
Faculdade de Engenharia da Universidade do Porto

Overlay Networks for Intelligent

Transportation Systems

Ricardo Filipe Pinho Lopes

Tese submetida no âmbito do

Mestrado Integrado em Engenharia Electrotécnica e de Computadores

Major de Telecomunicações

Supervisor: Ricardo Morla

July 2008

Abstract

The current research in Intelligent Transportation Systems (ITS) is lacking adequate
tools to create overlay networks and services applied to ITS. Developing a custom made
overlay network for ITS is complex and developers may focus on less important imple-
mentation details rather than on the algorithms and scenarios suitable for ITS overlays.
In this report we present a new framework that provides software developers with tools
that can aid them in the development and implementation of overlay networks for ITS,
the ITS Overlay Framework. Its main contributions are: providing an approach to the
development and simulation of ITS overlays that eases the transition to testbeds and real-
case usage; allowing users to create custom vehicle groupings based on coordinates, each
associated with a different overlay network; allows users to define how nodes join a group
overlay network based on their position, update themselves in the group overlay or switch
to another group overlay, and send messages between themselves in the same group; sup-
porting the development of different overlay network topologies and protocols. We have
used the ITS Overlay Framework to implement and run three test scenarios that explore
different groups and different overlay network topologies.

i

ii

“Science never solves a problem without creating ten more.”

George Bernard Shaw

iii

iv

Contents

1 Introduction 1
1.1 Context . 1
1.2 Goals . 2
1.3 Structure . 2

2 Related Work 5
2.1 Intelligent Transportation System (ITS) . 5

2.1.1 Technologies Used in ITS . 5
2.1.2 ITS User Services . 6
2.1.3 ITS Architecture . 6
2.1.4 Security in ITS . 8

2.2 Overlay Networks . 8
2.2.1 Distributed Systems Topologies . 8

2.2.1.1 Centralized Topology . 9
2.2.1.2 Ring Topology . 9
2.2.1.3 Hierarchical Topology . 10
2.2.1.4 Decentralized Topology . 10
2.2.1.5 Hybrid Topology . 10

2.2.2 Peer-to-Peer Overlay Networks . 11
2.2.3 Structured P2P Overlay Networks 12
2.2.4 Unstructured P2P Overlay Networks 15
2.2.5 Geographic Overlay Networks . 18
2.2.6 Applications and Tools . 19

2.2.6.1 X-BONE Overlay System 19
2.2.6.2 P2: Declarative Network 19

2.3 Algorithms and Simulation of Traffic Flow 19
2.3.1 Traffic Simulators . 20

2.3.1.1 Microsimulation of road traffic 20
2.3.1.2 FreeSim: A Free Real-Time Freeway Traffic Simulator . . . 20
2.3.1.3 Simetron: Metropolitan Traffic Simulator 20

2.4 Software Development Frameworks . 20
2.4.1 PlanetSim . 21
2.4.2 OverSim . 22

3 ITS Overlay Framework 25
3.1 Overview . 25
3.2 Framework Elements . 27

3.2.1 Overlay . 27

v

vi CONTENTS

3.2.1.1 Overlay Nodes . 28
3.2.1.2 Operation of an Overlay Node 29
3.2.1.3 Overlay Network Model . 30

3.2.2 Group Server . 31
3.2.3 Simulator . 33

3.3 Framework Architecture Layer Scheme . 33
3.3.1 Network Communications Layer . 33

3.3.1.1 Overlay . 33
3.3.1.2 Group Server . 36
3.3.1.3 Simulator . 37

3.3.2 Management Layer . 37
3.3.2.1 Group Server Management 38
3.3.2.2 Overlay Nodes Management 40
3.3.2.3 Simulator Management . 41

3.3.3 Application-Level Layer . 42
3.3.3.1 Overlay Nodes . 42
3.3.3.2 Group Server . 44
3.3.3.3 Simulator . 45

4 Framework Test Scenarios 47
4.1 Default Implementations . 47

4.1.1 Group Server . 47
4.1.1.1 Default GroupsCreator Implementations 48
4.1.1.2 Default ServerHandlerProcessor Implementation 48

4.1.2 Default Overlay Network Topology 50
4.1.2.1 Overlay Management Utilities 52
4.1.2.2 DefaultOverlayProcessor Class 53
4.1.2.3 DefaultHandlerProcessor Class 55

4.2 How to Write A New Application . 56
4.2.1 ITS Overlay Applications . 56
4.2.2 Group Server Application . 57
4.2.3 Overlay Node Client Application . 58
4.2.4 Simulator Application . 59

4.3 Testing Methodology . 59
4.4 First Test Scenario . 60

4.4.1 Test Specifications . 60
4.4.1.1 Scenario Definition . 61
4.4.1.2 Scenario Conditions . 61

4.4.2 Writting the Applications . 62
4.4.2.1 Group Server Application 62
4.4.2.2 Simulator Application . 63
4.4.2.3 Overlay Nodes Client Application 63

4.4.3 Results and Conclusions . 64
4.4.3.1 Running the Group Server 64
4.4.3.2 Running the Simulator . 65
4.4.3.3 Running the Overlay Nodes 65
4.4.3.4 Conclusions . 66

4.5 Second Test Scenario . 67
4.5.1 Test Specifications . 67

CONTENTS vii

4.5.1.1 Scenario Definition . 67
4.5.1.2 Scenario Conditions . 68

4.5.2 Writting the Applications . 69
4.5.2.1 Group Server Application 69
4.5.2.2 Simulator Application . 70
4.5.2.3 Overlay Nodes Client Application 70

4.5.3 Results and Conclusions . 71
4.5.3.1 Running the Group Server 71
4.5.3.2 Running the Simulator . 71
4.5.3.3 Running the Overlay Nodes 72
4.5.3.4 Conclusions . 77

4.6 Third Test Scenario . 78
4.6.1 Test Specifications . 78

4.6.1.1 Scenario Definition . 78
4.6.1.2 Scenario Conditions . 80

4.6.2 Writting the Applications . 83
4.6.3 Results and Conclusions . 84

4.6.3.1 Running the Overlay Nodes 84
4.6.3.2 Conclusions . 88

4.7 Analysis . 88

5 Conclusions 91

A Source Code 93
A.1 Framework Elements Classes . 93

A.1.1 Node . 93
A.1.2 Group . 95

A.2 Network Communications Layer . 99
A.2.1 Group Server Classes . 99

A.2.1.1 GroupServerHTTPServer 99
A.2.2 Overlay Nodes Classes . 100

A.2.2.1 Communication . 100
A.2.2.2 GroupServerRequests . 101
A.2.2.3 OverlayRequests . 102
A.2.2.4 NodeHTTPServer . 103

A.2.3 Simulator Classes . 104
A.2.3.1 SimulatorHTTPServer . 104

A.3 Management Layer . 105
A.3.1 Group Server Classes and Interfaces 105

A.3.1.1 ServerHandlerProcessor . 105
A.3.1.2 GroupServerDatabase . 106

A.3.2 Overlay Nodes Interfaces . 110
A.3.2.1 OverlayProcessor . 110
A.3.2.2 HandlerProcessor . 111

A.3.3 Simulator Interfaces . 112
A.3.3.1 SimulatorDatabase . 112

A.4 Application-Level Layer . 113
A.4.1 Group Server Classes and Interfaces 113

A.4.1.1 GroupsCreator . 113

viii CONTENTS

A.4.1.2 GroupServer . 113
A.4.2 Overlay Nodes Classes and Interfaces 114

A.4.2.1 ClientOverlay . 114
A.4.2.2 GetPosition . 116

A.4.3 Simulator Classes . 116
A.4.3.1 SimulatorProcessor . 116

A.5 Default Implementation Classes . 117
A.5.1 Group Server Classes . 117

A.5.1.1 RoadGroups . 117
A.5.1.2 SecondTestScenarioGroups 118
A.5.1.3 DefaultServerHandlerProcessor 119

A.5.2 Overlay Nodes Classes . 120
A.5.2.1 GetPositionFromSimulator 120
A.5.2.2 OverlayUtil . 122
A.5.2.3 DefaultOverlayProcessor 126
A.5.2.4 DefaultHandlerProcessor 131
A.5.2.5 TestOverlayUtil . 134
A.5.2.6 TestOverlayProcessor . 136
A.5.2.7 TestHandlerProcessor . 139

A.5.3 Simulator Classes . 144
A.5.3.1 ServerDatabaseTextFile . 144

References 151

List of Figures

2.1 Simplified Top Level Logical Architecture [1] 7
2.2 Architecture Systems and Subsystems [1] 7
2.3 Centralized Topology . 9
2.4 Ring Topology . 9
2.5 Hierarchical Topology . 10
2.6 Decentralized Topology . 10
2.7 P2P Overlay Architecture [2] . 11
2.8 DHT in Structured P2P Overlay [2] . 12
2.9 TTL Scopped Flooding in Gnutella . 17
2.10 PlanetSim’s Architecture Layer Design [3] 22
2.11 Modular Architecture of OverSim [4] . 23

3.1 Network Communication Between Nodes . 26
3.2 Framework Elements . 26
3.3 Framework Layers . 27
3.4 Overlay Network Model . 30
3.5 Requests from a Node to the Group Server 31
3.6 Request from a Node to the Simulator . 33
3.7 Node Client Network Communications Architecture 36
3.8 Node Acting as Server . 36
3.9 Group Server HTTP Server . 37
3.10 Simulator HTTP Server . 38
3.11 Node-Simulator Connection . 42
3.12 Overlay Node Application-Level . 43
3.13 Group Server Application-Level . 45

4.1 Road Groups . 48
4.2 Centralized Topology with Four Nodes . 51
4.3 Road Group . 61
4.4 Crossing Groups . 67
4.5 Nodes’ Initial Position in the Groups . 68
4.6 Road Group . 78
4.7 Example Network Topology with Six Nodes 79

ix

x LIST OF FIGURES

List of Tables

2.1 User Services . 6
2.2 Operations of Each Service . 12
2.3 Gnutella Protocol Messages (Bye excluded) 17

4.1 First Test Scenario Simulation Data . 62
4.2 Second Test Scenario Simulation Data . 69

xi

xii LIST OF TABLES

Chapter 1

Introduction

1.1 Context

An Intelligent Transportation System (ITS) is a system that aims to improve trans-
portation safety and mobility and to enhance productivity through the use of advanced
communications technologies. ITS covers a wide range of wired and wireless commu-
nications and electronics technologies. When these technologies are integrated into the
transportation system’s infrastructure, and into vehicles themselves, they help preventing
congestion, improving safety, and enhancing productivity.

In ITS, communication and sensor technologies are used to help improve transportation
conditions e.g. in heavy traffic freeways. Given for example GPS receivers, wireless com-
munications and overlay networks may be applied in ITS and help improve transportation
conditions. ITS uses sensor technologies such as road sensors, radars, and traffic monitor-
ing and information systems.

An overlay network is a computer network built on top of another network. Nodes in
the overlay can be thought of as being connected by virtual links or tunnels. Each of these
links corresponds to a path possibly through different physical links in the underlying
network. Overlay packets are exposed only at tunnel endpoints. Overlays may thus
support different routing and addressing protocols from the base network.

A relevant example of a kind of overlay network is P2P [2]. Most P2P networks are
overlay networks over IP, the Internet Protocol. A P2P overlay network can be of two
types: structured and unstructured. Structured P2P networks are overlay networks based
on Distributed Hash Tables (DHT) and unique keys, where nodes (also called peers) are
placed in predefined locations. In unstructured P2P networks, peers are placed without
knowledge about the network topology. Typically, this means that peers need to flood
the network with queries to know about other peers. Overlay networks can also support
geographic routing [5, 6, 7] between peers. This means that data is forwarded based on a
geographical destination instead of e.g. an IP address.

1

2 Introduction

1.2 Goals

The main goal of this project is to create a framework that enables developers and
researchers to implement overlay networks over IP for intelligent transportation systems
(ITS) [8] where the mobile nodes position themselves in the overlay network based on
vehicle locations and groups of vehicles using GPS or traffic simulation data. The created
overlay networks through the framework may take advantage of access network technolo-
gies such as wireless networks 802.11, ad-hoc networks and third generation mobile radio
networks [9].

In particular the framework would allow users to:

• Create different types of vehicle groupings defined by the user e.g. vehicles with the
same speed, within a range of 1Km. In order to create groups of vehicles in the
overlay networks, models of traffic flows [10, 8] must be understood.

• Provide means to develop a mechanism for creating and establishing overlay networks
based on GPS localization [5, 6, 7]. The framework should enable the use of different
overlay network topologies defined by the user e.g. centralized topology.

• Use the previous mechanism to support updating a node in an overlay network. We
expect this kind of network will be very volatile and capable of changing the entire
network with minimal delay. This is needed because vehicles travel at different
speeds and directions.

• The framework should also support exchanging ITS related messages between nodes
e.g. related to road safety such as sudden braking or crashes.

• Validate the developed solution with a help of traffic simulation data.

1.3 Structure

Chapter two is the Related Work and it contains a state-of-art study in the following
fields of research: Intelligent Transportation Systems (ITS), Overlay Networks, Traffic
Algorithms and Simulators and Software Development Frameworks. This study provides
a background for the main subjects of this thesis, helping in the development of our
framework.

In chapter three we present our solution, an ITS Overlay Framework. We describe
its elements: the Overlay, the Group Server and the Simulator. We also present and
explain the framework’s architecture in a layer scheme with three layers: the Network
Communications Layer, the Management Layer and the Application-Level Layer.

The next chapter, chapter four, is where we present our experiments and tests of the
framework. We begin to present the default implementations to use with the framework
and how to write an application (Overlay Node Client, Group Server or Simulator) using

1.3 Structure 3

the framework. We also present three test scenarios using the framework that provide
relevant results for the framework evaluation. And we have a final analysis on what the
framework supports and does not.

The final chapter presents the final conclusions of this thesis and future work.

4 Introduction

Chapter 2

Related Work

2.1 Intelligent Transportation System (ITS)

An Intelligent Transportation System (ITS) aims to improve transportation safety
and mobility and to enhance productivity through the use of advanced technologies [11].
According to the Research and Innovative Technology Administration (RITA), ITS have
sixteen types of technology based systems which are divided into two types of systems:
intelligent infrastructure systems and intelligent vehicle systems.

2.1.1 Technologies Used in ITS

These systems are supported by numerous technologies (e.g. electronics technologies,
communication technologies, sensor technologies).

The impact of electronics technologies [12] on the automobile industry has grown over
the years. Microelectronics can be applied in ITS as it contributes significantly to the
performance, efficiency and safety of automobiles and helps improving traffic control. An
important example of the use of this kind of technologies in ITS is the vehicle location
and navigation systems such as GPS systems that make use of the newest electronics
technologies in order to be more efficient.

There are also numerous sensor technologies that can be used in an ITS such as road
sensors and radars in order to monitor the traffic. Inter-vehicle range detection has become
one of the key methods to avoid collisions and ensure safety to the vehicles. Therefore,
automotive radar is expected to be a key technology in ensuring driving safety in the
transportation systems. One example of this type of technologies is a Chaos Radar for
Collision Detection and Vehicular Ranging [13].

ITS can take advantage of various network technologies. A relevant network technology
for this purpose is the third generation mobile radio network [9]. The research in the field
of communications for ITS presents third generation mobile radio networks in the possible
provision of services for ITS. Mobile phone location determination is being studied [14] as
a complement to other location-determination systems.

5

6 Related Work

User Services Bundle User Services
Travel and Transportation Management En-Route Driver Information

Route Guidance
Traveler Services Information

Traffic Control
Incident Management

Emissions Testing and Mitigation
Demand Management and Operations

Pre-trip Travel Information
Ride Matching and Reservation

Highway Rail Intersection
Public Transportation Operations Public Transportation Management

En-Route Transit Information
Personalized Public Transit

Public Travel Security
Electronic Payment Electronic Payment Services

Commercial Vehicle Operations Commercial Vehicle Electronic Clearance
Automated Roadside Safety Inspection

On-board Safety Monitoring
Commercial Vehicle Administration Processes

Hazardous Materials Incident Response
Freight Mobility

Emergency Management Emergency Notification and Personal Security
Emergency Vehicle Management

Advanced Vehicle Control and Safety Systems Longitudinal Collision Avoidance
Lateral Collision Avoidance

Intersection Collision Avoidance
Vision Enhancement for Crash Avoidance

Safety Readiness
Pre-Crash Restraint Deployment

Automated Highway System
Information Management Archived Data

Table 2.1: User Services

2.1.2 ITS User Services

ITS technologies can be used in various interrelated user services for applications to
solving transportation problems. According to ITS Executive Summaries prepared by
Lockheed Martin Federal Systems, Odetics Intelligent Transportation Systems Division
[1], to date, thirty-one user services have been identified. This list of user services is not
final. The user services can be inserted into seven categories as shown in Table 2.1.

2.1.3 ITS Architecture

ITS bring a great variety of options regarding transportation needs. In order to invest
resources to develop system solutions that are compatible worldwide, a common ITS archi-
tecture structure should provide overall guidance to ensure system, product, and service
compatibility/interoperability. To this purpose the U.S. Department of Transportation
presents a National ITS Architecture [15, 1].

The National ITS Architecture defines a framework in which multiple design ap-
proaches can be developed, each one to specifically meet the individual needs of the user,
while maintaining the benefits of a common architecture. The architecture defines the
functions (e.g. gather traffic information or request a route) that must be used in order

2.1 Intelligent Transportation System (ITS) 7

Figure 2.1: Simplified Top Level Logical Architecture [1]

Figure 2.2: Architecture Systems and Subsystems [1]

8 Related Work

to implement a user service, the subsystems where these functions reside (e.g. roadside
or vehicles), the interfaces/information flows between the physical subsystems and the
communications requirements for the information flows (e.g. wired or wireless). It also
identifies and specifies product standards and the requirements needed in order to support
national interoperability. A simplified top level logical architecture and the architecture
systems and subsystems of the National ITS Architecture are represented in Figure 2.1
and Figure 2.2.

Besides the American National ITS Architecture there are also some other relevant
ITS frameworks such as the European ITS Framework KAREN or FRAME [16] or even
the iTransIT ITS Framework [17].

2.1.4 Security in ITS

Since ITS is based on information technologies and encompasses a wide range of in-
formation (e.g. traffic control, safety, financial, and personal), it is necessary to guaranty
information security against various attacks.

According to the results from an information security analysis that was based on the
National ITS Architecture [18], information security requirements were not thoroughly
considered in the National ITS Architecture. Currently there is neither a Security Ar-
chitecture nor a Security Policy for ITS. It also refers that ITS designs should include
measures to protect against a wide range of security threats and should contain security
services and infrastructures integrated into the overall system design to provide adequate
security.

2.2 Overlay Networks

Widely-distributed systems need to track its nodes and be able to send messages
among those nodes. This capability is often called an overlay network [19], because it
provides an application with customized network functionality that runs as layer over the
IP networking. So an overlay network is a virtual network formed by nodes cooperating
between themselves that share the same underlying network (IP). The overlay network
can have a completely different topology and different protocols for naming and routing.

Overlay networks are widely used and maybe the most relevant example of this kind of
networks are Peer-to-Peer (P2P) network overlays as they provide services for large-scale
data sharing, content distribution and application-level multicast applications.

2.2.1 Distributed Systems Topologies

The development of peer-to-peer overlay networks has renewed interest in decentralized
systems [20, 21]. The Internet itself is the largest decentralized system in the world. But
ironically in the 1990s many systems built on the Internet were completely centralized.

2.2 Overlay Networks 9

The growth of the Web meant most systems were single web servers running in expensive
facilities. A topology of a distributed system is how the different nodes in the system
organize themselves. There are numerous topologies for distributed systems. The basic
topologies used on the Internet include: centralized, decentralized, hierarchical and ring
systems, and combinations of these ones creating hybrid systems. In order to better
understand overlay networks topologies we describe some topologies of distributed systems:

2.2.1.1 Centralized Topology

Centralized systems are the most common form of topology. They can be typically seen
as the client/server model used by databases, web servers, and other simple distributed
systems (see Figure 2.3). There is one intelligent terminal that contains all information
and function designated as server with many clients connecting directly to the server to
send and receive information.

Figure 2.3: Centralized Topology

2.2.1.2 Ring Topology

When there are many clients, a single centralized server cannot handle all the clients, so
a frequent solution is to use a group of machines arranged in a ring to act as a distributed
server (see Figure 2.4). This is typically done to provide failover and load-balancing
capabilities to the distributed server.

Figure 2.4: Ring Topology

10 Related Work

2.2.1.3 Hierarchical Topology

Hierarchical systems have long been used on the Internet, but in practice are often
overlooked as a distinct distributed systems topology (see Figure 2.5). For example, the
best known hierarchical system on the Internet is the Domain Name Service (DNS), where
authority is delegated from the root name-servers to the server for the registered name
and often down to third-level servers. The Network Time Protocol (NTP) uses another
hierarchical system.

Figure 2.5: Hierarchical Topology

2.2.1.4 Decentralized Topology

The final basic topology used in the Internet we consider is that of fully decentralized
systems [21, 22], where all peers communicate symmetrically and have equal roles (see
Figure 2.6). Many file-sharing systems are designed to be decentralized, such as Gnutella
[23, 24] or Freenet [25]. The Internet routing architecture itself is largely decentralized,
with the Border Gateway Protocol used to manage the peering links between various
autonomous systems.

Figure 2.6: Decentralized Topology

2.2.1.5 Hybrid Topology

Distributed systems can have a more complex topology than the basic ones referred
above. These systems often combine several basic topologies into one system, creating a

2.2 Overlay Networks 11

hybrid topology. In these system nodes usually have multiple roles e.g. a node can be
part of an hierarchy in a part of the system while having a centralized interaction with
another part of the system.

2.2.2 Peer-to-Peer Overlay Networks

P2P overlay networks can be seen as fully-distributed, cooperative network design with
peers building a self-organizing system. With the evolution of Internet, P2P has taken
an important part in data sharing and content distribution. Because of this crescent use
of P2P networks and the number of P2P networks schemes is also increasing [2]. In Fig-

Figure 2.7: P2P Overlay Architecture [2]

ure 2.7 we can see an abstract P2P overlay architecture, illustrating the components in
the overlay communications framework. In the lower layer, the Network Communications
layer, the networks characteristics of machines connected over the Internet are described.
The Overlay Nodes Management layer takes care of the management of peers, which in-
clude routing and addressing of peers. The security and reliability of the overlay network
is covered by the Features Management layer which is responsible for assuring the ro-
bustness of P2P systems. The underlying P2P infrastructure and the application-specific
components are supported by the Services Specific layer through scheduling of parallel and
computation-intensive tasks, content and file management. On the Application-Level layer
of P2P overlay networks we can find applications, tools and services that are implemented
above the underlying P2P overlay network infrastructure.

Based on this architecture we can distinct two classes of P2P networks who have
different characteristics: Structured and Unstructured P2P networks.

12 Related Work

DHT DOLR CAST
put (key, data) publish (objectID) join (groupID)
remove (key) unpublish (objectID) leave (groupID)

value = get (key) sendToObj (msg, objectID, [n]) multicast (msg, groupID)
anycast (msg, groupID)

Table 2.2: Operations of Each Service

2.2.3 Structured P2P Overlay Networks

The network topology of structured P2P overlay networks [2, 26] is firmly controlled
and content is placed at specific locations instead of random peers thus enabling more
efficient queries. Structured overlays use services such as distributed hash tables, scalable
group multicast and anycast, and decentralized object location and routing [21]. These
services sustain new classes of highly scalable, resilient, distributed applications, includ-
ing cooperative archival storage, cooperative content distribution and messaging. The
operations of each service are resumed in Table 2.2.

The Distributed Hash Table (DHT) service provides the same functionality as the
traditional hashtable, by storing the mapping between a key and a value. On DHT-based
systems uniform random NodeIDs are assigned to the set of peers into a large space of
identifiers. From the same identifier space, unique identifiers called keys are assigned to
data objects (values). The overlay network protocol is in charge of map the keys to a
unique live peer in the overlay network. The interface of DHT implements a simple store
and retrieve functionality of key, value pairs, where the value is always stored at the live
overlay node with its key mapped by the overlay network protocol. These values can be
of any type. This behavior is illustrated in Figure 2.8. Using a key, a store operation
(put(key, value)) and a retrieval operation (value = get(key)) can be invoked to store and
get the data object corresponding to the key involving routing requests to the peer with
the assign key.

There are different DHT-based systems with different organization schemes for the data
objects and its key space and routing strategies but in theory, DHT-based systems can

Figure 2.8: DHT in Structured P2P Overlay [2]

2.2 Overlay Networks 13

assure that any data object (value) can be found by exchanging a small number messages:
O(logN) messages on average, where N is the number of nodes in the overlay.

The Decentralized Object Location and Routing (DOLR) provides a decentralized di-
rectory service where each endpoint (object) has an objectID and may be placed anywhere
within the system. The presence of endpoints is announced by applications, by publishing
their locations. This way, a client message with a particular objected as the destination
will be delivered to a near endpoint with this name. The maintenance of the distributed
directory during changes in the underlying nodes or links is part of this process.

The group anycast and multicast (CAST) service provides scalable group communi-
cation and coordination. The nodes may join and leave a group, multicast messages to
the group, or anycast a message to a member of the group. The group is represented as a
tree and because of that membership management is decentralized. Therefore CAST can
support large and highly dynamic groups. Moreover, if the overlay network protocol is
proximity aware, then multicast is efficient and anycast messages are delivered to a group
member near the anycast sender.

The DOLR and CAST abstractions are similar in some aspects: both of them maintain
sets of decentralized endpoints by their proximity in the network, using a tree of routes
from the endpoints to a common root associated with the set of endpoints. However, while
DOLR is more focused towards object location, CAST is more associated with group
communication. Although they use the same basic mechanism their implementations
combine different policies. On the other hand, DHT provides a very different service as it
provides a scalable repository for key, value pairs.

Now we will review some of the most significant Structured P2P overlay networks
(CAN [27], Chord [28], Pastry [20] and Tapestry [29]) and although they do not make up
an exhaustive list of structured overlays, they represent a cross-section of existing systems.
All of the reviewed systems use DHT functionality on an Internet-like scale as they are
largely decentralized distributed systems.

1. CAN

CAN [27] is a Structured P2P overlay network designed to be scalable, self-organizing
and fault-tolerant. The overlay system architecture of CAN is a virtual multi-
dimensional ID coordinate space. The coordinate space entirely logical as it is dy-
namically partitioned among a N number of peers in the system. This way each pear
possesses its individual zone within the coordinate space. CAN adopted a lookup
query protocol that uses key, value pairs to map a point P in the coordinate space
using uniform hash function. This system has two parameters: N the number of
peers in the network and d number of dimensions. The CAN has a routing perfor-
mance of O(d ∗ N1/d) and a routing state of 2 ∗ d. When a peer joins the system,
it needs its own zone in the coordinate space. This is resolved by splitting existing

14 Related Work

peer’s zone in half. When a peer leaves the network, an instantaneous takeover al-
gorithm ensures that a neighbor of the failed peer takes over its zone and starts a
takeover timer. The neighbor set of the peer that takes over the zone is updated
by eliminating the peers that are no longer its neighbors. Then every peer in the
system sends soft-state updates to guarantee that all of their neighbors will learn
about the change and update their own neighbor sets. The number of neighbors a
peer maintains depends only on the number of dimensions of the coordinate space
(i.e. 2 ∗ d) and it is completely independent of the total number of peers in the
system. When subjected to faults of peers the system will not cause network-wide
failure since multiple peers are responsible for each data item. On failure application
retries.

2. Chord

Chord [28] assigns keys to its peers using consistent hashing [30]. Chord’s architec-
ture design uses uni-directional and circular NodeID spaces. Hash functions assign
peers and data-keys an m-bit identifier chosen by hashing the peer’s IP address,
while a key identifier (k) is produced by hashing the data key. The number of bits of
the identifier must be large enough to guarantee that the probability of keys hashing
to the same identifier is insignificant. The identifiers are ordered on an identifier
circle modulo 2m. The first peer whose identifier is equal to or follows k in the
identifier space is assigned with key k thus been called the successor peer of key
k, denoted by successor(k). The successor(k) is the first peer clockwise from k in
the identifier circle. This identifier circle is named Chord ring. When peer n leaves
the Chord system, all of its assigned keys are reassigned to peer n’s successor. This
way, peers join and leave the system with (logN)2 performance. The lookup query
protocol adapted by this system consists of matching a key with a NodeID. Given
the N the total number of peers in the system, the routing performance is only
O(logN). This may be efficient but the performance degrades as the routing state
information of each peer gets out-of-date. The routing state and scalability of this
overlay system is logN . Like in CAN, failure of peers will not cause network-wide
failure and on failures, application retries. Replicate data on multiple consecutive
peers.

3. Tapestry

Both Pastry and Tapestry [29] employ decentralized randomness to achieve both load
distribution and routing locality. The main difference between the two systems is the
management of network locality and data object replication. Tapestry’s architecture
uses a Plaxton-style global mesh network [31] where peers can take on the roles of
servers (where data objects are stored), router (forward messages) and clients (make
requests). Each peer has local routing maps to incrementally route overlay messages
to the destination ID digit by digit. These local routing maps have multiple levels

2.2 Overlay Networks 15

where each of them represents a matching suffix up to a digit position in the ID

space. When a message reaches peer n, this peer shares a suffix of at least length
n with the destination ID. In order to locate the next router, the next level map
(n + 1) is examined to locate the entry match of the value of the next digit in
the destination ID. In a system with N peers using NodeIDs of base B, using
this routing method guarantees that any existing peer in the system can be located
within at most logBN logical hops. ”Since the peer’s local routing map assumes
that the preceding digits all match the current peer’s suffix, the peer needs only to
keep a small constant size (B) entry at each route level, yielding a routing map of
fixed constant size B ∗ logBN” [2]. Like in the other systems the failure of peers
will not cause network-wide failure. To assure the robustness of the system when
subjected to faults, the overlay replicates data across multiple peers and keeps track
of multiple paths to each peer.

4. Pastry

The Pastry’s [20] architecture is very similar to Taspertry’s architecture since it
is based on Plaxton-style global mesh network. It makes use of Plaxton-like prefix
routing, to build self-organizing decentralized overlay network, where each peer redi-
rects client requests and interacts with local instances of one or more application. In
Pastry each peer is assigned with a NodeID (128− bit peer identifier). This NodeID
is assign randomly to a peer when it joins the system and is used to locate the peer
in a circular NodeID space which goes from 0 to 2128−1. In a network with N peers,
Pastry routes to the numerically closest peer to a given key in less than logBN steps
under normal operation (where B = 2b is a configuration parameter with typical
value of b = 4). The keys and NodeIDs are considered a sequence of digits with
base B. Messages are routed to the peer whose NodeID is numerically closest to the
given key. A message is forwarded to a peer whose NodeID shares a prefix with the
key. This prefix has to be a least one digit longer than the prefix the key shares with
the current peer NodeID. A Pastry peer maintains a routing table, a neighborhood
set and a leaf set. The peer routing table has logBN rows each row with B − 1
entries. Each of these entries contains the IP address of peers whose NodeID have
the appropriate prefix and it is chosen based on close proximity metric. ”The choice
of b involves a trade-off between the size of the populated portion of the routing
table (approx:(logBN) ∗ (B − 1) entries) and maximum number of hops required to
route between any pair of peers (logBN)” [2]. As for the failures and the robustness
of the system, Pastry has identical mechanisms to Tapestry.

