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ABSTRACT 

 

Microchannel reactors are a fundamental building block of chemical reaction engineering. One may find 

them in a permeable catalytic material as an idealized geometry for a single pore, in a fabricated 

microreactor, or as a cell in a monolith honeycomb. At different scales, all these structures materialize the 

concept of process intensification through mass/heat transfer enhancement and/or by miniaturization. The 

behavior of these systems is determined by the interplay of convection, diffusion and reaction in the open 

channel and surrounding catalyst domains. In this study, we propose an analysis of these interactions, 

using scaling and approximate analytical methods. First, we considered the determination of the 

conversion of reactant in the problem of mass transfer in channel flow with finite linear wall kinetics, for 

different degrees of the concentration profile development. Then, the analysis was extended to the case 

where a nonlinear reaction occurs, in the limits of kinetic and mass transfer control. These results were 

compared with numerical simulations and found to be in reasonable agreement. 

A uniformly valid description concerning the degree of development of the concentration (or temperature) 

profile was also pursued. For this purpose, we developed the application of an asymptotic technique to the 

series which is the solution of the classical problem. The result can be written as a combination of the 

predictions from limiting theories and the intermediate region appears well characterized. The extension 

of this transition zone is bounded between the inlet regime length and the distance at which the profile 

can be considered fully developed, both given explicitly in terms of the parameters and of an appropriate 

criterion which can be set as desired. 

Concerning the competition between mass transfer towards the catalyst and reaction at the wall, scaling 

analysis suggests that the correct scales for external and internal transport should be included in the 

criterion for diffusional limitation. This gives origin to the concept of a rescaled Damköhler number 

Da* . These order-of-magnitude predictions are confirmed in more detail by correlations for the degree 

of mass transfer control θ . It is proposed that boundaries for kinetic and mass transfer control should be 

plotted for specified values of θ  in a diagram, with the Damköhler and Graetz’s numbers as axes. 

At the scale of the catalyst coating, the internal reaction-diffusion processes were considered and 

boundaries between limits derived explicitly in terms of the operating temperature. The relationship with 

regimes defined by external phenomena was examined and the dimensionless group which establishes the 

overall picture in diffusional limitations at both channel and catalytic coating was identified. An improved 

calculation method for the effectiveness factor was proposed, based on a typical geometrical 

characteristic of thin coatings. This has found application in the description of nonlinear kinetics, non-

uniform geometries and egg-shell catalyst particles. 

The interaction between the same mechanisms appears in the analysis of perfusive catalyst particles and 

walls, where intraparticular convection is possible due to the existence of ‘large pores’. We have derived 

an expression for the effectiveness factor in a monolith with a permeable wall and shown that the 

conditions under which the performance enhancement is maximum correspond to strong convective 

transport, but only if this is ‘matched’ by a fast reaction. In a slab-shaped catalyst with a zeroth-order 

exothermic reaction, we estimated the effectiveness factor and maximum temperature in a number of 

regimes, represented in an operating diagram with axes defined by the intraparticular Peclet number, 

Thiele modulus and Lewis number.  
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RESUMO 

 

Um microreactor é um elemento base em engenharia das reacções. Pode ser encontrado num material 

catalítico permeável como uma geometria idealizada para um poro, num microreactor fabricado, ou como 

uma célula de um monólito. Em escalas diferentes, todas estas estruturas materializam o conceito de 

intensificação de processos através da melhoria da transferência de massa/calor e/ou através de 

miniaturização. O comportamento deste sistemas é determinado pela interação entre convecção, difusão e 

reacção nos domínios do canal e do catalisador circundante. Neste estudo, proposemos uma investigação 

destas relações, utilizando análise de escalas e métodos analíticos aproximados. Em primeiro lugar, 

considerámos a determinação da conversão de reagente no problema de transferência de massa em 

escoamento num canal, com uma reacção de primeira-ordem na parede, para diferentes graus de 

desenvolvimento do perfil de concentração. Em seguida, a análise foi alargada ao caso em que uma 

reacção não-linear ocorre, nos limites de controlo cinético e difusional. Estes resultados foram 

comparados com simulações numéricas e a concordância entre ambos foi considerada razoável. 

Uma descrição uniformemente válida no que diz respeito ao grau de desenvolvimento do perfil de 

concentração (ou temperatura) também foi procurada. Para atingir esse objectivo, desenvolvemos a 

aplicação de uma técnica assimptótica à série que é solução do problema. O resultado pode ser escrito 

como uma combinação das teorias clássicas formuladas em limites, e a região intermédia surge bem 

caracterizada. A extensão desta zona de transição está limitada entre o comprimento do regime de entrada 

e a distância à qual o perfil pode ser considerado perfeitamente desenvolvido, ambos formulados 

explicitamente nos parâmetros e num critério apropriado que pode ser estabelecido como desejado. 

No que diz respeito à competição entre transferência de massa para o catalisador e reacção na parede, a 

análise de escalas sugere que a escala correcta para transporte interno e externo deve ser incluída no 

critério para limitações difusionais. Isto dá origem ao conceito de número de Damköhler redimensionado 

*Da . Estas previsões são confirmadas por correlações para o grau de controlo diffusional θ . É sugerido 

que os limites para controlo cinético e difusional deverão ser representados para valores específicos de θ  

num diagrama, com os números de Damköhler e Graetz como eixos. 

O processo de reacção-difusão foi considerado à escala da camada catalítica e derivaram-se fronteiras 

entre os limites em termos da temperatura de operação. A relação com fenómenos externos foi examinada 

e o grupo adimensional que estabele o quadro completo em termos de limitações difusionais foi 

identificado. Um método de cálculo melhorado para o factor de eficiência foi proposto, baseando-se na 

reduzida espessura dos revestimentos catalíticos. Este procedimento encontrou aplicação na descrição de 

cinéticas lineares e não-lineares, geometrias não-uniformes e partículas catalíticas peliculares. 

A interação entre os mesmos mecanismos surge na análise de partículas e paredes com poros largos, onde 

é possível existir convecção intraparticular. Neste caso, derivámos uma expressão para o factor de 

eficiência num monólito com parede permeável e mostrámos que as condições em que o aumento do 

desempenho é máximo correspondem a um forte transporte convectivo, mas apenas se este for 

acompanhado por uma reacção suficientemente rápida. Num catalisador com geometria de placa plana e 

uma reacção exotérmica de ordem zero, estimámos o factor de eficiência e a temperatura máxima em 

vários regimes, representados num diagrama de operação que tem como eixos o número de Peclet 

intraparticular, o módulo de Thiele e o número de Lewis. 
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RÉSUMÉ 

 

Un microréacteur est un élément essentiel en ingénierie des réactions. Il peut être trouvé dans un matériau 

catalytique perméable comme une géométrie idéalisée pour un pore, dans un microréacteur fabriqué, ou 

comme une cellule d'un monolithe. À des échelles différentes, toutes ces structures matérialisent le 

concept de l'intensification de procédés en améliorant le transfert de masse/chaleur et/ou grâce à la 

miniaturisation. Le comportement de ces systèmes est déterminé par l'interaction entre convection, 

diffusion et réaction dans les domaines du canal et du catalyseur avoisinant. Dans cette étude, nous 

proposons une analyse des ces interactions en utilisant l'analyse d'échelle et des méthodes analytiques 

approximées. Premièrement, nous avons considéré la détermination  de la conversion du réactif dans le 

problème du transfert de masse en flux dans un canal, avec une réaction de premier ordre sur la paroi, 

pour différents degrés de développement du profil de concentration. Ensuite, l'analyse a été étendue au 

cas où une réaction non-linéaire se produit, dans les limites du contrôle de la cinétique et difusionnel.  

Une description uniformément valable en ce qui concerne le degré de développement du profil de 

concentration (ou température) a également été recherchée. Afin d'atteindre cet objectif, nous avons 

développé l'application d'une technique asymptotique à la série qui est la solution du problème. Le 

résultat peut être écrit comme une combinaison de théories classiques formulées en limites, et la région 

intermédiaire apparaît bien caractérisée. L'étendue de cette zone de transition est limitée entre la longueur 

du régime à l'entrée et la distance à laquelle le profil peut être considéré comme pleinement développé, 

ces deux termes sont explicitement formulés dans les paramètres et dans un critère approprié qui peuvent 

être défini comme désiré.  

En ce qui concerne la compétition entre le transfert de masse pour le catalyseur et la réaction sur la paroi, 

l'analyse d'échelle suggère que l'échelle correcte pour le transport interne et externe doit être inclue dans 

le critère pour des limitations diffusionnelles. Cela donne lieu à la notion de nombre de Damkohler 

redimensionné *Da . Ces prévisions sont confirmées par corrélations pour le degré de contrôle 

diffusionnel θ . Il est suggéré que les limites pour un contrôle cinétique et diffusionnel devront être 

représentées pour des valeurs spécifiques de θ  dans un diagramme, avec les numéros de Damkohler et 

Graetz comme axes.  

Le processus de réaction-diffusion a été considéré à l'échelle de la couche catalytique et des frontières 

entre les limites en termes de température de fonctionnement en ont dérivé. Une méthode de calcul 

amélioré du facteur d'efficacité a été proposée, basée sur l'épaisseur réduite des revêtements catalytiques. 

Cette procédure a trouvé une application dans la description de cinétiques linéaires et non linéaires, 

géométries non-uniformes et particules catalytiques pelliculaires.  

L'interaction entre les mêmes mécanismes apparaît dans l'analyse de particules et parois avec de larges 

pores, où il peut y avoir une convection intraparticulaire. Dans ce cas, nous avons dérivé une expression 

pour le facteur d'efficacité d'un monolithe avec une paroi perméable et nous avons montré que les 

conditions dans lesquelles l'augmentation de performance est maximale correspondent à un fort transport 

convectif, mais seulement si celui-ci est accompagné par une réaction suffisamment rapide. Dans un 

catalyseur de géométrie de plaque plane et une réaction exothermique d'ordre zéro, nous avons estimé le 

facteur d'efficacité et la température maximale dans plusieurs régimes, représentés sur un diagramme 

d'opération avec les nombres de Péclet intraparticulaire, Thiele et Lewis comme axes. 
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OVERVIEW AND RELEVANCE 

1  

 

 

 

 

 

 

 

Convection, diffusion and reaction are simultaneously present in several chemical engineering 

phenomena. A well-defined interaction of these mechanisms at several scales is key for the 

development of strategies for process intensification. Microreaction technology has emerged as 

one of those strategies, or more generically as a new paradigm for the chemical industry aiming 

improved performance. One of the main objectives of this thesis is to provide an analysis of the 

transport-reaction problem in a wall-coated microchannel using approximate analytical 

techniques. In this chapter, we review the driving forces for miniaturization which can be 

explained in terms of the length scales governing each transfer mechanism (section 1.1). Then, 

the practical motivation behind microprocess engineering is briefly illustrated with examples of 

applications in different fields (section 1.2). 

Our analysis also includes the definition of characteristic regimes, which is a topic of great 

interest in the design and operation of microdevices. Actually, conceptual development of a 

provess involves several stages in different regimes and a comprehensive description is 

required. Moreover, microreactors are known for opening new opportunities in parameter 

spaces which are unfamiliar to the conventional technologies. Some studies which are typically 

conducted in a widespread range of conditions are detailed in section 1.3. 

Process intensification in the sense of enhancement of mass/heat transfer rates can also be 

accomplished by means of another concept: the promotion of convective transport, where 

conventionally only diffusion existed to assure transport. This can be implemented in both 

microreactors with permeable walls and catalyst particles. A review concerning the effect of this 

additional mechanism inside catalytic structures is presented in section 1.4. Finally, the outline 

of the thesis is described in detail, along with the specific objectives and methods employed in 

each chapter (section 1.5). 
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1.1 OPERATION IN THE MICROSPACE 

 

The ‘microspace’ results from the reduction of the characteristic dimensions and its implications 

on flow, mass and heat transfer, coupled with eventual homogeneous and heterogeneous (wall-

catalyzed) reactions. The terms ‘characteristic length’ or ‘length scale’ refer to the distance over 

which an appreciable change in a quantity of interest occurs (e.g. changes in velocity, 

temperature or concentration). In fact, microdevices are composed by structures whose 

dimensions are of the order of several tens to hundreds of micrometers. As a result they exhibit 

high surface to volume ratios. If the characteristic geometrical distance is a , then 

1
~surf

S

V a
.          (1.1) 

Values of this ratio have been reported to be around 10 000 to 50 000 m2/m3 (Ehrfeld et al. 

2000), which are much larger than the ones for convectional technologies (1 – 10 m2/m3).  The 

natural geometry to consider is a channel, and in particular the single channel design is 

attractive, either as a model for multichannel configurations or as a technology on its own for 

laboratory and small scale production, with manageable investment costs, safety concerns and 

control effort. However, apart from specific applications where a precise control of harsh 

conditions is expensive, parallelization or numbering up is always a possible strategy to increase 

the productivity. 

A consequence of (1.1) is the decrease of the characteristic times for heat / mass transfer and 

mixing, i.e. enhancement of transport processes. Therefore, microtechnology offers 

opportunities for process intensification from several perspectives (Charpentier 2005; Becht et 

al. 2007; Becht et al. 2009; Van Gerven et al. 2009): pure reduction in plant size, increase in 

selectivity with reduction of waste by rigorous control of residence time and temperature 

gradients, and maximization of the interfacial area to which driving forces are applied. The 

timescales for several processes and their dependence on the geometrical characteristics of a 

microchannel are listed in Table 1.1. If these quantities are combined in the form of ratios, then 

several dimensionless parameters arise. It is possible to observe that different dependencies are 

present: second-order (diffusive) processes are more significantly affected from reduction in a . 

The process with the longest timescale will be controlling, and the design of the microgeometry 

should take this into consideration. 

An analysis based on these time constants for transport phenomena and reactive processes 

allows one to identify the operations that benefit the most from miniaturization and to compare 

them with processes occurring at the conventional scale. Many reviews exist in the literature 

concerning the effect of scaling down. In particular, we highlight the case where a wall-

catalyzed reaction occurs in a coated microchannel. 
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Table 1.1: List of characteristic times for transport-reaction processes 

Process X  Timescale, 
X

τ   

Convection (flow) 
L

u
 ~ L  

Viscous diffusion 

2
a

ν
 

2~ a  

Transverse mass diffusion / heat conduction 
2

a

D
;  

2
a

κ
 2~ a  

Axial fluid mass diffusion / heat conduction 
2

L

D
;  

2
L

κ
 2~ L  

Interphase mass / heat transfer 

(fully developed profile: , constantNu Sh = ) 

2

~surf

m

V S a

k Sh D
; 

2

~surf

heat

V S a

k Nu κ
 2~ a  

Interphase mass / heat transfer 

(developing profile*: 1, ~Nu Sh δ
− ) 

2

~surf

m

V S a

k D

δ
;  

2

~surf

heat

V S a

k

δ

κ
 2~ a δ  

Reaction (ref. coating volume) 
( )

1
0 0

0

m
c c

c k

−

=
R

  

Homogeneous reaction 
( )

1
0 0

0

m

bulk bulk

c c

c k

−

=
R

  

Wall-catalyzed reaction  

(no internal diffusion limitations) 

1 1
0 0~

m m

surf surf surf

c V c a

k S k

− −

 ~ a  

Heterogeneous reaction in coating 

(internal diffusion limitations**) ( )

1
0 0

0

~
m

obs surf

c a c

c k η

−

R
 ~ a  

Heat generation by chemical reaction 
( ) ( ) ( )

, 00 0

0 0

P fluid

ad R

C TT c

T c H c

ρ
=

∆ −∆R R
  

Heat removal by wall conduction (transverse) 
2
w

wall

t

κ
 

 

Reactor heat-up 
,

,

wall P wall wall

P fluid

C V

m C

ρ

ɺ
  

Notes: a  and L  are the characteristic dimensions in the transverse and axial directions, respectively; for 

the remaining nomenclature please refer to the Notation section at the end of the chapter; *details on the 

scale for transport under developing profile conditions ( ~ δ ) can be found in Chapters 2 and 4; **details 

concerning the use of the effectiveness factor (η ) can be found in Chapters 4 and 5; ( )0cR  is expressed 

as a power-law kinetics in some expressions ( 0
m

k c ); 
w

t  is the thickness of the catalytic body. 
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1.1.1 Reactor miniaturization under fixed efficiency 

 

A simple methodology for the design of microreactors, comparison with conventional 

technologies and identification of the most interesting operations was developed by Commenge 

et al. (2005). Since in large part this is based on the analysis of the timescales given in Table 

1.1, we now summarize the main aspects of this work. 

These authors consider reduction of reactor volume (and of the characteristic distance for 

transfer processes), while keeping efficiency fixed for hydrodynamic and chemically equivalent 

systems. This naturally requires the definition of both process efficiency and equivalence 

criteria. According to Commenge et al. (2005), a microstructured reactor is ‘equivalent’ to a 

fixed bed packed with nonporous spherical catalyst particles if they present the same porosity, 

surface area to volume ratio and space time, 

bed micro
ε ε= , 

surf surf
bed micro

V V

S S

   
=      

   
 and 

bed micro
τ τ= .     (1.2) 

This implies that the cross-sections, heights, catalyst amounts and feed flowrates 
feed

Q  of both 

reactors are the same, and that the particle diameter in the fixed bed is related to the diameter of 

a cylindrical channel by 

13

2
micro

part channel

micro

d d
ε

ε

−
= .        (1.3) 

Since the spherical particles are only active at the surface, they observe that the two systems 

related by Eqs.(1.2) and (1.3) present the same conversion for a large range of parameters. In 

either case, the efficiency is defined as the ratio of two characteristic times, the space time of the 

process fluid in the system and the one for the operation being considered controlling, 

conv

X

NTU
τ

τ
= ,          (1.4) 

where 
conv

L uτ =  and 
X

τ  is given in Table 1.1 for some common processes. As long as the 

number of transfer units ( NTU ) remains constant, the performance is fixed regardless of the 

scale. Therefore, systems with different dimensions can be compared on the same basis. 

For this discussion, the timescales for transport and reaction mechanisms can be grouped in 

terms of their dependence on the channel characteristic distance a . Then, the implications of 

reducing a  on the reactor volume and pressure drop are examined (Hessel et al. 2004; 

Commenge et al. 2005; Renken et al. 2008). We write the microstructured reactor volume and 

pressure drop as 

( ) ~
reactor ch ch X feed X

V N A L NTU Qτ τ= =       (1.5a) 
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2 2

4 4 2
~ ~ ~feed ch

ch ch X ch X ch

Q L A L L
P

N d d NTU dτ τ
∆        (1.5b) 

since NTU  and ~
feed ch ch X

Q N A L τ  are constant (independent from channel dimensions). 

Control by processes with high order dependences on a , leads to the most expressive reduction 

of reactor volume with the decrease of the length scale. On the other hand, pressure drop 

increases unless 4~
ch

N L a
− , which according to Eq.(1.5a) leads to 2 2~

reactor
V a L

−  (which 

decreases as 
X

τ  with a  if ~
X

L a τ ). For example, if mass transfer towards the coating phase 

is controlling: 

• the reactor volume decreases with a  as 2~
reactor

V a  

• the dependence of pressure drop on a  is 
2

4
~

L
P

a
∆  

• miniaturization does not result in a pressure drop increase if 2~L a  and 2~
ch

N a
− . 

Note that here the symbol ~  is used with the meaning “increases/decreases with decrease of a  

as”. Therefore, 2~L a  means that if a  is reduced from 1 mm to 100 µm , L  should be reduced 

from 1 m to 1 cm. This simplified analysis is only possible when there is a clearly controlling 

mechanism. In general, several effects may appear at leading-order behavior and further 

assumptions are required. However even for more idealized situations, the design equations 

need to be written with the correct coefficients and are more complicated than simple scaling 

rules. Thus, the analysis of regimes which consider the interplay e.g. between mass transfer and 

reaction are interesting to complement this approach (see Chapters 2 and 3 of this thesis). The 

definition of the areas where one mechanism is clearly controlling is also of interest (see 

Chapters 3 and 4 of this thesis). In the same line, Renken et al. (2008) proposed design rules 

obtained from comparison of the residence time in a microreactor with the time constants for 

several controlling processes. Note that the system’s conversion (and therefore specific 

productivity) is related with NTU . We now briefly review the implications of scale down in 

fluid flow, energy consumption, heat and mass transfer, in the absence or presence of chemical 

reactions in microchannels. 

 

1.1.2 Fluid flow and pressure drop 

 

A major simplification in the modeling of microchannels is to assume a well-defined velocity 

profile, decoupling fluid mechanics from the problem. Namely, laminar flow is likely to be 

found since the timescale for viscous diffusion is much smaller than the one for convection, i.e. 

from Table 1.1: 
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2

1
a

a u
Re

L
α

ν
= << ,         (1.6) 

where the two dimensionless parameters are the aspect ratio ( a Lα = ), which is typically 

small; and the Reynolds number (
a

Re a u ν= ), which is commonly in the laminar range for 

channel flow. This allows the problem to be treated analytically and the solutions presented in 

this thesis will rely on this assumption. The effect of simultaneous development of the velocity 

profile compared with concentration/temperature fields requires numerical evaluation and the 

importance of this is measured by Prandtl’s number for heat transfer or by Schmidt’s number 

for mass transfer: 

Pr
ν

κ
=  and Sc

D

ν
= .         (1.7) 

When Pr → ∞  and Sc → ∞ , the flow field develops much faster than the concentration or 

temperature profiles. In the opposing limit ( 0Pr →  and 0Sc → ), ‘plug-flow’ can be used as an 

idealized inlet profile. Solutions obtained for both cases will be presented in Chapters 2, 3 and 

4, in the perspective of lower and upper bounds. The entrance length before which the velocity 

profile can be considered developed is often given by an expression of the type (Bird et al. 

2002) 

~ 0.14e

a

L
Re

a
,          (1.8) 

here written for flow in a circular channel. There is a similarity between the entrance length of 

velocity and concentration/temperature profiles. In Chapter 3, the thickness of this region is 

discussed for the mass/heat transfer problem. 

The pressure drop is important to quantify the process energy requirements and sometimes even 

limiting of the design and performance of a microdevice. It is related to the friction factor by 

(Bird et al. 2002) 

2

2
h

uL
P f

d

ρ
∆ =          (1.9) 

The (Darcy’s) friction factor f  in a straight channel is inversely proportional to the Reynolds 

number Re
D h

u d ν=  , according to 

Re
f

D

C
f = ,          (1.10) 

where for fully developed velocity profile, the coefficient 
f

C  can be found for several cross-

sectional shapes (Shah et al. 1978) (it equals 64 in a circular channel and 96 in a planar 

channel). 
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1.1.2.a Pressure drop reduction 

 

A significant advantage in the adoption of microreaction technology would be the reduction in 

energy consumption. It is known that up to a certain extent, this is related to the pressure drop in 

the system. For ‘equivalent’ microstructured and packed bed configurations (in the sense 

detailed in section 1.1.1), the pressure drop from Poiseuille equation for the former is compared 

with Carman-Kozeney equation for the latter to yield (Commenge et al. 2005), 

( )

( ) 2
bed k

ch

P L h

P L
µ

∆
=

∆
.         (1.11) 

Eq.(1.11) is the ratio between the mean length of passages between particles and the length of a 

straight capillary tube, given by 2
k

h . Since ~ 4.5 5
k

h − , the pressure drop can be reduced up to 

2.5 times in a microreactor. 

 

1.1.2.b Scaling effects 

 

A question that always arises when discussing flow in microchannels, and particularly 

microflows, is the validity of the continuum theory. The extent of these deviations is assessed 

by the magnitude of the Knudsen number 

mean

charact

Kn =
ℓ

ℓ
,          (1.12) 

and their implications range from wall slip in gas flows to more unclear consequences in liquid 

flows. The literature presents contradictory conclusions concerning the need to account for these 

‘new’ effects. Doubts related with the accuracy of experimental measurements at small scales 

with ‘large’ analysis equipment (Hessel et al. 2004) contribute to the assumption of continuum 

behavior for (Bruus 2008; Herwig 2008) 

310Kn
−

<    (gas flows) 

and liquid flows with ,~ 10
mean gas
ℓ . For mean free path for gases ~ 50 nm

mean
ℓ , this implies 

50 µm
charact ch

d= >ℓ . Since the diameter of the channel at such small scales will be fixed by 

fabrication and cost limitations, if 
ch

d  is between 100 µm  and 500 µm , then the continuum 

approach is valid (Mills et al. 2007). In tubes with diameters below 150 µm , some deviations of 

the product of the friction factor and Reynolds number from theoretical values were explained 

by the failure in accounting for surface roughness (Judy et al. 2002). Other sources of error have 

been identified (Pfund et al. 2000). A discussion on the importance of effects such as viscous 

dissipation and the appropriate simplifications of the Navier-Stokes equations at the microscale 

can be found elsewhere (Herwig 2008). 
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1.1.3 Presence of wall-catalyzed reactions 

 

Heterogeneous reactions occurring at the microchannel wall or in a catalytic coating attached to 

this surface are of particular interest due to the large values of the surface to volume ratio, 

Eq.(1.1). This is in agreement with the generic statement that effects referred to the surface are 

privileged compared to the ones referred to volume. The dependence of the timescales for these 

reactions on the channel diameter compared with their homogeneous counterpart (Table 1.1), 

indicate that benefit from miniaturization does not occur if the controlling timescale is the one 

for bulk reaction.  Actually, there may be a change in mechanism at the microscale and it is 

possible that a homogeneous reaction becomes heterogeneous. Moreover, uncoated walls 

(stainless steel, iron,…) can act as catalyst for partial or total combustion (Mills et al. 2007). 

Therefore, wall catalyzed reactions are of particular interest and their presence introduces 

additional design considerations which interact with pressure drop, heat and mass transfer. 

 

1.1.3.a Reactor requirements at the microscale and criteria for miniaturization 

 

The ideal set of conditions for an industrial reactor to be feasible is well-known (Wörz et al. 

2001a; Wörz et al. 2001b). Our expectation is that by reducing the characteristic length scale, 

some of these requirements are achieved more efficiently or are simply made possible to attain. 

This is summarized in Table 1.2. It is commonly accepted that the potential of microdevices 

should be focused towards applications where dramatic improvements result, since the 

technology is not obviously free of disadvantages and has to compete with already well-

established processes, which benefit from the economy of scale. Concerning the nature of the 

reaction, several authors propose that the main candidates to microprocessing should have the 

following characteristics: 

• fast kinetics; 

• exothermic (endothermic) with reasonable (large) reaction heats; 

• high temperature; 

• complex; 

• multiphase; 

• hazardous; 

• for which conventional technology does not exist or is limited. 

Actually, microreactor arrangements may constitute a solution for reactions with a wide range 

of characteristics. Roberge et al. (2005) classified reactions in three main types according to 

kinetics, and proposed some examples of how microtechnology can answer the challenges 
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raised by each one (we have collected this information in Table 1.3). Examples of 

microprocesses for applications fulfilling these requirements are presented in section 1.2. 

 

 

 

Table 1.2: Fulfillment of ideal requirements by microstructured reactors. 

Requirement Purpose Advantages offered by microspace operation 

Residence time 

needed for reaction 

 

• Attain desired levels of 

conversion 

• Selectivity 

• Exact control of residence time (minimum 

backmixing; uniform RTD); 

• In particular, very short residence times can 

be achieved; 

• Transport rates can be matched with kinetics 

Efficient heat 

removal/supply 

 

• Safety (thermal 

runaway, explosive); 

• Hot spots reduce 

selectivity 

• Simultaneous micro heat-exchangers; 

• Large surface to volume ratio, enhanced heat 

transfer 

• Selection of wall material and geometry 

(additional design parameter) 

Sufficiently large 

interface (multiphase 

systems) 

• Improve contact 

between phases and 

interphase transport 

• large surface to volume ratio in wall-coated 

systems 

 

 

 

 

Table 1.3: Reaction classification according to Roberge et al. (2005) and respective 

microreaction engineering approach. 

Group Reaction characteristics Microtechnology solution 

A 

• Mixing-controlled 

• Rapid kinetics 

• Considerable heat release 

Multi-injection principle to spread the 

reaction over a larger reactor channel length 

or heat transfer area (Roberge et al. 2008) 

B 

• Kinetically controlled  

• Slow (reaction time of few minutes) 

• Require larger residence times with 

appropriate temperature control 

Flexible, modular reactor for reaction with 

considerable heat release 

C • Hazardous or autocatalytic nature 

Small volume systems with excellent 

temperature control, allowing start under 

harsh conditions but safe operation 
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1.1.3.b Matching transfer rates with kinetics for design 

 

It is commonly accepted that microreactors should be designed so that mass and heat transfer 

are fast enough compared to the reaction kinetics. A simple comparison of timescales allows the 

definition of regions of interest, although a more detailed analysis is required for rigorous 

design (see e.g. Chapter 2 of this thesis). Hessel et al. (2004) and Commenge et al. (2005) 

suggest that the dimensioning of the channel diameter should be ruled by these considerations. 

As can be seen from Table 1.1, heat and mass transfer depend on the channel’s diameter as 

2~
ch

d , while the time constant for an heterogeneous reaction may be proportional to ~
ch

d . For 

selected values of 
ch

d , 
mass transfer

τ  and 
heat transfer reaction

τ τ< . However, it is recognized that other 

factors may limit the possible designs, namely: pressure drop, occurrence of clogging/fouling, 

and uniform distribution of flow entering the microchannels. The first two factors suggest the 

use of larger diameters, which are also easier to clean (important for pharmaceutical production) 

and allow high flow rates. For higher throughputs, the ‘numbering up’ strategy can be used. 

Herwig (2008) presented a length-time scales plot comparing mixing by molecular diffusion in 

gases and liquids and the characteristic times for slow and fast homogeneous reactions. 

We note that even though it appeared from section 1.1.1 that controlling homogeneous reactions 

would take no advantage from miniaturization, the fact that ‘new’ conditions can be applied 

allows the performance of these processes to be enhanced as well (see sections 1.2.2 and 1.3.2). 

 

1.1.4 Impact on mass transfer 

 

In the case of microdevices operating in laminar flow, transverse mixing is assured only by 

molecular diffusion, which as shown in Table 1.1 has a characteristic time proportional to the 

square of the channel’s radius or diameter. Jensen (2001) reports that studies with acid-base 

reactions show that complete mixing in a liquid-phase microreactor with channels 50-400 µm  

wide occurred in 10 ms. Thus, faster mixing implies channel diameter reduction. This also leads 

to the increase in pressure drop and a flowrate limitation may appear. This can be surpassed by 

numbering up, even though other issues such as uniform fluid distribution arise. Therefore, 

several strategies to improve mixing in microchannel apparatus and networks have been 

proposed (Hessel et al. 2005b; Falk et al. 2010). The objective is to overcome the limitations in 

conventional methods, regarding energy consumption, technical feasibility and detrimental 

effect in the process performance (due to backmixing and axial dispersion). 

For the design of a single channel microreactor, the control of the residence time is important 

for selectivity issues. In preliminary design methods (Hessel et al. 2004; Commenge et al. 2005) 
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it is proposed that once the required residence time is fixed, the fluid velocity should selected so 

that minimum dispersion is obtained. It is possible however that excessive pressure drop results 

from this and a trade-off must be searched.  

To highlight the benefits from microstructuring in reducing dispersion, ‘equivalent’ fixed bed 

and microreactor (as defined in section 1.1.1) are compared in terms of a dispersion ratio (ratio 

of the widths of initially delta-like concentration tracers at the reactor exit) (Hessel et al. 2004; 

Commenge et al. 2005; Renken et al. 2008). In terms of the Peclet number (with 
ax

D  as the 

axial dispersion), an expression for fixed bed reactor of the type 

( ),p

ax

u d
Pe f Re Sc

D
= =  

is considered, while for the microchannel the classical Taylor-Aris theory applies (Taylor 1953; 

Taylor 1954; Aris 1956). For 3 100u d D< < , Commenge et al. (2005) observed that the 

dispersion in a microchannel is smaller than that of a fixed bed reactor with porosity 0.4. These 

boundaries change for other values of porosity (the range gets broader for smaller porosities, 

and narrower for higher porosities). The minimum dispersion is attained at ~ 14
ch

u d D  and 

corresponds to a 40% reduction in dispersion in a microchannel reactor compared to a fixed-bed 

one. 

 

1.1.5 Implications on heat transfer 

 

Perhaps one of the most important consequences from miniaturization is the enhancement and 

control of heat transfer rates in both reactive and nonreactive cases. As in the case of mass 

transfer, higher heat transport rates are possible due to the high values predicted from Eq.(1.1). 

Very high values of heat transfer coefficient are commonly reported for microgeometries and 

this has been known for many years (e.g. in the field of electronic microdevices cooling). It is 

possible to achieve heat transfer coefficients one order of magnitude higher than in conventional 

heat exchangers (Ehrfeld et al. 2000; Mills et al. 2007).  

Concerning the validity of macroscale theory in channels with reduced dimensions, Rosa et al. 

(2009) provided a critical review, evaluating the importance of scaling effects in single-phase 

heat transfer in microchannels. They concluded that even though inconsistencies in published 

results exist, the same theory and correlations are applicable as long as ‘scaling effects’ are 

explicitly accounted for or can be safely ignored. These ‘scaling effects’ included entrance 

effects, conjugate heat transfer, viscous heating, etc., and although they are likely to be ignored 

in macro-channels, they now may have a significant influence in heat transfer. They also stress 

the role of measurement and fabrication uncertainties and the need for reliable experimental 
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data. Results from single channel designs were found to agree with published correlations better 

than multichannel configurations and this was attributed to flow maldistribution, 3-dimensional 

conjugate heat transfer and measurements uncertainties. They expect sub-continuum models to 

become more important, however probably only relevant at the nano-scale. In particular, these 

authors review a number of experimental studies in the literature and conclude that in all of 

them entrance effects need to be accounted for. Conclusions in the same direction are taken in 

an experimental study from Lee et al. (2005). They assessed a number of classical correlations 

to describe thermally developing heat transfer in rectangular microchannels with hydraulic 

diameters ranging from 318 and 903 µm  and concluded that these were in good agreement, as 

long as inlet and boundary conditions are correctly considered. In Chapter 3, we discuss the 

relevance and extent of inlet effects in the temperature profile. 

A major improvement brought by microprocess technology results from combining superior 

heat transfer capabilities with highly exothermic (endothermic) reactions. Kockmann et al. 

(2009) discusses heat transfer in microstructures in terms of a volumetric heat transfer 

coefficient defined as 

ref

V heat

int int

SQ
U k

V T V
= =

∆

ɺ

, (units of W/m3K) 

where 
int

V  is the internal volume, 
ref

S  the area of the reference surface and 
heat

k  the heat 

transfer coefficient (per interface area). Kockmann et al. (2009) report a study from Kinzl which 

gives a threshold for 
V

U  in microreactors with residence time of 10 s  and highly exothermic 

reactions, so that a mean temperature difference of less than 10 K exists: 

( )
31 MW m K

V
U ≥ . 

Then, they estimate that under typical conditions for organic liquids, 

( )
( )

30.002
MW m K

V

ch

U
d m

= , 

which is greater than 1 for 2 mm
ch

d < . Therefore, microreactors are also heat exchangers and 

isothermal operation even for highly exothermic reactions is possible, due to efficient heat 

removal/supply. As discussed previously, this opens possibilities for dealing with reactions 

releasing large amounts of heat or with risk of explosion. It also improves selectivity of many 

processes, due to the reduction or even elimination of hot-spots. Consequently, more aggressive 

conditions may be employed (see section 1.3.2). 

The fastest mechanism for heat removal is by conduction through the walls, as can be seen from 

the timescale in Table 1.1. Therefore, the channel walls can be designed so that due to its 

reduced thickness and high-conductivity construction material, no appreciable temperature 

gradients are registered. In fact, this provides an additional source for control of temperature and 
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heat supply/removal. Ehrfeld et al. (2000) and Hessel et al. (2004) report several examples of 

microsystems for carrying out reactions, which are integrated with heat exchangers. This can 

happen by adjacent heating/cooling gas channels placed in alternating layers with the process 

channels. Due to the low thermal mass of the thin wall, the thermal response is usually fast 

(Jensen 2001). Lomel et al. (2006) wrote the characteristic time in both semi-batch and 

continuous processes for Grignard reaction as a function of the limiting heat transfer timescale. 

They explained the drastic reduction in operation times as being due to the shorter dimensions 

of the continuous microprocess, leading to intensified heat transfer and therefore shorter process 

times. Hardt et al. (2003) explored microstructuring techniques to enhance heat transfer in 

microdevices by at least one order of magnitude (Nusselt numbers as high as 100 were 

observed). The performance of the system was also tested in the presence of an endothermic, 

heterogeneous, gas-phase reaction. When compared to a conventional fixed bed, reduction in 

the amount of catalyst required and overall equipment size was achieved. 

Another direction which takes advantage from excellent thermal behavior is the safe realization 

of reactions which would result in explosion at the macroscale. Hessel et al. (2004) identified 

the key features in microchannel reactor which reduce the risk or prevent the occurrence of 

explosions due to chain reactions or to a large heat release. While molecule collisions with the 

channel walls may suppress the former, efficient heat transfer is capable of managing the latter. 

Two timescales that influence the increase in temperature due to a first-order homogeneous 

exothermic chemical reaction are (Table 1.1):  

( ) ( )

,~ P fluid wallwall

generation rxn

ad R wall

C TT

T H k T

ρ
τ τ =

∆ −∆
        (1.13) 

~ ch

removal

heat

d

k
τ . 

Eq.(1.13) is usually replaced simply by 
rxn

τ  and is evaluated here at the wall temperature. 

Insufficient heat removal or strong heat generation occurs whenever 
removal generation

τ τ>> , and the 

maximum temperature difference approaches the adiabatic limit. Nearly isothermal behavior is 

observed in the reverse case, which is favored by the use of smaller channels. 

 

1.2 APPLICATIONS OF MICROCHANNEL REACTORS 

 

The literature is abundant in applications and proofs of concept of technologies employing 

microchannel reactors. In fact, several patents have been filled (Hessel et al. 2008a) and some 

industrial applications were already reported (Hessel et al. 2005b). At the single channel level, 

several new laboratory or small production scale studies appear on a daily basis. As we will 
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discuss, the microchannel reactor concept also describes more consolidated technologies, such 

as monoliths. In this case, there are also many review articles (Hoebink et al. 1998; Nijhuis et al. 

2001; Kreutzer et al. 2005; Moulijn et al. 2005; Kreutzer et al. 2006) and dedicated monographs 

(e.g. Cybulski et al. (1998)). 

 

1.2.1 Practical realizations of the microchannel reactor concept 

 

The description of a system including a channel with the ability to carry reactions due to 

catalytic activity at its walls is sufficiently general to encompass a series of technologies. In 

fact, this is an idealized portrait that can act as a fundamental model of several practical 

solutions in chemical reaction engineering. We however will focus on two approaches in the 

field of structured reactors: monoliths and microfabricated channels. Usually, both are 

distinguished by different ranges of characteristic dimensions, being monoliths associated with 

larger cell hydraulic diameters ( ~ 0.5 1 mm
ch

d − ). Nevertheless, in terms of mass/heat transfer 

intensification with low pressure drops, both technologies claim the same advantages and 

sometimes the terms are used interchangeably. However, typically the term ‘monolith’ refers to 

a honeycomb arrangement composed by several repeating cells, divided by a ceramic or 

metallic material, e.g. Kolaczkowski (1999) and Chen et al. (2008b). It can be pictured as a 

catalyst block with a large number of parallel straight channels through which gas flows. On the 

other hand, microfabricated reactors are typically generated by precision techniques e.g. on a 

metallic plate. A number of fabrication methods (lithography, machining, micro milling, etc.) is 

available and details can be found e.g. in Mills et al. (2007) and Ehrfeld et al. (2000). This 

distinction may pose significant differences in terms of the channel-channel interaction. 

The incorporation of catalyst in the walls of these channels also shares similar characteristics. 

This happens in the case where a high surface area washcoat (e.g. γ-alumina) containing the 

dispersed catalyst(s) is used, so that sufficient loading is achieved. There are currently a number 

of techniques available to coat a microchannel with a catalyst layer (wet impregnation, physical 

and chemical vapor deposition, anodic oxidation, sol-gel, slurry and aerosol techniques) and 

suitable reviews have been published on the subject (Wunsch et al. 2002; Hessel et al. 2005b). 

In the case of the monolith, the wall itself may already contain the catalyst as an integral part of 

its structure. In this case, the boundary conditions are more complex and channel interaction in 

specific arrangements has to be considered. Problems in microchannel coating are also common 

to both cases. Rebrov et al. (2009) identified the reproducible preparation of the catalytic 

coating as a crucial requirement in the fabrication of multi-phase microfluidic devices. Besides 

reproducibility, other requirements are: homogeneous distribution, mechanical and chemical 

stability, and sufficient activity to achieve the desired yield under given conditions. The 



OVERVIEW AND RELEVANCE 

15 

replacement of the catalyst can also become an arduous task. There is also the possibility of a 

micropacked bed or a packed monolith. This however typically leads to nonuniform 

temperature, concentration and flow profiles (leading to increased pressure drop, channeling and 

favoring the appearance of hot-spots), and are more prone to clog. The step of packing the 

microchannel also raises some technical issues that require additional study (van Herk et al. 

2009). Finally, we refer to another distinction between the two technologies: fabricated 

microsystems may include other components, such as micromixers, micro-heat exchangers, 

sensors and controllers (Jensen 2001; McMullen et al. 2010). 

 

1.2.2 Examples of applications 

 

According to the characteristics listed above (section 1.1), we can expect a wide range of 

reactions to take significant advantages from scaling down. Actually, in the gas-phase, most of 

them fulfill all the desired features. For example, partial oxidations are typically highly 

exothermic reactions that required solid catalysts. Selectivity is a major issue, as strong 

exothermic total oxidation is undesirable. Implementation of more intense conditions is not 

feasible in conventional technologies due to difficulties in heat management (Becht et al. 2007). 

In this case, microstructured reactors offer the possibility of enhanced control of residence time 

and temperature, avoiding hot-spots that harm selectivity and catalyst lifetime. 

Several reviews concerning chemicals production on microreactors are available. Srinivasan et 

al. (1997) discussed ammonia oxidation in an integrated microreactor. Ehrfeld et al. (2000) 

detailed several examples of studies in gas-phase microreactors. Mills et al. (2007) refer some 

integrated microreactors for pharmaceuticals manufacture, chemicals production and energy 

generation. Kockmann et al. (2009) presents some examples of nitrations and organometallic 

reactions, based on Lonza’s industrial experience. Kolb et al. (2007) presents a review of 

microreactor for gas-phase selective oxidations. Microreactors for preferential oxidation as a gas 

purification step for fuel cells were also addressed. Other examples can also be found in Kolb et 

al. (2004), Hessel et al. (2004) and Gokhale et al. (2005). Pennemann et al. (2004) provide a 

comparison between microreactor and batch reactor (also stirred vessels and fixed bed reactors 

in some cases) for a large number of industrially relevant organic reactions with data taken from 

the literature. Their review was divided in ‘small-scale applications’ (e.g. peptide synthesis, 

aldol reactions, hydrogenations, dehydrations) and ‘lab / pilot scale syntheses’ (e.g. nitrations, 

organomethalic reactions, oxidations, hydrogenations, chlorination and fluorination). This 

referred to fine chemicals applications with flow rates up to several milliliters per hour and from 

that to several tens of liters per hour, respectively. While the main concern at the small-scale 

appears to be conversion (which generally register improvements in microreactors), at larger 
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scales increase in the process yield and selectivity is also desired (and this is also visible in the 

results from microdevices). From these examples, it is possible to observe two other important 

facts: in some cases, the reaction conditions change dramatically (temperature increases from 

cryogenic to more reasonable values) and the residence times are drastically reduced (from 

several hours/days to seconds). Mae (2007) gives several examples of organic syntheses in 

microreactors highlighting the following advantages: shortening of reaction time, solvent-free 

operation, new synthesis routes, control of unstable intermediates, severe conditions, safe 

operation under explosive / thermal runaway conditions, and omission of catalysts and reagents. 

Other examples are given in McMullen et al. (2010). Each case presents particular challenges 

that microtechnology may solve completely or at least minor its adverse effects. Summary of 

some particular cases can be found in Table 1.4. 

Application of microprocessing in the field of energy generation has gained particular interest 

and is nowadays a major line of research in the production of purified hydrogen for fuel cells 

and portable aplications (Kundu et al. 2008). Hessel et al. (2005b) and Kolb et al. (2005) review 

several examples of microdevices performing steam reforming of methanol, methane and 

propane. Examples of catalytic combustion and gas purification (CO clean up) are also given. 

The latter concerns mainly the water-gas shift reaction and preferential CO oxidation (Kim et al. 

2008). Ethanol steam reforming has also been studied in the context of renewable fuels from 

biomass (Casanovas et al. 2008a; Casanovas et al. 2008b; Görke et al. 2009). 

Another group of chemical transformations which may take advantage from microstructuring 

are the ones with biochemical nature (Miyazaki et al. 2006). This may sound as a contradiction 

when one considers the list of requirements presented in section 1.1.3.a. In fact, 

biotransformations are typically slow and release small amounts of heat. However, in 

multiphase systems or multistep synthetic processes the enhancement brought by 

miniaturization may be visible. Bolivar et al. (2011) presents several examples of liquid/liquid 

and gas/liquid contacting reactors with enzymatic transformations. In comparison with the 

reference batch technology, increase of conversion and reaction rate is generally observed and 

separation is also facilitated. Furthermore, as noted by Thomsen et al. (2009), microsystems 

become interesting because the biocatalytic step of the process is too slow for integration in 

conventional continuous flow processes. They performed hydrolysis of lactose and 2-

nitrophenyl-beta-D-galactoside (catalyzed by β-glycosidase CelB) in washcoated stainless steel 

channels with γ-aluminum oxide (to which the enzymes were covalently immobilized). Very 

fast conversion in the coated microchannels was observed (~10 s to completion). Therefore, 

microdevices allow the integration of region- and stereoselectivity biocatalysts with continuous 

industrial production methods. Moreover, scale up is avoided from screening to production 

stages of the biochemical process. Nevertheless, major challenges in implementation remain 

such as: selective and reversible enzyme immobilization (with high volumetric activity) and the 

integration with analytical instruments. 
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Table 1.4: Role of microreactors in improving the production of some chemicals 

Reaction Features / Challenges 
Advantages from microscale 

operation 

Refs. for 

details 

Partial 

oxidation of 

proprene to 

acrolein 

• Prevent total oxidation 

• Quench the reaction after 

synthesis of unstable desired 

intermediate 

• Performed under kinetic control 

• Fast heating of inlet gas up to the 

reaction temperature (enabling the 

use of short channels and low 

pressure losses) 

• Preferred isolation of unstable 

intermediates 

Ehrfeld et 

al. (2000) 

Hessel et al. 

(2004) 

 

Selective 

partial 

hydrogena-

tion of a 

cyclic triene 

• Avoid consecutive full 

hydrogenation 

• Unstable intermediate as target 

product 

• Higher yields (45% increase) of 

desired product compared with 

coated granules, wire and foil 

pieces 

• Uniform flow pattern, regular pore 

system, homogeneous catalyst 

distribution 

Ehrfeld et 

al. (2000) 

Kolb et al. 

(2004) 

H2/O2 

reaction 

• High temperature 

• Danger of explosion 

• Decrease of residence time to the 

sub-millisecond range 

• Ignition only at about 100ºC 

• Simple and safe design 

• Improved mass/heat transfer 

properties 

Ehrfeld et 

al. (2000) 

Maehara et 

al. (2008) 

Voloshin et 

al. (2009)  

Partial 

hydrogena-

tion of 

benzene 

• Avoid full hydrogenation  

• Very reactive intermediates 

• Increase of selectivity (up to 38%) Ehrfeld et 

al. (2000) 

Kolb et al. 

(2004) 

Oxidation of 

1-butene to 

maleic 

anhydride 

• Exothermic reaction 

• Combined with strongly 

exothermic total oxidation (hot-

spots) 

• Low selectivity 

• Selectivity comparable to fixed 

bed 

• Butane concentrations 10 times 

higher than explosion limit 

• Space-time yields 5 times higher 

(shorter residence time) 

Hessel et al. 

(2004) 

Kolb et al. 

(2007) 

Selective 

oxidation of 

ethylene to 

ethylene 

oxide 

• Step in complex reaction scheme 

• Increase in selectivity desired 

• Total conversion to CO2 favored 

by high temperatures 

• Isothermal conditions (no hot 

spots) 

• No inert gas (pure oxygen) with 

increase in selectivity 

• Residence times of only a few 

seconds are required for 29% max. 

yield of ethylene oxide 

Ehrfeld et 

al. (2000) 

Kesten-

baum et al. 

(2002) 

Kolb et al. 

(2004; 

2007) 
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Table 1.4 (cont.): Role of microreactors in improving the production of some chemicals 

Reaction Features / Challenges 
Advantages from microscale 

operation 

Refs. for 

details 

Oxidative 

dehydroge-

nation of 

alcohols 

• Low selectivity in large scale 

pan reactor (45%) 

• Appreciable temperature rise 

(150ºC) 

• Side reactions due to long 

contact time  

• Isothermal conditions 

• Short residence times (one order 

of magnitude smaller than multi-

tubular reactor) 

• Conversions higher than 50% and 

selectivity higher than 90% 

Ehrfeld et 

al. (2000) 

Hessel et al. 

(2004) 

Kolb et al. 

(2007) 

Synthesis of 

methyl 

isocyanate 

• High temperature 

• Hazardous gases 

• Transport and storage risks 

• Intense cooling needed 

• Modular devices including heat 

exchangers 

• Smaller hold-up of hazardous 

chemicals 

Ehrfeld et 

al. (2000) 

Hessel et al. 

(2004) 

HCN 

synthesis 

• Fast kinetics 

• High temperature 

• Hazardous gases 

• Fast side and consecutive 

reactions 

• High temperatures attained 

(>1000ºC) 

• Short contact times (between 0.1 

and 1 ms) 

• Uniform heat distribution (cooling 

times of 0.1 ms using air, resulting 

in less than 1.5ºC of difference) 

Ehrfeld et 

al. (2000) 

Hessel et al. 

(2004) 

Kolb et al. 

(2007) 

Nitration of 

phenol 

• Fast kinetics 

• Large heat release ( ~ 50ºCT∆ ) 

• Autocatalytic (longer period 

required to start) 

• Decomposition/explosion risk 

• Prolongated reactant dosing 

• Low yield (polymeric side 

products) 

• Small internal volumes 

• High concentration of phenol 

(90%) 

• Good temperature control 

• Almost solvent free 

• Spontaneous start (controlled 

backmixing) 

• Amount of side products reduced 

by a factor of 10 

Kockmann 

et al. (2009) 

 

Halder et al. 

(2007) 

(nitration of 

toluene) 

 

Partial 

oxidation of 

methane 

(syngas 

generation) 

• Very fast reaction (residence 

time in the order of 

milliseconds) 

• Portable, small-scale systems 

required for on-site small natural 

gas deposits exploration 

• High throughputs and space-time 

yields 

• Compactness  

Hessel et al. 

(2004) 

Phosgene 

formation  

• Moderately fast and exothermic 

reaction 

• Toxic products, storage and 

shipping difficulties 

• Small hold-up 

• On-site production 

• High heat dissipation 

• Kinetic studies in mini fixed-bed 

reactor 

Hessel et al. 

(2004) 
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Table 1.4 (cont.): Role of microreactors in improving the production of some chemicals 

Reaction Features / Challenges 
Advantages from microscale 

operation 

Refs. for 

details 

Organoli-

thium 

reactions 

• Highly exothermic  

• Unstable intermediates 

• Batch operation requires 

cryogenic conditions (-78ºC) 

• Operation at -30ºC 

• Excellent reaction control 

• Quenching of the intermediate at 

the end of the reactor 

Kockmann 

et al. (2009) 

Grignard 

reaction 

• Very rapid 

• Highly exothermic (operated at 

30ºC−  in batch); hot spots 

• Diluted reagents with long 

dosing times 

•  Reaction type A (Table 1.3) 

• Microreactor with multi-injection 

principle avoids decomposition 

and undesired side products 

• Quench of products at the outlet 

• Good thermal control 

• Higher yield 

Kockmann 

et al. (2009) 

Grignard 

reaction 

• Highly exothermic 

• Fast 

• Requires cooling at -40ºC (lab) 

and -20ºC (industrial) 

• Higher S V  ratio (from -14 m  at 

industrial scale to -14000 m ) 

• Higher temperature (-10ºC at the 

microscale) 

• Drastic reduction of reaction time 

(from hours to less than 10s) 

• Increase in yield from 72% to 92% 

• Increase in the heat transfer 

coefficient by 1 or 2 orders of 

magnitude 

Lomel et al. 

(2006) 

Dibal-H 

reduction 

• Slow kinetics 

• Activation of side reactions 

• Batch operation at -65ºC 

(complete conversion) 

• Increasing temperature reduces 

conversion and yield of main 

product, due to side reactions 

• Same performance of the batch 

reactor, obtained at higher 

temperatures (-40ºC) 

Kockmann 

et al. (2009) 

Hydrogenati

on of orto-

nitroanisole 

(pharmaceu-

tical) 

• Use of hydrogen at high pressure  

• Highly exothermic 

• Limited selectivity, downstream 

purification required 

• External mass transfer limitation 

• Poor G/L/S contact 

• Low yield, oversized reaction 

volume 

• Low hydrogen hold-up 

• Shorter residence times (minutes 

instead of hours) 

• High heat transfer, uniform 

temperature distribution 

• Higher selectivity  

• Move from batch to continuous 

flow process 

Tadepalli et 

al. (2007a; 

2007b) 
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A similar change in the operating mode of production is expected in the case of 

pharmaceuticals, where batch technology is dominant. Some examples are given in Table 1.4. 

Generally, conventional processing is limited in heat transfer and mixing rates (only in stirred 

vessels), require high dilution, longer dosing times, and hot spots may appear as a result of 

highly exothermic reactions. Microreactors bring new opportunities from several angles 

(Kockmann et al. 2009): exploration of new chemical routes with conditions which are not 

feasible in batch operation, increased safety from controlled operations in small internal 

volumes, rapid mixing and heat transfer, continuous processing with high flowrates and 

throughput, and implementation of ‘harsher conditions’ (e.g. higher concentrations; see section 

1.3.2). 

An important stage in all microprocesses involving catalytic coatings in microchannels is the 

testing of the catalyst itself. To perform this in microreactors is desirable, since conditions 

(temperature, flow…) can be rigorously controlled and extrapolation to the production scale is 

based on the same geometry. Actually, catalyst screening is among the original applications of 

microreactors. The areas that showed interest in these devices included combinatorial chemistry 

(Scheidtmann et al. 2001), high throughput screening (Trapp et al. 2008) and portable analytical 

measurement devices (Jensen 2001). Monoliths have also been used for the same purposes (e.g. 

Lucas et al. (2003)). 

 

1.3 CHARACTERISTIC REGIMES IN MICROCHANNEL REACTORS 

 

We have shown that working in the microspace has several advantages. However, many regions 

may exist in this space, which require characterization. Parametric areas can be distinguished in 

a number of ways. Scaling analysis leads naturally to the definition of ‘regimes’, since each 

mechanism is associated with a timescale (Table 1.1), and these are compared in parameters that 

arise when making the model dimensionless. The importance of each term is then evaluated by 

the magnitude of the associated parameter (since correct scaling assumes dependent variables 

and its derivatives of ( )1O ). In particular when seeking for approximate solutions, a balance 

between two important effects is often looked for, leaving others ignored or restricted to non-

leading order corrections (Lin et al. 1988). These limiting solutions apply in a given regime 

which is defined a priori. In chemical reactors, the relationship between transport and reaction is 

often used to define limiting behaviors in the governing equations or in the boundary conditions. 

In the case of heat transfer, regimes based on the magnitude of conduction to and through the 

wall or between transport mechanisms/sources of heat are also commonly defined. Mapping of 

all these regimes in a diagram has the benefits of systematically organizing previous results and 
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explore new areas, which may have been left ignored in previous studies. The choice of 

parameters that constitute the axes of this plot also results from scaling. 

If a given set of geometric and operation variables is noted by a single point in the 

aforementioned diagram, then one might question about the likely location of such 

representation for common conditions in microreactors. Actually, even though some geometric 

characteristics are shared by all of the designs, many possible operating regimes may prevail. 

We have already seen some evidences of the flexibility of microreactors concerning operating 

ranges: 

• Even though reactions which are potential candidates to microprocessing possess a defined 

list of characteristics (section 1.1.3.a) and microreactors can be designed to match these 

requirements, timescales ratios can still cover several orders of magnitude. 

• As we summarized in Table 1.3, some authors proposed microreactor-based solutions for 

reactions with very different characteristics: from kinetically controlled to transport limited, 

and even to those exhibiting explosive behavior. 

• In many of the studies reported in Table 1.4, several conditions (residence times, 

temperature,…) are tested and optimized. This may lead to a change in the controlling 

effect. 

• In section 1.2, we have reported applications with distinct purposes, for example screening 

and chemical production applications. This naturally requires two very different sets of 

conditions, and consequently two different regimes. 

Nevertheless it is interesting to obtain a comprehensive picture of as many regimes as possible, 

even if this is only done with the purpose of setting boundaries between them. Moreover, one of 

the promising features of microreactors is the exploration of ‘new’ process regimes, which are 

forbidden in conventional technology. These include systems where safety requirements are 

particularly stringent or where performance enhancement from employing harsher conditions 

can be attained (section 1.3.2). 

 

 

1.3.1 Intrinsic kinetic measurements 

 

Apart from the specific applications of microreactors as devices for screening and catalyst 

testing, measurement of the intrinsic kinetics in a system with the advantages previously 

mentioned is highly desirable. Their improved mass and heat transfer properties are 

fundamental in this case, to avoid falsification of the observed kinetics at uniform temperature. 

The following characteristics should be mentioned: 
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• isothermal behavior due to improved thermal control; 

• controlled thickness of the catalyst layer (sufficiently thin for absence of internal 

limitations); 

• well-defined channel diameter (small enough so that external limitations are absent); 

• same geometry as the one found in the full scale process; 

• ideal reactor behavior (‘plug flow’ for 100
Aris

u L D > , with 
Aris

D  given by Taylor-Aris 

theory (Taylor 1953; Aris 1956)). 

Several kinetic studies in microreactors/monoliths are available in the literature over a wide 

range of conditions. In particular, measurements under ‘severe conditions’ are attractive for a 

number of reasons. We mention some examples below. 

McCarty (1995) used an annular reactor to evaluate kinetics of methane combustion over PdO 

supported catalysts. The design of the apparatus had a small gap between cylinders (0.1-0.3 

mm) and a thin coating (10 µm ). Using high flow rates and dilute methane and oxygen in 

helium, the author claims to have measured the intrinsic rate of methane oxidation up to 900ºC, 

without contributions from gas-phase reactions. Groppi et al. (2001) used the same 

configuration to study the same reaction over a PdO/Al2O3 catalyst. Beretta et al. (1999) 

discussed the use of this reactor at high temperatures and high space velocities (GHSV) for 

kinetic studies of  several reactions: catalytic oxidation of CO, catalytic partial oxidation of 

methane and oxidative dehydrogenation of propane. In this case, a reactor with a thin catalyst 

layer (50 µm ) and small gap (1.1 mm) was used. 

The suitability of the structured annular reactor for very fast catalytic combustion reactions was 

confirmed, since it allowed measurement of kinetic data under conditions closer to the ones in 

the commercial applications (at higher GHSV and temperature). Extrapolation from lab-scale 

results can therefore be avoided, as changes in the reaction mechanism may occur (Hayes et al. 

1994). In particular, they name the following advantages: (a) implementation of very high 

GHSV with negligible pressure drops (in laboratory fixed beds, P∆  amounted to nearly 1 bar at 

400  cm3 NTP /min in the combustion of methane/bio-gas; and to 0.8 bar in highly diluted bed 

with GHSV ~10 times higher); (b) well defined geometry, flow profile and mass transfer (which 

they assumed to be given by correlations for Sherwood number at Dirichlet conditions and fully 

developed concentration profile); (c) negligible internal temperature gradients; (d) similarity 

between the coated catalyst tube and the monolith catalysts; (e) exclusion of homogeneous 

reactions; and (f) lower dilution of reacting mixture and catalyst compared to a fixed bed. 

Groppi et al. (2001) obtained data up to 600ºC at partial conversion (due to high GHSV). The 

most critical phenomenon was internal diffusion and only by using a thin catalyst layer was 

kinetics free from mass transfer effects ( 10 µm
w

t ≤  for 0.9η ≥ ). External mass transfer 

limitations played a minor role for channels with a gap between 0.2 – 0.3 mm, which should be 

kept as small as allowed by pressure drop. Beretta et al. (1999) recognized that depending on the 
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hydraulic diameter and on the reaction rate at the wall, operation may change from kinetic to 

diffusional control and that at high temperatures diffusional effects can become important. They 

proceeded to develop a one-dimensional model from a Sherwood number correlation and 

concluded that: (a) kinetic regime prevailed up to 450-500ºC, (b) decrease of conversion was 

thus entirely due to higher GHSV and this widened up the operating window for intermediate 

conversion values to very high temperatures (200ºC - 900ºC with maximum 65% conversion in 

CO oxidation and methane partial oxidation); (c) at higher temperatures CO conversion was 

moderated by the onset of inter-phase mass transfer limitations, and (d) the estimation of 

intrinsic kinetic constant was in good agreement with the data from fixed bed. Annular reactors 

have also been considered by other groups (e.g. Yu et al. (2005)). 

Germani et al. (2006) studied the kinetics of the water-gas shift reaction over 

platinum/ceria/alumina catalysts washcoated on stainless steel microchannels. Depite the fact 

that the catalysts were very active, intrinsic kinetic measurements were performed by employing 

thin films and favoring plug flow conditions in the channel. The reaction conditions cover a 

wide range of the operating variables. Sazonova et al. (2009) analyzed the behavior of a LaNiPt-

catalyst supported in a honeycomb substrate for methane partial oxidation. In this case, kinetics 

was measured over the monolith at high temperatures and with millisecond contact times. They 

used a one-dimensional model to predict the ranges where the process was kinetically controlled 

in the channel, since the internal resistance was found to be negligible from the low value of 

Thiele modulus. Görke et al. (2009) highlighted the excellent thermal behavior of Ru/CeO2 

catalyst coated stainless steel microchannels in the evaluation of ethanol reforming kinetics. 

Employing a very thin catalyst layer (1µm ) and short residence times (9 to 42 ms), internal and 

external diffusional limitations were neglected. 

Federici et al. (2011) studied synthesis gas oxidation over a supported Pt/Al2O3 catalyst in a 

micropacked reactor designed for measurement of kinetics of strong exothermic reactions. They 

intended to avoid the significant temperature gradients that develop and makes it impossible to 

collect isothermal data. The system was constructed with two thick highly conductive stainless 

steel walls which guaranteed high heat transfer. A 450 µm gap where the catalyst was placed 

allowed high heat and mass transfer. Temperatures at the inlet, outlet and inside the bed were 

measured by installed thermocouples and found to differ by no more than 2ºC from each other. 

They report complete conversion of CO and H2 at 325ºC and higher temperatures were not 

explored as dominant transport effects were expected. 

A related topic is the evaluation of internal diffusion limitations in catalyst coatings supported 

on microchannels. Experimentally, the two most common tests are variation of temperature and 

catalyst layer thickness. Both quantities are sometimes given as criteria for the chemical regime 

(specification of a temperature or thickness below which kinetics controls). For example, some 

authors (Oh et al. 1982; Hayes et al. 1994) consider internal diffusion negligible for 50µm
w

t < . 
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Kapteijn et al. (2005) concluded that washcoat layers thicker than this would lead to mass 

transfer control in the washcoat, when testing square channel cordierite monoliths with with 

alumina washcoat layers of various thicknesses (20 - 110 µm ) in the Fischer-Tropsch synthesis 

(in the 180 - 225ºC temperature window). In other studies, diffusional limitations are simply 

excluded in the view of the thin washcoats employed (Ullah et al. 1992; Uberoi et al. 1996). 

Walter et al. (2005) considered catalyst coatings of different thickness but with same 

composition in microchannel reactors. For a constant reactant flow (equal hydrodynamic 

residence time), internal mass transfer limitation was excluded for thicknesses between 5 and 

20µm . In the selective oxidation of isoprene to citraconic anhydride, the same author excludes 

limitations for 80µm
w

t < , based on an analogy with a particle in a fixed bed. Chen et al. 

(2008a) warn for the fact that internal mass transfer in a metal foam methanol microreformer 

must be carefully considered and that the critical thickness for absence of diffusional effects was 

only 8 µm .  

However, in other cases internal diffusion limitation can be significant even with very thin 

washcoat thicknesses (Hayes et al. 1994), when temperature is high (> 700ºC). This refers e.g. 

to catalytic combustions, which are extremely fast. Hayes et al. (1995) evaluated the extent of 

intraphase and interphase resistances to the catalytic conversion of low concentrations of carbon 

monoxide in air in a tube wall reactor (coated with a platinum-alumina deposit). Above 610 K 

there was strong evidence of both intraphase and interphase resistances to catalytic conversion. 

In Chapters 4 and 5, we provide a systematic analysis for prediction of the extension of external 

and internal diffusion limitations. 

 

1.3.2 ‘New’ operating regimes in microprocessing 

 

1.3.2.a Production in wall-coated microreactors 

 

It is difficult to define a ‘production regime’, since this may occur under very diverse 

conditions. In general, chemical production in microreactors would be in a distinct regime from 

the one for kinetic measurements and occurs at a different scale than the one found in ‘lab-on-a-

chip’ microfluidic applications. While conversion has to be kept moderate or small to avoid 

interference of mass transfer effects for evaluation of intrinsic kinetics, blind reduction of 

channel diameter is also unwise, due to pressure drop and fouling constraints. Lerou et al. 

(2010) reports two examples of industrial applications of microchannel technology from 

Velocys, Inc.: the Fisher-Tropsch process and methane steam reforming. Moreover, it was 

shown how microchannel technology embodies the ‘green chemistry’ concept. Reports at the 
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pilot scale have also been provided e.g. by Deshmukh et al. (2010). They have stressed the 

flexibility in the operation and design of microchannel-based units. The possibility of increasing 

the production capacity by the increase of the number of channels was also demonstrated. The 

desired productivity and throughput is achieved by parallelization of a single channel 

(‘numbering up’). A number of issues concerning the flow distribution (Delsman et al. 2004; 

Rebrov et al. 2007a; Rebrov et al. 2007b), integration and layout of a microplant arise and are 

out of the scope of this review. The simple single channel configuration can be useful whenever 

small scale production throughputs are required or for research purposes, since conditions can 

be better controlled. One of the main advantages of microreactors in terms of the evolution of 

the process conception is the transferability of data and operating conditions between 

laboratory, pilot and full production scales.  

A particular direction which leads to a more specific definition of production regimes is the 

‘new window of operation’ brought by microprocessing (Hessel 2009). A big contribution to the 

status of ‘innovative process’ frequently attributed to microreaction technology is the ability to 

operate under conditions not reachable efficiently or safely in conventional equipment. In 

practice, this can have several meanings (Hessel et al. 2004; Commenge et al. 2005; Hessel et 

al. 2005b; Becht et al. 2007): 

• opening of new synthesis routes for known and unknown processes; 

• creation of more advantageous contexts for carrying out known processes; 

• push of operation conditions beyond conventionally defined safety limits;… 

As we have been stressing, fast, highly exothermic, explosive prone reactions are an interesting 

case-study to illustrate the added-value brought by miniaturization. Generally, one can hope to 

attain higher selectivity and yields with undiluted reactants and lower energy consumption. We 

now refer to some perspectives on overcoming the frontiers imposed by traditional designs. 

 

1.3.2.b ‘Aggressive’ reaction conditions 

 

The performance limit of a process can be increased by the use of more intense conditions. 

Here, ‘intense’ or ‘aggressive’ can refer to several aspects in a process operation. Some 

examples include: 

• higher temperature and pressure ; 

• higher concentration of reactants with less or even in the absence of inerts/solvents; 

• shorter dosing of reactants, if any required; 

• more active catalysts, higher loading; 

• strong heat dissipation for reactions with high heat release; 

• rigorous temperature control to reduce side reactions in complex schemes; 
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• short and defined residence times, from seconds to a few milliseconds; 

• different chemical routes; 

• fast and controlled thermal ramping for endothermic reactions; 

• any effect which enhances reaction rate compared to laboratory experiments; 

• any operating range that due to safety issues or unfavorable economics is not feasible in a 

conventional pilot plant,… 

The operation under these conditions may increase the productivity of the process up to 100 

times in a single channel (Kockmann et al. 2009). In certain cases, parallelization of channels 

implies higher investment and control effort and should be avoided or used only as a last 

measure to increase the mass flow throughput (Kockmann et al. 2009). 

