

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Game design for a serious game to help learn
programming

Enrique Kato Romo

Master in Multimedia

Supervisor:
António Fernando Vasconcelos Cunha Castro Coelho

July 29 2011

 ii

© Enrique Kato Romo 2011

 iii

Game design for a serious game to help
learn programming

Enrique Kato Romo

Master in Multimedia

Approved in oral examination by the committee:

Chair: Eurico Carrapatoso
External Examiner: Leonel Caseiro Morgado
Supervisor: António Fernando Coelho

__

23rd September, 2011

 iv

 v

Abstract

 Serious games are digital games that use technologies and characteristics of video

games with other main purposes than to entertain, being education one of the most important.

Computer science majors require students to have good programming skills and several projects

involving games are being created to tackle this problem in a more entertaining and attractive

way. One concern among researchers is that there is not a specific methodology to create

serious games for education, since serious games have to be designed for specific users and

contexts. This thesis is focused on the creation of a game design for a serious game on

programming that can be used in courses of computer science at the University of Porto, which

places particular specifications to be met with the project. To achieve this, tasks started with the

analysis of the scenario and requirements, followed by the creation of a game concept that could

cope with the objectives of the project. The final product, a prototype, demonstrates that it is

possible to create a game design and a platform to develop a game that is independent of a

specific programming language, making it editable for programming courses that are based on

distinct programming languages. The game design was done following the general guidelines

that commercial video games usually follow, with the academic activities attached to it since the

conception of the gameplay. A detailed design of the game mechanics was done to set the

foundation of the gameplay of the serious game and the platform that supports it. At the end a

prototype with a single level was generated using the mechanics of programming assignments

and tested with students of informatics, receiving positive feedback about the game, finding that

is attractive enough to motivate students into programming. Future developments are expected

as the game design is an essential version of the final game idea but there are some details that

need a redesign and further testing on distinct courses. However the results are promising to

continue development of the serious game that would become a successful matured tool that

helps in learning programming.

 vi

 vii

Resumo

 Jogos sérios são os jogos digitais que utilizam tecnologias e características dos jogos de

vídeo tendo como principais finalidades outras que não o entretenimento, sendo a educação uma

das mais importantes. Os cursos de informática exigem que os alunos tenham bons

conhecimentos de programação e é assim que vários projectos envolvendo jogos estão a ser

criados para resolver este problema de uma forma mais divertida e atractiva. Uma

preocupação entre os investigadores é que não há uma metodologia específica para criar jogos

sérios para a educação, tendo que estes têm de ser desenvolvidos para utilizadores e contextos

específicos. Esta dissertação está focada em criar um game design para um jogo sério de

programação que posas ser utilizado em disciplinas de informática da Universidade do Porto,

que coloca especificações particulares a serem cumpridas no projecto. Para conseguir

isso, foram iniciadas tarefas como a análise do dos requisitos e o desenvolvimento de

cenários, seguido-se a criação de um conceito de jogo que pudesse lidar com os objectivos do

projecto. Como resultado desta dissertação, foi também desenvolvido um protótipo

para demonstrar que é possível criar um design de jogo e uma plataforma para desenvolver um

jogo que seja independente da linguagem de programação e personalizável para outros cursos de

programação. O design do jogo foi feito seguindo as directrizes gerais que os jogos de vídeo

comerciais normalmente seguem, com as actividades académicas ligadas a ele desde a

concepção da jogabilidade, como os investigadores propõem. Desenvolveu-se um projecto

detalhado da mecânica do jogo para definir a base da jogabilidade do jogo sério e a

plataforma que o suporta. No final, o protótipo desenvolvido foi utilizado e testado

com estudantes de informática, recebendo um feedback positivo sobre o jogo, sendo opinião

geral que é atractivo o suficiente para motivar os alunos a programar. É esperado o

desenvolvimento futuro deste trabalho, pois embora o game design seja uma essencial para a

ideia do jogo final há alguns detalhes que podem ser melhorados com testes mais exaustivos e

em diferentes disciplinas. No entanto os resultados são promissores para continuar o

desenvolvimento do jogo sério por forma a tornaá-la uma ferramenta madura que promova o

sucesso na aprendizagem da programação.

.

 viii

 ix

Acknowledgements

 “A mind that is stretched by a new experience can never go back to its old dimensions.”

Oliver Wendell Holmes, Jr. This research project was the last huge step in this marvelous

experience. It would not have been possible to complete this last step, one inch at a time,

without the support of many people.

I would like to express my love and gratitude to my parents, my brother and sister, who gave

unconditional counsel and support during all this experience. I know that even in the distance

they are always walking with me.

Very special thanks to my friend Francisco Lopez for his will to help improving my work and to

my friend Marcos Anguiano who aided me during the creative process. I thank Denisse Iglesias

and Margarita Medina who became my family in this experience, and shared with me the

adventure of finishing our projects. I thank the colleagues of my master, who shared the same

experiences, especially to Evi Dimakopoulou, for the shared failures and successes along the

courses. Also I am grateful to my flat mates that made this experience a really funny one.

Special thanks to my project colleague, Ricardo Gonçalves, for his patience on guiding me into

the possibilities of the technological platform and for his ideas for the game concept. Also I

thank João Xavier for his help on writing the paper of this project and solving our doubts about

the code reviewing component of this project.

Finally I would like to thank my supervisor, Professor António Fernando Coelho, for his helpful

guidance, his readiness to solve my doubts and the freedom that he gave me to work on my

designs. Without his help I would not have finished successfully this project.

To all those great people that believed in me and supported me through this experience, thank

you.

Enrique Kato

 x

 xi

Table of contents

List of Figures ..xiii
List of Tables.. xiv
List of Abbreviations... xv

Chapter 1 Introduction... 1

1.1 Problem Description ... 2
1.2 Objectives ... 2
1.3 Expected Results... 3
1.4 Thesis Structure .. 3

Chapter 2 State of the Art .. 5

2.1 Serious games ... 5
2.2 Edutainment and Serious games for learning ... 11
2.3 Serious games for learning programming... 17

2.3.1 Learn to Program BASIC .. 18
2.3.2 ALICE project ... 18
2.3.3 MUPPETS system... 19
2.3.4 Wu’s Castle ... 20
2.3.5 The Meadow.. 21
2.3.6 Epsitec Games ... 21

2.4 Methods to design Serious Games.. 23

Chapter 3 Project Specification ... 30

Chapter 4 Scenario Design ... 33

4.1 Game Concept... 33
4.2 Game Design... 36

4.2.1 Functional Specification .. 39
4.2.2 System Architecture .. 46
4.2.3 Instructional activities.. 48

4.3 Game Mechanics... 51
4.3.1 Primary core mechanics... 53
4.3.2 Secondary game mechanics... 56

4.4 Development ... 63

Chapter 5 Prototype development and Results ... 66

5.1 Prototype Development .. 66
5.2 Results... 73
5.3 Project cooperation ... 75

 xii

Chapter 6 Conclusions and Future Work.. 76
6.1 Conclusions... 76
6.2 Future Work.. 77

References ... 79

Annex I Questionnaire for Case Analysis .. 83
Annex II Game Concept Document... 86
Annex III Results of the Testing Questionnaire ... 90

 xiii

List of Figures

1. Relationship between SGs on the video games and simulators domains ……………

2. Hierarchical classification of games and simulations based on intent and reality …

3. Areas in which Serious Games are being used ……………………………………

4. Generations of educative software and games ……………………………………

5. Summarized DODDEL model for Serious Game design course ……………………

6. EMERGO’s methodology main steps based on the ADDIE method ………………

7. Model steps and actors for instructional design proposed by Marfisi ………………

8. It is shown where in the development process is the connection between educative

SGs and video games ………………………………………………………………

9. Initial concept of the UI for started screens, HUD and the programming screen …

10. Quick draft for the overall concept of a level in the game …………………………

11. Concept art of a level of the game …………………………………………………

12. Concept art for the ambient mood of the world …………………………………

13. Art used for storytelling purposes …………………………………………………

14. Evolution of the design of the main characters for Project Orion …………………

15. Concept art of the map screen, showing the available paths to travel through the

rooms of the level. Shades of colors represent difficulty …………………………

16. System architecture for Project Orion ……………………………………………

17. The player reads the problem, writes the solution on console and triggers the

animation …………………………………………………………………………

18. Game mechanics as a black box …………………………………………………

19. Flow chart of the coding mechanic ………………………………………………

20. Flow within obligatory (left) and optional (right) challenges ……………………

21. Flow when player fails several numbers of attempts on normal path ……………

22. An early build of the graphic interface of the editor (done by Ricardo Gonçalves) …

23. Rendered images of the modified door, data pad and terminal models ……………

24. Contrast and color correction (right) done on the original textures (left). Textures

taken from the materials of the Unity3D tutorial ……………………………….

25. Level design of the first and second rooms of the level ……………………………

26. Screen shot of the actual prototype level …………………………………………

27. Screen of the programming interface of the prototype ……………………………

28. Screen showing the information on completed quests ……………………………

7

9

11

14

24

25

26

28

40

41

41

42

42

45

46

47

50

51

55

58

59

61

67

68

69

69

72

72

 xiv

List of Tables

1. Main problems found on beginner programming students …………………………………

2. Table of main controls.

 *KB = Keyboard M = Mouse ………………………………………………………

3. Table of help controls ……………………………………………………………………

4. Challenge instructions included in the prototype …………………………………………

5. Text depicted on the data pads scattered in the level of the prototype …………………

33

54

56

70

71

 xv

List of Abbreviations

SG Serious game

FEUP Faculty of Engineering of the University of Porto

GCD Game Concept Document

GDD Game design document

UI User interface

HUD Head-up-display

NPC Non-playable-characters

 xvi

 1

Chapter 1 Introduction

 Games have been used for other purposes than entertainment since ancient times. Uses

on battle tactics, training and education created several of the traditional games that exist today.

This is also happening with digital games and media.

 Nowadays the video game industry is one of the biggest entertainment industries. This

is seen as an opportunity to use video games on other areas and industries. Since the appearance

of digital games, training and education have been the major areas in which games have been

used besides entertainment. There are several features of video games that are attractive to

players and these are the features that are being used to attract students into activities that

otherwise appear as unexciting, difficult to understand or risky to do in the real world. This is

the point where edutainment and educational games were created to educate on several subjects.

 Educational games involve new research on how to use instructional design to create

games that are educative and at the same time attractive to students. Researchers agree that

pedagogy has to be embedded into game design if the final product is intended to be successful

on education. If a game design does not include instructional design, the outcome could be a fun

game without any educational value.

 This is also happening on the computer science areas, where game creating practices

and serious games are being used to improve learning and tackle the problems of lack of

motivation. Research done and the projects implemented show that there are positive reactions

to educational games. Still more research is needed on the area of serious games, but the results

are promising on the fact that video games are likely to be a great tool to drive education

forward and even possibly to change the educational system.

 2

 This thesis is directed to create a the game design for a serious game that can help

students to learn programming in a more attractive way that motivates them to continue their

studies on computer sciences.

1.1 Problem Description

 Getting into programming sometimes is seen as a daunting task. Many universities in

the United States have seen a decline in demand on Computer Science majors. Researchers have

found that one of the reasons is that the programming courses, the foundations of these majors,

are seen as difficult, unattractive and boring by new students.

 Video games are being used to attract students into subjects that are being seen as

boring. This statement brings the next question. Is it possible to develop a serious game that

works as an effective educational tool? What about to use a serious game to teach

programming?

 Research is being done to answer the previous questions. A lot of effort is being

dedicated to build a methodology in which instructional design is present while designing

serious games. Each of the projects deals with a different situation that has different needs to be

fulfilled, making the creation these games a context sensitive process. The specific situation of

the project treated in this document generate the question, is it possible the creation of a serious

game to learn programming that is editable for other courses and subjects?

 The challenge of this thesis is to create a game design that complies with the

specifications of the project and serve as a base to develop a serious game that can solve the

problem. A game that helps students to understand the fundamentals of programming while at

the same time allowing them to enjoy the experience.

1.2 Objectives

 The main objective of this project is to create a game design that can be used to create a

serious game to learn programming. The game design should also cope with the concepts of

instructional design and pedagogy to make the serious game successful as a learning tool.

 3

 To show that gaming software can be useful, and not be seen only as a time waster

entertainment toy, as efforts are being done using video games as learning tools on other areas.

 To prove that good game design can be applied to formal education system, trying to

blend what makes the entertainment games so addictive while removing the “boring” brand of

the educational games and software.

 To check if the resulting prototype shows if the game mechanics can be used to make a

game about programming more attractive to students and improve their motivation to continue

studying programming.

1.3 Expected Results

 At the end of this dissertation it is intended to obtain a game design, with game

mechanics that allows the creation of serious game to learn programming fundamentals. This is

a part of a project to use serious game inside the Faculty of Engineering of the University of

Porto to aid students in their studies of informatics. This game design must comply with the

specifications given by the coordinator of the programming fundamentals course to be used on

the project. The game resulting will have as the main activity, code programming.

 The game mechanics should have embedded the necessary instructional design to build

a successful tool for learning. They must be open enough to be used on other more advanced

programming courses as well as the one that introduces the fundamentals of programming. The

game design has to work as a complement to the platform in which it will be based, be

independent of a programming language and include the ability to review the codes

automatically.

1.4 Thesis Structure

 This document is structured in six chapters, being this introduction the first of them.

The second chapter introduces the concepts of serious games and edutainment and how they are

used in several areas for training and education., including some analysis on digital tools that

use that concepts to tackle the task to teach programming concepts In that chapter is also

analyzed the methodologies that are applied to serious games to include instructional design into

 4

them and build better tools that aid in education. Chapter 3 describes the specifications of the

project that have to be followed by the work on this thesis. This chapter is followed by the

description of the process to create the game concept, the game design and the game mechanics

that are the base to develop the serious game in discussion. Chapter 5 describes the process of

developing the prototype of the project and presents the results of the testing done to it. Finally

the last chapter concludes this document giving a picture of the state of the project and the

future works intended for it.

 5

Chapter 2 State of the Art

 This chapter presents the concepts of serious games and edutainment, followed by an

analysis on the related work done in the domain of teaching programming with serious games. It

will also be analyzed how instructional design is embedded into video games following some

methodologies proposed by researchers.

2.1 Serious games

Society has used games as a learning tool in the past. “Non-digital games are used for

learning social, physical, and psychological skills, for example, coping with the emotions after

losing, learning the ground rules for appropriate behavior, and modeling the behavior of adults”

(Ulicsak, 2010). Traditional games were used as tools for learning before media and digital

games appeared. Games had serious themes such as divination, accounting of goods and battle

strategies, as their purpose since ancient times. After game mechanics started developing, games

began to have a set of rules to be used by the players; this brought more complexity to gaming.

Crawford proposes five main categories in which games may fall: board, card, athletic,

children and computer games (Crawford et al., 2003), in all of which a serious objective can be

added besides the entertainment one.

Board games consist of a board that represents a landscape in which we find a set of

movable pieces that the players control. Early board games were used to represent armies on a

field prepared to battle each other, capture the other player pieces or gain control of the board

space. Old games like Chess, Checkers and Go, a Japanese strategy game, fall into this

situation. The range of this type of games goes beyond the war-like idea, like Monopoly,

 6

Scrabble and Dungeons & Dragons1. There are also educational themes in games like

Arthur Saves the Planet2 and Cleopatra and the Society of Architects3, or historical simulations

in games like Through the Ages4.

Card games are those in which a set of cards and the number and combinations of

symbols represented on them are the main instruments of the game. Most of the games on this

category use the traditional set of 52 cards making variations on the number of cards and

symbols usage, like Solitaire or Poker. There are other games that use their own style of

symbols and rules to be played like Hanafuda5 or collective card sets such as the ones used in

the game Magic: the Gathering6.

In athletic games the player uses more skillful body movement and coordination than

mental prowess. “The line of demarcation between games and competition illuminates one of

the fundamental elements of all games” (Crawford et al., 2003), meaning that there should not

be a confusion between athletic game and athletic competition. The author describes this

difference as how the player interacts with other players.

Children games are the ones where a group of children joint together and employ a set

of rules not entirely pre-defined to bring up a mechanic all can enjoy and participate. Games

like hide-and-seek, kick the can, marbles or sardines are part of this category. The main

activities in these games are social interaction and collaboration. At school years many of the

games given by the teachers to the kids rely on an educational value, at different levels and on

different areas of human development.

Computer games are games played on a computer, where the main director and the

opponent is often the same computer. Games quickly became part of computers as programmers

soon started to create games for that platform. There was an explosion of computer games when

the informatics industry became commercially available. Later known as video games, the

efforts of people enthusiastic about the idea of playing on computers, created an industry that

nowadays surpass other media form of entertainment. From the early games in monochromatic

screens that displayed few pixels or text, to the great complex simulations on a 3D environment,

the gaming industry has struck on today’s games, on both the entertainment and serious side.

