s[i][j]<lambda && s[j][i]< lambda) {pji[i][j]=3 ;
pji[j][i]=3;} //3 means incomparable
 //if (s[i][j]==1 && s[j][i]==1) pji[i][j]=0 ; //just a test
 j++;
 }

 i++;
 }

 return pji;
 }

 public static double[][] partialpref (double x [][],double z [][], double p[], double
q[], double v[],int c){

Appendix 57

 //calculation of partial preference

 double partpref [][]= new double[x.length][z.length];
 int i=0;
 int j=0;

 while(i<x.length){
 j=0;

 while(j<z.length){

 //if(z[j][c]-x[i][c]<=q[c])partpref[i][j]=0;
 //if(z[j][c]-x[i][c]> p[c])partpref[i][j]=1;
 //if((z[j][c]-p[c]) <= x[i][c] && x[i][c] < (z[j][c]-q[c]
))partpref[i][j]=((z[j][c]-x[i][c]- q[c])/(p[c]-q[c]));

 if(z[i][c]-x[j][c]<=q[c] || z[i][c]<=x[j][c])partpref[i][j]=0;
 if(z[i][c]-x[j][c]> p[c])partpref[i][j]=1;
 if((z[i][c]-p[c]) <= x[j][c] && x[j][c] < (z[i][c]-q[c]
))partpref[i][j]=((z[i][c]-x[j][c]- q[c])/(p[c]-q[c]));
 j++;
 }
 i++;
 }
 return partpref;
 }

 public static double[][] overallpref (double x [][],double z [][], double p[], double
q[], double v[],double w []){
 //calculation of overall preference

 double partpref[][] = new double[x.length][z.length];
 double prefmat[][] = new double[x.length][z.length];
 int c=0;

 while(c<x[0].length)
 {
 if (c==0){
 partpref=partialpref(x,z,p,q,v,c);
 int i=0,j=0;
 while (i<partpref.length){
 j=0;
 while(j<partpref.length){
 prefmat[i][j]=w[c]*partpref[i][j];
 j++;
 }
 i++;
 }
 }
 else if (c>0 && c<x[0].length){
 partpref=partialpref(x,z,p,q,v,c);
 int i=0,j=0;
 while (i<partpref.length){
 j=0;
 while(j<partpref.length){

 prefmat[i][j]=prefmat[i][j]+w[c]*partpref[i][j];
 j++;

58 Appendix

 }
 i++;
 }
 }
 c++;
 }

 return prefmat;
 }

 public static int [] split (double x [][],double z [][], double p[], double q[], double
v[],double w [],int c, double lambda){
 // split procedure of the proposed approach

 int pji[][] = new int[x.length][z.length];
 int newsplit[] = new int[x.length];
 int split[] = new int[x.length];
 int i=0,j=0,n=0;
 pji=pji(x,x,p,q,v,c,lambda,w);
 i=0;

 while (n<x.length) {split[n]=1;n++;}
 n=0;
 while (n<x.length) {newsplit[n]=1;n++;}

 while (i<x.length){
 j=0;

 while(j<x.length){
 if(j>i){
 if(pji[i][j]==1){
 if (split [i]==split[j]){
 n=0;
 while (n<x.length){
 if (split[n]>split[j]){

 newsplit[n]=split[n]+1;
 }
 n++;}
 newsplit[j]=split[j]+1;
 }
 }
 }

 j++;
 }
 n=0;
 while (n<x.length) {split[n]=newsplit[n];n++;}
 //printvector(split);
 j=0;

 while(j<x.length){
 if(j>i){
 if(pji[i][j]==4){
 if (split [i]==split[j]){
 n=0;
 while (n<x.length){

