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Abstract

It is well known the health effects associated védth pollution. Several studies
were published, showing an increasing awarenesga@ihe scientific community
and policy makers about public health problems tduexposure to air pollution.
Policy makers require more detailed air qualityoindation to take measures to
reduce the effects on health and to improve thegaality management. This
thesis aims to develop procedures using statistiegthods to support a broad

range of policy decisions concerning this subject.

The first aim was the application of statistical thoels, such as principal
component analysis and cluster analysis, to cheriaet the air pollution
behaviours in an urban area allowing the identificaof monitoring sites with
redundant air quality measurements. These measntemepresent a loss of
profitability of the air quality monitoring networkesources. Accordingly, the
application of these statistical methods let thk#owang policy decisions: (i)
remove the redundant monitoring sites, reducing dbsts of the equipment
maintenance; or (ii) move the redundant monitositgs to other places increasing
the area of monitored region. The air pollutantaaorirations at the removed sites
can be estimated with statistical models usingcth&centrations measured at the
remaining sites. Moreover, the air pollution belbavs are related with the
location of emission sources. The possible locatibimportant sources of air
pollutants was also determined through the analydisvariation of their
concentrations with the wind direction. Concernihg characterization of the air
pollution behaviours, the actual distribution of mitoring sites in the air quality
monitoring network of Oporto Metropolitan Area peagted several redundant
measurements. The number of monitoring sites coeldeduced at about 50% in
some of the analysed air pollutants. Several diugan sources were identified

with the analysis of the variation of the air ptdlnt concentrations with the wind




direction. The most important source was locatedEe®E direction sector

affecting all monitoring sites during the analygediod.

The second aim of this thesis was the developniestagstical models to predict
the concentrations of air pollutantsz(@d PMg) of the next day. Several models
were applied, including linear and non-linear onks.far as the author knows,
independent component regression, partial leastreguregression, stepwise
artificial neural networks, threshold regressiord ajenetic programming were
applied for the first time in this field. Besidesegdiction of the air pollutant

concentrations, these models selected the impovaaidbles (environmental and
meteorological) that influence these values, wiidécan useful information for the
air quality management. The linear models had avarsdge of taking less
computational time than the other models. Takirtig atcount the performance of
these models, quantile regression presented lvettelts in the training period, as
it tries to model the entire distribution of thepdedent variable. However, this
model presented worse performance in the testghefioe linear model with best
predictive performance was the partial least squaegression. Despite having
longer computation time, the non-linear models joted better than the linear
ones, specially the models using the evolutionampcgdure for their

determination. Threshold regression using genetgorghms and genetic

programming for @ and multi-gene genetic programming for Mvere the

models with better predictive performance.

Keywords: air quality management, statistical methods, cpiality modelling,

linear models, artificial neural networks, gengtiogramming.
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Resumo

Os efeitos negativos associados a poluicdo do arbeénh conhecidos. Muitos
estudos foram publicados, apresentando uma crescereocupacao da
comunidade cientifica e dos decisores politicoatik@mente aos problemas de
salde publica causados pela poluicdo do ar. Osattesipoliticos necessitam de
informacdo mais detalhada sobre a qualidade de anatlo a tomar medidas de
reducdo dos seus efeitos na saude e melhorar @ gdstqualidade do ar. Este
trabalho tem como principal objectivo o desenvobimoe de procedimentos
usando métodos estatisticos para apoio de degisfidsas relacionadas com este

tema.

A aplicac@o de métodos estatisticos, tais comabsarde componentes principais
e andlise de agrupamentos, permitiu a caractenzdgdariacdo da concentragdo
dos poluentes atmosféricos numa regido urbana e,masemo tempo, a

identificacdo de locais de monitorizagdo com mee¢cdedundantes. Estas
medicdes representam uma perda de rentabilidaderedossos das redes de
monitorizacdo da qualidade do ar. Deste modo, iaagdlo dos referidos métodos
estatisticos pode suportar as seguintes decisfeglirhinar as estagbes de
monitorizacdo com medi¢cdes redundantes, reduzinslocustos relativos a

manutencdo do respectivo equipamento; ou (ii) deBkar as referidas estacoes
para outros locais, aumentando a area da regiaiaripada. As concentracdes de
poluentes nos locais em que se pode desactivastagbes podem ser estimadas
com modelos estatisticos usando os valores medidssrestantes estacdes de
monitorizacdo. A variacdo das concentracBes doageptds atmosféricos estd
relacionada com a localizacdo relativa de fontesenssdo dos respectivos
poluentes. A possivel localizacdo de importantestefo de emissédo foi

determinada através da andlise da variacdo da roac&o de poluentes com a
direccdo do vento. Caracterizando as variacOesnaias pelas concentracdes

dos poluentes analisados, verificou-se que a lolisgdo das estacdes na rede de
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monitorizacdo da Area Metropolitana do Porto aprese varias medicdes
redundantes. O numero de locais de monitorizac@le,poara alguns poluentes,
ser reduzido para metade. Varias fontes de emigsam identificadas com a
andlise da variagdo da concentragéo de poluemesiabrecgdo do vento. A mais
importante esteve localizada fora da regido dedipela rede de monitorizagéo na

direccéo E-SE, afectando todas as estagfes durgetéodo analisado.

Varios modelos estatisticos (lineares e nao lisgaieam desenvolvidos para
prever as concentracfes dos poluentes atmosféfgas PMy). Tanto quanto se
sabe, a regressdo por componentes independentegressdo por minimos
guadrados parciais, as redes neuronais artifidesenvolvidas passo a passo, a
regressao com limiares e a programacao genétiamftécnicas de modelizacao
aplicadas pela primeira vez nesta area. Além deepras concentracdes de
poluentes atmosféricos, estes modelos seleccionamaveis importantes
(concentracbes de outros poluentes ou varidveisamwbgicas) que influenciam
esses valores, sendo uma informacao Util para @ges qualidade do ar. Os
modelos lineares tém a vantagem de necessitar wlesnempo de computagéo do
gue os modelos néo lineares. Tendo em conta osngesdos destes modelos, a
regresséo por percentis teve melhores resultadpsenimdo de treino, uma vez que
o modelo tenta descrever toda a distribuicdo dwelrdependente. No entanto,
este modelo teve pior desempenho na etapa de dwevis modelo linear com
melhor desempenho na previséo foi a regressdo pomos quadrados parciais.
Apesar de ter maior tempo de computacdo, os modgloslineares prevéem
melhor que os modelos lineares, especialmente quasdm o procedimento
evolucionario na sua determinacdo. Assim, os madetmm limiares usando
algoritmos genéticos e programacdo genética pdda @ programacado genética
com mdltiplos genes para RMforam os que apresentaram o0s melhores

desempenhos.

Palavras-chave:qualidade do ar, métodos estatisticos, modelizdaagualidade

do ar, modelos lineares, redes neuronais artsiccabgramacao genética.
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Résumé

Les effets négatifs associés a la pollution de l&int bien connus. Plusieurs
études ont été publiées montrant la préoccupatioissante de la communauté
scientifique et des décideurs politiques concerlemproblemes de santé publique
causeés par la pollution de l'air. Les décideurstigoles ont la nécessité d’avoir
une information plus détaillée de la qualité der la&fin de pouvoir prendre des
mesures de réduction de ces effets sur la saat@dliorer la gestion de la qualité
de l'air. Ce travail a pour principal objectif leéwkloppement de procédures
utilisant des méthodes statistiques de forme aegoues décisions politiques liées

a ce sujet.

L'application de méthodes statistiques, telles damalyse en composantes
principales et I'analyse de grappes, a permisfactérisation de la variation de la
concentration des polluants atmosphériques danszanes urbaines ainsi que
I'identification de sites de surveillance avec dessures redondantes. Ces mesures
représentent une perte de rentabilité des ressodeseréseaux de surveillance de
la qualité de lair. Ainsi, I'application de ces thedes statistiques peuvent
appuyer les decisions politiques suivantes: (iniéler les sations de surveillance
avec des mesures redondantes, reduisant le cotitedien des equipements; ou
(i) déplacer ces stations a d’autres endroits,memant l'aire de la region
controlée. Les concentrations de polluants dansrdsoits ol I'on peut désactiver
les sations peuvent étre estimés a I'aide de medéddistiques utilisant les valeurs
moyennes mesurées dans les autres sations dellanoai La variation des
concentrations des polluants atmosphériques estligé localisation relative des
sources d’émission des polluents respectifs. Laiplessemplacement de sources
importantes de polluants a également éte détempainBanalyse de la variation de
leurs concentrations avec la direction du vent.rdvers la caractérisation des
variations observées par les concentrations deigull analysés, il a été constaté

gue la distribution des sites dans les réseau deeifance de la zone




meétropolitaine de Porto présentait plusieurs mestedondantes. Le nombre de
sites de surveillance peut, pour certains pollygtte réduit de moitié. Plusieurs
sources d’émissions ont été identifiés a travemsalyse de la variation de la
concentraction de polluants avec la direction dot.vea plus importante était
située a l'extérieur de la region définie par lsesu de surveillance dans la

direction E-SE, affectant 'ensemble des statiansaurs de la période analysée.

Plusieurs modeles statistiques, linéaires et n@ralres, ont été développés afin de
prévoir les concentrations de polluants atmosphésQ e PMyg). Pour autant
gu’il se sache, la régression par composants imdigrds, la régression des
moindres carrés partiels, les réseaux neuronaificiats développés pas a pas, la
régression avec des seuils et la programmatiortigéieéont été des techniques de
modélisation appliquées pour la premiere fois dandomaine. En plus de pévoir
les concentrations de polluants atmosphériques,numieles sélectionnent des
variables importantes qui influent sur ces valeétant ainsi une information utile
pour la gestion de la qualité de l'air. Les modéileSaires ont 'avantage d’exiger
moins de temps de calcul que les modéles non tegaCompte tenu de la
performance de ces modeéles, la régression quaati@ésenté de meilleurs
résultats au cours de la période d'essai, unedoésle modéle tente de décrire
'ensemble de la distribution de la variable démend. Toutefois, ce modéles
présente une pire performance prédictive. Le molieéaire ayant la meilleure
performance en matiere de prévision est la régnesis moindres carrés partiels.
Bien qu'ayant un temps de calcul superieur, lesétesinon linéaires prédisent
mieux que les modéles linéaires, en particulierxcetilisant le processus
d’évolution dans sa détermination. Ainsi, les medévec des seuils utilisant des
algorithmes génétiqgues et la programmation génétiqour le Q et la
programmation génétiques avec multiples genes pblgsont été ceux présentant

les meilleures performances.

Mots-clés: qualité de I'air, méthodes statistiques, modélisatie la qualité de

I'air, modéles linéaires, réseaux de neuronedaei§, programmation génétique.
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Chapter 1

Introduction

This chapter describes the project associatedthighithesis. The importance of this study
is also demonstrated. At the end, there is a gaiamiof the structure of the thesis.

1.1. Scientific relevance

Clean air is considered to be a basic requiremehtiman health. The quality of
the air is the result of a complex interaction chny factors that involve the
chemistry and motions of the atmosphere, as wahagmissions of a variety of

pollutants from sources that are both natural artdrapogenic.

Before the increase of large cities and industties,nature was able to keep the
air fairly clean. Wind mixed and dispersed the gasein washed the dust and
other easily dissolved substances to the groungkmds absorbed carbon dioxide
and replaced it by oxygen. With urbanisation ardustrialisation, humans started
to release more wastes into the atmosphere thameneduld manage with. Thus,

these concentrated gases exceed safe limits aadkex pollution problem.

Air pollution can not be considered a local probldrhe air pollutants released in
one country can be transported by the wind, causawgral negative impacts (in
human health, vegetation, ecosystems, climate atdrials) elsewhere. Thus, air

pollution should be considered as a transboundamgern.




Development and Application of Statistical MethadsSSupport Air Quality Policy Decisions

European Union established several directives e@lavith air quality. These
directives established limit values for air polhit&oncentrations concerning the
protection of the human health, vegetation andystems. They also indicate the
number of monitoring sites that should operate &lting to population size and
pollution levels. However, the number and locatdrthe monitoring sites should
be optimized for the different regions. In otherds) the redundant measurements

should be avoided due to the high cost of the roanig equipment maintenance.

One of the most important air pollutant usuallyoassted with poor air quality is
tropospheric ozone @ O; is naturally present in the atmosphere, but inatkd
amounts it is damaging to the living tissue of aand animals. However, the
most relevant pollutant for air quality is partiaté matter (PM). An important
target of this thesis is the prediction of concatitns of Q and PM, (particulate
matter with aerodynamic diameter smaller thanubf) with a day in advance.
Thus, the persons belonging to risk groups (wispiratory problems, children
and elderly) can be advised for high concentratepisodes. Other components
important in air quality include carbon monoxidelphur dioxide, NQ and VOC
(Os precursors), and air toxics such as benzene, myeand other hazardous air

pollutants.

The need for improved understanding of the sciesicair quality remains a
priority for the wider scientific and user commuest Despite improvements in
technology, users still require new, robust managenand assessment tools to
formulate effective control policies and stratedmsreducing the health impact of
air pollution. Accordingly, this thesis presentatistical methods useful for policy

makers seeking to improve air quality managemetfteir cities.

