FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Development platform for
elderly-oriented tabletop games

Tiago Manuel Alves Pereira Marques

Master in Informatics and Computing Engineering

Supervisor: Rui Pedro Amaral Rodrigues (PhD)
Second Supervisor: Paula Alexandra Silva (PhD)

July 19", 2011

Development platform for elderly-oriented tabletop
games

Tiago Manuel Alves Pereira Marques

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: Jodo Anténio Correia Lopes (PhD)
External Examiner: Abel Joao Padrao Gomes (PhD)
Supervisor: Rui Pedro Amaral Rodrigues (PhD)

July 19", 2011

Abstract

Peripherals are one of the most common obstacles when talking about computers and
elderly people. This thesis stands on the notion that Natural User Interfaces and Games
may contribute to a solution to this problem and studies how this can become true. It was
conducted using a tabletop as the research device.

The main techniques and relevant frameworks available, commonly associated with
the use of tabletop technology, are studied in order to predict which combination of those
is the most beneficial to the project and to the end-user. Hardware and software tests, as
well as low-fidelity prototypes were designed and used to examine which input mecha-
nisms could be implemented on the final application. This also enabled a better under-
standing of what benefits older adults would have, by using these types of interaction.

With the observations made and results obtained from the tests performed, some gam-
ing aspects were identified as more common among several potentially interesting game
types. A framework for game development was conceptualized and created considering
those results. In order to test the framework created, a game especially conceived for
older adults was designed and implemented on top of the framework. The game im-
plementation is described in adequate detail to this project and its validation process is
explained in order to confirm its usefulness to the end-user. The validation process re-
vealed some aspects in which the game could be improved, however, these modifications
did not require any change to the framework’s concepts or implementation. This process
also indicated that the usage of the tabletop can promote social interaction and cognitive
and motor stimulation, as intended.

ii

Resumo

Um dos obstdculos mais comuns quando se interliga computadores e pessoas idosas sao
os periféricos. Esta tese assenta na nocao de que Interfaces Naturais para o Utilizador e
Jogos podem constituir parte da solucao para este problema e investiga como tal pode ser
feito. Para isso, utiliza um tabletop como base da investigacao.

As técnicas e frameworks disponiveis e consideradas mais relevantes, usualmente as-
sociadas ao uso de tabletops, sdo estudadas para tentar perceber qual a combinag¢do destes
componentes que este projecto e o utilizador final mais beneficiardo. Testes em ambos
hardware e software, bem como protétipos de baixa fidelidade foram efetuados para ex-
aminar que mecanismos de input poderiam ser implementados na aplicac@o final. Este
estudo possibilitou uma percecdo dos beneficios inerentes para as pessoas idosas do uso
deste tipo de dispositivos

Com a informagao reunida das observagdes e testes feitos, foram identificados alguns
aspectos mais comuns de serem usados em tipos de jogos benéficos para as pessoas idosas
e para este projecto. Uma framework para o desenvolvimento de jogos foi concebida e
criada de maneira a responder aos objectivos deste trabalho. Para testar a framework
criada, foi desenhado um jogo direcionado para a populacdo idosa, usando os conceitos
desta nova framework. A implementagdo do jogo € descrita e o processo de validagcdo do
mesmo € mostrado, de maneira a confirmar a sua utilidade para o utilizador. O processo de
validagdo revelou que, embora alguns aspectos do jogo poderiam ser alterados, nenhuma
modificacdo ao conceito ou implementagao da framework seria necessdria. Este processo
também indiou que o uso do abletop promove a interac¢do social, bem como estimulagao
cognitiva e motora, tal como pretendido neste projecto.

il

v

Acknowledgements

First and foremost, I would like to express my gratitude for both my supervisors Rui
Rodrigues and Paula Alexandra Silva for their unbiased and ever-so willing support. Their
vast knowledge on Multi-touch technologies and Human-Computer Interaction provided
me with a great stepping stone to build my work on. Their inciting answers and remarks
of both my questions and my work fuelled my own quest for solutions, alternatives and
answers and [recognise their importance.

I would like to thank my parents for their support throughout the years in my pro-
fessional and personal matters. I truly am grateful to them for being able to pursue my
dreams and for their belief in me.

To my friends for putting up with me, for keeping me company in good and bad times,
for telling me off when I need, for the fun classes we attended, for all the stunts and
all-nighters we needed to pull, among many other unforgettable moments.

I would also like to thank Fraunhofer AICOS for the research scholarship granted and
the environment in which I had the chance to work in.

Tiago Marques

vi

“Computer Science is no more about computers
than astronomy is about telescopes”

Edsger W. Dijkstra

vii

viii

Contents

1 Introduction

I.1 Context e
1.2 Motivationand goals
1.3 Structure
2 Computer games for elderly people
2.1 Introduction to games for elderly people
2.1.1 Benefits of games for elderly people
2.1.2 Resultsobtained
2.2 Natural User Interfaces
2.2.1 Typesofinteraction.
222 NUl-baseddevices
223 Choicefordevice
2.3 Tabletoptechnology
2.3.1 Tabletop architecture
2.3.2 Relevant comparison factors
2.3.3 Touch detection techniques
2.3.4 Touch information protocols
2.3.5 Frameworks for tabletops
2.3.6 Related work and implementations
3 Methodology
3.1 Hardwaretests
3.2 Softwaretests
3.3 Prototyping proCess v v v v vt e e e e e
3.4 Implementation and evaluation process
4 Analysis and prototyping
4.1 Device Specifics
4.1.1 Deviceused L
4.1.2 Hardware constraints L.
4.1.3 Devicecalibration
4.2 Kivy framework and software test suites
4.2.1 Programming paradigmsinKivy L.
422 Softwaretestsuiteso e
4.3 Prototypetesting e e e e e
43.1 Armlength prototype

ix

CONTENTS

4.3.2 Fontsize prototype
43.3 Keyboard prototype
434 Iconsprototype v v it e e e e
4.3.5 Content prototype v v v i e e e
4.3.6 Tabletop game prototype e e
5 Design and development
5.1 Gameframework
5.1.1 Architecture overview
5.1.2 Layeredapproach
5.1.3 Communication between layers
514 Menuflow
5.2 Gamedesign e
521 Concept e e
5.2.2 Mechanics
523 Controls.
5.3 Game implementation.
5.3.1 Finalprototype
5.3.2 Implementation decisions

6 Validation and Results
7 Discussion
8 Conclusions and Future Work

References

63

67

69

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11

3.1

4.1
4.2
43
4.4

5.1
5.2
53
54
5.5
5.6
5.7

6.1
6.2
6.3

Tabletop architectureo 10
Explanation of FTIR touch detection [HanO5] 13
Example of FTIR image [HanO5] 14
Example of Front DI image [wiklla] 15
Explanation of Rear DI touch detection [wiklla] 16
Example of Rear DI image [wiklla] 16
Explanation of LLP illumination touch detection [wiklle] 17
Explanation of DSI touch detection [wikllb] 18
Abstraction layers of the PyMT framework [Gro09] 23
Abstraction layers of the MT4j framework [LRZ10] 24
Architecture of Sparsh Ul [Com1le] 25
Representation of the developmentstage 30
Multitouch Cell Advanced system 34
Snapshots of the captured images of both cameras 35
Example of the result of an incorrectly configured projection 38
Projection calibration procedure 38
Visual and architectural representations of the game 47
Dynamic view of the Game Engine 48
Dynamic view of LayerOne 48
Dynamic view of Layer Two 49
Game prototype designo Lo 51
Snapshots of menus and of the game prototype 53
Class diagram of the implementation 54
High-fidelity test of the game prototype 60
Magnifying glass used as tangible object in the high-fidelity test 60
Example of poor information positioning 61

X1

LIST OF FIGURES

Xii

List of Tables

2.1 Comparison between touch detection techniques
2.2 Programming languages’ characteristics
2.3 Comparison between frameworks

xiii

LIST OF TABLES

X1V

Abbreviations

API Application Programming Interface
AS3 ActionScript 3

DI Diffused Illumination

DSI Diffused Surface Illumination
FLC Flash Local Connection

FTIR Frustrated Total Internal Reflection
GUI Graphical User Interface

HCI Human-Computer Interaction

HD High-Definition

HDMI High-Definition Multimedia Interface
ID Identification

LCD Liquid Crystal Display

LLP Laser Light Plane

NI Natural Interaction

NUI Natural User Interface

oS Operating System

OSC Open Sound Control

SDK Software Development Kit

TCP Transmission Control Protocol
TUIO Tangible User Interface Object
UDP User Datagram Protocol

Ul User Interface

USB Universal Serial Bus

XML eXtensible Markup Language

XV

ABBREVIATIONS

XVvi

Chapter 1

Introduction

1.1 Context

The use of computers is commonly associated with peripherals such as the mouse and
the keyboard. These devices have been recognized as a computer’s usual means of in-
put and have become efficient devices for most of the population. However, they are far
from being considered as an intuitive approach to interaction and present major difficul-
ties for the user, especially elderly people, mostly due to the indirect mapping between
the input device and the application [KK96]. In the more recent generations, the avail-
ability and the growing social acceptance of computers drove people to learn how to use
them, while older generations, because they did not face the need to use them, did not be-
come familiar with them and therefore may now have trouble dealing with keyboards and
mouses [Cza96, Cza97]. By correctly designing an interface that suits users, this issue
can be counteracted. However, interface design problems are not the sole cause of this
problem. Other difficulties arise due to arthritis, tremors, or other physical problems that
make mouse manipulation and keyboard entry difficult for these users [HanO1].

The unfamiliarity with a system may cause a confusing or unsatisfactory usage of an
application to any user. The interaction between software and user should be as smooth
as possible so that the user is able to complete the task they want with no difficulty other
than the one associated with the task itself. Natural Interaction (NI) may be presented
as a part of the solution to this problem. NI is achieved through clever designs that con-
strain this problem in ways that are transparent to the user [Leel0]. Devices that employ
the concepts of NI are able to interpret gestures or sounds that may come natural to the
user [LeelO]. These characteristics may make NI a viable choice when developing a
system that focuses on Human-Computer Interaction (HCI).

Introduction

An example of a device based on NI is the tabletop system. A tabletop is, roughly,
a device that allows interaction with a computer application through gestures, touch, fin-
ger movement on the surface or even sounds, depending on how it is built and on the
application itself. Its surface works both as a computer monitor and an input method for
the system. Thus, a computer connected to a tabletop can be manipulated through these
inputs. More specifically, these devices may support single or multi-touch interaction.
Multi-touch devices, such as the tabletop, are touch-based devices that allow interaction
through multiple fingers. This form of technology is a more direct approach to computer
interaction than the regular input methods mentioned that require the use of peripherals,
as it attempts to eliminate the barrier between the user and the computer by removing the
need for external peripherals as input methods [VHBO1].

Multi-touch technologies are recently being developed in the context of NI as they
present more options than the regular single-touch interaction [HRBT09]. Recently, a
growing number of studies [HRB™09, SBD*T08a, RHM09] are being conducted using
multi-touch technology due to its potential as it enables the combination of the advantages
of NI devices, with a more tactile user interaction.

Some types of users - elderly people for example - may require specific user interac-
tion studies due to their potentially different cognitive and perception capabilities, when
compared to others. Natural User Interfaces (NUI) offer a direct mapping between the
input device and the application in an effort to solve the issue raised - the link between
older adults and technology. Multi-touch technologies and NUI, usually more intuitive
approaches to HCI than the usual keyboard and mouse, may be presented as a way of re-
placing these peripherals as the computer’s main input without having a significant learn-
ing curve associated [KK96].

To summarise, NI methods may be a solution to ease the interaction between elderly
people and computers, and the diverse possibilities and usages that computers have to
offer may also be of benefit to the elderly, in terms of entertainment and motor/cognition
stimulation.

1.2 Motivation and goals

One of the popular and recurrent sources for studies in HCI are gaming environments,
often associated with entertainment [YHO7]. Nowadays, this definition is becoming more
and more lacking as games are also being used for purposes other than entertainment, such
as learning or training instruments, i.e. serious games [Jac10]. For that reason, games
have been playing important roles in today’s society. A combination of educational and
entertainment games is usually attempted to try and motivate the player. Common combi-
nations include games that can teach children subjects like mathematics while entertaining
them at the same time and games that help older adults with their daily health-care and

Introduction

still provide social interaction. As such, the possibilities that games provide are of utmost
interest.

This thesis aims to blend a tabletop system in senior people’s lives with as little in-
terference as possible in their habits or traditions. As such, the goals that have been
established for this thesis are:

e establish which combination of touch detection techniques and frameworks is most
favorable to be used in multi-touch game development for elderly people

e provide a calibration method for these devices, in order to optimize touch and object
detection, and develop small applications to test the capabilities of the hardware and
framework chosen

e create a concept and implement a new game framework to be used in multi-touch
games for elderly people

e implement and test a game prototype to validate the new development platform’s
concepts, flexibility and capabilities

Considering the usefulness of games for older adults and the interesting ongoing stud-
ies in HCI for elderly people, the previously described tabletop represents an opportunity
to develop a game framework for this emerging device. The framework developed in
this project attempts to create an abstract layer for game development on multi-touch
surfaces. This framework is indended to be useful for developers attempting to create
tabletop games for older adults. The research conducted and results obtained in this the-
sis, incorporate HCI concepts for application development for older adults to enable faster
and more correctly designed user inrefaces.

1.3 Structure

With the purpose of addressing the goals established, a line of work was devised. This
document’s structure is representative of that work plan and is divided in eight chapters.

This chapter introduces the research areas this document refers to with a review of
existing literature and research on related work, which was necessary to identify existing
solutions and open issues. The reader is contextualized to better understand the aim of
this thesis. Sections regarding the project and its purpose are also included, along with
the writer’s motivation and the structure of the document.

Following the introduction, chapter 2 presents an analysis of the existing concepts in
which the benefits of games for elderly people are explained to the reader. Some context
regarding the usefulness of NUI and respective devices is also provided. The last section

Introduction

of this chapter describes the core of this research. It presents different approaches to de-
tecting and tracking touch in multi-touch devices, comparing techniques and frameworks
in order to better understand what combination of both touch detection technique and
development framework the end-users will benefit more from.

Chapter 3 describes the methodology and approach taken, along with a more detailed
explanation of the development process. This chapter is intended to support the choices
made during the several stages of the project, including research, prototyping and devel-
opment.

From this chapter on, this document describes the development process, starting with
the hardware and software tests and the mock-ups used to test functionalities with the
elderly in chapter 4. These tests were performed in order to grasp the limitations of both
hardware and software, while the prototypes were made to identify types of interaction,
relevant to the use of tabletops and common to usually played games.

The actual implementation stage of this thesis is described in chapter 5, where an ar-
chitecture is proposed and explained. Moreover, and according to the user’s feedback and
reactions observed during the testing and prototyping phase, an application implementing
an appropriate game type and gameplay was developed and its concept, along with the
implementation’s description is presented.

Chapter 6 addresses the validation process of the final application and draws results
from the test performed.

In chapter 7, all the development process is analysed in detail. Alternatives to the
approach are considered, weighed and compared to the one used. The final application
and its results are also object of appraise and implementation decisions are questioned
and balanced with possible alternatives.

As a summary of this work, chapter 8 draws conclusions from the final application and
its results and possible ways to augment and improve the study performed in the scope of
this thesis as means of future work are hypothesized.

Chapter 2

Computer games for elderly people

This chapter provides an overview of the main concepts involved in this work and de-
scribes the alternatives that may be adopted for the project at hand. In the first section,
the objective and benefits of the use of games for the end-users of this project are de-
scribed. Later, the concept of Natural User Interface is presented along with some types
of interaction and devices associated, such as the tabletop.

With such concepts in mind and the instrument of work - the tabletop - described, its
hardware and functioning are explained and compared to other NI devices. The various
alternative techniques for building the device and frameworks for application development
are analysed considering their usefulness to the end-user.