2.2.4 Unstructured P2P Overlay Networks

Before the appearing of structured peer-to-peer (P2P) overlay networks, some appli-
cations used a cooperative application model to allow participants to access each others’

16 Related Work

resources for mutual benefit. This type of systems was designated as Unstructured P2P
overlay networks and was popularized by file-sharing applications such as Gnutella. An
Unstructured P2P system is a system or protocol where the nodes perform actions (such
as routing messages) for each other, where no rules exist to define or constrain connec-
tivity between nodes. Messages between endpoints can take arbitrary paths through the
system. Because there is no structure in these types of overlay networks, in order to main-
tain full connectivity between nodes it generally means that each node must maintain
routing information for all possible destinations in the network. The fact that this routing
information grows linearly with the size of the network is clearly a factor in limiting the
scale of these networks.

In Unstructured P2P overlay networks, the overlay network arrange peers in a random
graph in flat or hierarchical manners and normally use flooding on the graph to query
content stored by overlay peers. Each peer that receives a query will evaluate it locally
on its own content, and will support complex queries. Queries for content that are not
widely spread between the peers must be sent to a large fraction of peers and there
is no combination between topology and data items’ location thus turning this system
inefficient. Now we shall review some of the more influential Unstructured P2P overlay
networks: Gnutella [23, 24, 22] and Freenet [25, 22].

1. Gnutella

Gnutella is a decentralized peer-to-peer system, consisting of hosts connected to one
another over TCP/IP running software that implements the Gnutella protocol. This
connection of nodes forms a network of computers exchanging Gnutella messages:
queries, replies to queries, and other control messages used to discover nodes flooding
the network with messages (see Figure 2.9). This P2P overlay network allows its
nodes to share resources between themselves. The most recent implementations are
almost exclusively focused on data files so that any host can offer local files to other
hosts to download. The nodes of the network are controlled by users running the
application software. The users can participate in the network by: specifying a list
of local files to share within the network, searching for files shared by other users in
the network and downloading files shared by other users.

When a node wants to participate in the network it must join the Gnutella network
by connecting with an existing node in the network. In the current implementation
of Gnutella, new nodes are allowed to easily participate in the network just by con-
necting to a random node’s IP address provided via DNS or script running on a web
site by mechanisms known as ”host caches”. In order to reach more total Gnutella
nodes a node that joins the network typically connects to multiple existing nodes in
the Gnutella network. Once a node has connected to the network, it communicates
with its neighboring nodes using Gnutella protocol messages and accepts incoming

2.2 Overlay Networks 17

Figure 2.9: TTL Scopped Flooding in Gnutella

connections from new nodes that wish to join the network. The main Gnutella
protocol messages are described in the table 2.3.

2. Freenet

Freenet and Gnutella have a very similar topology but in Freenet the main purpose
is to build a secure global information storage system. Existing nodes in Freenet
networks route messages through the network and also store some data that do
not belong to them thus creating a very large, distributed file storage system with
plenty of redundancy. Since many nodes share the same files, the network is quite
fault-tolerant. When a new node is connecting to the network it needs to know
about existing nodes in order to successfully connect. Clients must find the first
node on their own using a host cache or knowledge from a friend, because there is
no central authority. The user with the Freenet software can participate with the
network by: specifying disk storage space that will be used to store some network
data that do not belong to them, sending an ”insert” message to add new files to the
network and sending a ”request” message with a key to get a file from the network.
These steps are quite different from the steps to participate in a Gnutella network,
because a user cannot access any of the encrypted data stored locally nor can request
files from specific nodes. When a user needs to request content from the network

Type Description
Ping A request for information about other node(s)
Pong A reply carrying information about a node (e.g. number of files shared)
Push A mechanism that allows a firewalled node to share data
Query A request for a resource (e.g. searching for a file)

Query Hit A response identifying an available resource (e.g. a matching file)

Table 2.3: Gnutella Protocol Messages (Bye excluded)

18 Related Work

they must send a request to the network and wait until a node returns the desired
contents. Additionally users cannot search the network for arbitrary files; the users
must already know the key that describes the desired file.

Like it was said before the main purpose of the Freenet architecture is to create a
secure network. This can be done because each node in the network only knows
its closest neighbors. This way it is impossible for a node to discover in which
node in all the network the desired data is stored. In this respect, the network is
very resistant to tampering and censorship. For each file in the network a unique
identifying hash can be generated, but the hash itself do not allow to determine what
data it represents. Since nodes route and store these hashes, they do not know the
data content represented by the hashes. Furthermore, each node has stored data
encrypted with a key that is not available to them. Thus, each node does not know
the nature of the content they are storing for the network.

2.2.5 Geographic Overlay Networks

While routing and addressing are made with keys based on a Distributed Hash Table
(DTH) in the Structured P2P overlay networks and made by flooding the network with
queries in the Unstructured P2P overlay networks, geographic overlay networks’ (GOnet)
routing and addressing is made based on the physical location of an host [5]. Therefore a
GOnet would enable location-based, proximity-based and special application classes. In a
GONet over IP routing and addressing can be made using GPS data [6, 7].

The location-based applications depend of the host location, e.g., reading only sensors
at particular map positions and tracking. Proximity-based applications depend upon
discovery of nearby hosts, e.g., to find resources such as printers.

A GONet not only provides support for geographic addressing and routing but also
enables geographic overlays to be incrementally deployed on the current Internet with
routing tables that are tightly delimited and small. The ability to recursively build overlays
on overlays allows creation of a routing hierarchy in a GONet to achieve typical hop counts
that are log proportional to network size.

The nodes in GONet depend on the base network for link connectivity. For this
reason a path to a geographically nearby neighbor may take a large number of hops in the
underlying network thus lowering the efficiency. In spite of the low efficiency, the desired
geographic network topography is produced, which allows unicast geographic routing and
spatialcasting.

The GONet introduces the use of tunnels to simplify the methods to discover physically
close neighbors. This way source routes need not to be discovered and only edge endpoints
need to be known thus maintaining the route between endpoints is responsibility of the
underlying network.

2.3 Algorithms and Simulation of Traffic Flow 19

2.2.6 Applications and Tools

The following applications can be used for designing and deploying overlay networks,
therefore we can take advantage of these applications in the development of an overlay.

2.2.6.1 X-BONE Overlay System

The X-Bone [32] provides a web-based GUI and back-end control software to deploy
Internet overlays. It is a free and open source software implemented in Perl available as a
FreeBSD port (3.3+, 4.x+), a Linux RedHat RPM (6.x+), and as a source tar file. It can
be used for networking research to test protocols and apps on new topologies.

The X-Bone is known as a general mechanism for network virtualization. An X-Bone
overlay includes both end hosts and routers in the overlay, and includes support for overlays
at all points in the virtual network.

2.2.6.2 P2: Declarative Network

P2 [33] is a system used to specify and execute overlay networks in a highly compact
and reusable form making use of a high-level declarative language. It can automatically
compile high-level specifications to a dataflow-oriented runtime system, which can be used
itself by expert programmers to specify efficient overlays.

2.3 Algorithms and Simulation of Traffic Flow

”Traffic-flow characteristics such as flow, density, and space mean speed (SMS) are
critical to Intelligent Transportation Systems (ITS)” [10]. Therefore it is necessary to
identify traffic flow characteristics for application in the ITS. Such characteristics can be
determined by direct and indirect methods [10]. Since in this project there is a need to
identify vehicles for their GPS data (location, velocity and direction) traffic simulation
is needed to test the system. In order to define how vehicles can be grouped results of
simulations of freeway and metropolitan traffic flow are important [8].

The use of traffic simulation can bring benefits e.g. short term forecasting (to de-
termine actions following an incident that changes the roadway), anticipatory guidance
for Advanced Traveler Information Systems (ATIS) to help drivers make better decisions,
determine how to improve a transportation infrastructure, and planning for road blocks,
closures and construction sites.

There are several modeling approaches (e.g. microscopic, macroscopic and mesoscopic
simulation models) that cover different situations (e.g. freeways, intersections) each one
with a different level of detail [34].

Macroscopic traffic simulation also called continuous flow simulation is mainly used in
traffic flow analysis. In the macroscopic model, observed statistical patterns of traffic flow
are explicitly imposed collectively on the vehicles in the simulation. Using this system level

20 Related Work

approach to govern the behavior of individual element yields somewhat limited results as
such simulations can only simulate what is already known.

On the other hand, on microscopic traffic simulations [8], every vehicle is simulated. In
this kind of simulation models, vehicle movements are characterized by three behaviors:
accelerations, braking decelerations and lane changes. In order to achieve accuracy in
modeling the traffic, many factors must be considered leading to a simulation model with
a large number of parameters (50 parameter models are common).

Mesoscopic models are a more recent type of simulation models that try to combine the
advantages of microsimulation (detail) and macrosimulation (scability to larger networks).
These models normally describe the traffic entities at a high level of detail, but their
behavior and interactions are described at a lower level of detail.

2.3.1 Traffic Simulators

2.3.1.1 Microsimulation of road traffic

This is an online microscopic simulator of road traffic developed in JAVA [35] with its
source code available. This simulator uses two traffic models: the Intelligent-Driver Model
(IDM) to simulate the longitudinal dynamics, i.e., accelerations and braking decelerations
of the drivers and the Lane-Change Model MOBIL where lane change takes place if po-
tential new target lane is more attractive, i.e., the ”incentive criterion” is satisfied and the
change can be performed safely, i.e., the ”safety criterion” is satisfied.

2.3.1.2 FreeSim: A Free Real-Time Freeway Traffic Simulator

FreeSim [36] is a fully-customizable macroscopic and microscopic free-flow traffic sim-
ulator that allows multiple freeway systems to be easily represented and loaded into the
simulator and has its source code available for download.

In FreeSim the vehicles can communicate with the system that monitor the traffic on
the freeways, which makes FreeSim ideal for Intelligent Transportation System simulation.

2.3.1.3 Simetron: Metropolitan Traffic Simulator

Simetron [37] is an open-source traffic simulator software for metropolitan networks. It
provides an open plug-in framework that allows researchers and practitioners to integrate
and test their own simulation models.

2.4 Software Development Frameworks

A software development framework is a re-usable design that provides tools to develop
a customized application. A software development framework aids software developers by
containing support programs, code libraries, or other software to help solving problems
for a given domain and provides a simple API.

2.4 Software Development Frameworks 21

Frameworks are designed in order to facilitate software development by providing low
level details and resources for a software domain. This way, software developers can
spend more time on meeting the software requirements and specifications rather than
caring about the low level code behind a software system, thus increasing productivity in
software development.

2.4.1 PlanetSim

PlanetSim [3] is a new object oriented simulation / experimentation framework for
large scale overlay networks and services with three main contributions:

• provides a unifying approach to simulation / experimentation that eases the transi-
tion from simulation to network testbeds such as PlanetLab;

• distinguishes clearly between the implementation of overlay algorithms like Chord
and Pastry, and the applications and services built on top of them (DHT, CAST,
DOLR, etc.);

• offers a layered and modular architecture with well defined hotspots documented
using classical design patterns.

PlanetSim has been implemented in the Java language to reduce the learning curve
of the framework. To validate the utility of the framework, it comes with two imple-
mented overlays (Chord and Symphony) and a various services like CAST, DHT, and
DOLR. PlanetSim reproduces the measures of these environments and is also efficient in
its network implementation.

PlanetSim Architecture Layered Design

PlanetSim has a well-structured and modular architecture and makes use of the Common
API for Structured Overlays [26]. Its architecture is divided in three main extension layers
constructed one atop another: the Application Layer, the Overlay Layer and the Network
Layer. We can see the architecture layered design in Figure 2.10

So the framework has the following three main extension points (hotspots), one for
each layer:

• Application - The Application code can be used to send or route messages as well
as access underlying node routing state. Any application created at this level can
then be run or tested against any structured overlay in the next layer.

• Node - The Node code allows the development of overlay protocols or algorithms
like Chord. At this level nodes exchange messages using Ids and IP Address plus Id.

• Network - The Network code provides the means to create customized Networks
(RingNetwork, CircularNetwork, RandomNetwork).

22 Related Work

Figure 2.10: PlanetSim’s Architecture Layer Design [3]

Because of this layered approach two main user roles have been identified: the users
interested in overlay services and others focused on overlay infrastructures.

PlanetSim has been used to implement and evaluate overlay networks such as Chord
and Symphony, and overlay services such as Scribe application level multicast, and keyword
query systems over distributed hash tables.

2.4.2 OverSim

OverSim [4] is an open-source flexible overlay network simulation framework that uses
the OMNeT++/OMNEST [38] simulation environment. Oversim includes several models
for structured (e.g. Chord, Kademlia, Pastry) and unstructured (e.g. GIA) P2P protocols.
The implemented protocol models can be used not only for simulation but also as real world
networks.

In order to facilitate the implementation of additional more comparable protocols
OverSim provides common functions like a generic lookup mechanism for structured peer-
to-peer overlay networks.

OverSim Modular Architecture

The OverSim simulation framework was designed as a modular simulation framework
with four modules. An overview of its architecture is illustrated in Figure 2.11.

• Simulation framework OMNeT++

2.4 Software Development Frameworks 23

Figure 2.11: Modular Architecture of OverSim [4]

OverSim uses discrete event simulation (DES) to simulate exchange and processing of
network messages making use of the open source simulation framework OMNeT++
[4], which is free for non-profit use and highly modular. The OMNeT++ framework
comes with a built-in graphical user interface (GUI) that displays network topologies,
nodes and messages providing some debug functions that allow a deeper inspection
of message contents and node variables.

• Underlying network model

This simulation framework was designed in order to support different kinds of un-
derlying network models. For that reason OverSim has three implemented network
models:

– The Simple network model sends data packets directly from one overlay node
to another by using a global routing table, being the most scalable model.

– The SimpleHost model was implemented in order to reuse overlay protocol
implementations without code modifications in real networks. In this model
each OverSim instance emulates only a single host. These OverSim instances
can be connected to other instances over existing networks like the Internet.

– The INET underlay model that is derived from the INET framework of OM-
NeT++, which includes simulation models of all network layers from the MAC

24 Related Work

layer to the higher layers. This network model allows the simulation of complete
backbone structures.

• Overlay protocols

The framework comes with several overlay protocols already implemented. Most of
them are structured peer-to-peer protocols but unstructured peer-to-peer protocols
are available as well. In order to facilitate the implementation of new overlay pro-
tocols this framework provides several functions that many overlay protocol imple-
mentations have in common. The communication between overlay and application
makes use of the Common API for Structured Overlays [26].Overlay protocols that
want to use this API have to provide at least a key-based routing interface (KBR)
to the application and the overlay protocols that use a distributed hash table (DHT)
can offer this service to the application using the same interface.

• Applications

The use of the Common API design allows the evaluation of a wide range of different
applications that rely on key-based routing with exchangeable overlays.

OverSim has been able to run large-scale simulations of overlay networks with up to
100000 nodes with two different underlying network models (Simple and INET).

Chapter 3

ITS Overlay Framework

3.1 Overview

The ITS Overlay Framework Architecture is basically constituted by three main
elements:

• Overlay

The Overlay element is where the nodes connect themselves in different groups send-
ing messages to each other in their own group. This block contains the ITS overlay
nodes.

• Group Server

In the Group Server all the possible groups are defined. The Groups Server’s function
is to assign groups and provide group information to nodes when they want to
enter an overlay and when they move (change their position) while connected to the
overlay.

• Simulator

The Simulator provides the necessary data to the nodes. The position of the nodes
in the overlay is sent to them by the Simulator.

These Framework Elements are further discussed and explained in the next section.
The ITS Overlay Framework Elements (Overlay, Group Server and Simula-

tor) are divided in three fundamental layers:

– Network Communications Layer

– Management Layer

– Application-Level Layer

25

26 ITS Overlay Framework

The Network Communications Layer provides the methods to exchange messages
between the nodes in the same group and also between the Overlay, the Group Server and
the Simulator (see Figures 3.1 and 3.2). As it will be further explained in the Network

Communications Layer, these three blocks exchange requests between themselves using
HTTP protocol thus defining in this layer the URL contexts to which each block responds.

Figure 3.1: Network Communication Between Nodes

Figure 3.2: Framework Elements

The Management Layer provides the methods for establishing an overlay with a de-
termined network model thus determining which requests (using the defined URL contexts
in the Network Communications Layer) and messages are exchanged between nodes
in a group overlay and between the Overlay block and the Group Server and Simulator
blocks.

The Application-Level Layer provides a means to create different group based over-
lays without modifying the network model of the overlay thus providing the methods to
test an overlay network model in different scenarios. All the new classes that are created
to implement a group are encapsulated inside a GroupsCreator object.

This framework is an object oriented framework implemented in JAVA programming
language that provides its classes and interfaces in a layered scheme as we can see in Figure
3.3. For the development of the framework we used the Eclipse Integrated Development
Environment (IDE). Eclipse [39] is an open-source software framework written primarily
in Java. It is an IDE for Java developers, but users can extend its capabilities by installing
plug-ins written for the Eclipse software framework, such as development toolkits for other
programming languages like Python and C/C++.

For the development of the framework’s architecture we consider that the underlying
network for the overlay network will mainly use the 3G communication technology to

3.2 Framework Elements 27

Figure 3.3: Framework Layers

establish connections. We created the network model for the overlay networks based on
this assumption.

3.2 Framework Elements

As said in the Overview the ITS Overlay Framework has three distinct blocks
which will be described in this section:

• Overlay

• Group Server

• Simulator

3.2.1 Overlay

The Overlay is the block of the Framework Architecture where the nodes and the
overlay network model are defined.

In truly decentralized overlay networks (e.g. peer-to-peer networks such as Gnutella
and Freenet), there is no central server. All the nodes on the overlay network act as both
a server and a client. We defined interfaces for implementing simple networking models

28 ITS Overlay Framework

based on this paradigm with the idea that each node can act as both a server and a client.
Therefore a user can develop his own overlay network model using the provided interfaces.

3.2.1.1 Overlay Nodes

A node is characterized by its unique identification number (NodeID) and its position,
speed and direction. The NodeID is an unique number assigned by the Group Server when
a node joins a group. The other data can be either get by a microscopic traffic simulator
or by a GPS.

According to this we have created structure class for the nodes:

• Node ID - An unique serial number to identify the node in the overlay;

• Position in X - An integer with the position of the node in the X axis;

• Position in Y - An integer with the position of the node in the Y axis;

• Speed - An integer with the speed of the node;

• Direction - An integer with the direction of the node;

• Central - An auxiliary boolean variable;

• Node IP - A string with the IP address of the node;

In the implemented examples of overlay networks only the position was used. The
speed and direction implementations are for future work.

So if we want to create a Node object we must specify its NodeID and its position.
The Node class also provides two significant methods:

• void updateNode(int NodeID, int x, int y, String IP) - This method allows a Node
object to have its values updated.

• String toURI() - Method to return a String with the node information to use in an
HTTP request. The returned String has the following format: ”NodeID=int&X=int
&Y=int&IP=String”.

When a node begins its execution it starts an HTTP server that responds to HTTP
requests from other nodes. This way a node acts as both a server and a client since
all nodes can send requests to other nodes. A detailed explanation of this operation is
presented in the Network Communications Layer section.

3.2 Framework Elements 29

3.2.1.2 Operation of an Overlay Node

1. Getting the Position

The position is essential for the nodes to enter the group overlays. To provide the
nodes with their position the interface GetPosition was developed. This interface
fetches pair of position values X and Y to provide them separately to the nodes.
Using this interface the nodes can get their position from various sources like a
traffic simulator or a GPS.

The most important methods of this interface are:

• void fetchXY()

• int getX()

• int getY()

In order to test the framework we developed the GetPositionFromSimulator

class that implements this interface. This class fetches the position values from
the implemented Simulator using HTTP requests. This interface and class will be
further discussed on the Application-Level Layer section.

2. Joining the Overlay

When a node begins executing the first step to enter the overlay is to get their
position. Their position can be get from the GetPosition interface either by a
traffic simulator or by other means like GPS. In the development of the framework
we only used position data given from a simulator. Being given the position, the
node sends a request to enter a group to the Group Server containing the position
in order for the server to identify in which group the node enters. Then the Group

Server assigns an unique ID to the node and returns information about the group
assigned to the node.

When the node knows its group it informs all the other nodes in the same group
overlay that it has joined the group sending a join message that reaches all the nodes
in the group.

3. Sending Messages in the Overlay

While being in the group overlay the node is able to send messages to the nodes in
the same group overlay. The node can send messages to an individual node or send
broadcast messages that reach the entire group overlay network.

4. Node’s Update in the Overlay

While connected to the overlay the node keeps on asking for its position using the
GetPosition interface. Since the node’s position keeps on changing the node must
update its data in the Group Server to guarantee it still is in the same group and

30 ITS Overlay Framework

must also update the group overlay to inform all other nodes of its new position.
Therefore the when the node gets a new position it sends an update node request to
the Group Server and receives information of its actual group if it has not changed
or receives information of its new group otherwise.

If the node stays in the same group it sends an update message to all the other nodes
in the group. If a new group is assigned to the node by the Group Server, the
node sends a message to all nodes in the old group informing that it is leaving the
group. Then it has to send messages all nodes in the new group to inform that it is
joining the group.

5. Leaving the Overlay

When a node wants to leave the overlay it has to request the Group Server to
delete the node information in the server database and then has to send messages
to all nodes in the group informing that it is leaving the group.

3.2.1.3 Overlay Network Model

The ITS Overlay Framework allows the use of different network topologies by imple-
menting two interfaces in the node client application: the OverlayProcessor and the
HandlerProcessor.

These interfaces are based on a network model that uses five distinct functions with
four types of requests, to the five different situations defined before in the operation of the
overlay nodes (see Figure 3.4):

• Join a group (/join);

• Update the node in the group (/update);

• Send a message to an individual node in the group (/sendMsg);

• Send broadcast messages (/sendMsg with destination NodeID as -1);

• Leave the group (/leave);

Figure 3.4: Overlay Network Model

3.2 Framework Elements 31

The OverlayProcessor and the HandlerProcessor interfaces methods and func-
tions are explained in detail in the Management Layer section.

3.2.2 Group Server

The main function of the Group Server is to create the groups with which the nodes
will be assigned and respond to the nodes requests.

There are four basic types of requests from the nodes to the Group Server (see Figure
3.5):

• Add Node(/addnode)

Request from a node to enter an overlay. The node sends its position and is assigned
with an unique ID and a group.

• Update Node (/updatenode)

Request from a node to update its position in the server. Based on the nodes position
the server assigns the same group or a new group to the node.

• Operation (/operation)

Request from a node that asks the server for an operation defined by the user.

• Remove Node (/delnode)

Request from a node when it leaves the overlay network to remove its information
from the server.

Figure 3.5: Requests from a Node to the Group Server

The Group Server starts an HTTP server in order to process the HTTP requests from
the nodes and respond to them. The processing of the requests and format of the responses
are made through the ServerHandlerProcessor interface on the Group Server. This
interface is discussed further in the Management Layer section.

Groups

32 ITS Overlay Framework

Each group has its own identification number (GroupID) and is defined by its borders.
Using the same position scale of X and Y as the nodes each group has a maximum and
minimum value of X and Y. Therefore all the basic groups have rectangular borders.
Although different types of groups such as groups that covers crossings and curves can be
defined by assigning the same GroupID to multiple adjacent basic rectangular groups.

Therefore a group in the Group Server has the following structure class:

• Group ID - A serial number to identify the group;

• GroupNodes - Vector that contains the nodes that are in the group;

• CentralNode - A node in the group chosen by the server that can act as a central
node in an overlay;

• Borders - Contains the maximum and minimum values X and Y for that group.

To create a Group object we must then specify its GroupID and its borders (xmin,
xmax, ymin and ymax variables). A group is assigned to a node when the node’s X and
Y positions are equal or higher to the minimum X and Y values of the group borders
and lower than the maximum X and Y values of the group borders. The nodes added
to the ”GroupNodes” vector are of the Node object described in the Overlay Nodes

paragraph.

The most important methods the Group class provides are:

• void addNode(Node node) - Adds the provided node to the group. If the central
boolean of the node is true then it is also the central node.

• void updateNode(int NodeID, Node newnode) - Method to update the node with
the provided NodeID with the parameters provided in the newnode object.

• String toString() - Builds a string containing the group and its nodes information.

• Node getNodeByID(int NodeID) - Method to get the node in the group with the
provided NodeID.

• Node getLastUpdatedNode() - Method to get the last updated node.

• int getMinNodeID() - Method to get the minimum NodeID value in the group.

• int getMaxNodeID() - Method to get the maximum NodeID value in the group.

In order to create different types of groups the interface GroupsCreator was imple-
mented. This interface is discussed on the Application-Level Layer section.

3.3 Framework Architecture Layer Scheme 33

Figure 3.6: Request from a Node to the Simulator

3.2.3 Simulator

The function of the Simulator is to provide position for the nodes. The Simulator runs
an HTTP server that responds to requests from the nodes. The request is a simple fetch
for the position of the nodes with a determined ID (different from NodeID).

The Simulator responds to the ”/fetch” requests giving the position of the node with
the required ID (see Figure 3.6). The response format was designed in order to inter-
act with the GetPositionFromSimulator class that was implemented in the Overlay

Node. This interaction is discussed in the Management Layer and Application-Level

Layer sections.

3.3 Framework Architecture Layer Scheme

3.3.1 Network Communications Layer

The Network Communications Layer is the lowest layer in the framework architecture.
This layer provides the nodes with the means to connect themselves to other nodes in an
overlay.

3.3.1.1 Overlay

The communication protocol used to connect the nodes in overlays is the HTTP pro-
tocol. A node acts as both HTTP client and HTTP server.

Node HTTP Client

The HTTP requests in a lower level use a class licensed to the Apache Software Founda-
tion (ASF), the ElementalHttpPost class. Using this class we implemented a ”post(URI)”
method that allows the nodes to post HTTP requests.

In order to facilitate the usage of this class we implemented the Communication class
on a higher level using the ElementalHttpPost. This class provides a simple means for
the nodes to send requests to the Group Server and to other nodes.

Therefore the main methods of this class are:

• String sendToServer(String URI)

• String sendToNode(Node node, String URI)

34 ITS Overlay Framework

Node - Group Server Connection

The ”sendToServer(String URI)” method allows the nodes to send its requests to
the Group Server. There are four basic types of requests from the nodes to the Group

Server:

• /addnode

• /updatenode

• /operation

• /delnode

Since the requests are already defined, we implemented in the top level of the Net-

work Communication Layer the GroupServerRequests class. This class uses the
Communication Class to provide static methods to directly send requests to the Group

Server:

• String AddNode(int x, int y)

• String UpdateNode(int x, int y)

• String LeaveNode()

• String Operation()

The three methods are called every time a node joins, updates and leaves a group
overlay during the client overlay execution. The ”Operation()” method is an optional
method for nodes to get auxiliary information from the Group Server.

Node - Node Connection

The ”sendToNode(Node node, String URI)” method allows the nodes to send its
requests to other nodes. There are four basic types of requests from the nodes to other
nodes:

• /join

• /update

• /sendMsg

• /leave

3.3 Framework Architecture Layer Scheme 35

Like in the ”Node - Group Server Connection” case we implemented in the top level
of the Network Communication Layer the OverlayRequests class to provide nodes
a simple means to send these requests to other nodes. This class also uses the Commu-

nication Class. The methods of this class are all static as they can be called by other
classes to send requests to a node:

• String join(Node DestNode, Node JoinNode, String Headers)

• String update(Node DestNode, Node UpdateNode, String Headers)

• String leave(Node DestNode, Node LeaveNode, String Headers)

• String sendMsg(Node DestNode, int SenderID, int DestID, String message, String
Headers)

• String transmitNode(Node node, Node destnode, String type, String Headers)

These methods were developed in order to be called by implementations of the Over-

layProcessor and HandlerProcessor interfaces.

Node - Simulator Connection

The connection between a node and the Simulator does not use the Commu-

nication class but instead it is defined in the GetPositionFromSimulator class that
implements the GetPosition interface.

When a node runs the method ”fetchXY()” of the class a ”/fetch” request is sent to
the Simulator using the post method from the ElementalHttpPost class.

In Figure 3.7 we have the three levels for the Network Communications Layer.

Node HTTP Server

Each node starts an HTTP server when it enters the overlay. It is a method to received
HTTP requests from other nodes. Since each node has an unique ID, the NodeID, each
node starts its HTTP server listening on PORT where PORT equals to 8000 plus the
NodeID of the node. This way, when testing overlays on one computer each node is
listening on a different unique port.

To start an HTTP server on a node, we must specify an implementation of the Han-

dlerProcessor interface. As already described in the Framework Elements section,
this interface is in charge of process the requests from other nodes.

The HTTP server is implemented in order handle the four types of URL contexts
presented before (see Figure 3.8):

• /join

36 ITS Overlay Framework

Figure 3.7: Node Client Network Communications Architecture

• /update

• /sendMsg

• /leave

All of these requests are processed by the provided implementation of the Handler-

Processor interface.

Figure 3.8: Node Acting as Server

3.3.1.2 Group Server

The Group Server is in charge of creating the groups for the overlays and assigning
these groups to nodes based on the nodes position. Therefore, on the communications

3.3 Framework Architecture Layer Scheme 37

point of view, the Group Server works only as a server that responds to the HTTP
requests from the nodes.

The Group Server starts its HTTP server the same way a node does. To start the
HTTP server of the Group Server we must specify an implementation of the Server-

HandlerProcessor interface and the port where we want the server to listen. As already
described in the Framework Elements section, this interface is in charge of process the
requests from nodes and provide them with their group information.

Figure 3.9: Group Server HTTP Server

So in the Group Server the HTTP server is implemented in order handle the four
types of URL contexts presented before in the Node HTTP Client (see Figure 3.9):

• /addnode

• /updatenode

• /operation

• /delnode

3.3.1.3 Simulator

The Simulator also works as an HTTP server in order to provide the position when
a node requests it. The Simulator HTTP server only process requests on the defined URL
Context: /fetch (see Figure 3.10). For the Simulator to begin its HTTP server we must
specify an implementation of the SimulatorDatabase interface and the port where we
want the server to listen.