Appendix 59

 if (split[n]>split[j]
)newsplit[n]=split[n]+1;
 else if (
split[n]<split[j])newsplit[n]=split[n];
 else if (split[n]==split[i] &&
pji[i][n]!=4 && n>=i)newsplit[n]=split[n]+1;
 else if (split[n]==split[i] &&
pji[i][n]!=4 && n>i)newsplit[n]=split[n];
 n++;
 }
 }
 }
 }
 j++;
 }
 n=0;
 while (n<x.length) {split[n]=newsplit[n];n++;}
 //printvector(split);
 i++;
 }
 return split;
 }

 public static double homogeneity (double x [][],double z [][], double p[], double q[],
double v[],double w [],int c, double lambda, int i, int j){
 // calculation of homogeneity index for all pairs of actions

 double homogeneity;
 double pref[][]= new double [x.length][x.length];

 pref=overallpref(x,x,p,q,v,w);
 homogeneity=pref[i][j];

 return homogeneity;
 }

 public static int max(int[] t) { // get the maximum of one vector
 int maximum = t[0]; // start with the first value
 for (int i=1; i<t.length; i++) {
 if (t[i] > maximum) {
 maximum = t[i]; // new maximum
 }
 }
 return maximum;
 }

 public static int posmin(double[] t) {
 double min = t[0];
 int minpos = 0;
 for (int i=1; i<t.length; i++) {
 if (t[i] < min) {
 min = t[i];
 minpos=i;
 }
 }
 return minpos;

60 Appendix

 }

 public static int [] merge (double x [][],double z [][], double p[], double q[], double
v[],double w [],int c, double lambda, int k){
 // merge procedure of the proposed approach

 int merge []= new int [x.length];
 double homogeneity;
 double maxhomo;
 int i,j,t,y,a;
 merge=split (x,x,p,q,v,w,c, lambda);
 homogeneity=0;
 int m;

 while(max(merge)>k){
 m=1;
 double memmax[]=new double[max(merge)-1];
 a=0;
 while(a<max(merge)-1){
 int count=0;
 int mem [];

 i=0;
 while(i<merge.length){
 if(merge[i]==m || merge[i]==m+1){ count++;}
 i++;
 }
 mem=new int[count];
 i=0;
 j=0;

 while(i<merge.length){
 if(merge[i]==m || merge[i]==m+1){ mem[j]=i;j++;}
 i++;
 }
 //printvector(mem);
 t=0;
 maxhomo=0;

 while(t<mem.length){
 y=0;
 homogeneity=0;
 while(y<mem.length){

 homogeneity=homogeneity (x,x,p,q,v,w,c,
lambda,mem[t],mem[y]);
 if(maxhomo<homogeneity)
maxhomo=homogeneity;
 y++;
 }
 t++;
 }

 memmax[m-1]=maxhomo;
 a++;
 m++;
 }

Appendix 61

 int n=0;
 while (n<x.length){
 if (merge[n]>posmin(memmax)+1){
 merge[n]=merge[n]-1;
 }
 n++;
 }
 //printvector(merge);

 }
 return merge;
 }

 public static void printmatrix(double[][] array) { //print matrix double
 int rowSize = array.length;
 int columnSize = array[0].length;

 for(int i = 0; i < rowSize; i++) {
 System.out.print("[");
 for(int j = 0; j < columnSize; j++) {
 System.out.print(" " + array[i][j]);
 }
 System.out.println("]");
 }
 System.out.println();
 }
 public static void printmatrixint(int[][] array) { //print matrix int
 int rowSize = array.length;
 int columnSize = array[0].length;
 for(int i = 0; i < rowSize; i++) {
 System.out.print("[");
 for(int j = 0; j < columnSize; j++) {
 System.out.print(" " + array[i][j]);
 }
 System.out.println("]");
 }
 System.out.println();
 }

 public static void printvector(int[] array) { // print vector int
 int rowSize = array.length;
 System.out.print("[");
 for(int i = 0; i < rowSize; i++) {

 System.out.print(" " + array[i]);
 }
 System.out.println("]");
 System.out.println();
 }

 public static void printvectord(double[] array) { //print vector double
 int rowSize = array.length;
 System.out.print("[");
 for(int i = 0; i < rowSize; i++) {

 System.out.print(" " + array[i]);