2.1 Introduction to games for elderly people

Games may have different goals according to purpose and to the target population. Games
can be considered for pure entertainment or they can be of a more serious nature (for
teaching and training for example). For an application to be considered a game, it must
have an entertaining purpose, hidden as it may be, otherwise they would be considered
regular tools for training or working. However, in many cases, what is hidden is the
serious purpose itself, so users will focus on getting through the game, not realising they
are being taught or trained [Fer10, Jac10, Wik11g, Wik11f].

2.1.1 Benefits of games for elderly people

Games are known to have many effects on people and in spite of some negative reactions,
games, due to their entertainment purpose, can cause the human brain to be more atten-
tive. This can enable the establishment of connections, thus creating new memories and
relationships and consequently making it possible to work cognitive-wise [GAea09].

Computer games for elderly people

There are a number of demographic characteristics and age-related sensory, cogni-
tive and motor properties that may influence an older adult’s experience when interacting
with digital games [INdKPO7], which may not apply to younger adults. This is due to
the decline of some kind of perception and/or cognition that is more likely to occur in
elderly people rather than in younger adults [Gre09, GAB™06, NSA10]. Modifications
in the body are not the only changes that occur; the number of social acquaintances also
decreases with age [NMS10]. While younger adults grow large social networks with the
purpose of finding a mate, older adults concentrate on the most satisfying and humanly
rich relationships to maintain an emotional balance [FHHO06]. If we consider that most
older adults live unaccompanied [FELO09], one quickly understands how the loss of loved
ones and the geographical isolation can impact the social interaction of the individual.
Moreover, social interaction and community participation are very important to maintain
one’s mental health and well being [AlIO8]. Therefore, it is determinant that they are
stimulated accordingly [DSVA10].

Consequently, there is the need to design interfaces that transmit rich and rewarding
experiences, combining interaction styles with content that will directly speak to and en-
gage elderly users [INdKPO7, Fab06]. Therefore, games for elderly people must balance
both aspects for the benefit of the end-users. More specifically, the application must ren-
der the user the “right” information, at the “right” time, in the “right” way, so that it is
more likely to succeed in its objectives [FisO1].

2.1.2 Results obtained

The Information Society Technology Programme concluded [Fab06] that games for older
adults should focus on maintaining and improving cognitive abilities, enhancing users’
social networks and improving their physical condition by means of training fine psy-
chomotor skills. They should promote feelings of independence and the opportunity to
learn while playing. This study concluded that games for elderly people should include
games to improve cognitive abilities such as attention, memory, executive function and
fine psychomotor skills, prioritising subcategories of these, such as selective and divided
attention, short-term memory, problem solving capacities and categorisation processes.

In a study by C. Shawn Green and Daphne Bavelier, “The Cognitive Neuroscience of
Video Games” [GB04], video game effects on people were conceptualized and tested in
order to determine whether video games had a positive impact. This study suggested that
video game experience could be a powerful tool in slowing, stopping, or even reversing
the age-related declines in perceptual, motor, and cognitive capabilities faced by the el-
derly population. Video game experience was also found to be beneficial as compared to
no video game experience.

Computer games for elderly people

In another study by Jeffrey Goldstein entitled “Video games and the elderly” [GCO™"97],
results indicated that playing video games was related to a significant improvement in re-
action time and to a relative increase of wellness. In this study, the group selected to play
a video game manifested faster reaction times and a more positive sense of well-being
compared to the group that did not play it.

Research indicates that cognitive abilities can be stimulated through games and that
these may play a significant role on the well-being of their players. This allows us to con-
clude that games may be a way to help older adults stay active and lessen the psychomotor
functions deterioration associated with ageing.

2.2 Natural User Interfaces

The concept of NUI refers to a User Interface (UI), that can be, in practical terms, im-
perceptible and natural to use [Leel0]. In regular user interfaces, devices need to be used
to interact with a system and a learning period is usually needed to be able to use that
device accurately. In NUIs, the device that separates the user and the system should be as
unobtrusive as possible or hidden so that the user does not notice it. Naturally, there will
be a learning period for the Ul, although it is greatly reduced due to the fact that NUIs
have a more natural feel to the user [Blo11]

Natural HCI seeks the integration of human language into technological applications,
and the mimic of the way we live, work, play and interact with each other in everyday
life, thus avoiding interaction complexity and reducing the cognitive load that is typically
associated with standard interfaces [BBLO0O8, KKLO7].

2.2.1 Types of interaction

A NUI usually relies on different types of interaction such as touch detection, voice recog-
nition, gesture analysis (without touching) and haptic interfaces. These types of interac-
tion intend to deviate from the usual keyboard or mouse as main input for the system.
However, in terms of external components, tangible objects can also be used with any of
these types of interaction. Some techniques may also be more suited for some types of
users or activities. Moreover, an implementation may rely on a combination of more than
one of these techniques.
More specifically, considering these types of interaction, we may for example:

e within touch interaction, use single or multi-touch techniques to capture the users’
movements on top of a surface [KKL07, BS02]

e adapt touch technologies to use tangible interfaces that recognise objects to interact
with the system [JLO6, Fab06]

Computer games for elderly people

e use voice recognition that, despite the advantage of only needing a microphone and
appropriate software, needs to deal with different languages and accents [Kam95]

e use gesture analysis that, in spite of being a flexible approach, may require space
and may be dependent on the surrounding environment.

e or use haptic user interfaces that use hand movement to communicate with the com-
puter [BS02]

Bi-directional feedback can be found in either one of these techniques. Some exam-
ples include speech synthesis, visual feedback and haptic feedback.

Each individual type of interaction has its own advantages and disadvantages; how-
ever, a combination of multiple types of interaction may also be possible - multi-modal
interaction. By using several interaction types at the same time, some errors caused by
their individual usage can be eliminated [HWO04]. For example, speech, sketching, and
gesture almost always provide more reliable when used in combination [AEO™04].

2.2.2 NUI-based devices

There are several types of devices that implement NUIs. Smartphones, tablets and table-
tops are examples of devices that use touch detection technology in relation to NUIs.
Smartphones and tablets are mobile devices that have been available for some time and are
gaining popularity. Examples of tabletop implementations are the reacTable [KIGAQ06]
and the u-Table [JLO6].

Game consoles have recently been implementing gesture-based approaches of NUISs.
Examples of such are the WIIMote for the Nintendo Wii, the PS Move for Sony Playsta-
tion 3 and Microsoft’s Kinect for XBox360.

One example of the usage of voice recognition software is present in voice dial-on mo-
bile devices and some GPS locating systems where the user can interact with the system
by using their words.

The PHANTOM Haptic Interface [MS94] is an example of a haptic device. It mea-
sures a user’s finger tip position and exerts a precisely controlled force vector on the finger
tip. The device enables users to feel and interact with a wide variety of virtual objects and
can be used to control remote manipulators.

2.2.3 Choice for device

Given the multiple types of devices capable of implementing a NUI, tabletops were se-
lected for this project due to their shape and concept, size and potential regarding older
adults as the final users. Their size will allow older adults with trouble reading to better
understand applications. Tabletops may also have more processing power when com-
pared to the tablet or a mobile phone, increasing their potential and overall capabilities.

Computer games for elderly people

Although their size and shape may lead to portability issues, that same property brings one
obvious advantage of tabletops, and that is the ability to blend with some environments
due to its shape - the table - already being familiar to people.

2.3 Tabletop technology

Paradigms regarding user interaction with computers exist, but they represent only part of
the study involving application development. How and why this interaction is done and
what mechanisms are there to process and ease the interaction are both relevant factors to
that matter; thus, they must be studied and researched as well.

In this section, the hardware alternatives that can be used in this project are depicted.
Firstly, the tabletop and its architectural layers are described. Following, the relevant
issues that differentiate detection techniques are presented along with some existing touch
detection techniques for the tabletop. A study of protocols to transmit touch information
and programming languages is carried out, and finally, a study of which frameworks can
be used to implement the game prototype is presented.

2.3.1 Tabletop architecture

A tabletop consists of a table whose surface is a screen which users can touch to interact
with the system. The tabletop was designed to be a station where several users can work
without interfering with each other, but still collaborate if they wish to. It can therefore
be used for collaborative work or collaborative games.

There are several methods of extracting information about finger movement to be used
on NUIs. One of them, capacitive-based techniques, was primarily developed for single
touch interaction and is very suitable for many kinds of touch displays. However, this
technique is relatively expensive to produce and, when applied on large multi-touch sur-
faces, the number of simultaneous touches is tipically limited by firmware or by the design
of the controller [SBDT08b].

Keeping in mind the goal of this thesis - collaborative games - more common tech-
niques, specifically designed for multi-touch surfaces, will be the object of study. They all
make use of IR light sources and IR cameras so they do not to interfere with the projected
image.

In terms of hardware, the tabletop can be subdivided in an input device, a processing
unit, and an output device. Considering the fact that NUI hardware does not require
peripherals such as the keyboard or the mouse, the input and the output devices are usually
connected.

A possible implementation, represented in Figure 2.1, would be: a projector displays
the image below the surface - which can be seen by the user - and a camera is pointed at

Computer games for elderly people

Tabletop User touches Projected image
surface surface

~ &

a

=

Q

™ s N -

Light detected Projector / LCD
by camera
. .
™
Application deals
with event
~ v
=8
g
. [«1)
(~ I
Eramework Blob Identification Gesture e==) Event creation
and Filtering identification

Figure 2.1: Tabletop architecture

the surface from inside the device so it can see the users reaching and touching the surface
with their fingers.

There are several techniques for touch detection which are described in the next sec-
tion. The processing unit is usually a computer running appropriate software. That soft-
ware will use an appropriate framework that receives and processes the images captured
by the camera to detect touch information and convert it into events that can be used by
applications.

Section 2.3.3 describes the touch detection techniques, commenting on their advan-
tages and disadvantages while section 2.3.5 describes the processing frameworks that are

commonly used.

2.3.2 Relevant comparison factors

Some factors regarding the way a tabletop system is built may weigh more than others in
the decision of which techniques may benefit the end-user. Upon analysis and among all
the characteristics that define and come from motion detection techniques, the following

were seen as more relevant to be discussed in this project.

2.3.2.1 Light direction

The light direction of the technique may require changes depending on the environment
that the tabletop is inserted in. Light - in these cases IR light, merged with the visible

10

Computer games for elderly people

spectrum - will need to be abundant in the environment so the device can establish a clear
detection. This may pose a problem when light in the environment is not constant and/or
is not enough to establish a clear detection. A solution to this problem may include adding
artificial light sources to the environment.

2.3.2.2 IR light usage

The fact that IR light is used in these techniques has its advantages and disadvantages
to the user and to the detection process. The visible spectrum can be used to project the
image onto the surface and the use of IR light will not interfere with the image as it is not
detected by the human eye. This approach requires some careful analysis to make sure
that the IR light that reaches the camera was emitted from the correct IR light source. To
solve this problem, filters can be used to block the light.

One advantage to the user is that they will not be able to see the light and therefore the
interaction would be transparent. However, the use of IR light implies careful construction
of the device itself as the IR rays may damage the human eye if in high concentrations.

2.3.2.3 Type of detection

A touch detection technique can detect motion on the surface by using the reflected IR
light to detect the finger (light reflected) or by using its absence (light occluded). The first
is based on the presence of light on the spot where the finger is touching, while the later
requires abundant and constant IR light to be reflected on or emitted through the surface.
In light reflection, the environment must not introduce extra IR light so not to cause a
faulty detection and, in light occluded systems, a touch is detected when there is absence
of light on a spot.

Either technique may detect the difference in illumination on the region of the finger
by comparison to a clear image of the surface or by detecting it solely with the captured
frame by analysing discontinuities. By using the method of comparison between two
images, the device requires previous calibration so that an image of the surface without
touch is stored for comparison. In addition, it also requires an environment that presents
no change in the illumination, if light direction is outside in, or it will result in a poor
detection or even a wrong one.

2.3.2.4 Light source exposure

Whether the light source can be seen by the user or not matters only to the users them-
selves. Precautions regarding any potential risks to their health due to IR light exposure
need to be considered.

11

Computer games for elderly people

2.3.2.5 Diffused Illumination usage

Using diffused illumination requires an equal distribution of the IR light through the sur-
face. Relying on this technique causes more pressure to be needed, in order for detection
to occur, due to the abundance of IR light reflections that result in less noticeable differ-
ence in illumination. However, it may eliminate the risk of detecting stray IR rays. In
addition, detection on some regions may be harder than others due to the difference in
lighting not being substantial.

2.3.2.6 Tangible objects’ support

Tangible objects are physical objects that can be recognised and used to interact with a
NUL In a general way, they may link a physical object to digital media contents [OW04],
allowing users to access media content by using an object they can grab. The support
of tangible objects in touch-based NUIs may be a relevant feature for comparison due to
the fact that tangible objects may provide the user with a richer experience. They may
also enable or disable features, by letting the software know the user through “proof by
possession”. Shape and marker detection are common ways to represent tangible objects.

e Shape detection - A technique can detect an object on the surface by its shape - tri-
angles, rectangles or pentagons for example - however, depending on the technique
and how it reflects IR light, the object might have to create the same pressure as a
finger would in order to be detected [SCG10].

e Unique marker detection - To be detected, some objects may have a unique marker
so that the camera picks up the marker and identifies it as that particular object.
Some black and white markers may reflect IR light as well, so no special features to
the camera need to be added. In order for this to happen, the IR light emitted needs
to reach the marker. Again, this may vary depending on how and where the light is
emitted [KB99].

These characteristics were analysed for each studied technique and, after a description
of each technique in the next section, a comparison based on these factors will be made.

2.3.3 Touch detection techniques

As mentioned earlier in section 2.3.1, only projection-based techniques such as FTIR,
Front/Rear DI, LLP and DSI, were the object of our study. The first step in detecting
finger movement on a tabletop that uses these characteristics consists of capturing images
with a camera situated directly below the surface, inside the tabletop. Where the light
source is located may vary between techniques as they can use the presence or absence of

12

Computer games for elderly people

Total Internal
Reflection

Acrylic Pane

/ / Scattered Light

Baffle Diffuser

Figure 2.2: Explanation of FTIR touch detection [Han05]

light to detect where and if a finger is touching the surface - this finger area is known as a
blob.

In the following subsections, the FTIR and Front/Rear DI techniques are presented in
more detail for being the most common for home-made and commercial products, like
Microsoft Surface [Corl1]. Other techniques such as LLP and DSI are also explained by
comparison with the two previous techniques.

2.3.3.1 Frustrated Total Internal Reflection (FTIR)

This technique was used and made popular in 2005 by Jeff Han and is very well-known
and commonly used in NUIs. It relies on the principle of Total Internal Reflection which
states that when light enters one material from another material with a higher refractive
index, at an angle of incidence greater than a specific angle, no refraction occurs in the
material and the light beam is totally reflected [Gro09, wik11d]. As a consequence, the
light beam floods the surface’s material.

When the user comes into contact with the surface of the tabletop, the light rays in
that area are redirected downwards, breaking the “perfect” angle they had before - they
are said to be frustrated. That light is not reflected inside the material but transmitted
outside, directly below the finger that is touching the surface, evidencing any finger touch
wherever it may be. If installed correctly, no finger occlusion occurs due to hardware
limitations. The camera installed bellow picks up the IR light and identifies a blob in
the image [Gro(09]. That blob represents the finger touching the tabletop surface. This
description is shown graphically in Figure 2.2.

13

Computer games for elderly people

Figure 2.3: Example of FTIR image [Han05]

The composition of the surface is very important in this technique. The material used,
according to Han, needs to be acrylic because of its properties, that allow IR light to go
through it, and because it is relatively cheap. Special care needs to be taken in relation
to the edges of the acrylic: in order for light to be transmitted correctly, it needs to be
correctly polished.

The baffle and the diffuser are responsible for making sure no IR light can escape
between the light source and the acrylic and eliminating any “noise” that other objects
may cause by hovering the surface, respectively [Gro09]. Due to the image that it pro-
duces, exemplified in Figure 2.3, the tracking in this technique is directly dependent on
the amount of frames per second the camera captures [Han05]. FTIR is familiar to the
biometrics community where it is used for fingerprint image acquisition. It acquires true
touch information at high spatial and temporal resolutions, and is scalable to very large
installations [HanO5].

