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Abstract

An era where smartphones surpassed the s sales has begun [stPSi]. In this era, the end-users
(the ones that ultimately use the smartphone) are demanding quantity and complexity from their
applications and devices. is demand makes it impractical for a soware developer to “foresee”
every possible combination and explore every valid alternative.

A possible solution to make customizable applications is to empower end-users with end-
user programming () tools.  is “the practice by which end users write computer programs
to satisfy a speciĕc need, but programming is not their primary job function” [LSBM]. at
 tool could be a collaborative framework, where novices and experts can co-exist and share
their implementations, while end-users explore their requirements. With such scenario, expert
programmers can create components that end-users can connect using a visual programming
language (). Such tool could not only reduce the number of “small”, similar, speciĕc-tailored
applications, but also foster discovery and experimentation by end-users.

To construct this tool we start with an analysis into the problems we have to solve. Studies
in the  gave us a start with six recurring problems end-users have [KMA]. Next, we went
further and explored another area: End-User Soware Engineering ().  tries to embed
soware engineering concepts into  solutions [KAB+]. Additionally we analyzed s since
they can be a good solution for  [WNF]. is analysis was followed by a summary of the
s properties, and some examples of s usage.

With the gathered knowledge, we created a prototype for Android to study how end-users
percept and accept a  in a smartphone. In this prototype end-users can connect blocks and
create tasks. ose tasks can be shared and reused, and they depended on events generated by
the smartphone. With this prototype we tried to provide answers to questions such as: Can we
implement a  in a small screen? What is the necessary level of abstraction so we don’t confuse
end-users and we don’t limit expert programmers? How can we integrate task reusing with block
reusing without confusing end-users?

We made several changes in our prototype because of end-users’ feedback. However, when
some of the improvements weren’t done because we felt limited by Java’s language. To surpass
this limitation we conducted some experiments where we tried to combine Java with Prolog, and
Java with Scala. ose experiments allowed us to create a rewrite rule system to automatically
group blocks according to a set of rules deĕned by expert programmers.
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Resumo

Uma era em que os smartphones superaram a venda de s começou. Nesta era, os utilizadores
ĕnais (aqueles que utilizam, emultima instância, o smartphone) estão a exigir quantidade e com-
plexidade das suas aplicações e dispositivos. Esta exigência faz com que seja impraticável para
um desenvolvedor de soware, a previsão de todas as combinações possíveis e todas as alterna-
tivas válidas.

Uma possível solução para fazer aplicações costumizáveis passa por passar para as mãos dos
utilizadores ĕnais ferramentas que usam  (do inglês, “End-User Programming”).  “a es-
crita de programas de computador por parte de um utilizador ĕnal para satisfazer uma necessi-
dade especíĕca, mas a programação não é o trabalho principal deste utilizador ĕnal” [LSBM].
Essa ferramenta que usa  poderia ser uma framework colaborativa, onde novatos e experi-
entes poderiam partilhar as suas implementações e coexistir, enquanto os utilizadores ĕnais ex-
ploram os seus requisitos. Com este cenário, utilizadores experientes podem criar componentes
que podem ser ligadas por utilizadores ĕnais com o uso de uma  (do inglês, “Visual Program-
ming Language”). Esta ferramenta poderia reduzir o número de pequenas aplicações desenhadas
para um problema muito especíĕco, mas também poderiam impulsionar a descoberta e experi-
encias dos utilizadores ĕnais.

Para fazer esta ferramenta começamos por analisar quais os problemas que tínhamos de re-
solver. Estudos no  deram-nos um começo com seis problemas recorrentes entre utilizadores
ĕnais [KMA]. Depois, fomos mais além e exploramos outra área:  (do inglês, “End-user
Soware Engineering”).  tenta incluir conceitos de engenharia de soware em soluções
que usam  [KAB+]. Também foram analisadas as s, uma vez que podem ser uma boa
solução para a programação por utilizadores ĕnais. Em seguida foi feito um resumo das pro-
priedades das s e são dados exemplos da sua utilização.

Com o conhecimento adquirido criamos um protótipo para Android de forma a estudar
como é que os utilizadores ĕnais percecionam e aceitam uma  num smartphone. Neste pro-
tótipo os utilizadores ĕnais podem ligar blocks e criar tarefas. Essas tarefas podem ser partil-
hadas e reusadas, e dependem de eventos que são gerados no smartphone. Com este protótipo
tentamos fornecer respostas para questões como: É possivel implementar uma  em um ecrã
de pequenas dimensões? Qual o nivel necessário de abstração para não confundir os utilizadores
ĕnais e não limitar os programadores experientes? Como é que podemos integrar a reutilização de
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tarefas e de blocos sem confundir os utilizadores ĕnais?
Nós ĕzemos muitas mudanças no nosso protótipo devido ao feedback de utilizadores ĕnais,

mas quando tentamos algumas melhorias sentimo-nos limitados pela linguagem Java. Para ul-
trapassar esta limitação, foram feitas algumas experiencias onde tentamos combinar Java com
Prolog e Java com Scala. Essas experiencias permitiram-nos criar um sistema de regras de re-
scrita para reagrupar blocos automaticamente de acordo com um conjunto de regras deĕnidas
pelos programadores experientes.
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End-users are users that ultimately use sowareƬ. Most soware users may be regarded as
end-users, depending on the perspective: from the computer sciences student, to an end-user
that only uses his personal computer to access his email. All programmers are end-users (to
some extent), but all end-users are not programmers.

e quantity and complexity that end-users are increasingly demanding from their applica-
tions and devices makes it impractical for a soware developer to ‘foresee‘ every possible com-
bination and explore every valid alternative.

Alan Kay shared the same concern in the early days of personal computers (), during the
design of Smalltalk and object-oriented programming [Kay]:

... there would be millions of personal machines and users, mostly outside of direct institutional
control. Where would the applications and training come from? Why should we expect an
applications programmer to anticipate the speciĕc needs of a particular one of the millions of
potential users? An extensional system seemed to be called for in which the end-users would do
most of the tailoring (and even some of the direct constructions) of their tools [sic].

Now, it is a time where smartphones are the technology that is expanding. According to
Canalys [Can], in , smartphones sales surpassed s [stPSi]. ese portable devices are so
useful that they are used every-day in several tasks [RZ]. Smartphones have hardware with a

Ƭ e word “end” was attached to “user” by the economics and business to distinguish between a soware buyer (an
organization, per example) and a soware user (an employer of that organization)
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meaningful computation power, and they have sensors that can be used to build context-aware
applications [SAW].

Combining these two factors we have a set of tools that can be used to automate several daily
tasks. But are those tools being explored to the maximum potential?

.  -   

Nowadays, there is a fair amount of expert programmers around theworld. However, the amount
of end-users is inevitably bigger. Scaffidi and Shaw estimated that there were  million end-
user in America, in  and, in , there would be  million, contrasting with less than 
million expert programmers for both years[SSM]. As the number of end-users grows their
needs become more speciĕc, and it is impossible to have a professional programmer working
working to fulĕll every particular end-user need. A possible solution for this problem relies on
empowering end-users with programming abilities.

End-user programming () was ĕrst referred by Nardi in a study about the use of spread-
sheets in office workplaces [Nar]. at concept spread within literature and different deĕni-
tions appeared.  tries to create solutions to end-users, so they can do some sort of program-
ming. With the increase use of  in the industry and the growing dependency around the ar-
tifacts generated by end-users a new area arose: End-user Soware Engineering () [BCR].
 focus on the production of a program and  is worried about transmitting concepts from
soware engineering into end-users, increasing the quality of the solutions created. ose con-
cepts cannot be separated and they are deeply connected.

.. End-User Programming

 is referred in different contexts among literature. Some authors use this concept to refer
to “novice” programming or “non-professional” programming and despite these users can share
common problems with end-users programmers, we believe that those concepts are different.
In a recent paper Ko et el. stated that the main difference between an end-user programmer
and a professional programmer is the target client [KAB+]. A professional programmer has an
external client, while an end-user programmer programs for himself, being his own client. is
difference has it source on the intent of the programmer and not on the level of knowledge in a
programming language or in a programming ambient, as shown in ĕgure . [KAB+].

Under this interpretation, if an expert programmer decides to build a program for himself,
then he is applying . is label is dynamic and works as a vision from the application point
of view. If the application had thoughts, it ought be ask: Who made me? Who is using me?. If the
answer is the same person, then, the creator of the application used .
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Figure .: is diagram represents how programmers can be classiĕed depending on their intents and
experience. [KAB+].

Although we believe that Ko et el.’s deĕnition is a good attempt to deĕne . However, with
this deĕnition we can have cases like an expert programmer that is doing some scripting for
himself. erefore, we will narrow down that deĕnition and use the following deĕnition:

“ is the practice by which end users write computer programs to satisfy a speciĕc need,
but programming is not their primary job function.” [LSBM]

Spreadsheets are a successfully case of . Spreadsheets users grow each year, and com-
plexity of the solutions generated by these users is increasing [Pan].  defends that the
increasing quality dependency in  solutions creates a necessity to empower end-users with
soware engineering concepts.

.. End-User Soware Engineering

 is an emergent research area that is concerned about quality in solutions developed by end-
users programmers [BCR].  focus onproviding answers to concerns such as: : Howcanwe
integrate testing and debugging within  development cycle? How can we facilitate and promote
reuse? ose questions have appeared recently in the literature with the necessity to provide
tools to end-user programmers, so they can reduce, detect and locate faults. is necessity came
aer the observation in several studies that some of the programming made by end-users are
very-important in organizations [Pan]. A failure on  can cause impact on the organization
[Seg], and it is necessary to introduce some practices to prevent failure.

Teaching end-users the soware engineering concepts is not the main focus of . In e
state of the art in end-user soware engineering [KAB+] the authors stated:
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“... the challenge of end-user soware engineering research is to ĕnd ways to incorporate so-
ware engineering activities into users’ existing work-Ęow, without requiring people to substan-
tially change the nature of their work or their priorities...”

.. Visual Programming Languages

End-users and novice programmers can be very efficient using visual programming languages
(s) [CK, BH, NPCn, WNF].

Research on s [Gre, KHA, Bur] usually deĕnes this area as Myers deĕned in
 [Mye]:

“Visual Programming refers to any system that allows the user to specify a program in a two
(or more) dimensional fashion. Conventional textual languages are not considered two dimen-
sional since the compiler or interpreter processes it as a long, one-dimensional stream Visual
Programming includes conventional Ęow-charts and graphical programming languages. It does
not include systems that use conventional(linear) programming languages to deĕne pictures”

s started with Ęowcharts, with the conviction that would be good for teaching novice
programmers. Others approaches emerged such as: data-Ęow, logic, visual production systems,
forms and object-oriented languages [Gre].

is type of language tries tomake easier to express and consequently, understand programs,
using concepts as: simplicity, concreteness, explicitness and responsiveness [Bur].

In , Green [Gre] stated what the  could:

“(i) reduce the number of concepts needed to program (e.g. no variables), (ii) allow data ob-
jects to be explored directly, (iii) explicitly depict relationships, and (iv) give immediate visual
feedback of updated computations during editing.”

We decided to do a prototype for smartphones since this platform is expanding and it lacks
of s solutions.

.. Smartphones

Shipments increased by  over the previous year, compared to  growth in  shipments
. [stPSi]. Smartphones’ vendedors shipped almost  million smartphones in , com-
pared to  million s. Additionally, this devices already started to replace computers on some
tasks [RZ], and for some people are the only way to do them.

Smartphones came with a set of tools and services that provide an easy and fast road for
application development. Furthermore, applications can spread almost instantly, since there is a
market where developers can publish their work and make it available for all users.
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When we refer to smartphones we are limiting our domain within the devices that have a
screen size between  inches and  inches (measured diagonally). Screen size is a problem,mainly
because human visual perception and attention is low on these sizes [CXF+]. Processor speed
is also a problem and, in general, smartphones warn when applications’ computation exceeds
some seconds [fR]. Battery’s life dictates that every application should run the minimum time
possible. Some smartphones have low memory available, and almost all smartphones have lim-
ited forms of input (the main method is the touch input).

Although there are some solutions to develop application for the smartphone using  and
s on a  (per example, AppInventor [Smu]), these devices still lack of good solutions that
use  and s to conĕgure them without using a .

.     

Researchers in the  area already felt the need to start looking into smartphones. In a Google
Tech Talk, Allen Cypher made an presentation about the evolution of the  [eoEUP] and ĕn-
ished it saying that mobile devices should be the next target. And we can understand why.

Sometimes users want simple applications to do ordinary tasks in their smartphone. Some
of these tasks are sensor-dependent (or context-dependent [TOTK, CK]), and others are a
simple routine. However, every time a new task is needed, usually it is necessary an application
to do it.

If an end-user needs a simple task to be done automatically in his smarthphone he has two op-
tions: He learns how to program, or he gets a simple application for the task he wants. TouchDe-
velop [TMdHF] tried to provide means so end-users could do some scripting for their smart-
phones. Although this is an interesting approach, we believe that the lack of a visual component
can scare some end-users. ere are other solutions like Tasker [Tas] and AutomateIt [Aut] that
provide tools to create simple tasks. However, the set of possible combinations for those tasks is
limited, and they miss basic  concepts like reuse or debugging.

Even smartphones’ developers need, sometimes, a fast and simple process able to schedule,
automate, create and compose tasks. Everyday smartphone users do some tasks like turning the
wiĕ on when they are on their home, or turning the  on, get emails, and then turning the 
off, or even delete messages received by a number that is always spamming about events. ose
tasks are examples that could be automated.

It is possible to imagine a framework that is Ęexible enough to cover most of the task com-
binations. at framework could be a hybrid platform for both end-users and expert program-
mers. Expert programmers could develop the pieces, and end-users could connect them. A set
of pieces connected is a piece and pieces could be shared between end-users. is framework
would simplify and speed up the task creation process.
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We are developers, and mobile end-users, so it is hard to ignore the potentialities of such a
framework. is challenge is so tempting that it is impossible to ignore it.

. 

Our work touches some areas that are hard to research. erefore, our objectives are ambitious.
We decided to provide a horizontal approach with ambitious objectives rather than a vertical
approach in one objective, mainly because all areas are deeply connected.

We made a prototype to help us study:

• Limitations of a smartphone in the implementation of a  solution
s can be hard to use in a small screens. How can we use visual elements without over-
Ęowing the screen? Is a typical data-Ęow solution with zooming options enough? Can
we use s in small screens and work with solutions with medium to large number of
components?

• Deĕning an abstraction level for a collaborative framework
Higher abstraction levelsmay be good for end-users but they can limit the blocks produced
by expert programmers. Can we achieve a balanced abstraction level for both end-users
and expert programmers?

• Impact of the reuse in  and contributions to 
Howcanwe approach reuse of components and incite end-users to use it? Couldwe beneĕt
from a market for sharing components? What other reuse possibilities can be explored?

. 

We chose Android among the operation systems that are available for smartphones. We made
this choice because Android doesn’t require a speciĕc operation system to be developedƭ, it is
open source, and we already had some experience using it.