1 http://www.wizards.com/DND/Default.aspx
2 http://www.freddistribution.com/control/rcn?p=arthur
3 http://www.daysofwonder.com/cleopatra/en/
4 http://www.eaglegames.net/ProductDetails.asp?ProductCode=CBG001
5 http://www.hanafuda.com/
6 http://www.wizards.com/Magic/TCG/Default.aspx

 7

The main aspects of this form of gaming are the artificial intelligence that the player has to deal

with and the eye-hand coordination that those games promote.

All these games can have a different direction than only to entertain, therefore they

could be called serious games. The term is often used to describe all those games in the digital

world, which are the computer games. For this thesis the term serious game will be applied to

the computer games world.

A serious game (SG) can be defined as “a mental contest, played with a computer in

accordance with specific rules, that uses entertainment to further government or corporate

training, education, health, public policy, and strategic communication objectives” (Zyda,

2005). The definition describes the areas in which a SG can be designed and developed, stating

that video games can be used for other purposes than just leisure such as education, through

health applications or raising interest about problems on the global world (Magnenat-Thalmann

& Kasap, 2009).

A SG is not restricted to the video games environment; it can also be based on

simulators since they also use video game technologies. Serious games (SGs) share

characteristics of both domains as seen on figure 1 (Muratet, Torguet, Jessel, & Viallet, 2009).

In fact a slight majority of experts conclude that there is a significant overlap between

simulations and games in the training and education context (Sara De Freitas & Levene, 2004).

Figure 1. Relationship between SGs on the video games and simulators domains (Muratet et al., 2009).

As computers became powerful enough to manage huge amounts of information and

have visual display of the outputs, the US military agencies saw the potential of including an

entire war game in digital form, shifting the necessity of manual operation and calculations

(Smith, 2009). The creation of such games were used for training in tactics on military

institutions, and then applied to the instruction of other services, math models and the use of

laboratories. When personal computers became commercially available, the once military

 8

exclusive games and simulations opened to entertainment, training in medical, civil and

technical education as well as in global communications (Smith, 2009). As of the year 1970

people grew with arcade and console video games available to them, as those systems began to

acquire market share above other forms of entertainment.

America’s Army7 is an example of a military game that became very popular among

young people; however, its main purpose was to train and recruit soldiers, not to entertain.

While it is being used for recruiting and training there is concern that the main attraction of the

game is the graphics, rather than the accurate representation of the battle field (Smith, 2009).

Training cannot be done entirely on a game or simulation, since full human behavior is still

difficult to simulate. There are not any “trainerless trainers”, so training still needs a human

intervention (Chatham, 2007). Despite this fact, the game has been a great recruiting and

training tool with such popularity that the government of China is developing its own game

following the United States design, called Mission of Honor (Cifaldi, 2011).

While advances in warfare and military training drive several technologies to

development, such as the appearance of the first battle instruction simulators that were game-

like systems, other industries and scientific areas also place important interest on what a SG

may bring. Simulators partake in other training areas such as medicine, vehicle or equipment

use, corporate roles and communications among others, typically characterizing simulations by

the roles or responsibilities the gamer takes in a specific context (Charsky, 2010). But SGs are

not just simple simulations because they have the power to immerse players into a different

world in which they can find themselves in situations they would have to deal on a real job, face

challenges, and develop mental and intellectual skills needed to enhance performance (Marfisi-

Schottman, George, & Tarpin-Bernard, 2010).

7 http://www.americasarmy.com/aa3.php

 9

Figure 2. Hierarchical classification of games and simulations based on intent and reality. (Johnston &

Whitehead, 2009)

Depending the closeness to reality, specifically on behavior of systems and information

not graphics, and the final intent of the player, “a blurry line of user intent separates the

categories of games and training simulations” (Johnston & Whitehead, 2009). Figure 2 shows

the classification related to intent and closeness to reality. For example Johnston states that

Microsoft Flight Simulator8 is a game based on a flight simulation engine, with nice graphics

but a game in the end, whereas other simulators with weaker graphic engines may have stronger

simulation engine bringing them closer to reality. Another good example of how intent can

change classification of a game is the Civilization9 series. The games main objective is to

entertain. They rely on powerful systems to simulate nation development and it has been found

that they may be useful in history courses to help students learn world history (Cifaldi, 2005).

Other sub genres that exist on the simulation games are construction and management,

life, medical, vehicle and social simulators. Commercial games may have a simulation engine

within them. EA’s SimCity10 series and the free licensed Lincity-NG11 are examples of

construction and management simulations. Biological simulations (i.e. Creatures12 from

Millenium Interactive), god games (like Ubisoft’s From Dust13), and social themed games (i.e.

8 http://www.microsoft.com/games/flightsimulatorx/
9 http://www.civilization.com/
10 http://www.simcity.ea.com
11 http://lincity-ng.berlios.de/wiki/index.php/Main_Page
12 http://creatures.wikia.com/wiki/Creatures_Wiki_Homepage
13 http://from-dust.ubi.com/from-dust/en-GB/home/

 10

The Sims14 from EA) are also use simulation engines. Many of the SGs that rely on

simulations, are projects developed on the GNU license by researchers or independent

developers, and some of them use simulation engines like SimGear15, a SourceForge.net project,

to power games and simulations alike.

On the medicine field great efforts are done in research about using SGs to improve

training and learning of medical procedures and lectures, while other medical projects focus on

patient recovery and prevention of diseases. Computer simulations of surgical techniques are

becoming more popular, and studies show that players tend to have better chirurgical skills with

the use of them (Lynch, Aughwane, & Hammond, 2010). The authors found that there are still

some problems with medical simulators like the fact that the field is not completely studied and

the lack of tactile feedback which is very important; also the costs to build them as precise and

complex as they need to be, represent further challenges. There is however considerable push to

do research in this matter as shown in the Games for Health project where the staff is supporting

“community, knowledge and business development efforts to use cutting-edge games and game

technologies to improve health and health care” (Games for Health Project, 2004).

Other uses of SGs are human behavior changes, environment concern, art and

marketing. Figure 3 shows the several approaches in which SGs may be used. They are

becoming a massive tool for expression. During the Games for Change conference, Al Gore

said that games have clearly arrived as a mass medium, mainly thanks to social gaming brought

by social networks and mobile platforms (Leigh, 2011). It will just take small time for other

industries to tackle this medium in other different ways.

14 http://thesims.ea.com/en_us/home
15 http://simgear.sourceforge.net/

 11

Figure 3. Areas in which Serious Games are being used (Zyda, 2005).

Even more unusual themes such as politics, meditation and gender issues are being

targeted for developing SGs. Hidden Agenda16, a political post-revolutionary game, September

12th 17 and The Redistricting Game18 tackle political issues on the other side Queer Power19, a

fighting game, uses sexuality as the mechanic; all of the above have little or null leisure

characteristics of commercial videogames (Ochalla, 2007).

While there is concern of the overall disbelief that has built in to SGs because of several

failed attempts on educational games and the fact that they simply are not focused more on

higher mainstream offerings (Ochalla, 2007), research has shown the possibilities of them are

growing rapidly. A new ‘serious games movement’ is bringing together game developers and

instructional designers to crack the problem of how to create effective serious games

applications (De Freitas, 2006). Literature reviews show that education and training are the

areas where most efforts are set. The next section is going to be described this is being done.

2.2 Edutainment and Serious games for learning

16 http://en.wikipedia.org/wiki/Hidden_Agenda_(video_game) The game is no longer being published
but a copy can be get if it is asked to the author.
17 http://www.newsgaming.com/games/index12.htm
18 http://www.redistrictinggame.org/
19 http://www.molleindustria.org/en/queer-power

 12

 This section will describe the big area of development towards using SG and

edutainment as tools to help on training and education. While SGs and edutainment have the

same final objective, the pedagogical approach to learning is different between them.

Edutainment became less important; on the other side research on educational use of SGs

increases rapidly.

“Experiences with digital game natives, those who have grown up playing games,

indicated that a game-centered research and educational program could offer many positive

benefits” (Zyda, 2005). As there were big advances in the video game and the media industries,

a bigger movement emerged towards SGs and edutainment. Researchers are beginning to

theorize the cognitive processes during game playing, bringing a better understanding of

educational game design and leading to new research (Dondlinger, 2007).

 Edutainment and educational games were once praised to revolutionize the education

system because their ability to educate and entertain, but they have received bad acceptance due

to combining the lowest form of education, drill and practice, masked with boring gameplay

(Charsky, 2010). These dynamics of edutainment are also apparent in the e-learning industry,

because many of the products that are developed suffer from low budgets, mediocre contents

and bad interface decisions (Egenfeldt-Nielsen, 2003) .

The lack of sophistication, poor depth of learning and boring game play offer a point of

view from where is possible to analyze the problems and see how games can enable learning

(Charsky, 2010). The review of the evolution of edutainment and instructional games shows

what the problems are and the advances done through research in that area. The separation of

the term edutainment from the research on SGs is necessary since it is not well accepted by

scholars.

 Edutainment is a broad term which covers the combination of educational and

entertainment use on a variety of media platforms including computer games; they have a

recognizable reward structure that is separate from the educational purpose (Egenfeldt-Nielsen,

2003). Frequently, edutainment games are those that work on the skill and drill format, in which

players practice through repetitive skills and memorization (Dondlinger, 2007). The pedagogy

of edutainment started relying on behaviorism (Ulicsak, 2010), on the first generations of the

software. This format makes little or no attempt in teaching gamers how to apply knowledge,

analyze their understanding, synthesize perceptions, or evaluate learning (Charsky, 2010).

 13

 Egenfeldt describes edutainment titles with a series of characteristics that underline the

poor use of edutainment for real education; which does not mean that players do not learn

anything; instead they do not acquire the intended cognitive skills:

 Extrinsic motivation – this kind of motivation is not related to the game or the

learning objective but rather with simple rewards.

 No integrated learning experience – the educative content is just added as more

information for the player, instead of being attached into gameplay.

 Drill-and-practice learning principles – the experience for the player relies on

memorizing and training rather than understanding.

 Simple gameplay – compilations of mini-games, arcade games and simple

adventure games are the examples used by edutainment software.

 No teacher presence – software does not require the presence of a tutor or a teacher

assuming that the student learns directly from the screen without human interaction.

 The other side of the characteristics stated by Egenfeldt is that edutainment games are

easier to create and maintain than games that are more specialized or based on other cognitive

paradigms therefore the previous characteristics can show which aspects of the game should be

addressed when developing edutainment games.

 Games and edutainment, even with the drill-and-practice format, make players learn

something. Good video games are not a waste of time as players do learn when playing games

(Gee, 2007); they are not useless on the education process, but they are not good teachers per se

(Adams, 2005). It is when there is a good balance in game design and the instructional design

that real learning happens.

 Egenfeldt considers that edutainment is part of the first generation of educative

software. It was followed by digital games based on constructive thinking, where the player is

centre of attention and acquires knowledge as players analyze problems and apply paste

learning as well as learning by making. Third generation software is where good educational

SGs stand, using constructionism where learning is reinforced by having to explain it (Ulicsak,

2010). This generations and learning theories are shown on figure 4.

 14

Figure 4. Generations of educative software and games (Egenfeldt-Nielsen, 2003).

 Educational SGs make the learner strategize, test their hypothesis, and analyze to solve

problems, which require better thinking rather than just memorization or repetition. They

motivate the player with a system of rewards and a narrative context in which the activity is

situated, and give opportune feedback to prompt learning (Dondlinger, 2007). Good designed

games illustrate; they excel at bringing concrete experiences from abstract ideas (Adams, 2005).

Charsky denotes several game characteristics that help on defining a good game design,

which later can be translated to a well constructed educational SG:

 Competition and goals – as opposed to edutainment, longer games with expanded
win-lose victory conditions can get players involved into achieving a deeper
success.

 Rules – simulation elements can be used to create a flexible rule structure, which

instead of limiting possible outcomes, allows the player to brake or bend them to get
new experiences.

 Expressive choice – choices that are made by the player that, while bringing little

educative value, allow greater intrinsic motivation to continue and beat the game.

 15

 Strategic choice – the player can make choices about game attributes like changing

the difficulty level, use of in game coaching and debriefing.

 Tactical choice – player makes choices on how to play the game. The player
formulates the tactics that he will follow, the paths that he will walk and the strategy
to use in order to finish the game.

 Challenges – tasks and activities that are present on all educative software, but it is

in SGs with good instructional design that the challenges are seamlessly included
into gameplay

 Fidelity – a reality is represented by the use of graphics, audio, video, artificial

intelligence and virtual worlds. Designing a convincing reality (not necessarily like

the real-world) creates a context that is exciting and immersive.

 Context – authenticity of the game is enhanced by the setting, the narrative, story,
scenario and characters that inhabit the game. An evolving and branching game
script allows the player to develop different strategies and choices.

 These are the characteristics that can be found on most of commercial videogames that

offer complex experiences, feature beautifully rendered characters and landscapes (Bellotti,

Berta, Gloria, & Primavera, 2009). However a SG is not only story, art and software, they also

involve pedagogy. They are games because players play a specific role, carry on challenging

tasks and are confronted by the consequences of their actions. They are serious because players

need authentic knowledge and skills to address authentic problems and arrive to solutions.

 To build a serious game the traditional game team must interact closely with scientists

and cognitive experts (Zyda, 2005). Game designers and instructional designers must bridge the

gap by identifying those game characteristics and establish a common vocabulary to tap the

potential of SGs (Charsky, 2010). It is with this kind of interaction that the academic factor is

integrated into the game design, and not just included as a different and extra portion added later

to the game. The collaboration between teams tackles learning principles and pedagogy that

have to be implemented into the gameplay of a SG.

 “Teaching and learning is a matter of three things: the learner must be enticed to try,

learner must be enticed to place in lots of effort even if he or she begins with little motivation to

do so, and learner must achieve some meaningful success when he or she has expanded this

effort” (Gee, 2007). When motivation, action and feedback improve player experiences, active

learning happens. When strategic thinking brings new moves and strategies to confront the

game as a complex system, then active learning transforms into critical learning.

 16

 Active and critical learning are the base of constructivism, the learning theory for

educational video games. “The player is immersed in a world that enables them to include

feelings and emotions with the social, the player can interact with fellow participants in the

virtual environment as well as acquiring and using knowledge gained” (Ulicsak, 2010).

 Constructionism is used when video games allow players to be active producers who

can customize their own learning experiences, and not just be passive watchers (Gee, 2007).

The constructionist approach to learning involves two activities: the construction of knowledge

through experience and the creation of artifacts and assets that are meaningful to those creating

them (Dondlinger, 2007), for example games where players can create functional objects in

their virtual worlds.

SGs can be designed along with those learning principles to promote active and critical

thinking. SGs can create a learning space in which the player takes risks and the consequences

are diminished in contrast of the risks of real-world actions. This is psychological moratorium, a

term devised by psychologist Eric Erickson, where there is a low cost of failure and high reward

for success besides the time spent on the game (Gee, 2007). Games are a place where students

can act and solve problems without worrying about the consequences of failing that a real world

task has.

An assumption is that games do not teach by themselves, instead they help to

understand (Adams, 2005), meaning that games are not at the same level as human teachers.

Games are tools that help students to explore and understand issues, they train for various

situations yet they rely on how they are interpreted (Ulicsak, 2010), and they require de support

of a tutor or a teacher. In either way SGs should not be regarded as replacements of traditional

learning but rather as a supplement (De Freitas & Levene, 2004).

 There is still “little data on how games are used and how successfully they are

integrated into teaching practice” (Ulicsak, 2010). But the change in perceptions about gaming

brings greater willingness from game developers and educative experts to explore better and

more effective game-based learning (De Freitas, 2006).

 Games for education have different student targets, which range from primary school to

undergraduate programs. They can be designed to help kids and grown up adults into learning

subjects of different nature. Targeted public and subject mean that each SG has different design

from the others, as the objectives are different in each case. Next section will detail the

 17

characteristics of some of the edutainment and SGs that are targeted to computer programming

courses.

2.3 Serious games for learning programming

 One of the several uses of educational serious games is focused towards the computer

sciences. Research shows that there is effort on using serious games to help the student on the

several courses that construct a computer science program. This section will review some of the

projects that are aimed to the teaching of programming and their main characteristics as

interactive software.

 Programming, essentially the fundamentals, is hard to learn for novice students (Muratet

et al., 2009). Students expect to see immediate results, even on early stages of learning while,

real-world programming languages often require a lot of understanding, as well as a lot of work,

before useful results are obtained (Anderson & McLoughlin, 2007). During studies immediate

feedback while constructing their code allows an easier way for students to make iterative

revisions and immediately see how their modifications in the code come along (Phelps, Egert, &

Bierre, 2005). Video games and simulations can give this immediate feedback.