Despite being a widely accepted and easy to implement technique, FTIR presents the
disadvantage of dealing poorly with ambient light. Because it relies on IR being detected,
it may falsely detect positive interaction when leaks occur - outside IR light enters the
device - or false negatives if the contrast is reduced.

2.3.3.2 Diffused Illumination (Rear/Front DI)

The technique of DI comes in two main forms: Front DI and Rear DI. Both techniques
rely on the same principle, which is detecting touch on the surface based on a constant
beam of IR light illuminating the surface. The detection process may be done by either
absence or presence of light on a spot [Gro09]. The difference lies on the location of the
IR light source and its consequences on the obtained image.

Front DI is a simpler but more fallible method than Rear DI as it relies on exterior illu-
mination to create a uniform IR distribution along the touch surface. A diffuser is placed at
the bottom or at the top of the surface so that when a finger touches the surface [wik11a], a
shadow is created due to the blockage of IR light and the camera picks up the difference in

14

Computer games for elderly people

Figure 2.4: Example of Front DI image [wik11a]

illumination, interpreting it as a blob, similar to the FTIR technique [Gro09]. An example
of an image with finger interaction, captured by the IR camera is shown on Figure 2.4.

Rear DI however does not rely on outside illumination. It consists of having IR light
emitted from inside the hardware rather than the outside [wik11a] as shown in Figure 2.5.
In this case, the diffuser now diffuses the exterior light that reaches the surface. Figure 2.6
shows the result the camera picks up.

Depending on the size and configuration of the table or of the environment lighting, it
can be quite challenging to achieve a uniform distribution of IR light across the surface for
Rear or Front DI setups. While certain areas are well lit and touches are easily detected,
other areas appear darker, thus requiring the user to press harder in order for a touch to be
detected [GroQ9].

Rear DI and Front DI have the disadvantage of being highly sensitive to variations in
external lighting, which may cause problems in blob identification. As a consequence,
there is the need for a calibration once the tabletop has been moved from an environment
to another or if the environment’s illumination itself changes. However, provided that
this flaw is corrected or minimised by blob analysis on different frames, the advantage of
these techniques relies on the fact that stray rays are more easily blurred and mixed with
the background.

2.3.3.3 Other techniques

Less commonly used techniques like the LLP illumination and the DSI are described in
this section as alternatives to the ones described previously.

The LLP illumination is a technique in which lasers are positioned to intersect the
object that touches the surface, as illustrated in Figure 2.7. When the finger touches it,
it will hit the tip of the finger which will register as an IR blob [Gro(09]. Infrared lasers
used to achieve the LLP effect carry inherent risks, possessing risk factors with regard to
eye damage [Gro09]. This technique, if used with a low number of IR light sources, may
result in occlusion [Gro09].

15

Computer games for elderly people

Diffusor

Plexiglas or |

other material T4 7 AV N4 L

IR Light from
on illuminator

IR Camera

Figure 2.5: Explanation of Rear DI touch detection [wik11a]

Figure 2.6: Example of Rear DI image [wik11a]

16

Computer games for elderly people

IR Laser

/

[
P
T
{——
)
vV v Y

/ Scattered Light
Diffuser
Projector
Video Camera

Figure 2.7: Explanation of LLP illumination touch detection [wik11e]

On the other hand, the DSI is a technique that uses concepts from both the FTIR and
DI techniques. Instead of using carefully placed illuminators as a IR Source like in DI,
DSI, represented in Figure 2.8, uses a special and more expensive acrylic to distribute the
IR light evenly across the surface; however, the position of the IR LEDs is the same as
in the FTIR technique. Light gets reflected both upwards and downwards [Gro09]. This
approach may cause problems due to sending the IR light to the camera as well, resulting
in less contrast when detecting a touch [wikl11c].

2.3.3.4 Comparison

Table 2.1 presents some characteristics of each technique that are relevant for the study at
hand.

Table 2.1: Comparison between touch detection techniques

Characteristics FTIR Front DI Rear DI LLP DSI
IR light Yes Yes Yes Yes Yes
Light direction Inside Out Outside In Inside Out Outside In Inside Out
Light detected Reflected Occluded Reflected Reflected Reflected
Light exposed No Yes Yes Yes Yes
Diffused Illumination No Yes Yes No Yes
Shape detection No Yes Yes No Yes
Marker detection No No Yes No Yes

17

Computer games for elderly people

A A A AAAAA

IRLED CD[Fomiducjundi f b0 SO0 0 2 b i el JO IRLED
A R A R A
Plexiglas
Endlighten

Figure 2.8: Explanation of DSI touch detection [wik11b]

Taking all the advantages and disadvantages into consideration, it is clear why FTIR
is the most commonly used technique for quick setups. Assuming it is well built, this
technique is the less hazardous to the user because it restricts the use of IR light to the
absolute necessary and does not emit IR beams outside the tabletop. Also, it does not
require specific environment lighting.

The Rear DI technique may also be considered one that presents some advantages,
provided that the light is distributed evenly across the acrylic. This technique may have the
upper hand when dealing with environments that, for example, provide constant external
illumination, which diminishes the technique’s disadvantages.

2.3.4 Touch information protocols

Touch information needs to be sent from the hardware to the processing unit running
the application. This will pass on the information relative to the user’s action so the
application can react accordingly. Information regarding the kind of touch, the shape, the
diameter, the centre point, the time elapsed since it was detected, the perimeter or whether
it is a marker or a human touch is only part examples that may be relevant when building
an application for a tabletop with multi-touch.

There are a number of protocols that transport many of the aforementioned infor-
mation. Some protocols like TUIO [Com11g] or ones that rely on XML [BPSM™03],

18

Computer games for elderly people

are OS-independent protocols that offer great extensibility. Other protocols like Windows
Touch and Apple’s Touch Protocol are proprietary implementations that require the devel-
oper to consider the target OS and are not easily extensible. These protocols are reviewed
in the following sections.

2341 TUIO

TUIO [Coml1g] is a simple yet versatile protocol designed specifically to meet the re-
quirements of tabletop tangible user interfaces. This protocol defines common properties
of controller objects on the table surface as well as of finger and hand gestures performed
by the user. It relies on a compact binary transport enabled by the OSC protocol [WFMO03]
and is therefore usable on any platform as it is transport-independent.

This protocol is easily extensible as it defines that objects be sent through a network
port, typically port 3333. The only requirements for adding new object information are
a device that sends such information and a listener on the application that deals with the
object. Its specification supports information regarding fingers and markers. In special
cases where the hardware allows it, the TUIO protocol is also able to send out information
regarding the 3D position.

2.3.4.2 XML-based messages

Alternate implementations for a touch information protocol are protocols relying on XML
messages. These protocols, at the cost of some additional bandwidth requirement and pro-
cessing overhead - by comparison to the TUIO protocol - have the advantage of being read
quite easily by any XML parser. The following is an example of several XML messages
sent over a port, containing samples that represent touch information.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<sample>

</sample>

<sample>

</sample>

<sample>
<finger>
<id>2</id>
<age>1</age>
<loc><x>246.54</x><y>261.02</y></loc>
</finger>
<hand>

<id>1</id>

19

Computer games for elderly people

<age>1</age>
<palm><x>320.93</x><y>339.45</y></palm>
<fingerid>2</fingerid>

</hand>

</sample>

<sample>

<finger>
<id»2</id>
<age>2</age>
<loc><x>246.82</x><y>260.60</y></loc>

</finger>

<hand>
<id>1</id>
<age>2</age>
<palm><x>331.22</x><y>341.42</y></palm>
<fingerid>2</fingerid>

</hand>

</sample>

This protocol is of easy customisation and extension as shown in the code snippet
presented above. Each sample may contain any information that the developer wants,
provided that the device obtaining the information collects and sends out the touch infor-
mation in the correct format and that the application possesses a parser that processes the
extended information.

2.3.4.3 OS and device-dependent protocols

The use of widely used OS-independent protocols is not a requirement when developing
an application for a multi-touch device. Using OS-specific protocols like Windows Touch,
Windows Pen, Apple’s Touch Protocol and Multi-Pointer X may allow applications to
receive information quicker. Critical applications may benefit from this advantage. Fur-
thermore, these protocols are often very hard or even impossible to extend due to their
embedded status and proprietary nature.

There may be however device-specific protocols. These protocols may be independent
on any abstraction layer or not, depending on how they are implemented. Typically, they
are closed-source protocols used by commercial products with a specific API and SDK,
available for a couple of programming languages.

2.3.44 Comparison

Considering all the advantages and disadvantages of all types of protocols mentioned in
this section, we have concluded that the needs of this project would only be fully met

20

Computer games for elderly people

by taking the final application’s extensibility and OS-independence of each protocol into
account. Having said that, among the protocols studied and presented, only the TUIO and
XML-based protocols meet these demands.

The TUIO protocol was then chosen over the XML-based protocols for bringing more
efficiency to the information transfer while still offering extensibility at an easy scale.

2.3.5 Frameworks for tabletops

After having described the hardware techniques associated with image capturing and se-
lected a protocol to work with, this section now provides the reader with a brief explana-
tion of some frameworks that can be used to process the images and obtain gesture-based
events. Having chosen the TUIO protocol as means of communication between the final
application and the device, we are going to focus on frameworks that already have support
for the said protocol.

The framework should be able to interpret the information protocol chosen and pro-
vide an API abstract enough so that the development may focus on building the mechanics
of the application rather than managing low-level activities of less relevance to this thesis.
With this in mind, and in coherence to the previous section, common denominators for
comparing the frameworks studied are introduced. Afterwards, frameworks with native
TUIO implementations are presented and compared with each other.

2.3.5.1 Relevant comparison factors

Taking into account the end-user and the goal of this thesis, some comparison factors
were selected from a wide range [DKW10] to better understand which framework would
be more appropriate for the development of applications. Such were the criteria:

e Cross-platform - Frameworks that are able to work on different OS’s are more suit-
able for development as this thesis aims to conduct research for future development
of OS and device-independent applications. This may allow future developers to
regard this document as a starting point for their own projects, regardless of what
OS they choose to implement their application in.

e Gesture manager - Some platforms use a gesture library embedded on the frame-
work to recognise gestures; others use gesture servers that can be by several client
applications to query for information regarding gestures. Using a gesture library
will allow the application to run on its own. On the other hand, frameworks that
use a gesture server are conditioned to a running server application and may have
latency issues if running on a separate machine; however, this method may allow an
easy update of gestures on several devices at once.

21

Computer games for elderly people

Table 2.2: Programming languages’ characteristics

Characteristics C C++ Java Flash Python
Object-Oriented No Yes Yes Yes Yes
Programming level Low Low/High Low/High High High
Design-Oriented No No No Yes No
OS-independent No No Yes Yes Yes
Scripting language No No No using AS3 Yes

Efficiency High Medium Medium Low Medium

Programming language - Different programming languages may offer different ad-
vantages to an application and to the end-user. Choosing the right programming
language to suit the needs of the application may be crucial to its development. Pro-
gramming languages like C, C++, Java, Python or Flash are the most common for
offline applications’ development. Table 2.2 represents a comparison of the pro-
gramming languages.

Custom gestures - Frameworks may have a gesture database where most common
gestures are already implemented. However, the need to implement custom gestures
may arise. Custom gestures can be implemented by inheritance (using a sub-class)
or by access to raw touch data.

Parameterization - The access to specific parameters may be of some relevance from
the developers’ point of view. Access to touch-related parameters or more general
gesture-related parameters can enable fine-tuning and optimizations.

Free - Paid software usually has the advantage of being more robust and of pos-
sessing more functionality and support. Free software usually allows developers to
modify source code as they wish; however, support may not be as complete.

After setting a baseline for comparison between frameworks, some will be presented

and described in the next subsection. In subsection 2.3.5.6, these factors will be used for

comparing the frameworks.

2.3.52 PyMT

PyMT is an open-source library for developing multi-touch applications. It is based on

Python, cross-platform, and comes with native support for many multi-touch input de-

vices, a growing library of multi-touch-aware widgets, hardware-accelerated OpenGL

drawing, and an architecture that is designed to allow developers to focus on building

custom and highly interactive applications as swift and effortlessly as possible [Com11c].

Currently the aim is to allow for quick and easy interaction design and rapid prototype

development [Com11d].

22

Computer games for elderly people

Widget Hierarchy
Standard Widgets y

Animation Drawing Functions TUIO Input
CSS Styling Projection / Viewport MT Simulator
Event Logging gt’:rg;zggrs Ignore hotspot
L Frame Buffer Objects

Tons of modules

OpenGL

Figure 2.9: Abstraction layers of the PyMT framework [Gro(09]

PyMT tries to make dealing with movement detection and graphics output as sim-
ple and flexible as possible. For dealing with input, PyMT wraps the TUIO proto-
col [KBBCO05], as well as other protocols, into an event driven widget framework. For
graphical output PyMT builds on OpenGL to allow for hardware-accelerated graphics [Gro09].
A structure of PyMT’s architecture is shown in Figure 2.9.

Pygame, a cross-platform OpenGL windowing and multimedia library for Python used
by PyMT, and its multimedia functionality is prepared to deal with images, audio and
video files [Com11b]. PyMT uses similar concepts as other GUI toolkits and provides
an array of widgets for use in multi-touch applications as part of the framework. How-
ever, the main focus lies in letting the programmer easily implement custom widgets and
experiment with novel interaction techniques, rather than providing a stock of standard
widgets [Gro09].

e Kivy - a new framework for application development based on the PyMT frame-
work and it is being developed by core developers of PyMT. The Kivy platform is
business friendly (licensed under the LGPL 3 license), available for Windows, Mac
OS X, Linux & Android, able to run the same code on all supported platforms, com-
patible with most input protocols / devices natively (such as TUIO, Windows Touch,
Windows Pen, Mac OS X multi-touch peripherals - Trackpad, Magic Mouse - Linux
Wacom, Kernel HID Input), implemented in Python with some code written in the C
language for performance and is easy to extend [MV11]. Unlike PyMT, Kivy has its
foundation on an event-based system. It is hardware-accelerated through OpenGL
ES 2.0 and the Kivy language enables dynamic class building.

23

Computer games for elderly people

Presentation Layer

LScenesJ{ Components] (Rendering

,_L[pm{essing] _ { OpenGL }

[Canvases][Ul-Components]

» Gesture Events

Input Processing Layer
Global Input Component Input
Processors Processors

AN Unified Input Events

Input Hardware Abstraction Layer

[Multi-TouchDevice” Mouse Input ” Keyboard][Custom Input }

Input Source Source Input Source Source

> Input Data / Position Information

Input Hardware Layer

[MMU_TOUCh] [Mouse J [Network] [Kevboard} [Custom...]
Device

/

Figure 2.10: Abstraction layers of the MT4j framework [LLRZ10]

2.3.53 MT4j

MT4j is an open source Java development platform that has been developed for cre-
ating extensive graphics applications. Since this framework runs on Java, it is cross-
platform, having been reported to run on Windows 7, XP, Vista, Ubuntu Linux and Mac
OSX [Coml1a]. MT4j has been designed to support different types of input devices with
a special focus on multi-touch support. It was created for rapid development of graphi-

cally rich 2D or 3D applications and has the most common multi-touch gestures already
embedded [Mat09].

The functionality of the MT4j framework architecture is subdivided into different lay-
ers communicating through events sent from one layer to the next, as illustrated by fig-
ure 2.10. The emphasis on input layers represents the importance of a flexible input
architecture, while performance issues are mainly addressed by the presentation layer. By
using a hardware abstraction layer, MT4j can support various input hardware with only
minimal adjustments in the input hardware abstraction layer [LRZ10].

