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Abstract

Today’s embedded systems integrate digital and analog technologies into a single chip,
known as System-on-Chip (SoC), in order to achieve increased performance, system relia-
bility, and reduction in packaging and test costs. As fabrication technology advances and
processes shrink, design costs escalate due to increasing system complexity, and challeng-
ing integration and verification tasks. Part of the digital circuitry of an SoC is comprised
of fixed digital logic blocks, but another part is often custom designed, and may benefit
from redesigns and updates, or may have a dual use (regular and test mode, for example).
This is possible when reconfigurable digital blocks exist, that are capable of supporting
different digital functions after silicon fabrication. Reconfigurable logic reduces design risk
and any design error can be corrected quickly and inexpensively.

Inside an SoC, the space left after placing the analog circuitry and other large Intellectual
Propery (IP) cores is very often non-rectangular. I propose using a non-rectangular core of
standard cell based reconfigurable logic to fill that space, thereby adding to the final prod-
uct the advantage of reconfiguration with a potentially short design cycle. The goal of the
current work is to develop a variable-shape reconfigurable core architecture and the tools
to support its implementation through a regular digital design flow, in order to achieve
the cost-efficient inclusion of such cores in SoC-based consumer electronics applications.

The proposed general core architecture is based on a fixed set of basic cells that imple-
ment logic, switch and routing blocks. All blocks can be configured serially through one
or more scan chains. The logic blocks contain 2- or 4-input look-up tables, with combina-
tional and sequential outputs interfacing to 4 or 6 vertical and horizontal unidirectional
tracks respectively for routing. The tracks connect switches on the Wilton switch block.
The three types of blocks connect by abutment to form a cluster cell. Cluster cells connect
by abutment to other cluster cells to form the reconfigurable core with the desired shape.

A software tool was created that, given the shape of the available area, generates a
Verilog netlist of the reconfigurable core and a verification testbench. The basic blocks
are described by gate-level netlists of standard cells. These gate-level netlists can be used
within a standard digital design flow. In this way common Computer Aided Design (CAD)
tools and optimized standard cells from available libraries can be used, reducing the design
risk associated with the reconfigurable core and its impact on the SoC design cycle.

Programmable cores with non-rectangular shapes (”S”, ”L”, ”T”, ”U”) were created
and different logic functions manually mapped onto them. Validation was performed by
simulating time-annotated netlists combined with a wireload model. The programming
circuitry operated at 850 MHz for a 90 nm CMOS process. The speed of the logic is design-
dependent, but an upper limit of 850 MHz was set by simulation. The approximate area
for each cluster with 2-input look-up tables is 1600µm2 for a 90 nm process and 1000µm2

for a predictive 45 nm process. At the smaller technology node, a 100x100 programmable
core takes around 10 mm2.
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Resumo

Os sistemas actuais incluem tecnologia digital e analógica numa única solução, System-
on-Chip (SoC). Esta permite ao sistema alcançar maior desempenho, fiabilidade e redução
nos custos. À medida que os processos avançam, os custos de desenvolvimento e im-
plementação escalam devido ao aumento de complexidade e das tarefas de integração e
verificação do sistema. Parte do circuito digital num SoC é composto por lógica fixa,
mas outra parte pode beneficiar de alterações de funcionalidade, actualizaçães ou permitir
usos distintos tais como operação normal e em teste, por exemplo. Isto é posśıvel quando
existem no sistema blocos de lógica digital reconfigurável, capazes de suportar diferentes
funções após fabrico. A lógica reconfigurável reduz o risco do produto e qualquer erro
pode ser rapidamente, e com baixo custo, corrigido.

Dentro de um SoC, o espaço vazio após a instanciação dos blocos analógicos e outros
é normalmente não-regular. Proponho um bloco de lógica reconfigurável não-rectangular
para preencher esse espaço e adicionar ao produto final reconfigurabilidade e um poten-
cialmente curto ciclo de desenvolvimento. O objectivo deste trabalho é a criação de um
bloco digital reconfigurável de forma variável e das ferramentas que suportam a sua im-
plementação. Desta forma é posśıvel incluir estes blocos de forma eficiente e barata em
aplicações comerciais baseadas em SoCs.

A arquitectura proposta é baseada num conjunto fixo de células básicas que implemen-
tam blocos de lógica, comutação e propagação. Os blocos podem ser configurados através
de uma interface série. Os blocos de lógica contêm tabelas de funcionalidade de 2 ou 4
entradas com sáıdas combinacionais ou sequenciais ligadas a 4 ou 6 linhas unidireccionais
verticais e horizontais respectivamente para propagação dos sinais. Estas ligam a um bloco
de comutação baseado nos blocos de Wilton. Os 3 blocos referidos compõem macrocélulas
que se interligam para criar a forma não-rectangular do bloco de lógica programável.

Uma ferramenta foi criada para, dada a forma desejada e a área dispońıvel, gerar uma
descrição em Verilog do bloco programável junto com um ambiente de verificação. As
células são descritas recorrendo à instanciação de células básicas digitais. Ferramentas
de CAD e bibliotecas de células básicas podem ser usadas, reduzindo o risco associado à
criação do bloco programável e ao seu impacto no ciclo de desenvolvimento do SoC.

Blocos de lógica programável com formas não-rectangulares (”S”, ”L”, ”T”, ”U”)
foram criados e diferentes funções lógicas neles mapeados. A sua validação foi feita através
da simulação de circuitos anotados com informação temporal e de um modelo apropriado
para as respectivas interligações. O circuito operou a 850 MHz para um processo CMOS
de 90 nm. A velocidade da lógica é dependente da função implementada mas um limite
superior de 850 MHz foi observado. A área aproximada para cada macrocélula com funções
lógicas de 2 entradas é de 1600µm2 para um processo de 90 nm e 1000µm2 para um
preditivo de 45 nm. No nó de tecnologia mais pequeno, um bloco programável de 100x100
macrocélulas ocupa uma área de 10 mm2.
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“The ideal engineer is a composite... He is not a scientist, he is not a mathematician, he
is not a sociologist or a writer but he may use the knowledge and techniques of any or all

of these disciplines in solving engineering problems.”

N. W. Dougherty
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Chapter 1

Introduction

Today’s embedded systems integrate digital and analog technologies into a single chip,
known as System-on-Chip (SoC), in order to achieve increased performance, system relia-
bility, and reduction in packaging and test costs. As fabrication technology advances and
processes shrink, design costs escalate due to increasing system complexity, and challeng-
ing integration and verification tasks. Part of the digital circuitry of an SoC is comprised
of fixed digital logic blocks, but another part is often custom designed, and may benefit
from redesigns and updates, or may have a dual use (regular and test mode, for example).
This is possible when reconfigurable digital blocks exist, that are capable of supporting
different digital functions after silicon fabrication. Reconfigurable logic reduces design risk
and any design error can be corrected quickly and inexpensively. Non-rectangular cores
of standard-cell based reconfigurable logic can be used to fill space left on SoCs, thereby
providing the system with hardware reconfigurability.

1.1 Motivation

Commercially available products rely on integrated systems whose costs are increasing.
In order to continuously integrate systems into a single chip, and with it reduce the
overall product cost (including design cycle, fabrication and verification associated costs),
programmability features should be added to these systems. To be able to reprogram
and dynamically reconfigure the complete or part of the digital core is an advantage,
compelling and tempting. By configuring the logic blocks and routing fabric correctly, any
digital user circuit can be implemented after fabrication. These programmable features
allow for products to be quickly updated and corrected without having to go through the
complete design cycle again, reducing this way its overall cost and increasing its time in
market. Current systems may have already fixed and programmable logic functionality
but provided by different chips on the same board, with the added costs this represents.

1



2 Introduction

Besides the reconfigurability that the programmable logic cores add to the overall
system, it is important to continue to push for the integration of such cores on SoCs,
closing the gap between the Field Programmable Gate Array (FPGA) and Application
Specific Integrated Circuit (ASIC) worlds, joining advantages from both. Within these,
the area for the programmable logic can often be available with a non-rectangular shape,
result of laying out the other digital and analog hard macros that integrate the same SoC.
This way, there is a need to continue investigating programmable cores architectures and
design flows that allow for these cores to be easily integrated and accommodated in non-
rectangular areas within SoCs. The same is valid also for rectangular cores that are to be
embedded on SoCs.

The possibility of reliably adding programmable logic to products and, with it, reducing
their overall costs, time to market and risk while still being able to target a wide range
of applications with different performance and characteristics with the same product is a
challenge and a strong motivation for the completion of the proposed work.

1.2 Objectives

The main objectives of this work are to study the integration of programmable cores
into single chip solutions by investigating and proposing an architecture for embedded
programmable logic cores with non-regular shapes and by developing a methodology and
associated tools to facilitate the design and implementation of these cores in a cost-efficient
manner for consumer electronics applications.

1.3 Original Contributions

An architecture for non-rectangular programmable logic cores was proposed, imple-
mented and validated through functional and post-layout simulations. To support the
programmable core, a set of tools was also created to automatically generate its frontend
views and support its backend views creation together with a simple testbench customized
for the particular core created.

The architecture proposed is based on standard digital cells and this way the pro-
grammable core implementation benefits from a standard and well defined digital design
flow and CAD tools. Using these commonly available cells on a reliable and stable design
flow reduces the core development risk over a potentially short design cycle.

Several different programmable cores with non-rectangular shapes were generated and
functionally validated through manually mapping simple digital logic functions on them.
Within these cores, studies were performed to evaluate the reconfigurable cores area, power
and operating frequency.

The results obtained show the feasibility of implementing a technology-independent,
flexible architecture for non-rectangular reconfigurable logic cores. The generation of these
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cores is supported by an automatic generation tool created during the development of this
work and they can be physically implemented through a standard digital design flow.

1.4 Thesis Organization

After the introduction, chapter 2 presents the background and relevant information
needed to understand and link the previous known work and data with the proposed one
is presented.

The proposed embedded programmable core architecture is presented on chapter 3. On
this same chapter, the programmable core automatic generation, validation and operation
is described together with the tools developed for those purposes.

Chapter 4 presents experimental results performed with the programmable core archi-
tecture in order to characterize its area, power and delay characteristics for a 90nm CMOS
process and a predictive 45nm process.

Finally, chapter 5 concludes and provides orientations for future work.



4 Introduction



Chapter 2

Background and Relevant Work

2.1 Introduction

The recent history in the semiconductor industry shows that digital and analog tech-
nologies such as microprocessors, embedded memories, Radio Frequency (RF) analog de-
vices, among others, can be integrated into a single solution known as SoC. This is the
embedded system of today and the future. Pre-designed and verified blocks, cores and
other macros commonly referred as IP macros, are obtained from third-parties or inter-
nally developed, and combined onto a single chip. These cores may include embedded
processors, memory blocks, or specific processing functions circuits. They can then be
combined onto a chip to implement complex functions as the example on figure 2.1 shows.

This integration allows for the increase on the speed of communication, reduction on
packaging and test costs and added system reliability. In the future, these highly integrated
systems will include also mechanical, optical and bio-electrical circuitries.

Figure 2.1: Example of a System-on-Chip.

5
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The SoC methodology provides an elegant solution to incorporate also one or more
programmable logic cores into it. The possibility to include embedded programmable
cores within these systems is accompanied by benefits and several challenges that will be
discussed through this document.

These programmable cores target the implementation of arbitrary digital logic circuit
after fabrication. Reconfigurable logic reduces design risk and any design error can be
corrected quickly and inexpensively. With the move to extremely complex and big designs
and the added pressure to get products early in the market, more and more companies
are addressing the need and taking into consideration the advantages of integrating pro-
grammable logic into their SoCs.

According to market analysts, the trend is for the market for products with pro-
grammable logic cores to grow. The data disclosed by the International Technology
Roadmap for Semiconductors [1] points to a continuous increase in the amount of re-
configurable logic on SoCs. Table 2.1 represents this trend.

Year of Production 2007 2008 2009 2010 2012 2014 2016 2018
% of reconfigurable SoC
functionality

28% 28% 30% 35% 40% 45% 50% 56%

Table 2.1: System-on-Chip ITRS reconfigurability trends.

Products related to communication applications should lead the way, followed by net-
working and telecommunications infrastructures. Nevertheless, these hybrid solutions with
fixed and programmable logic cores will never be the designer’s target unless they are eco-
nomically viable.

As technology advances and we observe a continuous shrink of process nodes, design
costs are becoming prohibitive due to increase in system complexity, integration and veri-
fication tasks, design and mask production. This cost increase is presented on both figure
2.2 and 2.3. The data provided by UMC1 present the increase of overall fabrication costs
with time. Altera2, a company leader in innovative custom logic solutions, shows the
increase on total development costs for ASIC designs as the process nodes shrink.

Each new solution is becoming more complex and more expensive to develop. The
inclusion of programmable cores on these products would amortize the cost of developing
several chips for several different products.

With the increase on chip design costs, the economics will be a strong driver for the
addition of hardware programmability. These embedded programmable core solutions will
increase the yield of these chips, by allowing for the product lifetime and time in market to
be increased, as will be shown later on this document. Since low yield on expensive SoCs
can result on the premature ending of the respective product development, the embedded
reconfigurable core is worth to be considered for consumer products.

1http://www.umc.com/
2http://www.altera.com/
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Figure 2.2: Fabrication costs, from UMC.

In summary, the overall design costs of SoC design, combining engineering, IP blocks
and mask costs help to understand the continuous effort that should be made to integrate
programmable cores into complex systems such as SoCs.

Adding reconfigurable logic cores to SoCs enhances them by providing the system with
run-time reconfigurability that can be used for post-fabrication modifications. Digital
logic programmability allows for a whole set of different logic functions to be quickly
implemented after circuit fabrication including upgrades to the design and design errors
corrections.

These changes or modifications applied to programmable logic after circuit fabrica-
tion can be quickly and inexpensively accommodated what translates into a very low
Non-Recurring Engineering (NRE) cost as there is no need to wait for new silicon to be
manufactured and tested with the correction performed. When programmable logic is not
present on the system, such a change or modification adds significant delay and risk to
the product design cycle due to the expensive design iterations.

With a solution that contains embedded programmable logic, the interface between
fixed and programmable logic doesn’t have to cross chip boundaries and Printed Circuit
Board (PCB) lines, saving power and time. Without having to deal with the extra costs
of assembling and testing a second chip, embedding a programmable core when such logic
is needed ends up reducing the system cost by reducing the number of chips on the same
board design.

Another advantage with embedding programmable logic cores is related with the fact
that there are only some commercially available programmable chips of specific sizes what
can result in a waste of resources, money and space. Programmable logic cores embedded
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Figure 2.3: Total development costs, from Altera.

on SoCs can be implemented with the size and shape as needed.

As for the product life cycle, the addition of programmable logic cores reduces the
product time to market as the digital logic functions for each product can be implemented
after silicon is fabricated and prolongs its time in market, extending the market win-
dow, as product corrections and updates can be implemented on the programmable logic
core without having to manufacture new silicon. Early market penetration increases the
product probability of success what is attractive to any company.

Embedded programmable logic cores are the natural solutions to close the gap between
FPGAs (external chip providing programmable logic) and ASICs/SoCs (typically with
only fixed digital logic) designs providing the best possible performance metrics as well
as reduced costs and development times. If programmable logic is required, an embedded
solution can offer higher performance and area-efficiency than the use of an external FPGA.

Only a customized solution can accommodate critical size and performance require-
ments of current ASIC and FPGA designs and, at the same time, take advantage of today’s
capabilities of using programmable logic and programmable devices that can meet, due to
the continuous technology processes advances, for all areas of circuit design, the needed
power, delay and area requirements.

2.2 Field-Programmable Gate Array (FPGA)

FPGAs [2] are the most commonly available programmable logic devices. They are
reconfigurable digital logic chips that can be configured by the customer or designer after
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manufacturing in order to implement any digital logic function. This capability exists at
the expense of added delay (reduced performance), area and power consumption.

The basic FPGA consists of arrays of logic blocks with electrically programmable
interconnections. Early devices contained the equivalent of a few thousand gates, but
today’s number has grown into the millions. This flexibility allows designers to create
hardware functions that exactly match the needs of a specific embedded application. In
addition to the logic blocks, the latest devices embed dedicated processors and other
macros within the silicon, allowing the designer to make hardware and software trade-offs
to meet performance requirements.

Several different architectures exist [3, 4] and are implemented on commercial FPGAs.
As will be described on section 2.2.1, FPGA architecture is divided into a logic and a
routing section. The architecture variations target the logic blocks complexity, the routing
channels length and segmentation and the switch blocks complexity with the purpose of
being able to provide higher performance for a bigger range of different applications.
There are also other FPGA architectures, that, being customized for a particular type of
application, are less flexible but offer higher performance for that particular product or
application. For example, a FPGA that includes Digital Signal Processing (DSP) blocks
or other fixed logic dedicated circuits.

The development and creation of a FPGA is a time consuming and resources demand-
ing task as they’re typically implemented using a full custom layout flow to achieve the
best possible performances and compromise between area, power and delay.

A detailed description of a FPGA design from architecture to circuit design and layout
is found on [5, 6].

Modern FPGAs are not only composed by the programmable digital circuit but may
include other specialized hard macros such as Phase-Locked Loop (PLL)s and other clock
generation circuits, processors and dedicated signal physical interfaces such as Ethernet.

2.2.1 FPGA Architecture

There are four main categories of FPGAs available: symmetrical array, row-based,
hierarchical and sea-of-gates. What differs in all of them is the way the interconnections
are implemented and the way the programming is made. The most common and simple
type of architecture is the symmetrical array that is most commonly known as an island-
style architecture.

This island-style architecture, being uniform and simpler to be used, was chosen as
the base for the programmable logic core architecture proposed later on this document.
Figure 2.4 exemplifies a typical island-style FPGA with the logic, switch blocks and in-
terconnects that compose it. These blocks will differ on each implementation being more
or less complex according to the FPGA targeted performance or application needs. An
internal fixed logic configuration circuit is also present on the FPGA to support its usage
and dedicated pads are used to surround this island-style circuit mesh and provide the
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interface to the outside world. The configuration circuit and dedicated pads are not visible
on the picture presented below.

Figure 2.4: Example of an island-style FPGA architecture.

FPGA different architectures have a significant different impact on the quality of the
product speed performance, area efficiency, and power consumption. The architecture is
divided into two groups that define the overall FPGA architecture: logic block and routing
architecture.

Within the different logic block and routing architectural choices, a FPGA overall
architecture can be implemented as an array of the same logic and routing blocks but it
can also be implemented as a group of different logic and routing circuits for increased
performance and area efficiency. FPGAs created this way are respectively considered to
be homogeneous or heterogeneous.

It needs to be taken into consideration that the best architectural choice is highly
dependent on the type of designs it will support and the programming technology chosen
such that there is no architecture that can be considered the best for all cases.

2.2.1.1 Logic Block Architecture

The logic block is responsible for implementing the gate level functionality required for
each application. The functional complexity of logic blocks can vary from simple boolean
operations to larger and complex arithmetic operations. The logic block is defined by
its internal circuit and granularity: fine or coarse grain. Fine and coarse grain means
that the FPGA is composed by small or large parts respectively. The granularity can be
increased, by making use of large and complex cells capable of supporting multiple digital
logic functions, to reduce the number of needed logic blocks (one example is visible on
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figure 2.7) but coarse grained FPGAs may end up with wasted silicon area. On the other
hand, fewer logic blocks exist on the critical path of a given circuit, allowing it to reach
higher speed performances.

Between a very fine grain and very coarse grain logic block architecture a huge amount
of architectures exist that differ on the area, speed and power metrics they are capable of
obtaining.

One way to change the granularity of the FPGA is to change the number of basic logic
elements that are organized into clusters and the way these clusters are hierarchically
connected into the interconnect structures.

The most important part of the basic logic block is the portion of circuit that holds the
truth table for the logic function and routes the function result to the logic block output.
That part is known as the Look-Up Table (LUT) [7].

Using large LUTs usually results in good performance since there is a fewer amount of
logic on any given critical path. As the logic block size increases with the number of LUT
input signals, more silicon area is used. An important consideration for the analysis of any
FPGA logic block is to balance the size and performance compromise and determine the
optimal LUT size that will be sufficient to meet area usage, logic density and performance.
Past work [8, 9] shows that a LUT size of 4 input signals is the most area-efficient for a
non-clustered context and the work developed on [10] suggested that with a heterogeneous
mixture of LUT sizes of 2 and 3 an equivalent area efficiency to a LUT size of 4 could be
achieved. A more recent study [11] has found that LUT sizes of 4 and 6 inputs and cluster
macrocells integrating 3-10 LUTs result in a better area-delay compromise than initially
documented.

A compromise must exist between the LUT block size, density and its performance.

The logic block is typically implemented using Static Random Access Memory (SRAM)
cells or variants of these to serve as 1-bit memory cells for the LUT that will store the
programmed digital logic function. A N-input LUT is capable of implementing any N-
input function and for a N-input LUT, 2N SRAM cells or other memory cells are needed.
Together with a 2N input multiplexer, any boolean combinational function can be imple-
mented. The LUT holds any digital logic function with a constant delay as the signal data
paths are the same across the LUT for any given function.

