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Abstract

Robotic applications are increasing in a daily basis. Robots can and will be able to per-
form from simple day-life routines to complicated actions. There is, so, an increasing need
of achieving a more complete and meaningful interaction between human and robots. Hu-
man interaction recurs to body motion as a form of communication and expression, and
as such it presents a good field to exploit in order to improve humanoid robots.

Expressiveness and naturalness in robotic motions and behaviors can be replicated
with the usage of captured human motion data.

As dance performances present moments of great expressiveness, where emotion and
feelings can be transmitted to the audience by means of complex motion, they can be
used as a rich case study and as a vast space of motion to replicate in a humanoid robot.
As such, in order to feasibly and easily replicate these type of motions we recurred to
captured human motion data of Samba dance, properly synchronized to Samba music,
previously annotated by experts. Using this, a spatiotemporal representation of the dance
motion was built in relation to the respective musical temporal structure (musical me-
ter). This representation presents the variability of the dance space occupation during the
dance performance, and its intrinsic musical relation. From this representation key-poses
were synthesized with variability according to the original motion capture human body
model, at defined metrical resolutions, by means of random processes calculated with ro-
tations between body segments. In order to replicate the dance in the robot, the key-poses
were morphologically resized and the original trajectories were adapted, overcoming the
robot’s varied kinematic constraints. From the synthesized and adapted key-poses, joint
rotations were extracted to allow the reproduction of these same poses onto the target hu-
manoid robot. Key-pose refinement was then applied in order to increase the similarity
of the humanoid pose to the original key-poses, by means of Tabu Search optimization.
Finally, the resultant robot dance motion was generated by sine-interpolation of the key-
poses, at quarter-beat resolution and with variability, and performed at beat-synchronous
velocity, to replicate the original musical relationship.

All the methods used in the process were numerically and visually tested, in terms
of pose similarity with the original dance, and valid adaption of the represented body
morphology. This was performed in order to evaluate the several steps of the process. Fi-
nally, an user-survey was also performed for obtaining subjective measures of the evinced
degree of similarity and musical expressiveness between several dance motion excerpts,
produced from the several methods. All tests and evaluation where performed on a simu-
lated humanoid robot NAO in SimSpark, a generic robotics simulator.

The obtained results present a robot dance motion with a good degree of similarity
with the original dance motion. This similarity was greater in the arms, since the robot
arms and the human’s are quite morphologically similar, but it was a bit compromised
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in the robot’s leg movements, due to especial restrictions on its hip section, which is
of higher specific relevance to Samba dance. Ultimately, concerning the evinced degree
of musical expressiveness, the vast majority of the inquired people validated the beat-
synchrony of the robot dance performance. Yet, further studies are needed to evaluate the
effect of introducing variability in the overall expressiveness of the resultant dance.
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Resumo

As aplicações da robótica aumentam diariamente. Assim, os robôs podem e devem ser
capazes de executar variadas acções, desde acções do dia-a-dia até a realização de acções
mais complexas, complicadas ou delicadas. Portanto, existe uma necessidade de con-
seguir uma interacção mais completa e significativa entre humanos e robôs. Se atentar-
mos na interacção humana, esta pode ser realizada, ou complementada, por movimentos
do corpo. Logo, dando a possibilidade de um robô humanóide realizar movimentos pare-
cidos com os humanos iria melhorar a sua capacidade de interacção com os humanos.
A expressividade e naturalidade dos movimentos robóticos podem ser melhoradas pela
replicação de movimentos humanos.

A dança apresenta momentos de grande expressividade, que podem transmitir emoção
e sentimento para quem assiste, e assim pode ser utilizado como um rico caso de estudo
oferecendo um basto leque de movimentos a replicar num robô humanóide.

Para este efeito, e de forma a facilmente replicar movimentos de dança em humanóides,
recorremos a dados de captura de movimento humanos relativos a dança de samba, estes
dados foram sincronizados com a música que havia sido previamente anotada por espe-
cialistas. Com esta informação, uma representação espácio-temporal do movimento da
música foi construída em relação a respectiva estrutura temporal da música. Esta repre-
sentação apresenta a variabilidade inerente a uma actuação de dança e representa o espaço
ocupado pelo bailarino durante uma actuação. Tendo como base esta representação, poses
chaves foram construídas de acordo com o modelo do corpo humano presente nos dados
de captura de movimento. Esta geração das poses foi feita em ciclos métricos definidos
por meio da escolha aleatória de rotações entre os segmentos do corpo. De forma a
reproduzir a dança no robot as poses foram adaptadas morfologicamente, de forma a rep-
resentarem o tamanho do robot e a cumprirem as várias restrições físicas do mesmo. A
partir das poses geradas e adaptadas os ângulos entre os vários segmentos do corpo foram
extraídos possibilitando a reprodução das poses no robô humanóide. Estas poses forem
depois refinadas de forma a aumentar a similaridade com as originais, para este efeito foi
utilizada optimização com base no algoritmo Tabu Search. Finalmente o movimento de
dança foi gerado por interpolação das poses, permitindo a execução síncrona do movi-
mento de dança.

Todos os métodos utilizados foram testados numericamente e visualmente em relação
à similaridade das poses e em relação a correcção da morfologia do corpo utilizado. Com-
plementarmente um inquérito foi realizado de forma a obter uma avaliação subjectiva da
dança realizada pelo robot. Todos os testes foram realizados com base numa versão sim-
ulada do humanóide NAO no ambiente de simulação Simspark.

Os resultados obtidos apresentam um robô a dançar Samba, com similaridade ao movi-
mento de dança original. Esta similaridade é maior nos braços, enquanto nas pernas as
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diferenças morfológicas na zona da cintura criam algumas diferenças no movimento e
impossibilitam outros movimentos.
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Chapter 1

Introduction

This thesis focus on mapping motion captured human movements onto humanoid robots.
The goal is to generate Samba dance motion for a humanoid robot, for this motion samba
motion data is analyzed to build a spatiotemporal representation. From this representation
key-poses are generated, this poses will suffer morphological adaptation to ensure the
humanoid kinematic constraints. Refinement of this key-poses is done to increase the
similarity and in the end the key-poses will be interpolated in order to build the robot
dance motion.

1.1 Motivation

Robotics applications grow daily, and the creation of realistic motion for humanoid robots
increasingly plays a key role, as important forms of interaction between humanoid robots
and humans already happen by means of non-verbal communication. This gives greater
importance and interest on increasing the robot motion similarity to the different kinds of
human motion behaviors.

As dance motion forms a rich, complex and expressive class of human motions it
presents a good case study to help designing realistic forms of robotic motion. Dance
movements also have a strong emotional meaning and expressive symbolism, making
them powerful forms of non-verbal communication that would allow to improve human-
robot social interaction by means of bodily communication. In this sense, the usage of
human motion capture (MoCap) data provides a detailed description of the original move-
ments trajectories, enabling an easier and more realistic replication of these motion by
humanoid robots.

The proposed method, in this case applied to dance movements, can allow an easier
and more detailed construction of rich and diverse movements for humanoid robots, with
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different body morphologies. Such process can be easily extended to the learning of
different humanoid movement patterns (repetitive motions), inherent to the performance
of several simple daily-life tasks, such as biped locomotion or even basic sports’ gaits,
such as kicking or swimming. Not only would it give humanoid robots a greater amplitude
of movements and possible actions, but would also introduce a new and simpler way to
design, and in a certain way program, different kinds of robot movements and behaviors.

1.1.1 Applications

Further motivation for work in this area can be found in the several areas of the possible
applications of such techniques:

• Entertainment: As we assist to the increasing role of robotics in entertainment
areas, enhancing robotic movements, such as dancing, would help achieving more
realistic and expressive behaviors, which would greatly enhance the amuse of the
human-robot interaction (HRI).

• Education: The proposed approach can be used as the basis beyond choreographic
tools, for robots and humans, and as an edutainment platform for captivating stu-
dents from different backgrounds and ages to interdisciplinary themes such as dance,
music, rhythm, robotics, kinematics and dynamics.

• Research: Many of the problems addressed are of great interest in researching, with
especial focus on artificial (computational) musical cognition and motor embodi-
ment, and generic issues beyond robotic motion kinematics and dynamics, applied
to different humanoid body models.

As stated, the presented method was applied, as case-study, to dance movements, but
could also be easily adapted to other different kinds of motion, increasing the number
and types of potential future applications. Besides, the proposed method was designed
for supporting different humanoid body models, which open application channels across
different humanoid robotic platforms.

1.2 Goals

The aim of this thesis is to map motion captured human periodic motion, dance motion in
this case, onto humanoid robots. In this thesis we will focus on the generation of dance
motion, replicating different dance styles, mainly Samba.

In order to archive this main goal there are some more specific goals for this thesis:

• Study relevant kinematic techniques for generating robotics motion;
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• Study and get familiarized with human motion capture systems and data;

• Analyze motion/musical relations in Traditional dance styles.

• Get familiarized with different choreographic methods for representing dance ac-
cording to musical rhythm;

• Develop methods for adapting captured human motion data onto different humanoid
morphologies;

• Synthesize the original dance motion assuring musical synchrony;

• Test and simulate the generated motion using a generic robotics simulator;

• Quantitatively and qualitatively evaluate the generated humanoid robot dance in
terms of similarity with the original dance and degree of musical expressiveness.

The final result of this thesis should consist on several methods that allow the repro-
duction, by humanoid robots, of captured dance motion patterns, with especial on the
kinematics of the motion.

1.3 Methodology and Tools

To achieve the proposed goals, firstly there should be a study of the different motion cap-
ture systems to understand the way as human motion is recorded. Afterwards we should
analyze different motion data, previously captured from human dancing performances for
extracting fundamental dance patterns in the original dance motion, and treat it in order
to create a middle-term representation of the key-poses that will be mapped into the used
humanoid robot. Knowing what poses the robot must perform, we need to adapt those
movements from the human morphology to the robot morphology, having in mind the
morphological differences between both bodies and the kinematic constraints imposed
by the used humanoid body model. This transformation/transference should be tested
in a proper robotics simulation environment towards keeping the overall aspect of the
key-poses, and the relative relation of all the robot body parts. Ultimately, an overall
optimization of the synthesized key-poses should take place in order to achieve greater
similarity with the original motion.

In the following subsections, some topics, tools, and techniques that have interest to
this thesis are presented, serving as base knowledge to the following work.
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1.3.1 Motion Capture and Analysis

1.3.1.1 Motion Capture System

Motion capture is the term applied to the process of recording real motion and converting
that motion onto a digital model. There are many kinds of motion capture systems, such
as mechanical, magnetic and optical.

In a mechanical system, the performer wears a mechanical device, or exoskeleton,
which was angle measuring equipments installed at the joints locations. As the performer
moves, the sensors also move, measuring the joint angles of the performer, and so obtain-
ing the orientation of the performer body parts. These systems are accurate and cheap,
however it is not easy to perform fast and expressive motion due to the weight of the
exoskeleton and the limited rand of the angle measurement devices [dA03].

Magnetic systems utilize sensors placed on the body and a known magnetic field is
set up. The sensors and source are connected by a cable to an electronic control unit
that calculates the locations and orientation of the limbs based on the generated mag-
netic field [Dic] . This technique enables real-time data collection and overcomes oc-
clusion [dA03]. Yet, this type of systems has many limitations: it requires a physical
connection (wires) with the sensors; it has a limited range; and sensors from different
actors will interfere with each other. Making it harder to perform some movements.

The last type of motion capture systems are the optical ones. In these systems the
performer wears a suit with special markers attached to it. The markers are retro-reflexive,
and are placed in a way that the position of every body part can be easily acquired by
several cameras surrounding the space where the performer moves. Each marker must be
captured by at least 2 cameras, and a greater number of cameras diminishes the possibility
of occlusions [Sch10]. Yet, for full body capture there must be 8 to 16 cameras (or
more) [Dic]. The cameras will capture the reflex of the markers and the several images
of a marker, from the various cameras, are matched using triangulation to compute the
markers positions in 3D space [Dic]. The main advantages of optical systems are the
very high rates of data collection and the possibility to create a great range of motion
in a relatively large space [dA03]. Such systems can then capture larger areas, and
are especially useful for capturing complex types of motion, such as sport actions or
dancing [Dic].

Given the scope of this work upon dance movements, we used MoCap data of samba
dance, performed by professional dancers, which was captured by an optical motion cap-
ture system. The used MoCap system was an Optitrack from Natural Point [Nat], recur-
ring to 8 cameras positioned around the dancer.
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1.3.1.2 MATLAB MoCap Toolbox

The MoCap Toolbox [TB10] is a Matlab toolbox that contains functions for the analysis
and visualization of motion capture data. The toolbox is mainly aimed for the analysis of
music-related movement, but might be useful in other areas of study as well [TB10].

It will be used for analyzing the kinematics of the original human body motion trajec-
tories and studying its musical relationship, obtaining this way a middle-term representa-
tion of the original dance style.

1.3.2 Musical Rhythmic Qualities

Musical meter represents the temporal regularity present in the music [Kla03]. The mu-
sical meter concept embraces the idea that music is organized in a hierarchical structure
of rhythm and temporal regularities of different (typically three) metrical-levels (temporal
resolutions). As illustrated in figure 1.1, these level are often decomposed into tatum, that
represents the lowest, and fastest, level, typically following the occurrence of the musical
note events; tactus (or the actual beat), which is the most prominent level, also described
as the foot-tapping rate; and the musical measure (or bar) which consists on the highest
(slowest) metrical-level and represents the boudaries of a given rhythmic pattern.

Figure 1.1: Illustration of the hierarchical musical rhythmic metrical-levels [Kla03].

Beats represent music regular rhythmic pattern, and the group made by strong and
weak beats is called a meter. Beat induction refers to the human search of periodical
occurrences of music events [GWSF06]. Pulse sensations describe all the rhythmic levels
invoked in the mind of the listener [Par94]. And tempo defines the rate of the beats
in a metrical level [GD05]. The perceiving of musical meter can be characterized as
processing the musical events to detect the underlying periodicities [LJJ96].

Musical meter also organizes dance choreographies, the timing of gestures and the
music structure [ONG+11]. When dance gestures are synchronized with the musical
meter, then dance is integrated with meter in the spatiotemporal domain. Then as music
and dance share the same time domain, regular events in the music are reflected in the use
of space in the dance [ONG+11]. Figure 1.2 illustrates the projection of dance trajectories
onto the spatiotemporal domain.
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Figure 1.2: (a) Hierarchical representation of meter structure. Each hierarchical metric level is
then subdivided, or grouped, in other levels. (b) Spatiotemporal representation of metric accents
in a dance gesture with a period of 2 beats. [ONG+11]

1.3.3 Kinematics

Kinematics is the formal description of motion, and the study of motion of a body or sys-
tem of bodies. A humanoid robot can be considered as a set of bodies connected by joints.
While dynamics is the study of forces and why objects are in motion, in other words, dy-
namics is the study of the causes and changes in motion. There are two main branches of
kinematics: Inverse and Forward Kinematics. Inverse kinematics is the process of finding
the angles that a joint should have to be in the desired pose. Forward kinematics allows to
find the position of a given body part using the actual position of the joints and its angles.