3.3.2 Management Layer

The Management Layer takes care of the management of nodes in the Overlay,of
the Group Server and defines the how they respond to requests and also takes care of
how the Simulator gets its simulation data.

38 ITS Overlay Framework

Figure 3.10: Simulator HTTP Server

So this layer tasks include routing and addressing of nodes in their group overlays and
process of the group server to the nodes requests. As already referred on the Framework

Elements section, the interfaces in charge of these tasks are the ServerHandlerPro-

cessor, the OverlayProcessor, the HandlerProcessor and the SimulatorDatabase.

3.3.2.1 Group Server Management

The interface in charge of processing the requests from the nodes and deliver the
desired responses to them is the ServerHandlerProcessor interface. We have imple-
mented a class using this interface called DefaultServerHandlerProcessor in order to
exemplify how to use the interface. This class is presented and explained on the Default

Implementations section.

The groups defined in the Group Server are saved on a static Vector variable of
groups, the ”Vector¡Group¿ Groups”, in the GroupServerDatabase class. This class
provides the methods with which the implementations of the ServerHandlerProcessor

interface process the incoming requests from the nodes.

We will now describe with more detail the ServerHandlerProcessor interface and
the GroupServerDatabase class.

ServerHandlerProcessor

According to the types of requests defined in the Network Communications Layer

section the interface main methods for this interface are:

• String addNode(String request, String IP)

Method to process the ”/addnode” request from a node by giving it a NodeID and
assigning it to a group and then finally return a response the node. The response
should contain node and group information in order for the node to enter a group
overlay.

3.3 Framework Architecture Layer Scheme 39

• String updateNode(String request, String IP)

Method to process the ”/updatenode” request from a node verifying if the node has
leaved a group and entered other and then return a response to it. This method
returns an identical response to the ”addNode” method response.

• String delNode(String request)

This method processes the ”/delnode” request and is in charge of removing the node
form the server database and then returns a response informing if the node was
successfully deleted.

• String operation(String request)

This is a method designed to process a user defined operation responding to the
”/operation” request. It returns the desired response to the request.

GroupServerDatabase

As referred before, this class contains the groups defined by the user through an imple-
mentation class of the GroupsCreator interface and each group contains its nodes. So
this class provides the methods to change the groups and change its nodes:

• Group getGroupByID(int GroupID)

Method that returns the Group with the provided GroupID.

• Group getGroupByNodeID(int NodeID)

Method that returns the Group object that contains the node with the provided
NodeID.

• int getGroupIndByXY(int x, int y)

Method that returns the index of the group in the vector that contains the provided
coordinates.

• void setGroupByID(int GroupID, Group sub)

Method to replace the group saved in the vector with the provided GroupID with
the provided ”sub” group.

• int addNode(Node node)

Method that adds a node to the respective group and returns the GroupID of the
assigned group.

• int updateNode(Node node)

Method that updates the node with the NodeID of the provided node with the
provided node object and returns the GroupID of the updated node’s group.

40 ITS Overlay Framework

• void delNode(int NodeID, int GroupID)

Method that removes the node with the provided NodeID from the group with the
provided GroupID.

3.3.2.2 Overlay Nodes Management

Overlay Network Model - Interfaces

As referred before on the Framework Elements section, the methods to process the
responses from the group server and that define the network topology to use in the group
overlays are defined by the OverlayProcessor and HandlerProcessor interfaces.

OverlayProcessor

The OverlayProcessor interface is in charge of establishing communication in the
overlay with the other nodes in the group.

This interface’s first function is to process the responses from the Group Server to the
add node and update node requests. Therefore the implementation classes of this interface
need to have the updated position from the nodes to provide it in the requests from the
nodes.

The second function of the OverlayProcessor interface is to define the requests that
the nodes send between themselves (using the already defined URL contexts in Network

Communications Layer) thus allowing the use of different network topologies together
with the HandlerProcessor interface.

The most important methods of this interface are related to the five types of requests
the nodes can send:

• int processResponseAddNode(String response)

Method to process a response from the Group Server to an add node request.
While processing the response the node joins the indicated group overlay.

• int processResponseUpdateNode(String response)

Method to process a response from the Group Server to an update node request.
The processing of the response includes updating the node in the group overlay or
leaving the actual group and joining a new group overlay depending on the Group

Server response.

• String groupLeaveNode()

Method to inform the group overlay that the node is leaving the group.

• String sendMsg(String message, int NodeID)

Method to send a message to a node with the given NodeID in the group overlay.

3.3 Framework Architecture Layer Scheme 41

• String sendBroadcast(String message)

Method to send a broadcast message to all nodes in the same group overlay.

HandlerProcessor

The HandlerProcessor interface determines the response from the various nodes
to the requests from other nodes. By creating classes that implement this interface we can
have different topologies and routing schemes.

The methods from this interface are destined to interact with the requests defined in
the overlay network model. Therefore the main methods of this interface are:

• String joinGroup(String input, String IP)

Method to process a join group request from a node that is joining the group overlay.

• String updateGroup(String input, String IP)

Method to process a update node request from a node that is updating its position
in the group overlay.

• String leaveGroup(String input)

Method to process a leave group request from a node that is leaving the group.

• String messageHandler(String request)

Method to process the received messages from a node. These messages can be either
broadcast messages or direct messages.

3.3.2.3 Simulator Management

Getting the Simulation Data

In order to get the simulation data (in this case only the position) an interface was
developed in the simulator that contains the methods the simulator uses to get the position
from a text file or from an implementation of an already existing simulator. This interface
is named SimulatorDatabase and its main methods are:

• void fetchXY() - Fetches a new pair of values X and Y for each node in the simulation;

• int getX(int ID) - Returns the value X of a simulated node;

• int getY(int ID) - Returns the value Y of a simulated node;

• String buildResponse(String input) - Builds a string with position values of a node
to return via an HTTP response.

Getting the Simulation Data from a Text File

42 ITS Overlay Framework

The developed simulator has already an implementation class of the Simulator-

Database interface that fetches the simulation data from a text file although it only gets
the position since no function to get the speed and direction of the nodes was implemented.
This class is called SimulatorDatabaseTextFile.

The format of the text file read by the simulator with four nodes is:

ID=1&X=1&Y=1 ID=2&X=1&Y=3 ID=3&X=1&Y=6 ID=4&X=2&Y=3

ID=1&X=1&Y=2 ID=2&X=1&Y=4 ID=3&X=1&Y=7 ID=4&X=2&Y=2

ID=1&X=1&Y=3 ID=2&X=1&Y=5 ID=3&X=1&Y=8 ID=4&X=2&Y=1

For each node to be simulated an ”ID=int&X=int&Y=int” must be added to the file.
Each line contains a single position for each node. Each position from one node must be
separated by a tab in each line.

When the ”fetchXY()” method is called, the SimulatorDatabaseTextFile class
reads the next line from the text file obtaining the position of the nodes contained in
the text file.

Figure 3.11: Node-Simulator Connection

The Simulator responds to the nodes requests with their X and Y position values
that were last fetched from the text file using the ”buildResponse(String input)” method
which returns the string ”X=int&Y=int” for the SimulatorDatabaseTextFile class as
we can see in Figure 3.11. As referred before, the response has this format in order to
interact with the GetPositionFromSimulator class from an Overlay Node.

3.3.3 Application-Level Layer

The Application-Level Layer is the higher layer of the framework’s architecture
layered design. This layer provides the required methods through classes and interfaces
in order to run the Overlay nodes applications, to run the Group Server constructing
the desired groups and to run the Simulator defining where it gets its simulation data.

3.3.3.1 Overlay Nodes

ClientOverlay

3.3 Framework Architecture Layer Scheme 43

We developed the ClientOverlay class so that we can execute an overlay node appli-
cation. This class provides methods to initialize a node application thus allowing them to
enter a group overlay (see Figure 3.12). To instantiate a ClientOverlay object the host
and port of the Group Server are needed as well as an implementation of the Over-

layProcessor interface. The group information and other nodes information as well is
saved in this class in a static ”Group” object.

The main methods of this class are:

• int addNode(int x, int y)

Method to send a request to add the node with its position X and Y to the Group

Server and then process its response using the provided implementation class of the
OverlayProcessor interface.

• int updateNode(int x, int y)

Method to send a request to update the node with its updated position X and Y to
the Group Server and then process its response using the provided implementation
class of the OverlayProcessor interface.

• String leaveNode()

Method to inform the group overlay that the node is leaving using the provided
implementation class of the OverlayProcessor interface and then send a request
to the Group Server to remove the node.

• String sendMsg(String message, int NodeID)

Method to send a message to a node in the same group overlay with the destination
NodeID.

• String sendBroadcast(String message)

Method to send a broadcast message to all the nodes in the same group overlay.

Figure 3.12: Overlay Node Application-Level

44 ITS Overlay Framework

GetPosition

The ClientOverlay needs the nodes position in order to allow the node to enter a
group overlay. We can get the position from a simulator or a GPS using the GetPosition

interface. There is already an implemented class of this interface to get the position from
the Simulator, the GetPositionFromSimulator class. The methods of this class are:

• void fetchXY()

Fetches the next pair of values X and Y by sending a ”/fetch” request to the Sim-

ulator. The Simulator responds with the next pair of position values X and Y of
the node.

• int getX()

Returns the last fetched value of X for the node.

• int getY()

Returns the last fetched value of Y for the node.

3.3.3.2 Group Server

In order to run a Group Server application we implemented the GroupServer

class. But before the server starts its operation as an HTTP Server to respond to the
nodes requests it must create the groups using the GroupsCreator interface.

GroupsCreator

The interface GroupsCreator was implemented in order to create different types of
groups . The main method for this interface is the ”Vector¡Group¿ getGroups()” method.

The implementation classes of this interface must implement this method in order to
return a vector of group objects described in the Framework Elements section contain-
ing the groups that are assigned by the Group Server to the nodes.

GroupServer

After getting an implementation class of the GroupsCreator interface that defines the
desired groups, the GroupServer class can be instantiated. To instantiate this class we
must not only use the GroupsCreator class but also an implementation of the Server-

HandlerProcessor interface responsible of processing the requests from the nodes and
also specify the port to which the Group Server HTTP server will listen (see Figure 3.13).

In this class we have a static object of the GroupServerDatabase class to whom it
is provided the implementation class of the GroupsCreator interface.

3.3 Framework Architecture Layer Scheme 45

Figure 3.13: Group Server Application-Level

The GroupServer class has an implemented method to change the implementation
class of the GroupsCreator interface it uses in order to define different groups:

• String setGroups(GroupsCreator gc) - Creates a new GroupServerDatabase with
the provided GroupsCreator object;

3.3.3.3 Simulator

A class was implemented to allow the execution of the Simulator application called
SimulatorProcessor. To instantiate this class an implementation class of the Simula-

torDatabase interface like the SimulatorDatabaseTextFile class and integer with the
port number where the Simulator HTTP request will listen are needed.

The SimulatorProcessor class provides the method ”fetchXY()”to get new position
values with which the Simulator provides the nodes when they request for their position.

The new position values are obtained from the implementation class of the Simu-

latorDatabase interface. In the case of the SimulatorDatabaseTextFile class, each
time the ”fetchXY()” method is called, a new line is read from the text file containing the
new position values for the nodes.

46 ITS Overlay Framework

Chapter 4

Framework Test Scenarios

4.1 Default Implementations

To perform the required tests to the framework and to give an example of the imple-
mentation of the necessary interfaces to write and run ITS Overlay Applications we
have developed default classes that implement the interfaces.

Some of these default classes were already presented and explained in the Frame-

work Architecture Layer Scheme sections. The already presented default classes are
the GetPositionFromSimulator class that implements the GetPosition interface in
the Overlay Nodes and the SimulatorDatabaseTextFile class that implements the
SimulatorDatabase interface in the Simulator.

The other developed default classes implement the following interfaces: the Server-

HandlerProcessor and GroupsCreator in the Group Server and the OverlayPro-

cessor and HandlerProcessor in the Overlay Nodes.

Some of these interfaces interact with each other, so their implementation classes also
interact with each other. The implementation class of the ServerHandlerProcessor

interface provides the responses to the node’s requests and the implementation class of
the OverlayProcessor interface processes those responses and it also defines the requests
the node’s send between themselves which are process by the implementation class of the
HandlerProcessor interface. So the implementation classes for these three interfaces
must be developed together.

4.1.1 Group Server

For the Group Server we have one default implementation for each of its two inter-
faces: the GroupsCreator interface and the ServerHandlerProcessor interface. These
default implementations also work as examples for users to create their own implementa-
tion classes.

47

48 Framework Test Scenarios

4.1.1.1 Default GroupsCreator Implementations

The default implemented class for this interface is named RoadGroups. To call this
class we have to specify the number of horizontal groups H, the number of vertical group
Y, and the size in X and Y for the groups. So this class creates the desired number of
adjacent groups of equal size in the way described in Figure 4.1:

Figure 4.1: Road Groups

4.1.1.2 Default ServerHandlerProcessor Implementation

We developed the DefaultServerHandlerProcessor class that interacts with the de-
fault implemented class of the OverlayProcessor interface of the Overlay Node. The
DefaultServerHandlerProcessor will be described using the ServerHandlerProces-

sor interface explanation in the Management Layer section as a background.

Processing the Requests

• Add Node

The implemented class is prepared to receive add node requests with the format
”/addnode?X=int&Y=int”. The class creates a new node with the position given in
the request and assigns a unique NodeID to the node. Then, based on the position
of the node it assigns a group to the node.

4.1 Default Implementations 49

Since this class was implemented in order to interact with the implemented De-

faultOverlayProcessor class of the OverlayNode, it is also responsible for select
a Central Node. This function is already implemented in the GroupServer-

Database class in the ”addnode(Node node)” method so that if the group does not
have any node it assumes that the node that is entering the group is the Central

Node.

Finally, a response based on the node and its group is returned. The response has
the following format:

ThisNode

NodeID=1

Group

GroupID=1

XMin=0

XMax=5

YMin=0

YMax=5

CentralNode

NodeID=1

X=1

Y=1

IP =127 .0 .0 .1

Nodes

NodeID X Y IP

1 1 1 1 2 7 . 0 . 0 . 1

If the node is not successfully added to the group server database it returns a ”-ERR”
response.

• Update Node

The format of update node requests that this class is prepared to process is /up-
datenode?NodeID=int&X=int&Y=int where the NodeID refers to the unique ID of
the node and the given position is the new position of the node. The class modifies
the position of the node with the given NodeID and based on the new position of
the node it verifies if the node stays in the same group or if it is necessary to assign
a new group to the node. The ”lastupdate” timestamp variable of the node is also
updated.

The responses format is the same as the response to the add node request.

• Delete Node

In order for this class to remove a node from the group server database it requires
its NodeID. So the delete node requests have the format ”/delnode?NodeID=int

50 Framework Test Scenarios

&GroupID=int” giving the NodeID of the node to remove and the additional infor-
mation of the GroupID of the node, allowing to reduce the processing time in finding
the node.

If the node is successfully deleted from the group server database the response is
”+OK NodeDeleted” else it returns a ”-ERR” response.

• Operation

Since this class was implemented in order to interact with the implemented De-

faultOverlayProcessor class of the OverlayNode interface. The ”Operation”
function is to get a new Central Node for the desired group. Only the Central

Node in a group makes this request when it desires to leave the group. The re-
quest format is ”/operation?GroupID=int”. Then a new Central Node is selected
based on the ”last update” variable of the nodes in the group. The response for-
mat is ”NodeID=int” where the given value corresponds to the NodeID of the new
Central Node.

4.1.2 Default Overlay Network Topology

We developed a default overlay network topology using the OverlayProcessor and
HandlerProcessor interfaces described in the Management Layer section.

The DefaultOverlayProcessor and DefaultHandlerProcessor implemented classes
interact with the DefaultServerHandlerProcessor class that implements the Server-

HandlerProcessor interface from the Group Server.

The node and its group informations are all put in a static group object named Group

in the ClientOverlay class. This way the Group object is accessible to all the classes.

The default implemented classes use common methods to process the responses from
the Group Server to the nodes requests. For that reason we developed a class of static
methods that can be of help to create new overlay network topologies, the OverlayUtils

class.

Overlay Network Topology

The default network topology is a centralized topology. Every node that enters and is
in the group overlay sends messages to a Central Node and then the Central Node

takes care of routing and broadcast (see Figure 4.2).

• Joining a Group

Whenever a node enters the group overlay, if the group does not have any nodes,
the node itself becomes the Central Node. From that point every node that joins
the group is a Normal Node,so it sends a join request to the Central Node that

4.1 Default Implementations 51

Figure 4.2: Centralized Topology with Four Nodes

propagates the join request to all the other nodes informing every node in the group
that a new node joined the group.

• Sending Messages

A node can send messages in two ways: an individual message to one node in the
group and a broadcast message to all nodes in the group using -1 as the destination
NodeID value. If the node is the Central Node of the group then it sends the
messages directly to the node with the desired NodeID or sends broadcast messages
directly to all the nodes in the group overlay. If the node is a Normal Node then it
sends the messages to the Central Node who is in charge of forward the messages to
the desired node if it is an individual message, or to all the nodes if it is a broadcast
message.

• Leaving a Group

When a node wants to leave a group overlay we have two possible cases. Case the
node is a normal node it sends a leave group request to the Central Node and then
the request is sent by the Central Node to all the other nodes in the group overlay
and the node successfully leaves. Case the node is the Central Node it asks the
Group Server for a new Central Node using the ”/operation” request and then
inform all the nodes in the group overlay that it is leaving the group and which node
will be the new Central Node.

• Updating Node in Group

When a node updates its position in the Group Server it can stay in the same
group overlay or get assigned with a new group. If the node stays in the group and
is a Normal Node it sends an update node in group request to the Central Node

and then the Central Node sends the request to all the other nodes, updating
the position of the node that sent the update request in every node of the group

52 Framework Test Scenarios

overlay. If the node is the Central Node it simply sends an update request to all
the other nodes in the group overlay. If the node is assigned with a new group it
leaves the group as described before in ”Leaving a Group” and joins a new group
also as described before in ”Joining a Group”.

4.1.2.1 Overlay Management Utilities

All methods of this class are static and were created in order to help the development of
classes that implement the OverlayProcessor and HandlerProcessor interfaces consid-
ering that the Group Server uses the implemented DefaultServerHandlerProcessor

class.
The most relevant methods of this class for the OverlayProcessor classes are:

• Node getThisNode(String response, int x, int y)

Gets the node’s NodeID using the response from the Group Server and then returns
a node object created using it and the provided node’s position.

• Node getCentralNode(String response)

Gets the Central Node data using the response from the Group Server and then
returns a node object with the retrieved data.

• int getGroupID(String response)

Gets the node’s GroupID using the response from the Group Server and returns
it.

• void addGroupNodes(String response)

Retrieves the data from all the nodes of the group overlay creating node objects with
it and then adds each node object to the static Group object in the ClientOverlay

class.

• void NodeHTTPServer(HandlerProcessor pc)

Starts the Node HTTP Server to process overlay requests from other nodes according
to the provided implementation class of the HandlerProcessor interface.

• void defineGroup(int GroupID)

Empties the static Group object of the ClientOverlay class and sets its new
GroupID.

• String getThisNodeIP()

Returns a String with the node’s IP.

The other methods of this class were implemented in order to interact with the Han-

dlerProcessor classes:

4.1 Default Implementations 53

• Node getNode(String input, String IP, boolean aux)

Returns a node object with the data get from that node request (the IP can be get
via HTTP connection if the aux boolean is true). The node requests formats are
defined on the OverlayProcessor classes.

• Node getNode(String input)

Gets the NodeID from node that sent the request and gets that node in the GroupN-

odes vector of the static Group object returning it.

• int getData(String input, String type)

Method that parses a node’s query and gets the integer value where the parame-
ter equals the type String (e.g if type equals ”NodeID”, when the node receives a
”/join?NodeID=1&X=1&Y=1” this method returns an integer with value equal to
1).

• String getDataString(String input, String type)

This method does the same as the one before but it returns a String instead of an inte-
ger (e.g. if type equals ”NodeID”, when the node receives a ”/join?NodeID=1&X=1
&Y=1” this method returns a String equal to ”1”).

4.1.2.2 DefaultOverlayProcessor Class

When a node begins operating the first thing it does is to send an add node request to
the Group Server. The implemented DefaultServerHandlerProcessor class responds
with a string containing the node and group information (assigned NodeID, assigned group
and its nodes information)and identifies the central node of the group (the format of the
response is on the Group Server Management explanation).

• Process the response from the Group Server to an add node request

Having the response, the ”processResponseAddNode(String response)” method of
the DefaultOverlayProcessor class first gets the node’s assigned GroupID from
the response using the static ”getGroupID(String response)” method from the Over-

layUtils class and if the GroupID value is allowed it uses the static ”defineGroup(int
GroupID)” method from the OverlayUtils class.

Then it uses the static ”getThisNode(String response, int x, int y)” method that
returns a node object of the node. This node object is put on the ThisNode

variable of the static Group object.

Next the method gets the node object of the Central Node using the static ”get-
CentralNode(String response)” method and puts it in the CentralNode variable of
the static Group object.

54 Framework Test Scenarios

Finally the method runs the static ”addGroupNodes(String response)” method of
the OverlayUtils class in order to put all the nodes information as nodes objects
in the vector GroupNodes of the static Group object.

The node has now all the information of its group overlay available so it starts its
operation as an HTTP server using a static method from the OverlayUtil class,
the ”NodeHTTPServer(HandlerProcessor pc)” method using the DefaultHandler-

Processor class to define its HTTP server responses to the requests.

If the node is the Central Node of the group this method does nothing more, else
if the node is not the Central Node of the group it sends a join group request to
the Central Node with the following format: ”/join?NodeID=int&X=int&Y=int
&IP=String” where the values in the request are those of the node.

• Leave the Group Overlay

When a node wants to leave its group overlay if it is a Normal Node it sends a leave
group request to the Central Node with the following format: ”/leave?NodeID=int”.

If the node is the Central Node of its group it first sends an operation request to
the GroupNode asking to assign a new Central Node and using the response it
gets the new Central Node NodeID. Then it informs all the nodes in the group
that it is leaving indicating the new Central Node NodeID in the leave group
request. So, the leave group request sent by the node has the following format:
”/leave?NodeID=int&NewCentralNodeID=int”.

• Process the response from the Group Server to an update node request

Each time the node gets its position values updated it can inform the Group Server

sending an update node request to it. The Group Server responds the same way
it responds to the add node requests.

The method gets the new GroupID from the response and if it is the same as the
actual GroupID, the node has to inform all other nodes in the group overlay of the
update. So, if the node is a Normal Node it sends an update node in group request
to the Central Node, else if the node is the Central Node of the group it sends
and update node in group request directly to all the other nodes in its group overlay.

If the new GroupID is different from the actual GroupID of the node, the node
uses the ”groupLeaveNode()” method and then does the same proceedings as in the
”processResponseAddNode(String response)” method joining the new group overlay.

• Send Message

When a node wants to send a message to another node in the group it runs this
method. This method codes the message to send so that all of the characters in the
message are allowed in the HTTP request. Next, if the node is the Central Node it

4.1 Default Implementations 55

sends the message directly to the node with the given NodeID, else if the node is a
Normal Node.

The format of the send message request is ”/sendMsg?FROM=int & TO=int &
MSG=String” where in the ”FROM” is put the NodeID of the node that sends the
message, in the ”TO” is put the NodeID of the destination node and in the ”MSG”
camp is put a String with the coded message.

• Send Broadcast Message

This method allows the nodes in a group to send broadcast messages to all the other
nodes in the group. Like the send message method this method codes the messages
to send so that all of the characters in the message are allowed in the HTTP request.
The format of the broadcast message request is the same as in the normal message
request.

If the node that wants to send the broadcast message is a Normal Node then it
sends a message with the ”TO” camp set as -1 to the Central Node. If the node
is the Central Node it uses the ”sendMsg(String message, int NodeID)” to send
the message to all the other nodes in the group.

4.1.2.3 DefaultHandlerProcessor Class

• Process a join group request

When a node receives a join group request from another node it runs this method.
First the method runs the static ”getNode(String input, String IP, boolean aux)”
method that returns a node object of the node that sent the request. Then it adds
the node object to GroupNodes vector of the static Group object.

If the node that received the request is the Central Node of the group, it sends
the join request to all the other nodes in the group overlay thus informing all nodes
that a new node has joined the group overlay.

• Process an update node in group request

When a node receives an update group request from another node this method is
run. This method is very similar to the previous one as it first runs the static
”getNode(String input, String IP, boolean aux)” method that returns a node object
of the node that sent the request. Then it replaces the old node object in the
GroupNodes vector of the static Group object with the new node object.

If the node that received the request is the Central Node of the group, it sends the
update request to all the other nodes in the group overlay thus informing all nodes
of the update of a node in the group overlay.

• Process a leave group request

56 Framework Test Scenarios

When a leave group request is received by a node, this method gets the NodeID from
the node that is leaving using the static ”getData(String input, type)” method from
the OverlayUtils class with type equal to ”NodeID”.

Then, if the retrieved NodeID is not equal to the Central Node NodeID the node
in the GroupNodes vector with the retrieved NodeID is removed. Else, if the
retrieved NodeID is equal to the Central Node NodeID, the method gets the new
Central Node NodeID using again the static ”getData(String input, type)” method
but with type equal to ”NewCentralNodeID” and then sets the new Central Node

and remove the old one from the static Group object.

• Message handler

When a node receives a send message request this method gets the sender node
NodeID and the destination node NodeID from the request using the static ”get-
Data(String input, type)” method with type equals to ”FROM” and ”TO” respec-
tively and also gets the message using the static ”getDataString(String input, type)”
method with type equals to ”MSG”.

The method then verifies if the node that received the request is the destination
node comparing the NodeIDs and if it is, the message is decoded and thus delivered.

If the node is not the destination node and it is a Normal Node it does nothing
more. But if it is a Central Node, it sends the message to the node with the
previously gotten destination NodeID or if the destination NodeID is -1 it sends the
message to all the nodes in the group except the sender node.

4.2 How to Write A New Application

The ITS Overlay Framework provides the methods to create Group Overlays where
nodes connect themselves based on their position. This section describes how to use the
framework to develop ITS Overlay Applications. In order to run a Overlay Node

Client Application we also need to run a Group Server Application and if we use
simulation data to supply the nodes with their position, then we also have to run a
Simulator Application.

4.2.1 ITS Overlay Applications

The method for creating an ITS Overlay Application is the same for all the appli-
cations:

• First we need to define the how the overlay will work.

• Afterwards we need to implement classes for the necessary interfaces in each appli-
cation according to the previous step.

4.2 How to Write A New Application 57

• Finally we create the application by using the correspondent classes to begin each
application described in the Application-Level Layer section in the ITS Overlay

Framework chapter and using the implemented classes in the previous steps.

4.2.2 Group Server Application

In order to create a Group Server Application we first need to define the groups
to create with the GroupsCreator interface and also define the responses of the Group

Server to the overlay node’s requests with the ServerHandlerProcessor interface. Af-
ter doing these steps we can create a Group Server Application using the GroupServer

class presented in the Application-Level Layer section and the created classes.

Example

First we have to implement the class GroupsCreatorExample using the GroupsCre-

ator interface. In the method ”Vector¡Group¿ getGroups()” provided in the interface we
must create a vector object and add the desired groups to the vector and then return the
vector of groups:

public class GroupsCreatorExample implements GroupsCreator{
public Vector<Group> getGroups () {

Vector<Group> Groups = new Vector<Group> () ;

Groups . add (new Group(GroupID , Xmin , Xmax, Ymin , Ymax)) ;

Groups . add (new Group(GroupID , Xmin , Xmax, Ymin , Ymax)) ;

return Groups ;

}
}

Secondly we use the class DefaultServerHandlerProcessor that implements the
ServerHandlerProcessor interface (see Default Implementations section).

Now that we have an implementation class of the GroupsCreator and ServerHan-

dlerProcessor interface, we want our server to listen to the port 12000, then we write a
Group Server Application the following way:

public class GroupServerApplicationExample {
public stat ic void main (St r ing [] a rgs) {

GroupsCreator gc = new GroupsCreatorExample () ;

ServerHandlerProces sor pc = new ServerHandlerProcessorExample () ;

new GroupServer (gc , pc , 12000) ;

}
}

Now that we have written the application we just have to run it using a Java Virtual
Machine (JVM) and we have the Group Server ready to process the node’s requests and
assign one of the created groups to them.

58 Framework Test Scenarios

4.2.3 Overlay Node Client Application

To create an Overlay Node Client Application the first thing to do is to define
the network topology by creating classes that implement the OverlayProcessor and
HandlerProcessor interfaces. Afterwards we need to get the position for the nodes.
The position can be get either by manual input or using the GetPosition interface.

After doing these steps we can write an Overlay Node Client Application using
the ClientOverlay class presented in the Application-Level Layer section and using
the created classes.

Example

First we have to define the network topology and write the classes that implement the
OverlayProcessor and HandlerProcessor interfaces. For this example we will use
the default implementations of these interfaces named DefaultOverlayProcessor and
DefaultHandlerProcessor.

In this example we assume we get the nodes positions through the Simulator using the
default implementation of the GetPosition interface, the GetPositionFromSimulator

class.

Assuming a GetPositionFromSimulator is running in the ”192.168.1.253” IP ad-
dress listening to the port 12000 and the Simulator is running in the ”192.168.1.252”
IP address listening to the port 14000, we can now write the Overlay Node Client

Application the following way:

public class OverlayNodeClientApplicationExample {
public stat ic void main (St r ing [] a rgs) {

Over layProcessor pc = new Defau l tOver layProces sor () ;

Cl i entOver lay c l i e n t = new Cl ientOver lay (” 192 . 168 . 1 . 2 53 ” ,

12000 , pc) ;

GetPos i t ion pos = new GetPosit ionFromSimulator (”

192 . 168 . 1 . 2 52 ” , 14000 , ID) ;

pos . fetchXY () ;

c l i e n t . addNode (pos . getX () , pos . getY ()) ;

while (pos . getX () !=−1 && pos . getY () !=−1) {
pos . fetchXY () ;

c l i e n t . updateNode (pos . getX () , pos . getY ()) ;

c l i e n t . sendBroadcast (”message”) ;

}
c l i e n t . leaveNode () ;

}
}

Now that we have written the application we just have to run it for each node changing
the ID that they use to get their position from the server.

4.3 Testing Methodology 59

4.2.4 Simulator Application

As already described in the Application-Level Layer section, to run a Simulator

Application we must use the SimulatorProcessor class. This class needs a implemen-
tation class of the SimulatorDatabase interface in order to get the simulation data, so
the first step in the creation of a Simulator Application is to define how the simulator
gets its data (from text file, from traffic flow algorithms, etc.).