Recent work regarding the definition of new process regimes in microreactors include: 

• Hessel and co-workers (Hessel et al. 2008b; Hessel 2009; Illg et al. 2010; Hessel et al. 

2011) have named as “Novel Process Windows” all the operations described above, which 

are allowed by microreactors: elevated temperature and pressure; increased concentration or 

renounce to the use of solvents; explosive or thermal runaway regime; new chemical 

routes… 

• High temperature/pressure in continuous flow organic synthesis (Hessel et al. 2005a; 

Razzaq et al. 2009; Razzaq et al. 2010); 

• Extremely short contact times for highly exothermic and fast benzyl alcohol oxidation 

(Nieuwland et al. 2010); 

• Development of microsystems with separate high pressure (30 MPa, 400 °C) and high 

temperature (up to 500 °C) regions for supercritical fluid processes (Marre et al. 2010); 

• High pressure chemistry in lab-on-a-chip systems (Benito-López et al. 2008); 

• Increased temperature in multiphase reactor for the synthesis of tert-butyl peroxy pivalate 

(Illg et al. 2011). 

The term ‘superheated processing’ is often found and refers to operation under high 

temperatures and sufficiently high pressures to suppress the evaporation of solvents. This leads 

to an increase in the reaction rate and safety for endothermic reactions. As we mentioned 

previously, another group of reactions which reach feasibility at the microscale, are the ones 

with high safety concerns. This would allow the implementation of on-site processes, avoiding 

transportation and confining risk to small volumes. Ebrahimi et al. (2009; 2011) considered the 

production of peracetic acid, which is unstable and explosive. Compared to batch production, 

the on-site continuous microprocess allowed decrease of reaction time and a small installed 

volume. However, the evaluation of safety risks based on methods developed for conventional 

technologies did not apply. 
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1.4 TRANSPORT ENHANCEMENT IN CATALYTIC STRUCTURES DUE TO 

INTRAPARTICULAR CONVECTION 

 

As we discussed previously, one of the main motivations behind microprocessing is the 

elimination of mass transfer resistance by transport rates intensification. Despite the potential of 

these devices, approaches which take advantage of the economy of scale observed in 

conventional technology are also desirable. Moreover, packed fixed beds provide a higher active 

surface area per volume of reactor than washcoated structures. In this context, the search for 

solutions that reduce mass transfer resistance inside particles includes: (a) use of eggshell 

catalysts with an accessible thin active layer, or (b) reducing particle size (since the 

characteristic time for diffusion is proportional to the square of the characteristic particle 

dimension). These options, however, demand either increase of catalyst volume (if maintenance 

of activity per volume is desired) or excessive pressure drop. Another possibility is to consider 

‘large pore’ particles through one could force the gas or liquid to flow with a certain 

intraparticular velocity, reducing diffusional problems without damaging activity. We briefly 

review this concept and its implications in reaction engineering. 

 

1.4.1 Convection as an additional transport mechanism in ‘large-pore’ materials 

 

In general, transport in porous catalyst can occur by Knudsen flow, molecular diffusion and 

viscous flow (Wijngaarden et al. 1998). In particular, the convective regime occurs in pressure-

driven flows and both intermolecular and molecule-wall collisions are important. In this case, 

the idealized pore flow rate depends on the fourth power of the pore radius, and thus the 

presence of relatively few large pores leads to considerably larger permeability (Wheeler 1951). 

This implies that whenever total pressure differences across a catalytic material exist, ‘forced 

flow’ of molecules is added to purely (Knudsen and molecular) diffusive processes. The total 

mass transfer rate through a pore cross-section includes contributions from diffusion (due to a 

difference in partial pressure) and convection. A model for intraparticular convection, diffusion 

and reaction is written by Wheeler (1951), but not solved. It was suggested that this mechanism 

would be relevant for materials with large pores (10 000 Ǻ) and high-pressure (100 atm) gas-

phase reactions. 

Some experimental works conceived to look at the particular effect of internal convection in 

porous materials (eventually with catalytic properties) have been reported. Hawtin and Murdoch 

(1964) studied air oxidation in large tubes of graphite. Cogan et al. (1982) looked at the 

depolymerisation of paraldehyde. Cheng et al. (1987) considered the influence of the porous 

structure on the effective diffusivity of Rhone Poulenc alumina supports. The effective 
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diffusivity of a bidisperse catalyst was also determined (Cheng et al. 1989), under reactive 

conditions with a first-order kinetics (hydrogenation of ethylene) and a non-first-order kinetics 

(oxidation of ethylene). In both cases, they observed increase of the measured diffusivity with 

the flowrate of the carrier gas, which was attributed to the presence of convective flow in the 

macropores. This explanation had already been given by Rodrigues et al. (1982), with the help 

of the ‘augmented diffusivity’ concept. Komiyama and Inoue (1974) studied the exchange 

reaction of H+ and K+ on pellets of an exchange resin designed from smaller beads wrapped up 

in nylon. Prince et al. (1991) considered oxygen consumption in porous culture clumps and 

found increased rates of nutrient depletion due to internal convective transport through the 

spheres of entangled rootlets.  

Non-reactive experiments with the purpose of evaluating fluid flow inside particles have also 

been presented. Pfeiffer et al. (1996) measured the volumetric flow rate of liquid and gas 

through small gigaporous particles by a method that isolated single pellets in a test apparatus. 

This constituted a confirmation of flow through perfusive particles made at pressure drops 

experienced during normal HPLC operation, with particles sizes from 30 to 50 µm . From the 

pressure-flow rate relationship (and CFD model of the test system), the average permeability 

was measured ( 15 27.89 10 m−
× ). Gustavsson et al. (1998) video recorded the passage of 

microparticles through the ‘superpores’ and interstitial pores of agarose beads. These flow-

through pores had a diameter which was a substantial fraction of the particle diameter (i.e. to 1/3 

to 1/10 of the particle diameter) and together with normal diffusion pores constituted the 

bidisperse bead (Gustavsson et al. 1997). Other works concerning the fluid mechanics 

associated with the problem have also been published e.g. by Albusairi et al. (2002; 2004; 

2005). 

 

 

 
Figure 1.1: Examples of ‘large-pore’ materials in chemical engineering applications. (a) Silver 

on alumina catalyst for ethylene oxidation (Nan 1995). (b) Chromatographic material 

POROS. (c) CultiSpher from Percell Biolytica® (www.percell.se). 
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Other permeable materials containing large pores (say, with pore diameters greater than 500 Ǻ) 

have found application for example as, (Figure 1.1): 

• catalyst / supports in several reactions (Rodrigues et al. 1982; Quinta Ferreira 1988; Quinta 

Ferreira et al. 1992; Nan 1995; Costa 2004; Oliveira et al. 2009; Oliveira et al. 2010; 

Oliveira et al. 2011): ethylene oxidation with silver catalyst supported on α-alumina, butene 

oxidation to maleic anhydride in V2O5, oxidation of o-xylene to phthalic anhydride 

catalysed by V2O5, methane steam reforming…; 

• HPLC packings (Afeyan et al. 1990; Lloyd et al. 1990; Carta et al. 1992; Rodrigues et al. 

1995; Rodrigues 1996; Rodrigues et al. 1996; Rodrigues 1997; Leitão et al. 2002): 

polystyrene materials for proteins separation like POROS (from PerSeptive Biosystems, 

USA) with mean pore diameter of 7 000 Ǻ or PL4000 (from Polymer Laboratories, UK) 

with pore diameter of 4 000 Ǻ; 

• supports for cell culture and biomass growth (Young et al. 1987; Breitenbucher et al. 1990), 

for example Cultisphere particles are used for Chinese hamster ovary cells culture from 

Percell Biolytica®; and 

• membrane reactors (Coelhoso et al. 1992; Golman et al. 1997; Kobayashi et al. 2001; 

Kobayashi et al. 2003; Fritsch et al. 2004; Schmidt et al. 2005; Westermann et al. 2009; 

Nagy 2010a; Nagy 2010b). 

 

1.4.2 Modelling of intraparticular convection coupled with reaction in catalyst particles 

 

The modelling studies in reaction engineering are focused mainly at the particle level. The work 

from Nir and Pismen (1977) presents the first comprehensive analysis of the impact of 

intraparticular convection on the performance of catalyst pellets (evaluated by the effectiveness 

factor). The following remarks were made: 

• a dimensionless parameter characterizes the role of convective transport and is defined as 

e
u L Dλ = , where L  is the characteristic dimension of the pellet with diffusivity 

e
D  and 

u  is the intraparticular flow velocity (usually assumed uniform); 

• an order-of-magnitude analysis predicted that ~ 10λ  (appreciable convective effects) when 

the diameters of powder particles comprising a pellet were around 100 µm  (if ~ 100Re ) 

and 10 µm  (if 3~ 10Re ) in liquid phase, which are close to the ones used in practice; 

• results for ~ 10 50λ −  are presented and the higher values are possible in the case of 

coarse-grained particles exposed to rapid external flow; 
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• the effect of intraparticular convection is to increase the content of the particle in reactant, 

and always results in an increase of the effectiveness factor (the minimum effectiveness is 

obtained for all conditions when 0λ = ); 

• the effect of intraparticular flow is not visible in the limits of very slow and fast reaction 

rates, where the common asymptotes for non-permeable catalyst are observed; 

• the maximum enhancement of the effectiveness factor is observed in the region where 

kinetics just becomes diffusion controlled (intermediate regime); 

• the effectiveness factor enhancement is less pronounced in the case of sphere and cylinder 

geometries, when compared to a slab. 

The material balance also includes the Thiele modulus 2
φ , which compares the magnitudes of 

reaction and diffusion. Therefore, three regimes can be defined (as in the case of conventional 

catalyst particles): chemical regime (fast diffusion compared with reaction, where presence of 

the reactant in the whole slab is assured with concentration near the surface concentration); 

diffusional regime (where fast reaction leads to a sharp decline in reactant concentration near 

the surfaces of the slab and only a relatively small fraction of the catalyst is used) and an 

intermediate regime (where the effect of moderate convection is expected to be more 

noticeable), Figure 1.2. 

 

 

 

Figure 1.2:  Typical concentration profiles in the chemical, intermediate and diffusional 

regimes for the problem of convection, diffusion and isothermal first-order reaction 

in a slab shaped particle. 
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Table 1.5: Modelling studies involving catalytic particles with intraparticular convection 

Reference Details Geometry 

Komiyama et al. (1974) First-order isothermal reaction Cylinder parallel to flow 

Nir and Pismen (1977) First-order isothermal reaction Slab, Sphere and Cylinder 

perpendicular to flow 

Nir (1977) Sequential first-order isothermal Slab and Sphere 

Rodrigues et al. (1984) Zero-order isothermal reaction Slab 

Cresswell (1985) Consecutive-parallel scheme 

of first-order isothermal reactions 

Slab 

Quinta Ferreira et al. (1988; 

Rodrigues et al. 1988) 

First-order nonisothermal reaction Slab 

* numerical solutions including steady state multiplicity 

Stephanopoulos et al. (1989) Zero-order isothermal reaction Sphere 

Chaara et al. (1989) Reversible first-order bimolecular reaction Slab 

Lu et al. (1993) First-order isothermal reaction Slab/Sphere analogy 

* transient behaviour and results for augmented diffusivity 

Nan et al. (1995) First-order isothermal reaction Slab 

* combined internal pressure gradients (mole changes from reaction) 

Nan et al. (1996a) First-order isothermal reaction Cylinder (parallel to flow)/ 

Slab analogy 

Nan et al. (1996b) First-order isothermal reaction Hollow Cylinder (parallel 

to flow; axial convection) 

* results for the augmented diffusivity by convection 

Moreira et al. (1996) Isothermal Michaelis-Menten kinetics Slab 

Leitão et al. (1994) Isothermal first-order reaction 

* bidisperse catalysts  

Slab and Sphere 

Lopes et al. (1995) First-order non-isothermal reaction Sphere 

* numerical solution including internal flow field 

Costa (2004) First-order non-isothermal reaction 

Consecutive-parallel complex scheme 

Slab 

* numerical solution and multiplicity analysis for external resistance to 

heat transfer with internally isothermal particle 

Cardoso et al. (2007) First-order nonisothermal reaction 

*perturbation solutions 

Slab 

Nagy (2010b) First-order isothermal reaction 

with external mass transfer 

Slab 
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Figure 1.3: Effectiveness factor enhancement in the intermediate region, as calculated by Nir 

and Pismen (1977). 

 

 

The main conclusion from Nir and Pismen study is that the effectiveness factor (that measures 

the performance of the catalyst) is enhanced in the intermediate region of the Thiele modulus. 

Comparing the effectiveness factor when diffusion and convection are important (
DC

η ) with the 

situation where convection is negligible (
D

η ), it is possible to verify that the increase in the 

effectiveness factor gets more pronounced as the intraparticular Peclet mass number increases 

(that is, when intraparticular convection gains more and more importance), Figure 1.3. 

Subsequent studies extended this approach to other kinetic laws, particle geometries and 

reaction schemes as can be seen in Table 1.5. Most of them are concerned with isothermal 

conditions. However, in reactor design where reactions with appreciable heat of reaction occur, 

it is very important to know the maximum temperature that occurs inside the catalyst particle. In 

the case where only diffusion/conduction and reaction occur inside the particle, the Damköhler 

equation (Damköhler 1937) provides a useful relationship between temperature and 

concentration inside the particle. Without actually solving the equations, Damköhler got a 

simple expression to estimate the maximum temperature that will occur inside the particle, 

predicting that it will correspond to the complete consumption of reactant. This expression is 

function of the Prater parameter, which includes diffusivity, thermal conductivity, heat of 

reaction and surface conditions. The extension of this solution to the cases where non-negligible 

internal convection existed has been pursued, either numerically or using approximate analytical 

methods (Table 1.5). 
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At the fixed bed reactor level, numerical solution of both steady-state and transient models with 

different levels of complexity (pseudo-homogeneous and heterogeneous), including thermal 

effects and runaway behaviour, were also presented (Quinta Ferreira 1988; Rodrigues et al. 

1990; Ferreira et al. 1992; Costa et al. 1994; Leitao et al. 1995; Leitão et al. 1995; Quinta-

Ferreira et al. 1995; Leitão et al. 1996; Quinta Ferreira et al. 1996a; Quinta Ferreira et al. 1996b; 

Leitão et al. 1998; Costa 2004). 

 

1.5 THESIS OBJECTIVES AND OUTLINE 

 

The main contribution of this work is to provide a comprehensive description of the transport-

reaction processes occurring in a wall-coated microchannel. We focus particularly on an 

approximate analytical analysis at the individual channel level. As we have described in this 

chapter, a microchannel with small aspect (diameter-to-length) ratio is an essential building 

block of all microchemical systems. This geometry allows achievement of high surface-to-

volume ratios according to Eq.(1.1), and is convenient due to: easy machining, low pressure 

drop, natural distribution of flow in parallel processing, and controlled residence time. Other 

microgeometries such as cavities and wells have been explored for mixing purposes, but are 

limited to analytical and biotechnological applications. For these reasons, the microchannel will 

be our object of study. Nevertheless, the adequacy of the ‘single channel representation’ can 

obviously be questioned, and it is expected to be limited when modeling arrangements which 

present strong interchannel interaction due to e.g. nonuniform fluid distribution (Commenge et 

al. 2002), heat exchange/losses (Di Benedetto et al. 2011) or mass transfer through porous walls 

(Chen et al. 2008b) exist between channels. These cases are recognizably more expensive from 

a computational point of view. However, in many situations the channel model is made general 

enough to at least be included in reactor-level simulations and improve the simulation 

performance of these systems. Moreover, we have already seen some cases where single 

channel microreactors may work as mini-plants for production, and this may even be desirable 

when high control effort and safety requirements are present. In particular, the isothermal 

microchannel reactor appears as part or on its own in a number of microprocessing studies and 

applications. 

Due to the potential of these units, an improved understanding of their behavior is required and 

this can be achieved by several modeling methods (Hardt 2000). Numerical solution of the 

governing equations is able to deal with very complex systems, while exact analytical solutions 

are limited to idealized models. Our perspective fits in the intermediate region between the two 

approaches. On one hand, numerically obtained simulations are irremediably tied up with 

particular values of the (possibly many) parameters and are associated with a certain 



CHAPTER 1 

34 

computational effort. On the other, exact solutions may result in formulas far too complicated 

(non-elementary functions, infinite series,…) to extract valuable information. Approximate 

analytical methods, such as perturbation techniques, play an important role in this context. In 

this case, selected reductions of the full problem are proposed to describe the solution in 

tractable terms, in a given regime. Therefore, the functional dependence of quantities of interest 

(performance) on the model parameter(s) is obtained. Asymptotic methods become particularly 

interesting when the model contains a parameter which can be assumed to be very small or large 

(this leads automatically to the definition of a ‘regime’). In these cases, the original problem 

unfolds in a sequence of simpler problems as will be show in several examples throughout the 

thesis. In these cases different phenomena may dominate over different (local) scales and, while 

this gives the richest structure in an approximate solution, it is where typically numerical 

methods encounter most difficulties. Note that even though perturbation solutions may be 

restricted to smallness of a given parameter, they are uniformly valid in the domain of the 

problem.  

Another class of techniques which cannot be dissociated from asymptotic and perturbation 

methods is scaling. In fact, the problems studied involve several transport mechanisms coupled 

with reaction, and the analysis of the magnitude of each term involves the choice of appropriate 

scales. It is a relationship between these scales which will determine the leading-order behavior 

or the dominant balance between two effects, being the other(s) negligible at first approximation 

(but incorporated in corrective terms). The access to these leading-order behaviors (in given, 

and therefore defined regimes), and the estimation of the order of magnitude of the remaining 

effects is not provided by numerical techniques. The procedure implies the definition of limits 

or regimes, and hence is suitable for establishing boundaries between them, which would 

require extensive numerical simulation in a wide parametric range. 

The analysis along these lines also contributes to the rational design of microreactors, which 

compared to macrosystems are closer to a correct description from first principles (e.g. laminar 

flow). We have also reported critical reviews pointing out that a ‘new’ theory is not required, as 

long as the effects gaining importance from miniaturization are accounted for (sections 1.1.2.b 

and 1.1.5). Actually, Hessel et al. (2004) distinguish between two descriptions of microreaction 

technology: ‘bottom-up’ and ‘top-down’. In their opinion, the ‘bottom-up’ approach has 

prevailed in most literature, where achievements in specific operating units and applications 

were reported. They consider desirable that ‘top-down’ analyses are provided too. These consist 

in setting requirements related to the process and finding a design which fulfills such aims, 

subject to constraints and aiming at the minimization of certain cost functions. This is the 

statement of a design problem, for which we believe that the results in this thesis may 

contribute. 
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We aim to achieve further insight into the considered transport-reaction problem with the 

following two main objectives:  

i. provide accurate approximate results from reduced-order models without the need for 

numerically calculated quantities, and 

ii. identify the limits to which the full problem reduces, mapping operating regimes and the 

transitions between them. 

These goals will allow us to analyze relevant process intensification strategies, such as 

microreactors and flow-through permeable catalyst particles. The relevance of both was 

highlighted in this chapter, and in practice they are considered as promising directions, 

particularly for fast reactions with highly active catalysts. For example, information from 

Velocys, Inc. concerning the choice of reactor design for reactions such as oxidations is 

presented in Figure 1.4 in terms of the kinetic rate and the amount of pressure drop or 

temperature variation allowed. 

 

 

 

 

Figure 1.4:  Velocys, Inc. catalyst selection strategy. Adapted from J. Lerou, ‘Microreaction 

Engineering: Is small really better?’ (www.velocys.com). 
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In particular, this work proposes: 

1. a solution for the transport-reaction problem inside a wall-coated microchannel for finite 

reaction rates in the fully developed and developing limits of the concentration profile 

(Chapter  2); 

2. a description of conversion in a microchannel when reactions with nonlinear kinetics occur 

in the asymptotic limits of small and large reaction rates (Chapter 2); 

3. a uniform solution which combines classic theories of mass and heat transfer in channel 

flow and defines ranges of validity for the limits (Chapter 3); and 

4. a regime map where a comprehensive picture of the different interphase transport – reaction 

behaviors is plotted, and boundaries between them derived (Chapter 4). 

 

We also consider the problem at the level of a thin catalytic coating, to achieve: 

5. the calculation of the approximate effectiveness factor with linear and nonlinear kinetics 

and nonuniform geometries (Chapter 5); and  

6. the definition of regimes considering the interplay between internal and external mass 

transfer (Chapter 5). 

 

Furthermore, the existence of intraparticular convection effects is studied in two contexts: 

7. calculation of a ‘curvature correction’ for isothermal linear kinetics in a channel with a thin 

perfusive wall, and identification of the conditions for maximum enhancement (Chapter 5), 

and 

8. study of the influence of nonisothermal effects in a permeable slab with focus on 

effectiveness factor and maximum temperature estimation (Chapter 6). 

 

Finally, the main conclusions of our analysis and suggestions for future work are presented in 

Chapter 7. 

 

NOTATION 

 

a   channel’s characteristic (transverse) dimension 

ch
A   cross-sectional area of the channel 

0c   reference concentration 

P
C   fluid specific heat 

D   fluid’s bulk diffusivity 

ch
d   channel’s hydraulic diameter 
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part
d   particle diameter 

GHSV  gas hourly space velocity 

k
h   coefficient in Carman-Kozeney equation (double of the ratio between length of passage 

in porous bed and in straight capillary) 

k   reaction rate kinetic constant (referred to catalyst volume) 

heat
k   heat transfer coefficient 

m
k   mass transfer coefficient 

surf
k   reaction rate kinetic constant (referred to catalyst surface area) 

R
H∆   heat of reaction 

mean
ℓ   mean free path 

L   channel’s length, axial characteristic dimension 

m   order of reaction with power-law kinetics 

mɺ   mass flowrate 

ch
N   number of channels 

Nu   Nusselt number 

NTU   Number of transfer units 

P∆   Pressure drop 

Pr   Prandtl’s number 

feed
Q   feed flowrate 

( )cR   reaction rate (referred to catalyst volume) 

Re   Reynold’s number 

surf
S   channel surface area 

Sc   Schmidt’s number 

Sh   Sherwood number 

w
t   catalytic coating thickness 

0T   reference temperature 

ad
T∆   adiabatic temperature rise 

u   average fluid velocity in the channel 

V   channel’s volume 

 

Greek letters 

ε   porosity 

δ   boundary layer thickness 

κ   fluid thermal diffusivity, ( )P
Cλ ρ  

λ   fluid thermal conductivity 

η   effectiveness factor 

ρ   fluid’s density 

ν   fluid’s kinematic viscosity 

τ   timescale, characteristic time, time constant 
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Subscripts 

bulk  conditions in the channel’s bulk 

surf  conditions at the channel/catalyst interface 

wall  referred to wall material 
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MASS TRANSFER IN A WALL-COATED MICROCHANNEL: 

FINITE REACTION RATES & KINETIC NORMALIZATION 
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In this chapter, we consider the problem of mass transfer in a channel with wall reaction and 

present approximate results to describe the conversion profile. We report analytical solutions in 

both Graetz’s and Lévêque’s regime in cases where only (semi)numerical studies have been 

presented before. In particular, for first-order kinetics under conditions of a fully developed 

concentration profile, an approximate procedure for conversion calculation is proposed for finite 

reaction rates (section 2.2). When the profile is developing, asymptotic limits are used to 

formulate accurate approximations in intermediate parametric ranges. Moreover, the effect of 

finite reaction rates in the corrections due to curvature or velocity profile nonlinearities are 

reported (section 2.3). Finally, we extend the previous results to an mth order “power-law” wall 

reaction, so that kinetic normalization is achieved in suitable limits (section 2.4). 

 

 

2.1 INTRODUCTION 

 

The analysis of flow and mass transfer in a channel with reactive surfaces has been considered 

useful in modeling several chemical engineering related problems: CVD processes (Van de Ven 

et al. 1986), electrochemical systems (Newman 1973b), and catalytic monoliths (Tronconi et al. 

1992; Bhattacharya et al. 2004b; Berger et al. 2007) among others. Recently, the problem has 

been again object of great attention in the context of coated-wall microreactors (Hessel et al. 

2004; Gervais et al. 2006; Kockmann 2008). In this case, very thin catalytic layers are deposited 

on microchannels with several cross-sectional shapes, reducing mass transfer resistance, 

providing good thermal management and lower pressure drops (Chapter 1). 
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The conceptual descriptions of the problems mentioned above are very similar and they usually 

involve coupling between flow and mass transfer in the channel domain, with reaction (and 

eventual further diffusion) at the catalytic layer. The simplest physical picture is the one where 

reactant species is transported axially by convection and axial diffusion and, towards the walls 

of the channel, by transverse diffusion. The resulting conservation equation (without the axial 

diffusion term) has been solved analytically for convective heat transfer in tubes, with uniform 

wall temperature or flux conditions. Early independent works include the ones by Graetz 

(1883), Nusselt (1910), and Paneth and Herzfeld (1931) as given credit by Damköhler (1937). 

These well-known solutions for the concentration (or temperature) profile involve an infinite 

sum of terms, each one with coefficients that usually require numerical evaluation (see Table 

2.1). Moreover, in the case of a first-order reaction occurring at the walls of the channel, the 

dependence of such coefficients on the wall kinetic parameter is complex and an explicit 

relationship has not been obtained for finite reaction rates. 

Another issue is that in some cases (especially for short distances from the inlet or high 

flowrates) a satisfactory solution demands a large number of terms to be retained in the slowly 

convergent series. For this reason, the analysis of this problem is divided in two main regimes: 

Graetz’s regime (where concentration changes over the length scale of the channel transverse 

characteristic dimension) and Lévêque’s regime (when such variation occurs in a thin region 

near the walls of the channel). In particular, when only one term in Graetz’s series reasonably 

describes the solution, the concentration profile is said to be “fully developed”, while for 

developing profile conditions, Lévêque’s approach (Lévêque 1928) has been extensively used to 

circumvent the convergence problems associated with the convection-dominated regime. 

Housiadas et al. (1999) compared several approximations to evaluate the terms in Graetz series 

with uniform wall concentration, stressing the numerical issues in the accurate calculation of 

these quantities. In the case of finite reaction rates, a number of studies are available (see Table 

2.1), which usually involve numerical evaluation for particular parametric sets. Thus, the effect 

of kinetics has not been presented explicitly. 

In this work, we revisit the problem of convective diffusion inside a wall-coated channel, where 

an isothermal heterogeneous reaction is occurring. Approximate analytical solutions for the 

concentration profile inside the channel allow us to obtain accurate estimates for the conversion 

variation along the channel, with minimal numerical evaluation and explicit parametric 

dependence. Moreover, asymptotic limits can be identified and help to understand the effects of 

the following: (a) the relative importance of mass transport mechanisms (namely, the length 

scale over which transverse diffusion effects are relevant, distinguishing two main regimes), (b) 

curvature (considering planar and circular channel geometries), (c) flow profile (both plug and 

laminar flow), (d) kinetics (the condition of finite wall reaction rate as an intermediate between 

uniform wall flux and concentration boundaries), and (e) reaction rate expression (in particular, 

the influence of the order of reaction m  in a “power-law” kinetics type). 
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We use two strategies: (a) calculation of higher-order terms in a perturbative scheme whenever 

possible (Lévêque’s extended regime and corrections for the m  order “power law” kinetics in 

section 2.4); and (b) ‘matching’ limits by empirical formulas without introducing too much 

complexity (approximations to eigenvalues and constants in section 2.2). In the case of a first-

order reaction, both approaches are done with the purpose of extending the range of validity of 

asymptotic expansions and describe successfully the solution in intermediate parametric ranges. 

Although the application of some of these procedures is known in the limiting cases of very 

slow or fast reactions (Table 2.1), when the reaction rate is finite no approximate solutions exist. 

In fact, most treatments of the problem require numerical evaluation, which may be 

inconvenient when: (i) parametric studies in broad ranges are to be performed, (ii) large-scale 

systems (composed e.g. by several microchannels in a parallel configuration) are being 

considered, or (iii) numerical difficulties occur, arising e.g. from near zero wall concentration 

and non-integer reaction exponents. Moreover, this will leave the parametric dependence of the 

systems’ performance implicit. Table 2.1 summarises previous work as well as the contribution 

of the present work. 

 

 

2.2 GRAETZ-NUSSELT REGIME (DOMINANT TRANSVERSE DIFFUSION AND 

CONVECTION) 

 

In a microchannel with small aspect ratio, but when the time constants for transverse diffusion 

and convection are comparable, the classical Graetz-Nusselt problem (Graetz 1883) is recovered 

in the channel domain (where ( )~ 1z O ). In this section, we start by identifying the main 

quantities needed for calculating the concentration profile (and conversion) in the channel. Next, 

we present our approximate expressions that allow us to estimate conversion as a function of the 

parameters involved. We then compare our approximate predictions with numerical results from 

gPROMS®. 

 

 

 

 

 

 

 



CHAPTER 2 

52 

Table 2.1:Summary of some relevant previous studies and contribution of the present work.* 

Approach References 

Graetz series solution 

Numerical calculation of eigenvalues and constants for 

specified values of Da  and common cross-section 

geometries (first order wall reaction) 

Damköhler (1937) [1]; Carslaw et al. 

(1959) [2]; Bauer (1976) [3]; Shah et al. 

(1978) [4]; Özisik et al. (1982) [5] ; 

Bhattacharya et al. (2004b) [6] 

Asymptotic approximations limited to specific ranges 

(infinitely fast or slow wall reaction rate) 

Sellars et al. (1956) [7, 8, 9]; Brown 

(1960) [7, 10]; Solbrig et al. (1967) [11]; 

Newman (1973a) [7, 9]; Kays et al. 

(1980) [12]; Housiadas et al. (1999) [7, 

13]; Balakotaiah et al. (2002) [14]; 

Bhattacharya et al. (2004a) [15] 

Uniformly valid analytical approximation for the first 

eigenvalue and weight for any value of Da  with no fitting 

parameters (first order wall reaction) 

This work (section 2.2) 

Lévêque’s solution 

Analytical solution with first order wall reaction and 

Lévêque’s original assumptions (additional numerical 

evaluation required for laminar flow) 

Carslaw et al. (1959) [16]; Petersen 

(1965) [16]; Pancharatnam et al. (1972) 

[17]; Ghez (1978) [18] 

Approximate solution to Lévêque’s problem and first-order 

reaction kinetics with no numerical evaluation involved 

This work (section 2.3.2) 

Extended Lévêque solutions in the Dirichlet and Neumann 

limits (analogy with heat transfer) 

Worsoe-Schmidt (1967) [7, 8]; Newman 

(1969) [7]; Gottifredi et al. (1985) [19]; 

Shih et al. (1995) [19] 

Corrections to extended Lévêque solutions accounting for 

finiteness of first order reaction kinetics 

This work (sections 2.3.3, 2.3.4 and 

2.3.5) 

Reaction kinetics other than first-order  

Numerical Acrivos et al. (1957) [20] ;  

Bhattacharya et al. (2004b) [21] 

Zero-order reaction Sellars et al. (1956) [22] ; Siegel et al. 

(1958) [22] ; Compton et al. (1990) [23] ; 

Rosner (1966) [24] 

Integral equation methods Chambré et al. (1956) [25] ; Acrivos et 

al. (1957) [25] ; Katz (1959) [26]; 

Rosner (1963) [27];  

Grau et al. (2001) [28] 

Explicit approximations for power-law kinetics in fully 

developed and developing concentration profile 

This work (section 2.4) 

* Numbers in brackets correspond to details from each reference. 
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Table 2.1 (continued): Additional details concerning each reference 

[1] Report of the first 3 terms in Graetz series for plug-flow in a circular channel with 0.1Da = , 1, 10 

and 100 and a plot from where the first 3 eigenvalues can be estimated for 30.1 10Da< < . See 

also Paneth et al. (1931). 

[2] First 6 eigenvalues for plug-flow in circular or planar duct for several values of Da . 

[3] First 11 eigenvalues for a parallel plates conduit with homogeneous and heterogeneous first-order 

reactions (for 0Da = , 0.1, 1, 10 and 100) in laminar flow. 

[4] Review of several works in the field of heat transfer with finite wall thermal resistance. 

[5] First 12 eigenvalues for laminar flow inside a circular tube for 0Da = , 0.1, 1, 10 and 100, as well 

as the quantities needed to obtain the first twelve weights 
n

w . 

[6] First 5 eigenvalues and weights for 0.01Da = , 0.1 , 1, 10 and 100 in channels with common 

cross-section shapes (circular, plates, square and equilateral triangle). They also plot 1λ  and 1w  as 

a function of Da  for plug and laminar flows ( 3 210 10Da
−

< < ). 

[7] Constant wall temperature (Dirichlet) conditions (heat transfer analogy for the case of infinitely 

fast reactions). 

[8] Constant wall flux (Neumann) condition (heat transfer analogy for the case of slow reactions). 

[9] Asymptotic formulas for higher eigenvalues and constants. Some obtained with the Wentzel-

Kramers-Brillouin (WKB) method. See Bender et al. (1978) for more details. 

[10] Numerical calculation. 

[11] Higher eigenvalues through implicit expression which requires numerical evaluation for finite Da . 

[12] Numerical results for uniform temperature and heat flux at the wall of channels with several cross-

sectional geometries. 

[13] Extended Lévêque-type solutions for integration constants and eigenfunction derivatives at the 

wall. 

[14] First five eigenvalues and weights tabulated for Da = ∞  and circular, planar, triangular and square 

geometries. 

[15] Taylor expansions of the first eigenvalue for the kinetic regime ( 0Da → ), corresponding to the 

situations of plug and laminar flow inside planar and circular ducts. 

[16] Solution with Laplace transform for plug-flow conditions. 

[17] Inversion of Laplace transformed solution in terms of an infinite summation with coefficients given 

by recurrence relations (first 24 out of 50 coefficients are tabulated). Laminar flow conditions. 

[18] Analytical solution using Laplace transform for the case of first-order reversible reaction. 

Asymptotic expansions in the limits of fast and slow reactions are also presented. 

[19] Heat transfer in non-newtonian fluids with constant wall temperature boundary condition. 

[20] Numerical solution of an integral equation for the following reaction schemes: reversible first 

order, consecutive first-order and irreversible second-order. 

[21] Numerical results for power law kinetics (of orders 1 2m = , 1 and 2) for plug flow in a short 

channel and also for some types of Langmuir-Hinshelwood kinetics, including parameter ranges 

where the solution exhibited multiplicity behavior. 

[22] Graetz solution with uniform axial heat flux by the eigenfunction expansion method. 
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Table 2.1 (continued): Additional details concerning each reference 

[23] Analytical solution in Laplace’s domain to the problem of mass transfer in a channel cell-crystal-

electrode system with zero-order reaction, under Lévêque’s assumptions. 

[24] Solutions to the wall concentration profile, for several classes of boundary layer problems, given by 

0~ 1
wall

c z z−  for 0z z< . 

[25] General solution to a class of laminar boundary layer-type flow fields past solid surfaces where 

catalytic reactions with arbitrary mechanisms take place. This resulted in a nonlinear Volterra 

integral equation from where the surface reaction rate can be calculated once the concentration 

distribution at the wall is known (measured). For first-order reaction, the equation can be solved for 

certain geometries in terms of a convergent infinite series. 

[26] Considers fully developed laminar flow in a circular tube and from an integral equation, surface 

concentration can be calculated from the reaction rate (which can be known from the cross-section 

average concentration). The usefulness of this approach for kinetic studies and reactor design was 

also discussed for arbitrary reaction rates. 

[27] Solutions in a catalytic flat plate for uniform approaching velocity were obtained for power-law 

kinetics at the surface in the form ( )wall
z f c= . 

[28] Transformation of the original PDE problem with reactions of arbitrary kinetics into a system of 

integral equations using a Green’s function combined with generalized Fourier expansions. The 

kernels of the integral operators are related to an eigenvalue problem (with homogeneous kinetic-

independent boundary conditions). Expressions in the slow, fast and instantaneous reaction regimes 

were considered to improve the performance of the numerical solution of the resulting integral 

equations. 

 

 

 

 

 

 

Figure 2.1: Schematic representation of the concentration profile in the channel domain 

showing the two main mass transfer regimes considered in this work. 
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2.2.1 Theoretical background 

 

We consider straight parallel plate or circular channels with uniform cross-sectional area, in 

isothermal steady-state operation, coupled with a first-order heterogeneous reaction in a porous 

catalytic coating with uniform properties (Figure 2.1). Under these assumptions, the convective 

diffusion equation is (Deen 1998; Bird et al. 2002) 

( )

2 2
2

2 2 m

c c c
Pe v x

x z z
α α

∂ ∂ ∂
+ =

∂ ∂ ∂
   for parallel plates, and   (2.1a) 

( )

2
2

2

1
m

c c c
r Pe v r

r r r z z
α α

 ∂ ∂ ∂ ∂
+ = 

∂ ∂ ∂ ∂ 
  for a circular channel   (2.1b) 

where the dimensionless independent variables are the axial position scaled by the channel 

length ( )ˆz z L=  and the transverse position within the open channel (normalized by channel 

radius ( )ˆr r a=  or half-spacing between plates ( )ˆx x a= ). The concentration in this domain is 

written as a fraction of the inlet concentration ( )ˆ
in

c c c= . The dimensionless uniform and 

parabolic velocity profiles are 

( )
( ) ( )

23
1 laminar flow

2
1 plug-flow

S
u r r

v r
u

+
−

= = 


      (2.2) 

where 0S =  for parallel plates, 1S =  for circular channel and ( ) ( )v x v r= . 

In Eqs.(2.1) two dimensionless parameters arise: the transverse mass Peclet number 

( 
m

Pe u a D= ) and the channel aspect ratio ( a Lα = ). Axial diffusion is negligible up to 

( )
2

O α , i.e. for small aspect ratio channels. In this case ( 1α << ), the inlet Danckwerts’ 

boundary condition is simplified to uniform inlet concentration for 
m

Pe α>> , 

( ),0 1c r = .          (2.3) 

Despite the fact that the two domains (channel and catalytic layer) are coupled, a common 

approach is averaging the latter by using the effectiveness factor (η ) concept. It has been 

pointed out (Keyser et al. 1991; Bhattacharya et al. 2004b; Hayes et al. 2004) that for a first-

order reaction, the flux continuity requirement writes as a finite wall resistance (Robin-type) 

boundary condition, even when internal diffusion inside the porous coating must be considered. 

It can thus be written as 

( )
1

1,
r

c
Da c z

r
=

∂
= −

∂
,         (2.4) 
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where the rescaled Damköhler number ( * II

R
Da Da η δ= ), accounting for the concentration 

boundary layer thickness ( ~ 1
R

δ  in the Graetz regime) could have been used instead. Here, the 

Damköhler number compares the surface reaction timescale with the transverse diffusion one 

( II

surf
Da a k D= ). In terms of the observed reaction kinetics, Da  writes as II

Da η . Uniform 

wall flux (Neumann) and uniform wall concentration (Dirichlet-type) boundary conditions are 

obtained for 1Da <<  and 1Da >> , respectively. 

The well-known solution (Graetz 1883; Damköhler 1937) to this problem has the following 

separable form: 

( ) ( )

2

1 ,max

, exp n

n n

n m

z
c r z A r

Pe

λ
ϕ

α

∞

=

 −
=   

 
∑        (2.5) 

where ( )n
rϕ  is an eigenfunction in the transverse coordinate ( r  or x ), while the exponential 

term represents the axial dependence of the concentration profile (being ,maxm
Pe  the transverse 

Peclet number evaluated at the maximum velocity in the channel). Both transverse and axial 

contributions are associated with 
n

λ , the th
n  eigenvalue (a function of Da , in general), which 

satisfies Eq.(2.4). The typical dependence of the first eigenvalue on Da  is illustrated in Figure 

2.2 (full lines correspond to numerical calculations). Two asymptotes are of interest, 

corresponding to low and high values of Da . For the former, the leading-order behaviour of the 

first eigenvalue is 

( )
2 2

1 ~ Da O Daλ σ +    as 0Da → ,     (2.6) 

where ( ) max1S u uσ = +  ( 0S =  or 1  for parallel plates or circular channel, respectively). 

On the other hand, near the Dirichlet limit ( 1Da >> ), the first eigenvalue does not change 

significantly with Da . Carslaw et al. (1959) and Brown (1960) calculated these values as 

2
2

1,

parallel plates4

circular channel5.783

π
λ

∞


= 


  for plug-flow, and    (2.7a) 

2
1,

2.828 parallel plates

circular channel7.313
λ

∞


= 


  for laminar flow.    (2.7b) 

Finally, 
n

A  is the th
n  integration constant, which can be calculated from the orthogonality 

condition (e.g. Townsend (1900), Bauer (1976)). The previous results are needed when 

calculating the mixing-cup concentration: 

( )

( ) ( )

( )

,
A

A

u r c r z d A

c z
u r d A

=

∫

∫
.        (2.8) 
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This is related to the conversion of reactant along the channel (with respect to the inlet 

concentration), ( )1
R

X c z= − . Substituting solution (2.5) into Eq.(2.8) leads to 

( )

2

1 ,max

exp n

n

n m

z
c z w

Pe

λ

α

∞

=

 −
=   

 
∑         (2.9) 

where 
n

w  are dependent only on Da  for each channel geometry and flow profile, and are called 

in some references (Bhattacharya et al. 2004b) as the normalized Fourier weights, or are 

presented as a combination of integration constants and eigenfunctions derivatives at the wall. 

The lowest value of 1w  appears in the Dirichlet limit ( 1,w
∞

) and is given for plug-flow 

conditions by(Balakotaiah et al. 2002) 

2
, ,2

n n
w λ

∞ ∞
= ,   parallel plates      (2.10a) 

2
, ,4

n n
w λ

∞ ∞
= ,   circular channel.     (2.10b) 

In the next section, we use WKB results (Sellars et al. 1956) to write ,n
w

∞
 for laminar flow. 

More details on the method developed by Wentzel, Kramers and Brillouin (WKB) can be found 

in Bender et al. (1978). Frequently (Solbrig et al. 1967; Rice et al. 1995; Schmidt 1998; Belfiore 

2003; Bhattacharya et al. 2004b), the calculation of ( )c z  is simplified by retaining just one 

term in Eq.(2.9), leading to 

( )

2
1

1
,max

~ exp
m

z
c z w

Pe

λ

α

 −
  
 

.        (2.11) 

 

2.2.2 Approximation to the eigenvalues 

 

The calculation of conversion using (2.11) can be done once approximate dependences for 2
1λ  

and 1w  on Da  are provided. In this section, we will be concerned with the first eigenvalue. 

An improved estimate for 1λ  for large Da  is obtained here in an iterative manner, starting with 

the result in the Dirichlet limit as a first guess, (0)
1 1,λ λ

∞
= . In this case, an approximation for 

high eigenvalues but 1 1Da λ >>  can be useful to characterise how 1λ  approaches 1,λ
∞

 in an 

intermediate range of Da . For plug-flow between parallel plates, Robin’s boundary condition 

can be expanded for large 1Da λ  as ( )
(0)

1 1 1 1arctan ~ ...Da Daλ λ λ λ= − + . Assuming that it 

is sufficient to retain these terms in the expansion, the improved result writes as 

1 1,~
1

Da

Da
λ λ

∞

+
         (2.12) 
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which, when compared to the numerical solution presents relative error in the range of 

410 5%−
−  for 1.5Da > . We apply the same procedure for plug flow in a circular channel, after 

expanding Bessel functions for large argument. The result is similar to that in Eq.(2.12) with 

(0)
1 ~ 3 4λ π  and with a relative error of around 2% for 2Da > . 

 

 

 

(a)  

 

(b) 

Figure 2.2: First eigenvalue ( )1λ  as a function of the Damköhler number ( )Da  for plug-flow (a) 

and laminar flow (b) between parallel plates and inside a circular channel. Numerical 

results (solid lines) are compared with approximate expression (2.14) (dashed lines). 
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For laminar flows, we expand hypergeometric functions in ( )xϕ  or ( )rϕ  for large eigenvalues 

(Abramowitz et al. 1972) leading to the following form of Robin’s condition: 

1
1 1

1
tan

2

Da
λ

λ λ
= +   (for parallel plates)     (2.13a) 

1
1

tan
4

Daπ
λ

λ

 
− = 

 
  (for circular channel)     (2.13b) 

For large 1Da λ , the expansion of ( )arctan x  for large argument in Eqs.(2.13) leads to a 

rational function, which can be corrected to the right Dirichlet limit, yielding a relationship like 

Eq.(2.12). This result improves the estimate of the eigenvalues for 1Da > . 

 

2.2.2.a Uniformly valid approximation (all values of Da ) 

 

The previous results show that: (a) two asymptotic regions exist, where the eigenvalues are well 

characterized; and (b) the transition from the ~ 1Da  region to the Dirichlet limit is well 

described by a rational function. An approximate expression of the same form of Eq.(2.12) can 

be easily conceived using asymptotic methods (e.g. Gottifredi et al.(1986)), so that both limits 

are fulfilled: 

2
1 2

1,

~
1

Da

Da

σ
λ

σ λ
∞

+
         (2.14) 

Eq.(2.14) has higher relative error (compared to numerical results) in the range of ~ 2 3Da − , 

which is less than 2.5% or 4% for plug-flow between parallel plates and circular channel, 

respectively. For laminar flows, the first eigenvalue is predicted with errors just slightly above 

1% and 2% for plates and round tube. The numerical results and Eq.(2.14) predictions are 

plotted in Figure 2.2. Expressions for this type have been also sought in other contexts 

(Villermaux 1971; Houzelot et al. 1977; Haji-Sheikh et al. 2009), but the final dependence on 

Da  results in much more complicated expressions or are the product of fitting procedures (with 

numerically evaluated coefficients). Eq.(2.14) gives an extremely simple functional dependence, 

while retaining the asymptotically correct behaviour. 

We note that previous literature is full of procedures for calculation of eigenvalues and weights 

(or related quantities), due to the high importance of estimating conversion (alternatively, 

mixing-cup temperature) or Sherwood (and Nusselt) numbers. Table 2.1 provides a short list of 

some relevant studies concerning the calculation of eigenvalues for Graetz series’ terms with 

first-order wall reaction (more examples could be found in Shah and London (1978) or other 

textbooks). We distinguish between two approaches. 
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First, and probably more ubiquitous, examples of numerical calculation for specified values of 

Da  are presented. Secondly, explicit analytical approximations exist but are of extremely 

limited application, namely high eigenvalues ( 1n >> ) asymptotics in the Dirichlet/Neumann 

limit, where for example the effect of finite kinetics on the first (lowest) eigenvalue is ignored 

(see Table 2.1). 

The asymptotically correct correlation (2.14) we propose works very reasonably in the 

intermediate range of ~ 1Da . This expression is also attractive when optimal parameter regions 

are being searched, avoiding extensive numerical evaluation. Moreover, the effects of geometry 

and flow profile are indicated explicitly. 

 

2.2.3 Approximation to 
n

w  coefficients 

 

Combining Robin’s boundary equation with the orthogonality condition, we can obtain a 

compact result for the integration constant given by 

( )

1
2

1n

n n n

Da d Da
A

dλ ϕ λ

−

 
=  

 
.        (2.15) 

Therefore, when Da  is finite ( ~ 1 ), we use Eq.(2.15) to obtain 

( )

( )

2

~
1

n

n

d
w

d Da

σ λ
          (2.16) 

The typical dependence of the first Fourier weight (which is also the largest one) on Da  is 

represented by a smooth transition between two asymptotic plateaus in the limits of 0Da →  

and Da → ∞ . The variation in the intermediate range of Damköhler number is not easily 

obtained and extending the asymptotic expansions in the limits is beneficial for small and large 

(finite) Da , but unreasonable when ~ 1Da .  

When 1Da << , the first Fourier weight is directly obtained from Eq.(2.16), once we know that 

the first eigenvalue in this limit is described by Eq.(2.6). Thus, 

( ) ( )
2

1 0 1w Da O Da→ = − .        (2.17) 

The Dirichlet limit for plug-flow can be found in Eqs.(2.10). For fully developed parabolic flow 

profile, we follow the WKB method (Sellars et al. 1956) to obtain 

( )

( )

5/6

7/3 7/3
, , ,

12 3
3.0384

1 6
n n n

w λ λ
π

− −

∞ ∞ ∞
= =

Γ
  parallel plates    (2.18a) 
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( )

( )

5/6

7/3 7/3
, , ,

32 3
8.1023

1 6
n n n

w λ λ
π

− −

∞ ∞ ∞
= =

Γ
  circular channel.   (2.18b) 

Even though Eqs.(2.18) were conceived for large eigenvalues (thus, large n ), the results for 

1,w
∞

 with the appropriate first eigenvalues (Eqs.(2.7)) are in good agreement with numerical 

solutions for parallel plates ( 1, 0.9104w
∞

= ) and for circular channel ( 1, 0.8191w
∞

= ), with 

maximum relative errors of 1.3% and 0.3%, respectively. 

As we saw previously, eigenvalues approach their Dirichlet values 1,λ
∞

 according to Eq.(2.12). 

This is general for the geometries and flow profiles studied, but more accurate for plug-flow, 

where the Fourier weight tends to its limit value 1,w
∞

, as 

1 2
1,

2 1
1w

Da

σ

λ
∞

 
= + 

 
. 

We can then say generically that, 

( )1 1,

1
1w Da w

Da
∞

 
→ ∞ = + 

 
        (2.19) 

represents the correct trend in this asymptotic limit. Eq.(2.19) gives less than 5% relative error 

in the following ranges: 6Da ≥  (plug-flow between plates); 3Da ≥  (plug-flow inside a circular 

channel); 15Da ≥  (laminar flow between plates); and 8Da ≥  (laminar flow inside circular 

duct). 

 

2.2.3.a Uniformly valid approximation (all values of Da ) 

 

As expected, the transition from the low- Da  asymptote ( 1 1w → ) to the high- Da  asymptote 

( 1 1,w w
∞

→ ) in the intermediate region of ~ 1Da  is not satisfactorily described by these limits. 

Table 2.2 contains the asymptotic values 1,w
∞

 for the geometries and flow profiles studied. Both 

bounds on 1w  ( 1 1w =  and 1 1,w w
∞

= ) work as approximations outside the intermediate range of 

Da , 

max

1
1, min

1,
~

,

Da Da
w

w Da Da
∞

≤


≥
        (2.20) 

Values of minDa  and maxDa  are given in Table 2.2 for maximum relative errors of the first 

weight, as given by Eq.(2.20), of around 5% and 1%. We can see that when ~ 1Da , no 

satisfactory approximation is obtained. 
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Table 2.2:  Range of Da  in which 1w  can be approximated by either 

1 1w =  ( )maxDa Da<  or 1 1,w w
∞

=  ( )minDa Da> . 

   error 5%<  error 1%<  

  1,w
∞

 maxDa  minDa  maxDa  minDa  

plug flow 
plates 0.8106  2.5 17 0.8 100 

circular 0.6917  2.1 36 0.7 200 

laminar 

flow 

plates 0.9104  5.1 4.1 1.0 34 

circular 0.8191  2.1 12 0.6 70 

 

 

 

Note that we have more information when Da  is high: the non-leading order variation is of 

( )
1

O Da
− , while the first Fourier weight deviates very slowly ( ( )

2
O Da ) from 1 as 1Da →  

from 0). Therefore, we construct a uniformly valid approximation from Eq.(2.19): 

( )

1 1, 1,

1, 1,

1

1 1

w w w

w Daw

∞ ∞

∞ ∞

−
=

− −
   as Da → ∞ . 

A simple expression that also allows the small Da  limit to be fulfilled writes as 

1 1,

1,1,

1,

1
11

1

w w

ww
Da

w

∞

∞∞

∞

−
=

−−
+

        (2.21) 

where 1,w
∞

 is obtained by previously given expressions (independent of Da ). Of course 

Eq.(2.21) is only a particular case of the general empirical equation proposed by Churchill and 

Usagi (1974) to successfully correlate experimental and numerical data for a wide range of 

problems (e.g. determination of Sherwood and Nusselt numbers as a function of the Damköhler 

number for triangular channels (Groppi et al. 1997)). Though a wide variety of problems 

involving functions that approach constant values in both limits have been successfully dealt by 

this kind of expressions, to the authors’ knowledge it so far has not been applied to the 

prediction of 1w  as a function of Da  in two-dimensional models. 

Eq.(2.21) can be generalized to a powered addition of asymptotic limits (Churchill et al. 1974), 

which results in introducing an extra parameter into the correlation 

1

1 1, 1,

1, 1,

1
1

1

b
b

w w w
Da

w w

−

∞ ∞

∞ ∞

  − −
 = +   −    

.       (2.22) 
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The simplest form to determine b  is to ask for the correlation to produce the correct result when 

the right-hand side of Eq.(2.22) is 2, i.e. when ( )1, 1,1Da w w
∞ ∞

= − . In that case, 1b ≈  for plug 

flow between parallel plates and for laminar flow (circular and slit ducts), but 4b ≈  when plug-

flow in a circular channel is being studied. However, the numerical results are still well 

approximated by (2.22) when b  changes around these values. 

The correlation given by Eq.(2.21) predicts numerical results for parallel plates with 2.5% 

maximum error for plug-flow (at ~ 2Da ), and 2% error for laminar flow (around ~ 8Da ). For 

plug-flow inside a circular channel, Eq.(2.22) with 4b ≈  gives less than 6% relative error near 

~ 7Da  (and about 10% had we considered 1b ≈ ). For laminar flow inside a round tube, only 

1.4% maximum error is observed near ~ 1Da . 

 

 

 

2.2.4 One-term approximation for the mixing-cup concentration 

 

The prediction of the exit mixing-cup concentration from Eq.(2.11) (with 1w  from Eq.(2.22) and 

the first eigenvalue from Eq.(2.14)) is compared with numerical solution of Eqs.(2.1) in Figure 

2.3, where the quality of our approximations for the quantities involved in Eq.(2.11) is tested. 

We also plot the results in a parametric range where the one-term approximation is expected to 

fail (large 
m

Peα ). The range of ( )*
m m

Pe Peα α<  where Eq.(2.11) is applicable is identified 

for the first time for several representative values of Da , as are the magnitudes of error 

involved. 

For ( )~ 1
m

Pe Oα , the error associated with the approximation is in the range of error involved 

in the estimation of eigenvalues and Fourier weights. When 
m

Peα  increases, retaining just one 

term in Eq.(2.9) is not sufficient (the convection-dominated regime in section 2.3 will be 

appropriate for this limit). This is particularly noticeable at high Da , for example in the case of 

plug-flow between parallel plates (Figure 2.3a), where error increases from 4% to 11% at 

100
m

Peα = , when Da  changes from 1 to 410 . Moreover, in the same situation, less than 5% 

relative error (in the range of meaningful absolute values for concentration) is obtained only for 

20
m

Peα <  when 10Da =  or 410Da = . The external mass transfer controlled limit is, 

therefore, the one where convection-dominated solutions are more relevant, due to the existence 

of a concentration boundary layer. 
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(a) Plug flow between parallel plates 

 

(b) Plug flow inside a circular channel 

 

Figure 2.3: Exit mixing-cup conversion as a function of 
m

Peα  for the channel geometries and 

flow profiles studied. Curves for several values of II
Da Da η=  are plotted, comparing 

numerical results (full lines) with approximate 1-term expression (Eq.(2.11), dashed lines). 
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The same remark can be made when plug-flow in a circular tube is considered (Figure 2.3b). 

The maximum relative errors occur at high 
m

Peα  and Da  (around 18% for 10Da =  and 410 , 

but only 0.2% when 1Da = , at 100
m

Peα = ). Maximum of 5% relative error is obtained for 

10
m

Peα <  when 10Da =  or 410 .  

For laminar flows (Figure 2.3c and d), the same observations hold in the high Da  region: error 

increases significantly with 
m

Peα  and curvature (maximum errors of 6% in parallel plates and 

12% in circular channel, for 100
m

Peα =  and 410Da = ). The range over which is possible to 

apply the one-term approximation also gets narrower for circular channel (less than 5% error 

obtained for 30
m

Peα <  when 10Da = , and 20
m

Peα <  when 410Da = ), while parallel plates 

can be represented correctly at least up to 100
m

Peα =  with less than 5% error for 10Da ≤  but 

only up to 70
m

Peα = , close to the Dirichlet limit ( 410Da = ). 

The introduction of the results for 1w  and 1λ  presented in previous sections into (2.11) allow us 

to calculate conversion in a channel directly from the governing dimensionless parameters. 

However, if explicit approximations to conversion are sought (without going through the 

eigenvalue and weights dependence relationships), simple expressions for kinetic control 

conditions and mass transfer controlled conditions can provide useful insight. While in the 

former case, this yields the well-known result for exponential decrease in the equivalent 

homogeneous model (e.g. Damköhler (1937)): 

( )
( )1

~ exp
m

S Da z
c z

Peα

 − + 
 
 

      ( 1Da << ), (2.23) 

for the latter, we obtain 

( )
( )

2 4
1, 1,

1, 2 2
,max

11 1
~ exp 1 1

m m

z zS
c z w O

Pe Da Pe Da

λ λ

α σ α

∞ ∞

∞

    − +   
+ + +               

 ( 1Da >> ). (2.24) 

Eq.(2.24) with an ( )1O Da  correction to Dirichlet’s limit agrees reasonably well with the 

numerically calculated data from gPROMS®. For instance, for laminar flow in a circular 

channel and 20Da = , Eq.(2.24) gives less than 44 10−
×  absolute error for 1

m
Pe zα < . For 

m
Pe zα  around 1 and up to 20, the approximation predicts less than 2% error. For 10Da = , 

the relative error is near 2% when ~ 1
m

Pe zα . In the same conditions, maximum error is 

around 5% for all 
m

Pe zα  higher than 0.65. For 0.65
m

Pe zα < , the high relative errors 

correspond to maximum absolute error of 45 10−
× , since concentration is getting negligible on 

this limit. 
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(c) Laminar flow between parallel plates 

 

(d) Laminar flow inside a circular channel 

Figure 2.3: Exit mixing-cup conversion as a function of 
m

Peα  for the channel geometries and 

flow profiles studied. Curves for several values of * II
Da Da Da η= =  are plotted, 

comparing numerical results (full lines) with approximate 1-term expression (Eq.(2.11), 

dashed lines). 
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Eq.(2.11) with our approximations for 1λ  and 1w , and in particular limits (2.23) and (2.24), 

show the dependence of conversion on the Graetz parameter (the reciprocal of 
m

z Peα ) and on 

Da , for finite kinetic rates (tending to kinetic and mass transfer controlled limits). Explicit 

analytical expressions without the need of numerical evaluation for this case have not been 

presented previously. Bhattacharya et al. (2004b) present explicit asymptotic expressions for 

conversion for a parametric range of 1P >>  (their parameter P  is equivalent to ~
m

Peα ) in the 

Dirichlet ( Da → ∞ ) and Neumann ( 0Da → ) limits. The applicability of these results in the 

range of ~ 1
m

Pe zα  is extremely limited (e.g. more than 20% relative error for 16
m

Peα <  

and 10Da =  in round tube with parabolic flow). For a small aspect ratio channel, this merely 

rewrites Lévêque’s regime results, which have been dealt extensively elsewhere (Lévêque 1928; 

Levich 1962; Cowherd Jr et al. 1965; Petersen 1965; Solbrig et al. 1967; Pancharatnam et al. 

1972; Ghez 1978). Therefore, in terms of explicit approximate solutions, the results in this 

section completes the description of this problem in previous literature, especially in what has 

been identified (Bhattacharya et al. 2004b) as the parameter regime for the optimal design of 

catalytic monoliths: ~ ~ 1
m

P Peα  (e.g. near the mass transfer controlled regime). Moreover, it 

is possible to identify the effect of design variables on conversion from Eq.(2.11): (a) the 

channel length L  appears only in the argument of the exponential, showing a steeper increase in 

conversion for longer channels; and (b) the pre-exponential factor is a decreasing function of the 

channel transverse length a  , but the dominant behavior is given by the increase of the time 

constant for interphase mass transfer in the denominator of the exponential argument, lowering 

conversion for channels with larger cross-sections. The influences of the fluid velocity inside 

the channel and of the bulk diffusivity on conversion are reciprocal to those of L  or a , 

respectively. Finally, both diffusivity and kinetic constants depend on the operating 

temperature, the latter being usually more sensitive. Naturally, higher temperature leads to a 

steeper decrease of the mixing-cup concentration, as a result of faster reaction. 

The dependence of the parameters on the operation and design variables can be nonlinear (e.g. 

exponential dependence of the kinetic constant on temperature) or appear in several terms of the 

solution (e.g. the channel radius and bulk diffusivity appear in both Graetz and Damköhler 

numbers), which complicates the analytical simplified analysis. However, under some 

assumptions, it is possible to obtain further insight on the effect of physical variables on 

conversion. When the 1-term Graetz series solution is acceptable, the channel length required to 

achieve a conversion 
R

X  at a specified fluid velocity u  and constant physical properties is 

given as a function of the channel radius a , kinetic parameters, geometry, flow profile and 

temperature by 

( )

( )

/2 /
1, 01,max

2 /
0 1, 1, 1, 0

1 11
ln ln

1 1

E RT
E RT

E RT

R

w Da ewa u e
L

D Da X w w Da eσ λ

−

∞∞

−

∞ ∞ ∞

  + −   
  = + +       − + −     

  (2.25) 
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Alternatively, the operation flow-rate can be calculated for a given channel length L , as a 

function of e.g. temperature ( L  and u  can also be combined in the reactor’s residence time, 

conv
τ ). This assumed a weak dependence of diffusivity on temperature compared to the one of 

the kinetic constant, which is acceptable. Nevertheless, such dependence (as well as the 

calculation of the effectiveness factor) can be included, and the result continues explicit for the 

channel length or fluid velocity. Note that 0Da  is de Damköhler number evaluated with the pre-

exponential factor (Da at zero activation energy). The values of σ , 2
1,λ

∞
 and 1,w

∞
 are known for 

given flow profile and channel cross-section. Iso-conversion lines in a T u−  operating 

diagram can be drawn according to the above expression (in this case, for fully developed 

profile conditions). As an example, consider: 100a mµ= , 5 210D m s
−

= , 6
0 10Da = , 

410E R K=  and specified conversion of 0.99
R

X = . The following ( );
conv

T τ  operation points 

should give a performance close to our target: ( )300º ;90C ms , ( )500º ;2C ms , ( )800º ;1.2C ms

and ( )1000º ;1.2C ms , for example. This was compared with numerical simulations in a matrix 

of parameter values ( )conv
T τ× . The points given by the expression above predicted conversion 

correctly with maximum of 0.15% of relative error. This line separates two sets of results: when 

conversion is higher than specified and when conversion is lower than specified. It is obvious 

that such numerical effort can be avoided: rigorous numerical solution can be restricted to 

operating points around the given boundary (and not in the complete parametric space).  

Another strategy that we explore next, is the use of Lévêque type corrections (constructed for 

1
m

Peα >> ) to improve the performance at intermediate values of ~ 1
m

Peα . To our 

knowledge, the effect of finite reaction rate conditions in these corrections has not been 

discussed so far. 

 

2.3 LÉVÊQUE’S REGIME (DOMINANT CONVECTION) 

 

At high flow rates ( 1
m

Peα >> ), the transport of reactant towards the walls is now limited by 

transverse diffusion. If the consumption of reactant at the wall is fast enough, the solution can 

be decomposed in the transverse direction into two domains: an outer region (which occupies 

most part of the channel’s cross-section, 0 1r≤ < ) and a concentration boundary layer near 

1r = . In this section, we treat the convection dominated regime as a perturbation problem, 

allowing us to separate the influence of effects, such as curvature and nonlinearities in the 

velocity profile, and identify the parametric conditions where they are relevant, under finite 

reaction kinetics conditions. Table 2.1 summarizes some of the previous work invariably 

associated with Dirichlet and Neumann boundary conditions. 
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2.3.1 Structure of the perturbation problem in Lévêque’s regime 

 

In the presence of significant consumption of reactant (with an associated concentration drop, 

( )~ 1c O∆ ), transverse (and axial) gradients are much larger than ( )1O  and we stretch the 

transverse variables in Eqs.(2.1) to obtain a correct rescaling: 

( )

2 2
2 2 2

2 2X m X

c c c
Pe v X

X z z
α δ α δ

∂ ∂ ∂
+ =

∂ ∂ ∂
   for parallel plates  (2.26a) 

( )

2 2
2 2 2

2 21
R

R m R

R

c c c c
Pe v R

R R R z z

δ
α δ α δ

δ

∂ ∂ ∂ ∂
− + =

∂ − ∂ ∂ ∂
 for a circular channel.  (2.26b) 

The velocity profiles given by Eq.(2.2) become 

( )
3 1 laminar flow

2

1 plug-flow

X

X

X
X

v X

δ
δ

  
−  

=   



  and  ( )
4 1 laminar flow

2

1 plug-flow

R

R

R
R

v R

δ
δ

  
−  

=  



 

where ( )1
R

R r δ= −  and ( )1
X

X x δ= −  are the transverse stretched spatial variables, and 

, 1
X R

δ δ <<  are the dimensionless thicknesses of the concentration boundary layer near the wall. 

The only distinguished limit in Eqs.(2.26) reflects a convection-transverse diffusion dominance. 

Balancing those two terms, the inner layer scales become: ( )
1/2

~ ~
R X m

Peδ δ α
−

 for plug flow 

and ( )
1/3

~ 3
X m

Peδ α
−

 for laminar flow between parallel plates or ( )
1/3

~ 4
R m

Peδ α
−

 if a 

parabolic velocity profile inside a circular channel is considered. We kept the axial diffusion 

term in Eqs.(2.1) but near the wall its importance relative to transverse diffusion is ( )
1

ax
O Pe

−  for 

plug-flows, while for laminar flows its effect only shows up at ( )
2 3 2/3

ax
O Peα , which are 

smaller than any other terms calculated next. 

We can see the convection-dominated limit as a perturbation problem, where Lévêque’s 

solution is nothing but the leading-order result. The inner problem given by Eqs.(2.26) can be 

decomposed into subproblems once the dependent variable in this region is expanded as a series 

in δ , i.e. at the boundary layer ( bl
c c≡ ): 

( ) ( )
0

, ; , n

m n

n

c R z Pe c R zα δ

∞

=

=∑         (2.27) 

Since the flux continuity at the interface is explicitly free of the perturbation parameter, the 

appropriate rescaled form for the ( )
n

O δ  subproblem is (replace R  by X  for parallel plates) 

( )
0

* 0,n

n

R

c
Da c R z

R
=

∂
= =

∂
        (2.28) 
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Here however, *Da ( )
II

R
Da η δ=  includes the correct length scale for the concentration 

gradient (
R

a δ ). For * ~ 1Da , Eq.(2.28) must retain its full structure, but Neumann and 

Dirichlet conditions are natural limits for * 1Da <<  and * 1Da >> . Additional details on the 

definition of regimes from *Da  can be found in Chapter 4. 

The inlet boundary condition is homogeneous ( ( ),0 0
n

c R = ) for 1n ≥  and the general matching 

procedure can be reduced in this case to Prandtl’s condition for 0n = : 

( ) ( )0 , , 1out
c R z c r z→ ∞ → =  (finite), and      (2.29a) 

( ), 0
n

c R z→ ∞ =  for 1n ≥ .       (2.29b) 

Then, the composite solution is simply given by  

( ) ( ) ( ), , ,out bl
c r z c r z c R z cp= + −  

where ( ) ( )0lim , ,bl out

R

cp c R z c r z
→∞

= = , and therefore the solution in the boundary layer is 

uniformly valid over the complete transverse domain. At leading order, the simplified form of 

the inner equations in the variables X  or R  becomes independent of the geometry (curvature 

effects are of ( )R
O δ  and therefore neglected). Moreover, the laminar parabolic velocity profile 

is linear up to ( )R
O δ  near the wall (Figure 2.1). This reproduces Lévêque’s analysis and 

assumptions (Lévêque 1928). 