Kinematics of human motion are also relevant to refer, specially techniques used for
the description of the relative orientation between adjacent body segments. This relative
orientation can be regarded as a combination of translation and rotation, in our case the
main interest is purely the rotation. Two ways to represent rotation of the body segments
are Euler angles and Quaternions. Euler angles describe the rotation over tree axis, the
order of the appliance of the rotations matters, since different values/combinations can
give the same rotation. Euler angles suffer from the gimbal lock problem, that occurs
when two rotational axis of an object are pointing in the same direction, causing the
rotation to loose one degree of freedom (DOF). Quaternions also can represent the rotation
between two segments, rotation quaternions describe the rotation using three imaginary
parts and a real part. The three imaginary parts represent the axis of rotation and the forth
element represents the amount of rotation.

In the description of human motion, it is also important to consider the anatomical
description of the motion according to the sagittal, frontal, or coronal, and transverse
planes, that define the plane in which the motion is performed [Zat98] 1.3.

By following figure 1.3, the transverse plane is parallel to the ground and separates
the upper-body from the lower-body, perpendicular to the coronal and sagittal planes.
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Figure 1.3: Body planes positions relative the human body. [Hea]

The coronal, or frontal, plane is a Y-X plane perpendicular to the ground and separates
the front from the back of the body. The sagittal plane is a Y-Z plane also perpendicular
to the ground, which separates the left from the right parts of the body [Zat98]. By
following Euler notations, the body rotations may then be defined as pitch, yaw and roll,
representing the rotation axes of the body respectively in the sagittal, transverse, and
coronal planes.

Another important concept are kinematic chains, that consist in the linkage of rigid
bodies. A human leg or arm can be considered examples of kinematic chains [Zat98].
Finally, the degrees-of-freedom describe the possible independent directions in which a
body can move in the 3-dimensional space [ON91].

1.3.4 Robotic Platforms and Simulators

Robotic platforms are usually expensive leading to the necessity of the usage of simulation
environments that provide numerous advantages. Simulation platforms are less expensive,
allow the easier development and testing and allow the usage of detailed information
from the simulation. The usage of a simulation platforms for the present thesis takes full
advantage of all the aspects described.
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1.3.4.1 SimSpark

SimSpark is a generical simulator, that supports developing physical simulations and
robotics research. Different agents can participate in one simulation, connecting to SimSpark
using UDP or TCP. SimSpark uses the Open Dynamics Engine (ODE) for simulating rigid
body dynamics. It is commonly used in academic research and education. [OR04]

It will allow simulating and debugging the motion developed for robot NAO. It will
serve as platform for the experimentation on a simulated humanoid NAO.

1.3.4.2 NAO

Robot NAO (see figure 1.4) is a humanoid robot developed by Alderbaran Robotics. The
NAO weighs 4.5kg and has 57cm of height. Both real (figure 1.4 a)) and simulated
versions (figure 1.4 b)) are endowed with 21 DoFs. As depicted in figure 1.4 (c)), it
has five DoFs in each leg, two in the ankle, two (plus one, in a complex structure) in the
hip, and one at in the knee [GHB+08].

Figure 1.4: Humanoid robot NAO. a) Real robot. middle) Simulated robot. right) Kinematic body
model description.

It is based on a Linux platform and scripted with URBI. It also provides interfaces for
C++, Java, Matlab, Python and Ruby. Additionally, the real NAO is also equipped with
Wi-Fi, which allows remote control in order to improve its CPU capacity.

The NAO simulation agent is based on a state machine ruled by the execution of pre-
defined behaviors. The skills, or behaviors, consist in actions that the agent may execute
[Rei10]. These behaviors are defined in Extensible Markup Language (XML) files, pro-
viding the parameters for the behavior execution. This definition is composed by the
name of the behaviors and the type of the behaviors. In the case of Slot behaviors type
(exemplified in figure 1.5), the XML will also assign a final value to each robotic joint
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and a duration for this movement, a behavior can have several states, or slots, that will be
executed in the defined order and in the defined time.

Figure 1.5: Example of a simple Slot Behavior.

1.3.5 Optimization

Optimization tries to find the best element of a set of alternatives, in other words, it is
a search for the best solution possible. This search can be done taking in consideration
several parameters and also several constraints of the problem.

1.3.5.1 Hill Climbing

Hill Climbing (HC) is a simple optimization technique and performs well in several sit-
uations. To find a solution this algorithm tries to find a better solution by changing a
single element of the current solution. If the change in the current solution produces a
better solution, this new solution is used as current solution and another change is done
to this solution. The algorithm will incrementally change the solution until no further
improvements to the current solution can be found.

It is useful when the amount of time to perform a search is limited and when the
desired, or the best, solution is close to the current solution in the search space and there
is no local optimum between them.
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1.3.5.2 Simulated Annealing

Simulated Annealing (SA) [KGV83] is inspired in a metallurgy technique involving heat-
ing and controlled cooling of a material. This slow and controlled cooling process is
known as annealing.

By analogy with this metallurgic process, the SA algorithm takes the current solution
to a problem and replaces it with a new random one that is close to the current solution.
This random choosing of a new solution is done using a probability that depends on the
difference between the solutions and on a global parameter, the temperature that decreases
during the search process. With larger temperatures the solution changes more randomly.
This allows that in the beginning the method avoids becoming stuck at local optima. In
contrast to HC, that only updates the solution when finds a better one, in SA the new
solution can be worse than the current solution.

1.3.5.3 Tabu Search

Tabu Search (TS) [Glo86], was proposed in 1986 by Fred Golver. In TS, a list of all the
visited solutions is kept, called to tabu list. This avoids visiting twice the same solution.

In the algorithm, each visited node is declared as a tabu and is placed in the tabu list.
And then the algorithm searches the neighboring nodes that still aren’t in the tabu list. TS
will test all the possible solutions and in the end chose the best one.

1.3.5.4 Particle Swarm

Particle Swarm Optimization (PSO) [Ebe06] is based on an evolutionary algorithm. PSO
tries to optimize a solution by iteratively trying to improve a candidate solution, with re-
gard to the solution evaluation. Starting with a set of randomly generated solutions, PSO
then searches for a optima solution by upgrading the solutions. Each particle has two
characteristics: position and velocity. The potential solutions, or particles, will wander
around the problem space, and always remembers the best position visited, and the so-
lution value to that position. The particles can communicate with which other and adapt
their velocity or position to the information received. During the several iterations of the
algorithm the particles may converge to the optimum or diverge from it.

1.3.5.5 Genetic Algorithm

Genetic Algorithm (GA) [Hol75] is an optimization method inspired, in a certain way, in
the natural reproduction system and in the evolution of biological systems. In a GA, the
initial population, that may be called chromosomes), is optimized toward a better solution.
Each solution, or chromosome, is nothing else but a set of genes.
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The initial solution can be calculated randomly or by a creation function, it only needs
to be an acceptable solution to the problem. Using this initial population, the algorithm
starts and creates new populations using selection, crossover and mutation operations.
Selection will specify the parents to the next generation. Crossover will generate a new
child from the two parents; the child will inherit genes from the parents. Mutation pro-
duces mutation of children, in order to include random variations on the children’s genes.

1.4 Research Institutions

This thesis wad done at LIACC, under the supervising of Ph.D Luis Paulo Reis, and at
INESC Porto, under the supervising of Ph.D Fabien Gouyon. It also counted with the
co-supervision of João Lobato Oliveira, from both institutions

LIACC (Laboratory of Artificial Intelligence and Computer Science of the Univer-
sity of Porto) was created in 1988 in order to promote the collaboration of researchers
that were separately working in the fields of Computer Science and Artificial Intelligence
in different Faculties. It aims to help solving general computer science problems, from
security to software reliability. LIACC works in different research areas: Advanced Pro-
gramming Systems, Distributed Artificial Intelligence and Robotics, Formal Models of
Computation, and Language, Complexity and Cryptography.

INESC (Institute for Systems and Computer Engineering) of Porto, is an interface in-
stitution between the academic world and the world of industry and services, as well as
the public administration. The area of activity ranges from research and development,
to technology transfer, consulting and advanced training. The main research areas are
Telecommunications and Multimedia, Power Systems, Manufacturing Systems Engineer-
ing, Information and Communication Systems, and Optoelectronics.

1.5 Thesis Outline

The remainder of this thesis is divided in four chapters. Section II describes some related
work to this thesis, and several approaches in the area. Section III presents the proposed
methodology and describes the developed work. In Section IV the obtained results are
discussed. Finally in Section V the conclusions are depicted and some paths for the future
work are presented.
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Chapter 2

Related Work

This chapter describes the state-of-the-art in this area, and also presents some related
works and their methodology expressing the results and problems that they faced. This
will help to identify the main difficulties that can appear in the project and also some of
the problems that this project can resolve.

One of the main topics of interest for this work is the analysis of motion data, concern-
ing the methods used to analyze and mine the motion capture data. In other words, the
way that the information is treated, the tools or methods used and also some specifications
of each approach.

Another interesting topic in this area is how that motion can be then synthesized and
replicated by different humanoid models. Here is useful to study robotic approaches,
and methods used in computer animated systems, for laboring the extracted motion data
until replicating it by the chosen humanoid model. Given this problem’s relevance in
the literature, it is important to also look at the results obtained and the problems faced
by the recent approaches from the literature. In relation to robotic motion generation,
it is also useful to study some applications of optimization or refinement of movement.
Specifically to this case, it is of greater interest to look at works that use the same robotic
platform intended for this project, robot NAO.

In the end, a small review of all the work is made, presenting some of the problems
and challenges found and faced by similar works. This is important in order to propose
some novel approaches to some of the related problems.

2.1 Dance Motion Analysis

As already stated, the first goal is to use motion analysis in order to search and work with
captured human dance motion data, and this way this way build a middle-term represen-
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tation of the dance motion. Several methods have been used for analysis of dance motion
captured data: some only analyze motion data of specific parts of the human body while
others analyze all the body; and some only consider the body motion while others also
take into account its musical relation.

Firstly, some methods regarding only motion analysis are presented and after it meth-
ods that use music and motion analysis to keep their intrinsic synchronism.

Nagata et al. takes basic knowledge from the main characteristics of a Latin dance
[NOI+05]. Using that, they determine what information of the motion data will be ex-
tracted to represent the dance. Information related to the movement of shoulders and hips
were extracted and analyzed. In particular, the rotation related to a plane vertical to the
floor and related to a plane horizontal and parallel to the floor were calculated.

Nakaoka et al., [NNIY02] and [NNY+03], segmented the dance, in key-poses, in
terms of minimum velocity of the end-effectors’ (hands and feet). Then these key-poses
were clustered and interpolated to generate the original dance.

Different approaches that try to analyze, study and generate dance motion well matched
to music are also important and of even greater interest, since there is a close relationship
between musical rhythm and motion rhythm.

Siratori et al. uses a transformation of the original motion capture data to a simple
human body model [SNI06a]. At each frame the human pose, from the motion capture
data, is converted into a body center coordinate system, were the origin is the waist of
the human model, the x-coordinate is the direction from the left to the right thigh, the
y-coordinate is the forward direction of the body, and the z-coordinate is a vertical upper
direction (see figure 2.1). Using this coordinate system each body segment is converted
to vector for further analysis. Then, for each moment of the motion they calculate two
different attributes: the motion rhythm and the motion intensity (see figure 2.1). For this,
a "weight effort" component is calculated, physically considered as the linear sum of ro-
tation velocity of each body joint. The local minimums of the weight effort component
are used to extract the motion rhythm, as indicators of stop motions, which are considered
impressive instances of the dance performance, being so recognized as key-poses. The
motion intensity is calculated as the average of the instant motion from the previous key-
pose. After analyzing the motion, further analysis is performed in order to recognize the
matching musical features such as: music rhythm and music intensity. The first compo-
nent is determined using the knowledge that the music structure consists of the repetition
of several phrases, and that the music is segmented by repeated patterns. To extract the
intensity of the music, they calculated the sound chunk whose spectral power is strongest
among the neighboring frequency sounds.

Shiratori et al. also considered two components as the motion features: key-frames
and intensity (see figure 2.2) [SNI06b], and another three as music features: music beat
and degree of cord changes for beat structure analysis, and music intensity for mood
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Figure 2.1: MoCap dance motion analysis [SNI06a]: a) Simple human body model (right); b)
Extracted motion features (left).

analysis. For the motion key-frame component, they assumed that key-frames are ’stop’
frames of the hands’ motion, and so they can be determined by finding the local minimum
of the hands’ velocity. The motion intensity is assumed as the difference in the velocity of
the hands in two neighboring key-frames, so greater velocities mean high motion intensity.
They just look for the maximum values of this difference in velocity. The extraction of
the music intensity is done in a similar way to the last approach [SNI06a]. To extract the
musical rhythmic features, a frequency analysis is performed, and, finally, a beat analysis.

Shiratori et al. also focus on temporal scaling techniques for upper-body [SKNI07]
and for leg motion [OSKI10]. In [SKNI07], dance motion is captured at three different
speeds, and then a hierarchical B-spline interpolation is applied for controlling the fre-
quency resolution, by setting control points at temporal intervals, using for the intervals
the musical rhythmic features. Comparing the variance of the motion in the same mo-
ment of the music, they found that there are some valleys where all variance sequences
have a local minimum. It was demonstrated that even at different speeds, there are some
postures that stay preserved in the dance, which represent the important stop motions, or
key-poses, of the original dance (figure 2.3).

Figure 2.2: MoCap dance motion analysis [SNI06b]: graph of motion features according to the
hands’ trajectories.
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Figure 2.3: a) Joint angles variance performed at different musical speeds (top row); b) Extracted
key-poses (middle row); c) Important stop-motions, drawn by professional choreographers (bottom
row) [SKNI07].

In [OSKI10], Shiratori et al. proposes a similar method to [SKNI07], but now adapted
to the leg motion. The concept of key-pose is also used, but now the analysis focus on
step motions. From the observation of the motion in the different velocities, they found
that the time and stride of the step, near a key-pose, tends to be maintained, that a kicking
action with the increase of velocity tends to look like a normal step, and that the speed
of a swing foot won’t accelerate in the same proportion as the increase of velocity of
the music. All this indicates that the dancers made more effort to maintain the original
timings for tasks around key-poses and that the dancers tried to maintain stride length as
close to the original one as possible around key-pose timings.