Researchers of the area have employed simulation techniques to visualize the results of

students using a programming language and becoming familiar with the syntax and paradigms

to code statements of a program (Jiau, Chen, & Ssu, 2009). Edutainment, simulations, software

and serious games are being developed to help on programming learning.

 It is very important to find the ‘DNA’ of a game, that is, the main gameplay

characteristics and mechanics of it. This has to be done by developers when designing their

game and when comparing and analyzing the ups and downs of the games of their competition.

To better understand the functionalities that lie within various video games to learn

programming, commercial and SGs alike, it is important to review their description and analyze

their working game mechanics. The next subsections describe mechanics of the projects and

software that was reviewed.

 18

2.3.1 Learn to Program BASIC

It is edutainment software developed for PC and Mac that works as an interactive

tutorial to learn to program in its own version of a BASIC interpreter. Published by Interplay, it

presented BASIC language in a more user friendly interface and well built documentation of the

instructions. In-game multimedia cinemas with two characters, “Media Man” and “Goo”, guide

and help young people in their beginnings in programming20. The software, which is tailored to

create games, has a library of images and sounds, as well as image handlers and video players at

the disposal of the student.

The software is divided in three main sections: the lectures section, the project section

and the freestyle section. The lections part is a step-by-step tutorial on how to use the

instructions and functions of the language, guided and demonstrated by the two characters. The

project section is where the student embarks into one big pre established objective and makes a

program to attain that objective. The last section, the freestyle, is where the student is free to

program anything within the abilities of the interpreter, mostly 2D games (Berg, 1999). The

language used is not powerful enough to create 3D games.

This program uses the world of edutainment software and media to bring a package to

teach programming that is easy to digest and attractive to young students, instead on focusing

only on videogame mechanics,. The official site of the game has been removed from the

Interplay servers and it is no longer available for download.

2.3.2 ALICE project

Carnegie Mellon University created a free 3D programming environment that as the

same time that helps students learn programming lets them generate an animation with

narrative21. Based on a version of object oriented language which syntax is very similar to C++

or Java, the software has several kinds of objects that the student can manipulate with code to

generate a virtual world and animate it to tell a story. The environment allows the student to

20 http://www.youtube.com/watch?v=0-BxxMp5BRE&feature=related
 http://www.youtube.com/watch?v=iSOtdF-mDh0&NR=1

21 http://www.alice.org/index.php?page=what_is_alice/what_is_alice

 19

simply navigate on a library of objects and using drag and drop manipulate the virtual world and

the methods and functions available for each object.

Although this software is not considered a game, the results gotten by testing it on

actual courses give feedback about what attracts students to do programming. An interface that

is easy to use and improves accessibility to the world of programming, a visual way to input

code and review the result and the concept of creating something to share with others are the

most important aspects of it.

The researchers and creators of the project aim their studies to find if that programming

with a significant purpose, specifically any visual result that shows the output of the code,

students would be more attracted to start and maintain their studies in Computer Science. A case

study performed by the California Lutheran University did find that the package generates

attraction to programming for students in a pre computer science course, but their results show

that the program alone is not enough to form students into the computer science major (Klassen,

2006).

There were some drawbacks found by the case study. Students were spending more time

focusing on creating a great picture instead of understanding the programming tools they are

using. For other students, with some working experience, the concern was that it does not cover

real world programming problems (Klassen, 2006).

2.3.3 MUPPETS system

MUPPETS, developed at the Rochester Institute of Technology, stands for Multi User

Programming Pedagogy for Enhancing Traditional Study (Phelps et al., 2005). MUPPETS is an

interactive platform for learning object oriented design and programming, designed to support

the construction of interactive worlds. The system is built completely on the core Java language,

making the entire J2SE standard immediately usable, liberating the problems of creating a stand

alone language. The system is not a game per se, but has important mechanics that allow the

immediate feedback, interactivity and community integration that modern games have.

The platform works on a community of novice and senior students that collaborate on

the object oriented programming tasks. It gives the students a functional integrated development

environment, advance code creation tools and options to expose created objects to the

 20

MUPPETS community. The developers are concerned about the gap that divides lower and

upper division of students, thus the tool allows several form of interaction and communication

to make the senior students role models and helpers to the novice.

Students work on an environment that simulates the kind of work that has to be done on

real world programming. They have to generate stories with the objects that they create or were

created by senior students, while as the same time they have to deal with object oriented

programming concepts. The results that the authors found on testing their development on their

student community, praise the qualities of the system. MUPPETS intends to integrate cognitive

skills used on computer education and promote active and constructivist learning.

2.3.4 Wu’s Castle

This game is a project developed at the University of North Carolina under the

“Games2Learn” project (Eagle & Barnes, 2009). Concepts of programming are set in an

interactive environment in which graphic feedback is given to the students. Undergraduate

students have the task to develop small games based on computer concepts that are aimed for

novice students. The developer took concepts as arrays and loops, seen as difficult to

comprehend by new students, and designed a game to teach about them.

The game is a RPG and was developed in RPG Maker 2XP, in which players

manipulate arrays by changing loop parameters and by controlling a character within the levels.

The scenarios consist in small levels where the student can experiment with the parameters of

loops and control arrays, nested loops and other traditional programming assignments. Those

changes on the parameters are reflected on movements of on-screen characters and constant

feedback after each attempt, which the authors find is very important to student performance.

With this simple mechanic student experiment and learn about two important, but sometimes

not so easy to understand, concepts about programming.

It is important to notice that the game focuses only in two main concepts and that is

designed with that focus in mind, giving feedback and tips on those matters. The studies done

by the authors of the game show that they had an improvement on the final results of first year

students after playing the game, and show that those that spend more time with the game got

better results.

 21

2.3.5 The Meadow

Developed at the Bournemouth University as its own solution to programming learning,

The Meadow is a virtual environment in which virtual beings exist and are controlled by

instructions in C-Sheep, a version of the C language (Anderson & McLoughlin, 2007).

The aim of the game is to help students with programming fundamentals on the C

language. The authors express that it can also work on graphics programming learning and to

experience other languages and compilers. The game uses a 3D engine to create tridimensional

visuals and motivate students to use it. On their study they found that novice students are in fact

attracted to use a 3D environment, but that more advance users prefer a simpler version to save

time.

The students have the task to control the entities living on the virtual world through

programming commands using the C-Sheep mini language. The codes generated and compiled

on The Meadow, can be compiled on external C/C++ compilers using the library contained on

the C-Sheep language. This can help students to pass from a mini language environment to a

real world language.

On the case study, it was found that the documentation available was limited and slight

incompatibilities between compilers on different platforms. This raised the necessity to continue

the work on the platform and create a better learning tool for students at the university.

2.3.6 Epsitec Games

The company has developed games that rely on the edutainment concept and bring fun

while learning. Games can be downloaded as a free demo or as a paid package from the

company webpage. The games Colobot and Ceebot, in all its versions, share similar mechanics

between them but work with different programming languages and gameplay approach. The

core mechanic is to program robots to do some jobs for you.

Colobot is a real time game running in a 3D world. The concept is to travel between

different planets and solve several missions asked to the player, which range from gathering

resources, building structures, commanding robots to perform tasks and defend the land. After

starting up the software the players are asked to create their own profile and edit their avatar

 22

with a limited selection of features before starting to play. The game is divided by missions,

each one of them is done in a different environment or level and it is introduced with a small

cinematic that helps to take further the story of the adventure. The story helps in the immersion

of the payer into the game and works as a hook to play till the end as the player tries to discover

what happens next. There is an option to play specific challenges or scenarios with closed

challenges with the objective to review some programming concepts.

The player can play most of the game characters via mouse and keyboard command but

there is the option to set specific programmed functions into robots. In this way the robots can

do tasks automatically while the player explores other parts of the terrain; while in first levels

this can be seen as extra, in later levels it would be a needed action to achieve a multitasking

playing. Functions created by the player can be named and saved on each robot created and used

later as a fast command option. The game uses its own language that has a similar syntax as

C++ and Java, and has its own set of instructions, variable types, and objects; then the game

compiles the code and runs it for the player. There is documentation about the language and the

gameplay mechanics used in the game, the code editor presents some highlighting on reserved

words and limited compiled error messages.

CeeBot, on the other hand, is software specially designed to teach programming tasks

while playing small and defined levels, and it is aimed to students from school level to college

and university courses. The games are set in a similar concept as Colobot, in presentation and

mechanic design, but with a challenge based design to cover programming concepts step by

step, being less a full game and more an edutainment course. There is not a specific story or

universe to play with; in exchange you get mission objectives that tell the player what to do, and

what is happening.

Just as Colobot, the player uses the same method of command of the in game tokens. It

uses a similar syntax as the object oriented languages, with its own robot programming

language designed by Epsitec. Limited actions with the mouse doing point and click on objects

and buttons. There is an extensive documentation of the language of the game along with help

and tips available for the player.

CeeBot4 is the most complex of the packages offered by the company, offering student

and teacher versions of the software, allowing professors to design and upload some challenges

and use them to teach concepts in a visual way and the students can download and try them by

themselves. It is designed as a more powerful tool for programming classes, serving as a

platform for a small community inside the lessons.

 23

 The review of related work reveals patterns that help to further design game mechanics

for a similar platform. Cognitive skills and learning techniques have to be designed along with

the game mechanics, requiring different development processes than those seen on commercial

video games. Next section describes the characteristics of some methodologies that focus on

the design of SGs.

2.4 Methods to design Serious Games

 The industry and studios that create games for entertainment have already produced

several well established methods for their development. The same cannot be said about SGs,

there is still discussion about which method is the best to integrate the instructional design with

the game design, therefore is an area that is not yet strictly well documented (Mcmahon, 2009).

 As seen on the related work, all the projects define different educational objectives that

can be applied to their own learning environment. There is need to review some of the

methodology used on case studies to understand the steps to develop a successful educative SG.

This chapter shows the methods taken as an example to design the game design and the

prototype for the project.

 The analysis was done on case studies of a version of the DODDEL model enhanced for

SGs (Mcmahon, 2009), a process toolkit and methodology developed and used by EMERGO

(Nadolski et al., 2007), and a the actors involved on the engineering process of creating a SG

presented by Marfisi (Marfisi-Schottman et al., 2010). A four dimensional framework for

evaluating the use of a game for education (De Freitas & Oliver, 2006), details other important

aspects to consider during game concept and design.

 The DODDEL model, short of ‘Document-oriented Design and Development of

Experimental Learning’, seeks to integrate instructional and game design through a document-

oriented approach. It is aimed to guide novice instructional designers into the process of SGs

design. The model goes from a broad design to detailed specifications; with multiple iterations

and a series of document outputs at each stage of the process. A summarized model can be seen

on Figure 5, depicting the main steps and their expected specifics of the analysis and design

stages.

 24

Figure 5. Summarized DODDEL model for Serious Game design course. (Mcmahon, 2009)

 The rigorous documentation on the analysis stage let the designers create a feasible and

complete analysis before going into the design stage. This is to avoid the jump directly into

design without getting a complete concept analysis from novice designers. They find important

that the designer team must know what they are dealing with on the educative context.

 Since every academic environment is different, the analysis has to be articulated with a

learning philosophy that is directed to the needed educational outcomes. Issues like end user

experience, game treatment and learning outcomes, are treated at each stage, and defining them

let the designers cross to the design stage with a better concept depending on the project.

 The model was tested on a SGs course where students had to create a SG for learning.

The findings of the author show that students found that the model is easy to understand and

that the flow of the model works great into guiding them on each development step. While the

initial findings are positive the model has yet to be tested in a commercial or industrial setting.

 25

 However some issues also arose during testing. Some students felt confused on what

were the necessary outcomes of some of the analysis and design steps. Another issue found is

that the model was perceived as limitless on the amount of detail, creating really complex

documentation that would diminish resources on the developer teams. The author explains that

those issues could be stronger on novice students without background on software engineering

and education studies.

 The EMERGO methodology is a methodology designed for developing scenario-based

SGs and is based on the ADDIE method for designing instructional games. The ADDIE

methodology stands for the five steps that form it: Analysis, Design, Development,

Implementation and Evaluation; as seen on figure 6. The methodology is used on a specific

toolkit that is also offered by EMERGO. This toolkit is formed by a series of widgets that serve

for scenario design and testing, requiring that the right information is input at every step.

Figure 6. EMERGO’s methodology main steps based on the ADDIE method. (Nadolski et al., 2007)

 The development steps are treated like cases, and each one of them works as an input

document for the next case. As it can be seen on the previous image the black arrows denote

iteration between the developing steps, though it is possible to follow one step after the other

(van Zetten, 2010). It is at the Case Idea where the concept takes shape answering questions

like: why is it needed, for whom is it meant, what will be in it, how will it be structured? It is

also where the main pedagogic considerations take place since the learning principles have to be

adapted to the target group, the case scenario and the overall objectives of the game.

 The other step where pedagogical concerns exist is the Case Scenario where step

designers deal with the learning objectives, the assessment instruments, content and challenges.

The result is a detailed description of the activities in terms of tools and resources and how are

the students going to carry them out.

 26

 The rest of the Cases have to deal with actual game design with some supervision of the

pedagogical experts. It is also noted that some similarities with the software development

process steps. The toolkit guides and let the developer to assess the results of each step through

rigorous input of information and output results.

 The model presented by Marfisi presents similar steps to the other two models, but with

the added information about the actors that direct the team into those steps. The actors are the

important part in the process proposed by the author. It shows how the academic or pedagogical

actors interacting with the artistic directors and game designers develop a SG. It is through this

collaboration that creates a successful product for education and entertainment. Figure 7 shows

the steps of development and how the actors interact with each other.

Figure 7. Model steps and actors for instructional design proposed by Marfisi. (Marfisi-Schottman et al.,

2010)

 After the needs of the project are identified the project manager sets a series of tasks and

distributes them to their respective members of the team. A cognitive specialist and pedagogical

experts have to model the cognitive skills and organize them to form the pedagogical objectives

of the SG.

 To generate the game concept a writer and the artistic director have to create the

scenario of the game, always staying in touch with the pedagogical expert to ensure that the

entertainment part of the game gets along with the educative part. In this way the testing phases

are minimized as the experts ensure that the several paths of the game design attain the

pedagogical objectives. Once the game concept is done, the rest of the tasks involve the steps

used on commercial game design. The work is passed to programmers and artists to commence

development.

 27

 To have and efficient communication and collaboration between the members of the

team is a common problem of the developer teams. To address this problems the author

proposes an interface that is easy to use, even for the actors that are not computer experts. The

interface is composed of a series of widgets that are accessed via drag and drop interactions.

Those widgets cover several academic domains and game design domains, allowing the experts

to prepare the documentation for the next steps and actors.

 These methods present similarities with the processes used for software engineering.

The iterative waterfall model shows that constant evaluation and testing is done through each

step of software development. The three methods can be dissected into steps like analysis,

design, documentation, development, implementation and evaluation; with the respective

iteration to ensure a good product.

 The framework proposed by Sara de Freitas requires the academic staff to consider four

main dimensions before using SGs on the educational practice (Sara De Freitas & Oliver, 2006).

While it is not intended to be a prescriptive method, it provides guidelines for the tutors to be

more critical in how they use SGs on their courses. It works also as an effective design tool

when analyzing and designing an educational game. The review on the concepts treated on each

of the dimensions let the designers know what information is needed to generate a complete

instructional design that can be applied to a SG.

 Each dimension works iteratively with the others and not set to be working individually.

The next list shows a brief description of the dimensions of the framework (Ulicsak, 2010).

 Context which covers where the learning occurs - it includes the macro level, so

historical, political and economic factors through to micro, the tutor’s background and

experience, cost of game licenses etc.

 Learner specification, for the individual or group, requires the tutor to consider their

preferred learning style and previous knowledge and what methods would best support

them given their differing needs.

 Mode of representation, this includes the level of interactivity required, the fidelity,

level of immersion produced. It also covers the separation of the immersion aspect with

the reflection around the process of playing the game. Most importantly it highlights the

potential of briefing and debriefing to reinforce the learning outcomes.

 28

 Pedagogic principles require the tutor to reflect on the learning models which enables

them to produce appropriate lesson plans.

 Through the analysis of these methods it can be inferred that there is special focus on

the analysis and design stages of development where the cognitive skills and pedagogical

information has to be included. After the instructional design is finished the actual game design

is developed. It is very important the continued communication and collaboration between

pedagogical experts and game designers, as seen on figure 8, SGs use pedagogical design to

infuse instruction to the game.

Figure 8. It is shown where in the development process is the connection between educative SGs and

video games (Zyda, 2005).

 In her book Game Design: From Blue Sky to Green Light” (Todd, 2007), the author

presents the general steps that the industry takes to create a game. The steps range from the

game’s initial conceptualization to game scripting storyboarding; from the functional part of the

gameplay to the creation of the game design document and pitch it to a publisher. Specific steps

and processes may differ from studio to studio, but the general steps are similar between them.