As the example on figure 2.5 presents, a Flip-Flop (FF) can also exist at the LUT
output to sample the combinational output and generate its sequential output. A mul-
tiplexer is often used to select the logic block output as the sequential or combinational
output of the mapped function. Figure 2.6 shows a representation of a possible LUT im-
plementation as described before. Using LUTs with a larger number of inputs (N) reduces
the number of LUTs required to implement any circuit and subsequently reduces routing
demands. However, it increases the circuit area and complexity exponentially. On figure
2.7, a macrocell with K N-input LUTs is presented. The complexity of this macrocell
defines the FPGA architecture granularity.



12 Background and Relevant Work

Figure 2.5: FPGA N-input look-up table (LUT) and logic block.

2.2.1.2 Routing Architecture

The programmable routing in a FPGA provides the connections between the logic
blocks that hold the user digital logic function. These connections are composed by unidi-
rectional or bidirectional segments and programmable switches and they should be flexible
enough to support local and long routing demands while respecting specified speed and
power consumption constraints. The routing structure can be organized within the FPGA
on a flat level or through a hierarchical organization where connections on higher levels of
hierarchy correspond to longer connections on the programmable architecture.

Digital circuits require also a group of global signals such as reset and clock signals
that must be distributed across the whole FPGA. These dedicated routing networks are
designed to guarantee this distribution and are commonly available on modern FPGAS.

FPGA routing architecture incorporates segments of different lengths. These can ad-
ditionally be connected through programmable switches to form longer wires. The choice
on the number and length of segments impacts the FPGA density. A compromise must
exist between the length of the tracks, their span over the programmable logic core and
the performance and routability they’ll support. Short tracks force signals to cross several
switch blocks before they reach their destination, degrading the system performance by
increasing the combinational delay between blocks, reducing its maximum possible oper-
ating frequency. Longer wire segments span multiple blocks and require fewer switches,
reducing routing area and delay but decreasing also routing flexibility, which reduces the
probability that a user circuit can be routed successfully. A small number of wires will
results in only a fraction of the logic blocks being utilized and a poor FPGA density while
an excessive number of wires results in unused silicon area.

The detailed routing architecture discussion also includes the compromise between
unidirectional or bidirectional routing on each routing block. Bidirectional routing wires
increase the programmable core flexibility but additional control logic needs to exist and
with it, additional silicon area is used. The use of bidirectional wire segments can also
result in many routing switches unused and the additional sinks per wire segment in-
crease the lines capacitance and therefore impact the delay. With unidirectional segments
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Figure 2.6: N-input look-up table (LUT) implementation.

[12], a larger number of wires on each routing channel might be required for the same
performance. Some previous work [13, 14] state that more or less the same number of
unidirectional tracks is required for the same routability.

Past studies [15] show that the most area-efficient routing architecture is the one with
completely uniform routing channels across the entire chip and in both horizontal and
vertical directions. According to the authors, what explains this observation is that the
FPGA circuits tend to have routing demands that are evenly spread across a FPGA and
this way, mapping best to a uniform routing architecture.

Where vertical and horizontal tracks intersect they connect to a switch block. Switch
blocks allow for tracks to connect to adjacent channels and this way route the signals as
needed. These blocks will this way connect any given input signal to a possible set of
one or more output signals. The switch block shown on figure 2.8 is an example where
the switches are represented at the wires intersection by a circle. On the same figure,
a representation of one group of switches is visible in the form of Negative Metal Oxide
Semiconductor (NMOS) transistors that close or open the switch through the assertion of
the respective logic value at the transistors gate inputs.

Still regarding switch blocks, the circuit complexity and number of supported connec-
tions must be defined taking into consideration that a short number of internal switches
on this block will difficult and reduce the routability of a digital design and a large number
of internal switches can result on a waste of resources and area. Low routability will result
in a programmable core with small flexibility but high routability beyond necessity can
result in a large area, delay and power dissipation that is not needed. A large number of
programmable switches ease the task of completing the routing but they also consume a
significant amount of area and for this reason, a compromise must also exist regarding the
number of needed programmable switches.

On typical FPGA applications, the switch blocks are implemented using SRAM cells
and pass-transistors logic. The complexity of the switch block is a compromise between
area and delay added to signals and routability. Several switch blocks have been studied
[16] on the past such as the Universal [17, 18], Disjoint [19] and wilton [20], among oth-
ers, each with different characteristics and therefore different performance and routability
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Figure 2.7: Macrocell with K N-input look-up tables (LUT).

results.

Figure 2.8: FPGA switch block.

2.2.2 Programming Technologies

Different programming technologies are used to implement the programmable switches
on current FPGA implementations being that the most dominant one is done through the
use of SRAM cells, where the switch is a pass transistor controlled by the logic value stored
on the SRAM cell. Other switches are implemented through the use of anti-fuse, Erasable
Programmable Read-Only Memory (EPROM) and Electrically Erasable Programmable
Read-Only Memory (EEPROM) technologies.
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SRAM cells are re-programmable and can be implemented on standard CMOS pro-
cesses. Since no special manufacturing steps are required other than the standard CMOS,
the latest technologies can be used to create SRAM-based FPGAs and this way take
advantage from higher integration, speed and lower power consumption.

2.3 Application-Specific Integrated Circuit (ASIC)

An ASIC chip is a system designed with non-standard integrated circuits customized
for a particular use. Products implemented on an ASIC core typically target a very high
volume production to amortize the high development cost that is typically associated with
the development of these solutions.

These chips can include a large number of digital and analog building blocks such as
dedicated or general purpose processors, memories and others. This kind of solution is
often referred as SoC [21].

There are three main categories for ASICs: gate-array, standard cells and full custom.

On a gate-array solution, transistors or gates are fabricated on a two dimensional array
to form the basic circuit mesh for the ASIC. The device is then programmed through the
customization of the upper layers that will connect the desired nodes on the array.

A development based on standard cells uses standard optimized blocks with a defined
functionality (simple boolean logic functions such as inversion, AND as well as sequential
logic). These cells are grouped into digital blocks that implement complex digital logic
functions. They provide high flexibility in the creation of ASIC digital cores.

The full custom design offers the highest performance and the smallest silicon used
area at the expense of increased design time, complexity and risk.

A typical CAD system for ASIC design is an integrated suite of software facilities for
design entry, functional simulation, physical layout, test simulation and design verification.
Hierarchical design, with detailed schematics specifying the function of each part, and
symbols enabling them to be instanced in higher-order parts, is the key to well-structured
ASICs.

The most common ASIC digital logic cores are often implemented using standard cells
from commonly available libraries as they allow for the designer to quickly implement a
digital core and target it for high performance and a compromise between area, delay and
power using standard CAD tools. These digital cores present on ASIC typically represent
fixed logic. With only fixed digital logic available on the system, it is not possible to
re-program the digital core to operate with a different function, no reconfigurability.

In summary, ASIC designs offer an attractive solution for high volume production
applications. They integrate a significant amount of analog and digital circuits that, if
available only as discrete components, wouldn’t allow the speed and performance that an
ASIC design is able to provide.
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2.3.1 Standard Cells Based Design

Several different simple logic functions such as inverters, AND and OR gates and
multiplexers, among others, are implemented by blocks of transistors that are connected
together to form smaller cells. These cells share the same height and are placed together by
abutment. The numerous layers of metal that are currently available on modern processes
are used to interconnect these cells over the locations where they’re placed and establish
this way the complex digital logic functions the digital core implements.

Standard cells libraries are commonly available from a wide number of providers in all
available technology nodes and flavors. These companies provide and support all needed
data and information to be used on the large number of tools that run on a digital design
flow. With this data and through this flow, the designer is able to easily create and
validate any digital core using the wide number of automated tools that exist to support
the digital core creation and validation.

The usage of standard cells for the implementation of fixed digital logic cores has
been widely accepted in the industry for the design of ASICs. Although a full custom
manual layout flow can possibly result on a higher performance and area efficiency, the
implementation of a big and complex digital core is not doable on a full custom layout
flow. Together with this, standard cells based digital cores are capable of delivering the
performance needed for all types of applications.

2.4 FPGA vs ASIC

Programmable logic is typically available through the use of external chips, specifi-
cally developed for that purpose, such as FPGAs, while ASIC designs typically contain
only fixed logic. Understanding the differences between them will allow to easily compre-
hend the advantages of integrating the concepts of programmable logic cores to the ASIC
world, where the flexibility given by these cores is not usually present, while maintaing its
performance metrics and still targeting a wide range of products and applications.

Table 2.2 [22] summarizes some of the characteristics of FPGAs and ASICs, or ca-
pabilities that can be achieved with each of these designs, by describing parameters that
characterize them.

FPGA circuitry can be programmed and reprogrammed to hold several different digital
functions. This reconfigurability and flexibility, however, comes at the expense of increased
area, delay and power consumption what is expected since more devices are used to execute
the same logic functions and more internal gates need to be driven. Some past studies
[23]conclude that an FPGA is on average 35 times larger, 3.4 to 4.6 times slower than
a standard cell implementation and that it also consumes 12 times more dynamic power
than an equivalent ASIC on average. Other studies have been performed to compare
also standard cells implementations with full custom design [24, 25, 26, 27], all presenting
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FPGA ASIC
Easy to design Difficult to design

Short development time Long development time
Limited design size Large designs supported

Limited design complexity Complex designs supported
Limited performance Higher performance supported

High power consumption Low power consumption
High per-unit cost Low per-unit cost

Fast design re-spins Slow design re-spins

Table 2.2: FPGA vs ASIC characteristics comparison.

results that show that significant area, power and delay overhead exists when comparing
a standard cell solution with one implemented on a full custom flow.

A FPGA has a very reduced engineering cost and development time since they are sil-
icon validated solutions, commercially available, well documented and with all the needed
tools to support them and their usage. However, the development and implementation of
a FPGA circuit is a time consuming task that requires a large engineering effort for the
architecture and layout generation. To compensate for the generalized architecture and
the added delay and power consumption, the circuitry is drawn in a full custom design
flow, where the design is carefully drawn to achieve the best possible performance.

An ASIC platform has lower design flexibility than a FPGA platform due to its fixed
digital logic. With this kind of designs, it is possible to obtain high speeds of operation
and reduced area and power consumption. These high performance characteristics come
at the expense that these solutions are more complex, with higher design risk, take a
longer time to develop and require a big engineering cost.

With fixed digital logic, corrections or changes are not easily accommodated and may
require a complete design cycle including manufacturing and silicon validation steps what
can hit and seriously affect any product schedule for market release.

ASICs usually take months to develop and fabricate and cost hundreds of thousands to
millions of dollars for a first part. They also provide lower cost for high volume products.
FPGAs can be configured on a very short amount of time, reconfigured anytime needed and
cost less than a few thousand dollars. They’re more expensive for high volume products.

The understanding about these parameters and characteristics should help a designer
to decide on the inclusion of programmable logic on its product knowing the advantages
the FPGA world will bring to the ASIC and SoC. The selection criteria, to embed or
not programmable logic on the system, besides the possible need to do it, should also
take into account its total cost, performance, power consumption, system size, reliability,
design flexibility, ease of design and time for product to reach market.

Due to the increase in area, power consumption and delay, the target application
for embedded programmable logic cores is the most appropriate when the amount of
programmable logic required is small.
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In summary, these offerings have distinct advantages: performance and density for
ASICs versus Turn Around Time (TAT) and flexibility for FPGAs.

Bringing programmable logic into ASIC solutions, through the form of embedded pro-
grammable logic cores, will reduce their development cycles cost, risk and time while
enhancing it with digital core programmability and maintaing area, power and delay char-
acteristics needed to support current and future products always searching for the best
cost-efficiency compromise.

The gap between FPGAs and ASICs can be reduced by adding hard blocks, with
specific and customized dedicated functions, to FPGAs or embed digital programmable
logic to SoCs.

2.5 Previous Work

Embedded FPGA cores can be divided into soft and hard macros [28]. The simplest
approach to embed FPGAs on SoCs is to strip them from the I/O pads and adapt it such
that it can be treated as another IP core. These IP cores are identified as hard IPs and
can be typically used to implement small to medium logic functions like microprocessor
accelerator functions. Hard IPs means that their layout, speed and other characteristics
are fixed and cannot be changed. The advantage is that the user doesn’t need to design
the programmable core and can license it from a vendor that has already designed and
validated it. The fact that only specific block sizes may be available, potentially resulting
on waste of resources and that available ones may not be suitable for a certain set of
applications is a limitation on the usage of these hard Embedded Field Programmable
Gate Array (eFPGA)s.

A more efficient approach is to automatically generate the eFPGA fabric as needed
within the ASIC or other customized design flows. This methodology is referred as to
create soft eFPGA IPs. In [29, 30, 31] their implementation issues are considered namely
the programmable core size selection, connections between fixed logic and programmable
core logic and routing of the global clock signals to the programmable logic core. On
this case, the programmable core architecture is described in behavioral Register Transfer
Language (RTL) and implemented together with the rest of the digital cores through a
standard digital design flow. ASIC tools don’t need to be modified and the flow follows a
standard design flow that the designers are familiar with. Synthesizable architectures to
support sequential [32] and combinational [33, 34] circuits are another common approach.
This technology independent methodology is more flexible than when using hard eFPGA
IPs but from it results higher area, delay and power overheads due to the usage of standard
cells libraries. For very small amounts of logic, this ease of use may be more important than
the increased overhead. Other advantages such as the easy integration with fixed digital
logic and the possibility of creating a core of any size and shape can help the designer to
choose. By customizing the standard cells library used or adding tactical standard cells



2.5 Previous Work 19

to the common libraries it is possible to reduce the area, speed and power overhead. On
[28, 35, 36], additional methodologies are proposed that combines both advantages of hard
and soft embedded FPGAs to create firm IP FPGAs.

Table 2.3 summarizes the embedded FPGA methodologies briefly described above.

Soft eFPGA Firm eFPGA Hard eFPGA
Behavioral RTL Structural RTL or gate-

level netlist
Transistor-level design

ASIC flow Custom ASIC flow Full-custom flow
Generic standard cells Custom tactical cells and

generic standard cells
Full-custom design

Logic synthesis required No logic synthesis required No logic synthesis required
Cells free to move Regular, tiled structure Regular, fixed-tile structure
Configurable architecture Fixed architecture Fixed architecture
Flexible size, no fixed shape Flexible size, shape can be

fixed
Fixed size and shape

Mixed with cells used for
rest of design (fixed logic)

Designed as a separate core
and inserted

Designed as a separate core
and inserted

Small amount of pro-
grammable logic

Small-to-medium amount
of programmable logic

medium amount of pro-
grammable logic

Table 2.3: Embedded FPGA implementation methodologies.

Structured ASICs emerged as an alternate way to reduce the gap between ASICs
and FPGA solutions [22, 37]. Structured ASICs offer advantages in cost and reduced
design cycle time when compared to traditional standard cells based ASIC designs. This
methodology customizes only a small number of metal and via levels reducing the overall
development cost and design effort. This is possible if appropriate circuitry exists and is
already implemented such that the users design will just complete the connections and
form the digital logic function desired. eAsic3 is one of the companies that through this
approach is able to create circuits with a significant higher gate density than of traditional
FPGAs since most of the programmable interconnect is removed and so this area overhead
associated with FPGAs disappears. The approach followed by eAsic has the disadvantage
that reconfigurability after fabrication is not possible.

Among other approaches to reduce the area gap between FPGAs and ASICs, [38]
proposes that each hard block of logic is accompanied by its own soft logic that can be
used in the event the hard logic is not needed. With this methodology, a soft logic block,
identified as a shadow cluster, is used in parallel with the hard logic block. A multiplexer
is also used on the circuit to select the output of the active block. This method resulted
on improved area-efficiency when compared to commercial FPGAs with the same hard
blocks of logic since the area cost for programmable logic and routing is not wasted for
unused hard logic circuit.

3http://www.easic.com/
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Companies like LSI Logic4 and ChipX 5 have added to some of their ASIC products
small programmable logic cores consuming more gates per square millimeter than on an
ASIC architecture but less than on a typical FPGA. Actel6 and LSI Logic also produce
and license FPGAs structures as ASIC cores by providing small programmable logic blocks
for integration on customer’s solutions.

The VariCore IP is an embedded reprogrammable ”soft hardware” core designed by
Actel to be used in ASIC or Application Specific Standard Product (ASSP) SoC appli-
cations and called embedded programmable gate array. The main building block can
implement about 2.5k ASIC gates and the grouping of these blocks together with configu-
ration and test logic creates the SRAM-based embedded programmable core architecture.
The approach from LSI Logic is called LiquidLogic and consists on a group reconfigurable
arithmetic logic units designed to be embedded on SoCs.

A cooperation between IBM 7 and Xilinx 8 resulted on the integration of standard
FPGA blocks on the ASICs developed by IBM [39].

Other previous studies used as a reference for this work have targeted the layout
automation as a means to reduce the intensive and manual work of implementing the pro-
grammable logic circuits under a full custom layout design flow. One example is the work
developed on [40, 41]. Several automatic layout methodologies are described, including
one using standard cells as a base for the design. The Totem Project [42, 43, 44] is one of
those examples whose objective is to reduce the design time and effort in the creation of
domain specific reconfigurable architectures. These architectures are optimized for a set
of applications and constraints. This way, the programmable logic created is smaller in
area and performs better than a standard general-purpose reconfigurable core while main-
taining the post-layout flexibility needed to support the set of specified applications. This
work results show that it is possible to use, among other methods, standard cells to auto-
mate the programmable logic layout generation and that the savings gained increase the
application domain is narrowed. Further improvements have been introduced also by [28]
by adding architecture-specific tactical standard cells in the ASIC flow, allowing the em-
bedded programmable core generation to be configurable and imposing a regular structure
to the core architecture. The GILES project [45] automatically generates a transistor-level
schematic from a high-level architectural specification of a FPGA. A cell-level netlist is
also generated and placed and routed automatically. The tiles created can be grouped
together to create the FPGA array.

The usage of standard cells to create the programmable circuit mesh is well explored
on [40, 34, 42, 43, 44]. They also suggest that the standard cell design methodology is
capable of delivering and handling programmable logic circuits such as the ones found on

4http://www.lsi.com/
5http://www.chipx.com/
6http://www.actel.com/
7http://www.ibm.com/
8http://www.xilinx.com/
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FPGAs. On [34], the programmable core was restricted to have a directional bias to avoid
combinational loops but this results on a less flexible routing as it only allows it in one
direction. As expected, these approaches show that these designs present significant area,
speed and power consumption overhead when compared to full custom implementations.
However, these significant overheads don’t take into consideration the huge design cycle
reduction that one is able to obtain to implement these programmable cores using standard
cells and commercial tools.

Some work has been also done regarding non-rectangular reconfigurable cores and
their integration on SoCs [34]. CAD algorithms for mapping, placing and routing digital
designs on non-rectangular cores are the focus of the work described on [46, 47]. This
work focuses its analysis on typical island-style FPGAs and proposes a new specification
for the blocks architecture, to be used with current FPGA CAD tools and improvements
to available tools for added efficiency and to better deal with non-rectangular shapes.
Having a specification created and the tools improved, the author is able to experiment
around different shapes and shapes ratios with different benchmarks and conclude about
the speed and density values obtained among them.

There is also some previous work targeting run-time reconfigurability with FPGAs
embedded on SoCs [48]. The embedded programmable core on this system is based on
standard cells.

2.6 Programmable Logic: Applications and Products

The inclusion of a programmable logic core on a SoC [49, 50] is appealing and valuable
in different applications and scenarios as the same silicon die can serve a wider range
of applications. Each new product virtually mandates a development cycle where the
implementation is cycled through numerous prototype, test, and debug iterations before
it becomes stable. Programmable logic is virtually the only way to produce such designs
efficiently. Examples can be given for the areas of portable, medical and communication
devices.

2.6.1 Changing Standards and Requirements

The market is very competitive and the pressure for products to enter it even before
some standards are finished is constant and high. If the product life cycle and schedule
depends on the closing of the standard or standards it implements, it might suffer a big
impact.

Programmable logic allows for part of the standard to be updated or implemented
very late in the design cycle (even after silicon fabrication). For example, a cell phone
might operate with different protocols in different geographical areas and the digital logic
functions to implement these protocols can be implemented as needed after the product
is fabricated.
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Other applications would include signal processing, cryptography, image analysis and
a whole range of different algorithms that these applications need to be support. For ex-
ample, by the time 56K modems were being introduced, algorithms were not standardized
and different manufacturers had different algorithms implemented in different products.
Rockwell, a company releasing 56K modems to the market, allowed the users to update
these standards at a later stage by providing programmable logic in their product, thus
gaining market share.

Also when dealing with multiple standards, where it is a high risk to select one because
many contenders will not succeed in the long term, to have programmable logic on the
system reduces this risk as the solution can be quickly updated to the correct standard.

2.6.2 Customized Logic Interface Layer

An unique design, serving several customers and their products and applications, may
be desired. Unique requirements from different customers may be handled by the pro-
grammable logic core as opposed to designing all the features that respect all requirements
and a mechanism that selects them or maintaining different databases, each requiring its
own mask sets, what is an expensive scenario. The programmable logic would enable to
have a single chip with a customizable interface for each customer. A single chip can
be manufactured and serve as a family of devices with the same silicon die. The cost of
developing these solutions over several products is this way amortized.

The ability to quickly customize a product by acting on the programmable logic enables
the companies to offer different products for the same market segment and allows for a low
risk evaluation of new markets since the same core solution can be used with a customized
logic layer.