Afterwards we have to create a SimulatorDatabase class so that the simulator gets
the simulation data in the defined way. Finally we need to define the simulator behaviour
(like the interval of time it updates its data or the number of times in which the simulator
provides nodes with their position) in order to write the application.

Example

In this example we consider that the node’s get its position from the default implemen-
tation of the SimulatorDatabase interface, the SimulatorDatabaseFromTextFile

class. This class is better explained in the Management Layer section.

Supposing we have the simulation data in the ”nodes.txt” file, that the simulator will
accept request on port 14000 and that we want the simulator to update the position of
the nodes each five seconds we write a Simulator Application for this example in the
following way:

public class SimulatorAppl icat ionExample {
public stat ic void main (St r ing args []) throws Inter ruptedExcept ion {

SimulatorDatabase db = new SimulatorDatabaseTextFi le (”nodes . txt ”)

;

S imulatorProces sor pc = new S imulatorProces sor (db , 14000) ;

while (! pc . isEnd ()) {
pc . fetchXY () ;

Thread . s l e e p (5000) ;

}
pc . setEnd () ;

}
}

4.3 Testing Methodology

The methodology to test scenarios can be divided in five steps:

• Define the scenario;

• Prepare the scenario conditions;

• Write the necessary applications;

60 Framework Test Scenarios

• Run the written applications;

• Evaluate the test scenario;

To better understand this methodology the proceedings of the steps referred above will
now be described separately.

• Define the scenario:

– Number and types of groups;

– Number of nodes;

– Messages exchanged between nodes;

– Overlay network topology;

• Prepare the scenario conditions:

– How the nodes get their position;

– Implement a GroupsCreator interface class to create the required groups;

– Define the Group Server operation using the ServerHandlerProcessor in-
terface.

– Define the overlay network topology using the OverlayProcessor and Han-

dlerProcessor interfaces.

• Write the necessary applications:

– Write the Group Server Application;

– Write the Overlay Node Client Application that the nodes will run;

– Write a Simulator Application if necessary;

• Run the written applications:

– Run the developed Group Server Application verifying if it properly creates
the desired groups;

– Run the Simulator Application if it is needed;

– Run an Overlay Node Client Application for each node;

• Evaluate the test scenario:

– Verify if the defined scenario has successfully worked;

4.4 First Test Scenario

4.4.1 Test Specifications

According to the methodology to test scenarios the first step is to define the scenario.
Then we prepare the scenario conditions.

4.4 First Test Scenario 61

4.4.1.1 Scenario Definition

For this first scenario we only need to create one group. The group will have a size of
2 x 20 in the used variables (X and Y) as we can see in Figure 4.3.

Figure 4.3: Road Group

We will use five vehicles as nodes. One of the nodes will have an accident and sends a
broadcast message to the group overlay.

For the group overlay network topology we will use the default topology of the frame-
work, a centralized topology.

4.4.1.2 Scenario Conditions

The overlay nodes should get their position through a Simulator using the GetPo-

sitionFromSimulator class each five seconds.

The simulation data will be on a text file named ”first test scenario.txt” so the Simu-

lator will use the SimulatorDatabaseTextFile class to get the simulation data. In the
file we have the position for the five nodes in fifteen intervals of time of the defined five
seconds. The simulation data that is used in this scenario is on Table 4.1.

In the Group Server we will also use the default implementation class RoadGroups

for creating the defined group and use the DefaultServerHandlerProcessor class to
define the responses of the Group Server.

62 Framework Test Scenarios

ID=1 ID=2 ID=3 ID=4 ID=5
X=1 Y=1 X=1 Y=3 X=1 Y=6 X=2 Y=11 X=2 Y=16
X=1 Y=2 X=1 Y=4 X=1 Y=7 X=2 Y=10 X=2 Y=15
X=1 Y=3 X=1 Y=5 X=1 Y=8 X=2 Y=9 X=2 Y=14
X=1 Y=4 X=1 Y=6 X=1 Y=9 X=2 Y=8 X=2 Y=13
X=1 Y=5 X=1 Y=7 X=1 Y=10 X=2 Y=7 X=2 Y=12
X=1 Y=6 X=1 Y=8 X=1 Y=11 X=2 Y=6 X=2 Y=11
X=1 Y=7 X=1 Y=9 X=1 Y=12 X=2 Y=5 X=2 Y=10
X=1 Y=8 X=1 Y=10 X=1 Y=13 X=2 Y=4 X=2 Y=9
X=1 Y=9 X=1 Y=11 X=1 Y=14 X=2 Y=3 X=2 Y=8
X=1 Y=10 X=1 Y=12 X=1 Y=15 X=2 Y=2 X=2 Y=7
X=1 Y=11 X=1 Y=13 X=1 Y=16 X=2 Y=1 X=2 Y=6
X=1 Y=12 X=1 Y=13 X=1 Y=17 X=2 Y=0 X=2 Y=5
X=1 Y=13 X=1 Y=13 X=1 Y=18 X=2 Y=-1 X=2 Y=4
X=1 Y=14 X=1 Y=13 X=1 Y=19 X=2 Y=-1 X=2 Y=3
X=1 Y=15 X=1 Y=13 X=1 Y=-1 X=2 Y=-1 X=2 Y=2

Table 4.1: First Test Scenario Simulation Data

Since we use the default centralized topology provided by the framework, when writing
the Overlay Node Client Application we will use the DefaultOverlayProcessor and
DefaultHandlerProcessor classes.

When we write the Overlay Node Client Application we will also define that the
node that has the accident is the node with ID equal to two.

Now that we have the required implementation classes we can write the applications.

4.4.2 Writting the Applications

According to the defined scenario and implemented interfaces we now write the ap-
plications for the Group Server, the Overlay Nodes and the Simulator. We will
do the tests in the same machine so the Group Server and the Simulator host is on
”localhost”. The Group Server will listen to port 12000 and Simulator will listen to
port 14000.

4.4.2.1 Group Server Application

Since we use the RoadGroups and DefaultServerHandlerProcessor classes in
the Group Server for this scenario. To call a RoadGroups object we must specify the
number of horizontal groups and vertical groups as one and the vertical size as twenty
one and horizontal size as three. So, this Group Server Application is written in the
following way:

public class Fir s tScenar ioGroupServerApp l i ca t i on {

4.4 First Test Scenario 63

public stat ic void main (St r ing [] a rgs) throws IOException {
GroupsCreator gc = new RoadGroups (1 , 1 , 3 , 21) ;

ServerHandlerProcessor hpc = new Defau l tServerHand le rProces sor () ;

GroupServer Server = new GroupServer (gc , hpc , 12000) ;

}
}

4.4.2.2 Simulator Application

As already defined we use the SimulatorDatabaseTextFile to get the simulation
data from the ”first test scenario.txt” text file and we want our Simulator to update the
positions of the nodes each five seconds, so we write the Simulator Application in the
following way:

public class Fi r s tSc ena r i oS imu la to rApp l i c a t i on {

public stat ic void main (St r ing args []) throws Inter ruptedExcept ion {
SimulatorDatabase db = new SimulatorDatabaseTextFi le (”

f i r s t t e s t s c e n a r i o . txt ”) ;

S imulatorProces sor pc = new S imulatorProces sor (db , 14000) ;

while (! pc . isEnd ()) {
pc . fetchXY () ;

Thread . s l e e p (5000) ;

}
pc . setEnd () ;

}
}

4.4.2.3 Overlay Nodes Client Application

We already have the implemented classes necessary to run an Overlay Node Client

Application, but we also need to define the behaviour of each node. Instead of running a
different type of application for each node, since they use an ID value to get their position
from the Simulator we can run the same application but with different entry values. So
we will write the application so that we need to input the IDs of the nodes to begin its
execution. Also, using an ”if” clause we can define which node transmits the accident
message and when it transmits the message.

The node we have considered to have the accident is the node with the ID 2. So
according to provided simulation data we can see that the node position stays the same
after the tenth iteration.

We can now write the following Overlay Node Client Application:

public class Fir s tScenar ioOver layNodeCl i entApp l i ca t i on {

public stat ic void main (St r ing [] a rgs) throws Inter ruptedExcept ion {
i f (args . length <1){

64 Framework Test Scenarios

System . out . p r i n t l n (”Put ID”) ;

}
System . out . p r i n t l n (”>> Sta r t i ng Overlay Node Cl i en t ”) ;

int ID = In t eg e r . pa r s e In t (args [0]) ;

int i =1;

Over layProcessor pc = new Defau l tOver layProces sor () ;

Cl i entOver lay c l i e n t = new Cl ientOver lay (” l o c a l h o s t ” , 12000 , pc) ;

GetPos i t ion pos = new GetPosit ionFromSimulator (” l o c a l h o s t ” ,

14000 , ID) ;

pos . fetchXY () ;

c l i e n t . addNode (pos . getX () , pos . getY ()) ;

while (pos . getX () !=−1 && pos . getY () !=−1) {
Thread . s l e e p (5000) ;

i++;

pos . fetchXY () ;

c l i e n t . updateNode (pos . getX () , pos . getY ()) ;

i f (ID==2 && i >10)

c l i e n t . sendBroadcast (”AccidentInX”+pos . getX ()+”Y”+pos .

getY ()) ;

}
c l i e n t . leaveNode () ;

}
}

4.4.3 Results and Conclusions

Having written the Overlay Node Client Application, the Group Server Appli-

cation and the Simulator Application we have now the conditions to test if the defined
scenario works. We now create a jar file for each of these applications: ”nodeclient.jar”,
”groupserver.jar” and ”simulator.jar”.

We begin to run the Group Server Application and the Simulator Application

using the ”java -jar” command plus the file name of the correspondent application and
verify if these applications run as expected.

Then we execute an Overlay Node Client Application for each node in the simu-
lation indicating their position through the ID input.

4.4.3.1 Running the Group Server

Having started the Group Server Application we verify that the defined group for
this scenario was successfully created in the application output:

> java −j a r groupserver . j a r

Group

GroupID=1

XMin=0

XMax=2

4.4 First Test Scenario 65

YMin=0

YMax=20

>> Sta r t i ng HTTP Server

4.4.3.2 Running the Simulator

When we run the Simulator Application we can verify through its output that the
server is processing a different position for each node in five second intervals in a total of
fifteen iterations. Below we have the output of the simulator for the first five iterations:

> java −j a r s imu lato r . j a r

>> Sta r t i ng HTTP Server

>> Proces s ing l i n e :

ID=1&X=1&Y=1 | ID=2&X=1&Y=3 | ID=3&X=1&Y=6 | ID=4&X=2&Y=11 | ID=5&X=2&Y=16

==============

>> Proces s ing l i n e :

ID=1&X=1&Y=2 | ID=2&X=1&Y=4 | ID=3&X=1&Y=7 | ID=4&X=2&Y=10 | ID=5&X=2&Y=15

==============

>> Proces s ing l i n e :

ID=1&X=1&Y=3 | ID=2&X=1&Y=5 | ID=3&X=1&Y=8 | ID=4&X=2&Y=9 | ID=5&X=2&Y=14

==============

>> Proces s ing l i n e :

ID=1&X=1&Y=4 | ID=2&X=1&Y=6 | ID=3&X=1&Y=9 | ID=4&X=2&Y=8 | ID=5&X=2&Y=13

==============

>> Proces s ing l i n e :

ID=1&X=1&Y=5 | ID=2&X=1&Y=7 | ID=3&X=1&Y=10 | ID=4&X=2&Y=7 | ID=5&X=2&Y=12

==============

4.4.3.3 Running the Overlay Nodes

To execute an Overlay Node Client Application in a node we must specify the
ID. For example if we want a node to have the positions defined in the simulation data by
the ID 1 we run the following command: ” java− jaroverlaynode.jar1”

So we execute an application for each of the five nodes in this scenario each with a
different ID from 1 to 5.

We verify that all the nodes enter the network and that the first node that enters the
group is the Central Node of the group. We can see this information in the nodes output
displaying the Group Server responses:

Group

GroupID=1

XMin=0

XMax=3

YMin=0

YMax=21

66 Framework Test Scenarios

CentralNode

NodeID=1

X=1

Y=1

IP =127 .0 .0 .1

Nodes

NodeID X Y IP

1 1 1 1 2 7 . 0 . 0 . 1

2 2 3 1 2 7 . 0 . 0 . 1

3 1 6 1 2 7 . 0 . 0 . 1

4 2 11 1 2 7 . 0 . 0 . 1

5 2 16 1 2 7 . 0 . 0 . 1

=================

When the simulation reaches the tenth iteration the node with the ID 2 sends a broad-
cast message to the group through the Central Node (node with NodeID 1 in this
simulation).

==============

>> Request Host : http : // 127 . 0 . 0 . 1 : 8001

>> Request URI : /sendMsg?FROM=2&TO=−1&MSG=AccidentInX1Y13

<< Response : HTTP/1 .1 200 OK

==============

The Central Node processes the message and sends it to all the other nodes in the
group. We can see its output:

==============

>>Proces s ing Message . . .

>> Request Host : http : // 127 . 0 . 0 . 1 : 8003

>> Request URI : /sendMsg?FROM=2&TO=3&MSG=AccidentInX1Y13

<< Response : HTTP/1 .1 200 OK

==============

>> Request Host : http : // 127 . 0 . 0 . 1 : 8004

>> Request URI : /sendMsg?FROM=2&TO=4&MSG=AccidentInX1Y13

<< Response : HTTP/1 .1 200 OK

==============

>> Request Host : http : // 127 . 0 . 0 . 1 : 8005

>> Request URI : /sendMsg?FROM=2&TO=5&MSG=AccidentInX1Y13

<< Response : HTTP/1 .1 200 OK

==============

>> Received Broadcast Message : AccidentInX1Y13

+OK BroadcastDe l ivered (−0)

4.4.3.4 Conclusions

The implementation of this test scenario using the ITS Overlay Framework has
successfully worked because the Simulator provided the simulation data from the text

4.5 Second Test Scenario 67

file to the correspondent nodes and the defined group was created and assigned to the
nodes by the Group Server.

Also the nodes entered the correct group overlay and did all their position updates in
the group overlay and the node that had the accident has sent the broadcast message to
the Central Node and the Central Node sent the message to all the other nodes in the
group overlay, so the centralized topology was implemented with success.

4.5 Second Test Scenario

4.5.1 Test Specifications

4.5.1.1 Scenario Definition

The objective for this second test scenario is to test a different kind of groups. We will
create three different groups that represent a cross road with semaphores. These groups
are represented in Figure 4.5:

Figure 4.4: Crossing Groups

We will use six vehicles as nodes. In the beginning of the test we will have two nodes
stopped in the group 1 semaphores sending messages to the group indicating a semaphore
is red and a third node entering the group. The group 3 does not have any node and the
group 2 has one node at the semaphore that immediately passes to group 3, one node
going in the middle of the group and one node entering the group. These two final nodes
will stop at the semaphore of the group 2 because it turns red. Figure 4.5 displays the
initial positions of the nodes in their groups.

Initially the nodes 1 and 2 are stopped at the semaphore and the node 3 is going in
their direction and will also stop at the semaphore. The node 4 has green light to go on

68 Framework Test Scenarios

Figure 4.5: Nodes’ Initial Position in the Groups

and goes begins moving to group 3. The nodes 5 and 6 are moving straight in group 2
and then the semaphore turns red and they eventually stop at the semaphore. When the
semaphore in group 2 turns red, the semaphore in group 1 turns green and then the nodes
1, 2 and 3 will move forward to group 3. Finally when the semaphore in group 1 turns
red, the semaphore in group 2 turns green and the nodes 5 and 6 proceed to group 3.

4.5.1.2 Scenario Conditions

This scenario conditions are similar to those of the previous scenario. The overlay
nodes get their position from the Simulator. The simulation data is in a text file named
”second test scenario.txt” with fifteen positions for each of the six nodes. The simulator
updates its values each five seconds during the seventeen time intervals. The positions for
the nodes in the text file are in Table 4.2.

In the Group Server we use the DefaultServerHandlerProcessor class to define
the responses. We will also use the same overlay network topology as in the previous test
scenario, the default centralized topology. So we will use the DefaultOverlayProces-

sor and DefaultHandlerProcessor classes when writing the Overlay Node Client

Application. We just need to implement the GroupsCreator interface of the Group

Server in order to create the desired groups. We create the SecondTestScenarioGroups
class that implements the GroupsCreator interface and in the ”getGroups()” method
of the class we add the three group objects with the defined coordinates to a vector and
then return that vector:

public class SecondTestScenarioGroups implements GroupsCreator{

public Vector<Group> getGroups () {

4.5 Second Test Scenario 69

ID=1 ID=2 ID=3 ID=4 ID=5 ID=6
X=8 Y=16 X=8 Y=18 X=1 Y=16 X=11 Y=14 X=11 Y=5 X=11 Y=1
X=8 Y=16 X=8 Y=18 X=2 Y=16 X=11 Y=15 X=11 Y=6 X=11 Y=2
X=8 Y=16 X=8 Y=18 X=3 Y=16 X=12 Y=16 X=11 Y=7 X=11 Y=3
X=8 Y=16 X=8 Y=18 X=4 Y=16 X=13 Y=16 X=11 Y=8 X=11 Y=4
X=8 Y=16 X=8 Y=18 X=5 Y=16 X=14 Y=16 X=11 Y=9 X=11 Y=5
X=8 Y=16 X=8 Y=18 X=6 Y=16 X=15 Y=16 X=11 Y=10 X=11 Y=6
X=8 Y=16 X=8 Y=18 X=7 Y=16 X=16 Y=16 X=11 Y=11 X=11 Y=7
X=8 Y=16 X=8 Y=18 X=7 Y=16 X=17 Y=16 X=11 Y=12 X=11 Y=8
X=8 Y=16 X=8 Y=18 X=7 Y=16 X=18 Y=16 X=11 Y=14 X=11 Y=9
X=9 Y=16 X=9 Y=18 X=8 Y=16 X=19 Y=16 X=11 Y=14 X=11 Y=10
X=10 Y=16 X=10 Y=18 X=9 Y=16 X=-1 Y=-1 X=11 Y=14 X=11 Y=11
X=11 Y=16 X=11 Y=18 X=10 Y=16 X=-1 Y=-1 X=11 Y=14 X=11 Y=12
X=12 Y=16 X=12 Y=18 X=11 Y=16 X=-1 Y=-1 X=11 Y=14 X=11 Y=13
X=13 Y=16 X=13 Y=18 X=12 Y=16 X=-1 Y=-1 X=11 Y=15 X=11 Y=14
X=14 Y=16 X=14 Y=18 X=13 Y=16 X=-1 Y=-1 X=12 Y=16 X=11 Y=15
X=15 Y=16 X=15 Y=18 X=14 Y=16 X=-1 Y=-1 X=13 Y=16 X=12 Y=16
X=16 Y=16 X=16 Y=18 X=15 Y=16 X=-1 Y=-1 X=14 Y=16 X=13 Y=16

Table 4.2: Second Test Scenario Simulation Data

Vector<Group> Groups = new Vector<Group>() ;

Groups . add (new Group (1 , 0 , 9 , 15 , 20)) ;

Groups . add (new Group (2 , 9 , 13 , 0 , 15)) ;

Groups . add (new Group (3 , 9 , 20 , 15 , 20)) ;

return Groups ;

}
}

4.5.2 Writting the Applications

According to the defined scenario and the implemented interfaces we now write the
applications for the Group Server, the Overlay Nodes and the Simulator. We will
do the tests in the same machine so the Group Server and the Simulator host is on
”localhost”. The Group Server will listen to port 12000 and Simulator will listen to
port 14000.

4.5.2.1 Group Server Application

For this scenario we use the created SecondTestScenarioGroups class that provides
the created groups and we will be using the DefaultServerHandlerProcessor class
to define the Group Server responses. So, the Group Server Application for this
test scenario is written in the same way as the in the first test scenario but using the
SecondTestScenarioGroups as the GroupsCreator object.

70 Framework Test Scenarios

4.5.2.2 Simulator Application

We write the Simulator Application the same way as in the first scenario. We
just have to modify the text file where the Simulator gets the simulation data to the
”second test scenario.txt” text file. So we create a new SimulatorDatabase object with
the SimulatorDatabaseTextFile class using the ”second test scenario.txt” as an input.

4.5.2.3 Overlay Nodes Client Application

We write the Overlay Node Client Application in the same way as in the first test
scenario using the ID as an input, but for this particular scenario instead of a node that
has an accident, we consider that the nodes that stop at the semaphores send a message
to the other nodes in the group. So we will use an ”if clause” to make the nodes send a
message when their position is the same in two consecutive iterations. Considering this,
the Overlay Node Client Application for this scenario can be written in the following
way:

public class SecondScenar ioOver layNodeCl ientAppl icat ion {

public stat ic void main (St r ing [] a rgs) throws Inter ruptedExcept ion {
i f (args . length <1){

System . out . p r i n t l n (”Put ID”) ;

}
System . out . p r i n t l n (”>> Sta r t i ng Overlay Node Cl i en t ”) ;

int ID = In t eg e r . pa r s e In t (args [0]) ;

Over layProcessor pc = new Defau l tOver layProces sor () ;

Cl i entOver lay c l i e n t = new Cl ientOver lay (” l o c a l h o s t ” , 12000 , pc) ;

GetPos i t ion pos = new GetPosit ionFromSimulator (” l o c a l h o s t ” ,

14000 , ID) ;

pos . fetchXY () ;

int X = pos . getX () ;

int Y = pos . getY () ;

c l i e n t . addNode (pos . getX () , pos . getY ()) ;

while (pos . getX () !=−1 && pos . getY () !=−1) {
Thread . s l e e p (5000) ;

pos . fetchXY () ;

c l i e n t . updateNode (pos . getX () , pos . getY ()) ;

i f (pos . getX ()==X && pos . getY ()==Y)

c l i e n t . sendBroadcast (”SemaphoreIsRed ! ”) ;

X = pos . getX () ;

Y = pos . getY () ;

}
c l i e n t . leaveNode () ;

}
}

4.5 Second Test Scenario 71

4.5.3 Results and Conclusions

Using the written applications for this particular scenario we can test if the defined
scenario works. Like for the first test scenario we now create a jar file for each of the
created applications: ”nodeclient.jar”, ”groupserver.jar” and ”simulator.jar”.

We begin to run the Group Server Application and the Simulator Application

using the ”java -jar” command. Then we execute an Overlay Node Client Application

for each of the six nodes in this scenario indicating their simulation data through the ID
input.

4.5.3.1 Running the Group Server

When we begin the Group Server Application execution we verify the groups in
the application output:

> java −j a r groupserver . j a r

Group

GroupID=1

XMin=0

XMax=8

YMin=15

YMax=20

Group

GroupID=2

XMin=9

XMax=13

YMin=0

YMax=14

Group

GroupID=3

XMin=9

XMax=20

YMin=15

YMax=20

>> Sta r t i ng HTTP Server

The three defined groups were successfully created by the implemented SecondTestSce-

narioGroups class. The Group Server is now ready to process and respond to the nodes
requests.

4.5.3.2 Running the Simulator

When we run the Simulator Application we can verify through its output that the
server is processing a different position for each node in five second intervals in a total of

72 Framework Test Scenarios

seventeen iterations. Below we have the output of the simulator for the first five iterations:

> java −j a r s imu lato r . j a r

>> Proces s ing l i n e :

ID=1&X=8&Y=16 | ID=2&X=8&Y=18 | ID=3&X=6&Y=16 | ID=4&X=15&Y=16 | ID=5&X=11&Y

=10 | ID=6&X=11&Y=6

==============

>> Proces s ing l i n e :

ID=1&X=8&Y=16 | ID=2&X=8&Y=18 | ID=3&X=7&Y=16 | ID=4&X=16&Y=16 | ID=5&X=11&Y

=11 | ID=6&X=11&Y=7

==============

>> Proces s ing l i n e :

ID=1&X=8&Y=16 | ID=2&X=8&Y=18 | ID=3&X=8&Y=16 | ID=4&X=17&Y=16 | ID=5&X=11&Y

=12 | ID=6&X=11&Y=8

==============

>> Proces s ing l i n e :

ID=1&X=8&Y=16 | ID=2&X=8&Y=18 | ID=3&X=8&Y=16 | ID=4&X=18&Y=16 | ID=5&X=11&Y

=14 | ID=6&X=11&Y=9

==============

>> Proces s ing l i n e :

ID=1&X=9&Y=16 | ID=2&X=9&Y=18 | ID=3&X=8&Y=16 | ID=4&X=19&Y=16 | ID=5&X=11&Y

=14 | ID=6&X=11&Y=10

==============

4.5.3.3 Running the Overlay Nodes

We execute an Overlay Node Client Application in the same way as in the first
test scenario using the ID to specify the simulation data that the node fetches from the
simulator.

For this test scenario we run an application for each of the six nodes in this scenario
each with a different ID from 1 to 6 according to the simulation data.

When we run all the nodes applications we can see in its output the information of
each group that corresponds to the responses from the Group Server:

Outputs of the Nodes when Joining the Overlay

• Output of the Nodes with IDs 1, 2 and 3

Group

GroupID=1

XMin=0

XMax=9

YMin=15

YMax=20

CentralNode

4.5 Second Test Scenario 73

NodeID=1

X=8

Y=16

IP =127 .0 .0 .1

Nodes

NodeID X Y IP

1 8 16 1 2 7 . 0 . 0 . 1

2 8 18 1 2 7 . 0 . 0 . 1

3 4 16 1 2 7 . 0 . 0 . 1

=================

• Output of the Nodes with IDs 5 and 6

Group

GroupID=2

XMin=9

XMax=13

YMin=0

YMax=14

CentralNode

NodeID=5

X=11

Y=6

IP =127 .0 .0 .1

Nodes

NodeID X Y IP

5 11 5 1 2 7 . 0 . 0 . 1

6 11 1 1 2 7 . 0 . 0 . 1

==============

• Output of the Node with ID 4

Group

GroupID=3

XMin=9

XMax=20

YMin=15

YMax=20

CentralNode

NodeID=4

X=11

Y=15

IP =127 .0 .0 .1

Nodes

NodeID X Y IP

4 11 15 1 2 7 . 0 . 0 . 1

74 Framework Test Scenarios

==============

Operation Output of Node with ID 1

Below we show the output the node with ID 1 in the ninth and tenth iterations of the
simulation. The node with ID 1 is also the node with NodeID 1 and the Central Node

of Group 1 at the ninth iteration. We see in the node’s application output that the nodes
that stop at the semaphores send the indicated broadcast message to their group and that
in the update process, when the node’s position leaves the group borders it gets assigned
with a new group by the Group Server. So, this output demonstrates the update process
of nodes and the exchange of messages between nodes with this overlay topology:

>> Request Host : http : // l o c a l h o s t :14000

>> Request URI : / f e t ch ?ID=1

<< Response : HTTP/1 .1 200 OK

==============

X=8&Y=16>> Updating Node

>> Request Host : http : // l o c a l h o s t :12000

>> Request URI : /updatenode ?NodeID=1&X=8&Y=16

<< Response : HTTP/1 .1 200 OK

==============

ThisNode

NodeID=1

Group

GroupID=1

XMin=0

XMax=9

YMin=15

YMax=20

CentralNode

NodeID=1

X=8

Y=16

IP =127 .0 .0 .1

Nodes

NodeID X Y IP

1 8 16 1 2 7 . 0 . 0 . 1

2 8 18 1 2 7 . 0 . 0 . 1

3 7 16 1 2 7 . 0 . 0 . 1

==============

>> Updating Centra l Node in Group

>> Request Host : http : // 127 . 0 . 0 . 1 : 8002

>> Request URI : /update ?NodeID=1&X=8&Y=16&IP =192.168 .1 .109

<< Response : HTTP/1 .1 200 OK

==============

+OK Node Updated

4.5 Second Test Scenario 75

>> Request Host : http : // 127 . 0 . 0 . 1 : 8003

>> Request URI : /update ?NodeID=1&X=8&Y=16&IP =192.168 .1 .109

<< Response : HTTP/1 .1 200 OK

==============

+OK Node Updated

==============

>> Request Host : http : // 127 . 0 . 0 . 1 : 8002

>> Request URI : /sendMsg?FROM=1&TO=2&MSG=SemaphoreIsRed !

<< Response : HTTP/1 .1 200 OK

==============

>> Request Host : http : // 127 . 0 . 0 . 1 : 8003

>> Request URI : /sendMsg?FROM=1&TO=3&MSG=SemaphoreIsRed !

<< Response : HTTP/1 .1 200 OK

==============

>>Updating Node

>> Request Host : http : // 127 . 0 . 0 . 1 : 8003

>> Request URI : /update ?NodeID=2&X=8&Y=18&IP =127 .0 .0 .1

<< Response : HTTP/1 .1 200 OK

==============

+OK Node Updated

+OK Node Updated

==============

>>Proces s ing Message . . .

>> Request Host : http : // 127 . 0 . 0 . 1 : 8003

>> Request URI : /sendMsg?FROM=2&TO=3&MSG=SemaphoreIsRed !

<< Response : HTTP/1 .1 200 OK

==============

>> Received Broadcast Message : SemaphoreIsRed !

+OK BroadcastDe l ivered (−0)

==============

>>Updating Node

>> Request Host : http : // 127 . 0 . 0 . 1 : 8002

>> Request URI : /update ?NodeID=3&X=7&Y=16&IP =127 .0 .0 .1

<< Response : HTTP/1 .1 200 OK

==============

+OK Node Updated

+OK Node Updated

==============

>>Proces s ing Message . . .

>> Request Host : http : // 127 . 0 . 0 . 1 : 8002

>> Request URI : /sendMsg?FROM=3&TO=2&MSG=SemaphoreIsRed !

<< Response : HTTP/1 .1 200 OK

==============

>> Received Broadcast Message : SemaphoreIsRed !