 It would be operatively viable to use interdisciplinary groups to create SGs for high

education as an in-house group of development instead of using generic commercial SGs

(Rooney, O'Rourke, Burke, Mac Namee, & Igbrude, 2009), since those may not meet the

objectives required by an specific situation. Other projects take advance programming courses

 29

students to develop games for first year students such as the project “Games2Learn” (Eagle &

Barnes, 2009), changing the actors that Marfisi proposes.

 As seen during this chapter, SGs can be used as a supplement to help improve normal

educational programs. The design of the game has to embed into it the instructional design

necessary to obtain the right results in learning a subject. A thoughtful analysis has to be done

taking in consideration the target students, the presentation and the context in which the game

will run, all of these depending on the needs of the situation. This brings versions of the game

that not only may be a better iteration but that complies with one of the fundamentals of the

project: a specialized game for any available course. This section closes the chapter of literature

review. Next chapter will describe the needs of the specific scenario treated in this thesis.

 30

Chapter 3 Project Specification

The previous chapter brought into account what are serious games, making special

emphasis on the educative SGs. To design a successful SG for educations it is needed to

perform a comprehensive review of the requisites of the scenario in which the SG will land. The

analysis on these specifications is done to build a game and instructional design that comply

with the target group and learning principles to which the project is aimed. This chapter will

describe the specifications of the scenario in which is based the game design of the SG referred

in this thesis.

 The project consists in developing an educational SG about programming for

undergraduate students. The SG is planned to work as a modifiable platform that complements

studies of the programming subjects given at the Informatics degree at the Faculty of

Engineering of the University of Porto (FEUP). The academic program of the programming

course has to be covered in the game. The professor or tutor will decide how much of the course

and what concepts will be included, as well as to make implementation of exercises and give

instructional counsel to students.

Following the concepts about educational SGs, the design of this game must include the

instructional design (programming concepts) into a game design that can be used and applied at

the university.

The game should be built using game mechanics that mix the game design of

commercial video games with the design of SGs to bring an effective tool for learning inside

informatics academic area. “Students learn much more from actually solving problems,

designing algorithms, and writing programs than from attending lectures and taking notes”

(Huang, 2001), therefore coding and programming assignments should be the main part of the

game mechanics that are the object of this research.

 31

As a SG of educational nature, the project must focus on the instructional design

combined with a game design rather than being based only on the common game design used in

commercial video games. The entertainment aspect of a game design becomes an interlinked

aspect of the project with the educational part that works as the main mechanics of the game.

The leisure part comes to improve motivation and concepts understanding, as it is intended that

the game make more enjoyable the practice of programming during the course.

The development of the concept should help to develop the main cognitive skills that

are considered on the profile of a computer science student. The skills that are considered for a

programming environment, which will be the case of study, are to be reinforced during the

activities of the game, to ensure that true learning is achieved. Tasks inside the game must set

players in an environment where they apply problem solving, planning, logical reasoning and

analytical thinking. With the goal to promote active learning the problems of the game have to

be designed with these cognitive abilities.

The following points describe the required specifications needed to be solved in the

project:

 The game mechanics will be mostly about solving problems via code understanding and

input, and then analyze the expected output. Playful mechanics seen in commercial games

are to be included to aid in the immersion of the player and improve a continued use of

the game, without monopolizing the instruction input mechanics.

 The project can support several programming languages, meaning that there is not a

parser that is proprietary or embedded into the game. The parser will be upheld by an

independent system already implemented at the University. In this way game will not

struggle with different parsers either, it will only detect if the code is correct or not, but

must understand the outcome of these solutions. The game mechanics should be designed

to be able to sustain this openness of programming languages.

 The game mechanics must be designed to be able to work with a trial and error practices.

Considering that during learning periods mistakes and errors are an expected outcome, the

mechanics has to support this approach without penalizing the player. The design should

ensure that the player keeps trying to solve the exercise, meaning that motivation is at

hand and that the challenge does not compromise the advance of the student within the

game.

 32

 The game must cover the main concepts of the course. It is intended that the student that

finishes determined levels or quests of the game, is able to fare better during class tests.

As said before, the general design of the game mechanics must be open enough to be

able to cover other technology courses. Professors teaching other subjects such as networking,

databases or advance programming, should be able to modify the game to adapt it to their

courses. The design of the game should accomplish to be general and open to let further edition

of the game, while keeping the flow and script of the game.

The game should act as a visual platform to understand and comprehend the concepts

treated on informatics courses. Assets inside the game can demonstrate the outcome of working

with some of the instructions defined by the professor. Game mechanics should allow

registering advances made by students in a way both professors and students can review after

play.

The whole architecture in which the game will be constructed should permit full or

partial edition of the contents from the academic staff. Not only the game should be language

independent, but also allow adaptation of new level designs, objects, quests and evaluation and

scoring methods. In that way the academic staff can take the game source, re-edit it and deploy

a new game with new characteristics in educational matters, while containing the same essence

of gameplay and game flow. Architecture in which the game is based is attached to the game

mechanics; the design of one must stay inside the possibilities of the other. The architecture for

the game also has to be adjustable to meet the objectives of other courses and the system that

automatically reviews code that is used at the university.

 All the elements described in this chapter serve as basis for constructing the game

mechanics and game design needed for the project. The study case in which the prototype will

be built on is the fundamental of programming class, meaning that the main function is correct

code input and output review. The prototype build at the end of the project will be a

demonstration of what a final product may work and look like. Initial tests on it will show

information if the initial concept and mechanics of the game is well accepted by students.

 Evaluation on the perception of the students is needed to declare that the proposed

mechanic will be usable or not in future developments. In the next chapter it will be reviewed

the methodology that was followed to create the game concept, an initial game design and the

core mechanics in which the game will be based on.

 33

Chapter 4 Scenario Design

 This chapter will cover the process to create the game mechanics and game design that

follow the specifications stated en the previous chapter. The steps of development that are

described in this chapter are: the game concept and preliminary game design, including the

instructional design powering the game. Game mechanics is a fundamental part of the game

design so there is a section focusing on the game mechanics designed specifically for the SG.

Finally there is a section explaining the steps of the production stage of game development.

4.1 Game Concept

 This section will explain the road through the Analysis Stage on how the general game

concept was built and which are the outcomes obtained from this step. The specifications of the

project described before are the result of the objectives presented by the professor while

explaining the problem to solve. The design of the game and the mechanics working for it had

to be under these conditions to try to attain the best possible result and develop an innovative

tool for the informatics courses.

 The main outcomes of this developing stage are the learning approach and a game

concept document. Filling selected questions proposed by the EMERGO methodology helps to

settle the global scenario of the project, its information and how should it be handled as an

academic resource. Lose ends on the conceptualization of the academic idea and objective of the

game can be traced through this task, building a better understanding of the learning objectives

that have to be reached.

 Literature review reveals the main common problems that student have during the

fundamentals of programming courses. Experts found that the main problems that the students

 34

have to deal and overcome in order to become better programmers along the computer major

(ISMAIL, Azilah, & Naufal, 2010). Those problems are showed at table 1. They categorize the

problems in four types: lack of skills, ineffective representation of problems, ineffective use of

teaching strategies and problems understanding syntax and constructs. The learning approach of

the game is intended to target at some degree the solution of these problems.

Table 1. Main problems found on beginner programming students. (Ismail et al., 2010)

 For the learning approach of the game it was considered that practical courses for

engineers in informatics are of extreme importance since it is with these practices that students

develop problem solving skills that will help them in their future careers (Djurovic, 2010).

Practical problems would be the main learning approach decided for the game, in order to

develop the problem solving skills of the students. So it was decided that the game would be

based on a series of quests that will represent the materials of the academic course. Those quests

would be increasing in difficulty as the player completes each area or level as most of the

programming concepts seen on later subjects need skills developed on earlier themes.

 The SGs medium promotes a visual representation of the problems and possible

solutions. It is important that the students change from the initial idea of ‘what’ and ‘how’, that

is taught in many introductory programming courses, into a ‘when’ and ‘why’ (Ismail et al.,

2010). Students are required to develop the problem solving skills and analytical skills needed

to be successful in programming. So practice is important but also, how the game helps them to

acquire those skills is important, this is when presentation of the concepts comes at hand.

 A visual representation of the theory concepts that construct the course would help on

the understanding of the course, and they could be implemented either as visual changes on the

game environment or animations depicting those concepts. Feedback is of extreme importance

in such cases, and visual feedback brings even more impact into understanding the situation that

 35

the students are into. Then it was considered that if the students can watch a visual

representation of a concept and how several actions can interact with it, they will be able to

abstract that kind of information and have better understanding of such concept.

 There is a concern with this approach and the openness desired for the project. To

design the levels and a quest system that are linked to the actual representation of what the

concept is trying to explain will take a great effort from the designer or design team. Academic

staff would have to spend time and resources to design the levels for a version of the game.

There must be a synopsis between the assets and their connection between them with the

theoretical concepts that are to be taught.

 As for the leisure part of the system, the game type, the genre, the setting and the initial

story was decided during the first brainstorming sessions. Defining the game was necessary to

start development of the technological architecture in which the game would be mounted and

continue with the game design in a proper form. This will be a computer game so the platform

of choice is either personal computers or laptops.

 The pace of the game should be slow enough to let students analyze the situation and

come with a solution to the tasks required, so a mixture between a puzzle and adventure genre

would fit better with the need. Adventure games lead players into exploration activities to

discover what lies within the story and world around them. Puzzle games are mainly constructed

with problems that require strategic solutions. The main mechanics of this genre is to solve a

group of puzzles and conquer the challenge that is imposed to the player. A mixture of these

two genres could work better for the type of experience in which the project is aimed.

 The game will be a single player experience. The advantages for this mode rely on the

abilities and resources that the staff has to develop the game. While a multiplayer version was

not totally discarded, the initial concept would deal only with a single player experience. In her

book, Jeannie Novak talks about the differences between generations of players. She describes

the next generation of players as social and collaborative, preferring styles of multiplayer

cooperation and interaction (Novak, 2008). This is an important aspect to consider in the design

of new versions of the game targeted at the next generations to enter to the informatics course.

 The type or style of game was decided to go into either a two dimensional game or a

three dimensional one. Text based adventures was left out because there is intention from the

design team to explain graphically what is going on with the course materials that the student is

learning. Newcomers to programming feel more attracted to a 3D representation of the world

 36

than a 2D version of it, “as they are most likely to help with meeting the high expectations of

the Plug and Play generation” (Anderson & McLoughlin, 2007). Therefore a 3D world was

selected as the style of the game. Being in 3D does not mean that the game will be hyper

realistic, since that will require huge amount of resources and time form the staff, instead a

cartoony style was preferred.

 A game setting and a general story was defined after debating several ideas between the

participants of the project. The universe would be in a utopian future where the human beings

are already ahead in the space age and search about civilizations on other worlds. This scenario

applies to the mechanics of programming challenges since coding could be a good way to

interact with these worlds. The name elected for the SG is ‘Project Orion’.

 The actors of this step of development should be the professors that are on charge of the

courses, “as the domain experts” (Marfisi-Schottman et al., 2010). The professor leader of the

programming courses settled the specifications of the project, which has as a main objective to

be applicable to other courses. If the game needs a new edition concerning other courses than

the initial one that focus on the fundamentals of programming, the leaders of the courses must

define how the specifications will be for the new version of the game. There will also be need of

staff working as game designers should meet with the academic personnel to maintain the game

design layout and build a better experience for the students.

 The final output for this phase is a Game Concept Document (GCD), in which is

resumed all the information for game developers get the main idea of the game. The GCD for

Project Orion is located on the Annexes section. After a GCD is created and exposed to every

member of the development team; the process continues with the actual design of the game.

Next section will detail the process of game design followed for the SG.

4.2 Game Design

 After the analysis of the specifications is done, the design process begins, focusing on

the game model, the scenario in which the game will run and the design of the game mechanics.

The design process starts from the general idea into the specifics, making further description of

what the game will be. This section details what are the game design and the game design

document (GDD) and how it links with the instructional design to construct the final SG.

 37

 Game design is the idea behind the game. It is the process that describes that idea by

designing the rules, gameplay, story, environment and artistic assets that will construct the

game. Game designers on the game industry conclude that game design could be explained as

what makes a game ‘fun’ (Colayco, n d). The game designers are the main actors of the game

design.

 Game development is a work done by a team of designers, artists, programmers,

musicians, among others; it is a multi disciplinary job. Game design as a step of game

development has to involve all the areas in the development team even when the main actors are

the game designers. It is the vision of the game designer that has to be communicated to the

other player of the team, so they all set effort on understanding and achieving the same goal.

 The documentation of the game design is done through the game design document. The

GDD is used to organize the efforts of the development team, and while it is guided by the game

designers, it is created by collaboration of artists and programmers as well. This document

works also as a pathway to create a pitch document that sells the idea of the game to investors

and publishers. The GDD should be a living document and accessible to all members of the

team.

 Since every game project is different there are no strictly defined methodologies to

follow, though there are some tools that help into creating the game. In some cases the GDD is

created as a team effort at various stages and then someone (game designer, level designer,

writer, artist, producer) is asked to situate all information together (Todd, 2007). Then the

document must be placed where it is accessible to read and modify as the production advances.

 It is during the pre-production state where the game concept, the pitch document, the

game design and a small prototype is done. If the pitch document (game proposal) is approved

by the game publisher, then full scale development begins, and the game enters to production

state. During this stage the GDD can change and grow as the development continues, that is

why it is needed to be reachable and of easy lecture.

 Game designers have their own ways to manage this document, which can become a

volume of great dimensions, but a central database or a wiki to store them is often

recommended as they are easy accessible and modifiable. Making the GDD into small useful

segments or sections is another way to maintain control over it as it grows. Although a GDD

does not remove the need for constant design meetings or electronic discussions; getting

 38

opinions and critiques on live about an idea is a faster way to reach team consensus (Ryan,

2010).

 There are no exact guidelines of what a GDD should include since development

companies have different ways of working and each project carries different objectives to reach.

The document segments that the game design documents usually include are:

 Game Concept
o Introduction
o Genre
o Platform
o Game Description
o Key Features

 Feasibility Study
o Market Analysis
o Financial Analysis

 Functional Specification
o Game Mechanics and Gameplay Elements

o User Interface
o Art and Video and Concept Art
o Sound and Music
o Story
o Characters
o Level Requirements

 Software and System Architecture Specification

o Development environment
o Game code architecture
o AI
o Multiplayer (if applicable)
o User interface

 Story and Character Bibles

 Level Design Document

 Flowcharts, scripts and storyboards

 The GDD of Project Orion discusses the game at a pre-production state and will

therefore have the necessary sections to describe the idea until that stage. Also with the

 39

entertainment factor, the game design has to include the necessary instructional design to create

a successful experience on learning programming. The full initial GDD is handled as a second

volume of this document, found in the digital version of the thesis. The next subsections refer to

condensed explanations of the functional game design, the architecture in which the game will

work and the activities that deal with the instructional design.

4.2.1 Functional Specification

 The functional specification is the segment of the GDD that describes the overall

gameplay mechanics of the game, the setting and how the player interacts with it. The game

mechanics are defined on a separate section dedicated to them; therefore this section explains

the rest of the essential points of the design of the game.

 The interface allows the player to take control of the game; it is what makes the game

interactive, compared to other media. The interface must be designed to meet the targeted

players, their needs and choices, if not the game will be unplayable (Novak, 2008). The main

mechanic of the game requires that the student has immediate access to a keyboard; therefore

the best control interface to use is the combination of a keyboard and a mouse. There are no

plans to support joystick control pads since there will not be an exhaustive use of movements

from the player.

 The user interface (UI) is designed to be a clean and simple one. To be in line with the

story, gameplay and setting, the interface is designed as a style of the digital and space era. The

UI must allow the player easy access to the menus and help system which essential to the

gameplay since help and language documentation has to be at hand for the player. The start

screen will give access to the student profile, and once inside the profile, the student will be able

to start a new game or continue others that were saved before.

 The head-up-display (HUD) should also be simple to detect and monitor; it will display

information about the score of the level and the hotkeys to access the menus. The interface for

the programming mechanic should be designed to be unobtrusive for the student, clean and

simple as well. The following image shows the different user interfaces that are planned to be

used in the game.

 40

Figure 9. Initial concept of the UI for started screens, HUD and the programming screen.

 Usability testing of the interface and navigation between screens is essential. The

objective is to allow the student to interact with the game effectively, to keep the interaction

simple. The testing has to be done during the game development process, where it can be tested

without the distraction of aesthetics.

 The next point in the functional specification is to create the vision of how the game

will look like. Concept art is used on pre-production processes to set the ideas of the artists and

designers on the art and style of the game. It is the guide for the visual aspects of the game.

During the creation of the concept, the general consensus of the team was to use a mixed style

between realistic and cartoony for the presentation of the game. This selected style is reflected

on the concept art generated for the game. The following images show an example of

presentation of the game.