1.2. Thesis structure

The project associated with this document, entibedelopment and Application

of Statistical Methods to Support Air Quality PgliDecisionswas performed at
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Departamento de Engenharia Quimicaf Faculdade de Engenharia da
Universidade do Portérom 2006 to 2009.

The thesis was divided in two parts: (i) managenen&ir quality monitoring
networks (Part I); and (ii) prediction of air paunt concentrations (Part I1). Part |
contains the Chapters 2 to 4, while Part Il corgtdie Chapters 5 to 10.

Chapter 2 describes the air pollutants whose mongas of particular interest for
the characterization of the air quality. Their sms;, effects and legislation related
with their concentrations are the main topics feclsAdditionally, this chapter:
() characterizes the region where the air qualgs measured; (i) refers the
equipment used for each air pollutant monitoringd diii) determines for a
specific period the number of exceedances to thiasliestablished by the EU for

protection of human health, vegetation and ecosyste

Chapter 3 shows how principal component analys@ aaster analysis can be
applied to define the number of monitoring siteattehould operate in an air
guality monitoring network (AQMN). Additionally, th location of the main
emission sources was identified based on the inéeeof wind direction on the

increase of the air pollutant concentrations.

In Chapter 4, principal component analysis wasiagdplsing another criterion to
select the number of principal components. This memcorresponding to the
minimum number of monitoring sites that should eperwas then compared with
the value presented by the European legislatiorihéend of this chapter, the air
pollutant concentrations at the removed monitositgs were estimated using the

values of the selected monitoring sites.

Chapter 5 presents several previous studies abmalicion of Q and PMg

concentrations through statistical models.

Chapter 6 shows the comparison of the performafdwe linear models in the

prediction of Q and PM, concentrations.
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Chapter 7 presents two step-by-step methodologiedetine artificial neural
network models. These models were applied to prede concentrations of the

same air pollutants.

Chapter 8 shows how to apply genetic algorithmsebne threshold regression

models for prediction of ©concentrations.
In Chapter 9, genetic programming was applied &dliot G concentrations.

In Chapter 10, multi-gene genetic programming wppliad to predict PN}
concentrations.

Finally, Chapter 11 presented the main conclusiohghis thesis and some

suggestions for future work.
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Chapter 2

Air Quality Evaluation in Oporto Metropolitan Area

This chapter describes the air pollutants whoseitmidmg is of particular interest for the
characterization of the air quality. Their sourcefects and the legislation related with
their concentrations are the main topics of thiaptlr. Additionally, the aims are: (i)
characterize the region where the air quality waasured; (ii) refer to the equipment used
for each air pollutant monitoring; and (iii) detéma for this period the number of
exceedances to the limits established by the Earopénion for protection of human
health, vegetation and ecosystems.

The contents of this chapter were adapted fromPifi¢s, J.C.M., Sousa, S.I.V., Pereira,
M.C., Alvim-Ferraz, M.C.M., Martins, F.G2008 Management of Air Quality Monitoring
using Principal Component and Cluster Analysis +# PaSO, and PM, Atmospheric
Environment42 (6), 1249-1260; and (ii) Pires, J.C.M., Sousd,VS Pereira, M.C.,
Alvim-Ferraz, M.C.M., Martins, F.G2008 Management of Air Quality Monitoring using
Principal Component and Cluster Analysis — Part@D, NG and Q. Atmospheric
Environmen#2 (6), 1261-1274.

2.1. Sulphur dioxide

Sulphur dioxide (S€) is one of the most important pollutants, as guits from
the combustion of sulphur compounds. Volcanoes acebns are the major
natural sources of SQCarmichael et al., 2002; Garg et al., 2006; Reddg
Venkataraman, 2002; World Health Organization - WF000). Anthropogenic
emissions of SPcome from the combustion of fossil fuels (mainbatand heavy

oils), biomass burning and the smelting of sulptantaining ores.

Many efforts have been done to reduce 8Missions; consequently, in the last 20

years the atmospheric levels of Skiave been continuously decreasing in most
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Western industrialized countries (Nunnari et ab04). SQ and its oxidation by-
products are removed from the atmosphere by wet digddeposition (acid
precipitation). Besides these transformation andoral processes, S@an be
carried out over large distances, causing transterynpollution (ApSimon and
Warren, 1996).

SO, is an irritant gas when inhaled and at high cotreéions may cause breathing
difficulties in people directly exposed to it. Albption of SQ in the nose mucous
membranes and in the upper respiratory tract e$udin its solubility in water
(WHO, 2000). The effects of SOnhalation appear in only a few minutes and
people suffering from asthma and chronic lung diseanay be especially
susceptible to its adverse effects. This pollutsd affects plants and depending
on its concentration levels, can produce: chlortiptiggradation; reduction of
photosynthesis; raise of respiration rates; andhgés in protein metabolism
(Carlson, 1979; Lee et al., 1997). Nevertheledphsm is an important nutrient for
plants due to the fact that, by instance, atmospiseiphur may be taken up by
leaves of some species, contributing to the pléatity in soils with low sulphur
concentrations such as calcareous soils; 0@mbined with other air pollutants
and under specific conditions of relative humidigmperature and precipitation)
is responsible for the deterioration of materialsgsh as metals and stones. In many
parts of Europe, some monuments which resistedidetgon for hundreds or
even thousands of years have shown an acceleregeddation of their surface in

the last decades.

The European Union (EU) established limit valugsS@, concentrations: (i) the
hourly limit for the protection of human health (8fig m?, not to be exceeded
more than 24 times per year); (ii) the daily lifidt the protection of human health
(125 pg m®, not to be exceeded more than 3 times per yead){id) the annual

limit for protection of ecosystems (2@ m®) (EC Directive, 1999).
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2.2. Particulate matter

Particulate matter (PM) is the designation of salidl liquid particles suspended
in the atmosphere. They are emitted by both, nafucdcanic eruptions, seismic
activity and forest fires) and anthropogenic sosir¢all types of man-made

combustion and some industrial processes).

PM is one of the most important air pollutants thdtersely influence human
health in Europe (Koelemeijer et al., 2006). In It decade, several studies were
published about the impact of PM on human healtlviiisFerraz et al., 2005;
Brunekreef and Holgate, 2002; Dockery and Pope41B@ek et al., 2002). Long
exposure to Ph and to PM;s (particles with an aerodynamic diameter smaller
than 10 and 2.5um, respectively) has been associated with respjraamd
cardiovascular diseases. Recent research seemsdicate that PN, are

associated with childhood morbidity and mortali§appos et al., 2004).

Aiming the protection of human health, the EU elshled two limits for PM;,
which should be enforced on two different periofisimme; the first beginning in
2005 and the last one in 2010. The limits to bereid from 2005 until 2010 are:

(i) the daily limit of 50ug mi°, not to be exceeded more than 35 times per year;
and (ii) the annual limit of 4g m>. The limits to be enforced from 2010 are: (i)
the daily limit of 50pg m?®, not to be exceeded more than 7 times per yedr(in

the annual limit of 2Qug m* (EC Directive, 1999).

2.3. Carbon monoxide

Carbon monoxide (CO) is a colourless, practicalllourless, tasteless and no
irritating gas which is the result of the incomplepxidation of carbon in

combustion (Raub, 1999; Raub et al., 2000). Thenrsaiirces are the combustion
of fuel (that occurs when the ratio air-to-fuel sgets low values), industrial
emissions and other combustion sources (as coal, waod and kerosene).
Natural sources, such as volcanoes, natural gasesal mines and forest fires,

have also an important contribution. The emissioh€0O increase significantly
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during the cold weather. In these conditions, thgirees need more fuel to work
and some emission control devices, such as oxygesrsoss and catalytic
converters, operate less efficiently when theycald (Raub et al., 2000; United
States Environmental Protection Agency - USEPA4200

The effects in the human health associated to tesepce of CO depend on its
concentration and the duration of exposure. At lmmcentrations, CO causes
fatigue in healthy people and chest pain in peeyth heart disease. At high
concentrations, it causes headaches, confusiomamsea. When inhaled, CO is
absorbed from the lungs to the bloodstream, whef®rins a complex with
haemoglobin known carboxyhaemoglobin. The presefidhis complex reduces
the oxygen carrying capacity, causing hypoxia (lmwygen level available to the
body tissues) (Raub, 1999; Raub et al., 2000; USEF®0; USEPA, 2004,
WHO, 2000). CO is one of the contaminants foundnadly in the atmosphere
that requires prevention and control measures sareradequate protection of the

human health.

EU established 10 mgras a limit value for the protection of human HegEC

Directive, 2000) based in the maximum daily 8-hawerage concentration.

2.4. Nitrogen oxides

Nitrogen oxides (NQ are a group of highly reactive gases. These geset®in
atoms of nitrogen and oxygen in different proparsioNitrogen oxide (NO) and
nitrogen dioxide (NG are the most important gases of this group ameg Hre
considered significant pollutants in the troposph@SEPA, 1998; World Bank
Group - WBG, 1998). Anthropogenic emissions of Nésult from the
combustion processes, including motor vehiclesctete utilities, and other
industrial, commercial and residential sources thatn fossil fuels. Natural
events, such as anaerobic biological processesiliarsd water, volcanic activity
and photochemical destruction of nitrogen compoundthe upper atmosphere,
have also a high contribution for N®missions (USEPA, 1998; WBG, 1998).

10
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Nitrogen oxides have diverse negative effects (Has al., 2004; Kalabokas et
al., 2002; USEPA, 1998; WBG, 1998; WHO, 2000), sash(i) formation of acid
rain — they react with other substances in thecaform acids which fall to earth
as rain, fog, snow, or dry particles; (ii) deteabton of the water quality -
increased nitrogen loading imater bodies, particularly coastal estuaries, @pset
the chemical balance of nutrients used by aqualdmte and animals; (iii)
formation of toxic chemicals — NQOreacts with common organic chemicals to
form a wide variety of toxic products, such as atérradicals, nitroarenes and
nitrosamines; (iv) reduction of the visibility —trigen dioxide can block the
transmission of light; (v) contribution to the iease of the earth’s temperature —
one of the nitrogen oxides, nitrous oxide, is aegt®muse gas; and (vi) formation
of ground-level ozone — in the presence of hydismas and sunlight, NO
contribute to the formation of tropospheric ozomeéhich can cause serious

respiratory problems.

EU established limit values for N@&nd NQ (EC Directive, 1999). Concerning
hourly average concentrations, Ni@nit for the protection of human health is 200
ug m? and may not be exceed more than 18 times in the (Jienit value to be
met till January of 2010). Concerning annual avere@ncentrations, NQimit for
the protection of human health is g§ m* (limit value to be met till January of

2010) and NQIlimit for protection of the vegetation is @ m°.

2.5. Ozone

Ozone (Q) is a strong photochemical oxidant found in thepasphere and in
other layers of the atmosphere. While ozone hasingmortant role in the
stratosphere (protection from the ultraviolet réidid@, in the troposphere this
irritating and reactive molecule has negative inpam human health, climate,
vegetation and materials (Alvim-Ferraz et al., 20aBhan et al., 1998).
Concerning human health effects, the most impogeett (i) damage to respiratory

tract tissues; (ii) death of lung cells and inceshgates of cell replication

11
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(hyperplasia); (iii) inflammation of airways; ant/)(increase of the respiratory
symptoms, such as cough, chest soreness, difficutBking a deep breath and, in
some cases, headaches or nausea (Kley et al., 1868w, 2000). Concerning
climate, a temperature increase is expected telbeed to the tropospheric ozone
increase, because it is a greenhouse gas andnoéiseéhe atmospheric residence
time of other greenhouse gases (Bytnerowicz eR@06). In vegetation, it causes
leaf injury, growth and yield reduction, and chasmgethe sensitivity to biotic and
abiotic stresses (Alvim-Ferraz et al., 2006; Lee@@00). Concerning materials,
ozone in combination with other atmosphere polligaontributes to the increase
of the corrosion on building materials like steglhc, copper, aluminium and
bronze (Leeuw, 2000).

The presence of ozone in the troposphere is atrebtiree basic processes: (i)
photochemical production by the interaction of lgdrbons and nitrogen oxides
(emitted by gasoline vapours, fossil fuel powerngda refineries, and other
industries) under the action of suitable ambientemm®logical conditions (Guerra
et al., 2004; Strand and Hov, 1996; Zolghadri et, a2004); (ii)

tropospheric/stratospheric exchange that causesrahsport of stratospheric air,
rich in ozone, into the troposphere (Dueiias et 2802); and (iii) horizontal

transport due to the wind that brings ozone produc®ther regions.