 

2.3.2 Approximate solution to Lévêque’s problem under finite reaction rate conditions 

 

From previous studies (see Table 2.1), it is clear (especially for laminar flow) that more 

convenient solutions to the mixing-cup concentration without requiring numerical evaluation 

are needed, when Da  is finite. As shown in section 2.3.1, the correct scaling of Eq.(2.4) 

includes the thickness of the boundary layer, which is the perturbation parameter in the 

expansion given by Eq.(2.27). Thus, according to (2.8), the mixing-cup concentration profile is 

also given by a perturbation series in powers of 
R

δ . In particular, each coefficient in 

( )
0

n

n

n

c z c δ

∞

=

=∑          (2.30a) 

can be obtained from surface conditions from 

( )
( )

( )00
0

1 *
1 0,

z

m

S Da
c z c z d z

Peα δ

+
= − ∫ ,       (2.30b) 

( )
( )

( )
0

1 *
0,

z

nn

m

S Da
c z c z d z

Peα δ

+
= − ∫ .       (2.30c) 
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2.3.2.a Plug-flow 

 

For uniform velocity profile ( )u R u= , the result for mixing-cup concentration follows 

immediately from Eq.(2.30b) and with ( )0 0,c z  in Carslaw and Jaeger (1959), we obtain 

( )

( )

( )

2
*

0

1 2 1
1 erfc *

* *

Da z

m

S e
c z z Da z

Da DaPeα π

 +
= − − + 

  

    (2.31) 

Although an exact solution is provided by Eq.(2.31), the limits of * 1Da <<  and 1>>  are of 

interest: 

( ) ( ) ( )
2 33/2

0

1 4
1 * * *

3
m

S
c z Da z Da z O Da

Peα π

+  
= − − + 

 
, * 1Da <<  or 1z <<   (2.32a) 

( )
( )

( )
3

20

1 2 1 1 1
1 *

* *m

S
c z z O Da

DaPe z Daα π π

−
 +

= − − + + 
  

, * 1Da >>   (2.32b) 

An approximation to Eq.(2.31) that ‘matches’ (not in the asymptotic sense) the leading order 

estimates in Eqs.(2.32) and still yields a valid estimate even when * ~ 1Da  is obtained next. A 

rational function that respects both limits is of the form: 

( )0

1 *
1

1 2 *
m

S Da z
c z

Pe z Daα π

+
= −

+
.      (2.33) 

The exit conversion ( ( )1 1
c

X c z= − = ) for flow between parallel plates (Figure 2.4) is well 

described for a large range of parameters by Eq.(2.33), with maximum relative errors of 1.4%, 

0.4% and 0.1% for 10,
m

Peα =  100  and 1000, respectively, all around * ~ 3Da , when 

compared with numerical results from gPROMS®. These errors can be attributed to the 

conceived rational approximation, although increase in Peclet number is always beneficial. For 

1
m

Peα =  (i.e. outside the asymptotic conditions under which this approximation has been 

developed), less than 1% error is obtained for * 1Da <  (point noted by ○ in Figure 2.4).  

For plug-flow in a circular channel, the error associated with Eq.(2.33) has contributions due to 

the uniform approximation itself, to curvature effects and to finite 
m

Peα  values (“1 term” curve 

in Figure 2.5). In general, the relative error can have several local maximums all located at the 

intermediate range (~ 1, due to the nature of approximation (2.33)) or reasonably high *Da  

(due to the ignored curvature effects). In the Dirichlet limit, conversion can be predicted with at 

most ~ 0.2%  of error for high 
m

Peα  (this is ten times the value observed for parallel plates 

geometry). These results suggest that accounting for the presence of curvature may reduce the 

error in these approximations (in certain ranges of *Da ). Also, for all values of *Da  and

m
Peα , the relative errors decrease as we approach the inlet. 
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Figure 2.4: Exit mixing-cup concentration ( )1c z =  as a function of *Da
II

m
Da Peη α=  

for several orders of magnitude of 
m

Peα  in plug-flow between parallel plates. Full 

lines represent numerical simulation with gPROMS®, while dashed lines refer to Eq.(2.33). 

The point ○ notes the maximum value of *Da  with less than 1% error from using (2.33). 

 

 

Figure 2.5: Exit mixing-cup concentration ( )1c z =  as a function of *Da
II

m
Da Peη α=  

for several orders of magnitude of 
m

Peα  in plug-flow inside a circular channel. Full 

lines represent numerical simulation (gPROMS®), while dashed lines refer to approximate 

solutions. High values of 
m

Peα  ( 210  and 310 ) are described by Eq.(2.33). For 1
m

Peα = , 

Eq.(2.33) has less than 5% relative error (up to the point ○) and the 2-term approximation 

(with 
1

c  from Eq.(2.38)) provides less than 5% error (up to ●). For 10
m

Peα = , the high 

*Da  asymptote second term from Eq.(2.39) is included in the“2 terms” curve after the point 

□. 
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2.3.2.b Laminar flow 

 

The degree of reactant’s conversion can be calculated from Eq.(2.30b) for both limits with the 

asymptotic expressions for ( )0 0,c z presented in Ghez (1978), yielding 

( )
( ) ( ) ( )

2

4/3

0

1 * 1 *
1 1.1521

m m

S Da S Da
c z z z

Pe Peα δ α δ

+ +
= − + −      

 
( ) ( ) ( )

3 4 2
5/31 * *

1.2506
m m

S Da Da z
z O

Pe Peα δ α δ

 +
 − +
 
 

         for 1/3* 1Da z << ,  (2.34a) 

and ( ) ( )
( )2/3 1/3

0

1
1 0.8076 1 0.5952

*
m m

Sz z
c z S

Pe Da Peα δ α δ

+
= − + +   for 1/3* 1Da z >> . (2.34b) 

where * II
Da Da η δ=  and δ  has different definitions according to the geometry and flow 

profile (section 2.3.1). When compared with the numerical solution of the full model (from 

gPROMS®), the ( )
2*O Da  and ( )

1*O Da
−  approximations (obtained truncating Eqs.(2.34) only 

to leading-order dependence on z ) are rather limited in applicability, especially for a circular 

channel geometry. However, we note that a rational expression (similar to Eq.(2.33)) bringing 

together the solution for small and large values of *Da z , may actually perform better than (or 

at least, comparably with) the individual limits it is meant to fulfill: 

( ) 1/30

1 *
1

1 1.2382 *
m

S Da z
c z

Pe Da zα δ

 +
= −  

+ 
.      (2.35) 

Eq.(2.35) predicts conversion in a circular channel with around 1.4% error for 100
m

Peα =  and 

~0.13% for 1000
m

Peα = , as *Da  increases. For slit channels though, the exit mixing-cup 

conversion can be reasonably calculated over large parametric ranges (Figure 2.6). For example, 

up to the Dirichlet limit (large *Da ) maximum relative errors are: 3% for 10
m

Peα = , ~ 0.1%  

for 100
m

Peα =  and ~ 0.01%  for 1000
m

Peα = . In this case, even when 1
m

Peα = , less than 

5% error is achieved for * 0.5Da < . The effect of curvature clearly reduces the accuracy of the 

approximations (mainly for finite (moderate) values of 
m

Peα ), which stresses the importance 

of a curvature correction. 

 

2.3.3 Higher order corrections to Lévêque’s problem 

 

The higher order problem accounting for curvature can be extracted from Eqs.(2.26) (plug-flow 

profile) at ( )
1/2

m
O Peα

− 
 

 and is given by 
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2
01 1

2

cc c

R z R

∂∂ ∂
− =

∂ ∂ ∂
         (2.36) 

with boundary conditions for 1n =  in Eqs.(2.29). The surface concentration value is calculated 

inverting Laplace’s transform 

( )

( )
1 2

*
0,

2 *

Da
c R s

Da s s

= = −

+

. 

The correction accounting for nonlinearity of the velocity profile at the boundary layer appears 

at ( ) ( )
1/3

~
m

O O Peδ α
− 

 
 and is calculated from 

2 2
01 1

2 2

cc c X
X

X z z

∂∂ ∂
− = −

∂ ∂ ∂
  at ( )

1/3
3

m
O Peα

− 
 

 for parallel plates, and (2.37a) 

2 2
0 01 1

2 2

c cc c R
R

R z z R

∂ ∂∂ ∂
− = − +

∂ ∂ ∂ ∂
   at ( )

1/3
4

m
O Peα

− 
 

 for a circular channel. (2.37b) 

Eqs.(2.37) can be solved in Laplace’s domain and then inverted for high and low *Da . 

 

2.3.4 Effect of curvature in a circular channel with plug flow 

 

The results of interest are the limits of low and high *Da  of the mixing-cup concentration 

which according to Eq.(2.30c) are: 

( )
( )

( )

2 2 5/2
4

1

* 16
* *

2 15m

Da z z
c z Da O Da

Peα δ π

 
= − +  

 
   for * 1Da <<   (2.38) 

( ) ( )
2

1

4 1
1 *

*
m

z
c z O Da

Pe Dazα δ π

−
 

= − +  
 

   for * 1Da >> .  (2.39) 

From the previous numerical results, we saw that this correction is mainly needed for * 1Da >>  

(note that for * 1Da << , the correction is of ( )
2*O Da ). The “curvature correction” can be 

simplified to ( )1
~

m

z
c z

Peα δ
, only when * 1Da >> . 

The high *Da  asymptote in Eq.(2.39) improves the approximation even at moderate values of 

this parameter (□  in Figure 2.5). In particular for * 100Da = , the error drops an order of 

magnitude: from 27% to 1.5% ( 10
m

Peα = ), from 1.29% to 0.02% ( 100
m

Peα = ) and from 

0.14% to 0.03% ( 310
m

Peα = ). The low *Da  term (Eq.(2.38)) is more useful for 1
m

Peα =  to 

extend the validity of the approximate solution given by Eq.(2.33) from * 0.2Da <  (limit shown 

by ○) to * 0.5Da <  (limit shown by ●), with maximum 5% relative error compared to numerical 
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results. The contribution of curvature 
1

cδ  is more significant at high *Da  and is less than 1% 

of 
0

c  for 100
m

Pe zα ≥ , however it is less than 30%  of 
0

c  for 10
m

Pe zα ≥ . 

 

2.3.5 Effect of nonlinear velocity profile in laminar flows 

 

In this case, the higher order correction writes in the limits of high and low *Da  as 

( )
( )

( ) ( )
2 5/3 3

1

1
~ 0.125 * *

m

S
c z Da z O Da

Peα δ

+
+    for * 1Da <<   (2.40) 

( )
( )

( )
1/3

2

1

1 1.615
~ 1 *

10 *
m

S z z
c z O Da

Pe Daα δ

−

−
+  

− + 
 

  for * 1Da >> .  (2.41) 

Again for low *Da , the contribution is of ( )( )
2*

m
O Da Peα δ  and therefore negligible. 

However, in the limit of high *Da , the correction is more significant. 

 

2.3.5.a Parallel plates 

 

Two terms in Eq.(2.41) should be retained in the ranges of 1.8 * 12Da< < , 4.4 * 20Da< <  and 

0.75 * 26.5Da< <  for 10
m

Peα = , 100 and 310  (with respective maximum relative errors of 

0.20%, 0.03% and 0.009%, respectively). In particular for * 100Da = , errors are reduced by one 

order of magnitude compared to the ones obtained with (2.35). For 10
m

Peα = , ( )
0

c z  

reasonably describes numerical solutions up to * 12.7Da =  (shown in Figure 2.6 by □). 

 

2.3.5.b Circular channel 

 

At low *Da , the improvement brought by Eq.(2.40) is not particularly visible, as for 

1
m

Peα =  , the error is already less than 5% for 0.1Da* <  (○ in Figure 7). Eqs.(2.40) and 

(2.41 ) result in improvement of the rational function for 
0

c  (Eq.(2.35)) with transition 

between asymptotes around * ~ 1Da . The effect of correction (2.41) at * 100Da =  is quite 

modest. When 
m

Peα  is not high enough and *Da  is large, the Graetz solution is more 

appropriate to describe accurately the numerical results. In this case (finite 
m

Peα ), the 

penetration of concentration gradients is visible at a length scale comparable to the channel 

characteristic dimension a , much thicker than 
R

a δ .  
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The leading order solution at low *Da , given by the first couple of terms in Eq.(2.34), can be 

connected to Graetz’s estimate at the Dirichlet limit (Eq.(2.11)) with error slightly above 2% for 

* 100Da = . Such approximation is plotted in Figure 2.7 for 10
m

Peα =  and writes as: 

( )
( )

( )

2
1,

1,
,max

2
1,

1,
,max

exp
1 *

1 ~ 1
1 *

1 exp

m

m

m m

w
PeS Da

c
Pe S Da

w
Pe Pe

λ

α

α δ λ

α δ α

∞

∞

∞

∞

 −
  

+  
−

 −+
+ −   

 

.    (2.42) 

As shown in Figure 2.4 to Figure 2.7 and in the previous discussion, the extended Lévêque 

solutions improve the prediction of conversion significantly even at the exit of the channel. 

Here, the flow can be already fully developed, so corrections due to velocity profile nonlinearity 

are important. Improvement resulted for values of 
m

Peα  as low as 10. 

 

 

 

 

 

 

Figure 2.6: Exit mixing-cup concentration ( )1c z =  as a function of *Da

( )
1/3

3II

m
Da Peη α=  for several orders of magnitude of 

m
Peα  for laminar flow 

between parallel plates. Full lines represent numerical simulation with gPROMS®, while 

dashed lines refer to approximate solutions. One-term solutions are given by Eq.(2.35). 

Correction Eq.(2.41) is added to obtain the “2 terms” curve after □. 
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Figure 2.7: Exit mixing-cup concentration ( )1c z =  as a function of *Da

( )
1/3

4II

m
Da Peη α=  for several orders of magnitude of 

m
Peα  for laminar flow 

inside a circular channel. Full lines represent numerical simulation (gPROMS®), while 

dashed lines refer to approximate solutions. The correction in Eq.(2.41) is added to Eq.(2.35) 

to obtain the “2 terms” curve. Eq.(2.42) is also plotted for 10
m

Peα = . 

 

2.4 KINETIC NORMALIZATION FOR ‘POWER-LAW’ REACTION RATES 

 

When reactions are unimolecular or when all reactants (species i ) except one are present in 

excess, ( ){ } ( ){ }1, 1,
i

c r z c r z= = =R R . Moreover, if reactant concentration is kept in a 

restricted range, the so-called ‘power-law kinetics’ can be used as a reasonable approximation to 

the actual rate equation: ( ){ } ( )1, 1,m

surf
c r z k c r z= = =R , where m  is the order of reaction. 

Concerning the coupled analysis of (channel) flow past a surface where a reaction with arbitrary 

kinetics is occurring, a great deal of work exists (see Table 2.1). A generic approximate 

approach to convective-transport problems past catalytic surfaces is to reduce the problem 

(Lighthill transformation (1950)) to an integral equation relating surface concentration and 

reaction rate (“integral equation method”), which is usually solved numerically.  

Bhattacharya et al. (2004b) present numerical results for power law kinetics (of orders 1 2m = , 

1 and 2) for plug flow in a short monolith channel and also for some types of Langmuir-

Hinshelwood kinetics (with multiplicity behavior). They observed that the same asymptotes for 

kinetic and mass transfer controlled limits were fulfilled. 
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In this section, we extend our approximations in fully developed Graetz and Lévêque’s regimes 

to ‘power-law’ kinetics. Our objectives are the following: (a) to obtain explicit formulas for 

conversion under kinetic and mass transfer control, and (b) to understand the influence of the 

reaction rate law through calculation of higher-order contributions in suitable limits. 

 

2.4.1 Developing concentration profile 

 

When the concentration profile is developing, the rescaled wall boundary condition for the 

nonlinear problem is: 

( )
0

* 0,m

R

c
Da c R z

R
=

∂
= =

∂
  (power-law kinetics)    (2.43) 

In Eq.(2.43), the *Da  parameter is defined as usual in Lévêque’s regime with the thickness of 

the boundary layer ( )
II

R
Da η δ= , however 

surf
k  is replaced by ( )ˆ ˆ

surf in in
c cR . To obtain 

approximate solutions, we must reduce the boundary condition by choosing *Da  (or its 

reciprocal) as perturbation parameter ε . This will not result in any simplification of the 

complete mass balance in the channel, which is free of ε . Therefore, we start by analyzing 

Lévêque’s regime, where a set of assumptions for ( )~ 1
q

R m
Peδ α

−

<<  ( 1 2q =  for plug flow 

and 1 3q =  for laminar flow) allows simplification of the mass balance to Eqs.(2.26). 

We consider a perturbation series for concentration of the following form 

( ) ( ) ( )
0

, ; ,
n n

n

c R z c R zε δ ε

∞

=

=∑         (2.44) 

where, ( ),
n

c R z  is the solution to the th
n  subproblem (of ( )n

O δ ), ε  is the small parameter 

(which can be either *Daε =  for kinetic control or 1 *Daε =  for mass transfer control) and 

( )n
δ ε  are undetermined gauge functions of ε , which will be defined by convenient dominant 

balances, obeying the following relation ( ) ( )1n n
δ ε δ ε

+
>>  as 0ε → . 

The subproblems appearing after introducing (2.44) into the leading-order problem from 

Eq.(2.26) and collecting the same order terms are 

2

2
n n

c c

R z

∂ ∂
=

∂ ∂
  (plug flow)       (2.45a) 

2

2
n n

c c
R

R z

∂ ∂
=

∂ ∂
  (laminar flow).       (2.45b) 
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Since our perturbation to boundary condition (2.43), associated with the nonlinear kinetics, will 

render the problem linear, Eqs.(2.45) are amenable to be treated with Laplace transform of 

( ) ( ) ( ), , ,0
n n n

u R z c R z c R= −  with respect to z , yielding the following general solutions for the 

th
n  subproblem 

( ), R s

n
u R s const e

−
=    (plug flow)     (2.46a) 

( ) ( )
1 3, Ai

n
u R s const R s=   (laminar flow).     (2.46b) 

Note that ( ),0 1
n

c R =  for 0n =  but ( ),0 0
n

c R =  for 1n ≥ , and therefore ( ) ( ), ,
n n

u R s c R s=  

(for 1n ≥ ). Solutions (2.46) were obtained so that boundedness as R → ∞  is achieved. 

The mixing-cup can be written as 

( )
( )

( )
0

1
1

nn

nm

S
c z c

Pe
δ ε

α δ

∞

=

+
= − ∑ ,       (2.47) 

where the contributions from the ( )n
O δ  subproblems are 

( )
1

0 0 0

1z

n n

n

R R

c d c
c z d z

R s d R

−

= =

 ∂  
= =  

∂   
∫ L .      (2.48) 

 

2.4.1.a Kinetically controlled regime 

 

If we seek for a perturbation solution in *Daε = , the wall boundary condition (2.43) after 

introduction of Eq.(2.44) becomes, 

( )
0 00

0,
m

n

n n n

n nR

c
c z

R
δ ε δ

∞ ∞

= ==

∂  
=  

∂  
∑ ∑   (power law kinetics)   (2.49) 

Since both wall concentration and flux are correctly scaled, the left-hand side (LHS) of (2.49) is 

dominant and therefore the leading order term is unbalanced by any term in the right hand side 

(RHS) as 0ε → , i.e.  

( )
0

0

0

0
R

c

R
δ ε

=

∂
=

∂
 from where 0

0

0
R

c

R
=

∂
=

∂
       (2.50) 

and for convenience, ( )0 ~ 1δ ε . The solution of Eqs.(2.46) subject to (2.50) is, as expected, 

( )0 , 1c R z = .          (2.51) 

The next subproblem is defined by Eqs.(2.45) with 1n =  and must be solved with the boundary 

condition given by 
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1
0

0

1m

R

c
c

R
=

∂
= =

∂
.         (2.52) 

Here, the dominant balance is between the second higher term in the LHS and the higher in the 

RHS of Eq.(2.49), of order 1 0~δ ε δ . Up to this order, Lévêque’s problem with uniform wall 

flux is reproduced and for zero-order reactions with nonzero wall concentration, no further 

corrections from higher subproblems exist. Also so far, the presence of the order of reaction m  

is not felt, apart from the parameters definition. An higher order kinetics-dependent term is 

calculated from 

( )2
1

0

0,
R

c
m c z

R
=

∂
=

∂
      (power law kinetics), (2.53) 

where ( )2 ,c R z  is the solution at order 2
2 ~δ ε . Note that the form of our perturbation 

expansion, in integer powers of ε  ( ~ n

n
δ ε ) is independent of m . The Laplace transform of the 

flux towards the wall is given by 

( )
3/22

1

0

0,
R

c
m c s m s

R

−

=

∂
= = −

∂
     (plug flow)  (2.54a) 

( )
( )

( )

4/32
1

0

Ai 0
0,

Ai ' 0
R

c
m c s m s

R

−

=

∂
= =

∂
    (laminar flow).  (2.54b) 

According to the previous results and from Eqs.(2.47)-(2.48): 

( )
( )

( )
3/2 2 31 4

* * *
3

R

m

S
X z z Da m z Da O Da

Peα δ π

+  
= − + 

 
 (plug flow).  (2.55a) 

( )
( )

( )
4/3 2 31

* 1.15209 * *
R

m

S
X z z Da m z Da O Da

Peα δ

+
 = − +   (laminar flow).  (2.55b) 

The well-known solutions for first and zero-order reactions are recovered from Eqs.(2.55). The 

same order terms in Eqs.(2.32) and (2.34) are reproduced for 1m = , while ( )
2

0c z =  for 

0m = . 

For the general case of an m
th order reaction, more subproblems could be generated and solved 

in a similar way, however terms up to ( )
2

*O Da 
 

 are enough for our purposes, since the effect 

of m  has already been captured. This term is the basis of the normalization for kinetic control 

when the concentration profile is developing with respect to the reaction rate exponent m .  

When flow profile is fully developed in a circular channel (the worst case possible for 

Lévêque’s leading-order problem with linear wall velocity profile and negligible curvature 

assumptions), the inclusion of ( )
2

c z  improves the estimate from (2.47) reducing relative 

errors for * ~ 0.1Da  by about one order of magnitude. In this example, when 1 / 2m =  the 
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maximum relative error for * 0.1Da ≤  reduces from 0.1% to 0.02%, while when 1m =  the drop 

in error is between 0.2% and 0.004%. Finally, for 2m =  the predicted error of 0.4% is reduced 

to less than 0.06%, when our analytical results are compared with numerical simulations in 

gPROMS® for 100
m

Peα = .  

 

2.4.1.b External mass transfer controlled regime 

 

In the limit of instantaneous reaction at the catalytic surface, we take the perturbation parameter 

as 1 *Daε =  and at leading order ( 0n = ) obtain the Dirichlet problem, given by the ( )1O  

terms in Eqs.(2.32b) and (2.34b). This happens since the RHS in Eq.(2.43) is not balanced by 

any term in the LHS and so we set 0 ~ 1δ . Thus, at leading order the problem is again 

independent of the specific form of reaction kinetics, as concentration vanishes at the wall for 

any form of ( )cR . We now follow to calculate an higher order term in this limit. 

The form of the perturbation expansion and the appropriate wall boundary condition for the next 

subproblem are determined by introducing (2.44) into (2.43): 

( )

1

1 0 0

0,

m

n

n n n

n n R

c
c z

R
δ ε δ

∞ ∞

= = =

 ∂
=   ∂ 

∑ ∑    (power law kinetics)  (2.56) 

Requiring the next term in the LHS to balance with the highest in the RHS yields ( )
1

1 ~ m
δ ε ε , 

with 0m >  so that ( )1 0δ ε →  as 0ε → . The boundary condition becomes 

( )

1

0
1

0

0,

m

R

c
c z

R
=

 ∂
=   ∂ 

     (power law kinetics).  (2.57) 

If Eq.(2.56) is expanded for small 
n

δ  and terms organized by order of magnitude it is possible 

to show that the consistent choices for the form of perturbation series (2.44) are of the form: 

( ) ~ n m

n
δ ε ε , for power law kinetics of order m . Note that, as dictated by the dominant balance, 

the form of the series is dependent on the reaction order in this case. Therefore, subsequent 

corrections to the leading order term will vanish faster (for the same *Da ) if 1m < . For 0m = , 

no corrections to Dirichlet’s limit exist, as expected in conditions of reactant exhaustion at the 

wall. 
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Figure 2.8: Contribution of ( )
1

*
m

O Da
−

 term at the exit of a channel (with plug or laminar 

flow), as a function of the reaction order m , Eqs.(2.60). 

 

 

Figure 2.9: Exit mixing-cup conversion ( )1c z =  for laminar flow in a circular channel with 

power law wall kinetics of order 2m =  and 3m =  as a function of *Da . Full lines 

correspond to gPROMS® simulations with 100
m

Peα = . Thick dashed lines represent the 

perturbation solution for conversion with the extra term given by Eq.(2.60b). Eq.(2.35), 

which reasonably describes lower m  kinetics, is also shown (thin dashed line). 
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At ( )
1 m

O ε , the particular solutions according to (2.46) subject to Eq.(2.57) are 

( )

1

2
1 , R smc R s s e

−

−
=      (plug flow)   (2.58a) 

( )
( )

( )

( )

( )

1 1 32

3
1 2 3

Ai2 3
,

3 4 3 Ai 0

m

m

R s
c R s s

− Γ
=  

Γ  
  (laminar flow).   (2.58b) 

The respective contributions for mixing cup concentrations are calculated from Eq.(2.48): 

( )0

2 z
c z

π
=       (plug flow)   (2.59a) 

( )
( )

( ) ( )

2/3
2/3

2/30

2 / 3
0.807549

3 4 / 3 5 / 3

z
c z z

Γ
= =

Γ Γ
  (laminar flow)   (2.59b) 

( )

1 1

2 2

1 1 1
2 2

mz
c z

m

−

= −
 

Γ + 
 

    (plug flow)   (2.60a) 

( )
( )

( ) ( )

1 2 2 1
1 1/3 3 3 3

1/1

3 2 / 3

2 21 / 3 4 / 3
3 3

m
m m

m

z
c z

m

− −+

Γ
= −

 Γ Γ
Γ + 
 

  (laminar flow).   (2.60b) 

Eqs.(2.59) are the well-known results from the Dirichlet limit (Lévêque 1928; Carslaw et al. 

1959). The inversion of Laplace transforms in Eqs.(2.60) is acceptable for 0m > . For 1m = , the 

( )
1

*O Da
−

 term in Eqs.(2.32b) and (2.34b) is reproduced. The ( )
1

1c z− =  contribution is 

plotted in Figure 2.8 as a function of the order of reaction m . The behaviour for plug and 

laminar flows is slightly different, and the effect of changing m  is more pronounced in the 

former. 

The contribution to conversion given by ( )( )
1

1
1 *

m

c z Da
−

=  is more important for 1m > . For 

laminar flow in a round tube ( 100
m

Peα = ), the two-term perturbation solution for conversion 

predicts less than 1.5% of relative error for * 1Da >  when 1 / 2m =  and 1, which is comparable 

to the errors from Eq.(2.35). However, for 2m =  the error involved in the use of rational 

approximation (2.35) is reduced to half by adding the term in (2.60b), yielding less than 2% 

relative error for * 1Da > . Figure 2.9 illustrates the improvement in the approximation for 1m >  

in comparison with the leading-order result (accounted for in Eq.(2.35)). 

We note that extended Lévêque solutions in the Dirichlet limit (kinetics-independent) can still 

be used to improve approximations at high *Da , as shown previously. Also, since the kinetic 

and external mass transfer limits are the same, the correlations given by Eqs.(2.33) and (2.35) 

should be generally valid. However, as we see here, a subdominant contribution accounting for 
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kinetics ( ( )
1/

*
m

O Da
−

, in particular when 1m > ) can be beneficial for the approximation. For a 

given axial position z , Eqs.(2.60) depend only on m  and are the basis of our kinetic 

normalization in the developing mass transfer controlled concentration profile. 

 

2.4.1.c Langmuir kinetics in developing concentration profile conditions 

 

Langmuir-type kinetics only dependent on the local concentration of one reactant next to the 

surface can also be considered (although it is known that for some parameter combinations, 

multiple steady states may show up): 

( ){ }
( )

( )

0,
0,

1 0,

p

surf

q

k c z
c R z

K c z

= =

 +  

R , 

where K , p  and q  are kinetic parameters. With more or less complexity, this case can be dealt 

by the same procedure. We restrict the analysis to the equivalence with the “power law” kinetic 

model in the * 1Da <<  and 1>>  limits without considering any multiplicity phenomena. In this 

case, the wall boundary condition is 

( )
( )0 0

* 1
1

p
q

q

R
R

c c
Da K

R K c
=

=

∂
= +

∂ +

,       (2.61) 

where p , q  and K  are the additional kinetic parameters, and 
{ }ˆ

*
ˆ

in

in

ca
Da

D c
=
R

 with 

{ } ( )ˆ ˆ 1
qp

in s in
c k c K= +R . The rate expression in Eq.(2.61) can be thought as a generalized 

unimolecular decomposition kinetics, reducible to power-law reaction rate when p m=  and q  

or K  equals zero. 

Under kinetic control, concentration deviates little from the inlet concentration, and a correction 

to that solution respects the following boundary condition: 

( )
( )

( )( )

01

0 0

0,
1 1

1 0,

p

q

q
q

R

c zc
K

R K c z=

∂
= + =

∂ +

,       (2.62) 

which is identical to Eq.(2.52). Also at the next order ( )
2

*O Da , the results are the same as the 

ones in Eqs.(2.55) as long as m  is redefined as 

1

q K
m p

K
= −

+
,          (2.63) 

since at this order the boundary condition is written as 

( )2
1

0

0,
1

R

c q K
p c z

R K
=

∂  
= − 

∂ + 
.        (2.64) 
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For external mass transfer control conditions ( 1 *Daε = ), the ( )1O δ  correction to Dirichlet’s 

limit (Eqs.(2.59)) obeys at the wall, 

( )

( )( )

( )( )
( )( )

1 10
1 1

0 1 1

0,
~ 0,

1 1 0,

p

p

q q

R

c zc
c z

RK K c z

δε
δ

δ=

∂
=

∂+ +

.     (2.65) 

Since 1 1δ << , the balance in Eq.(2.65) reduces the problem again to “power law” wall kinetics 

type ( 1 1K δ << ). In this case, p m=  in Eq.(2.57) and ( )
1

1 ~ 1
q pp

Kδ ε + . 

 

2.4.2 Fully developed concentration profile 

 

We now consider the case where the solution is given by Graetz series and, in particular, when 

the first term in this series is dominant (i.e. fully developed concentration profile). 

In the kinetic and mass transfer controlled limits, the problem is reduced to the well-known 

cases of heat transfer in tubes with uniform wall flux or temperature. These will be the starting 

points to build our approximations for power-law kinetics in both regimes, as shown below. 

The boundary condition in the higher order subproblems requires a specified wall flux or 

concentration distribution to be fulfilled. From studies of heat transfer in ducts, it is known that 

one can deal with arbitrary wall temperature or flux distributions by superposition of 

fundamental solutions (of Dirichlet and Neumann types). This procedure has been applied to the 

Graetz problem by several authors (Sellars et al. 1956; Siegel et al. 1958; Carslaw et al. 1959; 

Shah et al. 1978; Kays et al. 1980; Colle 1988). We will use the same technique to account for 

the effect of the kinetic rate expression. 

 

2.4.2.a Kinetically controlled regime 

 

When reaction is infinitely slow, the mixing-cup and wall concentration are given by 

( )
0

1c z = . Instead of using ( )0 1, 1c z =  as ( )1O  solution, we will adopt Eq.(2.23) to improve 

our perturbation procedure, 

( )0
,max

1, exp
m

Da
c z z

Pe

σ

α

 −
=   

 
   ( 1

m

Da z

Peα
<< ).    (2.66) 

For power-law kinetics, the first correction that can be calculated is of ( )O Da  and obeys to 

Eqs.(2.1) (with 2 0α → ) with the boundary condition: 

( )
1

0
,max1

1, expm

mr

c m Da
c z z

r Pe

σ

α
=

 ∂ −
= − = −   ∂  

.      (2.67) 
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Figure 2.10: Normalization (
R

m X m Da−  plot) according to Eq.(2.69) for m th order power-

law reactions in the fully developed and kinetically controlled limit. Comparison 

between analytical prediction (2.69) (line) and numerical results (points). The results refer 

to laminar flow inside a circular channel with 1
m

Pe zα = . 

 

 

Figure 2.11: Exit concentration as a function of Da , for different orders of reaction m . 

Comparison between numerical and analytical results. For 2m = , the term given by 

Eq.(2.76) is included in (2.73). The results refer to laminar flow inside a circular channel. 
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The mixing-cup average calculation at this order can be calculated directly from (2.67), 

according to 

1

1
n n

m r

d c cS

d z Pe rα
=

∂+
=

∂
 and ( )0 0

n
c =    ( 1n ≥ ).    (2.68) 

In terms of conversion of reactant, ( )
2

0 1
1 1

R
X c c c Oε ε= − = − − + , the following 

normalization under fully developed kinetic control arises: 

( )1
1 exp

R

m

m S Da
m X z

Peα

 − + 
= −  

 
.       (2.69) 

Naturally, these results reduce to Eq.(2.23) when 1m =  and the correction ceases to exist when 

0m = , where the constant flux asymptote is the exact solution (no wall concentration 

annulment). In Figure 2.10, the relationship between m Da  and 
R

m X  is plotted for several 

power-law kinetics in laminar flow at the exit of a circular channel ( 1S = ). It is possible to see 

that Eq.(2.69) describes reasonably well all kinetics at least up to ~ 0.1Da , even though the 

curves deviate faster from our approximation as m  gets lower. For 0.1Da ≤ , the maximum 

relative error between numerical and analytical results are: 1% for 2m = , 1.6% for 1m = , 0.6% 

for 1 2m =  and 0.5% for 1 3m = . Further increasing Da  results in bigger deviations for the 

lower values of m . For lower values of 
m

Da Peα , maximum relative errors are reduced (e.g. 

for 0.01
m

Da Peα = , to 0.1% for 1m =  and 2, and to 0.01% for 1 2m =  and 1 3 ). 

 

 

2.4.2.b External mass transfer controlled regime 

 

For fast wall reaction rates, the leading order problem (obtained by setting 1 0Daε = =  in the 

boundary condition) admits Graetz’s constant wall temperature solution, ( )0 ,c r z . We will 

assume that for 0 1r
c r

=
∂ ∂  in fully developed concentration profile conditions, the first term in 

the series is enough. The next subproblem appears at ( )
1 m

O ε , as before, and the appropriate 

wall boundary condition requires an exponential variation of surface concentration given by 

( )

1 12 2
1, 1, 1,0

1
,max1

1, exp

m m

mr

w zc
c z

r m Pe

λ λ

σ α

∞ ∞ ∞

=

     −∂
= − =        ∂      

.    (2.70) 
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Since the mass balance is free of the small parameter, ( )1 ,c r z  is still governed by Eq.(2.1), 

which is linear. Consider the fundamental solution for a finite step in wall concentration at the 

inlet (
wall

c ), given by Graetz’s solution with Dirichlet boundary condition: 

( )
( )

( )

2
,1

1, , ,
1 ,max

,
, exp nwall

n n

nwall m

zc c r z
c r z A r

c Pe

λ
ϕ

α

∞

∞

∞ ∞ ∞

=

 −−
= =   

 
∑ .    (2.71) 

In the definition from Eq.(2.71), ( )1, ,0 1c r
∞

=  and ( )1, 1, 0c z
∞

=  (which are the usual boundary 

conditions, since the inlet condition is independent of the small parameter and thus 

( )1 ,0 0c r =  ).  

A solution can now be obtained by superposition of several constant-wall temperature steps 

(equivalent to Duhamel’s principle). The flux towards the wall (which is what we need for 

calculating the velocity-averaged concentration) can be written as an ordinary Reimann integral, 

plus a summation with contributions for discontinuous steps (Kays et al. 1980). For our case, 

( )
12

1, 1, 1, 1,11

01 1, ' 1

1, '
'

'

m
z

r r z z r

c c wd c zc
dz

r r d z r

λ

σ

∞ ∞ ∞ ∞

= = − =

 ∂ ∂∂
− = +   ∂ ∂ ∂  

∫ ,    (2.72) 

where 1,c
∞

 is reaction kinetics independent (Eq.(2.71)), ( )1 1,c z  is given by Eq.(2.70) and a 

‘jump’ of magnitude ( )1 1,0c  is considered at 0z = . The respective contribution to the mixing 

cup concentration profile can be calculated from Eq.(2.68). From the two first perturbation 

terms, the mixing-cup concentration profile writes as 

( ) ( )

12 2 2
21, 1, 1, 1,

1,
,max ,max

1
exp 1 exp 1 *

1 *

m

m

m m

z w zm m
c z w O Da

Pe m Da m Pe

λ λ λ

α σ α

−∞ ∞ ∞ ∞

∞

      − − 
= + − +          −         

 

        ( * 1Da >> )  (2.73). 

Recall from section 2.2, 2
, , 2

n n
w λ σ

∞ ∞
=  for plug-flow and 2 1/3

, 2.02557
n n n

w λ σ λ
−

∞
=  for 

laminar flow, both ( )1O  for 1n = . When 1m = , Eq.(2.73) agrees with Eq.(2.24) if estimating 

1w  by 1,w
∞

 in the second term is acceptable. 

Eq.(2.73) states that the mixing-cup concentration equals the one observed when reactant 

exhaustion occurs near the wall multiplied by a corrective function dependent on the order of 

reaction m , the parameters Da  and 
m

Peα , and kinetic rate-independent parameters, such as 

eigenvalues and weights. This function reduces to unity at the Dirichlet limit, and therefore 

normalizes our results for developed concentration profile at high Da . 

As we already recognized for the case of developing concentration profile, the corrections in 

this perturbation series vanish faster for 1m <  as 0ε → . For higher orders of reaction, an extra 

term may be calculated in a simplified form, as detailed below. 
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At ( )2O δ , the balance between terms in the wall boundary condition yields, 

2/ 2/
2 ~ ~m m

Daδ ε
− , and         (2.74) 

( )

1
1 1

2

1

1,
m

r

c c
c z

m r

−

=

∂
= −

∂
.        (2.75) 

The problem can be solved for 
2

c  by the procedure detailed above. For fully developed flow 

and high m , the following simplified result can be obtained: 

4 3
1, 1,

22

2

3

w
c

m

λ

σ

∞ ∞
=     ( 1m > ).    (2.76) 

The term given by (2.76) can then be added to Eq.(2.73) as 2 2
cδ . Figure 2.11 compares 

numerical results for the exit conversion in a circular channel with laminar flow for 1
m

Peα =  

with the above predictions. For 1 / 2m = , less than 5% relative error is observed for 6Da >  and 

the maximum error is around 2% for 10Da > . For first-order reactions, the error is near 5% for 

30Da > , but if 
2

c  is included this value drops to 3% for 20Da > . Second-order reactions 

clearly benefit from the estimate in Eq.(2.76), as a maximum error around 5% is obtained for 

20Da > , while 20% relative deviation would have been predicted had the contribution from 

Eq.(2.76) been ignored. 

 

2.5 CONCLUSIONS 

 

This chapter provides an approximate convenient methodology for the design of microchannel 

wall-coated reactors. The results presented show that it is possible to describe approximately 

with analytical techniques the behaviour of a small aspect ratio microchannel ( 1α << ) with a 

first-order reaction occurring at the walls, for all values of the rescaled Damköhler number 

( *Da ) and transverse Peclet number (
m

Pe ). Solutions to Graetz’s problem are provided, with 

dependence of eigenvalues and weights on Da  ( *Da= ). This allows conversion calculation 

with no numerical evaluation in commonly encountered practical conditions ( ( )~ 1
m

Pe Oα ). 

Lévêque’s regime is treated as a perturbation problem with an uniformly valid leading-order 

result (over the whole range of *Da  values), followed by corrections accounting for the effect 

of finite reaction rates in the following contributions: curvature in a circular channel and 

nonlinear velocity profile in the case of laminar flows. Both higher-order terms proved to be 

necessary when *Da  is high, and extended Lévêque’s results even to ( )~ 1
m

Pe Oα . 
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In the last section, we present normalized results for a power law reaction rate expression. The 

mixing-cup concentration in the kinetic and mass transfer controlled limits, for both developed 

and developing profiles, was calculated. Different behaviours were observed, namely: 

• the form of the perturbation expansion is explicit on the order of reaction m  under mass 

transfer control; 

• the correction incorporating m  is more important in the mass transfer controlled limit for 

reactions with 1m > , which deviate more significantly from Dirichlet limit; and 

• under kinetic control, corrections for 1m <  are especially required since deviations from 

leading-order result are larger. 

Taking into account the appropriate corrections, the description of these limits is successful for 

a wide range of kinetics. 

 

NOTATION 

 

a   radius of the circular channel or half-spacing between parallel plates 

n
A   th

n  integration constant 

( )Ai x   Airy function 

b   exponent in Eq.(2.22) 

c   bulk fluid concentration of reactant species 

c   reactant’s mixing-cup concentration of the reactant species 

const   integration constant 

D   bulk fluid diffusivity 
II

Da   (second) Damköhler number 

*Da   rescaled Damköhler number (Chapter 4) 

( )erf x   error function 

( )erfc x  complementary error function 

( )J x
α

  Bessel function of order α  

k   intrinsic kinetic constant (with the reaction rate expressed per volume of washcoat) 

surf
k   intrinsic kinetic constant (with the reaction rate expressed per interface area) 

L   length of the channel 

LHS  left hand side 

m   order of reaction in power-law kinetics 

( ), ,M a b z  confluent (Kummer’s) hypergeometric function 

m
Pe   transverse Peclet number 

ax
Pe   axial Peclet number 

r   dimensionless transverse coordinate (circular channel geometry) 
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R   reaction rate 

RHS  right hand side 

s   Laplace parameter 

S   shape parameter: 0=  for parallel plates; 1=  for circular channel 

( )u r   velocity profile inside the channel 

u   average velocity inside the channel 

maxu   maximum velocity inside the channel 

( ),
n

u R z  concentration profile relative to inlet conditions ( ( ) ( ), ,0
n n

c R z c R= − ) 

( )v r   dimensionless velocity profile, normalized by average velocity 

x   dimensionless transverse coordinate (parallel plates geometry) 

R
X   conversion of reactant 

n
w   th

n  Fourier weight 

z   dimensionless axial coordinate 

 

Greek letters 

 

α   aspect ratio of the channel 

δ   thickness of the concentration boundary layer; gauge function of ε  
ε   perturbation parameter 

γ   axial position dependent function in concentration profile 

( )xΓ   gamma function, 1

0

x t
t e dt

∞

− −

∫  

η   catalytic coating effectiveness factor 

n
ϕ   th

n  eigenfunction 

n
λ   th

n  eigenvalues 

σ   shape/flow parameter, ( ) max1S u u+  

τ   time constant 

 

Superscript 

^  dimensional quantity 

−   Laplace transform with respect to z  

 

Subscript 

∞   in the Dirichlet limit 

max   maximum 

n   order in perturbation problem 
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CHAPTER 

THREE 
 

BRIDGING THE GAP BETWEEN GRAETZ AND 

LÉVÊQUE’S THEORIES FOR MASS/HEAT TRANSFER 

3  

 

 

 

 

 

A new approximate solution which bridges the gap between the classical theories of Graetz and 

Lévêque for heat/mass transfer in channel flow is presented in this chapter. The results include 

expressions, uniformly valid in the axial direction, for the mixing-cup concentration (or 

temperature) profile c  when transport towards the wall is slow (Dirichlet limit), and for the 

Sherwood number Sh  when the wall flux can be considered uniform (Neumann limit). The case 

of a finite wall reaction (Robin’s boundary condition) was also explored. The technique 

employed provides insight into the mathematical structure of both quantities c  (or conversion 

R
X ) and Sh  identifying explicitly the contributions from fully developed and developing 

behaviours, while maintaining accuracy in the transition region. Criteria to bound the different 

convection-diffusion regimes are suggested, which critically systematize previous results.  

 

3.1 INTRODUCTION 

 

Modeling heat or mass transfer in internal channel flow has been the basis for analyzing heat 

exchangers and tubular chemical reactors, being therefore of utmost importance for the 

understanding of a large number of chemical engineering processes. For a channel with high 

length-to-diameter ratio, in the absence of bulk source terms, the conservation equation 

translates the balance between convective transport and transfer to or from the wall. This can be 

formulated as the classical Graetz-Nusselt problem (Graetz 1883; Nusselt 1910), which has 

been extensively dealt in the literature for several boundary conditions at the channel’s surface 

(a suitable review was provided in Chapter 2). 
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The simplest cases include the situations of uniform temperature (concentration) or uniform heat 

(mass) flux evaluated at the wall, Dirichlet and Neumann boundary conditions respectively. In 

heat exchangers, these boundary conditions can be found when the fluid conductivity is much 

smaller or larger than the wall conductance. In chemical reactors, a fast heterogeneous reaction 

in a catalytic layer attached to the duct wall may lead to concentration annulment along most of 

the surface of a monolith channel or microreactor. Fast reactions are natural candidates for 

microprocessing due to the fast heat removal and short residence time characteristics of these 

devices, as mentioned in Chapter 1. Therefore, many processes involving microreactors and 

catalytic monoliths may occur under external mass transfer control (Kreutzer et al. 2006). A 

criterion for attaining this regime will be presented in Chapter 4. Alternatively, in the limit of a 

very slow reaction or when a biochemical reaction kinetics can be reasonably approximated by a 

zeroth-order reaction, Neumann’s boundary condition is appropriate to describe the region where 

wall concentration exhaustion does not occur. Besides boundary conditions, the heat transfer 

problem shares similarity with the mass transfer one, i.e. the same equation describes 

concentration or temperature profiles made dimensionless according to 

ˆ

în

c
c

c
=  or 

ˆ ˆ

ˆ ˆ
wall

in wall

T T
T

T T

−
=

−
.        (3.1) 

The main quantity of interest is the mixing-cup concentration/temperature (velocity profile-

averaged value over the transverse length scale), since it describes the performance of the 

system (conversion) and can easily be measured experimentally (at least at the exit of the 

channel). From Graetz’s series solution, the mixing-cup concentration profile is (Shah et al. 

1978) 

( )T z  or ( )

2

1 ,max

exp n

n

n m

z
c z w

Pe

λ

α

∞

=

 −
=   

 
∑       (3.2) 

where the coefficients 
n

w  include integration constants and eigenfunction derivatives at the 

wall (related with Shah and London’s 
n

G  by 22
n n n

w Gσ λ= ), and 
n

λ  are the eigenvalues 

associated to the eigenfunctions superposed in an infinite series. For Neumann and Dirichlet 

wall conditions, these quantities depend only on the channel geometry and on the (flat or 

parabolic) flow profile. Alternatively, one-dimensional models may be used, with heat or mass 

transfer coefficients calculated according to correlations for the Nusselt and Sherwood numbers 

of the form: 

( ) ( )
( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

1

1 1

1 ' 1
1

1
1

n n n

m wall n

wall

n n n n n

n n

S A z
S c rk z a

Sh z S
D c z c

w z A z

ϕ γ

γ ϕ γ

∞

=

∞ ∞

= =

− +
− + ∂ ∂

= + = =
−

−

∑

∑ ∑
,  (3.3) 
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where ( )

2

,max

exp n

n

m

z
z

Pe

λ
γ

α

 −
=   

 
 is the part of the solution showing the dependence on the axial 

coordinate. From Eqs.(3.2) and (3.3), it is possible to see that an inconvenience occurs as 

0
m

z Peα →  in this slowly convergent series. In fact, the number of terms needed to obtain an 

accurate solution increase sharply as the inlet of the channel is approached or as convection 

becomes more dominant. In this case, the profile can be obtained by Lévêque’s solution 

(Lévêque 1928; Shah et al. 1978; Rice et al. 1995; Weigand 2004), a simplified treatment 

concerned with the thin boundary layer that develops near the wall in the thermal entry region. 

In practical terms, the analysis of the problem in the whole range of Graetz number (
m

Pe zα ) 

has been fragmented into two main regions: an entrance length (where Lévêque’s solution is 

valid) and a fully developed section (where only one term from the series in (3.2) is enough). 

Lévêque’s regime and its transition to full development may be significant when millisecond 

contact time reactors are used, as it is often the case. Rosa et al. (2009) reviewed the importance 

of several scaling effects in single-phase heat transfer in microchannels. They noted that many 

prior reviews have reported large discrepancies between experimental, rigorous numerical and 

analytical results. Then, several effects (arising from working at the microscale) that might be at 

the origin of such deviations were explored. Concerning inlet effects (development of the 

temperature profile), the following observations were made: (a) the thermal entry length 

solution must always be considered to describe heat transfer; (b) these effects can be especially 

important in microchannel sinks due to their compactness; (c) examination of the range of the 

Graetz parameter in several experimental works led to the conclusion that most of the times the 

profile cannot be considered fully developed. In the case of electrochemical microfluidic 

reactors, Yoon et al. (2006) proposed an improved design based on the analysis of the boundary 

layer in the Graetz problem. They mention that many microreactors operate in the entrance 

length regime. Therefore, a non-negligible channel length may be required for the profile to be 

considered fully developed. A correct description of such cases has relied on the use of 

compartment models (Gervais et al. 2006; Kockmann 2008), where once a critical value of 

( )*
m

Pe zα  is identified, Lévêque’s solution is used if ( ) *
m m

Pe z Pe zα α> , while the fully 

developed solution is adequate for ( )*
m m

Pe z Pe zα α<  (Figure 3.1). This represents a change 

from high to low conversion asymptotes as the Graetz parameter increases. It also represents the 

onset of diffusive effects at the global (maximum) transverse scale of the channel, as for 

( )*
m m

z Pe z Peα α<  these are confined in a boundary layer. When the profile is fully 

developed, transverse concentration gradients are important over the whole radius of the duct. In 

this case, a uniform value for Sherwood number is obtained. 
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Figure 3.1: Schematic representation of the channel and of the concentration profile, according 

to a two-compartment model. 

 

 

 

A uniformly valid description of this fundamental problem has been pursued in several ways 

(Shah et al. 1978), of which the most widely used are: 

 

(a) Numerical calculation of 
n

w  and 
n

λ  ( 1n > ) to include more terms in Eq.(3.2): Brown 

(1960) reports the solution first eleven terms for the Dirichlet problem in laminar flow. Other 

authors have tabulated eigenvalues and constants for several geometries (see Chapter 2 and 

references therein). 

 

(b) Calculation of 
n

w  and 
n

λ  using of asymptotic relationships for large n : Sellars et al. 

(1956) use the WKB method to approximate eigenfunctions, eigenvalues and integration 

constants in Graetz’s series solution. Newman (1973a) extended these approximations, which 

were used by Shah and London (1978) to estimate 
n

λ  and 
n

G  for 21 121n< <  for a circular 

channel. 

 

(c) Matching of developed and developing profile limits by empirical correlations: This 

approach has been successfully applied to the prediction of Sh  number as a function of the 

Graetz parameter. For example, in Chapter 4 we will provide expressions in the Dirichlet and 

Neumann limits. 
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(d) Extension of Lévêque’s solution with higher order perturbation corrections: This has given 

origin to what is called Lévêque’s series (Shah et al. 1978), which is a perturbation series on 

powers of the concentration boundary layer thickness, δ : 

( )
0

1 n

n

n

c z c δ

∞

=

= −∑          (3.4) 

where ( )
( )

0

1 z

n

n

m wall

S d c
c z d z

Pe d rα

+
= − ∫  and 1n ≥ .  

A reasonable number of terms in series (3.4) has been given by Newman (1969; 1973b) and 

Worsoe-Schmidt (1967), as reported in Shah and London (1978) for both Dirichlet and 

Neumann boundary conditions. Note that from the convection-transverse diffusion dominant 

balance in the boundary layer, ( )~ 3
q

m
S Peδ α

−

 +   , where: 1 2q =  for plug flow, 1 3q =  for 

laminar flow, 0S =  in a planar duct and 1S =  in a circular channel. 

 

The following disadvantages or limitations of the previous approaches can be enumerated: 

 

• It has been shown (Housiadas et al. 1999) that the evaluation of Graetz series terms with 

minimum associated error may have to include the use of strategies (a), (b) and (d) 

simultaneously, depending on the value of n  and 
m

z Peα , for the simpler case of uniform 

wall concentration (or temperature). 

 

• A significant numerical effort may be associated with (a), since a large number of terms 

may be required. For example when 410
m

z Peα
−

> , Shah and London (1978) used 120 

terms in Eq.(3.2). Moreover, this gives origin to expressions far too complex with no 

insight on the contribution from the developing profile. 

 

• An accurate approximation from Eq.(3.4) in the intermediate region demands a large 

number of terms in this series. For 410
m

z Peα
−

< , Shah and London (1978) use 7 terms. 

The higher order terms are meant to account for the effects of channel curvature and 

velocity profile nonlinearity. Each coefficient is determined by solving a perturbation 

problem with subdominant terms that depend on solutions calculated previously (Chapter 

2). In addition, the approximation generally breaks down in the transition region. 

 

• The formulation of empirical correlations may involve the introduction of fitting 

parameters to improve the approximation (Chapter 4). 

 



CHAPTER 3 

102 

In this work, we present an approximate solution for conversion (section 3.2) and for the 

Sherwood number (section 3.3) which identifies both fully developed and developing profile 

contributions, requiring minimum numerical evaluation. This result accelerates the convergence 

rate of Graetz series producing only two or three terms. It is also free from the limitations of 

perturbation solutions (which require smallness of a parameter in the governing equations) as a 

result of the mathematical technique employed, which to our knowledge hasn’t been applied to 

problems of this type so far. Moreover, criteria for the dominance of each contribution and 

transition between regimes will be provided (section 3.4). This is fundamental for the 

appropriate choice of correlations in the modelling and interpretation of experimental data. Our 

procedure consists in asymptotically evaluating the summations in Eqs.(3.2) and (3.3), rewritten 

as 

( )Sh z  or ( ) ( )
0

~ lim
N

N
n

c z f n
→∞

=

∑        (3.5) 

for large N  and for each of the geometries and flow profiles studied. This implies that each 

term in those summations will have to be written explicitly as a function of n . Even though this 

is only known exactly for the case of plug-flow between parallel plates, accurate solutions can 

be obtained with some additional assumptions. 

 

3.2 INSTANTANEOUS CONCENTRATION ANNULMENT AT THE WALL (OR UNIFORM 

WALL TEMPERATURE) 

 

In the case where transverse transport controls, estimates for the eigenvalues and weights in 

Eq.(3.2) can be analytically calculated in an approximate manner (the subscript ∞  denotes 

Dirichlet conditions). This is the case where the first weight 1,w
∞

 deviates most from unity 

( 1, 1 1w w
∞

≤ ≤ ), and where subsequent coefficients decay more slowly (since 1
n

w =∑ ). 

 

3.2.1 Asymptotic dependence of eigenvalues and coefficients 

 

The values for the first eigenvalue can be obtained numerically and are widely tabulated 

(Carslaw et al. 1959; Brown 1960; Shah et al. 1978): 

2
2

1, 2

4

5.784 ~ 9 16

π
λ

π
∞


= 


 
(parallel plates)

(circular channel)
 for plug flow,    (3.6a) 

2
1,

2.828

7.313
λ

∞


= 


  
(parallel plates)

(circular channel)
 for laminar flow.   (3.6b) 
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For laminar flows, the asymptotic predictions from Sellars et al. (1956) for large eigenvalues 

(yielding 1, 5 3λ
∞

=  and 1, 8 3λ
∞

= , respectively) have less than 1% and 3% relative error in 

comparison with Eq.(3.6b). 

The coefficients in Eq.(3.2) are given by 

( )
, 2

,

2 1
n

n

S
w

λ
∞

∞

+
=      (plug flow).    (3.7) 

Note that 0S =  for parallel plates and 1S =  for a circular channel. When the flow profile is 

fully developed, 

( )

11/6
7/3 7/3

, , ,

3
4 3.0384

1 6
n n n

w λ λ
π

− −

∞ ∞ ∞
= =

Γ
  (parallel plates)    (3.8a) 

( )

5/6
7/3 7/3

, , ,

3
32 8.1023

1 6
n n n

w λ λ
π

− −

∞ ∞ ∞
= =

Γ
  (circular channel)   (3.8b) 

for 1,2...n = . The above results were obtained from WKB theory for large eigenvalues (Sellars 

et al. 1956), nevertheless in the Dirichlet limit they are acceptable even for 1n = . Numerical 

values for 1,w
∞

 are also widely tabulated. These results were also presented in Chapter 2 

(sections 2.2.1 and 2.2.3). 

Writing the terms in Eqs.(3.2) or (3.3) as ( )f n  in (3.5) requires some assumptions concerning 

the spacing between 
n

λ  and 1n
λ

+
 and the dependence of weights on eigenvalues. The key 

assumption of our analysis is that the spacing between consecutive eigenvalues can be 

considered independent of n , i.e. 

( ), 1, 1
n

nλ λ λ
∞ ∞

= + − ∆    ( 1,2...n = )     (3.9) 

where for large eigenvalues, the uniform spacing is 

4

π
λ


∆ = 


 

(plug-flow)

(laminar flow)
.        (3.10) 

When the flow profile is flat, this is exact for parallel plates, but only approximate for a circular 

channel, since the spacing between eigenvalues is ( ) ( )
2 3

, ~ 1 8
n

n O nλ π π
−

∞
∆ − +  (i.e. becomes 

closer to π  as n → ∞ ) from the asymptotic expansion of Bessel functions (Abramowitz et al. 

1972). For laminar flows, WKB theory for large eigenvalues predicts a value of λ∆  which is 

independent of the channel geometry (the curvature effects in the region next to the catalytic 

wall are ( )
2/3

n
O λ

− ). Eqs.(3.7)-(3.10) allow us to express the coefficients in the mixing-cup 

concentration as 
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( )
2

, 1,
1,

1
1

n

n
w w

π

λ

−

∞ ∞

∞

 −
= +  

 
 ( 1,2...n = )  (plug-flow)   (3.11a) 

( )
7/3

, 1,
1,

4 1
1

n

n
w w

λ

−

∞ ∞

∞

 −
= +  

 
 ( )  (laminar flow).   (3.11b) 

Coefficients and eigenvalues are now a function of n , requiring only the (exact or approximate) 

knowledge of 1,λ
∞

 and 1,w
∞

. Even though these simplifications hold more accurately as n → ∞ , 

we will consider them accurate enough as the basis to build our approximation. 

 

3.2.2 Structure of the mixing-cup concentration/temperature profile 

 

According to the previous section, the terms in the summation in (3.5) are now in appropriate 

form so that the asymptotic behaviour of the sum as N → ∞  can be determined using the Euler-

Maclaurin sum formula (Bender et al. 1978). Retaining the relevant terms, the simplified result 

for conversion of reactant 
R

X  is obtained: 

*1 ~
R GRAETZ LEVEQUE

X c X X HOT= − + − .      (3.12) 

The following contributions to the conversion profile along the channel can be identified: 

• the first term of Graetz’s solution is exactly of the same form as that in Eq.(3.2), 

( )

2
1,

1,
,max

1 exp
GRAETZ

m

z
X z w

Pe

λ

α

∞

∞

 −
= −   

 
      (3.13) 

with 2
1,λ

∞
 and 1,w

∞
 exactly known from Eqs.(3.6) or estimated by asymptotic methods; 

• the modified Lévêque’s solution, *
LEVEQUE

X , consists of Lévêque’s solution multiplied by a 

corrective gamma function, 

( )

2
2,*

,max

1
,

LEVEQUE LEVEQUE

m

z
X q X

q Pe

λ

α

∞
 

= Γ  Γ  
,      (3.14) 

Note that 1 2q =  for plug flow, 1 3q =  for laminar flow and that the original Lévêque 

solution is given by (Lévêque 1928; Carslaw et al. 1959; Shah et al. 1978): 

( )
( )2 1

LEVEQUE

m

S z
X z

Peαπ

+
=    (plug flow)   (3.15a) 

( ) ( )

( )

2/34/3

5/3
,max

3 1 3

2 1 3LEVEQUE

m

S S z
X

Peα

 + +
=   Γ  

 (laminar flow)   (3.15b) 

with 0S =  for plates and 1S =  for circular channel; 

1,2...n =
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• the second term of Graetz’s solution multiplied by a compensation function ∆  accounts for 

the higher order terms ( HOT ) of Eq.(3.2) ignored in (3.13 ), and not included in (3.14): 

2
2,

2,
,max

exp
m

z
HOT w

Pe

λ

α

∞

∞

 −
= ∆   

 
.       (3.16) 

In Eq.(3.16), the second eigenvalue is simply 2, 1,λ λ λ
∞ ∞

= + ∆ , and is associated with the 

weight 2,w
∞

( 2 2
1, 1, 2,w λ λ

∞ ∞ ∞
=  e.g. for plug-flow). The function ∆  appearing in Eq.(3.16) 

depends linearly on the reciprocal of the Graetz number ( 1~
m

z Pe Gzα
− ) and is defined as 

1 2
,maxm

z

Peα
∆ = ∆ + ∆         (3.17) 

 

 

By forcing the inlet boundary condition to be fulfilled, the coefficients in (3.17) can be 

calculated using only the first eigenvalue and previous relationships to yield 

1,
1

2,

1 w

w

∞

∞

−
∆ =           (3.18a) 

2 2,6

λ
λ

∞

∆
∆ = .          (3.18b) 

These results replace the earlier prediction in (3.19) below. Rigorously, the result obtained for 

1∆  can be shown to be associated with the corrective effect accounting for all weights ignored if 

series (3.2) is truncated after the second term, i.e. by application of the Euler-Maclaurin sum 

formula to 1 , 2,
2

n

n

w w

∞

∞ ∞

=

∆ =∑ : 

2
1

2

1

2 6

λπ

λ π
∆ = + +   (plug flow)      (3.19a) 

2
1

2

31 7

2 9 16

λ

λ
∆ = + +   (laminar flow).      (3.19b) 

Eqs.(3.19) are the approximate statement that all coefficients add to 1, and therefore 1∆  can be 

alternatively calculated from , 1, 2, 1
1

1
n

n

w w w

∞

∞ ∞ ∞

=

= + ∆ =∑ . Each term in Eq.(3.12) is plotted as a 

function of 
m

z Peα  in Figure 3.2 for a catalytic tubular reactor with parabolic velocity profile. 

The behavior of the different contributions in Eq.(3.12) is qualitatively the same for both 

geometries and flow profiles. 
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Figure 3.2: Conversion 
R

X  as a function of the reciprocal of Graetz number ( ) in an 

infinitely long circular channel with Dirichlet wall boundary condition, according to 

Eq.(3.12). The contributions of the one-term Graetz solution 
GRAETZ

X , the higher order 

terms HOT  and the corrected Lévêque solution ( *
LEVEQUE

X ) are also plotted as given by 

Eqs.(3.13) to (3.16). 

 

 

Figure 3.3:  Relative error of the improved solution (3.12) with Graetz series (3.2) (with 5 and 

120 terms) and with Lévêque’s series (3.4) with 7 terms as described in Shah and 

London (1978). This refers to laminar flow inside a circular channel. 
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For laminar flows, Shah and London (1978) calculated the mixing-cup temperature profile 

under these conditions with the 120-term Graetz series (with both numerically and 

asymptotically determined eigenvalues and coefficients) for 410
m

z Peα
−

>  and with the 7-term 

Lévêque series from Worsoe-Schmidt (1967) for 410
m

z Peα
−

< . In a circular channel, the 

maximum error of (3.12) compared to Graetz series is 0.09% at 0.1
m

z Peα =  (in the 

intermediate regime between the developing and fully developed limits), as shown in Figure 

3.3. For higher 
m

z Peα , the relative error decays sharply, as the concentration tends to zero. If 

56 10
m

z Peα
−

< × , in the range where Lévêque’s extended solution is more appropriate, the 

relative error is below 43 10 %−
× , while the deviation from Graetz series solution increases due 

to the unsuitability of that solution in the entry region.  Increasing the number of terms in the 

series, increases the range where Graetz solution is still a correct estimate, but it is a slowly 

convergent series: agreement with 5 digits between Eq.(3.2) with 10 and 120 terms only occurs 

for 0.02
m

z Peα > . For lower 
m

z Peα , the error in using Graetz series increases significantly, 

and so does the error compared to solution (3.12). Eq.(3.12) has also several advantages over 

existing solutions from 1D models with coefficients fitted from comparison with particular 

numerical results. Since the latter are not based on a uniform solution, but only on the 

asymptotes, they usually result in a compartmented solution with several ranges of Graetz 

parameter and significant higher error at the endpoints of each interval. 

 

Qualitatively, the behaviour of the error between approximation (3.12) and Graetz and 

Lévêque’s series is identical in a planar duct or when the velocity profile is flat. The maximum 

deviations from Graetz series are: 0.1% at 0.10
m

z Peα =  for plug-flows and 2.6% for laminar 

flow between parallel plates at 0.01
m

z Peα = . The relative error with Graetz’s series (for 

higher values of 
m

z Peα ) and with Lévêque’s series (for lower values of 
m

z Peα ) decreases 

sharply. Nevertheless, the intermediate region is also well described by Eq.(3.12), with low 

errors from numerical calculations or from Lévêque’s extended solution.  

 

Concerning the degree of development of the profile, we observe that the weighing function 

( ) ( )
2
2, ,max,

m
q z Pe qλ α

∞
Γ Γ  in Eq.(3.14) is related to the fraction of the profile described by 

the inlet asymptote. If the value of this function is set to 1%, then 0.12
m

z Peα =  (laminar flow 

in a circular channel). If 10%, 0.04
m

z Peα = . Then, depending on the level of influence from 

inlet effects that we are willing to tolerate, the value of the Graetz parameter can be calculated 

accordingly. This will be further explored in section 3.4. 
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3.2.3 Lévêque’s regime limit 

 

For small 
m

z Peα  (large Graetz number), the uniformly valid solution (3.12) reduces to the 

convective dominated (Lévêque’s) limit. The contributions from the 1-term Graetz solution 

(3.13) and the HOT  term (3.16) cancel out as ~
m

z Peα , and the corrective function in (3.14) 

tends to unity at the same rate. The result represented by Eq.(3.15) is the leading-order term in 

the perturbation series given by Eq.(3.4) and tends to zero slower than other terms. Higher order 

corrections are of ( )
n

O δ  and must be obtained by solving a nonhomogeneous PDE. The 

consistency of our solution in this limit can be tested by expanding Eq.(3.12) in a Taylor series, 

to yield 

( )

2 3

1 2
,max ,max ,max

R LEVEQUE

m m m

z z z
X z X O

Pe Pe Peα α α

   
= − Φ − Φ +      

   
,   (3.20) 

where 1Φ  and 2Φ  depend on 1,λ
∞

, 1,w
∞

 and on the spacing given by (3.10). We note that 

Eq.(3.20) is written as a series of integer powers of 
m

z Peα , which is not the form of (3.4) 

(where the power in the ( )
n

O δ  term depends on ( )
2n

m
z Peα  for plug-flow or on ( )

/3n

m
z Peα  

for laminar flow). However, both series are in good agreement, as we discuss next. 

For plug-flow, the coefficients in (3.20) can be calculated from 

( ) 2
1 2, 12

2,

2
2 1 1S λ

π λ
∞

∞

 ∆
Φ = + + − − ∆  

 
, and      (3.21a) 

( )

2 2 3
1, 1 2, 2,

2 2

2
2 1

2 2 3
S

λ λ λ

π

∞ ∞ ∞
 ∆

Φ = + + − ∆ −  
 

.      (3.21b) 

Replacing the approximate results for eigenvalues, weights and with 1∆  given by Eq.(3.19a), 

both corrections are identically equal to zero ( 1 2 0Φ = Φ = ) for parallel plates ( 0S = ), while for 

circular channel ( 1S = ) the effect of curvature is visible in higher order terms: 1 1Φ =  and 

2
2 32πΦ = . This is consistent with the extended Lévêque terms: for a circular channel, we 

have calculated the ( )m
O z Peα  term in Chapter 2, which is exactly reproduced here. In the 

case of parallel plates there is no room for additional corrections (due to curvature of the 

channel or profile nonlinearity). 

In laminar flow conditions,  expressions for 1Φ  and 2Φ  can be deduced as easily. Replacing the 

values of the first eigenvalue and coefficient, as well as of 2∆  and 1∆  from Eqs.(3.18b) and 

(3.19b), we obtain for parallel plates: 1 0.1881Φ =  and 2 0.0285Φ = . The first coefficient is 

very close to the one given by Newman (1969) and Wørsoe-Smith (1967) reported in Shah and 



BRIDGING THE GAP BETWEEN GRAETZ AND LÉVÊQUE’S THEORIES FOR MASS/HEAT TRANSFER 

109 

London (1978): 1 0.15Φ = . In those solutions, the next term is of ( )
4 3

,maxm
O z Peα  and the 

respective coefficient is 2 0.0342Φ ≃ . Comparing Eq.(3.20) with the extended Lévêque’s 

solution (3.4), this results in a maximum of 0.7% deviation in the range where these predictions 

have physical meaning. If we compare (3.20) with just two terms from the perturbation series, 

then a maximum of 3% exists, i.e. the asymptotic expansion tends to our result as the number of 

terms increases. These corrections account for a nonlinear velocity profile in the boundary layer 

near the wall, to which the effect of curvature in a circular channel must be added. In this case, 

1 2.7676Φ =  and 2 0.8513Φ =  in Eq.(3.20). Again, the first coefficient is in reasonable 

agreement with the results from perturbation procedures (in that case, 1 2.4Φ ≃ ), and the 7-term 

Lévêque series (Shah et al. 1978) has a maximum of 0.16% error for 0.01
m

z Peα <  and 

0.00018% for 410
m

z Peα
−

=  when compared to Eq.(3.20). Asymptotic series with fewer terms 

produce slightly higher errors, proving that extended Lévêque solutions approach our result. 