 41

Figure 10. Quick draft for the overall concept of a level in the game

Figure 11. Concept art of a level of the game.

 Concept art can be used to describe the setting and the general mood of the game.

Artists generate studies on shapes and colors to get the results expected by the lead artists and

designers. They also generate the look of the characters and non-playable-characters (NPC) that

populate the game. After the initial drafts, detailed drawings are given to the production artists

and modelers to construct the characters that will appear on the game.

 42

Figure 12. Concept art for the ambient mood of the world.

Figure 13. Art used for storytelling purposes.

 The decision of not including video or complex animation reels is because of the

available resources of the academic staff. While they create more immersion and attraction of

the game, they are considered unnecessary for the nature of the game. Instead it is better the use

of simple animations to tell the story or explain concepts. There is one style of animation called

animated stills, the use of still images with limited movement or frame animation. This style

can do the job of representing ideas and are a lot quicker to produce than complex CGI or hand

drawn animations.

 43

 Just as the visual presentation makes the game more attractive, sound and music brings

up the immersion of the player into the game. Audio can be categorized in sound effects,

voiceovers and music.

 Sound effects bring realism to the virtual world, set the mood as well as change it.

When audio design is correctly done, can provide gameplay cues (like achieving a milestone or

objective), heighten player satisfaction and enhance quality of the game (Novak, 2008). Sound

effects give feedback of what is happening.

 Voiceovers are used in games for spoken dialogue and narration. As done with

animation and cinema, it is usually an outsourced task. Since the narrative of the game is

generally composed by sets of one or two lines and are often out of context, the audio director

must ensure that the actors read the lines on the tone needed (Novak, 2008).

 The music score that plays during gameplay sets the mood and pace of the game. For

example action tittles usually have fast paced music, while game simulators have sooth and

calm music for long plays. Music can be recorded, this is orchestrated with real instruments, or

it can be synthesized with MIDI instruments (Novak, 2008).

 It would be recommended to have a score of sound effects and music for the game.

Voiceovers are not essentially needed. The lack of staff with the abilities to design quality audio

for the game mean that at the moment audio is not included in the game design. However to

power the initial version of the game, free or paid tracks and sound effects can be taken from

Internet. Or the task could be handled to a sound engineer that can create content for the game.

 The story will feed the game with a plot and a final objective for the player. While it is

not needed on all game genres, having a good story adds immersion to the game and motivates

the player to continue further. The premise of Project Orion is: ‘As the space race helped the

human kind to make the First Contact, a quest for knowledge and discovery of the galaxy

started swiftly. Join to the team of explorers as a neo-archeologist to find and study the fate of

other civilizations through the galaxy’.

 The elements of story besides the premise are: the back-story, synopsis, theme, and

setting. The overall story of the game is powered by the plot, which tells how the story is

unfolding. The plot requires that the conflict within the story is balanced; this speaks about the

dramatic tension (Novak, 2008). To tell how the story develops, it is recommended to use the

 44

‘and because…’ way of telling instead of the ‘and then…’ syndrome. In that way the plot

becomes more interesting, because cause and effect are introduced into the story (Todd, 2007).

 The overall story on Project Orion happens on the future of the human race. The player

is sent to a planet where the ruins civilization that was very human-like is found. His task as a

neo-archeologist is to discover what happened to that civilization and realize if the same could

happen to humans or not. The plot deals with a conspiracy that threatens the expansion of

human beings. While it is a peaceful era, there is still corruption and ambition, and the

knowledge acquired by the character could send a warning to avoid repeat the future.

 The story is tied to the advances of the player through the levels of the game, which

brings the design into level requirements. The characters, the story and flowcharts (script) of the

game should be written before entering to level design. To aid development it was decided that

the plot bits that uncover the whole story should be placed between levels. Meaning that the

player sees how the story is unfolding after completing all the obligatory rooms of a level. This

is helpful because diminishes the effort of placing plot information during level design, and

makes the story more manageable.

 Characters can either be the player characters, controlled by the player, or non player

characters, which are not controlled by the artificial intelligence (Novak, 2008). Game

developers spend a significant amount of time designing their characters; they seek to give

personality to the game and create a connection with the player (Todd, 2007). The character

bible is the document that contains all the information about the characters of the game. The

character bible deals with extensive descriptions, back story and sketches of the main,

secondary and supportive characters.

Isaac is the name of the main character of Project Orion. He is a human being from Earth, in his

late twenties, whose job is to study other civilizations found on the galaxy. He has a sidekick

character called H4L that helps him in his duty. Isaac is controlled by the player; he can interact

with the world in limited way. The robot, while is not directly controlled by the player, can be

called at any time to aid Isaac on his tasks, as it is the one that interacts with the systems on the

planet. The following image shows some concept art evolution of the main characters of the

game.

 45

Figure 14. Evolution of the design of the main characters for Project Orion.

 It is recommended to have information on the levels and puzzle design covered

somewhere in the GDD, before the production stage of the game, because it saves a

considerable amount of time (Todd, 2007). Puzzles in level design must always stay organic,

‘loving the player’ instead of ‘killing the player’, to avoid frustration.

 In Project Orion, the levels match the material of the programming course, so it was

decided to have rooms as the basic structure of the levels. Each of the rooms would handle a set

of quests that the player must solve to advance. Those quests should be tied to a puzzle that has

to be solved via programming and should also be aligned to the material assigned to the level.

 The idea is to have a series of objects that together form a puzzle. The player solves the

programming task and the trigger is sent to the objects to react according the programming

concept that was tested. In this way the feedback of the code input comes as a visual

demonstration, which will help the student understand the concept.

 The option to choose different paths is going to be offered for the player, but the

mechanics around this is the difficulty of the challenges. Difficulty selection is not going to be

available form the main menu, but it can be managed in-game. Depending on the skills of the

player, there is the possibility to improve skills on easier paths, if the player chooses so. If the

player feels comfortable with his skills he has the chance to get a higher score on an optional

way with harder quests. This multipath option between levels is depicted on the image below.

 46

Figure 15. Concept art of the map screen, showing the available paths to travel through the rooms of the

level. Shades of colors represent difficulty.

 This section described the functional segment of the game design for Project Orion.

There are ties with educative activities in some of the points referred in this section. The

interface and the level design are linked with the pedagogical activities, and therefore they

should be designed according to the original specifications. The other points described, refer

more to the presentation of the game, and while they are also tied to the scenario in which the

game will be used, there is more freedom into designing them.

4.2.2 System Architecture

 Many decisions taken with the game design for Project Orion are aligned on the system

architecture in which the project will be standing. The technical specifications set a series of

boundaries of what can be done and that is why it is so attached to the game design. Game

developer companies create game technical documents to describe the possibilities of the system

structure and game engine used in the game (Novak, 2008). This section will explain the

architecture used for Project Orion.

 The game is designed to work on a client-server architecture, where the three packages

in which the game is mounted are connected through either a local or wide area network. Figure

16 shows the components diagram that describes how the packages interact with each other.

 47

 “At the core of this architecture the server package manages all aspects of the platform.

The client package is the interface which users use to interact with the platform and finally, the

DOMjudge package handles all source code evaluation” (Kato, Gonçalves, Xavier, & Coelho,

2011).

Figure 16. System architecture for Project Orion.

 The server can be described as the core of the project; it pumps data to other

components and packages. Its mission is to interact with the other packages by managing and

processing all information. The game is basically allocated on a web server. All the assets of the

game (game engine, textures, objects, exercises) are stored on the server side. The database

holds information about the materials for the course. The designers chose from the pool of

problems and make sets of similar problems related to a specific programming concept (Kato et

al., 2011).

 48

 The access the game the student needs a recent version of a web browser. The game

engine that powers the game is Unity3D; the client computer has to have installed the Unity 3D

player. If this is not the case the student will be prompted to install the player. Development of

the assets of the game has to be consistent with what the engine supports.

 The DOMjudge Server is the one that holds the process that automatically reviews the

code that students input. This package allows to use in the game any programming language

supported by DOMjudge, meaning that there is not a dedicated parser for the game.

 This architecture also allows the academic staff to edit the game and make new versions

of it. The editor has the tools to generate new levels and rooms, include pre made objects and

characters and attach quest.

 This section described briefly the platform that will support the game. The activities that

can be performed by the students and the staff are also attached to the architecture. The next

section describes the instructional activities that the student will have to perform once playing

the game.

4.2.3 Instructional activities

 The design phase of a SG has to result in a detailed scenario of the activities that the

students will perform in it. A detailed technical description of the activities can be found on the

game mechanics section, where the rules of the game explain the possible activities. This

section describes the overall set of activities performed by students and professors and how are

they designed to interline with the instructional design.

 The student is able to explore the world, collect items, and interact with the objects and

characters. These activities are meant to let players immerse themselves in the narrative of the

game and increase the motivation to continue the game. Motivation to play is a significant

characteristic of educational video games and that effective game design considers both intrinsic

and extrinsic rewards for play (Dondlinger, 2007).

 Every time the player enters a room, he will find a place with different layouts and

objects. The player has the task to explore what is inside the room to discover what has to be

solved to reach the next area. In the way of the player, there could be items he could pick or

 49

characters to interact with. Depending on the design of the level, these items and characters can

reveal information about the plot or about the challenges that have to be solved in that room.

 The challenges have a set of points that the player can acquire as he solves them. These

points add up in a score level that handles the in-game performance on solving the challenges.

The use of leader boards on games motivates players to increase their score so their name stacks

higher on the board. Scores of the player will show up in a leader board and in that way the

student will see how is he faring against other players. To avoid direct competition with other

players, the name of the rest of the players of the board will not be visible to the student that is

looking at the leader board through his designated profile.

 It is important to note that it is not the intention to use the score as a grade on the course

score of the student. The intention is to motivate the students to go for the harder levels and

train with more difficult exercises. However, finishing determined number of levels, defined by

the professor, can help the student to cover the necessary material to face the real course test.

 It has been mentioned on the previous chapters that the main activity that the player is

going to do is solve programming problems by actual code input in the game. When the students

access a terminal, they will be prompted with the challenge that needs to be solved. The text

explaining the task has to fit in the context in which the player is standing, this means that the

exercise depends on what is happening on the room in that moment. The objects in the room

must be linked with the text that asks the student to perform some action. If the exercise is not

related to the actual situation of the player, it will work as a mechanic isolated from the game,

like those seen on edutainment software.

 It is here where exploration comes handy. The student must study the room and work

out a way to go out of there. Objects inside the room may give clue on what is going wrong in

that section of the level. Scattered items or characters may have information of what kind of

code structure is needed to interact with the terminals. Active thinking is promoted as the player

needs to seek for a way to solve the puzzle in the room.

 After receiving a positive evaluation of the code, a trigger is cast into the objects to

react according what the code is meant to do. For example, if the player is asked to navigate and

find information through the index of an array, a correct code can trigger an animation

demonstrating how was done the movement inside the array. Figure 17 shows the sequence of

this example. The intention is to activate critical thinking on the student as he/she studies what

the code does.

 50

Figure 17. The player reads the problem, writes the solution on console and triggers the animation.

 The student can access educational material and documentation at any given time,

though it will be available little by little at the same pace as the student advances in the game.

The student has a log where he can review hints and tips collected during the game. It is

possible to save pieces of code and notes on the log of the character. This will let the student

review and use pieces of code that he already mastered in situations in which use of similar code

structures is possible. This activity is intended to help the student to think about previous

experiences and own thought on exercises done before.

 The professor also has a role in gameplay. The professor is able to review the advances

of the students playing the game. This allows monitoring if there are any problems with any

given section of the game, this relate to determined concept, meaning that further instruction on

that concept can be given at lesson time. The professor is the one that broadcasts help messages

through the game, as if he was an entity living on the game world, like an artificial intelligence

on the planet’s system.

 The activities described above reflect the educational objectives that are planned for the

game. As seen on other methodologies, this step is designed before entering the production

stage, trying to fusion the instruction design into gameplay. The next step is to go more specific

with the design choices in which tasks “evolve into more detailed depictions of gameplay”

(Mcmahon, 2009). This defines the main mechanics of the SG. The proposed game mechanics

are explained in the next section.

 51

4.3 Game Mechanics

An integral part of a complete game design and the main aspect to build gameplay is to

define the mechanics that will power the game. This section explains what those game

mechanics are and afterwards describes the proposed ones to be used on the game design of

Project Orion.

Every game has a set of rules that indicates how it is meant to be played by a person.

These rules are also called ‘game mechanics’ and are included from board and sport games to

video games and computer SGs. Taking this concept to the digital version of a game, players

tend to focus on the elements, which may be perceived as a group of mechanisms or “black

boxes”, which are there inside the virtual world, visible or not, to allow them to play the game

(Fabricatore, 2007). Game mechanics is what makes a videogame playable, and serve as basis

for gameplay; if the mechanics are designed in a player focused fashion the final game may

have a stronger quality.

Figure 18. Game mechanics as a black box (Sigman, 2010)

A player or computer action could be a game mechanics at work. The function working

under the mechanic ‘black box’ takes an input and transforms it into an output, as seen in figure

18. This is the feedback that a player expects. After the player performs one activity inside the

game, the feedback is output to show that something is going on. The feel of this feedback

brings certain satisfaction and motivation to continue operating the game. In instructional

design, feedback mechanisms are important in the way that let the user know they are making

progress towards some future state and using what they have learned, there is a pursue of

additional pleasure (Danc, 2006).

 52

Commercial video games main purpose is to entertain and the mechanics used in them

let various modes of play; they incorporate goals, chance, rules, and discernable outcomes along

with strong focus on presentation and storyline. Educational games focus on a learning outcome

that is dependent upon an appropriate pedagogy and the underlying game mechanics and how

the content is integrated into the game so the learning is intrinsic to play (Ulicsak, 2010).

For a SG the game mechanics should apply to the aim of the project, which has to cover

the academic design within the concept of a game, without loosing focus that the main objective

is to help on learning rather to entertain, using this last characteristic as a helper on the

continued use of the software.

The primary core mechanics of a game are defined as the actions of a player that are

most repeated during play time to reach a rewarded end-game state (Sicart, 2008). Those

mechanics can be described as functions that are available to the player and explained at the

beginning of the game, and the main actions that the player will be performing through all the

game.

Secondary game mechanics are described as “core mechanics that ease the player's

interaction with the game towards reaching the end state” (Sicart, 2008). These mechanics can

be available from the start of the game or not, becoming as optional functions that are used

occasionally through the adventure, but they will help to reach the end state of the game.

An important part of the mechanics is the player-token. A player-token is described as

the main medium in which the player interacts with the virtual world, it could come in a form of

an avatar or as an “invisible hand” (Fabricatore, 2007). It is with this token that the player

interacts with the mechanics of the game; it represents him on the virtual world. Describing a

character or the avatar in which the player will interact with the world is a very important part of

the gameplay mechanics.

 The first approach for the game design intended for the project was done during

brainstorming sessions between the developers of the project and the supervisor about the main

mechanics of the game. The main aspects of the game like the universe and plot, movement, and

focus on the academic stance, were defined after doing some comparison between SGs in the

subject and commercial games. A second approach was determined given the fact that the game

should be modifiable by the academic staff of FEUP. This led to a creation of the concept to

have a game editor available to professors, which would also have some mechanics attached to

it.

 53

 The mechanics and rules exposed in this section are the proposed mechanics to meet the

specifications of the project and the case of study, a SG for learning fundamentals of

programming. These mechanics are divided into three parts which will involve the primary core

mechanics for the game as well two separated secondary mechanics, one that describes the

general gameplay for the player and the second one about the activities aimed for the professor.

As described on the game concept and design, the game will be a third person adventure

game. The player-token for the SG will a 3-dimensional avatar that will represent a character.

Accompanying the main character is the robot sidekick, working as a supportive character. This

token receives input from the player to interact with the virtual world of the game. The character

makes any physical interaction within the world while the robot sidekick is the one that gives

advice to the player and prompts the main mechanic of the game: programming.

As part of the core mechanics, the end-game states for the game proposed in this thesis

are to get the highest score possible and to acquire knowledge of the whole story of the game.

The way to reach those end-game states desirably is to input the correct code during missions.

The next sections describe how the primary and secondary mechanics work.

4.3.1 Primary core mechanics

Below are described the main functionalities of the SG and the mechanics that are

working on them.

Exploration includes 360° land movement, jumping. Direct character interactions with

objects occur while opening, closing, pushing, or pulling things. Character controls mechanics

are defined as follows:

 54

Mechanic Control* Key Click
Movement

Move forward KB W
Move backwards KB S
Turn clockwise KB D
Turn counterclockwise KB A

Move sideways right KB+M D Hold Right
Move sideways left KB+M A Hold Right
Jump KB Space bar

Camera viewpoint M Hold Right
Interaction with objects, menu
items, and options M Left
Open Items menu KB I

Table 2. Table of main controls.