2.6.3 On-chip Testing

With the increase of circuit integration, development in packaging technology and
circuits’ complexity, the systems testing complexity has also become more demanding
and complicated. If each individual block carries with it its own testability circuitry,
it is difficult and complicated to integrate them all such that the chip remains easily
testable and without losing any of the testability each individual block would support.
Programmable logic can be used on these cases to glue testability logic and generate
stimulus for each part of the chip. The advantage is that the tests implemented on
programmable logic can be easily changed in order to reflect either new or improved
checks. There will be no need in this case to have all the testability logic implemented on
fixed logic, wasting area and resources. The designer can devise new tests when required
and implement them on an already fabricated silicon die.
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2.6.4 Design Corrections and Improvements

When a system uses programmable logic, design corrections and improvements can
be quickly and inexpensively implemented. The possibility to use the programmable core
for these modifications is the opposite of having to go through a complete silicon re-spin,
required for corrections to be implemented on fixed logic, including new manufacturing
masks. An important scenario where the application of programmable logic takes a deep
importance is for military applications, where reliability and flexibility are the most crucial
items being considered and where performance is important but the correct functionality
of the device in harsh conditions and environments is critical. Also regarding the pos-
sible updates that can be implemented on the available programmable logic core, it is
worth mentioning that these can be done locally or remotely through any standard web-
based interface that the system might implement. This characteristic pleases the system
manufacturers in the sense that, if needed, systems can be easily globally updated.

2.7 Other Considerations

Besides the already mentioned topics, there are others that are influenced or have a
different value if a certain product includes a programmable logic core, embedded or not
on its SoC. The discussion around these topics helps to establish the impact on market
economics, engineering development time and other general design considerations such as
cost, risk, complexity, time to market, re-use possibility, production volume and others.

If programmable logic is needed on a certain product, to embed it on the SoC will end
up reducing the number of components and other external chips that would provide this
programmable logic on the end product, making it cheaper for the end user.

The fact that a programmable core exists increases the product life on market since
it is possible to correct, change and update the system through programmability of the
digital core. Having implemented and validated a programmable logic core for the first
product, developing a new one with it makes it faster to reach production and therefore
reduce its time to market.

To accommodate these programmable cores into a SoC, their creation, implementation
and use flows should be very flexible and well documented. A designer should be able to
quickly, inexpensively and reliably create and integrate a programmable core and correct,
change and update its functionality after fabrication.

It should be possible to integrate the creation of the embedded programmable cores
on standard design flows such that the investment to purchase additional specific tools, as
needed for FPGAs development and usage, is not needed.

Reusing embedded IP cores in SoC designs has become the primary means of improving
the productivity of designers facing very large and complex developments. On the business
side, the embedded programmable core can be released and sold as a IP soft or hard
core. The soft core corresponds to technology independent functional representation of
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the programmable logic core and has the advantage that it can be implemented by the
customer on any desired technology and in any desired shape and size. A hard core is the
physical implementation of the soft core and, being tied to a certain technology, lacks the
flexibility and technology portability the soft core provides. The embedded programmable
cores can be considered like any other IP cores in the SoC design methodology.

2.8 Summary

Independently of the amount of concerns and verification coverage are put into a SoC,
there are always products that end up not working properly for the intended functionality
either due to design errors, wrong simulations and verifications or even a later change in
the design requirements. To embed programmable logic cores on these products reduces
its risk, shortens it’s time to market and, overall, its cost.

A disadvantage of using embedded programmable cores is the area and delay penalty
that accompanies them since every logic function uses the same physical space and takes
the same delay. In conclusion, programmability takes time and space.

Programmable logic cores, embedded on ASIC solutions, allow for users to closely
integrate them with other macros on the chip, adding digital core programmability to the
product while maintaing its performance requirements and still valid for a broad range of
products and applications.

Previous work demonstrates the possibility of embedding hard and soft FPGA cores on
SoCs. Their results clearly show that it is possible to include reconfigurable logic macros
on these complex systems through different methodologies and making use of different
resources. The higher efficiency gained with the integration of soft cores through standard
design flows is documented together with some approaches that make use of standard cells
libraries for that same purpose. Finally, some of the previous work also targets usage
of programmable logic cores generated with non-rectangular shapes by addressing the
changes needed to available tools to improve its efficiency with these cores.

The work developed during this thesis, to be presented on the next chapters, proposes
a reconfigurable core architecture based on standard cells for a fine-grain programmable
fabric to better fit the available areas on SoCs and tools to automatically generate it. This
architecture is generic for all types of digital designs applications and does not constrain
the potential designs to be mapped on it on their directionality. The architecture and
development flow that will be presented on the next chapter eliminates the problems with
combinational loops and allows its basic component blocks to be generated as standalone
fixed logic digital blocks, which together create the programmable circuit mesh.

Bringing FPGA concepts and architectures to ASIC solutions through fast and reliable
design flows, using commonly available technology libraries and CAD tools will help to
join the advantages both solutions have while mitigating the respective disadvantages.



Chapter 3

Embedded Programmable Logic

Cores

A programmable logic core, devised and implemented to be integrated within a SoC,
should be able to exist in different shapes and aspect ratios to better mingle with the
existing fixed digital logic and other macros.

Inside a SoC, the space left after placing other hard macros, corresponding to analog
and digital circuitry, is very often non-rectangular and shapes like ”S”, ”L”, ”T” and ”U”
are commonly found on SoCs. A non-rectangular core of standard cell based reconfigurable
logic can be used to fill that space, thereby adding to the final product the advantage of
reconfigurability. These programmable cores can also exist with regular rectangular shapes
within a SoC.

The example on figure 3.1 shows the non-rectangular programmable core as an array of
cluster blocks embedded on a SoC. Each cluster block contains logic and routing circuitry
and is replicated across the entire array. On the same figure, other hard macros and
fixed logic digital blocks are visible. The fixed digital logic for the programmable core
that occupies part of the area exists to support the core operation and reconfiguration.
Following sections on this chapter detail the architecture of these clusters and the blocks
that compose them.

3.1 Architectural Overview

The reconfigurable digital logic core architecture can be conceptually divided into two
different groups of circuits. The first one is related with the memory and programming
technology for configuration of the core and the second is the group of configurable circuits.

The memory portion of the core serves the purpose of holding the logic values that
correspond to the digital logic functions mapped on the reconfigurable core together with
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Figure 3.1: SoC and embedded programmable core.

the logic values that set the state of the switching and routing circuits. The group of
configurable circuits supports the signals propagation and routing through the core.

The structures holding the programmed logic values need to be spread around the
core, grouped close to logic blocks to store each logic function that composes the digital
design mapped on the reconfigurable core and also together with each switch and selection
path for the remaining circuits. This imposes that on an array of equally replicated cluster
blocks, as shown on figure 3.1, each of those blocks need to contain both memory structures
and configurable circuits. It is not possible to have a single external memory macro to
hold all logic values that set the reconfigurable core to the desired digital logic function
and configuration.

The configurable circuits, besides the multiplexing and routing logic, configured by
the memory elements, correspond also to the LUT and the sequential logic to support
sequential digital functions.

As will be described later on this section with more detail, the proposed architecture
is composed by a logic block that includes a memory portion, the LUT structure and
the needed sequential logic and by 2 additional blocks (routing and switch) that together
compose the circuits needed for the signals propagation and routing. Each of these also
includes memory blocks to hold the logic values that set the core configurations.

The architecture chosen and proposed is based on a typical symmetrical array FPGA
also known as an island-style FPGA architecture. To allow for an easier integration with
SoCs, the choice was made for the component blocks to respect a fine-grain approach.
Based on standard cells, the programmable logic core programming technology makes use
of flip-flop cells to hold the mapped logic design. The scan chains associated with typical
digital logic scores will be the programming technology used to program the reconfigurable
core. The hierarchical organization of the core and the knowledge of the circuits to be
implemented guarantee that all data paths cross the same amount of logic allowing the
reconfigurable core delay characteristics to be easy to estimate and bound.

The methodology followed allows to implement each basic block as a standalone block,
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where there is no dependency on the external loads or input transition times. The approach
followed also eliminates the combinational loops, common to FPGA architectures and that
usually cause problems to ASIC tools. The flow used to implement the reconfigurable cores
allows to quickly update or correct the core standard cells based basic blocks.

For the island-style architecture three different structures are required: logic, switch
and routing blocks. Logic blocks are surrounded by routing blocks and where these chan-
nels intersect we have the switch blocks. These three basic blocks connect by abutment
to form a more complex cell at a higher structural level, a cluster block. Clusters connect
by abutment to other cluster blocks to form the reconfigurable logic core with the desired
shape.

As will be described later with more detail, since each cluster is composed by a single
2- or 4-input logic block and associated routing and switching circuitry, the overall em-
bedded programmable logic core architecture shows a fine-grain characteristic, due to the
small cluster blocks, what is the most suitable to serve non-rectangular shapes. A coarse
granularity, with cluster blocks sharing additional logic blocks and with it an additional
number of circuits and used area, would result on a larger cluster block and less flexibil-
ity to integrate a reconfigurable core on a non-rectangular shape. Future results might
show that the cluster block complexity and intrinsic area might be increased for added
performance and routability of the reconfigurable core with no significant lost in flexibility
of the core non-rectangular shape but for now, and as a simpler approach to prove the
architecture proposed, a simple cluster block providing fine granularity is proposed.

The island-style architecture has a number of desirable properties. With routing tracks
close to the logic blocks, efficient connections can be implemented. By setting the routing
channels to span only the logic block length it allows for the blocks to be easily organized
into the cluster tiles which can be replicated on a non-rectangular array. The regularity
obtained with the architectural choice allows to quickly estimate delay between any two
points on the mapped digital logic circuit.

The proposed general core architecture requires only a small set of standard cells
for its implementation. Table 3.1 contains a list of the minimum set of sequential and
combinational standard cells needed. It is visible that besides the regular D-type flip-flop
for the sequential logic, there is also a requirement for a D-type flip-flop cell with scan
input and enable signals to support the scan chain that will serve as the programming
technology for the architecture proposed. This specific need is discussed in more detail
in section 3.1.2.1. If these cells are not available, they can be created through the use of
other cells (for example: a 2-input NOR cell can be built using a 2-input OR cell with an
INV buffer).

By using standard cells, commonly available CAD tools can be used and the pro-
grammable core architecture can be physically implemented through a standard digital
logic design flow. Circuit implementation and improvements can be quickly performed.
For example, a buffer or a multiplexer cell can be quickly sized to different drive strengths



28 Embedded Programmable Logic Cores

for a more robust block at a very early implementation stage. The advantage over a full
custom layout flow, where the design is manually drawn, is strong and immediately visible.

Combinational
INV The INV cell provides the logical inversion of its single input
BUF The BUF cell provides the logical buffer of its single input
TBUF The TBUF cell provides the logical buffer of its single input with

an active-high output enable
MUX2 The MUX2 cell is a 2-to-1 multiplexer and the state of the selec-

tion input signal determines which data input is presented to the
output

MUX3 The MUX3 cell is a 3-to-1 multiplexer and the state of the selec-
tion input signal determines which data input is presented to the
output

AND2 The AND2 cell provides the logical AND of two inputs
NOR2 The NOR2 cell provides a logical NOR of two inputs

Sequential
DFFR The DFFR cell is a positive-edge triggered, static D-type flip-flop

with asynchronous active-low reset
SDFFR The SDFFR cell is a positive-edge triggered, static D-type flip-

flop with scan input, active-high scan enable, and asynchronous
active-low reset

Table 3.1: Minimum set of standard cells needed for the reconfigurable core architecture.

If needed, special purpose cells can be designed and used together with the available
standard cells to improve area or performance. For example, 2- and 3-input multiplexer
cells represent a significant part of the data path on the architecture proposed. These
cells can be implemented for smaller propagation delays, at the expense of additional used
area, in order to speed-up the data path and with it the maximum possible operating
frequency of the reconfigurable core. On a different complexity level, a complete logic
block, as the ones proposed and documented on section 3.1.4, could be drawn as a single
cell for reduced area and increased performance with shorter and optimized connections
between the circuits that compose it. The work involved on creating these cells corresponds
to drawing its layout in an optimized way, validating its functionality, characterizing its
timing arcs and generate all needed views such that the cell could be used under a standard
digital design flow to implement the programmable cores as if it would belong to a digital
standard cells library.

For each of the typical FPGA circuits and structures that correspond to the logic,
routing and switch blocks, an analysis was done over documented FPGA architectures
to translate those circuits’ functionalities into standard cells based circuitry that would
implement the same functions. This work is described in more detail over section 3.1.2.

The use of standard cells, although being area-delay optimized cells, incur on area
overhead when compared to typical FPGA structures. On the other hand, any digital cir-
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cuit implemented with CAD tools is easier to create, correct and validate when compared
to a custom design flow to create and integrate the FPGA structures.

For the proposed architecture, defining the number of data inputs to the logic block,
determines the architecture for the routing and switch blocks as it defines the number of
their input and output data signals. In this sense, the logic block architecture defines the
routing and switch blocks that surround it. Throughout this document, the switch and
routing blocks presented are always relative to a certain defined logic block architecture.

The following sub-sections start by describing the design flow used to implemented
fixed logic digital cores with standard cells. Then the standard cells that were chosen
to implement typical FPGA functionalities are presented. The cluster macrocell and the
implementation details of the logic, routing and switch blocks follow.

3.1.1 Design Flow based on Standard Cells

Each standard cell implements a simple digital logic function. They are grouped and
connected together to created complex digital logic functions.

This section describes the reasons why standard cells from commonly available stan-
dard cells libraries can be and were chosen for the programmable core implementation.

Standard cells are implemented following a full custom design flow and, in this sense,
each standard cell is already optimized for area, power consumption and performance.

A fixed logic digital core is usually implemented in a standard digital design flow using
the available standard cells for that purpose. This includes synthesis, place & route and
behavioral and post-layout simulations with standard CAD tools. This automated flow is
commonly known and characterized by a reliable and short design cycle. On a full custom
flow, circuits are manually drawn and time consuming transistor-level simulations need to
be done what leads to a development cycle that is longer and carries it more risk than
the approach to implement digital cores using standard cells, which is the one chosen to
support the reconfigurable cores creation.

Another advantage is that the designer doesn’t need to customize or purchase any
particular tool other than the ones that are already being used for the creation of the
fixed logic digital cores.

With standard cells it is possible to quickly update or correct the digital cores created
on a short and reliable time frame. As an example, it is extremely quick to change the
drive strength of a certain standard cell being used and validate the digital core again.
Such a change would be equivalent to change transistor sizes on a circuit implement on
a full custom flow, what is more risky and requires more effort both to change and to
validate the change.

One additional advantage related to the use of standard cells it the easier technology
portability they allow, either on a different process node or within the same process node,
under a different flavor. The process of creating the same standard cell based design for a
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different technology is reliable and fast when compared to the effort needed to port to a
different technology one design created in a full custom layout flow.

The circuits that will be presented on the following sections are implemented through
the instantiation of standard cells that together hold the needed functionality to sup-
port the needs of a programmable logic core. This means that behind the reconfigurable
core proposed, there is a group of fixed digital logic blocks. These blocks are connected
together such that a programmable fabric exists to support, at a higher level, the core
reconfigurability.

A programmable logic core created with standard cells incurs in area, delay and power
overhead [23] when compared to the same type of programmable logic or circuitry imple-
mented on a full custom flow [24, 25, 26, 27].

The use of optimized cells to create the proposed embedded reconfigurable cores using
common CAD tools through a short and reliable design cycle is a strong motivation to use
them.

3.1.2 FPGA Structures: Standard-cells Implementation

The first step towards the creation of the programmable circuitry is to understand
what kind of circuits compose the programmable logic on typical FPGA solutions and
implement those circuits with commercially available standard cells on common standard
cells libraries.

In this sense, to support a standard-cell based programmable core, three main logic
functionalities were identified: data storage, routing and disconnecting digital logic signals.
Table 3.2 summarizes the meaning of each functionality that will be described in more
detail on the following sub-sections.

Functionality Description
Data Storage Hold a logic value after programming
Routing Propagate and route signals
Disconnecting Retain signals to avoid contention by disconnecting them

from a certain path

Table 3.2: Main FPGA logic functionalities.

3.1.2.1 Data Storage

The ability to store a bit logic value is present on FPGA structures typically through
the use of SRAM memory cells. Each cell will hold a certain digital logic value after
programmed. The SRAM cells will support the logic function truth tables on the logic
blocks and hold the logic value for the remaining control signals that define the signals
routing on the reconfigurable core. SRAM cells implementation is based on a bi-stable
latching circuitry to store each bit. Simple and reliable SRAM circuits exist and can be
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created with no more than six transistors. SRAM cells make part of the highest density
FPGAs. An example of this simple circuit is visible on figure 3.2.

The SRAM read process is done by precharging both bitlines (BL,BL) to a high logic
value and then asserting the wordline (WL). One of the bitlines will be pulled down and
the logic value hold on the SRAM cell will be read to the bitlines. To write a bit on the
SRAM cell, one bitline is driven with a low logic value and the other one with a high logic
value and then the wordline is asserted high. The values set on the bitlines will overpower
the previous value and be kept on the SRAM cell.

Figure 3.2: 6-transistors static random access memory (SRAM).

To replace the SRAM cell and have the same 1-bit memory function, a D-type FF cell
with scan input and enable (SI, SE) and asynchronous active low reset (RN), available on
standard cells libraries, can be used to implement this store function on the reconfigurable
core and provide the auxiliary circuit for the programming of the core through the scan
related signals it supports. As discussed on the architecture overview 3.1, scan chains will
be the programming technology for the reconfigurable core proposed. If the standard cells
library doesn’t contain the FF with scan input and enable signals, this cell can be built
from a standard FF together with a 2-input multiplexer cell. The regular FF data input
will be the output of this multiplexer, where its inputs correspond to the data and scan
data inputs and its selection path corresponds to the scan enable signal. On this case, an
area overhead exist due to the addition of the needed extra combinational logic for the
programming capability when compared to the already optimized scan-capable FF cell.
Figure 3.3 presents the symbols commonly used to represent FF cells. These cell symbols,
are here documented for reference since they will be present on the programmable core
component blocks schematic diagrams.

These cells serve as a single bit memory like the SRAM cells. A clock signal (CLK)
latches the data (D) or scan input (SI) and an asynchronous reset signal (RN) resets
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Figure 3.3: D-type FF with/without scan (SI, SE) and asynchronous active low reset
(RN).

the cell causing its output to be asserted low. The scan related signals on this cell allows
the CAD tools to easily create a scan chain between all programmable FF cells. The FF
cells used don’t need any special timing requirement so the smallest ones available on the
standard cells library can and should be used.

Other FF cells exist in the reconfigurable core to support and produce the logic func-
tions sequential outputs. These cells don’t need to support the programmable chains and
therefore, they shouldn’t have the scan related circuits and signals the scan-capable FF
has to avoid having these FFs on the programming chain (scan chain) what would cause
problems to the architecture and automated tools proposed.

At some point on their development stage, both SRAM and FF cells are implemented
on a full custom design flow but SRAM cells are not typically available as an optimized,
ready to use cell, as the FF, commonly available on standard cells libraries. SRAM cells
are difficult to size as several constraints must be fulfilled regarding the sizing of the
transistors that compose it so that the bit is reliably kept inside this memory cell and
not lost. Being implemented on full custom design flow it may require a complete sizing
review for different processes/technologies while a FF is an optimized standard cell for a
given technology.

The area occupied by a single bit memory cell such as the SRAM is smaller than
the area occupied by a FF cell. The difference on the area used by each increases if the
FF in consideration is, as required for the programmable core architecture proposed, a
scan-capable FF cell. Across several different technologies and standard cells libraries,
the implementation of a scan-capable FF cell varies on the number of transistors used.
When compared to one possible implementation of the SRAM cell that is built using only
6 transistors (figure 3.2), the significant area overhead can go up to a 6x increase for FF
cells that support scan capabilities as on average, these cells are implemented with around
36 transistors.

During normal mode operation, the FF cells used in the programming chain have
their outputs tied to 0 or 1 and the cells are in a static point of operation holding the
programmed high or low logic state. Dynamic power consumption occurs only during
programming. When compared to SRAM cells, FF cells are expected to have higher
leakage current consumption as their circuit has more transistors.



3.1 Architectural Overview 33

Both SRAM and scan FF cells require that programming is performed again after
power-up. This means that external devices need to be used to permanently store the
configuration when the device is powered down and this requirement adds to the overall
cost of the programmable core. A well defined write mechanism (using SRAM bitlines and
wordlines as shown above) exists to set the logic value on the SRAM cells. Using FFs, the
logic value is set through a programmable chain that makes use of the FFs scan chains.
The scan chains created through the digital design flow for a FF-based design can be used
for this purpose. The memory cells can be configured through a serial interface but a
dedicated programming circuit, decoder, can also be used to program the bits in a parallel
fashion both for SRAM and FF cells. The advantage with using a FF-based look-up table
is that scan chains are inexpensively created and validated when physically implementing
the block where they are used since CAD tools on the digital design flow are well familiar
with FF cells and their usage to support the creation of scan chains. Together with the
scan chains, the clock and reset signals of the FF cells are also known and common to the
digital design flow and respective CAD tools. The respective global networks are easily
created during the block implementation.