 

 

3.2.4 One-term Graetz regime limit 

 

When the concentration profile is fully developed, this is equivalent to retaining only the first 

term in Graetz series. When 
m

z Peα  is large (small Graetz number), Eq.(3.12) can be 

expanded as 

2
2, 2,

2,~ exp
R GRAETZ

m

z
X X w

Pe

λ λ

π α

∞ ∞

∞

   −
− ∆ −      

   
  (plug flow)    (3.22a) 

2
2,

2, 2,
,max

3
~ exp

16R GRAETZ

m

z
X X w

Pe

λ
λ

α

∞

∞ ∞

 − 
− ∆ −        

 (laminar flow).   (3.22b) 

The second term in Eq.(3.22) is exponentially small and the series has the form of the 2-term 

Graetz solution with a corrective function in the second term, dominated by contribution from 

HOT  in Eq.(3.16). Thus, at leading order, ~
R GRAETZ

X X  and the role of the HOT  term in 

(3.12 ) is to account for the importance of the fully developed profile contribution to the 

uniformly valid solution. The corrective gamma function “switches off” Lévêque’s contribution, 

which otherwise would be unbounded. Instead, developing profile and higher order terms 

vanish exponentially. 
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3.3 UNIFORM WALL MASS / HEAT FLUX 

 

When the mass or heat flux at the wall can be considered uniform, the boundary condition at the 

wall becomes: 

1r

c
f

r
=

∂
=

∂
,          (3.23) 

where in the mass transfer problem, 0f =  for a channel with inert wall (in the limit of a very 

slow heterogeneous reaction) or f Da= −  if a zeroth-order reaction occurs (without wall 

concentration annulment). The mixing-cup concentration (or temperature) is given by (Siegel et 

al. 1958; Bauer 1976; Shah et al. 1978) 

,max

1
m

z
c f

Pe

σ

α
= +    (plug and laminar flow).   (3.24) 

Contrary to the previous case with Dirichlet boundary condition, c  in Eq.(3.24) does not 

include contribution from the entry length profile. However, while in the uniform wall 

concentration situation little insight is obtained by looking at the Sherwood number, here it is 

useful to analyse this quantity in more detail. We define 
H

Sh  (or 
H

Nu , for simplicity both 

noted as Sh ) as 

( )

( ) ( )

1

1,

S f
Sh

c z c r z

− +
=

− =
.        (3.25) 

Considering the full solution for the wall concentration ( )1,c r z=  (Siegel et al. 1958; Bauer 

1976): 

( )

( )

2
,0 ,0

1 ,max

11 1
exp

1
n n n

nfd m

A z

Sh Sh S Pe

ϕ λ

α

∞

=

 −
= +   +  

∑ ,      (3.26) 

where: 
fd

Sh  is the fully developed value of Sherwood number given by Eqs.(3.27) below, 

( ),0 1
n n

A ϕ  is the product of the eigenfunction evaluated at the wall and the integration constant 

for the homogeneous eigenvalue problem in Neumann conditions and ,0n
λ  is the associated 

eigenvalue, evaluated as described in the next section. For both planar ( 0S = ) and circular 

channels ( 1S = ), 

( )( )3 1
fd

Sh S S= + +    (plug-flow)     (3.27a) 

( )( )( )1 5 7

5 17fd

S S S
Sh

S

+ + +
=

+
  (laminar flow).     (3.27b) 
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3.3.1 Asymptotic dependence of eigenvalues and coefficients 

 

We will assume again that eigenvalues are equally spaced according to Eq.(3.9). From the same 

asymptotic behaviour (large eigenvalues), λ∆  takes the same values for flat ( λ π∆ = ) and 

parabolic ( 4λ∆ = ) profiles, for both geometries. The first eigenvalue is given by (Sellars et al. 

1956; Shah et al. 1978) 

2
2

1,0
14.6819

π
λ


= 


  
(parallel plates)

(circular channel)
  (plug flow)   (3.28a) 

2
1,0

18.3801

25.6796
λ


= 


  
(parallel plates)

(circular channel)
  (laminar flow).   (3.28b) 

Concerning the dependence of ( ),0 1
n n

A ϕ  on ,0n
λ , it can be shown that ( )

2
,0 ,01 2

n n n
A ϕ λ

−
− =  for 

plug-flows and ( )
5/3

,0 ,01 ~ 2.401
n n n

A ϕ λ
−

−  for laminar flows (approximately for high 

eigenvalues). The numerically calculated values for 1n =  are (Shah et al. 1978): 

( )1,0 1

0.20264
1

0.136222
A ϕ


− = 


 

(parallel plates)

(circular channel)
 (plug flow)   (3.29a) 

( )1,0 1

0.2222280
1

0.19872216
A ϕ


− = 


 

(parallel plates)

(circular channel)
 (laminar flow).   (3.29b) 

 

3.3.2 Uniformly valid approximation to Sherwood/Nusselt number 

 

Obtaining an uniform solution in this case involves the asymptotic evaluation of the summation 

in Eq.(3.26), which can be written as ( )
0

N

n

f n

=

∑  as N → ∞ . We apply the Euler-Maclaurin sum 

formula (Bender et al. 1978) to obtain:  

( )

( )

2
,0 ,0

1 ,max

1
exp

1
n n n LEV

n m LEV

A z
HOT

S Pe Sh

ϕ λ

α

∞

=

 − Θ
= +  +  

∑ .      (3.30) 

Concerning Eq.(3.30), the following remarks should be made: 

• Lévêque’s leading-order solution for Sherwood’s number, 
LEV

Sh , is given by: 

( )1
2

m

LEV

Pe
Sh S

z

απ
= +    (plug flow)    (3.31a) 

( )

1/3

,max0.820199 1 m

LEV

Pe
Sh S

z

α 
= +  

 
  (laminar flow).    (3.31b) 



CHAPTER 3 

112 

 

Figure 3.4: 
fd

Θ  and 
LEV

Θ  as functions of 
m

z Peα  for laminar flow inside a circular channel. 

 

 

Figure 3.5:  Sherwood number ( Sh ) as a function of 
m

z Peα  for laminar flow inside a circular 

channel with uniform wall flux. The result from this work, Eq.(3.35), is compared with 

the solution from Graetz’s series (with 5 and 1000 terms) and with the 7-term Lévêque’s 

series from Shah and London (1978). 
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• As before, Lévêque’s term appears multiplied by a corrective gamma function: 

( )

2
2,0

,max

1
1 ,

1LEV

m

z
q

q Pe

λ

α

 
Θ = Γ −  Γ −  

.      (3.32) 

• the higher-order terms HOT  that result from the asymptotic summation are written as: 

( ) ( ) ( )

2 2
1,0 2,0

1,0 1 2,0 2 1 2
,max ,max ,max

1 1 exp 1 exp
m m m

z zz
HOT S A A

Pe Pe Pe

λ λ
ϕ ϕ

α α α

     − −
+ = + ∆ + ∆          

     
 (3.33) 

where 0HOT <  and: 

( )

( ) ( )

1 1
1

2 2 2 2

1 1

1 1
fd

A S

A A Sh

ϕ

ϕ ϕ

+
∆ = − −         (3.34a) 

2,0
2 6

λ λ∆
∆ = .         (3.34b) 

The values for 1∆  were calculated so that the inlet boundary conditions are fulfilled (this 

substitution is consistent as shown previously). 

• ( )2,0 2 1A ϕ  and 2,0λ  are calculated from ( )1,0 1 1A ϕ , 1,0λ  and the assumption of equally 

spaced eigenvalues. Moreover, 1 2q =  for plug flow, 1 3q =  for laminar flow, 0S =  for a 

planar duct and 1S =  for a circular channel, as before. 

 

Substituting Eq.(3.30) into (3.26) yields: 

1 fd LEV

fd LEV
Sh Sh Sh

Θ Θ
= +          (3.35) 

where 1
fd fd

HOT ShΘ = + , since the existence of higher-order terms is a measure of the 

importance of the fully developed contribution. For laminar flow inside a circular channel, the 

dependence of 
fd

Θ  and 
LEV

Θ  on 
m

z Peα  is shown in Figure 3.4. Correlations based on the 

addition of both developing and fully developed limits are frequently used (e.g. in Chapter 4). 

Eq.(3.35) provides a justification for the form of such approximations, with additional functions 

that weigh the importance of each contribution. 

The Sherwood number can be calculated as described in Shah and London (1978), using both 

Graetz (with numerical and asymptotic data) and Lévêque’s series. For a circular channel with 

parabolic velocity profile, Figure 3.5 compares these results with (3.35). In this case, the 

modulus of the relative error compared with Eq.(3.35) has a maximum of 4% at 0.04
m

z Peα =  

(corresponding to ~0.236 in absolute error), as shown in Figure 3.6. The error is reduced if a 

planar channel is considered (maximum of 1.2% at 0.03
m

z Peα = ) or if the velocity profile is 

flat (e.g. maximum of 0.114% for 0.03
m

z Peα =  in a circular channel). 
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(a) 

 

(b) 

Figure 3.6:Relative error involved in estimating the Sherwood/Nusselt number with Eq.(3.35), 

in a circular (a) or planar (b) channel with Neumann wall boundary condition and 

laminar flow. Comparison of Graetz series (with either 20 or 1000 terms) and with 

Lévêque’s series (7 terms) as given by Shah and London (1978) is shown. 
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3.3.3 Limiting forms of Eq.(3.35) 

 

According to Eq.(3.35), the Sherwood number reduces to one of its asymptotic forms depending 

on the behaviour of 
fd

Θ  and 
LEV

Θ  for 0
m

z Peα →  and 
m

z Peα → ∞ . For small 
m

z Peα , 

( ) ( )

12
2,0

,max

1
1 ...

1 1

q

LEV

m

z

q q Pe

λ

α

−

 
Θ = − +  Γ − −  

 ( 0
m

z Peα → ) (3.36a) 

( ) ( ) ( )

( )

2 2 2
2 2 2 1 1 2,0 1,0 2,0

,max ,max

1 1
...

1
fd

fd

m m

A A Sh z z

S Pe Pe

ϕ ϕ λ λ λ

α α

∆ + −
Θ = + +

+
 ( 0

m
z Peα → ). (3.36b) 

For high 
m

z Peα , 

( )

2
,max 2,0

2
2,0 ,max

1
exp ...

1

q

m

LEV

m

Pe z

q z Pe

α λ

λ α

   −
Θ = +      Γ −    

 (
m

z Peα → ∞ ) (3.37a) 

( )( )

( )

2
1 1 1,0

,max

1
1 exp

1
fd

fd

m

A Sh z

S Pe

ϕ λ

α

−  −
Θ = −   +  

 (
m

z Peα → ∞ ). (3.37b) 

As depicted from Eqs.(3.36)-(3.37) and Figure 3.4, when Lévêque’s solution is appropriate 

1
LEV

Θ →  and 0
fd

Θ → , while the reverse is observed when the profile is fully developed. In 

these limits and for laminar flow inside a circular channel, Eq.(3.35) writes as 

,max

1 1
~ 0.23 ...

LEV m

z

Sh Sh Peα
+ +  ( 0

m
z Peα → ) (3.38a) 

2 2
1,0 2,0

,max ,max

1 1
~ 0.1exp 0.1exp ...

fd m m

z z

Sh Sh Pe Pe

λ λ

α α

   − −
− + +      

   
 (

m
z Peα → ∞ ). (3.38b) 

In (3.38a) the correction includes information from both terms, while in (3.38b) the dominant 

term (the exponential with 1,0λ  in the argument) results from the fully developed contribution, 

since 
LEV

Θ  decays very sharply. 

 

3.4 TRANSITION CRITERIA BETWEEN REGIMES AND RANGES OF VALIDITY 

 

In the previous sections, we identified the contributions from the entry length and fully 

developed solutions as a result of the asymptotic technique employed. We now use these results 

to derive criteria for delimiting regimes. 
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3.4.1 Dirichlet boundary condition 

 

As we have shown previously, the fully developed contribution (
GRAETZ

X ) can be isolated from 

the other terms in the uniformly valid approximation (3.12). Therefore, a suitable criterion for 

evaluating the degree of convective dominance is given by 

GRAETZ R

GRAETZ

X X

X
ϕ

−
= .         (3.39) 

Equivalently, Eq.(3.39) expresses the degree of transverse transport control and it is written as 

the sum of all higher order terms, normalized by the 1-term solution for conversion of reactant. 

According to the form of our approximate solution for 
R

X , Eq.(3.12), 

*

~ LEVEQUE

GRAETZ

HOT X

X
ϕ

−
          (3.40) 

Taking into account the dependence of each term in Eq.(3.40) on the Graetz number (Figure 

3.2), we note that: when 
R GRAETZ

X X→ , 0ϕ →  (since *~ 0
LEVEQUE

HOT X →  and 

( )~ 1
GRAETZ

X O ) and when 
R LEVEQUE

X X→ , 1ϕ →  (since ~
GRAETZ

X HOT , while 

* ~ 0
LEVEQUE

X X → ). Therefore, ϕ  is bounded and changes from 0  to 1 as 
m

Pe zα  increases 

from 0 to ∞ . Eq.(3.40 ) may be accurately evaluated with the results presented earlier (plotted 

in Figure 3.7 for flow in a circular channel). For a given value of ϕ , the resulting (nonlinear) 

expression must be solved for 
m

z Peα . Since our purpose is to derive the boundaries that 

delimit the regions where conversion can be confidently estimated by either 
GRAETZ

X  or 

LEVEQUE
X , we are interested in the two asymptotes of Eq.(3.40): 1ϕ →  and 0ϕ → .  

 

For plug-flow, expanding Eq.(3.40) around 0
m

z Peα =  or simply taking ~
R LEVEQUE

X X  in 

(3.39) and expanding around the same point yields 

( )

2
21,1

1
4 1

m

wz

Pe S

π
ϕ

α

∞
− 

≤ − 
+ 

    (entrance length as 1ϕ → ).  (3.41) 

 

Similarly for laminar flow, the critical value of the reciprocal of the Graetz parameter below 

which Lévêque’s approximation can be used is 

( )
( )

3/2
3/21,

1/2
,max

11.3778
1

13m

wz

Pe SS

ϕ
α

∞
− 

≤ − 
++  

 (entrance length as 1ϕ → ).  (3.42) 
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For the derivation of a criterion for the applicability of the one-term Graetz regime, we consider: 

( )
2

1, 1, ,maxexp 1
m

w z Peλ α
∞ ∞

− << , * 0
LEVEQUE

X →  but 1 2 ,maxm
z Peα∆ >> ∆ . This set of 

assumptions leads to 

1,

2
,max 2,

11
ln

m

wz

Peα λ ϕ

∞

∞

− 
≥  

 
   (fully developed regime as 0ϕ → ), (3.43) 

valid for plug and laminar flows. Figure 3.7 shows the ϕ  curve vs. the reciprocal of Graetz 

number for a circular channel. Eqs.(3.42) and (3.43) are able to predict the result from (3.40) 

with the uniform approximation outlined in section 3.2.2. For parallel plates, the agreement for 

1ϕ →  improves because there is no need to account for channel curvature. Plug-flow cases are 

also better described since no linearization of the velocity profile near the wall is introduced. 

 

Concerning the above criteria, we can make the following remarks: 

(a) The variation in the value of 
m

z Peα  in Figure 3.7 is more abrupt in the range where the 

Graetz solution is adequate. This results in a bigger insensitivity to the criteria in this 

regime, whereas in the definition of the applicability of Lévêque’s solution, the arbitrarily 

fixed value of ϕ  may induce large changes in the entrance length. 

(b) The influence of the flow profile in the fully developed boundary is irrelevant. There are 

numerical difficulties associated with the limit of 0ϕ →  (near zero concentrations), 

therefore Eq.(3.43) is particularly useful. 

(c) The value of ϕ  can be directly related with the relative error that occurs when estimating 

conversion from the one-term Graetz solution: 

GRAETZ
ε  ( )GRAETZ R R

X X X= −  ( )1ϕ ϕ= −  ~ ϕ .     (3.44) 

(d) The error that results from using Lévêque’s approximation (3.15) is given by 
LEV

ε

LEV R R
X X X= − , which in the limit of 0

m
z Peα →  relates with ϕ  according to: 

( )
( ) ( )

2 21,2
1, 1, 2

1
1 ~ 1

4 1
LEV

w
w

S

π
ε λ ϕ ϕ

∞

∞ ∞

−
= − −

+

  (plug flow)  (3.45a) 

( ) ( )
( ) ( )

2
3/2 3/21, 1, 1,

1/2 3/2

1
1.3778 1 ~ 1

3 1
LEV

w w

S S

λ
ε ϕ ϕ

∞ ∞ ∞
−

= − −

+ +

 (laminar flow).  (3.45b) 

From Eq.(3.45), we can see that the error related with Lévêque’s solution is more sensitive 

to the choice of ϕ , compared with (3.44). Also, the selection of the same value of ϕ  for 

plug and laminar flows results in a more conservative criterion for the former. 

(e) Depending on the agreement required mainly with Lévêque’s original solution, the 

transition region may extend by several orders of magnitude of 
m

z Peα . 
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Figure 3.7: Degree of transverse transport control in a circular channel with Dirichlet wall 

boundary condition. The full lines were calculated according to Eq.(3.12). The limiting 

forms of the criterion (Eqs.(3.42) and (3.43) given by dashed lines) agree reasonably for 

1ϕ →  and 0ϕ → . Both plug and laminar flows are considered. 

 

 

Figure 3.8:  Degree of transverse transport control in a circular channel with Neumann wall 

boundary condition. The full lines were calculated using Eq.(3.35). The dashed lines are 

given by the limiting forms for 1ϕ →  and 0ϕ →  in Eqs.(3.48) and (3.49). Both plug and 

laminar flows are considered. 
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These results define the length of the intermediate region between developing and fully 

developed profile regimes. Operation and design in this range are of practical interest and 

haven’t been sufficiently characterized. We have described analytically the transition from the 

low conversion (small temperature change, 1ϕ → ) asymptote to the high conversion one 

( 0ϕ → ). The same region marks the transition from low to high pressure drop regimes, 

( )
( )

3/2
2 1 1 , 1

~ ~
ln , 0

m
P u Pe

ϕ ϕ
ρ α

ϕ ϕ

−
 − →

∆ 
− →

. 

It is likely that an appropriate trade-off between achieving the required conversion/temperature 

difference at the minimum pressure drop yields an optimum point in the gap between the two 

well-described limits. The penalty in conversion so that pressure drop decreases by a certain 

amount is related to the value of ϕ , as this measures the degree of agreement with the high 

conversion (fully developed) asymptote. The simple and accurate results provided can be used 

in optimization procedures, where many evaluations would be required. This may be 

particularly useful on the simulation of multi-channel systems, at the integrated reactor level. 

Another well-known trade-off occurs between conversion and mass transfer. The effect of an 

entrance region is to increase the mass/heat transfer rate, compared to the fully developed 

region, even though this is detrimental to the overall conversion. This increment can be 

quantified in several ways (e.g. the incremental heat transfer number ( )N z  given in Shah and 

London (1978)). Therefore, ϕ  also represents the increment in the transfer rate due to the 

influence of the inlet and the effect being privileged (high mass transfer rates 1ϕ → , or high 

conversions 0ϕ → ). Setting 0.01ϕ =  corresponds to allowing the transfer rate at a given 

position to be influenced by the inlet by 1%. 

 

3.4.2 Neumann boundary condition 

 

When the flux is uniform throughout the channel, we have separated developing and fully 

developed contributions in the correlation for Sherwood (or Nusselt) number, Eq.(3.35). In this 

case, a measure for profile development can be written as 

1 1

1
fd fd

fd

Sh Sh Sh Sh

Sh Sh
ϕ

− −
= = .        (3.46) 

If 
fd

Sh Sh>>  (as it happens in the entrance length), then 1ϕ → . The fully developed region is 

characterized by low values of ϕ  (since 0ϕ →  as 
fd

Sh Sh→ ). According to (3.35), 
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LEV

fd LEV

HOT
Sh Sh

ϕ Θ
= − −          (3.47) 

which can be completely determined with the information in section 3.3.2. This is plotted as a 

function of 
m

z Peα  for a circular channel in Figure 3.8. As previously, the limiting forms of 

(3.47) are: 

( ) ( )
2 2

2

1 1

4
m fd

Sz

Pe Sh

π ϕ

α

+ −
≤   (entrance length as 1ϕ →  for plug flow), (3.48a) 

( )
( )

3
3

3
,max

1
0.55177 1

m fd

z
S

Pe Sh

ϕ

α

−
≤ +

 

(entrance length as 1ϕ →  for laminar flow), (3.48b) 

( )1,0 1

2
,max 1,0

11
ln

1
fd

m

ShAz

Pe S

ϕ

α λ ϕ

 − 
≥  

+ 
 (fully developed regime as 0ϕ → ),  (3.49) 

valid for plug and laminar flows. The calculation of (3.47) from the uniformly valid solution 

and the limiting forms (3.48) and (3.49) is shown in Figure 3.8 for a circular channel. In the 

fully developed limit, the curves for plug and laminar flow overlap. The form of the curve in 

Figure 3.8 is similar to the one in Dirichlet case (previous section) and therefore the same 

comments are appropriate. Eq.(3.46) directly measures the deviation of the actual Sherwood 

number from its fully developed value. On the other hand, the relative error associated with 

Eqs.(3.31) is given by 

1 1
~ 1

1
LEV LEV

LEV LEV

LEV

Sh Sh Sh Sh

Sh Sh
ε

− −
= = − Θ .      (3.50) 

Expanding Eq.(3.50) for 0
m

z Peα → , 

( ) ( )

12
2,01

~
1 1

q

LEV

m

z

q q Pe

λ
ε

α

−

 
  Γ − −  

. 

Substituting (3.48), 
LEV

ε  can be related with ϕ : 

( ) ( ) ( )
2,0~ 1 1 ~ 1

LEV

fd

S
Sh

λ
ε ϕ ϕ+ − −     (plug flow)   (3.51a) 

( ) ( ) ( )

4/3
2 2 22,0

2
~ 0.745201 1 1 ~ 1

LEV

fd

S
Sh

λ
ε ϕ ϕ+ − −   (laminar flow).   (3.51b) 

For the same value of ϕ , the criterion is more conservative for laminar flows. 

Another interpretation of these results can be given in terms of the mass/thermal boundary layer 

developing near the interface. The thickness of this region δ  is related to the Graetz parameter 

and it has been shown that it should be included e.g. in the criteria for delimitation of mass 
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transfer – reaction regimes in a microreactor (Chapter 4). As in the case of the thermal/mass 

entrance length, there is a lot of disparity in the definitions and values reported concerning δ .  

In the case of uniform wall flux, we have obtained an explicit approximation for the 

Sherwood/Nusselt number. From the theory of interphase transfer coefficients, we define the 

thickness of the boundary layer ( a δ ) so that the mass/heat transfer coefficient is given by 

( )~
m

k D a δ . Thus, the Sherwood/Nusselt number can be written as ( ) ( ) ( )1Sh z S zδ= + . 

The maximum boundary layer thickness is ( )1
fd

S Shδ
∞

= + . The normalized thickness so that 

* 1δ =  (boundary layer thickness equals the radius of the channel) for fully developed profile is 

* fd
Sh

Sh

δ
δ

δ
∞

= = . 

Introducing Eq.(3.35) or(3.46): 

* 1fd

fd LEV

LEV

Sh

Sh
δ ϕ= Θ + Θ = − . 

In the case of a Dirichlet wall boundary condition, our criterion ϕ  was formulated in terms of 

conversion values, which makes the relationship with Sherwood number more complex. For 

simplicity, and since we are looking for an estimate, the following expression is proposed: 

( )
( )1

* ~ 1
q q

δ ϕ
−

− , 

where 1 2q =  for plug and 1 3q =  for laminar flow. This allows both fully developed and 

developing dependences of *δ  on the Graetz parameter to be respected. The exact numerical 

coefficients may differ a little from this estimate, but the correct order of magnitude is kept. We 

note that according to Eqs.(3.45) at the inlet: * ~
LEV

δ ε  for plug flow and 1/3* ~
LEV

δ ε  for 

laminar flow. On the other hand, according to Eq.(3.44) when the profile is near full 

development: * ~ 1
GRAETZ

δ ε−  for plug flow and * ~ 1
GRAETZ

δ ε−  for laminar flow. The correct 

estimation of this thickness is fundamental for the design of optimized microchannel systems, 

where the complete or a fraction of the boundary layer is removed or disrupted by the periodic 

placing of outlets or inlets (Yoon et al. 2006). 

Expressing the dependence of Nusselt or Sherwood number on the Graetz parameter is often not 

achieved by a single expression. Almost all correlations for Sherwood / Nusselt number are 

given in branches with compartmented ranges of validity (usually, one for fully developed 

conditions and other(s) for developing profile), and one can find many examples of this in Shah 

and London’s book (Shah et al. 1978). Since each expression is constructed from asymptotic 

limits, it is recognised that at the intersection of both asymptotes or in the limits of each interval, 

the error in predicting Sherwood number is maximum. A curious consequence from (3.35) is an 

estimate for the maximum error associated with this approach.  
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At the intersection: 
fd LEV est

Sh Sh Sh= =  (estimated Sherwood number). Then, the relative error 

from this approach is given by 

( )error 1 1est

fd LEV

Sh

Sh
= − = − Θ + Θ . 

This should be evaluated at the intersection point, which is given in Table 3.1 (criterion type B). 

For laminar flow in a circular channel: error ~ 9% . In this case, the existence of an uniformly 

valid solution to the interphase coefficient can reduce the error significantly. 

From Figure 3.4, we can observe that 
fd

Θ  and 
LEV

Θ  intersect at ~ 0.01
m

z Peα  at a value of 

~ 0.4 . At this point, ~ 0.5ϕ  which corresponds to the intermediate level of profile 

development. This validates the roles of 
fd

Θ , 
LEV

Θ  and ϕ  as being indicative of the degree of 

profile development. 

 

3.4.3 Comparison with previous criteria 

 

In most of the chemical engineering literature, the ranges of validity of the entrance and fully 

developed models have been obtained in a number of ways that we briefly detail below. Table 

3.1 situates previous regime boundaries within our criterion by calculating the respective value 

of ϕ . Data from the following five “calculation methods” are presented: 

A. Analogy with the momentum boundary layer development length. For example, Kockmann 

(2008) scale the entrance length for the concentration profile from the hydrodynamic length 

yielding in our variables: 

2

2
0.05 h

m

dz

Pe aα
≤ . 

In Table 3.1, we compare this with other criteria for laminar flow in a channel with Dirichlet 

wall boundary condition. 

B. Intersection of fully developed and Lévêque asymptotes in a 
m

Sh Pe zα−  plot. In Chapter 4, 

we calculated the value of the Graetz parameter where Lévêque’s correlation attained the fully 

developed value. This is a usual procedure, which however ignores the intermediate region. In 

this case, transition occurs around ~ 0.10ϕ . 

C. Error comparison with numerical solution. Gervais and Jensen (2006) determined the 

intersection of absolute error curves from 1D models with developing and fully developed 

correlations for Sh . Their result for laminar flow between parallel plates with symmetric 

boundary conditions is in Table 3.1. 
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D. Agreement with 
fd

Sh  by an arbitrarily defined margin of error. The reference book from 

Shah and London (1978) presents the distance required to achieve a local Nusselt number equal 

to 1.05 of the fully developed temperature profile value. Polyanin et al. (2002) also calculate the 

length of the thermal initial region so that 1.01
fd

Nu Nu= . Table 3.1 contains these results for 

laminar flow. It can be seen directly in the case of Neumann boundary condition, that our 

criteria confirms these results. 

E. Agreement between analytical solutions. Shah and London (1978) give the range of 

m
z Peα  , where the Nusselt number calculated from the 120-term Graetz series equals the one 

from the 7-term Lévêque series up to 5 or more digits. In addition, Alonso et al. (2010) 

identified the transition region in laminar flow inside a circular channel with wall concentration 

annulment ( 0.05 0.2
m

z Peα≤ ≤ ). This is also included in Table 3.1 for comparison. 

 

From these few examples in the literature, we can make the following comments: 

(a) As expected, most available information refers to the value of the Graetz parameter below 

which the fully developed profile is adequate. Much less information concerning the 

validity of Lévêque’s solution is provided. The finite transition region between both 

regimes is also frequently ignored. 

(b) There is a large variation in the boundaries that are provided, sometimes by one-order of 

magnitude. This is reflected in terms of ϕ  values, and consequently on the relative error 

incurred by the use of approximations (see e.g. Eqs.(3.44) and (3.45)). 

(c) When provided, the boundary for the developing profile given by Lévêque’s solution is 

usually overestimated (values of ϕ  not high enough). 

 

Despite this and the fact that the concept of thermal/mass profile development length is well 

established, it is a common practice to propose criteria for the negligibility of entrance effects 

with no relationship to the arbitrary basis on which they were formulated and without the 

information that the analytical solution provides. Instead, an order of magnitude for the Graetz 

parameter is often preferred. Recently, Morini (2006) proposed that inlet effects on the average 

Nusselt number can be neglected if ( )
2 10
h

Gz u d D L= < . From Figure 3.7, we can see that 

this corresponds to ( )
1

0.4
m

Peα
−

>  and to a very conservative (low) value of ϕ . Moreover, 

order of magnitude results ignore the correct numerical coefficients, which distinguish different 

shapes and flow conditions.  
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Table 3.1:Comparison of the ranges of validity given in the literature with our criteria. 

Shape 
Flow 

profile 

Boundary 

condition 

Criterion 

type m

z

Peα
 ϕ  Ref. 

C
ir

cu
la

r 

L
am

in
ar

 

Dirichlet 

A 0.2 0.002 Kockmann (2008) 

Alonso et al. (2010) 

B 0.1021 0.03 Chapter 4 

D 0.22 0.001 Polyanin et al. (2002) 

0.1339  0.01 Shah and London (1978) 

E 58 10−
> ×  0.974  

0.02<  0.315  

0.05>  0.108 Alonso et al. (2010) 

Neumann 

B 0.1063 0.09 Chapter 4 

D 0.28 0.01 Polyanin et al. (2002) 

0.1722  0.04 Shah and London (1978) 

E 48 10−
> ×

 

0.80  

0.02<

 
0.40  

P
lu

g 

Dirichlet B 0.0381 0.10 Chapter 4 

Neumann B 0.0491 0.27  

P
la

te
s L
am

in
ar

 

Dirichlet 

A 0.8 9~10−  Kockmann (2008) 

B 0.07 0.07 Chapter 4 

C 0.24 0.001 Gervais and Jensen (2006) 

D 0.1276  0.014 Shah and London (1978) 

E 0.008>  0.58  

0.016<  0.43  

Neumann 

B 0.0948 0.14 Chapter 4 

D 0.1847 0.045 Shah and London (1978) 

E 0.008>  0.57 

0.08<  0.17 

P
lu

g 

Dirichlet B 0.0523 0.1 Chapter 4 

Neumann B 0.0873 0.26  
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We note that in principle the analysis can be extended to channels with different cross-sectional 

shapes. From WKB theory for large eigenvalues, curvature is negligible at the region near the 

interface, and therefore the dependence of eigenvalues and weights on n  should be 

approximately the same. The correct values for 1λ  and 1w  can be calculated numerically or 

taken from the literature (Shah et al. 1978; Kays et al. 1980) for many geometries. Lévêque’s 

solution can also be extended using a normalization based on the friction factor (Shah et al. 

1978). At the convective dominated regime, shape effects are negligible at the boundary layer 

and it is only required to include the correct linearization for the laminar velocity profile. The 

same applies to other Graetz problems that have appeared in the literature (Weigand et al. 2007; 

Haji-Sheikh et al. 2009; Aydin et al. 2010; Ray et al. 2010; Vera et al. 2011) and received the 

same analytical treatment, as long as an asymptotic description of coefficients is available. 

 

3.5 FINITE LINEAR WALL KINETICS 

 

We now extend the approach outlined in sections 3.2 and 3.3 to the case of Robin boundary 

condition, i.e. when a finite reaction rate occurs at the wall (or for finite wall thermal 

resistance). In this case, Eq.(2.4) is valid at the wall 

( )
1

1,
r

c
Da c z

r
=

∂
= −

∂
,         (2.4) 

where Da  is the Damköhler number for a first-order reaction (
surf

k a Dη= ). According to 

Graetz’s series solution, the mixing-cup concentration profile is given by Eq.(3.2), where the 

eigenvalue 
n

λ  and coefficient 
n

w  are dependent only on Da  for each channel geometry and 

flow profile. In Chapter 2, we have presented empirical correlations that describe the variation 

of these quantities as a function of Da , between two plateaus in the limits of 0Da →  and 

Da → ∞ , where Neumann and Dirichlet-type boundary conditions are recovered, respectively. 

In the context of heat transfer, a similar boundary condition applies when the wall resistance 

(noted by 
w

R  in Shah and London (1978)) is finite. We intend to obtain a solution which is 

uniformly valid on Da  (or 
w

R ) and on Graetz’s parameter (
m

Pe zα ). 

 

3.5.1 Assumptions on the dependence of eigenvalues and coefficients 

 

In this case, it is also fundamental to assume that the spacing between consecutive eigenvalues 

(i.e. between 
n

λ  and 1n
λ

+
) is constant. Previously (in the Neumann and Dirichlet limits of 



CHAPTER 3 

126 

Eq.(2.4)), the asymptotic behavior of eigenfunctions appearing at the wall boundary condition 

predict nearly uniform spacing as n  increases (as the eigenvalues become larger). However, for 

the first eigenvalues this is also reasonable and in those cases: 

( )1 1
n

nλ λ λ= + − ∆    ( 1,2...n = )     (3.52) 

4

π
λ


∆ = 


 

(plug-flow)

(laminar flow)
  (as n → ∞ ).     (3.10) 

For finite reaction rate conditions (finite Da ), the spacing between the first couple of 

eigenvalues ( ),
n

n Daλ∆  may depend not only on n , but also on Da  (it has a minimum around 

~ 1Da , more pronounced for 1n = ). When 0Da → , Da → ∞  or n  is large, Eqs.(3.52) and 

(3.10) are satisfactorily fulfilled. Since higher eigenvalues are associated with terms of 

decreasing importance (namely, exponential terms with negative arguments), we will consider 

that these relationships are also adequate for finite Da . This assumption will reduce the 

complexity of the final solution as shown below. 

Concerning the dependence of coefficients on eigenvalues, the exact values of 
n

w  (when Da  

finite) are given for plug flow by 

( )

2

2 2 2

2

1
n

n n

Da
w

Da Da S

σ

λ λ σ
=

 + + − 
  ( 1,2...n = ).    (3.53) 

Numerically calculated values of 1λ  should be used in Eq.(3.53) for accurate calculations when 

1n = . When the flow is fully developed and for high eigenvalues, WKB theory gives the 

following results, 

7/3
, ,2.02557

n n
w σ λ

−

∞ ∞
=      ( Da → ∞ , 1

n
λ >> )   (3.54a) 

2 11/3
,0 ,02.4010

n n
w Daσ λ

−
=    ( 0Da → , 1

n
λ >> ).   (3.54b) 

When , the first eigenvalue also tends to zero according to 

( )
2

2 31

,0

1

fd

S
Da Da O Da

Sh

λ

σ

+
= − +         (3.55) 

and the estimate from (3.54b) is not adequate. Instead, we use the asymptotic expansion for 

small eigenvalues, 

( )

2

2 3
1

,0

1
1

fd

S
w Da O Da

Sh

 +
= − +  

 
        (3.56) 

where ,0fd
Sh  is given by Eqs.(3.27). In this limit, (3.53) writes as (plug-flow): 

2 42
n n

w Daσ λ=    ( 1n >  and ( )~ 1
n

Oλ ). 

 

0Da →
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3.5.1.a Simplified dependence of weights 

 

Taking into account the behavior for large eigenvalues, we assume that higher coefficients can 

be calculated from the first one according to 

1 1n n
w w

β β
λ λ=      ( 2,3...n = ),    (3.57) 

where 0β β β
∞

≤ ≤ . According to Eqs.(3.53) and (3.54), β  changes from its value in the 

Dirichlet limit ( β
∞

) to the one in the small Da  asymptote ( 0β ). For plug-flow, 

( )
( )

( )

2 2
1

0

1

ln
, 0 2 4

ln

n

n

n Da
λ λ

β β
λ λ

= → = + =        (3.58a) 

( )
( )

( )1

ln 1
, 2 2

ln
n

n Daβ β
λ λ

∞
= → ∞ = + = .      (3.58b) 

For laminar flow, 

( )

( )

2
1,0 ,0 ,0

0
1,0,0 1,0

ln ln ln
~ ~ 4

lnln ln

n n

n

w w w Da

Da
β

λλ λ
= =       (3.59a) 

( )

( )

1, ,

, 1,

ln 7

3ln

n

n

w w
β

λ λ

∞ ∞

∞

∞ ∞

= =  .        (3.59b) 

The form of ( )Daβ  will be provided in different cases as detailed in the next section. 

 

3.5.2 Contributions to the mixing-cup concentration profile 

 

The assumptions outlined in the previous section  allow us to write Eq.(3.2) as 

( )
0

lim
N

N
n

c f n
→∞

=

= ∑ , where: 

( )
( )

( )
2

11 1

,max1

exp
m

n zw
f n

Pen

β

β

λ λλ

αλ λ

 − + ∆
 =
 + ∆  

  ( 0,1,2...n = ).   (3.60) 

An asymptotic approximation to the summation of terms given by (3.60) can again be obtained 

by the Euler-Maclaurin sum formula (Bender et al. 1978). After some simplifications and 

removing the negligible terms, the following expression is obtained: 

R GRAETZ fd LEV
X X LEV= Θ + Θ         (3.61) 

Each one of the terms in Eq.(3.61) can be calculated as follows. The first term in Graetz series 

corresponds to the fully developed solution and is given by 

2
1

1
,max

1 exp
GRAETZ

m

z
X w

Pe

λ

α

 −
= −   

 
.       (3.62) 
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The approximation of the conversion profile by this solution was discussed in Chapter 2 for 

finite reaction rates. The 
fd

Θ  factor measures the importance of (3.62) compared with the other 

terms in (3.2) that are not retained (far from the inlet), and includes the second term in Graetz’s 

series (this is related to the HOT  term in section 3.2.2), 

( )

( )

2
2 2 ,max

2
1 1 ,max

exp
1

1 exp

m

fd

m

w z Pe

w z Pe

λ α

λ α

∆ −
Θ = −

− −
       (3.63) 

1 2
,maxm

z

Peα
∆ = ∆ + ∆ .         (3.64) 

From section 3.5.1, 2w  and 2λ  can be easily estimated, if necessary resorting to the definition 

of β , which is calculated as described in sections 3.5.2.a and 3.5.2.b. The coefficients in (3.64) 

only require the knowledge of the first eigenvalue according to 

1
1

2

1 w

w

−
∆ =           (3.65a) 

2 26

λ
λ

∆
∆ = .          (3.65b) 

Rigorously another result is obtained for 1∆ , but is has been shown that replacing it by 

Eq.(3.65 a) (so as to fulfill the inlet boundary condition) is reasonable (section 3.2.2). The 

second term in (3.61) is related with the contribution of Lévêque’s solution, and includes two 

factors: the first one ( LEV ) is a correction/limit of the entry length profile; the second one is a 

corrective incomplete gamma function, which we have identified as a normalized measure of 

the importance of LEV  (section 3.2.2), as discussed below. Both are given by: 

( )

( )1 /2

1 1

,max

3

1 2
m

w z
LEV

Pe

β
β

λ β

λ β α

−

  − 
= Γ    ∆ −   

      (3.66) 

( )

2
2

,max

1 3
,

3 2 2 2LEV

m

z

Pe

λβ

β α

 −
Θ = Γ  Γ −  

.      (3.67) 

In the entrance region of the channel (for small 
m

z Peα ), the conversion of reactant according 

to Eqs.(3.61) to (3.67), writes as 

( )

( )1 /2

1 1

,max

3

1 2R

m

w z
X

Pe

β
β

λ β

λ β α

−

  − 
= Γ +    ∆ −   

 

( )
( )( )

23
2 2 2 2

1 1 2 2 1 2
,max

2

1 3
m m

w z z
w w O

Pe Pe

λ
λ λ

λ β β α α

   
+ + ∆ − ∆ + +   

∆ − −    
. (3.68) 
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The first term in (3.68) is LEV , while at ( )m
O z Peα  contributions from 

GRAETZ fd
X Θ  (the two 

first terms inside square brackets) and 
LEV

LEV Θ  (the third term inside brackets) appear, since  

( )

( )

( )

( )
( )

3 2
2

3 2 12

,max

2 3
1

3 2 2LEV m

m

z
O z Pe

Pe

β

ββ λ
α

β α

−

− +
 −  Θ = − +    Γ −  

   (3.69a) 

( )

2
22 21 1 2 2

2
1 ,max1fd m

m

w w z
O z Pe

w Pe

λ
λ α

α

 − ∆  Θ = + +   − 
.    (3.69b) 

Note that the description of the entry length is greatly influenced by the range of values taken by 

β . This can be seen namely in the definition of the dominant term in (3.68) and the magnitude 

(and sign) of 
LEV

Θ  in (3.69a).  

 

In conditions far from the developing length (i.e. large 
m

z Peα ), the weighting functions of the 

developing and fully developed solutions change their behavior, confirming their role as 

measures for the two contributions to the conversion profile. Namely, 1
fd

Θ →  and 0
LEV

Θ →  

according to: 

( )

( )1 2
2 2

,max 2 2
2
2 ,max ,max

1 1
~ 1 exp

3 2 2 2
m

LEV

m m

Pe z z

z Pe Pe

β

α λ λβ

β λ α α

−

     −−
Θ −        Γ −     

  (3.70a) 

2
2

2
,max

~ 1 exp
fd

m

z
w

Pe

λ

α

 −
Θ − ∆   

 
.        (3.70b) 

The values taken by β  have little influence in this case (the calculation of 2w  is only slightly 

changed). Thus, the profile is dominated by the fully developed solution, 

22
,max2 2

2 2
,max 2

1
exp

1 2
m m

R GRAETZ

m

Pe Pez
X X w O

Pe z z

α αλ λ

α λ β λ

    −  
= − ∆ − − +        ∆ −       

. (3.71) 

 

Since there is a significant change in the analysis, depending on the value taken by β ,  two sets 

of values are considered separately: 03 β β< ≤  (which includes the kinetic controlled regime) 

and 3β β
∞

≤ <  (representing in the limit, the mass transfer controlled regime). In each region, a 

calculation procedure for conversion and for the function ( )Daβ  is provided. The transition 

limit (when 3β = ), occurs at a value of Damköhler number 
T

Da , which we calculate below as 

being around 1. 
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3.5.2.a Values of 03 β β< ≤  ( ~ 1
T

Da Da< )
 
 

 

When 3β > , the term in Eq.(3.68) of ( )m
O z Peα  becomes dominant, while LEV  is of 

( )
( )1 /2

m
O z Pe

β

α
− 

 
, representing a correction. In the kinetically controlled limit ( 0Da → ), the 

inlet regime described by (3.68) is dominated at ( )m
O z Peα  by ( )~

GRAETZ fd
X O DaΘ , 

followed by terms related with 
fd

Θ  and 
LEV

LEV Θ , both of ( )
2

O Da . The relative importance 

of the two latter terms (inside brackets in (3.68)) is given by ( )( )1 1 3 2β β∆ − − . Noting that 

( )1 1 21 w w∆ = −  takes its highest value (which may be 1>> ) when Da  is low ( 4β → ), it is 

possible the contribution from 
LEV

LEV Θ  to be negligible compared with 
GRAETZ fd

X Θ . Also, 

note that as 3β →  the importance of the contribution from 
LEV

LEV Θ  at the inlet may increase 

significantly, leading to an inconvenient singularity. To place this contribution in the correct 

relative magnitude compared to other terms, we will take 

0 4β β= =    for 
T

Da Da< ,      (3.72) 

where the transition value 
T

Da  is around 1, although its precise value will be determined in 

section 3.5.2.b. According to (3.72), the approximation to conversion with an ( )
2

O Da  term in 

the kinetic limit is given by  

2 2

2
,max ,0 ,max

1 5
~ ...

6R

m fd m

Da z S Da z
X

Pe Sh Pe

σ σ

α λ α

 +
− + +  ∆ 

  (for 1
m

z Peα << )  (3.73a) 

22

2

,max ,max ,0 ,max ,0

1 1 1
~ ...

2R

m m fd m fd

Da z z S z S
X Da

Pe Pe Sh Pe Sh

σ σ

α α α

      + + − + − +                

  

(for 1
m

z Peα >> )  (3.73b) 

While the ( )
2

O Da  term in Eq.(3.73a) has a contribution from the developing parcel 

LEV
LEV Θ  , (3.73b) only reflects the fully developed profile influence. Examining the solutions 

in Levêque’s regime (Carslaw et al. 1959; Ghez 1978) presented in Chapter 2 for 1Da << , 

( )

3/22
34

3
LEV

m m

Da z Da z
X O Da

Pe Pe

σ σ

α απ

 
= − + 

 
   (plug flow) (3.74a) 

( )

4/3

5/32 3

,max ,max

0.9144
LEV m

m m

Da z z
X Da O Da z Pe

Pe Pe

σ
σ α

α α

 
 = − +    

 
  (laminar flow) (3.74b) 
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we observe that the ( )
2

O Da  corrections to the leading-order behavior are smaller than 

( )m
O z Peα . Comparing with Eq.(3.73a), only the leading-order behavior (equal in 

LEV
X  and 

GRAETZ
X  for 0

m
z Peα → ) is reproduced. Therefore, the contribution of LEV  is not to 

represent conversion in Lévêque’s limit, but only a ( )
2

O Da  correction to that solution in an 

higher order contribution of ( )m
O z Peα . 

 

 

3.5.2.b Values of 3β β
∞

≤ <  ( ~ 1
T

Da Da> ) 

 

When 3β < , the entry length solution (3.68) is given by LEV , followed by a correction of 

( )m
O z Peα . In contrast with the kinetic limit (where the leading-order term from 

LEV
X  and 

GRAETZ
X  is the same), the contributions from fully developed and developing regimes in mass 

transfer control are completely separable. Actually, 
LEV

LEV X=  when Dirichlet boundary 

condition is applicable  (section 3.2.2). Therefore, in this range of β  we should take LEV  as 

approximately 
LEV

X  (had this been done for 3β >  and the leading order term would have come 

up repeated). An approximate solution to Lévêque’s problem has been given in Chapter 2: 

 

( )1

1 2
m

LEV

m

S Da z Pe
X

Da z Pe

α

π α

+
=

+
   (plug flow)   (2.33) 

( )

,max

1/3

,max1 0.9828

m

LEV

m

Da z Pe
X

Da z Pe

σ α

α

=

+

   (laminar flow).   (2.35) 

 

Eq.(3.61) becomes 

R GRAETZ fd LEV LEV
X X X= Θ + Θ         (3.75) 

where all the terms were defined previously in Eqs.(3.62), (3.63) and (3.67). To complete the 

calculation procedure, namely to calculate 2w  from (3.57) and 
LEV

Θ  from (3.67), an estimated 

relationship for β  has to be provided. It is also desirable to know how β  varies with Da . In 

general, ( ),n Daβ β=  and according to (3.57): 

( )
( )

( )

1

1

ln
,

ln
n

n

w w
n Daβ

λ λ
= .         (3.76) 
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(a) Plug flow 

 

(b) Laminar flow 

Figure 3.9: β  as a function of the Damköhler number Da . Planar and circular channel with (a) 

plug flow or (b) laminar flow. Full lines are calculated from Eqs.(3.77) and (3.79) with no 

numerical evaluation involved (approximation for 1λ  was used). If approximations for 

large Da  are sought, Eq.(3.78) can be used, shown by the dashed lines in (a). For 

T
Da Da< , the dashed variation of β  should be replaced by the branch given by 4β = . 
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In order to proceed, it is necessary to assume that ( ) ( ),n Da Daβ β= , i.e. β  is independent of 

n . Moreover, since the purpose of defining β  is to correctly estimate coefficients that get 

significantly smaller as n  increases (according to (3.60)), then ( ) ( ), ~ 2,n Da n Daβ β = . 

Higher weights tend to zero fast, so the approximation benefits from accurately estimating the 

second weight. For plug-flow, according to Eq.(3.53): 

( )

( )

( )

2 2
2

2 2
12 1

11
2 ln

1ln

Da Da S

Da Da S

λ σ
β

λ σλ λ

 + + −
= +   + + − 

 (plug flow).   (3.77) 

Note that in Eq.(3.77): 2 1λ λ λ= + ∆  and 1λ  can be estimated as described in section 3.5.1 

(numerically or approximately). Figure 3.9a shows the plot according to (3.77) as well as the 

limiting form for large Da
 : 

( )
( )

1, 2, 3
2

2, 1,ln
O Da

Da

λ λ λ
β β

λ λ

∞ ∞ −

∞

∞ ∞

+ ∆
= + +    (plug-flow, Da → ∞ ).  (3.78) 

with 2, 1,λ λ λ
∞ ∞

= + ∆  (plug). Eq.(3.78) is useful for 20Da > . Alternatively, the coefficient β  

can be fitted obviously in a number of ways. For simplicity and with minimum numerical 

evaluation, the following empirical correlation for laminar flow is proposed: 

( )
0

1

Da
Da

Da

β β
β

∞
+

=
+

     (laminar flow).   (3.79) 

Eq.(3.79) represents numerical results of (3.76) with 2n = , very accurately for 
T

Da Da> . 

Also, in laminar flow insensitivity to the channel’s geometry is observed. Note that for high 

Da  , Eq.(3.79) writes as ( ) ( )0Da Daβ β β β
∞ ∞

= + − , which is of the same form of the 

expansion of (3.76) for Da → ∞ . Eq.(3.79) is plotted in Figure 3.9b for laminar flow. It also 

fulfills our requirements of simple evaluation, without introducing additional parameters and 

avoiding fitting. From (3.77) and (3.79) with ( ) 3
T

Daβ = , the value of Damköhler number 

which marks the transition is 1.5
T

Da =  for laminar flow, 1.6
T

Da ≃  for plug flow between 

parallel plates and 2.9
T

Da ≃  for plug flow inside a circular channel. 

The variation of 
fd

Θ  and 
LEV

Θ  with Da  and 
m

z Peα  is plotted in Figure 3.10 and Figure 

3.11, respectively. The weighting function of the fully developed profile 
fd

Θ  changes 

significantly at low kinetic rates, with increasing importance as 0Da → , where 1
fd

Θ →  closer 

to the inlet. The behavior of 
LEV

Θ  also changes significantly, with 
T

Da Da=  being the turning 

point between negative and positive values. When 3β > , 
LEV

−Θ  decreases as 
m

z Peα  and 

Da  increases. When 3β < , 
LEV

Θ  increases with Da  and it approaches unity at much higher 

m
z Peα  for high Da , than it does for intermediate values. 
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Figure 3.10: 
fd

Θ  as a function of Graetz’s parameter reciprocal 
m

z Peα . Curves are plotted for 

several values of Da  in laminar flow inside a circular channel. 
 
 
 
 
 

3.5.2.c Limit of 3β →  (
T

Da Da= ) 

 
At 

T
Da Da= , the conversion calculation from Eqs.(3.61) and (3.75) should be comparable with 

each other. This is approximately true since: ~
R GRAETZ fd

X X Θ  (note that ( )3 0
LEV

βΘ = →  and 

( )4
LEV

β−Θ =  takes its lowest value). This point represents a change in the contribution from 

the developing profile parcel. As Da  increases, a subdominant correction converts into a 

leading-order contribution to conversion, becoming more and more important as Da  increases 

( 
T

Da Da> ). Assuming that some correction exists at 
T

Da Da= , Eq.(3.61) should be used 

(with 4β = ) for this value of Damköhler’s parameter. 
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(a) 

T
Da Da<  

 
 

 
(b) 

T
Da Da>  

 

Figure 3.11: 
LEV

Θ  as a function of Damköhler and Graetz’s parameters. (a) For 
T

Da Da< , 

where 0 4β β= = . (b) For 
T

Da Da> , where ( )Daβ  is given by Eqs.(3.77) and (3.79). 
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3.5.3 Calculation procedure for the conversion profile 

 

According to this analysis, the estimation of conversion for given values of Da  and 
m

z Peα  

can be summarized into the following steps: 

1. For a given Da , calculate 1w  and 1λ  numerically or approximately according to the results 

in section 3.5.1. 

2. Choose a suitable value for β , according with the value of 
T

Da : 

( )

0 4

Da

β
β

β

=
= 


 T

T

Da Da

Da Da

≤

>
      

where ( )Daβ  is given by Eq.(3.77) for plug flow and by Eq.(3.79) for laminar flow. 

3. The second weight 2w  and eigenvalue 2λ  can be simply calculated from step 1, using 

Eqs.(3.52) and (3.57) with the appropriate value of β . 

4. For each value of Da  and 
m

z Peα , calculate 
fd

Θ  and 
LEV

Θ . These functions are plotted 

in Figure 3.10 and in Figure 3.11 for laminar flow inside a circular channel. 

5. Calculate conversion according to Eq.(3.61) for 
T

Da Da≤ , and with (3.75) for 
T

Da Da> , 

evaluating 
GRAETZ

X  and LEV  or 
LEV

X  with Eqs.(3.62) and (3.66) or (2.33, 2.35), 

respectively. 

For laminar flow inside a circular channel, where a first-order heterogeneous reaction occurs, 

Figure 3.12 compares the uniform solution calculated as described above, with Graetz’s series 

with 1 and 12 terms for several values of Da . The terms in Graetz’s series used for comparison 

were calculated numerically when available (Özisik et al. 1982) or from asymptotic 

relationships (section 3.5.1). The 
LEV

LEVΘ  or 
LEV LEV

XΘ  terms are also shown. It is possible 

to observe the increase in the importance of this term as Da  increases. The consistent evolution 

of its magnitude legitimates our choice for the calculation at 
T

Da  and the substitution of LEV  

by 
LEV

X  when 
T

Da Da> . Note that this replacement allows the inlet region to be described 

correctly for 
T

Da Da>  (where 
LEV

Θ  is not vanishingly small). The convergence of Graetz’s 

series also gets worse as Da  increases. In particular, the adequacy of the first term in the series 

becomes extremely limited as the reaction rate increases. The agreement of our solution 

increases as more terms in Graetz’s series are considered, meaning that the approximate result is 

at least comparable with the exact solution with a reasonable number of terms which depend on 

numerically calculated quantities. Similar behavior for other geometries and flow profiles is 

observed. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3.12: Conversion in laminar flow inside a circular channel with first-order wall reaction 

as a function of Graetz’s parameter 
m

z Peα  for several values of Damköhler’s 

number Da . Graetz series solution (3.2) with 1, 5 and 12 terms is shown. 
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(e) 

 

(f) 

Figure 3.12: Conversion in laminar flow inside a circular channel with first-order wall reaction 

as a function of Graetz’s parameter 
m

z Peα  for several values of Damköhler’s 

number Da . Graetz series solution (3.2) with 1, 5 and 12 terms is shown. 

 

 

3.5.4 Developing length of the concentration profile 

 

By explicitly identifying the contribution from the fully developed profile (the first term in 

Graetz series), it is possible to estimate the length of profile development. We are particularly 

interested in understanding the applicability of the fully developed asymptote as 0Da → . This 

is motivated by the fact that the results from the Neumann boundary condition in section 3.3 do 

not reflect several remarks that have been made in this work and in the literature. Namely, 

(a) the error in estimating conversion with one term in Graetz series when 
m

Pe zα  

increases is more significant for high values of Da  (as seen in Chapter 2); 

(b) at leading-order as 0Da → , fully developed and Lévêque solutions coincide near the 

inlet (see section 3.5.2.a); 

(c) 
fd

Θ  (which measures the importance of the fully developed limit) reaches values close to 

1 at lower 
m

z Peα  when 0Da →  (Figure 3.10); and 

(d) Gervais and Jensen (2006) concluded that the importance of the fully developed 

description increases when 0Da → , comparing simplified models with the numerical 

solution. 
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Moreover, it is also recognized (Gervais et al. 2006) that the critical value of Graetz’s parameter 

at which Lévêque’s model is no longer satisfactory cannot be determined from a straightforward 

approach when Da  is finite, and that the required numerical evaluation is tedious. Nevertheless, 

they show that terms in Graetz series, other than the first, decay much faster for lower Da , and 

this results in reduction of the absolute error of the fully developed asymptote by one order-of-

magnitude at the inlet.  

 

We can make use of the degree of transverse control introduced previously and given by 

Eq.(3.39), which is related to the relative error of the one-term Graetz solution by Eq.(3.44). We 

will focus on the derivation of the profile development length (i.e. low values of ϕ  or 
GRAETZ

ε ). 

In the kinetic limit ( 0Da → ), low error of the Graetz asymptote is obtained near the inlet 

( 0
m

z Peα → ). In these conditions, we assume 
LEV GRAETZ fd

LEV XΘ << Θ , and therefore: 

2

,max1

,0

1
~ 1 ~ m

GRAETZ fd

fd

Pe S
Da

z Sh

α
ε

σ

−
 +

Θ −   
 

      (3.80) 

For ( )~ 1
m

z Pe Oα , 0
GRAETZ

ε →  faster, so Eq.(3.80) can be defined as a boundary. At the 

diffusional limit ( Da → ∞ ), when the fully developed solution is appropriate: 0
LEV

Θ →  and 

fd
Θ  is reasonably insensitive to kinetics as shown in Figure 3.10. Therefore, the Dirichlet limit 

detailed in section 3.4.1 is recovered again and the length of development is nearly insensitive 

to the fast kinetics: 

( )
2 2
2, 2,

2, 1,
,max ,max

~ 1 ~ exp ~ 1 exp
GRAETZ fd

m m

z z
w w

Pe Pe

λ λ
ε

α α

∞ ∞

∞ ∞ ∞

   − −
− Θ ∆ −      

   
.  (3.81) 

Other limits are more complex. We propose a formula that correlates both behaviours from 

(3.80) and (3.81) as  

( )

12
,0,max 1,2

2,2

1
ln

1

fdm GRAETZ

GRAETZ

ShPe w

z Da S

α ε
σ λ

ε

−

∞

∞

 − 
= +   

+    
     (3.82) 

which is valid for small 
GRAETZ

ε  and can be written explicitly for Da . For circular channel with 

laminar flow, the ( )m
Da z Peα  curves for several values of 

GRAETZ
ε  are plotted in Figure 3.13. 

Qualitatively, this represents the expected trend even though quantitatively some adjustments 

may be required. 
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Figure 3.13:  Boundaries in the 
m

Da z Peα−  diagram where conversion is described by the 

fully developed asymptote with different relative errors. For 
m

z Peα  greater than 

the specified in the boundaries, the relative error is reduced. 

 

 

3.5.5 Other cross-sectional geometries 

 

Concerning the effect of the channel’s cross-section geometry on the previous results, we note 

that: 

• the asymptotic predictions in section 3.5.1 using WKB theory for large eigenvalues reduce 

curvature effects near the channel wall to a subdominant term and the same comment holds 

for Lévêque’s leading order solutions; 

• β  and its influence in the final result are nearly insensitive to the shape of a straight 

channel; 

• the shape factors S  and σ  appearing in all the expressions in sections 3.5.1 and 3.5.2 can 

be determined by an analogy with f Re  values (Shah et al. 1978); and 

• the values for 1w  and 1λ  can be calculated numerically for several known channel 

geometries (see references in Chapter 2). 

Therefore, the analysis herein presented is likely to be extendable to other channel geometries. 
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3.6 CONCLUSIONS 

 

We have derived an approximate analytical solution to Graetz’s problem in terms of a 

combination of the fully developed and developing (Lévêque’s) limits. Our solutions for the 

mixing-cup concentration/temperature profile or for Sherwood number, as a function of the 

axial distance, have the following features: (a) accurate results are obtained over the full range 

of the Graetz number (
m

Pe zα ); (b) relative error does not increase sharply in any specific 

range; (c) both limiting regimes are respected and the gap between them is well described; and 

(d) the form of the analytical solution is much simpler than any of the existing (involving a large 

number of terms with numerically determined coefficients) and minimum numerical evaluation 

is required. Mixing-cup concentrations are described with a maximum of 0.1% relative error 

(except for laminar flow between parallel plates, where the error is higher but still tolerable). 

When the wall boundary condition is of Neumann type, a solution for the Sherwood number 

based on adding the entrance length and fully developed terms is given. Each term has an 

associated weighting function, for which analytical expressions are provided. We have also 

extended the analysis to the case where a finite reaction rate at the wall occurred. 

Finally, we define criteria for transition between regimes which reflect the relative errors 

obtained by using the fully developed or Lévêque solutions. Explicit expressions for the length 

of the profile development zone are provided as a function of a desired degree of agreement 

with the fully developed solution, channel geometry, flow profile and boundary condition type. 

Previous disperse results in the literature are framed in a common analysis. Ranges of validity 

for the developing profile asymptote are given, as well as estimates for the length of the 

transition region. The approach presented can be extended to the analysis of Graetz or other 

chemical engineering problems. 

 

NOTATION 

a   radius of the circular channel or half-spacing between parallel plates 

n
A   th

n  integration constant 

c   bulk fluid concentration of reactant species 

c   reactant’s mixing-cup concentration of the reactant species 

in
c   inlet reactant concentration 

D   bulk fluid diffusivity 

h
d   hydraulic diameter 

Da   Damköhler number 

f Re   product of the friction factor and Reynolds number 
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n
G    coefficients used by Shah and London (1978)in the mixing-cup temperature profile 

( 
1

2
n n r

A d d rϕ
=

= − ) 

HOT  higher order terms 

m
k   interphase transfer constant 

L   length of the channel 

m
Pe   transverse Peclet number ( a u D=  or a u κ= ) 

q   exponent in Lévêque’s dependence on Graetz’s parameter 

r   dimensionless transverse coordinate ( r̂ a= ) 

S   shape parameter: 0=  for parallel plates; 1=  for circular channel 

Sh   Sherwood number 

T   temperature of the fluid 

T   mixing-cup temperature of the fluid 

( )u r   velocity profile inside the channel 

u   average velocity inside the channel 

( )v r   dimensionless velocity profile, normalized by average velocity 

R
X   conversion of reactant 

n
w   th

n  coefficient related with Shah and London’s (1978) notation by 22
n n

Gσ λ=  

z   dimensionless axial coordinate 

m
z Peα  reciprocal of Graetz’s parameter 

 

Greek letters 

α   aspect ratio of the channel 

β   coefficient in Eq.(3.57) 

∆   compensation function 

λ∆   spacing between eigenvalues 

ε   relative error 

δ   thickness of the concentration/thermal boundary layer 

( )zΓ   Gamma function, 1

0

z t
t e dt

∞

− −

∫  

( ),a zΓ   Incomplete Gamma function, 1a t

z

t e dt

∞

− −

∫  

γ   axial contribution to terms in Graetz’s solution 

κ   thermal diffusivity 

ϕ   degree of transverse transport control 

n
ϕ   th

n  eigenfunction 

n
λ   th

n  eigenvalues 

σ   shape/flow parameter, ( ) max1S u u+
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Superscript 

^  dimensional quantity 

‘  derivative 

 

Subscript 

fd   fully developed 

In  inlet 

GRAETZ Graetz series (1 term) 

LEV  Lévêque’s solution 

max   maximum (referred to maximum velocity) 

surf  at the wall of the channel 

wall  at the wall of the channel 

0   in the Neumann limit 

∞   in the Dirichlet limit 
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CRITERIA FOR KINETIC AND MASS TRANSFER 

CONTROL IN A WALL-COATED MICROREACTOR 
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Analytical expressions for distinguishing between different reaction and mass transport regimes 

in an isothermal microchannel reactor with first-order wall reaction are presented in this chapter. 

These expressions are explicit functions of the Damköhler number ( Da ) and of the Graetz 

parameter ( 
m

Pe zα ), as well as of the degree of mass transport control (θ ) which is usually 

set arbitrarily. The power law addition of contributions from fully developed and developing 

concentration profile conditions allows a correct description for all values of 
m

Pe zα . 

As we will see, the scaling analysis suggests that the relative importance of mass transfer effects 

compared to reaction should be assessed by the rescaled Damköhler number *Da , defined with 

the correct scales for external and internal diffusion. It is also shown that a 
m

Da Pe zα−  

parametric map is appropriate for identifying the boundaries between regimes, which can be 

directly calculated from the dimensionless parameters in a very convenient manner. 

 

4.1 INTRODUCTION 

 

Coated-wall microchannel reactors have been put forward as a promising design concept 

(Jensen 2001; Kreutzer et al. 2006; Rebrov et al. 2009) for technologies related with energy 

generation (Casanovas et al. 2009; Karakaya et al. 2009; Avci et al. 2010; Jang et al. 2010; 

Snytnikov et al. 2010; Karakaya et al. 2011), biocatalysis (Thomsen et al. 2009), systems with 

strict safety requirements (Inoue et al. 2007) or environmental applications (Hernández Carucci 

et al. 2009) (see Chapter 1 for additional references). As we have pointed out, attaching a 

catalytic coating to the walls of the channel provides significant higher accessible surface area 

without increasing pressure drop. Moreover the benefits from miniaturization, such as 



CHAPTER 4 

148 

enhancement of transfer rates and nearly isothermal behaviour, are also observed. However, the 

introduction of the catalyst may lead to the appearance of external (as well as internal) mass 

transfer limitations. 

As detailed in Chapter 1, working on the microscale (channels with diameters in the order of 

~ 100 µma ) privileges surface effects (such as an heterogeneous reaction) over homogenous 

processes dependent on the channel volume. In the analysis of the competition between surface 

reaction and transport towards the catalytic surface, two limiting regimes are usually identified 

by the chemical reaction engineering community (Tronconi et al. 1992; Hayes et al. 1994; Heck 

et al. 2001; Balakotaiah et al. 2002): the kinetically controlled regime (when reaction is slow 

compared to radial mass transport) and the mass transfer controlled regime (when reaction is 

comparatively fast). The definition of operating regimes is of extreme importance for almost all 

studies involving catalytic monoliths or microchannel reactors. For example, 

1. measurement of intrinsic kinetic parameters: the presence of significant radial 

concentration gradients makes it impossible to measure directly the intrinsic activity and 

selectivity of the catalytic layer (Berger et al. 2007). To be certified that mass transfer and 

kinetics are independently evaluated, a number of methods are available (Bennett et al. 

1991; Hayes et al. 1995; Beretta et al. 1999; Kölbl et al. 2004; Pfeifer et al. 2005; Walter et 

al. 2005), involving a selective enhancement of mass transfer or reaction rates; 

2. measurement of mass transfer parameters: at high temperatures, when the different mass 

transfer resistances must be accounted for, the evaluation of transport parameters may lead 

to inconsistent results if wall concentration annulment is incorrectly assumed (Votruba et 

al. 1975; Bennett et al. 1991; Ullah et al. 1992; Hayes et al. 1994; Uberoi et al. 1996). This 

has led to controversy in literature, where observed Sherwood numbers were lower than 

the theoretical minimum due to failing in accounting for finite wall reaction rates; 

3. design of the microreactor and choice of operating conditions: the geometric and operating 

parameters are included in the dimensionless numbers of the model and must be chosen so 

that the required performance is achieved. The change in operating conditions may lead to 

a change in the regime, which might take conversion to follow a different asymptote; 

4. appropriate selection of models for simulation and optimization: the assumption that for a 

sufficiently high inlet temperature, the whole microchannel operates in mass transfer 

control has given origin to analyses (e.g. Balakotaiah et al. (2002)) whose validity must be 

checked. Since the asymptotic behaviour of the quantities involved in estimating 

conversion is accurately known in the kinetic and mass transfer controlled limits, it is 

important to understand when these simplified solutions can be safely used. 