MT4j comes with a set of implemented input providers including mouse, keyboard and

24

Computer games for elderly people

B N

Architecture Input Device Gesture Server Gesture Adapter Application

Sends the touch point Extracts Gesture Data from Traraforms Gesture Data to Process the events from
co-ordinates to Gesture Server. Paint Data and sends to Ges. framewark zpecific Ul Events. Gesture Adapter
tuare Adapter

Figure 2.11: Architecture of Sparsh UI [Com]11e]

multi-touch input protocols such as the TUIO-protocol. Additionally, MT4j supports the
use of multiple mice input on Microsoft Windows and Linux platforms, which facilitates
testing of multi-touch functionality [LRZ10].

2.3.5.4 Sparsh UI

Sparsh UI is a multi-touch API that enables users to easily create multi-touch applica-
tions on a variety of hardware platforms. The API supports custom hardware drivers
and is platform independent [Com11e], enabling applications to be developed in the de-
sired programming language [PRV09]. It consists on a server-sided gesture recognition
that handles gesture processing and passes touch-points and/or gesture information to the
client application. It also supports basic gestures such as drag, scale, and rotate, and is
extensible to support an infinite number of custom gestures. A specific gesture adapter
for the aforementioned gesture recognition server is needed for every application frame-
work [Com11e]. The architecture of Sparsh Ul is exemplified in figure 2.11.

2.3.5.5 GestureWorks

GestureWorks [Idel1] is a paid framework developed with Flash/AS3 that implements
the TUIO protocol. Its library implements the basic TUIO callback API and supports
sending TUIO information through both FLC and TCP transport methods. The library
also provides a legacy API in order to support existing Flash examples that have been
based on the original Touchlib API [Wal06]. Currently, UDP is only recently supported
in Flash 10.1 so the implementation of the TUIO/UDP transport method is still in its
early stages. The advantage of this framework is that it enables flash to perform a faster
connection resulting in smoother touch recognition [Com1 1f].

2.3.5.6 Comparison

In this section, a comparison according to the aforementioned features is made. Table 2.1
represents said assessment.

An analysis of this table and of the advantages and disadvantages described in the pre-
vious subsection reveals that a balance between performance and functionality is achieved

25

Computer games for elderly people

Table 2.3: Comparison between frameworks

Characteristics PyMT/Kivy MT4;j Sparsh UI GestureWorks
Cross-platform Yes Yes Yes Yes
Gesture manager library library server library
Programming language Python Java C/C++/Java Flash/AS3
Custom gestures raw touch data sub-class sub-class sub-class
Parameterization touch only both gesture only gesture only
Free Yes Yes Yes No

with the Kivy framework, mainly due to its features and extensibility. This framework was
chosen to be the used in this project, along with the Python language.

2.3.6 Related work and implementations

Implementations prior to this thesis were made using the techniques and frameworks de-
scribed in the previous section. The majority use either a custom built tabletop using
the FTIR technique or Microsoft Surface to obtain images from the surface [AAGT09,
ThT09, FBG109]. In this section, only projects that refer to which technique and frame-
work is used in the implementation are described.

The Air Touch implementation [AAG'09] is based on the FTIR technique and uses
Flex [O’R04] to process hand movement. This project combines existing multi-touch
technologies with a suite of new rehabilitation-centric applications to address the mobility
issues faced by older adults.

SharePic [AKQO6] is a multiuser, multi-touch, gestural, collaborative digital photo-
graph sharing application for a tabletop. The application incorporated a series of functions
to understand how users would work with them and whether they were simple enough to
learn. In this project, both young and older adults were used as test subjects. The au-
thors were successful in creating design guidelines and core elements that is learnable
and usable by both young and older users.

The Infotouch [KAB108] project was partly based on the SharePic project. It aimed at
a design exploration into how a large multi-touch tabletop display can be used for informa-
tion visualization. It was concluded that participants generally liked the concept of using
multi-touch to casually browse through photo collections. However, participants deemed
the multi-touch capability as a complementary feature that was used approximately 10%
of the time.

JunctionBox [LF11] is a software toolkit for creating multi-touch interfaces for con-
trolling sound and music based on MT4;. Specially, the toolkit has special features which
make it easy to create TUIO-based touch interfaces for controlling sound engines via
OSC. Developers using the toolkit have a great deal of freedom to create highly cus-
tomised interfaces that work on a variety of hardware. The JunctionBox toolkit uses

26

Computer games for elderly people

existing libraries for touch tracking. It is able to easily map multi-touch actions to sound
and music control messages.

MTVis [AT10] is a multi-touch interactive tree visualization system. Its goal is to
display the contents of a file structure by representing their hierarchy according to cir-
cles. This project uses a variation of the FTIR technique and a multi-touch tracker and
framework that only runs on MacOS.

The TACTUS [VLNO09] implementation aims to enable research in multi-touch inter-
action. It offers insight into the construction of a robust, low-cost multi-touch surface and
the development of an extensible software system for the rapid creation of multi-touch
applications. It uses the FTIR technology for being a low-cost and viable solution. The
only requirement is a platform-specific framework from one of the following: Windows
Presentation Foundation (WPF), WinForms or Microsoft XNA.

Other projects based on commercial products are also being studied. Surface [Corl1]
is a tabletop implementation developed by Microsoft and widely used on research projects.
HERMES [FBG™09] uses Surface to implement a system that aims to reduce or delay the
normal cognitive decline that takes place in elderly people. Aside from the type of hard-
ware, frameworks have been chosen to implement and test gestures like copy, drag and
select, and test concepts such as the black hole [AKQO06, AAOS].

27

Computer games for elderly people

28

Chapter 3

Methodology

The aim of this thesis, as stated in chapter 1, was to create a framework to enable the
development of games to stimulate older adults cognitive and motor-wise. In order to do
that, and after gaining knowledge of the technologies available and having chosen which
framework and transfer protocol to use, an approach for the development process was
devised. It was necessary to understand how games for multi-touch surfaces could be
developed and how games could be created or adapted to older adults specifically.

Ideally in software engineering, developers have at their disposal the full specifications
of the final application so that, when designing and developing it, no surprises emerge
and no patches are needed. However, it is rarely the case. To avoid this scenario, a
methodology was followed and will be presented here. It was decided that knowledge of
the device characteristics and limitations and of the framework API would be essential
for a correct development of the final product and to make sure the requirements of the
user could be met. Some design considerations should also be taken into account, thus
prototypes were made to study the users in more detail. These two steps were done in
parallel as these studies do not influence one another. The implementation and evaluation
process then followed, taking into account all the information gathered from the previous
steps.

The order in which these tests were performed was chosen as a “low-level to high-
level” approach in order to follow the flow of the information and make sure it was being
handled correctly. This methodology allowed the sustained development of prototypes,
whose objective was to improve the outcome of this project by making the development
more effective and help validate the final application. The two stages of this development
process, represented graphically in figure 3.1, are the following:

e the exploration and prototyping stage - where tests for the various layers of the
product were made, along with prototypes to be tested with the final user

29

Methodology

Development Process

first stage | second stage

Hardware exploration

Software exploration _

Low-fi prototyping

mplementation _

Evaluation

Figure 3.1: Representation of the development stage

o the final application development stage - where an iterative approach was used bal-
ancing the implementation and evaluation processes.

The first stage, the testing and prototyping stage, consisted of performing hardware
and software tests in order to gain better knowledge of their characteristics, capabilities
and limitations along with better understanding of the frameworks’ API. At the same time,
a number of prototypes were made, implementing selected functionalities that should be,
in the future, part of the framework and of the game. While in the second stage of the
development process, the framework concept was created. The application’s development
and evaluation process were also carried out in order to iterate and validate the concepts,
gameplay and design the final application. The implementation process was performed by
designing the architecture on a first stage and then implementing an actual game on a sec-
ond stage. This approach was taken due to, in software engineering, avoiding part of the
restructuring and rewriting needed when implementation comes prior to the architectural
design.

3.1 Hardware tests

To be able to perform accurate hardware tests, the knowledge of the device’s characteris-
tics and the limitations that they imply should be gathered. Only then should the system
be analysed in terms of its input and output methods.

The study of the input methods that the device is capable of interpreting should have its
base on how the tabletop is built, i.e. on what principles the architecture stands. Cameras
and light sources were analysed, along with the computer vision capabilities it possesses.
Furthermore, the transport methods that the device may use to communicate with the
processing unit running the application were also examined and compared in terms of
performance and usefulness to the application intended. On the other hand, the study of
the device’s output system focused on the mechanisms that allow for an image to be seen
on the surface.

30

Methodology

Through calibration of both the computer vision, associated with collecting input data,
and the projection system, associated with the output, an analysis of the tabletop’s capa-
bilities and limitations was performed. Adjustments to the calibration were examined so
that these limitations may be minimised or, if possible, suppressed. The fact that the users’
satisfaction, while using the device, may be affected by how the device is callibrated was
also taken into account.

3.2 Software tests

Having decided on the framework for the application development beforehand, software
tests were conducted. They were done with the intention of ascertaining how the API
handled the input and output data received and sent respectively to the device and of start-
ing to understand the paradigms involved in developing multi-touch applications. Such
knowledge would have implications on both the architecture and the iteration process of
the final application.

Small applications (prototypes) were created to test the framework’s behaviour and
the API’s robustness and transparency between the classes of the framework. In order to
test these small applications the actual device was used, in a controlled environment and
by people who had previous knowledge of multi-touch technologies.

3.3 Prototyping process

While performing both hardware and software tests, prototypes were made to evaluate the
users’ experience with technology - in general and with tabletop systems - and to obtain
user characteristics that are relevant to both game design and gameplay. Such prototypes
usually fall in one of two categories: low-fidelity or high-fidelity prototypes. Low-fidelity
prototypes are tipically made of materials such as paper or cardboard and do not resemble
the final product as much as high-fidelity ones [SRP07]. These prototypes allow for more
flexibility than high-fidelity prototypes and bring results at a faster rate as well [Ret94].
They are less intimidating to the end-users than a computer, especially considering the
target audience of this project, and encourage a more creative feedback because of their
“unfinished look™ [Sny03].

As such, during this process, low-fidelity prototypes were chosen to support the design
process and several were created with different objectives in mind to obtain application
requirements that users usually cannot provide on their own.

31

Methodology

3.4 Implementation and evaluation process

After obtaining the results from the first stage of the development process, this second
stage consisted of developing a game framework and a game prototype, taking into ac-
count the information gathered earlier. The implementation and evaluation processes
were done iteratively so that when an iteration of the implementation was finished, the
evaluation on the same iteration would start. The results from the evaluation would then
influence the next iteration.

Firstly, an architecture for the final application was defined to fit the requirements
collected. This step resorted to flow diagrams and a class diagram to analyse both the
architectural needs of the application and the interaction between main in-game objects.
These diagrams were also reviewed in every iteration to guarantee the system’s extensi-
bility in the end.

A game was proposed considering the purpose of the game framework created. A
prototype of the game was implemented and iteratively evaluated. The evaluation process
involved testing each iteration with experienced developers, used to developing for elderly
people and accustomed to dealing with their limitations. Due to external constraints, such
as portability of the device and users’ availability, only one of the final iterations was
validated using the final users.

32

Chapter 4

Analysis and prototyping

After a detailed study in chapter 2 of all subjects involved in this project and along the line
described in the previous chapter, an analysis of the hardware, software and their com-
bination is in order before developing the final application. In this chapter, the hardware
used, its limitations and calibration methods are explained in detail and in relation to the
project at hand. An analysis of software and the combination of both hardware and soft-
ware is made to detect the existing limitations. Finally, prototypes that have been tested
with the end-users are presented and their correlation and contribution to the project are
explained.

4.1 Device Specifics

In this section, the device is going to be explored in terms of its particular characteristics,
capabilities and limitations. The device calibration and its parameters are explained and
the final calibration values are provided.

4.1.1 Device used

The tabletop device used in this thesis is called Cell Advanced [Mullla] and was manu-
factured by Multitouch. It is a 46 inch LCD screen that is backlit by a series of LED’s.
Two IR cameras are placed at a similar distance to detect movement on the surface. The
whole system weighs approximately 37Kg. It is stackable with other similar devices and
the inclination can be set at will. The device supports Full HD technology and its surface
is scratch-resistant. It is a multi-touch multi-user display and can recognise finger tips,
fingers, hands and objects. The device is cross-platform as it only requires a computer
with USB, FireWire and HDMI ports. Figure 4.1 is picture of the device running a simple
drawing application.

33

Analysis and prototyping

Figure 4.1: Multitouch Cell Advanced system

This device uses the Rear DI detection technique and, because of its size, requires two
cameras to capture motion on its surface. The device’s middleware interprets the image
and is capable of sending touch and marker information through:

e the TUIO protocol
e XML-based messages

e a proprietary transfer protocol

The later requires a specific SDK provided by the manufacturer which is not extensible
nor device independent, unlike the first two protocols mentioned.

4.1.2 Hardware constraints

Both cameras are parallel to one another and each one captures half of the surface’s re-
flected IR light. The viewing direction of both cameras makes a 90 degree angle to the
surface. The captured - distorted - images can be seen in Figure 4.2. The joint image
of the cameras gives the full image of the tabletop’s surface and the overlapped areas are
used to better track finger motion between cameras. The device’s light sources are located
around each camera in a square position, as seen in the figure, causing trouble to the com-
puter vision software when detecting motion on different areas of the tabletop - where IR
light may be low or the distortion of camera images higher.

The Multitouch Cell Advanced provides computer vision software to track motion.
This software is not extensible and is only adjustable through the parameters available.

34

Analysis and prototyping

< & =~

Figure 4.2: Snapshots of the captured images of both cameras

Moreover, regarding hand motion, this device only recognises fingers and palm position
locations, so the information sent through the TUIO protocol does not include the shape
of the touch, the diameter nor its contour.

In order to detect 2D markers, which can be used to track objects on the screen, the
device needs to be told to do so. An extension named “SquareMarkerTracker” needs to
be added to the configuration file. Using this extension however will stop the automatic
background calibration which regularly captures an image to use as comparison in the
touch detection process. This is done to avoid having the marker being burnt into the cal-
ibration image, which would result in the marker not being detected through the image’s
comparison. In addition, several markers with different sizes were tested. Markers with
less than 8 by 8cm were proven to be less effective in the detection process.

4.1.3 Device calibration

Both cameras have separate tracking configurations with separate camera settings, lens

corrections and computer vision settings and may require an independent configuration [Mul11b].
The first step for calibrating the device is distorting the camera images and centring

them so that they look less rounded. Then, adjustments can be made to the camera and

lens using the following parameters:

35

Analysis and prototyping

Shutter - controls how long is the exposure time for collecting light from the image;
the bigger this value, the more light the device captures between frames.

Gain - amplifier value to control the amount of light of a frame; this may be impor-
tant for setups that have fewer lighting.

Brightness and Gamma - these parameters should be modified to adjust the image
in case of severe light defects and to minimise the difference between light and dark
areas.

Lens A, B and C - they provide lens distortion corrections to the camera image if
the edges are not parallel, by modifying the shape of the surface to be analysed in
the computer vision.

After proper camera calibration, the computer vision software can be adjusted through

the following parameters:

Edge Limit - difference between finger tips and the surroundings in pixels.

Value Limit - absolute minimum value of a blob, that represents a finger tip, should
have to be considered a touch.

Tip sensitivity - how quickly/easily the software reacts to fingers.

Width CM - the width of the screen in centimetres which tells the software the size
of a regular finger in comparison to the size of the image.

Filter Drag and Filter Radius - they are both smoothing components to eliminate
jittering and create smooth interpolations when a finger “jumps” from one position
to another, i.e. when motion is not detected between two spots resulting in the two
clicks instead of one click followed by a dragging movement.

Finally, some parameters relative to the marker identification needed to be set. The

description of each parameter is as follows:

Threshold - the luminance threshold for starting marker tracking (absolute pixel
brightness in the normalized image).

Max-length - maximum length of the marker edge contour (pixel steps).

Min-length-rel - the minimum length of the edge contour, relative to the maximum
length. For example if the maximum contour length is 210 steps, and minimum is
set to 0.5, then the edge contour has to be at least 105 steps long.

Interval - the contour-walk interval when doing corner detection.