+OK BroadcastDe l ivered (−0)

76 Framework Test Scenarios

==============

>> Request Host : http : // l o c a l h o s t :14000

>> Request URI : / f e t ch ?ID=1

<< Response : HTTP/1 .1 200 OK

==============

X=9&Y=16>> Updating Node

>> Request Host : http : // l o c a l h o s t :12000

>> Request URI : /updatenode ?NodeID=1&X=9&Y=16

<< Response : HTTP/1 .1 200 OK

==============

ThisNode

NodeID=1

Group

GroupID=3

XMin=9

XMax=20

YMin=15

YMax=20

CentralNode

NodeID=4

X=17

Y=16

IP =127 .0 .0 .1

Nodes

NodeID X Y IP

4 18 16 1 2 7 . 0 . 0 . 1

1 9 16 1 2 7 . 0 . 0 . 1

==============

>> Getting New Centra l Node

>> Request Host : http : // l o c a l h o s t :12000

>> Request URI : / opera t i on ?GroupID=1

<< Response : HTTP/1 .1 200 OK

==============

>> Updating Nodes

>> Request Host : http : // 127 . 0 . 0 . 1 : 8002

>> Request URI : / l eave ?NodeID=1&X=8&Y=16&IP=192.168.1.109&NewCentralNodeID=3

<< Response : HTTP/1 .1 200 OK

==============

>> Request Host : http : // 127 . 0 . 0 . 1 : 8003

>> Request URI : / l eave ?NodeID=1&X=8&Y=16&IP=192.168.1.109&NewCentralNodeID=3

<< Response : HTTP/1 .1 200 OK

==============

==============

NodeID=3

>> Jo in ing Group

>> Request Host : http : // 127 . 0 . 0 . 1 : 8004

>> Request URI : / j o i n ?NodeID=1&X=9&Y=16&IP =192.168 .1 .109

4.5 Second Test Scenario 77

<< Response : HTTP/1 .1 200 OK

==============

+OK Node Joined

The first thing the node does in this output is to get its position from the Simulator

through a ”/fetch” request. Having its position it sends an update request to the Group

Server which responds with the node’s actual group information. Since this node is the
Central Node of group 1, then it sends an update request to all the nodes in the group.

Then we can observe that the node sends a broadcast message to the group 1 and since
the node with ID 1 is the Central Node of its group, it sends the messages directly to
the two other nodes in the group.

Next we see two operations regarding the node with NodeID 2: we can verify that
the node receives an update request of the node with NodeID 2, updates the node in its
own database and then routes the update request to the node with NodeID 3 and then
we can observe that the node with NodeID 2 sent a broadcast message to the Central

Node (node with NodeID 1) and the Central Node processes the message and sends it
to the other node in the group, the node with NodeID 3. Afterwards we verify the same
proceedings for the node with NodeID 3.

The node with NodeID 1 continues with its operation and gets a new position from
the Simulator. The node now is assigned with a new group by the Group Server, so it
asks the Group Server, through an ”/operation” request which node is the new Central
Node of group 1. The Group Server responds that the new Central Node of group 1
is the node with NodeID 3.

Finally the node with NodeID 1 leaves its group informing the other nodes in the group
of the new Central Node and using the information received from the update request
to the Group Server it joins the group 3 by sending a message to the Central Node of
group 3, the node with NodeID 4.

4.5.3.4 Conclusions

We can verify through the output of each node application that the all the nodes
position themselves in the correct groups and move to other groups according to the
defined simulation data. We can also verify that the nodes that stop at the semaphores
send the ”SemophoreIsRed” broadcast message to their group overlay informing the other
nodes in the group of the event.

With this scenario we proved that the framework supports different kinds of vehicle
groupings based on their position.

78 Framework Test Scenarios

4.6 Third Test Scenario

4.6.1 Test Specifications

4.6.1.1 Scenario Definition

This third test scenario is equal in every aspect to the first test scenario, except for
the group overlay network topology. We have one group with a size of 2 x 20 in the
used variables (X and Y) as we can see in the Figure 4.6 already showed in the first test
scenario.

Figure 4.6: Road Group

Like in the first test scenario we use five vehicles as nodes. One of the nodes will have
an accident and send a broadcast message to the group overlay.

In this scenario we want to test the framework with a random group overlay topology,
so we created the following network topology:

Example Network Topology Implementation

In this example implementation of the OverlayProcessor and HandlerProcessor

interfaces we use a different network topology from the default. We developed these
interfaces implementation classes in order to also interact with the DefaultServerHan-

dlerProcessor class that implements the ServerHandlerProcessor interface from the
Group Server but without using the Central Node information.

It is not necessary to explain separately the proceedings in this network topology. The
idea is that a node in a group overlay can only send requests to its neighbor nodes in the
group and then the neighbor nodes themselves forward the requests to their neighbors.
A node only has two neighbor nodes that are the nodes with the closest NodeID to its

4.6 Third Test Scenario 79

own NodeID. To prevent the messages from being eternally propagated in the network a
TTL (Time To Live) mechanism was implemented and each node puts its NodeID in the
request they send to other nodes. An example of the connection between nodes with this
topology is represented in figure 4.7.

Figure 4.7: Example Network Topology with Six Nodes

• Joining Group Example

To explain better how this mechanism works we explain how it works with a join
group request. If we have already four nodes in a group with four nodes with NodeIDs
from 1 to 4 and a node with the NodeID 5 wants to join the group it sends a join
group request to its neighbors, the nodes with NodeIDs 3 and 4.

Then since the node with NodeID 3 knows the received join group request has already
been delivered to the node with NodeID 4 it forwards the join group request to the
node with NodeID 2.

Since the node with NodeID 4 also knows the node with NodeID 3 has received the
request and the node that sent the request was the node with NodeID 5 it does not
forward the request to any node.

The node with NodeID 2 receives the join group request and it only sends to one of
its neighbors, the node with NodeID 1 because it knows the request was delivered
to it by the node with NodeID 3.

Then the node with NodeID 1 knows the node that delivered the request also deliv-
ered the request to its neighbors and since the nodes with NodeID 1 and 2 share the
same neighbor, the node with NodeID 3, the node with NodeID 1 does not forward
the request to any node.

80 Framework Test Scenarios

If for some reason any of the nodes forward the request to a node that already has
received the same request, the TTL mechanism prevents the nodes from forward
the same requests over and over again.

4.6.1.2 Scenario Conditions

The overlay nodes should get their position through a simulator using the GetPosi-

tionFromSimulator class each five seconds.
The simulation data will be on the already used text file named ”first test scenario.txt”

(see First Test Scenario) so the Simulator will use the SimulatorDatabaseTextFile

class to get the simulation data. In the file we have the position for the five nodes in
fifteen intervals of time of the defined five seconds.

When we write the Overlay Node Client Application we will also define that the
node that has the accident is the node with ID equal to two.

Like in the first test scenario, in the Group Server we will use the default implemen-
tation class RoadGroups for creating the defined group and use the DefaultServerHan-

dlerProcessor class to define the responses of the Group Server.
We now have to implement the defined overlay network topology using the Over-

layProcessor and HandlerProcessor interfaces of the Overlay Nodes. We named
this new classes as TestOverlayProcessor and TestHandlerProcessor.

We created another class, the TestOverlayUtil class that provides the TestOver-

layProcessor and TestHandlerProcessor classes with the methods to find the neighbor
nodes of the desired node as described in the network topology explanation.

TestOverlayProcessor

Each time a method from this class is called, the class calculates the TTL to add in
the requests to send and discovers its neighbor nodes to which the requests will be sent.
The TTL value is a function of the total number of nodes in the group overlay - N. With
this network topology, a request that is sent by one node to a group overlay with N nodes
reaches all nodes in N-2 hops. Since the TTL should be superior to the calculated number
of hops we have that TTL = N. The two neighbor nodes are discovered also based in the
NodeID like it was explained before. These nodes are added to the vector neighborNodes

variable of this class.

• Process the response from the Group Server to an add node request

After receiving the response from the Group Server to the add node request this
method does the same as the one in the DefaultOverlayProcessor class to process
response, except it does not use a Central Node so it discards the Central Node

information in the response from the Group Server. The node has now all the
information of its group overlay.

4.6 Third Test Scenario 81

Afterwards the node starts its operation as an HTTP server calling the static method
”NodeHTTPServer(HandlerProcessor pc)” from the OverlayUtil class using the
TestHandlerProcessor class to define its HTTP server responses to the requests.

Finally the join group requests are sent to the neighbor nodes of the node that runs
this method. These requests contain not only the node information but also the
TTL and the NodeID of the sender node. So the format of the join request sent to
the neighbor nodes is ”/join?NodeID=int&X=int&Y=int&IP=String & TTL=int
& SenderID=int”.

• Leave the Group Overlay

When a node wants to leave its group overlay it simply sends a leave group request
to its neighbor nodes in order to inform all the nodes in the group. The leave group
request has the following format: ”/leave?NodeID=int&TTL=int&SenderID=int”.

• Process the response from the Group Server to an update node request

Like defined is this method of the DefaultOverlayProcessor class, when a node
sends an update node request to the Group Server and receives its response it gets
the assigned GroupID from it.

If the new GroupID is equal to the actual GroupID of the static Group object,
then the node sends an update node in group request to its neighbor nodes. The
update node in group request format is similar to the join group request: ”/up-
date?NodeID=int&X=int&Y=int&IP=String&TTL=int&SenderID=int”.

But if the new GroupID is different from the actual GroupID, then the node uses
the ”groupLeaveNode()” method and then does the same proceedings as in the
”processResponseAddNode(String response)” method using the response from the
Group Server to join the new group overlay.

• Send Message

When a node wants to send a message to another node in the group it runs this
method. This method first codes the message to send so that all of the characters
in the message are allowed in the HTTP request. Then the send message request
containing the coded message is sent to the node’s neighbors. All messages sent also
use a unique identifier - MID instead of the sender node NodeID (SenderID). This
message identifier is a long value and is calculated using hour and date in which the
message was sent plus also a random integer number.

So the format of the send message request is ”/sendMsg?FROM=int &TO=int
&MSG=String &TTL=int &MID=long”.

• Send Broadcast Message

82 Framework Test Scenarios

When a node wants to send a message to all the nodes in the group it uses this
method. Like the send message method this method first codes the messages to
send so that all of the characters in the message are allowed in the HTTP request.
The format of the broadcast message request is the same as in the normal message
request but with the ”TO” camp value set as -1. Then node sends the broadcast
message requests to its neighbor nodes.

TestHandlerProcessor

In all the methods of this class that process the requests the first thing they do is to get
the TTL from the request using the static ”getData(String input, type)” method from the
OverlayUtils class with type equal to ”TTL”. The methods of this class that process a
join group, an update node in group, and a leave group requests also get the sender node
NodeID (SenderID) using the same method to get the TTL value but with type equal to
”SenderID”.

• Process a join group request

When a node receives a join group request from another node it first gets the TTL
value and the SenderID value as described before. Then it uses the static ”getN-
ode(String input, String IP, boolean aux)” method to get a node object of the node
that sent the request and adds this node object to the vector GroupNodes of the
static Group object.

Finally it subtracts 1 to the TTL value and if the resulting TTL value is greater
than zero and if the node is not an edge node (nodes in the group with the higher
and the lower NodeIDs) then it sends the same join group request to its neighbor
nodes with the updated value of TTL and the node NodeID as the ”SenderID”.

• Process an update node in group request

When a node receives an update node in group request it operates the same way as
when it receives a join group request, but instead of adding the received node to the
GroupNodes vector, it updates the node in the vector.

• Process a leave group request

Like in the previous two methods, when a node receives a leave group request, it first
retrieves the value of TTL and SenderID from the request. Then it gets the NodeID
of the node that is leaving identified in the request using the static ”getData(String
input, String type)” method with type equals to ”NodeID”. The method removes
the node with the retrieved NodeID from the GroupNodes vector.

Finally it subtracts 1 to the TTL value and if the resulting TTL value is greater
than zero and if the node is not an edge node (nodes in the group with the higher

4.6 Third Test Scenario 83

and the lower NodeIDs) then it sends the same leave group request to its neighbor
nodes with the updated value of TTL and its own NodeID as the ”SenderID”.

• Message handler

When a node receives a send message request this method first gets the TTL value
and instead of getting the SenderID value it gets the message identifier MID value
from the request.

Secondly it also gets the NodeID of the node that sent the message and the destina-
tion node NodeID from the request using the static ”getData(String input, type)”
method with type equals to ”FROM” and ”TO” respectively and also gets the mes-
sage using the static ”getDataString(String input, type)” method with type equals
to ”MSG”.

After getting all the necessary data from the request it verifies if message was already
handled using the received message identification (MID). Each time a message is
received this method saves the last received MID for each sender node. If the received
MID is the same as the saved MID for the same sender node then the message was
already received and process, so the method discards the message.

The method then verifies if it received an individual message or a broadcast message.
If the destination NodeID is higher than zero then it verifies if the node that received
the request is the destination node comparing the retrieved destination NodeID and
the node’s NodeID and if it is the same the message is decoded and thus considered
delivered. If the node is not the destination node it sends the received request to its
neighbors altering the TTL value. If the destination NodeID is equal to -1 then it
has received a broadcast message so it also sends the received request to its neighbor
nodes altering the TTL value and it decodes the received message and considers the
broadcast delivered.

Now that we have the required implementation classes we can write the applications.

4.6.2 Writting the Applications

For this scenario we use the same group and simulation data as in the first scenario
so we will use the Group Server Application and Simulator Application written
for the first test scenario. We only have to modify the topology of the Overlay Node

Client Application of the first test scenario meaning we have to use the created Exam-

pleOverlayProcessor class instead of the DefaultOverlayProcessor class.

Like in the other test scenarios we will do the tests in the same machine so the Group

Server and the Simulator host is on ”localhost”. The Group Server will listen to port
12000 and Simulator will listen to port 14000.

84 Framework Test Scenarios

We just need to perform the necessary modification to the Overlay Node Client

Application of the first test scenario by calling the created TestOverlayProcessor

instead of the DefaultOverlayProcessor used in the first test scenario.

4.6.3 Results and Conclusions

Since for this scenario we only one to test a different group overlay network topology
we will use the already created Group Server Application and the Simulator Appli-

cation for the first scenario (”groupserver.jar” and ”simulator.jar” files). We only have
to create the ”nodeclient.jar” jar file for the Overlay Node Client Application.

Like in the first scenario we begin to execute the Group Server Application and
the Simulator Application using the ”java -jar” command. Then we run the newly
created Overlay Node Client Application for each node in the simulation indicating
their position through the ID input.

4.6.3.1 Running the Overlay Nodes

We execute an Overlay Node Client Application for each of the five nodes in the
scenario each with a different ID from 1 to 5 in the ID order.

We verify that all the nodes successfully enter the network using the defined topology
in the nodes output. Below we show the output of the nodes with ID 1, 2 and 3 when
entering the group overlay.

Joining the Overlay

• Node with ID 1

>> Sta r t i ng Overlay Node Cl i en t

>> Request Host : http : // l o c a l h o s t :14000

>> Request URI : / f e t ch ?ID=1

<< Response : HTTP/1 .1 200 OK

==============

X=1&Y=1>> Node Jo in ing

>> Request Host : http : // l o c a l h o s t :12000

>> Request URI : /addnode?X=1&Y=1

<< Response : HTTP/1 .1 200 OK

==============

ThisNode

NodeID=1

Group

GroupID=1

XMin=0

XMax=3

YMin=0

4.6 Third Test Scenario 85

YMax=21

CentralNode

NodeID=1

X=1

Y=1

IP =127 .0 .0 .1

Nodes

NodeID X Y IP

1 1 1 1 2 7 . 0 . 0 . 1

==============

>> Jo in ing Group

>> Sta r t i ng HTTP Server

==============

>>Node Jo in ing

+OK Node Joined

==============

>>Node Jo in ing

+OK Node Joined

==============

>>Node Jo in ing

+OK Node Joined

==============

>>Node Jo in ing

+OK Node Joined

==============

• Node with ID 2

>> Sta r t i ng Overlay Node Cl i en t

>> Request Host : http : // l o c a l h o s t :14000

>> Request URI : / f e t ch ?ID=2

<< Response : HTTP/1 .1 200 OK

==============

X=1&Y=3>> Node Jo in ing

>> Request Host : http : // l o c a l h o s t :12000

>> Request URI : /addnode?X=1&Y=3

<< Response : HTTP/1 .1 200 OK

==============

ThisNode

NodeID=2

Group

GroupID=1

XMin=0

XMax=3

YMin=0

YMax=21

CentralNode

NodeID=1

X=1

86 Framework Test Scenarios

Y=1

IP =127 .0 .0 .1

Nodes

NodeID X Y IP

1 1 1 1 2 7 . 0 . 0 . 1

2 1 3 1 2 7 . 0 . 0 . 1

==============

>> Jo in ing Group

>> Sta r t i ng HTTP Server

>> Request Host : http : // 127 . 0 . 0 . 1 : 8001

>> Request URI : / j o i n ?NodeID=2&X=1&Y=3&IP=192.168.1.2&TTL=1&SenderID=2

<< Response : HTTP/1 .1 200 OK

==============

+OK Node Joined

==============

>>Node Jo in ing

+OK Node Joined

==============

>>Node Jo in ing

>> Request Host : http : // 127 . 0 . 0 . 1 : 8001

>> Request URI : / j o i n ?NodeID=4&X=2&Y=11&IP=192.168.1.2&TTL=2&SenderID=2

<< Response : HTTP/1 .1 200 OK

==============

+OK Node Joined

==============

>>Node Jo in ing

>> Request Host : http : // 192 .168 .1 .2 :8001

>> Request URI : / j o i n ?NodeID=5&X=2&Y=16&IP=192.168.1.2&TTL=2&SenderID=2

<< Response : HTTP/1 .1 200 OK

==============

+OK Node Joined

==============

• Node with ID 3

>> Sta r t i ng Overlay Node Cl i en t

>> Request Host : http : // l o c a l h o s t :14000

>> Request URI : / f e t ch ?ID=3

<< Response : HTTP/1 .1 200 OK

==============

X=1&Y=6>> Node Jo in ing

>> Request Host : http : // l o c a l h o s t :12000

>> Request URI : /addnode?X=1&Y=6

<< Response : HTTP/1 .1 200 OK

==============

ThisNode

NodeID=3

Group

4.6 Third Test Scenario 87

GroupID=1

XMin=0

XMax=3

YMin=0

YMax=21

CentralNode

NodeID=1

X=1

Y=1

IP =127 .0 .0 .1

Nodes

NodeID X Y IP

1 1 1 1 2 7 . 0 . 0 . 1

2 1 3 1 2 7 . 0 . 0 . 1

3 1 6 1 2 7 . 0 . 0 . 1

==============

>> Jo in ing Group

>> Sta r t i ng HTTP Server

>> Request Host : http : // 127 . 0 . 0 . 1 : 8001

>> Request URI : / j o i n ?NodeID=3&X=1&Y=6&IP=192.168.1.2&TTL=2&SenderID=3

<< Response : HTTP/1 .1 200 OK

==============

+OK Node Joined

>> Request Host : http : // 127 . 0 . 0 . 1 : 8002

>> Request URI : / j o i n ?NodeID=3&X=1&Y=6&IP=192.168.1.2&TTL=2&SenderID=3

<< Response : HTTP/1 .1 200 OK

==============

+OK Node Joined

==============

>>Node Jo in ing

+OK Node Joined

==============

>>Node Jo in ing

>> Request Host : http : // 192 .168 .1 .2 :8002

>> Request URI : / j o i n ?NodeID=5&X=2&Y=16&IP=192.168.1.2&TTL=3&SenderID=3

<< Response : HTTP/1 .1 200 OK

==============

+OK Node Joined

==============

Analyzing these outputs we verify that the first node to join the overlay, the node with
ID 1 and the lowest NodeID receives the join requests corresponding to the four nodes
that enter the group overlay and since this node has the lowest NodeID it does not need
to send the request to its neighbor nodes.

88 Framework Test Scenarios

The node with ID 2 enters the network in second and sends a join message to the node
with ID 1. Then the node with ID 2 routes the join requests of the nodes that follow in
joining the network to the node with ID 1 with the exception of the node with ID 3 join
request, because the node with ID 3 sends the join request directly to the node with ID 1
since it is one of its neighbors when it joins the network.

On the other hand, the node with ID 3 receives the join requests of the other nodes
that join the group overlay (nodes with ID 4 and 5). It does not route the join request of
the node with ID 4 because the node with ID 4 sends its join request directly to the node
with ID 2. So the node with ID 3 only routes the received join request from the node with
ID 5 to the node with ID 2.

4.6.3.2 Conclusions

Observing the results we verify that the behavior of the nodes is according to the
defined overlay network topology, so we conclude from this test scenario that the framework
supports different types of network topologies.

4.7 Analysis

In this section we identify a number of features that are supported by the framework
and why. We also analyse why the framework does not support a number of other features.

The test scenarios results and the framework architecture show us that the framework
supports:

• Creation of static groups whose borders are limited by location coordinates;

• Attribution of the groups to nodes based on their position (a group is assigned to a
node if that node’s position is within the group borders). The overlay networks are
established when the nodes connect themselves based on their group thus creating
group overlays;

• Development of different overlay network topologies based on the nodes data (NodeID,
node’s position and last update in the overlay). The overlay network topology may
support the identification of the nodes close to a specific node;

• Updating of nodes data in their group overlay network according to the defined
network topology. In the update process if a node’s new position is outside its group
borders it lefts its current group overlay and establishes or connect with nodes in a
new group overlay assigned to them based on its position.

• The exchange of messages between nodes in an established group overlay network
(a node can send an individual message to other node in its group or broadcast
messages to all the nodes in its group);

4.7 Analysis 89

• Although we did not test the framework with a GPS device, the framework inter-
faces support obtaining coordinates from GPS devices because the position is get
separately from the node’s operation class using the GetPosition interface. The co-
ordinates must be provided to the node’s operation class, the ClientOverlay class,
using the defined position format of X and Y. So we can get the coordinates through
a GPS and convert them to a pair of integer values to provide these values to the
node.

• The use of simulation data to provide the nodes with their position through the
developed Simulator using outputs with simulation data saved on a text file. Al-
though we did not use traffic algorithms and traffic simulators, it is also possible
to use them because the simulation data is get through the SimulatorDatabase

interface. So, to use traffic algorithms and traffic simulators we need to implement
classes for the SimulatorDatabase interface.

With some changes to the classes and interfaces of the framework it would be possible
to support the following features:

• Creation of dynamic vehicle groupings such as a group which follows a vehicle posi-
tion and has a range of 1Km;

• Creation of groups based on the vehicles speed and direction;

• Identification of nodes in a group overlay using their speed or direction;

• Use of different overlay network topologies for different groups of one Group Server

at the same time, since an Overlay Node Client Application is implemented in
order to support only one overlay network topology and the nodes can exchange
groups depending on their position, so the group overlays of one Group Server

must all have the same network topology (limitation of an overlay network topology
for all the groups in a Group Server).

90 Framework Test Scenarios

Chapter 5

Conclusions

We have presented the ITS Overlay Framework that aims at facilitating the develop-
ment and implementation of overlay networks for ITS. The ITS Overlay Framework has
been designed with interfaces at various levels that provide the means to explore different
types of vehicle groupings and different overlay network topologies.

We believe that the ITS Overlay Framework can be used in the research of Overlay
Networks for Intelligent Transportation Systems and that it can also be used as an edu-
cational tool in the overlay networks area. The main benefits of this framework for the
researchers and software developers include:

• providing an approach to the development and simulation of ITS overlays that eases
the transition to testbeds and real-case usage;

• allowing users to create custom vehicle groupings based on coordinates each associ-
ated with a different overlay network;

• allowing users to define how nodes join a group overlay network based on their
position, update themselves in the group overlay or switch to another group overlay,
and send messages between themselves in the same group;

• supporting the development of different overlay network topologies and protocols

• performing simulation of ITS overlay networks for different scenarios using simulation
data, algorithms or microscopic simulators;

The ITS Overlay Framework architecture is based on a common overlay architecture
using a layered scheme. The benefits of this scheme is that developers can focus on a
particular part of an ITS system without needing to worry about the other parts of the
system; this scheme is supported by other frameworks such as the PlanetSim overlay
simulation/experimentation framework.

Moreover, we used a generic centralized topology and an arbitrarily-defined topology
to demonstrate that the framework allows the use of different overlay topologies.

91

92 Conclusions

Further investigation into how useful the framework is for developing ITS overlay
applications would benefit from deploying the application in a real ITS scenario.

Future Work

As discussed in the Analysis section there are some features this framework does not
support that would be important to implement in this framework’s context.

It is possible to extend the framework to the not support features presented in the
Analysis section by performing changes to some of the implemented classes and interfaces
of the Overlay Node and the Group Server.

For the creation of dynamic vehicle groupings feature (e.g. a group which follows a
vehicle position and has a determined radius) we should first modify the Group class
to put a radius variable and a node variable. Then we must modify the GroupsCre-

ator interface to get groups in function of the nodes. Finally we should change the
GroupServerDatabase to support the created variables and we should also create a
vector of groupsv́ariable in the Overlay Node since this feature allows nodes to have
more than one group.

The creation of groups based on the vehicles speed and direction and identification of
nodes in a group overlay using their speed or direction features can be made by changing
the Group class adding the speed and direction variables and a method to get a group by
speed and/or direction. Having this done we just need to change the requests and their
responses.

As for the use of different overlay network topologies for different groups of one Group

Server feature we first need to create a variable in the Groups class that indicates its
overlay network topology and add this information to the responses of the Group Server.
Then we should add a method to the ClientOverlay class of the Overlay Node that
allows changing the implementation class of the OverlayProcessor interface according
to the node’s group.

Appendix A

Source Code

This appendix contains the source code of the most important classes and interfaces of
the framework discussed in this thesis. The classes and interfaces source code is presented
according to the thesis structure.

A.1 Framework Elements Classes

A.1.1 Node

package over lay . core . e lements ;

import java . s q l . Timestamp ;

public class Node {

public int NodeID ;

public int x ;

public int y ;

public St r ing IP ;

public Timestamp LastUpdate ;

public boolean Centra l = fa l se ;

public int speed = −1;

public int d i r = 0 ;

/∗∗
∗ Contructor o f the Node c l a s s .

∗
∗ @param in t NodeID − NodeID of the node ;

∗ @param in t x − X coord ina te o f the node ;

∗ @param in t y − Y coord ina te o f the node ;

∗ @param St r ing IP − IP o f the node ;

∗/
public Node (int NodeID , int x , int y , S t r ing IP) {

this . NodeID = NodeID ;

93

94 Source Code

this . x = x ;

this . y = y ;

this . IP = IP ;

}

/∗∗
∗ Se t s t h i s node ’ s Centra l boo lean as t rue .

∗
∗/
public void Centra l () {

this . Centra l = true ;

}

/∗∗
∗ Se t s t h i s node ’ s Centra l boo lean as f a l s e .

∗
∗/
public void NotCentral () {

this . Centra l = fa l se ;

}

/∗∗
∗ Updates the timestamp LastUpdate v a r i a b l e .

∗
∗ @param Timestamp time − New va lue f o r the LastUpdate v a r i a b l e ;

∗/
public void setLastUpdate (Timestamp time) {

this . LastUpdate = time ;

}

/∗∗
∗ Change the NodeID of a node to the prov ided NodeID .

∗
∗ @param in t NodeID − New va lue o f NodeID of the node ;

∗/
public void setNodeID (int NodeID) {

this . NodeID = NodeID ;

}

/∗∗
∗ This method a l l ows a Node o b j e c t to have i t s va l u e s updated .

∗
∗ @param in t NodeID − NodeID of the node ;

∗ @param in t x − X coord ina te o f the node ;

∗ @param in t y − Y coord ina te o f the node ;

∗ @param St r ing IP − IP o f the node ;

∗/
public void updateNode (int NodeID , int x , int y , S t r ing IP) {

this . NodeID = NodeID ;

A.1 Framework Elements Classes 95

this . x = x ;

this . y = y ;

this . IP = IP ;

}

/∗∗
∗ Creates a s t r i n g wi th the node ’ s in format ion .

∗/
public St r ing toS t r i ng () {

St r ing temp ;

temp = NodeID + ” ” + x + ” ” + y + ” ” + IP ;

return temp ;

}

/∗∗
∗ Creates a s t r i n g con ta in ing an URI wi th node in format ion to use in

r e qu e s t s .

∗/
public St r ing toURI () {

St r ing temp ;

temp = ”NodeID=”+NodeID+”&X=”+x+”&Y=”+y+”&IP=”+IP ;

return temp ;

}

/∗∗
∗ Creates a s t r i n g o f the a c t ua l node as the c en t r a l node to use in

the Group Server .

∗/
public St r ing toS t r ingCent ra l () {

St r ing temp ;

temp = ”CentralNode\ r \nNodeID=”+NodeID+”\ r \nX=”+x+”\ r \nY=”+y

+”\ r \nIP=”+IP ;

return temp ;

}
}

A.1.2 Group

package over lay . core . e lements ;

import java . s q l . Timestamp ;

import java . u t i l . Vector ;

public class Group {

public int GroupID = −1;

public Vector<Node> GroupNodes ;

public Node CentralNode = null ;

public Node ThisNode = null ;

96 Source Code

public int xmin = −1;

public int xmax = −1;

public int ymin = −1;

public int ymax = −1;

/∗∗
∗ Creates a group wi th the prov ided GroupID .

∗
∗ @param in t GroupID of the as s i gned group ;

∗/
public Group (int GroupID) {

this . GroupID = GroupID ;

GroupNodes = new Vector<Node>() ;

}

/∗∗
∗ Creates a group wi th the prov ided parameters .

∗
∗ @param in t GroupID of the as s i gned group ;

∗ @param in t xmin

∗ @param in t xmax

∗ @param in t ymin

∗ @param in t ymax

∗/
public Group (int GroupID , int xmin , int xmax , int ymin , int ymax) {

this . GroupID = GroupID ;

GroupNodes = new Vector<Node>() ;

this . xmin = xmin ;

this . xmax = xmax ;

this . ymin = ymin ;

this . ymax = ymax ;

}

/∗∗
∗ Adds the prov ided node to the group .

∗ I f the c en t r a l boo lean o f the node i s t rue then i t i s a l s o the

c en t r a l node .

∗
∗ @param Node node to be added to the group ;

∗/
public void addNode (Node node) {

i f (node . Centra l == fa l se)

GroupNodes . add (node) ;

else

CentralNode = node ;

}

/∗∗

A.1 Framework Elements Classes 97

∗ Method to update the node wi th the prov ided NodeID with the

prov ided newnode .

∗
∗ @param in t NodeID of the node to be updated ;

∗ @param Node newnode − Updated node ;

∗/
public void updateNode (int NodeID , Node newnode) {

for (int i =0; i<GroupNodes . s i z e () ; i++){
Node temp = GroupNodes . get (i) ;

i f (temp . NodeID == NodeID) {
GroupNodes . s e t (i , newnode) ;

break ;

}
}

}

/∗∗
∗ Removes the prov ided node from the group .

∗
∗ @param Node node to be removed ;

∗/
public void delNode (Node node) {

GroupNodes . remove (node) ;

i f (CentralNode . NodeID == node . NodeID) {
CentralNode = null ;

}
}

/∗∗
∗ Se t s the prov ided node as This Node .

∗
∗ @param Node node con ta in ing the node ’ s in format ion ;

∗/
public void def ineThisNode (Node node) {

ThisNode = node ;

}

/∗∗
∗ Bui lds a s t r i n g con ta in ing the group and i t s nodes in format ion .