EU established limit values for ozone in the amb#&n(EC Directive, 2002). The
information threshold (considered to carry heaishs for short-time exposure of
groups particularly sensible) is 186 m* for hourly average concentration, and
the alert threshold (considered to carry healtksrfer short-time exposure of the
population in general) is 240y m°. The Q target value for the protection of the
human health is 120g m® concerning maximum daily 8-hour average
concentrations and may not be exceeded more thatag® per calendar year
averaged over three years (limit value to be mét2610). Concerning the
cumulative ozone exposure index (AOT40 — Accumualaéxposure Over a

Threshold of 40 ppb or 8@g ni®) calculated from 1 h values from May to July,

12
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the Q target value for the protection of the vegetat®oh8000ug m* h'averaged
over five years (limit value to be met till 2010he long-term objectives forgn
Europe are: (i) maximum daily 8-hour average of [1g§am* for the protection of
the human health; and (ii) AOT40 calculated frotn talues from May to July of
6000pug m* h™.

2.6. Air quality data

Oporto is the second largest city of Portugal, tedaat North. The important air
pollution sources in Oporto Metropolitan Area (OgpeMA) are vehicle traffic, an
oil refinery, a petrochemical complex, a thermogleglant (planned for working
with natural gas), an incineration unit and annmiional shipping port (Pereira et
al., 2007).

The air quality data was collected from the momimrsites integrated in the air
guality monitoring network (AQMN) of Oporto-MA, maged by the Regional
Commission of Coordination and Development of NemthPortugal Comisséo
de Coordenacao e Desenvolvimento Regional do Narteler the responsibility
of the Ministry of Environment. The AQMN of OporMA is currently composed
of 14 monitoring sites that regularly monitor thielavels of SQ, PM,o, CO, NO,
NO,, NO, and Q. PM, s, benzene, toluene and xylene are also measursohie

monitoring sites of the network.

SO, concentrations were obtained by the ultraviolatoféscence method,
according to the EC Directive 1999/30/EC (EC Dinaxt1999) using the AF21M
equipment from Environment SA (Pereira et al., 300M,, concentrations were
obtained through the beta radiation attenuatiorhatgtconsidered equivalent to
the method advised by the EU Directive 1999/30/EC Directive, 1999), using
the MPSI 100 | et E equipment from Environment JZergira et al., 2005).
Nondispersive infrared spectrometric method wasliegppto measure the CO
concentrations (Sousa et al., 2006), accordingiéBU Directive 2000/69/EC
(EC Directive, 2000). N@and NQ were obtained through the chemiluminescence

13
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method (Sousa et al., 2006), according to EU Direct999/30/EC (EC Directive,
1999). Ozone measurements, according to EU Die@®02/3/EC (EC Directive,
2002), were performed through UV-absorption photoynasing the equipment
41 M UV Photometric Ozone Analyser from Environmé&A. (Pereira et al.,
2005). This equipment was submitted to a rigid resiance program, being
calibrated each 4 weeks. Measurements were conshuoegistered and hourly

average concentrations (g m°) were recorded.

2.7. Exceedances to EU limits

The exceedances to the limits established by thevEté evaluated for the period
between 2003 and 2005. Two of the fourteen momigosites that constitute the
AQMN of Oporto-MA showed high percentage of missidgta during the
analysed period. The exceedances to EU limits were evaluated in these
monitoring sites. The monitoring sites selectedtfos study wereAntas (AN),
Baguim (BG), Boavista (BV), Custbias(CS), Ermesinde(ER), Leca do Balio
(LB), Matosinhos(MT), Perafita (PR), Senhora da HorgSH), Vermoim(VR),
Vila do Conde(VC) andVila Nova da TelhaVT). Table 2.1 shows the main
AQMN monitoring site characteristics, including ttyge and the main pollution
sources associated to them (QualAr, 2006). Figuretesents the map of Oporto-
MA with the locations of these monitoring sitesblea2.2 shows, from the five air
pollutants described above, the ones whose comtiems are measured at each
monitoring site. The ER site presented high peemmtof missing P data.

Thus, the exceedances to EU limits for BMere not evaluated at ER site.

The analysis of SOdata showed that their concentrations were in ¢iamge at
all sites with the legislation established by thd tr the protection of human
health (EC Directive, 1999). The hourly limit wasceeded in four monitoring
sites: (i) CS (once in 2004); (ii)) MT (4, 3 andithés in 2003, 2004 and 2005,
respectively); (ii) PR (15 times in 2003); and )(iWT (once in 2004).

14
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Table 2.1Site characteristics of the air quality monitorimetwork of Oporto Metropolitan
Area

Site Type Main pollution source
AN Urban Traffic

BG Urban Traffic

BV Urban Traffic

CS Suburban Industrial
ER Urban (Background)
LB Suburban (Background)
MT Urban Traffic

PR Suburban Industrial
SH Urban Traffic

VR Urban Traffic

VC Suburban Traffic

VT Suburban (Background)

Figure 2.1 Location of the monitoring sites in the map of @peMA (from Google
Earth)
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Table 2.2Air pollutants whose concentrations are measuregel monitoring site

Site SQ PMig CcoO

AN X
BG
BV
CS
ER
LB
MT
PR
SH
VR
VC
VT

z
L
L

X X X X

X X X X X X X X

X

X X X X X X X X X X X X
X

X X X X X X X X X X
X X X X X X X X X X

X X X X X X X

X

According to the referred legislation, the S@urly average concentrations limit
of 350pg m® cannot be exceeded more than 24 times a year%-6f3he total
number of hours) in order to be in compliance it norm (EC Directive, 1999).
The PR and MT sites showed the larger number okedances during the
analysed period. It is noted that all of the exeewees for the PR site occurred in
2003, which represent ~0.2% of the available hoaxlgrage concentrations and
that the correspondent percentages for MT site ween lower (~0.05%). The
daily average concentrations of S®ere calculated when more than 75% of the
hourly average concentrations were available. Thaly dlimit of SO,
concentrations is 12fg mi® and cannot be exceeded more than 3 times a year
(~0.8% of the total number of days) to be in compde with the norm (EC
Directive, 1999). The daily limit was exceeded ordnce at the PR site,
representing ~0.3% of the available daily averagiecentrations. To determine
these exceedances (to hourly and daily limits),nir@mum for the percentage of
available data (PAD) was 73%.

Table 2.3 shows the annual averages of 8@hcentrations calculated at each
monitoring site for the years 2003, 2004 and 209€%vall as the correspondent
PAD. It is observed that those annual averagesiai¢hange considerably during

the analysed period. MT site showed the highestua@nraverage values

16
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Table 2.3Annual averages of S@oncentrations at each site (it should not ex&egdg
m’ for ecosystem protection) and the correspondeii B brackets)

Year BV CSs ER LB MT PR SH VR VvC VT

6.5 5.8 4.5 6.0 111 6.9 6.4 4.6 25 5.0

2003 97y (91) (9@7) (@9) (98) (96) (97) (96) (98) (85)
004 55 68 53 66 103 51 89 43 27 39

98) (99) (100) (100) (100) (95) (99) (99) (99)  (98)
o005 57 75 58 57 95 49 95 55 31 28

(100) (99) (73) (90)  (100) (99) (100) (91) (99) (100)

due to the proximity of one emission source; néwaess, even there, the annual
average concentrations were about half of theugOm? limit established for

ecosystem protection by the EC Directive (1999).

Table 2.4 presents the number of exceedances tifrti@f 50 pg m* established
by the EU for the protection of human health and ttorrespondent PAD,
regarding the daily average concentrations of M order to be in compliance,
the limit cannot be exceeded more than 35 timega which corresponds to
~10% of the total number of available days (EC &ike, 1999). The number of
exceedances allowed by the EU was surpassed wtoaitoring sites during the
analysed years. VC site showed the highest numbexaeedances, representing
about approximately half of the available data. |&aB.5 shows the annual
averages of PM concentrations at each monitoring site and theespondent
PAD. During the entire studied period, only the \onitoring site was in
compliance of the annual limit of 40y m*® implemented by the EC Directive
(1999) for the protection of human health. Besides traffic and industrial
emissions of Py, the regional transport played an important roléhie pollutant
concentration. The research made by Pereira €&G5) showed that even at rural
sites (absence of direct influence of emission cgs)rexceedances were observed

due to intra-regional pollutant transport.
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Table 2.4Number of exceedances of the limit establishednieyEuropean Union for the
protection of human health regarding daily averagé$M,, concentrations and the
correspondent PAD (in brackets)

Year AN BV CS LB MT PR SH VR VC VT

127 111 86 114 92 123 121 107 167 62
(93) (98) (88) (82) (92) (97) (85 (89) (95) (73)

92 135 107 82 104 78 79 59 160 72
(90) (95) (96) (98) (98) (95) (98) (72) (89) (98)

005 86 115 134 67 122 80 104 88 161 86
(95) (100) (92) (83) (99) (96) (94) (85) (99)  (100)

2003

2004

Table 2.5Annual averages of P)Mconcentrations at each site (it should not exdégagy
m for the protection of human health) and the cqesient PAD (in brackets)

Year AN BV CSs LB MT PR SH VR \e VT

46.2 432 364 456 400 452 470 416 532 371

2003 95y (98) (90) (84) (93) (97) (87) (92) (96) (74)
04 409 502 405 349 4L9 395 37.3 363 527 357

92) (94) (98) (98) (98) (96) (99) (75) (90)  (98)
005 409 444 482 352 449 383 424 407 5L2 388

(95) (99) (93) (84) (98) 97) (95) (87) (98) (99)

During the analysed period, the maximum daily 8+heerage concentrations of
CO did not exceed the limits established by thef&Uthe protection of human
health (10 mg M) (EC Directive, 2000) at any monitoring site.

According to the legislation established by EU ttoe protection of human health,
the hourly average concentration of N@ay not be exceed 2Q® mi* more than
18 times a year (EC Directive, 1999). The LB sitesented the highest number of
exceedances (20 hourly average concentrationsptitatrred only in 2005. This
means that the number of exceedances allowed blthél8 exceedances in a
year) was surpassed at this site. As the annuahgeeNQ concentration at this
site was not usually high, these exceedances wergaply due to industrial

emissions. The exceedances of hourly limit occuatks 13 times at MT site
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(2005), 6 times at VR site (2004), 4 times at AM &Y sites (2005) and twice at
BG site (2005). To determine these exceedancesnithienum for the percentage
of available data (PAD) was 63%. Table 2.6 shovesahnual average of NO

concentrations calculated at each monitoring sitetie years of 2003, 2004 and
2005 as well as the correspondent PAD. AN, BV and Were the sites that
presented annual average concentrations aboverthestablished by the EU for
the protection of human health (4@ m® (EC Directive, 1999). Besides the
influence of industrial sources, these sites armengty influenced by the traffic

emissions. Table 2.7 shows the annual average gfthzentrations calculated at
each monitoring site and the correspondent PAD. @&heual limit for the

protection of vegetation (3flg m° was exceeded at all sites with exception

Table 2.6 Annual average Ngconcentrations at each site (it should not excéedgdn®
for the protection of human health) and the commesent PAD (in brackets)

Year AN BG BV CS ER LB MT PR SH VR VC VT

434 349 489 273 286 27.8 438 216 328 314 293 214
(94) (95) (90) (86) (96) (97) (99) (93) (93) (93) (98) (95)

454 305 39.7 27.6 300 261 413 184 36.4 325 238 185
(93) (93) (63) (96) (100) (99) (99) (98) (99) (96) (81) (98)

2005 48.3 316 426 29.0 298 275 410 199 355 323 223 179
(94) (100) (98) (99) (94) (86) (95) (95) (99) (89) (8BO) (95)

2003

2004

Table 2.7 Annual average NQconcentrations at each site (it should not ex@adg ni®
for the protection of vegetation) and the corresfem PAD (in brackets)

Year AN BG BV CS ER LB MT PR SH VR VC VT

96.4 685 1145 441 49.2 521 983 313 67.0 584 70.1 214

2003 94y (95) (90) (86) (96) (98) (99) (93) (93) (93) (98) (95)
o004 1105 631 1016 469 495 529 OL1 30.3 63.3 58.3 63.7 287

93) (93) (63) (96) (100) (99) (99) (98) (99) (96) (81) (98)
jo0s 1045 628 864 483 458 49.4 842 289 610 554 617 26.3

(94) (100) (98) (99) (94) (86) (95) (95) (99) (89) (80) (95)
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of VT site (during the entire period) and PR site Z005) (EC Directive, 1999).
As it happened with N AN, BV and MT sites presented the highest annual
average concentrations of NGFor both pollutants, there was not a significant

variation of their annual average concentrationriuthe analysed period.