Ofli et al. used 3 Hidden Markov model (HMM’s) to capture the dynamic behavior
of the dancing body trajectories [OCFT+08]. One models the motion of the torso, other
the movement of the arms and a third for the movement of the legs. For the music anal-
ysis, the tempo and the relevant beat information is used to drive the movement. Tempo
is estimated in terms of beat per minute, and the beat location is computed from peri-
odicity estimation. For motion analysis, the start and end frames of each dance figure
are manually labeled, and then the three HMM models of each dance figure are trained
in a supervised manner with the body posture parameters captured from those manually
labeled segments.

Kim et al. extracts rapid directional changes in a motion [KPS03]. These moments are
detected from the zero-crossing of the second derivative of each motion signal at every
frame. So they extract the zero-crossing moments of the joint orientation signals, and
classify these moments as candidates for motion beats. The sequence of candidates ex-
tracted from a motion signal embeds a periodic pattern. From this sequence are calculated
some reference beats, and then estimated the actual motion beats from the candidates us-
ing these reference beats as guide (figure 2.4).
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Figure 2.4: Estimation of reference motion beats according to joint motion cues, in [KPS03].

Oliveira et al., in [ONG+10] [LOGPR09] [LOGPR08], presents a spatiotemporal
dance analysis model, based on the Topological Gesture Analysis (TGA) [NL10], that
conveys a discrete point-cloud representation of the dance. The model describes the spa-
tiotemporal variability of the dance gestural trajectories in spherical distributions, accord-
ing to the respective musical rhythmic metrical classes, at different resolutions (metrical
levels).

2.2 Motion Synthesis and Generation

In the area of motion generation from motion capture data, most literature focus on the
generation of motion to animated characters, from simple animated avatars, to show the
results of the previous motion analysis, to the generation of motion to animate virtual
figures. It is interesting to look at these results as they have many phases in common with
the generation of motion to humanoid robots. It is also important and interesting to look
mostly at works that also use dance motion as case study.

2.2.1 Computer Animated Systems

Ofli et al., in the synthesis phase [OCFT+08] aims to generate the corresponding body
posture synchronized with the test musical audio signal. Initially the audio signal is clas-
sified in respect to its genre. The audio is then analyzed, and with the extraction of the
tempo, beat information and genre the motion is performed off-line. The genre determines
the dance figure to be synthesized, whereas the tempo and beat determine the duration and
location of the figure. The body posture parameters corresponding to each dance figure
are generated using the associated HMM structures learnt at the motion analysis stage. In
the end, the avatar is able to recognize the genre of the dance and to perform concordant
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Figure 2.5: Overview of the dance motion synthesis algorithm proposed by [SNI06a].

dance figures. The main problems with this method is the necessity of supervised learn-
ing of the agent and an accurate capture of the motion of the dancer used in the respective
teaching.

Nagata et al., as a way to confirm that there is isolation between shoulders and hips as
observed in the motion analysis [NOI+05], created a dance animation using the motion
data and the information extracted in the analysis phase. The created animation shows the
dance in good detail. This method extracts little information from the motion data, and so
don’t allow a realistic representation of every dance.

Shiratori et al., using all the information extracted during the previous phase - mu-
sic and motion analysis [SNI06a] - tries to synthesize a new dance motion (following the
algorithm presented in figure 2.5). Initially the rhythm components are evaluated and can-
didate motion segments are detected in correspondence to each music segment. Then, it
is checked if the synthesized transition motion between the neighboring motion segments
looks natural, and possible sequences of motion segments are extracted. The end step in
the generation is to analyze the similarity of the intensity components between the mu-
sic segments and the selected motion segment sequences, and then synthesize new dance
motions by concatenating the motion segments with each other.

The music analysis is successful in the majority of the cases, but not every time, fail-
ing to music genres that don’t contain repeating melody lines. The synthesis phase is
successful and the resulting motions are well matched to the input music.

Concerning the motion/music synchrony, Shiratori et al. sets the extracted motion
features [SNI06b] in a motion graph, and a new dance motion is synthesized by calculat-
ing the correlation of the music features and the motion features, and the motion graph
is traced based on the correlation results. To create this transition motion, were used 3rd
order interpolation of body links, considering the smoothness of position, velocity and
acceleration. The duration of each transition is calculated by the angular distance of the
frames and the maximum velocity in the concatenated motions. In the analysis, the max-
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Figure 2.6: Motion Synthesis Algorithm [SNI06b]

imum angular velocity for all body portions is calculated for all motion data. After the
construction of the motion graph and extraction of music features from input music data,
the next step is to correlate the synthesized dance. For this purpose, a correlation between
the music beat component and the motion key-frame component, and a correlation be-
tween music and motion intensity are evaluated (figure 2.6). The final step is to detect
the best motion graph path. Here a search for the highest evaluation value is done and the
resulting motion is produced.

In the end, a good match between motion rhythm and music beat was accomplished
(see figure 2.7), and the resulting motion of this method is synchronized to both rhythm
and music intensity.

Figure 2.7: Motion-music correlation as proposed by [SNI06b]. The blue line represent motion
key-frame feature and the red lines shows the music beat feature.

Kim et al. aimed to generate rhythmic motion on-the-fly [KPS03], so for the motion
synthesis a library of movements’ transition graphs is used. From this library, a movement
transition graph is chosen according to the music, and from this graph a starting node is
chosen, and until the music ends the movement transition graph is traversed from node to
node, using transition probabilities to find the next node (figure 2.8). At each node a basic
movement is synthesized.
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Figure 2.8: Examples of motions and transitions by the motion graph proposed by [KPS03].

The different size and proportions between the target character and the performer of
the captured motion don’t allow applying the motion directly to the target character. So a
real-time motion retargeting algorithm is used to adapt the motion to the target character.

Oliveira et al., in [ONG+10], presented a method to generate key-poses from the
already defined point cloud representation. For each of the determined metrical classes
the method iteratively works on every kinematic chain, determining random coordinates
to represent the position of each joint. The starting joints, or anchors, were determined as
the mean values of their TGA spherical distributions. Then for every joint, the coordinates
of the joint are determined by choosing a random point from the spherical cap, that results
from the interception of the spherical distribution for the considered joint with a sphere
centered in the position of the previous joint and with radius equal to the segment, or
body part, length which links both joints (as presented in figure 2.9). As the position of
the joints are randomly chosen, this method has the advantage of generating key-poses
with variability, among successive metrical cycles of the same dance pattern.

2.2.2 Robotic Systems

Shiratori et al., in the final step of [SKNI07] generates temporally-scaled motion for a
humanoid robot. Simple temporal scaling is done by adjusting the temporal frame of
B-spline control points with the specified scaling ratio. To solve possible violations of
angular limitations, like joint angular velocity, the joint limitations are considered and the
upper body motion is modified (figure 2.10). The motion corresponding to the musical
rhythm frames is segmented and the optimized so that the resulting joint angle satisfies
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Figure 2.9: Example of the application of the key-pose synthesis method with variability, for one
kinematic chain, starting from joint 11 until the extremity (joint 20) [ONG+10].

these conditions. The results of this method are good, as the robot can stably imitate the
human dance motion, and it also preserves the details in the original motion. The main
drawback of this method is the lack of the leg motion generation, which includes many
balance and self-collision problems. Also the method risks making the robot fall because
of rapid changes in acceleration.

Figure 2.10: Consideration of joint limitations in the humanoid upper-body adaption of the original
dance motion [SKNI07].

In [OSKI10], Shiratori et al. present a complement of [SKNI07], by combining the
leg motion from [OSKI10] with the upper-body motion from [SKNI07]. To generate the
trajectory of a swing foot in a set, interpolation is used based on a cubic polynomial that
uses the starting point, the middle point and the landing point of the step. To maintain
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balance the interval between steps is checked to keep a stable Zero Moment Point (ZMP).
The leg motion is finally generate solving inverse kinematics and using refinement to keep
the humanoid balance and perform collision avoidance.

Using both methods [SKNI07] and [OSKI10], Shiratori et al. generates full body
motion. The result motion was synchronized to the music. Also the robot’s biped balance
was assured.

Zhao et al. uses kinematics mapping to translate the captured motion data to the
humanoid morphology, while satisfying the humanoid constraints [ZHD+04]. The use of
similarity functions helps the mapping of the motion, keeping the motion as close as the
human but also ensuring that the physical constraints of the humanoid are not violated.
This similarity function is maximal when the joint angles of the humanoid are equal to
the ones of the human actor. For the upper limbs, the constraints include mainly the joint
rotational range and the different number of DoFs. For the lower limbs, the ground contact
conditions are critical. The algorithm for generate the movements starts by computing
the robot waist position and then proceeds to the maintenance of the robot balance by
recurring to 2 different algorithms, depending on the number of feet on the ground: an
algorithm to the single-support phase and an algorithm for the double support phase, as
described in figure 2.11.

Even by satisfying the kinematics constraints, the stability of the robot cannot be guar-
anteed, so the hip trajectory is modified to satisfy a constraint based on the ZMP criterion.
To demonstrate the method the humanoid robot performed Chinese Kongfu “Taiji” (fig-
ure 2.12).

Kim et al. introduce a simplified human model to obtain a ZMP trajectory of a human
based on the marker trajectories of motion capture data [KKYO09]. From the motion
capture data some of the parameters are extracted to build a simplified human body with
cylinders, spheres or boxes (figure 2.13). The body parts are connected as a chain, each
having 3 DOF. In order to find the unknown parameters for building the body optimization
is used, by minimizing the error between the ZMP trajectories obtained from the capture
data, the reaction data, and the approximated ZMP trajectories of the simplified human
model.

Kinematic and dynamic mapping is also used to generate the humanoid motion. In the
kinematic mapping, the motion for the upper-body is created using Inverse Kinematics
and optimization. The arms are scaled to resolve the geometric difference between the
robot arms and the human arms. A cubic spline interpolation is used to smooth the discrete
joint trajectory, providing position and velocity values of joints as references during real-
time control. The mapping of lower-body deals mostly with the feet and pelvis motions.
Another important step is the need to modify and scale the ZMP trajectories to avoid that
the humanoid fall down. After this, the dynamic mapping is applied. The ZMP trajectory
may still be inconsistent with the lower and upper-body motions, since no constraint on
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Figure 2.11: Motion Generation algorithms, considering the maintenance of similarity with the
original dance, and biped balance [ZHD+04]: a) Single-support phase (left); b) Double support
phase (right).

dynamics of the humanoid is considered. In the dynamic mapping the x-axis and y-
axis values of the pelvis position are modified to satisfy the desired ZMP trajectories
(figure 2.14).

The conversion of the motion from the human to the humanoid was properly done,
and there wasn’t a significant loss in motion similarity (figure 2.15).

Ruchanurucks et al. presented a method to generate motion based on trajectory op-
timization for a humanoid robot, with the application of physical constraints [RNKI05].
This optimization guarantees that the motion meets the physical constraints of the robot.
Inverse kinematics is used to convert the markers position, from the motion capture data,
to joint angles, that can be used by the robot. In order to assure that the calculated joint
angles met the physical limits of the robot motors, optimization is applied by imposing
objective functions according to the robot capabilities: angle, velocity and acceleration
limits; dynamic force constraints and a composition of all. Motion refinement is also
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Figure 2.12: Taiji key-poses: comparison of performer (a) and humanoid (b) [ZHD+04].

Figure 2.13: a) MoCap human body model (left); b) Simplified human body model
(right) [KKYO09].

performed, in order to detect trajectory errors, and solve the errors found. The method
preserves the detailed characteristics of the original motion, and at the same time ensures
that physical limitations are met using several constraints (see figure 2.16 for a motion
comparison).

Ruchanurucks et al., in a similar way to [RNKI05], proposes, in [RNKI06], a method
to apply space-time constraints focusing on physical limits, without considering the bal-
ance of the robot’s body. Constraints referring to joint rotational limitations are applied
in first place, and then self-collision avoidance is checked. Velocity and dynamic force
constraints are finally applied. This order is adopted because collision avoidance may
pose discontinuity in trajectories, which can be solved by force and velocity-constraints.
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Figure 2.14: Algorithm for stable robot pelvis trajectories, in kinematic and dynamic mapping of
human motion onto a humanoid robot [KKYO09].

Figure 2.15: MAHRU dance: a) Human performance (top row); Humanoid performance (bottom
row) [KKYO09].

Collision could be solved automatically by increasing the critical distances for the periods
that have collisions, by using an objective function.

Shiratori et al., in [Shi06], present a methods to extract the rotation quaternion from
a spatial point representation of a body, and for the determination of Euler angles of each
joint. The presented methods were only applied to the robot’s upper-body and are based
in Inverse Kinematics. This method uses the same body-centered local coordinate system
presented in [SNI06a] and [SNI06b], and allows the calculation of the necessary arms
joint angles for the humanoid HRP2 to replicate the original dance key-poses.

25



Related Work

Figure 2.16: Humanoid dance motion generation [RNKI05]: a) Comparison of the hand markers
between the MoCap body model and the robot (left); b) Exemplar Japanese dance performance
(left).

2.3 Humanoid Motion Optimization

In the robotic motion generation there are some works that are also interesting to refer.
Even if they didn’t work with dance motion, they mostly use optimization for motion gen-
eration, and work closely with the humanoid NAO. The following referred works were ac-
complished within the FC Portugal 3D robotic football team [RL01] [PGLLPR09] [LR07].

Picado, in [Pic08], used HC and GA algorithms to generate and optimize football
behaviors. In particular the algorithms were applied to the biped walking behavior. A
four-phase walking behavior was optimized using HC and GA, and GA seem to have
achieved better results but was slower. A walking style based on Partial Fourier Series
(PFS) was generated using GA, and this style proved to be faster and more stable, being
less sensitive to disturbances.

Rei, in [Rei10] [RRL11], created a skill optimization framework for the FCPortugal3D
humanoid agent. The optimization framework can use different algorithms, namely HC,
SA, TS and GA. The optimization is processed by changing the several parameters in the
Slot Behaviors, as the joint angles values and the slot duration, and then evaluating the
results of the new behavior, according to a pre-defined fitness function. This enabled the
optimization of several and different types of behaviors with the definition of different
evaluation functions and the appliance of the developed optimization algorithms. The
optimization process was applied to different humanoid behaviors, and the algorithms
with best results were HC and TS, being TS usually faster than HC at finding optimal
solutions.
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2.4 Conclusions and Proposal

With the analysis of the literature some lessons can be learned. In first place, we can see
many limitations, or problems, with some of the presented approaches. The following
table 2.1 presents an overview of some of the most important aspects of the presented
works, concerning this thesis proposal.

Some of this methods lack in music perception [NOI+05], while others take it in
consideration but only generate motion to animated platforms [OCFT+08], [NOI+05],
[SNI06a], [SNI06b], [SKNI07], [KPS03].