∗/
public St r ing toS t r i ng () {

St r i ngBu f f e r re sponse = new St r i ngBu f f e r () ;

r e sponse . append (”Group\ r \nGroupID=”+GroupID+”\ r \n”) ;

i f (xmin!=−1 && xmax!=−1 && ymin!=−1 && ymax!=−1){
re sponse . append (”XMin=”+xmin+”\ r \n”) ;

r e sponse . append (”XMax=”+xmax+”\ r \n”) ;

r e sponse . append (”YMin=”+ymin+”\ r \n”) ;

r e sponse . append (”YMax=”+ymax+”\ r \n”) ;

}

98 Source Code

i f (CentralNode !=null)

re sponse . append (CentralNode . t oS t r ingCent ra l ()+”\ r \n”

) ;

i f (ThisNode != null) {
re sponse . append (”ThisNode\ r \n”) ;

r e sponse . append (ThisNode . t oS t r i ng ()+”\ r \n”) ;

}
i f (GroupNodes . s i z e () >0){

re sponse . append (”Nodes\ r \n”) ;

r e sponse . append (”NodeID X Y IP\ r \n”) ;

for (int i =0; i<GroupNodes . s i z e () ; i++){
re sponse . append (GroupNodes . get (i) . t oS t r i ng ()

+”\ r \n”) ;

}
}
return re sponse . t oS t r i ng () ;

}

/∗∗
∗ Method to ge t the node in the group wi th the prov ided NodeID .

∗
∗ @param in t NodeID of the de s i r e d node ;

∗ @return Node wi th the prov ided NodeID ;

∗/
public Node getNodeByID (int NodeID) {

i f (ThisNode != null)

i f (ThisNode . NodeID==NodeID)

return ThisNode ;

for (int i =0; i<GroupNodes . s i z e () ; i++){
Node temp = GroupNodes . get (i) ;

i f (temp . NodeID == NodeID)

return temp ;

}
return null ;

}

/∗∗
∗ Method to ge t the l a s t updated node .

∗
∗ @return Node − Last updated node

∗/
public Node getLastUpdatedNode () {

int NodeID = 0 ;

Timestamp time = new Timestamp (0) ;

for (int i =0; i<GroupNodes . s i z e () ; i++){
Node temp = GroupNodes . get (i) ;

i f (temp . LastUpdate . a f t e r (time)) {
time = temp . LastUpdate ;

NodeID = temp . NodeID ;

A.2 Network Communications Layer 99

}
}
return getNodeByID (NodeID) ;

}

/∗∗
∗ Method to ge t the minimum NodeID in the group .

∗
∗ @return i n t The minimum NodeID in the group ;

∗/
public int getMinNodeID () {

int MinNodeID=ThisNode . NodeID ;

for (int i =0; i<GroupNodes . s i z e () ; i++){
i f (GroupNodes . get (i) . NodeID < MinNodeID)

MinNodeID = GroupNodes . get (i) . NodeID ;

}
return MinNodeID ;

}

/∗∗
∗ Method to ge t the maximum NodeID in the group .

∗
∗ @return i n t The maximum NodeID in the group ;

∗/
public int getMaxNodeID () {

int MaxNodeID=ThisNode . NodeID ;

for (int i =0; i<GroupNodes . s i z e () ; i++){
i f (GroupNodes . get (i) . NodeID > MaxNodeID)

MaxNodeID = GroupNodes . get (i) . NodeID ;

}
return MaxNodeID ;

}

}

A.2 Network Communications Layer

A.2.1 Group Server Classes

A.2.1.1 GroupServerHTTPServer

package over lay . s e r v e r . com ;

import java . i o . IOException ;

import java . net . InetSocketAddress ;

import over lay . s e r v e r . com . hand le r s . AddNodeHandler ;

import over lay . s e r v e r . com . hand le r s . DelNodeHandler ;

import over lay . s e r v e r . com . hand le r s . Operation ;

import over lay . s e r v e r . com . hand le r s . UpdateNodeHandler ;

100 Source Code

import over lay . s e r v e r . com . hand le r s . p r o c e s s o r . ServerHandle rProces sor ;

import com . sun . net . h t tp s e rv e r . HttpServer ;

public class GroupServerHTTPServer {

public int PORT = 10000;

public stat ic f ina l int BACKLOG = 0 ;

public stat ic f ina l St r ing URL CONTEXT DEL = ”/delnode ” ;

public stat ic f ina l St r ing URL CONTEXT ADD = ”/addnode” ;

public stat ic f ina l St r ing URL CONTEXT UPDATE = ”/updatenode” ;

public stat ic f ina l St r ing URL CONTEXT OPERATION = ”/ operat i on ” ;

public GroupServerHTTPServer (int Port , ServerHandle rProces sor pc)

throws IOException{
PORT = Port ;

System . out . p r i n t l n (”>> Sta r t i ng HTTP Server ”) ;

this . startHTMLServer (pc) ;

}

private void startHTMLServer (ServerHandle rProcessor pc) throws

IOException{
f ina l HttpServer s e r v e r =

HttpServer . c r e a t e (new InetSocketAddress (PORT) , BACKLOG) ;

s e r v e r . c reateContext (URL CONTEXT DEL, new DelNodeHandler (pc))

;

s e r v e r . c reateContext (URL CONTEXT ADD, new AddNodeHandler (pc))

;

s e r v e r . c reateContext (URL CONTEXT UPDATE, new

UpdateNodeHandler (pc)) ;

s e r v e r . c reateContext (URL CONTEXT OPERATION, new Operation (pc)

) ;

s e r v e r . se tExecutor (null) ;

s e r v e r . s t a r t () ;

}

}

A.2.2 Overlay Nodes Classes

A.2.2.1 Communication

package over lay . com ;

import over lay . core . e lements . Node ;

public class Communication {

public ElementalHttpPost post ;

public ElementalHttpPost p o s t s e r v e r ;

A.2 Network Communications Layer 101

private St r ing s e r v e r h o s t ;

private int s e r v e r p o r t ;

public Communication (S t r ing host , int port) {
s e r v e r h o s t = host ;

s e r v e r p o r t = port ;

p o s t s e r v e r = new ElementalHttpPost (s e rv e r ho s t , s e r v e r p o r t

) ;

}

public void setNewServer (S t r ing host , int port) {
s e r v e r h o s t = host ;

s e r v e r p o r t = port ;

p o s t s e r v e r = new ElementalHttpPost (s e rv e r ho s t , s e r v e r p o r t

) ;

}

public St r ing sendToServer (S t r ing URI) {
St r ing response = ”−ERR Connection Fa i l ed ” ;

try {
re sponse = po s t s e r v e r . Post (URI) ;

} catch (Exception e) {
e . pr intStackTrace () ;

}
return re sponse ;

}

private void changeHost (S t r ing host , int port) {
post = new ElementalHttpPost (host , port) ;

}

public St r ing sendToNode (Node node , S t r ing URI) {
changeHost (node . IP , 8000 + node . NodeID) ;

S t r ing response = ”−ERR Connection Fa i l ed ” ;

try {
re sponse = post . Post (URI) ;

} catch (Exception e) {
e . pr intStackTrace () ;

}
return re sponse ;

}
}

A.2.2.2 GroupServerRequests

package over lay . com . r eque s t s ;

import over lay . core . Cl i entOver lay ;

public class GroupServerRequests {

102 Source Code

public stat ic St r ing AddNode(int x , int y) {
St r ing URI = ”/addnode?X=” + x + ”&Y=”+ y ;

return Cl ientOver lay .Com. sendToServer (URI) ;

}

public stat ic St r ing UpdateNode (int x , int y) {
St r ing URI = ”/updatenode ?NodeID=”+ Cl ientOver lay . Group .

ThisNode . NodeID + ”&X=” + x + ”&Y=”+ y ;

return Cl ientOver lay .Com. sendToServer (URI) ;

}

public stat ic St r ing LeaveNode () {
St r ing URI = ”/delnode ?NodeID=”+ Cl ientOver lay . Group .

ThisNode . NodeID + ”&GroupID=” + Cl ientOver lay . Group .

GroupID ;

return Cl ientOver lay .Com. sendToServer (URI) ;

}

public stat ic St r ing Operation () {
St r ing URI = ”/ operat i on ?GroupID=” + Cl ientOver lay . Group .

GroupID ;

return Cl ientOver lay .Com. sendToServer (URI) ;

}

}

A.2.2.3 OverlayRequests

package over lay . com . r eque s t s ;

import over lay . core . Cl i entOver lay ;

import over lay . core . e lements . Node ;

public class OverlayRequests {

public stat ic St r ing j o i n (Node DestNode , Node JoinNode , S t r ing

Headers) {
return transmitNode (JoinNode , DestNode , ” j o i n ” , Headers) ;

}

public stat ic St r ing l eave (Node DestNode , Node LeaveNode , S t r ing

Headers) {
return transmitNode (LeaveNode , DestNode , ” l eave ” , Headers) ;

}

public stat ic St r ing update (Node DestNode , Node UpdateNode , S t r ing

Headers) {
return transmitNode (UpdateNode , DestNode , ”update” , Headers)

;

A.2 Network Communications Layer 103

}

public stat ic St r ing sendMsg (Node DestNode , int SenderID , int DestID

, S t r ing message , S t r ing Headers) {
St r ing URI = ”/sendMsg?FROM=”+SenderID+”&TO=”+DestID+”&MSG=”

+message+Headers ;

return Cl ientOver lay .Com. sendToNode (DestNode , URI) ;

}

public stat ic St r ing transmitNode (Node node , Node destnode , S t r ing

type , S t r ing Headers) {
St r ing URI = ”/” + type + ”?”+node . toURI ()+Headers ;

return Cl ientOver lay .Com. sendToNode (destnode , URI) ;

}

}

A.2.2.4 NodeHTTPServer

package over lay . com . s e r v e r s ;

import java . i o . IOException ;

import java . net . InetSocketAddress ;

import over lay . com . hand le r s . GeneralJoinGroupHandler ;

import over lay . com . hand le r s . GeneralLeaveGroupHandler ;

import over lay . com . hand le r s . GeneralMessageHandler ;

import over lay . com . hand le r s . GeneralUpdateGroupHandler ;

import over lay . com . hand le r s . p r o c e s s o r . HandlerProcessor ;

import com . sun . net . h t tp s e rv e r . HttpServer ;

public class NodeHTTPServer {

public int PORT = 8000 ;

public stat ic f ina l int BACKLOG = 0 ;

public stat ic f ina l St r ing URL CONTEXT LEAVE = ”/ l eave ” ;

public stat ic f ina l St r ing URL CONTEXT JOIN = ”/ j o i n ” ;

public stat ic f ina l St r ing URL CONTEXT UPDATE = ”/update” ;

public stat ic f ina l St r ing URL CONTEXT SENDMSG = ”/sendMsg” ;

public NodeHTTPServer (int NodeID , HandlerProcessor pc)

throws IOException{
PORT = PORT + NodeID ;

System . out . p r i n t l n (”>> Sta r t i ng HTTP Server ”) ;

this . startHTMLServer (pc) ;

}

private void startHTMLServer (HandlerProcessor pc) throws

IOException{

104 Source Code

f ina l HttpServer s e r v e r = HttpServer . c r e a t e (new

InetSocketAddress (PORT) , BACKLOG) ;

s e r v e r . c reateContext (URL CONTEXT LEAVE, new

GeneralLeaveGroupHandler (pc)) ;

s e r v e r . c reateContext (URL CONTEXT JOIN, new

GeneralJoinGroupHandler (pc)) ;

s e r v e r . c reateContext (URL CONTEXT UPDATE, new

GeneralUpdateGroupHandler (pc)) ;

s e r v e r . c reateContext (URL CONTEXT SENDMSG, new

GeneralMessageHandler (pc)) ;

s e r v e r . se tExecutor (null) ;

s e r v e r . s t a r t () ;

}
}

A.2.3 Simulator Classes

A.2.3.1 SimulatorHTTPServer

package over lay . s imu la to r . com ;

import java . i o . IOException ;

import java . net . InetSocketAddress ;

import over lay . s imu la to r . core . SimulatorDatabase ;

import com . sun . net . h t tp s e rv e r . HttpServer ;

public class SimulatorHTTPServer {

public int PORT = 7000 ;

public stat ic f ina l int BACKLOG = 0 ;

public stat ic f ina l St r ing URL CONTEXT = ”/ f e t ch ” ;

public SimulatorHTTPServer (SimulatorDatabase db , int PORT) throws

IOException{
System . out . p r i n t l n (”>> Sta r t i ng HTTP Server ”) ;

this .PORT = PORT;

this . startHTMLServer (db) ;

}

private void startHTMLServer (SimulatorDatabase db) throws

IOException{
f ina l HttpServer s e r v e r =

HttpServer . c r e a t e (new InetSocketAddress (PORT) , BACKLOG) ;

s e r v e r . c reateContext (URL CONTEXT, new SimulatorHandler (db)) ;

s e r v e r . se tExecutor (null) ;

s e r v e r . s t a r t () ;

}
}

A.3 Management Layer 105

A.3 Management Layer

A.3.1 Group Server Classes and Interfaces

A.3.1.1 ServerHandlerProcessor

package over lay . s e r v e r . com . hand le r s . p r o c e s s o r ;

public interface ServerHandlerProces sor {

/∗∗
∗ Method to proces s the ”/addnode” r e que s t from a node by g i v i n g

i t a NodeID and a s s i gn in g i t to a group and then f i n a l l y

re turn a response the node .

∗
∗ @param St r ing r e que s t from a node ;

∗ @param St r ing IP o f the node t ha t sen t the r e que s t ;

∗ @return S t r ing t ha t con ta ins node and group in format ion ;

∗/
public St r ing addNode (St r ing request , S t r ing IP) ;

/∗∗
∗ Method to proces s the ”/ updatenode” r e que s t from a node

v e r i f y i n g i f the node has l eaved a group and entered o ther and

then re turn a response to i t .

∗
∗ @param St r ing r e que s t from a node ;

∗ @param St r ing IP o f the node t ha t sen t the r e que s t ;

∗ @return S t r ing t ha t con ta ins node and group in format ion ;

∗/
public St r ing updateNode (St r ing request , S t r ing IP) ;

/∗∗
∗ This method proce s s e s the ”/ de lnode ” r e que s t and i s in charge

o f removing the node form the s e r v e r database .

∗
∗ @param St r ing r e que s t from a node ;

∗ @return S t r ing informing i f the node was s u c c e s s f u l l y d e l e t e d ;

∗/
public St r ing delNode (St r ing reques t) ;

/∗∗
∗
∗
∗ @param St r ing r e que s t from a node ;

∗ @return S t r ing wi th the de s i r ed response to the opera t ion r e que s t ;

∗/
public St r ing operat i on (S t r ing reque s t) ;

}

106 Source Code

A.3.1.2 GroupServerDatabase

package over lay . s e r v e r . core ;

import java . s q l . Timestamp ;

import java . u t i l . Vector ;

import over lay . s e r v e r . core . e lements . Group ;

import over lay . s e r v e r . core . e lements . Node ;

import over lay . s e r v e r . core . groups . GroupsCreator ;

public class GroupServerDatabase {

public Vector<Group> Groups ;

public int CurrentNodeID = 0 ;

/∗∗
∗ Constructor o f the GroupServerDatabase c l a s s .

∗ Creates the groups de f ined by the prov ided implementat ion c l a s s o f

the GroupsCreator i n t e r f a c e .

∗
∗ @param GroupsCreator gc − Implementation c l a s s o f the

GroupsCreator i n t e r f a c e ;

∗/
public GroupServerDatabase (GroupsCreator gc) {

Groups = gc . getGroups () ;

printGroups () ;

}

/∗∗
∗ Method to p r i n t in the conso l e the saved groups in format ion .

∗/
private void printGroups () {

for (int i =0; i<Groups . s i z e () ; i++){
System . out . p r i n t l n (Groups . get (i) . t oS t r i ng ()) ;

}
}

/∗∗
∗ Method t ha t r e tu rns the Group wi th the prov ided GroupID .

∗
∗ @param in t GroupID of the group ;

∗ @return Group wi th the prov ided GroupID ;

∗/
public Group getGroupByID (int GroupID) {

Group temp = null ;

for (int i =0; i<Groups . s i z e () ; i++){
i f (Groups . get (i) . GroupID==GroupID)

temp=Groups . get (i) ;

A.3 Management Layer 107

}
return temp ;

}

/∗∗
∗ Method t ha t r e tu rns the index o f the group in the vec t o r t ha t

con ta ins the prov ided coord ina t e s .

∗
∗ @param in t x − X coord ina te ;

∗ @param in t y − Y coord ina te ;

∗ @return i n t Index o f the group o f the v ec t o r t ha t con ta ins the

prov ided coord ina t e s ;

∗/
public int getGroupIndByXY(int x , int y) {

for (int i =0; i<Groups . s i z e () ; i++){
Group tempGroup = Groups . get (i) ;

i f (x >= tempGroup . xmin && x < tempGroup . xmax &&

y >= tempGroup . ymin && y <

tempGroup . ymax)

return i ;

}
return −1;

}

/∗∗
∗ Method t ha t r e tu rns the Group o b j e c t t h a t con ta ins the node wi th

the prov ided NodeID .

∗
∗ @param in t NodeID − NodeID of the node t ha t i s in the de s i r e d

group ;

∗ @return Group t ha t con ta ins the node wi th the prov ided NodeID ;

∗/
public Group getGroupByNodeID (int NodeID) {

Group temp = null ;

System . out . p r i n t l n (”OLA1”) ;

for (int i =0; i<Groups . s i z e () ; i++){
i f (Groups . get (i) . getNodeByID (NodeID) !=null) {

temp=Groups . get (i) ;

System . out . p r i n t l n (”OLA2”) ;

break ;

}
}
return temp ;

}

/∗∗
∗ Method to r ep l a c e the group saved in the vec t o r wi th the prov ided

GroupID with the prov ided Group .

∗

108 Source Code

∗ @param in t GroupID − GroupID of the group t ha t we want to r ep l a c e ;

∗ @param Group sub − Group t ha t r e p l a c e s the group wi th the prov ided

GroupID ;

∗/
public void setGroupByID (int GroupID , Group sub) {

for (int i =0; i<Groups . s i z e () ; i++){
i f (Groups . get (i) . GroupID==GroupID)

Groups . s e t (i , sub) ;

}
}

/∗∗
∗ Method t ha t adds a node to the r e s p e c t i v e group .

∗
∗ @param Node − node to be added ;

∗ @return i n t GroupID of the as s i gned group ;

∗/
public int addNode (Node node) {

CurrentNodeID++;

Timestamp date = new Timestamp (0) ;

date . setTime (System . cur rentT imeMi l l i s ()) ;

node . setNodeID (CurrentNodeID) ;

node . setLastUpdate (date) ;

int GroupID = 0 ;

int ind = getGroupIndByXY(node . x , node . y) ;

i f (ind <0)

return GroupID ;

GroupID = Groups . get (ind) . GroupID ;

for (int i =0; i<Groups . s i z e () ; i++){
Group temp = Groups . get (i) ;

i f (temp . GroupID==GroupID) {
i f (temp . CentralNode == null)

temp . CentralNode = node ;

temp . addNode (node) ;

Groups . s e t (i , temp) ;

}
}
return GroupID ;

}

/∗∗
∗ Method t ha t updates the node wi th the NodeID of the prov ided node

o b j e c t wi th the prov ided node o b j e c t .

∗
∗ @param Node − node to be updated ;

∗ @return i n t GroupID of the as s i gned group ;

∗/
public int updateNode (Node node) {

Timestamp date = new Timestamp (0) ;

A.3 Management Layer 109

date . setTime (System . cur rentT imeMi l l i s ()) ;

node . setLastUpdate (date) ;

Group oldGroup = getGroupByNodeID (node . NodeID) ;

int newGroupInd = this . getGroupIndByXY(node . x , node . y) ;

i f (newGroupInd<0)

return −1;

Group newGroup = Groups . get (newGroupInd) ;

i f (oldGroup . GroupID == newGroup . GroupID)

for (int i =0; i<Groups . s i z e () ; i++){
Group temp = Groups . get (i) ;

i f (temp . GroupID==newGroup . GroupID) {
temp . updateNode (node . NodeID , node) ;

Groups . s e t (i , temp) ;

}
}

else

for (int i =0; i<Groups . s i z e () ; i++){
Group temp = Groups . get (i) ;

i f (temp . GroupID==oldGroup . GroupID) {
temp . delNode (temp . getNodeByID (node .

NodeID)) ;

Groups . s e t (i , temp) ;

}
i f (temp . GroupID==newGroup . GroupID) {

temp . addNode (node) ;

i f (temp . CentralNode==null)

temp . CentralNode = node ;

Groups . s e t (i , temp) ;

}
}

return newGroup . GroupID ;

}

/∗∗
∗ Method t ha t removes the node wi th the prov ided NodeID from the

group wi th the prov ided GroupID .

∗
∗ @param in t NodeID of the node to be removed ;

∗ @param in t GroupID of the group from whom the node w i l l be removed

;

∗/
public void delNode (int NodeID , int GroupID) {

for (int i =0; i<GroupServer . dbase . Groups . s i z e () ; i++){
Group group = GroupServer . dbase . Groups . get (i) ;

i f (group . GroupID == GroupID) {
group . delNode (group . getNodeByID (NodeID)) ;

GroupServer . dbase . Groups . s e t (i , group) ;

}
}

110 Source Code

}
}

A.3.2 Overlay Nodes Interfaces

A.3.2.1 OverlayProcessor

package over lay . core . p ro c e s s o r ;

public interface Over layProcessor {

/∗∗
∗ Change the va lue o f the p o s i t i o n on the node ;

∗
∗ @param in t Value o f X;

∗ @param in t Value o f Y;

∗/
public void changeXY(int x , int y) ;

/∗∗
∗ Process a response from the group s e r v e r to j o i n the i nd i c a t e d

group .

∗
∗ @param St r ing Response from the group s e r v e r ;

∗ @return i n t Value t ha t i n d i c a t e s i f the node jo ined the group ;

∗/
public int processResponseAddNode (St r ing response) ;

/∗∗
∗ Process a response from the group s e r v e r to update a node in a

group .

∗
∗ @param St r ing Response from the group s e r v e r ;

∗ @return i n t Value t ha t i n d i c a t e s i f the node up ta ted i t s e l f in the

group ;

∗/
public int processResponseUpdateNode (St r ing response) ;

/∗∗
∗ Method to inform the group t ha t the node i s l e a v i n g the group .

∗
∗ @return S t r ing Ind i c a t e s i f the node s u c e s s f u l l y l eaved the group ;

∗/
public St r ing groupLeaveNode () ;

/∗∗
∗ Method to send a message to a node in the group .

∗
∗ @param St r ing Message to be send ;

∗ @param in t NodeID from the d e s t i n a t i o n node ;

A.3 Management Layer 111

∗ @return S t r ing say ing i f the message was s u c e s s f u l y d e l i v e r e d ;

∗/
public St r ing sendMsg (St r ing message , int NodeID) ;

/∗∗
∗ Method to send a broadcas t message to a l l nodes in the group .

∗
∗ @param St r ing Message to be send ;

∗ @return S t r ing say ing i f the message was s u c e s s f u l y d e l i v e r e d ;

∗/
public St r ing sendBroadcast (S t r ing message) ;

}

A.3.2.2 HandlerProcessor

package over lay . com . hand le r s . p r o c e s s o r ;

public interface HandlerProcessor {

/∗∗
∗ Method to proces s a j o i n group r e que s t .

∗
∗ @return S t r ing Response to the node t ha t i s t r y i n g to j o i n the

group ;

∗/
public St r ing joinGroup (St r ing input , S t r ing IP) ;

/∗∗
∗ Method to proces s a update node in group r e que s t .

∗
∗ @return S t r ing Response to the node t ha t i s t r y i n g to update

i t s e l f in the group ;

∗/
public St r ing updateGroup (St r ing input , S t r ing IP) ;

/∗∗
∗ Method to proces s a l e a v e group r e que s t .

∗
∗ @return S t r ing Response to the node t ha t i s t r y i n g to l e a v e the

group ;

∗/
public St r ing leaveGroup (St r ing input) ;

/∗∗
∗ Method to proces s the r e c e i v ed messages from a node .

∗
∗ @return S t r ing Response to the node t ha t has send the message ;

∗/
public St r ing messageHandler (S t r ing reques t) ;

}

112 Source Code

A.3.3 Simulator Interfaces

A.3.3.1 SimulatorDatabase

package over lay . s imu la to r . core ;

public interface SimulatorDatabase {

/∗∗
∗ Gets the next p o s i t i o n g iven by X and Y.

∗/
public void fetchXY () ;

/∗∗
∗ Gives back the a c t ua l va lue o f Y o f a Node .

∗
∗ @param in t ID − I d e n t i f i c a t i o n o f the node ;

∗ @return i n t Y − Actual va lue o f Y;

∗/
public int getX (int ID) ;

/∗∗
∗ Gives back the a c t ua l va lue o f Y o f a Node .

∗
∗ @param in t ID − I d e n t i f i c a t i o n o f the node ;

∗ @return i n t Y − Actual va lue o f Y;

∗/
public int getY (int ID) ;

/∗∗
∗ Function to see i f t h e r e i s more p o s i t i o n va l u e s .

∗
∗ @return t rue I f t h e r e i s not more po s i t i o n va l u e s to f e c t h ;

∗ @return f a l s e Otherwise ;

∗/
public boolean isEnd () ;

/∗∗
∗ Function to f o r c e the end boo lean to be t rue in order to end the

s imu la t i on .

∗/
public void setEnd () ;

/∗∗
∗ Bui ld a S t r ing to re turn v ia an HTTP response .

∗
∗ @return S t r ing f o r HTTP response .

∗/
public St r ing bui ldResponse (S t r ing input) ;

}

A.4 Application-Level Layer 113

A.4 Application-Level Layer

A.4.1 Group Server Classes and Interfaces

A.4.1.1 GroupsCreator

package over lay . s e r v e r . core . groups ;

import java . u t i l . Vector ;

import over lay . s e r v e r . core . e lements . Group ;

public interface GroupsCreator {

/∗∗
∗ Method t ha t c r ea t e s the groups f o r the o v e r l a y s .

∗
∗ @return Vector<Group> Containing the groups ;

∗/
public Vector<Group> getGroups () ;

}

A.4.1.2 GroupServer

package over lay . s e r v e r . core ;

import java . i o . IOException ;

import over lay . s e r v e r . com . GroupServerHTTPServer ;

import over lay . s e r v e r . com . hand le r s . p r o c e s s o r . ServerHandle rProcessor ;

import over lay . s e r v e r . core . groups . GroupsCreator ;

public class GroupServer {

public stat ic GroupServerDatabase dbase ;

/∗∗
∗ Constructor o f the GroupServer c l a s s .

∗
∗ @param GroupsCreator gc − Implementation c l a s s o f the

GroupsCreator i n t e r f a c e ;

∗ @param ServerHandlerProcessor pc − Implementation c l a s s o f the

ServerHandlerProcessor i n t e r f a c e ;

∗ @param in t por t − Value o f the por t to which the Group Server HTTP

se r v e r w i l l l i s t e n ;

∗ @throws IOException

∗/
public GroupServer (GroupsCreator gc , ServerHandlerProces sor pc , int

port) throws IOException{
GroupServer . dbase = new GroupServerDatabase (gc) ;

114 Source Code

new GroupServerHTTPServer (port , pc) ;

}

/∗∗
∗ Method to change the implementat ion c l a s s o f the GroupsCreator

i n t e r f a c e i t uses in order to d e f i n e d i f f e r e n t groups .

∗
∗ @param GroupsCreator gc − New implementat ion c l a s s o f the

GroupsCreator i n t e r f a c e ;

∗ @return S t r ing t ha t con ta in ing the de f ined groups ;

∗/
public St r ing setGroups (GroupsCreator gc) {

GroupServer . dbase = new GroupServerDatabase (gc) ;

return dbase . Groups . t oS t r i ng () ;

}
}

A.4.2 Overlay Nodes Classes and Interfaces

A.4.2.1 ClientOverlay

package over lay . core ;

import over lay . com . Communication ;

import over lay . com . r eque s t s . GroupServerRequests ;

import over lay . core . e lements . Group ;

import over lay . core . p ro c e s s o r . Over layProcessor ;

public class Cl ientOver lay {

public stat ic Group Group ;

public stat ic Communication Com;

public Over layProcessor pc ;

/∗∗
∗ Constructor o f the c l a s s C l i en tOver lay .

∗
∗ @param St r ing hos t − Host address o f the Group Server ;

∗ @param in t por t − Port o f the Group Server ;

∗ @param Over layProcessor pc − Implementation c l a s s o f the

Over layProcessor i n t e r f a c e ;

∗/
public Cl ientOver lay (St r ing host , int port , Over layProcessor pc) {

Cl ientOver lay .Com = new Communication (host , port) ;

this . pc = pc ;

}

/∗∗
∗ Method to send a r e que s t to add the node to

A.4 Application-Level Layer 115

∗ the Group Server and then proces s i t s response .

∗
∗ @param in t x − Value o f p o s i t i o n in the X ax i s .

∗ @param in t y − Value o f p o s i t i o n in the Y ax i s .

∗/
public int addNode (int x , int y) {

System . out . p r i n t l n (”>> Node Jo in ing ”) ;

S t r ing response = GroupServerRequests . AddNode(x , y) ;

System . out . p r i n t l n (re sponse) ;

System . out . p r i n t l n (”==============”) ;

pc . changeXY(x , y) ;

return pc . processResponseAddNode (response) ;

}

/∗∗
∗ Method to send a r e que s t to update the node to

∗ the Group Server and then proces s i t s response .

∗
∗ @param in t x − Updated va lue o f p o s i t i o n in the X ax i s .

∗ @param in t y − Updated va lue o f p o s i t i o n in the Y ax i s .

∗/
public int updateNode (int x , int y) {

System . out . p r i n t l n (”>> Updating Node”) ;

S t r ing response = GroupServerRequests . UpdateNode (x , y) ;

System . out . p r i n t l n (re sponse) ;

System . out . p r i n t l n (”==============”) ;

pc . changeXY(x , y) ;

return pc . processResponseUpdateNode (re sponse) ;

}

/∗∗
∗ Method to inform the group ove r l ay t ha t the node i s l e a v i n g and

then

∗ send a r e que s t to the Group Server to remove the node .

∗
∗/
public St r ing leaveNode () {

System . out . p r i n t l n (”>> Node Leaving”) ;

pc . groupLeaveNode () ;

return GroupServerRequests . LeaveNode () ;

}

/∗∗
∗ Method to send a message to a node in the

∗ same group ove r l ay wi th the d e s t i n a t i o n NodeID .

∗
∗/
public St r ing sendMsg (St r ing message , int NodeID) {

return pc . sendMsg (message , NodeID) ;

116 Source Code

}

/∗∗
∗ Method to send a broadcas t message to a l l

∗ the nodes in the same group ove r l a y .