Table 2.8 presents the exceedances of théh@sholds for public information
(180 pg m®) established by the EU and the correspondent PBO Directive,
2002). The AN, BG, ER, LB, VR and VT sites presentiee highest numbers of
exceedances during the entire analysed periodtirbehold for public alert (240
ug i) was exceeded once at BG, VR and VT sites in 208Ble 2.9 presents the
exceedances of the standard value establishedé¥lth for the protection of
human health and the correspondent PAD, regardiagimum daily 8-hour
average of @concentration (12Q,g m®, that may not be exceeded more than 25
times a year averaged over three years). Duringeiiee analysed period (three
years), ER site presented the highest number cfegdences; nevertheless, even
there, the maximum number of exceedances allowedhbyEU was obeyed.
Concerning the protection of vegetation, the validOT40 is calculated by the
sum of the difference between hourly average aunagons greater than §@
m* (equal to 40 parts per billion) and B mi° over a given period using only the
1 hour values measured between 8 and 20 hoursréCé&ntropean Time) each
day. At all sites, all possible measured data wais available. Therefore, the
calculated value of AOT40 was divided by the meadurourly values (AOT40-
Averaged exposure Over a Threshold of 40 ppb qug61®) and compared to the
ratio between AOT40 limit and the total possiblenter of hours (16.pg m® h
averaged over five years). Table 2.10 shows theegabf AOT40Q calculated at
each monitoring site and the correspondent PADiIrQuhe entire period, the;O
limit AOT40, (16.3ug m*® h* averaged over five years) for the protection @f th

vegetation was obeyed at all sites.
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Table 2.8 Exceedances of the ;Othresholds for public information (18Qg m?)
established by the European Union and the correfgaiPAD (in brackets)

Year AN BG BV CSs ER LB MT PR VR VC VT

2003 8 5 2 0 4 0 0 0 5 0 7
(86) (93) (95) (92) (97) (47) (100) (99) (96) (98) (95)

o00a 2 1 0 3 4 1 0 5 3 1 4
(97) (100) (99) (100) (99) (94) (100) (98) (99) (99) (98)

o005 10 7 0 2 17 27 0 1 8 0 12

(99) (100) (100) (53) (100) (69) (90) (100) (91) (98) (100)

Table 2.9 Exceedances of the standard value established éyEtmopean Union for
human health protection, regarding maximum dailgjo8+ average of ©concentration
and the correspondent PAD (in brackets)

Year AN BG BV Cs ER LB MT PR VR VvC VT

003 7 9 1 5 11 0 1 3 10 5 12
(87) (94) (96) (94) (98) (47) (100) (100) (98) (98) (97)
o0s 2 3 1 7 11 3 2 11 9 2 6
(98) (100) (99) (100) (100) (95) (100) (100) (100) (100) (99)
o005 7 9 3 1 23 19 6 13 17 9 17

(100) (100) (100) (53) (100) (70) (91) (100) (92) (99) (100)

Table 2.10Values of AOT4Q at each site (it should not exceed 16g3m* h? averaged
over five years, for the protection of vegetatianjl the correspondent PAD (in brackets)

Year AN BG BV CS ER LB MT PR VR vC VT

bo03 35 40 18 52 77 17 45 62 47 76
(95) (99) (100) (96) (98) (99) (99) (88) (100) (95)
o004 34 54 14 79 80 35 25 92 46 43 58
(90) (100) (96) (99) (99) (82) (99) (99) (100) (99) (98)
oo0s 34 59 14 50 85 145 28 62 119 52 82

(100) (99) (99) (75) (100) (75) (69) (98) (99) (99) (100)

2.8. Conclusions

The analysis to the exceedances to EU limits shotvat Oporto-MA presents
lower levels of CO and SQroncentrations. As it is a region strongly influed

by traffic, the concentrations of N@nd PM, surpassed the limits at almost all
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monitoring sites. For N§ the concerning monitoring sites were AN, BV, Lida
MT. With higher levels of NQ the equilibrium chemical reaction evolving NO
and Q limits the concentrations of the last one. Desiiig fact, the limits relative
to O; concentrations regarding the protection of humealth were surpassed at

all sites.
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Chapter 3

Characterization of Air Pollution Behaviours

The air quality monitoring of air pollutant levedbould be adequately managed in any air
quality monitoring network. The number of monitarisites that constitute the network
should be optimized helping to reduce expenses;abihe same time guarantying the
adequate characterization of the regional air gualihis means that only one monitoring
site should operate in an area characterized byifapeair pollution behaviour. This
chapter shows how principal component and clustatyaes can be applied to define the
minimum number of monitoring sites that should eperin an air quality monitoring
network. Additionally, the location of main emissisources was identified based on the
wind direction.

The contents of this chapter were adapted fromPifi¢s, J.C.M., Sousa, S.I.V., Pereira,
M.C., Alvim-Ferraz, M.C.M., Martins, F.G2008 Management of Air Quality Monitoring
using Principal Component and Cluster Analysis +# PaSO, and PM, Atmospheric
Environment42 (6), 1249-1260; and (ii) Pires, J.C.M., Sousd,VS Pereira, M.C.,
Alvim-Ferraz, M.C.M., Martins, F.G2008 Management of Air Quality Monitoring using
Principal Component and Cluster Analysis — Part@D, NG and Q. Atmospheric
Environmen#?2 (6), 1261-1274.

3.1. Introduction

Principal component analysis (PCA) is a statistieahnique that creates new
variables, called principal components (PCs) tihataathogonal and uncorrelated
to each other. These PCs are linear combinatiotiseobriginal variables and are
obtained in such a way that the first PC expldmeslargest fraction of the original
data variability; the second PC explains a lessmtibn of the data variance than
the first PC and so forth (Abdul-Wahab et al., 2088usa et al., 2007; Wang and

Xiao, 2004). To better clarify the influence of kawriginal variable in the PCs, a
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rotational algorithm such as varimax rotation is\@elly applied to obtain the
rotated factor loadings that represent the cortinbwf each variable to a specific
PC. PCA procedure is described in more detail iapdér 6. Although PCA is
mostly used for reducing the multiple dimensionsoagted to multivariate
analyses, it was applied in this study as a metfodassification, in order to
group the monitoring sites into classes (PCs) lwathe similar air pollution

behaviour.

Cluster analysis (CA) is a classification methodduto divide the data in classes
or clusters. Its main aim is to establish a setlo$ters such that objects in the
same cluster (CL) are similar to each other anfibidiht from objects located in
another clusters (Manly, 1994). The ideal humbeclo$ters may be determined
graphically through a dendrogram, a tree diagramnaonly used in CA (Manly,

1994; McKenna, 2003). This classification methoth @dso be useful for data

reduction.

PCA and CA have been used in many studies aimiagrtanagement of water
monitoring networks (Kannel et al., 2007; Mendigiackt al., 2004; Shrestha and
Kazama, 2007; Singh et al., 2004; Singh et al. 5200evertheless, as far as it is
known by the author, only the research made by Gecamt al. (2006) has applied
CA for the analysis of air quality management. Thetudy determined the
seasonal trends and spatial distribution of,f*?&hd Q for Santiago de Chile,

concluding that the city had four large sectorshwiissimilar air pollution

behaviours.

The global aim of this chapter was to evaluatepgrdormance of PCA and CA for
the management of air pollutant concentrations todng with the following
specific objectives: (i) to identify city areas wisimilar air pollution behaviour;

and (ii) to locate main emission sources.
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3.2. Air quality data

PCA and CA were applied to the analysis of thgallutant (SQ, PMy, CO, NG
and Q) concentrations collected in the AQMN of Oporto-Mfom January 2003
to December 2005. To be able to apply these statistnethods, hourly
concentrations need to be available at all sitethénsame time period. For §O
the number of available hourly data at each monigosite were 5281, 7761 and
5355 for the 2003, 2004 and 2005 years, respegtivet PM;o, the number of
available hourly data at each monitoring site w&480, 4369 and 5548; for CO,
the number of available hourly data at each monigosite were 2681, 3478 and
2565; for NQ, the number of available hourly data at each nooinigj site were
4277, 3482 and 4675; and fog,@he number of available hourly data at each site
were 1967, 7390 and 1943. Concentration values Wetandardized to have zero

mean and unit standard deviation.

3.3. Results and discussion

PCA was applied as a non-parametric method of itilzestson in order to group
the monitoring sites into classes having similar @ollution behaviours and
differing from those in other classes. Table 3.dvehthe main results of the PCA
application for both pollutants at all sites. Calesing eigenvalues greater than 1
(Kaiser criterion; Yidana et al., 2008), only thestf four PCs that explain 63.8%
of the original data variance need to be taken autwount for analyzing the SO
concentrations. However, in order to consider audative variance greater than
75%, the PC5 and PC6 components were selectech¢haigenvalues of 0.91 and
0.81, respectively), in which case 81.0% of theadeariance was explained.
Considering the same criterion, two PCs could bected for CO concentrations,
explaining 71.6% of variance of the original dabme more PC with eigeinvalue
close to 1 (0.71) could be selected to achieveeast| 75% of the original data
variance, resulting in 78.1% of the total varianGa the other hand, for P

NO, and Q concentrations, two PCs were selected for eachutpot and
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Table 3.1Main results of the PCA application for the anaty/pellutants at all sites

Site PC1 PC2 PC3 PC4 PC5 PC6 PC1 PC2
AN -0.807 -0.207
BV -0.848 -0.020 -0.009 -0.066 -0.054 0.026 -0.757 -0.117
CS -0.226 -0.074 0.022-0.776 -0.076 0.062 -0.846 -0.154
ER -0.054 -0.058 -0.024-0.820 -0.028 0.038
LB -0.040 -0.886 0.004 -0.073 -0.030 -0.013 ¢ -0.1900.931
MT Ud) -0.877 -0.044 -0.023 -0.026 -0.004 0.029 E -0.889 -0.115
PR 0.024 0.009 0.996 0.005 0.001 0.080 -0.784 -0.133
SH -0.731 -0.016 0.005 -0.372 0.009 -0.002 -0.874 -0.233
VR -0.024 -0.885 -0.014 -0.057 -0.049 0.036 -0.1620.937
VC -0.040 -0.020 0.081 -0.089 -0.0310.991 -0.698 -0.155
VT -0.038 -0.072 -0.001 -0.089-0.991 0.031 -0.857 -0.147
Eigenvalue 2.55 1.58 1.21 1.04 0.91 0.81 5.87 1.48
Variance (%) 25.5 15.8 12.1 10.4 9.1 8.1 58.7 14.8
Cumulative
variance (%) 25.5 41.3 53.4 63.8 72.9 81.0 58.7 73.5
Site PC1 PC2 PC3 PC1 PC2 PC1 PC2
AN -0.745 -0.175 0.306 -0.852 -0.137 -0.895 -0.214
BG -0.751 -0.254 0.351 -0.830 -0.163 -0.903 -0.250
BV -0.794 -0.162 0.196 -0.830 -0.150 -0.906 -0.190
CSs -0.843 -0.226 0.294 -0.898 -0.200 -0.926 -0.240
ER -0.845 -0.205 -0.903 -0.258
LB o -0.198 -0931 0.019 & -0.202 -0.936 » -0.226 -0.957
MT O .0611 -0.132 0654 Z -0.844 -0.111 o -0.892 -0.179
PR -0.747 -0.098 0.120 -0.740 -0.156 -0.851 -0.219
SH -0.784 -0.190 0.383 -0.879 -0.100
VR -0.192 -0.912 0.174 -0.152 -0.943 -0.258 -0.947
VC -0.286 -0.094 0.900 -0.755 -0.171 -0.847 -0.273
VT -0.819 -0.139 0.159 -0.813 -0.201 -0.873 -0.243
Eigenvalue  6.48 1.40 0.71 7.46 1.53 8.13 1.39
Variance (%) 58.9 12.7 6.5 62.1 12.7 73.9 12.7
Cumulative oo 716 781 621  74.9 739 865

variance (%)

Values in bold indicate the variables that mosiuience the correspondent principal component.

explained 73.5%, 74.9% and 86.5% of the originaiavece, respectively. The
rotated factor loadings in bold indicate the vdeabthat mostly influence the
correspondent PC. For $@oncentrations, the first PC (PC1) had important
contributions from BV, MT and SH sites, while PC2asvheavily loaded by the
contributions from LB and VR sites. PC4 had impettaontributions from CS
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and ER monitoring sites; while PR, VT and VC sitesse significantly associated
with PC3, PC5 and PC6 components, respectively.(@rconcentrations, PC1
had important contributions of sites AN, BG, BV, 3R, SH and VT, PC2 was
heavily loaded by LB and VR sites, and the sites &l VC were considered
important in PC3. Besides the inclusion of MT &ité>C3, it has also an important
contribution in PC1 (factor loading of 0.611). F&#M;,, NO, and Q
concentrations, PC2 had significant contributioremmf LB and VR sites, while

PC1 was heavily loaded by the remaining monitositgs.

CA was also used to group monitoring sites basetth@similarity of the pollutant
standardized concentration values. Euclidean distamas used to compute the
distance among monitoring sites and the clustepngcedure used was the
average linkage method (Manly, 1994). This procedsarbased on the average
distance between all pairs of objects - that isitooing sites - considering that the
two objects must belong to different clusters. TWwe objects with the lowest
average distance are linked to form a new clustbe complete procedure is
presented as follows: step 1: determination ofdis¢gances between all objects;
step 2: linkage of the two objects that correspionithe lowest distance to conform
a new cluster or group of objects; step 3: comgadwo objects that form part of
the newly formed group with the remaining objedttsthis stage of the analysis,
each object not yet classified will be associatezhtwith two distances. Finally,
the ascribed distance to the unclassified objedt be the average of both

distances; step 4: repeat step 3 until all objeelsng to one cluster.