There are few methods that labored the generation of full body humanoid motions.
[SKNI07] and [KKYO09] only apply their methods to upper-body and [OSKI10] only
generates legs motion. Although by combining some methods, [SKNI07] and [OSKI10],
we could get full-body robotic motions, they have only been applied to a dance style and
further experiments with different dance performances are needed.

On the other side, the literature also gives a good insight on the various problems
and challenges that lay ahead, and that need to be addressed, and solved, to successfully
create and present the proposed solution. These challenges are various: the analysis of the
motion data must allow extracting meaningful information, but also must allow that the
motion can keep some variability; the anatomic differences between the humanoid and the
human actor need careful transformations, and the motion/music relationship must also
be addressed. In the motion generation, the robot physical constraints, the balance of the
humanoid, the necessity to avoid self-collisions, and the maintenance of the motion-music
synchrony are the most important factors towards this goal.

For the development of further work, we shall base our motion analysis and motion
generation on [ONG+10], taking advantage of the point cloud representation, and the
parameterization and maneuverability that it offers and also the dance variability that this
representation can translate. For extending the work to the robotics area, and to enable the
reproduction of the generated key-poses, we shall focus on the appliance of the method
presented in [Shi06]. With the extraction of the humanoid joint angles, Slot Behaviors
can be created in SimSpark and the humanoid may reproduce the desired poses. Finally,
for improving and refining the generated poses in the humanoid, in order to increase its
similarity with the synthesized poses (resulting from the motion synthesis phase), and,
consequently, with the real human dance performance, we shall apply optimization, re-
curring to the framework presented in [Rei10], by using the TS algorithm. Ultimately,
the actual motion-music synchrony shall be assured by the adopted spatiotemporal rep-
resentation of the original dance performance [ONG+10], and shall be replicated by
interpolating the generated key-poses with the transition timings given by this represen-
tation.
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Table 2.1: Overview related work, according to each identified problem to this thesis proposal
(NA refers to Not Applied).

Approach Dance Motion
Analysis

Motion/Music
Synchrony

Motion Synthe-
sis and Genera-
tion

Morphological
Adaptation and
Optimization

Shiratori et
al [SNI06a]

Music features
(rhythm and
intensity) corre-
lated with motion
features

Music features
(rhythm and
intensity) corre-
lated with motion
features

Motion Segment
Interpolation

NA

Shiratori et
al [SNI06b]

Motion fea-
tures (key frame
and intensity)
extraction

Music features
(music beats,
degree of cord
changes and
intensity) corre-
lated with motion
features

Motion Graph +
third order inter-
polation of body
links

NA

Shiratori et
al [SKNI07]
[OSKI10]

Temporal scaling
techniques +
key-poses for
maintaining the
dance motion
shape at different
music speeds

NA B-spline In-
terpolation
[SKNI07] + Cu-
bic Polynomial
Interpolation and
Inverse Kinemat-
ics [OSKI10]

Considered
Joint constraints
[SKNI07] +
ZMP verification
[OSKI10]

Kim et al
[KPS03]

Motion Beats:
Moments of
rapid change in
motion

Incremental
time-wrapping

Motion Graph Real time Mor-
phological Adap-
tation

Ruchanurucks
et al
[RNKI05]
[RNKI06]

NA NA Inverse Kinemat-
ics

Objective Func-
tions [RNKI05]
+ Sequential
Constraints
[RNKI06]

Zhao et al
[ZHD+04]

NA NA Kinematics Map-
ping

Similarity func-
tions + Physical
constraints

Nagata et al
[NOI+05]

Extraction of
shoulders and
hips movements

NA Motion Graph
+ joints linear
interpolation by
line-blending

NA
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Chapter 3

Humanizing Robot Dance Movements

In this section the methodology used in order to archive the proposed goal will be de-
scribed.

The implementation will be based on the method used in [ONG+10] to analyze the
motion capture data. This analyze shall enable the extraction of the dance fundamental
key-poses and their point cloud representation. With the information for each joint in each
metric class, adaption will be done over the point cloud representation, so that it fits the
target robot morphology. After this adaption, the key-poses will be randomly generated
[ONG+11] (process illustrated in figure 3.1), and the angles between the body segments
extracted. Finally the poses will be reproduced onto the humanoid robot.

Having robot performing the poses generated, optimization will be allied to increase
the similarity of the motion generated to a robot model and the motion performed by the
robot. Finally, the motion will be generated by interpolation of the key poses with the
calculated interval between the poses.

3.1 Dance Motion Analysis

The dance motion analysis stage is based on the approach presented in [ONG+10]. As
such, we recurred to the same dance sequences of Afro-Brazilian samba, which were
captured with a MoCap system, and synchronized to the same genre of samba music
(manually annotated by experts). Upon these, we also applied the TGA (Topological
Gesture Analysis) method [NL10] for building a spatiotemporal representation of the
original dance movement in relation to the respective music temporal structure (musical
meter).
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Figure 3.1: System Architecture. Motion Analysis Architecture [ONG+10] (rigth). Motion Gen-
eration: Adaptation and Retargting (left).

As illustrated in figure 3.2, this method relies in the projection of musical metric
classes onto the motion joint trajectories, and generates point-clouds with the three-
dimensional space occupied by each body joint according to every represented metric
class, at different metrical (quarter-beat, half-beat, and beat) resolutions. These point-
clouds are treated as topological spaces equipped with musical qualities which are further
clustered and discriminated, by using Linear Discriminant Analysis (LDA) [NL10], into
uniform spherical distributions, whose radii are defined by the mean of the Euclidean
distances of all points to the centroid of the distribution.

Figure 3.3 illustrates the final spherical distributions for the hands of a samba dancer,
at quarter-beat resolution.

In such way, this representation model offers a compact description for the possible
positions of a joint in each metrical class. Besides, it supplies a parameterizable spa-
tiotemporal description of the original dance, which translates both musical qualities and
variability of the considered movement.
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Figure 3.2: Projection of musical cues (metric classes) onto the dance trajectories. a) annotation of
metric structure of the music is snchronized with the MoCap recording. These cues are projected
c) onto the movement vectors (in the example, right hand movements) as different classes of points
(e.g.: 1st beat, 2nd beat - receptively described as 1 and 2 in the figure). Finally, the point clouds
are discriminated using LDA analysis which guarantees the separation of point-clouds. In this
study we assumed a spherical distribution for the point clouds whose radius is defined by the
average of the Euclidean distances from all points of the class to the mean [ONG+11].

Figure 3.3: a) A point cloud representation of the left hand trajectories for the considered met-
rical classes, at quarter-beat resolution; b) Point cloud after applying LDA analysis; c) Spherical
distributions (one per metrical class) representing the point clouds. [ONG+11]

3.2 Key-Poses Synthesis with Variability

By following [ONG+10], our method for synthesizing key-poses, while translating the
variability of the original dance, consisted on calculating a set of full-body joint positions
(one for each considered metrical class) according to the given TGA dance motion rep-
resentation. [ONG+10] calculated the joint positions for every key-pose (metrical class)
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by randomly choosing coordinates inside each joint’s TGA distribution, without violating
the fixed geometry of the human body.

Yet, this method presents some limitations when randomly determining, at every met-
rical class m, the spatial position of every joint, pm

j . As illustrated in figure 3.4c), this
random joint position is randomly chosen inside the spherical cap Cm

j , which results from
the interception of the TGA spherical distribution for the considered joint Dm

j , with a
sphere Sm

j−1 centered in the position of the previous joint, pm
j−1, and with radius equal to

the segment (or body part) length l j−1, j:

{
pm

j = randp : p ∈Cm
j

Cm
j = Dm

j ∩Sm
j−1

, p,Cm
j ,D

m
j ,S

m
j−1 ∈ R3. (3.1)

rom this, for the current joint, a point from its spherical distribution is randomly cho-
sen, considering that this point must be at the current distance from the last calculated
joint position. Yet, in some situations, when there is no interception between Dm

j and
Sm

j−1, Cm
j can be an empty set of points. Facing this problem the method “forces” (i.e.

translates) the joint position pm
j to the center of the spherical distribution of the current

joint Dm
j . Since pm

j is forced, there are no length restrictions applied to this generation,
and the distance from pm

j to pm
j−1 may not be equal to the length of the segment that

connects this two body joints, l j−1, j. This situation forces the body model to have dif-
ferent segment lengths than the desired, and so the fixed geometry of the human body
model is compromised. Besides, this method only works with points, and the usage of a
segment-relation-based description is more useful to our proposed robotic application.

In order to to improve [ONG+10], a method is proposed to generate the body joints
positions based on the random rotation of their connected body segments [ONG+11], in
relation to every previous segments (see figure 3.4c)). For this process, for each metric
class, m, will be determinated the possible variation of the rotation quaternion defined
between every two body segments. This rotation quaternion will define the 3d rotation of
a target unity vector −→v ′ around its base vector −→v .

In the beginning, the base vector for calculating the orientation of the anchor segment
that connects the two anchor points of the used body model (joint 1 to joint 10 in figure 3.4
a)) is considered fixed in space at ~vsm

0
= (0,−1,0). This anchor segment sm

0 is the base
of all kinematics chains. After this starting point, each generated target vector is used as
the base vector for the following segment, and the process is recursively applied until the
extremity segment of each kinematic chain.

So, in every iteration, for each metrical class m, two segments (see figure 3.4d)) are
then considered: the current segment sm

j , that links the last calculated joint position pm
j−1

to the center of the spherical cap Cm
j , resulting from the interception of Dm

j and Sm
j−1; and

32



Humanizing Robot Dance Movements

the previous segment sm
j−1, that links pm

j−1 to its previous calculated joint position pm
j−2 of

the same kinematic chain. And the possible variations of each segment rotation quaternion
qvm

j are calculated. To determine this variation, the extreme points of the spherical cap Cm
j

are found as the maximum and minimum value that each coordinate can archive inside
this cap, obtaining six extremity vectors Ci

ext
m
j (one maximum and one minimum for each

spatial dimension d) that connect the previous joint position pm
j−1 to the extremes of Cm

j .
The rotation quaternion to each of the six vectors qvi

sm
j

are then calculated using the former

segment unity vector~v′sm
j−1

as the base vector, as follows:



~v′ism
j
=~vi

sm
j+1

=Ci
ext

m
j − pm

j−1 :

Ci
ext

m
j = mind (Cext

m
j )∪maxd (Cext

m
j ),d = {x,y,z}

qvi
sm

j
= cos

(
α i

sm
j−1,s

m
j
/2
)
+~ui

sm
j
∗ sin

(
α i

sm
j−1,s

m
j
/2
)

~ui
sm

j
=~vsm

j
×~v′ism

j

α i
sm

j−1,s
m
j
= arccos

(
~vsm

j
·~v′ism

j

)
~ui

sm
j
,~vsm

j
,~v′ism

j
, pm

j−1,C
i
ext

m
j ∈ R3; qvi

sm
j
∈ R4

, (3.2)

where ~ui
sm

j
is the unity vector representing the 3d axis of rotation between both segments

towards one of the extremities Ci
ext

m
j , and α i

sm
j−1,s

m
j

the correspondent rotation angle.

The next step is to calculate the desired random quaternion qvsm
j

inside the spatial
range of the previously calculated quaternion variations qvi

sm
j
. Ultimately, using qvsm

j
, the

target direction vector~v′sm
j

is obtained:

qvsm
j
= qvsm

j
±
∣∣∣qvsm

j
−qvi

sm
j

∣∣∣∗ rand(0,1)

~v′sm
j
= qvsm

j
∗~vsm

j
∗qsm

j
−1 =~vsm

j+1

, (3.3)

where qvsm
j

is the quaternion from the last calculated joint position to the center of the

current spherical cap Cm
j .

Finally, the current joint position pm
j is calculated using the former joint position pm

j−1,
the obtained target direction vector~v′sm

j
, and the current segment length l j−1, j:

pm
j = pm

j−1 + l j−1, j ∗~v′sm
j

: pm
j ∈ T m

j . (3.4)

This process is iteratively repeated for each kinematic chain (see figure 3.4d)), starting
in the trunk section (joint 1, joint 10, joint 11, joint 12), and then processing the arms and
legs.

If the calculation of a chain is unable to determine the correct and valid interceptions
for each, and every, joint of the kinematic chain, the calculation is repeated until a max-
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Figure 3.4: Body joints and kinematic chains (a)). Propagation of stochastic processes along a
kinematic chain (b)). Example of the application of the method to calculate a random point, for
the joint 18 (c)). Calculation of the joint 18 position based on random angles (d)). [ONG+11]

imum number of tries, that was fixed at 25. If, for any reason, no interception is found
between Dm

j and Sm
j−1, making Cm

j an empty set, the current joint position is still calcu-
lated using equation 3.4, but~v′sm

j
is determined using the direction from the previous joint

position pm
j−1 to the center of the current joint spherical distribution Dm

j . In this special
case, the translation from the calculated joint position to its new spherical distribution’s
center is determined and applied to all the following spherical distributions’ centers in the
same kinematic chain. If reaching the maximum number of iterations without managing
to build a “correct” kinematic chain, the chain with less associated error (i.e. less empty
interceptions) will be used to represent the given key-pose’s joint positions. This process
assures that all the kinematic relationships, described in the TGA dance representation,
are kept, inside the considered kinematic chain, without compromising the fixed geometry
of the humanoid body.

3.3 Key-Poses Morphological Adaption

In order to get a representation of the key poses, in the target humanoid morphology, the
original TGA-based dance representation must be adapted. This adaption must maintain
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the spatial relationships between all TGA spherical distribution, for all the joints of each
metrical class, without compromising the key-pose (and, consequently, the dance motion)
shape, across all represented metrical classes. In order to archive this is important to look
at the differences between the original and target morphologies, in terms of size, joints’
degree of freedom, and other target kinematic physical constraints.

This adaption can be applied prior to the key-poses synthesis step (presented in section
3.2) or by adaptation of the already synthesized key-poses, in order to overcome the target
humanoid constraints in the affected joints.

3.3.1 Different Segments Lengths

Prior to the actual humanoid key-poses’ generation, the segment lengths of each body part
length must be changed to those of the target body model, in order to allow the generation
method to generate body segments in agreement with the target lengths [SOR11]. Con-
sidering joint j, l j−1, j is the length of the segment that connects j−1 to j, and Dm

j is the
spherical distribution, with radius rm

j and center om
j . The distance from om

j−1, the center of
the spherical distribution for the previous joint in the kinematic chain, to om

j is considered
as dm

j−1, j and the direction vector from om
j−1 to om

j is −→vom
j−1, j . In order to change the

segment length from l j−1, j to l′j−1, j is applied:
redim = l′j−1, j/l j−1, j

d′mj−1, j = dm
j−1, j ∗ redim

r′mj = rm
j ∗ redim

o′mj = om
j−1 +d′mj−1, j ∗ ~vom

j−1, j

(3.5)

where d′mj−1, j is the new distance from om
j−1 to om

j , and r′mj the adapted radius of the spher-
ical distribution Dm

j that has in o′mj its new center point, as ilustrated in figure 3.5.
Using equation (3.5), o′mj will be translated, this translation will change the relation-

ship between this joint and the following joints of the kinematic chain. So the translation
that from om

j to o′mj is calculated and then applied to all the following joints centers in the
considered kinematic chain (exemplified in figure 3.5). The process of resizing is then
applied iteratively to the remaining joints in the kinematic chain.