We used the Android Soware Development Kit () in combination with the eclipse In-
tegrated Development Environment (). Android  uses the Java language combined with
Ʈ.

We also made some experiences using Prolog ( § . (p. )) language with an engine in Java.
We’ve also researched some implementation variations by using Scala ( § . (p. )). We will
explain the motive why we chose these languages and we will introduce them (along with the
features that caught our attention) in Chapter  (p. ).

ƭ iPhone requires a MAC and Windows Phone . requires Windows
Ʈ  is used to simplify the  creation
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. 

In this chapter we introduced a set of concepts that are important to understand our thesis con-
text. Next, in Chapter  (p. ) we are going to go deeper and analyze the problems that are
researched in  and . As we already stated, s can be a good solution for . ere-
fore, we are going to study this set of languages along with other languages that connected with
s: data-Ęow languages and visual data-Ęow programming languages.

In Chapter  (p. ) our prototype will be presented, and it will be analyzed in comparison
to the properties deĕned in Chapter  (p. ). en, in Chapter  (p. ), we will try to improve
our solution using Prolog and Scala. At last, we will summarize what we have done, and provide
some guidelines to the future work in Chapter  (p. ).

Typographical conventions were deĕned to help in the readability of this document. Con-
cepts are typically introduced in italic and acronyms are usually in -. Classes and parts
of code are printed using mono-spaced type of font. In § .. (p. ) we deĕned a set of rules, and
usually they appear with fixed-width characters. References and citations appear inside [square
brackets] and in highlight color — when viewing this document in a computer, these will also
act as hyperlinks.
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is chapter starts with an overview of the barriers that the research community found in 
and . en, we will take a look on some areas and applications that inspired our solution.

We found in the data-Ęow execution model a good common metaphor between end-users
and developers, and we soon realized we needed concepts from s to represent that metaphor.

In this chapter we will cover different subjects that are connected. We will do some abstrac-
tion and everything that is considered soware or pieces of soware will be called components.

. -    

is section presents some problems that  and  have that need to be solved. Additionally,
we are going to analyze an example of a commercial solution that uses  in a smartphone.

.. End-User Programming

End-users generally lack experience on programming, and they want simple, direct and easy
tools to achieve their objectives. Programming has challenges that are similar to both end-user
programmers and to novice programmers.

Ko, Myers and Aung [KMA] studied end-user programmers as they were learning Visual
Basic.NET. ey found out six learning barriers, and they associated each barrier with an end-
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user thought. In the following list, there is a summary of those barriers. Each barrier has a
thought quoted from the article, and we added a small description to each barrier.

• Design “I don’t know what I want the computer to do”
It is hard to think in a problem in an algorithmic way. End-users need to think in a way
that can be translated to a computer understandable format.

• Selection “I think I know what I want the computer to do, but I don’t know what to use”
Aer the design barrier has been surpassed it is necessary to pass those thoughts to a read-
able format for computers. “What can I use?” it is usually themain question that end-users
do when facing a selection barrier.

• Coordination “I think I know what things to use, but I don’t know how to make them work
together”
All the components were gathered, but it still misses the links between them. e lack
of knowledge about the (API) is part of this problem. End-users need to know the pre-
conditions and pos-conditions of a component.

• Use “I think I know what to use, but I don’t know how to use it”
Use barriers result from the lack of knowledge or bad documentation about a component.
Usually these questions are done in an use barrier: “What does this component do?” “How
can I use it?” “What does it produces?”

• Understanding “I thought I knew how to use this, but it didn’t do what I expected”
End-users have expectations about the components they use. If those expectations don’t
match with reality (at compile or runtime), the end-user does not know what happened
and where it happened.

• Information “I think I know why it didn’t do what I expected, but I don’t know how to check”
eprocess of debugging and testing usually is something that end-users do not knowhow
to do. ose processes come with programming experience and require knowledge of the
program work-Ęow.

In , Blackwell pointed out another problem in his work at programming psychology
[Bla]:

“... programming languages are universally designed by people who are themselves professional
programmers... As a result, they eventually create new programming languages that they them-
selves would like to use. e design of a language for use by end-user developers cannot rely on
such intuitions, because no language designers are themselves end-users.”

is problem limits  solutions because developers usually forget that end-users do not
share the same knowledge representations as expert programmers.
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.. End-User Soware Engineering

 started to be used in complex and critical solutions. An example of the importance that 
has are the spreadsheets. Spreadsheets are still growing and the common errors that are made in
this type of  were already studied [Pan]. e impact of some errors were felt in business
[TT] and organizations were created to track costly errors in spreadsheets to alert end-users,
like European Spreadsheet Risks Interest Group [Eur].

Aer realizing the importance of  it was necessary to start a research that could empower
end-users with soware engineering concepts on their applications. erefore,  is interested
in ĕve concepts [KAB+]:

• Requirements
In , the requirements come from the end-user. erefore, requirements are implicit
and easy to understand, but are more likely to change. Requirements are discovered
through experimentation. End-users try the tools and they see what they can do and re-
quirements emerge from those experiences.

• Design and Design Speciĕcations
Since the requirements are always changing, the solution design can’t be detached from the
requirements. Requirements and design usually are made together in . It is common
that end-users can only understand the constraints on their solution just when they are
programming. In addition, the value of a good design can only be felt at long term. An
example of a property that can only be valued in long term is scalability. Good solutions
are also more valued if they need to be shared with others. Since end-users usually work
alone a pleasant design speciĕcation is hard to value.

• Reuse
It is easier for an end-user to reuse than start something from scratch. Reuse is useful
to save time on the development of one solution, and to start using a toolƬ. However,
ĕnding the artifact to reuse is hard and, usually, this problem results in a selection barrier.
Commonly, end-users need experienced peers to have an example code [KMA]. Aer a
usable component is found, it may be difficult to use it (use barrier) or to connect it to the
solution (coordination barrier). Although users can create components for future reuse,
examples of a speciĕc case are the most used form of reuse [KMA].

• Testing and Veriĕcation
One of the problems with end-users is overconĕdence. On studies about end-users and
spreadsheets, end-users showed a high conĕdence about the correctness of their solutions

Ƭ Copy-pasting code is one example of reuse that is commonly used when programmers start to learn a new lan-
guage.
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[Pan]. is overconĕdence prevents end-users from testing and thinking in the robust-
ness of their solution.

• Debugging
Aer proving that an error exists through testing, it is necessary to locate and ĕx those
errors. Facing a situation where debugging is needed can lead to an information barrier.
Debugging may require a set of tools like print statements or breakpoints. It is necessary
to know where to use those tools and what to look for. Since most of the end-users do
not understand the execution of their programs it is hard to create a hypothesis about a
program failure. Another problem is the end-user priorities. End-users prefer a program
that works than a program that doesn’t failƭ. erefore, sometimes, instead of ĕxing the
problem, they add some code, or they modify what they have done, so it only works in the
particular case where it failed.

.. An Example of EUP on a Smartphone: Tasker

Tasker [Tas] is an application developed for Android to empower end-users with the ability to
deĕne tasks depending on a context. We imagine this application as a subset of our application,
in the future, so we decided to analyze it. We want to know if we would be able to do, at least, all
that Tasker does, with a different level of abstraction.

Concepts

Tasker deĕnes a set of concepts in their application and documentation [Tas].

• Context
It is a trigger that will initiate the tasks. A context can depend on time, date, location, state,
when an event occurs or when an application is running.

• Action
It is something that the smartphone can do, like sending a SMS or activate silent mode.
Tasker has currently more than  built-in actions available in  categories. An action
has parameters that need to be ĕlled and can have conditions ( if clauses) that can be used
to dictate if an action will be triggered or not.

• Task
It is a set of actions. It is not guaranteed that the actions will be run in the order they are
speciĕed.

• Proĕle
It is combination of a context with a task.

ƭ Although for some programmers a program that works is a program that doesn’t fail
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In Tasker we can create proĕles that do a task that depends on a context. Each task has a set
of actions and can be reused (but not shared).

Functionalities Description

(a) Flat View (b) Costum View (c) Context View

Figure .: Initial menu in Tasker with a proĕle that sends a SMS every two minutes with a variable from
: to :. Proĕles can be viewed in three modes: Flat, Custom and Context

e ĕrst menu of Tasker shows proĕles that were deĕned. is initial menu has three forms
of view: a Ęat view (Figure .(a)), where all proĕles are seen; a context-based view (Figure .(c)),
with tabs that group proĕles by their contexts; and a custom-based view( Figure .(b)), where
the user can create tabs and arrange the proĕles the way he wants.

Touching the newbutton at the initialmenu like the one in Figure . opens a pop-up to deĕne
the proĕle name. en, we need to select a context from a category showed in Figure .(a) (p. )
so we can select a task already created or deĕne a new one. A dialog similar to the one in Fig-
ure .(c) (p. ) but with no actions appear. Aer pressing the + button it is possible to select
an action from the action categories list, similar to the one in Figure .(b) (p. ). An action
needs some parametrization and can have a set of if clauses. Actions can use a set of pre-deĕned
variables, such as%WIFI that has the current wiĕ status (on or off). Deĕning new variables is also
possible, using the action “Variable Set” to initialize them. In Figure .(b) (p. ) the variable %

COUNT was not initialized, therefore the ĕrst message will print %COUNT and not the expected
number. Tasker also allows loops in actions with the action GOTO.

A task can be reused aer its creation. It is also possible to export a task or a complete proĕle.
is feature is useful to backup existing tasks/proĕles.
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(a) Contexts categories (b) Action categories (c) Task composed by actions

Figure .: First image shows the available context categories. Second image shows the available actions
categories and the last image shows how actions are displayed inside a task.

Critical Analysis

Tasker showed us that is possible to automate some tasks. However, it lacks of a visual language
with reusable components. Only a task (set of actions) can be reused, but they can’t be connected
with other tasks. Also, reusing is not customizable since there are no inputs or outputs.

Tasker allows amode that saves debug information on a ĕle, so end-users can’t see debugging
information in real time.

.  -  

A data Ęow language can be deĕned as follows:

“... any applicative language based entirely upon the notion of data Ęowing from one function
entity to another ...”[DK]

e data-Ęow execution model appeared in the computer research as a form to do paral-
lel computing [Ack, JHM]. is model is based in the availability of the operands. If an
input is ready, the operand is applied. is provides a valuable property for parallel systems:
asynchronous execution.

Another advantage of this execution model is that program deĕnitions can be represented
graphically [DK, Ack].
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.. Data-Flow Graphs

-+x

2

y *
Figure .: Data-Ęow graph example for operations: A:=+x; B:=x×y; C:=A-B

A data-Ęow model can be illustrated using a data-Ęow graph, where nodes can be tokens or
functions (Figure .). When a node’s input is available, the node can absorb it and produce an
output. Generally, this kind of model is compared to a factory, where machines are nodes that
receive some sort of input and can produce an output. In Figure . the number 2, and variables
x and y are ready, so they are ĕred. e tokens + and * receive them and can be computed in
parallel. en both produce an output that is consumed by the token -.

is kind of representation makes it easier to evaluate a program, and it was already used in
teaching novice programmers how to program [AA].

However, the graph doesn’t need to be executed from the le to the right. In fact, data-Ęow
model has two approaches for its execution [JHM]:

• Data driven In this approach a node only executes when he receives new data.

• Demanddrivenis approach visits the graph from the end to the start. Each node request
data from the nodes attached.

.. Properties

Ackerman, in , deĕned ĕve rules that are needed in a data-Ęow language [Ack]. Lee made
a good summary of three of those rules [LH] that we will use next:

• Freedom from side-effects
“is property is necessary to ensure that the data dependencies are consistent with the se-
quencing constraints. DataĘow model of execution imposes a strict restriction by prohibiting
any variables from being modiĕed. is is done by using “call-by-value” rather than “call-by-
reference” scheme. A call-by-value procedure copies rather than modiĕes its argument which
avoids side-effects.”

• Single assignment rule
“is offers a method to promote parallelism in a program. e rule prohibits the use of
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the same variable name more than once on the le-hand side of any statement. e sin-
gle assignment rule offers both clarity and ease of veriĕcation, which generally outweigh the
convenience of reusing the same name.”

• Locality of effect
“is means that instructions do not have unnecessary far-reaching data dependencies. is
is achieved by assigning every variable a deĕnite scope or region of the program in which it is
active and carefully restricting the entry to and exit from the blocks that constitute scopes.”

• Data dependencies equivalent to scheduling
A data-Ęow program execution depends on the data dependency between instructions.
ere isn’t an explicit sequence of instructions because instructions will run when their
data is ready. e dependency that is created is similar to scheduling. It is only possible to
execute a task when the resources for that task are available.

• Lack of history sensitivity in procedures
ere is no state variables between instructions in a data-Ęow execution model because a
node only receives inputs. ere isn’t a global storage unit.

Data-Ęow languages had some problems to deĕne the grain for each node [JHM]. If data-
Ęow uses ĕre-grained nodes like shown in Figure . (p. ) then the graph would easly get a
complex visual representation. Another problem that pure data-Ęow languages faced was the
lack of good solutions for iteration and conditional constructs. is problem was later solved as
seen in § . (p. ).

e data-Ęow graphs inspired s, and some of those languages have an execution model
inspired in the data-Ęow execution model.

.   

Since the early days humans used images as a means to communicate and even now, in soware
engineering, we keep using it. An example of a visual description of a problem instead of a textual
one is the Uniĕed Modeling Language () [OMG].  provides a set of visual tools to
represent solutions, and it is used world-wide by expert programmers. s try to combine the
communication power of a visual language with the possibilities of a programming language.

Advantages of  are hard to generalize, because they depend on the context they are ap-
plied, and they also depend on the target end-user. Baroth, on his experiments on s usage on
the production of measurement systems [BH], stated:

“e advantages/disadvantages of any programming environment are dependent on the context
in which they are being used.”
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Some research has been made on advantages and disadvantages of s and showed that
end-users and novice programmers can be more efficient using VPLs [CK, BH, NPCn,
WNF]. In general, it is possible to conclude that s are useful because:

• require fewer concepts to program [BBB+]

• optimize access to semantic information [NPCn]

• facilitate the program comprehension [NPCn]

• are less error prone [CK, WNF]

However, these languages also can also have problems such as [AM]:

• need for an automatic layout

• handling large programs or large data [Bur, BBB+]

• difficulty in building editors and environments

• lack of formal speciĕcation

• lack of portability optionsƮ

Despite some s can solve some of the problems above, all these languages usually share
some characteristics.

.. VPL’s Characteristics

s have a set of common approaches [Bur, BBB+]. ose approaches, or strategies, create
a set of characteristics that are important in this kind of languages:

• Concreteness
Some languages are powerful because of abstraction. However, concreteness goes in the
opposite direction. s tend to be concrete, using real values, contrasting with types of
values.

• Directness
Instead of working with possible values or objects the user works directly with a concrete
value or object.