Figure 3.1 shows the dendrograms (a) to (e) resuftiom the application of CA
to the SQ, PMy, CO, NQ and Q concentrations, respectively. For SO
concentrations, the results obtained showed that tdim monitoring sites
(measuring S©concentrations) of the AQMN can be grouped into dusters:

cluster | (CL1) - BV, MT and SH sites; cluster @l(2) - CS and ER sites; cluster
Il (CL3) - LB and VR sites; cluster IV (CL4) - VSite; cluster V (CL5) - PR site;
cluster VI (CL6) - VC site. Similar results werehagved with the application of
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Figure 3.1 Dendrograms resulting from the application of CAhe (a) S@ (b) PMy, (¢)
CO, (d) NQ and (e) Q@ concentrations.

PCA, where the PC1, PC2, PC3, PC4, PC5 and PCeigaincomponents
corresponded exactly to the CL1, CL3, CL5, CL2, Gintl CL6 clusters of the
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CA, respectively. For the PMconcentrations, similar results were achieved with
PCA, with the PC1 and PC2 principal componentshef PCA corresponding
exactly to the CL2 and CL1 clusters of the CA, szdpely. For CO
concentrations, the results obtained showed tleaglven monitoring sites of the
AQMN could be coupled into three clusters: clustéfL1l) — AN, BG, BV, CS,
PR, SH and VT sites; cluster Il (CL2) — MT and Vi@s; cluster Ill (CL3) — LB
and VR sites. Similar results were achieved wittAP®here PC1, PC2 and PC3
corresponded to CL1, CL3 and CL2, respectively. R@. concentrations, the
twelve sites could be also coupled into three ehsstcluster | (CL1) — sites BG,
CS, ER, PR, SH, VC and VT; cluster Il (CL2) —sitdsand VR; cluster Il (CL3)
—sites AN, BV and MT. For this pollutant, PCA and @id not achieve the same
results. PC2 corresponded to CL2, but the sitepledun PC1 were divided into
CL1 and CL3. Furthermore, fors&oncentrations, PCA and CA also achieved
similar results, with PC1 and PC2 correspondingktd and CL2, respectively.
Therefore, it was possible to conclude that the@ncentrations monitored at the

eleven sites could be coupled in no more than twags.

Figure 3.2 (from a to f) shows the average daibyfif@ of the hourly average SO
concentrations at the monitoring sites grouped My torrespondent PC/CL
category. Similar behaviours of $@ollution can be observed in sites belonging
to the same PC/CL category. Figure 3.3 (from g) tshlows the daily profile of the
hourly average PM concentrations grouped by the correspondent PC/CL
category. For the second group (PC2/CL1 categdhg, monitoring sites had
similar pollution profile. Nevertheless, and foetfirst group (PC1/CL2), the sites
had the same profile until 17 hours, but betweeari¥ 22 hours VC site showed a
peak of PMy concentration. The inclusion of VC site in thiogp by the PCA is
related to the low proportion of the original da&riance explained by the first
two PCs (communality of 0.51). In CA, this is expkd by the correspondent

Euclidean distance of the VC site, which was gretitan in other sites belonging
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to the CL2 category. This means that VC site ex&ibimore dissimilar air
pollution behaviour than the other monitoring sit&sssified into this group.
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Figure 3.2 Average daily profile of the hourly average S@oncentrations at the
monitoring sites grouped by the correspondent PCkategory: (a) PC1/CL1, (b)
PC2/CL3, (c) PC3/CLS5, (d) PC4/CL2, (e) PC5/CL4 &idPC6/CL6.

30



Chapter 3: Characterization of Air Pollution Belmawis

PC1/CL2
100
—aA—AN
=] BV
“-‘; —+—CS
o — MT
=
=} —oo—PR
E —%—SH
—><—VC
o T T T T — VT
0 4 8 12 16 20 24
t (h)
a
PC2/CL1
100
80
£
o N LB
=
= VR
=
o
0 T T T T T
0 4 8 12 16 20 24

t (h)
b

Figure 3.3 Average daily profile of the hourly average RMoncentrations for the
monitoring sites grouped by the correspondent PCé@tegory: (a) PC1/CL2 and (b)

Figure 3.4 (from a to c) shows the average daibyfiler of hourly average CO

concentrations at the monitoring sites grouped g torrespondent PC/CL

category. Similar profiles of CO can be observethatsites belonging to the same

PC/CL. Figure 3.5 (from a to c¢) shows the averaajy grrofile of hourly average
NO, concentrations grouped by the correspondent PC&tdgory.
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Figure 3.4 Average daily profile of the hourly mean CO concatibns for the monitoring
sites grouped by the correspondent PC/CL cateda)yPC1/CL1, (b) PC2/CL3, and (c)
PC3/CL2.
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Figure 3.5 Average daily profile of the hourly average N©oncentrations for the
monitoring sites grouped by the correspondent PChategory: (a) PC1/CL1, (b)
PC2/CL2, and (c) PC1/CL3.
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Comparing the two statistical methods, CA createel more group of sites. This
group was composed by the sites with strong infteeof traffic (AN, BV and
MT). Figure 3.6 (a and b) shows the average daibfilp of hourly average 9
concentrations, grouped by the correspondent PCABdgory. Similar profile was

observed in the grouped sites.

PC1/CL1

0 T T T T T A— VT
0 4 8 12 16 20 24
t (h)
a
PC2/CL2
70
60 /./.-.\
_ 50 /‘(M
£ 40 / \‘ —e— 1B
o
=30 ——VR
S 33
20
10
O T T T T T
0 4 8 12 16 20 24

t (h)
b

Figure 3.6 Average daily profile of the hourly average; @oncentrations for the
monitoring sites grouped by the correspondent PCé@tegory: (a) PC1/CL1 and (b)
PC2/CL2.
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The existence of different air pollution behaviourghe monitoring network can
be explained by the geographical location of thémallutant sources and by the
variability of wind directions across the regiorhig last fact was evaluated by
analysing the influence of the wind direction ore tincrease of the pollutant
concentrations. Figure 3.7 presents the relatieguency of the direction from
which the wind was blowing when hourly average @mmtations of S@above
125 ug m® were collected (VC site did not present any, $6ncentration above
this value). The selected value for reference timy aimed the comparison was
under EU limit value because $€oncentrations were almost always under that
limit. Because the BV, MT and SH monitoring sitesrw classified in the same
group, they should be affected by the same Qrce or sources at the same time.
These sources are probably located in the W-NWttiine sector as it is observed
from those sites. On the other hand, the highest ®@centrations at PR site,
located at north of the MT monitoring site (seeufgy2.1) were measured when
wind blew predominantly from the S-SW wind directisector. Thus, the main
emission source of SOwas located between the PR and MT sites, SO
concentrations higher than 1p§ m® emitted from this source were also detected
at the CS and ER sites (both included in the PC2/@bup) when the wind came
predominantly from the W-NW direction sector. Thember of site groups with
similar air pollution behaviour was influenced thetgeographic location of the
emission sources. As the main emission source weetdd inside the region
covered by the AQMN, for each wind direction, thailgl evolution of SQ
concentrations was not the same at all monitorites;sthis means that the sites
can be grouped according to this specific behavi®easults showed that six

monitoring sites were needed to characterize thecBfcentrations.

The influence of the wind direction sector on thecreasing of Pl
concentrations was analysed in order to check Her @xistence of significant
emission sources for this pollutant. Figure 3.8sprts the relative frequency of

the direction from which the wind was blowing whéourly average PM
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Figure 3.7 Relative frequency (%) of the direction from whitthe wind was blowing
when hourly average concentrations of,®0ove 1251g m® were collected (number of
occurrences in brackets).

concentration increased at leastgpm?® during the period that lasted from 17 to
the 22 hours (period when highest BMoncentrations were observed for all
sites). Main results indicated that the additioaadission source or sources that
affected VC site were located along the NW-N andNW-wind direction sectors.

These sources had a strong influence on that 2003 and 2004, but their

impact notably diminished in 2005. Furthermorewias observed that these
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Figure 3.8 Relative frequency (%) of the direction from whitthe wind was blowing
when hourly average concentrations of gMcreased at least %@ m* during the period
that lasted from 17 to the 22 hours (number of oerices in brackets).
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emission sources was responsible for the peak of, R®hcentration referred
above as the major difference of the pollution véha presented by VC site in
the PC1/CL2 class. During 2003 and 2004, VC sies@nted different pollution
behaviour only in the period of day between 17 2Adhours (when the wind blew
from NW-N and W-NW direction). With the decrease tbe impact of this
emission source in 2005, the pollution behaviou¥6f site became more similar
to the others belonging to PC1/CL2 class. Additilgnauring the entire analysed
period all monitoring sites were highly influendeg PM;o emissions coming from
the E-SE direction sector, which implies the existe of an emission source
located outside the region defined by the AQMN afwhg that wind direction
sector. High concentrations of CO and N@ere also measured with this wind

direction. Therefore, this emission source hadraptbgenic origin.

The two PM, emission sources described in the above paragligphot explain
very well, however, the existence of the PC/CL lasnformed by the LB and
VR sites. The emission source located to the NWAN the W-NW direction
sectors significantly affected the RjMtoncentrations measured at VC site, but not
enough to avoid the inclusion of this site in th@1RCL2 category of the PM
pollutant. The second emission source, locatedgatbe E-SE direction sector,
significantly affected the P\ concentrations measured at all sites, includirg th
LB and VR sites. Figure 3.9 shows, as exampleptbéle of the hourly average
PMy, concentrations for January the "112004 when the wind blew more
frequently from the S-SW direction sector. The LBdavR monitoring sites
showed the highest Plyiconcentrations and presented profiles differemmfthe
other sites (reason to be grouped in a differentCRCclass). Thus, a PM

emission source was located at the vicinity of ¢rsites.

Figure 3.10 presents the relative frequency ofdinection from which the wind
was blowing when hourly average concentrations 6f &ove 4 mg m was
collected (LB, VC and VT sites did not present & concentration above this

value). CO concentrations above 4 mg were detected at all sites when the wind
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Figure 3.9 Example of the profile of the hourly average 8Moncentrations when the
wind blew predominantly from S-SW direction sector.

came from E-SE direction sector. Thus one imporamssion source was located
outside the region defined by AQMN of Oporto-MA.&'AN, MT and SH sites
also measured high concentrations when the wind litem NW-N direction
sector. Thus one emission source of CO was locatddW-N of these sites. If
different sites located inside AQMN had different pollution behaviour, the
emission sources responsible for these differemae inside of the monitoring
area. These two main emission sources did not iexgila existence of the three
groups characterized by different air pollution &éburs. Figure 3.11 (a and b)
shows, as example, the profiles of the hourly ay@r@O concentrations: (a) for
December 24 and 2%', 2003 when the wind blew more frequently from N&&-E
direction sector; and (b) for April*1 2003 when the wind blew more frequently
from the NW-N direction sector. In the first examgFigure 3.11a), the LB and
VR sites recorded the highest CO concentrationspaiesented profiles different
from the other sites (reason to be grouped in mffe PC/CL). In the second
example (Figure 3.11b), the MT and VC sites hadhighest concentrations. Even
not showing the same profiles, they were diffefeai those presented by the
other sites. Because MT site had similar contrdngiin PC1 and PC3, the
difference in the profiles of CO concentrationsleded at MT and VC sites
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Figure 3.10 Relative frequency (%) of the direction from whittte wind was blowing
when hourly average CO concentration above 4 my was collected (number of
occurrences in brackets).

(grouped in the same PC/CL category) should beagge As AN and SH sites
presented different profiles from the MT site, idsvconcluded that there was an
additional emission source located at NW-N windediion sector affecting

significantly the CO concentrations recorded at &fil VC sites.
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Figure 3.11 Examples of the daily profiles of CO concentratiomsen the wind blew
predominantly from: (a) NE-E, and (b) NW-N directisectors.

Figure 3.12 presents the relative frequency ofdinection from which the wind
was blowing when hourly average B®oncentration above 100g m*® was
collected. Three wind direction sectors were cagrg®d important. N
transported by the wind that came from E-SE dioecsector affected all sites.
This important emission source was located outtidgegion defined by AQMN.
The AN, BG, BV, ER, LB, MT, SH and VR sites weres@laffected by N©

transported by the wind that came from W-NW and NMiirection sectors. Thus,
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Figure 3.12 Relative frequency (%) of the direction from whittte wind was blowing
when hourly average NOconcentration above 10ig mi® was collected (number of
occurrences in brackets).
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knowing the geographical location of these siteeed main emission sources of
NO, were located affecting three different groups ohitoring sites: (i) AN, BV,
MT and SH; (i) LB and VR; and (iii) BG and ER. Thmain emission source
associated to LB and VR sites was the only onedigaificantly affected their air
pollution behaviour to include them in a differegrioup (PC/CL). Figure 3.13
shows, as example, the profiles of the hourly ayerBlGQ concentrations for
September 7, 2005 when the wind came from NW-N direction secithe LB
and VR sites had the highest N@ncentrations and presented profiles different
from the other sites (reason to be grouped in iffePC/CL). The sites AN, BV
and MT were included in another group due to thengtinfluence of traffic in the

NO, concentrations.