3.1.2.2 Routing

The propagation and routing of signals within the programmable core occurs on the
physical fabric mesh that exists to establish the signals path and on the circuits that are
used to, within the core, restore the signal quality level, avoiding its degradation and
respective impact on the design performance. The circuit responsible for the routing of
signals is characterizes the routability efficiency of the programmable core as it corresponds
to the configurable circuits that, when programmed, route the signals to the desired paths.

Within the programmable core, signals travelling from one point to the other need
to be buffered throughout their propagation path to maintain their quality and avoid its
signal degradation what could cause malfunction problems. To act as buffers and restore
signal quality on the interconnect mesh of typical FPGA structures, implementations of
buffer cells are used.

The signal multiplexing is achieved in typical FPGA architectures using analog switches
such as NMOS pass-transistor switches and CMOS transmission gates. These cells act as
switches that allow or interrupt the respective input from reaching its output. The discon-
nect function will be described in more detail in the next section. An example of a typical
multiplexing scheme is a tree of NMOS pass-transistor switches, controlled by programmed
memory cells. This circuit implements a multiplexer tree, as presented on figure 3.4. On
this same example, each NMOS switch could be replaced by a CMOS transmission gate.
Depending on the value set to S1 and S0 input signals, one of the IN input signals will
propagate through the multiplexer tree till it reaches its output.

The example on figure 3.4 represents the circuit that is typically implemented through
a full custom design flow. The propagation and multiplexing of signals on a programmable
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Figure 3.4: Multiplexer tree implemented with NMOS pass-transistors.

core circuit using standard cells is achieved through the use of combinational logic cells
such as buffers, inverters, multiplexers and other combinational logic that one may want
to add for increased complexity on the programmable core. The multiplexers selection
signals can be set by the programmable FF cells and in this way, the multiplexers are
used to route one input signal to its output. Using standard cells, the multiplexing and
routing of signals is also achieved using three-state buffer cells, that besides propagating
signals as simple buffer cells, are also able to interrupt them as will be presented on the
next sub-section.

3.1.2.3 Disconnecting

Disconnecting digital signals is necessary to avoid drive line conflicts. This means iso-
lating them from one line by a high-impedance node and preventing them from conflicting
with other signals being driven by other logic circuit to the same line.

To disconnect the propagation of digital signals, keeping the signal disconnected from
the path through a high-impedance node, switches are implemented on typical FPGA
structures through the use of NMOS pass-transistors or CMOS transmission gates con-
trolled by memory cells such as SRAM cells. A representation of these circuits is shown on
figure 3.5. By acting on the transistors gate, the device can be enabled or disabled. When
disabled, it interrupts the signal path. Both circuits allow other signals to be connected
to the same physical lines as their output, avoiding line drive conflicts.

Figure 3.5: NMOS pass-transistor and CMOS transmission gate.



3.1 Architectural Overview 35

These pass-transistors, used on typical FPGA architectures, are not ideal switches as
they have significant on-resistance and present an appreciable capacitive load. The circuit
performance is clearly affected by the series impedance on the signal path and the voltage
drop that occurs when the signal propagates through it. Additional circuitry needs to be
added and used to restore the voltage level resulting in additional area being spent.

From a standard cells library, three-state buffers, whose standard cell typical symbol
is presented on figure 3.6 for reference for other diagrams presented on this document,
can be used for the same purpose and serve as switches on the programmable logic core.
These buffer cells, as the transistor-level circuits described above, have the ability to leave
its output as a high-impedance node and this way disconnect the signal from the line it
was driving. The control signal for the three-state buffer can be set by a programmable
FF cell. The logic value set to the three-state buffer enable signal (S) will cause this cell
to operate as a standard buffer or to disconnect its input from reaching its output.

Figure 3.6: Three-state buffer.

3.1.3 Cluster Block

The cluster block is the macrocell that contains all circuits that implement all func-
tionalities of the programmable core such that when instantiated together in arrays, create
the reconfigurable circuit fabric. The basic component blocks, Logic Block (LB), Vertical
Routing Block (VRB), Horizontal Routing Block (HRB) and Switch Block (SB), are inte-
grated into a more complex macrocell identified as a cluster (figure 3.7) and each cluster
cell contains a single instance of each of them. These basic blocks will be described in
more detail in the following sections.

The signals involved in the cluster cell and related with the blocks that compose it
can be divided into three groups: data, control and programming. The data signals
correspond to both signals on the logic block input and output pins as well as the data
signals propagated through the routing and switch blocks. The control group is composed
by the clock, reset and programming mode enable signals and is available to all blocks.
The programming signals correspond to the programming chain that is available on all
blocks. Figure 3.8 presents these groups of signals and connections within and at the
cluster interface.

A different number of logic blocks can be added to the same cluster block to increase
the complexity of the digital logic functions a single cluster macrocell can implement. For
the architecture proposed, a single logic block exists within the cluster block. Complex
cluster macrocells allow for area and performance to be optimized as the paths between
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Figure 3.7: Cluster macrocell.

Figure 3.8: Cluster groups of signals.

the logic block on two different clusters are longer than the path between different logic
blocks, or a more complex logic block, on the same cluster. This area optimization can
be achieved if more than one instance of the basic blocks is included on the same cluster.
For the implementation discussed here, the target is to create an intermediate hierarchical
level to ease the core generation.

The proposed cluster cell integrates a single LB with a single 2- or 4-input LUT, one
VRB, one HRB and one SB. As discussed before, the circuitry behind the switch and the
routing blocks is always associated to the logic block circuit implementation as it depends
on the number of input data signals of this block 3.1.

As shown on figure 3.8, the cluster has two isolated programming chains that corre-
spond to the chain created by the LB and VRB and the chain created by the SB and
HRB. These chains are not connected inside the cluster block. The organization of the
programming chain on the cluster block could be different such that a single isolated chain
would exist but, considering the cluster blocks instantiation to form the core, the program-
ming chain input and output signals, set by the cluster blocks, would exist on opposite
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edges, adding difficulty to the core integration. To avoid this, the chains were organized,
through its definition on the basic blocks, such that the chain input and output signals
are available on the same edge of the core to ease its integration.

The cluster cell can be physically implemented through the instantiation of each of
the basic blocks that compose it. This can be achieved through the use of automated
procedures developed within this work that instantiate them by abutment to create the
core with the non-rectangular shape. Sub-section 3.2 will present this procedure in more
detail. Each of the basic blocks should be physically implemented through a standard
digital design flow.

One alternative is to create the cluster through a single run on a standard digital design
flow, using for that purpose the gate-level netlists of the basic logic, routing and switch
blocks. This approach will result in a cluster cell that is a single layout and instantiates
only standard cells as opposed to the hierarchical cluster that instantiates the layout of
the basic blocks. Having a single layout for the cluster cell can slightly optimize the total
area of the cluster by bringing together in the same layout all the blocks referred.

The option taken is to create the separate layout for each of the basic blocks and
then create the cluster block by instantiating them and connecting them by abutment.
This choice was done as it allows to implement and validate each of the basic blocks as
standalone fixed logic digital blocks and to avoid, at an early stage of development and
creation of the architectures, adding complexity to the blocks verification. An additional
advantage with the hierarchical organization chosen is that it allows updating or replacing
a single block without having to change the other ones by redoing the complete cluster
layout.

By connecting the cluster block by abutment to other cluster blocks, a programmable
logic core of any shape can be created as, for example, in figure 3.9. The cells are the
same for each physical position on the core. Cluster cells inside the core boundary will
be surrounded by other cluster blocks while cluster blocks on the core boundary will face
the other logic and macros on the SoC. Signals on clusters on the core boundary will be
connected to these other macros being that one of these macros can simply be a fixed
digital logic wrapper cell that surrounds the complete reconfigurable core.

The floorplan of the cluster block can be customized and this cell implemented on a
square or rectangular shape as shown on figure 3.10. This adds one additional degree of
flexibility to the programmable core as it allows for the same amount of logic to be created
with a different shape and with that, an easier fit within the SoC.

3.1.4 Logic Block (LB)

The circuitry within this block is responsible for holding the digital logic function after
the programming of the logic core. The LBs supported by the proposed architecture may
contain one 2- or 4-input look-up tables.
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Figure 3.9: Non-rectangular programmable core as a group of cluster blocks.

Figure 3.10: Clusters blocks with different shapes.

The lookup table implementation uses FF cells that can be programmed through a
scan chain. The input data signals control the selection of the multiplexer tree that routes
the look-up table outputs to the logic block’s combinational and sequential outputs. The
logic block sequential output is implemented by a non-scannable FF cell. This cell does
not belong to the configuration chain.
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A LUT is characterized by the number of data input signals. A small LUT will consume
less area and be faster but, if small LUTs are implemented, more LUTs and with it more
logic blocks, have to be used to implement a given digital logic function. Bigger LUTs
can result in a waste of area in the sense that their logic will not be completely used
when mapping small digital logic functions. For simplicity and proof of concept, the LUT
proposed supports a 2- and 4-input LUT.

Based on a typical FPGA implementation, a N-input logic block requires 2N 1-bit
memory cells and a 2N -input multiplexer. In this sense, a logic block containing a 2- or
4-input LUT requires 22=4 or 24=16 FF cells and a 22=4 or 24=16 input multiplexer
respectively. As standard cells libraries don’t usually support multiplexers with this high
number of inputs, the choice was made to use 2-input multiplexer cells to implement a
multiplexer tree according to the needs. In this case, a N-input LB will require 2N -1 2-input
multiplexer cells. The multiplexer tree can also be implemented using three-state buffers
instead of multiplexer cells. If three state buffers are used to implement the multiplexer
tree, a N-input LB requires 2N+1-1 of these cells. This implementation requires more area
than when using 2-input multiplexers due to the high number of three state buffers and
requires more bits to control the state of all the three-state buffers that would be used.
The use of 2-input multiplexers for the creation of the 2N -input multiplexer was selected
for the proposed architecture.

A single non-scannable FF cell is used for the sequential output generation on both
architectures and additional combinational logic is used for control logic. If the output of
the logic block is set to the combinational output, the clock for this FF cell can be gated
to reduce the programmable core overall power consumption.

Pin Description

in* Data input signal - *=0,1 for 2-input LB, *=0,1,2,3 for 4-input LB
inbs Programming bitstream data input
clk Global clock input signal

pmode Global programming mode enable input signal
rstz Global reset input signal - active low
out Data output signal
outz Inverted data output signal
outbs Programming bitstream data output

Table 3.3: LB pin description.

The LB input and output pins description is presented in table 3.3. As can be observed,
the only signal that depends on the chosen architecture is the in signal, that corresponds
to the data input signals. The symbol and a schematic representation of a 2-input LB is
visible on figure 3.11. The circuit for a 4-input LB differs in the number of data input
signals, programming FF cells and multiplexers on the multiplexer tree as describe above.

The LB output is routed through the multiplexer tree, according to the multiplexers
selection signals set by the LB data input signals, to the combinational or sequential
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Figure 3.11: 2-input LB: symbol and schematic representation.

output, depending on the programmed output type.

In normal operation, the clock signal to the programming FF cells is disabled. This
means that this clock signals is not toggling and it is gated with combinational logic. It
will avoid additional power consumption, since in this mode the programming FFs only
need to maintain their output logic value. When the core is in programming mode of
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operation, the clock signal is again enabled and reaches the programming FF cells that
will sample the input bitstream.

In normal operation, the global reset signal is applied only to the FF cell on the logic
block responsible for the sequential data output so that the digital circuit mapped on the
logic block can be reset without resetting the programmable FF cells and this way loosing
the mapped digital function on the programmed circuit. The programmable FF cells, as
well as the FF cell internally used for the sequential output, are reset when the reset global
signal is asserted during programming.

During serial programming, FF cells are connected as a shift register through the
scan chain implemented. Additional combinational logic ensures that it’s sequential and
combinational outputs do not toggle during this mode of operation.

Tables 3.4 and 3.5 show the relation, for a 2-input LUT, between the programmed
logic values (a0..3 ) on each of the programming FF cells and the value of the output
(out) and inverted output (outz ) for each input data combination (in0, in1 ). The logic
value programmed to the last FF cell on the programming chain (a4 ) defines whether the
output of the logic block is sequential or not.

in0 in1 out outz

0 0 a0 !a0
0 1 a1 !a1
1 0 a2 !a2
1 1 a3 !a3

Table 3.4: 2-input LB truth table.

a4 out/outz

0 Combinational
1 Sequential

Table 3.5: 2-input LB output selection.

For a cluster surrounded by other clusters, LB input data is provided by the HRB on
the adjacent cluster, while its output data is connected to the HRB in the same cluster.
The clock, reset and programming mode enable global signals are supplied to the LB
through the VRB in the same cluster. The programming chain input comes from the
VRB in the adjacent cluster and its output connects to the VRB in the same cluster.
Figure 3.12 presents the logic block integration and connections within the same cluster
and with adjacent clusters for the case of a 2-input LB.

To avoid adding complexity to the HRB and VRB the LB connects to, and since it
is not possible to guarantee at this point any higher routability and performance of the
overall core, the data signals on the LB were placed only on the block top and bottom
edges instead of replicated around the complete block with connections to all routing
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blocks surrounding it. Adding them would result on additional logic needed to control
these paths and with it, more silicon area used.

Figure 3.12: 2-input LB integration within same cluster and with adjacent clusters.

3.1.5 Routing Block

The routing circuitry in the configurable core implements the data, clock and control
signals connections between all logic blocks and allows or blocks the propagation of any
signal to potentially any core location. While data signal tracks will exist between switch
and logic blocks, dedicated routing tracks exist for the propagation of clock, reset and
programming mode enable signals to make them reach all blocks. These global networks
are implemented with dedicated routing tracks which are separate from the configurable
routing.

The routing block on the proposed architecture is composed by two different blocks:
vertical and horizontal routing block. Both contain data local routing for data signals
and additional segments for global signals propagation. The horizontal routing block is
defined by the architectural choice of the LB that connects to it. It is the only block that
connects to the LBs receiving and providing data connections to and from them.

The number of data tracks chosen for this architecture is equal to the added number of
inputs and outputs of the respective logic block: 4 data tracks for a 2-input LB and 6 data
tracks for a 4-input LB. Their length corresponds to the distance between SBs, spanning
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one logic block before it terminates in a switch block. By enabling the programmable
switches within the switch block, longer paths can be constructed. The advantage of
using the same wire length on the same chip is that the number of switches a signal has to
go through is predictable, and therefore also the delay of that signal will be predictable.
Besides this, the wire length chosen allows the cluster blocks to be created as described
before. Single wires longer than the cluster size would raise problems on the top-level
reconfigurable creation or require additional different cluster blocks to exist.

Unidirectional tracks are used for an easier understanding and control when program-
ming the logic core. With bidirectional tracks, additional control cells and memory cells
to program this control would have to exist with the disadvantage of additional used area
that would be needed for logic to control the direction of those tracks.

Each cluster contains one horizontal and one vertical routing block whose wires length
correspond to, within the cluster, its length up to the SB. The routing blocks span one
cluster block. This way, it is also easier to generate non-rectangular programmable cores
through the abutment of cluster blocks as the routing blocks are contained within them
and no special mechanism needs to be implemented to force the tracks to end on a certain
cluster to avoid affecting the core shape. This would occur if the routing blocks would
span more than one cluster block.

3.1.5.1 Horizontal Routing Block (HRB)

Part of the complete routing circuit corresponds to the horizontal routing block (HRB).
For a N-input LB, N+2 horizontal tracks are available on the proposed architectures. The
horizontal routing block (HRB) is this way composed by 4 horizontal unidirectional tracks
(when a LB with a 2-input look-up table is used) or by 6 horizontal unidirectional tracks
(when a LB with a 4-input look-up table is used). The unidirectional tracks are buffered
for signal integrity and a mechanism using three-state buffer cells, one on each track, was
implemented to control the drive of the horizontal tracks by the LB output signals and to
disconnect the tracks from the SBs connecting to them to avoid conflicts. The control of
the three-state buffers on the horizontal tracks depends, through this circuit, from the logic
value on the enable signals of the three-state buffers driving the LB output data signals
to the horizontal tracks. If no LB data output is being driven to one of the horizontal
tracks, then the SB on the same or adjacent cluster is driving that same track.

The access from the LB output signals on the same cluster to the horizontal tracks is
implemented using programmable three-state buffers, one for each LB output signal. The
three-state buffers enable signals are controlled through FF cells. Since the number of LB
output signals is the same for both proposed architectures, this part of the circuit is also
the same.

The access to the LB input pins on the adjacent cluster from the horizontal tracks is
implemented through a multiplexer tree whose selection is controlled by programmable FF
cells. For a N-input LB, a N+2 input multiplexer and respective control is used for each LB
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input signal. This multiplexer cell can be broken into 2- and 3-input smaller multiplexer
cells that can be used from the standard cells library to form the needed multiplexer tree.
A different multiplexer tree is required to accommodate 4 and 6 tracks for a 2- and 4-input
architecture respectively and one for each LB input pin on the adjacent cluster must be
instantiated.

The HRB is implemented such that the data outputs from the LB on the same cluster
can be propagated to the LB on the adjacent cluster through the HRB. This way a path
is also established between 2 two LBs without the need to propagate the signal through
SBs and additional HRBs and VRBs. This path corresponds to the shortest path between
two LBs on the proposed architectures.

Pin Description

out input LB data output signal - HRB input
outz input LB inverted data output signal - HRB input
in* output Data output signal - LB input - *=0,1 for 2-input LB,

*=0,1,2,3 for 4-input LB
inbs Programming bitstream data input
clk Global clock input signal

pmode Global programming mode enable input signal
rstz Global reset input signal - active low

outbs Programming bitstream data output
track* left right input Data input, *=0,2 for 2-input LB, *=0,2,4 for 4-input LB
track* right left input Data input, *=1,3 for 2-input LB, *=1,3,5 for 4-input LB

track* left right output Data output, *=0,2 for 2-input LB, *=0,2,4 for 4-input LB
track* right left output Data output, *=1,3 for 2-input LB, *=1,3,5 for 4-input LB

Table 3.6: HRB pin description.

Table 3.6 presents the HRB pinout description for both architectures. As can be
observed, the number of in output data outputs is different to match the number of LB
data inputs and the number of horizontal tracks is also different according to what was
already presented. The symbol and schematic implementation of a HRB implemented for
a 2-input LB is shown on figure 3.13.

As for the logic block, the clock signal to the programming flip-flops is disabled during
normal operation and enabled during configuration. The programmable flip-flop cells are
reset only when reset signal is asserted in programming mode of operation.

HRB programmability is separated in two different parts. One is related to the hori-
zontal track data signals and the connections to the LB in the adjacent cluster. The other
is related to the LB outputs and their connections to the horizontal tracks in the same
cluster. Both sections are described on tables 3.7 3.8 respectively for a HRB implemented
for a 2-input LB. It is not possible to connect both LB out input and outz input output
signals to the same horizontal track as that would cause a drive conflict on the same data
line. Taking table 3.8 into consideration, this means that a4..a7 and a5..a11 cannot be set
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Figure 3.13: HRB for a 2-input LB: symbol and schematic implementation.

to a high logic value at the same time. This programming constraint can be automatically
verified by any tool parsing and checking the bitstream used to configure the core.

For a cluster surrounded by other clusters in the programmable core, the HRB input
data is provided by the LB and SB in the same cluster and by the HRB on the adjacent
cluster while its output data is connected to the SB in the same cluster and to the HRB
and LB in the adjacent clusters. The clock, reset and programming mode enable global
signals are supplied to the HRB through the SB in the same cluster. The programming
chain input comes from the SB in the same cluster and its output is connected to the SB
in the adjacent cluster. The HRB integration of a HRB implemented for a 2-input LB
within its cluster block and with the cluster blocks connecting to it is show on figure 3.14.
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a0 a1 a2 a3 track to in0 output

0 0 X X track0 left right
0 1 X X track1 right left
1 0 X X track2 left right
1 1 X X track3 right left
a0 a1 a2 a3 track to in1 output

X X 0 0 track0 left right
X X 0 1 track1 right left
X X 1 0 track2 left right
X X 1 1 track3 right left

Table 3.7: HRB truth table for a 2-input LB: LB input signals.

a4 a5 a6 a7 out input to track
1 0 0 0 track0 left right
0 1 0 0 track1 right left
0 0 1 0 track2 left right
0 0 0 1 track3 right left
a8 a9 a10 a11 outz input to track
1 0 0 0 track0 left right
0 1 0 0 track1 right left
0 0 1 0 track2 left right
0 0 0 1 track3 right left

Table 3.8: HRB truth table for a 2-input LB: LB output signals.

3.1.5.2 Vertical Routing Block (VRB)

The other block that composes the programmable logic core overall routing circuitry
is the vertical routing block (VRB).

Like the HRB, it supports N+2 unidirectional tracks for a N-input LB. This accounts
for 4 or 6 unidirectional buffered tracks for data propagation, for a 2- or 4-input LB
respectively. On the VRB, the data signals are just propagated through the block as there
is no other circuit driving them.

In addition, the VRB is used to feed the cluster with the clock, reset and programming
mode enable global signals. Being responsible for supplying these global signals for the
LB and SB on the same cluster, strong buffers should be used on these signals path to
maintain a strong signal for each cluster through the entire core.