Ʈ Textual languages are easy to share and can be read anywhere. s, on the other hand, require speciĕc programs
to be displayed.
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• Explicitness
In textual languages, the relation between objects is implicit. In s the more explicit
those relations are, the better.

• Immediate Visual Feedback
Changes in a  should be seen and felt immediately, without any type of compilation.

Although s share some properties, they can be classiĕed into different categories.

.. Classiĕcation scheme

In , with the increasing research on s, Burnett suggested a classiĕcation for subsets of
s [Bur]. However, this classiĕcationwas too speciĕc. Boshernitsan et el. launched, in ,
a summary of the visual programming types, classifying them in: Purely Visual Languages, Hy-
brid Text and Visual Systems, Programming-by-example systems, Constrained-oriented systems
and Form-based systems [BD].

Although Boshernitsan’s summary [BD] is useful to characterize several systems, we be-
lieve that the name given at programming-by-example can be misleading. According to Brad
A. and Myers, example-based programming has two forms: programming-by-example and
programming-with-example [AM]. erefore, we will change the name of programming-by-
example on Bosthernitsan’s summary to example-based programming and we will divide it in:
programming-by-example and programming-with-example.

• Purely Visual Languages
is  is compiled directly from the visual form. Debugging and programming are both
made in a visual environment.

• Hybrid Text and Visual Systems
e visual form of this system is a layer that is translated to a text form. In this kind of sys-
tems, it is possible to program in a text or a visual form and alternate between visualization
modes.

• Example-Based systems
Example-based-systems can be divided in: Programming-by-example and programming-
with example. Programming-by-example systems, or “automatic programming”, “tries to
guess or infer the program from examples of input or output or sample traces of execution”
[AM]. Programming-with-example systems “require the programmer to specify every-
thing about the program (there is no inferencing involved), but the programmer can work
out the program on a speciĕc example. e system executes the programmer’s commands
normally but remembers them for later re-use” [AM]. is kind of systems can be seen
as a macro-building systems.



 -   

• Constrained-oriented systems
In this kind of systems, there is a set of constrains that are built to create rules at a certain
environment. is technique is useful to construct simulations, dynamic documents, and
manipulable geometric objects [Bor].

• Form-based systems
e most known example of this system are spreadsheets. is system is characterized by
the presence of cells that have connection between them.

Text input in smartphones is less efficient than on a , so we didn’t consider hybrid systems.
Example-based systems systems are useful to reproduce speciĕc tasks but they lack of means to
create triggers that schedule those tasks. Constrained-oriented systems are interesting for end-
users who have a mathematical/logical knowledge. Form-based systems provide a metaphor of
cells with a single connection limiting the solution possibilities.

Although an constrained oriented approach could result, we decided to focus on a purely
visual language that could be easily understood by almost all end-users. In this dissertation, we
will focus on one type of those systems: visual data-Ęow programming.

.  -  

Data-Ęow has a good metaphor that can be used in a . e idea of data Ęowing while it is
ĕltered to produce new data is an inspiration of many known s such as LabView [San]
or Prograph [CGP]. ey share some properties from this model and usually they have some
structures that try to compensate the lack of iteration and conditional constructs in the execution
data-Ęow model.

is subset of s is calledVisual Data-Flow Programming Languages () and it gathers
interesting properties.

.. Properties

Marttila-Kontio made a good summary about the  characteristics [MKRT]. Some were
already seen in § . (p. ) but we decided to sum up all properties so we can see the common
aspects that are shared with the data-Ęow execution model. We converted the Marttila-Kontio’s
summary into a list so we can have a enumeration of properties that can be used to clarify if a
 is a .

. “A visual data Ęow program code is presented as a directed graph.”

. “A node represents, for example, a simple computational unit or a subprogram consisting
of other nodes. Also, a node can represent systems input or output value.”
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. “A node can have zero or more input and output arcs.”

. “An arc can be considered as a variable transferring data tokens from a node to another
node or nodes.”

. “e arc is attached into the node through data ports or terminals.”

. “e data type of an arc, and a token it transfers, has to be the same type as the input and
output terminals it is attached to.”

. “... a node becomes executable as soon as it has received all its input data and its (possible)
output arcs are empty.”

. “An arc transferring tokens into a node becomes empty immediately when a node has
absorbed a token or tokens from it.”

. “If a node does not have any inputs, it is immediately executed when the program is exe-
cuted. Also, a node without any inputs is executed only once during the program execu-
tion.”

. “Once a node has been executed, it produces new values for all of its outputs.”

Despite s have this commonproperties, conditional constructs and iteration constructs
are usually solved differently in each . We will try to cover most of the cases presenting
some of the inspirations that s use.

Conditional Constructs

e solution to the condition constructs in the data-Ęow execution model exists almost as much
time as the model itself. Davis and Keller [DK] pointed out the solution to this problem
through the use of a selector node (or merge node) and a distributor node (or swith node).

Controll

Selector

True

False Data

(a) Selector node

Data

Controll

True

False
Distributor

(b) Distributor node

Figure .: .(a) shows a selector node that selects one input depending on the control value. .(b) shows
a distributor node that sends the data throw an output depending on the control value.

A selector node (Figure .(a)) has three data inputs and one output. Data inputs are: a
boolean control input and two data inputs called “True” and “False”. Depending on the control
value the respective data input will be selected.
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A distributor node (Figure .(b) (p. )) has two outputs and two inputs. One input is the
control input, similar to the selector node. e other input is a data input. Depending on the
control value the data is redirected for the “True” output or the “False” output.

Iteration Constructs

Iteration constructs have many solutions in the s [MP]. In one of the most recent sur-
veys on this area [JHM] the author classiĕes iteration as an “open issue” in the data-Ęow area.

Despite the differences among solutions, usually this problem is solved with an output from
a node connecting to an input of a node that was already processed, creating a cyclic graph ( Fig-
ure .. If the nodes used in the loop aren’t internally ready to stop the loop, they can be ended
using conditional constructs.

Node 1 Node 2

Figure .: An example of an iteration construct that can be used in 

.. A VDFP Example: Blender Composite Nodes

Composite Nodes is a type of view in Blender. is type of view empowers end-users with a tool
that allows them to build a visual script that can be applied in their scenes. ewiki from blender
[Wik] gives an insight into the features that are provided in this tool.

“Compositing Nodes allow you to assemble and enhance an image (or movie) at the same time.
Using composition nodes, you can glue two pieces of footage together and colorize the whole
sequence all at once. You can enhance the colors of a single image or an entire movie clip in a
static manner or in a dynamic way that changes over time (as the clip progresses). In this way,
you use composition nodes to both assemble video clips together, and enhance them.”

An example of the representation used can be seen in Figure . (p. ). e viewer node is
a node used to print the output on the screen in a panel, that is not shown on the ĕgure.

Concepts

ere are three main concepts deĕned in Composite Nodes: Nodes, Noodles and Node Groups.
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Figure .: An image being inverted using Blender Composite Nodes [iBuNabi].

• Nodes A node can be seen as a function that can take inputs and can produce a set of
outputs. ere are three types of nodes: Input Nodes, Processing Nodes and Output Nodes
[Wik]. InputNodes exist to produce information. An integer value is an example of a Input
Node. Processing Nodes can apply ĕlters or transformations on their inputs to produce a
set of outputs. Filters like blur or contrast are examples of a processing node. Output
Nodes are useful to ĕnalize a composition and specify were the result will be saved. A
viewer node to display the output or a ĕle output node are examples of those kinds of
nodes.

• Noodles A node has conĕgurable parameters, and its outputs can be connected with the
inputs of other nodes, creating a network called Noodle.

• Node Groups Nodes can be grouped into a single node creating a Node Group that can be
connected with other nodes.

Functionalities Description

Figure .: Possible colors on the sockets of a node [Web].

Output sockets should connect with input nodes of the same type. erefore, to identify
sockets types Blender Composite Nodes has a color for each type (Figure .). ere are three
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types available: RGBA - yellow; three-dimensional vector - blue; value - gray. When different
socket types are connected a default conversion will occur as follows:

• Vector to Value - Average (X+Y+Z)/.

• Color to Value - BW average (.*R + .*G + .*B)

• Value to Vector or Color - Copies value to each channel

• Color to Vector - Copies RGB to XYZ

• Vector to Color - Copies XYZ to RGB and sets A to .

Blender Node Composition execution is optimized so every editing event (like changing a
Node parameters) can trigger another execution. Optimizations like multi-threading usage are
important, but one step in the optimization that is quite relevant is the dependency check. e
Blender Node system sorts nodes based on their dependency. is way only nodes that depend
on nodes that got tagged with changes are going to be updated.

Critical Analysis

It is important that the end-user can see how nodes can be connected just looking at the col-
ors. Combinations between different types can be useful but can also be dangerous. Without
information, end-user can fall in a coordination barrier or understanding barrier (§ .. (p. )).

Another important thing is the ability to group nodes. is feature can be a good approach
to solve the scale-up problem associated with s [BBB+].

. 

ere is some research in s,  and , but each problem usually results in his own so-
lution. We want to focus on some problems of  and . ose problems are: selection,
coordination and information barriers from ; Reuse and debugging from . s offers
some properties that could help in the solution of these issues. Explicitness can help to surpass
the coordination barrier, directness and concreteness can aid in transcending the selection barrier,
and immediate visual feedback can be used to do debugging and to beat the information barrier.

ere are two applications that can inspire our solution: Tasker andBlender composite nodes.
Tasker provides a set of concepts but also tell us that what wewant to do is possible. We see Tasker
as a subset of our application. We want to provide tools so end-users can have an application that
does all that Tasker does and more. Blender composite nodes are a visual inspiration. When we
saw this application we thought that this ĕts perfectly on the concepts that we were imagining.
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s are useful to solve some problems in  and . erefore, we are going to use some
properties of these languages in our prototype.

e main inĘuence on this work was one application that uses a  called: Blender Com-
posite Nodes (§ .. (p. )). Since this solution was made for s and we are working with
smartphones, some changes were needed.

.   

We wanted to empower end-users with the ability to deĕne tasks based on events. However, the
task creation should be based in the connection of components. Each component should be able
to:

• Receive information from other components



  

• Produce data for other components

• Connect to other components

• Be developed by an expert programmer

• Be shared

If a component had this set of properties the end-users could ask for new components, get
new components, and share connected components. However, this idea is too abstract so it was
needed something to represent it.

. 

A set of concepts were deĕned to transmit ideas for end-users. However, most of those concepts
are based in a single idea: block.

.. A Block Abstraction

A block is an abstraction that was already used in the soware engineering. One example of
that usage is black box testing [MSB]. e idea behind black box testing is: We want to test a
functionality, and we don’t want to understand what the program is doing. We only know that
giving a speciĕc set of inputs, we should have a correspondent collection of outputs.

Blocks are also used in some s. In fact, D. Hills used the term “box-line representation”
to characterize some of s in his survey [Hil].

Block Based System

Zin deĕned a set of conditions that a block based system for  should have [Zin]. However,
he did not implement and tested a solution.

Zin described the block-based programming system as follows:

• “It should support soware development in many problem domain”

• “Many blocks will be made available for each problem domain”

• “Each block supports a certain task or function”

• “End-users are allowed to customize blocks and to build applications adapting to their
needs”

• “Application soware development can be done by integrating these blocks”
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block name

input 1

input 2

otuput 1

otuput 2

Figure .: A block has a name and can have several inputs and outputs.

Zin also said that the blocks should be developed by expert programmers, converging with
our ideas.

For us, a block has both inputs and outputs and it can be represented like shown in Figure ..
Each block can be seen as a function that absorbs inputs and produces outputs, like a data-Ęow
node. However, in our case, we realized that we needed some block types.

Events and actions need a representation in our application, and robotics has some terms that
were useful to name what it was needed in our problem domain: sensors and actuators. Sensors
receive events and actuators perform actions.

Sensors

A sensor block usually has only outputs. A sensor provides information that all other blocks can
use, and it is not activated by its inputs availability, contradicting one of the properties of the
data-Ęow execution model. We could provide a boolean input in each sensor and each time a
new boolean arrived that sensor block would activate. However, we thought that this approach
would confuse end-users because they could think it was necessary to connect the boolean input
with other blocks.

Some examples of sensors are: A time sensor that provides the current time or an orientation
sensor that changes when the smartphones’ orientation changes.

Actuators

An actuator is a block that executes some action on the smartphone, and usually it has only
inputs. Contrarily to sensors, an actuator will almost always be a non-functional node. A sensor
receives information and updates their outputs according to that information. Actuators, on the
other hand, receive information to customize its behavior, and usually they do some change on
the smartphone state.

Some examples of actuators are: An actuator that sends a acronymSMS with a content to a
number provided by its inputs or an actuator that repeats an alarm with a conĕgurable interval.
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Input Providers

An input provider is used to customize inputs. ey are useful for cases that the end-user wants a
speciĕc input. Imagine, for instance, that an end-user wants to use the send  actuator. Using
an input provider, he can conĕgure both the number and the text to be send.

Usually input providers have only outputs and each output is directly conĕgurable. In fact,
the ĕrst time an end-user tries to connect an output from an input provider, it will be prompt an
interface so the end-user can set the value of the output.

.. Connectors

A connector can be an input or output. An output can connect to several inputs, but each input
can’t be connected to more than one output.

Each connector have a type and a value. Blocks are responsible for the output values while
the system is responsible for the input values. Blocks set their outputs and the system propagate
those outputs to the connected inputs.

A connector type is variable, and it can be anything. One connector can have a type that is
an object created from the class Car or a built-in Integer. To connect an output with an input, it
is necessary the same type.

.. Connections

Each block only executes when all data it requires is available. However, since we have sensors
that can change their status at any time, providing new data, we can lose information.

We can conceive a block with an Input A connected to a time sensor that changes every
minute. If the time changes from : to : our block has the value  on input A. However,
our block needs more inputs that aren’t available yet, so the time keeps changing and A keeps
changing. What if we want to use the ĕrst value? Or even all values? Should we record all
changes? e answers we found for those questions were connections.

We implemented the connection concept andwe test it, but the user interface for this part was
delayed every time. is happened becausewe couldn’t ĕnd away to easily conĕgure connections
in the user interface.

A connection can have three types:

• Last Value
Last value connections behave as normal connections in a data-Ęow execution model.
ey have no memory and they only hold one value.

•  (First In First Out)
 connections can save multiple values and return them by the order they were put in
the connection.
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•  (Last In First Out)
 connections also can save multiples values, but the ĕrst values that are returned are
the most recent.

A block could request all info or just a subset of the info to  or  connections.

.. Tasks

A set of connected blocks is a task, and a task is a block. When a task is created a new block is
added to the list of usable blocks, and can be connected with other blocks. A task can be shared
among end-users and can be disabled or enabled. If a task is disabled its blocks will not receive
events.

.    

Our architecture has three important modules:

• Core
is module provides a framework that can be used in all platforms that run Java. is
framework was thought so it could be independent from the smartphone, and it has all
abstractions necessary to build data-Ęows using blocks.