This method allows to resize any body segment by manipulating the spherical distri-
butions of the movement representation according th the target segment lengths. Only
the anchor sphere of the body model isn’t resized or moved. The relation between the
segment length and the radius was considered linear, as pointed by redim in eq. 3.5. This
relation is considered linear because if a segment has its size changed, its expected that
the distance between the centers spherical distributions, for the initial joint and final joint
of this segment, will have its size changed in the same proportion. In the same way, as
the radius of a joint spherical distribution j is the reach of the segment from j−1 to j, if
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Figure 3.5: Resize method. Resizing of a segment (from T GA1 to T GA2) and translation of the
segment target sphere (T GA2). Example of the appliance of the translation, represented by “trans”
in the image, to the rest of the kinematic chain (T GA3).

the segment from j−1 to j has its size changed the radius of the spherical distribution of
j will be changed in the same proportion. The method only performs a translation of the
spherical distributions centers maintaining the spatial relation between them. The change
in the spherical distribution radius, is regarded as an adaption of the segment reach.

3.3.2 Different Number of Joints

During the process of morphological adaptation the target body model may have a differ-
ent number of joints than the original body model [SOR11]. In the described approach
there was the need to “erase” a joint at the body model trunk, requiring the adaption of
its original model, with three joints (joint 1, joint 10, joint 11 in figure 3.4a)) and two
segments, to the target model with only two (extremity) joints linked by the whole trunk
consisting of one segment. This operation could be done by simply connecting the po-
sition of the first trunk joint (identified in figure 3.6 as pm

j ) to the position of the last
(identified in figure 3.6 as pm

j+2), for every key-pose (metrical class m). Although this
would be a simplistic solution it would introduce higher loss of information relative to
every original pose, and so further edition of the affected joints would be necessary. For
this purpose, for every key-pose, a method was implemented in order to find the best seg-
ment that stays inside the spherical distribution Dm

j of the first joint position pm
j and the

one Dm
j+2 from the last joint pm

j+2, but at the same time would be closest to the spherical
distribution Dm

j+1 of the middle joint position pm
j+1.

As illustrated in figure 3.6, the first step in this process is to check if a sphere Sm
j ,

centered in the position of the first joint pm
j , with radius l j, j+2 = l j, j+1+ l j+1, j+2, intersects

the spherical distribution of the extremity joint Dm
j+2.
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Figure 3.6: Morphological adaption of a kinematic chain with three joints ( j, j+1, j+2) to one
with two joints ( j, j+2), by “erasing” the middle joint: a) A sphere Sm

j , centered in the position
of the first joint pm

j , with radius l j, j+2 = l j, j+1+ l j+1, j+2, intersects the spherical distribution of the
extremity joint Dm

j+2; b) Sm
j doesn’t intersects Dm

j+2 requiring a translation of Dm
j+2 towards Dm

j ,
pointed by ~vd .

Following this step, two situations may occur: The intersection plane Cm
j+2 between

Sm
j and Dm

j+2 may be an empty cap (exemplified in figure 3.6 b)) or not (exemplified in
figure 3.6 a)). In the case that Cm

j+2 is an empty set, the center of Dm
j+2 must then be

translated in the direction of the vector from the center of Dm
j+2 to pm

j (see 3.6 b)i), or
the opposite (see 3.6 b)ii), respectively decreasing or increasing the distance from pm

j to
Dm

j+2. This is done until assuring an interception between Sm
j and Dm

j+2. After assuring
the interception between Dm

j+2 and Sm
j , the last step is to search for a point (the actual

joint position pm
j+2) in Cm

j+2 that connected to pm
j would be closer to the center om

j+1 of
the eliminated joint’s spherical distribution Dm

j+1. This is done by selecting the pm
j+2 that

would minimize the distance dm
s j,D j+1

from the segment sm
j , connecting pm

j to the selected
pm

j+2, to the center of Dm
j+1.

There is a special case, though, where pm
j is the anchor point of the model (and first

point to be determined in the model), this allows to choose pm
j , while keeping it inside

Dm
j . So the direction of the vector from pm

j to the center of Dm
j+2 is considered, and pm

j

will be moved instead of the center of Dm
j+2. Enabling the interception, and then pm

j will
be moved, in order to approach him of to Dm

j+1, allowing a better fit of the segment that
will be traced. Only this special case was applied to the spine in order to erase the middle
joint. This is a best fit problem, where is tried to fit a line to 3 points, the spherical
distributions centers, but the method presented differs from a normal best fit problem
because the appliance of restrictions in terms of distance from the first and last point.
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3.3.3 Different DOF

The proposed motion representation model and morphological adaption techniques can
also support the simple restriction of any joint’s DoFs. To apply this reduction of the
degrees-of-freedom, at each metrical class m restrictions must be applied on the way as
each joint position pm

j is calculated. This reduction should be applied over the calculation
of the interception between a sphere Sm

j−1, centered in the previous joint’s calculated posi-
tion pm

j−1, and radius equal to the segment length l j−1, j linking pm
j−1 to pm

j , and the current
joint’s spherical distribution Dm

j . This interception between the two spheres would give a
3-dimensional spherical cap that would permit the joint freedom across all the three spa-
tial directions. Yet, the reduction of this freedom to 2 DoFs, and so only two directions
(x,y), can be simply made by transforming the sphere Sm

j−1, centered in pm
j−1 and with

radius l j−1, j, into two circumferences, also centered in pm
j−1 and with radius l j−1, j, but

one described horizontally and the other vertically to the plane given by a segment linking
pm

j−1 to the center om
j of Dm

j . This would give as result of the interception two arcs, that
would only variate in two directions. Ultimately, for reducing the joint freedom to only 1
DoF we would simply chose one of the former arcs, according to the desired dimension
(x or y).

Although this process would potentially solve the kinematic constraints imposed by
the used body model in terms of degrees-of-freedom, while keeping a good similarity
with the represented dance, this issue wasn’t needed in the morphological adaptation to
the desired target humanoid. Yet, the implementation of this method would be pursuit in
the future, and further testing shall be presented.

3.3.4 Additional physical restrictions

In terms of physical restrictions that are only referent to the robot NAO were applied
constraints over some segments in order to ensure that they are parallel [SOR11].

Looking at NAO morphology further adaption was needed, since both sides of the hip
section can’t move independently. This problem can be generalized as the need to ensure
that certain body segments must be collinear (illustrated in figure 3.7).

So, in order to ensure that the segment s is collinear the segment s2, a random quater-
nion will be generated and the direction vector,~vm

j, j′ , for the segment s will be determined.
Using this direction vector, a test will be made to generate a valid point inside the spheri-
cal distribution of j2 using the vector~vm

j, j′:

pm
j2′ = pm

j2 +~vm
j, j′ ∗ l j, j′ (3.6)

(pm
j +~vm

j, j′ ∗ l j, j′) ∈ Dm
j′ (3.7)
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Figure 3.7: Physical Restriction. Situation where the segment (s) from pm
j to a point in the spher-

ical cap Cm
j′ , that results from the interception of must be Sm

j with Dm
j′ , must be parallel to the

segment (s2) from pm
j 2 to a point in the spherical cap Cm

j2′ , that results from the interception of
must be Sm

j 2 with Dm
j2′ .

(pm
j +~vm

j, j′ ∗ l j, j′) ∈ Dm
j′ ∧ (pm

j2 +~vm
j, j′ ∗ l j2, j2′) ∈ Dm

j2′ (3.8)

If the newly generated point, pm
j2′ , is inside Dm

j2′ (respecting the condition 3.8) the
problem is solved. If this new point doesn’t respects the condition 3.8 the process will
be repeated until reaching 25 attempts. Condition 3.7 is the constraint applied to accept a
generated point in [ONG+10] and in the presented motion generation method based on
random rotations, the algorithms tries to ensure this condition while not reaching the max-
imum number of attempts. For the special case of this physical restriction, the condition
3.8 must be ensured instead, to use symmetric, or equal, vectors in both segments.

If a point that satisfies condition 3.8 isn’t generated and the algorithm reaches the
maximum number of attempts, then only 3.7 will be used instead, and pm

j2′ is calculated.
With this pm

j2′ will be forced, being outside the spherical distribution for this joint Dm
j2′ ,

but the segments generated s and s2 will be parallel.

pm
j2′ = pm

j2 +~vm
j, j′ ∗ l j2, j2′ (3.9)

As this new point will be outside the spherical distribution of j2′, the translation from
pm

j2′ to the center of Dm
j2′ is determined. This translation is then applied to all the following

spherical distribution center points in the kinematic chain. The translation will ensure
that the remaining centers still maintain their spatial relation and until the extreme of the
considered kinematic chain the pose is still similar to the original. The appliance of this
method was done over the hip section, considering that j and j2 are the same joint (joint
1) and that j′ and j2′ are the other hip joints (joint 2 and 6 respectively).
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3.4 Key-Poses Retargeting

To generate the actual robot joint angles from the previously synthesized key-poses, a mo-
tion retargeting technique based on [Shi06] was applied for extracting the necessary robot
joint angles based on the joint coordinates of each key-pose. This technique is based on an
Euler rotational representation and allows to directly mapping the synthesized key-poses’
joint positions into the respective robot’s joint rotations, while trying to overcome the lim-
ited DoFs of the robot and the individual singularities of each of its joints [SOR11]. As
such, this method calculates every joint rotations according to the defined local coordinate
system, which is based on a body-centered axis.

Given the use of a different humanoid body model (robot NAO instead of [Shi06]’s
HRP2) and the presence of singularities of different natures (especially between the robot’s
upper and lower body), we adjusted [Shi06]’s method to every specific joint of our model.
Given the different natures of the upper and lower body of our robot, we also defined dif-
ferent local coordinate systems for each of these body parts. The described method below
is referent to any given key-pose.

Figure 3.8: a) Considered labels for joints. b) Joint rotation axis and body local coordinate axis.
c) NAO joint distribution and joint rotation axis (adapted from [Sim]).
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3.4.1 Calculation of the Upper-Body Joint Rotations

At first, the local coordinate system for the robot upper-body Rub is defined in the chest
of the previously resized and adapted body model, as follows:

Ry
ub =~vSH = pLSH− pRSH

Rz′
ub =~vSP = pCSH− pCHIP

Rx
ub = Ry

ub×Rz′
ub

Rz
ub = Rx

ub×Ry
ub

Rub = [norm(Rx
ub),norm(Ry

ub),norm(Rz
ub)]

, (3.10)

where norm(X) = X
|X | and × is the cross product between two dimensions.

Now, for each vector in the global coordinate system, the correspondent vector in the
local coordinate system is calculated and the angles in all the axis are determined. This
calculation is specific to each segment of the considered humanoid morphology due to
the presence of singularities of different natures. As Rub is in fact a rotation matrix, the
product of that rotation matrix and a global unit vector will result in the corresponding
local unit vector.

By following figure 3.8a), the retargeting will start at the left shoulder. For such, we
consider a vector~vLSE connecting the shoulder’s joint global position pLSH to the elbow’s
pLELB, and proceed to a transformation of this vector to its 2 DoFs rotation, according to
the defined local coordinate system Rub. According to the specified joint’s characteristics,
firstly, the rotation angle in the y axis is extracted, which corresponds to the pitch rotation
of the robot’s left shoulder LShoulderPitch (arm movement in the sagittal plane):

~vLSE = pLELB− pLSH
~v′LSE = RT

ub×~vLSE

LShoulderPitch = atan2(~v′zLSE ,
~v′xLSE )

. (3.11)

Then, the rotation of the left shoulder in the z axis (roll rotation LShoulderRoll, repre-
senting the arm movement in the coronal plane) is extracted in the same way by applying
the previous calculated y rotation to the previous local vector ~v′LSE , as follows:{

~v′′LSE = Ry(LShoulderPitch)×~v′LSE

LShoulderRoll = atan2(~v′′yLSE ,
~v′′xLSE )

, (3.12)

where Ry(LShoulderPitch) is the rotation matrix in y by LShoulderPitch degrees.

To complete the left shoulder rotation, only the x rotation is missing, that represents
the rotation of the shoulder over itself. This rotation is applied on the robot elbow. For
such, it is now considered the vector ~vLEH from the elbow joint pLELB, to the hand’s
pLHND. Extracting the rotation in x axis and then robot’s left shoulder LShoulderRoll.
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Following this, both existing elbow rotations, in the coronal (roll rotation) LElbowRoll
and transverse (yaw rotation) planes LElbowYaw, are also calculated in relation to Rub:

~vLEH = pLHND− pLELB
~v′LEH = Rz(LShoulderRoll)×Ry(LShoulderPitch)×RT

ub×~vLEH

LElbowRoll = atan2(~v′zLEH ,−~v′yLEH )
~v′′LEH = Rx(LElbowRoll)×~v′LEH

LElbowYaw = atan2(~v′′yLEH ,
~v′′xLEH )

. (3.13)

All the former process is similarly applied to the right arm of the robot.
For the head section, the same local system from the arms Rub was used (see eq. (3.10)).

Identically, the two existing head joint rotations (2 DoFs), HeadYaw in the z local coor-
dinate axis (movement of the head in the transverse plane) and HeadPitch over the y axis
(movement over the sagittal plane), were calculated as follows:

~vCSH = pHEAD− pCSH
~v′CSH = RT

ub×~vCSH

HeadYaw = atan2(~v′yCSH ,−~v′xCSH )
~v′′CSH = Rz(HeadYaw)×~v′CSH

HeadPitch = atan2(~v′′zCSH ,
~v′′xCSH )

. (3.14)

3.4.2 Calculation of the Lower-Body Joint Rotations

For the extraction of the legs’ joint rotations a new local coordinate system Rlb is defined.
This process start by the hip joint rotations, proceeding to the knees, and finally to the
feet joints. This new coordinate system Rlb use both the hip and the spine directions, as
follows: 

Ry
lb =~vHIP = pLHIP− pRHIP

Rz′
lb =~vSP = pCSH− pCHIP

Rx
lb = Ry

lb×Rz′
lb

Rz
lb = Rx

lb×Ry
lb

Rlb = [norm(Rx
lb),norm(Ry

lb),norm(Rz
lb)]

. (3.15)

The following steps describe the calculation of all joints presented in the robot’s left
leg. Again, the same process was identically defined for the right leg.