The pin description for the VRB is shown on table 3.9. A representation of a VRB
implemented for a 2-input LB can be observed on figure 3.15. As explained above, for a
4-input LB, the only difference on the circuit is that the number of data tracks is increased
to match the number of data tracks of that architecture.

The VRB input and output signals are connected to the SB in the same and adjacent
clusters. The clock, reset and programming mode enable global signals are supplied to the
VRB by the SB in the adjacent cluster. The programming chain input is supplied by the
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Figure 3.14: 2-input HRB integration within cluster and adjacent clusters.

Pin Description

inbs Programming bitstream data input
clk Global clock input signal

pmode Global programming mode enable input signal
rstz Global reset input signal - active low

clk out lb Global clock output to LB
pmode out lb Global programming mode enable output to LB

rstz out lb Global reset output to LB - active low
clk out sb Global clock output to SB

pmode out sb Global programming mode enable output to SB
rstz out sb Global reset output to SB - active low

outbs Programming bitstream data output
track* bottom top input Data input, *=0,2 for 2-input LB, *=0,2,4 for 4-input LB
track* top bottom input Data input, *=1,3 for 2-input LB, *=1,3,5 for 4-input LB

track* bottom top output Data output, *=0,2 for 2-input LB, *=0,2,4 for 4-input LB
track* top bottom output Data output, *=1,3 for 2-input LB, *=1,3,5 for 4-input LB

Table 3.9: VRB pin description.

LB in the same cluster and its outputs is supplied to the LB in the adjacent cluster. This
integration, for a VRB created to work with a 2-input LB, is presented on figure 3.16.
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Figure 3.15: VRB for a 2-input LB: symbol and schematic implementation.

3.1.6 Switch Block (SB)

The horizontal and vertical tracks within the respective routing blocks intersect on the
switch block in the same cluster. The switch block, besides propagating the clock, reset and
programming mode enable global signals, is responsible for supporting the programmable
connection between tracks on the same and other cluster blocks connected to it, routing
them across the programmable core.

Several different topologies exist such as Universal [17, 18], Disjoint [19] and Wilton
[20] among others. An example of these three topologies can be found on figure 3.17 where
the possible paths considering pin 1 on the left edge as the input signal are highlighted.

On the Disjoint switch implementation, each pin is connected to each pin with the
same number of the other three sides of the switch block. These connections establish a
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Figure 3.16: 2-input VRB integration within cluster and adjacent clusters.

Figure 3.17: Disjoint, Universal and Wilton switch topologies.

symmetric pattern along the diagonal of the switch block. The result of this approach is
that some paths are isolated into their routing domains, limiting the programmable core
routing flexibility.

Other implementation is the Universal switch circuit. On this case, diamond patterns
are created among the diagonals and the maximum number of simultaneous connections
among the routing tracks is maximized. The Universal switch represents a significant
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area overhead when compared to other implementations due to the maximum number of
connections it supports.

The Wilton switch, chosen for the programmable logic core, is similar to the Disjoint
implementation but here the diagonal connections are rotated by one track what allows
data signals crossing the switch to cross to other tracks instead of staying on the same
track, as the Disjoint switch implements. The ability to overcome the routing domains
limitation as on Disjoint switch in at least one direction facilitates routing. According to
[51], the Wilton switch is the one that presents the best area-efficiency for architectures
where the routing tracks span only one logic block as the architecture proposed on this
work.

On [20], the Wilton switch is presented and described. This switch block is represented
by a graph M(T, S) where each node in T represents a terminal (incident track) and each
connection in S represents a programmable switch that connects two terminals. Each
side of the switch block corresponds to a subset of T and each with W terminals. Each
terminal is labeled tm,n where m corresponds to the side of the switch subset (0 ≤ m ≤ 3)
and n corresponds to the terminal number (0 ≤ n ≤ W − 1). The set of connections is
therefore defined as:

S =
W−1⋃
i=0

{ (t0,i), (t2,i) , (t1,i), (t3,i) , (t0,i), (t1,(W−i) mod W ) ,

(t1,i), (t2,(i+1) mod W ) , (t2,i), (t3,(2W−2−i) mod W ) , (t3,i), (t0,(i+1) mod W )}

Figure 3.18 presents the relation between each terminal and the physical pins on the
switch block.

Figure 3.18: Wilton switch block: terminals and pins.

The equation described above shows all possible connections between pins on the pro-
posed Wilton switch block. Since the proposed architecture has unidirectional tracks and
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this switch block exists where these vertical and horizontal tracks intersect, the possible
connections were divided to respect each track single direction.

The Wilton switch possible input and output connections for the reconfigurable core
architecture are detailed on figure 3.19 for a SB implemented for a 2-input LB with 4
unidirectional tracks on each edge of the SB. For each input signal, the 3 possible output
signals are highlighted.

Figure 3.19: SB for a 2-input LB: Wilton switch input and output signals.

The Wilton switch is implemented through the use of 3-input multiplexer cells whose
selection is controlled by two programmable FF cells. This circuit is the same for both
architectures. For a N-input LB, N+2 horizontal and vertical tracks intersect on the SB.
The number of instances of this circuit (3-input multiplexer cell and two FF cells) is 2N
what results in 8 and 12 circuit instances for a 2- and a 4-input LB respectively. On this
last scenario, the number of 3-input multiplexer cells and respective programming circuit
is increased to accommodate the additional number of data tracks.

The pin description of a SB is presented on table 3.10.

One important parameter that characterizes the switch is its flexibility. By flexibility
it is understood the amount of switches connected to each terminal. Previous studies like
what is presented on [52] have shown that the routability is not significantly improved if
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Pin Description

inbs Programming bitstream data input
clk Global clock input signal

pmode Global programming mode enable input signal
rstz Global reset input signal - active low

clk out hrb Global clock output to HRB
pmode out hrb Global programming mode enable output to HRB

rstz out hrb Global reset output to HRB - active low
clk out vrb Global clock output to VRB

pmode out vrb Global programming mode enable output to VRB
rstz out vrb Global reset output to VRB - active low

outbs Programming bitstream data output
track* bottom top input Data input, *=0,2 for 2-input LB, *=0,2,4 for 4-input LB
track* top bottom input Data input, *=1,3 for 2-input LB, *=1,3,5 for 4-input LB

track* bottom top output Data output, *=0,2 for 2-input LB, *=0,2,4 for 4-input LB
track* top bottom output Data output, *=1,3 for 2-input LB, *=1,3,5 for 4-input LB

track* left right input Data input, *=0,2 for 2-input LB, *=0,2,4 for 4-input LB
track* right left input Data input, *=1,3 for 2-input LB, *=1,3,5 for 4-input LB

track* left right output Data output, *=0,2 for 2-input LB, *=0,2,4 for 4-input LB
track* right left output Data output, *=1,3 for 2-input LB, *=1,3,5 for 4-input LB

Table 3.10: SB pin description.

this number is over 3 switches per terminal what correlates with the choice made over the
Wilton switch for the proposed architecture.

The rest of the circuit is composed by connections to propagate the global signals to
the adjacent blocks and combinational logic for control as present on the blocks already
presented. Besides the 3-input multiplexer switches, these circuits are also visible on figure
3.20. This figure presents the symbol and schematic implementation of a SB implemented
for a 2-input LB.

This block implements the same clock scheme as described before to avoid the addi-
tional power consumption when in functional mode of operation. It also implements the
same circuit to reset the programmable flip-flop cells only when in programming mode of
operation.

The connections between horizontal and vertical tracks that the switch block supports
are detailed in table 3.11 for a SB implemented to work with a 2-input LB. The configura-
tion values identified as not allowed on this table refer to the 3-input multiplexer selection
signals that cannot be set to a high logic value at the same time.

The SB input and output signals are connected between the HRB and VRB in the
same and adjacent clusters. The clock, reset and programming mode enable global signals
are supplied to the SB through the VRB in the same cluster and the SB provides these
global signals to the VRB in the adjacent cluster and the HRB on the same cluster. The
programming chain input is supplied by the HRB in the adjacent cluster and its output
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Figure 3.20: SB for a 2-input LB: symbol and schematic implementation.
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track0 left right output track0 bottom top output

a1 a2 input track a3 a4 input track
0 0 track0 left right 0 0 track0 left right
0 1 track2 bottom top 0 1 track0 bottom top
1 0 track3 top bottom 1 0 track1 right left
1 1 not allowed 1 1 not allowed
track3 top bottom output track1 top bottom output

a5 a6 input track a7 a8 input track
0 0 track0 left right 0 0 track2 left right
0 1 track3 right left 0 1 track1 right left
1 0 track3 top bottom 1 0 track1 top bottom
1 1 not allowed 1 1 not allowed
track2 left right output track2 bottom top output

a9 a10 input track a11 a12 input track
0 0 track2 left right 0 0 track2 left right
0 1 track0 bottom top 0 1 track2 bottom top
1 0 track1 top bottom 1 0 track3 right left
1 1 not allowed 1 1 not allowed
track3 right left output track1 right left output

a13 a14 input track a15 a16 input track
0 0 track1 top bottom 0 0 track3 top bottom
0 1 track2 bottom top 0 1 track0 bottom top
1 0 track3 right left 1 0 track1 right left
1 1 not allowed 1 1 not allowed

Table 3.11: SB truth table for a 2-input LB.

connects to the HRB in the same cluster.

3.1.7 Other Architectural Notes

In each of the shown implementations, buffer cells are added to the respective input
and output signals of the block to isolate them from the adjacent blocks and connections.
Since the input transition times and output capacitance loads can vary significantly during
the normal operation of the programmable core due to the different designs that can be
mapped to it (and the different created connections each design involves), using strong
buffer cells on the blocks interface allows each basic block to be implemented and fully
validated for a wider range of external conditions as it makes the block less prone to timing
variations.

On the proposed architecture, the implementation with standard cells results on a
minimum fanout of the cells used. For this reason, the capacitance loads that the cells
will have to drive will also be minimum and with this, higher operating frequencies can
be targeted or, if the operating frequencies targeted for the designs on the reconfigurable
core are low, smaller and slower cells can be used to create the core.
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Figure 3.21: 2-input SB integration within cluster and adjacent clusters.

The clock, reset and programming mode enable signals are global signals that exist in
the entire circuit, propagated to all blocks by their routing and switch blocks. Care has
to be taken to ensure a reliable and uniform distribution for all FFs. On a standard-cell
based design, the clock and reset trees are automatically synthesized and evaluated by the
tools commonly used on a digital design flow. This way, a strong and symmetric clock
and reset tree is guaranteed for all blocks.

The programmable core circuitry should be able to support a mechanism to set the
programming FF cells into a know state as well as setting the digital logic function mapped
to the programmable core into a known state without clearing the programmed FF cells.
On a standard-cell based design, this is achieved with the reset functionality these cells
support and with the logic schemes described before.

The use of FF cells allow to easily create a serial programming chain, during each
block implementation, by connecting them together in the form of a shift register. As
commented before, FF cells with scan capabilities should be used. If not available on the
technology library under which the programmable core will be created, a similar circuit
can be implemented through the use of a regular FF cell and a 2-input multiplexer cell.

The flexibility of the architecture proposed is such that different blocks structures
can be quickly accommodated. These can include, for example, additional data inputs
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on the LBs to hold complex digital logic functions, LBs without the sequential portion
of the circuit or with additional FF cells for double-registering signals. On the routing
channels, the density of tracks can be increased on the complete core or just on part of
it. This includes the support of non-uniform routing channels. The SB circuitry can be
updated to accommodate a possible different number of tracks on the SB edges and to
support additional switches per terminal pin. Besides these possible changes that target
the basic blocks within the cluster block, specific and dedicated macrocells such as adders,
shift-registers and register banks, for example, with sizes spanning a multiple number of
cluster blocks, can be included on the reconfigurable core for increased performance and
functionality.

3.2 Reconfigurable Core Creation and Verification

The use of reconfigurable cores should be supported by a set of tools that allow the
designer to quickly create a new core for any given architectural choice, area, shape and
technology. These tools should also support provide data for an initial validation of the
generated core.

A software tool, eplcGen, was created to automatically generate a gate-level netlist
of the reconfigurable core, a testbench with basic verification tasks suited for that core
and the basic blocks and core floorplan information as a preparation for the layout views
creation. The physical implementation of each component must be separately created
through a standard digital design flow, making use of the gate-level netlists automatically
created and the respective floorplan data.

The following sections describe the eplcGen tool and work flow in more detail.

3.2.1 Automatic Core Generation

A main configuration header file is customized by the designer and input to eplcGen.
An example of this header file is visible on annex A.1. The header file contains the following
open items for the user to define:

• Programmable core architecture

• Programmable core shape

• Basic blocks size (X:Y)

• Technology standard cells pinout and cells mapping

The result is a group of gate-level netlists that completely define the programmable
core and its component blocks architecture, an user-friendly configuration file for the
serial programming of the core, a simple testbench with programming chain verification
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Figure 3.22: eplcGen flow.

tasks, floorplan data for the basic blocks and a script, customized to the core shape, to
automatically create the core abstract and layout view on a layout editor tool.

eplcGen supports a 2- and 4-input architecture and based on that selection the logic,
routing and switch blocks are respectively created based on the architecture presented
before.

The circuits are created through the instantiation of generic standard cells. The map-
ping of the technology standard cells to the generic ones through its pinout association is
made on the main configuration header file.

The shape and area of the programmable core a matrix of plus (+) and minus (-)
signs that represent the presence or absence of a cluster block. The area occupied by
each cluster block will depend on the size of its components blocks. These have their size
defined on the configuration header file.

The output report of the core creation presents the shape of the core and the number
of cells used on the initial gate-level netlist of the core and its component blocks. An
example is presented on annex A.2.

eplcGen is the center of the flow diagram presented on figure 3.22. The inputs to
the configuration header file are presented as well as the outputs of the automatic core
generation (Gate-level Netlists, Core Programming files, Floorplan data and Testbench)
and the tasks they serve (Functional Verification and Backend Digital Design Flow).



58 Embedded Programmable Logic Cores

In this context, the frontend views of the reconfigurable core correspond to data that is
still a design description, a soft implementation of the core. The backend views correspond
to the hard physical implementation, layout, of the basic blocks and core. These views
are created through the backend digital design flow. Both views and flow are described in
more detail on the next sub-sections.

3.2.1.1 Frontend Flow

eplcGen generates the logic, routing and switch blocks in the form of gate-level netlists
that employ technology-dependent standard cells. Together with the basic blocks, the
tool creates gate-level netlists of the cluster block instantiating the basic blocks and of
the programmable core top-level through instantiation of the cluster blocks. On the main
configuration header file, the technology standard cells are mapped to generic standard
cells names. This is the only link to the technology and is present on the stdcells.v file.
This allows one gate-level netlist of the programmable core to be technology independent
and valid for each stdcells.v. The same programmable core frontend views are this way
easily portable to other technologies.

These gate-level netlists can be used in a standard digital design flow. In this way
common CAD tools and optimized standard cells from commercially available libraries
can be used, reducing the design risk associated with the reconfigurable core and its
impact on the SoC design cycle.

As a preparation to the backend implementation of the basic blocks, eplcGen generates
the floorplan data of the basic blocks needed to create their abstracts views for their layout
implementation. This floorplan data is created in the form of a text file commonly known
as a Library Exchange Format (LEF) file that describes each block size and pins locations.
For each block, the signals input and output pins are placed on the block edges according
to the known physical locations of the pins and such that all blocks connect by abutment
to form the cluster block and the cluster block to form the programmable core. The same
applies to the power and ground mesh of each block. These pins are also placed on the
blocks edges such that the blocks can connect by abutment and maintain the power/ground
mesh connection. By using lower metal layers for the creation of the basic blocks, higher
metal layers can be used to build a strong power/ground mesh to supply the reconfigurable
core.

A script is also created, eplcReadIn.il, that, when executed, creates the cluster block
abstract and layout views. The abstract view of one cell is that cell boundary and pins
locations while the layout view includes on that data the internal circuits that the cell
contains with the respective connections to the boundary pins. These cluster views are
created by instantiation of the basic blocks and create the complete programmable core
abstract and layout views following the shape on the header file through instantiation
of the respective cluster blocks. This script is written in SKILL [53, 54] programming
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language and can be executed within different EDA software tools such as, for example,
Cadence Virtuoso1.

A bitstream configuration file and a help file to ease the task of creating the program-
ming bitstream are also created by eplcGen based on the main configuration header file.
This file contains the configuration bits for each logic, routing and switch block for each
cluster on the created core and was created to help the designer configure the reconfig-
urable core without having to write down, at this stage, a series of 0’s and 1’s as large as
the core itself. Examples of both files can be seen in annex A.3 and A.4. An additional
utility tool, bsParser, was implemented to transform this bitstream configuration file into
a serial bitstream that can be used to configure the core.

The generator also creates a wrapper top-level cell for the entire core, to connect the
signals on the boundary clusters to signal buses to ease the integration of the core with
the remaining macros on the SoC and to establish the connection between the isolated
serial programming chains into a single programming chain. The mapping of data signals
is output to a text file, wrapperMap.rpt, that the designer can refer to for an easier design
integration. An example of the data signals mapping on this file, for a 2x2 programmable
core, is shown in annex A.5. The simple wrapper cell created by eplcGen is an example
of the logic that can surround the programmable logic core.

Figure 3.23 presents the automatically generated wrapper cell for a certain reconfig-
urable core, in this case a L-shaped core with seven 2-input LB cluster blocks. It is visible
how the wrapper cell joins the boundary signals into buses and connects the programming
chains into a single serial chain. As commented, this hierarchical level is not mandatory
but it eases the core integration with the macros that surround it. It is this wrapper level
that is instantiated on the testbench also automatically generated by eplcGen.

In order to assist the functional validation of the programmable core created, the
generator creates a ready-to-run testbench implementing a single task that, by serially
programming a sequence of 0’s and 1’s, counts the number of programming flip-flop cells on
the complete core and compares it to the expected value. The testbench supports the task
that applies the programming bitstream to the core wrapped with a single programming
chain. This way, the template bitstream automatically created by eplcGen can be quickly
used to test the core. This testbench can serve as a basis for more complex functional and
timing verifications.

3.2.1.2 Backend Flow

To complete the core creation, the backend views of the basic component blocks need
to be created making use of the respective gate-level netlists and floorplans generated
before on a standard digital design flow.

1http://www.cadence.com/products/cic/pages/default.aspx
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Figure 3.23: Embedded programmable logic core wrapper cell.

This backend flow needs to be executed three times, one for each basic block, to create
the respective blocks layout. Once the basic blocks layout is created and validated, any
reconfigurable core with any shape can be defined and quickly made available through the
use of the support tool created, eplcReadIn.il.

Figure 3.24 presents the design flow used to create the backend views of the basic
component blocks, the relation between them and the top-level programmable core and
the functional and post-layout verifications. The basic blocks are instantiated into a cluster
and then the cluster block into the embedded programmable core through the execution
of the eplcReadIn.il script.

Since the basic component blocks are described already in gate-level netlists there is
no need to synthesize the design. The gate-level netlists of the logic, routing and switch
blocks, together with the standard cells technology data and the timing, area and power
constraints can be used within a Place & Route tool. The cells in the gate-level netlists
can be defined as “don’t touch” cells to avoid having the automated CAD tools removing



3.2 Reconfigurable Core Creation and Verification 61

Figure 3.24: Embedded programmable core creation backend flow.

or scrambling the structures already created.

The advantage behind it is that each block can be treated as a simple fixed logic digital
block, isolated from other blocks through proper sizing of boundary cells and therefore
eliminating the different timing behavior each block could have on the top-level depending
on the logic function that would be mapped on it. All input and output signals of each
basic block are buffered for control within the block and cluster level and to avoid signifi-
cant impact on a top-level when clusters are integrated together. This will isolate outputs,
for example, from different capacitance loads that depend on the core configuration. This
process eliminates also the problems related to complex combinational loops at implemen-
tation stage that would exist if a single layout of the complete top-level programmable
core would be implemented.

The possibility to, within the Place & Route tool, balance one unbalanced multiplexing
path using different drive strength standard cells or to correct or add small functionality
to the blocks being made is a clear advantage over a full custom design where each of these
changes require a longer implementation and verification time.
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3.2.2 Reconfigurable Core Verification

This item presents a big challenge since the logic circuit functions that the pro-
grammable core will need to implement are not completely known. There is a tradeoff
between the amount of verification with different designs mapped on the same reconfig-
urable core and the time needed and available to perform it. A study of this tradeoff is not
part of this work but is essential in order to find a compromise that provides the highest
feasible coverage to the programmable core verification.

The automatic programmable core generator creates a testbench with a simple pro-
gramming chain verification task that can be used as a basis for more complex functional
and timing verifications. Besides this, since there is currently no automatic mapping tool
to work with the proposed core architecture, the bitstream that is automatically created
can be updated and used so that simple functions can be mapped. In this way, simple
verification tasks can also be added to the testbench and executed.

For the functional verifications with the gate-level netlists, the technology standard
cells Verilog models need to be used. Some care needs be taken as those Verilog models
usually contain non-zero delay values for the cells timing arcs. At this level of verification,
simulation should be run without these timing delays and without timing checks as the
purpose is to verify functionality only as on a regular behavioral simulation.