• Android Speciĕc
We needed a small layer for our problem context. is layer also introduces the concept of
Input Provider. We decided to take Input Provider out of the core because it depends too
much on the platform that uses the core module. is layer also creates new interface for
Sensor and Actuators to facilitate block creations in Android for developers.

• Android 
is module is responsible for the end-user interaction with Android. It also has some
blocks implemented.

In Figure . (p. ) we show what are the classes we deĕned in the core module and in the
Android speciĕc module. Almost all classes have a transparent name that can be related with
the concepts we introduced in § . (p. ). However, there is a class that doesn’t have a direct
correspondence with the concepts we introduced: Group Block.

We didn’t want to enforce the task concept because a task in a smartphone can be different
on a computer. So we put the task out of the core, but we didn’t place it in the android speciĕc
layer, so our framework could be minimalist [Fra]. erefore, only the core module plus the
android speciĕc module result are part of the framework that developers can use. However, a
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Figure .: is  shows the classes created in the core and the layer that is speciĕc in Android.

task generates a block, and we couldn’t use a standard block to represent the generated block.
We needed to create a new class that could hold the information of several blocks. We called that
class: GroupBlock. is class is used only to visualization proposes. As shown in Figure . (p. )
group blocks don’t have connectors on their own, but they have a reference to internal connectors.

Group blocks are created automatically when a task is created. We look to the task and check
all its connectors that can connect with the “outside” and we create a block that points to those
connectors.

If an input provider wants to supply a variable input it has to use an output provider. Output
providers have a speciĕc interface that enforces developers to develop a way to introduce the data
of their kind of output. is is necessary because we don’t know what kind of data output has,
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since outputs can hold objects deĕned by developers.
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Figure .: Group Block representation. e connectors of a group block already exist, and the group block
only points to them.

.. Events, Dynamic Class Loading and Tasks Serialization

When the application starts a serviceƬ is created and it can be destroyed whenever the end-user
wants, by pressing a button at the top bar in the initialmenu. is service registers and receives all
broadcasts, that are needed by the sensor blocks. A broadcast, inAndroid, is amessage emitted by
the system to all applications. When a broadcast is received, the service searches for the sensors
that registered that broadcast, and delivers the broadcasts’ intent ƭ.

Another two actions happen when the application starts: dynamic class loading and tasks
loading.

Dynamic Class Loading

We didn’t do a platform that could show how blocks and tasks could be shared. However, we
prepared the basic mechanisms for that. Dynamic class loading uses a ClassLoader from Java to
load a class only using its name. We have a set of names, we load them all, we store the respective
class ĕles in an ArrayList, and those class ĕles can be used to construct objects.

If need to add a new block type, we add a line in the Java code like shown in Source . (p. ).

Ƭ A service is a component provided by the Android operating system that allows some long term processing in the
background [Ser]

ƭ Broadcasts provide extra information in their Intents. An intent is usually related with an operation. A  intent
can have, for instance, the number that send it and the content [Int]
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1 ac tua to rC la s s e s . add ( c l a s sLoader . l oadClas s ( c las sPackage + ”SendSMS” ) ) ;

Source .: A line of code needed to add a block.

Where classPackage has the value ‘‘ pt.tiago . thesis .android.actuators’ ’ . We made the loading
this way, so it could be easy to iterate over all ĕles in a folder. at folder could have the name of
the type of the block (sensor, input provider or actuator) andwe could load the respective classes.

Tasks Serialization

A task has to be serializable so it can be shared. erefore, we had tomake sure all classes used by
a task were serializable. However, we marked some ĕelds inside each class as not serializable so
they were cleared. When a task is shared from one end-user to another some information needs
to be reset, that information is: logs from a block and values from connectors. Logs are cleared
because the new end-user doesn’t need them. Connectors’ values are not preserved to prevent
tasks that only depend on input providers to be executed when they are loaded. Imagine a task
with an input provider that has a value, and a block connected to this task. is task would run
each time we loaded it.

We didn’t make a platform where end-users could share tasks. We tested the tasks’ serializa-
tion saving each task created in an application usage. We preserve tasks every time we exit the
application, and we load all tasks when the application starts.

.     

We already saw some of the concepts we deĕned for our prototype and how they are connected.
However, we didn’t show how those concepts pass to the user and how they are represented. In
this section, we want to show how we represented the concepts deĕned in § . (p. ).

.. Creating a task

To enter in the task creation activityƮ the user has a button at the top that appears in the main
activity (or the main menu). In this activity we have two columns. Each column is a scrollable
list that can have several blocks. Blocks from the le connect to blocks from the right. erefore,
blocks from the le only have buttons at each output and blocks from the right only have buttons
at each input.

We have two buttons to add blocks. One on the le and other oh the right. In Fig-
ure .(a) (p. ) we can see what appears when the le button is touched. is kind of bar is

Ʈ An activity is a screen with a user interface.
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(a) Task creation (b) Selecting a block

Figure .: .(a) shows the screen the end-user sees when he presses the button to create a task and then
presses the le button with the plus symbol. .(b) shows the screen that is shown aer the
end-user selects the sensor group in Figure .(a).

called quick action menu⁴ and it lets the user select one block type. Aer selecting one block cat-
egory, a list showing the blocks is displayed (Figure .(b)). Notice that there are two columns
in Figure .(a). Blocks are added into each column depending if the button touched was the le
one or the right one.

A task is saved every time a user presses the back button or presses the save button on top.

.. Connecting Connectors

A connection between an output and an input is displayed using a red line (Figure .(a) (p. )).
is line follows the scroll movement on both block columns. We added some features that help
the end-user to anticipate some errors: small colored circles and a connection status message.

⁴ Quick action menu is an Android pattern that is used for actions that are based in a context [dp].
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Small Colored Circles

Each connector has a small colored circle that represents its type. is color is randomly⁵ created
every time the application starts. We choose to do a random color because we can’t predict how
many types the applicationwill have. erefore, we can’t predict the amount of pre-deĕned colors
that we need. However, each color is consistent in an application usage. Once they are generated
for each type they keep the same color until the application is killed

(a) Connection example (b) A connection waiting to be ĕnished

Figure .: .(a) shows a connection that was just made. Figure .(b) has a connection waiting to be
ĕnished.

is colors create a visual type system. End-users can only connect outputs with inputs if
they have the same color or if one of the connectors has a white color. White color is reserved
to represent connectors that accept any type of input. One example of that input is a block that
has a input called “value changed” ⁶. is block can observe any change so it accepts all kind of
values.
⁵ Actually, this isn’t completely random since we exclude the white color and we add some values in all  com-

ponents so we try to get a bright color.
⁶ is block is described in § .. (p. )
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Connection Status Message

e task creation activity has a message at the bottom of the screen that is updated every time an
end-user selects a connector. Figure .(b) (p. ) shows a connection in standby, with following
message: -> content:String. is means the end-user selected an input, at the right side, that
this input has the type String. When a connection is successfully made we can see a message like:
number: String -> number: String (Figure .(a) (p. )). Outputs are updated in this message
at the le of the symbol -> while inputs are updated at the right.

If a connection is not successfully a message will be shown to the end-user explaining the
motive. is can happen when the end-user tries to connect two different types or the end-user
tries to connect an output to an input that has a connection. An end-user can also make a wrong
possible connection, and he can remove it by pressing the input and output of that connection.

It is possible to keep connectingmore blocks to the right by swiping⁷ from the right to the le.
is way a new space will be created on the right and the list is shied to the le. is gesture is
only possible if a block exists on the right column.

.. Blocks’ Operations

If an end-user presses a block, a quick action menu pops out with some options related to that
block (Figure . (p. )). From this set of options it is possible to move the block to the right or
the le. However, this will delete all the connections. e end-user can also see more info about
the block or delete it. e info from a block has to be deĕned by the developer.

When a block was generated from a task a new option appears in the quick action menu,
and it is possible to see that task. e end-user can go back to the task he was creating anytime
pressing the back button.

.  

We implemented a set of blocks for testing. We used our prototype a fair amount of times, and
each time we used it we thought in ways to improve it. Unfortunately, creating new blocks was
always at the bottom on our to-do list. Even so, we made  blocks that will be described within
this section.

.. Sensors

As we described in §  (p. ) sensors are blocks that provide data. Sensors usually depend on
a set of broadcast receivers [Rec]. e type of broadcasts that are received by sensors usually are

⁷ Swipe is a gesture that uses one ĕnger. Swiping can be done from the le to the right or from right to the le. e
gesture requires that the user touches the screen and moves the ĕnger in an horizontal direction.
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Figure .: Operations that can be done on a block.

related with events that have some sort of change, such as: time changes, position changes or wiĕ
status changes.

Time

e information in this block is updated every minute and provides info about the current hour
and minutes of the system.

Battery Status

Battery Status sensor has one output that provides info about the percentage of the battery le.
is information is managed by Android that sends a broadcast when a change in the battery
level occurs. Battery status catches the broadcast and updates the respective output.

Incoming Messages

is sensor has two outputs that are updated when a message is received. One output is the
number that sent the message, and the other output is the content of that message.
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Network Status

is sensor is useful to know if a wireless connection is activated or not. Every time the wireless
status changes the only output this sensor has it is updated.

Timer Sensor

is is an example of a conĕgurable sensor. is sensor creates a timer in minutes that uses the
value of its single input. When timer sensor receives new data, the Android operating system
creates an alarm that is repeated for the amount of time received (and it cancels the other alarm
created by this block). An alarm ĕres with a broadcast. When this sensor receives the broadcast
it updates its output with the value “true”, so other blocks know that an alarmwas activated. Next
this value is set to false.

.. Actuators

In §  (p. ) we introduced the concept of actuators. An actuator can do anything, but usually
it needs at least one input to ĕre its action.

Notiĕcation

A notiĕcation in Android has a title and a content and it can appear any time in the top bar. e
notiĕcation actuator has two string inputs to ĕll those ĕelds, and both inputs are mandatory.

Send SMS

e send  actuator has two required inputs. e destination number of the  and the ’s
content.

Vibrate

e vibrate actuator makes the smartphone vibrate. It receives an integer that says how much
time the smartphone will vibrate in milliseconds.

.. Other Blocks

We created four main categories of blocks: Sensors, Actuators, Input Providers and Others. De-
spite “others” could be divided in other subcategories, we felt that we were over classifying for
the amount of blocks we have. In fact, we also considered removing the input provider cate-
gory. However, this category is important because it has a different interaction with the end-
user. erefore, all blocks that don’t ĕt in the category sensor (they don’t receive broadcasts);
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or the actuators sensors (they don’t execute actions); or the input providers (they don’t receive
input from the user) they belong to the “others” category.

Input Providers

We created two input providers for strings and for integers.

Changes Detector

Changes detector is a special block that has two inputs: An input that will observe an output (the
changes controller/detector) and the input A. is block is inspired in the selector node that we
saw in §  (p. ) but it works as a ĕlter and not as a selector. e main idea is: if this block
receives a new value in the change detector input, then it ĕres A into its output.

Equal

e equal blocks works as a two-in-one block. It operates like a selector node that we saw in
§  (p. ) but the control value is an internal value. Basically, this is the same as having two
blocks connected. One block that compares and ĕres a value that can be true or false , and this
value is connected to a selector. If A is equaled to B, the selector forwards the true value to its
output, otherwise, it forwards the false value.

Number to Text

is is a simple block that converts an integer to string. We called it “Integer to Text” aer some
end-users told us that they didn’t know what a string was.

Sum

Sums two integer values and puts the result in the output.

.   

All features that were described and all blocks that were made are useful to build tasks. In this
section an example of a task will be given.

.. Building a Simple Task

Each task only shows two columns of blocks in the screen, therefore, to show a task, we had to
take more than one screen shot. Each screen shot is taken aer a swipe from the right to the le.
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(a) Part  (b) Part  (c) Part 

Figure .: An example of a task that schedules a  to be sent at :.

In Figure . we reproduce a task that an end-user tried to create. is task sends a  to the
number of the smartphone where we are conducting this experience and with the content “I am
onmyway” at :. Note themessage being received, as scheduled, in the top of the Figure .(a).
at ĕgure also shows that this task needs a true value in the ĕrst equals block and in the second
equals block and then we need to compare the values from those outputs to check if both equal
blocks are true. In this case we pass the value  for both equals block, so, if both are equal then
both will have the  as their value on their inputs. is is needed because we don’t have an
“and” block, otherwise it would be simpler. Figure .(c) also has the the content of the message
connected to the true value input. However, the text provider block that connects to the true
value is below the second equals block.

.. Simplifying With a Task Reuse

ose three equals blocks can be simpliĕed if we create an auxiliary task. Figure . (p. )
shows a task that can be used to simplify the three equals blocks used in Figure . into a single
block. is block expects the hour and minute from the sensor and the values that should be
compared, therefore the A and B values from the two equal blocks in Figure .(a) (p. ) have
no connections. A true and false value can also be deĕned. is task can be reused to simplify
the task deĕned in § .. (p. ).
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(a) Part  (b) Part 

Figure .: An example of a task can be used to compare time.

.. Building a Simpler Task

Figure . (p. ) shows a simpliĕcation of the task deĕned in § .. (p. ) using the task deĕned
in § .. (p. ). Althoughwe named that task “Compare Time” the truth is that it could be called
“compare two values” since it accepts any value in A or B. However, if an A (or B) is connected
then the corresponding B (or A) has to be from the same type, otherwise an error is shown.
Figure .(b) (p. ) also has the text “I am on my way” in a text input block, but that is hidden.

However, not all tasks are this straightforward to create, so end-users need debug methods
to create more complex tasks.

. 

Debugging is one of the problems that  studies (§ .. (p. )). We decided to add two forms
of debugging: A common logging for all blocks and a visual form of debugging.
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(a) Part  (b) Part 

Figure .: A task simpliĕed that reuses the task deĕned in § .. (p. ) to build the task from § .. (p. )

.. Logging

Each block can write any sentence in the global logging. Logging is accessible by the mainmenu,
and each message has a time stamp that is set automatically, as seen in Figure .(b) (p. ).
Messages at the top of the logging are more recent and the logging is updated in real time.

is debug method is useful for fast-changing actions or actions that can’t be seen or felt.
In Figure .(b) (p. ) there is an example of an action that is hard to feel: a vibration of 
milliseconds⁸.

.. Visual Debugging

When seeing a task is possible to activate a debug mode by touching the most le button at the
top of the screen. In this mode the connectors’ values can be seen instead of their name as we
show in Figure .(a) (p. ). ose values are updated and propagated at real time.

is method is useful for end-users, so they can check if they are connecting the right values

⁸ In fact, for developers who use an emulator, this action impossible to feel.
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(a) Debugging in real time (b) Debugging with a log

Figure .: .(a) - debugging option in real time. .(b) - debugging option with a log.

and if the blocks are providing the information they were expecting. We believe this solution
will help surpass the understanding and information barrier (§ .. (p. )).

.      

We have an  to create blocks, and it can be used by expert programmers. e process of block
creation is simple and it requires the deĕnition of three methods: block constructor, new value
and get description. Sensors are a special case that also needs to deĕne the register method.