It is clear that criteria for kinetic and mass transfer control are desirable, especially if they can 

be evaluated a priori and without the need for numerical evaluation. The objectives of this 

chapter are: (a) to identify the different regimes of operation based on the length scales over 

which the different mass transfer mechanisms dominate and their relationship with the 
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characteristic time for wall reaction; (b) to discuss criteria for distinguishing between those 

regimes in limiting cases and provide uniformly valid correlations; and finally (c) plot these 

results on a parametric map and compare them with existing alternatives in the literature. 

 

4.2 SCALING AND OPERATING REGIMES DEFINITION 

 

We consider the two-dimensional convection-diffusion problem described earlier (section 

2.2.1), in the geometry represented in Figures 2.1 and 3.1. The complete description of mass 

transport includes diffusion in both directions (Eqs.(2.1)). In this case, the problem of 

determining the species (reactant) concentration distribution under several wall boundary 

conditions is known as the extended Graetz problem (Papoutsakis et al. 1980a; Papoutsakis et 

al. 1980b; Polyanin et al. 2002). However, in many practical parameter ranges, the full solution 

is unnecessary and simplification in appropriate regimes may be sought. These particular 

regimes are defined assuming that the physical situation is mainly due to the balancing of two 

out of the three original terms in the mass conservation equation, in geometries such as parallel 

plates or circular channels. It is also conceivable that one term is solely dominant at a global 

scale, while a richer structure is only necessary to describe events at a local scale (Bender et al. 

1978). 

 

4.2.1 Global scale regimes 

 

When appreciable concentration change ( ( )ˆ ˆ~
in

c O c∆ ) occurs over the length of the channel L  

and over the maximum transverse distance a , the relative magnitude of the characteristic time 

for transport by axial diffusion ( 2
,axial diff

L Dτ = ) compared to the one by transverse diffusion 

( 2
,transv diff

a Dτ = ) is related to the channel’s aspect ratio: 

2
2 a

L
α

 
=  
 

.          (4.1) 

Timescales for both transport processes in the axial direction are compared by 

,

conv

m axial diff

D

Pe L u

τα

τ
= = .         (4.2) 

This implies that concentration gradients in the axial and radial directions are correctly 

nondimensionalized by the natural scales for concentration and length (i.e. ˆ ˆˆ ~
in

c z c L∂ ∂  and 

ˆ ˆ ˆ~
in

c r c a∂ ∂ ), as well as the second derivatives ( 2 2 2ˆ ˆˆ ~
in

c z c L∂ ∂  and 2 2 2ˆ ˆ ˆ~
in

c r c a∂ ∂ ). 
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From this straightforward scaling analysis, axial diffusion becomes subdominant in the outer 

governing equations (2.1), whenever long microchannels ( 1α << ) and/or high axial Peclet 

number regimes ( 1
ax m

Pe Pe α= >> ) are encountered. Our analysis applies in these conditions 

and therefore this mechanism is considered negligible. For typical dimensions of a laboratory 

scale monolith / microreactor ( ~ 100 ma µ , ~ 10L cm ) with a gas-phase process 

( 4 2~ 10D m s
− ): ~ 0.001α  and , ~ 0.1

trans diff
msτ . The timescales for convection and reaction 

can vary significantly with operating conditions (e.g. ~10
conv

msτ  when 1u m s= ) and 

catalyst properties (loading, distribution…), respectively. Thus, although α  is small, the 

remaining parameters can cover a broad range of values. 

At global scales, the remaining processes are compared by the transverse Peclet number 

multiplied by the aspect ratio (whose magnitude regulates the convective-diffusive dominant 

balance) and by the Damköhler number which translates the competition between transport 

towards the wall and surface reaction. These dimensionless numbers are defined as: 

2
,transv diff

m

conv

u a
Pe

L D

τ
α

τ
= =         (4.3a) 

m a

u a
Pe Re Sc

D
= =          (4.3b) 

surf
a k

Da
D

η
= ,          (4.4) 

where 
a

Re u aρ µ=  is the Reynolds number and ( )Sc Dµ ρ=  is the Schmidt number. The 

presence of the catalytic coating is accounted for by including the effectiveness factor (η ), as 

usual. The definition of global scale regimes is readily obtained from the mass balance equation 

(2.1) in the channel domain when the spatial independent variables are normalized by their 

respective maximum values ( ˆz z L=  and ˆr r a=  in the axial and transverse direction, 

respectively). Then, convection and transverse diffusion (Graetz’s regime) balance when 

2~1
m

Peα α>> . If in addition we consider one mechanism dominance regimes at global scale, 

convection is dominant (Lévêque’s regime) when 2 ,1
m

Peα α>> ; while fast transverse 

diffusion occurs for 2 , 1
m

Peα α << . We note that the solutions from these problems are 

included in the more complete Graetz regime. Nevertheless, the simplified limits they give 

origin to can be useful. For example, the series solution of the Graetz problem (1883) includes 

the results from Lévêque’s analysis (1928) if an infinite number of terms were to be retained. 

On the other hand, approximate one-term truncated results are often used, which are also a 

reduction of the convection-transverse diffusion dominated case. The one-term Graetz series 

regime (for 1
m

z Peα >> ) yields the fully developed concentration profile. 
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All these regimes are defined based on the magnitude of the quantities defined in Eqs.(4.3a) and 

(4.4). These two parameters define an 
m

Pe Daα −  operating map, which we will later present. 

Actually, if a variable axial length scale is adopted, the behaviour at global transverse scale 

depends on the Graetz parameter, 
m

Pe zα . 

 

4.2.2 Local scale regimes 

 

Regimes that neglect transverse diffusion at first approximation are not able to fulfil one or 

more boundary conditions in this direction. This is usually accompanied by the appearance of a 

boundary layer around one endpoint of the domain, with thickness much smaller than the global 

scale adopted to normalize position in this direction. The behaviour in these inner regions is 

described by Eqs.(2.26), which are obtained once the independent variable is stretched as 

( )0 R
R r r δ= ∓ , where 0r  is the endpoint near where the boundary layer develops with 

thickness 1
R

δ <<  ( 0R > ). This new variable rescales the derivatives on the original mass 

balance equations correctly, and therefore sharp concentration variation of ( )în
O c  over the 

inner layer thickness is typical. Given the symmetry condition at 0r = , we can exclude the 

appearance of local regions near this point. In fact, only at 0 1r =  it is possible to obtain a 

distinguished limit. The contributions of curvature in a circular channel or nonlinear velocity 

profile in laminar flows are of ( )R
O δ  and ( )

2
R

O δ  respectively, and therefore negligible in 

transverse inner regions at first approximation (see section 2.3.1). 

When convection dominates at the outer scale (Lévêque’s regime), concentration decay occurs 

near the wall, where transverse diffusion is required to become important if significant reactant 

consumption occurs. This is translated into the following scaling relationship: 

( ) ( )
22 ~ 1

m R R
Pe v Rα δ α δ>> , 

where the scale ( )v R  is taken from the linearized velocity profile near the wall 

( )
( ) ( )3 laminar flow 

~
1 plug-flow

R
S Ru R

v R
u

δ +
= 


 

with 0S =  for parallel plates; 1S =  for a circular channel. Therefore, the characteristic length 

scale of the inner layer is ( )
1/2

~
R m

Peδ α
−

 for plug flow and ( )
1/3

~ 3
R m

S Peδ α
−

 +    for 

laminar flow.  

The natural scale a  is correct for making the governing equations dimensionless if the 

maximum concentration variation occurs over the maximum transverse distance in the channel 
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( )ˆ ˆ ˆ~
in

c r c a∂ ∂ . However, when transverse boundary layers occur (e.g. in the convective limit, 

1
m

Peα >> ), concentration variation occurs over a length scale that can be much smaller than 

the channel radius, while for ( )~ 1
m

Pe Oα , ( )~ 1
R

Oδ . So, in general, the characteristic length 

for diffusion in the channel’s transverse direction is ~
channel R

a δℓ . 

 

4.2.3 Interphase mass transport - wall reaction regimes 

 

The flux continuity condition is responsible for the coupling of the channel and catalytic coating 

domains. Introducing the effectiveness factor concept (that averages the reaction-diffusion 

processes in the coating): 

( )
1

1,
r

c
Da c z

r
=

∂
= −

∂
    (slab and annular geometry)   (2.4) 

where Da  is given by Eq.(4.4). This has been recognised previously in the literature (Keyser et 

al. 1991; Bhattacharya et al. 2004; Hayes et al. 2004). However, a fair comparison between the 

fluxes at both sides of the interface requires rescaling of Eq.(2.4)), when concentration boundary 

layers near the interface appear. In that case, Eq.(2.4) writes as 

( )
0

1,
R

R

c
Da c z

R
δ

=

∂
=

∂
,         (4.5) 

with ( )1
R

R r δ= − . The parameter group that defines different operating regimes can be 

rewritten as a rescaled Damköhler number ( *
R

Da Da δ= ), which can be understood as an 

“effective” quantity:  

( ) ( ),*
R surfchannel surf obs

a kk
Da

D D

δ η
= =
ℓ

,       (4.6a) 

where the characteristic dimension and the reaction constant in the original definition are 

corrected by the presence of external and internal mass transfer limitations, respectively. On the 

other hand, it can be seen as the original parameter simply referred to a different length scale, 

*2
,* channel coating transv diff

rxn

kk
Da

D D

τ

τ
= = =

ℓ ℓℓ
       (4.7b) 

where 
channel coating

=ℓ ℓ ℓ  is the geometric mean between diffusion characteristic lengths at the 

channel (
channel R

a δ=ℓ ) and washcoat (
coating coat ext

V Sη=ℓ ) and not simply 2
a  (the maximum 

distance for diffusion in the channel).  
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The rescaled Damköhler number *Da  can act as a “wall-reaction model” constant in Robin’s 

boundary condition, which can assume different forms at leading order: 

* 1Da << , Neumann type boundary condition (i.e. 
1

0
r

c r
=

∂ ∂ = )   (4.8) 

* ~1Da , Robin type boundary condition (i.e. ( )
1

* 1,
r

c R Da c z
=

∂ ∂ = − )  (4.9) 

* 1Da >> , Dirichlet type boundary condition (i.e. ( )1, 0c z = )    (4.10) 

As *Da  increases, the boundary condition type moves from Neumann to Robin and for high 

Damköhler number to Dirichlet type, i.e. from impermeable interface (Eq. (4.8)) to wall-

reaction model boundary condition (4.9) and finally to instantaneous reaction at the washcoat 

interface (Eq. (4.10)). These regimes reproduce the two classical limiting situations concerning 

the competition between the effective reaction rate at the wall (eventually lumping internal 

reaction and diffusion in the catalytic coating) and mass transport in the channel: 

• (external) kinetic regime, where the concentration profile is essentially uniform in the 

transverse direction (and close to the inlet concentration value), and 

• (external) mass transfer controlled regime, where appreciable decay of concentration is 

observed from the centre of the channel to the value at the wall (which is close to zero). 

Naturally, a transition regime between both limits is also present, generically described by 

Eq.(4.9). Figure 4.1 shows the concentration profile in the limits of fully developed (one-term 

from Graetz’s series solution) and developing (Lévêque’s) conditions for several values of Da  

and *Da , respectively. 

 

 
Figure 4.1: Transverse concentration profile for several values of the wall-reaction constant, 

*Da . (a) Fully developed concentration profile, *Da Da= . (b) Developing 

concentration profile, *
R

Da Da δ=  with ( )
1/2

~
R m

Peδ α
−

 for plug flow and 

( )
1/3

~ 3
R m

S Peδ α
−

 +    for laminar flow ( 0S =  for parallel plates; 1S =  for circular 

channel). The results were obtained with gPROMS® for laminar flow inside a circular duct. 
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4.3 DEGREE OF EXTERNAL MASS TRANSPORT LIMITATION 

 

Delimiting boundaries between the regimes defined above in the parametric map involves 

establishing a rather arbitrary numerical criterion for the degree of mass transfer control. It is 

convenient to express it as the driving force for transverse transport normalized by its maximum 

value (the mixing-cup concentration alone): 

( )
( ) ( )

( )

1,c z c z
z

c z
θ

−
= .         (4.11) 

This measure of the decrease of reactant concentration across the transverse direction is 

bounded between the cases of complete kinetic or mass transfer control. In particular, when the 

wall reaction is slow compared to transverse transport, ( ) ( )1,c z c z→  with ( )c z  finite, and 

0θ = . If complete consumption of reactant occurs near the wall ( ( )1, 0c z → ), then 1θ = . Once 

convenient approximations for the mixing-cup and surface concentrations are provided, iso-θ  

lines of the form ( ),
m

Da Da Pe zα θ=  can be drawn in the 
m

Pe z Daα −  plot. 

According to Graetz’s complete solution (Graetz 1883), Eq.(4.11) writes as 

( )

( )

2

1 ,max

2

2
1 ,max

1 exp

1
' 1

exp

n

n n

n m

n n n

n n m

z
A

Pe

A z

Pe

λ
ϕ

α
θ

ϕ λ

λ σ α

∞

=

∞

=

 
−  
 

= −
 −

−  
 

∑

∑
      (4.12) 

where 
n

A  are integration constants and 2
n

λ  are the eigenvalues associated with the n
th 

eigenfunction ( )n
rϕ , which also appears evaluated at 1r = , as well as its derivative ( )' 1

n
ϕ . 

Without any further simplification, it is not possible to obtain an explicit relationship between 

m
z Peα  and Da  (which is implicitly present through complex dependences of 

n
A  and 2

n
λ , for 

Robin boundary condition). Moreover, in this diagram the Dirichlet limit represents only the 

limiting trend at Da → ∞ . 

 

 

4.3.1 Fully developed concentration profile 

 

The simplest result that can be extracted from Eq.(4.12) corresponds to fully developed 

concentration profile conditions, i.e. retaining only one term in the numerator and denominator.  
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This is equivalent to the one-term Graetz regime discussed previously, and the results in this 

section are valid for values of 
m

z Peα  greater than the transition values in Table 4.1 or in the 

regions defined in Chapter 3. Since 
surf

c c  is independent of the Graetz number (i.e. of the 

duct length) in this limit, θ  depends only on Da  for fully developed profile. 

 

4.3.1.a Fully developed conversion profile for linear kinetics 

 

As we have discussed in Chapter 2, the mixing-cup concentration profile is given by Eq.(2.11), 

where the first eigenvalue 1λ  is a function of Da , and this dependence is described by (2.14): 

2
1 2

1,1

Da

Da

σ
λ

σ λ
∞

=
+

,         (2.14) 

where we recall that: 

( )
max 1

u
S

u
σ = +          (4.13a) 

0, parallel plates

1, circular channel
S


= 


, and        (4.13b) 

( )max 3 2u u S= +  for laminar flow.       (4.13c) 

The Dirichlet values 2
1,λ

∞
 and 1,w

∞
 are known and tabulated, even though approximate 

analytical calculation is also possible (Chapter 2). 

Concerning the asymptotic behavior of eigenvalues, the following limiting expressions add an 

extra term to the leading-order result implicit in Eq.(2.14): 

( )
2 2 3

1 Da b Da O Daλ σ σ= − +   for 1Da <<      (4.14a) 

2
2 2

1 1, 1

Da

Da
λ λ

∞

 
=  

+ 
   for 1Da >> .     (4.14b) 

These expressions were obtained from expansion in appropriate limits of Bessel functions 

( )k
J x  and confluent hypergeometric functions ( ), ,M a b z . The coefficient in Eq.(4.14a) is 

given here as a function of the shape parameter S  (defined in Eq.(4.13b)): 

1

3
b

S
=

+
     (plug flow)     (4.15a) 

9 4

7 5
b

S S
= −

+ +
   (laminar flow).     (4.15b) 

Note that this relates to Eq.(3.55), where ( ) ,01
fd

b S Sh= + . 
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Figure 4.2: Degree of mass transfer control (θ ). Analytical boundaries for the cases of fully 

developed and developing concentration profile (full lines) are given by Eqs.(4.18) and 

(4.22). Numerical results for finite values of 
m

z Peα  are given by the dashed lines. The 

curves corresponding to developing profile are plotted as a function of the rescaled 

Damköhler number (axial position dependent), *Da , given by Eq.(4.20). The curves for 

fully developed profile are plotted in terms of the Damköhler number, Da  (not position 

dependent). This example refers to laminar flow inside a circular channel with small aspect 

ratio. 

 

 

 

Table 4.1: Values of coefficients in Eqs.(4.17) for both flow profiles and geometries and 

respective concentration profile entry length. 

Geometry 
Flow 

profile 
b  2

1,λ σ
∞

 

m
z Peα

 

Kinetic 

control 

Mass transfer 

control 

Plates 
Plug 1 3  2.4674 0.0873 0.0523 

Laminar 17 35  1.8853 0.0948 0.0699 

Circular 

channel 

Plug 1 4  2.8915 0.0491 0.0381 

Laminar 11 24  1.8283 0.1063 0.1021 
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4.3.1.b Degree of mass transfer control in a fully developed concentration profile 

 

In this limit, Eq.(4.12) reduces to 

( )

2
1

1
Da

λ

σ θ
=

−
.          (4.16) 

For a first-order wall reaction, the previous approximations to the first eigenvalue given by 

Eqs.(4.14) can be used to obtain: 

b Daθ =     (kinetic control, 0Da → )   (4.17a) 

( )

2 2
1, 1,

2
1 ~ 1

1

Da

DaDa

λ λ
θ

σ σ

∞ ∞
= − −

+

 (mass transfer control, Da → ∞ ).  (4.17b) 

The degree of mass transfer control changes from ~ Daθ  in kinetic control to ~1 1 Daθ −  in 

the mass transfer controlled regime. For delimitation of the two main regimes, the limits of 

0θ →  and 1θ →  are enough, however for all values of Da  the boundaries can be evaluated 

by 

2
1,~

1
Da

λ θ

σ θ

∞  
 

− 
,         (4.18) 

once the approximate uniformly valid dependence given by Eq.(2.14) is used. Obviously, this is 

a very simple empirical correlation which respects the limiting trends, but is more exact in the 

mass transfer controlled limit, as more information from Eq.(4.17b) is present. When 0Da → , 

the coefficient should correct to 1/ b . Nevertheless, ( )
2

1, ~ 1 ~ 1b Oλ σ
∞

 for the geometries and 

velocity profiles studied as can be seen in Table 4.1. Comparing the values for the coefficients 

in the previous criteria, we can see that for the same θ , the possible Da  values are bounded 

between laminar (lower limit) and plug (upper limit) flows. 

For ~1Da  the correlation in (4.18) reasonably describes numerical results. In Figure 4.2, the 

set of curves corresponding to fully developed conditions include correlation (4.18) (full line) 

and numerically calculated results with gPROMS® (dashed lines) for laminar flow inside a 

circular channel. The values of θ  are plotted as a function of Da  for two values of the Graetz 

parameter. Increasing 
m

z Peα  ( 0.1> ) improves the agreement with Eq.(4.18) as the profile 

becomes more developed. In the kinetic controlled limit, this criterion is slightly conservative. 
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4.3.2 Developing concentration profile 

 

When 1
m

Pe zα >> , Lévêque’s solution must be used to approximate the concentration profile 

as described in previous sections. The minimum values of the Graetz parameter for which the 

following results apply are presented in Table 4.1 and are derived in section 4.3.2.c. 

 

4.3.2.a Degree of mass transfer control when the profile is developing 

 

For first-order wall reaction, exact as well as approximate solutions have been presented 

(Chapter 2). When reaction kinetics is the rate limiting step, the results for surface and mixing-

cup concentration in the limit of small Da  are introduced into Eq.(4.11) to yield 

( )
2

~ ~ 1.1284 *
m

z
z Da Da

Pe
θ

απ
   (plug-flow, * 0Da → )  (4.19a) 

( )
( )

1 3
2/3

,max

3
~ ~ 1.5361 *

2 3 2
m

z
z Da Da

Pe
θ

α

 
  Γ  

 (laminar flow, * 0Da → ). (4.19b) 

Note that in Eqs.(4.19) we have defined the rescaled Damköhler number in terms of a variable 

axial length scale ẑ  ( ˆz z L= ): 

*
q

m

z
Da Da

Peα

 
=  

 
     (plug-flow)   (4.20a) 

,max

*
2

q

m

z
Da Da

Peα

 
=   

 
    (laminar flow),   (4.20b) 

where 1/ 2q =  for plug-flow and 1/ 3q =  for laminar flow. In terms of this variable, the 

asymptote presents the same trend observed in fully developed conditions (where there is no 

effect of the axial distance, 0q = ): ~ *Daθ . 

In the external mass transfer limited regime, introducing the results for the conversion profile 

(Chapter 2) and expanding for large Da : 

( )
1 0.5642

~ 1 1
*

m
Pe

z
z DaDa

α
θ

π
− = −   (plug-flow, *Da → ∞ )  (4.21a) 

( )
( )

1/31/3
,max23 0.5384

~ 1 1
1 3 *

m
Pe

z
Da z Da

α
θ

 
− = − 

Γ  
 (laminar flow, *Da → ∞ ), (4.21b) 

with the same definition from Eqs.(4.20). 
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By analogy with Eq.(4.18), correlations for all values of *Da  are of the form 

( )

1
~

1 1 *Da

θ

π+

     (plug-flow)   (4.22a) 

1
~

1 0.53837 *Da
θ

+
     (laminar flow).   (4.22b) 

Again Eq.(4.22) include more information from (4.21) than it does from (4.19), but it is 

acceptable to describe the * ~1Da  range, as shown in Figure 4.2. The dashed lines for 

10
m

Pe zα >  represent numerical results obtained with gPROMS® for laminar flow inside a 

circular channel, which agree reasonably with the analytical prediction in Eqs.(4.22) (full line). 

The transition between both sets of curves (at 0.1
m

z Peα = ) will be detailed in section 4.3.2.c. 

 

4.3.2.b Interpretation of the degree of mass transport control in terms of time constants 

 

Generically, we can say that for any degree of development of the profile, correlations for θ  are 

of the following form: 

*
~

1 *

Da

Da
θ

+
.          (4.23) 

This differs from the actual results by coefficients which are around unity and includes the ones 

in fully developed profile conditions, since in that limit: *Da Da= . We have defined the 

rescaled Damköhler number as the ratio of the effective characteristic time for transverse 

diffusion to the one for reaction. Therefore, in terms of time constants 

*
,

*
,

~ transv diff

rxn transv diff

τ
θ

τ τ+
, 

i.e. θ  is the fraction of the time constant for the overall mass transfer-reaction process allocated 

to transport across the transverse length over which significant variation of concentration takes 

place. As discussed in section 4.2.3, *
,transv diff

τ  is defined as an average of the characteristic 

lengths in the channel and catalytic coating domains, which may be much smaller than a  or 
w

t  

if external and/or internal concentration boundary layers exist. This confirms our initial scaling 

analysis for the limits of control by slow mass transfer ( *
transv diff rxn

τ τ>> ) or slow reaction 

( *
rxn transv diff

τ τ>> ), now supported on a more detailed analysis of the problem. 

 

 

 



CHAPTER 4 

160 

4.3.2.c Criteria for concentration profile development from θ  curves 

 

The numerical results for 0.1
m

z Peα =  are plotted for both developing and fully developed 

profile conditions in Figure 4.2, for the case of laminar flow inside a circular channel. It is 

possible to observe that as long as this transition is well identified, our correlations are able to 

describe correctly both limits and therefore all the values of the Graetz parameter. 

Criteria for concentration profile development can be obtained from the intersection of the fully 

developed and developing asymptotes for 0Da →  and Da → ∞  above detailed (for the same 

θ ). Using Eqs.(4.17a) and (4.19), the transition values at kinetic control are obtained: 

( )
2

4 3m

z

Pe S

π

α
=

+

    (plug-flow, 0Da → )   (4.24a) 

3

,max

9 4
0.5518

7 5
m

z

Pe S Sα

 
= − 

+ + 
  (laminar flow, 0Da → ).  (4.24b) 

 

Similarly from Eqs.(4.17) and (4.21), in mass transfer controlled conditions: 

2

4
1,m

z

Pe

σ

α π λ
∞

=     (plug-flow, Da → ∞ )   (4.25a) 

3

2
,max 1,

0.3121
m

z

Pe

σ

α λ
∞

 
=   

 
   (laminar flow, Da → ∞ ).  (4.25b) 

The results for the concentration profile development length are given in Table 4.1. According 

to this calculation, the transition from fully developed to developing occurs around the same 

values for Dirichlet and Neumann boundary conditions (very weak dependence on Da ). This 

calculation method was also considered in Chapter 3. 

 

4.3.3 Iso-θ  curves in the 
m

Da Pe zα−  diagram 

 

The previous limits can also be correlated in a single expression for all values of Graetz’s 

parameters as criteria for kinetic and mass transfer controlled limits. An empirical expression 

that matches satisfactorily the asymptotes could be a generic power law addition. This 

procedure yields the following boundaries: 
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(a) kinetic control ( 0θ → , for all values of 
m

Pe zα ) 

1/

1

1 2

n
n

m

n

Pe
Da

b z

αθ π

θ

  
 = +   −    

   (plug flow, ~ 2n )  (4.26a) 

1/3

,max1
0.8202

1

n
n

mn

n

Pe
Da

b z

αθ

θ

  
= +  

−    

  (laminar flow, ~ 4n )  (4.26b) 

 

(b) mass transfer control ( 1θ → , for all values of 
m

Pe zα ) 

1/
2

1, 1

1

n
n n

m
Pe

Da
z

λ αθ

θ σ π

∞

    
 = +      −      

  (plug flow, ~ 2n )  (4.27a) 

1/
/32

1, ,max0.6783
1

n
n n

mn
Pe

Da
z

λ αθ

θ σ

∞

    
 = +    −     

 (laminar flow, ~ 4n )  (4.27b) 

 

(c) mixed control ( 0 1θ< < , for all values of 
m

Pe zα ) 

For * ~1Da , either correlation (4.26) or (4.27) can be used, as mentioned in previous sections. 

 

The values of b  and 2
1,λ σ

∞
 can be found in Table 4.1, and we will take 2n =  for plug flow 

and 4n =  for laminar flow, even though other choices around these values do not affect the 

agreement with numerical results significantly. However, since the change between asymptotes 

becomes sharper when n  increases, it is possible the transition to be more abrupt for laminar 

flow, than for plug flow.  

For specified values of Da  and a distribution of the axial coordinate 
m

z Peα , the model can 

be solved numerically (simulated with gPROMS®) and a value for θ  calculated from Eq.(4.11). 

In Figure 4.3 and Figure 4.4, we compare those results as a function of 
m

z Peα  for several 

constantDa =  curves, with the predictions from Eqs.(4.26) and (4.27). 

Eqs.(4.26) and (4.27) provide expressions of the type ( ),
m

Da Da Pe zα θ= , which for given 

values of the degree of mass transport control are the boundaries for operating regimes in the 

m
Da Pe zα−  diagram (Figure 4.5). The transition between developing and fully developed 

profile calculated in the previous section is also plotted. Note that Eqs.(4.26) and (4.27) could 

be as easily written explicitly for 
m

Pe zα . 
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Figure 4.3: Degree of mass transport control θ  for plug flow inside a circular channel. 

Numerical and analytical results (Eqs.(4.26)-(4.27)) are plotted as a function of the Graetz 

parameter ( 
m

Pe zα ) for several values of the Damköhler number Da . 

 

 

(a) 

Figure 4.4: Degree of mass transport control θ  for laminar flow inside a circular channel. 

Numerical and analytical curves are plotted as a function of the Graetz parameter 

( 
m

Pe zα ) for several values of the Damköhler number Da . (a) Correlation (4.26) 

describes the low θ  asymptote. 
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(b) 

Figure 4.4: Degree of mass transport control θ  for laminar flow inside a circular channel. 

Numerical (dashed) and analytical (full) curves are plotted as a function of the Graetz 

parameter (
m

Pe zα ) for several values of the Damköhler number Da . (b) For θ  close 

to unity, correlation (4.27) is appropriate. 

 

4.4 COMPARISON WITH PREVIOUS CRITERIA IN THE LITERATURE 

 

Damköhler (1937) provides order of magnitude criteria for when conversion is solely 

determined by transport mechanisms or reaction: 

0.1II
Da ≤   reaction rate controlling      (4.28a) 

100II
Da ≥   diffusion rate transverse to the flow controlling   (4.28b) 

0.1 100II
Da< <  both reaction and diffusion rates are controlling,   (4.28c) 

where II

surf
Da k a D=  is the second Damköhler number. The values have been estimated for 

plug-flow in a cylindrical tube with first-order reaction occurring at the wall, though it is 

recognised that exact numerical values would require further calculation. Moreover, the 

controlling regimes are related exclusively with the magnitude of II
Da . For parabolic velocity 

profile in a cylindrical tube, the limiting behaviour at diffusional control is different, namely 

conversion is lower in this case and concentration annulment near the wall is reached at lower 

II
Da . Obviously, Eq.(4.28) reproduces the scaling laws (in terms of II

Da or Da  with 

effectiveness factor around unity) for fully developed concentration profile and the values 

chosen are sensible when compared with Eqs.(4.17) and (4.18). 
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Figure 4.5:  
m

Da Pe zα−  diagram for laminar flow inside a circular channel. The boundaries 

for kinetic and mass transfer controlled regimes are plotted for several values of the degree 

of mass transport control. The values of the Graetz parameter for which the concentration 

profile can be considered fully developed is also plotted (dashed line). The dashed lines 

−× −  refer to numerically calculated results extracted from Berger and Kapteijn (2007) for 

the same values of their criterion for kinetic control 
k

∆  (0.05, 0.10 and 0.50). The dashed 

line − ∗ −  represents the criterion for attaining mass transfer control involving the 

calculation of Sherwood number with 4 terms from the Graetz series solution (Balakotaiah 

et al. 2002). Numerical results from Joshi et al. (2010) for 0.90θ =  (CO oxidation) are 

also plotted ( − −△ ). 

 

 

For linear kinetics, the criteria in terms of θ  is related with Sh  number. Hayes and 

Kolaczkowski (1994) propose a criterion for mass transfer control in terms of a ratio between 

the concentration at the wall and the average radial concentration. For a first-order reaction, this 

dimensionless concentration ratio was plotted as a function of the Damköhler number in Robin 

boundary condition at the wall ( Da ). The numerical simulations were done in a wide 

parametric range ( 31 2 10Da< < ), however, only under conditions of fully developed 

concentration profile (where an uniform value of Sherwood number could be used). The 

Sherwood number numerically calculated from a 2D model ( Sh ) was compared with the one 

which would give the same conversion profile if wall concentration annulment occurred (
app

Sh ). 

This is given as a function of Da , and since  

0.01
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( )

1

1
1

app

app app

Sh
Sh Sh Sh

Da S

−

 
= − >  + 

, 

the actual (theoretical) mass transfer coefficient is higher than the apparent one. Both curves 

approach as Da  increases, and it was considered that for 2 100Da >  the results were similar, 

which corresponded to 0.03
wall

c c <  (their criterion for mass transfer control). Naturally, the 

setting of this boundary must be recognised as arbitrary, but it is possible to read from their 

wall
c c Da−  plot the value of Da  required to achieve mass transfer control for specified 

values of ( )1 θ− . Since these results are for fully developed concentration profile conditions, 

they can be compared with our correlation Eq.(4.18) (Figure 4.6). 

Walter et al. (2005) tested the presence of mass transfer limitations in the oxidation of isoprene. 

They excluded these limitations based on the criterion from Damköhler (1937) (Eqs.(4.28)) and 

extrapolated the boundary limit of Hayes and Kolaczkowski (1994) to the kinetic regime: 

0.97
wall

c c > . This required the simulation of concentration profiles at a given axial position 

(they report results for ˆ 500z mµ= ) and sets of experiments with different inert gases. Based on 

their information, we calculate the two dimensionless parameters as being: 0.021Da =  and 

0.026
m

Peα = . At the exit (20 mm), the profile is fully developed and the value of θ  is given 

e.g. by Eq.(4.17a) as being ~ 0.01θ  ( ~ 0.99
wall

c c ). For shorter axial distances, the Graetz 

parameter will increase, locating the operating point in a curve with θ  closer to zero (conditions 

even further controlled by kinetics). 

The kinetic study of ethanol reforming from Görke et al. (2009) was determined not to be 

falsified by external mass transfer by modifying the criterion of Mears (for internal diffusion) as 

,

0.05EtOH cat

g EtOH in ext

V

k c S

 
< 

 

R
, 

where is ,EtOH in
c  is the inlet concentration of ethanol, 

EtOH
R  is the effective (measured) reaction 

rate, 
cat ext

V S  is the volume of catalyst per interfacial area and 
g

k  is a mass transfer coefficient. 

If for scaling purposes we normalize the reaction rate by its (maximum) value at inlet conditions 

( ~
EtOH in
R R ), the criterion can be rewritten as  

'
0.05

'

Da

Sh
<  

where '
g

Sh k a D= , ( ), ,'
in surf EtOH in

Da a D c= R , ,in surf in cat ext
V S=R R  and a  is an appropriate 

scale for transverse length (we take it as being half of the hydrodynamic diameter of the square 

microchannel). This can be approximated to our criterion as  
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Figure 4.6: Ratio between wall concentration and mixing-cup concentration as a function of 

Damköhler number in fully developed concentration profile conditions. Numerical 

data from Hayes and Kolaczkowski (1994) (full line) and correlation (4.18) (dashed line) 

are shown for laminar flow inside a circular channel with first-order wall reaction. 

 

 

 

Figure 4.7: Conversion of reactant 
R

X  as a function of 
m

Peα  for fixed values of θ  in kinetic 

control. The correlations from Berger and Kapteijn (2007) for negligible radial gradients in 

fully developed profile for laminar flow inside a circular channel with first-order wall 

reaction are also presented. 
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'
0.05

' 1

Da

Sh

θ

θ
= <

−
 

which for low θ , simplifies to 0.05θ < . They calculated the values for their criterion at 650ºC 

and the highest value obtained for their experimental conditions was 0.011. From their results 

for the mass transfer coefficient, we calculate the maximum value of ' ~ 0.02Da . Using 

Eqs.(4.17a) or (4.26b), for a square microchannel (since ~ 1S  from its relationship with 

ext ch
a S V , we take value of b  for a circular channel, 11 24 ) we calculate 0.01θ = , which 

reproduces their result. 

Balakotaiah and West (2002) also use the same concentration ratio expressed as 

( ) ( )

1
1

1 1
wall

c

c S Da Sh P
θ= − =

+ +
       (4.29) 

where ~
m

P Peα . Then, they arbitrarily take as a practical criterion for mass transfer control: 

( ) ( )1 10S Da Sh P+ ≥ , which corresponds to 0.91θ ≥ . Even though a criterion for kinetic 

control is given, ( ) ( )1 0.1S Da Sh P+ ≤  ( 0.09θ ≤ ), the Sh  number is also a function of Da  

for finite reaction rates. The calculation of Sherwood number is performed from Graetz series 

solution at Dirichlet wall condition, and the first 4 terms are given for some common 

geometries. Unfortunately a large number of terms may need to be retained if developing profile 

and transition to fully developed profile conditions are to be described accurately. Several 

approximations are reviewed and discussed to make the procedure more convenient and include 

also the case of finite Schmidt number, but they result in more complicated (non explicit) 

dependences on P  than the one presented in Eq.(4.27). In this case, for 0.95θ =  and Sh  

calculated from the 4-terms Graetz series, the Da P−  boundary ( − ∗ − ) is plotted in Figure 4.5. 

It is clear that regime delimitation from the existing Sh  number correlations or given by Graetz 

series solution is not adequate for developing or near developed profile conditions. Moreover, 

this does not allow direct calculation for example, of the duct length above which the process 

can be considered diffusionally limited or below which kinetic control prevails. The same 

difficulty holds in the analysis of the feed flowrate effect, for given kinetic parameters, physical 

properties, pressure and temperature. 

Gervais and Jensen (2006) determined the transition point between fully developed and 

developing regimes in the Dirichlet limit, for laminar flow between parallel plates. The value 

reported by those authors ( 0.24
m

z Peα = ) differs from the one in Table 4.1 for the same 

conditions (0.07). This is due to the different criteria adopted as discussed in Chapter 3. 

Berger and Kapteijn (2007) present an extensive numerical study to derive a criterion for 

neglecting radial concentration gradients in a coated wall reactor. A channel with several shapes 

(cylindrical, annular, square, rectangular and triangular) was considered, where an n th order 

reaction occurred. The presence of mass transfer limitations was assessed comparing the results 
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from the 2D simulations with the pseudo-homogeneous solution in kinetic control and plug-

flow. This was measured by two criteria: (a) relative deviation of conversion calculated from the 

two models, 
X

∆ ; and (b) relative deviation of the reaction rate constant that would be 

calculated from the conversion values as if radial gradients were absent, 
k

∆ . Contours for 

several values of 
X

∆  and 
k

∆  ( 0.05≥ ) are presented (for first-order reaction at the exit of a 

cylindrical tube) in diagrams with axes related to the model parameters: Da  and 
m

Da Peα . 

The criterion in terms of conversion is less strict for 
m

Da Peα>  than 
k

∆ , due to the approach 

of full conversion. For 0.1
m

Da Peα> , the criterion 
k

∆  becomes independent of 
m

Da Peα . 

Even though the criteria are different, we take the results from Berger and Kapteijn (2007) and 

compare them for the same values of 
k

θ∆ = . As shown in Figure 4.5 (dashed lines −× − ), the 

agreement is very reasonable. They also present expressions in terms of observable quantities 

(namely, conversion 
R

X ) so that 0.05
k

∆ < , valid for 0.10 0.80
R

X< < : 

0.23

0.16R

m

X
Peα

<
+

  (circular channel, first-order wall reaction),  (4.30a) 

0.22
1 exp

R

m

X
Peα

 −
< −  

 
  (circular channel, first-order wall reaction).  (4.30b) 

Eqs.(4.30) are a useful but conservative criterion as they correspond to the case of fully 

developed profile. We compare these two expressions with conversion calculated as a function 

of the Graetz parameter for Da  values so that θ  is fixed (between 0.02 and 0.05), according to 

Eq.(4.26b) (Figure 4.7). Both correlations (4.30) are practically identical and the results are 

close to our prediction for ~ 0.04θ  and 1
m

Peα < . 

Joshi et al. (2010) present a comprehensive study of the spectrum of characteristic regimes 

observed in a catalytic monolith. Increasing the temperature, the monolith operation may change 

from kinetically controlled to internal, and then external, mass transfer limited. Transition 

regimes between them are naturally present. Criteria were again presented in terms of 

concentration ratios, or equivalently in terms of the resistances to reaction and mass transfer, 

which are plotted as a function of the monolith temperature. For a first-order reaction it writes 

as: 0.09θ ≤  and 0.9η ≥  for kinetic regime; 0.9θ ≥  and 0.1η ≤  for external diffusional 

regime; and, 0.09θ ≤  and 0.1η ≤  for internal diffusional regime. Then, for a given system (e.g. 

CO oxidation), numerical simulations were performed and the boundaries between regimes 

plotted in temperature-X diagrams (X can be washcoat diffusivity, thickness, catalyst loading or 

channel length and diameter). Other systems or criteria require a whole new set of simulations 

over large parametric ranges. Moreover, with their standard set of parameters, simulations are in 

fully developed concentration profile conditions in most part of the channel. The effect of the 

channel’s length includes some results in developing profile range, as shown in Figure 4.5. 
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4.5 INLET EFFECTS 

 

The remarks in section 4.2.1 concerning the negligible influence of axial diffusion referred to a 

global scale in this direction (the channel’s length L ). Local scales with respect to the 

transverse coordinate were examined in sections 2.3.1 and 4.2.2. In this section, we look at inner 

regions in the axial direction, which will include axial diffusion in their description. 

In section 4.2.1, several convection-diffusion regimes were identified as reductions of the most 

general case, when ( )
2 ~ ~ 1

m
Pe Oα α . In practice, longitudinal diffusive transport is required 

to describe short wide channels, and in this case the aspect ratio α  ( ~1) must be considered as 

an independent parameter (and not only associated with 
m

Pe ). This discussion was limited to 

the effect of different magnitude relationships between the dimensionless parameters in the 

mass balance. However, the inlet boundary condition (of Danckwerts’ type) is also affected 

( )( )1m
Pec

v r c
z α

∂
= −

∂
  (at the channel inlet, 0z = ).    (4.31) 

At outer axial and transverse scales, Eq.(4.31) reduces to 

( ),0 1c r = ,    when 1
ax m

Pe Pe α= >>  or    (4.32a) 

( ),0 0c r z∂ ∂ = ,   when 1
ax

Pe << .      (4.32b) 

Eq.(4.31) maintains its structure if ( )~ 1
ax

Pe O . At the channel’s ‘closed’ outlet, the boundary 

condition is independent of parameter, as in (4.32b). 

 

4.5.1 Local (inner) scaling in the axial and radial directions 

 

The scaling analysis in section 2.3.1 and 4.2.2 searched for the existence of transverse boundary 

layers (i.e. in r ). Here, we admit that inner regions in the axial direction also exist and look for 

distinguished limits. In this case, the independent variables in Eqs.(2.1) are stretched around 

( )0 0,r z  as 

0

R

r r
R

δ
=
∓

 in the transverse direction      (4.33) 

0

Z

z z
Z

δ
=
∓

 in the axial direction,       (4.34) 
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for simplicity, r  is the transverse coordinate for both circular and planar channels. The 

thickness of an eventual axial boundary layer is 
Z

δ  (in dimensional form given by 
Z

Lδ ). This 

region is governed by 

( )

2 22 2

2 2
R R

m

Z Z

c c c
Pe v R

R Z Z

δ δ
α α

δ δ

 ∂ ∂ ∂
+ = 

∂ ∂ ∂ 
   (parallel plates)  (4.35a) 

( )

2 22 2

2 21
R R R

m

R Z Z

c c c c
Pe v R

R R R Z Z

δ δ δ
α α

δ δ δ

 ∂ ∂ ∂ ∂
− + = 

∂ − ∂ ∂ ∂ 
 (circular channel), (4.35b) 

where as usual, ( )v R  is given by 

( )
( )3 1 laminar flow

2

1 plug-flow

R

R

R
S R

v R

δ
δ

  
+ −  

=  



.      (4.36) 

In the simpler cases, points ( )0 0,r z  near the boundary of the domain are susceptible of 

presenting boundary layers if diffusive (second-order) processes are absent at global scale 

leading-order behaviour. It is possible to establish dominant balances from (4.35), thus the 

transverse diffusion-convection description that we have found previously in section 4.2.2 

occurs when 

( )

22

~ 1R R

m

Z Z

Pe v R
δ δ

α α
δ δ

 
>>  

 
,       (4.37) 

where the scale for velocity profile is ( )v R , the linear leading order term in Eq.(4.36). This 

relationship implies that at least convection is dominant at the outer scale, compared to radial 

diffusion, 1
m

Peα >> . It is not possible to independently determine both thicknesses in (4.37), 

but ( )
2 ,

Z R R
v Rδ δ α δ>> . When ( )~ 1

Z
Oδ , the previous results are obtained.  

 

 

4.5.1.a Inlet boundary layer 

 

A boundary layer next to 0z =  is expected if the outer channel equation is generally not able to 

fulfil both axial boundary conditions (it can be shown that at 1z =  no distinguished limit can be 

obtained). Consider the presence of significant reactant consumption near the inlet at an outer 

transverse scale. Then, the possible dominant balances are extracted from inner equations (4.35) 

with ~ 1
R

δ . Moreover, Danckwerts’ inlet condition (4.31) rescales according to Eqs.(4.33) and 

(4.34) as 
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( )1m

Z

Pec
c

Z
δ

α

∂
= −

∂
    (at 0Z =  for plug-flow)  (4.38a) 

( ) ( )3 1 1
2

m R

Z R

Pe Rc
S R c

Z

δ
δ δ

α

∂  
= + − − 

∂  
 (at 0Z =  for laminar flow).  (4.38b) 

The following structures for a solution valid at ( )ˆ ~r O a  are possible : 

(a) Transverse and axial diffusion balance in an inner layer with thickness comparable to the 

channel radius in a small aspect ratio channel ( ~
Z

δ α ), when 1
m

Pe << . This makes the 

LHS term in (4.38) dominant and transverse boundary conditions are still able to be 

fulfilled ( ~ 1
R

δ ). 

(b) Axial diffusion dominates with convection in region with ~
Z m

Peδ α  for 1
m

Pe >> . 

Although Eq.(4.38) must be obeyed without further simplification, in general no conditions 

at the channel wall can be fulfilled. In those cases a transverse boundary layer with 1
R

δ <<  

arises, that should match the solution obtained here (outer transverse domain) as R → ∞ . 

This case will be detailed in the next section. 

(c) Since axial diffusion must be retained to fulfil boundary and matching conditions, the 

remaining possibility is solving Eqs.(4.35) with ~
Z m

Peδ α , which cannot be avoided 

when ~ 1
m

Pe  and 1α << . No transverse boundary layers exist, but the extended Graetz 

problem has to be solved in a semi-infinite domain. 

 

 

4.5.1.b Inner region at the channel-catalytic coating interface near the inlet ( 0z =  and 1r = ) 

 

The general concentration profile (for any magnitude of the reaction constant time) near the 

inlet at high 
m

Pe  is composed by two spatial regions of distinct nature: an axial boundary layer 

at the outer transverse scale (from the dominant balance defined in (b) in the previous section) 

and a transverse boundary layer near the interface (superposed with the inner axial region), 

which we describe next. 

In Eqs.(4.35) we consider a transverse diffusion-convection balance that does not reproduce 

previously identified regimes. This dominance is expressed by 

2
~Z

m

R

Pe
δ

α
δ

      (plug flow)   (4.39a) 

( )3
~ 3Z

m

R

S Pe
δ

α
δ

+       (laminar flow),   (4.39b) 
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Scaling relationships (4.39) relate 
R

δ  and 
Z

δ . Even though this is in agreement with the first 

two terms in (4.37), previously we have ignored axial diffusion, which can be done when: 

Z m
Peδ α>>  (plug flow) and ( )3

Z m R
S Peδ α δ >> +   (laminar flow), i.e. when the thickness 

of the axial boundary layer near the interface is much larger than the one in the outer transverse 

scale (when R → ∞ ). For an axial boundary layer, this case does not have sufficient structure to 

fulfil conditions at 0R →  and R → ∞ . 

To determine all the inner length scales, we employ an additional balance. A distinguished limit 

may be obtained if one demands both terms in the inlet (Danckwerts’) boundary condition to 

balance yielding 

1
~

Z

m ax
Pe Pe

α
δ =      (plug-flow)   (4.40a) 

( )
~

3Z R

m
S Pe

α
δ δ

+
     (laminar flow),   (4.40b) 

which means that axial diffusion must be included in the previous balance, if a distinct solution 

exists. The scaling from Eqs.(4.39) to(4.40) defines inner regions near 0z =  and 1r = , with the 

following characteristic lengths  ( 1
m

Pe >> ): 

1
~

Z

m ax
Pe Pe

α
δ =   and 

1
~

R

m
Pe

δ    (plug-flow)   (4.41) 

~
Z

axm
PePe

α α
δ =   and 

1
~

R

m
Pe

δ   (laminar flow).   (4.42) 

The ( )3S +  factor in Eq.(4.42) was omitted for simplicity. The rescaled equations by these 

factors translate the penetration of reactant on a small fraction of the channel starting at the 

interface with the catalytic coating. For 
Z

z δ>> , these inlet effects disappear and for 1
m

Pe >> , 

this happens first in all of the transverse scale for plug flow or in the channel’s core for laminar 

flow (near the wall, the axial boundary layer is thicker). The scaling for this region is relevant 

when there is an ( )1O  concentration drop near the wall and at the inlet. We now discuss the 

relationship of this analysis with the reaction time constant. 

 

4.5.2 Rescaled Damköhler number for inlet effects 

 

We have seen that at the inlet, due to axial diffusion effects, the transverse scale over which 

concentration changes from the channel’s core ( 1c = ) to the value at the surface ( 1
wall

c < ) is 

different from the one predicted in section 4.2.2. 
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For purpose of regime definition, these scales should be included into the rescaled Damköhler 

number defined in Eq.(4.7), 

( )
*

surf surf

m

a k k
Da

D Pe u

η η
= =     (plug-flow)   (4.43) 

( )
*

surf surf

m

m

a k k
Da Pe

uD Pe

η η
= =    (laminar flow).   (4.44) 

We note that since 1
m

Pe >> , for the same values of kinetic constant and average velocity, *Da  

is much higher for laminar flow than it is for plug-flow. Therefore, inlet mass transfer effects 

are much more severe for a parabolic velocity profile. Note that ‘inlet’ refers to the point where 

the flow meets the catalyst and this may happen in an intermediate section of the microchannel, 

where the flow is already fully developed. Examples of coatings at the reactor midsection 

include combustion channels in microdevices for steam reforming, e.g. Moreno et al. (2010). 

We simulated the inlet concentration profile in a circular channel with plug and laminar flows 

with gPROMS®. From these results, the degree of mass transfer control θ  could be calculated 

according to (4.11). This is represented in Figure 4.8a as a function of Da . The same values of 

θ  are plotted in Figure 4.8b against *Da , defined in (4.43) and (4.44). It is possible to observe 

that this scaling brings the curves together, regardless of the flow profile. We note that the 

( )*Daθ  dependence can be described by an expression of the form of (4.23), apart from 

specific numerical coefficients.  

The reduced problem at the inlet section includes the wall boundary condition (4.5) and the 

different mass transfer-reaction regimes can be defined as in (4.8)-(4.10). In the case of 

significant consumption of reactant, the penetration of concentration gradients near the inlet 

occurs in a region with ‘area’: 

( )( )
2

2
~

radial axial R Z

m

a
a L

Pe
δ δ=ℓ ℓ  (plug flow) and  

( )( )
2

~
radial axial R Z

m

a
a L

Pe
δ δ=ℓ ℓ  (laminar flow). 

For 1
m

Pe >> , this area is larger for laminar flow.  

A simple estimate for Sherwood number is obtained by replacing the mass transfer coefficient 

by ~
m film

k D ℓ , where 
film
ℓ  is the thickness according to the ‘film model’ (here taken as 

R
a δ ). 

Therefore, near the inlet: 

( )
1

(plug-flow)
~ 1 ~

(laminar flow)

m

R

m

Pe
Sh S

Pe
δ

−


+ 


  for 0
Z

z δ< < .   (4.45). 
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    (a) 

 

 

    (b) 

Figure 4.8:  Degree of mass transfer control θ  at the inlet of a circular channel as a function of 

(a) the Damköhler number evaluated with global scales, Eq.(4.4); and (b) the 

rescaled Damköhler number defined in Eqs.(4.43) and (4.44). Numerical simulations 

were performed for 0.01α =  and 100
m

Pe = . 
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Figure 4.9: Inlet effects in the Da  - 
m

Peα  diagram. For 0.01α = , the lines for fixed values of 

*Da  are plotted according to (4.44). The boundaries of the outer domain ( ~1z ) for 

0.9θ =  and 0.99θ =  are also plotted, given by Eq.(4.27b). Laminar flow inside a circular 

channel was considered. 

 

 

 

These dependencies are different to the ones predicted by Lévêque’s analysis, and from the one 

by Gupta et al. (2001), where for laminar flow 2/3~
m

Sh Pe . Other scaling analysis are available 

but don’t predict the same area of influence for this effect, e.g. Leal (2007) overestimates the 

axial length of this region ( ~
axial

aℓ ) and neglects axial diffusion. Thus, the structure of these 

inner regions is different. 

Nevertheless, we are interested in the influence of these effects on the definition of the mass 

transfer – reaction regimes. In particular, for large 
m

Pe  significant decrease of concentration in 

the aforementioned boundary layer occurs at the inlet mass transfer controlled regime defined 

generically by * 1Da >> . In a 
m

Da Peα−  diagram, this boundary can be plotted for a given 

value of α  ( 0.01= ), as shown in Figure 4.9. Concentration at the channel’s surface reaches 

annulment for approximately * ~ 10Da , while downstream wall concentration annulment is 

reached for lower Da  (less severe conditions). Examples of the nonuniform inlet transverse 

concentration profile for selected points in Figure 4.9 are shown in Figure 4.10.  
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It is possible to observe that the pairs of operating points lying in the same boundary present 

approximately the same surface concentration (and hence the same value of θ , since ~ 1c ). 

This confirms our scaling and proves the usefulness of the rescaled Damköhler number in 

analysing axial diffusion governed inner regions. 

 

 

 

  

  

  

Figure 4.10:  Inlet radial concentration profiles ( )c r  at several points of the 
m

Da Peα−  diagram 

plotted in Figure 4.9. 
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Nonuniform inlet transverse concentration profile can be included in the analytical solution of 

the outer profile. However, the influence of this effect on an averaged quantity, such as 

conversion, is expected to be modest. Therefore, the interest in this region should be explored in 

the context of local phenomena, such as ignition/extinction in nonisothermal problems, as 

discussed in the suggestions for future work presented in Chapter 7. 

 

4.6 CONCLUSIONS 

 

The analysis of mass transfer and reaction in microchannel reactors, and interpretation of 

experimental work depend strongly on the correct definition of kinetic and mass-transfer 

controlled regimes. The existing studies in the literature usually involve the arbitrary setting of a 

criterion (written here as the degree of mass transfer control θ ), and numerical calculations for 

a specified system are performed or simplified correlations are presented but in limited ranges. 

The approach presented in this chapter has some clear interesting advantages compared to what 

exists in the literature so far. We highlight the following features: 

• The presented criteria are able to describe developing profile conditions (when mass transfer 

is confined to a boundary layer near the wall) and the transition region close to developed 

profile; 

• The boundaries between regimes are given explicitly in terms of the dimensionless 

parameters (the Damköhler number Da  and Graetz’s parameter 
m

Pe zα ) and θ ; 

• When the criteria values are changed, it is not necessary to evaluate numerically the 

conversion or Sherwood number, or repeat calculations over large parameter ranges; and 

• Even though transition criteria for kinetic and mass transfer controlled regimes are of 

particular importance, the results are not limited to uniform wall flux or concentration 

boundary conditions (we have seen that results also apply for 0 1θ< <  when the rescaled 

Damköhler number *Da  is ~ 1 ). 

We have also shown that a 
m

Da Pe zα−  parametric map summarizes the behaviour of a 

microchannel with small aspect ratio and that criteria using dimensionless parameters should 

include the correct scale for diffusion in the channel.  

Finally, the effects related to the magnitude of axial diffusion near the inlet were considered. In 

particular:  

• a scaling analysis was formulated to understand the nature and location of this region; 

• the rescaled Damköhler number concept was extended to the inlet; and 

• the areas where this region of influence is significant were identified in a parametric map. 
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NOTATION 

 

a   radius of the circular channel or half-spacing between parallel plates 

n
A   th

n  integration constant 

b   coefficient defined in Eq.(4.15) 

c   bulk fluid concentration of reactant species  

c   reactant’s mixing-cup concentration of the reactant species 

in
c   inlet reactant concentration 

D   bulk fluid diffusivity 

*Da   rescaled Damköhler number 

k   intrinsic kinetic constant (with the reaction rate expressed per volume of washcoat) 

( )k
J x   Bessel function of the first kind (order k ) 

ℓ   characteristic length 

L   length of the channel 

LHS  left hand side 

( ), ,M a b z  confluent (Kummer’s) hypergeometric function 

n   exponent in Eqs.(4.26) and (4.27) 

m
Pe   transverse Peclet number 

ax
Pe   axial Peclet number 

r   dimensionless transverse coordinate 

R   dimensionless transverse coordinate rescaled by 
R

δ  

,in surf
R   reaction rate evaluated at inlet conditions, referred to catalyst surface area 

a
Re    Reynolds number based on characteristic length a  

RHS  right hand side 

S   shape parameter: 0=  for parallel plates; 1=  for circular channel 

ext
S   geometric area of the channel-washcoat surface 

Sc   Schmidt number 

Sh   Sherwood number 

( )u r   velocity profile inside the channel 

u   average velocity inside the channel 

( )v r   dimensionless velocity profile, normalized by average velocity 

coat
V   volume of the catalytic coating 

R
X   conversion of reactant 

n
w   th

n  weight 

z   dimensionless axial coordinate 

Z   dimensionless axial coordinate rescaled by 
Z

δ  
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Greek letters 

α   aspect ratio of the channel 

δ   thickness of the concentration boundary layer 

η   catalytic coating effectiveness factor 

n
ϕ   th

n  eigenfunction 

n
λ   th

n  eigenvalues 

µ   dynamic viscosity 

ρ   density of the fluid 

σ   shape/flow parameter, ( ) max1S u u+  

τ   time constant 

θ   degree of mass transfer control 

 

Superscript 

^  dimensional quantity 

 

Subscript 

∞   in the Dirichlet limit 

max   maximum (referred to maximum velocity) 

surf  channel – coating interface, per interface area 
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CHAPTER 

FIVE 
 

EFFECTIVENESS FACTOR 

FOR THIN CATALYTIC COATINGS 

5  

 

 

 

 

 

The classical theory of diffusion and reaction inside catalytic pellets, based on the effectiveness 

factor η  concept, is applied here to thin coatings supported on microchannels or nonporous 

pellets. We take advantage of a distinct geometrical characteristic in these systems to simplify 

the general problem. In particular, an approximate method for the evaluation of η  is proposed 

for linear and some nonlinear kinetics (sections 5.3), in uniform (section 5.4) and nonuniform 

(section 5.5) geometries. We also complement the analysis of the mass transfer-reaction regimes 

presented in Chapter 4. In section 5.6, we show that by incorporating the internal diffusion-

reaction behaviors, it is possible to identify by scaling arguments the controlling process which 

defines the maximum temperature for kinetic control and the minimum one for both channel 

and catalyst domains to be under mass transfer control. The previously presented results in 

Chapter 4 are written explicitly for the temperature of operation. Finally, we apply our analysis 

to a permeable catalytic coating, where intraparticular convection exists (section 5.7). 

 

5.1 INTRODUCTION 

 

As mentioned in Chapter 1, an attractive design concept in many reactor technologies is the one 

where a thin layer of catalyst is attached to an impermeable/inert support. This can be the 

surface of an inert nonporous pellet (the so called egg-shell catalysts) or the wall of a channel, 

through which a stream carrying the reactant flows. The latter case would correspond to the 

picture found in monoliths and microreactors, where a catalytic washcoat is used to increase the 

specific surface area without increasing pressure drop significantly, compared to the case of 

microchannel fixed bed reactors (Jensen 2001; Kapteijn et al. 2001; Schouten et al. 2002; Kiwi-

Minsker et al. 2005; Kolb et al. 2007; Rebrov et al. 2009b).  
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Concerning the former, Gavriilidis et al. (1992) showed that the optimal activity distribution for 

ethylene epoxidation was a thin layer at the external surface of the pellet. Both situations aim to 

reduce the internal mass transfer resistance and the fraction of unutilized catalyst.  In the case of 

structured reactors, the characteristic dimensions for external and internal mass transfer can be 

varied somewhat independently (Kreutzer et al. 2006). However, the modeling and design of 

these units has long being recognized to depend on the coupled analysis of both domains: 

channel and catalytic coating. The presence of internal diffusional limitations has also been 

described in many practical situations (Hayes et al. 1994; Leung et al. 1996; Groppi et al. 2001; 

Kapteijn et al. 2005; Tomasic et al. 2006; Kalluri et al. 2009; Mogalicherla et al. 2010; Santos et 

al. 2011; Scheuer et al. 2011), where large reaction rates and high temperatures prevail. 

The reaction-diffusion model for the catalytic coating has relied in the concept of the 

effectiveness factor η . This results from the averaging of the coating domain in the transverse 

direction. Successful approaches relying on the η  concept are employed with the expectation 

that both domains are decoupled, being the internal problem considered separately and if 

possible with minimum evaluation. The issue of the numerical effort associated with the 

calculation of η  should not be underestimated, despite the evolution in computational tools. In 

real scale applications, the complexity of the models has increased and the time allowed for 

solving them decreased. The effective reaction rate (calculated from the intrinsic reaction rate at 

surface conditions and η ) may have to be evaluated a huge number of times, especially if 

optimization is pursued. At the same time, faster simulators are required for real time control 

strategies. For these reasons, analytical or semi-analytical solutions for η  have been proposed 

for several geometries and kinetics. In general, some features are desired in an approximate 

calculation procedure: 

(a) Accurate solution at least for some classes of nonlinear kinetics. The actual form of the 

reaction rate expression can be very complex and the estimation of η  in these cases becomes 

more challenging. Nevertheless in some concentration ranges, ‘power-law’ kinetics or 

Langmuir-type expressions are reasonable fittings (Bouzek et al. 1996). Even in these cases, 

numerical solution may pose difficulties, especially when concentration tends to zero 

somewhere inside the catalyst. Keegan et al.  (2003) presented an approximation divided into 

two ranges of Thiele modulus and tested it for several kinetics. It is possible to observe that the 

error increases for low values of the reaction order, significant inhibition in Langmuir-

Hinshelwood kinetics, nonisothermal effects, and in intermediate values of Thiele modulus. 

(b) Satisfactory approximation for nonuniform geometries. The washcoat in a real channel is 

nonuniform. Most incorporation procedures result in accumulation of material in the corners of 

the channel, where the coating becomes thicker. The calculation of an area-averaged 

effectiveness factor in such geometries has to be carried out numerically. The best alternative to 

the complete two-dimensional calculation is the ‘slice method’ presented by Papadias et al. 
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(2000b). This was used to model isothermal kinetics in several real and idealized nonuniform 

washcoats (Papadias et al. 2000b; Hayes et al. 2004; Hayes et al. 2005). However, in some cases 

its application to nonlinear kinetics implies additional numerical evaluation and a reasonably 

high number of slices may be required. 

(c) Uniform description in the whole range of Thiele modulus. General solutions for arbitrary 

geometries and kinetics are often considered in the chemical and diffusional limits. The 

literature is profuse in normalizations based on these asymptotes. However, it is well known 

that the maximum error from the approximation is situated in the region where neither reaction 

nor mass transfer is controlling. Different descriptions depending on the value of a critical 

Thiele modulus are also not convenient. 

(d) Evaluation with minimum information or numerical effort. Complex fitting procedures for 

parameters characterizing shape are often found in the literature. Sometimes this is the result of 

perturbation procedures for small and high Thiele modulus. In the case of reaction 

nonlinearities, preliminary numerical evaluations are sometimes required (Hayes et al. 2005). 

In this work, we propose a different methodology for the calculation of the effectiveness factor 

in a catalytic coating, which on one hand avoids some of the disadvantages in current methods 

and on the other, improves existing ones. Our analysis is based on a typical geometrical feature 

of a catalytic coating supported on a wall: small thickness (
w

t ) compared to the characteristic 

distance for diffusion in the open channel ( a ). In fact, thin coatings are preferred for a number 

of reasons. Internal mass transfer limitations are greatly reduced and heat removal/supply is 

facilitated. Clogging and nonuniform deposition occur less frequently, e.g. preparation of 

polymer monoliths require walls to be thin (Podgornik et al. 2000) so that an uniform structure 

is obtained. Moreover, issues regarding the adherence of the coating to the surface may lead to 

a preference for thinner layers (Yu et al. 2005). Typical values of the ratio between the coating 

thickness and channel radius (characteristic dimension) are given in Table 5.1. Another 

characteristic of the channels where most catalysts are supported is the small radius-to-length 

ratio (α ). 

Advantage may be taken from these characteristics, namely in the simplification of the 2D or 

3D reaction-diffusion problem inside the catalytic body. In fact, the low values of ε  (
w

t a= ) 

are often used as a criterion for approximating the washcoat by a slab geometry. Groppi et al. 

(2001) finds this approximation acceptable if 50
w

a t > . This reduction of the actual geometry 

to an equivalent slab is common practice and is convenient for several reasons: the calculation 

(even if numerical) is easier and many exact and approximate solutions exist, inclusive for 

nonlinear kinetics. Even when non-uniformities in the washcoat have to be accounted for, the 

well-known results for slab geometry are employed as a part of the solution, e.g. in the ‘slice 

method’ from Papadias et al. (2000b) (see section 5.5 for details).  
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Table 5.1:  Range of values for the geometric parameters in a wall-coated channel (
w

t aε =

 and a Lα = ) from some examples in the literature (estimated). 

Reference Nature of coating and support w
t aε =  a Lα =  

Ouyang et al. (2005) 
Pt/Al2O3 coating on  

silicon microreactor 
0.008 - 0.02 0.006 

Yu et al. (2005) 
Cu/ZnO/Al2O3 coating in 

annular microreactor 
0.04 - 0.16 0.002 

Walter et al. (2005) 
V75Ti25Ox/Al2O3 washcoat on  

a semi elliptic channel 
0.03 - 0.12 0.009 

Germani et al. (2006) 
Pt/CeO2/Al2O3 coating in 

microchannels 
0.1 - 0.14 0.005 

Tomasic et al. (2006) 
Cu/ZSM5 zeolite on 

cordierite monolith 
0.35 - 1 0.01 

Görke et al. (2009) 
Rh/CeO2 coating on  

microstructured foil 
0.01 0.001 

Thomsen et al. (2009) γ-Al2O3 microchannel coating 0.07 - 0.13 0.008 

Rebrov et al. (2009a) 
Pd/TiO2 in fused silica  

capillary channel 
0.001 <<1 

Vita et al. (2010) 
Pt/CeO2 catalyst supported  

on a cordierite monolith 
0.06 - 0.11 0.095 

Mogalicherla et al. 

(2010) 

Pd/Al2O3 monolith  

with square channels 
0.011 - 0.063 0.004 - 0.02 

Protasova et al. (2011) 
Au/TiO2 and Pt-Sn/TiO2 films  

in silica capillaries 
0.0007 <<1 

 

The major difference of these approaches to the one presented in our work is that instead of 

reducing the actual geometry to the planar case, we use a two-term expansion to estimate the 

effectiveness factor with coefficients written in terms of the solution for a slab. This will require 

the calculation of a ‘curvature correction’ (section 5.3), which measures the deviation from the 

leading-order result (slab). These results are applied to uniform (section 5.4) and nonuniform 

geometries (section 5.5), and yield improved procedures for the evaluation of the effectiveness 

factor, compared to the additional information and computation time required by the present 

methods. 
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In section 5.6, we use the approximations to the effectiveness factor to determine the conditions 

under which the channel-coating system can be considered to operate in the chemical or 

diffusional regime. In many cases, this is controlled by the internal mass transfer-reaction 

regimes and is important for applications such as intrinsic kinetics measurement in 

microdevices and evaluation of the washcoat diffusional limitations. Finally, we evaluate an 

opportunity for performance enhancement in catalytic coatings, by allowing the existence of 

transverse intraparticular convection due to a pressure gradient (section 5.7). The operating 

conditions under which the influence of this effect is maximized are identified. 

 

5.2 PROBLEM FORMULATION 

 

The reaction-diffusion equations in the catalytic coating have to be written in general for the 3 

coordinates. To reduce the order of the complete model, we use the one-dimensional cylinder 

model presented in section 5.2.1. The calculation of effectiveness factors from this approach is 

discussed in section 5.2.2. 

 

5.2.1 One-dimensional cylindrical model for a catalytic coating 

 

The one-dimensional generalized cylinder model (1DGC) has been widely used for the 

calculation of effectiveness factors in catalyst particles with arbitrary shape (Datta et al. 1985; 

Burghardt et al. 1996; Keegan et al. 2003; Mariani et al. 2003; Mariani et al. 2008a; Mariani et 

al. 2009a; Mariani et al. 2009b). The model and its assumptions are detailed in the previous 

references, yielding the following form of the governing equation:  

( ) ( )

2 2
2 2

2 2

' ' '
'

1 in in

c c c
c

r r r z

ε σ
α ε φ

ε

∂ ∂ ∂
+ + =

∂ + ∂ ∂
R .      (5.1) 

Eq.(5.1) is made dimensionless using the following normalization for dependent and 

independent variables (dimensional variables are capped): 

ˆ

w

r a
r

t

−
= , 

ẑ
z

L
=   and  

ˆ
'

in

c
c

c
= ;     (5.2) 

where 
w

t  is the characteristic length scale in the transverse direction inside the washcoat, a  is 

the external diffusion length scale in the open channel, L  is the channel’s length in the axial 

direction and 
in

c  is the inlet concentration per volume of washcoat (related with the channel’s 

inlet concentration 
in

C  by the porosity of the catalyst layer: 
in P in

c Cε= ).  
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Figure 5.1: Geometries of the washcoats studied. (a) Uniform annular catalyst layer (circle 

in circle). (b) Circle in square. (c) Square with rounded corners. 