Even without the backend views created and therefore without accurate parasitics
information for the design interconnects, Standard Delay Format (SDF) files can be created
making use of the technology standard cells characterization data and an estimated wire-
load model (or no wire-load model). These SDF files can be back-annotated on the gate-
level netlists and, very early on the design cycle, a more complex timing verification can
be already performed.

After the backend views are created, accurate parasitics can be extracted and realistic
SDF files can be generated and used to replace the ideal or estimated wire-load models
used before.

This last stage of verification already makes use of the most accurate timing infor-
mation available. A group of different designs and respective logic functions should be
mapped on the programmable core and the core functionally and timing verified for those
designs and constraints.

Again, the option to implement the programmable core on a standard cell based de-
sign allows for an early simulation with gate-level netlists. On a full-custom design flow,
transistor-level simulations with spice netlists need to be performed. These are more
complex and time consuming adding this complexity and time to the development design
cycle.
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3.2.2.1 Bitstream

There is currently no tool to automatically map and route digital logic functions for
the programmable logic core proposed. For this reason, a programming bitstream needs
to be manually created with the help of the files and tool already described before and
whose examples can be observed in annex A.3 and A.4.

The testbench that is automatically created by the generator and customized for each
programmable core already supports the task to read in the configuration bitstream so the
designer can quickly update the bitstream and use this already created task to configure
the core.

3.3 Integration

eplcGen creates a simple wrapper cell that instantiates the programmable core top-
level and simplifies its interface. This wrapper cell, that instantiates the reconfigurable
core, is the hierarchical level instantiated on the testbench.

On a SoC integration, the programmable core will be surrounded by fixed digital logic,
analog macros or I/O pins. These blocks will establish the needed connections within the
SoC. Besides the regular signals connections, some care needs to be taken to tie unused
input signals to avoid having floating input gates. Part of the surrounding circuitry will
make use of the programming chains as needed by leaving them isolated or connecting
them into a single chain.

If a fixed digital logic wrapper cell is used, similar to the one that is automatically
created, then the interface to the core should be isolated through proper buffer cells. This
wrapper cell can also provide a registered interface to the programmable core.

The wrapper cell not only provides a layer of digital logic above the reconfigurable
core for the signal buses and the programming chains but it also allows to place as needed
the reconfigurable core interface pins on different locations than the ones defined by the
cluster blocks on the reconfigurable core boundary. For example, all data input and output
signals can be moved to one edge of the core to ease the integration on the SoC.

This wrapper cell, if implemented alone, is customized and specific to a certain core
with a certain shape, and is implemented also through a standard digital design flow. If
the reconfigurable core is surrounded by fixed digital logic, the wrapper cell can be merged
with this logic and therefore implemented together with it if needed.

3.4 Configuration and Operation

During the power-up of the programmable core its state will be unknown. Some care
needs to be taken to avoid contention to occur during this power-up and also during the
programming mode of operation. A global signal can be used to force, through additional
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combinational logic, the three-state buffers to a known state such that there is no con-
tention on the signal wires. This global signal was not implemented on this architecture
to avoid adding complexity to it.

The programmable core is configured through the serial chains implemented in the ba-
sic blocks that compose it, as they were created with scan flip-flop cells. The configuration
is therefore performed with a serial bitstream using those available scan chains.

Each horizontal line of clusters on the programmable core creates two programming
chains 3.1.3 that can be stitched together to form a single chain. In the same way, hor-
izontal lines of cluster blocks can have their single programming chain connected among
themselves to create a single chain for the complete programmable logic core and this way
allow the core to be completely reconfigured through a serial bitstream shifted at clock
frequency. A representation of a non-rectangular programmable core is visible on figure
3.25, where a single chain is used to configure the core.

Figure 3.25: Serial bitstream programming.

Since each horizontal line of clusters has on its boundary two programming chains,
then it is possible also to implement an external decoding circuit that can reconfigure
the programmable core in a parallel fashion, driving all available programming chains at
the same time with different bitstreams. Each horizontal line of cluster blocks can be
programmed independently.

The fastest procedure to program the core is to do it in a parallel fashion, with multiple
programming chains being configured at the same time. To evaluate the minimum pro-
gramming time needed to cover the configuration of all cluster blocks, the longest isolated
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chain needs to be considered. This corresponds to the longest horizontal line of clusters.

After the programming mode enable signal is asserted, a reset pulse should be applied
to set the initial state of the programming FF cells to a known state. After this, the
programming bitstream can be supplied to the programmable core at clock frequency.
The programming mode enable signal will enable the FF scan chains on all blocks. While
this signal is asserted, the output signals on the logic blocks are not toggling, being gated
by combinational logic.

After the programmable core is reconfigured, the programming mode enable signal is
de-asserted and the programmable core is ready to operate with the mapped digital logic
function. A reset pulse should be applied to set the sequential logic to a known state.
A reset pulse applied at this stage will not reset the programming FF cells as their reset
is gated by the state of the programming mode enable signal. While the programming
mode enable signal is not asserted, the clock to the programming FF cells is not toggling
to avoid unnecessary power consumption during normal operation.

A diagram waveform with both stages of operation of the reconfigurable core, configu-
ration and normal operation, is presented on figure 3.26. The different steps are identified
through the logic state of the programming mode enable signal. The grey area represents
the period of time during which the bitstream is input to configure to core.

Figure 3.26: EPLC configuration and operation waveforms.

The same non-rectangular programmable core presented before on this section is now
shown in figure 3.27 with one example digital circuit mapped onto it. This circuit doesn’t
represent any particular known function and it servers only as an example. On each LB a
2-input logic function was programmed together with the programming of the HRB and
SB blocks. The figure shows the LB data input and output signals in use through with
the horizontal, vertical tracks and switch block used to route and propagate those signals
through the core. The different dotted lines are used to represent the different data paths
established between the LBs after mapping and they are presented with different patterns
for a clearer visualization. The arrows represent the signals input and output direction.
The clock, reset and programming mode enable global signals are supplied to all clusters
through their VRBs. These signals are not shown in the figure.



66 Embedded Programmable Logic Cores

Figure 3.27: Embedded programmable core operation.

3.5 Summary

The embedded programmable logic core proposed is based on a typical island-style
architecture. It is implemented on a set of standard cells, available on common standard
cells libraries. The core generation and verification is this way executed through well
defined digital design flows and using widely known and available to the industry CAD
tools. From this methodology results a potentially short design cycle and development
risk. However, the flexibility and reduced design cycle provided by the use of standard
cells carry with them a significant area, delay and power overhead when compared to a
digital logic design on a full custom design flow.

A minimum set of standard cells was defined to implement typical FPGA functionalities
associated with signals handling: data storage, routing and disconnecting. The circuits
created with the cells, under the proposed architecture, implement the reconfigurable core.

The basic blocks that compose the reconfigurable core are divided into 3 blocks: logic
(LB), routing (HRB, VRB) and switch (SB). These blocks are instantiated by abutment
to create the cluster block, that has one instance of each, and the cluster blocks are
instantiated by abutment to create the top-level non-rectangular programmable logic core.
The fine granularity of the cluster blocks that compose the reconfigurable core eases its
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integration into irregular shapes within SoCs.
The architecture of these blocks characterizes the overall proposed architecture for the

embedded non-rectangular reconfigurable core:

• 2- or 4-input data signals (LB)

• Sequential or combinational data output and inverted data output (LB)

• Unidirectional 4 or 6 vertical and horizontal data tracks (HRB, VRB)

• Switch block based on the design of S. Wilton [20] (SB)

• Global clock, reset and programming mode enable signals

The basic blocks are implemented with standard cells as standalone fixed logic digital
blocks. Being created this way, combinational loops, common to FPGA structures, are
eliminated. With this methodology, they are independent of the output load conditions or
input drive strength and transition times, which will vary according the digital function
mapped on the core, what allows these blocks to be instantiated by abutment to create
the cluster blocks.

More complex configuration cells can be implemented but the concept has been de-
scribed and validated. The architecture created is modular and flexible enough to accom-
modate different LB structures, density of horizontal and vertical tracks and SB implemen-
tations. Some examples include LBs without sequential logic, increased number of tracks
for non-uniform routing channels, different SB typology or same typology with increased
number of switches per terminal pin. These items should be discussed on a future work.

With the hierarchical organization described, all data paths are guaranteed to be the
same. Delay characteristics are this way easy to estimate, across the core. With this
information, it is simple to estimate the maximum possible operating frequency of the
reconfigurable core, as will be described in more detail on chapter 4.

To support the creation and validation of the proposed programmable logic core, a set
of tools, eplcGen and bsParser, was created to automatically generate the frontend views
of the core based on a customized configuration file that gathers the information related
with the technology standard cells, the architecture chosen, the size of the basic blocks
and the programmable core shape in the form of plus (+) and minus (-) signs. eplcGen
also generates the basic and cluster blocks floorplan information in the form of LEF files
and additional data needed to create the programmable core backend views.

For verification, a testbench is created with simple programming related verification
tasks. This same testbench can be used by the designer to add more complex verification
tasks, related with the digital design functions the reconfigurable core will hold. Once there
are means and automated ways of mapping a broad range of different digital designs on the
reconfigurable core proposed, it will be possible to better evaluate it and its performance
parameters and routability.
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The non-rectangular programmable core is to be integrated with surrounding fixed
logic digital macros or other hard macros that will control the way the core is connected
and reconfigured through its serial programmable chains.

The core configuration is controlled by the state of the programming mode enable
signal. When this signal is asserted, the bitstream is shifted in the programming chains
at clock frequency. When the core is configured, the programming mode enable signal is
de-asserted and the core is ready to operate with the mapped digital logic function. The
core operation should start by applying a reset pulse that, on this mode of operation, will
not reset the core configuration, and will set the sequential logic on the core to a known
state.

The architecture proposed is tech-independent and the frontend views automatically
created link to the technology standard cells only through their mapping to the generic
standard cells instantiated on the cores. The technology dependency also exists when the
backend views need to be created since the layout physical implementation is intrinsic to
a certain technology process node.

In the end, several different non-rectangular shapes have been automatically generated
and validated under the design flows and procedures described.



Chapter 4

Experimental Results

With the proposed architecture for the non-rectangular programmable cores defined
and with a support tool, eplcGen, that automatically generates their frontend views and
prepares the work for their physical implementation, it was possible to validate the opera-
tion of different non-rectangular cores and characterize area, delay and power consumption.

While it is not possible to evaluate the core routability and compare it with other
reconfigurable design solutions, the following sections describe the intrinsic characteristics
of the programmable cores implemented under the presented architectures.

Data for area, delay and power consumption was evaluated for a UMC 90nm process
node and for a predictive 45nm process node, whose design kit is made available by the
North Carolina State University [55] and standard cells library by the Oklahoma State
University [56].

The layout views of the basic blocks for a 2-input LB were implemented for a 90nm
CMOS process node. With these layout views, the cluster block and any non-reconfigurable
core shape is quickly built. One example is also presented ahead.

4.1 Verification Environment

The verification environment for the functional evaluation of the reconfigurable core
was created and executed using Modelsim1, a simulator tool from Mentor Graphics2. While
the basic blocks described were simulated and verified for both implementations under the
2- and 4-input LB architectures proposed, the top-level non-rectangular reconfigurable
core verifications were performed only for a 2-input LB architecture, as will be shown
later.

1http://www.model.com/
2http://www.mentor.com/
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4.1.1 Basic and Cluster Block

The validation of the proposed architecture, during the development stage, started by
the functional verification of each of the basic blocks that were created to compose it.
For this, dedicated testbenches were written to validate the circuits and functionalities
implemented on these blocks.

On the LB, the LUT circuit that holds the programmed logic function and the re-
spective output were verified by mapping different 2- and 4-input logic functions truth
tables on the programmable FF cells that compose the LUT and by sweeping all possible
data input logic values, what exercises all data paths from the truth table to the LB data
output and inverted output. On the same data paths, the combinational and sequential
arcs for this output data signal have been also verified. The comparison of the data output
signal with the expected output for each logic function programmed determines the cor-
rect operation of the LUT and respective routing circuitry. Intrinsic to this verification,
the existing programming chain and programming mode are exercised and verified as this
chain is used to configure the logic function on the LUT and to define the state of the
logic block output, combinational or sequential.

The verification performed over the HRB during its architecture validation stage tar-
geted the evaluation of all data paths between this block input and output data signals.
This includes the access to and from the LBs connecting to it and the evaluation of the
correct control over line drive conflicts. The data paths are stimulated with a clock pattern
toggling on a certain input signal and verified on one or more configured output signals.
This comparison is done for all possible input to output connections. Again, for this veri-
fication, the programming chain is fully exercised as the block configuration done through
it is what defines the different possible connections established on the HRB.

The fact that the VRB contains only combinational logic to propagate the data and
global signals results that the verification performed over this block was simply done to
validate the connections established.

The SB specific verification tasks were created such that all possible input to output
connections, through the different switches available on the implemented architecture,
were exercised and validated. As for the HRB, a clock pattern toggling on a certain input
signal was used as stimuli and compared with the expected output signal, according to
the block configuration. Again, the programming chain was used to configure the block
selection paths what validates the programming mode of operation also on the SB.

For all basic blocks, the correct propagation of the global signals and the functionality
of the remaining control logic, part of it common to all blocks, were also verified at this
stage. This includes, for example, the gating through combinational logic of the logic
block output signals during programming mode or the reset logic control during normal
mode of operation to avoid applying a reset signal to the programmable FF cells.
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Having verified through dedicated testbenches the proposed architecture for the ba-
sic blocks, verifications where performed on a similar environment for a complete cluster
block. With a single cluster block, logic functions were mapped and their output com-
pared to the expected value on one configured output signal of the cluster block. On this
simulation, the data tracks not connected to the LB are stimulated with a clock pattern,
observable on a programmed output of the cluster block. This allows to cover all expected
connections and verify again the correct control of line drive conflicts on the HRB. The
correct propagation of the global signals to the blocks within the cluster is also guaranteed
during this verification as the entry point of these signals occurs on the VRB and from
this block, they’re propagated within the cluster to all blocks within. The verification
environment executed over a single cluster block represents the hypothetical scenario of a
non-rectangular reconfigurable core composed by one single cluster.

To summarize, the verifications performed during the development of the proposed
architecture for the basic blocks, the capability of storing a simple digital logic function
on the LUT circuit on the LB and propagating its result and other data and global signals
through the reconfigurable mesh has been validated for the basic and the cluster blocks.

4.1.2 Non-rectangular EPLC

The functional validation performed over the non-rectangular reconfigurable cores was
run on the same verification environment and with the same simulation tools as the ba-
sic and cluster blocks. While these blocks verification involved specific testbenches and
tasks created for each of them, the non-rectangular core verification makes use of the
automatically generated testbench as a basis for this part of the work.

On this testbench, the first task that is always executed is the evaluation of the number
of programmable FF cells on a single serial chain, created through the wrapper cell that
stitches all chains into a single one. This first level of validation compares the number
of programmable FF cells accounted for when shifting a stream of 0s and 1s at clock
frequency with the expected value, known from the architecture implementation.

Additional specific tasks can be added to the automatically generated testbench to
stimulate the core data inputs and, depending on the functionality programmed, validate
it through comparison with the expected functionality, observed on the core data outputs.

Reconfigurable cores with non-rectangular shapes (”S”, ”L”, ”T”, ”U”) were automat-
ically generated for a 2-input LB architecture. These cores were created with a number of
cluster blocks between 39 and 54. Since the 4-input LB architecture represents a scaling of
the first one with support for more complex digital logic functions within the same cluster
and an added number of tracks and configuration complexity, the simplest architecture
was chosen for functional simulations performed at the reconfigurable core top-level.

Without the possibility to automatically, and on a reasonable time, configure the
programmable logic cores with complex digital logic design functions, simple 2-input logic
functions such as AND, XOR, NAND and others, were configured to chosen cluster blocks
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within the core. An example is visible in figure 4.1 where the cluster blocks configure
with digital logic functions are highlighted. Other cluster blocks are also programmed to
establish the data signals routing paths through the core. The overall group of functions
and connections mapped on the cores doesn’t represent any specific functionality. On the
other hand, they allow for simple verification tasks to be created and added to the core
testbench, For example, one programmed cluster block, with a known function, can have
its output data signal propagate till the core boundary output pins, and at those pins,
compared with the known function.

Figure 4.1: EPLC verification example - cluster blocks configured with logic function.

The hierarchical organization allows that if the possible data paths between cluster
blocks on one reconfigure core are validated for a certain core shape, any non-rectangular
core is this way functionally validated as these data paths and structure that supports
them doesn’t change. Since it is guaranteed by the architecture that the programmable
core mesh is created by instantiation of the cluster blocks, and guaranteed that they
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connect among them when the core is created, then these data paths and the global
signals propagation is by itself validated. What is specific to each core is the surrounding
blocks and the way they interface with the core and, in the case where a dedicated wrapper
cell is used, also this wrapper cell is specific to each core.

For each of the reconfigurable core shapes created (”S”, ”L”, ”T”, ”U”), simple digital
logic functions were mapped to different cluster blocks such that the simulations performed
exercised cluster blocks on all possible positions within the core. This means that cluster
blocks with none, one, two, three or all edges as making part of the core boundary were
configured and validated. The reason for this concern is that, this way, the automatic core
creation process by eplcGen tool is also validated since the connections established by this
tool are dependent on the cluster block location within the core.

The simulation work for the non-rectangular cores was performed in two different steps.

The first group of simulations was performed over the gate-level netlists automatically
generated by eplcGen. These represented functional simulations only, with no timing
associated and allowed to functionally validate the architecture proposed, both for the
programming and for the normal mode of operation. The methodology followed, to exercise
the core by programming some of its clusters and then stimulating the configured digital
logic functions, exercises all the logic involved on the programmable circuit mesh. The
same testbench created for the first group of simulations was also applied to the second
group.

The second group of simulations used time-annotated standard cell netlists. The timing
to be back-annotated on the netlist in the form of SDF files, was obtained through an
appropriate wireload model or parasitics extraction of the layout implemented. Both
wireload models and the parasitics extraction of the layout represent the electrical parasitic
devices such as capacitance and resistance of the nets. The standard cells intrinsic timing
delays are affected by these characteristics of the nets that connect to them and those
timing numbers are equally affected and written to the SDF file, later used on these
timing accurate simulations. This group of simulations was done to evaluate with some
accuracy the performance and maximum operating frequency of the mapped designs on
the programmable cores and, this way, bound its performance. Simulations performed
correlate with the estimations performed on section 4.3 for the sequential data paths
evaluated. As will be shown on this section, the operating frequency is design-dependent
and the study presented will help to bound these values and presents estimations that
align with the results obtained on these simulations.

4.1.2.1 Example Layout

To illustrate the procedures followed to create the physical views of the basic, clus-
ter blocks and the non-rectangular core, each step is here described with some detail.
Similar to what is shown on this section, any other non-rectangular core with a different
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shape, based on the same basic blocks, can quickly implemented through the eplcGen and
eplcReadIn.il tools described before.

Figure 4.2: LB, HRB, VRB, SB abstracts for a 2-input LB.

eplgGen tool outputs the basic bocks floorplan information, based on the user-defined
header, under the form of LEF files. These files can be read into a layout tool editor such
as Cadence and the abstracts of each block created. As stated before, a simple utility tool
was created, customized for each non-rectangular programmable core, to automatically
read these files and create the library and the cluster and core abstract and layout views.
The layout views will only be complete once the basic blocks physical implementation is
finished.

The abstract views are the basis for the floorplan data that will be input, together
with the gate-level netlists, to the place and route tool used to physically implement each



4.1 Verification Environment 75

of the basic blocks.

Figure 4.3: 2-input LB cluster block abstract view.

Figure 4.2 present the abstract view of the LB, HRB, VRB and SB implemented for
a 2-input LB and sized for a 90nm CMOS process. As can be observed, the pins on the
interface of each block are distributed such that the basic blocks, when instantiated by
abutment to form the cluster block, establish those signals connections within the same
cluster and with adjacent clusters. It is also visible that the power pins were created in
such a way that when the entire programmable core is physically implemented, a strong
power mesh covers the entire core, providing a uniform supply distribution to the complete
macro.

Figures 4.3 and 4.4 show the abstract and layout view, respectively, of a cluster block,
created by instantiation of the blocks that compose it, can be observed.

The cluster block occupies an area of 2045µm2, being 45µm wide and 45µm tall.
Although, for this technology and process node, the cluster block could be made smaller,
it was made with some additional area margin to ease the implementation process.

The instantiation of cluster blocks creates the non-rectangular programmable core
abstract and layout view. In the example shown on figures 4.5 and 4.6, a core using 318
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Figure 4.4: 2-input LB cluster block layout view.

clusters and with a non-rectangular shape is presented. The silicon area occupied by this
core is around 0.65 mm2. On these same figures, a group of cluster blocks is highlighted
for reference as wells as two hard macros that set the example of how irregular space for
the non-rectangular can possibly exist.

Figure 4.5: Non-rectangular programmable core abstract view.

With the basic blocks physically implemented for this process node, the creation of
any non-rectangular programmable core using these blocks is quick and reliable. The
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Figure 4.6: Non-rectangular programmable core layout view.

designer can customize the main configuration header file with the core shape desired
and after executing the tool, the eplcReadIn.il script can be executed under a layout tool
environment in order to automatically create the non-rectangular reconfigurable core.