Starting at the hip joints, firstly we extracted the robot’s left hip roll rotation LHipPitch,
that controls the hip movement along the body’s sagittal plane:

~vLKH = pLHIP− pLKNEE
~v′LKH = RT

lb×~vLKH

LHipPitch = atan2(~v′xLKH ,−~v′zLKH )

. (3.16)
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Then the LHipRoll, representing the left leg movement over the coronal plane, is
extracted: {

~v′′LKH = Ry(LHipPitch)×~v′LKH

LHipRoll = atan2(~v′′xLKH ,−~v′′zLKH )
. (3.17)

Using this new vector, the last angle for the hip section LHipYawPitch, over the local z
axis is determined. This hip freedom corresponds to an actuator that is shared by both legs.
As such, this rotation defines the hip movement over the transverse plane, symmetrically,
for both legs: 

~vLAK = pLKNEE − pLANK
~v′LAK = Rx(LHipRoll)×Ry(LHipPitch)×RT

lb×~vLAK

LHipYawPitch = atan2(~v′yLAK ,−~v′xLAK)

. (3.18)

After calculating all the three rotations for the hip section we proceed to the calculation
of the left knee and ankle rotations. For both knee and ankle joints only 1 functional DoF
is provided by the humanoid NAO, which only enables both joints rotations over the y
axis (sagittal plane) of the local coordinate system. The robot body model also presents
another rotation freedom at the ankles concerning its roll rotation around the z (coronal)
plane, RAnkleRoll and LAnkleRoll. Yet, this rotation was not considered since it doesn’t
have any correspondence to our synthetic body model. It would be rather important for
the maintenance of the robot’s biped balance, which is outside the scope of this thesis.

As such, ultimately, the respective pitch rotations of the left knee LKneePitch and left
ankle LAnklePitch were calculated as follows:{

~v′′LAK = Rz(LHipYawPitch)×~v′LAK

LKneePitch = atan2(~v′′xLAK ,−~v′′zLAK)
, (3.19)


~vLFA = pLANK− pLFOOT
~v′LFA = Ry(LKneePitch)×Rz(LHipYawPitch)×Rx(LHipRoll)

×Ry(LHipPitch)×RT
lb×~vLFA

LAnklePitch = atan2(~v′zLFA ,−~v′xLFA)

. (3.20)

3.5 Key-Poses Refinement

As a final step, to improve the degree of similarity of the generated robot dance with the
original, all key-poses were additionally refined by means of optimization.

Previous to the actual key-pose refinement, angle restriction was done. Angles con-
straints were applied to ensure that the angles passed to the robot were inside the limits
of the joints. To that all the angles over the maximum limit were considered equal to the
limit, and all the angles below the minimum limit were considered equal to the minimum
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limit. This was done to facilitate the optimization, because if the angle is outside the range
of the joint, changes in that angle during optimization may not reproduce change in the
poses and consequently in the evaluation function.

For this, the framework presented in [Rei10], and [RRL11] was used, allowing the
simple optimization of the NAO behaviors using several optimization processes. From the
several optimization algorithms available in this framework, the one that presented best
and faster results was the Tabu Search algorithm, so it was the optimization algorithm
applied in the key-poses refinement. For such refinement, we defined a fitness func-
tion that evaluates the similarity between the generated robot key-poses and the previous
synthesized-adjusted ones. This similarity function considers the distance between every
pair i, j of existing body points (joints location), and measures the difference between
such distances in the synthesized-adjusted dposei, j and robot droboti, j key-poses, as such:

Simpose,robot =
n

∑
j

n

∑
i= j

∣∣dposei, j −droboti, j

∣∣ (3.21)

As described in eq. (3.21), the sum of all differences between the distances of every
i, j points both in the synthesized-adjusted and robot key-poses, can then be seen as the
deviation of a generated robot pose in comparison to the original one. Therefore, the
greater the value of this measure the worse is the similarity of the evaluated robot pose
with its original.

The application of this similarity function was done over some points in the synthetic-
adjusted body model, by trying to match both these points and the robot’s equivalents.
Following figure 3.4 a)) and figure 3.8a), the given matching was applied and the follow-
ing joints were considered in this similarity evaluation: n the torso the joints MSP, for
the neck the joint CSH and for the head the joint HEAD were used; for the arms points
for the shoulders, joints RSH and LSH, for the elbows, joints RELB and LELB, and for
the wrists, joints RHND and LHND; for the legs the hips, joints RHIP and LHIP, the
knees, joints RKNEE and LKNEE, the ankles, joints RANK and LANK, and the foot,
joints RFOOT and LFOOT , were considered. With this the considered joint positions
for the generated key-poses was compared with the actual 3D position of the simulated
humanoid. The usage of the distance in the evaluation function allows to have different
axis systems, just needing to keep the same scale between the compared distances.

3.6 Robot Motion Generation

After having all the necessary key-poses adapted and optimized, the actual robot dance
motion is finally generated by ordering all these key-poses according to the respective
dance representation model (at the considered metrical resolution), and concatenating
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Figure 3.9: Key-poses Interpolation (adapted from [ONG+11]. a) Key-poses interpolation. b)
Joint interpolation.

them, by interpolating all of their joint angles into continuous trajectories (figure 3.9b)).
For generating the joint trajectories between every two key-poses, we used a sine function
to interpolate the joint angles θi of the first pose towards the joint angles θ f of the second,
and performed this transition within an imposed amount of time (time domain presented
in figure 3.9a)), given by δ .

As such, every of the robot’s joints follow a sine-like trajectory between every two
key-poses, from θi to θ f :

f (t) = A× sin
(

φ f −φi

δ
× t +φt

)
+α,∀t ∈ [0,δ ] (3.22)

Where A is the amplitude (eq. (3.23)), and α is the defined offset (eq. (3.24)):

A =
θ f −θi

sin(φ f )− sin(φi)
(3.23)

α = φi−A× sin(φi), (3.24)

where θi and θ f ∈ [−π,π], δ is the duration of the key-poses’ transition in seconds, and
φ f is the initial key-pose joints’ phase and φi the finals’.

3.6.1 Generating Expressive Robot Dancing Sequences

Since the expressive aspects of dancing motion are implicitly related to its musical qual-
ities (beat-synchrony, and others) and its underlying variability, constrained by the dance
pattern per se, we tried to replicate both these aspects into the generated robot dancing
sequences. In respect to beat-synchrony, this was achieved by determining the dance
motion frames where the determined key-poses occur, according their specific metrical
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classes (given by the former spatiotemporal dance representation), and so calculating for
each pose p its correspondent duration of transition to the next pose p+1:

δp =
( f ramep+1− f ramep)

f req
, (3.25)

where f req is the frame rate (100 frames per second). This calculation is done to find the
correct time between the poses, and the time between the key-poses is used as the duration
of the transition between two poses.

As the process of synthesizing key-poses uses the random selection of rotations, and
the motion is done by the cyclic repetition of this poses (figure 3.9a)), we will obtain
variability in the final generated dance motion. The final dance sequence is then built by
concatenating successive cycles of key-poses, synthesized with variability at quarter-beat
resolution, according to the dance TGA representation.

3.7 Conclusions

In this chapter were presented the methods necessary for analyzing, adapting and gener-
ation of the dance motion fundamental key-poses. The methods for generation and size
adaptation presented are flexible and simple to use, enabling the easy generation of key-
poses with the desired body model. Further morphology adaptation was necessary, and
the methods to do so were presented. The extracted and adapted key-poses act as a inter-
mediate representation, from which angles were extracted in order to enable the humanoid
robot to reproduce the same key-poses. With this extraction, XML Slot Behaviors were
built in SimSpark simulator, and as this extraction may not be exact, refinement of the
key-poses was applied by means of Tabu Search optimization. The optimization of the
key-poses helped enhancing the similarity of the humanoid key-poses to the original ones.
After this step, the humanoid dance motion is generated by sine-interpolation, ordered ac-
cording to the used dance representation model. Further testing of this methods should
be done concerning mainly the similarity of the key-poses and the similarity of the final
humanoid dance motion with the original human dance. Specifically, it’s also important
to understand the impact that the morphological adaptation has in the dance in terms of
similarity. In every case, it must be ensured that all the applied methods don’t produce
any unwanted alteration in the body model. Ultimately, the effect of introducing musical
synchrony and variability in order to generate expressive robot dance performances must
be also evaluated.
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Chapter 4

Experiments and Results

This section presents the performed experiments and the respective obtained results. The
methods presented in Chapter 3 were tested in terms of pose similarity with the original
captured dance, and overall musical expressiveness of the final generated robot dance.
The presented tests and results aim to validate all the proposed methods, by evaluating
and presenting visual insights of the several performed adaptations and motion retargeting
towards the resultant robot dance, while overcoming all the morphological differences and
kinematic constraints imposed by the used humanoid body model in comparison to the
original human-based captured.

In terms of overall similarity with the original dance, we performed individual tests
over the produced key-poses by each stage of the whole process (synthesis, adaptation,
retargeting, and refinement), always comparing these with the ones generated by the just
previous stage, and with the original captured ones. This evaluation, done by means of
numerical measurements or visual comparison, of the generated key-poses at each process
stage, allows measuring the individual effect of each method in terms of gains and losses
of similarity in comparison to the original dance, that we aim to replicate.

As a complement, all methods’ results were individually evaluated in terms of mor-
phological consistency to check if they were not compromising the fixed geometry of the
humanoid body model, in the process. Again, this is performed by recurring to specific
numerical measurements and visualization of physical details, that aim to confirm the cor-
rect disposition of all joints and segment lengths according to the target humanoid body
model.

Finally, in order to evaluate the degree of musical expressiveness of the generated
robot dance, which includes the effect of introducing variability and the degree of beat-
synchrony, and given the higher subjectiveness of these aspects, we additionally per-
formed an on-line user-evaluation with some video trials followed by proper questions
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into a Likert-scale questionnaire [Mog99]. In order to corroborate the former quantita-
tive results over the presented degree of similarity with the original dance, the subjects
were also inquired about similarity aspects, concerning specific stages of our method.

By following [ONG+10], all tests were performed with the same MoCap data of
samba dance. Considering the results reported in [ONG+10], all the performed tests
described in this Chapter (except the first, reported in Section 4.1), were generated with
a TGA dance representation defined at a quarter-beat resolution, introducing variabil-
ity in the key-poses’ synthesis process (i.e. “variability-4” parametrization), since this
parametrization seems to greatly represent the original samba dance.

4.1 Key-Poses synthesis based on random angles

In order to evaluate the proposed method, for synthesizing key-poses based on the random
choice of every body segment’s rotations, at different metrical resolutions, and in order to
be comparable with the [ONG+10]’s method (which distinctively selects random coordi-
nates for every joint positions), we also interpolated the resultant key-poses by means of
a cubic spline interpolant. Identically, we also measured the similarity between the syn-
thesized and original dance sequences, and additionally measured their similarity against
the sequences synthesized with [ONG+10]’s methods, by recurring to the correlation co-
efficient [DVMC10], which quantifies the linear time-domain correlation between two
signals s1 and s2. Considering these signals as the joint motion trajectories of the com-
pared pair of sequences, with N frames each, the correlation coefficient rs1,s2 was defined
as follows:

ri
s1,s2

=
∑

N,J,D
n=1, j=1,d=1 [(s1(n, j,d)− s̄1)(s2(n, j,d)− s̄2)]√

∑
N,J,D
n=1, j=1,d=1 (s1(n, j,d)− s̄1)

2
∑

N,J,D
n=1, j=1,d=1 (s2(n, j,d)− s̄2)

2
, (4.1)

where J is the total number of joints (total of 20 joints in the considered MoCap/synthetic
body model), D is the considered spatial dimensions (3 dimensions), s̄1 and s̄2 are the
mean frames across all joints and dimensions for s1 and s2, and i is the index of the
evaluated sequence. The maximum value for the correlation between s1 and s2 is rs1,s2 =

1, occurring when the signals are identical.
By also following [ONG+10], and in order to evaluate the reliability of the proposed

method against the same conditions, we also synthesized 6 dance sequences, with 30s
(3000 frames at 100Hz) each, using different parameterizations on the used TGA dance
motion representation, concerning different metrical resolutions and variability condi-
tions. Besides, we also measured the dimensionality (Dim(J ∗ S ∗T )) of the synthesized
sequences, which endeavors to measure the number of spatiotemporal arguments used to
describe the full-body 3D trajectories of the whole sequence (where J is the number of
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joints of the body model, S is the number of spatial arguments used in the TGA spher-
ical representation, and T is the number of metrical classes used to represent the dance
sequence, at the considered metrical resolution); and the level of reduction (Reduction)
introduced by the use of such representation model (with different parameters) in compar-
ison to using the whole joint trajectories information supplied by the respective MoCap
data. This method, and all these tests and evaluation were already described in a jour-
nal paper [ONG+11] submitted to the EURASIP Journal on Audio, Speech, and Music
Processing - Special Issue on Music Content Processing by and for Robots.

The correlation results are then presented in table 4.1, for the same parameterizations
evaluated in [ONG+10], where ro1,o2 is the correlation coefficient between two excerpts
of the same captured original sequence, off-set by one metrical cycle (one measure); rc,o

is the correlation coefficient between the synthesized sequence based on key-poses gen-
erated using random joint coordinates and the original sequence [ONG+10]; rr,o is the
correlation coefficient between the synthesized sequences using key-poses synthesized
based on random joint rotations and the original sequence; and rc,r is the correlation coef-
ficient between the same dance motion sequence synthesized using key-poses generated
using random joint coordinates and key-poses generated using random joint rotations.

Table 4.1: Comparison of the Correlation coefficients between the different key-pose synthesis
methods, in relation to the spatiotemporal dimensionality (Dim) and level of reduction (Reduction)
of their respective representation models. [ONG+11]

Test ro1,o2 rc,o rr,o rc,r Dim(JxSxT) Reduction
original 0.818 – – – 20x3xnFrames 0
random-2 – 0.420 – – 20x(3+1)x2 = 160 0.38xnFrames
variability-1 – 0.516 0.540 0.890 20x(3+1)x2 = 160 0.38xnFrames
variability-2 – 0.774 0.782 0.923 20x(3+1)x4 = 320 0.19xnFrames
variability-4 – 0.809 0.802 0.965 20x(3+1)x8 = 640 0.09xnFrames
fixed-4 – 0.822 0.813 0.993 20x3x8 = 480 0.13xnFrames

Although such correlation results allowed to compare the different synthesized dance
sequences against each other, and finally against the original captured dance, it don’t
validates the requirement of implicitly keeping the geometry of the body model fixed in
the process of synthesis. In order to evaluate this aspect, on both methods of synthesis,
we compared the morphology of the synthesized body models against the original one.
As such, we compared both original and synthesized body sizes, by comparing the sum
of all their respective body segment lengths, calculated as follows:

Sizetotal =
19

∑
s=1

ls, (4.2)
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where ls is the length in mm of the segment s. The body segments considered unite the
joints presented in figure 4.1 below.