 }
 System.out.println("]");

62 Appendix

 System.out.println();
 }

 public static void main(String[] args) {

 double x [][]={ {0.188,0.172,0.168,0.122,0.114},{0.125,0.069,0.188,0.244,0.205},
{0.156,0.241,0.134,0.22,0.136},{0.188,0.034,0.174,0.146,0.159},
{0.188,0.276,0.156,0.171,0.205},{0.156,0.207,0.18,0.098,0.182} };

 double p[] ={0.05,0.05,0.05,0.05,0.05}; double q[] ={0.01,0.01,0.01,0.01,0.01};
double v[] ={99,99,99,99,99,99,99}; int k=3;
 double w []= {0.25,0.25,0.1,0.2,0.2};

 double x2
[][]={{16,15,40,12,15,5,3},{45,92,85,16,16,5,5},{21,62,24,16,12,5,3},{21,25,50,10,12,3,5},{4,
12,15,4,2,2,1},{5,30,60,10,15,1,2},{6,25,25,4,16,4,5},{40,80,60,16,12,4,5},{10,20,30,8,8,2,1}
,{21,19,80,18,16,4,2 },{ 10,4,47,11,15,4,2} , {45,85,85,15,15,5,5} ,{15,16,72,15,18,4,2}
,{18,20,47,12,14,4,4} , {35,70,60,10,10,3,3}};

 //double q[]={4,10,10,2,2,0,0};double p[]={8,15,15,4,4,1,1}; double
v[]={99,99,99,99,99,99,99}; int k=5;
 ///double w[]={0.20,0.15,0.1,0.1,0.1,0.15,0.2};

 double x3 [][]= {{ 35.8 ,67, -19.7 ,0 ,0, 5, 4} ,{16.4 ,14.5 ,-59.8 ,-7.5 ,-5.2 ,5 ,3 },
{35.8 ,24 ,-64.9 ,-2.1,- 4.5, 5 ,4 }, {20.6 ,61.7 ,-75.7 ,-3.6 ,-8 ,5 ,3 }, {11.5 ,17.1, -57.1 ,-4.2
,-3.7, 5, 2}, {22.4 ,25.1 ,-49.8 ,-5 ,-7.9, 5 ,3 },{23.9 ,34.5 ,-48.9 ,-2.5 ,-8 ,5, 3 },{29.9, 44, -
57.8 ,-1.7,- 2.5 ,5 ,4 },{8.7 ,5.4, -27.4, -4.5, -4.5 ,5 ,2 },{25.7, 29.7, -46.8,- 4.6,- 3.7, 4, 2} ,{
21.2 ,24.6 ,-64.8 ,-3.6 ,-8 ,4 ,2 },{ 18.3 ,31.6 ,-69.3 ,-2.8 ,-3 ,4 ,3 }, {20.7 ,19.3 ,-19.7 ,-2.2 ,-
4 ,4 ,2 }, {9.9, 3.5 ,-53.1 ,-8.5 ,-5.3 ,4,2 }, {10.4, 9.3 ,-80.9, -1.4 ,-4.1 ,4 ,2 },{17.7 ,19.8 ,-
52.8 ,-7.9 ,-6.1 ,4 ,4 }, {14.8 ,15.9 ,-27.9 ,-5.4 ,-1.8 ,4 ,2 }, {16, 14.7 ,-53.5 ,-6.8 ,-3.8 ,4, 4
}, {11.7 ,10 ,-42.1 ,-12.2,- 4.3 ,5 ,2 }, {11 ,4.2 ,-60.8 ,-6.2 ,-4.8 ,4 ,2 }, {15.5 ,8.5 ,-56.2 ,-
5.5 ,-1.8, 4 ,2}, {13.2 ,9.1 ,-74.1 ,-6.4 ,-5 ,2 ,2 }, {9.1 ,4.1 ,-44.8 ,-3.3, -10.4 ,3 ,4}, {12.9
,1.9 ,-65 ,-14 ,-7.5, 4 ,3 }, {5.9, -27.7 ,-77.4 ,-16.6 ,-12.7 ,3 ,2 }, {16.9 ,12.4 ,-60.1, -5.6 ,-5.6
,3 ,2 }, {16.7 ,13.1 ,-73.5 ,-11.9 ,-4.1 ,2 ,2 }, {14.6 ,9.7 ,-59.5 ,-6.7 ,-5.6 ,2 ,2 }, {5.1 ,4.9 ,-
28.9 ,-2.5 ,-46 ,2 ,2 },{24.4 ,22.3 ,-32.8 ,-3.3 ,-5 ,3 ,4 }, {29.5 ,8.6 ,-41.8 ,-5.2 ,-6.4, 2, 3 },
{7.3 ,-64.5 ,-67.5,-30.1, -8.7, 3, 3} , {23.7 ,31.9 ,-63.6, -12.1 ,-10.2 ,3 ,2}, {18.9 ,13.5 ,-74.5
,-12 ,-8.4 ,3 ,3 }, {13.9 ,3.3 ,-78.7, -14.7, -10.1 ,2, 2} ,{-13.3 ,-31.1 ,-63 ,-21.2 ,-29.1 ,2 ,1},
{6.2 ,-3.2 ,-46.1 ,-4.8 ,-10.5 ,2 ,1 }, {4.8 ,-3.3 ,-71.1 ,-8.6 ,-11.6 ,2 ,2 }, {0.1 ,-9.6 ,-42.5 ,-
12.9 ,-12.4 ,1 ,1}, {13.6 ,9.1 ,-76, -17.1 ,-10.3 ,1 ,1 }};