 

 

 

 

 

Figure 5.1 shows some common washcoat geometries and their dimensions. The reaction rate 

expression can be generically expressed by 

( )
( )

( )

( ) ( )

( )

' 1 ' '
'

1 ' '

p m

in

in p

in

c c k c
c

c k c

+
= =

+

V

V

R
R

R
,       (5.3) 

where the dimensional reaction rate (per unit of washcoat volume) is ( ) ( )1 2ˆ ˆ ˆ1
pm

c k c k c
−

= +
V
R  

with 2'
in

k k c= . The timescales for reaction (at inlet conditions) and transverse diffusion are 

compared by the Thiele modulus (evaluated at the inlet), 

( )
2

2 w in

in

in eff

t c

C D
φ =

V
R

. 

Additionally, this choice of scales leads to the appearance of two geometrical parameters, 

w
t

a
ε =  (transverse length scales ratio) and       (5.4a) 

a

L
α =  (channel’s aspect ratio).        (5.4b) 

As discussed in section 5.1, both parameters are typically small for supported catalytic coatings. 

The magnitude of ( )
2

α ε  measures the importance of axial diffusion, over the full length of the 

washcoat, which is therefore negligible ( 1
transv axial

τ τ << ). Thus, the axial dependence in the 

concentration profile, results then from the concentration continuity condition at the interface : 

( ) ( )' 0,
surf

c r z c z= = . Normalization by surface conditions yields the following dimensionless 

model: 

b

a

tw,min

tw,max

dθ

x

x + d x

x = 0, 0θ =

b

a

tw,min

tw,max

I

II

( )O O,x y

tw

a

(a) (b) (c)
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( )

2
2

2 1

d c d c
c

d r r d r

ε σ
φ

ε
+ =

+
R         (5.5a) 

( )0 1c r = =           (5.5b) 

1

0
r

c

r
=

∂
=

∂
          (5.5c) 

where, 

( )
( )

( )

' ,

surf

c r z
c r

c z
=           (5.5d) 

( )
( )

( )

1

1

p

in surf m

in surf

c c K
c c

K cc

 +
= =  

+ 

R
R

R
  (with '

surf
K k c= )   (5.5e) 

( ) ( )
2

2 2
ˆ

ˆ
in surf w surf

in

surf surf eff

c t c

c c D
φ φ= =

V
R R

       (5.5f) 

with ε  from (5.4a). In the above equations, two parameters (
w

t  and σ ) are directly related with 

the reduction to the one-dimensional model adopted. The success of the simplification relies on 

the judicious choice of these quantities. According to the same model, 
w

t  and σ  are tied up by 

an expression for the volume to surface ratio of the catalytic body . Then, the ratio between 

V S  for the actual geometry (where S  is the area of the surface in contact with the reacting 

species) and for a slab with thickness 
w

t  (the same characteristic transverse length) is 

( )
( )

11
1 1

1
w

V

t S

σ

υ ε
ε σ

+ = = + −
 +

.       (5.6) 

For thin coatings, (5.6) expands as  

( ) ( )
2

3~ 1 1
2 6

O
σ ε ε

υ σ σ ε+ + − + .       (5.7a) 

Note that for an annular washcoat in a cylindrical channel: 1σ =  and 1 2υ ε= +  as expected. If 

only the first two terms are retained in (5.7a), then a simple relationship between υ  and σ  is 

obtained:  

( )
2

1σ υ
ε

= − .          (5.7b) 

Thus, the problem is determined once the characteristic length for diffusion is chosen. Since this 

is the length scale over which concentration decays inside the washcoat, 
w

t  can be equal to the 

maximum distance measured in the normal direction to the interface with the channel. Examples 

will be given in sections 5.4 and 5.5. 
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Eqs.(5.7) represent the simplest way of calculating σ  for catalytic coatings. In the literature, 

many evolved approaches have been pursed to fit σ  so that more accurate predictions from the 

1DGC model can be obtained. For example, Mariani et al. (2003) calculated it to fulfill the low 

reaction rate asymptotics of the actual pellet. In later work from the same group, Mariani et al. 

(2008b; 2009a) matched the behavior at high reaction rates. More recently, they also used 

information from both regimes (Mocciaro et al. 2011), with emphasis on the prediction of 

effectiveness factors in multihole and multilobe particles. According to their analysis, negative 

values of their parameter σ  are not likely to be obtained for catalytic pellets, but can be found 

for washcoats in monolith reactors. The corrective coefficients that appear in the higher order 

terms of the perturbation series for low and high φ  are not useful as shape factors, in the sense 

that geometries with similar behavior at high reaction rates may present significantly deviation 

in the chemical regime (Keegan et al. 2005).    

 

5.2.2 Effectiveness factor 

 

The effectiveness factor compares the amount of reactant consumed (in the presence of 

diffusional limitations) with the one that would have been converted had surface conditions 

prevailed everywhere inside the catalyst. It can be calculated from 

( )
1

A

c dA
A

η = ∫R .  

According to the 1DGC model, averaging the mass balance yields  

( ) ( )

1

2
0 0

1 1
1

r

d c
r c dr

d r

σ

η ε
υ φ υ

=

−
= + =∫ R .      (5.8) 

 

5.3 PERTURBATION SOLUTION FOR THIN CATALYTIC COATINGS 

 

An approximate solution to (5.5) can be constructed by a regular perturbation method for small 

values of ε . This will unfold the original problem into a sequence of (simpler) subproblems, 

once the perturbation series  

( ) ( )
0

; n

n

n

c r c rε ε

∞

=

=∑          (5.9) 

is introduced into the model and terms with the same order are collected. Generically, the 

( )
n

O ε  subproblem is described by  
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( )
n

O ε :  
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n n q

q

d cd c d d
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ε ε
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−

−

== =

 
− = −  
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∑

R
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  ( )0 0 1c r = =  and ( )0 0
n

c r = =  for 0n >     (5.10b) 

  
1

0n

r

d c

d r
=

= .        (5.10c) 

The terms in the LHS of (5.10a) are dominant (diffusion in the normal direction and reaction), 

while the curvature term in the RHS appears as an higher-order correction (note that this side is 

annulled for 0n = ). From (5.8), a perturbation series for the effectiveness factor is also 

obtained, 

0

n

n

n

η η ε

∞

=

=∑  where 
2

0

1
n

n

r

d c

d r
η

φ υ
=

−
= .      (5.11) 

In theory, one may calculate as many terms as desired (numerically or analytically when 

possible). However, more terms in (5.11) may reduce the accuracy of the approximation as ε  

increases and, as we will show, a two-term expansion with analytically calculated terms is 

enough for our purposes. 

The leading-order term from (5.10) yields the classical reaction-diffusion problem in a catalyst 

slab ( a → ∞ ). Exact and approximate analytical solutions for this problem have been provided 

in the literature for several forms of ( )cR  (Petersen 1965; Bischoff 1967; Aris 1975; Gottifredi 

et al. 1981; Gottifredi et al. 1986; Gottifredi et al. 2005a; Gottifredi et al. 2005b; Magyari 2008). 

If required, numerical solution for the case of planar geometry can be obtained with 

considerably less effort. Therefore, we focus on the higher-order correction that appears at 

( )O ε , accounting for geometry effects. 

 

5.3.1 Linear kinetics 

 

When kinetics is first-order in the reactant concentration, the solution to the subproblems in 

(5.10) can be obtained analytically. The leading-order term has a familiar form: 

( )
( )

0

cosh 1

cosh

r
c r

φ

φ

 −  
=  and 0

tanh φ
η

υ φ
= .      (5.12) 

Note that, this is equivalent to setting 0ε =  in the original problem and therefore 1υ = , so that 

0 tanh
slab

η η φ φ= =  (Thiele 1939; Aris 1975; Froment et al. 1979). For the subproblem 

obtained when 1n = :  
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( )
( )

( )( ) ( )
( )2

1 22

sinh
cosh 2 cosh 2

1

re
c r r r r

re

φ

φ

φσ
φ φ

φ

 
= − − + − 

+  
 and   (5.13) 

2
2

1 2

tanh

2 2 slab

σ φ σ
η η

υ φ υ
= = .        (5.14) 

According to Eq.(5.11), the two-term perturbation series for the effectiveness factor can be 

written as: 

( )
2 2

2
slab

slab
O

η ε σ
η η ε

υ υ
= + + . 

Attending to the fact that for thin catalytic coatings the shape factor is given by Eq.(5.7b), 

( )~ 1 1slab

slab

η
η υ η

υ
 + −  .        (5.15) 

Eq.(5.15) relates the effectiveness factor for a thin catalytic coating, described by the 1DGC 

model, with the one calculated for a slab catalyst, with thickness equal to the characteristic 

length 
w

t . This dimension is one of the two pieces of information concerning geometry: the 

other is the V S  ratio which can be quantified explicitly for simple geometries or analyzed 

digitally and measured for more complex ones. We must stress the fact that (5.15) is valid for 

all values of the Thiele modulus and is not limited to high or low reaction rates. In section 5.3.2, 

we understand how this relationship holds for nonlinear kinetics.  

A final remark should be made to note that the 1DGC model admits an exact analytical solution 

for linear kinetics. This solution is an adaptation of previous analytical work for the hollow 

cylinder geometry and can be written in terms of a combination involving modified Bessel 

functions with complex arguments and whose order may be integer or fractional. Naturally, 

these transcendental functions aren’t of convenient evaluation and an expansion for small ε  is 

not easily obtained from the full solution. Moreover, the complex form of the exact solution 

does not inspire an approximation for more complex situations, such as the nonlinear kinetics 

examined in the next section. Apart from its simplicity, the perturbation solution has another 

advantage: it writes the effectiveness factor for the actual geometry in terms of its most 

elementary representation, a 1D slab. 

 

5.3.2 Nonlinear kinetics 

 

We would now like to understand if Eq.(5.15) holds for the case of nonlinear kinetics, with 
slab

η  

being the effectiveness factor for a slab under the same (nonlinear) conditions experienced by 

the actual geometry. In the case of first-order reactions, it is not the reaction term which 
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introduces complexity into the solution of the full problem. However, when kinetics is 

nonlinear, an exact solution to the leading-order problem of (5.10) may not be possible or 

convenient. Therefore, a perturbation scheme which affects the relative magnitude of reaction to 

diffusion is required. We expect maximum deviation to appear when kinetics is comparable 

with transport rates, but as we mentioned we want to avoid having to solve the 2D nonlinear 

problem. Alternatively, we consider the asymptotic limits of the solution for small and large 

Thiele modulus. 

 

5.3.2.a Chemical regime 

 

In the 1φ <<  limit, we look for a perturbation solution with the following form  

( ) ( )
2

0

; n

n

n

c r c rφ φ

∞

=

=∑ .         (5.16) 

This is a regular problem, where the leading order solution is naturally ( )0 1c r = , since reaction 

is much slower than transverse diffusion inside the washcoat. The ( )
2

O φ  correction yields a 

result for the effectiveness factor which is independent of the reaction rate expression ( 1η = ). 

The deviation from unity is achieved in the next subproblem, where the curvature term was 

retained, making the solution valid for all values of ε . With these results, the series for the 

effectiveness factor becomes:  

( )
( ) ( )

2 1 2 4

0 0

1
1 ' 1nn

n r

d c
O

d r
η φ φ φ

υ

∞

−

= =

−
= = − Λ +∑ R ,     (5.17) 

where the coefficient Λ  is only related with the shape of the coating, 

( )
( )

( )
( ) ( ) ( )( )

( ) ( )( )( )

2 1 1 2
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,

1 1 1 1 3

σ σ

σ
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ε σ
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+ +
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Λ =
 + − + − +
 

.   (5.18) 

In the limit of thin coatings, using Eq.(5.7b), 

( ) ( )
21

0, 1 ~
3 2 3

O
ε σ υ

ε σ ε
 

Λ → = + + 
 

.      (5.19) 

For a slab catalyst ( a → ∞ ), ( )0, 1 1 3ε σΛ = = =  and the expansion from Aris (1975) is 

reproduced. If the limit of Eq.(5.18) when ε → ∞  is taken, then the result obtained for solid 

catalyst bodies using the 1DGC model is retrieved: 

( )
( )( )

1
,

3 1 3

υ
ε σ

σ σ σ
Λ → ∞ = =

+ + +
.       (5.20) 
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Note that in (5.20), υ  is referred to the surface area in contact with reactants, i.e. for solid 

catalyst particles, ( )
1

1υ σ
−

= + . The quantity Λ  is related to the so called ‘first Aris number’ 

(Wijngaarden et al. 1998) or to the γ  parameter from Mariani et al. (2003):  

( )
1 2

1 1

3 3
An

σ
γ

υ υ σ σ

Λ +
= = = =

+ +
. 

The normalization proposed by Eq.(5.17) accounts for generic shape and kinetics in two 

separable factors: (a) geometry effects induce a change in Thiele modulus for a slab, 2
φ  now 

appears as 2
υ φ  (i.e. the characteristic length is taken as the geometric average between 

w
t  and 

V S ); (b) kinetic effects are expressed through ( )' 1R , which from Eq.(5.5e), is simply: 

( )' 1
1

p K
m

K
= −

+
R . 

Introducing the expansion for 
slab

η  in the chemical regime for any kinetics into Eq.(5.15) yields 

( )
( )

2
4' 1 1

1 2
3

O
φ

η φ
υ

 
= − − + 

 

R
 

The correct factor for geometry given by (5.18) agrees with this one as 1υ →  (i.e. as 0ε → ) 

( )
22 1

~ O
υ

υ ε
υ

−
+ . 

The expansions agree up to ( )
2

O ε , which is smaller than any contribution in Eq.(5.15). Thus, it 

is possible to conclude that the result from section 5.3.1 is still valid for nonlinear kinetics in the 

chemical regime. 

 

5.3.2.b Diffusional regime 

 

In the limit of a very fast reaction ( 2 1φ >> ), it is well-known that a boundary layer develops 

near the interface to match the dead core (the only solution from ( ) 0c =R ) with the surface 

condition (5.5b). This region is described by (5.5), with stretching of the transverse coordinate 

( R r δ= , where 1~δ φ
−  is the thickness of the inner region): 

( )

2

2

d c d c
c

d R R d R

ε σ

φ ε
− = −

+
R , 

where the singular perturbation series for concentration writes as ( ) ( )
0

; n

n

n

c R c Rε φ

∞

−

=

=∑ . The 

curvature term (which accounts for geometry effects) is of ( )O ε φ , which is small in this limit 
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even for ~1ε . The leading-order problem resembles the reaction-diffusion in a slab, which has 

been treated in a detailed manner by several authors. The analysis at this order  results in a very 

well-known normalization for arbitrary kinetics given by  

( )

1
0

0 0 0

00

1 1
2

R

d c
c d c

d R
η

φ υ φ υ
=

−
= = ∫R .       (5.21) 

This can be rewritten as 0 slab
η η υ= , which is the first term from (5.15). For kinetics of the 

form of Eq.(5.5e): ( )
( )

( )

1

0 0 2 1

0

1
1 , ,2 ,

1

p

K
c d c F m p m K

m

+
= + + −

+
∫R  with 1m > −  or simply 

( )
1 2

1 m
−

+  for power-law kinetics.  

To obtain an higher order term capturing the effect of geometry, we follow Wedel and Luss 

(1980) to write the solution of  

0

2
01

12
c

d cd c d
c

d R dc d R
ε σ− = −

R
 

as 
0

0

0

01
0

0 10 0

c

cR R

d cd c
d c

d R d c d R d R

ε σ
→

→= =

 
=  

 
∫ . 

We make the following approximation in the boundary layer:  

( ) ( ) ( )0 0
0 0 0

00

~
RR

d c d c
c dR c dR c

d R d R

∞ ∞

=

= ∫ ∫R R R , 

which yields the following two term solution for the effectiveness factor: 

( ) ( ) ( )
1 1

3
0 0 0 02

0 0

1
2 c d c c d c O

ε σ
η φ

φ υ φ υ

−
= + +∫ ∫R R .     (5.22) 

In terms of the kinetically generalized Thiele modulus (independent of shape) defined by 

Petersen (1965), Bischoff (1967) and Aris (1975) 

( )

1

0 0

0

2 c d c

φ
Φ =

∫R
,         (5.23) 

Eq.(5.22) writes as  

( ) ( )
3 3

2 2

1 1 1 1 1

2
O O

ε σ υ
η φ φ

υ υ υ υ

− −−
= + + = + +

Φ Φ Φ Φ
.     (5.24) 

Since in this limit a slab with arbitrary kinetics is described by 1
slab

η = Φ , Eq.(5.15) is 

recovered. The separable geometric factors coincide with our analysis in section 5.3.1. 
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5.3.2.c Monotonous ( )
2

η φ  curves (“normal” kinetics) 

 

Since Eq.(5.15) holds for nonlinear kinetics in the chemical and diffusional regimes even at 

higher orders ( ( )
2

O φ  and ( )
2

O φ
− , respectively), we can expect the intermediate region to be 

described at least approximately by the same equation. However, it is known from other shape 

normalizations that maximum deviation is found when ~ 1φ . Also, the error of the 

approximation increases when kinetics present strong inhibition or multiplicity effects (Keegan 

et al. 2003). In this work, we address the case of ‘monotonous ( )
2

η φ  curves’, where reaction 

rate is an increasing function of the reactant’s concentration. 

The solution requires the calculation of the effectiveness factor for the nonlinear reactive slab, 

which can be solved numerically with considerably less effort than the original problem. 

Approximations are also available (Gottifredi et al. 1981; Gottifredi et al. 1986; Haynes Jr 1986; 

Wijngaarden et al. 1998; Gottifredi et al. 2005a; Lee et al. 2006). Here we present a different 

derivation in terms of a generalized Thiele modulus with respect to kinetics, which should be 

introduced into a function which fulfills the asymptotic limits for a slab. We choose the simple 

solution for first-order reaction, 

( )
tanh

slab
η

Φ
Φ =

Φ
,         (5.25) 

where the normalized Thiele modulus with respect to kinetics Φ  is:  

( )
( )

112 2

0 02 2 2
0

' 1
2

1 1
c d c

φ

φ φ φ

−

 Φ
= +  

+ + 
∫

R
R .       (5.26) 

As expected, φΦ =  when the reaction is first-order. For power-law kinetics, 

2 2

2 2 2

1

1 2 1

m m φ

φ φ φ

Φ +
= +

+ +
.        (5.27) 

We note that our normalization includes the classical result from Petersen (1965) and Bischoff 

(1967), which is more rigorous as φ → ∞ . However, (5.27) predicts the effectiveness factor in 

the intermediate and low range of φ  much better. For a slab geometry, introducing the 

generalized Thiele modulus into Eq.(5.25) results in comparable result to the empirical 

correlation from Gottifredi et al. (1986) particularly for 1m >  (around 0.55% maximum error 

for 2m = ). Our result is particularly better than the existing approximate solutions for low m  

(even though the maximum error also increases as the order of reaction becomes lower than 1). 

The effectiveness factor is predicted by (5.25) with less than 1% error (for 3 4m = ) and less 

than 2.6% for 1 2m = .  As 0m → , the transition between asymptotes becomes much sharper 

and the smooth transition from our normalization becomes less accurate (5.3% error for 1 3m =  
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and 7% for 1 4m =
 ). In those cases, a better approximation may be obtained by combining 

both limits in a powered addition as   

2 2

2 2 2

1

1 2 1

b bb

m m φ

φ φ φ

    Φ +
= +    

+ +    
       (5.28) 

with 1b > . We do not consider b  a fitting parameter, since the final result is pretty insensitive 

to virtually any value chosen, provided that it is reasonably higher than 1. In the cases 

examined, the maximum error changes from 3.38% to 3.44% when b  changes from 2 to 100 

(for 1 3m = ). The same observation holds for 1 4m =  (maximum error 3.7% at least for 

2b ≥  ). 

Wijngaarden et al. (1998) compared several modified Thiele modulus that bring the 

effectiveness factor curves together for several reaction kinetics in the low and high region of η  

(equivalently, the zero-th and first Aris numbers). Approximations in these two limits are also 

given, but with excessive error in the intermediate range. A better estimate using information 

from both asymptotes is proposed, but it requires an iterative procedure. For a first-order 

reaction, the maximum error is 2.2% for a slab. They also used the same formula for the hollow 

cylinder, with maximum error of 4.4%. Generally, other approximations are of less convenient 

evaluation or have higher errors associated than the one proposed. 

For this case, the effectiveness factor for slab geometry is always expected to be less than 1. 

Then from Eq.(5.15): 1 1
slab

υ η η
−

< < . The maximum deviation from the slab geometry is 

1 ~
2

slab
η η ε σ

υ
η

−
= − .         (5.29) 

For 0.1ε = , a cylindrical catalyst coating deviates from the slab geometry by approximately 

5%. Eq.(5.29) allows an estimate of the maximum thickness admissible for the actual geometry 

to be represented by a slab, for a specified amount of relative error. Note that for “abnormal 

kinetics” (with inhibiting or nonisothermal effects), the analysis predicts that at least for some 

values of the Thiele modulus where 1
slab

η > , it is possible that 1
slab

η η > . In these cases, 

advantage from using thicker coatings may exist. 

 

5.3.3 Egg-shell catalysts 

 

If the internal core of a pellet consists in a nonporous/inert solid ( ˆ0 r a≤ ≤ ), with the catalytic 

material only in an outer layer ( ˆ
w

a r a t≤ ≤ + ), then a similar problem is obtained but with 

reverse boundary conditions on both surfaces, given by 
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(a) 

 

(b) 

Figure 5.2:  Effectiveness factor of a spherical catalytic layer supported on an impermeable 

core with a first-order reaction. Numerical simulations with gPROMS® are compared 

with (5.32) as a function of 2
φ  for several values of 

m
Bi  and 0.1ε =  (a) or 1ε =  (b).  
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( )1 1c r = =           (5.30a) 

0

0
r

c

r
=

∂
=

∂
          (5.30b) 

The surface reaction is now referred to the external surface and the effectiveness factor 

becomes: 

2

1

1

r

d c

d r
η

φ υ
=

= , where ~ 1
2

ext w

V

S t

ε σ
υ = −  as 0ε → .     (5.31) 

The shape exponent σ  is used in the reaction-diffusion equation as in (5.1). The reference to the 

outer surface yields a change in the sign associated with σ , and this is why in the 1DGC model 

for washcoats: 0σ <  (Keegan et al. 2005). Following our perturbation procedure as outlined in 

section 5.3.1, Eq.(5.15) is found to still apply as long as υ  is defined as in (5.31). 

An asymptotic solution at the diffusional regime according to (5.23) is known for several kinetic 

expressions arising in enzymatic reactions occurring in pellicular catalysts (Horvath et al. 1973; 

Vos et al. 1990). There isn’t any reason for the results in section 5.3.2 not to be valid for egg-

shell catalysts and therefore (5.15) can be used for some nonlinear kinetics, as discussed 

previously. If external mass transfer resistance is also considered, then the approximate 

expressions for the effectiveness factor are more complex. We can also show that in the case of 

finite external mass transfer, Eq.(5.15) is again obtained (the superscript – denotes reference to 

bulk fluid conditions) 

( )1 1slab

slab

η
η υ η

υ
=  + −   ,        (5.32) 

with the well-known solution for a slab with linear kinetics (Aris 1975), 

2 coth
m

slab

m

Bi

Bi
η

φ φ φ
=

+
. 

The mass Biot number for external mass transfer is given by 
m m w eff

Bi k t D= . For a spherical 

geometry, 2σ =  and 
2

2

1 3
~ 1

1 2

ε ε
υ ε

ε ε

+ +
= −

+ +
, the effectiveness factor predicted from (5.32) is 

compared with numerical results in Figure 5.2, when a first-order reaction is occurring.  

 

5.4 UNIFORM ANNULAR COATING 

 

The simplest case possible, apart from the slab catalyst layer, is the one of an annular washcoat. 

Uniform annular catalyst layers are found when a circular channel is perfectly coated or in the 

case of egg-shell catalysts in noncircular channels (Kreutzer et al. 2006).  
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Figure 5.3:  Internal concentration profiles ( )c r ˆ ˆ
surf

c c=  in the catalytic layer coating of a long 

cylindrical microchannel ( 0.01α = ). Numerical results obtained with gPROMS® (full 

lines) overlap with the two-term perturbation solution (dashed lines), Eq.(5.34), for 0.1ε =  

and a wide range of values for the Thiele modulus. 

 

 

Figure 5.4:  Perturbation solution for ( )c r  with an ( )O ε  correction due to curvature for the 

concentration profile, Eq.(5.34), with 2 1φ = , 0.01α =  and for different values of 

the ratio between catalytic coating thickness and channel radius, ε . Numerical 

results obtained with gPROMS® (full lines) are in reasonable agreement with the 

approximate solution (dashed lines) for 0.1ε = , 0.5ε =  and 1ε = . 
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In the latter situation, the channel is first modified by introduction of a low BET material 

coating, which blocks the macroporosity of the channel walls and rounds the shape of the 

channel, filling the poorly used regions. Pérez-Cadenas et al. (2005) have shown the superior 

performance of these catalysts in the hydrogenation of fatty acid methyl esters compared with a 

square channel cordierite monolith. Better utilization and distribution of the catalytic layer was 

observed, as well as higher selectivity to the desired products. This case can also appropriately 

model diffusion and reaction in Raschig rings and hollow cylinders with internal flux (Mariani 

et al. 2003), in the limits of small aspect ratio (
w

t L<< ). 

This shape is schematically represented in Figure 5.1a and has very well-defined geometric 

characteristics: 

w
t = thickness of the annular catalyst layer      (5.33a) 

1
2

ε
υ = +           (5.33b) 

and therefore 1σ = . 

 

 

5.4.1 Linear kinetics 

 

According to the results presented in section 5.3.1, the internal concentration profile and the 

effectiveness factor curve are given by: 

( )
( )

( )
( )( ) ( )

( )
( )

2
2

22

cosh 1 sinh
; cosh 2 cosh 2

cosh 1

r re
c r r r r O

re

φ

φ

φ φ
ε ε φ φ ε

φ φ

 −    
= − − + − + 

+  
 

           (5.34) 

( )
2

2
2

1 tanh tanh

1 2 2
O

φ ε φ
η ε

ε φ φ

 
= + + 

+  
.      (5.35) 

The two-term expansion  (5.34) is plotted in Figure 5.3 for 0.1ε =  and several values of 2
φ  

(from 0.1 to 100). The inclusion of the second term reduces the maximum relative error from 

0.16% to 0.004% for 2 0.1φ =  and from near 5% to less than 0.1% when 2 100φ =  (in the 

region of virtually zero concentrations, corresponding to absolute error of 810− ). Figure 5.4 

compares the performance of the approximation for several values of the perturbation parameter 

ε . Naturally, better agreement is obtained as 0ε → , but even for values as high as 1ε =  the 

maximum error reduces from around 10% to 3%, when the ( )O ε  correction is added. 
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Figure 5.5:  Magnitude of the ( )O ε  correction to the transverse concentration profile in a slab 

coating due to the weak presence of curvature.  

 

 

 

Figure 5.6: η  vs. 2
φ  curve for a long catalytic annular region ( 0.01α = ) for 0.1ε = , 0.5ε =  

and 1ε = . Numerical results are in good agreement with perturbation series given by 

Eq.(5.35). 
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The ( )1c r  term in Eq.(5.34) is negative and its absolute value register a maximum, except for 

low φ  (where ( )1c r  is maximum at 1r =  ). The curvature importance increases with the 

distance from the interface, as long as reasonably high transverse concentration gradients are 

present. The position where the correction is maximum maxr  marks the transition from a region 

of high transverse gradients to another where the concentration profile starts to flatten out. For 

1φ > , maxr  is the reactant penetration length ( 1
φ

−  ). The η  vs. 2
φ  curve is plotted in Figure 5.6 

with less than 3% maximum relative error for 1ε =  and only around 1% for 0.1ε = , compared 

to numerical results. We note that other methods in the literature for calculating the 

effectiveness factor have some drawbacks compared with our approach, namely: (a) the use of 

the geometrical Thiele modulus in tanh
g g

η φ φ=  leads to considerable high errors in the 

intermediate range of φ
 ; (b) analytical results from Lewis et al. (1974) and Wijngaarden et al. 

(1998) imply the inconvenient evaluation of modified Bessel functions or infinite series of these 

functions; (c) the 1DGC solution for the effectiveness factor  (Burghardt et al. 1996) with a 

value of σ  fitted to the chemical regime is again written in terms of Bessel functions (with 

fractional or integer orders) with (Mariani et al. 2003): 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

42

42

2 6 2 9 4 2 12 1 ln 1

2 2 2 3 4 2 4 1 ln 1

ε ε ε ε ε ε ε ε

σ

ε ε ε ε ε ε ε ε

 − + + + + + + + + 
=

 + + + + + − + + 

, 

and 0.4ε <  so that the error does not exceed 0.7%. Therefore, our method is simple, its 

evaluation is convenient, does not require fitting to any particular regime (it is valid for the 

whole range of φ ) and is accurate. 

 

5.4.2 Nonlinear kinetics 

 

The treatment for nonlinear kinetics follows the analysis in section 5.3.2. As discussed there, the 

effectiveness factor depends on υ  (here given by Eq.(5.33b)) and on 
slab

η  (calculated 

numerically or with Φ  in Eq.(5.25)), according to (5.15). Table 5.2 shows the maximum 

deviations observed between our solution and the numerical calculations for some kinetic forms. 

The reaction-diffusion problem was solved numerically with DASOLV routine from gPROMS® 

with discretization of the spatial coordinate r  by orthogonal colocation in finite elements. The 

polynomial was second order and 1000 elements (first-order reaction) or 500 elements 

(remaining kinetics) were used.  As expected, the factors that contribute to an increase in the 

relative deviation are: increase in the coating thickness (ε ), intermediate values of Thiele 

modulus ( 2 ~ 1 10φ − ) and ‘abnormal kinetics’ (the two last cases in Table 5.2), where the 

approximation is only acceptable for lower values of ε . 
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Table 5.2: Maximum relative errors associated with effectiveness factor calculations from 

Eq.(5.15) for an annular catalyst layer with several kinetic expressions. 

Reaction kinetics Calculation method for 
slab

η  w
t

a
ε =  

Maximum error 

from Eq.(5.15) 

Power-law, ( )
m

c c=R  

m     

0.75 
Analytical (approximate): 

Eqs.(5.25) - (5.27) 

0.01 0.89% 

0.1 0.78% 

0.5 1.02% 

1 2.14% 

1 
Analytical (exact): 

Eq.(5.25) with φΦ =  

0.01 0.10% 

0.1 0.11% 

0.5 0.58% 

1 1.68% 

2 

Numerical 

0.01 0.02% 

0.1 0.2% 

0.5 0.7% 

1 1.1% 

Analytical (approximate): 

Eqs.(5.25) - (5.27) 

0.01 0.67% 

0.1 0.63% 

0.5 1.17% 

1 1.58% 

“Langmuir-Hinshelwood” type, ( )
( )

( )

1

1

p m

p

K c
c

K c

+
=

+

R  

m  p K     

1 1 1 
Analytical (approximate): 

Eqs.(5.25) - (5.26) 

0.01 1.63% 

0.1 1.52% 

0.5 2.59% 

1 4.42% 

1 2 5 Numerical 
0.01 0.34% 

0.1 3.36% 

1 2 10 Numerical 
0.01 0.58% 

0.1 5.73% 
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5.5 NONUNIFORM COATINGS 

 

The best method to deal with the calculation of the effectiveness factor in nonuniform coatings 

appears to be the so-called ‘slice method’ from Papadias et al. (2000a; 2000b). Briefly, the 

domain is divided into a series of slices, then the average effectiveness factor is calculated from 

the mass/volume weighed summation of all pieces and is given by 

1

N

i i

i

wη η

=

=∑ .          (5.36) 

The method was applied to several geometries (Papadias et al. 2000a; Papadias et al. 2000b; 

Hayes et al. 2005) and was also included in monolithic reactor simulation (Gonzo 2008; Gonzo 

et al. 2011). However, so far each slice has been treated as a slab, and 
i

η  calculated 

accordingly, referred to the geometric characteristic length. 

We propose a modification to the method, which consists in calculating 
i

η  from Eq.(5.15). This 

introduces another parameter into the model, the characteristic length for diffusion of each slice, 

which together with the volume-to-surface ratio characterizes each segment i : 

,w i
t  = maximum transverse distance normal to the interface in i     (5.37a) 

,

i

i

w i i

V

t A
υ = .          (5.37b) 

The volume fraction of each slice is 
i i

w V V=  and 
i

A  is the fluid-solid interfacial area. The 

original treatment assumes 1
i

υ =  and ( ),i slab i i
η η φ= , with 

i
φ  referred to ,w i

t . 

 

5.5.1 Circular channel in square geometry 

 

An extreme case of nonuniform deposition of washcoat in a rectangular channel is the ‘circle in 

square’ geometry, depicted in Figure 5.1b. The dimensionless local thickness in terms of the 

angular coordinate is 

( )
( )

( )min1 sec 1w
t

a

θ
ε θ ε θ= = + − , 

where min ,minw
t aε =  and due to symmetry of this geometry, 0 4θ π≤ ≤ . A differential slice i  

corresponding to an angular change of dθ  has the following geometric features, according with 

Eqs.(5.37): 

( ) ( ), sec
w i w

t t d b d aθ θ θ θ= + = + −        (5.38a) 
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Figure 5.7: Error of several calculation methods for the effectiveness factor relative to the 

result obtained with a 2D numerical solution from Hayes et al. (2005) for several 

values of the Thiele modulus 2
g

φ . The washcoat geometry is a circle in square (Figure 

5.1b) and first-order kinetics is considered. The approximate methods used to estimate η  

include: the conventional ‘slice method’ used by Hayes et al. (2005) and with 100 slab 

slices; and Eqs.(5.36) and (5.38) for 50 and 100 curved slices. 

 

 

 

 

( )2

, ,

tan tan1

2 2i

w i w i

ddV dA b a

t t a d

θ θ θ
υ

θ

 + − 
= = − 

 
.     (5.38b) 

Eq.(5.38a) expresses a scaling for the transverse coordinate, where its value is normalized by 

the maximum value registered inside a slice (this occurs on the upper value taken by θ ). 

Assuming (as in previous literature) that the slices are equally parted (all slices have the same 

dθ ):  

( )
2 2

2 2

tan tan

4i

b d a ddV
w

V b a

θ θ θ θ

π

 + −  − 
= =

−
.      (5.38c) 

The conventional ‘slice method’ treats each slice as a slab with ,w i
t dV dA=  and 1

i
υ = , 

whereas Eqs.(5.38) add a curvature correction to each segment. Figure 5.7 compares several 

approximate methods for calculating the effectiveness factor with the 2D numerical solution 
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(finite element method) from Hayes et al. (2005). For a square with 0.5 mmb =  and 

min 0.021ε = , the conventional slice method was also employed by Hayes et al. (2005) (using 

the geometrical characteristic length). We add the result for 100 slab slices for comparison, as 

well as the calculation from Eqs.(5.36) and (5.38) for 50 and 100 curved slices. 

We can observe that the number of slices required to achieve a desired level of accuracy 

decreases sharply when the curvature effect of each slice is taken into account. The 

improvement is particularly noticeable in the intermediate region of Thiele modulus, where 50 

annular slices have less than half the error associated compared to 100 slab slices. The level of 

effort added by our approach is negligible and the improvement is significant, even for the 

simpler case of linear kinetics. Hayes et al. (2005) also report another approach, which however 

requires a preliminary step of numerical evaluation, and has higher error associated in the 

intermediate region (comparable with 100 slab slices). 

 

5.5.2 Square channel with rounded corners 

 

This geometry is closer to the actual geometries found in practical cases, where the washcoat 

accumulation is more pronounced only at the corners. Chou and Stewart (1986) considered this 

shape and performed numerical calculations with external mass transfer resistance. Papadias et 

al. (2000b) and Hayes et al. (2005) calculated the effectiveness factor using the slice method, 

where each section was treated as a slab. We divide the geometry (see Figure 5.1c ) into two 

domains: a planar one characterized by a uniform (minimum) thickness (domain I in Figure 

5.1c), and a circular fillet with center at ( ),x x  and where the washcoat thickness increases 

(shown as domain II). Due to symmetry, the angular coordinate in domain II is 0 4θ π≤ ≤ .  

Each domain and slice i  (a section of II between θ  and dθ ) is described by: 

( )

,min

, ,min

domain 

domain 
cos

w

w i w

t

t t a
a

dθ θ




= +
−

+

I

II
       (5.39a) 

( ) ( )

( ) ( )

2

min

min

1 domain 

1 tan tan1
domain 

2 1 sec 1

i d d

d d

υ ε θ θ θ θ

θ ε θ θ




= +  + −  −  


+ + −

I

II
    (5.39b) 

( )

( ) ( )

( ) ( )

( ) ( )

min min
2

min min min

2

min

2

min min min

2 1
domain 

2 1 1 4

1 tan tan
domain 

2 1 1 4

i
w

d d

ε β ε

ε β ε ε π

ε θ θ θ θ

ε β ε ε π

 − −


− − + + −

= 
+  + −  −  


− − + + −

I

II

    (5.39c) 
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where the ratio between the radius of the rounded corner and the half side of the square channel 

is b aβ =  and the minimum dimensionless thickness is min ,minw
t aε = . Domain I is treated as a 

single slice, while the number of slices taken to describe domain II is chosen so that 

4
slices

N dπ θ= . Both contributions are added according to 

, ,
1

Nslices

I I i II II i

i

w wη η η

=

= + ∑ ,        (5.40) 

where ( ),minI slab w
tη η=  and ( ), ,

II i slab i
η η υ  is the effectiveness factor for an annular slice, given 

by Eq. (5.15). One of the geometries studied by Papadias et al. (2000b) has the following 

geometric features: min 0.056ε = , 1.39β =  and 0.36 mma = . For a first-order reaction, they 

considered 30 planar slices but also solved the reaction – diffusion 2D problem numerically 

(finite element method with an uniform mesh of 8640 triangular elements for 0.2η > , and an 

adaptive mesh with maximum of 90 000 elements for low η ). A maximum error of 4.9% was 

reported, which occurs in a temperature range between 450 and 500 K. We compare the solution 

obtained with 30 annular slices in Eq.(5.40): in the same range, the maximum error observed is 

1.5%. Hayes et al. (2005) presented results for this geometry with min 0.030ε = , 1.44β =  and 

0.347 mma = . With respect to their 2D numerical solution, a maximum error of 1.6% is 

observed with 100 annular slices, while 3.6% deviation occurs when planar slices are 

considered. In both cases, the inclusion of the ( )O ε  correction, improves the solution. 

It should be further noted that: (a) the errors tend to decrease when the fraction of washcoat 

described by a planar wall with uniform thickness increases (i.e. maximum errors are observed 

for the case of circular channel in square geometry) and (b) in principle, the improvement in the 

results is also valid for nonlinear kinetics, where the effectiveness factor in a slab geometry is 

calculated either numerically or by the approximation in section 5.3.2.c. 

 

5.6 INTERPLAY BETWEEN INTERNAL AND EXTERNAL MASS TRANSFER – REACTION 

REGIMES 

 

The delimitation of the regimes arising from the interaction between mass transfer and reaction 

appears in the literature in a number of ways, most of them equivalent. We use the concentration 

gradient at the catalytic surface to evaluate the extension of mass transfer limitations. This is 

rigorously related to the effectiveness factor for arbitrary kinetics, according to Eq.(5.8).  A 

scaling relationship is obtained from this condition: 2 1η φ <<  for kinetic control and 2 1η φ >>  

for diffusional control, which reproduces the Weisz-Prater criterion for catalytic pellets (Weisz 

et al. 1954).  
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The effectiveness factor is an average of the reaction rate inside the catalytic layer referred to 

surface conditions. For a first-order reaction,  

surf

c

c
η = .          (5.41) 

Moreover, the internal regimes are related with the external ones by the flux continuity 

condition: 

01

'

ch

effch

ch rr

Dc c

r D rε
==

∂ ∂
=

∂ ∂
,        (5.42) 

where the dimensional variables in the channel are ˆ
ch ch in

c c C=  and ˆ
ch

r r a= ; and D  is the bulk 

fluid diffusivity. The parameter which governs the magnitude of internal and external mass 

transport limitations is  

2

eff
D Da

Dε η φ υ
= ,          (5.43) 

where Da  is the Damköhler number for a wall-coated microchannel reactor. If a concentration 

boundary layer with thickness δ  develops at the channel’s inlet regime, then the rescaled 

Damköhler number is appropriate ( *Da Da δ= ) (Chapter 4).  In terms of timescales for internal 

and external diffusion, 2
int ext eff

D Dτ τ ε= .  

For the external (channel) domain, we have used the concept of the degree of mass transfer 

control θ  (Chapter 4), which is related to the ratio between the average concentration in the 

channel and its surface value: 

1
ch

surf

ch

c

c
θ = − .          (5.44) 

The value of this parameter ranges from 0 in the external kinetic limit to 1 under severe mass 

transfer limitations. 

Frequently, the criteria are given in terms of operating variables, e.g. the temperature above 

which diffusional effects are present in a particular system. Under some assumptions, the 

criteria formulated in dimensionless manner can be rewritten explicitly for the relevant 

quantities characterizing geometry and operation. In the definitions of both Thiele modulus and 

Damköhler’s number, the temperature dependence of the time constant for reaction (evaluated 

at the surface) is written as 

( ) ( )

00

ˆ ˆ1 1
~ exp lim

ˆ ˆ
surf surf

T T
surf G surf

c cE

c R T T c→

  −
−  

   

V V
R R

, 
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where 0T  is a reference temperature, E  is the activation energy and 
G

R  is the ideal gas 

constant. When kinetics is of ‘power-law’ type, 0T → ∞  is a convenient choice and 

( )
( )

1

0

ˆ
ˆ~

ˆ
G

E

msurf R T

surf

surf

c
k c e

c

−

−V
R

, 

where 0k  is the pre-exponential factor in the Arrhenius law. In more complex kinetics, with 

other temperature-dependent constants, 0T  should be chosen at a value in the range predicted by 

the expressions below. The same applies to the calculated values of diffusivity, but if required a 

simplified iterative procedure may be used. If all the correct dependences need to be considered, 

then the problem is still reduced and consists in solving a nonlinear algebraic equation, instead 

of the full convection-diffusion-reaction problem at both channel and washcoat domains. 

 

5.6.1 Kinetic regime 

 

We now discuss the operating boundary for the kinetic regime for different magnitudes of 

( )eff
D Dε , i.e. change in the controlling behavior from internal to external mass transfer. 

 

5.6.1.a External mass transfer faster than internal diffusion 

 

If the effective diffusivity in the catalyst layer is much smaller than the bulk diffusivity (for 

example, in some zeolite washcoats) and the coating is not extremely thin, then it is likely that 

( ) 1
eff

D Dε << . This means that internal diffusion is the rate-limiting step. Therefore, it is 

possible that no external mass transfer limitations are observable in the channel, but internal 

concentration gradients exist. For the whole phenomena to be under kinetic control the 

following condition is sufficient (from (5.43), Da  is even smaller): 2 1η φ υ << . 

For a specified value of the effectiveness factor (close to unit) given by Eq.(5.17), and 

considering Arrhenius-type temperature dependence only in the kinetic constant k  yields the 

following expression  

2
0ln

1

G
E R

T
η

η

≤
 Φ Λ
 

− 

,         (5.45) 

as the temperature range for which the washcoat (and hence the channel) is free from mass 

transport limitations. In (5.45), the temperature independent Thiele modulus is defined as  
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( ) ( )0

0

2
2
0

ˆ
lim

ˆ
G

surf E R Tw

T T
eff surf

ct
e

D c
φ

→

=
V
R

 and       (5.46a) 

( )
2 2
0 0' 1 φΦ =R .          (5.46b) 

The shape factor is defined in (5.18), but for thin catalytic coatings is simply 3υΛ = . For 

power-law kinetics associated with only one constant, (5.46a) is simply 

( )
12 2

0 0 ˆ
m

w surf eff
t k c Dφ

−

= .  

Joshi et al. (2010) simulated numerically the oxidation of CO in a circular channel with first-

order kinetics. The values reported for diffusivities and geometric characteristics yield 

( ) ~ 0.24
eff

D Dε . In these conditions, the temperature below which kinetically controlled 

conditions prevails is according to (5.45): 187ºCT
η

≤  ( 0.91η ≥ ). The simulations performed by 

these authors in channels with different lengths showed very weak dependence of the 

temperature for kinetic control on the channel dimension ( L  from 0.01 to 10 cm), with variation 

between 189ºC and 185ºC, approximately. Our estimate is therefore very reasonable (maximum 

1% relative error) given the assumptions, and circumvent the need for numerical solution of the 

channel-washcoat problem for an extended range of parameters and the rejection of the values 

which do not lead to the specified η  and θ  (or alternatively, the need for iterative calculation). 

Groppi et al. (2001) studied the kinetics of methane combustion in an annular microreactor with 

a surface coated with a PdO/Al2O3 catalyst layer. They found up that the limiting condition for 

intrinsic kinetics evaluation was internal diffusion and this could only be achieved by keeping 

10 µm
w

t ≤  (so that the effectiveness factor is kept above 0.9). The same qualitative conclusion 

can be reached taking their data and calculating according to (5.43): 

0.19eff
D

Dε
≤ .          (5.47) 

Note that in (5.47), ε  is the ratio between the catalyst layer thickness and the gap between outer 

and inner cylinders radii, while the importance of curvature should be evaluated by another 

parameter (defined as the catalyst thickness divided by the inner cylinder radius). In their 

conditions, for effectiveness factor greater than 0.9 and ~ 10 µm
w

t , the maximum temperature 

for kinetic control from (5.45) is 854KT
η

≤  ( 581ºC ).  

The temperature in their simulations was 873K and the effectiveness factor is higher than 0.9 if 

9 µm
w

t ≤  micrometers, which is in good agreement with their simulations. Therefore, we may 

expect that their measurements up to about 600ºC, are free from diffusional limitations in line 

with their predictions. Note that the geometrical parameter in this case is defined as 

2

2 2
in w

in w

r t

r t
υ

+
=

+
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where 
in

r  is the radius of the internal cylinder in which the catalyst layer with thickness 
w

t  is 

supported. 

As seen above, the relevant condition in practice for attaining kinetic regime in both domains is 

not related with channel characteristics. Therefore, the usual strategy of working at high 

flowrates to ensure kinetic control in the channel (or decrease its length) will not sort much 

effect in this case. This can be noticed from the numerical solution of the problem, since near or 

in developing profile conditions, the limiting temperature remains unaffected. We note that 

when Da  is small, the parameter which governs the regime definition in the channel at 

developing concentration profile conditions ( *Da ) is even smaller (since it appears multiplied 

by the normalized thickness of the boundary layer, 1δ << ). 

 

 

 

 

Figure 5.8: Effect of temperature-dependent effective diffusivity on the kinetic regime 

boundary. The solution involving the Lambert W function Eq.(5.49) is shown for 

0 10γ =  and several values of the power w  in (5.48). The limiting coordinates below 

which real values are not obtained are depicted by ○. The approximation in (5.50) and the 

result for 0w =  from (5.48) are also represented.  
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If the effective diffusivity also presents a pronounced temperature dependence given by 

,0 0

w

eff

eff

D T

D T

 
=  
 

,          (5.48) 

an estimate for T
η

 is still possible in terms of the Lambert W function from Mathematica
® or 

Matlab
®, 

1/

2
0 0

1

G

w

G

E R
T

E
wW

R T w

η

η

≤
  − −
 −  

Φ Λ   

       (5.49) 

which requires numerical evaluation and yields real values for ( ) ( )
2
0 01

w

e wη γΦ Λ − > . An 

approximate solution is obtained if the dependence in (5.48) is recognized to be subdominant 

compared with the one expressed by Arrhenius law for the kinetic constant. This is constructed 

in an iterative manner, with (5.45) as a starting point and writes as   

2 2
0 0 0ln ln ln

1 1

G

G

E R
T

R T
w

E

η

η η

≤
    Φ Λ Φ Λ

+     
− −    

.      (5.50) 

Note that in Eqs.(5.49) and (5.50), 
eff

D  in (5.46a) is evaluated as ,0eff
D . The same approximate 

treatment can apply to the case where other kinetic constants exhibit strong temperature 

dependence, e.g. K  in Eq.(5.5e). For a fixed value of ( )0 0G
E R Tγ = , 

G
T R E  can be plotted 

as a function of ( )
2
0 1 ηΦ Λ −  for several values of w . The results from Eqs.(5.45), (5.49) and 

(5.50) are plotted in Figure 5.8 for 0 10γ = . Our approximate expression (5.50) is valid for weak 

( )eff
D T  dependences (low values of w ) and high ( )

2
0 1φ ηΛ − . Actually, for 

( )
2
0 1 1ηΦ Λ − >> , which is the case since 1η →  and 2 2

0 lim
T

φ φ
→∞

=  is usually large, this effect is 

negligible and the results are well described by (5.45). The typical diffusion mechanism inside a 

washcoat usually yields values of ~ 0.5w . We also note that in this regime, ( ) 1
eff

D Dε << , so 

the magnitude of the effective diffusivity is expected to be low. Moreover, the effect loses 

relevance if the reaction activation energy is large. The net result from considering temperature 

dependence of diffusivity is to increase the temperature below which kinetic control prevails. 

Therefore, strong dependence of the effective diffusivity on temperature is useful for kinetic 

measurements. 
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5.6.1.b Internal diffusion faster than external mass transfer 

 

If ( ) 1
eff

D Dε >>  (e.g. in the limit of an extremely thin washcoat), then from (5.43) 

2
Da η φ υ>> , and it is possible to observe limitation in the interphase mass transfer to a 

catalytic coating controlled by kinetics. In this case, it suffices to require the negligibility of 

concentration gradients in the channel. In Chapter 4, we have provided correlations for θ  of the 

form: ( ),
m

Da f Pe zθ α= , where 
m

Pe zα  is Graetz’s parameter ( ( )
2

m
Pe a u L Dα = ). 

Alternatively, a uniformly valid solution for Sherwood number with Neumann boundary 

condition at the wall could be used. We are going to consider the case of fully developed 

laminar flow inside a circular channel, however the analysis is similar for the other cases 

discussed in Chapter 4 and can be easily generalized. Ignoring the temperature dependence on 

parameters other than the kinetic constant k , the reference Damköhler number writes as 

( ,0 0surf w
k k t υ= ): 

( ) ( )0

0

,0
0

0

ˆ
lim

ˆ
G

surfsurf E R T

T T
surf

ck a
Da e

D k c→

=
V
R

.       (5.51) 

Note that since internal transport is very fast, 1η → . The temperature below which kinetic 

controls is  

( ) 3
0

0

ln 1 1 24
ln ln 1.033

11

G G

nn

n m

E R E R
T

Da Da Pe
Da

n z

θ

αθ

θ

= =
 −     

− +      
       

.   (5.52) 

The coefficient n  takes the value of 4 for laminar flow and the degree of mass transfer control 

θ  should be set to a low value (kinetic conditions). The following limits of (5.52) can be 

obtained 

011
ln

24

G
E R

T
Da

θ

θ

=
 
 
 

   (fully developed profile, 1
m

Pe zα << )  (5.53a) 

1 3

0ln
1.033

G

m

E R
T

Da z

Pe

θ

θ α

=
  
  
   

  (developing profile, 1
m

Pe zα >> ).  (5.53b) 

The leading-order estimate is naturally,  

( )0ln
G

E R
T

Da
θ

θ
= .         (5.53c) 

The numerical coefficients in (5.53a) and (5.53b) are related with Sherwood’s number under 

constant wall flux conditions from fully developed and Lévêque’s solutions (Shah et al. 1978). 
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Contrary to the previous case (section 5.6.1.a), the operating boundary depends on channel 

geometry and conditions, but doesn’t include information from the catalytic coating. From 

(5.52 ), T
θ

 decreases with 
m

z Peα , until reaching its asymptotic value given by (5.53a). 

Increasing the flow rate, so that operation occurs at the inlet regime described by (5.53b) is 

beneficial, since it increases T
θ

, allowing kinetic measurements at higher temperatures. We note 

that the effects of the channel’s diameter and bulk diffusivity (affected by changes in the 

pressure or in the nature of the inert gas) are associated, and therefore it is unnecessary to 

conduct preliminary parametric studies where they are varied independently. The same 

comment applies to the effect of channel’s length, tied with the average velocity in the time 

constant L u . To account for the temperature dependence of molecular diffusivity, a similar 

procedure to the one outlined previously can be obtained for fully developed profile . In this 

case, ~ 1.5w  is a typical value. 

Joshi et al. (2011) studied hydrogen oxidation on Pt/Al2O3 monolith, where advantage from 

working at higher flowrates was explored for the purpose of kinetic measurements. In the single 

channel experiments and at operating temperatures between 20ºC and 500ºC: 

~ 2 5eff
D

Dε
−  

according with their expressions for diffusivities. They reported a characteristic length for 

diffusion in the washcoat of 25 mm, which is extraordinarily high. We have replaced this value 

by 25 microns, which is much more reasonable and calculated 
w

t  accordingly (otherwise we 

would fall in the case explored in section 5.6.1.a). Using Eq.(5.52), a maximum temperature 

around 6ºC is still required for kinetic control ( 0.1θ ≤ ) to prevail inside the square channel 

(numerical coefficients were adapted for this geometry (Shah et al. 1978)). For 0.25θ ≤ , 

24º CT ≤ . 

 

5.6.1.c Internal and external mass transfer rates comparable 

 

In general, if neither internal nor external mass transfer dominate, the regime will be the ‘same’ 

in the channel and in the catalytic coating, or at least it is not possible to identify a priori the 

limiting condition for kinetic control. Therefore, if ( ) ~ 1
eff

D Dε  and consequently 

2~ 1Da η φ υ << , the maximum temperature so that concentration gradients are absent from 

both domains is 

( )min ,T T T
η θ

= ,         (5.54) 
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where low values of ( )1 η−  and θ  should be set in Eqs.(5.45) and (5.52), for the coating and 

channel respectively. A magnitude relationship between T
η

 and T
θ

 can be written for fully 

developed concentration profile as 

T T
η θ

<   if ( )0.7273 ' 1
1

eff
D

D

θ

ε η
<

−
R       (5.55a) 

T T
η θ

>   if ( )0.7273 ' 1
1

eff
D

D

θ

ε η
>

−
R ,      (5.55b) 

and for developing profile conditions as  

T T
η θ

<   if ( )

1/3

0.344 ' 1
1

eff m
D Pe

D z

α θ

ε η

 
<  

− 
R      (5.56a) 

T T
η θ

>   if ( )

1/3

0.344 ' 1
1

eff m
D Pe

D z

α θ

ε η

 
>  

− 
R .     (5.56b) 

For simplicity, the arbitrary criteria can be set to the same value at both channel and washcoat, 

i.e. ~ 1 1θ η− << . Eq.(5.19) was used for thin catalytic coatings, but the result without this 

substitution is easily obtained by multiplying the right hand side of (5.55) and (5.56) by 3 υΛ .  

When Eqs.(5.55a) or (5.56a) apply, a conservative estimate for the kinetic regime boundary is 

obtained as discussed in section 5.6.1.a. On the other hand, if (5.55b) or (5.56b) describe a 

particular situation, then the results in section 5.6.1.b are appropriate. Note that ( )eff
D Dε  

needs to take really high values for (5.56b) to apply ( 1
m

Peα >> ), otherwise kinetic control in 

the washcoat is always limiting. 

 

5.6.2 Diffusional regime 

 

In the washcoat, the temperature above which diffusional effects are present (associated with a 

low value of η ) is 

( )

02ln
1 1

G
E R

T
η

υ η

υ υ η

=
 Φ
 

+ − 

.        (5.57) 

To obtain Eq.(5.57), we have used Eq.(5.24) where the Thiele modulus is given by 

( )

11
2 2
0 0 0 0

0

2 c d c φ

−

 
Φ =  

 
∫R ,        (5.58) 
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and here 2
0φ  is referred to the value in (5.46a). The relationship between the prediction from 

(5.57) and the extent of diffusional limitations in the channel is discussed below for several 

values of ( )eff
D Dε . 

 

5.6.2.a External mass transfer faster than internal diffusion 

 

As before, using the scaling from (5.43) it is possible to observe that the presence of internal 

strong concentration gradients ( 2 1η φ >> ) does not imply necessarily that the transport in the 

channel is limited. Therefore, both domains are diffusion-controlled when T T
θ

>  given by (for 

selected values of θ  close to 1): 

( )

( )

( )
4/3

0

0

2 2

ln 1 1
ln ln 11.1735 0.5334

4

G G

m

E R E R
T

Da Da Pe
Da

z

θ

αθ

θ

= =
 −   

− +    
     

  (5.59) 

Eq.(5.59) made use of the correlation developed in Chapter 4, shown here for laminar flow 

inside a circular channel.   The Damköhler number 0Da  is defined as 

( )
( ) ( )0

0

1/21
20

0 0 0
0 0

ˆ
2 lim

ˆ
G

II
eff surf E R T

T T
surf

a D cDa
Da c d c e

D c

υ

→

 
= =  

Φ  
∫

V
R

R    (5.60a) 

or for a ‘power-law kinetics’: 

( ) ( )

1/21
1

0
0 0 0 0

0 0

ˆ2
II

m

surf eff

Da a
Da c d c k c D

D

υ − 
= =  

Φ  
∫R .     (5.60b) 

In these expressions, the effectiveness factor in the definition of Da  was given by ~ 1η Φ , 

with Φ  related with 0Φ  from (5.58). 

The temperature below which mass transfer limitations are negligible in the channel, but 

washcoat diffusion is present, is given from the correlation also employed in (5.52) (for a low 

value of θ ),  

( )

( )

( )
4 34

0 4
0

2 2

ln 1 1 24
ln ln 1.033

4 11

G G

m

E R E R
T

Da Da Pe
Da

z

θ

αθ

θ

= =
 −     

− +      
       

,   (5.61) 

with 0Da  from Eq.(5.60). Santos and Costa (2011) quantified the magnitudes of the reaction, 

internal and external mass transfer resistances for a set of parameters corresponding to 

experiments in a three-way catalyst for the conversion of pollutants in automotive catalytic 

converters. They noted that external mass transfer controlled regime was difficult to achieve, 
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but most of their points lied in what they defined as a mixed control between internal and 

external mass transfer control (which corresponds to the overall mass transfer resistances 

representing 90% of the total resistance). Their values of ( )eff
D Dε  are low and their 

observations are consistent with the presence of strong intraphase mass transfer resistances in 

comparison with the external one. In fact, according to (5.57), the effectiveness factor is lower 

than 0.1 for temperatures above 536ºC, and lower than 0.33 for temperatures higher than 363ºC. 

External mass transfer control ( 0.9θ ≥ ) is not achieved in their experiments, since for this to 

happen 1400ºCT >  from (5.59). The maximum value of θ  registered was near 0.75.  

 

5.6.2.b Internal diffusion faster than external mass transfer 

 

Due to the reduced characteristic dimensions of catalytic coatings, it is possible that internal 

diffusion proceeds faster than the external one (in the sense of “diffusion velocity” mentioned 

earlier) and thus possibly eliminates the existence of any internal gradient, while in the channel 

they may exist. In this case, both domains will be under diffusion control when temperature 

exceeds that calculated from (5.57). More likely, diffusion limitations occur in the channel, but 

not on the catalytic coating and the temperature associated with a given value of mass transfer 

control θ  is given by 

( ) 4/3
0

0

ln 1 1
ln ln 11.1735 0.5334

4

G G

m

E R E R
T

Da Da Pe
Da

z

θ

αθ

θ

= =
 −   

− +    
     

,  (5.62) 

where 0Da  is given by (5.51). Tomasic et al. (2002) studied NO decomposition over zeolite 

ZSM5 supported on a cordierite monolith. They have also performed 2D numerical simulations 

and reported interphase mass transfer limitations, but negligible internal diffusional effects 

(except for the highest temperature and thickest catalytic coating where 0.72η = ). One of the 

monolith samples presented 0.99η =  but θ  very close to 1. According to our analysis, this was 

due to the high value of effective diffusivity found by these authors ( 6 2~ 8 10 m s
eff

D
−

× ), 

leading to ( ) 1
eff

D Dε >  for their conditions. We note that for this condition to be achieved, it 

is not required for the effective diffusivity to achieve unrealistic high values, since ε  (which in 

their case was around 0.1 – 1) is often small enough.  

 

The turning point in the magnitude relationship between the behaviors in sections 5.6.2.a and 

5.6.2.b is obtained by comparing (5.57) with (5.59): 
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T T
η θ

>    if 
( )1 1

eff
D Sh

D S

η

ε υ θ

∞
>

+ −
      (5.63a) 

T T
η θ

<    if 
( )1 1

eff
D Sh

D S

η

ε υ θ

∞
<

+ −
,     (5.63b) 

where Sh
∞

 is Sherwood number under Dirichlet wall boundary condition and 1S =  in a circular 

channel . The reversed roles of our criteria η  and θ  can be seen in comparison with Eqs.(5.55). 

 

5.6.3 Mapping of operating regimes 

 

Figure 5.9 shows the previously identified boundaries for a first-order reaction and for two 

values of 
eff

D Dε , corresponding to different controlling behaviors. The activation 

temperature ( 
G

E R ) was chosen to be 410 K , although this value doesn’t need to be specified 

(the temperature axis could have been normalized as 
G

T R E ). The temperature dependence of 

quantities other than the kinetic constant is neglected. The reaction occurs in a cylindrical 

catalyst layer with 0.1ε = . 

Figure 5.9a is plotted for a fixed value of Thiele modulus (and thus, Damköhler’s number 0Da  

is also fixed). For high 
eff

D Dε , the kinetic regime is determined by the internal process, while 

mass transfer control is harder to be achieved in the channel. The influence of the flowrate and 

other operating conditions in 
m

Peα  has no effect in improving the parametric area for kinetic 

measurements, since the boundary for 0.1θ =  is in the intermediate regime of the catalytic 

coating. Nevertheless, 10
eff

D Dε =  is high enough for the effectiveness factor to be described 

by ~ 1η φ , and therefore even though 0.1η > , the value of θ  is close to 0.1 from Eq.(5.61). 

The reverse picture is found when 
eff

D Dε  is low (Figure 5.9b), where external mass transfer 

control is easier to achieve, while the washcoat may be in an intermediate regime. However, the 

curve for 0.9θ =  is sufficiently close to the internal diffusional regime for ~ 1η φ  and hence 

transport in the channel is limiting, with already moderate to severe internal diffusion control. 

The value considered for this case ( 0.5
eff

D Dε = ) is not low enough for Eq.(5.62) to apply 

(the washcoat is not free from limitations in this case). However, it is possible to see the 

transition in the controlling behavior, which changes between the coating and the channel as the 

Peclet number increases. This point is predicted from Eqs.(5.63). This confirms that when the 

channel is operated at the entrance length regime, mass transfer controlled conditions are harder 

to be achieved. 
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(a) 0.1eff
D

Dε
=  and 5

0 10φ = . 

Lines: 0.9η =  from (5.45); 0.1η =  from (5.57); 0.1θ =  from (5.61 ); 0.9θ =  from (5.59). 

 

 

(b) 2eff
D

Dε
=  and 4

0 10φ = . 

Lines: 0.9η =  from (5.45); 0.1η =  from (5.57); 0.1θ =  from (5.52 ); 0.9θ =  from (5.59). 

Figure 5.9:  Mapping of operating regimes: Temperature - 
m

Peα  diagrams (figures (a) and (b)) 
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(c) 0.1eff
D

Dε
=  and 0.1

m
Peα = . 

Lines: 0.9η =  from (5.45); 0.1η =  from (5.57); 0.1θ =  from (5.61); 0.9θ =  from (5.59). 

 

 

(d) 2eff
D

Dε
=  and 0.1

m
Peα = . 

Lines: 0.9η =  from (5.45); 0.1η =  from (5.57); 0.1θ =  from (5.52 ); 0.9θ =  from (5.62). 

Figure 5.9: Mapping of operating regimes: Temperature - 0φ  diagrams (figures (c) and (d)) 
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Concerning the processes which determine the definition of completely kinetic or mass transfer 

controlled regimes, the above conclusions can also be taken from 5.9c and 5.9d. In this case for 

fixed 
eff

D Dε  and variable 0φ , 0Da  also varies according to (5.43). For chemical ( ~ 1η  ) and 

diffusional ( ~ 1η φ  ) internal regimes, the value of 0Da  is given by the dashed lines, which 

should be read on the right side scale. 

To evaluate the accuracy of these boundaries, numerical simulations for fixed values of ε , α , 

0φ  and 
eff

D Dε  were performed for several values of 
m

Peα . Temperature was set so that the 

simulation parameters lied in each of the defined limits. The channel and washcoat mass 

balances were solved with concentration and flux continuity conditions (Eq.(5.42)). From these 

results, the effectiveness factor and the degree of mass transfer control were calculated and 

compared with the specified values. Minor differences were observed. 

 

5.7 PERFUSIVE CATALYTIC COATINGS AND MONOLITHS 

 

Wall-coated microchannel reactors with thin catalyst layers, hollow catalyst pellets or egg-shell 

particles are some of the strategies for reduction of the internal mass transfer resistance that 

have appeared in the last decades in the field of reaction engineering. Other approaches also 

have been proposed, namely the introduction of macroporosity into the catalytic washcoat 

(Wang et al. 2010). In fact, bimodal catalysts in which the pore size distribution includes both 

macropores (providing pathways for fast intraparticular diffusion) and mesopores (providing 

high surface area for efficient metal dispersion) are still being studied and synthetized (Wang et 

al. 2008; Tao et al. 2011; Zhou et al. 2011). In this case the transport in the macropores may 

also rely on viscous flow due to internal pressure variation (changes in the number of moles 

from reaction). 

Another possibility arises when the material is permeable, and therefore intraparticular flow due 

to an external pressure difference is observed. The effect of this additional transport mechanism 

was explored originally in the context of permeable catalytically active pellets with the usual 

geometries of slab, cylinder and sphere (Nir et al. 1977; Rodrigues et al. 1982; Lu et al. 1993; 

Nan et al. 1996a). However, other shapes are interesting for reduction of mass transfer 

resistance, even when they rely on diffusion alone. The hollow cylinder (and multihole pellets 

in general) has been pointed out as the most frequent shape found in practice (Wijngaarden et al. 

1998), and in some cases selected as the optimal geometry (Soltan Mohammadzadeh et al. 

2002) due to its improved mass transfer features, convenient manufacture, low pressure drop 

and capability of inducing larger transverse mixing and bed porosities. If internal convection is 

superposed to this, further advantage may be taken from the catalyst. Nan et al. (1996b) 
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quantified the augmented diffusivity due to convection in the axial direction for a hollow 

cylinder analytically and experimentally using the chromatographic method. In this section, we 

obtain a solution that applies to a long hollow cylindrical particle with radial convective flow. 

The same picture with convective and diffusive fluxes acting in the same direction is found in 

other cases, for example: ‘open-wall’ monoliths, tubular reactors with porous catalytic walls or 

membrane reactors. Lathouder et al. (2004) used a highly porous acicular mullite honeycombs 

as support for enzyme immobilization (Figure 5.10b). They point out the advantages of the open 

microstructure compared with the conventional ‘small pore’ monoliths, namely: higher catalyst 

loading, reduced pressure drop, slower decrease in activity with time, and improved mass 

transfer in the cases where limitations existed. In the monoliths used, the pore diameter ranged 

from 5µm  to 16 µm . Bakker et al. (2005) studied the hydrodynamic properties of this ‘open 

wall’ monolith and promoted radial convection by using gas-liquid Taylor flow. Bakker et al. 

(2007) conducted a selective hydrogenation in the same type of monoliths. They reported an 

intrinsic permeability of 12 240 10 m−
×  and interstitial voids with 45µm , and used the pressure 

pulsing from Taylor flow to induce fluid velocities inside the wall of 10 mm s . This effect was 

observed to reduce mass transfer limitation, increase activity and the maximum yield. Khassin 

et al. (2003; 2005a; 2005b) also made use of the ‘permeable monolith’ concept for the Fischer-

Tropsch synthesis. Porous wall tubular reactors have been also studied for quite a long time 

(Shah et al. 1971; Cedro III et al. 1974). In these configurations, suction or injection of reactant, 

product or inerts is explored with advantages over solid wall reactors. Recently, new 

applications include microchannel enzyme reactors (Chen et al. 2010a), bioreactors (Chen et al. 

2010b) or porous ceramic mesoreactors for multiphase G/L/S reactions (Aran et al. 2011) 

(Figure 5.10c). Membrane reactors are also deeply related with these technologies and its 

modeling can be very similar (Nagy 2010a; Nagy 2010b). In the cases where the performance of 

the membrane reactor is severely limited by diffusion, the advantages of perfusion have been 

well documented, for example in oxygen transport in hollow fiber bioreactors  (Coletti et al. 