O; is a secondary pollutant (it is not directly emt}, resulting from the
photochemical interaction between emitted polliggnitrogen oxides and volatile
organic compounds) (Alvim-Ferraz et al., 2006). rEfiere, the analysis of wind
direction influence on the increase of €bncentrations was done not to locate
main emission sources, but to detect places wgh B concentrations that could
be transported by the wind. Figure 3.14 presergsréfative frequency of the

direction from which the wind was blowing when hguraverage ©
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Figure 3.13 Example of the daily profile of NOconcentrations when the wind blew
predominantly from NW-N direction sector.
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Figure 3.14 Relative frequency (%) of the direction from whittte wind was blowing
when hourly average Oconcentration above 12)g m® was collected (number of
occurrences in brackets).
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concentration above 120g m® was collected. The wind coming from NW-N
direction sector was associated with the incredg@;a@oncentrations at LB and
VR sites, while the wind blowing from W-NW directiosector affected the
concentration of this pollutant at all sites. Thigans that ©transported by the
wind from the sea had a great contribution in theeoved daily peaks of this
pollutant concentration. This phenomenon was stlldiemany authors (Barros et
al., 2003; Guerra et al., 2004; Jorba et al., 204iBan et al., 1996). According to
the authors, a significant contribution in thg €édncentration was the transport
from the sea by the wind. The marine inversiongeoirculation of air flows along
the sea caused by the land-sea interface trapgkdapts enabling ©@formation
and accumulation (Jorba et al., 2003; Millan eti396). The @was accumulated
in stratified layers (stacked up to 2-3 km highorg the coast) that act as
reservoirs and retained this pollutant from one wathe following days. The LB
and VR sites were included in a different groupsivés due to the different air
pollution behaviour presented in the period analyseigure 3.15 shows, as
example, the profiles of the hourly averagecOncentrations when the wind blew

predominantly from W-NW direction sector. The LBdawWR sites recorded the

25/06/2004

150

120

Os(ugm?

Figure 3.15 Example of the daily profile of ©9concentrations when the wind blew
predominantly from W-NW direction sector.
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highest Q concentrations and presented profiles differeatnfrthe other sites

(reason to be grouped in different PC/CL).

For all pollutants considered in this study, the BBd VR sites were always
differentiated by their air pollution behaviour. &Hocation of main emission
sources is one of the possible reasons, justifythg highest pollutant
concentrations recorded at these sites comparitigetother sites. However, after
a detailed analysis, the LB and VR sites presedidg profiles with low pollutant
concentrations. Figure 3.16 shows, as exampleptbile of the hourly average
NO, concentrations for March £02005. It can be observed that LB and VR sites
had profiles different from the others, presentitgp lower concentrations, which
means that the topography of the sites is also iitapb for this study. These
monitoring sites are located in a region betweem itwportant valleys, one from
Leca River located at south and other from AlmorBiler located at east. These
two valleys create a local atmosphere with specdic pollution behaviour

different from the ones observed in other regidn®morto-MA.

The application of PCA and CA to the air qualityadanonitored at one air quality

monitoring network, showed that there were cityaardaving the same air
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Figure 3.16Example of the daily profile of NOconcentrations.
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pollution behaviour covered by too many monitorisges; suggesting that
monitoring network can be better managed. This sé¢laat PCA and CA have a
great potential for the management of air qualinitoring systems, helping the
identification of redundant equipment that might tbansferred to other sites

allowing an enlargement of the monitored area.

3.4. Conclusions

Aiming the identification of city areas with similair pollution behaviours in
Oporto-MA, two statistical methods, PCA and CA, evepplied. Different results
were obtained for each pollutant. PCA and CA diglitiee sites in: (i) six different
groups for S@ (ii) three groups for CO and for NOand (iii) two groups for
PM,oand Q.

The number of site groups with similar pollutionhbeiour was affected by the
geographic location of the emission sources. Apprate source locations were
found through the analysis of the information cored in the wind direction
sectors associated to the presence of high comatiemis of the analysed air
pollutants. Only one main source of S®as identified, being located inside the
region covered by the AQMN. For each wind directithre daily evolution of SO
concentrations was not the same at all monitorites;sthis means that the sites
can be grouped according to this specific behavi®easults showed that six
monitoring sites were needed to characterize B@hcentrations. Three main
emission sources of Plylwere located: (i) one inside the region definedthsy
AQMN (significantly affected only two sites) and)(two outside that region
(affecting all monitoring sites). One emission s®utocated outside the region
affected significantly only one monitoring site anshort period of the day. This
emission source decreased its impact in 2005. Tdrereonly two monitoring sites
are needed to characterize BMoncentrations. Additionally, four main emission

sources of CO and NQvere located. Additionally, it was observed thea svind
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had an important contribution in the increase ef@ concentration due to thesO

accumulation above the sea.

Two monitoring sites presented different air padotbehaviour for all pollutants
during the analysed period. This difference waateel with the location of main
emission sources and also with the topographyefd¢igion where these sites are

located.
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Chapter 4

Identification of redundant air quality measurements

This chapter shows the results obtained by primcip@amponent analysis in the
identification of redundant measurements using different criteria for selection of the
number of principal components. For each air pafitit the minimum number of
monitoring sites evaluated by this analysis was mamed to what was established by the
European Union legislation. To validate the resutis statistical models were determined
to estimate air pollutant concentrations at remouednitoring sites using the
concentrations measured at the remaining monitaiteg. These models were tested in a
year’s data.

The contents of this chapter were adapted fromPifigs, J.C.M., Pereira, M.C., Alvim-
Ferraz, M.C.M., Martins, F.G2009 Identification of redundant air quality measuraise
through the use of principal component analystsiospheric Environmedt3, 3837-3842.

4.1. Introduction

The concerns about the negative effects of aiupoh led to increased efforts to
prevent and control this phenomenon. The locatibsampling points for the
measurement of air pollutant concentrations wameefby the European Union
directive 2008/50/EC (EC Directive, 2008). Accomlinto this directive,
monitoring sites should be placed to provide déjain areas within zones and
agglomerations, where the population is likely éodirectly or indirectly exposed
to high concentrations (limit and target valuesevestablished as references); (i)
in other areas within zones and agglomerations lwhi® representative of the
general population exposure. The same directivieeldthe number of monitoring

sites that should operate according to populatiaa and pollution levels. In
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Oporto Metropolitan Area (Oporto-MA) with populati@f about 1.7 millions and
a population density of 540 inhabitants per squalemetre, NQ and PMg
concentrations exceeded many times the limits bsitedol by the legislation (see
Chapter 2). Five monitoring sites should operatel@iding at least an urban
background site and a traffic site) to measure, l[d@ PM, concentrations and
three monitoring sites should measure thec@ncentrations (at least 50% of the

monitoring sites should be placed in suburban areas

In Chapter 3, PCA and CA were applied to identHig tmonitoring sites with
similar air pollution behaviour and to locate eriogssources of S£ PM,, CO,
NO, and Q. However, this study was performed using all prid study, not
considering the annual variations of the air palhiit behaviours due to the
different meteorological conditions. In this studCA was applied to the data
divided into annual quarters. Moreover, an add#lariterion for selection of the
number of PCs was applied, aiming to select PCsagting more information
about the original data than the criterion usuafplied (Kaiser criterion) and the
number of monitoring sites was compared with whais vestablished by the
legislation. Finally, after the selection of themrtoring sites that should operate,
the air pollutant concentrations measured in thesations were used to predict

the concentrations at the removed monitoring sites.

4.2. Air quality data

The monitoring sites considered in this study wantéas (AN), Boavista(BV),
Custbias(CS), Leca do Balio(LB), Matosinhos(MT), Perafita (PR), Vermoim
(VR), Vila do CondgVC) andVila Nova da TelhgVT). Their location, type and
main characteristics are presented in Chapter 2rt@pmonitoring network
includes other monitoring sites that were not cdeisd in this study: some did not
measure all the considered air pollutarBaduim and Senhora da Horaand
others presented a high percentage of missing dlaiag the analysed period

(Ermesindeand Espinhg. The pollutants considered were N@®M;, and Q,
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since CO and SOdid not present a significant number of exceedsirioethe
limits established by the European Union for thetgetion of human health
during the analysed period (Pires et al., 20088381

The analysed period was from January 2003 to Deee®05. PCA was applied
to the data corresponding to the first two yeagt there divided in eight annual
quarters Q). The division into annual quarters had the objecof analyse the
persistence of the PCA results during the year. @aheual analysis can hide
seasonal changes, i.e., variability of the metegioll conditions. The last year
was used to validate the results of PCA. Afterdbkection of the monitoring sites
that should be removed or replaced, the air paitutancentrations at these places
were estimated using the values measured at thaim#mg monitoring sites. The
data were organized in such a way that each colhath the hourly average
concentrations of a specific air pollutant at ac#je monitoring site. To be
possible to apply the PCA, the air pollutant coticions must be available at the
same time in all monitoring sites. The data avédbr the analysis in 2003, 2004
and 2005 were, respectively: (i) 4897, 3532 andb465 NO,; (i) 4737, 4408 and
5869 for Q; and (iii) 2534, 7492 and 1951 for RMConcentrations were Z

standardized to have zero mean and unit standardtide.

4.3. Results and discussion

PCA was applied as a classification method to grougnitoring sites with

redundant measurements of air pollutant conceatrstiduring the analysed
period. The first step of PCA is the selection b& thumber of PCs. Kaiser
criterion, which selects PCs with eigenvalues gretitan 1, is commonly used for
this purpose (Yidana et al., 2008); as this coterloes not usually achieve 90%
of the original data variance (Mendiguchia et2004; Pires et al., 2008a, 2008b),
in this study, a different criterion was also usaidying to select PCs representing

at least 90% of the original data variance (QfVthis procedure allowed to
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obtain more information about original variablestzoned in the selected PCs and

to increase the confidence in the PCA results.

Table 4.1 shows, as an example, the main resuttseoPCA application for Oat

all monitoring sites, during the third quarter dd02. Considering eigenvalues
greater than 1, only two PCs were selected, expi87.3% of the original data
variance. The rotated factor loadings (achievedvéiymax rotation algorithm)

indicate the influence of each variable on the R@set al. (2003) classified the
influence of the original variables on each PC tasng, moderate and weak for
absolute loading values >0.75, 0.5-0.75 and 0.3+@%&pectively. However, this
study uses a different classification for rotataegtér loadings. Values in bold
correspond to the greatest contributions of thealées on the PCs. Original
variables with factor loadings in italic, corresporg to absolute values greater
than 0.4, were also considered as having significantributions. Therefore, PC1
had important contributions of AN, BV, CS, MT, PRC and VT sites; PC2 was
heavily loaded by the contributions of LB and VResi Considering the ORQY

criterion, three PCs were selected. PC1 had impbdantributions of AN, BV,

Table 4.1 Main results of the PCA application for; @t all monitoring sites during the
third quarter of 2004

Kaiser criterion ODV g, criterion
Site PC1 PC2 PC1 PC2 PC3
AN -0.875 -0.252 -0.403 -0.240 -0.840
BV -0.911 -0.183 -0.455 -0.169 -0.836
Cs -0.934 -0.219 -0.628 -0.205 -0.698
LB -0.220 -0.961 -0.170 -0.958 -0.162
MT -0.874 -0.160 -0.758 -0.146 -0.481
PR -0.898 -0.220 -0.819 -0.206 -0.455
VR -0.226 -0.959 -0.168 -0.956 -0.173
VC -0.881 -0.254 -0.836 -0.239 -0.415
VT -0.882 -0.188 -0.549 -0.175 -0.703
Eigenvalue 6.41 1.44 6.41 1.44 0.38
Variance (%) 71.2 16.1 71.2 16.1 4.2
Cumulative variance (%)  71.2 87.3 71.2 87.3 92.4

Values in bold correspond to the greatest contvbstof the variables in the PCs; factor loadings
with absolute values greater than 0.4 are preseéntéalic.
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CS, MT, PR, VC and VT sites; PC2 was heavily loablgdthe contributions of LB
and VR sites; PC3 had important contributions of @3, PR, VC and VT sites.
This distribution is explained by the relative gesgghical location of the main
emission sources to the monitoring sites and thegmphy of the region (Pires et
al., 2008a, 2008b). The last one has a great ingrattie air quality in LB and VR
sites. As these monitoring sites are located irgon between two important
valleys, they presented different pollution behaviavhen compared to other

regions in Oporto-MA.

Table 4.2 shows the number of PCs selected for aaalysed period applying
both criteria. Using Kaiser criterion, two PCs wemnsidered in five (for ©and
PM;o) and six (for NQ) of the eight analysed periods. In all periods nehisvo
PCs were selected, the PC2 had important contoibaitof LB and VR sites, while
PC1 was heavily loaded by the remaining sites.@dreentage of the original data
variance contained in the selected PCs using thexion was always below 90%.
Thus, the results obtained using OfgWere considered with more confidence.
The monitoring sites that had different air polutibehaviours in at least one of
the analysed periods can not be removed. Thuspuh®er of monitoring sites
that should be maintained corresponds to the marimumber of PCs achieved
in all analysed periods using Olx\riterion. Accordingly, using Kaiser criterion

only two monitoring sites should be maintaineddbrair pollutants. Using OD¥

Table 4.2Number of PCs selected for each analysed perid tilse two criteria: Kaiser
(left) and OD\4, criterion (right)

Year Q Q; Qs Q4
NO, 2003 2|4 2|5 1|4 1|4
2004 2|4 2|5 2|5 2|4
(o} 2003 1]2 1]2 1f2 2|3
2004 2|3 2|3 213 213
PMy, 2003 1|5 1|6 1|6 215
2004 2|5 217 216 216

(a) BV site was removed due to missing valueslB}kite was removed due to missing values.
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criterion, the number of monitoring sites neededHaracterize the region was: (i)
five for NO,; (ii) three for Q; and (iii) seven for PM. Using the last criterion, the
number of monitoring sites for NCand Q was in agreement with what was
established by the legislation. However, for gMDporto-MA needed two more

monitoring sites.