36

Analysis and prototyping

e Division - the number of data rows/columns in the marker.

e KeepAlive - sets the timeout before a missing marker is removed from the marker
list. The timeout is expressed as camera frames.

e MinimumSpan - controls the minimum amount of contrast that is required before
marker is accepted as a marker. This parameter controls the rejection of false mark-
ers that may otherwise be detected around hands (when pure image noise manages
to create a perfectly rectangular edge contour, with correct alignment marks).

After these parameters are set, motion detection should be detected correctly. How-
ever, the touch information provided from this step may not match the projection. In order
to avoid this, one should perform a final calibration step that consists of matching both
the input information and the output projection.

4.1.3.1 Projection calibration

The last step in this device’s calibration should consist in adjusting the projected image.
Even though the cameras’ settings are tuned, the lack of this final calibration or its in-
correct calibration may lead to a confusing, inefficient and maybe impossible usage of
this device. This final step consists of making the input image correspond to the output
image in terms of distortion and location so that if a finger touches a certain point in the
screen, the result of the action is shown directly below the finger. An example of a badly
configured system can be seen in Figure 4.3, where the input touch does not match the
output projection.

Because of this device’s calibration utilities, this type of calibration only requires that
the developer tells the device where the corners and centre lie so it can adjust the po-
sitioning. Figure 4.4 shows the calibration procedure for one of the cameras. The five
circles needed to be pressed so the device understands the distortion factor and transla-
tions needed to match the input information and the output projection.

4.1.3.2 Final calibration

After carefully examining the parameters and their usefulness, experimentation was needed
to test several configurations in order to obtain the best results from the device. Due to its
manufacturing, this specific device allows both cameras to be callibrated with the same
settings. The following are the values for their final calibration, including the marker

identification parameters:

e Shutter - the shutter value was set on 0.08.

e Gain - this value was set to zero in order to minimise the noise from the cameras.

37

Analysis and prototyping

Figure 4.3: Example of the result of an incorrectly configured projection

Figure 4.4: Projection calibration procedure

38

Analysis and prototyping

e Brightness - a value of 0.2 in this parameter was needed in order for the image to
have values between 170 and 200 in light areas and 150 to 170 in darker areas.

e Gamma - the gamma value was set on 0.5.

e Lens A, B and C - the values were 0, 0.18 and 0.06 respectively; however, they
are dependent on the distortion applied to the cameras as these are just correction
parameters.

e Edge Limit - the edge limit value was set on 6.
e Value Limit - the value limit was set on 11.

e Tip sensitivity - because this value needs to be high to detect less dead areas, it was
set on 1.5; a lower value would be less ideal as it would increase detection of false
positives (ghost touches).

e Width CM - the width value was set on 110.

e Filter Drag - the filter drag value was set on 0.9 (maximum).

e Filter Radius - the filter radius value was set on 2 cm.

e Threshold - this value was set to 60.

e Max-length - value was set in 250 in order to detect wide markers.

e Min-length-rel - the minimum relative length of the edge contour was set to 0.06 so
to detect a wide range of markers.

e Interval - this value was set to 19.

e Division - the division value was set to 5 as it was considered more efficient, i.e. it
was detected across the more surface than other values.

e KeepAlive - this value was set to 20 in order to guarantee no markers were lost.

e MinimumSpan - after experimenting, this value was set to 10.

4.2 Kivy framework and software test suites

After making sure the device had been properly calibrated and was sending correct touch
information, tests to verify the framework’s behaviour were conducted. The general ob-
jective of these tests was to analyse what the API offered in terms of multi-touch inter-
action, how the graphics engine was handled and to what limitations this combination
(device, protocol and framework) was subjected.

39

Analysis and prototyping

The following subsection talks about how information gets processed in Kivy. The
subsequent subsection tends to the several test applications created, describing general
test conditions and the results gathered.

4.2.1 Programming paradigms in Kivy

The Kivy framework is an event-based framework and relies only on event-calling to in-
terpret the input information. A super-class named Widget is the most general of the
multi-touch object classes. It can be used as a container for other Widgets or, by use of
its canvas, to display visual information. The Widget class possesses “on_touch_down”,
“on_touch_move” and “on_touch_up” methods - which represent when a touch is de-
tected, when it moves or when it is lifted, respectively - whose function is to ascertain
whether a touch intersects the object and, if so, send its children the same touch informa-
tion so they can process it as well. From this architectural implementation, we can imply
the hierarchical structure of Kivy’s event-handling and its usefulness. The Scatter class
extends the Widget class and implements usual multi-touch interactions such as translate,
rotate and scale by using the 3 methods described above.

Kivy natively supports TUIO with an integrated TUIO client and touch interpreter that
transform TUIO’s 2Dcur and 2Dobj objects into one single touch variable in order to have
transparency between classes and methods. Otherwise, finger touch and tangible object
events would need different methods and containers. In addition, Kivy also supports touch
emulation, so developers only need a mouse to obtain touch information, the same way
the TUIO client would provide them.

4.2.2 Software test suites

All the tests performed during this stage were done on the tabletop, using its TUIO mes-
sage server and both the Kivy touch emulation (mouse events) and actual TUIO messages
with touch information sent from the device. In the case of TUIO messages both hands
were used to test the objects’” movements separately and independently. Multiple fingers
and hands were used to handle a single object as well.

Because of Kivy’s transparency in input handling, all tests regarding tangible objects
and marker identification were primarily put into practice using simple mouse emulation
events and later tested with markers on actual tangible objects on top of the surface.

4.2.2.1 Drag-and-Drop

This prototype was intended to get to know the Python language and its programming
paradigms and the Kivy framework. More specifically, the framework was tested to ex-
amine the creation of visible, usable objects in the tabletop screen with basic translate,

40

Analysis and prototyping

rotate and scale functions and to test the hierarchical dispatch of touch events and their
respective handlers. To do that, a simple drag-and-drop program was created where the
objective was to drag images from their original (random) location to another.

Results indicated that the python-based Kivy framework handled several fingers at the
same time quite well; the event handlers in the Kivy framework are quite reliable; the
hierarchy of the objects is very well constructed and makes event handling easy to use;
the Scatter and Widget objects in the Kivy language are very useful for creating objects,
handling translation, rotation and scale movements and can be easily expanded.

4.2.2.2 Area Drag-and-Drop

The “Area Drag-and-Drop” prototype was developed having the previous prototype as its
base. The goals of this prototype were to test the touch handling capabilities of Kivy, by
altering its behaviour to a more indirect approach and to test how different objects could
interact with each other by intersection detection. In this application, by using more than 3
fingers, the user could drag several objects contained in the space between the fingers and
drag them without needing to touch the top of the objects. The objective of this prototype
was to drag all the objects from their starting locations to another object.

Results show that touch information can be handled at will and developers can even
create an input filter which can modify the input information as well as ignore it so the
application does not receive it. Additionally, all objects available in the API have native
collision detection handling so a single call to a method of the objects can provide a
boolean value indicating whether or not collision occurs.

4.2.2.3 Throw

In order to test animations along with vector handling and general mathematical com-
putations, this prototype was developed. It consisted of an application that attempted to
simulate the physics of an actual object with speed and acceleration values. The user was
able to touch and move the object and, according to the speed and direction of his fin-
ger just before lifting it, the object continued its movement until stopping completely or
hitting the corners of the screen, as if it had been thrown.

With this prototype, tests regarding how animations are handled revealed that they
are customisable both in duration and in effect over time. Furthermore, any animation
could simply be combined with another, thus creating elaborate animations. Vectorial
calculations are also native to Kivy and easy to implement and use along with animations.

4.2.2.4 Tangible objects

The ability to track objects on its surface makes this type of interaction a viable choice for
applications built for this device and, in this prototype, this capability was explored. The

41

Analysis and prototyping

goal of this prototype was to better understand how tangible objects were processed under
the Kivy framework and what the differences in handling finger and marker movements
on an actual application were. For that effect, the prototype created aimed at a simple
tracking application to track only tangible objects while showing associated information
in an appropriate location.

The results of the tests run on this prototype indicated that touch information was
transparent and that marker handling is no different from finger touch handling. The
difference between the touch information came in the form of an object property, whether
it existed or not. That property would explicitly inform the application of the identification
of the marker and if it was not present, it meant that a finger was touching the surface
instead of a tangible object.

4.3 Prototype testing

As previously mentioned, during hardware and software tests, low-fidelity prototypes of
simple games were made in parallel to discover what were the requirements of an applica-
tion such as the one being developed in this project and with this specific target audience.

These tests were performed at a local day care centre with the available subjects at the
time of each test. The centre held about 100 people and tests were made with those who
felt motivated to help. Tests would always follow a predefined protocol and would always
be conducted by at least two people whose roles were to: a) interact with the user and
follow the specified protocol in order to obtain the answers to the questions addressed by
each prototype - the conductor - and b) observe the user and making notes about answers
and behaviour for the purpose of analysing reactions and reaction times for example - the
observer.

4.3.1 Arm length prototype

Given the size of the tabletop and by setting a minimum of 2 players, the area of the
tabletop was divided vertically (in its width, since it is larger than its height) in two parts -
the left and the right - in order to test the worst possible conditions for collaborative games
on this tabletop. This particular prototype aimed at testing the arm length in conjunction
with a straight torso position to test whether older adults in general had the arm length and
gross motor skills needed to reach the tabletop’s middle and select objects. This prototype
consisted of a cardboard with a set of images placed on top of it and the user had to reach
the objects as the conductor would name them.

Results show that very few subjects had difficulty reaching the objects located in the
middle of the tabletop and those who did would still reach it without being coerced or
employing too much effort. This test shows that on a tabletop application on a device with

42

Analysis and prototyping

the given dimensions, one can build a game that uses the tabletop’s width and divides it
in two to create separate playing areas for different players for example.

4.3.2 Font size prototype

Because the tabletop is such a large object compared to other touch technologies like the
smartphone or the tablet, the font size may be an issue when text is positioned away from
the user. This prototype addresses this issue and, using the positioning of users from the
previous prototype, helps us to understand how small a black font word in the middle of
the tabletop can be. Here, the conductor would put words on the centre of the cardboard
tabletop and ask the subject to read it; he would then substitute it for a word with a font
size that had 2pt less.

Results indicated that, in spite of all the subjects wearing glasses, all of them were
capable of maintaining a straight back while reading fonts with sizes between 30pt and
16pt. Fonts with lower sizes would force some users to incline towards the tabletop or
cause them to make a bigger effort while reading. The relevance of this test to the goal of
this thesis consists in knowing how small objects and letters can be for them to recognise
their contours.

4.3.3 Keyboard prototype

The purpose of this prototype was to test the affinity with types of keyboards among older
adults. The prototype consisted in asking the users to press some letters on a cardboard
and paper keyboard prototype and then ask them to write a full word. Two types of
keyboards were used. First, we would perform the test using the “qwerty” keyboard and
then a keyboard with letters following the alphabetical order.

With this test it was observed that older people may tend to write better on a “querty”
keyboard than on an A to Z keyboard. This result may imply that, if necessary, the use
of a “qwerty” keyboard on the final application would be more effective than the other
keyboard tested.

4.3.4 Icons prototype

Because perception of an image’s meaning [Fre83] differs between individuals and, more
generally, between generations as well, icon research was needed to find what kind of
perception elderly people have when given certain icons. This prototype aimed to dis-
cover which image was a better representation of the magnification effect - should the
application need to scale some objects so the user identifies them - and help button. The
users were asked to choose between icons that may represent both functions and suggest
other possible representations for that function.

43

Analysis and prototyping

Results indicated that the users prefered the magnifying glass when wanting some-
thing to enlarge and the question mark for a possible help button. With these results, we
may deduct how the tangible objects may have to be processed or manufactured in the
final application.

4.3.5 Content prototype

Common knowledge may also vary between generations due to social environment, so
content should also be adapted to elderly people as much as any UI. The test performed in
this prototype was intended to get to know what type of content the subjects could relate
the most. It consisted of a game in which the users needed to throw in a category and, at
a turn, say one word related to that category.

Results from this test influenced the topics covered on applications developed with this
specific target audience. They indicated that elderly people are more knowledgeable in
the following areas respectively: sewing, gastronomy, jobs, music, agriculture, animals,
games and healthcare.

4.3.6 Tabletop game prototype

In order to test the ideas that emerged during the test phases of this project, we conceived
a prototype of a game that could be played on top of a table and that could be augmented
on or recreated in a computer environment. This prototype aimed at comprehending what
kind of interaction the elderly have with the table while playing the game and to see
whether tangible objects can be implemented; if so, how and in what situation. The game
tested is simple enough for the final users to understand and feel motivated to play it. The
game would be beneficial to the final users as it requires cognitive skills to deal with the
reflection of the disk on the edges of the table, thus stimulating them. This game consisted
in throwing a disk along the table’s surface and scoring more goals in your opponents’
area than your opponent in yours. The disk consisted on a cardboard circle, with a plastic
wrapper in order to better slide along the table. Cardboard was added to the borders so
that, similarly to hockey, the disk could be reflected back from the wall.

Results of this test indicated that people felt an increasing enthusiasm while playing
the game and even try to come up with strategies to beat their opponent, in spite of the
limited space and set of rules. This indicates that games similar to the one described may
be suitable for implementation on projects with similar purposes. Results also indicated
that tangible objects cannot be used efficiently when the players use it frenetically and
still require precision. Hence, a tangible object should be seen as a proof-by-possession
type of object rather than a gameplay type.

44

Chapter 5

Design and development

The advantages of games as applications for cognitive and motor stimulation on older
adults, described in section 2.1, clarified how games could be beneficial to elderly people.

This chapter is divided in three sections: Game framework, Game design and Game
implementation. The first will focus on the game platform developed in this thesis and
its architecture. The game design section will describe the concepts involved in a game
proposed, the game mechanics and how the user interacts with the application - according
to a parallel thesis [Fer11] which states that the characteristics of this particular game
concept may foster communication and, if played in teams, collaborative work. The last
section will focus on the game implementation itself from a developer’s point of view and
will illustrate how the architecture is used and what implementation decisions were made.

5.1 Game framework

The platform created in this thesis aims to aid implementation of a certain type of games.
Common ground of these games lies on the following characteristics:

e to be played by 2 players or 2 teams or a combination of both

to be played using finger touch and/or tangible objects to interact with the applica-
tion

to be played using multi-touch concepts

to allow multiple interactions at the same time

to allow connection between objects of different nature in terms of interaction type

45

Design and development

The description given in this section will focus on the architecture and its structure. It
aims to present the approach followed and the reasoning behind it along with several of
its main components and features.

5.1.1 Architecture overview

Having this type of game in mind, an architecture capable of supporting the game mechan-
ics was drawn. The idea behind the architecture focused on making the game extensible
and expandable so that content would be easily added to or removed from the game cre-
ated and that the game remained flexible enough to support modifications to either game
mechanics, Ul design or more fundamental game changes.

This platform was then conceived as a layer-based system. Different layers would
handle different content, have different tasks and contribute differently to the gameplay.
A game engine to manage all the layers and implement the actual game was created as
well. The four layers and game engine are depicted in the following sections, along with
their communication. The customisable menu and menu button classes, also described in
this section, were designed to be part of the framework so that a flexible menu system is
available to the developer, one that can be adjusted for any type of game.

5.1.2 Layered approach

The game is composed by four different layers that represent four distinct parts on the UlI,
all of them overlapping each other - Layer One overlaps Layer Two, and so on. A game
engine, which explicitly handles the scoring mechanism and part of the communication
between the layers, runs on the background and controls which layers are shown. A
simple diagram of the visual and architectural representations of these layers can be seen
in Figure 5.1.

Two of the layers are responsible for displaying information and setting the game
environment. Layer One handles the information to be shown on top of the rest of the
game, such as game statistics, or the scoring mechanism, while Layer Four implements
the environment to be shown in the back i.e. background visual information, hence being
the layer below. Both layers are designed to ignore user interaction.

Layers Two and Three handle all the game controls and are responsible for the ap-
plication’s interaction with the user. Layer Two is responsible for handing the tangible
objects’ information, ignoring all other user input information. It also contains all the ob-
jects of the UI that are associated with tangible objects’ motion. Layer Three on the other
hand is meant to ignore the external objects’ information and handles the finger motion
events of the user input so it contains only objects that react to finger-related input.