∗
∗/
public St r ing sendBroadcast (S t r ing message) {

return pc . sendBroadcast (message) ;

}
}

A.4.2.2 GetPosition

package over lay . core . p o s i t i o n ;

public interface GetPos i t ion {

/∗∗
∗ Fetches the next pa i r o f va l u e s X and Y.

∗
∗/
public void fetchXY () ;

/∗∗
∗ Gets the va lue o f X fo r the node .

∗
∗ @return i n t Value o f p o s i t i o n in X;

∗/
public int getX () ;

/∗∗
∗ Gets the va lue o f Y fo r the node .

∗
∗ @return i n t Value o f p o s i t i o n in Y;

∗/
public int getY () ;

}

A.4.3 Simulator Classes

A.4.3.1 SimulatorProcessor

package over lay . s imu la to r . core ;

import java . i o . IOException ;

import over lay . s imu la to r . com . SimulatorHTTPServer ;

A.5 Default Implementation Classes 117

public class S imulatorProces sor {

public stat ic SimulatorDatabase db ;

public S imulatorProces sor (SimulatorDatabase db , int PORT) {
S imulatorProces sor . db = db ;

try {
new SimulatorHTTPServer (db , PORT) ;

} catch (IOException e) {
e . pr intStackTrace () ;

}
}

public void fetchXY () {
db . fetchXY () ;

}

public void setEnd () {
db . setEnd () ;

}

public boolean isEnd () {
return db . isEnd () ;

}
}

A.5 Default Implementation Classes

A.5.1 Group Server Classes

A.5.1.1 RoadGroups

package over lay . s e r v e r . core . groups ;

import java . u t i l . Vector ;

import over lay . s e r v e r . core . e lements . Group ;

public class RoadGroups implements GroupsCreator {

private int xS ize ;

private int yS ize ;

private int numHGroups ;

private int numVGroups ;

/∗∗
∗ Construtor o f the c l a s s RoadGroups .

∗
∗ @param in t Number o f h o r i z on t a l groups ;

∗ @param in t Number o f v e r t i c a l groups ;

∗ @param in t S i z e o f the groups in the X ax i s ;

118 Source Code

∗ @param in t S i z e o f the groups in the Y ax i s ;

∗/
public RoadGroups (int numHGroups , int numVGroups , int xSize , int

yS ize) {
this . numHGroups = numHGroups ;

this . numVGroups = numVGroups ;

this . xS i ze = xSize ;

this . yS i ze = ySize ;

}

/∗∗
∗ Method t ha t c r ea t e s the groups f o r the o v e r l a y s .

∗
∗ @return Vector<Group> Containing the groups ;

∗/
public Vector<Group> getGroups () {

return getRoadGroups () ;

}

/∗∗
∗ Method to c r ea t e road groups .

∗
∗ @return Vector<Group> Containing the road groups ;

∗/
private Vector<Group> getRoadGroups () {

Vector<Group> Groups = new Vector<Group>() ;

int xmin = 0 ;

int ymin = 0 ;

int CurrentGroupID = 1 ;

for (int i =0; i<numVGroups ; i++){
Groups . add (new Group(CurrentGroupID , xmin , xmin+

xSize , ymin , ymin+ySize)) ;

CurrentGroupID++;

for (int j =1; j<numHGroups ; j++){
xmin = xmin + xSize ;

Groups . add (new Group(CurrentGroupID , xmin ,

xmin+xSize , ymin , ymin+ySize)) ;

CurrentGroupID++;

}
xmin = 0 ;

ymin = ymin + ySize ;

}
return Groups ;

}

}

A.5.1.2 SecondTestScenarioGroups

A.5 Default Implementation Classes 119

package over lay . s e r v e r . core . groups ;

import java . u t i l . Vector ;

import over lay . s e r v e r . core . e lements . Group ;

public class SecondTestScenarioGroups implements GroupsCreator{

/∗∗
∗ This method re turns the Groups de f ined in the Second Test Scenario .

∗
∗/
public Vector<Group> getGroups () {

Vector<Group> Groups = new Vector<Group>() ;

Groups . add (new Group (1 , 0 , 9 , 15 , 20)) ;

Groups . add (new Group (2 , 9 , 13 , 0 , 15)) ;

Groups . add (new Group (3 , 9 , 20 , 15 , 20)) ;

return Groups ;

}

}

A.5.1.3 DefaultServerHandlerProcessor

package over lay . s e r v e r . com . hand le r s . p r o c e s s o r ;

import over lay . s e r v e r . core . GroupServer ;

import over lay . s e r v e r . core . e lements . Group ;

import over lay . s e r v e r . core . e lements . Node ;

import over lay . s e r v e r . u t i l . GroupServerUti l ;

public class Defau l tServerHand le rProces sor implements ServerHandlerProcessor

{

public St r ing addNode (St r ing request , S t r ing IP) {
Node newnode = GroupServerUti l . getNode (request , IP) ;

S t r ing response = ”−ERR Node Null ” ;

i f (newnode!=null) {
int GroupID = processNewNode (newnode) ;

i f (GroupID!=0)

response = GroupServerUti l .

bui ldResponse (newnode , GroupID) ;

else

re sponse = ”−ERR Group Not Exis tant ”

;

}
return re sponse ;

}

private int processNewNode (Node newnode) {
int GroupID = 0 ;

120 Source Code

GroupID = GroupServer . dbase . addNode (newnode) ;

return GroupID ;

}

public St r ing updateNode (St r ing request , S t r ing IP) {
Node node = GroupServerUti l . getNodeWithID (request , IP) ;

S t r ing response = ”−ERR” ;

i f (node !=null) {
int GroupID = processUpdateNode (node) ;

i f (GroupID > 0)

re sponse = GroupServerUti l . bui ldResponse (

node , GroupID) ;

}
return re sponse ;

}

private int processUpdateNode (Node node) {
int GroupID = 0 ;

GroupID = GroupServer . dbase . updateNode (node) ;

return GroupID ;

}

public St r ing delNode (St r ing reques t) {
St r ing [] temp = reques t . s p l i t (”&”) ;

i f (temp . length <2)

return ”−ERR Lack o f In format ion ” ;

int NodeID = GroupServerUti l . getNodeID (temp [0]) ;

int GroupID = GroupServerUti l . getGroupID (temp [1]) ;

GroupServer . dbase . delNode (NodeID , GroupID) ;

return ”+OK NodeDeleted” ;

}

public St r ing operat i on (S t r ing reque s t) {
int GroupID = GroupServerUti l . getGroupID (reques t) ;

Group updt = GroupServer . dbase . getGroupByID (GroupID) ;

Node newCentralNode = updt . getLastUpdatedNode () ;

updt . CentralNode = newCentralNode ;

GroupServer . dbase . setGroupByID (GroupID , updt) ;

return ”NodeID=”+updt . CentralNode . NodeID ;

}
}

A.5.2 Overlay Nodes Classes

A.5.2.1 GetPositionFromSimulator

package over lay . core . p o s i t i o n ;

import over lay . com . ElementalHttpPost ;

A.5 Default Implementation Classes 121

public class GetPosit ionFromSimulator implements GetPos i t ion {

private int x=−1;

private int y=−1;

private int ID=−1;

private St r ing host = ”” ;

private int port = 7000 ;

public GetPosit ionFromSimulator (S t r ing host , int port , int ID) {
this . host = host ;

this . port = port ;

setID (ID) ;

}

public int getX () {
return x ;

}

public int getY () {
return y ;

}

public void setID (int ID) {
this . ID = ID ;

}

public void fetchXY () {
ElementalHttpPost post = new ElementalHttpPost (host , port) ;

S t r ing resp = ”” ;

this . x = −1;

this . y = −1;

try {
re sp = post . Post (”/ f e t ch ?”+”ID=”+ID) ;

System . out . p r i n t (re sp) ;

i f (! r e sp . equa l s (”−ERR Data Not Found”)) {
St r ing [] temp = resp . s p l i t (”&”) ;

for (int i =0; i<temp . l ength ; i++){
St r ing [] temp2 = temp [i] . s p l i t (”=”)

;

i f (temp2 [0] . equa l s (”X”))

this . x = In t eg e r . pa r s e In t (

temp2 [1]) ;

i f (temp2 [0] . equa l s (”Y”))

this . y = In t eg e r . pa r s e In t (

temp2 [1]) ;

}
}

} catch (Exception e) {
e . pr intStackTrace () ;

122 Source Code

}

}

}

A.5.2.2 OverlayUtil

package over lay . core . u t i l s ;

import java . i o . IOException ;

import java . net . InetAddress ;

import java . net . UnknownHostException ;

import over lay . com . hand le r s . p r o c e s s o r . HandlerProcessor ;

import over lay . com . s e r v e r s . NodeHTTPServer ;

import over lay . core . Cl i entOver lay ;

import over lay . core . e lements . Group ;

import over lay . core . e lements . Node ;

public class Over layUt i l {

/∗∗ Overlay Processor U t i l s ∗∗/

/∗∗
∗ Gets t h i s node data us ing the response from the Group Server .

∗/
public stat ic Node getThisNode (S t r ing response , int x , int y) {

int NodeID = −1;

S t r ing [] temp = response . s p l i t (”\ r \n”) ;

for (int i =0; i < temp . l ength ; i++){
i f (temp [i] . equa l s (”ThisNode”)) {

St r ing [] temp2 = temp [i +1] . s p l i t (”=”) ;

NodeID = Int eg e r . pa r s e In t (temp2 [1]) ;

break ;

}
}
InetAddress addr ;

S t r ing IP = null ;

try {
addr = InetAddress . getLocalHost () ;

IP = addr . getHostAddress () ;

} catch (UnknownHostException e) {
e . pr intStackTrace () ;

}
i f (IP!=null)

return new Node (NodeID , x , y , IP) ;

else

return new Node (NodeID , x , y , ” l o c a l h o s t ”) ;

A.5 Default Implementation Classes 123

}

/∗∗
∗ Gets CentralNode data us ing the response from the Group Server ;

∗
∗ @param response Response from the Group Server ;

∗ @return Node CentralNode The n o t i f i e d c en t r a l node ;

∗/
public stat ic Node getCentralNode (St r ing response) {

St r ing [] temp = response . s p l i t (”\ r \n”) ;

int centralNodeID=−1, centralNodeX=−1, centralNodeY=−1;

S t r ing centralNodeIP=”” ;

for (int i =0; i < temp . l ength ; i++){
i f (temp [i] . equa l s (”CentralNode”)) {

St r ing [] temp2 = temp [i +1] . s p l i t (”=”) ;

centralNodeID = Int eg e r . pa r s e In t (temp2 [1]) ;

temp2 = temp [i +2] . s p l i t (”=”) ;

centralNodeX = Int eg e r . pa r s e In t (temp2 [1]) ;

temp2 = temp [i +3] . s p l i t (”=”) ;

centralNodeY = Int eg e r . pa r s e In t (temp2 [1]) ;

temp2 = temp [i +4] . s p l i t (”=”) ;

centralNodeIP = temp2 [1] ;

break ;

}
}
Node c en t r a l = new Node (centralNodeID , centralNodeX ,

centralNodeY , centralNodeIP) ;

c e n t r a l . Centra l () ;

return c en t r a l ;

}

/∗∗
∗ Gets GroupID us ing the response from the Group s e r v e r .

∗
∗ @param response Response from the Group s e r v e r .

∗ @return i n t groupID The ID of the node ’ s group .

∗/
public stat ic int getGroupID (St r ing response) {

St r ing [] temp = response . s p l i t (”\ r \n”) ;

int groupID = −1;

for (int i =0; i < temp . l ength ; i++){
St r ing [] temp2 = temp [i] . s p l i t (”=”) ;

i f (temp2 [0] . equa l s (”GroupID”)) {
groupID = Int eg e r . pa r s e In t (temp2 [1]) ;

break ;

}
}
return groupID ;

}

124 Source Code

/∗∗
∗ Bui lds the group us ing the response from the main s e r v e r .

∗
∗ @param response Response from the main s e r v e r ;

∗/
public stat ic void addGroupNodes (S t r ing response) {

St r ing [] temp = response . s p l i t (”Nodes\ r \n”) ;

S t r ing [] temp1 = temp [1] . s p l i t (”\ r \n”) ;

for (int i =1; i < temp1 . l ength ; i++){
St r ing [] temp2 = temp1 [i] . s p l i t (” ”) ;

int nodeid = In t eg e r . pa r s e In t (temp2 [0]) ;

i f (nodeid != Cl ientOver lay . Group . ThisNode . NodeID) {
int x = In t eg e r . pa r s e In t (temp2 [1]) ;

int y = In t eg e r . pa r s e In t (temp2 [2]) ;

C l i entOver lay . Group . addNode (new Node (nodeid ,

x , y , temp2 [3])) ;

}
}

}

/∗∗
∗ I n i c i a t e s the Node ’ s HTTP Server to proces s r e qu e s t s .

∗
∗ @throws IOException

∗/
public stat ic void NodeHTTPServer (HandlerProcessor pc) {

try {
new NodeHTTPServer (Cl i entOver lay . Group . ThisNode .

NodeID , pc) ;

} catch (IOException e) {
e . pr intStackTrace () ;

}
}

/∗∗
∗ Creates a new empty Group .

∗
∗ @param GroupID The ID of the Group ;

∗/
public stat ic void def ineGroup (int GroupID) {

Cl ientOver lay . Group = new Group(GroupID) ;

}

/∗∗
∗ Gives t h i s node ’ s IP .

∗
∗ @return S t r ing This node ’ s IP ;

∗/

A.5 Default Implementation Classes 125

public stat ic St r ing getThisNodeIP () {
St r ing IP = Cl ientOver lay . Group . ThisNode . IP ;

try {
InetAddress addr = InetAddress . getLocalHost () ;

IP = addr . getHostAddress () ;

} catch (UnknownHostException e) {
e . pr intStackTrace () ;

}
return IP ;

}

/∗∗ Handler Processor U t i l s ∗∗/

/∗∗
∗ Gets a node o b j e c t from a rec e i v ed query .

∗/
public stat ic Node getNode (S t r ing input , S t r ing IP , boolean aux) {

St r ing [] temp = input . s p l i t (”&”) ;

int NodeID = −1;

int x = −1;

int y = −1;

S t r ing ip = null ;

for (int i =0; i<temp . l ength ; i++){
St r ing [] temp2 = temp [i] . s p l i t (”=”) ;

i f (temp2 [0] . equa l s (”NodeID”))

NodeID = Int eg e r . pa r s e In t (temp2 [1]) ;

i f (temp2 [0] . equa l s (”X”))

x = In t eg e r . pa r s e In t (temp2 [1]) ;

i f (temp2 [0] . equa l s (”Y”))

y = In t eg e r . pa r s e In t (temp2 [1]) ;

i f (temp2 [0] . equa l s (”IP”))

ip = temp2 [1] ;

}
i f (ip==null | | aux) {

St r ing [] newIP = IP . s p l i t (” : ”) ;

return new Node (NodeID , x , y , newIP [0]) ;

}
else

return new Node (NodeID , x , y , ip) ;

}

/∗∗
∗ Gets a node o b j e c t from the database t ha t has the same NodeID as

in the r e c e i v ed query .

∗ @param St r ing input − Received query ;

∗ @return Node wi th NodeID equa l to the one in the r e c e i v ed query ;

∗/
public stat ic Node getNode (S t r ing input) {

St r ing [] temp = input . s p l i t (”=”) ;

126 Source Code

i f (temp [0] . equa l s (”NodeID”)) {
int nodeid = In t eg e r . pa r s e In t (temp [1]) ;

i f (Cl i entOver lay . Group . ThisNode . NodeID == nodeid)

return Cl ientOver lay . Group . ThisNode ;

else

return Cl ientOver lay . Group . getNodeByID (nodeid) ;

}
else

return null ;

}

/∗∗
∗ Method t ha t parses a node ’ s query and g e t s the i n t e g e r va lue where

the parameter e qua l s the type S t r ing .

∗/
public stat ic int getData (S t r ing input , S t r ing type) {

St r ing [] temp = input . s p l i t (”&”) ;

for (int i =0; i<temp . l ength ; i++){
St r ing [] temp2 = temp [i] . s p l i t (”=”) ;

i f (temp2 [0] . equa l s (type)) {
return I n t eg e r . pa r s e In t (temp2 [1]) ;

}
}
return −2;

}

/∗∗
∗ This method does the same as the one be f o r e but i t r e tu rns a

S t r ing in s t ead o f an i n t e g e r .

∗/
public stat ic St r ing getDataStr ing (S t r ing input , S t r ing type) {

St r ing [] temp = input . s p l i t (”&”) ;

for (int i =0; i<temp . l ength ; i++){
St r ing [] temp2 = temp [i] . s p l i t (”=”) ;

i f (temp2 [0] . equa l s (type))

return temp2 [1] ;

}
return null ;

}
}

A.5.2.3 DefaultOverlayProcessor

package over lay . core . p ro c e s s o r ;

import over lay . com . hand le r s . p r o c e s s o r . De fau l tHandle rProcessor ;

import over lay . com . r eque s t s . GroupServerRequests ;

import over lay . com . r eque s t s . OverlayRequests ;

import over lay . core . Cl i entOver lay ;

import over lay . core . e lements . Node ;

A.5 Default Implementation Classes 127

import over lay . core . u t i l s . Over layMessagesUti l ;

import over lay . core . u t i l s . Over layUt i l ;

public class Defau l tOver layProces sor implements Over layProcessor {

public int NodeID ;

public int X;

public int Y;

public Defau l tOver layProces sor () {
}

public void changeXY(int x , int y) {
i f (Cl i entOver lay . Group != null)

NodeID = Cl ientOver lay . Group . ThisNode . NodeID ;

X = x ;

Y = y ;

}

public int processResponseAddNode (St r ing response) {
int groupID = −1;

groupID = Over layUt i l . getGroupID (response) ;

i f (groupID < 0)

return −1;

else

Over layUt i l . def ineGroup (groupID) ;

Cl i entOver lay . Group . def ineThisNode (Over layUt i l . getThisNode (

response , X, Y)) ;

Cl i entOver lay . Group . addNode (Over layUt i l . getCentralNode (

re sponse)) ;

Over layUt i l . addGroupNodes (re sponse) ;

NodeJoin (fa l se) ;

return groupID ;

}

/∗∗
∗ Method to i n i t i a t e the HTTP ser v e r and send a j o i n r e que s t to a l l

the nodes in the group .

∗
∗ @param Boolean hasServer i t i s t rue i f the c l i e n t i s a l r eady

running an HTTP se rv e r ;

∗/
private void NodeJoin (boolean hasServer) {

System . out . p r i n t l n (”>> Jo in ing Group”) ;

i f (! hasServer)

Over layUt i l . NodeHTTPServer (new

Defau l tHandlerProcessor ()) ;

i f (Cl i entOver lay . Group . CentralNode . NodeID != Cl ientOver lay .

Group . ThisNode . NodeID)

128 Source Code

System . out . p r i n t l n (OverlayRequests . j o i n (

Cl i entOver lay . Group . CentralNode , Cl i entOver lay .

Group . ThisNode , ””)) ;

System . out . p r i n t l n (”==============”) ;

}

public St r ing groupLeaveNode () {
St r ing resp = ”−ERR Group Leave” ;

i f (Cl i entOver lay . Group . ThisNode . NodeID == Cl ientOver lay .

Group . CentralNode . NodeID) {
i f (Cl i entOver lay . Group . GroupNodes . s i z e () >0){

System . out . p r i n t l n (”>> Getting New Centra l

Node”) ;

re sp = GroupServerRequests . Operation () ;

System . out . p r i n t l n (”>> Updating Nodes”) ;

centralNodeLeave (resp) ;

System . out . p r i n t l n (”==============”) ;

}
else

re sp = ”+OK Group Terminated” ;

}
else

re sp = OverlayRequests . l e ave (Cl i entOver lay . Group .

CentralNode , Cl i entOver lay . Group . ThisNode , ””) ;

System . out . p r i n t l n (resp) ;

return re sp ;

}

/∗∗
∗ Method to s e l e c t a new c en t r a l node inform a l l the nodes in the

group o f the new c en t r a l node and t ha t the a c t ua l c en t r a l node i s

l e a v i n g ;

∗
∗ @param Node New c en t r a l node ;

∗ @return S t r ing wi th response from other nodes ;

∗/
private St r ing centralNodeLeave (S t r ing newnode) {

St r ing [] node = newnode . s p l i t (”=”) ;

int NodeID = −1;

i f (node [0] . equa l s (”NodeID”))

NodeID = Int eg e r . pa r s e In t (node [1]) ;

S t r ing resp = ”−ERR Centra l Node Leave” ;

i f (NodeID > 0)

for (int i =0; i<Cl ientOver lay . Group . GroupNodes . s i z e ()

; i++){
re sp = OverlayRequests . l e ave (Cl i entOver lay . Group .

GroupNodes . get (i) , C l i entOver lay . Group .

ThisNode , ”&NewCentralNodeID=”+NodeID) ;

A.5 Default Implementation Classes 129

}
return re sp ;

}

public int processResponseUpdateNode (St r ing response) {
int oldgroupID = Cl ientOver lay . Group . GroupID ;

int groupID = −1;

groupID = Over layUt i l . getGroupID (response) ;

i f (groupID < 0)

return −1;

else {
i f (oldgroupID != groupID) {

groupLeaveNode () ;

Over layUt i l . def ineGroup (groupID) ;

Cl i entOver lay . Group . def ineThisNode (

Over layUt i l . getThisNode (response , X, Y)) ;

Cl i entOver lay . Group . addNode (Over layUt i l .

getCentralNode (response)) ;

Over layUt i l . addGroupNodes (re sponse) ;

NodeJoin (true) ;

} else {
i f (Cl i entOver lay . Group . CentralNode . NodeID ==

Cl ientOver lay . Group . ThisNode . NodeID)

this . centralNodeUpdate () ;

else

this . normalNodeUpdate () ;

}
}
return groupID ;

}

/∗∗
∗ Method to send update r e que s t to the c en t r a l node in order to

inform a l l the nodes in the group .

∗/
private void normalNodeUpdate () {

System . out . p r i n t l n (”>> Updating Node in Group”) ;

S t r ing IP = Over layUt i l . getThisNodeIP () ;

Cl i entOver lay . Group . ThisNode = new Node (NodeID , X, Y, IP) ;

S t r ing resp = OverlayRequests . update (Cl i entOver lay . Group .

CentralNode , Cl i entOver lay . Group . ThisNode , ””) ;

System . out . p r i n t l n (resp) ;

System . out . p r i n t l n (”==============”) ;

}

/∗∗
∗ Method to send update r e qu e s t s to a l l the nodes in the group .

∗/
private void centralNodeUpdate () {

130 Source Code

System . out . p r i n t l n (”>> Updating Centra l Node in Group”) ;

S t r ing IP = Over layUt i l . getThisNodeIP () ;

Cl i entOver lay . Group . ThisNode = new Node (NodeID , X, Y, IP) ;

Cl i entOver lay . Group . CentralNode = Cl ientOver lay . Group .

ThisNode ;

for (int i =0; i<Cl ientOver lay . Group . GroupNodes . s i z e () ; i++){
St r ing resp = OverlayRequests . update (Cl i entOver lay .

Group . GroupNodes . get (i) , Cl i entOver lay . Group .

ThisNode , ””) ;

System . out . p r i n t l n (resp) ;

}
System . out . p r i n t l n (”==============”) ;

}

public St r ing sendMsg (St r ing message , int NodeID) {
message = Over layMessagesUti l . codeMessage (message) ;

S t r ing resp = ”−ERR Message Not De l ive red ” ;

i f (Cl i entOver lay . Group . ThisNode . NodeID == Cl ientOver lay .

Group . CentralNode . NodeID)

resp = OverlayRequests . sendMsg (Cl i entOver lay . Group .

getNodeByID (NodeID) , Cl i entOver lay . Group . ThisNode

. NodeID , NodeID , message , ””) ;

else

re sp = OverlayRequests . sendMsg (Cl i entOver lay . Group .

CentralNode , Cl i entOver lay . Group . ThisNode . NodeID ,

NodeID , message , ””) ;

return re sp ;

}

public St r ing sendBroadcast (S t r ing message) {
St r ing response = ”+OK BroadcastDe l ivered ” ;

int no tde l i v e r ed = 0 ;

i f (Cl i entOver lay . Group . ThisNode . NodeID == Cl ientOver lay .

Group . CentralNode . NodeID) {
for (int i =0; i<Cl ientOver lay . Group . GroupNodes . s i z e ()

; i++){
St r ing resp = sendMsg (message , Cl i entOver lay .

Group . GroupNodes . get (i) . NodeID) ;

i f (re sp . equa l s (”−ERR MessageNotDelivered ”))

no tde l i v e r ed++;

}
re sponse = ”+OK BroadcastDe l ivered (−”+no tde l i v e r ed+

”) ” ;

}
else

re sponse = OverlayRequests . sendMsg (Cl ientOver lay .

Group . CentralNode , Cl i entOver lay . Group . ThisNode .

NodeID , −1, message , ””) ;

return re sponse ;

A.5 Default Implementation Classes 131

}
}

A.5.2.4 DefaultHandlerProcessor

package over lay . com . hand le r s . p r o c e s s o r ;

import over lay . com . Logger ;

import over lay . com . r eque s t s . OverlayRequests ;

import over lay . core . Cl i entOver lay ;

import over lay . core . e lements . Node ;

import over lay . core . u t i l s . Over layMessagesUti l ;

import over lay . core . u t i l s . Over layUt i l ;

public class Defau l tHandlerProcessor implements HandlerProcessor {

public stat ic int counter = 0 ;

public Defau l tHandlerProcessor () {

}

/∗∗
∗ Method to send a message to the c en t r a l node wi th the node

in format ion

∗ with the type be ing j o i n or update ;

∗/
private void presentGroupNode (Node node , S t r ing type) {

for (int i =0; i<Cl ientOver lay . Group . GroupNodes . s i z e () ; i++){
Node temp = Cl ientOver lay . Group . GroupNodes . elementAt

(i) ;

i f (temp . NodeID!=node . NodeID & temp . NodeID !=

Cl ientOver lay . Group . CentralNode . NodeID)

System . out . p r i n t l n (OverlayRequests . transmitNode (

node , temp , type , ””)) ;

}
}

public St r ing joinGroup (St r ing input , S t r ing IP) {
boolean CentralNode = fa l se ;

i f (Cl i entOver lay . Group . ThisNode . NodeID == Cl ientOver lay .

Group . CentralNode . NodeID)

CentralNode = true ;

Node newnode = Over layUt i l . getNode (input , IP , CentralNode) ;

i f (newnode == null)

return ”−ERR Lack o f In format ion ” ;

i f (CentralNode)

presentGroupNode (newnode , ” j o i n ”) ;

Cl i entOver lay . Group . addNode (newnode) ;

132 Source Code

return ”+OK Node Joined ” ;

}

public St r ing updateGroup (St r ing input , S t r ing IP) {
boolean CentralNode = fa l se ;

i f (Cl i entOver lay . Group . ThisNode . NodeID == Cl ientOver lay .

Group . CentralNode . NodeID)

CentralNode = true ;

Node node = Over layUt i l . getNode (input , IP , CentralNode) ;

i f (node == null)

return ”−ERR Lack o f In format ion ” ;

i f (CentralNode)

presentGroupNode (node , ”update”) ;

updateGroupNode (node) ;

return ”+OK Node Updated” ;

}

private void updateGroupNode (Node node) {
Node oldnode = Cl ientOver lay . Group . getNodeByID (node . NodeID) ;

i f (oldnode != null) {
Cl ientOver lay . Group . GroupNodes . remove (oldnode) ;

Cl i entOver lay . Group . GroupNodes . add (node) ;

}
}

public St r ing leaveGroup (St r ing input) {
Node nodeleave = Cl ientOver lay . Group . getNodeByID (Over layUt i l

. getData (input , ”NodeID”)) ;

i f (node leave . NodeID == Cl ientOver lay . Group . CentralNode .

NodeID) {
Node newcentra l = Cl ientOver lay . Group . getNodeByID (

Over layUt i l . getData (input , ”NewCentralNodeID”)) ;

newcentra l . Centra l () ;

i f (node leave == null | | newcentra l == null) {
System . out . p r i n t l n (”ERRO! ”) ;

return ”−ERR Node does not e x i s t ” ;

}
delGroupNode (node leave) ;

Cl i entOver lay . Group . addNode (newcentra l) ;

}
else {

i f (node leave == null) {
System . out . p r i n t l n (”ERRO! ”) ;

return ”−ERR Node does not e x i s t ” ;

}
i f (Cl i entOver lay . Group . ThisNode . NodeID ==

Cl ientOver lay . Group . CentralNode . NodeID)

presentGroupNode (nodeleave , ” l eave ”) ;

delGroupNode (node leave) ;

A.5 Default Implementation Classes 133

}
return ”+OK Node Leaved” ;

}

private St r ing delGroupNode (Node nodeleave) {
St r ing resp = ”+OK Node Leaved” ;

i f (node leave . NodeID == Cl ientOver lay . Group . CentralNode .

NodeID) {
re sp = ”+OK Centra l Node Leaved” ;

}
Cl ientOver lay . Group . delNode (node leave) ;

System . out . p r i n t l n (resp) ;

return re sp ;

}

public St r ing messageHandler (S t r ing reques t) {
St r ing resp = ”−ERR MessageNotDelivered ” ;

int ThisNodeID = Cl ientOver lay . Group . ThisNode . NodeID ;

int DestNodeID = Over layUt i l . getData (request , ”TO”) ;

int SenderNodeID = Over layUt i l . getData (request , ”FROM”) ;

S t r ing message = Over layUt i l . getDataStr ing (request , ”MSG”) ;

i f (DestNodeID<−1){
re sp = ”−ERR MessageNotDelivered ” ;

return re sp ;

}
i f (DestNodeID==−1){

i f (ThisNodeID == Cl ientOver lay . Group . CentralNode .

NodeID)

resp = sendBroadcast (SenderNodeID , message) ;

else

re sp = ”+OK MessageDel ivered ” ;

message = Over layMessagesUti l . decodeMessage (message)

;

System . out . p r i n t l n (”>> Received Broadcast Message : ”

+message) ;

}
else

i f (DestNodeID == ThisNodeID) {
message = Over layMessagesUti l . decodeMessage (

message) ;

System . out . p r i n t l n (”>> Received Message : ”+

message) ;

r e sp = ”+OK MessageDel ivered ” ;

counter++;

i f (counter==1000){
Logger l og = new Logger (” l o c a l h o s t ” ,

9000) ;

l og . Log (message , fa l se) ;

counter = 0 ;

134 Source Code

}
}
else

i f (ThisNodeID == Cl ientOver lay . Group .