The sites to be maintained should be selected diogpto the following criteria:
(i) sites should be representative, namely for mooimig of the highest pollutant
concentrations; (ii) the number of pollutants beingnitored at each site should
be maximized; and (iii) the distribution should rimaize distances between
monitoring sites. Table 4.3 shows the relative diercy (in percentage) of each
pair of monitoring sites that had important conitibns in the same PC during the
eight analysed periods (training period) using Ea{sipper triangular matrix) and
ODVy criteria (lower triangular matrix). High frequessi(values in bold) means
that the correspondent pair of monitoring sitesemftpresented redundant
measurements. Based on this information, the mangaites that presented high
redundancy in the data were identified. The selaatf the monitoring sites to be
maintained or removed was performed consideringfribguencies presented in
Table 4.3 and the criteria referred above. Accaigin considering Kaiser
criterion, only two monitoring sites should be ntained for all analysed air
pollutants. The selected monitoring sites were BM &B. Considering ODY
criterion, the sites that should be removed area@$VR for PM,, CS, VR, AN
and VT for NQ; and CS, VR, AN, VT, MT and PR for;0

To validate the PCA results, air pollutant concatibns at the removed
monitoring sites were estimated through statisticaddels using the values
measured at other places in Oporto-MA. The perfogeaaof these models was
evaluated using the data of the last year of thelysperiod. Multiple linear
regression (MLR) was applied with this aim and ithfgut variables were selected
according to Table 4.3. For example, N€oncentrations at CS site can be

estimated using the NQroncentrations measured at BV if Kaiser criteness
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Table 4.3 Relative frequency (in percentage) of each pairnwfnitoring sites with

important contributions in the same PC during tihet two years of study (eight periods)
using Kaiser criterion (upper triangular matrix)da®DVyq criterion (lower triangular

matrix)

AN BY CS LB MT PR VR VC VT

NG,
AN - 100 100 50 100 75 50 100 75
BV 88 - 100 57 100 86 57 100 86

CS 100 86 50 100 100 50 100 100

LB 38 29 38

- 50 50 100 50 50
MT 88 71 88 38 - 88 50 100 88
PR 0 14 100 25 0 - 50 88 100
VR 38 43 38 100 38 13 - 50 50
VvC 25 14 38 0 63 13 0 - 88
VT 75 71 100 38 63 88 38 25 -

O;

AN - 100 100 29 100 100 38 100 100
BV 100 - 100 29 100 100 38 100 100
CS 88 88 - 29 100 100 38 100 100
LB 29 29 29 29 29 100 29 29

MT 88 100 100 29

- 100 38 100 100
PR 88 75 100 29 100 - 38 100 100
VR 38 38 38 100 38 38 - 38 38
VC 88 88 100 29 100 100 38 - 100
VT 88 100 100 29 100 100 38 100 -
AN - 100 100 38 100 100 38 100 100
BV 63 - 100 38 100 100 38 100 100
CS 50 38 - 38 100 100 38 100 100
LB 0 13 38 - 38 38 100 38 38
MT 63 63 88 25 - 100 38 100 100
PR 13 13 13 0 25 - 38 100 100
VR 0 0 25 100 25 0 - 38 38
VvC 0 0 0 0 13 13 0 - 100
VT 50 50 100 38 75 38 25 0 -

Values in bold correspond to relative frequenciestgr or equal to 75%

considered or at BV, MT and PR sites if Ofg¥¢riterion was considered. MLR
models were determined with the data corresponditnige first two years of study
(training period). Table 4.4 and 4.5 show all deped MLR models to estimate
the air pollutant concentrations at all removed twimg sites (with Z

standardized input variables) attending to Kaisel @DVy, criteria, respectively.
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Table 4.4 MLR models used to estimate the air pollutant emt@tions at all removed
monitoring sites using the values measured at dadlies in Oporto-MA for the Kaiser
criterion

Sites MLR models

NG, AN L1: AN =45.9 + 19.8 x BV
CS L2: CS =29.3 + 15.7 x BV
MT L3: MT =47.7 + 15.7 x BV
PR L4: PR =22.2 + 10.1 x BV
VR L5:VR=33.6+18.2xLB
VC L6: VC =28.5+ 10.4 x BV
VT L7: VT =22.7 + 13.2 x BV

0O AN L8: AN =29.1 +21.5 x BV
CS L9: CS =38.3 + 24.0 x BV
MT L10: MT = 32.0 + 20.2 x BV
PR L11: PR=39.9 + 21.2 x BV
VR L12: VR =35.3+25.5 x LB
\{e: L13: VC =35.2 + 19.3 x BV
VT L14: VT =38.5 +21.5 x BV

PM;o AN L15: AN =45.9 + 20.0 x BV
CS L16: CS =40.3 +21.7 x BV
MT L17: MT =42.1 + 19.0 x BV
PR L18: PR =43.9 + 16.0 x BV
VR L19: VR =40.7 + 30.1 x LB
VC L20: VC =54.8 + 17.1 x BV
VT L21: VT =36.6 + 15.3 x BV

Table 4.5 MLR models used to estimate the air pollutant emti@tions at all removed
monitoring sites using the values measured at offitess in Oporto-MA for ODY,
criterion

Sites MLR models

NO, AN M1: AN =459+ 13,5 x BV + 10.5 x MT
CS M2:CS=29.3+6.1xBV+8.0xMT+9.6 xPR
VR M3: VR =33.6 +18.2 x LB
VT M4: VT =22.7 +15.9 x PR

(0 AN M5: AN =29.1+17.1 xBV+5.8xVC
CS M6: CS =38.3 +14.0 xBV +13.1 xVC
MT M7: MT = 32.0 +10.5 x BV + 12.7 x VC
PR M8: PR =39.9 +22.8 x VC
VR M9: VR =35.3+25.5 x LB
VT M10: VT =38.5+12.3 x BV + 12.0 x VC

PMy  CS M11: CS = 40.3 + 16.9 x MT + 14.2 x VT
VR M12: VR = 40.7 + 30.1 x LB
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The data corresponding to the last year of studyewsesed to evaluate the
performance of MLR models. The performance indersesl in this study were the
Pearson correlation coefficient (R) and the indéagreement of second order
(dy). Figure 4.1 and 4.2 show the performance indexedl MLR models in the
(a) training and (b) test periods for Kaiser and\@fxcriteria, respectively. The
models achieved with ODY criterion presented better performances. Consideri
this criterion, all models achieved good perforn@mcwhich mean that the
monitoring sites proposed by PCA were enough teerinhe air pollutant
concentrations at all monitored region. The ailytaht analysers corresponding
to the redundant measurements can be installedommonitored regions,

allowing the enlargement of the air quality moriitgrnetwork.

4.4. Conclusions

This study aims to apply PCA to evaluate redundasisurements in the air
guality monitoring network of Oporto-MA. PCA wasaakto group the monitoring
sites with redundant measurements. Two differeitéra were used for selection
of the number of PCs. ODY criterion had always more information about the
original variables when compared with Kaiser ciiter According to the PCA
results with OD\, criterion, only five monitoring sites for NOthree for Q and
seven for PMy were needed to characterize the region. The nuofl@onitoring
sites for NQ and Q was in agreement with what was established by the
legislation. However, for P, Oporto-MA needed two more monitoring sites. To
validate PCA results, MLR models were determinedestimate air pollutant
concentrations at removed monitoring sites usimgdbncentrations measured in
the remaining monitoring sites. These models wemied to a year’'s data. The
good performance obtained by the models showed tth@tmonitoring sites
selected by the procedure presented in this stuele venough to infer the air

pollutant concentrations in the region defined bg tnitial monitoring sites.
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Figure 4.1 Performance indexes of all MLR models in the (ajning and (b) test periods

for the Kaiser criterion.
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Chapter 5

Prediction using statistical models

In last years, several statistical models weresteaiming the prediction of £and PM,
concentrations. This chapter describes some oktlsésdies. Additionally, the models
applied in this thesis were briefly presented.

5.1. State of the art

Several studies can be found in literature aimhmg prediction of @ and PM,
concentrations through statistical models. Prybutblkal. (2000) predicted the
daily maximum Q@ concentrations using artificial neural networksN(s),
multiple linear regression and autoregressive natiegl moving average (ARIMA)

models. The ANN model presented better performance.

Schlink et al. (2003) applied 15 different stagati techniques for ozone
forecasting using ten data sets. This study wastheone found in the literature
that applied artificial neural network quantile reggion to the environmental
field. However, the artificial neural network wagtermined using only the
median regression and not taken into account aknpialities of the quantile

regression.

Wang et al. (2003) developed an ANN model, whicinloimes the adaptive radial
basis function network with statistical charactigess of O; in selected specific
areas, and is used to predict the daily maximymadDcentrations. The model was

capable to predict successfully the daily maximemoentrations.
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Baur et al. (2004) applied the linear quatile regren (QR) for the interpretation
of nonlinear relationships between daily maximumurho average ozone
concentrations and meteorological variables. Thigdys showed that the
contributions of the explanatory variables in the ©oncentrations vary
significantly at different @ regimes. Additionally, linear QR model (with five
quantiles) was compared with ordinary least-squaeggession models in the

prediction of Q concentrations presenting better performance ieglex

Heo and Kim (2004) tried to predict daily maximum €ncentrations at four
monitoring sites using a fuzzy expert and ANN medédlhe developed models

were able to correct themselves and presentededdacecasting errors.

Duenfas et al. (2005) developed stochastic modat$, as ARIMA, for urban and
rural areas that turned out to be site specifiddth sampling points, predictions

of hourly ozone concentrations agree reasonabliywitl measured values.

Sousa et al. (2006) compared the performances dfiphaulinear regression
(MLR), feedforward ANN and time series in the piitin of the daily average;O
concentrations. These models were also appliedianuand rural sites. MLR
models showed good performance in the training, siep ANN presented better

predictive performance.

Sousa et al. (2007) predicted next day hourly ae=@ concentrations through a
new methodology based on feedforward ANNs usingggual components as
inputs. The performance of this model was compavét other approach on
neural networks and with a linear model. The rassttowed that ANNs predict

better than linear models.

Sousa et al. (2009) also compared MLR and QR apprfma the prediction of the
next day hourly averages@oncentrations. Three different periods were aplpli
daylight, night time and all day. QR allowed moffic&nt previsions of extreme
values which are very useful once the forecastifidnigher concentrations is

fundamental to develop strategies for protectimgghblic health.
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Concerning the prediction of PMconcentrations, Fuller et al. (2002) used an
empirical model to forecast the concentrationsMffat background and roadside
locations. The method was based on the regressialysis between P) and
NO,. The model accurately predicted daily mean ;fMoncentrations but
presented some limitations. For example, it depegndk the existence of a
consistent relationship between RMnd NQ emissions. As a conclusion of these
studies, it was noted that the comparisons betdeear and nonlinear models did
not find significant differences in the results @hed by the different

methodologies.

Perez and Reyes (2002) developed a neural netwwklitear approach) to
predict the maximum of the 24 h moving average Mdf,fconcentration on the
next day. This method was compared with linear gyaron (linear approach) and

presented slightly better performance.

Kukkonen et al. (2003) applied five ANN models,reebr statistical model and a
deterministic modelling system for the predictiofi wrban NQ and PM,
concentrations. For both pollutants, ANN modelsspreed better results than the

other models.

Corani (2005) tried to predict this pollutant usifeedforward ANNS, pruned
neural networks (nonlinear approaches) and lazyileg (local linear modelling
approach). Comparing these three methodologieg, l&ning presents slightly

better results than the other methods.

Slini et al. (2006) applied classification and eggion trees and ANN to forecast
PM;, concentrations trends. Both methods presented gesudts, having the first

one the best performance indexes.