 *KB = Keyboard / M = Mouse

Moving the character in the 3D world is necessary to continue advance. It is during

exploration that the player can find the terminals for coding, understand the objects and puzzles

of the room and to do some looting on items and logs that uncover the lost story. The main way

of direct interaction with objects, whether is a terminal, a random object or a NPC, it is done

with the left click button of the mouse. This will bring a small context menu of what can be

done with the specified object.

Moving from one level to another is part of exploration, though because of the nature of

the project, it is limited to single rooms representing one type of challenge per room. These mini

levels are interconnected to each other through a series of passages, doors, transporters, and

together they construct a level. Each room has several kinds of objects that construct a general

puzzle. The character explores this 3D chambers, find objects and puzzles to solve, and then

heads to the next room.

The main interaction is done by coding through the virtual terminals scattered in the

game. When the character interacts with an available terminal, a screen presenting the command

prompt appears indicating the instructions of the challenge and the area where the code must be

input.

 The following diagram represents how the mechanics should work. They areas shaded

in grey show the ‘black box’ surrounding the working mechanics about code input. It is also

shown the systems in which the game is running: the platform of the game and the server where

the platform communicates with the code evaluating system.

 55

Figure 19. Flow chart of the coding mechanic.

 After receiving information about the problem that has to be solved, the player has the

task of input the code on the screen of the command prompt. When it is done, the student clicks

on the “communication button” that sends the code to the reviewer system located on a server,

the one used at FEUP is DOMjudge, an automated judge system used in programming

competitions (Eldering, Kinkhorst, & Warken, 2011). This lets the game be language

independent, since it is not the game that compiles and executes the code. The server then sends

the flag to the game system as a success or failure, the game takes that answer and reacts to it.

The player then gets the answer as a positive or negative feedback. As shown in the diagram,

the player may have multiple attempts to solve an exercise.

Left click on
terminal

Command
prompt screen

comes on

Player inputs
code

Code is
compiled and
checked on

Click on
“communication

button”

Resulting output
is evaluated in-

game

Code
is

correct

Negative
Feedback in-

game.

Player advances,
gets item, log

updated

Feedback in-
game. Score up

Player side Game side Server side

No

YES

 56

Help and hints are given through the game using the knowledge of the robot sidekick

or manuals scattered in the game. Further theory concepts insight and code clues are also

explained to the player through the game after solving main challenges. The student may be able

to call the robot sidekick for aiding on any given quest if it is designed that way.

Mechanic Control Key Click
Help

Game help menu KB F1
Robot aid KB H
Review of Materials KB F1
Logs of quest KB L

Table 3. Table of help controls.

 It is important for a SG for learning that there is enough documentation about the game

and about the materials of the course covered to be available for the student at any time. There

will be help for game use and review of academic materials all reachable from the help menu.

The robot companion can prompt aid messages of what is happening in the game, from quests

and challenges to the path to follow. Hints of what are the necessary steps to complete a code

can be also be given by the secondary character. The log system controls the advances of the

player, giving information on what is the last step, quest or room explored.

4.3.2 Secondary game mechanics

Secondary game mechanics describe the rest of the functions of the game. These

mechanics are categorized in two groups covering the two parts that compose the whole project:

the player part for students and the editor part for the academic staff.

The playable part

The player part of the game is where a student interacts with the software, the playable

section of the full package. As the main part of the project it is there where the primary core

mechanics are to be implemented along with the secondary mechanics, to complete the required

design of the game and the specifications of the project. The activities in this section are:

 57

Each of the terminals presents one or various quests to solve. The problems are assigned

during the edition of the game as well with the relationships on other objects and their influence

on them. The correct solution of a problem triggers the interaction with the objects on the room.

The player gets access to other areas, a hazardous object or zone is cleared, or items and plot

chunks are obtained. As described before if the player fails to a challenge he can try again.

The correct output of the code analysis sends a trigger to the object that is liked to the

terminal, the object as an asset of the game react to its own functions. There could be a linkage

between various objects, like a circuit board, the player may be required to solve more problems

to open the doors so the current could flow between objects to solve the whole puzzle.

“The score (which is a great motivator in any game and provides the player with the

stimulus for continuous improvement) rewards and penalizes the player” (Bellotti et al., 2009),

and as such is a tool to be used to increase motivation of the player.

Player increases his global and level score depending on the quests solved within the

level. A value of points is given to every problem to solve, this is the maximum of points that

each quest contain. Getting some special items and solving optional quests increases the final

score for the player; these activities are harder programming challenges to perform.

The optional challenges are not necessary to advance and serve as motivators to get a

higher score by players that have more skills on coding. The value of the score is defined on the

editor of the game. The following diagram explains the flow of actions while solving a problem.

 58

Figure 20. Flow within obligatory (left) and optional (right) challenges.

Award to the player comes as addition of points from the score available for a specific

quest. Correct code input performs a limited point addition from the full value of a quest. An

incorrect code will maintain the score at its minimum. The errors that are taken in consideration

for this penalization are: compiling errors, failed compiled code and unexpected results

including memory overflow and infinite loops. A compiling error may be the most common

mistake made by students prompting quick help from the game for them to review. For the rest

of the errors the mechanic of penalization will be counted as failed attempts of a compiled code

without reaching success, Help to solve these problems has to be more complete and deep.

Number of tries, as a number, may not be penalized. After a defined number of tries,

help and hints from the game will be available to the player. Even after giving some hints, if the

player reaches a limit of attempts, another pathway will then open, redirecting the player to a

series of levels with easier challenges to bring up their skills. At the end of this new route, the

character gets back the room he was supposed to reach, and try to fulfill the normal difficulty

quests.

Player inserts
code on

obligatory
terminal.

Output
evaluated
in-game

Player side Game side

Code
is

correc

Count
available
maximum

Add points
to player’s

score

Player inserts
code on
optional
terminal.

Output
evaluated
in-game

Player side Game side

Code
is

correc

Count
available
score of

Add points
to player’s

score

Player
advances

Retry

Player
advances

Player
advances

yes
yes

yes

no

no

no

 59

Figure 21. Flow when player fails several numbers of attempts on normal path.

Players can keep a mini inventory of items found during challenge solving or

exploration of the levels. Items can be used to aid the player, to complete other quests or could

be log or educative information about the problems that are being solved.

Items are categorized in four sets: adventure log items, academic materials, collectibles

and achievements. The first two sets are contained on their respective menu and accessible at

any time of the game to review either the plot of the adventure or usable information about the

programming challenges and theory concepts of the subject. The last two sets are for score and

level up of the player and are stores at the player profile and items menu.

Player side Game side

Return to
desired room

(Normal

Player side Game side

Player gets
into room

To next
room.

(Easier Path)

Output
evaluated

Code is
correct

Defined #
Attempts
reached

In-game
Hints

1

Code is
correct

Max #
Attempts
reached

1

Player inserts
code

Output
evaluated

Player inserts
code

Open new
path

Player solves
easy rooms

To next
room.

(Normal
To next
room.

(Normal

no

yes

no

yes

no

yes

no

yes

 60

The editor

The editor is planned as a complementary section of the full software and will be

accessible by the academic staff to generate new games, following the same core mechanics to

every game, to attain other final learning objectives.

This chapter will describe this part of the software, which will allow professors to do

changes on the overall world of the game. The modifications of the game are done in the editor

interface, allowing the academic staff modifies the general educative options of the game. After

finishing with the edition the system will allow the professors to generate a package with the

input of all information and then the system will use this package to construct a working game

according to the selections done by academic design. The main changes that can be done in the

editor are: edit room layout and level conformation, categorize problems in pools and choose a

selection of problems to be used on levels, modify the contents of the help system and activate

or deactivate in-game metrics.

The edition of the world and levels allows staff to edit room layout, the objects that are

contained on them and the connection between each room. For room edition the editor will

represent the space of each room with a finite matrix in two dimensions. The matrix works as

the graphical representation of the room will allow the professor to identify what are the objects

to interact and places where they are standing to build the challenges that the player has to face.

Floors and walls can also be defined into the matrix delimitating the space and shape of the

room with the option to define up to three upper floor levels inside a same room. Objects for

transportation and passage between the rooms are also placed in this interface.

Objects are defined as assets with modifiable parameters which are changed during their

placement on the matrix. The parameters available for each object depend on its classification,

whereas on object for a programming challenge would allow setting a problem to it, a

transportation object will define the route and linkage between rooms. The paths for an easier

route to improve the abilities of a student are also defined here, assigned to an invisible object

that will appear when the number of attempts triggers it. An option to test the room before and

after saving will allow the editors to try the layout of the room and the relationship of the

objects in it.

 61

Figure 22. An early build of the graphic interface of the editor (done by Ricardo Gonçalves).

Changes on graphics for assets of the game, such as textures and type of objects can be

done and applied at any part of the edition, but depend on the creation of them before intended

use. There would be a library where these assets could be chosen from and applied to the rooms

and objects of the game. If the staff arranges to have enough variety of this kind of assets, new

iterations of the game could be even more varied and distinct of the previous one.

Choosing problems and embed them into specific objects and rooms of the game is an

important functionality of the editor. Professors can select problems from a database and

categorize them in different pools according difficulty or subject. The categories are important

to control because with them the right subjects and difficulty are defined according to the

academic course and the levels of the game, ensuring that the pace of the game goes along the

materials seen at class. Then it is defined from which pool of problems the challenges are going

to be taken and applied to the terminals, the place where the student will solve each task.

A random function will assign specific problems at the moment the player access his

game bringing a slightly different experience between students and each time the player replays

through the game.

 62

Enhance learning with some other options of the editor such as the easy level routing

and help and documentation structures. Alternative paths with easier exercises can be designed

and linked to the normal path to help students develop skills for normal difficulty challenges.

This has already been explained before, but it is important to the learning curve, that the

students have the option to improve their skills in another way if a challenge is too big for them.

A help system can be modified and it is attached to the creation of the levels. The

different types of help can be both input to the system as text, images, animation or voice and

afterwards categorized according to the plan of the game. Help information can be attached to

the objects of the game such as the terminals, log information or items found by the player. In a

very similar fashion of that of creating the easy path after a number of failed attempts has been

reached, help hints can be triggered.

Just as the visual assets of the game, this information has to be designed and stored

outside the game. Then they can be imported and assigned to objects inside the game as

mentioned before.

Predefined metrics can be activated for a specific game version. Metrics are important

for evaluation of the course and how is the student dealing with the game. In the videogame

industry especially on the social games branch there is discussion about metrics on those games,

whether they are in an ethic problem through monetizing players or just improving the game

with the information taken from them. Since this is not a game for economical matters the

metrics proposed are those that help either the student or the professor to evaluate advances and

uses on the game. They will be treated as information to better understand if the game is

working or not, and that’s why the metrics should be well designed for the experience.

 These four are the main functions of the editor, being the options that the academic staff

has available to edit and modify the game for their own course. The core mechanics, the overall

flow of the game, its back story and main presentation design are not changed with the editor. In

this way a new version of the game can be created quicker and more efficiently than designing a

game from the ground up.

 The complete package is ready for a major re-design if needed, though it will need more

planning and resources, since most of the assets and game scripting would have to be

reconstructed from ground-up. The next section explains the development stage of a game.

 63

4.4 Development

 Once the pre-production stages are complete, the next step is to develop a prototype to

introduce the game mechanics to the people that is going to give green light to the project. This

thesis covers up to the pre-production stages and the implementation of a first prototype,

however this chapter will describe how further production is intended.

 Production is the longest phase of development and it involves all the teams in charge of

developing the games. Teams are formed by multidisciplinary people, which have always a

leader to guide the efforts of all and communicate advances to other teams. The several roles

that those teams cover are: producers, designers, artists, programmers, audio engineers, quality

testers and marketing experts (Novak, 2008).

 In the production stage there are milestones that are reached as development advances.

Novak states that it is not a rule but usually developer studios call them: alpha, beta and gold

phases.

 At the alpha phase the game is playable from the beginning to the end. The engine and

user interface (controls and navigation) are complete, and testing starts to be done on gameplay

features and game modules to find gaps and bugs. This is the stage where the game is polished

and marks the first time the game is tested by people from outside of the development teams.

 When the game reaches the beta phase all the assets including the artistic specifications

are complete. Development ceases and the focus of this phase is to find and fix the biggest

number of bugs possible. Performance and playability are also tested, and it may include people

recruited even from outside the company, in most of the cases via online testing. All the

material that will accompany the final build of the game has to be created, this includes:

manuals, compatibility of hardware and interfaces, localizations.

 After the beta phase the game is considered gold. It is at this phase that the game is sent

to be manufactured as copies of a master game disc, after they have been thoroughly tested.

Management reviews the product and agrees that the product is ready to enter manufacturing

stage.

 64

 Project Orion is not intended to match commercial games in terms of production value,

but if it is intended to be a great experience for students, its development must be done also by a

multidisciplinary team.

 The role of the producer must be taken by the professor that is in charge of the course,

since it is he that defines which academic objectives have to be covered by the game. As seen

on previous sections, instructional design has to be embedded into the concept and design

phases of the game. The tutors and professors are cognitive and domain experts and in their role

as producers, it is crucial that they keep continuous communication with the development team.

 The designers have the task to create the style, the levels and the interfaces of the game;

since Project Orion consists on changeable items, all of them can be re-designed if it is needed.

The creative style and the interfaces can be handed to artists, but it is the level design that

requires great deal of attention from the designers. The previous sections describe that the

objects in a level have to be related to the problems that are expected to be solved. To ensure

that the best feedback is given to players, the objects must react according to the programming

concept that the student is experimenting on any particular level. Other tasks that the level

designer must do are object creation, room placement, navigation through levels, items and

triggers involving plot progress.

 Artists have the task to achieve the creative vision of the designer. A complete version

of the game, or further versions, requires a bigger set of visual assets. To create new levels and

puzzles, objects in the game have to modeled or arranged from a source like the Internet. To

create new environments, textures for the rooms have to be designed. All the created objects and

graphics have to be placed on a database that is accessible to programmers and designers.

Project Orion does not require complex and organic assets, since it would be difficult to place

them in the current version of the editor. However, animators may be needed to enhance the

animation clips that are intended, these may include: character movement, feedback of

problems, explanatory clips and plot cinematic.

 After all the assets are arranged the programmers commence work on scripting the

game. The role of the programmers is to make the game work. They will work on the Unity 3D

game engine to implement the game and the objects populating it. They are the responsible for

the architecture of the system; they have to be sure that the components are working and make

further testing any time a new version of the game is created. Programmers may increase the

capabilities of the current architecture model, opening new opportunities for the instructional

and game designers to implement new features on the game.

 65

 Audio is a very important part of the game experience. Feedback is enhanced with audio

cues and immersion is greater with music. Audio experts are in charge of composing music and

design sounds. They will create pieces of audio with enough quality to improve the experience

of students with the game. They must be sure that the music goes according to the setting and

that the sound effects are used correctly when needed.

 This process is an iterative one. Testing is done through each of the phases of game

development. However usability testing is essential, because it can reveal problems that deal not

only with the game design but also with instructional design. While doing usability testing

students can make comments of what they like and dislike of the game features and place

observations if the instructional functions included are enough or not.

 This section summarizes what is the production stage who is involved in it.

Development teams formed with people of complementary profiles are the responsible for

bringing the game to life. Further research on the game development processes can help the

development team to create a product that is capable as a tool for learning. It is possible to

develop the game ‘in-house’ with the resources that are available at FEUP. This section finishes

with the game development chapter. The development of the prototype and its evaluation is

going to be discussed in the next chapter.

 66

Chapter 5 Prototype development and Results

 Using the game development process described on the chapter before and the

specifications of the project, the next step was to implement a prototype for testing. The

prototype was used to test the proposed game mechanics on students of the same major as the

targeted students. The next sections will depict the process done to construct the prototype and

the assets generated for it. The results of the evaluation of the prototype will also be analyzed

according to the specifications described on chapter 3 and the mechanics proposed on chapter 4.

It is also explained the cooperation with another dissertation that describes the architecture of

the project.

5.1 Prototype Development

 The first step taken into the development of the prototype was to design the game

mechanics depicted on chapter 4. Of the proposed mechanics only the help system on the

primary and secondary mechanics was left out on the prototype because of time constraints.

Exploration and interaction mechanics were fully implemented while the secondary mechanics

were executed in a limited way.

 After the game mechanics were defined, the rest of the game design process was

followed. It started with the creation of the assets that were going to be used on the prototype.

Seven types of objects were created for the two rooms planned for the demo level, all of them

attached to the scenario context:

 Terminal – object that allows the player get into the programming exercises and the
screen where the code is input. For the context of the game, the terminal represents the
place where the character can interact with the AI in the world.

 67

 Door – navigation between rooms is done by passing through doors.

 Transporter – an object that lets the player reach other areas inside the room that are not

accessible by just walking.

 Data pad – this is an object that gives information to the player about the exercises or

the story of the game. Important hints on the programming challenges can be found
when the player analyzes the data pads.