In the following sections, we will illustrate these methods using the time block that we saw
in §  (p. ).

.. Block Constructor

In the block constructor, the programmer should add the connectors of the block.
Source . (p. ) shows the block constructor of the time block.

Notice the call to the constructor with the name of block. We made this so programmers
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don’t forget they have to name their blocks. e Context [Con] in the constructor is needed in
every Android block, becausemany of them require a context to do something (the vibrate block,
for instance, needs a context).

1 pub l i c TimeSensor ( Context cont ) throws Exception {
2 super ( ”Time” , cont ) ;
3 Output<Integer> hour = new Output<Integer >(”hour ” , I n t eg e r . c l a s s ) ;
4 Output<Integer> minutes = new Output<Integer >(”minutes ” , I n t eg e r . c l a s s ) ;
5
6 addOutput ( hour ) ;
7 addOutput ( minutes ) ;
8 }

Source .: Block constructor.

.. New Value

e new value method is called every time an input’s value changes or a sensor receives an event.
In this case, the Source . is called every time the minute changes, and it updates the outputs’
values with the current time. On line  we add a log that says “Time Changed”. It is important
to add the log before setting the values (lines  and ), otherwise those values can propagate and
executes other actions.

1 pub l i c void newValue ( ) {
2 PublicData . addLog ( ”Time Changed” , t h i s ) ;
3
4 Calendar ca l endar = Calendar . g e t In s tance ( ) ;
5 outputs . get (0 ) . setValue ( ca l endar . get ( Calendar .HOUR_OF_DAY) ) ;
6 outputs . get (1 ) . setValue ( ca l endar . get ( Calendar .MINUTE) ) ;
7 }

Source .: New value function that has to be deĕned.

.. Block Description and Sensor Registration

Block description and sensor registration work in the same way. Both need values that could
be passed in the constructor, but we decided to make two abstract methods instead. is way,
expert developers don’t forget to deĕne these values (otherwise they could generate the super
constructor automatically with null values). Furthermore, on the ĕrst usage, since thesemethods
are abstract, the compiler will force developers to deĕne them.
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e method getBlockDescription returns a String and the method register returns an ArrayList

<String>. is ArrayList needs to have the strings that are the key for the broadcast the developer
wants to receive. As shown in Source ., we are registering for the broadcast ‘‘ android.intent .

action.TIME_TICK’’.

1 pub l i c ArrayList<Str ing> r e g i s t e r ( ) {
2 ArrayList<Str ing> re s = new ArrayList<Str ing >() ;
3
4 r e s . add ( ” android . i n t en t . a c t i on .TIME_TICK” ) ;
5 re turn r e s ;
6 }

Source .: Registration of the intents that this block wants to receive.

.     

We tried to provide solutions to the problems that were seen through § . (p. ). ose solutions
were inspired by s (§ . (p. )) and by the data-Ęow execution model (§ . (p. ). e
combination of this two concepts usually leads to another one called  (§ . (p. )).

In this section, we will intersect those concepts with our prototype.

.. Data-Flow

We didn’t want to create a pure data-Ęow language, but we tried to follow some of its properties.
In Table . (p. ) we will analyze each property of the data execution model (§ . (p. )).

We should also note that our graph isn’t executed in parallel. Android has some limitations
in terms of threads. In the beginning, we tried to do a thread for each block (so they can execute
in parallel as soon as they get their data) but as soon as we reached more than three blocks (three
threads) we felt some differences on the performance.

Most of the properties don’t match with the data-Ęow execution model because: we are em-
bedding our solution in an environment that doesn’t follow the data-Ęow execution model, and
we are using an imperative language (Java).

.. Visual Programming Languages

In § .. (p. ) we introduced a classiĕcation scheme for s. We belive our solution is a pure
visual language since the user can’t see the difference between execution or compilation. We gave
some steps in the direction of an hybrid text and visual systems with the task serialization, but
we didn’t ĕnish this system. e main idea was: since all tasks can be serializable, we could save
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P A

Freedom from side effects Outputs and inputs use independent values so, there are no side effects
caused by variables. However, we can’t control what each block does
with the environment. Although a block can’t change other block out-
puts directly, he can produce side effects like changing the alarm system,
or even ring a tune.

Single assignment rule is property fails in our scenario. Sensors and actuators are always
changing their outputs, and they reuse their variables.

Locality of effect In our case, we established a scope for every variable: a Task.

Data dependencies equivalent to
scheduling

Sensors don’t depend on other instructions but they depend on external
events.

Lack of history sensitivity in proce-
dures

Although the only historical data that is saved is kept in the connections,
we can’t prevent that developers save data on their blocks from one exe-
cution to another.

Table .: Data-Ęow properties analysis

tasks in a  format. Developers could create tasks with text in the PC and next upload it to
the smartphone.

s have a set of characteristics analyzed in § .. (p. ). In our case, the only characteristic
that could be improved is the concreteness. Wehave a high level of abstraction because connectors
can have any type, and block can be anything. We believe this level of abstraction can be an
advantage in the long term because it can produce more solutions. However, we consider that
this abstraction level requires that end-users do an additional effort to use our application.

.. Visual Data Flow Programming Languages

s have a set of properties that were described in § . (p. ). ese properties are usually
associated with a graph. In our scenario, nodes are blocks, and arcs are connections between
nodes. We reviewed those properties looking at our application in Table . (p. ).

We have no iteration constructs in our solution because e we don’t allow outputs to be con-
nected into inputs that were already processed. We only have one conditional construct called
equals, and we already seen it in §  (p. ).

.  

While we were developing our prototype, we tried to collect some feedback from end-users. at
feedback changed some attributes in our application, and others were saved in a to-do list. We
will group the end-users’ feedback into two lists: a list with the items that were done and other
that weren’t done.
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P A

“A visual data Ęow program code is pre-
sented as a directed graph.”

A task is a directed graph since connections only have one direc-
tion: from outputs to inputs

“A node represents, for example, a simple
computational unit or a subprogram con-
sisting of other nodes. Also, a node can rep-
resent systems input or output value.”

In our case, a node is a block. A block is a simple computational
unit but also can be a task that was created using other blocks.
We also have a block type that represents system input: Input
Providers.

“A node can have zero or more input and
output arcs.”

In our case only sensors can have zero input arcs. e rest of the
graph needs to have inputs, so they can be executed.

“An arc can be considered as a variable
transferring data tokens from a node to an-
other node or nodes.”

An arc is a connection and data is always transferred from the
output to the input.

“e arc is attached into the node through
data ports or terminals.”

We have our own name for data ports: inputs.

“e data type of an arc, and a token it
transfers, has to be the same type as the in-
put and output terminals it is attached to.”

We have types in inputs, outputs and connections. However, we
have a universal type (the Object, from java) that can be con-
nected with any type.

“... a node becomes executable as soon as it
has received all its input data and its (pos-
sible) output arcs are empty.”

We execute a block as soon as it has all its inputs available. How-
ever, we don’t guarantee that the block will only execute when the
output arcs are empty.

“An arc transferring tokens into a node be-
comes empty immediately when a node has
absorbed a token or tokens from it.”

is only happens when we are using a connection with the type
known as last value. If the connection has other types, the value
is recorded. is value is only cleaned up when the block that
receives the data wants.

“If a node does not have any inputs, it is
immediately executed when the program is
executed. Also, a node without any inputs
is executed only once during the program
execution.”

ere isn’t a “execute” option in our prototype. A task is executed
when something changes and it only has two type of blocks that
generate values: Sensors and Input Providers. A sensor generates
values based on events and Input Providers create values when an
end-user changes its outputs.

“Once a node has been executed, it pro-
duces new values for all of its outputs.”

We can’t guarantee that. Developers can create a block that up-
dates only one of its outputs.

Table .: Visual data-Ęow programming languages properties analysis

.. Issues Tackled

Some issues noticed by the end-users were solved, and resulted in the following modiĕcations
that are part of our prototype:

• Creating a Task
End-users, on the ĕrst usage, didn’t know how to create a task. e fact is that the two-
column layout isn’t explicit enough, so we added a small tutorial (Chapter B (p. )). is
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tutorial also tries to ĕll another lack: some end-users couldn’t understand what a block
was without an explanation.

• Connector Types Before our solution for types, we had no information about types in
each connector. We thought that the connector’s name was enough, but some names can
be misleading. An example of a confusing name is the name number, that is used on 
blocks. is connector is a String but some end-users thought it was an Integer. To solve
this issue we added colors to the connectors and a message at the bottom of the screen
§ .. (p. ).

• See a taskCompositionTo insert a task, it is necessary to access a category of blocks named
“tasks”. Some end-users tried to see what was the task composition, and they couldn’t. So
we added a button in the block’s quick action menu. is button only appears if the block
was created from a task.

• Block Info We thought that the block name, and the connectors’ names were self-
explanatory. However, many end-users asked us what each block did. We solved this lack
of information with a small description in each block. is description is created by the
developers.

.. Issues to be Solved

e following issues were noted by end-users but they are still open:

• Blocks that need all inputs connected so they could work End-users couldn’t make some
blocks work because they didn’t know they needed to connect all inputs.

• Edit directly an input ere were end-users which tried to edit a block input directly. We
had to say they needed to use an input provider.

• Collapse input providers Some end-users suggested that a task with input providers could
be simpliĕed if an input provider could be collapsed into the input it is connected with.

• Finding blocks Some end-users couldn’t ĕnd the blocks they were looking for and they
tried to ĕnd them in wrong categories.

• Conversors Sometimes it is necessary to use a type converter. One of the common prob-
lems was the  number from the  receiver or the  sender blocks. We saw some
attempts to connect an integer provider with the number on  sender block. We thought
that end-users were expecting automatic conversions.
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• Complex schemes for simple tasks End-users told us that the amount of blocks was too
high for simple tasks. e example gave in § . (p. ) (that an end-user tried) uses nine
blocks to send a message at a scheduled time. Almost all suggestions that end-users have
done could simplify the number of blocks needed. Removing some conversors, and sim-
plify the input providers are examples of useful suggestions.

.  

A lot of time was invested thinking on how we could represent the blocks’ info on the screen. If
we create a script in Blender Node Compositor, that has - blocks, the connections start to
overlap, some blocks get out of the screen and the script becomes messy. In a smartphone that
could happen sooner. When we started to do some spikes in this subject, we found out that with
three/four blocks in the screen the task was already messy. We needed a way to surpass that. We
thought in a time-line that we could add blocks or even a canvas with draggable blocks that we
could do zoom. Step by step, we created some concepts that were fundamental to the solution
that was built.

A systemwith a clean interface ready to be used by end-users, was developed. We spent some
time improving the interface, and ĕxing bugs, based on end-users’ feedback. We soon realized
that some concepts weren’t as transparent as we thought. When we were reviewing the state
of the art (Chapter  (p. )) we recognized that we were warned about this issue by Blackwell
(§ .. (p. )) [Bla]. We tried to clarify some concepts with as tutorial (Chapter B (p. )).
is tutorial can answer to most of the questions that were made by some end-users.

We believed we achieved a good result but, as soon as end-users started to try to build some
tasks, we realized that we needed something more. A task that was suppose to be simple had
more than ĕve blocks.

We thought in a graphical rewrite rule system, where rules could be done by developers. We
could use this system to simplify input providers. Whenever a user connects a output from a
input provider with an input from other block, we could group those two blocks in a block that
has a constant as input. is grouping could be done with a rule like Sum + Input Provider ⇒
Sum.

Another feature that would be helpful is type inference. In the equals block, for example, if
an Integer was connected in A, then B input’s type should be changed. Implicit conversion is also
important. Implicit conversion could simplify some blocks. If the Integer to String conversion
was implicit, we wouldn’t need blocks to do this conversion.
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. 

Although block-based representation is not the best solution concerning such a small quantity
of real-estate screen, it remains the most Ęexible way to represent the information we needed.

Our independent core from platforms allowed us to do automatic unitary tests. ese tests
were particularly important in the connection types (last value,  or ) since it was the
only way to test them.

We can’t say we have a , but we can say that our solution was highly inspired by this
set of languages. Although, we can’t have some rules because our system can be developed by
external developers. Another source of inspiration was the Blender Node Compositor.

No formal testing was made with end-users. In fact, almost all testing was made in an infor-
mal way. We had a device with the application installed, and we passed it to end-users. en,
we watched while they were trying to do a task that they imagined, and we tried to perceive the
difficulties they found.

With this informal testing we learned the priorities of the end-users and we realized we could
do some simpliĕcations in the number of blocks used. erefore, we decided to look on ways to
do them before doing a formal testing with end-users.
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Sometimes programmers don’t realize that there are other programming paradigms that can
be used. We wanted to build a rewrite rule system, but we didn’t want to write more code than
the necessary. When we were thinking in solutions for this problem we thought in a declarative
language called Prolog and in a functional language that uses pattern matching called Scala. We
may have increased the risk of failure, but in return, we increased the odds to learn something
new, and we could show that there are other options beyond imperative languages.

. 

e ĕrst round in our ĕght against Java started when we needed to use Java’s generics. When
Java was created it didn’t have generics. Actually, the lack of generics led to some research like
Pizza [OW] and  [BOSW]. ose researches ultimately led to the Java’s generics that we
have nowadays, and they were part of the  . that was launched in . Scala’s creator was
involved in those researches, so it gave him more bases to develop the Scala language [Oa].

Java’s genericswere needed for the connectors’ types, and aer someusage of this Java’s feature
we stumbled in the main problem with Java’s generics: type erasure [Era]. Type erasure is a
technique that converts any class to its raw type. e class ArrayList<Type>, for instance, is
translated into ArrayList. With this technique, all information about the types that a class is using
gets lost in the compile time. In our case outputs and inputs are created using Output<Type> or
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Input<Type>. It was necessary know what type inputs and outputs are using so we can check if
they can be connected or not. is necessity led to some experiences in Java so we could try to
determine connectors’ types at runtime.

To solve the problem caused by type erasure, we tried to use Java’s reĘection [Ref]. Java’s
reĘection provides methods to get information from classes and objects at runtime. We tried
some solutions to discover connectors’ types in runtime using Java’s reĘection. Despite most of
them work of them start to fail if a developer creates a new class that extends Output<Type>.

We ended up with passing the connectors’ type as an argument of the constructor like this:
Input (..., Class<?> classType, ...). is solution was being avoided since we started the experi-
ments, because it introduces overhead in the API. With this solution we didn’t feel that we won
this battle.

We beat a challenge (even with a non-optimal solution) but there were more challenges wait-
ing for us. When we started to test the application, we realized that users tried to make con-
nections that made some sense, but since we had a strongly typed solution, they couldn’t do it.
An user could try to connect the minutes from a time sensor to the content of a message, and it
wouldn’t work because minute is an Integer, and the message’s content expects a String. However,
in Java, it will throw an exception if we try to set a value in a String using an Integer, so we only
allow connections from the same typeƬ.