 //double q[]={1,4,1,1,3,0,0};double p[]={2,6,3,2,4,0,0}; double v[]={2,6,3,2,4,0,0};
int k=5;
 //double w []= {0.01,0.295,0.225,0.01,0.225,0.01,0.225};

 double x4 [][]={ {0.172,0.122},{0.0690,0.244},
 {0.241,0.22},{0.034,0.146},
 {0.276,0.171},{0.207,0.098} };
 //double w []= {0.5,0.5};
 //double p[] ={0.05,0.05}; double q[] ={0.01,0.01}; double v[] ={1,1}; int k=3;

 double s[][] = new double[x.length][x.length];
 int pij[][] = new int[x.length][x.length];

 double prefmat[][] = new double[x.length][x.length];
 double partialprefmat[][] = new double[x.length][x.length];
 int c=0;
 int split []=new int [x.length];

Appendix 63

 int merge []=new int [x.length];
 double homogeneity;

 double lambda=0.6;

 double coverall[][] = new double[x.length][x.length];
 double partdisc[][] = new double[x.length][x.length];
 double partconc[][] = new double[x.length][x.length];
 double s[][] = new double[x.length][x.length];
 int pij[][] = new int[x.length][x.length];

 double prefmat[][] = new double[x.length][x.length];
 double partialprefmat[][] = new double[x.length][x.length];

 int split []=new int [x.length];
 int merge []=new int [x.length];
 double homogeneity;

 //coverall=overallconc(x,x,p,q,v,w);printmatrix(coverall);

 //partconc=partialconc(x,x,p,q,v,c); printmatrix(partconc);

 //partdisc=partialdisc(x,x,p,q,v,c);printmatrix(partdisc);

 //s=outindex(x,x,p,q,v,w);printmatrix(s);

 //pij=pji(x,x,p,q,v,c,lambda,w); printmatrixint(pij);

 //partialprefmat=partialpref(x,x,p,q,v,c);printmatrix(partialprefmat);

 //prefmat=overallpref(x,x,p,q,v,w);printmatrix(prefmat);

 //split=split (x,x,p,q,v,w,c, lambda);printvector(split);

 //homogeneity=homogeneity (x,x,p,q,v,w,c, lambda,0,1);
System.out.print(homogeneity);

 merge=merge(x,x,p,q,v,w,c, lambda,k);printvector(merge);

 }

}