4.2 Area

The area occupied by the programmable core is independent on the design that can
be programmed to it. The approximate silicon area that a certain programmable core can
occupy can be estimated by adding the estimated area of each cluster block that composes
it. The approximate area that each cluster block occupies can be obtained by estimating
the area occupied by each of its basic component blocks: LB, VRB, HRB and SB.

Tables 4.1 and 4.2 present the summary of standard cells used to implement each block
basic circuit for both 2- and 4-input LB based architectures.

2-input LB VRB HRB SB Total

SDFF 5 0 12 16 33
DFF 1 0 0 0 1
BUF 8 11 19 24 62

MUX2 4 0 6 0 10
INV 2 0 0 0 2

AND2 3 0 1 1 5
TBUF 0 0 12 0 12
NOR2 0 0 4 0 4
MUX3 0 0 0 8 8

Table 4.1: 2-input LB architecture: basic blocks area breakdown.
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4-input LB VRB HRB SB Total

SDFF 17 0 24 24 65
DFF 1 0 0 0 1
BUF 20 13 35 32 100

MUX2 16 0 12 0 28
INV 2 0 0 0 2

AND2 3 0 1 1 5
TBUF 0 0 18 0 18
NOR2 0 0 6 0 6
MUX3 0 0 4 12 16

Table 4.2: 4-input LB architecture: basic blocks area breakdown.

For a more accurate estimation, the designer should add to this area value an overhead
of around 20%-30% to represent the space needed for the place and route tool to implement
each block. This extra space is needed as the tool might need to change the existing cells
driving strengths (changing this way the cells area), add buffer and inverter cells as needed
to create the clock and reset trees and to help meet the design timing constraints.

The approximate area for each cluster with a 2-input LB is 1600µm2 for a 90 nm
process and 1000µm2 for the predictive 45 nm process. At the smaller technology node, a
100×100 programmable core would take around 10 mm2.

4.3 Operating Frequency

The maximum operating frequency at which a sequential digital logic design can oper-
ate is dictated by the longest delay path between two sequential FF cells. An estimation
of this maximum clock frequency can be obtained through the following equation:

Max FCLK =
1

TCLK−>Q (FF1) + TDelay + Tsetup (FF2) + TCLK Uncertainty

On this equation, TCLK−>Q corresponds to the data generation FF delay between
clock edge and output assertion, Tdelay is the total delay from all combinational logic that
exists between the two FFs, Tsetup (FF2) portion corresponds to the setup time of the data
capture FF that also needs to be met and the last component is related with the clock
uncertainty that needs to be added for this estimation, TCLK uncertainty. A reasonable
value for this clock uncertainty is between 5% and 10% of the clock period when this clock
is known in advance.

The maximum operating frequency of the proposed embedded programmable core
needs to be evaluated in two different scenarios that correspond to the two different modes
of operation: programming and functional mode.

The first corresponds to the programming mode where a serial bitstream is input
through the programmable chains. These chains were implemented through the regular
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scan chain each basic component block contains. This mode is enabled when the program-
ming mode enable signal is asserted.

The second mode of operation corresponds to the functional mode. The programmable
core is configured with a certain digital function and in this mode that digital function is
exercised and used. This mode is enabled when the programming mode enable signal is
de-asserted.

An estimation of the maximum clock frequency during the programming and functional
modes of operation can be quickly done through the documented standard cells timing
characterization. Taking into consideration medium drive strength standard cells, their
input capacitance loads (that set the load for the standard cell driving it) and the respective
propagation delays and timing constraints that correspond to the portions described above,
the clock frequency can be estimated. For this calculation, a clock uncertainty of 100ps is
used.

The operating frequency estimations presented on the next sections refer only to the
reconfigurable core implementation on the 90nm CMOS process. The data obtained for the
predictive 45nm node presents bigger delays and respectively a slower possible operating
frequency on the reconfigurable core created on this process node. This can perhaps be
explained by a different process flavor that could be on the origin of the predictive 45nm
standard cells.

4.3.1 Programming Mode

On this mode of operation, the maximum clock frequency during programming mode
of operation is limited by the longest path between 2 scan FF cells on the programming
chain. On both supported architectures, the longest path between 2 scan FF cells on the
programmable core will not be longer than 2 or 3 buffer cells, considering already the
connection to the first FF cell on the chain, through the external pins. On this case, it
is also not expected for the path between the external and internal to the core FF cells
to be separated by a different number of buffer cells. This uncertainty on the number
of buffer cells is related with the number of buffers needed between each two scan FF
cells to prevent that the output signal of the first one is capture by the second FF on the
same clock cycle what is technology dependent. To this combinational delay adds the first
FF TCLK−>Q and the second FF Tsetup. The TCLK−>Q output delay is bigger than the
same part on a FF that doesn’t support scan like the ones used on the LB to generate
the sequential logic function output. The setup time is related with the scan data input
timing constraint and not the FF regular data input.

For this 90nm node, the maximum clock frequency for this mode of operation is esti-
mated as to be around 1.4GHz (710ps delay path). This frequency of operation doesn’t
depend on the architectural choice made for the LB (2- or 4-input).

To summarize, the data provided and the fact that standard cells are used to implement
the logic circuit, allows the designer to have, at an earlier stage of the design, an idea of the
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maximum clock frequency that can be targeted on this programming mode of operation.
This estimation doesn’t depend on the shape or size of the programmable core.

4.3.2 Functional Mode

The speed of the mapped digital function is design-dependent as it is determined by
the data path delays between the core input data signals and the first FF cells that sam-
ples them (A), between two FF cells within the core (B) and between the last FF cells
generating the data and the core output signals (C). On a reconfigurable core, the program-
ming of the digital logic function will define the extent of these data paths and therefore
the maximum possible operating frequency. The synchronous timing arcs described are
respectively highlighted in the diagram presented in figure 4.7 where the Embedded Pro-
grammable Logic Core (EPLC) core is also shown. The clouds of combinational logic
represent the data paths between each two FF cells and it is visible that for paths A and
C, part of that combinational logic can be external to the EPLC and therefore unknown
to this analysis.

Figure 4.7: EPLC and sequential logic data paths.

The study presented next is divided in two parts. First, the maximum operating
frequency at which the core could operate, constrained by the proposed architecture, is
discussed. The second part presents all possible data paths on the core and, based on
that, describes three possible paths that constrain the maximum operating frequency for
a certain design mapped on the reconfigurable core. While the results for this second
analysis correspond to synchronous timing arcs within the non-rectangular EPLCs, the
study performed also details the data paths on the core boundary, interfacing the external
fixed logic or other hard macros.

Together with the data paths description, an example of each possible data path prop-
agating through the basic blocks is highlighted on simplified diagrams that represent each
basic block for a 2-input LB architecture. For simplicity, only part of the circuit is pre-
sented. The BUF cells used for isolation of the blocks input and output pins, as well as
additional circuitry such as the INV cell for the inverted data output generation and the
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AND2 cells used on the LB are not represented. On the same sense, global signals and
combinational logic for control are also not part of these diagrams.

The maximum operating frequency that the core could support is set by the minimum
delay between two FF cells on the proposed architecture. The shortest path between
two FF cells can be found between two adjacent logic blocks, separated by a horizontal
routing block. This delay path is one from the complete possible data path delays that
will be described next. For this particular case and analysis, the delay path is as shown
on table 4.3 and figure 4.8 where the data path starts on LB1 FF cell (TCLK−>Q) and
terminates on the closest FF cell capturing the data on LB2. The additional combinational
cells on the table represent each combinational delay on this path. This information,
together with the technology standard cells timing characterization and an estimation for
the clock uncertainty helps to quickly bound the maximum operating frequency at which
the programmable core could operate.

Depending on the data input on the LB that will toggle, the output of the logic
function truth table will flow through the entire or portion of the multiplexer tree that
connects to it. For this functional mode operating frequency evaluation, the worst case
delay (complete multiplexer tree) is considered.

An estimation of this maximum clock frequency that the core architecture could sup-
port for a 90nm CMOS process, and based on the same data used for the calculations
presented on the previous section, is around 850MHz for a reconfigurable core based on
a 2-input LB and around 740MHz in the case of a 4-input LB.

The speed of the mapped logic is design-dependent, but an upper limit around 850MHz

for a 2-input LB is this way established for the maximum clock frequency at which the
reconfigurable core architecture could operate. This result has been confirmed through
post-layout simulations, executed as presented on the verification environment for the
reconfigurable core top-level.

The data paths that need to be considered for this evaluation start and end on the LB
FF cell as this is the cell that generates and captures the sequential data. These data paths
propagate through the HRB, VRB and SB between each 2 LBs on the programmable core
and the complete path delay determines the clock frequency operation.

The knowledge of the data path delays for each block will allow the designer to quickly
estimate the maximum operating frequency at which the core could operate, for a certain
digital logic function configured on the core and having the designer the knowledge of
the cluster blocks configuration. An automated tool should be able to automatically map
any digital logic function on the core and present the results of this maximum operating
frequency estimation.

The data paths that need to considered inside the LB should be separated in three
different timing delays as, besides the combinational path the LB supports between its
data input and output signals, this block contains both the start and end point for all
sequential arcs involving the programmable core. The data path description for the start
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2-input LB 4-input LB

LB1

FF (TCLK−>Q) FF (TCLK−>Q)
MUX2 MUX2
AND2 AND2

BUF/INV (out/outz) BUF/INV (out/outz)

HRB

(in) TBUF (in) TBUF
MUX2 MUX2
MUX2 MUX3

BUF (out) BUF (out)

LB2

(in) BUF (in) BUF
MUX2 MUX2
MUX2 MUX2

MUX2
MUX2

FF (Tsetup) FF (Tsetup)

Table 4.3: Data path for reconfigurable core maximum supported operating frequency.

Figure 4.8: Data path for reconfigurable core maximum supported operating frequency.

and end points for the sequential timing arcs on the LB is summarized on table 4.4 and
the combinational data path through the LB is summarized on table 4.5. Possible data
paths for these scenarios are respectively highlighted on figures 4.9 and 4.10.

One of the data paths is associated with the data generation and on this case the
data generated on the LB FF cell is the start point for the timing arc. The intrinsic
delay between this start point and the LB data output (end point) is the same for both
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2-input LB 4-input LB

Data generation

LB

FF (TCLK−>Q) FF (TCLK−>Q)
MUX2 MUX2
AND2 AND2

BUF/INV (out/outz) BUF/INV (out/outz)
Data capture

LB

(in) BUF (in) BUF
MUX2 MUX2
MUX2 MUX2

MUX2
MUX2

FF (Tsetup) FF (Tsetup)

Table 4.4: LB data path: data generation and data capture.

(a) Data generation (b) Data capture

Figure 4.9: LB data path: data generation and data capture.

2-input LB 4-input LB

LB

(in) BUF (in) BUF
MUX2 MUX2
MUX2 MUX2

MUX2
MUX2

MUX2 MUX2
AND2 AND2

BUF/INV (out/outz) BUF/INV (out/outz)

Table 4.5: LB data path: combinational data path through LB.

Figure 4.10: LB data path: combinational data path through LB.
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proposed architectures. Inside the LB, the data generated on the FF cell crosses a 2-input
multiplexer that exists to control if the output of the LB is a sequential or a combinational
output, through a 2-input AND cell that exists to avoid the outputs of the LB to toggle
during programming mode of operation by gating them and reaches its output by crossing
a buffer or a inverter cell depending if we’re considering the output or the inverted output
of the LB. This path can be reduced and the clock operating frequency increased if the
2-input AND cell is removed from the architecture.

The second data path that needs to be considered is associated with the data capture
by the FF cell. This path corresponds to the delay between LB data inputs and the FF
cell that on this case corresponds to the delay end point. As stated before, the LB input
signals path can cross only part or the complete multiplexer tree to reach its output. The
worst case scenario is considered on the table where the input data needs to propagate
through the complete multiplexer tree before the FF cell that captures it.

The last data path that needs to be taken into consideration inside the LB is the
combinational path that exists between the LB input and output signals. On this case, the
input signals cross the complete multiplexer tree and then reach the LB output propagated
through a 2-input multiplexer cell, a 2-input AND cell and a buffer or inverter cell. The
data signal doesn’t cross the sequential FF cell within the LB.

2-input LB 4-input LB

VRB
(in) BUF (in) BUF
BUF (out) BUF (out)

Table 4.6: VRB data path.

Figure 4.11: VRB data path.

The VRB adds to the data path buffered lines for data propagation. The number of
data lanes is different for each of the proposed architectures but the added intrinsic delay
to each data line is the same. Table 4.6 and figure 4.11 present these data paths.

The HRB provides different data paths that need to be evaluated. The intrinsic com-
binational paths associated with each data path are detailed on table 4.7 and figure 4.12.

If the signal is input to the HRB through its horizontal track inputs and reaches the
HRB horizontal track output, it will propagate through a three-state buffer and a buffer
cell.
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2-input LB 4-input LB

Horizontal tracks

HRB
(in) TBUF (in) TBUF
BUF (out) BUF (out)

LB output to tracks

HRB
(in) TBUF (in) TBUF
BUF (out) BUF (out)

LB output to LB input

HRB

(in) TBUF (in) TBUF
MUX2 MUX2
MUX2 MUX3

BUF (out) BUF (out)
Tracks to LB inputs

HRB

(in) TBUF (in) TBUF
MUX2 MUX2
MUX2 MUX3

BUF (out) BUF (out)

Table 4.7: HRB data path.

(a) Horizontal tracks (b) LB output to tracks

(c) LB output to LB input (d) Tracks to LB inputs

Figure 4.12: HRB data path.

The connection of the LB output signals to the HRB tracks is made through a three-
state buffer cell. This signal will propagate through a buffer cell if connected to the HRB
output tracks or through a multiplexer tree and a buffer cell to connect to the adjacent
LB input pins.

The last data path considers the signals that are inputs of the HRB tracks and prop-
agate to the LB input pins on the adjacent cluster. The signal will cross a three-state



86 Experimental Results

buffer cell at the HRB input, the multiplexer tree and a buffer cell to reach its output that
connects to the LB input.

2-input LB 4-input LB

SB
(in) BUF (in) BUF

MUX3 MUX3
BUF (out) BUF (out)

Table 4.8: SB data path.

Figure 4.13: SB data path.

The SB data paths don’t depend on the data arriving at the SB through a horizontal
or vertical track and have the same intrinsic delay for all track input to track output
paths. Due to the architecture that was chosen for the SB, each track input propagates
to a possible track output through a MUX3 cell. The signal is input on the SB on a
buffer and is output of the same block after a buffer cell. This data path is equal for both
architectures. Table 4.8 and figure 4.13 show and highlight these data paths.

The tables described above present the intrinsic delays for all component blocks by
presenting all possible data paths between FF cells on the sequential logic on the pro-
grammable core. Without a tool to automatically map a design and calculate the maxi-
mum operating frequency, with this detailed information, the designer can add the delays
associated with a certain timing path crossing a certain number of basic blocks to have
a quick estimation about the speed at which the digital function could operate on the
reconfigurable core architecture.

On top of this analysis, an extra timing margin should be added to take into account
the clock uncertainty, already discussed before.

Figure 4.14 presents the example of 3 possible data paths between 2-input LBs con-
figured to operate as sequential logic, providing this way a sequential output for the logic
function they hold.

Under the same assumptions for this estimation, the value for the maximum clock
frequency that could be set to the reconfigurable core such that each data path would not
cause timing violations is described on table 4.9 for a 90nm CMOS process. It is visible
that while data paths A and B cross only routing and switch blocks between the two LBs
that generate and capture the data signal, on the data path represented by C the signal
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Figure 4.14: Three data delay paths on 2-input LB reconfigurable core.

crosses also a LB configured with a combinational digital logic function before reaching a
different LB where the data signal is captured.

The estimated data takes into consideration the paths through the different blocks as
presented before and it is not being considered that all 3 paths would exist on the core
at the same time. If this would be the case, the bigger data path delay, would set the
maximum operating frequency of the reconfigurable core.

Data path Delay Maximum FCLK

A 1.65ns 605MHz

B 2.47ns 405MHz

C 1.97ns 510MHz

Table 4.9: Three data paths delay on a 2-input LB reconfigurable core.

The results presented have been confirmed through post-layout simulations of the data
paths described. They are determined only by the 90nm CMOS technology in which the
cores have been implemented.

After this analysis, it is worth taking into consideration that the values presented
for these 3 examples correspond to synchronous timing arcs within the non-rectangular
EPLC. A synchronous timing arc composed by combinational logic external to the core can
constrain these maximum operating frequency values to a much smaller value, depending
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on the length of the data path. In the same sense, a synchronous path crossing the core
boundary, whose data path inside the core is long, will also result on a reduced maximum
possible operating frequency.

4.4 Power

The power that the programmable core will dissipate is dependent on the technology
in which the core is implemented, on the mapped logic function and on the core operating
frequency. To have an idea of the worst case power consumption for the programmable
core an evaluation was performed of the worst case power consumption for a single cluster
block.

This evaluation is done through a post-layout simulation of the cluster block performed
at gate-level with time-annotated netlists. The testbench created uses a clock pattern
(101010) toggling on all data input signals. These signals are routed through all horizontal
and vertical routing tracks and switch block circuits, arriving this way at all data output
signals. All data lines are toggling at input clock frequency during the period of time over
which the power evaluation was made. The activity data from this simulation is input to
a power estimation tool, Power Compiler3, that evaluates the power consumption during
that activity period.

The results obtained are considered to be pessimistic in the sense that it is not expected
for a programmable core to operate at the highest supported frequency of a single cluster
nor to have all its data lines toggling at clock frequency a clock pattern. On a complete
programmable core, the path between two FF cells on the sequential logic can span several
cluster blocks due to complex mapped digital designs what will decrease the maximum
clock operating frequency, thereby reducing the overall power consumption.

Table 4.10 shows the measured power consumption for the evaluation performed under
the scenario described above for a cluster block implemented on a 90nm CMOS process.
The same analysis performed with data from the predictive 45nm process didn’t present
accurate and reliable results as, for the same operating clock frequencies, the results mea-
sured were always higher than the ones for the bigger process node. This can point to an
inaccurate internal power characterization of the standard cells provided for the predictive
45nm design kit.

4.5 Summary

With the architecture defined and the work flow presented it was possible to validate
different non-rectangular programmable cores as well as to evaluate characteristics intrinsic
to their architecture such as area, operating frequency and power consumption.

3http://www.synopsys.com/TOOLS/IMPLEMENTATION/RTLSYNTHESIS/Pages/PowerCompiler.aspx
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Clock frequency Power (µW)
Cell internal Net switching Total

833MHz 122.5 38.5 161
200MHz 28.3 8.8 37.1
100MHz 14.9 4.7 19.6

Leakage 2.09

Table 4.10: 2-input LB cluster block power consumption.

The verification environment created targeted the validation of the basic blocks during
their architecture development stage and the validation of the non-rectangular reconfig-
urable cores top-level. Simulations were performed with ModelSim simulator.

During the architecture development stage, specific testbenches were created to verify
the basic blocks. With this, the capability of these blocks to hold a digital logic function
and propagate its input and output data signals through the core is verified through
functional simulations. On the same sense, the programming mode, propagation of global
signals and the existing control logic were at this step also validated since they’re exercised
during these verifications.

For the reconfigurable core top-level verification, several cores with different shapes
were created and individual cluster blocks were configured with simple digital logic func-
tions. The mapping of these cluster blocks doesn’t represent any particular digital design.
Having configured the desired cluster blocks with the digital function and with the set-
tings for the routing and propagation of input and output data signals, specific tasks were
written on the core testbench to compare the data signal outputs, at the core boundary,
with the expected values from the digital logic functions mapped on the cluster blocks.
This methodology involves making use of both modes of operation of the core, to configure
and use it, validating by this mean the overall core proposed architecture. At this step,
both functional and post-layout simulations have been performed.

To illustrate the physical implementation of the non-rectangular cores created, one
example layout is presented for a 90nm CMOS process. Making use of the floorplans
automatically created for the basic blocks and the scripts to support their integration into
the backend design flow, their layout was generated. Based on the desired shape for the
programmable core as customized on the main configuration header file, the programmable
core was automatically created on the layout editor through instantiation of cluster blocks
and the cluster block layout created through the instantiation by abutment of the layout
of the basic blocks previously created. Having the basic blocks layouts implemented for
a certain technology node, any non-rectangular programmable core backend views can be
quickly generated and validated through the automatic tools created.

A study has been also performed to evaluate the proposed reconfigurable core archi-
tecture characteristics such as area, operating frequency and power consumption. The
data provided on this chapter helps the designer to quickly estimate, for a certain design
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or core implementation, a value for these parameters.
The EPLC area can be estimated by estimating the area of the cluster blocks that

compose it and multiplying that area by the number of cluster blocks on the reconfigurable
core. The area of a cluster block is the result of the added area of the basic blocks that
compose it. Taking into consideration the proposed architecture standard cells based
implementation for each block and an area overhead margin for their respective physical
implementation, it is possible to evaluate, based on technology information, the area used
by each basic block. The area estimated for a cluster block implemented with a 2-input
LB architecture is around 1600µm2 for a 90 nm process and 1000µm2 for the predictive
45 nm process.