CentralNode . NodeID)

resp = sendMessage (SenderNodeID ,

DestNodeID , message) ;

return re sp ;

}

private St r ing sendMessage (int SenderID , int DestID , S t r ing message)

{
Node Dest = Cl ientOver lay . Group . getNodeByID (DestID) ;

return OverlayRequests . sendMsg (Dest , SenderID , DestID ,

message , ””) ;

}

private St r ing sendBroadcast (int SenderID , S t r ing message) {
int no tde l i v e r ed = 0 ;

S t r ing resp = ”−ERR MessageNotDelivered ” ;

for (int i =0; i<Cl ientOver lay . Group . GroupNodes . s i z e () ; i++){
Node temp = Cl ientOver lay . Group . GroupNodes . get (i) ;

i f (temp . NodeID!=SenderID) {
re sp = sendMessage (SenderID , temp . NodeID ,

message) ;

i f (! r e sp . equa l s (”+OK MessageDel ivered ”))

no tde l i v e r ed++;

}
}
re sp = ”+OK BroadcastDe l ivered (−”+no tde l i v e r ed+”) ” ;

return re sp ;

}
}

A.5.2.5 TestOverlayUtil

package over lay . core . u t i l s ;

import java . u t i l . Vector ;

import over lay . core . Cl i entOver lay ;

import over lay . core . e lements . Node ;

public class TestOver layUt i l {

private stat ic Vector<Node> getNewGroupNode (int NodeID) {
Vector <Node> temp = new Vector<Node>() ;

for (int i =0; i<Cl ientOver lay . Group . GroupNodes . s i z e () ; i++){
temp . add (Cl i entOver lay . Group . GroupNodes . get (i)) ;

}

A.5 Default Implementation Classes 135

for (int i =0; i<temp . s i z e () ; i++){
Node tempnode = temp . get (i) ;

i f (tempnode . NodeID == NodeID)

temp . remove (tempnode) ;

}
temp . add (Cl i entOver lay . Group . ThisNode) ;

return temp ;

}

public stat ic Vector<Node> getNeighbourNodes () {
i f (Cl i entOver lay . Group . GroupNodes . s i z e () <3)

return Cl ientOver lay . Group . GroupNodes ;

Vector<Node> NeighbourNodes = new Vector<Node>() ;

int NodeInd1 = 0 ;

int Dif1 = Math . abs (Cl i entOver lay . Group . GroupNodes . get (0) .

NodeID−Cl ientOver lay . Group . ThisNode . NodeID) ;

int NodeInd2 = 1 ;

int Dif2 = Math . abs (Cl i entOver lay . Group . GroupNodes . get (1) .

NodeID−Cl ientOver lay . Group . ThisNode . NodeID) ;

for (int i =2; i<Cl ientOver lay . Group . GroupNodes . s i z e () ; i++){
int Dif = Math . abs (Cl i entOver lay . Group . GroupNodes .

get (i) . NodeID − Cl ientOver lay . Group . ThisNode .

NodeID) ;

i f (Di f1 > Dif2) {
i f (Di f < Dif1) {

Dif1 = Dif ;

NodeInd1 = i ;

}
}
else {

i f (Di f < Dif2) {
Dif2 = Dif ;

NodeInd2 = i ;

}
}

}
NeighbourNodes . add (Cl i entOver lay . Group . GroupNodes . get (

NodeInd1)) ;

NeighbourNodes . add (Cl i entOver lay . Group . GroupNodes . get (

NodeInd2)) ;

return NeighbourNodes ;

}

public stat ic Vector<Node> getNeighbourNodes (Node node) {
Vector<Node> NewGroupNodes = getNewGroupNode (node . NodeID) ;

i f (NewGroupNodes . s i z e () <3)

return NewGroupNodes ;

Vector<Node> NeighbourNodes = new Vector<Node>() ;

int NodeInd1 = 0 ;

136 Source Code

int Dif1 = Math . abs (NewGroupNodes . get (0) . NodeID−node . NodeID)

;

int NodeInd2 = 1 ;

int Dif2 = Math . abs (NewGroupNodes . get (1) . NodeID−node . NodeID)

;

for (int i =2; i<NewGroupNodes . s i z e () ; i++){
int Dif = Math . abs (NewGroupNodes . get (i) . NodeID −

node . NodeID) ;

i f (Di f1 > Dif2) {
i f (Di f < Dif1) {

Dif1 = Dif ;

NodeInd1 = i ;

}
}
else {

i f (Di f < Dif2) {
Dif2 = Dif ;

NodeInd2 = i ;

}
}

}
NeighbourNodes . add (NewGroupNodes . get (NodeInd1)) ;

NeighbourNodes . add (NewGroupNodes . get (NodeInd2)) ;

return NeighbourNodes ;

}
}

A.5.2.6 TestOverlayProcessor

package over lay . core . p ro c e s s o r ;

import java . u t i l . Vector ;

import over lay . com . hand le r s . p r o c e s s o r . TestHandlerProcessor ;

import over lay . com . r eque s t s . OverlayRequests ;

import over lay . core . Cl i entOver lay ;

import over lay . core . e lements . Node ;

import over lay . core . u t i l s . Over layMessagesUti l ;

import over lay . core . u t i l s . Over layUt i l ;

import over lay . core . u t i l s . TestOver layUt i l ;

public class TestOver layProcessor implements Over layProcessor {

private int NodeID ;

private int X;

private int Y;

private int TTL;

private Vector<Node> NeighbourNodes ;

/∗∗

A.5 Default Implementation Classes 137

∗ Constructor o f the TestOver layProcessor Class .

∗/
public TestOver layProcessor () {

def ineParameters () ;

}

/∗∗
∗ Define the TTL and t h i s node ’ s ne ighbours .

∗/
private void def ineParameters () {

i f (Cl i entOver lay . Group != null) {
TTL = Cl ientOver lay . Group . GroupNodes . s i z e () ;

NeighbourNodes = TestOver layUt i l . getNeighbourNodes ()

;

}
}

public void changeXY(int x , int y) {
i f (Cl i entOver lay . Group != null)

NodeID = Cl ientOver lay . Group . ThisNode . NodeID ;

X = x ;

Y = y ;

}

public int processResponseAddNode (St r ing response) {
int groupID = −1;

groupID = Over layUt i l . getGroupID (response) ;

i f (groupID < 0)

return −1;

else

Over layUt i l . def ineGroup (groupID) ;

Cl i entOver lay . Group . def ineThisNode (Over layUt i l . getThisNode (

response , X, Y)) ;

Over layUt i l . addGroupNodes (re sponse) ;

de f ineParameters () ;

NodeJoin (fa l se) ;

return groupID ;

}

/∗∗
∗ Method to i n i t i a t e the HTTP ser v e r and send a j o i n r e que s t to the

neighbour nodes in the group .

∗
∗ @param Boolean hasServer i t i s t rue i f the c l i e n t i s a l r eady

running an HTTP se rv e r ;

∗/
private void NodeJoin (boolean hasServer) {

System . out . p r i n t l n (”>> Jo in ing Group”) ;

138 Source Code

St r ing Headers = ”&TTL=”+TTL+”&SenderID=”+Cl ientOver lay .

Group . ThisNode . NodeID ;

i f (! hasServer)

Over layUt i l . NodeHTTPServer (new TestHandlerProcessor

()) ;

for (int i =0; i<NeighbourNodes . s i z e () ; i++){
St r ing resp = OverlayRequests . j o i n (NeighbourNodes .

get (i) , C l i entOver lay . Group . ThisNode , Headers) ;

System . out . p r i n t l n (resp) ;

}
System . out . p r i n t l n (”==============”) ;

}

public int processResponseUpdateNode (St r ing response) {
int oldgroupID = Cl ientOver lay . Group . GroupID ;

int groupID = −1;

groupID = Over layUt i l . getGroupID (response) ;

de f ineParameters () ;

i f (groupID < 0)

return −1;

else {
i f (oldgroupID != groupID) {

System . out . p r i n t l n (groupLeaveNode ()) ;

Over layUt i l . def ineGroup (groupID) ;

Cl i entOver lay . Group . def ineThisNode (

Over layUt i l . getThisNode (response , X, Y)) ;

Over layUt i l . addGroupNodes (re sponse) ;

NodeJoin (true) ;

} else

NodeUpdate () ;

}
return groupID ;

}

/∗∗
∗ Method to send update r e que s t to the neighbour nodes in order to

inform a l l the nodes in the group .

∗/
private void NodeUpdate () {

System . out . p r i n t l n (”>> Updating Node in Group”) ;

S t r ing Headers = ”&TTL=”+TTL+”&SenderID=”+Cl ientOver lay .

Group . ThisNode . NodeID ;

S t r ing IP = Over layUt i l . getThisNodeIP () ;

Cl i entOver lay . Group . ThisNode = new Node (NodeID , X, Y, IP) ;

for (int i =0; i<NeighbourNodes . s i z e () ; i++){
St r ing resp = OverlayRequests . update (NeighbourNodes .

get (i) , C l i entOver lay . Group . ThisNode , Headers) ;

System . out . p r i n t l n (resp) ;

}

A.5 Default Implementation Classes 139

System . out . p r i n t l n (”==============”) ;

}

public St r ing groupLeaveNode () {
St r ing resp = ”−ERR Group Leave” ;

S t r ing Headers = ”&TTL=”+TTL+”&SenderID=”+Cl ientOver lay .

Group . ThisNode . NodeID ;

for (int i =0; i<NeighbourNodes . s i z e () ; i++){
re sp = OverlayRequests . l e ave (NeighbourNodes . get (i) ,

C l i entOver lay . Group . ThisNode , Headers) ;

System . out . p r i n t l n (resp) ;

}
return re sp ;

}

public St r ing sendMsg (St r ing message , int NodeID) {
message = Over layMessagesUti l . codeMessage (message) ;

S t r ing Headers = ”&TTL=”+TTL+”&MID=”+Over layMessagesUti l .

getMessageID () ;

Vector <Node> ClosestNodes = TestOver layUt i l .

getNeighbourNodes () ;

for (int i =0; i<ClosestNodes . s i z e () ; i++){
OverlayRequests . sendMsg (ClosestNodes . get (i) ,

C l i entOver lay . Group . ThisNode . NodeID , NodeID ,

message , Headers) ;

}
return ”+OK MessageDel ivered ” ;

}

public St r ing sendBroadcast (S t r ing message) {
message = Over layMessagesUti l . codeMessage (message) ;

S t r ing Headers = ”&TTL=”+TTL+”&MID=”+Over layMessagesUti l .

getMessageID () ;

Vector <Node> ClosestNodes = TestOver layUt i l .

getNeighbourNodes () ;

for (int i =0; i<ClosestNodes . s i z e () ; i++){
OverlayRequests . sendMsg (ClosestNodes . get (i) ,

C l i entOver lay . Group . ThisNode . NodeID , −1, message ,

Headers) ;

}
return ”+OK BroadcastDe l ivered ” ;

}
}

A.5.2.7 TestHandlerProcessor

package over lay . com . hand le r s . p r o c e s s o r ;

import java . u t i l . Vector ;

140 Source Code

import over lay . com . Logger ;

import over lay . com . r eque s t s . OverlayRequests ;

import over lay . core . Cl i entOver lay ;

import over lay . core . e lements . Node ;

import over lay . core . u t i l s . Over layMessagesUti l ;

import over lay . core . u t i l s . Over layUt i l ;

import over lay . core . u t i l s . TestOver layUt i l ;

public class TestHandlerProcessor implements HandlerProcessor {

public stat ic int counter = 0 ;

public int TTL = 0 ;

public int SenderNodeID = −2;

public stat ic long [] MessageID = new long [5 0 0 0] ;

public TestHandlerProcessor () {
}

/∗∗
∗ Method to send a r e que s t to the neighbour nodes wi th the node

in format ion

∗ with the type be ing jo in , update or l e a v e ;

∗/
private void presentGroupNode (Node node , S t r ing type) {

St r ing Headers = ”&TTL=”+TTL+ ”&SenderID=” + Cl ientOver lay .

Group . ThisNode . NodeID ;

Vector<Node> CloserNodes = TestOver layUt i l . getNeighbourNodes

() ;

Vector<Node> NodeClosest = TestOver layUt i l . getNeighbourNodes

(node) ;

i f (Cl i entOver lay . Group . GroupNodes . s i z e () >2)

for (int i =0; i<CloserNodes . s i z e () ; i++){
Node temp = CloserNodes . get (i) ;

i f (temp . NodeID!=node . NodeID && temp . NodeID!=

SenderNodeID

&& temp . NodeID!=NodeClosest .

get (0) . NodeID && temp .

NodeID!=NodeClosest . get

(1) . NodeID) {
OverlayRequests . transmitNode (node ,

temp , type , Headers) ;

}
}

}

public St r ing joinGroup (St r ing input , S t r ing IP) {
boolean CentralNode = fa l se ;

SenderNodeID = Over layUt i l . getData (input , ”SenderID”) ;

A.5 Default Implementation Classes 141

Node newnode = Over layUt i l . getNode (input , IP , CentralNode) ;

i f (newnode == null | | Cl ientOver lay . Group . getNodeByID (

newnode . NodeID) != null | | SenderNodeID < 0)

return ”−ERR Lack o f In format ion ” ;

Cl i entOver lay . Group . addNode (newnode) ;

TTL = Over layUt i l . getData (input , ”TTL”) − 1 ;

i f (TTL>0 && Cl ientOver lay . Group . ThisNode . NodeID!=

Cl ientOver lay . Group . getMinNodeID ()

&& Cl ientOver lay . Group . ThisNode . NodeID!=

Cl ientOver lay . Group . getMaxNodeID ()) {
presentGroupNode (newnode , ” j o i n ”) ;

}
return ”+OK Node Joined ” ;

}

public St r ing updateGroup (St r ing input , S t r ing IP) {
boolean CentralNode = fa l se ;

SenderNodeID = Over layUt i l . getData (input , ”SenderID”) ;

Node node = Over layUt i l . getNode (input , IP , CentralNode) ;

i f (node == null | | SenderNodeID < 0)

return ”−ERR Lack o f In format ion ” ;

updateGroupNode (node) ;

TTL = Over layUt i l . getData (input , ”TTL”) − 1 ;

i f (TTL>0 && Cl ientOver lay . Group . ThisNode . NodeID!=

Cl ientOver lay . Group . getMinNodeID ()

&& Cl ientOver lay . Group . ThisNode . NodeID!=

Cl ientOver lay . Group . getMaxNodeID ()) {
presentGroupNode (node , ”update”) ;

}
return ”+OK Node Updated” ;

}

private void updateGroupNode (Node node) {
Node oldnode = Cl ientOver lay . Group . getNodeByID (node . NodeID) ;

i f (oldnode != null) {
Cl ientOver lay . Group . GroupNodes . remove (oldnode) ;

Cl i entOver lay . Group . GroupNodes . add (node) ;

}
}

public St r ing leaveGroup (St r ing input) {
Node nodeleave = Cl ientOver lay . Group . getNodeByID (Over layUt i l

. getData (input , ”NodeID”)) ;

SenderNodeID = Over layUt i l . getData (input , ”SenderID”) ;

System . out . p r i n t l n (”Node Trying to Leave : ”+ Cl ientOver lay .

Group . getNodeByID (Over layUt i l . getData (input , ”NodeID”))) ;

i f (node leave == null | | SenderNodeID<0){
System . out . p r i n t l n (”ERRO! ”) ;

return ”−ERR Node does not e x i s t ” ;

142 Source Code

}
TTL = Over layUt i l . getData (input , ”TTL”) − 1 ;

i f (TTL>0 && Cl ientOver lay . Group . ThisNode . NodeID!=

Cl ientOver lay . Group . getMinNodeID ()

&& Cl ientOver lay . Group . ThisNode . NodeID!=

Cl ientOver lay . Group . getMaxNodeID ()) {
presentGroupNode (nodeleave , ” l eave ”) ;

}
Cl ientOver lay . Group . delNode (node leave) ;

return ”+OK Node Leaved” ;

}

public St r ing messageHandler (S t r ing reques t) {
St r ing resp = ”−ERR MessageNotDelivered ” ;

int ThisNodeID = Cl ientOver lay . Group . ThisNode . NodeID ;

int DestNodeID = Over layUt i l . getData (request , ”TO”) ;

int SenderNodeID = Over layUt i l . getData (request , ”FROM”) ;

S t r ing message = Over layUt i l . getDataStr ing (request , ”MSG”) ;

TTL = Over layUt i l . getData (request , ”TTL”) − 1 ;

long NewMessageID = Long . parseLong (Over layUt i l . getDataStr ing

(request , ”MID”)) ;

i f (MessageID [SenderNodeID] == NewMessageID) {
re sp = ”−ERR MessageAlreadyDel ivered ” ;

return re sp ;

}
i f (DestNodeID<−1){

re sp = ”−ERR MessageNotDelivered ” ;

return re sp ;

}
MessageID [SenderNodeID] = NewMessageID ;

i f (DestNodeID==−1){
i f (TTL > 0)

resp = sendBroadcast (SenderNodeID , message ,

TTL) ;

else

re sp = ”+OK MessageDel ivered ” ;

System . out . p r i n t l n (”>>Received Broadcast Message : ”+

Over layMessagesUti l . decodeMessage (message)) ;

counter++;

i f (counter==1000){
Logger l og = new Logger (” l o c a l h o s t ” , 9000) ;

l og . Log (message , fa l se) ;

counter = 0 ;

}

}
else

i f (DestNodeID == ThisNodeID) {

A.5 Default Implementation Classes 143

System . out . p r i n t l n (”>>Received Message : ”+

Over layMessagesUti l . decodeMessage (message

)) ;

r e sp = ”+OK MessageDel ivered ” ;

}
else

i f (TTL > 0)

resp = propagateMessage (SenderNodeID

, DestNodeID , message , TTL) ;

return re sp ;

}

private St r ing sendBroadcast (int SenderID , S t r ing message , int TTL) {
St r ing Headers = ”&TTL=”+TTL+”&MID=”+MessageID [SenderID] ;

i f (Cl i entOver lay . Group . GroupNodes . s i z e () >2){
Vector<Node> NodeClosest = TestOver layUt i l .

getNeighbourNodes (Cl i entOver lay . Group . getNodeByID

(SenderID)) ;

Vector<Node> ClosestNodes = TestOver layUt i l .

getNeighbourNodes () ;

for (int i =0; i<ClosestNodes . s i z e () ; i++){
Node temp = ClosestNodes . get (i) ;

i f (temp . NodeID!=SenderID && temp . NodeID!=

NodeClosest . get (0) . NodeID && temp . NodeID

!=NodeClosest . get (1) . NodeID)

System . out . p r i n t l n (OverlayRequests .

sendMsg (temp , SenderID , −1,

message , Headers)) ;

}
}
return ”+OK BroadcastDe l ivered ” ;

}

private St r ing propagateMessage (int SenderID , int DestID , S t r ing

message , int TTL) {
St r ing Headers = ”&TTL=”+TTL+”&MID=”+MessageID [SenderID] ;

Node Dest = Cl ientOver lay . Group . getNodeByID (DestID) ;

Vector<Node> ClosestNodes = TestOver layUt i l .

getNeighbourNodes () ;

S t r ing resp = ”−ERR Message Not De l ive red ” ;

i f (ClosestNodes . conta in s (Dest))

return OverlayRequests . sendMsg (Dest , SenderID ,

DestID , message , Headers) ;

else {
Vector<Node> NodeClosest = TestOver layUt i l .

getNeighbourNodes (Cl i entOver lay . Group . getNodeByID

(SenderID)) ;

for (int i =0; i<ClosestNodes . s i z e () ; i++){
Node temp = ClosestNodes . get (i) ;

144 Source Code

i f (temp . NodeID!=SenderID && temp . NodeID!=

NodeClosest . get (0) . NodeID && temp . NodeID

!=NodeClosest . get (1) . NodeID)

resp = OverlayRequests . sendMsg (temp ,

SenderID , DestID , message ,

Headers) ;

}
}
return re sp ;

}
}

A.5.3 Simulator Classes

A.5.3.1 ServerDatabaseTextFile

package over lay . s imu la to r . core ;

import java . i o . BufferedReader ;

import java . i o . F i l e ;

import java . i o . FileNotFoundException ;

import java . i o . Fi leReader ;

import java . i o . IOException ;

public class SimulatorDatabaseTextFi le implements SimulatorDatabase {

private boolean end = fa l se ;

private int [] x = new int [1 0 0 0] ;

private int [] y = new int [1 0 0 0] ;

private BufferedReader input ;

/∗∗
∗ Construtor o f the Database Class .

∗
∗ @param St r ing With the t e x t f i l ename to be read ;

∗/
public SimulatorDatabaseTextFi le (S t r ing f i l e) {

F i l e f = new F i l e (f i l e) ;

try {
input = new BufferedReader (new Fi leReader (f)) ;

} catch (FileNotFoundException e) {
e . pr intStackTrace () ;

}
}

/∗∗
∗ Method to ge t the next l i n e from a t e x t f i l e .

∗
∗ @return S t r ing The next l i n e from the t e x t f i l e ;

∗/

A.5 Default Implementation Classes 145

private St r ing getNextLine () {
St r ing l i n e = null ;

try {
l i n e = input . readLine () ;

} catch (IOException e) {
e . pr intStackTrace () ;

}
return l i n e ;

}

/∗∗
∗ Gets the next p o s i t i o n g iven by X and Y from the t e x t f i l e .

∗/
public void fetchXY () {

St r ing l i n e = getNextLine () ;

i f (l i n e != null) {
System . out . p r i n t l n (”>> Proces s ing l i n e : ”) ;

System . out . p r i n t l n (l i n e . r ep l a c e (”\ t ” , ” | ”)) ;

S t r ing [] temp = l i n e . s p l i t (”\ t ”) ;

for (int i =0; i<temp . l ength ; i++){
St r ing [] temp2 = temp [i] . s p l i t (”&”) ;

int NodeID = −1;

for (int j =0; j<temp2 . l ength ; j++){
St r ing [] temp3 = temp2 [j] . s p l i t (”=”

) ;

i f (temp3 [0] . equa l s (”ID”)) {
NodeID = Int eg e r . pa r s e In t (

temp3 [1]) ;

i f (NodeID!=−1){
x [NodeID] = −1;

y [NodeID] = −1;

}
}
i f (temp3 [0] . equa l s (”X”) && NodeID !=

−1)

x [NodeID] = In t eg e r . pa r s e In t

(temp3 [1]) ;

i f (temp3 [0] . equa l s (”Y”) && NodeID !=

−1)

y [NodeID] = In t eg e r . pa r s e In t

(temp3 [1]) ;

}
}
System . out . p r i n t l n (”==============”) ;

}
else

end = true ;

}

146 Source Code

/∗∗
∗ Gives back the a c t ua l va lue o f Y o f a Node .

∗
∗ @param in t ID − I d e n t i f i c a t i o n o f the node ;

∗ @return i n t Y − Actual va lue o f Y;

∗/
public int getX (int NodeID) {

i f (end)

return −1;

else

return x [NodeID] ;

}

/∗∗
∗ Gives back the a c t ua l va lue o f Y o f a Node .

∗
∗ @param in t ID − I d e n t i f i c a t i o n o f the node ;

∗ @return i n t Y − Actual va lue o f Y;

∗/
public int getY (int NodeID) {

i f (end)

return −1;

else

return y [NodeID] ;

}

/∗∗
∗ Function to see i f t h e r e i s more p o s i t i o n va l u e s .

∗
∗ @return t rue I f t h e r e i s not more po s i t i o n va l u e s to f e c t h ;

∗ @return f a l s e Otherwise ;

∗/
public boolean isEnd () {

return end ;

}

/∗∗
∗ Function to f o r c e the end boo lean to be t rue in order to end the

s imu la t i on .

∗/
public void setEnd () {

end = true ;

}

/∗∗
∗ Bui ld a S t r ing to re turn v ia an HTTP response .

∗
∗ @return S t r ing f o r HTTP response .

∗/

A.5 Default Implementation Classes 147

public St r ing bui ldResponse (S t r ing input) {
int NodeID = getID (input) ;

S t r ing resp = ”−ERR Data Not Found” ;

i f (NodeID > 0)

resp = ”X=”+getX (NodeID)+”&Y=”+getY (NodeID) ;

return re sp ;

}

/∗∗
∗ Method to ge t the ID from a node ’ s r e que s t in order to re turn i t s

p o s i t i o n .

∗
∗ @param St r ing Request from the node ;

∗ @return i n t The ID from the r e que s t node ’ s p o s i t i o n ;

∗/
private int getID (St r ing input) {

St r ing [] temp = input . s p l i t (”=”) ;

int NodeID = −1;

i f (temp [0] . equa l s (”ID”))

NodeID = Int eg e r . pa r s e In t (temp [1]) ;

return NodeID ;

}

}

148 Source Code

References

[1] Lockheed Martin Federal Systems Odetics Intelligent Transportation Systems Divi-
sion. Its executive summaries. December 1999.

[2] E. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and comparison of
peer-to-peer overlay network schemes. IEEE Communications Survey and Tutorial,
March 2004.

[3] Pedro Garcia, Carles Pairot, Ruben Mondejar, Jordi Pujol, Helio Tejedor, and Robert
Rallo. PlanetSim: A New Overlay Network Simulation Framework. 2005.

[4] Ingmar Baumgart, Bernhard Heep, and Stephan Krause. OverSim: A Flexible Over-
lay Network Simulation Framework. In Proceedings of 10th IEEE Global Internet
Symposium (GI ’07) in conjunction with IEEE INFOCOM 2007, Anchorage, AK,
USA, pages 79–84, May 2007.

[5] G. Finn and J. Touch. Network construction and routing in geographic overlays. ISI
Technical Report ISI-TR-2002-564, July 2002.

[6] J. Navas and T. Imielinski. Geocast - geographic addressing and routing. Proceedings
of the 3rd annual ACM/IEEE international conference on Mobile computing and
networking, September.

[7] T. Imielinski and J. Navas. Gps-based addressing and routing. RFC2009, March
1996.

[8] Das, S. Bowles, B. Houghland, C. Hunn, and S. Zhang. Microscopic simulations of
freeway traffic flow. Simulation Symposium, 1999. Proceedings. 32nd Annual, pages
79–84, July-Sept. 1999.

[9] O. Andrisano, R. Verdone, and M. Nakagawa. Intelligent transportation systems: The
role of third-generation mobile radio networks. Communications Magazine, IEEE,
38(9):144–151, September 2000.

[10] D. Ni. Determining traffic-flow characteristics by definition for application in its.
Intelligent Transportation Systems, IEEE Transactions on, 8(2):181–187, June 2007.

[11] W. Collier and R. Weiland. Smart cars, smart highways. Spectrum, IEEE, 31(4):27–
33, April 1994.

[12] K. Shenai, E. McShane, and M. Trivedi. Electronics technologies for intelligent trans-
portation systems. Intelligent Transportation System, 1997. ITSC 97. IEEE Confer-
ence on, pages 302–307, November 1997.

149

150 REFERENCES

[13] V. Venkatasubramanian and H. Leung. A robust chaos radar for collision detection
and vehicular ranging in intelligent transportation systems. Intelligent Transportation
Systems, 2004. Proceedings. The 7th International IEEE Conference on, pages 548–
552, October 2004.

[14] Y. Zhao. Mobile phone location determination and its impact on intelligent trans-
portation systems. Intelligent Transportation Systems, IEEE Transactions on,
1(1):55–64, March 2000.

[15] U.S. Department of Transportation. The national its architecture version 6.0. [online]
http://itsarch.iteris.com/itsarch/index.htm.

[16] European Commission. The karen european its framework architecture. [online]
http://www.frameonline.net/.

[17] R. Meier, A. Harrington, and V. Cahill. A framework for integrating existing and
novel intelligent transportation systems. Intelligent Transportation Systems, 2005.
Proceedings. 2005 IEEE, pages 154–159, September 2005.

[18] K. Biesecker, E. Foreman, K. Jones, and B. Staples. Intelligent transportation systems
(its) information security analysis. November 1997.

[19] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica. Imple-
menting declarative overlays. ACM SIGOPS Operating Systems Review, 39(5):75–90,
December 2005.

[20] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pages 329–350, November 2001.

[21] Y. Zhao. Decentralized Object Location and Routing: A New Networking Paradigm.
PhD thesis.

[22] J. Berkes. Decentralized peer-to-peer network architecture: Gnutella and freenet.
2003.

[23] The Gnutella v0.4 protocol. [online] http://www9.limewire.com/developer/gnutella
protocol 0.4.pdf.

[24] Gnucleus The gnutella web caching system. [online]
http://www.gnucleus.com/gwebcache/.

[25] I. Clarke, O. Sandberg, B. Wiley, and H. Theodore. Freenet: A Distributed Anony-
mous Information Storage and Retrieval System. 2001.

[26] F. Dabek, B. Zhao, P. Druschel, and I. Stoica. Towards a common API for structured
peer-to-peer overlays, pages 33–44. Number Volume 2735/2003 in Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2003.

[27] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content
addressable network. Technical Report TR-00-010, Berkeley, CA, 2000.

[28] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable
Peer-To-Peer lookup service for internet applications. In Proceedings of the 2001 ACM
SIGCOMM Conference, pages 149–160, 2001.

REFERENCES 151

[29] Y. Zhao, L. Huang, J. Stribling, C. Rhea, A. Joseph, and J. Kubiatowicz. Tapestry:
A resilient global-scale overlay for service deployment. Selected Areas in Communi-
cations, IEEE Journal on, 22(1):41–53, 2004.

[30] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consis-
tent hashing and random trees: Distributed caching protocols for relieving hot spots
on the world wide web. In ACM Symposium on Theory of Computing, pages 654–663,
May 1997.

[31] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In ACM Symposium on
Parallel Algorithms and Architectures, pages 311–320, 1997.

[32] X-BONE Overlay System. [online] http://www.isi.edu/xbone/.

[33] P2: Declarative Network. [online] http://p2.cs.berkeley.edu/p2related.php.

[34] W. Burghout. Hybrid microscopic-mesoscopic traffic simulation. PhD thesis, Royal
Institute of Technology, Stockholm, Sweden, 2004.

[35] Microsimulation of road traffic. [online] http://vwisb7.vkw.tu-dresden.de/ treiber/mi-
croapplet/.

[36] FreeSim: A Free Real-Time Freeway Traffic Simulator. [online]
http://www.freewaysimulator.com/.

[37] Simetron Metropolitan Traffic Simulator. [online]
http://www.olympum.com/ bruno/simetron.html.

[38] A. Varga. Omnet++ community site. [online]. available: http://www.omnetpp.org/.

[39] Eclipse IDE. [online] http://www.eclipse.org/.

	Início
	Abstract
	Contents
	List of figures
	List of tables
	1. Introduction
	2. Related work
	3. ITS overlay framework
	4. Framework test scenarios
	5. Conclusions
	Appendix A - Source Code
	References