Automatic conversion could be solved for some cases, but only solving for speciĕc cases isn’t
enough. Furthermore, these simpliĕcations weren’t enough, we needed something more pow-
erful that could simplify automatically a set of blocks into a single block: a rewrite rule system.
Imagine that an end-user has an integer provider connected with a sum. Why not simplify those
two blocks into a block that had a constant input that is going to be summed to another input?

is rewrite rule system combined with the curiosity of experimenting new paradigms made
us look for other programming languages. We only looked for programming languages that
could be connected with the work we done because we didn’t want to delete all our work and
start again. We wanted to improve it.

.     

When we started to see some rules with more than ĕve blocks, we saw that some simpliĕcations
could bemade. However, we didn’t believe that end-users would create small tasks, so they could
simplify some tasks. When the tasks reuse was conceived, we thought that only tasks with some
complexity (or usefulness) would be reused.

An automatic mechanism to do some simple and smart simpliĕcations was needed. Random
blocks couldn’t be grouped, otherwise it would exist cases with a cluster of big blocks without any

Ƭ Although it is possible to use blocks that convert types, sometimes it is useful to have automatic conversions to
remove this visual overhead
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kind of meaning (grouping all sensors into one sensor, for instance, with a lot of outputs that had
nothing to do with each other). So, we thought in a visual rewrite rule system with rules that
could be written by expert programmers. ese rules have a le term that we call the matching
term, and a right term that we call resulting block. e right term, for simpliĕcation purposes,
has only one resulting block, and it has a block name. If a matching term is found a resulting
block is created.

.. A Set of rule types

We thought in some useful rules and how they could be represented:

• Block1 + Block2 ⇒ Block3
If a block with the name “Block” is connected to a block with the name “Block”, then
create a block named “Block” that groups the two blocks. Example: IsEqual + Selector
⇒ Equals

IsEqual is a block that checks if two values are equal and provides a boolean as output.
Selector is one block that was seen in § . (p. ). It has a control value that chooses one
input from the true or false input.

• Integer*Block1 + Block2 ⇒ Block3
If a number of blocks with the name “Block” is connected with “Block”, then group those
blocks into a block called “Block”.

• ?*Block1 + Block2 ⇒ Block3
Groups all blocks with the name “Block” with “Block” and produce the “Block” that has
attached the number of blocks with the “Block” name who were grouped.

• Integer*Block1 + ? ⇒ Block1
If a number of blocks with the name “Block” is connected with any block, then create a
new block that groups all blocks with the name “Block”.

e character “?” can be used in the matching term in two ways: With a block through the
use of the “*” symbol or the “+” symbol. If it is being used with the “*” symbol, it means that we
want all blocks that are connected with the next block. If the character “?” substitutes a block it
means that it can be any block and is used with the “+” symbol.

e matching term is used to collect a set of blocks that ĕt that rule. Aer this set of blocks
is gathered they are grouped into the block from the right term.
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Figure .: e ĕgure shows a selection and the grouping for the rule string to integer + sum ⇒ string
sum. .(a) shows what was selected and .(b) shows the result of that selection .

.. Grouping Blocks

Imagine that we want to group the blocks using this rule: string to integer + sum ⇒ string
sum. e ĕrst thing we are going to do is gather a set of blocks that match the matching term.
Figure .(a) shows an example of a block composition and the blocks that were selected.

Aer we gather all blocks we have to select which connectors will be used in the grouped
block. A connector is selected if: has no connections or has a connection from a block that is
outside the matched group. Figure .(b) shows the result from the example in Figure .(a).
Notice that the input B didn’t change in the grouped block. is happened because this input B
is connected with a block that isn’t part of the blocks that were grouped.

To build this rewrite rule system we tried to use Prolog with an engine for Java. Prolog is
a declarative language that is commonly used in artiĕcial intelligence [Wik]. We had already
used Prolog in the past so it didn’t require a lot of effort to learn this language. Additionally,
Prolog provides a kind of pattern matching that is useful to build this set of rules.

.   : 

e idea of Prolog came when one of us said that there was an engine that could run Prolog in
Java. We became interested and we made some small testsƭ and we reacted with enthusiasm to
some “true” sentences.

Some coding was done with Prolog using SWI-Prolog. Aer some experiments that were
made to review some concepts, we made a simple rewrite rule engine, and we tried to connect it
with Java. We got some problems with three engines, and we decided to forget Prolog.

ƭ We used JUnit for those tests. We basically wanted to check if we could run simple facts on the Prolog engine
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.. Some Experiments

Prolog allows the user to describe relations using two structures: facts and rules. Rules are used
to make conditional statements [Rul] and facts are rules that always return true.

Two facts were created in Prolog to map the information that Java hadƮ, and then we could
ask for a list with the new conĕguration depending on the rules that were deĕned.

e two types of simple facts that were created are: block and connection. ese facts only
had the basic information and are represented in Source .. Since each block has an Id, in Java,
we could easily connect the Prolog’s facts with Java.

1 block ( in tp rov ide r , 1) .
2 block ( in tp rov ide r , 2) .
3 block (sum , 3) .
4
5 connect ion (1 , 3) .
6 connect ion (2 , 3) .

Source .: An example of two integer providers connected to a sum using Prolog.

Rules were declared using a predicate. A rule returns the blocks thatmatchwith thematching
term, and the outputs of the resulting block. en, we just need to apply a findall to see which
rules would apply and save all group blocks on a structure. At last, we needed to update the facts
database dynamically with the new group blocks and delete the blocks that we used.

is solution was incomplete, mainly because: we had no general way to declare rules (an
expression system, for instance), and we were not saving the inputs and outputs of the group
block.

Before this solution could be completed we decided to integrate with the prototype, and some
problems were found.

.. Problems

Aer some debugging and ĕxing some errors, we had something that was working in Prolog.
However, we wanted to integrate our work with Java. When we tried to integrate, the problems
started.

e ĕrst engine that was tested was the W-Prolog engine [WP], aer this, we tried tuPro-
log [DOR] and at last, when we were about to give up we tested Jekejeke Prolog [Jek]. e
experience we had with these engines was listed:

• W-Prolog
When an error occurred (parsing, per example) usually there was no feedback. An exam-

Ʈ Although, aer this was done we realized we could create a List with the data and pass it into a Prolog predicate
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ple of one error we had that took some time to be ĕxed was: W-Prolog couldn’t run our
Prolog code because there was a fact with an underscore in a variable (something like this:
block(input\_provider, 1)). We removed the underscores, but more problems appeared. W-
Prolog doesn’t accept the command :- dynamic binding, and it is needed so we could add
and remove facts dynamically.

• tuProlog
We couldn’t work with this engine because the error feedback was also poor. Furthermore,
when we had a predicate that was returning several options⁴ and we couldn’t manage to get
a single answer from the engine because at the end of those options the result was “false”-

• Jekejeke Prolog
e errors’ feedback in this engine were good. We had to make some adjustments because
this engine didn’t recognize some functions that weren’t Prolog native. Aer some changes,
our Prolog code was working but we realized that there was a lot of work missing. We
needed to parse the results from the resulting List, and that List was returningmore results
that we intended. is engine made us realize that we had a fair amount of errors in the
Prolog side.

When we realized we had to sync our data with Prolog, every time the user would do an
operation on the interface we asked ourselves: Prolog is the only option we have? Does this
simpliĕcation using Prolog is worth it?

.. Leassons Learned

Although ĕnding an engine that could ĕt our work was hard, we ĕnally had our experiments
working with Jekejeke Prolog. However, we spent more time than expected in remembering
Prolog and testing and discovering engines. At the time, we had something working, but we
realized that there was more work to be done, and it was going to take some time to do it. Fur-
thermore, we re-analyzed the Prolog option when we noticed the amount of overheads we were
adding.

ere were one more option that that we were ignoring: Scala. is option was been ignored
because we believed that Scala has a steep learning curve. Aer we considered this option again,
we decided to look aer someways to learn Scala. We ended up reading parts of a book ofMartin
Odersky, the creator of Scala [OSV]. is book had all information that we needed to learn
this language, so we felt we had to give a chance to Scala.

⁴ In Prolog, sometimes, more than one solution is returned. When that happens it is possible to use the character
“;” in the Prolog console to return more solutions.
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.  - : 
“e name Scala stands for “scalable language”... It runs on the standard Java platform and
interoperates seamlessly with all Java libraries... Technically, Scala is a blend of object-oriented
and functional programming concepts in a statically typed language.” [OSV]

Scala it is a recent language that was released late  / early  [Oa], and since then
many known names already used Scala (like twitter [oS]) and others are just starting (like Wol-
fram Alpha [dap]).

Scala programs can be run in the JavaVirtualMachine () allowing developers to add value
to programs that were built using Java.

It was hard to start working with Scala, but as soon as we started to go deeper in the Scala
language, we found some advantages over Java.

.. Why Scala?

Instead of providing a “perfectly complete” language, Scala creator provided means so the Scala
users could easily expand the languagewith a built-in syntax. ismotivated developers to create
libraries.

Scala has two important features that can help us improve our work: pattern matching and
implicits. Pattern matching works like switch in Java but it is more powerful than a switch because
we can compare all sort of objects. Implicits are useful to convert one type to another depending
on the context. Pattern matching can be used for the rewrite rule system and implicits can be
used to provide automatic conversions between types.

APIs that can Look Like Built-in Syntax

All operations that come with the Scala language are methods. Operations like for, while and if

are methods. e syntax of these operations are similar to Java but they are, in fact, methods.
When we do a +b, what is actually being done is a call to a method with the name “+”⁵.

Since we can deĕne operation with special characters and all methods with one parameter can
be called without points, we can do code like input >> output to connect an input to an output,
or Block+Block to group two blocks.

Adding Value to Existing Code

“Scala doesn’t require you to leap backwards off the Java platform to step forward from the Java
language. It allows you to add value to existing code... Scala code can call Java methods, access
Java ĕelds, inherit from Java classes, and implement Java interfaces... Scala code can also be
invoked from Java code.” [OSV]

⁵ e same as: a.+(b)
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Scala code uses Java types and improves its syntax through the use of implicits. An example
is the conversion between String and Integer. Instead of using Integer .parseInt( string) we can do
string . toInt. is is only possible because there is an implicit conversion that converts a Java’s
String to an instance of the Scala class StringOps⁶. is implicit conversion occurs when the Scala
compiler tries to ĕnd the method toInt in the class String and it fails. Aer failing the compiler
tries to see if there is an implicit that converts from String to a type that has the toInt method.

Implicits

“Scala’s ... implicit conversions and parameters ... can make existing libraries much more pleas-
ant to deal with by letting you leave out tedious, obvious details that obscure the interesting
parts of your code.” [OSV]

Implicits are useful to convert one type to another they can be used to convert ints to doubles
or even ints to strings.

An implicit is declared using the keyword implicit .

1 va l i n t : Int = 5
2 va l s t r i n g : S t r ing = in t

Source .: is code will fail at the second line giving an error.

If we try to execute the code showed in Source . it will prompt an error message on the
second line saying:

1 e r r o r : type mismatch ;
2 found : Int
3 r equ i r ed : S t r ing
4 va l s t r i n g : S t r ing = in t

If we deĕne the implicit showed in Source ., the code in Source . will run without prob-
lems. e compiler tries to execute the code then, before it gives up it checks for any implicit
that could convert from Int to String.

1 imp l i c i t de f intToStr ing ( i : Int ) : S t r ing = i . t oS t r i ng

Source .: An example of an implicit that converts from Int to String.

In our case, implicits are useful because we can avoid using some blocks that convert data,
since a developer can create implicits in a connector.

⁶ StringOps has a method toInt



 - :  

Pattern Matching and Case Classes

Pattern matching works like switch in Java but it is more powerful than a switch because it allows
comparisons with any object type.

A class can be used with pattern matching if it is a case class⁷ A case class is a class that has
some work done by the compiler. e compiler creates:

• a factory method with the name of the class so classes can be created without using the new
keyword

• all parameters declared within the list aer the name of the class are automatically con-
verted as ĕelds of the class

• a constructor that expects all ĕelds declared within that list

• the methods: hashCode, equals, toString and copy

Case classes are useful for pattern matching and also can simplify some coding.
An example of usage of pattern matching is arithmetic rules. Imagine that we had a set of

case classes deĕned in Source .. In that example, we have one expression at line seven that
represents 2+3+0. at expression could be simpliĕed automatically using pattern matching to
2+3.

1 //Case c l a s s e s that can be used to bu i ld exp r e s s i on s
2 abs t r a c t c l a s s Expr
3 case c l a s s Number(num: Double ) extends Expr
4 case c l a s s BinOp( operator : Str ing , l e f t : Expr , r i g h t : Expr ) extends Expr
5
6 // Dec lar ing the expr e s s i on 2+3+0 us ing the case c l a s s e s
7 va l exp r e s s i on = BinOp( ”+” , Number (2 ) , BinOp( ”+” , Number (3 ) , Number (0 ) )

Source .: Deĕnition and usage of the case classes Number and BinOp.

We can create a method called simplify that expects an expression and returns a simpliĕed
expression. at function is deĕned in Source . (p. ) and simpliĕes the cases where the
number zero is summed or the number one is multiplied. e match clause can be seen as a
switch in Java but instead of switch(expr)we have expr match. If a match happens with a BinOp that
has the operator “+” and the right side is a number with the “num” equal to  then we simplify
the le side.

e last case works as the default in a switch, and the underscore means that all patterns can
be matched. is default case simply returns the expression.

⁷ ere is another way to use classes in pattern matching through the use of extractor objects [oSEO] but it isn’t as
simple as case classes.
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1 de f s imp l i f y ( expr : Expr ) : Expr =
2 expr match {
3 // Adding zero
4 case BinOp( ”+” , e , Number (0 ) ) ⇒ s imp l i f y ( e )
5 // Mult ip ly ing by one
6 case BinOp( ”∗” , e , Number (1 ) ) ⇒ s imp l i f y ( e )
7 case _ ⇒ expr
8 }

Source .: Deĕnition of a method simplify that simpliĕes expressions that have + or *.

In pattern matching breaks aren’t needed because all cases are analyzed in the order they are
deĕned and each expression aer the ⇒ symbol returns something. A match always expects
returning values.

Case classes contribute to another property of Scala that we believe it is important: concise
high-level code.

Concise High-level Code

“Scala programs tend to be short. Scala programmers have reported reductions in number of
lines of up to a factor of ten compared to Java. ese might be extreme cases. A more conserva-
tive estimate would be that a typical Scala program should have about half the number of lines
of the same program written in Java.” [OSV]

Case classes already supply an easy and concise way to create classes, but there are other
properties that contribute to reduce lines of code.

Since Scala is high-level and functional we can apply functions to each list element in a con-
cise way, and do things like: name.exists(_.isUpper) to check if there is any char in a upper state.
Also, we can create functions that accept functions as an argument and simplify some code.

Another feature that simpliĕes the Scala code is the absence of the explicit declaration of
types. Most of the times Scala can infers the types automatically.

Libraries are also a good way to save some code. Libraries exist in every language, but since
Scala was conceived to be scalable it has some tools (like multiple inheritance⁸) that can enrich
libraries so they can be more Ęexible.