By contrast to the four layers described, the Game Engine does not directly take part
of the UI; however, it takes part in their communication as it is the link that connects all

46

Design and development

Layerd: background layer

Layer3: finger touch layer

Layer2: tangible objects layer

Layeri: foregroundiinformation layer

GameEngine

Figure 5.1: Visual and architectural representations of the game

layers. In order for a layer to request information contained in another layer, it needs to go
through the Game Engine to do it. This guarantees that the information is retrieved from
the right layer, in case the game requires it to be replaced, and that any game specification
that should run while this communication takes place is ran.

5.1.3 Communication between layers

Bearing in mind the function of each layer, the communications between them will now
be formalised.

The Game Engine, whose abstract methods can be seen in Figure 5.2, is responsible
for receiving the touch information from Kivy - through the methods “on_touch_down”,
“on_touch_move” and “on_touch_up” - pre-process it if needed and send it to all layers,
regardless of their functions or goals. It is also responsible for receiving the information
related to the users’ actions, i.e. results from the mechanics implemented on layers and
objects, and take appropriate action by updating internal game information and asking
layers One and Four to create or update objects accordingly.

Layer One should only receive notification - through method calling - for the creation
of objects such as labels or images that inform the user of his/her results on a certain
action, as seen in Figure 5.3. These abstract methods represented in this figure should be

47

Design and development

Game Engine

on_touch_up on_touch_up

on_touch_move on_touch_mowve

VAR VAV

on_touch_down on_touch_down

create_object

action_taken

update_ocbject

VN VNV

Figure 5.2: Dynamic view of the Game Engine

replicated for each object as they may require specific analysis or implementations de-
pending on the gameplay and on the information to be displayed. The concept of deletion
of an object should not come from the Game Engine but from the layer itself as man-
agement of these objects should be done inside the layer. Upon creation or update, the
objects should behave according to the game mechanics implemented and be deleted au-
tomatically by the layer. The same is applicable to Layer Four, with a different goal in
mind however, due to its function on the game mechanics. Changes in the environment
would require this layer to have the same abstract methods as Layer Two. As previously
stated, these methods are called by or through the Game Engine alone.

Likewise, Layers Two and Three share approximately the same structure. Because

99 <¢

their task is to receive user input, the “on_touch_down”, “on_touch_move” and “on_touch_up”

methods of Kivy’s Widget class should be implemented according to the layers’ goals.
The difference lies in the implementation which would ignore input not suited to the

Layeri

oreate_object >
update_ochject >

Figure 5.3: Dynamic view of Layer One

48

Design and development

on_touch_up >

on_touch_move > action_taken

on_touch_down >
object_intersection > object_intersection >

Figure 5.4: Dynamic view of Layer Two

layer’s purpose. Both layers also need to communicate with the Game Engine in order
to report an action taken on the game so it can process that information and propagate it
according to the game mechanics as explained earlier. Furthermore, and due to the fine
distinction between these two layers and because they contain the objects that interact
with the user, they would need to enquire one another to know whether an object is inter-
secting with the other layer’s objects. These abstract methods can be seen in Figure 5.4
which represents both layers’ interaction with the Game Engine.

5.1.4 Menu flow

Generic menus for this framework were developed so that some information can be gath-
ered before starting a game. By default, due to the goal of this framework, the menus are
created for half of the screen’s size. A menu instance saves the last menus’ instance so
that it can return to it if the user intends to. The concept behind this frameworks’ menu
structure is that every time the user advances from a menu to the other, that menu’s in-
stance is saved in the next one. If the user wants to go back, then the previous menu’s
instance is shown and the current menu is deleted - a backtrack approach.

Each menu possesses methods to be called by buttons. Hence, buttons do not have
any implementation of the action taken; they simply call the menu’s correspondent action
method. Menus enable extension of four action methods: “option_one”, “option_two”,
“option_three” and “option_help”. The first three are used to call menus defined by the
developer while the later is intended to call a help menu specifically. A button may call
any of these four methods. The advantage of this approach is that all implementation is

done in the menu class.

49

Design and development

5.2 Game design

In order to test the architecture described in the section above, a game will be proposed
in this section. So that this game may be beneficial to our specific target audience and in
order to accomplish the goals of this project, the game needs to meet some requirements
in terms of the game concept, mechanics and controls. This section describes these game
characteristics and explains how they create an application capable of counteracting motor
and cognitive functions decline.

5.2.1 Concept

The purpose of the game is to drag the images related to a certain category to the player’s
area faster than the opponent. Although the game was designed to be played by two
people, several players can form a team and play against another person or team. Hence,
the game is divided into two areas along the tabletop’s width - Figure 5.5 represents the
game as described. Each player, or team, will be assigned a category and will need to
drag images that correspond to that category from the centre of the table, where they are
initially placed, to a specific area that validates the image, located on their side of the
table. The game also includes a magnifying glass so the user can augment the image if
it is not clear to him what the picture represents. Each player’s score and image count is
placed on the border, near the player. The current game state represented in Figure 5.5 is:
the left player needs to collect images that represent “Jobs” and the right player images
that correspond to “Food”; the left player has one correctly placed image on his area while
the right player has two; the left player is using the magnifying glass to amplify an image;
of three games played, two were won by the player on the right. During the game, both
players can see the amount of games won on the sidebar.

Due to the size of the tabletop and according to a parallel study on games for tabletops
for elderly people [Ferl1], the division of playing areas can foster gross motor skills as
well.

5.2.2 Mechanics

Before the game can be played, the user is prompted whether they would like to play or
read the instructions on how to play the game. A series of menus are used so the user can
choose the category to play with. In the case of having more than one player per team,
the user would also be able to tell the system.

When the game starts, the images of both categories are displayed on a common area
in the centre where both players are able to reach them. Each player, or team, can drag
any image to any part of the screen they wish. The game ends when both players place all
the images associated with their category on their respective areas. When a player places

50

Design and development

00l
Food
2/7

L]
sqor
100

Figure 5.5: Game prototype design

an image on their area that does not belong to their category, the game pushes the image
back to the centre of the table so that the other player can reach it. This prevents a player’s
mistake interfering with the other’s chance of winning.

The scoring mechanism involves both time after the other player’s completion and the
number of consecutive correct images placed on the players’ area. If a player places an
image that belongs to their category on their own area, the player scores 10 points. On
the other hand, if a player places an incorrect image, the score decreases 5 points. When
players are able to place several consecutive correct images on their area, the score gained
is doubled and a message appears, saying they earned a bonus for it. After the game is
over, the player who scored more points wins and this information is represented visually
on the side of the table, as seen in Figure 5.5.

This few set of rules would help motivating the players to try to be faster than the
opponent(s), promoting gross motor skills, cognitive stimulation of object recognition
and “quick thinking”. These few rules may also encourage players to search for a weak-
link on the set of rules to give them an advantage on the score, thus encouraging reasoning
and logical processes.

5.2.3 Controls

The UI of this application was intended to be a natural one, however this does not imply
that the user is restricted to using hand movements as previously stated in chapter 2.
Therefore, and in an attempt to increase the general motor stimulation on the end-user,
tangible objects were used along with finger movement to manipulate objects of the game.

51

Design and development

On one hand, to move images from one point of the table to another, users are required
to use their finger by touching the surface where the picture is shown. By lifting the finger,
the image comes to a halt as it is considered that it was let go. On the other hand, the
magnifying glasses do not work through finger motion detection. These objects exist only
when a tangible object is placed on the table - as long as the tabletop identifies the marker
- and to a maximum of one per player. The recognition of these objects is marked by a
visual reaction of the application, identifying that the marker is accepted and the object
represents a magnifying glass.

These two forms of interaction provide a greater challenge to the user and richer gam-
ing experience along with the already mentioned benefits to the older adult’s health.

5.3 Game implementation

After a specification of how the architecture of the application is built and how different
parts of the system interact, the final prototype of the application is shown in detail in this
section. The class diagram is presented and explained, relevant parts of the Game Engine
are shown and implementation restrictions are described.

5.3.1 Final prototype

Figure 5.6 contains screenshots of both players’ menus and of the game implemented
using the architecture and mechanics described. Layers One through Four are displayed
in the figure. Figure 5.7 shows the Class diagram where all the classes developed in this
project are represented.

The two menus shown in Figure 5.6 work on their own accord and when one player
works his way through it, both menus synchronise and wait for the other player to finish,
to start the game. The prototype has five available menus as shown in the class diagram.
The player is first presented with the Main Menu where they can go to the Instructions
Menu and back or to the Category Menu where a category will be chosen and the game
can start. The user can also ask for help in the help button available where they will be
taken to the Help Menu. The Wait Menu was created as means of synchronisation so both
players start the game at the same time. Both menus and buttons are created by extending
the previously described Menu and MenuButton classes.

Layer Four was implemented with no updatable objects, as it is used for the back-
ground environment only. Borders and background are created by the constructor of the
class and have been defined as static components. In order for the score, image counter
and games counter - located on the border of the image - to be shown above all other inter-
active objects, Layer One was chosen as their container and both variables and methods
for creating and updating them were implemented. Specifically, Layer One contains two

52

Design and development

Figure 5.6: Snapshots of menus and of the game prototype

53

Design and development

Layerd.
P
3 GameEngine
1
- categories: list of Categories Player
- chosen_categories: list of Categaries
- game_started: boolean - category: string
1 1 1]- playerl: Player - combo: Combo
- time: int - comect_objeds: list of GameObjedts
Border Background - player2: Player - count: int
- game_objects: list of GameObjacks
+ _combo_over) : void - game_over: boolean
+ increment_time() : void - games: int
+ reset_game(): void 1 2|- incomect_ohjects: list of GameObjecs
+ chedi_game_state() : void - player_id: int
+ display_combo_informatien(int, int) : void - ready: boolsan
+ game_over(] - void - score: int
+ image_out_of_plsyer_sressiGameObjed) : void
+ invalid_imagelint. GameObjsct) : void + gel_count_from_combo(GemeObied) : void
7+ + get_count_from_combel) : vaid
Layert + void + remove_combol) : void
+ menu_is_done(id, string) : void
pisiaer_comba: Comiio + set_gamel) : void 1 1
- playerl_count_widget. CounterWidget i Et*mew;‘,ml
- Playeri_games widget: GamesWidget + valid_jmagsint, GameObjec) : void -
- player1_score_widget: ScoreWidget ol i
- player2_comba: Combo B 1 1 1 i
- player2_count_widgst: CounterWidget T
- player2_games_widget GamesWidget
- player2_score_widget: ScoreWidget f
+ _just_change scorefint, int) : void
+ _remove_playerl _combof) - void - =
: + add(BameObjedt) : void
f R
B - o + increment_timelint) : void
+ add_valid_card(int. inf) : void
+ remove_valid_cardint, i
+ update_count{int) : void 1 1 4
+ update_games(int): void
+ update_scors(int) : void Layer2 Layera
1 1 1 - player1_magnifying_glsss: MagnifyingGlass B araa Flayaioss
- player1_magnifying_glsss_touchid: int
2 2 - player?_sres: Playerres
- player2_magnifying_glsss: MagnifyingGlass
A : - common_area: CommonAsea
player?_magnifying_glass_touchid: int -
Scorellidget
= + ares_collision(GameObject) : vaid
+ is_magifying_glass_out_of_place(int} : void + image_collision{Widget) : void
+ update(int) : void + i ion(Wi § - I)
R Rescp(ividoel) - void + is_object_on_player_areas(Gan Objed) : void
1 1
2
2
Gamesidget 2
PlayerArea
+ update(int): void MagnifyingGlass :
Er— + is_object_valid{GameObject) : void
B - ocoupisd: boolesn CommonArea
- out_of place: boolesn
+ is_magifying_glsss_out_of_place(
- + sst_objects_straight() : void
+ verify_if_on_top_of_image(}: void
SingleGame\Widget
1
1
MagnifiedObject
Menu 1
Waithenu + add_button{MenuButton, int, int] : void MainMenu
+ option_one() : void
T3 cption_twe(: vaid <+ option_cne0 : void
+ option_thres() : void + option_twol) : void
+ option_four() : void + option_help() : void
+ aption_help() : void
ption_help 1 1 \1
HelpMenu Instructionsienu CategoryMenu
+ optien_three() void | |+ option_three() : void [[+
+
1 1 1
1 1
O wo P
+ adionf):void| |+ action:void| [+ actiong:void
1 1 1
\Three

+ sction() : void

- pressed: boolean

¥

action) : void
lift_button() : void
press_buttan]

Y

¥

Figure 5.7: Class diagram of the implementation

54

Design and development

ScoreWidgets, two CounterWidgets and two GamesWidgets; the later containing multiple
SimpleGameWidget - defined by the Game Engine upon creating the layer.

Being responsible for the tangible objects only, Layer Two contains two objects of the
MagnifyingGlass class and an ID number for both which is assigned when the tangible
object touches the surface. The MagnifyingGlass class has variables to know whether
it is magnifying an object and whether it is out of the player’s side of the table. Each
instance will create a MagnifiedObject when on top of an image and delete it when not.
The MagnifiedObject class is responsible for producing a larger image of the one the
MagnifyingGlass object is on top of.

Layer Three contains GameObject: a class created for representing an image placed
on the table. The GameObject class simply loads an image given to the constructor and
places it on its canvas so it can be viewed by the players. These images, due to the game-
play established, cannot be scaled. Aside from GameObjects, Layer Three contains two
instances of the PlayerArea class and one of the CommonArea class. The first represents
each player’s area that is located near the edges of the screen. It is used for ascertaining
whether the object belongs to the category of the player associated with that area. The
later provides a common space where the GameObjects are initially put. Although these
may have less pronounced purpose, like other classes already described, they too were
created to make the game extensible beyond the mechanics described for this particular
game.

As mentioned earlier, during the game, the Game Engine class contains only the four
layers previously described and variables to control the flow and implement the mechanics
of the game. This class possesses a list of categories available and a list of categories that
will be chosen to play with. The process of loading GameObjects and Categories is also
managed by this class alone and it is done by scanning the file system for folders and
files, inside the “data” folder, containing images; again with the purpose of extensibility
in mind. This class also keeps track of time elapsed in the game. It generates two instances
of the Player class as well, which are used to store information regarding the player itself,
such as their playing category, games won, objects placed correctly, their score and a list
of all objects of the players’ category - as shown in Figure 5.7. It also contains a variable
to store the player’s combo scoring system.

5.3.1.1 Engine initialisation

Part of the initialisation procedure will now be shown to demonstrate how the menus
exit in order to the game starts, to exemplify how the layer-based system proposed in the
framework is used and to show how they interact with each other on this game prototype.