 Force fields – this object impedes access to a certain area.

 Lights – objects used to light the scene. They can give feedback on accessible areas or

doors.

 End object – designed to be a door in the prototype, this object triggers the end of the

demo.

 These objects have specific functions built into them. When the student solves a

challenge correctly, the game receives the trigger from the reviewer package and the objects

react to let the player continue with the level. The objects were obtained from free sources on

Internet and then modified and retextured to fit the game context. The next group of images

show some of the objects generated for the prototype.

Figure 23. Rendered images of the modified door, data pad and terminal models.

 68

 The avatar for the player, Isaac, was also used in the prototype. An animated model that

exists in a Unity 3D tutorial was used due to time restrictions and to avoid technical issues

regarding to animation. The model was slightly modified and retextured to bring greater

contrast between the character and the world, since the original textures were too dark, this can

be seen on figure 24. Textures for the walls and floor of the room were also generated for the

demo.

Figure 24. Contrast and color correction (right) done on the original textures (left). Textures taken from

the materials of the Unity3D tutorial.

 The next step was to create the level of the prototype. The level covers four

programming exercises, all of them accessible through the terminals scattered on the rooms. The

level was separated into two rooms and the player has to solve two challenges on each one of

them. Figure 25 shows the first level design concept for the prototype. There can be seen the

starting point for the player, the objects in the room and the path that the player should take to

finish the level.

 69

Figure 25. Level design of the first and second rooms of the level.

Figure 26. Screen shot of the actual prototype level.

 After all the objects are ready the actual prototype level was created on the level editor

shaped for the project. Testing of the placement and looks of the assets was done to ensure that

the objects were easy to spot. Some of the walls and platforms changed place from the original

 70

design during testing to achieve a better relation between exploration mechanics and the

challenge mechanics. A final screen of the looks of the level is shown on figure 26.

 The programming exercises where based on the use of expressions and navigating

through a set of numbers. At the time of design, two types of instructions were written. First the

direct instructions of what the student has to do. Second the context driven instructions that

related the challenge to the game concept. Table 5 show the texts used to tell the student what

were the tasks to be solved. The intention is to attach the exercises to the game context and

make the objects react to the outcomes of the code that is input.

 The message given by the last terminal shows only <Enter Password>, the player has to

find information of what is the password asked by the terminal. On the second room there is a

data pad that holds log information about one engineer, whose name is Pherick Iliam, that

recorded his activities long before the Isaac arrived to the planet. There is another data pad on

the first room with hints on how to do one of the exercises. Both data pads have information

tidbits of what is happening in the story at the time represented on the prototype as seen on the

table 6.

Quest Direct question Context driven question

Q1

Write a program that receives 5 numbers and
returns the position of the smallest of all.

This force field receives energy from five power
generators.
To bring it down, set the value of the five power
generators and return the number of generator that
has the least amount of energy available.

Q2

Write a program that receives 10 numbers and
makes the harmonic mean calculation of
them. There is a data pad that has that
equation..

It seems the transporter is not calibrated; it would be
dangerous to start it on like this.
To calibrate it you must set up the harmonic mean of
a frequency of ten numbers.

Q3

Write a program that receives 5 numbers and
then returns the positions (relatively to first
entry) after ordering them from min to max.

The light of this room is out of energy. The problem
is detected on the arrangement that has been just
done on the five power generators. To restart the
power line the generators must be arranged by their
capacity values, from minor to major.

Q4

Password unknown Override password.
Search for instructions.

<Enter Password>:

Table 4. Challenge instructions included in the prototype.

 71

DP Context driven text

DP1

HINT FOR Q2

Pherick Iliam’s note log.

I will take note of this since it is easy to forget. It
should be handful if the teleporter loses its
calibration, when all this time of confusion ends and
we can settle down again.

Harmonic Mean Equation

1/H = 1/ ((1/n) * m)

m = (1/a1 + 1/a2 + +1/an) or
n

a1

1

a= frequency numbers

* It just needs to find 10 frequencies so n=10

DP2

TO SOLVE Q4

Write a program that receives 2 numbers
as a min and max of a range of numbers,
and calculates the average of the prime
numbers within that range.
EX: 4 -10 prime numbers: 5,7
average of pn: 6.

Pherick Iliam’s note log.

The situation doesn’t seem to recover at all. I can see
the horror on people faces. This is not what they told
us that would happen. I may not be able to come
back, in that case it is better to leave a backdoor to
override the password of the access door of this
sector.

If someone finds it before me, please recover what
belongs to us.

To override the password, the average of the prime
numbers contained on any range of numbers (MIN
and MAX), it’s needed.

Table 5. Text depicted on the data pads scattered in the level of the prototype.

 Finally the prototype screens were designed. These screens give access to the student

and allow them to create several game files. Two screens explain briefly the story of the game

before the player begins game play. And the rest of the designed screens are use while the

players are experimenting with the prototype, which include the programming section, the quest

screen that describes the task to do and the menu screen. Figures 27 and 28 demonstrate the

general interface of the programming and completed quests screens for the prototype.

 72

 An error feedback was implemented, prompting a message when the code resulted in a

failed trigger from the DOM Judge server. The message is prompted on the programming

screen, reducing the available points of the challenge.

Figure 27. Screen of the programming interface of the prototype.

Figure 28. Screen showing the information on completed quests.

 73

 A brief period of testing was done to make sure the prototype was working correctly

and the navigation through the screens was right. The implementation for testing was done in

one of the computer labs of FEUP since the connection to the web and the DOM Judge servers

is required for the game to work. The next section discusses the results of the testing done on

the prototype.

5.2 Results

 This section will evaluate the final state of the prototype according to the specifications

of the project and game design discussed on previous chapters. The results obtained from the

testing phase will be also analyzed.

 It was mentioned before that during the game design process a concern about the

feedback that the game can give to the player. This concern turned in reality while designing the

prototype. Since the objects react to triggers that are not game specific they cannot be easily

linked together to give actual feedback about what the code does. This could happen with logic

errors on the code. For example, if the student writes a piece of code that is compiled but the

result is not what is expected, the game will be unable to show this unexpected behavior.

 This situation is considered a weakness in the game design because it cannot apply one

important pedagogical concept that is needed to implement good instructional design on the

game. The game will not give accurate feedback on every case. However this is attached to the

type of platform that supports the game, meaning that both game design and platform have to be

tweaked to convey a better feedback for the student.

 The help mechanics were not implemented as proposed on the game design chapter.

 The rest of the game mechanics proposed in this thesis cover the specifications of the

project. The game design is open enough to cover several programming languages supported by

the DOMjudge server. The game is designed to be editable on secondary mechanics and visual

assets, without having to change the core mechanics of the game, which allow the academic

staff to produce another version in shorter time. The architecture of the game allows the game

design to accomplish this.

 74

 After finishing the development of the prototype and implementing it successfully, it

was tested by students with education on informatics. While this is not representative of the

focus group at which the game is intended, they can compare the game with their own

experience built during programming courses and formulate particular opinions. During the

testing time with each of the students, usability testing was done via the observation technique.

After finishing playing the demo, the students filled in a questionnaire regarding their

experience with the game.

 The first findings revealed that players had to take some time to adjust to the control

scheme of the game. They explained that the control felt weird without being awkward, though

after some minutes they where used to it. However the jumping section of the level proved that

the controls make jumping to other platforms without falling a very difficult task. A change in

control scheme and simpler level design can handle this problem. The ability for the player to

replay a specific part of the game after failing is an important gameplay feature that diminishes

frustration. In the prototype a shortcut was placed to get to the other side of the jumping part, in

order to let the player continue testing.

 An important outcome of the testing phase came quite immediately after starting game

play. The players were completely motivated to explore the room as they tried to go to the

farthest corners, even when they found out that the only objects in the room were the ones

visible from the beginning. Students made the observation that the visual aspect of the game

was attractive enough, but that greater graphics would make it more interesting to explore.

 Students liked the idea of the game story, while at the same time they made the

observation that if the story is more complex it would be better for the immersion of the game.

They also noted that sound would enhance the experience, but the focus on it was with a lesser

degree than graphics. The prototype does not have sound effects or music, so no further opinion

was made on this point.

 The screens and hotkeys were manageable and did not present any problem for the

players. They expressed that the intention of instructions to be aligned to the game context was

a neat idea, but that made somewhat difficult to understand the actual programming task they

had to do. The prototype only shows the context question for the challenges, so to mitigate this

concern the direct question can be also shown to the player. Error feedback was also found to

be weak, the students suggested that more information about the type of error would be better to

make corrections on the code.

 75

 In overall the results of the usability testing and the questionnaire showed that the

students believe the game can be used as a tool that can complement programming learning.

Computer technologies change rapidly and thus the uses of programming languages can change

as well the structure of the programming courses. The comments given by the testing group,

graduate students, may differ of what the opinions that a real testing on new generations could

bring. The overall mood of the testing group helps set the project on a base and make further

adjustments for future testing on the focus group.

5.3 Project cooperation

 This project was developed in cooperation with Ricardo Gonçalves, whose thesis is

focused on the same project but from the system architecture standpoint. It was through this

cooperation that the game design was able to be completed while at the same time aligned to the

specifications of the project and the technological tools available for it. Ricardo designed the

technological platform that support the game and constructed the prototype, benefiting from the

game design proposed in this dissertation.

 76

Chapter 6 Conclusions and Future Work

6.1 Conclusions

 Through the writing of this thesis several steps were done:

 A review of the concepts of serious games for education, edutainment and the

pedagogical principles that are embedded into development of this kind of interactive

software. This includes the methods used by researchers and experts to incorporate

instructional design into games and related work done before.

 It was described the process of creating the game concept and the game design for the

project following the steps that development studios generally use for commercial

games.

 Design the core mechanics according to the research done in instructional design and

game design. Proceed to implement the game mechanics on a prototype under the limits

of the specifications of the project.

 The prototype exposed in the last chapter is the result of a combination of game design

with instructional design and made it work with a technological platform, all of them under the

guidelines for the project. The results show that indeed the game seems attractive as a tool to

help learn programming. Does it answer the question if the proposed game design can make a

game that works as an educational tool? The answer is that this initial prototype is not

conclusive on wether the game actually helps students to understand programming

fundamentals. The actual instructional design mimics the activities that are used during

classroom activities, with the added mechanics of a video game, which seems to be able to do

the job as the students felt when testing the prototype. However a more robust version of the

 77

game is needed to actually test the game on a programming course to show if the game helps on

learning.

 What the prototype does illustrate is the notion of having an open and editable tool to be

used along programming courses, not only with the fundamentals of programming but with

more advance courses as well, even courses that does not focus on programming. It was seen

during the development of the prototype that the core mechanics support this conclusion.

Secondary mechanics and other rules of gameplay are rudimentary at this point but they are a

good base to conclude that the game design is sufficient to create a game of this nature. So, is it

feasible the creation of a serious game to teach programming that is editable for other courses?

It is possible, but additional revision and development on the game design is needed.

 It is the openness of the game mechanics and the platform that set new challenges on

the game design for this particular project. The changes are needed especially on the control

scheme of the interfaces and the functions of the objects that construct the puzzles of the game.

The level design has to be done with precision, so the objects used in the challenges react and

give feedback to the player about the programming concepts that are being studied. Of course

more assets are needed to complement the existing ones, although to do this more resources are

needed such as developers, time and development tools.

 The game is capable to support other subjects and educational materials. The game

design allows the academic staff to make changes on the challenges and review the advances of

the students and become assistants to the experiences of the students. The game has potential to

become a successful tool to help in the learning of programming concepts.

6.2 Future Work

 The main step in the future is to create a version of the game that is more robust in

features and test it on the actual programming courses. This would help in improving the game

design, but also the instructional design. The testing can be done as a separate activity or within

the current evaluation activities of the courses. This may reveal if the instructional design used

in the game is completely successful or not for this case scenario. Developers have to remember

that “more research is needed to provide empirical evidence for how game-based learning can

be used most effectively” (De Freitas, 2006).

 78

 The related work about projects of this nature shows differences in game mechanics and

features between them and the proposed game. There are interesting features included on those

projects that could be beneficial to include into the game design of Project Orion. The creation

of assets by the players themselves giving more personalization to the software and enhance

creative thinking as they try to create the programming puzzles for the game. A game that is

capable of a multiplayer gameplay can open a community for students to work cooperatively

and learn from others.

 Sound is essential; the staff must include audio experts that can generate content for the

game. A platform that handles the story, being either linear or non-linear, would diminish the

complexity of level design since the story has to be included into it. It would be interesting to

develop a tool to create multiple paths of the story and that the academic staff simply chose

which path is going to be inserted in the game.

 Improving and making deeper definitions of the game design will make Project Orion a

successful as a serious game for education.

 79

References

Adams, Ernest. 2005. The Designerʼs Notebook: Educational Games Don't Have to Stink!

Gamasutra. http://www.gamasutra.com/view/feature/2190/the_designers_notebook_.php.
Date Accessed : 13/06/2011

Anderson, E.F., and L. McLoughlin. 2007. Critters in the classroom: a 3D computer-game-like

tool for teaching programming to computer animation students. In ACM SIGGRAPH
2007 educators program, 7–es. ACM. http://portal.acm.org/citation.cfm?id=1282048.

Bellotti, F., R. Berta, a. De Gloria, and L. Primavera. 2009. Enhancing the educational value of

video games. Computers in Entertainment 7, no. 2 (June): 1.
doi:10.1145/1541895.1541903.
http://portal.acm.org/citation.cfm?doid=1541895.1541903.

Berg, Peter. 1999. Learn To Program: BASIC Review. Issue #9 of QB:TM.

http://www.petesqbsite.com/sections/articles/ltpbrvw.txt. Date Accessed : 04/19/2011

Charsky, D. 2010. From Edutainment to Serious Games: A Change in the Use of Game

Characteristics. Games and Culture 5, no. 2 (February): 177-198.
doi:10.1177/1555412009354727.
http://gac.sagepub.com/cgi/doi/10.1177/1555412009354727.

Chatham, Re. 2007. Games for training. Communications of the ACM 50, no. 7: 36-43.

http://portal.acm.org/citation.cfm?id=1272537.

Cifaldi, Frank. 2011. Mission Of Honor Is Chinaʼs Answer To America's Army. Gamasutra,

May 16.
http://www.gamasutra.com/view/news/34677/Mission_Of_Honor_Is_Chinas_Answer_To
_Americas_Army.php.

Cifaldi, Frank. 2011. E3 Report: Education Arcade - Case Studies: Civilization
 http://www.gamasutra.com/view/feature/2308/e3_report_education_arcade__case

_.php
 Accesed: 29/09/2011

Colayco, Bob. So you wanna be a: Game designer. Gamespot.

http://www.gamespot.com/features/6129276/so-you-wanna-be-a-game-designer. Date
Accessed : 30/06/11

Crawford, Chris, Sue Peabody, The Art, Computer Game Design, World Wide Web, and Donna

Loper. 2003. The Art of Computer Game Design. Osborne/McGraw-Hill.

Danc. 2006. What are game mechanics? LostGarden blog.

http://www.lostgarden.com/2006/10/what-are-game-mechanics.html. Date Accessed :
05/12/2011

 80

De Freitas, S. 2006. Learning in Immersize Worlds: A Review of Game-based Learning. JISC
e-Learning Programme. http://www.citeulike.org/group/2518/article/1277752.

De Freitas, Sara, and Mark Levene. 2004. An Investigation of the Use of Simulations and Video

Gaming for Supporting Higher-Order Cognitive Skills. Digital Age, no. Celda: 35-42.
De Freitas, Sara, and M Oliver. 2006. How can exploratory learning with games and

simulations within the curriculum be most effectively evaluated? Computers & Education
46, no. 3 (April): 249-264. doi:10.1016/j.compedu.2005.11.007.
http://linkinghub.elsevier.com/retrieve/pii/S0360131505001600.

Djurovic, Gordan;. 2010. Implementing Cognitive Theory of Multimedia Learning in Existing

Academic Programs. Transforming Engineering Education: 1–7.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5508949.

Dondlinger, M.J. 2007. Educational video game design: A review of the literature. Journal of

Applied Educational Technology 4, no. 1: 21–31.
http://www.mendeley.com/research/educational-video-game-design-a-review-of-the-
literature-1/.

Eagle, Michael, and Tiffany Barnes. 2009. Experimental evaluation of an educational game for

improved learning in introductory computing. ACM SIGCSE Bulletin 41, no. 1 (March):
321. doi:10.1145/1539024.1508980.
http://portal.acm.org/citation.cfm?doid=1539024.1508980.

Egenfeldt-Nielsen, P.D.S.S. 2003. Making sweet music: The Educational Use of Computer

Games. egenfeldt.eu: 1-13. http://www.egenfeldt.eu/papers/sweet_music.pdf.