Functional Philosophy

Scala’s functional part gives tools to simplify some code, but it also shares some properties with
the data-Ęow execution model.
⁸ Multiple inheritance, in Scala, doesn’t have the diamond problem (or the “deadly diamond of death”) in multiple

inheritance [Mar].
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Whiting affirmed in  that “functional languages are a superset of data-Ęow lan-
guages” [WP]. Although Scala isn’t a pure functional language, Martin Odersky invites Scala’s
users to always try to use the functional paradigm.

We thought that if we tried to use a functional paradigm we would be more close of a data-
Ęow language.

Libraries

Scala is recent, but since it was built to be scalable, Scala programmers already developed some
libraries that integrate seamlessly with the language.

Akka [Akk] has some useful tools for data-Ęow, and it is one example of one library that can
be used. Furthermore, there are good testing tools like ScalaCheck [Use] that allow us to run a
set of tests. ScalaCheck also provides another way to do tests, where we declare a property and
the test tries to ĕnd a counter example. We used this library to test our core and our rewrite rule
system.

.. A Core in Scala

We ĕrst tried to use our Java’s core in Scala as a library. We soon realized that without case
classes, it would be harder to apply pattern matching. In addition, we felt that we had to start
with simple tasks, and that we could simplify our code using Scala’s Lists, so we re-created our
core using Scala.

Our core architecture is almost the same as shown in § . (p. ) at Figure . (p. ). We
have a class named Connector that is abstract. Input and Output are case classes that extend from
Connector. Actuator and Sensor classes are also abstract.

However, we had to make some modiĕcations to use case classes. ose modiĕcations actu-
ally made sense, and we realized we could improve the Java’s core.

Since all constructors expect all ĕelds⁹, we can automate some info that wasn’t possible with
our core in Java. In Scala we don’t need methods like addInput or addOutput. ose changes
together with the data transformation to Scala’s Lists simpliĕed some of the core’s code.

Another interesting thing about the usage of case classes is that we can build tasks in a trans-
parent way. An example of a task created for testing is given in Source . (p. ), were taskƬ⁰
that sums two numbers is created. e ĕrst argument of the GroupBlock constructor is its name
(“GroupedSum”). e second argument is a List of Blocks. ere are two ways to create a List in
Scala: we can join each element with the :: operator and ĕnish with a :: NilƬƬ or we can create it
using the List constructor (List(Block1, Block2, ...) .

⁹ A block constructor, for instance, expects the inputs and outputs that the block has
Ƭ⁰A task is a group of blocks.
ƬƬSince the :: operator is related with Lists we need to apply it to a List, and therefore, we have to use it with an empty

List (Nil).
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Our List of blocks has two IntProviders that have two outputs (connectionA and connectionB)
that were previously created. Also this list has a Sum block that has two inputs (inputA and inputB)
and an output (outputB). e two last arguments are the inputs and outputs of thisGroupBlock. At
the time we made this core, we didn’t have the rewrite rule system. If we had it, the last argument
was not necessary since inputs and outputs lists could be calculated using the List of blocks.

1 va l sumAB =
2 GroupBlock [ IntEvent ] ( ”GroupedSum” ,
3 IntProv ider ( connectionA ) : :
4 IntProv ider ( connectionB ) : :
5 Sum( inputA , inputB , outputB ) : : Nil , nu l l , L i s t ( outputB ) )

Source .: Creation of a task in Scala that sums two numbers.

.. A Rewrite Rule System

e rewrite rule system was one of the main reasons why we considered Scala. We had to deĕne
some new methods for this system, and we created a simple expression system (to represent the
rules). We wanted to test the concept with two or three rules, and then expand it using our
expressions system.

Expressions System

We conceived a way to express rules internally so they could be loaded from ĕlesƬƭ. Source .
represents the possible combinations of the syntax in the expression rule systemƬƮ.

1 Produces → Expr ⇒ BlockName
2 Expr → BlockName | Join | Produces | Mu l t i p l i e r
3 Join → Expr + Expr
4 Mul t i p l i e r → Number ∗ BlockName

Source .: Deĕnition of the syntax of the expression rule system.

It is easier to see how Source . can be used with an example. If we want to generate the ex-
pression 2*IntProvider + Sum ⇒ ConstantSumwe could apply the steps in Source . (p. ).

To prevent invalid syntax we start always with theProduces token. e numbers on the right
tell us the line number of the rule (from Source .) that was applied on the previous step. In the
example, theProduces’ token was selected and since the only option isExpr ⇒ BlockNamewe

Ƭƭe part where we load from ĕles and parse the information was not done
ƬƮWe used Chomsky Normal Form [e] as a source of inspiration to this representation
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1 Produces
2 Expr ⇒ BlockName (1)
3 Join ⇒ ConstantSum (2)
4 Expr + Expr ⇒ ConstantSum (3)
5 Mul t i p l i e r + BlockName ⇒ ConstantSum (2)
6 Number∗BlockName + Sum ⇒ ConstantSum (4)
7 2∗ IntProv ider + Sum ⇒ ConstantSum

Source .: Steps necessary to generate the rule 2*IntProvider + Sum ⇒ ConstantSum.

replaced theProduces token with that option. en,BlockName can be replaced by a string and
theExpr can be replaced by the Join token using line number two. ese steps are repeated until
we ĕnd a condition that only has BlockNames or Numbers. en, we can replace BlockName
by a String and Number by an Integer.

Showing like this is easy to see that our system prevents invalid rules in the syntax. We can’t
have things like BlockName or even BlockName + BlockName. is system was easy and fast
to deĕne, and resulted in the classes showed in Source ..

1 s e a l ed t r a i t Expr
2 case c l a s s BlockName (name : S t r ing ) extends Expr
3 case c l a s s Join ( l e f t : Expr , r i g h t : Expr ) extends Expr
4 case c l a s s Produces ( l e f t : Expr , r i g h t : BlockName ) extends Expr
5 case c l a s s Mu l t i p l i e r ( number : Int , b lock : BlockName ) extends Expr

Source .: e classes created using Scala to produce expressions.

As deĕned in the Scala’s documentation, a sealed traitƬ⁴ “may not be directly inherited, ex-
cept if the inheriting template is deĕned in the same source ĕle as the inherited class. However,
subclasses of a sealed class can inherited anywhere” [oSSC].

A simple rule like 2*Integer Provider + Sum ⇒ SuperSum can be written in Scala like is
shown in Source ..

1 Produces ( Join ( Mu l t i p l i e r (2 , Class ( ” In t eg e r Provider ” ) ) , Class ( ”Sum” ) ) ,
Class ( ”SuperSum” ) )

Source .: e classes created using Scala to produce expressions.

Ƭ⁴Although the documentation points to a seal class, a seal trait is the same. A trait in Scala is similar to an interface
in Java but in a trait it is possible to deĕne default implementations for some methods.
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Pattern Matching in the Engine

e rewrite rule system works with the following rules:

. X*Block1 + Block2 ⇒ Block3

. Block1 + Block2 + ... ⇒ Block3

Notice that the second rule accepts any number of blocks connected. First we made that rule
with only two blocks and then we expanded it.

Some methods were needed to create the rewrite rule system. e most important one is the
createGroupBlock. is method discovers the connectors of the group block, and uses them to
create a group block.

e rewrite rule system has two parts. One part reads the matching term of the rule and tries
to ĕnd situations where the rule matches, and the other that concludes the process, creating the
block from the right side. Each part is a case in pattern matching, and the ĕrst part has another
pattern matching inside. e second part checks if the expression was all analyzed and calls the
createGroupBlock method.

To test the rewrite rule system and the core we used ScalaCheck [Use].

.. Testing all with ScalaCheck

ScalaCheck can be used to create unitary tests.
A set of tests starts with a name followed by the word should. Each test has a name that usually

is used to represent what the test is going to verify. e name is followed by ! check, and then the
test is declared.

ScalaCheck also provides another way to do tests through the use of properties[Use]. Proper-
ties can be declared and ScalaCheck will try to ĕnd a counter example where that property fails.
An example of this kind of test is shown in Source .. In this test, we are testing the associative
property of an integer. ScalaCheck is going to try to ĕnd an i, j and z that is a counter-example
to the property deĕned (( i+j) +k ≡ i + (j +k)).

1 ” s a t i s f y a s s o c i a t i v i t y ” ! check {
2 f o rA l l { ( i : Int , j : Int , k : Int ) ⇒ ( i + j ) + k ≡ i + ( j + k ) }
3 }

Source .: A test that is going to try to ĕnd a counter-example.

Standard tests and tests that use properties were made in the core and in the rewrite rule
system where blocks are created, connected, and a rule is applied. en, the resulting group
block is compared with a group block that we were expecting.
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. 

Scala is a language that takes some time to get used to, and every single thing we do with this
language, it always has away to be improved. e timewe invested learning Scala always followed
by more time improving our solution.

We decided to integrate what we have done, and we couldn’t use it. In fact, we invested some
time trying to integrate our work with Scala. We tried to call our core functions in Java, and it
wasn’t working. We tried to compile Scala to a jar, and we even tried to use bytecodes directly,
but any of our attempts didn’t work, and that was odd since the compiler wasn’t throwing any
errors. e errors happened in run time. Actually, we even ran an experimental code before we
started to develop to Scala. However, that code didn’t involved Android. at was our mistake.

e Android virtual machine is different from the . Although Android  uses the
Java language, Android uses a different virtual machine called Dalvik virtual machine ().
Android  compiles the source and resources, and converts them to run in the . In theory,
what we were attempting should have worked. However, the  was always throwing error
saying it couldn’t ĕnd our Scala classes.

We didn’t ĕnd an answer for our problem, but we found other ways to work with Android.
ere is a plug-in for Scala that allow us to compile for Android. is plug-in is called android-
plugin and it can be used to generate an apkƬ⁵. e apk size is bigger than it is needed, the ĕle is
send directly to the device, there are no debug options besides a log printed in a console and it
takes more time to compile than expected. Also, we couldn’t use Java code with this plug-in, so
if we want to use it was necessary to redo all the  without good debugging toolsƬ⁶. We didn’t
have time to take more risks, so we decided to exclude our work in Scala out of our prototype.

Scala is a recent language and it still lacks of mature development tools. Although there are
already good tools like Scala Building ToolƬ⁷ [SBT] (), we felt that Android development is
hard with Scala, and the tools need to be improved.

Scala was a good experience andwe believe that our work will be useful. Our work gave some
ideas of what Scala can do, and it can be used in other platforms that use the standard .

Ƭ⁵Apk is the package used in Android for applications
Ƭ⁶ In this case we are referring to debugging with breakpoints. is is a tool that was oen used in the development

of our prototype.
Ƭ⁷  is a tool that we used to compile/test and manage the dependencies of Scala
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is thesis touched several areas that deal with high levels of abstraction, and at the same time
it had to be concrete, because it deals with end users. e end-users that used our prototype
asked for higher levels of abstraction, so we made a detour that led to some experiences with
Scala. Despite we didn’t use the work we did in that detour, we believe that this was important.
In this chapter, we are going to summarize our experience, our contributions, and our thoughts
for the future work.

. 

In Chapter  (p. ) we introduced our thesis, and we presented some important concepts that are
related with our thesis, such as: ,  and  We also explained why we think this thesis
is important, and the reason we choose to do a prototype for Android (ĕrst we explained the
smartphones’ choice then we explained the Android’s choice).

Chapter  (p. ) gives an overview of the problems that are usually faced in  and .
Some of those problems can be solved using a  so we tried to understand the properties of
this set of languages. Data-Ęow languages were also analyzed since they have a relation with
s. In fact, when this relation is strong, it can result in a . In this chapter, we also saw
two examples of applications that do something we were looking for: Tasker and Blender Node
Composition.



 

eChapter  (p. ) is responsible for the information about our prototype. We explain how
we organized our solution, what we have done and we ĕnish that chapter with an analysis of our
solution considering the concepts we saw in Chapter  (p. ).

At last, in Chapter  (p. ) we documented our experiments with other programming
paradigms. ese experiences were motivated by the need to simplify tasks, since it was one
of the main faults identiĕed in our prototype by end-users. We made experiences using Prolog,
and then we made a dive in Scala. At the end, we couldn’t integrate our work with the prototype,
since we didn’t ĕnd a mature way to work with Android and Scala.

.  

We believe we have three major contributions: A short-paper, a framework that is independent
from Android and a prototype developed for Android that can be used to collect more feedback
from end-users.

.. Framework

is framework has a core that is independent from a platform, as long as the platform runs
Java. e core allows the creation and connection of blocks and it automatically manages the
data propagation between blocks. e connections can hold more than one value and those
values can be requested by blocks.

We have the framework for both Java and Scala, and in Scala, we also have a small rewrite
rule system.

e framework doesn’t balance the abstraction level but provides tools so this level can be
balanced. We think the block concept is enough to achieve high levels of abstraction that are
good for end-users. However, it can also have low levels of abstraction. is level is managed
by both expert programmers and end-users. End-users can increase the abstraction level since
they can deĕne tasks that can be used as a block. However, trusting the abstraction level to its
end-users can lead to tasks that have more blocks than expected, so we decided to build a rewrite
rule system that could do automatic simpliĕcations.

.. Prototype

We believe that a typical visual data-Ęow solution with zooming isn’t enough. We made a spike
with draggable blocks, andwith three-four blocks in the screen the blocks schemawas confusing.
So we decided to show only two blocks horizontally in the screen, leading to a solution with two
columns that are scrollable. We also thought in limiting the number of vertical blocks since it
can be confusing when ĕve-six blocks on the le column connect to ĕve-six blocks on the right
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column. However, with the tests we made with end-users, no one ever used more than three
blocks vertically.

Two forms of reuse were created: task sharing and task reusing. Task sharing allows an end-
user to share a task he created so others end-users can reuse it. e second reuse form is achieved
through the reuse of the tasks as blocks. Every time a task is created a new block type is auto-
matically added to the set of usable blocks, so it can be used by the end-user.

Our prototype is far from ĕnished, but it is useful to do more tests. It can be used to check
what kind of blocks the end-users need, if there are other ways to connect blocks, and how easy
is for end-users to create abstract tasks. ese are only examples of tests that can be done using
our prototype.

.. Short-paper

Our short-paper was submitted for the th international conference on Cooperative Design Vi-
sualization and Engineering () [ticoCDVE] on 30th April. is paper was accepted on 19th

May, and the ĕnal version was submitted on 10th June.
e short-paper is entitled: A collaborative expandable framework for soware end-users

and programmers. is short-paper focus on the collaborative part of our framework, where the
expert programmers create the parts that can be connected by end-users. At the time we ĕrst
submitted this short-paper we simply had a work in progress, so that is why we didn’t do a full
paper. e short-paper is available in the Appendix at the Chapter A (p. ).

.  

We didn’t expect to create a new data-Ęow language, or a  or even a . We believe these
languageswere the right inĘuence for a solution that would solve our problem: Wewanted to em-
power end-users with the ability to automate their smartphones with context-dependent tasks.
We made a prototype that used several properties of these research areas, and we covered some
problems of  and .