The evaluation of the maximum operating frequency of the reconfigurable core was
divided into the two modes of operation the core supports: programming and functional.
For the programming mode of operation, the data path between two programmable FF
cells dictates the maximum operating frequency for this mode. For a 90nm CMOS pro-
cess, this value was estimated as to be around 1.4GHz (710ps delay path). This frequency
of operation doesn’t depend on the architectural choice made for the LB (2- or 4-input).
For the functional mode of operation, the evaluation was divided into the study of the
maximum clock frequency at which the core could operate, constrained only by the ar-
chitecture proposed, and the evaluation of the maximum operating frequency of the core
dependent on the design mapped and the respective data path delays between each two
FF cells within the configured core. The maximum clock frequency constrained by the
proposed architecture corresponds to a timing arc between two LBs, with the data sig-
nals crossing one HRB. For a 90nm CMOS process, this value is around 850MHz for a
reconfigurable core based on a 2-input LB and around 740MHz in the case of a 4-input
LB. With a digital design configured on the core, the maximum clock frequency for the
design operation is dependent on the design itself and the connections configured within
the core. For a 2-input LB EPLC implemented on the 90nm node, three different syn-
chronous data paths have been evaluated. The maximum clock frequency obtained for
each timing arc was around 605MHz for a path crossing routing and switch logic on 3
cluster blocks, 405MHz for a path crossing the same type of logic on 5 cluster blocks and
around 510MHz for a path crossing not only routing and switch logic on 3 cluster blocks
but also a logic block on one of the clusters configured with a combinational digital logic
function. The values estimated have been confirmed through post-layout simulations of
the same data paths configured on the EPLC. The study presented helps the designer to
estimate the maximum clock frequency of its design early on the design cycle.

As for the power consumption evaluation, the worst case values were estimated for a
single cluster block, with a clock pattern (101010) toggling on all cluster input and output
data signals. The values were obtained from post-layout simulations of the cluster block.
For a 2-input LB cluster, a power consumption of around 161µW for a clock frequency of
833MHz, 37.1µW for 200MHz and around 19.6µW for 100MHz.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

The results obtained in this work demonstrate the feasibility of a flexible, technology-
independent architecture for non-rectangular reconfigurable logic cores, that is supported
by an automatic generation tool and that can be physically implemented using a standard
digital design flow through commonly available CAD tools.

A fine-grain island-style programmable logic architecture has been selected as the basis
of the architecture since this is the one that better fits non-rectangular shapes. Also for
this purpose, a proper hierarchical organization of the circuits was defined to provide the
core with flexibility and modularity.

The choice to implement it using standard cells was made based on their wide avail-
ability for all technology processes and nodes and the short and low-risk design cycle that
can be achieved when implementing a fixed digital logic circuit with them as opposed to
the inefficiency, low flexibility and time consuming design cycles associated with automatic
full custom layouts.

On the other hand, the generic programmable circuit implemented carries with it
a significant area, delay and power overhead what can compromise the amount of pro-
grammable logic within the SoC to a small amount.

The reconfigurable core is composed by the instantiation of cluster blocks. These are
the same for all positions of the core, independent if they’re surrounded by other cluster
blocks or located on the core boundary.

Each cluster block contains one instance of the basic blocks: LB, VRB, HRB and SB.
Each cluster block, this way, supports all the needed functionalities so that, together with
other cluster blocks, create a programmable circuit mesh. These functionalities include
the capability of holding a digital logic function and propagating its data input and output
signals throughout the core.
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The architecture of the basic blocks characterizes the overall proposed architecture for
the EPLC:

• 2- or 4-input data signals (LB)

• Sequential or combinational data output and inverted data output (LB)

• Unidirectional 4 or 6 vertical and horizontal data tracks (HRB, VRB)

• Switch block based on the design of S. Wilton [20] (SB)

• Global clock, reset and programming mode enable signals

Tools have been created to support the reconfigurable core automatic generation.
These tools generated the core frontend views, a testbench specific to the core and sup-
ports, with additional output data and utility tools, the creation of the core backend
views.

Once the basic blocks layout is created and validated, any reconfigurable core with
any shape can be defined and quickly made available through the use of the support tool
created, eplcReadIn.il. The same basic blocks layout can be used to implemented, with no
extra effort, the layout of any core on the same technology node.

Non-rectangular reconfigurable cores with different shapes (”S”, ”L”, ”T”, ”U”) have
been generated through the tools created and design flow presented. These cores have
been validated through functional and post-layout simulations where some cluster blocks
of the respective core were manually configured to support a simple digital logic function.

The verification environment, for both functional and post-layout simulations per-
formed, targeted the validation of both programming and functional modes of operation.
By configuring the core with some digital logic functions and with a defined set of con-
nections for the data signals routing, and by then stimulating the mapped digital logic
functions and comparing its outputs with the expected values (all at the core boundary),
the entire core is validated as these operations exercise the complete core circuits.

Some studies were also performed to evaluate area, delay and power characteristics
intrinsic to the proposed architecture and standard cells based implementation.

The area of the non-rectangular core corresponds to the area of the cluster blocks that
compose it. The area estimated for a 2-input LB cluster block is around 1600µm2 for a
90 nm process and 1000µm2 for the predictive 45 nm process. A 100x100 core occupies
around 10 mm2 on the smaller technology node.

The maximum operating frequency at which the core could operate, constrained by the
proposed architecture is around 850MHz for a reconfigurable core based on a 2-input LB
and around 740MHz in the 4-input LB case for a 90nm CMOS process. The maximum
operating frequency at which the core will be able to operate is design dependent but
these values already present an upper limit.
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A worst case power consumption value, obtained from a single cluster block with a clock
pattern toggling on all its input data signals, resulted on the following values obtained for
a 2-input LB cluster: 161µW for a clock frequency of 833MHz, 37.1µW for 200MHz and
around 19.6µW for 100MHz.

This work proposes an architecture and a development flow. With common standard
cells libraries and widely available and known to the industry CAD tools, the architecture
proposed and the tools created can be easily used at academic level.

With this work, the gap between ASIC and FPGA developments has reduced and the
best from both worlds has been joined.

5.2 Future Work

Several points of interest have been identified that deserve additional attention and
a deeper investigation. These should be taken into consideration regarding future work
related to the current proposal and consider that an effort should be taken in the future
to continue to pursue the integration of programmable logic cores on SoC designs. The
following items are based on the work developed on this thesis and serve as guidance for
future work.

Future versions of eplcGen should be able to read in standard cells technology informa-
tion and automatically map, through function recognition, the needed cells to the generic
ones used on the core creation. On the current implementation, the main configuration
file is used to control the technology standard cells used and link them to their generic
instantiations.

eplcGen can be updated to support additional flexibility regarding the core architec-
ture. In this sense, it should support logic blocks with more data inputs, the possibility
to add tracks to the routing blocks independent of the number of data inputs on the logic
blocks and the possibility of supporting two or more different logic functions with different
output signals on the same logic block, increasing the cluster granularity.

Other architectural changes that can be discussed as future work are related with the
possibility of having data signals available on all edges of the logic block, what implies
changes to the surrounding blocks and the architectural changes involved in supporting
single cluster macrocells, for specific functions, whose width can be multiple of a single
cluster block.

An important step in a future work is to develop or adapt existing mapping tools for
an automated procedure to map digital designs on the reconfigurable core. This will allow
evaluating the proposed architecture functionality and routability by quickly mapping on it
several different complex digital designs. The evaluation of these and other characteristics
should also help the designer decide on the integration of programmable logic on the system
and help to change the programmable fabric as needed to meet the designer and the system
needs. Only after these automatic mapping tools exist for the proposed architecture, an



94 Conclusions and Future Work

approach can be taken to investigate and document performance and routability issues
with the propose core architecture, leading afterwards to improvements and upgrades.

The utility tool created to parse the bitstream configuration file can be updated to
additionally perform sanity checks on the customized bitstream to avoid line conflicts.
For example, to avoid both output and inverted output of a certain logic block from being
driven to the same horizontal track on the routing channel.

Automated tools should be able to generate custom programmable logic cores taking
into consideration the application domain the devices will serve and the fabric where
they’ll be integrated into. This will allow, for example, to gain area if a design is mostly
combinational and control logic where the cluster blocks can be created without the FF
cell for the sequential output and the core can be implemented by slices (columns of cluster
blocks) where clusters with sequential logic would only be present on some columns.

A thorough comparison of area, speed and power characteristics of the proposed pro-
grammable logic architecture and other commercially available circuits should be made.
With the current and future technology advances and improvements, it is important for
architects and designers to continue to think of methods to reduce area and power con-
sumption while maintaining or increasing the circuits’ performances.

For optimization of these characteristics, standard cells libraries can be complemented
with additional cells, specifically created to support the reconfigurable digital core needs
and functionalities with less area and higher performance.

Finally, although the proposed architecture has some power dissipation issues, the
minimization of this aspect was not the goal of this work. Programmable logic implemen-
tations have the expensive disadvantage of severe power dissipation. For the embedded
programmable solutions integration on future systems to be as high as possible, power
consumption should be revised and kept at the minimum possible. One possible solution
is the implementation of a scheme that shuts down part of the programmable core not
being used.



Annex A

eplcGen - Automatic Core

Generation Tool

A.1 Main Configuration Header

The main configuration header file presented below is configured for a 2-input LB
architecture. Besides the relation between the generic and technology standard cells used
on this particular core, the basic blocks name and size are defined as well as the core shape
and number of cluster blocks and the digital core power and ground pin names and metal
layer.

############################################################

# 1) Input technology (T) stdcells under each GEPLC (G) stdcell

# 2) Input Logic Block configuration

# 3) clk = clock signal, pmode = programming mode signal, rstz = reset signal

# 4) EPLC (embedded programmable logic core) shape drawn with + (cluster) and - (empty cluster)

# 5) EPLC must always be drawn with + and - to form a square or rectangular shape

############################################################

## STDCELLS

G: SDFFR d q rstz pmode inp clk

T: SDFFRHQX1 D Q RN SE SI CK

G: DFFR d q rstz clk

T: DFFRHQX1 D Q RN CK

G: BUF a y

T: BUFX2 A Y

G: MUX2 a b y sel

T: MX2X1 A B Y S0

G: MUX3 a b c y s0 s1

T: MX3X1 A B C Y S0 S1

G: INV a y

T: INVX2 A Y
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G: AND2 a b y

T: AND2X2 A B Y

G: NOR2 a b y

T: NOR2X2 A B Y

G: TBUF a oe y

T: TBUFX2 A OE Y

## LOGIC BLOCK

ID: LOGIC BLOCK 21

MODULE: lb21

IN: 2

X: 20

Y: 15

## ROUTING BLOCK

ID: ROUTING BLOCK 21

MODULE: rb21

## SWITCH BLOCK

ID: SWITCH BLOCK 21

MODULE: sb21

X: 25

Y: 30

## EPLC CORE

++++++-----------

++++++-----------

+++++++++++++++++

+++++++++++++++++

+++++++++++++++++

+++++++++++++++++

----------+++++++

----------+++++++

----------+++++++

## OTHER

PIN: ME2

POWER: VDD

TOPPOWERPIN: ME4

GROUND: VSS

SIDEPOWERPIN: ME3

A.2 Core Creation Report

eplcGen, when executed, outputs a report file that contains the number of cells used on each basic block, the

programmable core shape identified and the overall number of cells used by the non-rectangular reconfigurable core.

The example below refers to the main configuration header file presented on section A.1.

-I- Creating Logic Block

-I- Creating Routing Block

-I- Creating Switch Block

-I- Creating Cluster Block

-I- Creating 17x9 irregular EPLC Block

-I- Creating Wrapper for 17x9 irregular EPLC Block

-I- Creating Testbench for 17x9 irregular EPLC Block
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###################

## LOGIC BLOCK

###################

## LOGIC BLOCK 21 - lb21

##

## Cells Report:

## FF : 6 (total number of FFs)

## FF : 5 (number of programmable FFs)

## BUF : 8

## MUX2: 4

## INV : 2

## AND2: 3

##

##################

## ROUTING BLOCK

###################

## ROUTING BLOCK 21 - rb21

##

## Cells Report:

## FF : 12

## BUF : 30

## TBUF: 12

## NOR2: 4

## MUX2: 6

## MUX3: 0

## AND2: 1

##

###################

## SWITCH BLOCK

###################

## SWITCH BLOCK 21 - sb21

##

## Cells Report:

## FF : 16

## BUF : 24

## TBUF: 0

## MUX3: 8

## AND2: 1

##

###################

## EPLC SHAPE

###################

##

## Width: 17

## Height: 9

##

## Irregular shape identified

##

## ++++++-----------

## ++++++-----------

## +++++++++++++++++

## +++++++++++++++++

## +++++++++++++++++

## +++++++++++++++++

## ----------+++++++

## ----------+++++++

## ----------+++++++
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##

###################

## EPLC LOGIC

###################

##

## Cells Report:

## FF : 3434 (total number of FFs)

## FF : 3333 (number of programmable FFs)

## BUF : 6262

## TBUF: 1212

## MUX2: 1010

## MUX3: 808

## INV : 202

## AND2: 505

## NOR2: 404

##

###################

A.3 Programming Bitstream - 2-input Single Cluster Core

To help the designer map a digital logic function on each cluster block on the reconfigurable core, a template

exists that contains the bits that need to be programmed for each cluster block. This file can be automatically

processed to create the serial input bitstream that is used to configure the programmable core. An example for a

core containing a single cluster block created in a 2-input LB architecture is shown below.

/*****************************************************************************

** Programming Bitstream for eplc_1x1 **

*****************************************

* LB

* 4’bXXXX - Logic table output value for in1, in0 input signals (2’b00, 2’b01, 2’b10, 2’b11 respectively)

* 1’bX - Logic table sequential (1’b1) or combinational (1’b0) output selection

* SB

* 16’bXX_XX_XX_XX_XX_XX_XX_XX - Switch block selection table (2’b11 not a valid value)

* HRB

* 2’bXX - in0 output from horizontal tracks

* 2’bXX - in1 output from horizontal tracks

* 4’bXXXX - Logic block output to horizontal tracks

* 4’bXXXX - Logic block inverted output to horizontal tracks

*

* For more detailed information about cluster bitstreams, please check bs.help

******************************************************/

** y0x0

* LB

4’bXXXX

1’bX

* SB

16’bXX_XX_XX_XX_XX_XX_XX_XX

* HRB

2’bXX

2’bXX

4’bXXXX

4’bXXXX
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A.4 Bitstream Help - 2-input Single Cluster Core

The detailed description of each bit functionality, to be configured on the file presented in A.3, is presented for

a 2-input LB architecture.

/*****************************************************************************

** Bitstream Help - Cluster **

*******************************/

LB

4’bXXXX

Logic table output value for in1, in0 input signals.

Each bit of this 4-bit word corresponds respectively to the output when

in0,in1 = 2’b00, 2’b01, 2’b10, 2’b11 respectively

1’bX

Logic table sequential (1’b1) or combinational (1’b0) output selection

SB

16’bXX_XX_XX_XX_XX_XX_XX_XX

Switch block selection table (2’b11 not a valid value)

16’bXX_.._.._.._.._.._.._..

2’b00 - track0_left_right_input -> track0_left_right_output

2’b01 - track2_bottom_top_input -> track0_left_right_output

2’b10 - track3_top_bottom_input -> track0_left_right_output

2’b11 - NOT VALID

16’b.._XX_.._.._.._.._.._..

2’b00 - track0_left_right_input -> track0_bottom_top_output

2’b01 - track0_bottom_top_input -> track0_bottom_top_output

2’b10 - track1_right_left_input -> track0_bottom_top_output

2’b11 - NOT VALID

16’b.._.._XX_.._.._.._.._..

2’b00 - track0_left_right_input -> track3_top_bottom_output

2’b01 - track3_right_left_input -> track3_top_bottom_output

2’b10 - track3_top_bottom_input -> track3_top_bottom_output

2’b11 - NOT VALID

16’b.._.._.._XX_.._.._.._..

2’b00 - track2_left_right_input -> track1_top_bottom_output

2’b01 - track1_right_left_input -> track1_top_bottom_output

2’b10 - track1_top_bottom_input -> track1_top_bottom_output

2’b11 - NOT VALID

16’b.._.._.._.._XX_.._.._..

2’b00 - track2_left_right_input -> track2_left_right_output

2’b01 - track0_bottom_top_input -> track2_left_right_output

2’b10 - track1_top_bottom_input -> track2_left_right_output

2’b11 - NOT VALID

16’b.._.._.._.._.._XX_.._..

2’b00 - track2_left_right_input -> track2_bottom_top_output

2’b01 - track2_bottom_top_input -> track2_bottom_top_output

2’b10 - track3_right_left_input -> track2_bottom_top_output

2’b11 - NOT VALID

16’b.._.._.._.._.._.._XX_..

2’b00 - track1_top_bottom_input -> track3_right_left_output
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2’b01 - track2_bottom_top_input -> track3_right_left_output

2’b10 - track3_right_left_input -> track3_right_left_output

2’b11 - NOT VALID

16’b.._.._.._.._.._.._.._XX

2’b00 - track3_top_bottom_input -> track1_right_left_output

2’b01 - track0_bottom_top_input -> track1_right_left_output

2’b10 - track1_right_left_input -> track1_right_left_output

2’b11 - NOT VALID

HRB

2’bXX

in0 output from horizontal tracks

2’b00 - track0_left_right_input

2’b01 - track1_right_left_input

2’b10 - track2_left_right_input

2’b11 - track3_right_left_input

2’bXX

in1 output from horizontal tracks

2’b00 - track0_left_right_input

2’b01 - track1_right_left_input

2’b10 - track2_left_right_input

2’b11 - track3_right_left_input

4’bXXXX

Logic block output to horizontal tracks

4’b1000 - track0_left_right_input

4’b0100 - track2_left_right_input

4’b0010 - track1_right_left_input

4’b0001 - track3_right_left_input

4’bXXXX

Logic block inverted output to horizontal tracks

4’b1000 - track0_left_right_input

4’b0100 - track2_left_right_input

4’b0010 - track1_right_left_input

4’b0001 - track3_right_left_input

A.5 wrapperMap.rpt - 2x2 Programmable Core

The automatically generated wrapper cell that surrounds the reconfigurable core groups the signals into buses

to help the designer integrate the core with the surrounding macros. This relation is output by eplcGen tool to a

report file. The contents of this file, for a 2x2 reconfigurable core, is presented below where the signals on the left

correspond to the wrapper interface and the signals on the right correspond to the interface of the boundary cluster

blocks.

clk_in[0] = clk_in_y0x0

pmode_in[0] = pmode_in_y0x0

rstz_in[0] = rstz_in_y0x0

clk_in[1] = clk_in_y0x1

pmode_in[1] = pmode_in_y0x1

rstz_in[1] = rstz_in_y0x1

clk_out[0] = clk_out_y1x0

pmode_out[0] = pmode_out_y1x0

rstz_out[0] = rstz_out_y1x0

clk_out[1] = clk_out_y1x1
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pmode_out[1] = pmode_out_y1x1

rstz_out[1] = rstz_out_y1x1

datain[0] = in0_y0x0

datain[1] = in1_y0x0

datain[2] = in0_y0x1

datain[3] = in1_y0x1

dataout[0] = in0_output_y1x0

dataout[1] = in1_output_y1x0

dataout[2] = in0_output_y1x1

dataout[3] = in1_output_y1x1

vtrackdataout[0] = track0_bottom_top_output_y0x0

htrackdatain[0] = track0_left_right_input_y0x0

htrackdataout[0] = track1_right_left_output_y0x0

vtrackdatain[0] = track1_top_bottom_input_y0x0

vtrackdataout[1] = track2_bottom_top_output_y0x0

htrackdatain[1] = track2_left_right_input_y0x0

htrackdataout[1] = track3_right_left_output_y0x0

vtrackdatain[1] = track3_top_bottom_input_y0x0

vtrackdataout[2] = track0_bottom_top_output_y0x1

htrackdataout[2] = track0_left_right_output_y0x1

htrackdatain[2] = track1_right_left_input_y0x1

vtrackdatain[2] = track1_top_bottom_input_y0x1

vtrackdataout[3] = track2_bottom_top_output_y0x1

htrackdataout[3] = track2_left_right_output_y0x1

htrackdatain[3] = track3_right_left_input_y0x1

vtrackdatain[3] = track3_top_bottom_input_y0x1

vtrackdatain[4] = track0_bottom_top_input_y1x0

htrackdatain[4] = track0_left_right_input_y1x0

htrackdataout[4] = track1_right_left_output_y1x0

vtrackdataout[4] = track1_top_bottom_output_y1x0

vtrackdatain[5] = track2_bottom_top_input_y1x0

htrackdatain[5] = track2_left_right_input_y1x0

htrackdataout[5] = track3_right_left_output_y1x0

vtrackdataout[5] = track3_top_bottom_output_y1x0

vtrackdatain[6] = track0_bottom_top_input_y1x1

htrackdataout[6] = track0_left_right_output_y1x1

htrackdatain[6] = track1_right_left_input_y1x1

vtrackdataout[6] = track1_top_bottom_output_y1x1

vtrackdatain[7] = track2_bottom_top_input_y1x1

htrackdataout[7] = track2_left_right_output_y1x1

htrackdatain[7] = track3_right_left_input_y1x1

vtrackdataout[7] = track3_top_bottom_output_y1x1
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