This comparison, for both key-pose synthesis methods, is presented in table 4.2, the
table presents the mean body size for the generated poses and the mean deviation. The
value of the obtained total size is a mean of the obtained value of eq. (4.2) for all the eight
key-poses.

Table 4.2: Comparison of the total body size expected with the obtained (values in mm).

Generation Method Expected Size Obtained Size Mean Obtained Size Mean Deviation

Random Points 4697.777 4695.422 19.287
Random Rotations 4697.777 4697.777 0

Figure 4.1: Body model segments (represented by ssegmentnumber), joints and kinematic chains.

After accomplishing the size validation, it’s important to visually and numerically test
if all the calculated joint positions are inside their respective joint spherical distributions,
following the given TGA representation model. Figure 4.2 presents a visual plotting of
exemplar key-poses synthesized at “variability-4” with random rotations, and the respec-
tive joint spherical distribution. It’s important to refer that some joints, at some metrical
classes, don’t present spherical distribution because their radius were reduced to zero dur-
ing the motion analysis phase with the application of the LDA. This situations are pointed
with small sphere with a cross inside in figure 4.2 (left shoulder of both poses on the left
side).

On the other hand, figure 4.3 presents the same synthesized key-poses superimposing
both random method’s results against the same key-poses synthesized without variability
(at “fixed-4”), allowing a better comparison of the key-poses generated from each method.
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Figure 4.2: Visualization of three synthesized key-poses, at “variability-4”, in order to evaluate if
all the calculated joints are inside of their respective TGA spherical distributions. a) Method based
on random points (bottom row). b) Method based on random rotations (upper row).
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Figure 4.3: Visual comparison of some key-poses examples synthesized, at “variability-4”, with:
method based on random points (black line), method based on random rotations (blue line). Joints
are represented by a circle.

4.2 Motion Morphological Adaption

4.2.1 Different Segments Lengths

In order to assure the correct adaption of the body, a size comparison using eq. (4.2) was
applied. The results of this measurement, using body models with either half (0.5x) and
double (2x) sizes (by multiplying all segment lengths by these same factors) are presented
in table 4.3. As a complement, the visual comparison of the different generated bodies
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was also presented in figure 4.4.

Table 4.3: Comparison of the total body sizes for different scaling factors and NAO’s morphology.

Scale Expected Size Obtained Size

1x 4697.777 4697.777
2x 4697.777×2 = 9395.554 9395.554

0.5x 4697.777×0.5 = 2348.889 2348.889
NAO 1573.00 1573.00

Figure 4.4: Key-poses synthesized with variability (at “variability-4”) for different body scales
(axis measures in mm): a) Original captured human body (left). Body segments scaled 2x (middle).
Body segments scaled 0.5x (right).

In order to replicate the robot NAO’s humanoid morphology, a final adaption test was
made by resizing all original segment lengths to the NAO’s. Both expected and obtained
body sizes (by applying the proposed resizing method) are also presented in the last line
of table 4.3. The respective NAO’s segment lengths were extracted from the NAO box
model [Sim], as illustrated in figure 4.6.

4.2.2 Different Number of Joints

The application of the method presented that allows to erase a joint was only tested for one
numerical parameter, the total body size. Since even without the erased joints, the body
model must have the desired segment lengths, and the total body size was kept equal to
the presented in last line of table 4.3.

Further testing was done with visual comparison, as presented in figure 4.7. In this
visual examination it was expected that the connection between the two joints near the
erased one were connected by a single segment. It also was taken in account that this
segment should be closer to the erased joint spherical distribution and the segment should
start and end inside the extremity joints’ spherical distributions (Dm

j and Dm
j+2). Accord-

ing to figure 4.7, this method was applied to the spine section of the model (figure 4.1
illustrates the joints), transforming the segments linking the joints in the hip (joint 1) to
the spine (joint 10) and this to the neck (joint 11) into a single segment directly connecting
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Figure 4.5: a) Simulated NAO box model with the respective size of each body part (adapted
from [Sim]) (left). b) NAO’s box model with blue lines representing the adopted body model and
squares in the considered joints (the size of the hands was considered equal to the feet) (right).
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Figure 4.6: a) Key-pose generated using body with NAO’s segment lengths (left). b) Key-pose
generated using the original MoCap human model (right).

the hip to the neck. The figure confirms that even with the application of such operation,
the total body size was kept equal to the desired.

4.2.3 Additional physical restrictions

In order to evaluate the application of the physical restrictions to the generated poses
only visual evaluation was used. This visualization focused in the hip section, where the
method was applied, in order to confirm if both segments in that section were collinear,
as required. For such discretion, the respective hip segments and their joints’ spherical
distributions are presented in figure 4.8.
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Figure 4.7: Comparison of a key-pose with the spine middle joint (bottom images) and without the
spine middle joint (top images). a) Synthesized key-pose (left); b), c) Detail of the spine joints,
with their spherical distributions, in different view angles (middle and right).

Figure 4.8: Comparison of a pose with normal hip segments (top images) and with the adapted
hip segments(bottom images). a) Full pose (left); b) c) Detail of the hip joints, with spherical
distributions, in different angles of vision (middle and right).
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4.3 Key-Poses Retargeting

For evaluation of the method presented in 3.4, the similarity function 3.21 (also used for
the key-pose refinement) will be applied:

Simpose,robot =
n

∑
j

n

∑
i= j

∣∣dposei, j −droboti, j

∣∣ (4.3)

The usage of this similarity function enables the comparison of the pose reproduced
in the humanoid using the extracted angles, and the poses generated. The appliance of
this function is done in order to compare the synthesized and adapted key-poses joints
positions, dposei, j in (4.3), with the actual humanoid joints position that result from the
angles passed onto the robot, droboti, j in (4.3).

To perform this evaluation, eight synthesized and adapted poses were generated. The
joints positions for this poses were extracted and saved, and this joints positions were
used across all the comparisons done. This positions will be further referred as r, and will
be the dposei, j factor of our similarity evaluation.

The last step of this generation was the generation of the angles between the body
parts, in order to obtain the joints spatial position, for this three sets of angles were con-
sidered and so three similarity comparisons were performed:

• Angles were extracted from the synthesized and adapted key-poses sr,poseAdapted .

• To compare the former evaluation to a “worst-case scenario”, the same similarity
evaluation was applied to compare a neutral robot pose, with all joint angles equal
to zero sr,poseNeutral .

• Finally, angles were extracted from key-poses that weren’t resized or adapted, sr,pose

For the first eight generated poses, the similarity values are presented for the arms
pose, for the legs and the total value (table 4.4). The values for the Legs are calculated by
applying the similarity function only to the joints positions of the legs, the Arms value is
done the same way but only considering the joints positions for the arms, and the Total
value is done by applying the similarity function to all the joints position of the body.

It’s important not only to use this similarity comparison to prove the value of the
present methods, but also to have a real notion of the gain in terms of information, since
it may also be possible to obtain the desired pose by refinement of a neutral pose.

Besides the numerical similarity evaluation a the visual comparison of the poses was
also used. This comparison was made between the generated key-poses and the repro-
duction of those key-poses in the humanoid robot (figures 4.9 and 4.10), all the presented
key-poses suffered adaptation.
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Figure 4.9: Visualization of key-pose 1 (top) to key-pose 4 (bottom) (each row represents a new
pose), synthesized at “variability-4”: a) Synthesized-adjusted (left); b), c) Retargeted to simulated
humanoid NAO, in frontal (middle) and lateral (right) views.
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Figure 4.10: Visualization of key-pose 5 (top) to key-pose 8 (bottom) (each row represents a new
pose), synthesized at “variability-4”: a) Synthesized-adjusted (left); b), c) Retargeted to simulated
humanoid NAO, in frontal (middle) and lateral (right) views.
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Table 4.4: Similarity comparison of the generated poses.

sr,poseAdapted sr,poseNeutral sr,poseNormal

Pose Arms Legs Total Arms Legs Total Arms Legs Total

1 571 543 2714 818 546 6300 328 637 3166
2 328 741 2911 489 934 6566 346 633 3146
3 182 1008 2847 494 826 6397 187 686 2776
4 393 739 2918 517 714 6687 434 676 3173
5 514 802 3177 516 819 6400 709 864 4041
6 368 912 3051 453 1081 7164 417 829 3199
7 322 1013 2912 424 750 6432 385 884 3065
8 220 579 1896 453 662 6762 230 579 2012

4.4 Key-Poses Refinement

In order to evaluate the key-pose refinement, via optimization, the measures used in the
last section were reapplied to determine the gain in terms of similarity. As already stated,
the refinement was applied by recurring to the Tabu Search algorithm [Glo86], since it got
the best and faster results from all the algorithms tested from [Rei10]’s framework. This
algorithm was applied with the same set of parameters for every experience, as presented
in table 4.5. The refinement was performed over each one of the eight retargeted key-
poses, by iteratively testing different joint angles and for each test measuring the fitness
of the generated robot key-pose against the synthesized-adjusted one, by means of the
similarity function given by eq. (4.3).

Table 4.5: Parameters used in the Tabu Search configuration.

Parameter Value

Number of Experiments 5
Threads 1

Minimum Change for Angles -6.0
Maximum Change for Angles 6.0
Minimum Change for Deltas -0.4
Maximum Change for Deltas 0.4

Number of Iterations 300
Tabu List Size 1000

The optimization process was performed over the generated key-poses given as start-
ing conditions the retargeted key-poses (as described in Section 3.4) and also a neutral
pose (with all body joint angles set to zero), which acted as the “worst-case condition”.
This was performed in order to measure, in terms of optimization iterations, and conse-
quent computational time, the improvement or gain of applying a previous retargeting of
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the key-poses into the humanoid robot body model instead of simply applying the opti-
mization starting from neutral (or random) poses towards the synthesized key-poses. The
best obtained similarity values for the whole 300 optimization iterations were compiled
in table 4.6.

Table 4.6: Similarity comparison of the refined key-poses.

sr,poseAdapted sr,poseNeutral

Pose Arms Legs Total Arms Legs Total

1 225 322 1489 274 612 2024
2 200 337 1435 359 549 3144
3 298 340 1576 283 569 2605
4 164 323 1473 364 460 1906
5 320 492 2028 461 647 3912
6 251 516 1998 259 540 2242
7 176 432 1855 362 828 2357
8 207 314 1247 213 546 1989

The key-poses were individually refined, so the variation of the similarity function
values over the several performed iterations is presented in figure 4.13.

Finally, a visual comparison of all the key-poses in one complete metrical cycle (i.e.
eight key-poses, at “variability-4”), after applying such refinement, against the previous
synthesized-adjusted ones, in presented in figure 4.11 and figure 4.12.

4.5 Subjective Evaluation

In order to have a more broad evaluation, and specifically evaluate the degree of musical
expressiveness evidenced by the resultant robot dance, the several steps of the work were
presented and evaluated by 136 people by means of video demonstrations followed by
an user-survey (inquiry presented in A). The inquiry showed videos with excerpts of the
dance in the different phases of the work: human dance motion, avatar dance motion
created from the interpolation of the generated and adapted key-poses, and the robot dance
motion synthesized by interpolation of the refined key-poses.

The inquiry had two sections, one for the evaluation of the similarity and another for
evaluation of the expressiveness and variability of the robot dance motion.

The first part had five questions that aimed to evaluate the dance similarity between
different parts of the work:

• Quantify the similarity between the real human dance motion and the avatar dance
motion (by interpolation of the synthesized-adjusted key-poses);

• Evaluation of the similarity between the avatar dance motion and the robot dance
motion;
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Figure 4.11: Visualization of key-pose 1 (top) to key-pose 4 (bottom) (each row represents a
new pose), synthesized at “variability-4”: a) Synthesized-adjusted (left); b), c) Refined from the
retargeted to simulated humanoid NAO, in frontal (middle) and lateral (right) views.
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Figure 4.12: Visualization of key-pose 5 (top) to key-pose 8 (bottom) (each row represents a
new pose), synthesized at “variability-4”: a) Synthesized-adjusted (left); b), c) Refined from the
retargeted to simulated humanoid NAO, in frontal (middle) and lateral (right) views.
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Figure 4.13: Comparison of the optimization process for eighth key-poses (full metrical cycle),
synthesized at “variability-4”. The degree of similarity, calculated from eq. (4.3), was measured
between the key-pose under optimization and its synthesized-adjusted equivalent (i.e. optimal
response).
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• Evaluation of the similarity between the real human dance motion and the robot
dance motion.

For the last comparison of the motion, two extra evaluations were specifically performed
to evaluate the similarity of the leg motion and arm motion. For this section three videos
were produced with small excerpts of the dance motion in analysis in each question. For
the real human dance motion was used a small video of a female dancer performing the
same style of Samba (“Samba-no-pé”). For the avatar dance was used a video from the
dance motion generated by spline-interpolating the key-poses synthesized by the random
rotations method, and adapted to the robot morphology (synthesized-adapted). And for
the robot dance motion, a video was recorded of the robot NAO, in the simulation environ-
ment SimSpark, reproducing successive cycles of eight randomly generated (to translate
variability), and optimized, key-poses (at “variability-4”).

The second part had only two questions that aimed to evaluate the musical synchrony
and degree of expressiveness evidenced by the final robot dance. For these questions, a
simple video with two parts was used: in one part the robot dance without any variability
in the motion (by concatenating successive cycles of the same eight key-poses) and in the
second part the robot dance motion with variability, both also generated at “variability-4”.
This was done to understand if the variability that the methods introduce is perceptible
in the final robot dance motion, and if such is relevant to improve the expressiveness of
the robot dance performance. The degree of musical synchrony was also subjectively
evaluated over the same video.

All the questions were answered in a Likert-scale, constituted by 5 levels of agreement,
where 5 represented the maximum agreement and 1 the worst. For the several compar-
isons the obtained results are presented as frequency distributions in figures 4.14, 4.15
and 4.16. Besides, in table 4.7 and table 4.8, are presented the mean and standard devia-
tion of the results for each question.

Table 4.7: Degree of Similarity. Inquiry responses average and standard deviation for the various
evaluations

Evaluation Mean Deviation

Dancer vs Avatar 3.3 0.7
Avatar vs Robot 2.8 0.6

Robot vs Dancer (Total) 2.5 0.7
Robot vs Dancer (Arms) 3.2 0.7
Robot vs Dancer (Legs) 2.2 0.8
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Figure 4.14: Distribution of the responses to the inquiry: a) Comparison of the similarity between
the dancer motion and the avatar motion (by interpolation of the synthesized-adjusted key-poses)
(1 means no similarity and 5 means equal) (left). b) Comparison of the similarity between the
avatar motion and the robot motion (1 means no similarity and 5 means identical) (rigth).