Our prototype is prepared to be expanded. e classes are loaded dynamically, tasks are
serializable and blocks are easy to create. Every time the prototype was used by a new end-
user, we saw something that could be improved. Some modiĕcations were made thanks to that
feedback, others were just saved in a todo list.

One item on our todo list was the rewrite rule system. End-users didn’t like the amount of
blocks needed to do a simple task. To do this rewrite rule system, we tried to use Prolog, but we
were introducing some overhead that could be avoided, so we decided to try Scala. Scala mixes
two paradigms: object-oriented and functional. is language already received some attention
by the academic research and from the industry. Pattern matching and type inference were the
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main reason why we decided to test Scala. We ended up only using pattern matching, since we
stopped the Scala’s development whenwe failed in the integration with our prototype. atmade
us forget this path, and we didn’t try everything we wanted.

Sometimeswe got lost on the featureswe could do. is thesis can suffer several ramiĕcations,
and we only explore a couple of them. One of those branches was a good experience but it
didn’t add value to our prototype. We le some loose ends, and maybe some of them could be
ĕnished when the Scala for Android gets more mature. Some improvements that we could do
were registered, but we didn’t have time to do all of them.

.  

We collected some ideas when we were working on this thesis. Some of themwere implemented,
others were delayed, and some of them were started but aren’t complete.

.. Completing What is Done

We didn’t complete some of the features that we started. is happened because we were always
changing our priorities, and some features had to stop to give place to others. We grouped what
it needs to be completed in this section.

Task and blocks management We prepared our prototype for tasks and blocks management,
but the fact is that this is not visible. We could have a set of folders in the sdcard where the
tasks and blocks would be savedƬ. en, in the application, the end-user must be able to
delete blocks he doesn’t want as well as tasks. Additionally, it would be interesting that our
system could suggest the deletion of some blocks. Tasks management should also have a
module that checks what blocks are necessary for each new task and asks the end-user if
he wants to download them.

Task creation improvements We have small things that need to be improved in the task cre-
ation. Removing a connection isn’t intuitive and the lines connecting connectors can be-
come confusing when they are more than ĕve. A task should be, somehow, differentiated
from a block (so users know they can edit it).

Improve block selection If we get about  blocks on the smartphone, it is not easy to ĕnd one.
We need to improve the blocks selection in a medium or large number of blocks.

Use the Connection Types In this prototype, we only use the type of connection called “last
value”. We didn’t conceive a way to insert more types in the user interface.

Ƭ Although each task is being saved in a ĕle in a folder, the truth is that the end-user can’t access that folder to
transport a task from one device to another
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Improve  When we were analyzing our solution with the state of the art in § . (p. ) we
realized that maybe we could improve our . It would be interesting to try and improve
our  to respect more rules from s.

Finish the rewrite rule system Although we couldn’t use what we have done Scala, we believe
that this can be used someday. Finishing this system could be engaging, but it would be
more interesting to think how we can integrate it with our prototype, without confusing
the end-user. e end-user has to be able to see blocks that were grouped, so it should exist
some kind of zoom. Zooming could be a way to deĕne the abstraction level the end-user
wants.

.. Exploring new Solutions

ere are features that were never started because we knew that we needed some time to show
something from this features. We choosed some of them that we thought that are interesting for
future work.

A platform for pc/tablet to create tasks for the smartphone Withmore space in the screen, it is
possible to conceive other ways to create a task. Since tasks are serializable, they could be
created anywhere and they could be used on the smartphone.

A platform with tasks/blocks accessible by all end-users is is important because this is the
channel that end-users and expert programmers will use to communicate. is platform
should have means to request, select and download blocks. It is also important to build a
trusty hierarchy between developers to prevent blocks that were doingmore than expected
from entering in the platform.

Study on how to avoid deadlocks on the smartphone One of the problems we thought is: An
end-user can deĕne a set of rules that result in a deadlock. Imagine the following example:
If the smartphone is muted, then turn the sound on and If the smartphone has the
sound on, then mute it. is is a simple example that would waste battery, but we can
easily conceive examples that can turn off the screen and the user can never turn it on. If
this happens the user can’t open the application, so he has to turn off the smartphone and
then turn it on again.

Create a way to represent connectors that can be connected through the use of implicits
Although we didn’t test implicits we know that we were going to have a problem with
them. e way we represent types now in our prototype (with colors and with a message
at the bottom) would become confusing with implicits. If the end-user can only connect
blue outputs with blue inputs why he can connect, on a speciĕc case, a blue with a red?
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Accepted short-paper

e following paper was submitted for the th conference on Cooperative Design Visualiza-
tion and Engineering () on th April. is paper was accepted in th May and the ĕnal
version was submitted at th June.
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Abstract. The quantity and complexity that end-users are increasingly
demanding from their applications and devices makes it impractical for a
software developer to “foresee” every possible combination and explore
every valid alternative. One solution is to empower end-users with tools
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1 Empowering end-users

End-users are all users who ultimately use software. The word end-user is someties
mixed with the term programming, and when this happens, it can result in some
misleading concepts. In this paper, we see an end-user programmer as someone
who will program software for himself. Although, in principle, he can be an expert
programmer (with a different experience background), the intended meaning of
the term end-user programmer assumes the worst-case scenario: an end-user with
no experience in programming, and a basic knowledge of the environment he is
working with.

Why do we care about providing such development tools for end-users?
Because end-users grow every year. In 2012 it is expected 90M end-users to be
using newly developed software [1], contrasting with 3M expert programmers. But
software, which is created for a specific group of people, can’t answer (a priori)
every specific end-user need. We thus aim to provide sufficient adaptability in
software to allow its programming by an end-user [2].

On top of end-user programming (eup), there is end-user software engineering
(euse) [3]. It is the goal of the former to provide solutions for end-users to do
some kind3 of programming. euse, on the other hand, aims to empower those
tools with deeper engineering concepts such as testing or reuse, so end-users can
avoid errors and improve their productivity.

3 “Kind” as in “basic”.



2 End-user programming

Although eup and euse have different focus, some problems are convergent.
Regarding software as inter-connected pieces, provides us a metaphor to un-
derstand the problems faced by end-users. Ko et el. [4] classified such end-user
programming problems, by referring to the set of thoughts users had when they
learning Visual Basic .NET. He then translated those problems to thinking in
pieces instead of thinking in software: (a) Design, I know what I want to do, but
how? (b) Selection, What pieces can I use? (c) Use, I think this piece will do
what I want, but how can I use it? (d) Coordination, How can I connect this set
of pieces? (e) Understanding, This piece didn’t do what I was expecting, and (f)
Information, How can I see what my piece is doing?.

Ko et el. also made a summary of the euse problems [3]. From those problems
we will only focus in providing answers for Reuse — How can I reuse what I
already did and others did? — and Debug — How can I debug my pieces?.

Current eup solutions already cover many different areas, such as Blender’s
Composite Nodes for 3D modeling, App Inventor for mobile development, and
Kodu for games.

3 A strongly typed block-based cooperative solution
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(a) UML scratch
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Fig. 1: 1a) A block represented using UML; 1b) Representation to the end-user.

What we propose is a framework for both end-users and expert programmers
to develop and connect pieces. We call those pieces Blocks.

When we conceived this idea we suspected that someone would already have
thought in that. The truth is that a block with inputs and outputs is a common
representation between software engineering. Black box testing, per example, uses
this metaphor. This metaphor was also described by Zin [5] in a recent paper.
The main idea is: We have a block, with a set of inputs and it returns outputs.
These outputs can be connected with inputs, and both outputs and inputs have
a type. Connections between blocks create another block.



A block can be represented using UML (fig 1a) and can be shown to the
end-user using a box with inputs on the left and outputs on the right. Figure
1b shows that a block can connect its outputs with inputs from other block. In
figure 1b we are summing two integer and producing a new integer.

We would like to separate the concepts of “conception” and “connection” of
block, and provide a supply chain metaphor to our framework. Therefore, expert
programmers would have tools to “concept” blocks for our system (supply), and
end-users would have tools to “connect” these blocks (chain). A set of blocks
is a block, however, users can name a set of blocks connected as a task. A task
can do things like: “If the weather block has rain as output then activate the
block that creates an alarm at 8h45”. A task can be shared with others end-users
and can be composed creating others tasks. All block management, connection,
abstraction and information propagation on blocks would be controlled by our
framework using a data-flow [6] approach. End-users and expert programmers
will share a block metaphor and the same mechanism for information: data-flow.

4 Experience

We saw in the smartphone industry a good chance to test our concept. Smartphone
users increase every day, and they already surpassed PCs in sales [7]. Another
interesting thing in smartphones is that they provide a set of sensors that can be
used to program simple tasks like: If I entered the campus turn my wifi connection
on. However, end-users usually need an application for each task. Although this
tendency is changing with applications like Tasker or even AutomateIt it still
lacks of concepts like reuse and flexible design. We decided to develop a framework
for Android, so we started with Java. We created a core that provides an API
for expert programmers that can be used for every platform, not only Android.
In fact, we tested this core using a PC implementation.

When the core was working and separated we started to think in GUI, and
we realized that representing all blocks in a smartphone would be chaotic due to
the small screen size. We couldn’t conceive another representation, but one thing
was for sure: We needed a way to group blocks. We then thought in a rewrite rule
system, that could provide an expert programmer a way to specify automatic
rules to group blocks. For this rewrite system, we tried to use Prolog, with an
engine in Java. Soon we realized we were introducing an overhead in our system.
We had to translate our information to facts, in Prolog, and then convert the
results in Prolog to data, in Java. We decided to try Scala.

Scala is a high-level language defined over the JVM. It has an object oriented
and a functional rib and it comes with a rich set of knowledge and new concepts
[8]. It was hard to start working with Scala, but as soon as we started to go deeper
in the Scala language, we found some advantages over Java. First, it is possible
to provide an API that can come with in-built operators. Scala uses methods
instead of operators and allows us to define methods such as: Block + Block. This
provides whole new opportunities to simplify an API for expert programmers.



Also, this language provides a powerful tool named pattern matching that is
usefull for our rewrite rule system, and some workflow engines (like Akka).

5 Future work

We would like to complete the change to Scala, and create our rewrite rule system
that should support rules like: if two blocks called integer provider are connected
with a block called sum (like shown on 1b) then create a replacement block called
GroupedSum. This rule would be represented with something like 2xInteger

Provider + Sum - GroupedSum. Rules will only create visualization blocks. In
fact, we will have the same blocks, but they are encapsulated to help users
navigating through a complex set of blocks. However, users can and should see
all blocks if they want to. Next we are going to develop a prototype for Android.
This phase will be tricky. We need to study ways to represent the block concept
in the smartphone that don’t limit the flexibility. Also, we plan to implement a
sharing platform, providing colaborative creation and sharing of blocks.

After all phases are completed, we want to test both our end-user as well as
expert programmers frameworks. Both expert programmers and end-users will
test the application. In this test, we will collect data directly with interviews. Next
we will ask for expert programmers to develop a block and see the difficulties they
will find. With this test, we intend to get answers for: Do we provide sufficient
debug options? Our API is intuitive? Then we will ask them if they consider the
concepts from the API are coherent with the main application. After those tests,
we will analyze the data, fix some bugs and test again.
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Appendix B

Tutorial

(a) What is a block? (b) What are block types? (c) What is a task?

Figure B.: e prototype tutorial done for end-users so they could have all the bases needed to use the
prototype. Transition between each tutorial can be done through the swiping gesture.
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Nomenclature

Activity An activity, in Android, is a screen with a user interface.

Actuator Block An actuator block (oen abbreviated to actuator), is a type of block that executes
an action on a smartphone (§  (p. )).

API Application Programming Interface.

Block A block is an abstraction that has inputs, does something with those inputs and
then produces outputs (§ .. (p. )) .

Broadcast When we refer to broadcast we are referring to Android’s broadcast. A broadcast,
in Android, is a message emitted by the system to all applications.

Case classes A case class is a class that has some work done by the compiler like: a factory
method with the name of the class so we can create classes without using the new
keyword.

Connector A connector can be an input or an output (§ .. (p. ))..

Data-Ęow language Data-Ęow languages are based on the notion of data Ęowing from one func-
tion to another. is kind of language have ĕve properties: Freedom from side-
effects; Single assignment rule; Locality of effect; Data dependencies equivalent to
scheduling andLack of history sensitivity in procedures (§ . (p. )) .

Debug e process used to locate and ĕx bugs.

DSL Domain-Speciĕc Language .

DVM Dalvik Virtual Machine .

End-user In soware engineering, it refers to an abstraction of the group of persons who
will ultimately operate a piece of soware, i.e., the expected user or target-user.

End-user programming “e practice by which end users write computer programs to satisfy a speciĕc
need, but programming is not their primary job function” [LSBM] .

End-user soware engineering End-user soware engineering tries to “ĕnd ways to incorporate soware engi-
neering activities into users’ existing work-Ęow, without requiring people to sub-
stantially change the nature of their work or their priorities” [KAB+].

EUP End-User Programming [KAB+].

EUSE End-User Soware Engineering [KAB+].

Facts Facts, in Prolog, are rules that always return true.

FIFO First In First Out.

GUI Graphical User Interface.

IDE Acronym for Integrated Development Environment.

Implicits Useful to convert one type to another depending on the context.



 

Input An input is the entrance where data is received. Usually an input is associated with
a block.

Input Provider Block An input provider block (oen abbreviated to input provider), is a type of block
used to receive information from the end-user (§  (p. )).

Intent An intent is usually related with an operation. A  intent can have, for instance,
the number that send it and the content [Int].

JVM Java Virtual Machine .

LIFO Last In Last Out .

Output An output is the exit where data is send. Usually an output is associated with a
block.

Pattern Matching Similar to the switch in Java, but it is more powerfull than a switch because we
can compare all sort of objects.

Prolog A declarative language that is commonly used in artiĕcial intelligence [Wik].

Quick Action Menu A quick action menu is an Android pattern that is used for actions that are based
in a context [dp].

Reuse e ability of using existing artifacts, or knowledge, to build or synthesize new
solutions, or to apply existing solutions to different artifacts.

Rules Rules, in Prolog, are used to make conditional statements [Rul].

Scala A “scalable language” that blends “object-oriented and functional programming
concepts in a statically typed language.” [OSV].

SDK Soware-Development Kit .

Sensor Block A sensor block (oen abbreviated to sensor), is a type of block that receives an
event (§  (p. )). .

Service A service is a component provided by the Android operating system that allows
some long term processing in the background [Ser].

Swipe Swipe is a gesture that uses one ĕnger. Swiping can be done from the le to the
right or from right to the le. e gesture requires that the user touches the screen
and moves the ĕnger in an horizontal direction..

UML Uniĕed Modeling Language .

VDFPL Visual Data-Flow Programming Languages.

Visual Programming Language A programming language that uses n-dimensional visual elements.

VPL Visual Programming Language.

XML eXtensible Markup Language .
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