2006; Chen et al. 2009). Flow-through catalytic membrane reactors have been also studied for 

gas-phase reactions, destruction of VOCs and harmful chemicals (Westermann et al. 2009; 

Motamedhashemi et al. 2011). In some cases, the performance increased in comparison with 

conventional wall-coated monoliths. 

In the context of separation technologies, perfusion chromatography explored the same concept, 

e.g. for purification of proteins (Afeyan et al. (1990a; 1990b; 1991)). Recently, flow-through 

monolithic structures and columns operating in radial mode have also been explored for the 

purification of proteins (Lee et al. 1990; Podgornik et al. 2004), DNA and viruses (Trilisky et al. 

2009a; Trilisky et al. 2009b). A technology based on this concept is commercialized by BIA 

Separations (www.biaseparations.com) and is based on their proprietary CIM Convective 

Interaction Media® (Figure 5.10a) (CIM). This also relates to the previously discussed work, 
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since recently these configurations were used as immobilized enzyme reactors (Podgornik et al. 

2002; Vodopivec et al. 2003; Platonova et al. 2009). 

It is clear from the literature that the presence and improvement resulting from convective flow 

has interest for a number of technologies. At the channel level, this extra mass transfer 

mechanism can be beneficial, as it disrupts the boundary layer that forms in the transverse 

direction. In some sense, this is related to other approaches for performance enhancement in 

microchannel reactors (Yoon et al. 2006). In this section we propose a simplified expression for 

the effectiveness factor in a cylindrical permeable catalyst layer (section 5.7.2). We then 

quantify the performance enhancement in the effectiveness factor (section 5.7.3). 

 

 

 

(a) CIM® tube monolithic 

column from BIASeparations. 

(b) Acicular mullite ceramic honeycomb (De 

Lathouder et al. 2004). 

 

(c) Porous ceramic mesoreactors for gas/liquid/solid hydrogenation (Aran et al. 2011). 

Figure 5.10: Examples reproduced from the literature of materials and technologies where 

intraparticular flow inside catalytic monoliths or coatings is present. 
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5.7.1 Model equations for a perfusive hollow cylinder 

 

We consider a single circular channel made of a permeable material with catalytic properties, in 

which a first-order isothermal reaction occurs (see Figure 5.11). The reactant stream that flows 

through the channel penetrates the washcoat with interstitial radial velocity ˆ
i

u , given by Darcy’s 

law. As we will discuss below, the characteristic distances for transport in other directions are 

much larger than the one in the radial direction. The equation of motion for an homogeneous 

porous media (with permeability B ) and the continuity equation yield  (Kelsey et al. 1990) 

( )
( )

ˆ ,
1

wall

i

u z
u r z

rε
=

+
,          (5.64) 

where the variables were defined as before (dimensional variables are capped), ( )ˆ
w

r r a t= −  

and ˆz z L= . The velocity at the internal wall ( )wall
u z  is obtained by integration over the radial 

coordinate, 

( )
( )

( )
ˆ

ln 1
in out

wall

P

P PB
u z

aε µ ε

−
=

+
, 

where ( )in
P z  is the pressure on the channel’s lumen side and ( )out

P z  is the pressure on the 

external side of the channel (
in out

P P−  is the trans-membrane pressure). Flow across the wall 

from inside the channel occurs whenever 
in out

P P> . Note that in the limit of a flat wall ( a → ∞ ): 

( ) ( ) ( )ˆ
wall in out P w

u z B P P tε µ= − . We use the radial average of velocity as a scale for ˆ
i

u : 

( )
( )

( )
ˆ

ln 1
in out

i

P w

B P P
u z

t

ε

ε µ υ ε

−
=

+
. 

The velocity profile in (5.64) is then made dimensionless according to: 

( )
( )

( )

ˆ ,

ˆ 1
i

i

i

u r z
u r

u z r

υ

ε
= =

+
.        (5.65) 

For thin walls (small ε ), ( ) ( ) ( )
2~ 1

i
u r r Oυ ε ε− + . The dimensionless mass conservation 

equation inside an annular element of the washcoat (with volume ˆ ˆ ˆ2dV r d r d zπ= ) is 

( ) ( ) ( )

2
2 22

2

1
1

1 1 ax

c P c c c
r c P

r r r r r z z
ε φ α ε α ε

ε ε

 ∂ ∂ ∂ ∂ ∂
+ − − = − 

+ ∂ ∂ + ∂ ∂ ∂ 
  (5.66a) 

Our solution applies to small values of ( )
2

ax
P α ε  or ( )

2
α ε , rendering the terms on the right 

hand side of (5.66a) negligible, and therefore we scale concentration by its value at the internal 

wall: ( ) ( ) ( )1ˆ ˆ, ,c r z c r z c z= .  
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Figure 5.11:  Perfusive monolith with wall thickness 
w

t  and radius of the circular open channel 

a . Intraparticular flow direction is represented for 
in out

P P>  with velocity profile ˆ
i

u . 

Surface concentrations are 1̂c  and 2ĉ . 

 

For simplicity , we solve the problem for the case of specified concentration at both surfaces of 

the channel: 

1c =   at 0r =          (5.66b) 

( )2c c z=  at 1r = .        (5.66c) 

These surface concentrations are determined when solving the internal and external convection-

diffusion problems. The parameters (and/or functions of the axial variable) appearing in 

Eqs.(5.66) are: 

Intraparticular radial Peclet number: 
( )

( )

ˆ

ln 1
P i w in out

eff eff

u t B P P
P

D D

ε υ ε

µ ε

−
= =

+
 (5.67a) 

Intraparticular axial Peclet number:  P ax

ax

ax

u L
P

D

ε
=     (5.67b) 

Thiele modulus:    
2

2 w

eff

t k

D
φ =     (5.67c) 

Washcoat-channel length scales ratio:  w
t

a
ε =      (5.67d) 

Aspect ratio:     ax

eff

Da

L D
α =     (5.67e) 

Ratio of surface concentration distributions: 2
2

1

ˆ

ˆ
c

c
c

=      (5.67f) 

w
t a

r̂

ẑ

( )ˆ ˆ ˆ,
i

u r z

( )1̂ ˆc z( )2ˆ ˆc z ( )ˆ
in

P z ( )ˆ
out

P z
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When neglecting axial diffusion and convection, besides typical geometrical features (
w

t L<< ), 

we have assumed that the permeability in this direction may be much smaller than the one in the 

radial direction. The axial dependence of the solution is thus given by the parameters and 

boundary conditions. 

The radially averaged effectiveness factor (referred to internal surface conditions) is 

( ) ( ) ( )

1

22 2
0 1 0

1 1
1 1 1

r r

c c P
r c dr c

r r
η ε ε

υ φ υ φ υ
= =

 ∂ ∂
= + = + − + − 

∂ ∂  
∫ .   (5.68) 

 

 

5.7.2 Perturbation solution for specified surface concentration and pressure profiles 

 

A simplified solution is obtained below for the following parameter magnitude relationship: 

( ) ( )
2 2
, 1

ax
Pα ε α ε ε<< << . There is no need to restrict the magnitude of 2

φ , P  and 2c , since 

the kinetic law is linear and an analytical solution is possible without further simplification. We 

take ε  as a small parameter and look for a perturbation expansion for the concentration profile 

of the following form: 

( ) ( ) ( ) ( )
2

0 1c r c r c r Oε ε= + + .        (5.69) 

The first two subproblems extracted from Eqs.(5.66) give the solution to the coefficients ( )0c r  

and ( )1c r : 

( )
0

O ε :  ( )

2
20 0

02
0

c c
P c

r r
ε φ

∂ ∂
− − − =

∂ ∂
      (5.70a) 

  ( )0 0 1c r = =         (5.70b) 

  ( )0 21c r c= =         (5.70c) 

( )
1

O ε :  ( ) ( )

2
2 01 1

12

cc c
P c P r

r r r
ε φ ε

∂∂ ∂
− − − = − −

∂ ∂ ∂
    (5.71a) 

  ( )1 0 0c r = =         (5.71b) 

  ( )1 1 0c r = =         (5.71c) 

A convenient redefinition of Peclet number with curvature effects is suggested by Eqs. (5.70a) 

and (5.71a): 
C

P P ε= − . The corresponding perturbation series for the effectiveness factor is 

( )
2

0 1 Oη η ε η ε= + + .         (5.72a) 
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Table 5.3: Maximum relative error between ( )
2

η φ  calculated numerically (gPROMS®) and 

from Eq.(5.73) with 2 1c = . The numbers in brackets correspond to the value of 

Thiele modulus where the maximum is observed.  

          C
P  

ε  
0.1 1 5 10 100 

0.1 
0.0004% 

(16) 

0.003% 

(15) 

0.007% 

(28) 

0.02% 

(67) 

0.06% 

(136) 

0.5 
0.006% 

(12) 

0.04% 

(11) 

0.13% 

(31) 

0.39% 

(67) 

1.18% 

(128) 

1 
0.02% 

(12) 

0.11% 

(11) 

0.32% 

(31) 

1.06% 

(64) 

3.8% 

(122) 

 

 

 

 

Figure 5.12: Effectiveness factor plot ( )
2

η φ  in a hollow perfusive cylinder with 0.1ε =  and 

for several values of the intraparticular Peclet number. Full lines are the result of 

numerical simulation. Dashed lines represent the approximate solution (5.73). 
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The terms up to ( )
2

O ε  are calculated from 

( ) ( )
0 0

0 22 2

1 0

1
1 1

r r

c c P
c

r r
η ε

φ υ φ υ
= =

 ∂ ∂
= + − + − 

∂ ∂  
     (5.72b) 

1 1
1 2

1 0

1

r r

c c

r r
η

φ υ
= =

 ∂ ∂
= −  ∂ ∂ 

.        (5.72c) 

Solving Eqs.(5.70) to (5.72), the effectiveness factor becomes  

( ) ( )
( )

( )

( ) ( ) ( )

( )
( )

( )

( )

( )( )

( )
( )

22 2 2 2
22

22
2

2 2

22 2
2 2 2 22

1 1
1 1

2 tanh 2 2 sinh 2 2

4 22 2 4

sinh 2 8 8

1 4 1 2
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8 tanh 2 2 sech 2 8 sinh 2
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C

C C

C C

P

P C

C

C CC C C

P P

P P

C C C

C C

Pc c e c
e P c

c P PP P P

e e

P c c c P Pc e e
P P O

εξ ξ
φ υ η ε

ξ ξ ξ

ξξε

ξ ξ ξ

φ
ε

ξ ξ ξ ξ

−

−

−

 + + −
= − + − + − + 

 

 − +− + −
+ − −



+ + + −+
− − + + +



, 

           (5.73) 

where an auxiliary variable was defined as 2 24
C

Pξ φ= + . In particular, when 2 1c = : 

( )

( )

( )

( )

( ) ( ) ( )

( )

( )
( )

( )

( )

( )
( )

2

22

2 2

2
22

cosh 2

tanh 2 sinh 2

4 22 2 4

sinh 2 8 8

cosh 2 2 22 4
2

4 tanh 2 2 sech 2 8 sinh 2

C C

C

C CC C C

P P
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C C

P
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e e

P P PP c
P P O

ξ
φ υ η ξ

ξ ξ

ξξε

ξ ξ ξ

φ
ε

ξ ξ ξ ξ

−
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−+
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  (5.74) 

The limiting forms are respected: 

( )tanh 2

2

φ
η

φ
=      as 0P →     (5.75a) 

( )

( )

( )
2

cosh 2
1

tanh 2 cosh 2

Pξ
η

φ ξ ξ

 
= − 

  
  as 0ε → .    (5.75b) 

Eq.(5.75b) is equivalent to Nir and Pismen’s solution (1977) with their flow parameter equal to 

2Pλ =  and Thiele modulus 2φ  (due to difference in the length scales adopted).  We have 

compared Eq.(5.73) with the numerical results from the full model (Eqs.(5.66) and (5.68)) using 

gPROMS®. The radial coordinate r  was discretized by the orthogonal collocation on finite 

elements with a number of intervals between 500 and 1000. The maximum relative error for 

several values of the parameters is presented in Table 5.3. We should point out that in the 

numerical simulations with lower number of discretization points another maximum in the 

relative error was observed as φ → ∞ , which disappeared as the number of intervals increased. 
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Therefore, Eq.(5.73) also avoids the numerical convergence issues in the diffusional controlled 

limit. The effectiveness factor curves ( )
2

η φ  are plotted in Figure 5.12. For other values of 2c , 

the agreement between numerical and analytical solutions is comparable to this case.  

It is important to note the good agreement observed even for reasonably high values of ε  (note 

that our solution was conceived for small values of ε ). At leading-order, the convection, 

diffusion and reaction problem in a slab catalyst is recovered, for which analytical solutions 

have been presented for a number of cases (e.g. zero-order kinetics (Rodrigues et al. 1984), 

consecutive-parallel reactions (Nir 1977; Cresswell 1985) and nonisothermal behavior (Cardoso 

et al. 2007), also discussed in Chapter 6 of this thesis). In certain limits, a curvature correction 

for these situations may also be obtained  and added as a ( )O ε  term. 

 

 

 

 

 

 

Figure 5.13: Concentration profile in the convection dominated regime for 3 values of the 

surface concentration at the outer surface of the cylinder. Comparison between 

perturbation composite solution (5.79) (dashed lines) and numerical solution (full lines). 

Parameters: 50
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5.7.3 Performance enhancement 

 

It is well-known (Nir et al. 1977; Rodrigues 1981; Rodrigues et al. 1991) that the effect of an 

additional mass transport mechanism is to increase the overall content of the pellet in reactant 

species, and therefore an increase in the effectiveness factor may be observed. The enhancement 

due to the intraparticular flow can be quantified by 

( )

( )

2

2

,

, 0

P

P

η φ

η φ
Ε =

=
.         (5.76) 

There is a maximum in the ( )
2

φΕ  curves with respect to the parameter 2
φ , which increases as 

P  increases (Figure 5.14). When 1P >> , the internal mass transport is dominated by 

convection, but for the effect to be visible in the observed reaction rate, kinetics should also be 

reasonable fast (otherwise no enhancement would be observed), so 2 1φ >>  (see Figure 5.14). 

The conditions under which maximum advantage is taken from the catalyst’s permeability are 

detailed below. It is important to characterize this regime, since in others the enhancement is 

less pronounced. An approximate solution to the concentration profile can be built using the 

boundary layer method (Bender et al. 1978). For convection-dominated operation (diffusional 

limitation in the transport), the outer domain ( 0 1r δ≤ < − ) is described by  

21
0

1
out

out

C

c
c

r r P

φ

ε

∂
+ =

+ ∂
  ( 1P >> , 2~P φ )    (5.77a) 

( )0 1
out

c r = = ,          (5.77b) 

where it is assumed that the direction of the flow is from the lumen towards the exterior. The 

boundary condition at 1r =  only happens to be fulfilled by (5.77) if 

( )

2

21 exp 1
2out

C

c r c
P

φ ε  
= = − + =  

  
 

which does not happen in general. Therefore, a boundary layer exists at the external surface 

(from where flow exits the monolith). An appropriate description for this region (1 1rδ− < ≤ ) 

includes a convective-diffusive balance given by 

2

2
0in in

c c

R R

∂ ∂
+ =

∂ ∂
         (5.78a) 

( ) 20
in

c R c= = ,          (5.78b) 

with ( )1
C

R P r= − . Both solutions match in an intermediate domain ( ( ) ( )1
out in

c r c R→ = → ∞ ) 

to yield the following composite solution: 
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Figure 5.14:  Enhancement curves ( )
2

φΕ  of the effectiveness factor in a hollow cylinder due 

to internal radial convection. Both surfaces are maintained at the same concentration 

and results for several values of P  and ε  are shown. The approximate relationship for 

the maximum effectiveness factor maxΕ  in Eq.(5.82) is shown as a thick dashed line. 

 

 

 

Figure 5.15: Effect of asymmetry in the boundary conditions on the enhancement curves 

( )
2

φΕ  . The concentration ratio is 2 0.1c =  and results for several values of P  and 

0.1ε =  are shown. maxΕ  from Eq.(5.82) is shown as a thick dashed line. 
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 with ( )

2

~ 1
C

O
P

φ
.  (5.79) 

This solution is plotted in Figure 5.13 for 50P = , 2 50φ =  and 0.1ε = . For this case, 

( )1 0.35
out

c r = = , and we choose three concentration profiles with: ( )2 1
out

c c r= = , 

( )2 10 1
out

c c r= =  and ( )2 0.1 1
out

c c r= = . The presence of boundary layers near 1r =  for the 

two latter cases is well described by the composite solution. 

The corresponding effectiveness factor is according to Eq.(5.68):  

( )
( )

( )

2 2 2

22
22

1 1 1
~ 1 1 1 1

C

C C C C

P
CP P P PC

C C

c PP
e e c e e

P P

φ υ φ υ φ υ

η ε ε ε
υ φ υ

− −
− −

−

   + −
   − + + − + + − +

      

. 

           (5.80) 

A simple estimate of the enhancement factor defined in (5.76) can be obtained in the limit of 

small ε  and high 
C

P , 

( ) ( )

2

22
2

~ 1
1 tanh 2

CPC
P

e c
c

φ υ

φ
ε

υ φ φ

− 
 Ε − +

+  

 

The maximum of Ε  with respect to φ  is calculated from (for reasonably high φ  but 2 ~ 1Pφ ), 

( )

2 2
2

1 2C C
P P

C

e e O
P

φ υ φ υ

φ υ
ε

− −

− = +  

and therefore, the optimum set of parameters ( 2
C

Pφ υ ) is approximately described by a 

constant ratio of the timescales for convection and reaction, with the following numerical value: 

2

1.2564opt

C
P

υ φ
=    ( 1P >>  and 1ε << ).     (5.81) 

Eq.(5.81) gives a conservative estimate for 
C

P , which improves as 1P >> . This corresponds to 

a maximum enhancement of 

( ) ( )
max

2

0.5694

1 tanh 2
opt

opt
c

φ

φ
Ε =

+
.        (5.82) 

Eqs.(5.81) and (5.82) give an approximate loci of the maxima points on the enhancement factor 

curves. These are plotted in Figure 5.14 for the symmetric case and in Figure 5.15 for the 

asymmetric case. In the latter case ( 2 1c < ), the enhancement in the chemical regime is greater 

than 1, since the convective flow increases concentration significantly in comparison to the 

linear profile predicted by diffusion alone. In this case, the reactant is being transferred from the 

outer surface ( 1r = ) into the bulk, yielding ( ) ( )20 1 2 1cη φ → = + < . This limit corresponds to: 
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( ) 2

2

12
0 1

1
C

c

c P
φ

 −
Ε → = + 

+  
   for 1

C
P >> . 

Therefore, when a concentration difference exists the improvement brought by convection can 

be very significant. For moderate values of 
C

P , the estimates from (5.81) and (5.82) can still be 

useful. For a specified value of Thiele modulus, (5.81) overestimates the intraparticular Peclet 

number at which maximum enhancement is observed (given correctly by (5.82)). For a specified 

intraparticular Peclet number, 
opt

φ  is underestimated. In both cases, a lower bound for the 

maximum enhancement is obtained from (5.82), while the actual improvement can be slightly 

larger. These differences become negligible in the convection dominated limit ( 1
C

P >> ). Also, 

the result from (5.81) is quite insensitive to the values of 2c  (associated with ε ). 

 

 

5.8 CONCLUSIONS 

 

We have addressed several questions related with the internal transport-reaction problem in a 

catalytic coating, using the classical effectiveness factor concept. First, we focused on the issue 

of the evaluation of the effectiveness factor itself and proposed an approximate calculation 

procedure with the following characteristics: 

(a) A very simple expression based on a typical geometrical characteristic found in wall-coated 

microreactors was derived, and is valid for all values of Thiele modulus. This compares 

very favorably with methods presented in current literature where more complex shape 

factors are obtained for low and high 2
φ , resulting sometimes in a fragmented analysis. 

(b) For some classes of nonlinear kinetics, our solution fulfills the asymptotic behavior at small 

and large reaction rates, and presents small errors in the intermediate range. For this case, 

we presented a generalization of the Thiele modulus which includes the classical 

normalizations in their ranges of validity. 

(c) An arbitrary geometry is described by our solution by a measurable shape parameter (which 

combines the washcoat volume, surface area and thickness) and by the effectiveness factor 

of an equivalent slab. 

(d) The performance of the ‘slice method’ (Papadias et al. 2000b) is improved, without 

introducing further complexity. This involved the consideration of a curvature correction, 

which reduced the relative error or the number of slices required to achieve a satisfactory 

approximation, especially in the intermediate regime of Thiele modulus. 
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(e) Despite the fact that our analysis was built for thin coatings, in some cases acceptable 

results were obtained even for ~ 1ε . Also, even though our main focus was on 

microchannel reactors, egg-shell catalyst particles and hollow cylinders can also benefit 

from our approach. 

 

The second part of our work was concerned with the definition of operating regimes in wall-

coated microchannels. We have extended previous analyses (Chapter 4) to consider the 

interplay between internal and external controlling processes. We have shown that, even though 

channel and washcoat domains are coupled, the solution of the full model is not required for 

estimation of boundaries between regimes. Even if variation of all properties with temperature 

needs to be accounted for, the problem can be reduced to the solution of a set of nonlinear 

algebraic equations. We predict that the process which determines the limiting behavior is 

governed by the ratio of ‘diffusion velocity’ in the washcoat and in the channel ( ( )eff
D Dε ). 

This has implications in experimental and modeling methods for measurement of intrinsic 

kinetics (requiring chemically controlled conditions) and operation in the mass transfer 

controlled limit. Current studies have neglected the role of this parameter and contradictory 

conclusions regarding the presence/absence of mass transfer limitations can be explained by 

taking it into consideration. Regime maps are presented with the parametric regions where 

channel and coating can be considered to operate under chemical and diffusional control 

(independently or together). 

Finally, performance enhancement of a catalytic coating by intraparticular convection is 

explored. An approximation to the effectiveness factor in the case of radial convective flow is 

presented for a hollow cylinder and gives very acceptable results for a wide range of the 

parameters (including the ratio of surface concentrations at the inner and outer walls). We have 

also looked at the conditions under which the enhancement due to internal convection was more 

pronounced. The original work of Nir and Pismen (1977) identify these conditions as the ones 

where “the kinetics just becomes diffusion controlled”. In their analysis this happened for 

Thiele modulus of order 1. However, considering a regime with fast convective transport, but 

where reaction is also fast enough, we have observed an optimum range of operation and 

design. When the rate of reactant consumption is able to keep up with strong convection, the 

pellet should be designed so that the (short) timescale for convection is approximately 1.26 

times higher than the one for reaction. The observed enhancement is proportional to the square 

root of the intraparticular Peclet number:  

max
2

0.6382

1
C

P

c υ
Ε =

+
. 
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NOTATION 

 

a  characteristic distance for diffusion in the channel 

A  cross-sectional area of washcoat 

B  permeability of the medium 

m
Bi  mass Biot number 

c  dimensionless concentration of reactant in the washcoat 

2c  ratio between concentrations at the surfaces 

C  concentration of reactant in the channel 

D  diffusivity in the bulk  

ax
D  effective diffusivity in the coating (axial) 

eff
D  effective diffusivity in the coating (transverse) 

Da  Damköhler number 

E  activation energy 

Ε  enhancement factor 

2 1F  hypergeometric function 

0k  pre-exponential factor in reaction kinetics 

K  kinetic parameter 

L  length of the channel 

LHS left hand side 

m  order of reaction 

p  kinetic parameter 

P  intraparticular Peclet number 

P̂∇  pressure gradient vector 

r   dimensionless transverse coordinate 

R  reaction rate 

RHS right hand side 

G
R  ideal gas constant 

S  area of the channel-coating interface 

Sh  Sherwood number 

w
t  thickness of the catalytic coating 

T  temperature 

ˆ
i

u  interstitial (pore) velocity  

V  washcoat volume 

i
w  fraction of the washcoat volume correspondent to a slice 

z  dimensionless axial coordinate 
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Greek letters 

 

α  aspect ratio of the channel 

m
Pe

z

α
 Graetz parameter 

ε  ratio of the characteristic distances for diffusion in the coating and in the channel 

P
ε  porosity of catalytic coating or membrane 

φ  Thiele modulus 

µ  dynamic viscosity 

η  effectiveness factor 

η  global effectiveness factor 

σ  shape parameter 

τ  timescale 

θ  degree of mass transfer control; angular coordinate 

υ  volume to surface ratio, divided by characteristic dimension for diffusion 

 

Superscripts 

^ dimensional quantities 

‘  normalized by inlet conditions 

 

Subscripts 

in referred to inlet conditions 

surf referred to surface conditions 

transv transverse 

V per volume of washcoat 
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From the examples given in Chapter 1, it is clear that the analysis of the interaction between 

transport phenomena and chemical reaction inside large-pore catalyst particles needs to include 

intraparticular convection as an additional mass/heat transfer mechanism. Examples of such 

particles were given in Chapter 1. In this chapter, we describe by a 3-D regime diagram the 

global behaviour of a permeable catalyst slab, where an exothermic, zero-order reaction is 

occurring. An order of magnitude estimate for the maximum temperature change is obtained by 

scaling techniques in each regime of operation. Specific operating regimes of fast mass/heat 

transport, dominant reaction and strong intraparticular convection, are then studied in more 

detail using perturbation analysis. The results include approximate concentration and 

temperature profiles, which allow the estimation of both the effectiveness factor and maximum 

temperature attained inside the catalyst in these regimes. 

 

6.1 INTRODUCTION  

 

‘Large-pore’ materials have been used in several reaction and separation engineering 

applications, namely as catalyst supports, HPLC packings, ceramic membranes or supports for 

mammalian cell culture and biomass growth. Examples of work in these areas have been given 

in Chapter 1. The interest in using these permeable materials arises from the non-negligible 

convective contribution to the total transport rate inside the particle when subjected to a pressure 

difference, as first recognised by Wheeler (1951). The presence of convective flow within the 

pores of a coarse-grained pellet was found to reduce internal mass transfer resistance, improving 

the overall performance of the reactor/separator. The enhancement observed in a catalyst 

particle with ‘large-pores’ was quantified analytically by Nir and Pismen (1977) for an 
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isothermal first-order reaction, where the effect of intraparticular convection was found to be 

visible only when kinetics just becomes diffusion controlled. Rodrigues et al.(1982) explained 

the beneficial effect of convection with the concept of ‘augmented diffusivity’. He found that 

the behaviour predicted from a model including convection was equivalent to a conventional 

reaction-diffusion system, with apparent diffusivity ( )app
D D f Dλ= > . An expression for 

( )f λ  was derived. Rodrigues et al. (1984) extended the analysis of simultaneous convection 

and diffusion inside slab-shaped catalyst particles, when an isothermal zero-order reaction 

occurs. The same problem was addressed by Stephanopoulos and Tsiveriotis (1989) for the 

spherical geometry in the context of reactions in biologically active pellets. 

Actually, large pore materials have become extremely popular among biotechnological 

applications, for which the zero-order reaction is an important limit. Although they provide easy 

access for cell attachment and growth, since nutrient and biomass concentration gradients within 

the carriers are highly disadvantageous. In fact, cell culture scaffolds are severely limited by 

diffusional resistance, which coupled with low diffusivity and solubility in liquid-phase, make 

nutrients (such as oxygen) poorly available. Intraparticular convection can therefore be of 

utmost importance in assuring uniform high cell densities. Fassnacht et al. (1999) recognise the 

importance of convective flux through carriers with large pores and high porosity (SIRAN® 

beads with macropore size between 60 300µm− ) for antibody production from immobilized 

hybridoma cells. The oxygen uptake rate was identified as the limiting factor and modelled as a 

zero-order reaction, since Michaelis-Menten constant was much lower than the bulk 

concentration value. Goldstein et al. (2001) also conclude that convective currents are essential 

for uniform and extensive utilization of porous PLGA foams, where osteoblastic cells are 

seeded. Young et al. (1987) reported the use of Verax VX-100 microspheres (with pore 

diameters in the range of 20 – 40 µm ) as a support for mammalian cell culture. Oxygen supply 

and waste removal are of vital importance also for feasible in vitro fabrication of mammalian 

tissues for therapeutic uses (Martin et al. 2005), since high cell density is a fundamental 

requirement. The same challenges appear in plant root cultures for the production of 

pharmaceuticals and flavours. Prince et al. (1991) present experimental evidence of convective 

mass transfer rate as the controlling step for oxygen consumption within porous root culture 

clumps. They report significant enhancement in catalyst performance (effectiveness factor 

increased 100 times), when external flow velocity was around 1 cm s . Again, oxygen uptake 

was described by a zero-order reaction. In addition to these examples, the importance of 

intraparticular convection has also been noticed in other perfusive bioreactors for cell culture 

(e.g. Coletti et al. (2006), Chung et al. (2007), Allen et al. (2003)) and in immobilized enzyme 

systems.  
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Most of the modelling work is focused exclusively on isothermal conditions. However, many 

chemical reactions are strongly heat-generating and the common assumption of negligible 

internal temperature gradients has to be carefully evaluated. In what concerns the problem of 

intraparticular convection, diffusion and reaction under nonisothermal conditions, most studies 

at particle level are numerical (Quinta Ferreira 1988; Lopes et al. 1995). Cardoso and Rodrigues 

(2007) presented a perturbation analysis for nonisothermal first-order reaction in a permeable 

catalyst slab. All previous results indicate that temperature inside the particle can reach values 

several times higher than its surface value, for typical parameter values. First and zero-order 

reactions are always attractive for analytical treatment, since the problems they give origin to, 

are easier to handle. On the other hand, they constitute the two well-known limits for more 

complex reaction kinetics expressions, like the Michaelis-Menten equation, used to describe 

consumption of substrates in biological media. This work intends to extend the approximate 

analytical analysis to zero-order reactions. The purposes of this approach are: (1) define 

operating regimes and understand the transitions between them; (2) provide effectiveness factor 

approximations for each regime; and (3) estimate the maximum temperature attained inside the 

catalyst. An improved understanding of convective enhancement on the performance of porous 

particles as catalysts/supports, coupled with nonisothermal effects, is extremely relevant for 

reactor design and carrier structure optimization. Simple estimates can be useful for preventing 

operation problems, such as crossing critical temperature limits. Finally, algebraic solutions for 

the effectiveness factor greatly simplify fixed-bed simulation, since the highly nonlinear 

equations that describe mass/heat transfer and chemical reaction inside the particle do not need 

to be solved at every point of the reactor. 

 

6.2 OPERATING REGIMES 

 

6.2.1 Governing equations and model parameters  

 

We adopt a one-dimensional steady-state model for mass and energy transport in a permeable 

catalyst slab, undergoing an exothermic zero-order reaction, in an uniform flow field (with a 

priori specified fluid velocity, u ). The conservation equations write as: 

2

2

ˆ, 0ˆ ˆ

ˆˆ ˆ 0, 0

k cdc d c
u D

cdx d x

>
= − 

=
        (6.1) 

( )2

2

ˆ, 0

ˆ ˆ
ˆ0, 0

P

H k
cd T d T

u C
dx d x

c

κ ρ

 −∆
>

= + 


=

⌢ ⌢

       (6.2) 
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Since both sides of the slab are assumed to be at uniform surface concentration and temperature, 

the proper boundary conditions are 

( )ˆ ˆ ˆ
s

c x L c= ± =  and          (6.3) 

( )ˆ ˆˆ
s

T x L T= ± = .          (6.4) 

Non-dimensionalization of equations (6.1)-(6.4) was accomplished using the following scales 

(Cardoso et al. 2006): 

x̂
x

L
= ;   

ˆ ˆ

ˆ
s

s

c c
c

c

−
= ;  

ˆ ˆ

ˆ
s

T T
T

T

−
=

∆
     (6.5) 

where the characteristic length scale is the slab half-thickness ( L ) and the correct scale for 

temperature deviation from its surface value, T̂∆ , is so far unknown. In these variables, 

equations (6.1)-(6.4) become: 

( )

2 2

2

1

m m

dc d c
r T

dx Pe dx Pe

φ
= −         (6.6) 

( )

2 2

2

ˆ1
ˆ

m s

h m h

Pe TdT d T
r T

dx Pe dx Pe Pe T

φ
β= +

∆
       (6.7) 

subject to 

( )1 0c x = ± =  and         (6.8) 

( )1 0T x = ± = .          (6.9) 

The reaction term ( )r T  in (6.6) and (6.7) is only operative if reactant exists: 

( )
exp , 1

1

0, 1

T
c

r T T

c

ϕ

η

  
> −  

= +  


= −

        (6.10) 

where ˆ
ŝ

T Tη =∆  and ϕ γ η=  are at most of ( )1O . The Arrhenius parameter, ( )ˆ
act s

E RTγ = , 

is related with the reaction activation energy ( )act
E  and is referred to the surface temperature 

value ( )ŝ
T . The properties for the fluid and solid phases are taken to be uniform. Therefore, the 

mass diffusivity D  and thermal diffusivity ( )p
Cκ λ ρ= , which are related by Lewis’ number 

( )Le Dκ= , are fixed for a given system. 
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6.2.1.a Timescales 

 

Assuming that concentration and temperature are correctly scaled in (6.6)-(6.10), the magnitude 

of the convective, diffusive and conductive terms in the mass and energy balances is given 

respectively by: 1, 1
m

Pe  and 1
h

Pe . In the presence of reactant, the order of the reaction term 

is 2
m

Peφ  from (6.6) and 
2 ˆ

ˆ
m s

m h

Pe T

Pe Pe T

φ
β

∆
 from (6.7), since ( ) ( )1r T O∼ . These dimensionless 

groups compare the characteristic time for the fluid to be convected over the scale for the spatial 

dimension ( )L , with all the other interacting processes. This can be seen if the coefficients 

preceding the terms in equations (6.6) and (6.7) are written explicitly in terms of timescales: 

1
C

m D
Pe

τ

τ
=           (6.11) 

1
C

h H
Pe

τ

τ
=           (6.12) 

2
C

m R
Pe

τφ

τ
=           (6.13) 

2 ˆ

ˆ
m s C

m h RH

Pe T

Pe Pe T

τφ
β

τ
=

∆
         (6.14) 

Therefore, the time constant for convection ( )C
L uτ =  can be related with the one for diffusion 

of matter ( )
2

D
L Dτ =  and conduction of heat ( )

2
H

Lτ κ= , through the mass and heat 

intraparticular Peclet numbers ( m
Pe  and )h

Pe . Similarly, the characteristic time for reactant 

consumption ( )ˆ
R s s

c kτ =  and fluid temperature rise from heat generation by chemical reaction 

( )( )( )ˆ
RH p s

C T k Hτ ρ= ∆ −∆  are compared with convection, as expressed in equations (6.13) 

and (6.14). These dimensionless groups are also written in terms of the more familiar 

parameters in reaction engineering analysis, namely the Thiele modulus ( )
2

D R
φ τ τ=  and 

Prater’s parameter, ( )( ) ( )ˆˆ
s p s

H Dc C Tβ ρ κ= −∆ . Because the maximum temperature change 

in the diffusive-reactive limit(Prater 1958) is ˆ ˆ
dif s

T Tβ∆ = , equation (6.14) reads as 

2

ˆ ˆm RH

dif

m h C

Pe
T T

Pe Pe

τφ

τ
∆ ∆∼  or as 

2

ˆ ˆ RH

ad

m C

T T
Pe

τφ

τ
∆ ∆∼ , since ˆ ˆ

ad dif
T T Le∆ = ∆  (the adiabatic 

temperature change). Also notice that 
ˆ

ˆ
RH

Rad

T

T

τ

τ

∆

∆
∼ . If the time required for the fluid to heat up 

by the characteristic temperature change is comparable with the one needed for reactant 
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concentration to experience an ( )1O  variation (until it reaches its minimum value), then a 

balance between the two processes yields 
âd

T∆  as a scale for temperature change and the most 

symmetric form of equations (6.6)-(6.7). The maximum temperature change will be below or 

above this value, whether the fluid increases its temperature faster ( )RH R
τ τ<<  or slower 

( )RH R
τ τ>> , in comparison with the time needed for the adiabatic temperature change to occur 

( )RH R
τ τ∼ . A more complete scaling analysis for temperature change will be presented in the 

next section. 

 

6.2.1.b Effectiveness factor 

 

A measure for the overall performance of the catalyst slab is given by the effectiveness factor, 

which compares the average reaction rate with the one observed if reactant concentration and 

temperature in the whole particle equal surface conditions. We seek to understand the 

enhancement brought to this quantity which is defined as 

ˆ ˆ
L L

s

L L

Eff k d x k d x

− −

= ∫ ∫          (6.15) 

where ( )ˆk T  is the kinetic constant evaluated at each point from the temperature profile, as long 

as reactant exists (the contribution of the regions where no reactant exists is zero). Using Gauss’ 

divergence theorem and according to (6.5): 

2
1 1

1

2
x x

dc dc
Eff

dx dxφ
= =−

 
= − 

 
.        (6.16) 

Eq.(6.16) is somewhat more generic than Eq.(6.15), since any solution (even the ones including 

concentration annulment branches) guarantee profile and flux continuity. 

 

 

6.2.2 Scaling and regime diagram  

 

Although, the complete description of the system’s behaviour depend on the interaction of all 

the previously identified mechanisms, particular regimes can be defined in which two important 

processes balance, being the others negligible at first approximation. We want to describe the 

global behaviour of the catalyst slab in each one of these regimes, i.e. ( )1x O∼ , so the original 

(outer) scaling should be kept. Examining equation (6.6), the following possibilities arise: 
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• Dominant convection and diffusion for 1
m

Pe ∼  and 2 1
m

Peφ << , 

• Dominant diffusion and reaction for 1
m

Pe <<  and 2 1φ ∼ , and 

• Dominant convection and reaction for 1
m

Pe >>  and 2 1
m

Peφ ∼ . 

Also, limiting regimes in which only one mechanism dominates are conceivable. Diffusion is 

dominant for ( )
2 , 1

m
Peφ << , while reaction is the more important process for ( )

2 , 1
m

Peφ >> . 

In addition, for ( )
21,

m
Pe φ>> , the system can be described as purely convective. Since the only 

two parameters at play are 
m

Pe  and 2
φ , this information concerning mass conservation can be 

represented in a 2
m

Peφ −  plot (Figure 6.1). 

 

 

 

 

 

 

 

Figure 6.1:  Regime diagram for convection, diffusion and zero-order reaction in an isothermal 

catalyst slab (analytical results from Rodrigues et al. (1984)). The boundary shown as 

a thick black line separates the situations of no reactant exhaustion (where 1Eff = ) from 

the annulment region (where some iso-effectiveness factor curves at 1Eff <  are 

represented). 
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6.2.2.a Isothermal zero-order reaction in permeable catalyst slab 

 

For an isothermal system, exact analytical solutions are available (Rodrigues et al. 1984). The 

calculation of the effectiveness factor and the condition that separates the situation of reactant 

exhaustion from the one where no concentration annulment occurs, are of particular interest. 

These important results are represented in Figure 6.1. For representation convenience, we 

choose a factor of 210−  to express smallness in the above magnitude relations. The regions 

where the system behaves globally as purely diffusive, convective or reactive are shown, as well 

as the regimes described by a dominant balance between any of these two (grey areas). The 

thick black line separates the parametric sets that lead to concentration annulment anywhere 

inside the particle from the situations where no reactant exhaustion occurs. This line of 

( )
2 ,

m
crit

Peφ  is also the iso-effectiveness factor curve for 1Eff = , when reactant concentration 

reaches zero only at a single point inside the slab. For ( ) ( )
2 2, ,

m m
crit

Pe Peφ φ< , no annulment 

occurs and 1Eff = . Outside this region, catalyst performance decreases with increasing Thiele 

modulus, according to the curves of constant effectiveness factor in the ( )
2 ,

m
Peφ  plane. When 

0
m

Pe → , the boundary tends to the well-known diffusive limit of ( )
2 2

crit
φ = , and for 2 2φ >  

the iso-effectiveness factor curves approach the value 2Eff φ= . The effect of convection is 

visible for high 
m

Pe , increasing the effectiveness factor for a given 2
φ  (and also the value of 

( )
2

crit
φ  needed to achieve annulment), that is, the overall content in reactant inside the slab 

increases. The region around the grey lines represent the transition zone, above which, the effect 

of increasing the Peclet number (and therefore, convection) is particularly noticeable (this 

approximated criteria will be derived in section 6.3.3.c). 

 

6.2.2.b Scaling for temperature change in exothermic systems 

 

In order to study nonisothermal systems, in which β  and γ  are fixed, we have to consider the 

intraparticular heat Peclet number, 
h

Pe  (through Lewis number, for example), in addition to 2
φ  

and 
m

Pe . A 3-D regime diagram can be constructed by adding this third axis (
m h

Le Pe Pe= ), 

as shown in Figure 6.2. 

An order of magnitude estimation and scaling for the characteristic temperature change, T̂∆ , 

can be obtained by a balance between the terms corresponding to the dominant effects in the 

energy balance (Lin et al. 1988). To compare the magnitude between all terms in equation (6.7) 

we introduce a generic small parameter ε , which will express the relations between the 
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dimensionless groups. Therefore, for 
h

Pe ε∼  (reaction-conduction dominant balance), 

2ˆ
âd

T T Leφ∆ ∆ ∼ ; while for 1
h

Pe ε
−

∼  (strong heat convection balanced by reaction), 

2ˆ
âd m

T T Peφ∆ ∆ ∼ . When heat transport mechanisms dominate over reaction: 1
h

Pe ∼  and 

2ˆ
âd m

T T Peφ∆ ∆ >>  (we will take ( )
2 1ˆ

âd m
T T Peφ ε

−
∆ ∆ ∼ ). In Figure 6.2a, the results of 

temperature scaling in the planes of slow conduction ( )Le ε∼ , convection ( )m
Pe ε∼  and 

reaction ( )
2

φ ε∼  are indicated by: isothermal (when ( )ˆ ˆ ˆ,
dif ad

T T T∆ << ∆ ∆ ); adiabatic 

( ˆ
âd

T T∆ ∆∼ ); diffusive ( ˆ ˆ
dif s

T Tβ∆ = ) and ‘explosion’ (if ( )ˆ ˆ ˆ,
dif ad

T T T∆ >> ∆ ∆ ). In Figure 6.2b, 

the 1
m

Pe ε
−

=  and 2 1
φ ε

−
=  planes are shown. Since for a given system, Lewis number is 

approximately constant, we show in detail the planes for Le  of order 1, ε  and 1
ε

−  (Figure 6.3).  

The boundaries between each region are schematic. The isothermal regions appear at regimes 

where reaction is slow and heat removal by conduction/convection is strong. The parameter sets 

where the characteristic temperature change is of the same order of the maximum temperature 

change observed in a diffusive-reactive system with concentration annulment are related to the 

ones leading to the adiabatic temperature change by the Lewis number, since ˆ ˆ
ad dif

T T Le∆ = ∆ . 

The indicated characteristic temperature changes are observed at an ( )1O  scale inside the 

catalyst and they account for the existence of reaction throughout the slab. However, the 

existence of a reactant limitation (which puts an end to the heat-generating reaction) stops 

temperature from becoming unbounded in the ‘explosion’ areas. Since no physical solution for 

the steady-state mass and energy conservation equations (with the reaction term) can be found, 

the proper form of (6.6)-(6.7) includes also the branch of ( ) 0r T =  for ˆ 0c = .  

To obtain a correct estimate for temperature change, ‘active’ regions of thickness much smaller 

than 1 have to be considered (since the solution already includes an ( )1O  branch from 24H(6.6)-

25H(6.7) with ( ) 0r T = ). If the thickness of these inner regions is χ  for concentration and τ  for 

temperature, then we are interested in the cases where , 1χ τ << .  

Rescaling x  by χ  and τ  in the mass and energy conservation equations respectively, more 

insight into the ‘explosive’ regions can be achieved, if we choose the consistent dominant 

balances in each parameter set. So,  

(a) For 1Le ∼  (Figure 6.3a) and 2 1
φ ε

−
∼ , diffusive-reactive inner regions with thickness 

1
χ φ ε

−
∼ ∼  in the concentration profile and ˆ

d̂if
T Tτ ε ∆ ∆∼  in the temperature 

profile are suggested. Since the two regions are comparable in extension ( χ τ∼ ), then 

( )ˆ ˆ ˆ
dif ad

T T T∆ ∆ ∆∼ ∼ . 
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(a) Le ε= , 
m

Pe ε=  and 2
φ ε=  planes. 

 

 

 

(b) 1
m

Pe ε
−

=  and 2 1
φ ε

−
=  planes. 

 

Figure 6.2:  3-D regime diagram for convection, diffusion and exothermic reaction in a catalyst 

slab. The regions marked as isothermal present very small deviation from surface 

temperature. The adiabatic (ad.) limit is related with the characteristic temperature change 

under diffusive conditions (diff., ˆ ˆ
dif s

T Tβ∆ = ) by the Lewis number: ˆ ˆ
ad dif

T T Le∆ = ∆ . 

When ˆ ˆ ˆ,
ad dif

T T T∆ >> ∆ ∆ , ‘explosion’ (expl.) occurs. 
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(b) In the plane of Le ε∼  (Figure 6.3b), the ‘explosive’ regions are predicted at low 

intraparticular convection (
m

Pe ε∼ ). The diffusion-reaction balance (at 2 1
φ ε

−
∼ ) 

predicts again ˆ
d̂if

T T∆ ∆∼ . On the other hand, at 2 1φ ∼ , no consistent inner regions were 

found, so the only distinguished limit reproduces the outer solution: 1ˆ
âd

T T ε
−

∆ >> ∆  or as 

in Figure 6.3b, 2ˆ
âd

T T ε
−

∆ ∆∼ . 

(c) When Lewis number is high ( ( )
1

O ε
−

∼ , Figure 6.3c), the outer scaling shows an 

‘explosion’ region at ( )
2 1,

m
Pe φ ε

−
∼ . Introducing the new scales for the spatial 

dimension, we obtain inner layers of thickness ε  in both concentration and temperature 

profiles and 2ˆ
âd

T T ε∆ ∆∼ . 

In the ‘explosion’ areas (with outer scaling), the predicted temperature change is unbounded. In 

the rescaled ‘explosive’ regions, the maximum temperature predicted in each one of the 

constantLe =  planes decreases from 2ˆ
âd

T T ε
−

∆ ∆∼  to 
âd

T∆  and then to 2
âd

T ε∆ , when Lewis 

number increases ( 1,1,Le ε ε
−

∼ ). This can be explained by the increasingly stronger heat loss 

by conduction to the cold boundaries, compared to species diffusion rate to the reactive zones. 

 

 

 

(a) 1Le ∼  ( ˆ ˆ
ad dif

T T∆ ∆∼ ) 

Figure 6.3:  Regime diagram for exothermic reaction inside permeable porous catalyst slab 

(planes for Le  of order 1, ε  and 1
ε

− ). 
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(b) Le ε∼  ( ˆ ˆ
ad dif

T Tε∆ ∆∼ ) 

 

 

 

(c) 1
Le ε

−
∼  ( ˆ ˆ

dif ad
T Tε∆ ∆∼ ) 

Figure 6.3:  Regime diagram for exothermic reaction inside permeable porous catalyst slab 

(planes for Le  of order 1, ε  and 1
ε

− ). 
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Since the remaining of this work focuses on the particular case of 1Le ∼  (Figure 6.3a) we take 

âd
T∆  as a scale for temperature change in the regimes of slow and fast reaction (Regime I and II 

respectively) and strong intraparticular convection (Regime III). We can also anticipate that in 

Regime II, non-uniformities will arise. With this scale, equations (6.6)-(6.7) become: 

( )

2 2

2

1

m m

dc d c
r T

dx Pe dx Pe

φ
= −         (6.17) 

( )

2 2

2

1
m

m h m

PedT d T
r T

dx Pe Pe dx Pe

φ
= +        (6.18) 

The reaction term was assumed of ( )1O : 

( ) [ ]exp exp exp
1 1

T LeT
r T LeT

T LeT

ϕ γ β
γ β

η β

  
= =   

+ +   
∼  

for Le  and ( )1T O∼ . The product γ β  can also be taken close to unity for common exothermic 

reactions, since β  rarely exceeds 0.3 and the typical range for γ  is 10 30−∼  (Rodrigues 1981). 

 

6.3 PERTURBATION ANALYSIS 

 

The limiting cases discussed in the previous section can be analysed in more depth by 

considering appropriate parameter regimes and conducting a perturbation analysis (Bender et al. 

1999). This involves the choice of a perturbation (small) parameter ε , against which all others 

should be compared. Concentration and temperature profiles are expanded as series of powers 

of ε  and substituted into the governing differential equations and boundary conditions. An 

infinite set of determined problems is obtained when terms of the same order are collected in 

each equation. The leading-order problem reflects the assumed dominant balance, while higher 

order corrections account for the negligible mechanism. The results in the present work apply to 

( )1Le O∼  and they intend to approximate the full solution of the complete problem in the limits 

of: fast mass/heat transport (Regime I), dominant reaction (Regime II) and strong intraparticular 

convection (Regime III). The diffusive regime for an exothermic zero-order reaction (diffusion-

reaction grey area in Figure 6.3 and 0
m

Pe =  plane in Figure 6.2a) was studied, among others, 

by Frank-Kamenetskii (1955), Hlavacek (1967) and Aris (1975) and it will be used to validate 

our solutions. 
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Figure 6.4:  Schematic concentration and temperature profiles in a permeable catalyst slab, 

where an exothermic zero-order reaction occurs. The regimes studied are: slow and 

fast reaction (Regime I and II, respectively) and strong convection with and without 

(Regime IIIb and Regime IIIa, respectively) concentration annulment. 

 

 

 

6.3.1 Regime I (Chemical regime) 

 

When transport mechanisms are much faster than chemical reaction, concentration and 

temperature inside the slab depart little from its surface values (Figure 6.4). This corresponds to 

the case when Thiele modulus is low and to the classic chemical regime, in the presence of 

convection. 

Assuming that the terms in Eqs.28H(6.17)-29H(6.18) are correctly scaled, we take 2
m

Peε φ=  as 

perturbation parameter and look for outer solutions (valid in ( )1x O= ) under the following 

conditions: 

2 1 1
1, ,

m m h
Pe Pe Pe

φ
<<          (6.19) 

Also, in this regime, concentration annulment is not expected to occur, so the appropriate form 

of mass and energy balances takes into account the reaction term: 

ˆ
s

c
I

IIIa

IIIb

II

ĉ = 0

L

u

ˆ
s

TI

IIIa

IIIb

IIT̂

ĉ
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2

2

1
exp

1
m

dc d c T

dx Pe dx T

ϕ
ε

η

 
= −  

+ 
        (6.20) 

2

2

1
exp

1
h

dT d T T

dx Pe dx T

ϕ
ε

η

 
= +  

+ 
        (6.21) 

subject to boundary conditions 30H(6.8)-31H(6.9). 

 

Since the reduced problem ( 0ε = ) does not change the order of the differential equations (and 

therefore, the leading order solution is still able to fulfil both boundary conditions), this is a 

regular perturbation problem. 

 

The uniformly valid solutions are assumed to be of the following form: 

( ) ( ) ( ) ( )0 1
0

; ...n

n

n

c x c x c x c xε ε ε

∞

=

= + +∑ ∼  and      (6.22) 

( ) ( ) ( ) ( )0 1
0

; ...n

n

n

T x T x T x T xε ε ε

∞

=

= + +∑ ∼ .      (6.23) 

Substituting 32H(6.22)-33H(6.23) into 34H(6.20)-35H(6.21) and regarding the resulting equations as identities in 

ε , the necessary subproblems arise, from which ( )n
c x  and ( )n

T x  functions can be calculated. 

The ( )1O  problem represents the convective-diffusive balance, which yields the following 

solution: ( )0 0c x =  and ( )0 0T x = . 

 

 

The effect of reaction is felt at ( )
2

m
O Peφ , but since it is calculated from surface conditions 

(zero-order solution, ( )0 1r T = ), the order of the reaction is, so far, irrelevant. Therefore, these 

solutions equal the ones obtained for first-order reaction by perturbation techniques (Cardoso et 

al. 2007). The ( )
2

O ε  term, however, is dependent of the order of reaction, but its contribution 

was found to be negligible. This term carries also the information regarding the reaction rate 

sensitivity to temperature (activation energy). The concentration profile up to ( )O ε  does not 

depend on any nonisothermal parameter (related with the reaction’s heat or activation energy). 

In fact, it reproduces the solution for the problem of convection, diffusion and isothermal zero-

order reaction in a slab (Rodrigues et al. 1984). Nevertheless, the two-term expansion is enough 

to represent concentration and temperature profiles accurately, 
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( )

( )1 22 4

2 2 2

2 1

1 1

m m

m m

Pe x Pe

Pe Pe

m m

e e
c x x O

Pe Pee e

φ φ
+   +

= − − +   
− −   

     (6.24) 

( )

( )1 22 4

2 2 2

2 1

1 1

h h

h h

Pe x Pe

Pe Pe

m m

e e
T x x O

Pe Pee e

φ φ
+   +

= + + +   
− −   

.     (6.25) 

 

Concentration and temperature profiles (Eqs.36H(6.24) and 37H(6.25)) are represented in Figure 6.5. 

Numerical results obtained with gPROMS (2007) are also plotted. The agreement is especially 

good for 0.01ε ∼ . 

 

For an exothermic reaction, the maximum temperature occurs at: 

2

max

1 1
1 ln

2

hPe

h h

e
x

Pe Pe

 −
= − +  

 
        (6.26) 

while the minimum concentration position is 

2

min

1 1
1 ln

2

mPe

m m

e
x

Pe Pe

 −
= − +  

 
.        (6.27) 

which is, in general, distinct from maxx (as long as 1Le ≠ ). The minimum concentration value in 

this regime is of order ε , and is given by: 

22
min

2

2 1 1 1
ln

21

m

m

Pe

Pe

m m m m

e
c

Pe Pe Pe Pee

φ   −
= − − +  

−   
     (6.28) 

 

Since thermal effects do not affect the concentration profile for weak reaction conditions, 

equations 38H(6.27) and 39H(6.28) reproduce the isothermal results (Rodrigues et al. 1984), when no 

annulment occurs. An estimate for maximum temperature will be given in section 6.4. 

 

Although the dominant balance requires that 1
m

Pe ∼  and 1
h

Pe ∼ , we expect that the presented 

solutions can also include the regimes where convection or diffusion is the only important 

mechanism. In the chemical regime, the limits of strong convection ( , 1
m h

Pe Pe >> ) or diffusion 

( , 1
m h

Pe Pe << ) yield both: ( ) ( ), 0c x T x → . However, convective transport suggests profile 

asymmetry ( min max, 1x x → ), in contrast with the symmetry characteristic of diffusive profiles 

( min max, 0x x → ). 
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(a) Reactant concentration profile. 

 

 

 

 

(b) Temperature profile. 

 

Figure 6.5:  Comparison of the perturbation solutions (equations 40H(6.24)-41H(6.25), dashed lines) 

with numerical results from gPROMS® (solid lines) for 20γ = , 0.1β = , 

10
m

Pe =  , 5
h

Pe = , and 2 0.1φ =  ( 0.01ε = ) or 2 0.5φ =  ( 0.05ε = ). 
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6.3.2 Regime II (Diffusional regime) 

 

The regime in which reaction is fast compared with transport mechanisms appears for large 

Thiele modulus. In order to study this diffusional regime (in the presence of convection), we set 

the perturbation parameter to: 2
m

Peε φ= . Under the conditions: 

2 1 1
1, ,

m m h
Pe Pe Pe

φ
>>          (6.29) 

the solution to 42H(6.17)-43H(6.18) is obtained by conducting a singular perturbation analysis, since 

keeping the original scaling does not yield an uniformly valid result. We expect boundary layers 

to occur near the slab surfaces, where reactant concentration decreases and temperature 

increases sharply from the middle solution to surface values (Figure 6.4). 

 

6.3.2.a Middle region 

 

Looking for an outer solution with mass/energy equations that include chemical reaction leads 

to an ( )1O  problem with no physical solution. That is, the reduced problem from 

2

2
exp

1

m m m

m

m

dc d c T

dx Pe dx T

ε ϕ
ε

η

 
= −  

+ 
       (6.30) 

2

2
exp

1

m m m

m

h

dT d T T

dx Pe dx T

ε ϕ
ε

η

 
= +  

+ 
       (6.31) 

suggests that concentration and thermal boundary layers will develop at x̂ L= ±  (as no 

boundary conditions can be fulfilled) and since ( )exp 1 0m m
T Tϕ η + =   is not possible, this 

should correspond to a ‘dead core’ situation where reactant vanishes and ‘explosion’ occurs. 

Consequently, chemistry-free equations should be used in this region. They are written as: 

( ) 1m
c x = −    for ' *x x x≤ ≤       (6.32) 

2

2

1m m

h

dT d T

dx Pe dx
=   for ' *x x x≤ ≤ .      (6.33) 

The solution from 44H(6.33) is intended to represent the temperature profile in the region where 

reactant disappears (between 'x  and *x ). This equation is valid for all orders of the 

perturbation parameter and is free of ε . Therefore, all subproblems of order ( )
/2n

O ε  arising 

from 45H(6.33) are identical and the expansion for the temperature profile in the middle section of 

the slab is: 
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( ) ( )
/2 /2

0 0

; hPe xm m n nn

n n

n n h

h
T x T x e j

Pe
ε ε ε

∞ ∞

= =

 
= = + 

 
∑ ∑   for ' *x x x≤ ≤ .  (6.34) 

The shape of the temperature profile is exponentially increasing / decreasing or a plateau, 

depending on the value of ( )
/ 2

0

hPe xm n

n

n

d T d x h e ε

∞

=

=∑  ( 0hPe x
e > , so the sign of m

d T d x  is 

independent of x ). Since the nature of the regions at 1x = ±  is such that surface temperature is 

brought monotonically to match the middle region profile, we expect that the derivative of these 

solutions to be null either at 'x  or *x  (where the maximum temperature occurs). These regions 

are described by equations 46H(6.30)-47H(6.31), which are fundamentally different from 48H(6.32)-49H(6.33). 

Therefore, we use perturbation analysis as an approximation procedure for boundary layers and 

require profile and flux continuity with the middle region. As a result of both derivative 

continuity and concentration annulment at 'x  and *x , Eq. 50H(6.34) has to predict a plateau with 

no temperature variation in the middle of the slab. This is a reasonable simplification for the 

conditions defined in this regime, and is confirmed by numerical simulations for the first-order 

reaction case (Quinta Ferreira 1988). Consequently, the maximum temperature is: 

( ) ( ) ( )
max max max

0 1;m
T x T T T Oε ε ε ε= = + + .      (6.35) 

 

6.3.2.b Right boundary layer 

 

At the inner layer near 1x = , the following stretching transformation is introduced: 

1 x
X

δ

−
= .          (6.36) 

The boundary layer thickness (δ ) correctly rescales the convective, diffusive and reactive 

terms. A dominant balance between two of these terms yields the distinguished limit. In this 

case, the consistent option is a reaction-diffusion balance (δ ε∼ ), being convection only 

important at ( )O ε . Equations 51H(6.30)-52H(6.31) then become: 

2

2

1
exp 0

1

r r r

r

m

d c dc T

Pe dX dX T

ϕ
ε

η

 
+ − = 

+ 
   for 0 *X X≤ ≤    (6.37) 

2

2

1
exp 0

1

r r r

r

h

d T dT T

Pe dX dX T

ϕ
ε

η

 
+ + = 

+ 
  for 0 *X X≤ ≤    (6.38) 

with boundary conditions: 

( )0 0r
c X = =  and         (6.39) 

( )0 0r
T X = = .          (6.40) 
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Equations 53H(6.37) and 54H(6.38) suggest that we look for solutions of the form: 

( ) ( )
/2

0

r r n

n

n

c x c x ε

∞

=

=∑  and        (6.41) 

( ) ( )
/2

0

r r n

n

n

T x T x ε

∞

=

=∑          (6.42) 

where ( ) ( )
r r

n n
c x c X≡ , ( ) ( )

r r

n n
T x T X≡  and ( )* 1 *X x ε= − . 

 

 

 

6.3.2.c Left boundary layer 

 

At the slab’s ‘entrance’, the proper rescaling is given by: 

1 x
Y

ε

+
=           (6.43) 

predicted from the diffusive-reactive nature of the boundary layer (same reasoning as for the 

boundary layer on the right). The equations for this region are: 

2

2

1
exp 0

1

l l l

l

m

d c dc T

Pe dY dY T

ϕ
ε

η

 
− − = 

+ 
   for 0 'Y Y≤ ≤    (6.44) 

2

2

1
exp 0

1

l l l

l

h

d T dT T

Pe dY dY T

ϕ
ε

η

 
− + = 

+ 
   for 0 'Y Y≤ ≤    (6.45) 

subject to:  

( )0 0l
c Y = =  and          (6.46) 

( )0 0l
T Y = = .          (6.47) 

The form of the solutions that we are looking for is, again: 

( ) ( )
/2

0

l l n

n

n

c x c x ε

∞

=

=∑  and        (6.48) 

( ) ( )
/2

0

l l n

n

n

T x T x ε

∞

=

=∑          (6.49) 

where ( ) ( )
l l

n n
c x c Y≡ , ( ) ( )

l l

n n
T x T Y≡  and ( )' 1 'Y x ε= − + . 

 

 



NONISOTHERMAL EFFECTS IN PERFUSIVE CATALYST PARTICLES 

265 

6.3.2.d Profile and flux continuity at *x  and 'x  

 

The problem is completely determined if two more types of conditions are provided: one from 

where the positions *X  and 'Y  can be calculated, and the remaining boundary condition for the 

problems defined by 55H(6.37)-56H(6.40) and 57H(6.44)-58H(6.47). Conditions for profile continuity at each 

order of the small parameter can be written as: 

( ) ( )
1, 0

* *
0, 1

r m

n n

n
c X c x

n

− =
= = 

≥
       (6.50) 

and ( ) ( )
max* *r m

n n n
T X T x T= =           (6.51) 

at the right boundary layer, and 

( ) ( )
1, 0

' '
0, 1

l m

n n

n
c Y c x

n

− =
= = 

≥
        (6.52) 

and ( ) ( )
max' 'l m

n n n
T Y T x T= =            (6.53) 

at the left one. 

To determine the annulment positions from gradient continuity between the boundary layers and 

the middle region, we have to solve nonlinear algebraic equations in *X  and 'Y . An explicit 

approximate solution can be found if we expand these unknowns as: 

( )
/2

0 1
0

** * *n

n

n

X X X X Oε ε ε

∞

=

= = + +∑  and      (6.54) 

( )
/2

0 1
0

'' ' 'n

n

n

Y Y Y Y Oε ε ε

∞

=

= = + +∑ .       (6.55) 

After linearization around 0ε = , the coefficients *
n

X  and '
n

Y  for ( 0, 1n = ) can be determined 

from: 

0
*,

lim 0
r

X

dc

dXε

ε

→

=          (6.56) 

0
',

lim 0
l

Y

dc

dYε

ε

→

=           (6.57) 

0
*, *, 0

1
lim 0

r r

X X

dc dc

dX dXε

ε ε
ε→

=

 
− = 

  
       (6.58) 

0
', ', 0

1
lim 0

l l

Y Y

dc dc

dY dYε

ε ε
ε→

=

 
− = 

  
.       (6.59) 

The problem is closed when the same equations are written for the temperature profile, and the 

coefficients in equation 59H(6.35) can then be determined (maximum temperature estimate). 
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6.3.2.e Approximate concentration and temperature profiles 

 

If expansions 60H(6.41)-61H(6.42) and 62H(6.48)-63H(6.49) are substituted into the equations for the boundary 

layers (64H(6.37)-65H(6.40) and 66H(6.44)-67H(6.47)), and we collect same order terms, a sequence of sub-

problems is obtained. The nonlinear term 68H(6.10) is expressed by a Taylor series around 0ε = . 

At ( )1O  the problem reduces to the following set of equations for the right boundary layer 

( * 1x x< < ): 

2
0 0
2

0

1
exp 0

1

r r

r

m

d c T

Pe dX T

ϕ

η

 
− = 

+ 
 and       (6.60) 

2
0 0
2

0

1
exp 0

1

r r

r

h

d T T

Pe dX T

ϕ

η

 
+ = 

+ 
     for 0 *X X≤ ≤    (6.61) 

with boundary conditions given by 69H(6.39)-70H(6.40) and 71H(6.50)-72H(6.51) for 0n = . Adding both 

equations, the well-known Damköhler relation in the diffusive limit is obtained, if the maximum 

temperature is max
0 h m

T Pe Pe=  (in dimensional variables: ( )max
ˆ ˆ 1

s
T T β= + ):  

( )0 0
r r

h m
T Pe Pe c= −          (6.62) 

(or, in dimensional variables: ( )0 0
ˆ ˆ ˆ ˆ1 1r r

s s
T T c cβ= + − ). 

A similar leading-order problem can be extracted from the left boundary layer equations (73H(6.44)-

74H(6.47) and 75H(6.52)-76H(6.53)). Both these problems find simple analytical solution under the 

simplification: 

20

0

exp
1

r

r

T
b

T

ϕ

η

 
 

+ 
≃          (6.63) 

The constant 2
b  will be determined later by an integral approximation. Also, from equations 

77H(6.56)-78H(6.57), 0 *X  and 0 'Y  can be estimated. Those results are written as: 

( ) ( )

2

0 *
* 2

r m
Pe bX

c X X X X
X

= − + −        (6.64) 

( ) ( )

2
max

0 0 *
* 2

r h
Pe bX

T X T X X X
X

= − −  and      (6.65) 

( ) ( )

2

0 '
' 2

l m
Pe bY

c Y Y Y Y
Y

= − + −        (6.66) 

( ) ( )

2
max

0 0 '
' 2

l h
Pe bY

T Y T Y Y Y
Y

= − −        (6.67) 

with, 
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max
0

h

m

Pe
T

Pe
= ,          (6.68) 

0 2

2
*

m

X
Pe b

=  and         (6.69) 

0 2

2
'

m

Y
Pe b

= .          (6.70) 

The ( )O ε  problem takes into consideration the convective term influence. In the right 

boundary layer ( * 1x x< < ), mass and energy conservation equations write as: 

( )

2
0 01

122
00

1
exp

11

r rr

r

r
r

m

T dcd c
T

Pe dX T dXT

ϕϕ

ηη

 
− = − 

+ +

 and     (6.71) 

( )

2
0 01

122
00

1
exp

11

r rr

r

r
r

h

T dTd T
T

Pe dX T dXT

ϕϕ

ηη

 
+ = − 

+ +

  for 0 *X X≤ ≤ . (6.72) 

with 79H(6.39)-80H(6.40) and 81H(6.50)-82H(6.51) as boundary conditions ( 1n = ). The corresponding problem 

at the left boundary layer appears from equations 83H(6.44)-84H(6.47) and 85H(6.52)-86H(6.53). In order to 

find a simple solution, the following simplifications are made: 

( )

01
2

00

exp
11

rr

r
r

TT
d

TT

ϕϕ

ηη

 
 

+ +

≃         (6.73) 

( )

01
2

00

exp
11

ll

l
l

TT
f

TT

ϕϕ

ηη

 
 

+ +

≃         (6.74) 

Constants d  and f  will be estimated by an integral approximation. Finally, concentration and 

temperature profile corrections at ( )O ε  are: 

( ) ( )

2

1

*
* *

2 3 2
r m m

Pe b Pe X
c X X X X X d X

  
= − + − −  

  
    (6.75) 

( ) ( )

max 2
max 0

1 1

*
* * *

* 2 2 6 2
r h

h

T b PeX d X
T X T Pe X X X X X

X

    
= − − + + − +   

    
  (6.76) 

and 

( ) ( )

2

1

1 '
'

2 ' 3 2
l m m

Pe Y b Pe Y
c Y Y Y f Y

Y

  
= − − + + −  

  
     (6.77) 

( ) ( )

max 2max
01

1

'
'

' 2 ' 2 6 2
l m

h

T b PeT f Y
T Y Y Pe Y Y Y

Y Y

    
= − − − + + −   

    
   (6.78) 
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The convective corrections in the annulment positions are calculated from 87H(6.58)-88H(6.59): 

1 2

1 1 2
*

3 2
m

d
X

b b Pe

 
= − + 

 
 

        (6.79) 

1 2

1 1 2
'

3 2
m

f
Y

b b Pe

 
= − 

 
 

        (6.80) 

When similar equations are written for temperature, two estimates for the maximum 

temperature correction arise. They can be expressed by: max
1

2
1

3
h h m

m hm

Pe Pe Pe
T

Pe Peb Pe
= − . 