Figure 4.15: Distribution of the responses to the inquiry: Comparison of the similarity between the
dancer motion and the robot motion (1 means no similarity and 5 means equal). This comparison
is also done in components evaluating the arms and legs separately.

Figure 4.16: Distribution of the responses to the inquiry: a) Expressiveness of the motion in the
two exerts of the robot dance motion, one with variability, in red, and another without variability,
in blue, (1 means no expressiveness and 5 means very expressive) (right). b) Evaluation of the
degree of evinced musical synchrony (1 means no synchronism and 5 means fully synchronized)
(left).
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Table 4.8: Degree of Musical Expressiveness. Inquiry responses average and standard deviation
for the various evaluations

Evaluation Mean Deviation

Motion-Music Synchronism 3.5 0.6
Expressiveness without variability 2.7 0.6

Expressiveness with variability 2.9 0.7

4.6 Discussion

4.6.1 Key-Pose Synthesis with Variability

In terms of comparison of the key-pose synthesis methods, table 4.1 shows that the corre-
lation between the method based on random coordinates and random rotations is almost
equal to 1, indicating this way that both the synthesized dance sequences are almost iden-
tical. The comparison of the correlation of both methods with the original dance sequence
is also almost equal. This results seem to validate that the methods produce equally simi-
lar dance motions to the original sequence. On the other side, table 4.2 demonstrates the
advantage of the method based on random rotations, since the body model is equal to the
expected, contradicting the body size’s difference to the original imposed by the random
coordinates method. Besides, even if its by a small difference, the method to generate
key-poses based on random rotations is more accurate. With the visual comparison pre-
sented in figure 4.2, mainly in the comparison of the first pose (upper and bottom left)
and figure 4.3, its visible that there is a slight difference in the shoulder section between
both methods. Further visual comparison showed that the difference in the body total size
exists only in the shoulders and hips. The results validate the proposed method, showing
that is more accurate than the previous method without significant losses in the dance
sequence similarity.

4.6.2 Key-Poses Morphological Adaption

The method for resizing the body model by scaling and translation of the joints spherical
distributions seems effective, presenting the desired results. Even at different sizes, the
synthesized key-poses seem to keep the same posture across all body. The method is
robust and allows to easily mold the spherical distributions, in size and spatial position,
fitting them to a different body, without compromising the shape of the resulting dance.
In terms of visual evaluation, figure 4.4 shows that even with different scaling the bodies
presents similar poses. This is also confirmed by figure 4.6, when building a body with
the robot NAO size. The MoCap’s and NAO’s bodies have significant differences in terms
of segment lengths, but present a good degree of similarity in the representation of ever
key-pose. The obtained body segment lengths for the NAO body, based on figure 4.5,
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seem consistent with the simulation body, but the 3D dimensionality of the real robot’s
body parts may impose self-collision problems in future work.

The methods for “erasing” a joint, in this case applied to the spine, and the application
of the physical restriction, in the hip section, introduce some changes in the posture, but
this changes seem to be localized in the affected areas by the work of this methods. Such
changes should be expected, since the application of this restrictions to a certain body
part effectively changes the posture of that body part. Either way, it’s important that the
remaining body parts still reproduce the posture with great degree of similarity, which
seems to be confirmed by figure 4.7 and figure 4.8. While figure 4.7 confirms a good
solution to the problem, it also seems that this methods impose a loss of the variability in
the construction of the spine, mainly because this method behaves in a greedy way, trying
to find a good solution which reduces the alternatives for choosing a random rotation in the
spine segments. From figure 4.8 it’s clear that the application of these 2 methods has its
disadvantages, since it was possible to generate valid hip segments, for the presented hip
spherical distribution, but as the application of the method to generate the spline moves
the initial point (joint 11) it makes impossible to generate valid segments (i.e. segments
whose joints fit their respective spherical distributions) for the hip section. As the two
methods work separately, they only try to archive its own goals and not a better global
solution, eventually making it only an optimal/good solution to the spine or hip problems.

In terms of the key-pose angle extraction, for the robot joint rotations, the overall
results seem good, in terms of visual and numerical evaluation, especially for the arms.
Yet, for the legs, the results aren’t so good, mainly due to the hip rotation in the transverse
plane (that gives the feet and legs orientations), which seems to not always be correctly
calculated. This error is also aggravated because of the angular limits of the correspondent
humanoid joint, avoiding certain types of positions for the legs.

Table 4.4 shows better similarity results for the extracted angles from the adapted key-
poses that from the non-adapted key-poses. In this table, the comparison with the neutral
poses helps to have a sense of gain in similarity by the application of the angle extraction
method, which seems to be in the order of 135%.

4.6.3 Robot Key-Poses Refinement

Using [Rei10]’s framework and the configuration presented in table 4.5 to refine the key-
poses, the similarity value was decreased by almost half in most cases. As suggested
by figure 4.13, the application of the same refinement over the neutral poses only was
able to obtain the starting similarity values from the extracted angles (figure 4.13). This
demonstrates the advantage of the presented method for extracting the angles for the key-
poses as a pre-refinement step, since better results are obtained faster than by simple
optimization over a neutral pose. By analysis of the refined key-poses, figure 4.11 and
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figure 4.12 suggest that the difference in the arms, between the retargeted and refined
key-poses, isn’t very perceptible and in the numerical evaluation the improvement of the
similarity for the arms is low. These results for the arms are in line with the results from
the angle extraction, where the arms also were very similar to the original pose. In the
legs, the changes are more clear, visually and numerically, but in some poses the gain in
similarity isn’t too clear in the visual evaluation.

4.6.4 Subjective Evaluation

Finally the subjective evaluation mainly recurs to visual evaluation of the resultant dance
motion, and as the inquiry reflects the opinion of a larger number of persons it helps
to understand the possible audience opinion and evaluation over the overall robot dance
performance.

The questions were made to individually evaluate the several applied methods. Firstly
we inquired the subjects about the degree of similarity between the real dancer and the
avatar motion (by interpolation of the synthesized-adapted key-poses), in order to evalu-
ate the reliability of the analysis and representation of the original dance motion, and the
synthesis and adaptation of the key-poses. In this evaluation, the mean of the answers was
positive and most answers were also positive (see figure 4.14a) and first line of table 4.7),
which showed good acceptance of the synthesis and adaption of the key-poses, resul-
tant motion via key-poses’ interpolation, in comparison to the real Samba dance. These
results helped to support the already obtained results for the correlation between the orig-
inal dance motion and the dance motion generated from the random rotations key-pose
synthesis method (presented in table 4.1).

The evaluation of the similarity between the avatar and the robot, that mainly evaluates
the retargeting and refinement phases, had the mean results almost on the border from the
negative to the positive (second line of table 4.7). The results are also mostly distributed
between the 2, 3 and 4 values of the scale (figure 4.14 b)), and this shows that there is
some resemblance between the avatar and the robot dance motion for the great majority
of the inquired people. This visual evaluation suffers from the physical and aesthetic
differences between the avatar figure, that is composed of lines (stick figure), and the
robot figure, that is more dense and complex. These differences may prejudice the visual
comparison. The evaluation of the dancer versus the robot wasn’t as positive as the other
results, mainly because of the already referred differences in the leg sections, since the
arms had a fairly positive evaluation (figure 4.15).

The evaluation of the full body is in the border from positive to the negative (third
line of table 4.7). These results suggest that the leg and hip section, being so important
in the Samba dance, and being so different from the human to the robot, impose several
differences in the final dance motion that reduce the similarity level. Ultimately, the

67



Experiments and Results

inquiry results aren’t optimal, but show that there is a fair degree of similarity between the
original dance motion and the robot dance motion, the results also are interesting because
the video of the dancer used in the comparisons is different from video of the motion
capture data dance. Since the original dance motion, from the motion capture data used in
this thesis, was performed without embellishments [ONG+10], and the video presented
in the inquiry had quite a few embellishments, it potentially prejudiced the comparisons.
Even so, is good to reinforce that all the comparison results from the inquiry were still
positive, even if we are comparing the robot dance motion with a human dance motion
different from the one from which this was built.

Concerning the evinced degree of musical expressiveness, in terms of beat-synchrony,
the results seem to be good for the vast majority of the inquired people (see figure 4.16b)
and table 4.8), showing that the interpolation method in combination with the beat-timings
given by the dance TGA representation is a valid approach, for maintaining the original
dance motion-music synchrony.

Finally the evaluation of the evinced expressiveness between the robot dance mo-
tion with variability and without variability shows that the difference is not very visually
perceptive, since most of the answers evaluated the 2 excerpts as being almost equal or
exactly equal (see figure 4.16a) and last two lines of table 4.8). This suggests that most of
the inquired subjects didn’t noticed any difference between the two excerpts, which is jus-
tified because of the small differences in the same poses from successive metrical cycles,
presenting only some varied angles, and those presenting a too low degree of variation
(1 to 10 degrees per joint). We can then argue that the poses couldn’t present significant
variations to be visually detected, and as so further studies need are needed to evaluate the
effect of introducing variability in the overall expressiveness of the resultant robot dance.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The creation and generation of humanoid behaviors isn’t a simple, or fast, process. This
thesis presents a form of transforming human capture dance motion into humanoid mo-
tion.

The study presented in this thesis is mainly focused in cyclic dance motions (popular
dance styles), where we can find a close musical-motion relation. Initial work was made
over a new key-pose synthesis method, that allows the construction of key-poses with
variability. This synthesis method, based on random rotations, proved to be as good as the
original method based on random coordinates, and, contrarily to the former, this method
didn’t compromised the fixed geometry of the human/humanoid body model.

The presented methods for the adaptation of the key-poses achieved the expected re-
sults without compromising the key-poses shape or the body model morphology. The
resizing method was implemented in a “universal” way and provided valid results, show-
ing that it can adapt poses to any desired humanoid body model. The other morphological
adaption methods were specifically required by the target humanoid robot morphology,
and, as the former, they achieved the desired results, without introducing errors in the key-
pose body model. Yet, although these methods also aim to solve generic morphological
adaptation problems, their application to other humanoid robots should still be explored
and tested. The morphological adaptation, applied to the target humanoid robot NAO,
proved to be valid at maintaining the key-poses shape and expression while successfully
transforming them to the target morphology.

As for the retargeting, interesting results were also obtained, with an overall good
degree of visual similarity between the original key-poses and the humanoid equivalents.
This similarity was greater in the arms, while the legs suffered from the several difficulties
found at the robot’s hip section, and from the lack of joints and DoFs presented by the
body and hip section. Also, some aspects about the dimensions of the humanoid body
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parts seem to present difficulties in the visual comparison between the robot reproduction
of the key-poses and their former stick figure representation. The adopted retargeting
method presented an efficient and simple approach for extracting the robot joint angles
from the synthesized-adapted key-poses, allowing fast computation and easier creation of
humanoid robot behaviors.

Finally, for the key-poses’ refinement, a metric to evaluate the similarity between
two poses was presented. This metric was used as a fitness function to our optimization
problem, and as a form of comparison to evaluate the degree of similarity of the achieved
robot dance compared to the original. The presented similarity function envisions to
quantify the deviation between two poses by comparing the relation between all their
body joints in terms of spatial distances. Even if it lacks an absolute zero value to have a
scale sensation in this evaluation, it numerically demonstrated the gain in similarity when
there was also a perceptive visual gain. The optimization allowed to obtain more similar
(i.e. refined) key-poses, in the humanoid robot, to the original ones.

The final experiment, in the form of an user-survey, subjectively evaluated all the
developed work by means of several videos with the results of some of the presented
methods in this thesis. This aimed to obtain feedback over the similarity and musical ex-
pressiveness evinced by the resultant robot dance performance. In terms of similarity with
the original dance, the results seem to validate the approach, even if the dance excerpts
weren’t considered exactly equal. In terms of musical expressiveness, the approach for
replicating the original dance rhythmic synchrony seemed to be validated. Yet, further
studies are needed to correctly measure the effect of introducing variability in order to
improve the overall expressiveness of the generated robot dance.

Ultimately, the Samba dance motion data used in this thesis provided several chal-
lenges, and the final generated robotic dance motion may had suffered from the lack of
hip movement and some physical constraints of the target robot, which are of most im-
portant to this specific dance style. Even facing this difficulties, the final robot poses,
generated from the several proposed methods, replicated with good similarity the original
poses, and consequently the original Samba dance.

5.2 Future Work

The most obvious and necessary work is to ensure the humanoid biped balance. In order
to generate and fully perform the dance motion, humanoid balance must be imposed and
self-collisions must be avoided. The upgrade of the refinement’s fitness function may help
to solve the balance problems via optimization. This could be achieved by changing the
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evaluation function as follows:

Sima,b =

(
n

∑
j

n

∑
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∣∣)∗ 1
time

(5.1)

, where time is the amount of time where the robot had balance. As such, the greater
the time the lower the evaluation function, and, consequently, the optimal the generated
motion would be. This would help to find, by optimization, a trade-off between similarity
and balance. Self-collision avoidance can also be done by optimization, by ensuring that
the distance between the body parts is higher than the sum of there size in the correct
distance.

Balance maintenance can also be dynamically achieved by adjusting the ZMP trajec-
tories [OSKI10], [ZHD+04], [KKYO09], constraining the total vertical inertia force to
be equal to zero, and so keep the robot balance. The calculation of the center of grav-
ity, and/or center of pressure, [Ste07], [SA09], can also be used to ensure the humanoid
balance.

The method to determine the intersection between two spheres presented in [ONG+10]
and [ONG+11] may also be upgraded in order to allow faster computation of the method.
This may prove extremely useful for the application of the presented work in real time.
This improvement may prove to have advantages in the search for the variation of the
rotation between two body segments.

Further work may also be done in order to attempt to merge, or create a direct bond,
between the method to generate the key-poses based on random rotations and the angle
extraction, or retargeting of the dance. This would increase the efficiency of the process
and would take full advantage of the method developed to generate the key-poses based on
random rotations. Further analysis over morphological adaptation, and appliance to other
robotic humanoid morphologies, may help to validate and complete the developed work.
This can also be achieved by applying this technique to other dance styles presenting
dance patterns intimately correlated to musical metrical qualities.

Ultimately, the proposed techniques may be extended and applied over different dance
motions and even over different kinds of motion, allowing the simple creation and repro-
duction by a humanoid robot of different kinds of basic human behaviors. Besides, the
presented techniques for angles extraction and motion refinement, may be also useful for
the easy creation of user-defined humanoid poses.
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Appendix A

Subjective Evaluation: Inquiry

Bellow are presented the questions of the used inquiry. The questions were divided in
two different groups (as explained in 4.5): a similarity evaluation group (figure A.2) and
a expressiveness analysis group (figure A.1).

Figure A.1: Inquiry questions about expressiveness evaluation.
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Subjective Evaluation: Inquiry

Figure A.2: Inquiry questions about similarity evaluation.
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