Eldering, J., T. Kinkhorst, and P. Warken. 2011. DOMjudge - programming contest jury

system. http://domjudge.sourceforge.net/.

Fabricatore, Carlo. 2007. Gameplay and Game Mechanics Design: a Key to Quality in

Videogames. Citeseer.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.120.5942.

Games for Health Project. 2004. Games for Health. http://www.gamesforhealth.org/. Date

Accessed : 11/06/2011

Gee, James Paul. 2007. What Video Games Have to Teach us About Learning and Literacy. 1st

ed. Palgrave Macmillan.

Huang, Timothy. 2001. Strategy game programming projects. Small 4, no. May 2001: 205-213.

Ismail, Mn, N Azilah, and U Naufal. 2010. Instructional Strategy in the teaching of
Computer Programming: a Need Assessment Analyses. TOJET 9, no. 2: 125-131.
http://tojet.net/articles/9214.pdf.

Jiau, Hewijin Christine, Jinghong Cox Chen, and Kuo-Feng Ssu. 2009. Enhancing Self-

Motivation in Learning Programming Using Game-Based Simulation and Metrics. IEEE
Transactions on Education 52, no. 4 (November): 555-562.
doi:10.1109/TE.2008.2010983.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5164890.

Johnston, Hannah, and Anthony Whitehead. 2009. Distinguishing games, serious games, and

training simulators on the basis of intent. Proceedings of the 2009 Conference on Future
Play on @ GDC Canada - FuturePlay ’09: 9. doi:10.1145/1639601.1639607.
http://portal.acm.org/citation.cfm?doid=1639601.1639607.

 81

Kato, Enrique, Ricardo Gonçalves, João Xavier, and António Coelho. 2011. Serious Game for

Introductory Programming. Lecture Notes in Computer Science 6944: 1-12.

Klassen, Myungsook. 2006. Visual approach for teaching programming concepts. In

Proceedings of the 9th International Conference on Engineering Education (ICEE 2006),
23–28. Citeseer.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.9440&rep=rep1&
;type=pdf.

Leigh, Alexander. 2011. G4C: Al Gore Says “Games Have Clearly Arrived As A Mass

Medium.” Gamasutra.
http://www.gamasutra.com/view/news/35310/G4C_Al_Gore_Says_Games_Have_Clearly
_Arrived_As_A_Mass_Medium.php. Date Accessed : 11/05/11

Lynch, Jeremy, Paul Aughwane, and Toby M Hammond. 2010. Video games and surgical

ability: a literature review. Journal of surgical education 67, no. 3: 184-9.
doi:10.1016/j.jsurg.2010.02.010. http://www.ncbi.nlm.nih.gov/pubmed/20630431.

Magnenat-Thalmann, Nadia, and Zerrin Kasap. 2009. Virtual Humans in Serious Games. 2009

International Conference on CyberWorlds: 71-79. doi:10.1109/CW.2009.17.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5279708.

Marfisi-Schottman, I., Sébastien George, and F. Tarpin-Bernard. 2010. Tools and Methods for

Efficiently Designing Serious Games. free.iza.free.fr, no. October: 226-234.
http://free.iza.free.fr/articles/ECGBL-iza.pdf.

Mcmahon, Mark. 2009. Using the DODDEL model to teach serious game design to novice

designers. Action Research, no. Proceedings ascilite Auckland 2009: 646-653.
http://www.ascilite.org.au/conferences/auckland09/procs/mcmahon.pdf.

Muratet, Mathieu, Patrice Torguet, Jean-Pierre Jessel, and Fabienne Viallet. 2009. Towards a

Serious Game to Help Students Learn Computer Programming. International Journal of
Computer Games Technology 2009: 1-12. doi:10.1155/2009/470590.
http://www.hindawi.com/journals/ijcgt/2009/470590/.

Nadolski, Rob, Hans Hummel, H. Van den Brink, Ruud Hoefakker, Aad Slootmaker, Hub

Kurvers, and Jeroen Storm. 2007. EMERGO: methodology and toolkit for efficient
development of serious games in higher education. Organizing and learning through
gaming and simulation: proceedings of Isaga 2007: 259.

Novak, Jeannie. 2008. Game Development Essentials: An Introduction. 2nd ed. Canada: Delmar

Cengage Learning.

Ochalla, Bryan. 2007. Who Says Video Games Have to be Fun? The Rise of Serious Games.

Gamasutra.
http://www.gamasutra.com/view/feature/1465/who_says_video_games_have_to_be_.php.
Date Accessed : 10/05/11

Phelps, Andrew M, Christopher A Egert, and Kevin J Bierre. 2005. MUPPETS : Multi-User

Programming Pedagogy for Enhancing Traditional Study : An Environment for both
Upper and Lower Division Students. Education: 8-15.

Rooney, Pauline, K. OʼRourke, Greg Burke, B. Mac Namee, and Claudia Igbrude. 2009. Cross-

disciplinary approaches for developing serious games in Higher Education: frameworks

 82

for food safety and environmental health education. Higher Education: 3-7.
http://arrow.dit.ie/scschcomcon/44/.

Ryan, Tim. 2010. The Anatomy of a Design Document, Part 1: Documentation Guidelines for

the Game Concept and Proposal. Gamasutra.
http://www.gamasutra.com/view/feature/3384/the_anatomy_of_a_design_document_.php
?print=1. Date Accessed : 29/06/11

Sicart, Miguel. 2008. Defining Game Mechanics. Game Studies.

http://gamestudies.org/0802/articles/sicart. Date Accessed : 13/04/2011

Sigman, Tyler. 2010. Anatomy of a Game Mechanic. Gamasutra.

http://www.gamasutra.com/view/feature/4091/anatomy_of_a_game_mechanic.php?print=
1. Date Accessed : 05/12/2011

Smith, R. 2009. The Long History of Gaming in Military Training. Simulation & Gaming 41,

no. 1 (April): 6-19. doi:10.1177/1046878109334330.
http://sag.sagepub.com/cgi/doi/10.1177/1046878109334330.

Todd, Deborah. 2007. Game Design: From Bluesky to Green Light. A.K. Peters.

Ulicsak, Mary. 2010. Games in Education : Serious Games. Context.

Zetten, Martijn van. 2010. Developing serious games in higher education using the EMERGO

methodology. Method Engineering. Ultrecht University.
http://www.cs.uu.nl/wiki/bin/view/MethodEngineering/DevelopingSeriousGamesInHighe
rEducation. Date Accessed : 05/07/2011

Zyda, M. 2005. From visual simulation to virtual reality to games. Computer 38, no. 9

(September): 25-32. doi:10.1109/MC.2005.297.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1510565.

 83

Annex I Questionnaire for Case Analysis

Case embedding
For which courses, curricula and institutions will it be used?
It will be initially used for the programming fundamentals course at the Faculty of Engineering
of the University of Porto (FEUP). It could be open to other courses later.

Is it a stand-alone item or used with other instructional materials?
It will work as an stand alone tool for learning, but with shared material from the course.

Case content
What is the main complex cognitive skill?
Problem solving, planning, logical reasoning and analytical thinking

What prior knowledge and skills are expected for enrolled students?
Skills using computer programs
Skills on math courses
Skills on understating algorithms

What are physical locations in the case?
The laboratory rooms for the computer and informatics major at FEUP

What case characters are relevant?
The student as the player.
The professor and tutors as the editors, reviewers and guides.

What kind of activities do students need to perform for acquiring the main complex cognitive
skill?
Analyze the situations presented in the game. Understand the requirements of each task. Plan
the steps and develop code. Test codes input and analyze the outcomes.

Is redundant information provided, or is everything strictly needed?
Redundant information may be given. Two versions of the instructions for a quest to define it
better.

How realistic and authentic is the case?
It will be as realistic as the exercises that are designed for it. It won’t have a realistic scenario
given on a company environment, but could have exercises developed to attain that scope.

If students can redo a case: will this be the same case or a variant?
The students can redo re-plays. They may be different depending on the randomization of the
problems.

Can students undo former decisions?
Students can retry any of the quests until they have solved them correctly.

Are different learning routes and tasks for different students offered?
If several failed attempts are attained, a new path with easier exercises will be available. In
some cases the student may choose the easier path.

 84

What kind of cooperation is needed by students?
Playing through the game should guarantee that enough material is covered for the classroom
test. Feedback given between them and the professor is contemplated to be disseminated outside
of the game.

Do students have different case characters?
No, there won’t be different characters in the first design of the game.

Do students have active roles?
Yes. They will have to play the game to cover all the course materials.

Do teachers have active roles?
They could have, as they have the option to create and modify game versions and in-game help
material.

What aspects induce and sustain interest and motivation?
Taken from leisure games design, the scoring factor, the story reveal and visual aid are the
aspects to induce motivation.

What unforeseen circumstances are incorporated?
Grade of copy between students, and to minimize it there is a random selection of problems.
Not enough scenario related problem design to show the potential of multimedia learning.

Is competition incorporated?
Competition is only with the level and final score if it is seen outside from the game.

How do students get rewarded for excellent performance or behavior?
Optional extra quests and greater score points are the main rewards. The design of the game
could bring up collectibles to award solving those difficult quests.

Students’ progress
How do students discover not yet having acquired the main complex cognitive skill?
If a new path with easier pool of exercises is open, or they failed with several attempts to solve a
quest.

How can students monitor their progress?
Under their profile they can see the quests that are already solved correctly, the percentage of
advance in the game and the level and final score earned through their play through.

How is it checked if students have acquired the main complex cognitive skill?
Is summative assessment included and are its results used in formative assessment? Which
students’ progress figures are to be used by teachers during run time?

Contact with peers

Should contact between students be encouraged?
It could be encouraged but out of the game environment. They could aid each other on some
tasks.

Should students see if peers are on line, when they have been on line?
Not at this time.

Can students compare their progress with peers?
Not in-game at this time.

 85

Using media
Will existing material be used, is new material needed?
Existing learning material is used mainly for initial design of the quests and levels of the game.
Existing problems could be used, though it is recommended to create new problems that align
with the assets available in the game.

What media genres are used (e.g., interviews, docudrama, movie, animations)?
Text documentation, images, animations and voice podcasts could be used as explanatory items
inside the game.

What media assets are needed and what are their costs?
Most of the text documentation could be taken directly from the course materials.
Images, animations, voice podcasts have to be made to improve the help documentation.
For the game design, new textures and models have to be constructed or acquired and adapted
from available internet sites. Sound and music is also important for game immersion, tracks
have to be designed and applied to the game environment.
There is an important amount of resources that have to be applied to this project to come as a
structured and attractive tool for students. This part is a time consuming task and some assets
could involve money costs.

Case delivery
Is the number of students within one run restricted?
The restriction depends on the capacity of the platform. As a single player experience it does not
have a limit of players from a game design perspective.

When can students enroll for a run?
Students can first enroll at the beginning of the course. Then anytime during the course they can
change profile up to ten times.

Is it possible to change the case after starting a run?
It is possible if the student starts a new profile. Maximum of ten profiles are considered.

(embedded) Support

How will technical support be provided?
There is technical support planned at this step of the project. A website could be uploaded to
help students with troubleshooting and documentation. The academic staff could bring a team of
designers to help with the usage and well behaving of the system.

How will support be provided for acquiring the main complex cognitive skill?
It will be provided outside of the game during classroom sessions or consulty interviews with
academic staff.

IPR
Is it allowed for others to use the case?
It is only considered to be used only at FEUP at this time.

Are materials from other parties incorporated and what are their Intellectual Property
Rights(IPR) arrangements?
Most of the materials should be originally designed inside the University, or through student
activities.
3D models, textures and sound assets taken from internet could come from free databases, if
other assets need to be taken they could be paid and the IPR would be different depending on
the database.

 86

Annex II Game Concept Document

Project Orion

Game Name : Project Orion

Game Logo :

Document Type : Game Concept Document

Document Version : V 1.0

Credit

Sign-Off

Introduction

Project Orion is a serious game whose main objective is to help students learn programming. It
is a single player adventure game in which the player takes the role of Isaac, a space neo-
archeologist, and uncovers mysteries of long lost worlds. Isaac is not alone, he is accompanied
by his robot sidekick H4L, who allows Isaac interact with the alien system’s artificial intelligence.

Project Orion’s design will allow the player to practice and learn about programming concepts
during gameplay.

Document Purpose: Game Concept

Document Version: 1.0

Working Title: Project Orion

Game Concept: Enrique Kato Romo

Game Document Author: Enrique Kato Romo

Game Design Sign-off

CEO: António Coelho

Lead Designer: Enrique Kato Romo

Lead Programmer: Ricardo Gonçalves

 87

Game Analysis

This is a general overview of the game.

Game Description

Genre: Adventure - puzzle game.

Game Elements: Exploration
 Collecting items
 Removing obstacles
 Story Comprehension

Game Content: Thriller

Theme: Sci-Fi

Style: Cartoony

Game Sequence: Linear Storylines

Player: Single Player

Game Reference
Game Taxonomy: Fictional Game/Narrative

Player Immersion: Narrative

 Mental

Reference: The setting and story has references from novels of Isaac
Asimov and Arthur C. Clarke.

 Controls and style referenced from World of Warcraft.
 Gameplay mechanics referenced from other programming

serious games.

Game Technical

Technical From: 3D Graphics

View: Third person camera

Platform: Unity 3D
 Programming: Any programming language

Device: PC

Game Atmosphere

Game Play

 88

The game is accessed through the network. You have to input your username and password
and the game will carry you to your lobby screen. There you can create several game profiles
and see the scores obtained on previous plays. Selecting an unfinished profile will take you to
the point or level where you were before leaving the game. A new file will start a new game that
will direct through the story and instructions screens.

You are Isaac, a space neo-archeologist, who is in charge to do research on worlds that have or
had any form of civilization, to improve knowledge of mankind. To aid you in your quest you
have a robot companion named H4L, he can communicate with the systems that powered the
life of these worlds. It is through him that you will get access to the system and recover the
information of what happened with the civilization that populated the last world in your schedule.

Soon you will find that the levels are composed of a series of rooms that you have to explore.
Each room has puzzles to solve and items to collect that will help you in the game or will give
more information about the plot or about programming instructions. You have to reach the
terminals scattered through each room to access the system, and then using your programming
skills, communicate and solve the challenges of the room. You finish a level when you complete
all the obligatory challenges and while there is no losing, you still have to be careful to get the
highest score possible and continue the game.

Key Features

 Number of Levels

 6 Main levels defined by the contents of the course of Introductory Programming.

 The number of sublevels or rooms is defined during the creation of the game,
depending on the academic objectives to reach and the materials to cover.

 Number of Enemies/ Characters

 2 Main characters

 1 Main enemy and boss

 5 Secondary characters

 Time of Game Play

 Undefined

 Replay ability

 It is possible to begin a series of new games at any time; there is a random function that
will choose available problems from a selected pool, making each play through a little bit
different from the last one.

 Audio Specifications

 Basic audio system

 Graphic Specifications

 Basic graphics card

 Device Compatibility

 PC with connection to internet, an internet browser and the Unity player installed

 89

 Number of Players

 1 (Single player)

 Online Activities (high scores, etc.)

 Score board that shows how high you are related to other players

Selling Features

 Marketing Ideas

 Promote the game use through the introductory programming course

 Consumer Group

 Students of the first year of the major of Informatics at the Faculty of Engineering of the
 University of Porto

 Unique Features

 Programming language-free game
 Editable platform to create, fast and easy, new versions of the game
 3D Environments and visual explanations of concepts
 Enticing storyline
 Score leader boards

 90

Annex III Results of the Testing Questionnaire

The response time between solution submision is
acceptable

0 20 40 60 80 100

Totally disagree

Disagree slightly

Neutral

Agree slightly

Totally agree

Percentage

This game is a good complement to learn
programming

0 20 40 60 80 100

Totally disagree

Disagree slightly

Neutral

Agree slightly

Totally agree

Percentage

 91

The error messages of code submissions should
present more information about the error

0 20 40 60 80 100

Totally disagree

Disagree slightly

Neutral

Agree slightly

Totally agree

Percentage

Making submissions of code should only be done
on the game terminals , and not through the quest
menu accessible at any time.

0 20 40 60 80 100

Totally disagree

Disagree slightly

Neutral

Agree slightly

Totally agree

Percentage

The game is intuitive and could become a fun
option to motivate learning

0 20 40 60 80 100

Totally disagree

Disagree slightly

Neutral

Agree slightly

Totally agree

Percentage

 92

The number of objects to interact with is enough

0 20 40 60 80 100

Totally disagree

Disagree slightly

Neutral

Agree slightly

Totally agree

Percentage

The interfaces are easy to use

0 20 40 60 80 100

Totally disagree

Disagree slightly

Neutral

Agree slightly

Totally agree

Percentage

Sound effects and music would improve the game
experience

0 20 40 60 80 100

Totally disagree

Disagree slightly

Neutral

Agree slightly

Totally agree

Percentage