The following piece of code represents the constructor of the class Game Engine:

def _ init_ (self):

55

Design and development

Widget._ init_ (self)

essencial variables for gameplay
self.time = 0

self.game_started = False
self.categories = []
self.chosen_categories = []

self.load_category_names ()

self.playerl = Player (1)
Player (2)

self.player2

creation of menus
self.set_menus (1)

self.set_menus (2)

schedules an event to update time-related mechanics

Clock.schedule_interval (self._increment_time, 0.1)

As explicitly shown in the previous piece of code, after creating the variables needed
to play, the Game Engine creates the menu system whose initialisation code is shown
below:

def set_menus(self, pid):
create main menu
menu = MainMenu (pid)

self.add_widget (menu)

set menus’ position

if (pid==1):
menu.rotation=-90
menu.pos=(0,0)

if (pid==2):
menu.rotation=90

menu.pos= (Window.width/2, 0)

When a player finishes going through the menu to play, the following method of the
Game Engine class is called to make sure both players are at the same stage before starting
the game:

def menu_is_done(self, pid, category):
if (pid==1):
self.playerl.ready = True
self.playerl.set_category (category)
if self.player2.ready and not self.game_started:
self.game_started = True

self.set_game ()

56

Design and development

if (pid==2):
self.player2.ready = True
self.player2.set_category (category)
if self.playerl.ready and not self.game_started:
self.game_started = True

self.set_game ()

The “set_game” method is presented below:

def set_game (self):
remove menus from UI

self.remove_all_widgets ()

load and set GameObjects from categories chosen
categoryl_objects = self.load_category(self.playerl.category)
category2_objects = self.load_category(self.player2.category)

self.playerl.set_game_objects (categoryl_objects)
self.player2.set_game_objects (category2_objects)

create the 4 layers
self.Layer4 = Layer4()
self.Layer3 = Layer3(self.playerl, self.player2)

self.Layer? Layer2 ()

self.Layerl Layerl (len(self.playerl.game_objects),

len(self.player2.game_objects))

add the 4 layers to the UI
self.add_widget (self.Layer4)
self.add_widget (self.Layer3)
self.add_widget (self.Layer2)
self.add_widget (self.Layerl)

Finally, this next piece of code demonstrates how Layer Two asks Layer Three to if a
GameObject is placed on top of another object, belonging to Layer Three:

from the Layer Two class
def is_there_collision(self, widget):

return self.parent.image_collision_Layer3 (widget)
from the Game Engine class
def image_collision_Layer3(self, widget):

#if necessary, place some code here

return self.lLayer3.image_collision (widget)

57

Design and development

from the Layer Three class
def image_collision(self, widget):
#for all the widgets that it contains
for w in self.children[:]:
unwanted=[self.common_area,self.pll_area,self.pl2_areal]
#1f it is a GameObject
if (w not in unwanted):
cx = widget.x+widget.width/2
cy = widget.y+widget.height/2
#if the widget collides with the centre of the one given
if (w.collide_point (cx,cy)):
return w
#1f not return false

return False

5.3.2 Implementation decisions

During the course of the implementation stage, some decisions were made in order to
underline the goal of this thesis. The most significant and constraining decisions taken
regarded tangible objects’ detection and use, the game’s border size, the in-game user
interface and the menu design.

When implementing the tangible objects, it was noted that, because a new physical
object may be created for some reason - one that uses another marker, for example - the
game would have to be adapted to work as the application may not recognise the object as
belonging to a specific player. In that sense, the magnifying glass object was implemented
to be used freely. When a magnifying glass is placed on the table it becomes property of
the user, regardless of its marker or of previous ones. However, a user may not possess
two magnifying glasses and the game will not recognise more than two in total. This
decision was made due to the increased portability it brings to the application.

In terms of border size, the setting of Scm borders around the table could not be
avoided because a perfect detection could not be guaranteed for finger motion input on
those areas. This also affected the design of the application as these dead areas reduced
the size of the table interaction and forced the display of information, like the players’
score, to take place displayed on the borders rather than occupying valuable space to be
used for GameObijects.

The menus implemented in the game’s final prototype were not as complete as in-
tended. The baseline for menus was drawn and lack of time prevented from implementing
the full range of options tested in collaboration with a parallel study [Fer11]. The same
problem affected the overall design of the prototype as well, as it was not iterated enough
to be more appealing to the player.

58

Chapter 6

Validation and Results

The game developed during the implementation stage was iteratively tested, as previously
explained. Only one of the last iterations was tested with the end-users. The previous
chapter described the game as is its final implementation and considers the changes pro-
posed after the validation of the application with the elderly. Hence, this chapter describes
the evaluation performed and how the results are reflected on the gameplay and design of
the application.

The validation process was carried out at the day care centre where the initial low-
fidelity prototypes were also tested. In this test, an advanced version of the game prototype
was used, so the process involved moving the device to the facility. For this evaluation
alone, a separate room was required so the device could be safely installed and tested
on. Several participants joined the test and stood as spectators. Their presence was also
required for multiplayer gaming and social environment during the test. The overall test-
ing phase took approximately one hour and thirty minutes. A representation of the initial
participats and setup of the test can be seen in Figure 6.1. The tangible objects used in
this prototype can be seen in Figure 6.2. They consisted of a handle on top of the marker,
with information of what the object’s purpose was.

As a first approach, the participants sat around the tabletop while two users played the
game for the first time. Users took turns at playing the game on the tabletop. As time
elapsed and the participants grew accustomed to the game, we seized the opportunity to
ask them whether they would like to play as a team. This generated interest in multiplayer
gaming, active help to both users in identifying images and simple communication and
interaction between players and participants. Along the timeline, the tangible objects’
usage decreased as the users started to memorise the images and did not need to amplify
them.

As a result of this test, several observations were made regarding different aspects of

59

Validation and Results

Figure 6.1: High-fidelity test of the game prototype

7

Figure 6.2: Magnifying glass used as tangible object in the high-fidelity test

60

Validation and Results

Figure 6.3: Example of poor information positioning

the game. In terms of the menu implemented, it was noticed that users tended to press the
icons on the buttons rather than the button itself or the text of the button. Some buttons, on
the top right corner were also considered too small and distant. However, the structure of
the menu and the purpose of each of them were understood by the users as they navigated
through them without difficulty.

Observations from this test also indicate that the initial design of the game was not
efficient. Players usually tried to place the entire image on their assigned area; which
indicates the validation mechanism could be improved by visually informing the user that
the object is validated instead of displaying text for that purpose. Moreover, it was clear
that the positioning of the score information was not ideal because - as seen in Figure 6.3
- the users positioned their arms on top of the information displayed on the border.

The effectiveness of the object manipulation was clear although some minor issues
were discovered. It was observed that the players used multiple fingers to drag an image,
resulting on image jittering due to discrete motion detection, caused by ambience lighting.
As a last observation on both the interaction and gameplay, players seemed intrigued by
the lack of a time-related point system.

In terms of the magnifying glasses’ use, i.e. tangible objects’ use, it was observed
that their purpose was understood and that the users felt a connection with the object.
As a result, the object was being used not only to amplify the game objects but to drag
the objects as well due to a minor issue that often allowed the corners of the objects to
be considered finger input data. Although the visual representation of the tangible object
was somewhat confusing to the users, due to the offset of its amplifying function, a simple

61

Validation and Results

redesign of the object and of its visual representation, in order to remove the need for that
representation while matching the centre of the object to the amplifying reaction, would
dissipate this issue.

Regardless of the issues raised by the observations made during the validation pro-
cess, all the players remained motivated to play it in a way that even younger adults felt
compelled to play and that new participants kept arriving as well. The game concept
presented challenges to the players and kept them engaged. Furthermore, no architec-
tural design modifications were necessary, which validates the structure of the framework
developed in this thesis, its layer-based approach and its input-related structuring and dis-
patch. The observations were also a clear indicator that the application was in the right
track and the modifications applied were considered useful to its future success.

62

Chapter 7

Discussion

During the course of this thesis many decisions were made such as choice of platform, de-
vice or regarding the implementation itself. In this chapter, these decisions are explained
in more detail and alternatives are discussed and analysed.

The literature review revealed techniques more suitable to this project than others
along with frameworks and their respective programming languages that could help bring
more functionality to the final application. The several criteria for comparing the studied
touch detection techniques, explained in section 2.3.2, stood out due to their relevance
to the target audience of this thesis. Other characteristics such as “compatible with dif-
fuser”, which would influence the hand detection, or “minimum hardware size”’, were not
considered as relevant and therefore would only be suitable as a final deciding factor be-
tween two techniques. On the same trail of thought, the comparison between frameworks
for building the application also considered the most relevant factors, also described in
section 2.3.5.1. The decisions regarding the choice of the framework did not depend on
external factors and were mainly based on the comparison of functionality, performance
and programming language. On the other hand, the choice for touch detection technique
was dependant on the device to implement the project on. Another device aside from
the Multitouch Cell Advanced could have been chosen for this project, implementing ei-
ther one of the chosen touch detection techniques: the FTIR and Rear DI techniques.
Although, due to availability constraints, this specific device, that uses Rear DI, was se-
lected.

Regarding the methodology proposed and chosen, it was believed to be the best fit
given the resources available to develop this project. The hardware and software tests al-
lowed for a better understanding of future development conditions and revealed hardware
and software limitations. The “low-level to high-level” approach taken was proven to be a
viable methodology for hardware and software exploration. The most suitable alternative

63

Discussion

would have been to take a “high-level to low-level” approach which would have allowed
a more specific tuning of the device; however, it was decided that the advantage of this
approach was not as beneficial, by contrast to the one taken. Prototype testing with the
target user was done in parallel to the aforementioned tests in order to make an efficient
use of time. Low-fidelity prototypes were chosen over high-fidelity prototypes to allow
for flexibility and creativity in the design as explained earlier in chapter 3.

Hardware tests could have been performed under different specific amount of lightning
in order to test the response and difference in touch detection of the device. Bearing in
mind however, that day-time light may vary within a wide range, it was felt that, due
to the nature of the target-audience, only a day-time environment should be considered.
As for software tests, they were performed despite the end-users. This could have been
done differently as the same tests performed by older adults would reveal more detailed
requirements for the final application as they could be considered high-level prototypes,
although this would require more time, resources and the users’ availability.

Although the implemented game would benefit from design iterations, its robust archi-
tecture and implementation allow it to be easily refined by replacing content and design-
related files. The concepts created, such as the layered approach described in section 5.1.1
that successfully divides user inputs and handles them properly, and the portability and
extensibility of the Kivy framework, make this game framework usable on other table
games. Representative classes such as GameObject and GameEngine can also be reused
by altering the game mechanics and creating a different game. The extension possibilities
of the work produced in this thesis may lead to the development of new games by altering
methods’ names and their implementation. Examples of easy to implement games, on
the developed game framework, are “Air Hockey” or Puzzle Games. These would only
require small changes to some game interaction and visual design. Moreover, the Menu
and MenuButton classes of the game framework can easily be extensible as they were
built to be versatile.

Compromises on the actual game developed had to be made as well. Due to balance
between pressure required for touch detection and dead areas size on the tabletop, a line
needed to be drawn to divide where the user’s input could effectively and accurately be
detected and where it could not. This constraint resulted in the creation of borders for the
game and a smaller interactive area, as previously mentioned. This decision could have
been altered if the system was configured to be more sensitive to finger touches, which
would result in hover detection and higher noise sensitivity. Considering elderly people
as the end-users and their possibly diminished ability to control fine and gross motor
functions, hovering was considered unsecure detection. The opposite, forcing the user to
press harder on the tabletop to get a clear touch detection, would be undesirable for that
same reason and due to shrinking the interactive area accordingly.

This work was the result of careful considerations and decisions and can considered

64

Discussion

to be of relevance to developers that aim to create applications for tabletops, particularly
games. The reasoning and approach followed to study user-specific design may also be
adapted to other studies regarding application development for a specific target audience.

65

Discussion

66

Chapter 8

Conclusions and Future Work

The research conducted and work produced in this thesis led to the development of a
game framework for multi-touch devices in general. The extensibility and usefulness of
the framework developed are clear, as seen in the prototype developed using the concepts
created for the framework. The use of the Python language and the Kivy framework
only add versatility and independence to the applications produced, while providing the
developer with a fast, robust and flexible way to develop them. In addition, Kivy also
provides transparency regarding input methods as it supports OS-dependent protocols
besides TUIO. Furthermore, the usage of the TUIO protocol as means of communication
of touch-related information ensures that the applications built may operate on a diversity
of devices, since TUIO is considered a standard for table based tangible user interfaces.
The game framework created meets the expectations as demostrated through a practical
implementation of a game.

This thesis successfully proposed and conceived a game using the framework created
and the concepts which it is based on. The game proposed was developed with the intent
to be beneficial - in health-related issues - to its target-audience and it allowed us to see
whether the premises established in the game concept and the approach taken to the design
and development of the application were valid. Through observation, it was noted that the
elderly can benefit from the game created.

As a perspective of future work, there are some aspects in which the framework and the
game could be improved. Regarding the current game implementation and in spite of the
positive results obtained with the game at its current state of design and implementation,
the menu layout and overall design of both the menus and the in-game environment could
be improved through several more iterations, according to the users’ feedback.

In terms of work that could be carried out to elevate the current framework, some
suggestions have been considered, such as the implementation of:

67

Conclusions and Future Work

e different containers, to display and dispose information in the menu system
e background statistics on players and ways to analyse them

e more directly, extendable classes of the framework components

Finally, more games can be developed in the future in order to test the frameworks’
capabilities and architectural limitations. Such analysis would eventually provide sugges-
tions on how to improve and widen the framework’s functionalities.

68

References

[AAO5]

[AAGT09]

[AEOT04]

[AKQO6]

[A1108]

[AT10]

[BBLOS]

[Blol1]

[BPSM 03]

Kay Apted and Quigley A. A study of elder users in a face-to-face collab-
orative multi-touch digital photograph sharing scenario. Tech. Rep. TR576,
2005.

Michelle Annett, Fraser Anderson, Darrell Goertzen, Jonathan Halton,
Quentin Ranson, Walter F. Bischof, and Pierre Boulanger. Using a multi-
touch tabletop for upper extremity motor rehabilitation. In Proceedings of
the 21st Annual Conference of the Australian Computer-Human Interaction
Special Interest Group: Design: Open 24/7, OZCHI *09, pages 261-264,
New York, NY, USA, 2009. ACM.

Aaron Adler, Jacob Eisenstein, Michael Oltmans, Lisa Guttentag, and Ran-
dall Davis. Building the design studio of the future. In Making Pen-Based
Interaction Intelligent and Natural, pages 1-7, Menlo Park, California, Oc-
tober 21-24 2004. AAAI Press.

Trent Apted, Judy Kay, and Aaron Quigley. Tabletop sharing of digital
photographs for the elderly. In Proceedings of the SIGCHI conference on
Human Factors in computing systems, CHI *06, pages 781-790, New York,
NY, USA, 2006. ACM.

J. Allen. Older people and wellbeing, 2008. http://www.vhscotland.
org.uk/library/misc/ippr_older_people_and_wellbeing.
pdf.

David Andrews and Soon Tee Teoh. Mtvis: tree exploration using a multi-
touch interface. In Jinah Park, Ming C. Hao, Pak Chung Wong, and Chaomei
Chen, editors, VDA, volume 7530 of SPIE Proceedings, page 75300. SPIE,
2010.

Stefano Baraldi, Alberto Bimbo, and Lea Landucci. Natural interaction on
tabletops. Multimedia Tools Appl., 38:385-405, July 2008.

Miscrosoft Technet Blogs. Microsoft is imagining a nui future, 2011.
http://blogs.technet.com/b/microsoft_blog/archive/2011/01/26/microsoft-
is-imagining-a-nui-future-natural-user-interface.aspx.

Tim Bray, Jean Paoli, C. M. Sperberg-Mcqueen, Eve, and Francois Yergeau,
editors. Extensible Markup Language (XML) 1.0. W3C Recommendation.
W3C, fourth edition, August 2003.

69

http://www.vhscotland.org.uk/library/misc/ippr_older_people_and_wellbeing.pdf
http://www.vhscotland.org.uk/library/misc/ippr_older_people_and_wellbeing.pdf
http://www.vhscotland.org.uk/library/misc/ippr_older_people_and_wellbeing.pdf

[BS02]

[Comlla]
[Coml11b]

[Comllc]

[Coml1d]

[Comlle]

[Com11f]

[Comllg]
[Corll]

[Cza96]

[Cza97]

[DKW10]

[DSVA10]

[Fab06]

[FBGT09]

[FELO9]

REFERENCES

S.J. Biggs and Srinivasan. Haptic interfaces. Stanney, K.M. (Ed.), Handbook
of Virtual Environments: Design, Implementation, and Applications, 2002.

MT4j Community. Mt4j homepage, 2011. http://www.mt47j.org.

Pygame Community. Pygame homepage, 2011. http://www.pygame.
org/.

PyMT Community. Python multi-touch framework homepage, 2011.
http://pymt.eu/.

PyMT Community. Python multi-touch framework notes, 2011. http:
//pymt .txzone.net/.

Sparsh Ul Community. Sparsh ui code homepage, 2011. http://code.
google.com/p/sparsh-ui/.