 

6.3.2.f Integral method for approximation at boundary layers 

 

The constants 2
b , d  and f  are determined by an integral method where instead of requiring 

the energy balance to be satisfied at every point in the boundary layer, we force the boundary 

and profile continuity conditions to be fulfilled and the differential equation to be satisfied on 

average over the whole thickness of the boundary layer (this procedure is similar to the 

approximation for the momentum-integral equation of boundary layer theory (Schlichting 

1979)). 

 

We now write the energy balance equations (89H(6.61), 90H(6.72) and their similar form for the left 

boundary layer) with less restrictive simplifications. In particular, we assume small η  but non-

negligible ϕ  (this is justifiable, since ϕ γ η= , and typically 10 30γ −∼  (Rodrigues 1981)). So 

for 1Tη << , the conditions for these constants determination are:  

0 * 2
0

02
0

1
exp 0

X r

r

h

d T
T dX

Pe dX
ϕ

 
 + =  

 
∫        (6.81) 

0 * 2
2 01

12
0

1
0

X rr

r

h

dTd T
b T dX

Pe dX dX
ϕ

 
+ + = 

 
∫        (6.82) 

0 ' 2
2 01

12
0

1
0

Y ll

l

h

dTd T
b T dY

Pe dY dY
ϕ

 
+ − = 

 
∫        (6.83) 

 

Integrating 91H(6.81)-92H(6.83), after substitution of the previous approximate temperature profiles 

(Eqs.93H(6.65), 94H(6.76) and 95H(6.78)), yields: 
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( )
2 exp

2

erf
b

γ βπ
γ β

γ β
=         (6.84) 

1 2 1

62
m hh

m hm

Pe Peb Pe
d

Pe PePe

ϕ

ϕ

+ −
=

−
 and       (6.85) 

1 2 1

62
m hh

m hm

Pe Peb Pe
f

Pe PePe

ϕ

ϕ

− −
= −

−
.       (6.86) 

 

6.3.2.g Complete solutions 

 

Rewriting equations 96H(6.64)-97H(6.67) and 98H(6.75)-99H(6.78) in terms of the original variables, it is 

possible to describe the concentration and temperature profiles by branches: 

( )

( )

( )

0 1

0 1

1 1
, 1 '

; 1, ' *

1 1
, * 1

l l

r r

x x
c c O x x

c x x x x

x x
c c O x x

ε ε
ε ε

ε

ε ε
ε ε

 + +   
+ + − ≤ ≤    

   


= − ≤ ≤


− −    + + ≤ ≤       

    (6.87) 

 

 

 

Figure 6.6:  Concentration profile (solid line) and temperature profile (dashed line) at 

diffusional regime for 2 100φ = , 20γ = , 0.1β = , 10
m

Pe =  and 5
h

Pe =  

( 0.1ε =  ). 
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( )

( )

( )

( )

0 1

max

0 1

1 1
, 1 '

; , ' *

1 1
, * 1

l l

r r

x x
T T O x x

T x T x x x

x x
T T O x x

ε ε
ε ε

ε ε

ε ε
ε ε

 + +   
+ + − ≤ ≤    

   


= ≤ ≤


− −    + + ≤ ≤       

.    (6.88) 

The concentration annulment positions are calculated from 100H(6.69)-101H(6.70) and 102H(6.79)-103H(6.80): 

( ) ( )
3/2

0 1* 1 * 1 * *x X X X Oε ε ε ε= − = − + +  and     (6.89) 

( ) ( )
3/2

0 1' 1 ' 1 ' 'x Y Y Y Oε ε ε ε= − + = − + + +      (6.90) 

Solutions 104H(6.87)-105H(6.88) are presented in Figure 6.6. 

 

The leading-order problem in the boundary layers (e.g., Eqs.106H(6.60)-107H(6.61) for the right boundary 

layer) assumes a reaction-diffusion dominant balance, so the solution given by 108H(6.64)-109H(6.70) and 

110H(6.84) can be directly compared with the exact analytical solutions at high Thiele modulus for 

the problem of exothermic zero-order reaction in a catalyst slab where mass/heat transfer occurs 

solely by diffusion/conduction. In particular, we compare concentration and temperature 

profiles (or simply temperature profiles, since for this order, they are both related by Eq. 111H(6.62)) 

and concentration annulment points.  

 

For slab geometry, when 2 0.878γ β φ >  (at high Thiele modulus), there is only one steady state 

solution for the diffusive-reactive problem (Frank-Kamenetskii 1955; Marek et al. 1968; Aris 

1975) with 

( )

1 /22 sech
* ' 1

e
x x

e

γ β

γ βφ γ β

− −

= − = −        (6.91) 

This result agrees with our perturbation solutions 112H(6.69)-113H(6.70) if ( )
1 /2sechb e e

γ β γ β
γ β

− −
∼ , 

with b  from 114H(6.84). This comparison is plotted in Figure 6.7 for several values of γ β . 

 

At high Thiele modulus, the temperature and concentration variation is concentrated in thin 

boundary layers, so the parabolic approximation 115H(6.64)-116H(6.67) is a reasonable one, which proves 

to be in excellent agreement with exact analytical results (Aris 1975), as shown in Figure 6.8. 

The leading-order temperature profile in the middle region (Eq.117H(6.68)) is Prater’s maximum 

temperature estimate for reaction-diffusion problems. 
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Figure 6.7:  Concentration annulment positions in the diffusive limit for an exothermic zero-

order reaction. Comparison between the exact analytical solution (Aris 1975) and 

perturbation solutions in the limit of negligible convection (Eqs. 118H(6.69)-119H(6.70) with 120H(6.84)). 

For 0.1γ β ≤ , exact and approximate results coincide.  

 

Figure 6.8:  Temperature profiles in the right boundary layer (next to 1x = ) in the diffusional 

regime for 20γ = , 0.1β = , 10
m

Pe =  and 5
h

Pe =  and 10,50,100φ = . The 

leading-order perturbation solutions (dashed lines) are compared with the exact analytical 

results (solid lines) by e.g. Aris (1975). 
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In the isothermal limit ( 0ϕ → , 2 1b →  and , 0d f → ), equations 121H(6.89)-122H(6.90) yield 

( )
3/22 1

* 1
3

m

x O
Pe

ε ε ε→ − + +        (6.92) 

( )
3/22 1

' 1
3

m

x O
Pe

ε ε ε→ − + + +        (6.93) 

In the analysis of convection and diffusion with zero-order isothermal reaction, Rodrigues et al. 

(1984) calculate *x  and 'x  by solving numerically two nonlinear algebraic equations. We can 

find an approximate solution for those equations by perturbation techniques, for 

2 1
m

Peε φ= << . The result of that calculation reproduces equations 123H(6.92)-124H(6.93). 

 

6.3.3 Regime III (Strong intraparticular convection regime) 

 

A third regime, where intraparticular convection dominates mass and heat transport, can be 

studied for parameters obeying the following conditions: 

2

1
m

Pe

φ
∼  and 

1 1
, 1

h m
Pe Pe

<<         (6.94) 

Therefore, 1
m

Peε =  is taken as the perturbation parameter (also 1
h

Pe ε∼ ). Since the reaction 

term in equation 125H(6.10) is defined by two branches, the situation with concentration annulment 

(section 6.3.3.b) needs to be treated separately from the one where no reactant exhaustion 

occurs (section 6.3.3.a). 

 

6.3.3.a No annulment of reactant concentration inside the particle (Regime IIIa) 

 

Since reactant exhaustion never occurs within the slab (Figure 6.4), the mass and energy 

equations with their original scaling ( x , ( )c x  and ( )T x  are assumed to be of ( )1O ) are: 

2 2

2
exp

1

l l l

l

m

dc d c T

dx dx Pe T

φ ϕ
ε

η

 
= −  

+ 
       (6.95) 

2 2

2
exp

1

l l l

m

l

h m

PedT d T T

dx Pe dx Pe T

φ ϕ
ε

η

 
= +  

+ 
       (6.96) 

When ( )
l

c x  and ( )
l

T x  in equations 126H(6.95) and 127H(6.96) are expanded as a series in terms of 

powers of the small parameter, the leading-order problem (obtained setting 0ε = ) is reduced to 

a first order ODE, which is in general, not able to fulfil both boundary conditions. In the thin 
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region next to the abandoned condition, a boundary layer will appear, bringing the concentration 

and temperature outer profiles to surface values. The only consistent option for matching 

between such two solutions is to drop the condition next to 1x = . Equations 128H(6.95)-129H(6.96) 

should then be solved with: 

( )0 1 0l
c x = − =  and         (6.97) 

( )0 1 0l
T x = − =           (6.98) 

For 0 1l
Tη << , the solution for the left/middle region of the slab is 

( )

2

0

1
ln 1 1l

m

T x
Pe

ϕφ

ϕ

 
= − − + 

 
        (6.99) 

( )

2

0 0

1
ln 1 1l l

m

c T x
Pe

ϕφ

ϕ

 
= − = − + 

 
.       (6.100) 

Because solutions 130H(6.99)-131H(6.100) have a vertical asymptote, the existence of a bounded solution 

requires that ( )

2

1 1
m

x
Pe

ϕφ
+ < . 

 

Boundary layer next to 1x =  

 

To investigate the nature of the inner region near the slab’s right surface, we introduce the 

following stretching transformation: ( )1Y x δ= − . Comparing the substituted terms in 

equations 132H(6.95) and 133H(6.96), the distinguished limit (that doesn’t reproduce the outer expansion) 

is a convective-diffusive balance in a thin layer of thickness δ ε∼ . We will therefore calculate 

concentration and temperature profiles based on expansions of the form: 

( ) ( )
0

n

n

n

c x c x ε

∞

=

=∑  and         (6.101) 

( ) ( )
0

n

n

n

T x T x ε

∞

=

=∑ .         (6.102) 

The inner problem can be written as: 

2 2

2
exp

1

r r r

r

m

dc d c T

dY dY Pe T

φ ϕ
ε

η

 
− = −  

+ 
       (6.103) 

2 2

2
exp

1

r r r

m

r

h m

PedT d T T

dY Pe dY Pe T

φ ϕ
ε

η

 
− = +  

+ 
      (6.104) 

with boundary conditions: 
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( )0 0r
c Y = =  and ( )0 0r

T Y = =       (6.105)- (6.106) 

Substituting expansions 134H(6.101)-135H(6.102) into the problem defined by 136H(6.103)-137H(6.106) and 

collecting ( )1O  terms, the leading-order solution is: 

( ) ( )0 1 1 expr
c Y a Y=  − −           (6.107) 

( )0 2 1 expr h

m

Pe
T Y a Y

Pe

  
= − −  

   
.       (6.108) 

Integration constants 1a  and 2a  will be determined by matching with the outer solution 138H(6.99)-

139H(6.100). With ( )1O  terms, the matching principle is simply (Bender et al. 1999): 

0 0
1

lim limr l

Y x

c c
→∞ →

=           (6.109) 

0 0
1

lim limr l

X x

T T
→∞ →

= .         (6.110) 

Taking the limits of equations 140H(6.99), 141H(6.100), 142H(6.107) and 143H(6.108): 

2

1 2

1 2
ln 1

m

a a
Pe

ϕ φ

ϕ

 
= − = − 

 
        (6.111) 

Matching between the two solutions is possible only if: 

22
1

m
Pe

ϕφ
< .           (6.112) 

If condition 144H(6.112) is not met then a solution valid for the whole slab cannot be obtained. This 

suggests that, for typical parameter values, these solutions are only suitable for low Thiele 

modulus range. They will be useful for describing a regime near the ‘chemical regime’, but with 

strong convection. An additional term was calculated at ( )O ε , but it was found to have 

negligible contribution to the complete solution. 

 

Composite solution 

 

The final composite solution, valid across the whole catalyst, is given by 

( ) ( ) ( )( ) ( )0 0 0 01 limcomp l r r

m
Y

c x c x c Pe x c Y
→∞

= + − −       (6.113) 

( ) ( ) ( )( ) ( )0 0 0 01 limcomp l r r

m
Y

T x T x T Pe x T Y
→∞

= + − −       (6.114) 

Substituting 145H(6.99)-146H(6.100) and 147H(6.107)-148H(6.108) into 149H(6.113)-150H(6.114): 

( )
( )

2 2
11 1 2 1

( ) ln 1 1 ln 1 mPe x

m m m

c x x e O
Pe Pe Pe

ϕφ ϕφ

ϕ ϕ

− −
     

= − + − − +     
     

   (6.115) 
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(a) Reactant concentration profile. 

 

 

(b) Temperature profile. 

 

Figure 6.9:  Comparison between composite solutions 161H(6.115)-162H(6.116), numerical results and 

contributions from outer and inner regions for 4ϕ = , 2 20.8φ = , 10
m

Pe =  and 

5
h

Pe = . 
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( )
( )

2 2
11 1 2 1

( ) ln 1 1 ln 1 hPe x

m m m

T x x e O
Pe Pe Pe

ϕφ ϕφ

ϕ ϕ

− −
     

= − − + + − +     
     

.   (6.116) 

Figure 6.9 provides a comparison of the analytical results (Eqs. 151H(6.115)-152H(6.116)) with numerical 

solutions from gPROMS®. The outer and inner branches of the solution (equations 153H(6.99)-

154H(6.100) and 155H(6.107)-156H(6.108), respectively) are also represented. 

In this regime, we the expect minimum concentration to be close to surface concentration. We 

calculate it from 
min

0
x

dc dx = , which yields 

( )
( )min

2 2
1min

min

1 1 2
ln 1 1 ln 1 mPe x

m m

c x e
Pe Pe

ϕφ ϕφ

ϕ ϕ

− −
   

= − + − −   
   

 with    (6.117) 

2

min 2

1 2
1 ln 2 ln 1m

m

m m

Pe
x Pe

Pe Pe

ϕφ

ϕφ

    
= − − −    

     
.     (6.118) 

The maximum temperature will be calculated in section 6.4. In the isothermal limit ( 0ϕ → ), 

equations 157H(6.117)-158H(6.118) become: 

( )
min

ln 2
1 m

m

Pe
x

Pe
→ −  and        (6.119) 

( )2
min ln 2 1

2 m

m m m

Pe
c

Pe Pe Pe

φ  
→ − − − 

 
.       (6.120) 

These results are in very good agreement with 159H(6.28)-160H(6.27) (which reproduce exact analytical 

solutions for isothermal conditions (Rodrigues et al. 1984)). 

 

6.3.3.b Concentration annulment inside the particle (Regime IIIb) 

 

Another important situation is the one in which the reactant concentration is depleted in a region 

inside the particle (Figure 6.4). The outer solution for the left region (calculated in section 

6.3.3.a) takes the zero concentration value at ( ) ( )
21 1

m
x Pe e

ϕ
ϕφ

−
= − + −ɶ . For x x> ɶ , the 

solution should approach ( ) 1m
c x = −  and the chemistry-free equations for temperature must be 

used. Finally, the diffusive-convective boundary layer (predicted from independent variable 

stretching in section 6.3.3.a) allows the right boundary condition to be fulfilled. This structure 

can only exist if 1x <ɶ  or 

2 1

2
m

e

Pe

ϕ
φ

ϕ

−
−

>           (6.121) 

Concentration and temperature profiles will be approximated by expansions like 163H(6.101) -

164H(6.102) . 



NONISOTHERMAL EFFECTS IN PERFUSIVE CATALYST PARTICLES 

277 

Solution structure 

 

Since we are assuming the existence of a ‘dead core’, the concentration profile in the middle 

region is: ( )0 1m
c x = −  and ( ) 0m

n
c x = , for subproblem n  ( )1n ≥ . The energy balance is 

written without the reactive term ( )( )0r T =  as 

2

2

m m

m

h

PedT d T

dx Pe dx
ε=          (6.122)  

with 1
m

Peε =  and ( )1
m h

Le Pe Pe O= ∼ . 

Introducing the expansion for temperature profile in terms of powers of ε  and collecting the 

resulting subproblems, we get: 

At ( )1O :  0 0
m

dT

dx
=  

At ( )
n

O ε :  
2

1
2

m m

n m n

h

dT Pe d T

dx Pe dx

−
=   for 1n ≥ .    (6.123) 

Temperature will be uniform in the middle and this solution is valid for x  from xɶ  up to the 

boundary layer. Since the outer solution predicts 0 0
l l

c T= − , profile continuity between the two 

branches of the solution will require 0 1m
T = . 

 

We will keep the solution for the left region given by equations 165H(6.99)-166H(6.100) and the boundary 

layer at 1x = . However, the values of the integration constants in equations 167H(6.107)-168H(6.108) are 

now: 1 2 1a a= − = −  (from matching with the middle region). A smooth composite solution 

uniformly valid requires a more complex mathematical structure. Nevertheless, these three 

independent branches should be good estimates for the profiles in each region. We shall use 

these results to estimate the effectiveness factor in this regime (section 6.5). 

 

In the isothermal limit of this strong convective regime, asymptotic expressions for the 

concentration annulment points are available (Rodrigues et al. 1984): 2' 1
m

x Pe φ= − +  (left 

side) and ( )
2 2* 1 ln

m m
x Pe Peφ= −  (right side). The first result is in agreement with the 

isothermal limit of xɶ  (for 0ϕ → ). A perturbation analysis of the exact nonlinear equation from 

which *x  is calculated, suggests rescaling of ( )1 *x−  by 1
m

Peε = , and is therefore consistent 

with the thickness of the boundary layer predicted in section 6.3.3.a. 
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6.3.3.c Transition between Regimes II and IIIb 

 

Comparing the solution structure described above (for Regime IIIb) with the one built for 

diffusional regime (Regime II), it is possible to obtain simple order of magnitude relations 

concerning the transition between these two particular limits. Although both situations refer to 

high Thiele modulus, solutions 169H(6.87)-170H(6.88) were found for , 1
m h

Pe Pe ∼ , while the results 

obtained for Regime IIIb only have meaning when convection is high. Nevertheless, when the 

thicknesses of the regions near 1x = −  become comparable ( 'x xɶ∼ ): 

( )
2

1
m

Pe
b e

ϕ

ϕ
φ

−
−

∼          (6.124) 

with b  given by 171H(6.84). 

In the isothermal limit, equation 172H(6.124) yields 2
m

Pe φ∼ . This means that, at high Thiele 

modulus, the effect of convection is felt only for 
m

Pe φ> . The corrective factor in equation 

173H(6.124) applies when an exothermic reaction is occurring, and increases the mass Peclet number 

needed for the effect of convection to be observed, when ( )Le b γ β> . 

At the right surface, we require that the position *x  at diffusional regime to be of the same 

order of the diffusive-convective boundary layer thickness, when convection is strong ( )1
m

Pe . 

This implies, 2
m

Pe bφ∼ , or 2
m

Pe φ∼  (isothermal reaction). A transition region around 

these curves can be represented for the isothermal case (see Figure 6.1) and for the exothermic 

case (Figure 6.11). 

 

6.4 MAXIMUM TEMPERATURE ESTIMATE 

 

When mass/heat transfer occurs solely by diffusion/conduction, it is possible to establish a 

simple relationship between concentration and temperature profiles, from where an a priori 

estimate for the maximum temperature can be obtained (Damkohler 1943; Prater 1958). Such 

result provides a useful measure for internal nonisothermal effects, as well as an indication on 

whether the temperature exceeds some critical value for operation or not. 

For the regimes outlined above, it is possible to obtain estimates for the maximum temperature 

attained in the particle, when convection is also present (see Table 6.1). At low Thiele modulus 

(Regimes I and IIIa), the temperature inside the particle is close to the surface value (equations 

174H(6.128) and 175H(6.132)). For materials with high conductivity or when no convection exists 

( 0
h

Pe → ), maxˆ
ŝ

T T→ . It can be shown that according to 176H(6.128): max 2ˆ ˆ 1 2
s

T T β φ→ +  (for 



NONISOTHERMAL EFFECTS IN PERFUSIVE CATALYST PARTICLES 

279 

2 1φ << ). On the other hand, for poorly conductive catalysts ( 
h

Pe → ∞ ), 

max 2ˆ ˆ 1 2
s h

T T Peβ φ→ + . 

Under ‘diffusional regime’ conditions, the correction brought by convection to the diffusive 

leading-order result ( )( )
maxˆ ˆ 1

s
T T β= +  is of order 

m
Peε φ= . For 1Le = , the maximum 

temperature change (Eq.177H(6.130)) reduces to the characteristic diffusive value, which equals the 

adiabatic temperature rise. 

In Regime IIIb, where convection is strong and the solution includes a region where annulment 

occurs, the maximum temperature is obtained at the same position where concentration reaches 

annulment (no increase is expected in the middle solution, which is a plateau, or in the boundary 

layer). It may be shown (Eq. 178H(6.135)) that the maximum temperature change is equal to the 

adiabatic temperature rise after complete reaction in a catalyst slab with initial uniform surface-

like reactant concentration ( )
max min 1T c−∼ ∼ : maxˆ ˆ 1

s m h
T T Pe Peβ+∼ . This result confirms 

the scaling analysis in section 6.2.2. and was also obtained in the perturbation analysis for first-

order reactions in the convective regime (Cardoso et al. 2007). The leading-order estimates for 

maximum temperature, in each regime, are indicated in Figure 6.11. 

 

 

Figure 6.10:  Effectiveness factor plot in the four regimes studied (Eqs. 200H(6.127), 201H(6.129), 

202H(6.131) and 203H(6.134)). 
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6.5 EFFECTIVENESS FACTOR APPROXIMATION 

 

The performance of the catalyst particle in the regimes described may be quantified by the 

effectiveness factor, defined by 179H(6.15)-180H(6.16). In general, the calculation is rather 

straightforward, especially in the regimes with uniformly valid solutions. So, differentiation of 

equations 181H(6.24), 182H(6.87) and 183H(6.115) yields direct estimates for the effectiveness factor in 

Regimes I, II and IIIa, as shown in Table 6.1. 

In the ‘chemical regime’, the effectiveness factor is close to unity. Taking the limit of 184H(6.127), 

when 0
h

Pe →  (when there is no convection or when the catalyst is highly conductive), gives 

21 3Eff γ β φ→ +  

This result is also obtained by perturbation analysis for a zero-order reaction, with no 

convection, in the low Thiele modulus regime. For strong convection (
h

Pe → ∞ ) or under 

isothermal conditions ( 0β → ), the leading-order estimate is again 1Eff → . The results for 

Regime IIIa (Eq. 185H(6.131)), where convection is strong, agree qualitatively with this result. 

In the ‘diffusional regime’, the leading-order estimate for the effectiveness factor (from 

Eq. 186H(6.129)) is 

2 b
Eff

φ
=           (6.125) 

We expect this result to agree with the effectiveness factor calculated for the explosive branch 

(Aris 1975) of the diffusion-reaction problem. This is the case if ( ) ( )
2 1b e

γ β
γ β−∼  agrees 

with Eq.187H(6.84). The agreement is indeed very good, especially for 2γ β < . The second-order 

term in 188H(6.129) increases catalyst’s performance if 6γ β <  (which is true for typical parameter 

values). In the isothermal diffusive limit, equation 189H(6.129) retrieves the well-known result, 

2Eff φ= . 

For Regime IIIb, an approximate result was obtained by considering the solution structure that 

was described in section 6.3.3.b. If we use a two-term expansion to describe the concentration 

profile in each region, equation 190H(6.16) yields: 

0 01 1
2

1 11 1

1

2

r lr l

x xx x

dc dcdc dc
Eff

dx dx dx dx
ε ε

φ
= =−= =−

 
+ − −  

 
≃ .     (6.126) 

We note that ( )0
l

c x  is given by 191H(6.100) and ( )0
r

c x  by 192H(6.107) with 1 1a = − . To evaluate the 

remaining terms in 193H(6.126), we calculate ( )1
l

c x  from the ( )O ε  subproblem that arises from 
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194H(6.95)-195H(6.96) and 1 1

r

x
dc dx

=

 is obtained integrating the ( )O ε  mass balance from 196H(6.103) over 

the boundary layer with thickness 1
m

Peε ∼ . That is, for 0 1r
Tη << : 

12 2
1

02 2
1 1/1

1 1 1 1
exp

2
m

r

r

m m mPex

dc e
T dx

dx Pe Pe Pe

ϕ
φ φ

ϕ
ε ε

−=

 +
 =   

 
∫ ≃  

where the integral on the right-hand side of this equation is evaluated using the trapezoidal rule 

between the surface and the maximum temperature values. Substituting these results into 

197H(6.126), gives an estimate for the effectiveness factor in Regime IIIb (equation 198H(6.134)). If we 

take the limit of 199H(6.134) for 0ϕ →  ( 0β → ), we obtain 

2

1

2
m

m

Pe
Eff

Peφ
+∼  

This solution is in excellent agreement with the asymptotic limit for high 
m

Pe  (maximum error 

of 5% for 2 10
m

Pe φ∼ ∼ ) presented by Rodrigues et al. (1984) for the isothermal case. Also, 

for strong convection the maximum effectiveness factor is given by ( )
22

m
Eff Pe φ∼ . This 

result also appeared in the analysis for first-order reaction by Cardoso et al. (2007), although 

they were able to find the full concentration and temperature profiles in this regime. In these 

cases and when mass and thermal diffusivities are comparable, the performance of the catalyst 

depends at ( )1O  on the Thiele modulus and intraparticular mass Peclet number, but not on any 

information regarding heat transfer or generation mechanisms (ϕ  or 
h

Pe ). Note that, for strong 

convective regimes, the contribution of the profile near 1x = −  for the effectiveness factor is 

negligible, since reactant concentration decay is slow at the slab’s entrance. All these results are 

summarised in Table 6.1 and plotted in Figure 6.10. 

 

6.6 CONCLUSIONS 

 

The analysis of simultaneous convection, diffusion and reaction is presented for an exothermic 

zero-order reaction occurring in a catalyst slab. Scaling techniques yield simple order of 

magnitude estimates for the characteristic temperature change experienced. We identified the 

regions in which the system behaves as isothermal, diffusive, adiabatic or ‘explosive’ by a 3-D 

regime diagram. In particular, we study the limits of chemical and diffusional regimes, in the 

presence of convection, as well as a strong convective regime, by conducting suitable 

perturbation analysis. For each regime, estimates of the effectiveness factor and maximum 

temperature are provided (Figure 6.11). They are consistent with the isothermal and diffusive 

limits, and agree with previous approximate analytical analysis (Cardoso et al. 2007).  
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When intraparticular convection is the dominating transport mechanism in a system with 

1Le ∼  , the performance of the catalyst depends (to a first approximation) on the mass Peclet 

number and Thiele modulus, but not on heat generation or transport. The maximum temperature 

was found to coincide with the adiabatic temperature change that one would observe after 

complete reaction, in a catalyst slab with initial uniform surface-like concentration and 

temperature. 

 

 

Table 6.1: Effectiveness factor and maximum temperature approximations. 

Regime I 

2 1 1
1, ,

m m h
Pe Pe Pe

φ
<<  

22 4

2 3

1 1
1

1

h

h

Pe

Pe

m h m

e
Eff O

Pe Pe Pee

φ φ
ϕ

   +
= + − +   

−   
 (6.127) 

2 2max 2 4

22 2

ˆ ln 2 1
1 ln 1

ˆ 21

h
h

h

Pe
Pe

Pe

h h ms

eT e
O

Pe Pe PeeT

φ φ
β

      −  
= + + − +    

−      

 (6.128) 

Regime II 

2 1 1
1, ,

m m h
Pe Pe Pe

φ
>>  

1

2 4

2
1 6m h m m

m h

Pe Pe Pe Peb
Eff O

Pe Pe
ϕ ϕ

φ φ φ

−

   
= + − − +   

  
 (6.129) 

max

2

ˆ 2
1 1 1

ˆ 3
m h m

ms

Pe Pe PeT
O

b PeT
β

φ φ

   
= + + − +       

 (6.130) 

Regime III 

2

1
m

Pe

φ
∼  and 

1 1
, 1

h m
Pe Pe

<<  

 

IIIa: For 
22

1
m

Pe

ϕφ
< ,  

( )

12 2
2

2 2

2 1 2 1
1 ln 1 1

2
mPem

m m m m

Pe
Eff e O

Pe Pe Pe Pe

ϕφ ϕφ

ϕφ φ

−

−
     

= − − − − +     
     

 (6.131) 

( )
( )max

max 2 2
1

max

ˆ 2
1 ln 1 1 ln 1

ˆ
hPe x

m ms

T
x e

Pe PeT

β ϕφ β ϕφ

γ γ

− −
   

= − − + + −   
   

 (6.132) 

with 
2

max 2

1 2
1 ln 2 ln 1m

h

h m

Pe
x Pe

Pe Pe

ϕφ

ϕφ

    
= − − −    

     
 (6.133) 

IIIb: For 
2 1

2
m

e

Pe

ϕ
φ

ϕ

−
−

> ,  

2

2 2 3

3 1

2 4 2
m

m m m m

Pe e
Eff O

Pe Pe Pe Pe

ϕ
φ ϕ

φ

 +
= + + +  

 
 (6.134) 

maxˆ
1

ˆ
m

h ms

PeT
O

Pe PeT

β
β

 
+ +  

 
∼  (6.135) 

where: ( ) ( )
2 exp 2b erfπ γ β γ β γ β=  and 

m h
Pe Peϕ γ β= . 
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Figure 6.11:  Regime diagram for an exothermic zero-order reaction in permeable catalyst slab. 

Shown are the leading-order estimates for the effectiveness factor and maximum 

temperature in each of the studied regimes, for 1Le ∼ . Approximate boundaries between 

strong convective-reactive regimes are also presented. 

 

 

NOTATION 

 

1a , 2a  integration constants  

b  parameter defined in eq. (6.63) 

c   dimensionless concentration of reactant  

( )n
c x  perturbation function of order n  for dimensionless concentration  

ĉ   concentration of reactant 

ˆ
s

c   concentration at the surface of the slab 

p
C   specific heat of the catalyst matrix filled with fluid 

d  parameter defined in eq. (6.73) 

D   effective reactant mass diffusivity 

act
E   reaction activation energy  

Eff  effectiveness factor 

( )erf z ‘error function’, defined by ( )
2

0

2 z

t
erf z e d t

π

−
= ∫  

f   parameter defined in eq. (6.74) 

2
m

Peφ ∼
2

m
Peφ <<

2
m

Peφ >>

reactiondiffusion

convection

2
φ

m
Pe

Diffusive limit

tra
nsitio

n

Regime IIIb

Regime I

Regime II

maxˆ
ŝ

T T→

1Eff →

maxˆ
ŝ

T Tβ∆ →

maxˆ
âd

T T∆ → ∆maxˆ
ŝ

T T→

1Eff →
2

m
Pe

Eff
ϕ φ

→

Regime IIIa

2 b
Eff

φ
→

2Eff b φ→
maxˆ

ŝ
T Tβ∆ →

1Eff →

maxˆ
ŝ

T T→

22
m

Pe ϕ φ∼

0.1

1

10

100
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2
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Peφ ∼
2

m
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2
m

Peφ >>
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2
φ

m
Pe

Diffusive limit
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n

Regime IIIb
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maxˆ
ŝ
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1Eff →

maxˆ
ŝ
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âd

T T∆ → ∆maxˆ
ŝ

T T→

1Eff →
2

m
Pe

Eff
ϕ φ

→

Regime IIIa

2 b
Eff

φ
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2Eff b φ→
maxˆ

ŝ
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1Eff →

maxˆ
ŝ

T T→

22
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Pe ϕ φ∼
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( )H−∆ heat of the exothermic reaction  

k   intrinsic kinetic constant 

s
k   kinetic rate constant evaluated at the surface temperature of the catalyst 

L  semi-thickness of the slab 

Le   Lewis’ number ( )Dκ=  

h
Pe   intraparticular heat Peclet number ( )u L κ=  

m
Pe  intraparticular mass Peclet number ( )u L D=  

( )r T   dimensionless reaction term  

R  ideal gas constant 

T  dimensionless temperature 

( )n
T x  perturbation function of order n  for dimensionless temperature  

T̂   temperature 

ŝ
T   temperature at the surface of the slab  

T̂∆  characteristic temperature change 

âd
T∆  adiabatic temperature change 

d̂if
T∆   maximum temperature change observed in a diffusive-reactive system with  

concentration annulment 

u  superficial fluid velocity  

x   dimensionless transverse position within the slab    

x̂   transverse position within the slab 

'x   position where concentration reaches annulment on the left side of the slab 

*x   position where concentration reaches annulment on the right side of the slab 

xɶ   point where outer solution takes zero concentration value 

X   stretched coordinate in the region near 1x =   

*X   stretched annulment position near 1x =  

*
n

X   coefficients in the expansion for *X  

Y   stretched coordinate in the region near 1x = −  

'Y   stretched annulment position region near 1x = −  

'
n

Y   coefficients in the expansion for 'Y  

 

Greek letters 

β  Prater’s parameter ( ) ( )( )ˆˆ
s p s

H Dc C Tρ κ= −∆  

δ   thickness of the boundary layer 

ε   small (perturbation) parameter 

φ  Thiele modulus ( )( )ˆ
s s

L k c D=  

( )
2

crit
φ  critical Thiele modulus value, above which concentration annulment occurs 

γ   Arrhenius parameter ( )( )ˆ
act s

E RT=  
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η  characteristic temperature change normalized by surface temperature ( )ˆ
ŝ

T T=∆  

ϕ  nonisothermal parameter ( )γ η=  

κ   fluid-filled catalyst effective thermal diffusivity ( )p
Cλ ρ=  

λ   effective thermal conductivity of the fluid-filled catalyst 

ρ   density of the catalyst matrix filled with fluid  

 

Subscripts 

max maximum 

min minimum 

n   order of the perturbation function 

 

Superscripts 

comp  composite 

l   left 

m   middle 

max maximum 

min minimum 

r   right 
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CHAPTER 

SEVEN 
 

CONCLUSIONS AND PERSPECTIVES OF FUTURE WORK 

 

7  

 

 

 

 

This thesis proposes an analysis for some chemical engineering problems involving convection, 

diffusion and reaction. These phenomena occur at several scales: from a pore in a perfusive 

catalyst particle to a wall-coated channel in a microstructured reactor. Our approach was mainly 

based on approximate analytical methods, whose results were compared to the ones obtained 

from numerical simulation. Since neither numerical nor experimental work were considered in 

detail, it seems adequate that suggestions for future research should refer exclusively to 

developments accomplished by means of analytical techniques alone or in combination with 

others. In this chapter, we divide our contribution into eight topics, summarize main 

achievements and propose possible extensions in each. 

 

 

7.1 FINITE REACTION RATES IN A WALL-COATED MICROCHANNEL REACTOR 

 

Assuming that a reaction proceeds sufficiently fast in a coated microchannel, so that 

concentration annulment prevails at most part of its surface, may not be reasonable in many 

practical situations. This has been highlighted throughout the thesis. In Chapter 4, we have 

stressed that several studies in the literature reported to have incorrectly assumed operation 

under full mass transport control. We also derived boundaries for this regime, which placed the 

conditions for wall concentration annulment in a region corresponding to high values of the 

Damköhler number ( Da ). In fact for this to happen, highly active catalysts would be required, 

or alternatively high operating temperatures, as shown in Chapter 5  (which can lead to a change 

in the reaction mechanism or activation of homogeneous reactions). In analytical applications, 

this may require immobilization of a large quantity of ligand to guarantee that binding rates are 

sufficiently fast. In Chapter 1, we have mentioned a heuristic design rule: the microdevice 
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should be dimensioned so that transport rates ‘match’ reaction kinetics, or so that the former are 

not limiting (i.e. even faster than the latter). Therefore, in applications with miniaturized 

systems (with the purpose of reducing mass transfer resistance), the case of finite reaction rates 

compared to transport (i.e. finite Da ) is relevant and is also the generic solution of the linear 

transport-reaction problem. Even when operation close to the asymptotes occurs, expressions 

for slow and fast reaction rates with ( )O Da  and ( )1O Da  corrections improve the estimation 

of conversion significantly. 

In Chapter 2, we have proposed simplified models for conversion calculation under finite values 

of Da  in the two main mass transfer regimes. In the fully developed regime, conversion of 

reactant depends on Da  through two quantities (the first eigenvalue 1λ  and the first weight 

1w  ). We have proposed correlations to describe the variation of both quantities with Da . Our 

expressions were constructed from the correct asymptotic limits and shown to be reasonably 

accurate. They were also simple enough to be included in other quantities (namely conversion) 

and allowed for the effect of Da  to be exhibited explicitly in appropriate limits. Moreover, the 

parameters in these correlations are dependent on the flow profile and geometry, and can be 

easily generalized for other channel cross-sectional shapes. This allows a direct comparison 

between different cases. When the concentration profile is developing, empirical formulas were 

also used to describe conversion according to Lévêque’s analysis (which assumes a 

concentration boundary layer near the wall, in a planar channel with linear velocity profile) for 

all values of Da . These were shown to be accurate even for ~ 1Da , and valid for 

( )~ 10
m

Peα > .  

The description of conversion with these results was compared with the numerical solution of 

the full problem and the following remarks can be made: 

1. The accuracy of the fully developed regime decreases as expected with the magnitude of 

Graetz parameter (especially for ~ 10
m

Pe zα > ), but mainly for high values of Da ; 

2. Curvature decreases the range of validity of the fully developed profile at high 
m

Pe zα , 

especially for large Da , identifying the need for an higher order correction; 

3. The empirical correlations describing the leading-order Lévêque solution have 

comparable or even better agreement with the numerical solution than the individual 

limits at high and low Da , from which they were constructed; 

4. An higher order perturbation correction to the developing profile solution due to 

curvature in a channel with plug-flow is more important at high Da  and can be written as 

a sum of two parcels of order ( )m
O z Peα  and ( )( )m

O z Da Peα , where the latter 

(subdominant) accounts for finite (large) reaction rates. In the opposite limit (low values 

of Da ), the correction is ( )
2

m
O Da z Peα 
 

, which is very small at the inlet; 
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5. Nonlinearity of velocity profile near the wall in laminar flow has to be considered also at 

high Da  and terms with order ( )m
O z Peα  and ( )( )

2/32/3
m

O z Da Peα 
 

 should be 

added to the leading-order problem. At low Da , the correction is only of 

( )
5/32

m
O Da z Peα 
 

; 

6. Correction due to curvature in developing profile is more important than the one due to 

nonlinearities in the velocity profile, and both are more relevant for 1Da >> . 

Additionally, it was exemplified how a channel can be dimensioned so that the required 

conversion is attained and how the results presented in Chapter 2 can avoid simulations in large 

parametric areas, or restrict the search for adequate design to particular configuration/operation 

sets. In comparison with the numerical solution, this also allowed the decoupling of effects such 

as geometry and flow profile. 

 

 

7.1.1 Suggestions for future work 

 

Extension of the work presented is possible for similar models to the one adopted, but 

encompassing other effects which may be important at the microscale. We refer specifically to 

viscous dissipation and simultaneous development of the velocity profile (Herwig 2008). In fact 

recently, Gundlapally et al. (2011) have used very similar techniques to the ones presented in 

Chapter 2 to predict the variation of Sherwood number with Graetz and Schmidt’s numbers. 

They however considered uniform wall concentration and flux boundary conditions. It is 

possible that the effect of a reaction occurring at the wall may be superposed on these 

dependences and yield a more generic solution. In the case where flow is allowed to develop 

over the same distance of the concentration profile it would be interesting to evaluate how 

conversion is affected with Schmidt’s number, namely if it changes from the plug-flow 

asymptote to the laminar flow one, and estimate the error introduced by taking these limiting 

models for channel flow. Concerning the effect of viscous dissipation, a great deal of work 

already exists, but it is mainly focused on the heat transfer problem and not in the nonisothermal 

reactive case (Aydin 2005; Morini 2005; Aydin et al. 2006; Barletta et al. 2006; Jeong et al. 

2006; Magyari et al. 2006; Chiba et al. 2008). 
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7.2 APPROXIMATE SOLUTIONS FOR NONLINEAR KINETICS 

 

There are not many available analytical treatments for the case of nonlinear wall kinetics. The 

most used strategies were reviewed in Chapter 2, but even the ones with a strong analytical 

character end up having to be evaluated numerically. With today’s computational capabilities 

this actually makes the problem solution less straightforward than simply solving numerically 

the governing equations with appropriate boundary conditions. 

In our work in Chapter 2, we have proposed a perturbation procedure to obtain analytical, 

explicit expressions for conversion as a function of the reaction order m  in the case of a power-

law kinetics. However, this introduced a limitation: intermediate values of Da  may be 

satisfactorily approximated (and this indeed happens in some cases) but this is not guaranteed 

by the method, which predicts higher errors as Da  increases/decreases from zero/infinity. This 

happens because the solutions were constructed from two limits associated with Da , which is 

the only parameter appearing next to the ‘problematic’ concentration nonlinear term in the 

kinetic law. Moreover, we have considered also the two main mass transfer regimes (developing 

and fully developed) to solve the mass balance in the simplest way possible. Nevertheless, it 

was possible to achieve some insight concerning the effect of the reaction rate law in 

conversion, namely: 

1. The form of the perturbation expansion for mixing-cup concentration is different in the 

kinetic and in the mass transfer controlled limits: while in the former, the influence of m  

appears implicitly in the coefficients that are calculated; in the later there is also the 

explicit appearance of m  in the order of the gauge functions of the perturbation 

parameter, which constitutes the expansion ( /

0

n m

n

n

c c ε

=

=∑ ). 

2. For orders of reaction 1m > , the results for conversion normalize with the kinetic control 

asymptote up to higher values of Da . On the other hand for 1m < , deviation from the 

leading-order solution is negligible for small Da  but gets more pronounced as the value 

of this parameter increases. 

3. For orders of reaction 1m < , the orders of subsequent corrections to the Dirichlet leading-

order term are much lower in magnitude ( ( )
/n m

O ε ), which means that the deviation from 

the full mass transfer control decreases sharply as 0ε →  (i.e. better agreement with the 

Dirichlet limit for the same Da  is observed). 

4. Perturbation corrections are especially required when 1m >  in the mass transfer 

controlled regime, and in the kinetically controlled regime when 1m < . 
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5. In the determination of intrinsic reaction rate parameters, reactions orders with 1m <  are 

expected to deviate the most from the normalization if low Da  conditions cannot be 

assured. 

6. When mass transfer controlled conditions are attained numerical integration may present 

some increased difficulties (e.g. when concentration near the wall oscillates to zero and 

the wall reaction is of ‘power law’ type with non-integer exponent; or when boundary 

layers near the wall exist). Therefore, analytical results are particularly convenient in this 

case. 

7. The changes in behavior for 1m <  and 1m >  are related to kinetic / mass transfer control 

and the same trends were observed in the fully developed and developing limits. In the 

case of developing profile, the perturbation parameter was the rescaled Damköhler 

number detailed in Chapter 4. In this case, even though corrections due to curvature and 

velocity profile nonlinearities in a circular channel with laminar flow are important ( as 

seen in section 2.3), accounting for the order of reaction reduces errors by one order of 

magnitude (e.g. for * 0.1Da =  and 100
m

Peα = , the maximum deviation for 2m =  is 

0.06%). Nevertheless, we note that the leading-order extended corrections from section 

2.3 (accounting for curvature and nonlinear flow profile) are valid in these limiting cases 

too and can be added. 

 

7.2.1 Suggestions for future work 

 

Further analytical treatment on the effect of nonlinear reaction rates or more complex kinetics is 

likely to be more limited and demanding of numerical evaluation. However, the limiting 

solutions can be used in semi-numerical procedures suggesting a dependence of conversion on 

the governing parameters. For example, Spence et al. (1995) has noted the difficulties in the 

numerical solution of a one-dimensional model for power-law kinetics with non-integer reaction 

exponent m , when concentrations reach zero at the wall. To overcome this problem, an 

exponential substitution for the wall concentration is suggested, which helps the numerical 

evaluation if a coefficient in the argument of the exponential is set to 1000. This fitting relates 

directly to our analysis in section 2.4.2a. It is possible that our results can be used to improve 

numerical evaluation, based on a theoretical analysis and without the need for fitting 

coefficients. It would also be interesting to evaluate how the results presented can be employed 

in the determination of intrinsic kinetic parameters and rate expressions, and how available 

kinetics (determined from other methods) compare with these solutions. 
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7.3 UNIFORMLY VALID SOLUTION TO GRAETZ’S PROBLEM 

 

We have pointed out that most literature analyzes transport-reaction problems in microchannels 

in one of two main mass (or heat) transfer regimes. We have also done so in Chapter 2, even 

though corrections to Lévêque’s leading-order result were proposed to extend its validity to 

lower values of Graetz’s parameter (
m

Pe zα ), for finite reaction rates. In Chapter 3, we 

reviewed several attempts to analytically describe the two simplified regimes in a single 

uniformly valid composite solution and have concluded that the existing approaches were 

unsatisfactory. Therefore, based on a feature of the eigenvalues on the exact solution, we 

propose the application of an asymptotic technique to obtain a general solution for concentration 

conversion (temperature change). Furthermore, we have identified in the obtained result the 

contributions of the fully developed and developing limits and two correcting functions 

accounting for the importance of each one in the composite solution. The overall quantity χ , 

which may be conversion of reactant 
R

X  by an infinitely fast reaction (or also when kinetics is 

moderately fast but finite, 1Da > ) or the reciprocal of Sherwood number in Neumann boundary 

condition (1 Sh ), writes as: 

fd fd dev dev
χ χ χ= Θ + Θ          (7.1) 

where 
fd

χ  is the value of χ  in the fully developed regime (associated with the first term in an 

series of eigenfunctions), 
dev

χ  is the solution when the concentration/temperature profile is 

considered only in a boundary layer near the wall. Moreover, 
fd

Θ  is a function depending on 

the coefficients from the first term in Graetz series and accounts for the other terms that are not 

being retained in the fully developed limit. On the other hand, 
dev

Θ  has the form of an 

incomplete Gamma function, whose arguments include the Graetz parameter and quantities 

depending on the shape of the channel, the flow profile and the boundary layer thickness. 

The solutions of the form of (7.1) fulfill both limiting solutions and also yield very acceptable 

results in the transition regime, as it was shown for the channel geometries, flow profiles and 

boundary conditions studied in Chapter 3. No numerical evaluation is required and higher order 

terms don’t need to be considered. The abundant information concerning the first term in Graetz 

series can be used to construct an uniform solution, with no additional information required. 

The same procedure was applied to the case of finite wall resistance (due to a finite reaction or 

nonzero thermal resistance). We believe that the combination of limiting models for heat/mass 

transfer in (7.1) is particularly important at the microscale, where both regimes can be found 

(millisecond contact times locate the operation at the inlet regime or at least a non-negligible 

entrance length inside the channel exists). It is also possible that, depending on the objective 

function for performance adopted in a particular application, the optimum operation is in the 
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transition region between the two models, which can be conveniently represented by our 

analytical solution. 

 

7.3.1 Suggestions for future work 

(Graetz 1883) 

The Graetz problem is a classic one (the original solution by Graetz goes back to 1883), it is 

very fundamental in mass/heat transfer theory (Shah et al. 1978) and has been object of many 

modifications/extensions which are often referred as Graetz solutions (Weigand et al. 2007; 

Cossali 2009; Haji-Sheikh et al. 2009; Haji-Sheikh et al. 2010; Ray et al. 2010). The same 

comments apply to Lévêque’s analysis (1928), and generalized Lévêque-type solutions are also 

present in the literature (Vera et al. 2011). Recently, these problems have gained an additional 

source of interest in the context of microchannel heat exchangers/reactors, for which a 

considerable number of studies are currently being published. We note that several reviews have 

reported that conventional macroscale theory is able to describe channel phenomena in the 

dimensions considered here, as long as microscale effects are considered. Inlet 

concentration/temperature boundary layers are one of these effects. Despite the fact that these 

problems constitute the basis of analysis of many diverse phenomena, the analytical treatment is 

generally the same (yielding an infinite series). This is a common characteristic shared with 

other linear partial differential equations, whose particular solutions are combined by the 

principle of superposition.  

From the examples presented in this thesis, we believe that the application of asymptotic 

summation of series techniques (in particular, of the Euler-Maclaurin formula) may be of 

interest for a number of cases currently discussed in the literature. We note that this approach 

allows us to simultaneously obtain the corresponding Lévêque-type solution or correction, as 

this is a natural outcome of the procedure. Examples of possible extensions in the channel 

transport context include conjugate problems in heat transfer (Papoutsakis et al. 1981a; 

Papoutsakis et al. 1981b), axial diffusion effects (Acrivos 1980; Papoutsakis et al. 1980b; 

Papoutsakis et al. 1980a; Haji-Sheikh et al. 2009) and viscous dissipation (Aydin et al. 2010), 

among others. In particular, we propose three suggestions:  

1. Considering axial diffusion in the problem, yields solutions with the same form of the 

problem considered in Chapter 3, but with coefficients which exhibit a more complex 

dependence on the governing parameters. However, it is possible to anticipate that by 

expansion of functions for plug-flow and WKB methods for laminar flow, the asymptotic 

behavior of these quantities can be obtained. For example, for Dirichlet boundary 

conditions with plug-flow between parallel plates, 
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( )
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2 2 2 3
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~
8

m

n n m
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Pe O n

n
λ λ λ π

π

−

+
∆ = − − +  

In this case, the spacing between eigenvalues also depends on the transverse Peclet 

number. At this stage, we recall the usefulness of empirical correlations to translate the 

parametric dependence of these quantities in a simple, but accurate manner. Then, with 

some additional assumptions the Euler-Maclaurin sum formula may still be an excellent 

tool to obtain a complete solution, with the advantages mentioned above. This results in 

an analysis which may be uniform in 2
α  and 

m
Peα . Therefore, for channels without 

small aspect ratios general solutions can be obtained. 

2. For the case of simultaneous development of the velocity profile, although the 

coefficients that appear in that case are also functions of other parameters, it would be 

interesting to understand if the same method applies. 

3. In the case of a simultaneous homogeneous reaction (which may be activated at higher 

temperatures), the form of the solution is similar, but with coefficients that also depend 

on the bulk Damköhler number (defined with the homogeneous reaction rate at reference 

conditions). Developments in this problem may be expected. 

 

7.4 DEGREE OF PROFILE DEVELOPMENT 

 

One of the consequences of deriving a solution valid in all points of the domain and parametric 

space that we found particularly interesting was the estimation of boundaries for application of 

the well-known limiting solutions. This has been translated in the literature through several 

related quantities, e.g.: entrance length, incremental heat transfer number, thickness of boundary 

layer,... and has been determined in a number of ways, detailed in Chapter 3. Most of them are 

not explicit in the criterion, which at some point will have to be set arbitrarily. In our work, we 

have defined a degree of transverse control which measures the agreement with the fully 

developed asymptote. We concluded that the results were more insensitive to the formulated 

criterion in the fully developed boundary, whereas the inlet region depends more expressively 

on the level of agreement required with Lévêque’s solution. Also, in the fully developed 

boundary the effect of flow profile is negligible. The transition region may occupy a large part 

of the channel domain. This can also be related with the pressure drop experienced in the system 

and the level of influence of inlet effects (which increase mass transfer) present in the system. In 

the case of a finite reaction rate, we have observed that for 1Da > , the entrance length is near 

the fast reaction asymptote, while for 0Da →  the applicability of the 1-term Graetz solution 

increases up to the inlet.  
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7.4.1 Suggestions for future work 

 

We have suggested that the uniformly valid solutions obtained in section 7.3.1 could be useful 

to analyze other problems. The definitions of transition boundaries would follow in the same 

terms. One adaptation of our results which would probably not require much additional effort is 

based on the idea behind one of the methods that are used for estimating the concentration 

profile length: analogy with the development of the velocity profile. This leads to the 

substitution of Reynolds number by Peclet number (i.e. multiplication by the Schmidt number) 

with negligible alteration of the numerical coefficients. Therefore the development of the 

velocity profile alone in a duct (with the shape normalization possibility pointed out in 

Chapter  3) could be treated in the same way. The effect of the simultaneous velocity and 

concentration/temperature development on these boundaries it is also of interest. Our ideas can 

be extended to a number of other cases. In particular and to highlight the effects of the 

microscale on the fluid dynamics, the results for finite wall resistance (finite Da) can share some 

similarities with the case of developing velocity slip (flow) in a channel with isothermal wall. 

 

7.5 MAPPING OF OPERATING REGIMES AND THE CONCEPT OF “RESCALED 

DAMKÖHLER NUMBER” 

 

In the previously identified contributions, the regimes proposed by the analysis were mainly 

concerned with the interaction of convection through the channel (in streamlines parallel to the 

surface defined by the wall) and transverse diffusion towards the catalyst coating. We proceeded 

to also incorporate the coupling of these transport mechanisms with the magnitude of reaction 

rate occurring at the channel wall. This was done in two parts. First, we focused on the external 

mass transport effects on a surface reaction in Chapter 4 (with internal phenomena lumped in 

the effectiveness factor). Then, the internal phenomena (at the catalytic coating level) was 

considered in more detail in Chapter 5. 

Concerning the definition of external kinetically controlled and mass transfer controlled regimes 

the following was achieved (Chapter 4): 

1. We have defined in line with what has been presented in the literature, a degree of mass 

transfer control θ , which is a concentration ratio; 

2. Explicit expressions for θ  were presented in the fully developed and developing limits 

for kinetic and mass transfer controlled regimes; 

3. In each limit of the convection-transverse diffusion balance, correlations for θ  were 

proposed to describe all values of Da ; 
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4. Criteria for kinetic and mass transfer control valid for all values of the Graetz parameter 

and of the form ( ),
m

Da Da Pe zθ α=  were proposed and describe very reasonably the 

results obtained from numerical simulations with gPROMS®;  

5. Iso-θ  curves were plotted in a 
m

Da Pe zα−  diagram, in particular for specified low and 

high specified values of θ  (kinetic and mass transfer control, respectively); 

6. The achievement of external mass transfer control required high values of Da , even for 

low 
m

Pe zα . Moreover, the effect of increasing the Graetz number is visible by 

demanding more severe conditions (translated e.g. into higher operating temperatures) to 

attain the same degree of mass transfer control observed in the fully developed regime, 

and 

7. Previous criteria presented in the literature for specific values of θ  (or related quantities) 

can be incorporated in our analysis and they all prove to be in agreement with our results, 

but are more limited or of less convenient evaluation. 

The basis for defining these operating regimes has been the magnitude of the Damköhler 

number. In our opinion, this has happened for several reasons: this was how the very influential 

original work from Damköhler (1937) presented the problem; in many cases the effect of the 

entrance length is still not considered and in these conditions the degree of mass transfer control 

is indeed only a function of Da; simple magnitude relationships are attractive for the 

interpretation of experimental work; and from analogy with other problems such as the internal 

diffusion-reaction analysis based on the magnitude of Thiele modulus. However, we have seen 

that the entrance length needs to be accounted for in microchannels and has influence on mass 

transfer. Since this is an important parameter, we propose a modification based on the correct 

scaling of the wall boundary condition, 

*Da Da δ=           (7.2) 

where δ  is the normalized thickness over which concentration decays in the channel. Most 

literature consider ~ 1δ  (i.e. the scale for concentration change in the channel is e.g. the 

channel radius or the half spacing between parallel plates). However, we have shown that at the 

convection-dominated (Lévêque’s) regime, this scale is not appropriate and the correct one 

should be applied in (7.2). In this case, the limiting conditions for absence of radial 

concentration gradients and wall concentration annulment are observed for * 0Da →  and 

*Da → ∞ , and this is more rigorous than taking the 0Da →  and Da → ∞  limits. The 

parameter in (7.2) was named as the ‘rescaled Damköhler number’ and the variation of θ  with 

*Da  in the developing profile limit is similar to the ( )Daθ  dependence on the fully developed 

profile asymptote. We have also shown that the concept can be applied when the thickness over 

which concentration changes is known as a result of other inner descriptions, incorporating 

different mechanisms (namely axial diffusion at the inlet, section 4.5). In this case, 
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concentration annulment at the wall near the inlet is also observed for high rescaled Damköhler 

number, and the iso- *Da  lines can also be plotted in a 
m

Da Peα−  diagram, so that the regions 

of influence of this effect are easily identified. Naturally, more severe conditions are required 

for concentration annulment to occur at the inlet, and in this case the remaining portion of the 

channel is also under full mass transfer control. 

In Chapter 5, the interplay of these ‘external’ regimes with what is occurring inside the coating 

was considered. In particular, we showed that internal limitations may be controlling in the 

definition of a global (channel and washcoat) kinetic regime. This depends on the magnitude of 

a parameter involving bulk and catalyst diffusivities as well as the ratio between the length 

scales for diffusion at the channel and washcoat. It also explains why some studies observe 

internal limitations in the absence of external ones in the same ranges of temperature that others 

observe the opposite picture. Moreover, we have identified how the parameters relate to each 

other in the transition between regime definition from internal and external phenomena, which 

apart from geometrical and kinetic-related quantities is given by 

eff eff

w m

D D

D Sh t kε
= , 

where 
m

k  is the mass transfer coefficient, 
eff

D  the effective diffusivity in a coating with 

thickness 
w

t .  

The boundaries were plotted in terms of the operating variable of interest, in this case 

temperature, as a function of a dimensionless parameter. However, this is just done for 

convenience since this dimensionless variable can be converted to a geometric feature of the 

design, if other quantities are kept fixed. Several expressions for the limiting temperatures 

which bound different regimes were proposed and are of convenient evaluation. These results 

make use of two quantities that can be set by the user as desired: the degree of mass transfer 

control θ  (defined in Chapter 4) and the effectiveness factor (for which approximations in 

Chapter 5 were provided), which express the mass transfer resistances in the channel and 

coating, respectively. 

 

7.5.1 Suggestions for future work 

 

As mentioned in Chapter 1, microdevices open the possibility of operating in new parametric 

windows. It would be interesting to identify some of those regions in the constructed parametric 

map, once more information concerning production-scale technologies becomes available. On 

the other hand, it would also be of interest to draw the path of the chain of process development 
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in the proposed regime diagram: from kinetic studies (at low Da) to chemical production at 

different scales. 

In the case of axial diffusion being also considered in the analysis of the extended Graetz 

problem, a third axis should be added to the diagram, corresponding to the aspect ratio (which 

governs the magnitude of axial diffusion effects to the transverse diffusion one). The case of 

nonisothermal systems would also add at least two parameters (concerning heat generation and 

conduction), assuming that others such as Arrhenius number with activation energy are kept 

fixed. The influence of inlet effects (in the sense detailed in section 4.5) should be also relevant 

in the investigation of local effects in fast reactions and ignited states. The results of our 

simplified new description for the boundary layer could be pursued in this context. 

 

7.6 EVALUATION OF THE EFFECTIVENESS FACTOR IN A THIN CATALYST COATING 

 

In the previous topics, external transport (in the channel) and its interaction with reaction were 

discussed while effects at the catalyst coating level were lumped by an effectiveness factor (η ) 

and incorporated into the Damköhler number. As in most literature, we adopt the effectiveness 

factor concept as the basis for the analysis of the internal transport-reaction competition. Other 

related quantities (concentration ratios, linear driving force coefficients, mass transfer 

coefficients) imply a linearization of the concentration profile near the wall and in terms of 

evaluation are of comparable difficulty. Concerning our approach for the calculation of η , the 

main achievements in Chapter 5 were: 

1. We wrote a reduced order model to represent reaction and diffusion in a catalytic coating 

with arbitrary shape. The general 3D equations were reduced to a 2D model by making 

use of a transformation to the curvilinear orthogonal coordinate system, as described 

elsewhere (Datta et al. 1985; Mariani et al. 2003). The resulting mass balance is further 

simplified by applying a perturbation method for thin coatings, reducing the problem to a 

1D domain. 

2. The concentration profile inside the catalytic coating (normalized by its value at the 

surface) depends on the following parameters: Thiele modulus 2
φ  (defined with the 

characteristic length for diffusion, i.e. the maximum distance in the direction normal to 

the fluid-solid interface); the ratio of length scales for diffusion in the coating and in the 

channel (ε ); and the ratio of washcoat volume to interfacial area and to the internal 

diffusion length scale (υ ). 

3. The concentration distribution and the effectiveness factor can be written as a series in 

powers of ε , assuming small values of this parameter. We consider the first two terms in 
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this expansion. This has proven to be reasonable in some cases even for ( )~ 1Oε . Note 

that considering more terms in the perturbation series may improve the approximation 

near 0ε = , but may cause serious divergence as ε  increases. Therefore, our two-term 

solution is appropriate. 

4. The obtained result for η  can be written in terms of the aforementioned geometry-related 

parameter (υ ) and of the effectiveness factor for an equivalent slab (
slab

η  with the same 

length scale for diffusion). This was shown to be rigorously true in the case of 

perturbation solutions with linear kinetics (valid for all values of 2
φ ) and arbitrary 

geometry (as long as 1ε < ). Nevertheless, reasonable agreement with numerical solutions 

is obtained even for ~ 1ε . 

5. Based on the analysis for high and low 2
φ , we speculated that the previous expression for 

η  would also apply to the case of a reaction rate expression with arbitrary form. This was 

confirmed by comparison with the numerical solution for several ‘normal’ kinetics. In 

this case, the evaluation of 
slab

η  has to be done for the particular reaction law. An 

approximate procedure for this was proposed, which is based on the solution for linear 

kinetics with a modified Thiele modulus 2
Φ , including the classical normalization at high 

reaction rates and the correct behavior in the chemical regime. 

6. The same result was also shown to improve the calculation of η  in nonuniform 

geometries. Namely, by introducing a correction to the ‘slice method’ from Papadias et 

al. (2000), the error associated with this approximation decreases, especially in the 

intermediate region of 2
φ . 

7. The analysis was also applied to thin catalytic coatings supported on impermeable/inert 

particles to model egg-shell catalysts. It was found that the same expression was valid not 

only for uniform surface concentration conditions, but also when external mass transfer 

resistance was present. 

 

7.6.1 Suggestions for future work 

 

It would be interesting to further extend the perturbation techniques here employed to the cases 

where angular diffusion needs to be considered. This would allow a better description of 

nonuniform coatings and eventually provide analytical expressions for the local differential 

effectiveness factor, as defined by Hayes et al. (2005). This also relates to the more general case 

of a reaction-diffusion problem in a nonuniform geometry with peripheral variation of surface 

concentration (which is likely to be found in irregularly coated channels). The suitability of our 

approximation for η  in the case of abnormal kinetics or with solution multiplicity also deserves 



CHAPTER 7 

302 

further investigation. However, since these effects usually manifest themselves in an 

intermediate range of the Thiele modulus, it is possible that the corrections in the chemical and 

diffusional limits can still be applicable. Other natural extensions of this work would include 

nonisothermal systems and systems with multiple reactions (for which the validity of the one-

dimensional cylindrical model was already discussed in Keegan et al. (2005)). Taking into 

account the good description of the finite mass transfer resistance case in egg-shell catalyst 

particles, it can also be suggested that global effectiveness factors in a microchannel geometry 

should be considered.  

Solutions based on the ‘thin layer’ assumption and consequent perturbation corrections should 

be useful to a number of other systems, e.g. related with pellicular adsorbents. Specific 

problems may include the measurement of diffusivities from chromatographic methods (where 

the effectiveness factor in the steady-state problem is related to the transfer function in 

Laplace’s domain of the transient non-reactive problem). Multilayer egg-shell particles (catalyst 

or adsorbents) could benefit from this approach as well, even if the solution also requires some 

numerical evaluation. 

 

 

7.7 PERFUSIVE COATINGS AND MONOLITHS 

 

The second main direction for process intensification we have focused on is the improvement of 

mass transfer by promotion of an additional transport mechanism in porous catalytic bodies: 

intraparticular forced convection. In Chapter 5, we have applied a perturbation method 

conceived for thin coatings to a permeable curved wall, which can be the surface of a perfusive 

monolith for example. We developed an approximation for the effectiveness factor for this case, 

which described correctly the numerically obtained solution, for several values of the 

intraparticular Peclet number P , Thiele modulus 2
φ , ratio of surface concentrations 2c , and 

channel/coating diffusion length scales ratio ε  (including ε  near 1). 

We then examined a regime described by dominance of intraparticular convection and reaction, 

where we have found the most expressive enhancement of the effectiveness factor compared to 

a nonpermeable (negligible convection) catalyst in the same conditions. The combination of 

parameters at which the improvement was maximum was derived explicitly. This was found to 

be an increasing function of P , but reaction rate should also ‘match’ with the increased 

transport rates, according to 2 ~ Pφ . 
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7.7.1 Suggestions for future work 

 

In this case, we believe that considering external mass transfer will lead to much more 

complicated analytical expressions, and one can doubt of its usefulness. Nevertheless, some 

progress may occur with the simplified analysis in section 5.7.3.  

It would be perhaps more interesting to incorporate our results at the single channel level into 

the (probably numerical) solution of more complex systems. This may appear e.g. in a specified 

arrangement of channels, where interaction between them happens due to suction/injection 

through the wall. 

 

7.8 MAXIMUM TEMPERATURE RISE IN PERFUSIVE CATALYST PARTICLES 

 

We continued to explore the effects of intraparticular convection on the behavior of catalytic 

porous solids in Chapter 6. In this case, the problem of an exothermic reaction in a slab-shaped 

catalyst particle was considered. This added transport and generation of heat to the mass 

transfer-reaction interaction. We conducted a scaling analysis to reach the following 

conclusions: 

1. According to the mass balance, three dominant regimes can be identified. Each one 

reflects a balance between two mechanisms (convection, diffusion and reaction). These 

are related with the limiting regimes defined from the energy balance by assuming an 

order of magnitude for Lewis number. 

2. The scale for temperature change T̂∆  due to the occurrence of an exothermic reaction is 

predicted in several areas of the 3D parametric diagram formed by Thiele modulus, 

intraparticular mass Peclet number and Lewis number.  

3. Different behaviors concerning T̂∆  were observed, namely: isothermal (where 

temperature rise is negligible); diffusive (where Prater’s relationship (Prater 1958) for 

non-permeable catalyst holds); adiabatic (where the adiabatic temperature rise is 

observed); and ‘explosion’ (where concentration annulment occurs and rescaling is 

required). 

A perturbation analysis was then applied to the three main operating regimes to estimate 

concentration and temperature profiles, effectiveness factor and maximum temperature attained 

inside the catalyst. In particular, we note that 

1. In the transport dominated case (chemical regime), a regular perturbation expansion 

expressed the small deviation of concentration and temperature from their surface values. 
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2. In the diffusional regime, concentration (and temperature) variation only occurs at thin 

boundary layers near the surface, where reaction dominates with diffusion (the core of the 

catalyst is free from reactant). The effect of convective transport in these regions is of the 

order of 
m

Pe φ . This is also the order of the correction to Prater’s limit (Prater 1958) in 

the maximum temperature estimate. 

3. In the limit of strong convection, two distinct situations are considered depending on 

whether concentration annulment occurs or not. In the latter case, the problem is 

described at most part of the domain (starting from the inlet) by a smooth variation of 

concentration/temperature. Then, near the ‘exit’ of the slab (downstream) a relatively 

sharper decrease from surface values may be observed (in a region with thickness 

1
m

Pe  ). However, maximum concentration and temperature changes are small. 

4. When concentration reaches annulment in a ‘dead core’ inside the slab, we consider the 

same structure for the boundary layer near the exit of the slab, but matched with the 

annulment branch of the solution. A boundary separating this regime from the diffusional 

one was provided. The transition between convection dominated regimes (with and 

without annulment) was also estimated analytically. 

5. When convection is strong, but reaction is also fast enough to cause some annulment in 

the reactant’s concentration, maximum effectiveness factor and temperature change are 

observed. Namely, the adiabatic temperature rise is obtained at leading-order and the 

effectiveness factor presents a very similar dependence to the optimum enhancement 

conditions in Chapter 5, with a contribution accounting for nonisothermal behavior (both 

analyses refer to the convection-reaction dominant balance). 

The adiabatic temperature limit is frequently found as the maximum temperature in systems 

with coupled processes. For example, in the case of premixed flames from combustion theory 

(Law 2006). The same result was also found in catalyst particles with negligible intraparticular 

convection. Belfiore (2007a; 2007b) considered strongly exothermic reactions (Prater’s 

parameter, 1β → ) with Dufour and Soret effects, and temperature dependence of 

physicochemical properties. The adiabatic temperature rise was found and named as a 

‘generalized Prater equation’. 

 

7.8.1 Suggestions for future work 

 

Extensions of this topic may include examination of other catalyst geometries. It could also be 

interesting to evaluate how kinetic normalization (e.g. the generalized Thiele modulus defined 

in Chapter 5) applies in the presence of internal convection. The effect of finite mass/heat 
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resistance and analytical bounds for the range where steady-state multiplicity occurs are also 

possible topics for future research. 
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