TUIO Community. Flash/flex for mt homepage, 2011. http://www.
tuio.org/?flash.

TUIO Community. Tuio, 2011. http://www.tuio.org.

Microsoft Corporation. Microsoft surface 2.0, 2011. http://www.
microsoft.com/surface/.

S.J. Czaja. Aging and the acquisition of computer skills. Aging and skilled
performance, pages 201-220, 1996.

S. J. Czaja. Computer technology and the older adult. Handbook of Human-
Computer interaction, Second edition, pages 797-812, 1997.

Georg Freitag Dietrich Kammer, Mandy Keck and Markus Wacker. Tax-
onomy and overview of multi-touch frameworks: Architecture, scope and
features. Workshop on Engineering Patterns for Multi-Touch Interfaces,
2010.

Bob De Schutter and Vero Vanden Abeele. Designing meaningful play
within the psycho-social context of older adults. In Proceedings of the 3rd
International Conference on Fun and Games, Fun and Games 10, pages
84-93, New York, NY, USA, 2010. ACM.

M. Fabregat. Development of high therapeutic value ist-based games for
monitoring and improving the quality of the life of elderly people. Informa-
tion Society Technologies project CN 034552, 2006.

David Facal, Cristina Buiza, Mari F. Gonzalez, John Soldatos, Theodore
Petsatodis, Fotis Talantzis, Elena Urdaneta, Valeria Martinez, and José J.
Yanguas. Cognitive Games for Healthy Elderly People in a Multitouch
Screen. In Proc. of the International Congress on Digital Homes, Robotics
and Telecare for All (DRT4ALL), May 2009.

Williams R. Frazier E. L., McCurdy T. Intra- and inter-individual variability
in location data for two us health-compromised elderly cohorts. Journal of
exposure science and environmental epidemiology, 19:580-592, 2009.

70

http://www.mt4j.org
http://www.pygame.org/
http://www.pygame.org/
http://pymt.eu/
http://pymt.txzone.net/
http://pymt.txzone.net/
http://code.google.com/p/sparsh-ui/
http://code.google.com/p/sparsh-ui/
http://www.tuio.org/?flash
http://www.tuio.org/?flash
http://www.tuio.org
http://www.microsoft.com/surface/
http://www.microsoft.com/surface/

[Fer10]

[Ferl1]

[FHHO6]

[FisO1]

[Fre83]

[GABT06]

[GAea09]

[GB04]

[GCO197]

[Gre(09]

[Gro09]
[HanO1]

[HanO5]

[HRB09]

REFERENCES

Tiago Pinto Fernandes. Game engine for location based services. Master’s
thesis, Faculdade de Engenharia da Universidade do Porto, 2010.

Luis Ferreira. Elderly gaming on tabletop interfaces. Master’s thesis, Fac-
uldade de Engenharia da Universidade do Porto, 2011.

Carstensen L. L. Fung H. H. Goals change when life’s fragility is primed:
Lessons learned from older adultsm, the september 11th attacks and sars.
Social Cognition, 24:248-278, 2006.

Gerhard Fischer. User Modeling in Human—Computer Interaction. User
Modeling and User-Adapted Interaction, 11(1-2):65-86, 2001.

W J Freeman. The physiological basis of mental images. Biol Psychiatry,
18(10):1107-25, 1983.

L. Gamberini, M. Alcaniz, G. Barresi, M. Fabregat, F. Ibanez, and L. Prontu.
Cognition, technology and games for the elderly: An introduction to EL-
DERGAMES Project. PsychNology Journal, 4(3):285-308, 2006.

Luciano Gamberini, Mariano Alcaniz, and Malena Fabregat et al. El-
dergames: Videogames for empowering, training and monitoring elderly
cognitive capabilities. 2009.

C. Shawn Green and Daphne Bavelier. The Cognitive Neuroscience of Video
Games. 2004.

Jeffrey H. Goldstein, Lara Cajko, Mark Oosterbroek, Moniek Michielsen,
Oscar Van Houten, and Femke Salverda. Video games and the elderly. So-
cial Behavior and Personality: An International Journal, 25(4):345-352,
November 1997.

Samuel Greengard. Facing an age-old problem. Commun. ACM, 52:20-22,
September 2009.

NUI Group. Multi-touch technologies. NUI Group, 2009.

Vicki L. Hanson. Web access for elderly citizens. In Proceedings of the
2001 EC/NSF workshop on Universal accessibility of ubiquitous comput-
ing: providing for the elderly, WUAUC 01, pages 14—18, New York, NY,
USA, 2001. ACM.

Jefferson Y. Han. Multi-touch sensing through frustrated total internal re-
flection. In ACM SIGGRAPH 2005 Sketches, SIGGRAPH ’05, New York,
NY, USA, 2005. ACM.

Amanda Harris, Jochen Rick, Victoria Bonnett, Nicola Yuill, Rowanne
Fleck, Paul Marshall, and Yvonne Rogers. Around the table: are multiple-
touch surfaces better than single-touch for children’s collaborative interac-
tions? In Proceedings of the 9th international conference on Computer
supported collaborative learning - Volume 1, CSCL’09, pages 335-344. In-
ternational Society of the Learning Sciences, 2009.

71

[HWO04]

[Idel1]

[INdKPO7]

[Jac10]

[JLO6]

[KAB108]

[Kam95]

[KB99]

[KBBCO05]

[KJGAO6]

[KK96]

REFERENCES

et al. H. Wan, S. Gao. Mivas: A multi-modal immersive virtual assembly
system. ASME 2004 Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, pages 113—122, 2004.

Ideum. Gestureworks - multi-touch made easy, 2011. http://
gestureworks.com/.

Wijnand Ijsselsteijn, Henk Herman Nap, Yvonne de Kort, and Karolien
Poels. Digital game design for elderly users. In Proceedings of the 2007
conference on Future Play, Future Play 07, pages 17-22, New York, NY,
USA, 2007. ACM.

Jodo Tiago Pinheiro Neto Jacob. Location based videogame. Master’s the-
sis, Faculdade de Engenharia da Universidade do Porto, 2010.

J. Kim J. Lee. u-table: A tabletop interface for multiple users. Computa-
tional Science and Its Applications - ICCSA, pages 983-992, 2006.

Per O. Kristensson, Olof Arnell, Annelie Bjork, Nils Dahlbick, Joackim
Pennerup, Erik Prytz, Johan Wikman, and Niclas AAstrém. InfoTouch: an
explorative multi-touch visualization interface for tagged photo collections.
In Proceedings of the 5th Nordic conference on Human-computer interac-
tion: building bridges, NordiCHI *08, pages 491-494, New York, NY, USA,
2008. ACM.

C Kamm. User interfaces for voice applications. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 92(22):10031-
10037, 1995.

Hirokazu Kato and Mark Billinghurst. Marker tracking and hmd calibration
for a video-based augmented reality conferencing system. In Proceedings
of the 2nd IEEE and ACM International Workshop on Augmented Reality,
pages 85—, Washington, DC, USA, 1999. IEEE Computer Society.

Martin Kaltenbrunner, Till Bovermann, Ross Bencina, and Enrico Costanza.
TUIO: A protocol for table-top tangible user interfaces. In 6th International
Gesture Workshop, 2005.

Martin Kaltenbrunner, Sergi Jorda, Gunter Geiger, and Marcos Alonso. The
reacTable*: A Collaborative Musical Instrument. In /5th IEEE Interna-
tional Workshops on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE’06), volume 0, pages 406—411, Los Alamitos,
CA, USA, June 2006. IEEE.

R. Kjeldsen and J. Kender. Toward the use of gesture in traditional user
interfaces. In Proceedings of the 2nd International Conference on Automatic
Face and Gesture Recognition (FG ’96), FG *96, pages 151—, Washington,
DC, USA, 1996. IEEE Computer Society.

72

http://gestureworks.com/
http://gestureworks.com/

[KKLO7]

[LeelO]

[LF11]

[LRZ10]

[Mat09]

[MS94]

[Mull1a]

[Mulllb]

[MV11]

[NMS10]

[NSA10]

[O’RO4]

[OW04]

REFERENCES

Song-Gook Kim, Jang-Woon Kim, and Chil-Woo Lee. Implementation of
multi-touch tabletop display for hci (human computer interaction). In Pro-
ceedings of the 12th international conference on Human-computer interac-
tion: interaction platforms and techniques, HCI’07, pages 854-863, Berlin,
Heidelberg, 2007. Springer-Verlag.

Johnny Chung Lee. In search of a natural gesture. XRDS, 16:9—-12, June
2010.

Sheelagh Carpendale Lawrence Fyfe, Adam Tindale. Junctionbox: A toolkit
for creating multi-touch sound control interfaces. In International Confer-
ence on New Interfaces for Musical Expression, June 2011.

Uwe Laufs, Christopher Ruff, and Jan Zibuschka. Mt4j - a cross-platform
multi-touch development framework. CoRR, abs/1012.0467, 2010.

Manuel A. Matos. Kombination von multitouch-gesten und spracheingabe
fiir interaktive oberflachen. Technical report, Institut fiir Informatik und
Wirtschaftsinformatik der Universitdt Duisburg-Essen, November 2009.

Thomas H. Massie and Kenneth J. Salisburg. The PHANToM haptic in-
terface: A device for probing virtual objects. In Proceedings of the 1994
ASME International Mechanical Engineering Congress and Exhibition, vol-
ume DSC 55-1, pages 295-302, Chicago, IL, USA, November 1994.

MultiTouch. Multitouch cell advanced, 2011. http://multitouch.fi/
products/celladvanced/.

MultiTouch. Multitouch cornerstone, 2011. http://cornerstone.
multitouch. fi.

Christopher Denter Mathieu Virbel, Thomas Hansen. Kivy: a crossplatform
framework for creating nui applications, 2011. http://kivy.org/.

Meza-Kubo V. Nava-Munoz S., Moran A. L. Context-aware notifications:
A healthcare system for a nursing home. Intelligent Interactive multimedia
systems and services, 6:241-250, 2010.

Francisco Nunes, Paula Alexandra Silva, and Filipe Abrantes. Human-
computer interaction and the older adult: an example using user research
and personas. In Proceedings of the 3rd International Conference on PETr-
vasive Technologies Related to Assistive Environments, PETRA 10, pages
49:1-49:8, New York, NY, USA, 2010. ACM.

Cameron O’Rourk, editor. A Look at Rich Internet Applications. Oracle
Magazine, 2004.

Sejin Oh and Woontack Woo. Manipulating multimedia contents with tan-
gible media control system. In ICEC, pages 57-67, 2004.

73

http://multitouch.fi/products/celladvanced/
http://multitouch.fi/products/celladvanced/
http://cornerstone.multitouch.fi
http://cornerstone.multitouch.fi
http://kivy.org/

[PRV09]

[Ret94]

[RHM™09]

[SBD"08a]

[SBDT08b]

[SCG10]

[Sny03]

[SRPO7]

[ThTO09]

[VHBO1]

[VLN09]

REFERENCES

Thomas Niedzielski Prasad Ramanahally, Stephen Gilbert and Desirée
Velazquez. Sparsh ui: A multi-touch framework for collaboration and mod-
ular gesture recognition. ASME-AFM 2009 World Conference on Innovative
Virtual Reality (WINVR2009), 2009.

Marc Rettig. Prototyping for tiny fingers. Commun. ACM, 37:21-27, April
1994.

Jochen Rick, Amanda Harris, Paul Marshall, Rowanne Fleck, Nicola Yuill,
and Yvonne Rogers. Children designing together on a multi-touch tabletop:
an analysis of spatial orientation and user interactions. In Proceedings of

the 8th International Conference on Interaction Design and Children, IDC
’09, pages 106—114, New York, NY, USA, 2009. ACM.

Johannes Schoning, Peter Brandl, Florian Daiber, Florian Echtler, Otmar
Hilliges, Jonathan Hook, Markus Lochtefeld, Nima Motamedi, Laurence
Muller, Patrick Olivier, Tim Roth, and Ulrich von Zadow. Multi-Touch
Surfaces: A Technical Guide. Technical report, October 2008.

Johannes Schoning, Peter Brandl, Florian Daiber, Florian Echtler, Otmar
Hilliges, Jonathan Hook, Markus Lochtefeld, Nima Motamedi, Laurence
Muller, Patrick Olivier, Tim Roth, and Ulrich von Zadow. Multi-Touch
Surfaces: A Technical Guide. Technical report, October 2008.

Dominik Schmidt, Ming Ki Chong, and Hans Gellersen. Handsdown: hand-
contour-based user identification for interactive surfaces. In Proceedings
of the 6th Nordic Conference on Human-Computer Interaction: Extending
Boundaries, NordiCHI 10, pages 432441, New York, NY, USA, 2010.
ACM.

Carolyn Snyder. Paper Prototyping: The Fast and Easy Way to Design and
Refine User Interfaces (Interactive Technologies). Morgan Kaufmann, 1
edition, April 2003.

Helen Sharp, Yvonne Rogers, and Jenny Preece. Interaction Design: Be-
yond Human-Computer Interaction. Wiley, 2 edition, March 2007.

Hsien-tsung Chang Tsai-hsuan Tsai. Sharetouch: a multi-touch social plat-
form for the elderly. Computer-Aided Design and Computer Graphics,
2009. CAD/Graphics °09. 11th IEEE International Conference, pages 557—
560, 2009.

Christian von Hardenberg and Frangois Bérard. Bare-hand human-computer
interaction. In Proceedings of the 2001 workshop on Perceptive user inter-
faces, PUI ’01, pages 1-8, New York, NY, USA, 2001. ACM.

Paul Varcholik, Joseph J. Laviola, Jr, and Denise Nicholson. Tactus: A
hardware and software testbed for research in multi-touch interaction. In
Proceedings of the 13th International Conference on Human-Computer In-
teraction. Part II: Novel Interaction Methods and Techniques, pages 523—
532, Berlin, Heidelberg, 2009. Springer-Verlag.

74

[Wal06]

[WEFMO3]

[wik11a]

[wik11b]

[wik11c]
[wik11d]

[wik11e]
[Wik11f]

[Wik11g]

[YHO7]

REFERENCES

D. Wallin. Touchlib homepage, 2006. http://www.
whitenoiseaudio.com/touchlib/.

Matthew Wright, Adrian Freed, and Ali Momeni. Opensound control: state
of the art 2003. In Proceedings of the 2003 conference on New interfaces
for musical expression, NIME ’03, pages 153—-160, Singapore, Singapore,
2003. National University of Singapore.

NUI wiki. Diffused illumination (di), 2011. http://wiki.nuigroup.
com/DI.

NUI wiki. Dsi, 2011. http://iad.projects.zhdk.ch/
multitouch/?p=90.

NUI wiki. Dsi, 2011. http://wiki.nuigroup.com/DSI.

NUI wiki. Frustrated total internal reflection (ftir), 2011. http://wiki.
nuigroup.com/FTIR.

NUI wiki. Llp, 2011. http://wiki.nuigroup.com/LLP.

Wikipedia. History of video games, 2011. http://en.wikipedia.
org/wiki/History_of_video_games.

Wikipedia. Serious game, 2011. http://en.wikipedia.org/wiki/
Serious_game.

G.N. Yannakakis and J. Hallam. Modeling and augmenting game entertain-
ment through challenge and curiosity. International Journal on Artificial
Intelligence Tools, 16:981-999, 2007.

75

http://www.whitenoiseaudio.com/touchlib/
http://www.whitenoiseaudio.com/touchlib/
http://wiki.nuigroup.com/DI
http://wiki.nuigroup.com/DI
http://iad.projects.zhdk.ch/multitouch/?p=90
http://iad.projects.zhdk.ch/multitouch/?p=90
http://wiki.nuigroup.com/DSI
http://wiki.nuigroup.com/FTIR
http://wiki.nuigroup.com/FTIR
http://wiki.nuigroup.com/LLP
http://en.wikipedia.org/wiki/History_of_video_games
http://en.wikipedia.org/wiki/History_of_video_games
http://en.wikipedia.org/wiki/Serious_game
http://en.wikipedia.org/wiki/Serious_game