Grivas and Chaloulakou (2006) applied ANN modelgtedict hourly average
PMyo concentrations. The input variables were seleasidg a genetic algorithm
procedure. The performance of these models wasrlibin the one presented by
MLR.
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5.2. Models applied in this thesis

This thesis presented the development and applicati some statistical models
(linear and nonlinear) to predict the next day hoaverage @concentrations and
the daily average PM concentrations in urban areas. The linear modgie
with this aim were: (i) MLR; (ii) principal compone regression (PCR); (iii)
independent component regression (ICR); (iv) platgast squares regression
(PLSR); and (v) QR. As far as it is known, no stuthd applied ICR for the
prediction of Q or PMy concentrations. Moreover, a method was presemed t
estimate the percentile of the predicted variabl@R. Considering the artificial
neural networks, two step-by-step methodologiesewagplied to define these
models, taking into account some limitations ofsthenodels. The last models are
related to evolutionary algorithms. Genetic aldons were applied to define
threshold regression models to predicg Concentrations. Finally, genetic
programming and multi-gene genetic programming vegaied to predict ©and

PMyq concentrations, respectively.
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Chapter 6

Linear models

This chapter has the objective of evaluate theopexdnce of five linear regression models
in the prediction of the next day hourly averagecOncentrations and the daily average
PM,q concentrations. The selected models were: (i)ipteltinear regression; (ii) principal
component regression; (iii) independent componegtession; (iv) partial least squares
regression; and (v) quantile regression. The ptedic were meteorological data
(hourly/daily averages of temperature, relative Mty and wind speed) and
environmental data (hourly/daily average conceiutnat of SQ, CO, NO, NQ, O; and
PM;g) of the previous day collected in an urban sitthwriaffic influences.

The contents of this chapter were adapted fromPifi¢s, J.C.M., Martins, F.G., Sousa,
S.L.V., Alvim-Ferraz, M.C.M., Pereira, M.C2008 Prediction of the Daily Mean PM
Concentrations Using Linear Modelsmerican Journal of Environmental Scienee$s),
445-453; and (ii) Pires, J.C.M., Martins, F.G., iMvFerraz, M.C.M., Pereira, M.C2009
Comparison of several statistical models to predet concentrationsSubmitted for
publication

6.1. Multiple linear regression

Multiple linear regression (MLR) is an extensiontbé simple linear regression
model for data with multiple predictor variablesdaone outcome. Thus, this
statistical model assumes that the best approaestitnate the dependent variable
y from the explanatory variables is to find the linear combination of these

variables that minimizes the errors in reproduginghis relationship is given by:

y=Xb +e (6.1)
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whereb is the vector of the regression parameterseaisdhe vector of the errors
associated to MLR model, which are normally distréd with zero mean and
constant variance? (Agirre-Basurko et al., 2006; Pires et al, 2008c)cofnmon

method for estimating the regression parameteiwisrdinary least squares. This
method obtains the parameters’ estimates by mimigithe sum of the squared

errors (SSE). The least squares estimateisfgiven by:

b=(X"X)*X"y (6.2)

where the superscriptsand™ refer to the transpose and inverse matrix operstio

respectively.

Collinearity is a serious problem of MLR, which msahe redundancy in the set
of the variables, i.e., the predictors are coreelato each other. It has several
consequences: (i) problems in the determinatioth®fregression parameters; and
(i) wrong interpretations of the achieved modeRirds et al.,, 2008c). The
regression parameters are obtained through thetiBgué.2, depending on the
inverse of the matrix product. If a strong collirigaexists, this product is singular
(Sundberg, 2000). Thus, it does not have a uniguerse and, consequently, there
is infinity of solutions for the regression paraerst Moreover, in the presence of
collinearity, the standard errors of the regresgiarameters tend to be large and,
consequently, their confidence intervals tend todny wide. In that case, the test
of the hypothesis that the regression parametegqisal to zero against the
alternative that it is not equal to zero leads failare to reject the null hypothesis
(Eberly, 2007). Thus, this regression parametercamsidered statistically
insignificant and no linear relationship is estsiid between the dependent and
the independent variable. Additionally, as the aerice intervals are so wide,
excluding a variable (or adding a new one) can geahe regression parameters
dramatically. Thus, magnitudes and possible diwesti(signs) of the regression

parameters may change depending on which prediatersicluded in the model.
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For this reason, it is always good to verify if timagnitude and a direction of the

regression parameter has meaning in the contekedaftudy (Pires et al., 2008c).

In this study, two statistical methods were appliedremove the collinearity

between the explanatory variables: (i) principamponent analysis (PCA); and
(if) independent component analysis (ICA). The afles created by these linear
transformations, called principal components (P&8) independent components

(ICs), are uncorrelated to each other.

6.2. Principal component regression

Principal component analysis (PCA) is mathematcd#fined as an orthogonal
linear transformation that modifies the originatadéo a new coordinate system
such that the greatest variance by any projectfoie data comes to lie on the
first coordinate (called the first principal comgon), the second greatest variance
on the second coordinate, and so on (Pires €2G08a, 2008b). Thus, the PCs are
orthogonal and uncorrelated to each other, beingeraéned by linear
combinations of the original variables. The direest of the new coordinate axes
are given by the eigenvectors of the covarianceiraf the original variables.
The magnitude of the eigenvalues corresponds taeatiance of the data along the

eigenvector direction.

PCs are dependent on the units used to measuoeigh®al variables as well as on
the range of values they assume. Thus, the datalcksihe standardized before
applying PCA. A common standardization method isramsform all the data to
have zero mean and unit standard deviation. Afier dtandardization of the
original data, the covariance matrix is determinBuke eigenvalues are calculated

from the following equation (Camdevyren et al., 208ousa et al., 2007):

|Cov-al[=0 (6.3)

whereCov is the covariance matri, are the eigenvalues,the identity matrix

and|...| is the matrix determinant operator. The eigenvscioe calculated by:
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(c-a)v=0 (6.4)

whereV is the matrix of the weights (or eigenvectors)e HCs are then obtained,

multiplying the original data set by the weights.

Varimax rotation is the most widely employed ortbogl rotation in PCA,

because it tends to produce simplification of theotated loadings to easier
interpretation of the results. It simplifies theattings by rigidly rotating the PC
axes such that the variable projections (loadimgseach PC tend to be high or
low. The interpretation simplicity of a specific R&defined as the variance of its

squared loadings (Harman, 1976):

2
13 1(
s? :E;(bﬁj J —F(;bﬁj (6.5)

wheren is the number of original variables ahgd is the loading of the original

variablej in the principal componemt If the variance is at maximum, the PC has
the greatest interpretability. In this case, tredlngs tend toward unit and zero. To
rotate the loadings of all PCs, the sum of thearaes of the squared loadings

must be maximized:

2
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where m is the number of PCs. The procedure to maximize vhriance is
described in more detail by Harman (1976). After tbtation, the loadings show

the relative contributions of the original variablen each PC.

The principal component regression (PCR) is a ssjpa model that combines
linear regression and PCA (Pires et al., 2008cihénEquations 6.1 and 6.2, the
matrix of the original variableX is replaced by the matrix of their PCs. Moreover,
in the Equation 6.2, the inverse of the matrix picidshould cause no problem
since the PCs are orthogonal. Therefore, PCR stheefmverse matrix problem:

the collinearity.
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6.3. Independent component regression

Independent component analysis (ICA) is a variahtP€A in which the

components are assumed to be mutually statistizadlgpendent instead of merely
uncorrelated. The uncorrelation is a weaker forrmdépendence (Hyvarinen and
Oja, 2000). For example, two random variablearm z are uncorrelated if their

covariance is zero:

E{z,z}-E{z}E{z,} =0 (6.7)

whereE{} is the expectation function. Two variables arestered statistically
independent if the value of one of them does na¢ gny information on the value
of the other variable. Moreover, the most importardperty of the independent

random variables is given by:

Efh(z)n, (2.} - E{n.(z }E{h,(z.} =0 (6.8)
whereh,() andh,() are two functions. Considering the Equations &.d @.8, the

independent variables are always uncorrelated. ©a other hand, the

uncorrelation does not imply independence.

In the ICA model, the original variables are assdiitebe linear combinations of
latent variables. The aim of this procedure isinid these variables and how they
are linearly mixed. Assuming a non-Gaussian distiilm and mutual statistical
independence, these latent variables are the IKCA. dan be mathematically

described as (Hyvarinen and Oja, 2000):

X =AS (6.9)
whereX is the matrix of the original variableS,is the matrix of the ICs andl is

the unknown mixing matrix. The matrix of the ICsdae achieved by determining

a matrixM, called unmixing matrix, such as:

S=MX (6.10)
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FastICA is a popular algorithm for ICA developedHyvéarinen and Oja (2000).
The algorithm is based on a fixed point iteratiachesne maximizing non-
Gaussianity as a measure of statistical indeperdelfte FastiCA procedure is

described in detail by Hyvarinen and Oja (2000).

Independent component regression (ICR) is a metthad combines linear
regression and ICA. In the Equations 6.1 and @2, matrix of the original

variablesX is replaced by the matrix of their ICs.

6.4. Partial least squares regression

Partial least squares regression (PLSR) is a ttatisool that has been designed
to deal with MLR problems: (i) limited number of sdyvations; (i) missing data;
and (iii) collinearity. This model can be used ituations where the use of
traditional multivariate methods is severely limditesuch as when there are fewer
observations than predictor variables (Abdi, 200®id et al., 2001). Moreover, it
can be used to select suitable predictor variadotelsto identify outliers before the
application of the classical linear regression. PiSRanother method that can
eliminate some predictor variables. For instanas, iegression can be done using
only the PCs having the corresponding eigenvalusatgr than one (Kaiser
criterion). The PCs are uncorrelated (that solVes rhulticollinearity problem),
but the problem of choosing an optimum subset efligtors remains. Nothing
guarantees that the PCs which represent the grearébility of the original data
X are also relevant for. PLSR searches a set of orthogonal componentsdcal
latent vectors, that performs a simultaneous deositipn of X andy with the
constraint that these components explain as mucpoasible the covariance
betweenX andy (Abdi, 2003; Wold et al., 2001). The complete pdge is as
follows (Abdi, 2003):

Step 1Normalization ofX andy: X, = X/|X| andy, =y/|y| ;

Step 2Definition of the vectou with random values;
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X,'u

Step 3Estimation of theX weights:w = H =
X, u

. . X, W
Step 4Estimation of theX factor scorest = ||Xk—||;
w
k

T

Step 5Estimation of they weights:c = ”yk—Tt ;

Yi't

Step 6Estimation of they factor scoresu =y, c;
Step 7Repetition of the steps 3 to 6 until the convergeoit;
Step 8Determination of the value dfused to predicg fromt: b=t"u;

Step 9Determination of the factor loadingsp = X, 't ;

Step 10.Elimination of the effect ot from X andy: X,,, =X, —-tp" and

Yier =Y, ~btc’;
Step 11.Repetition of the steps 2 to 10 until the determmomaof a selected
number of latent vectors.
All vectorst, u, w, c andp are stored in the columns of the correspondenticaat
T, U, W, C and P and the scalab is stored in the diagonal matrB. The
procedure is repeated tl, become a null matrix which correspond that ab it

variables were determined.

The prediction of the dependent variable is doneybyTBC'™ = XB,,. If all
latent variables are used, the results of PLSRiariar to that obtained by PCR.

6.5. Quantile regression

Quantile regression (QR) was introduced by Koerket Bassett (1978) and can
be seen as a natural extension of the least sgastiezation of conditional mean
models. This method presents some advantages widrapaced with ordinary

least squares regression. For example, it allowesetkamination of the entire

distribution of the variable of interest rathernha single measure of the central
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tendency of its distribution. It can also proviggormation about any linear or
nonlinear relationships between the dependent hari@and the explanatory
variables without an a priori knowledge of the tygfg(potential) non-linearities.
Thus, it is more flexible to model data with hetggneous conditional distribution.
To describe the quantile function, a random vaeablwith the distribution
function F(y)=p(Y<y) is considered. The quantile functi@Q{r) with t € [0, 1] is

defined as follows:

Q) =inf{y:F(y)=7} (6.11)
The median i€9Q(1/2), the first quartile i€(1/4) and the first decile iQ(1/10).

The median regression minimizes a sum of absoluterse The remaining
conditional quantile functions are estimated by imiming an asymmetrically

weighted sum of absolute errors:

Q(7) =argmin{2r|yi —a+ ) ([1-1)y, —al} (6.12)

a iyiza iryi<a

Equation 6.13 presents a way to estimate the mpdedmeters, considering

quantile approach and the regression given by kruét1:
b(7) =ar9(rr)1in{z 7y, - 9|+ Z(l—T)|yi _9i|} (6.13)
T iryi> i inyi<yj

6.6. Statistical significance of regression parameters

It is important to know which explanatory variablaee relevant to predict the
dependent variable. For the studied models, PL3Reisnly one that includes this
step in its procedure. For MLR, PCR and ICR, tlymisicance of each regression

parameter in the models was evaluated throughaloelation of their confidence

interval. The parametq@’i is valid if (Hayter et al. 2006; Pires et al., 360
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(6.14)

wheret is the Student distribution,n is the number of point is the number of

parametersg is the significance levelg is the standard deviation given by

JSSH(n-k-1) and Sxx is the sum of squares related ¥ given by

Z()ﬁ,j - X )2 :

j=1

For QR model, bootstrap estimates of standard €significance level of 0.05)
were calculated by randomly sampling each datadét weplacement (1000
times).

6.7. Performance indexes

The linear models were compared through the cdlonlaof the following
statistical parameters: mean bias error (MBE), medasolute error (MAE), root
mean squared error (RMSE), Pearson correlationficeeit (R) and index of
agreement of second order,)dthat are commonly referred in literature
(Chaloulakou et al., 2003; Gardner and Dorling,®00

MBE=%§(T -v,) (6.15)

MAE =S |V Y| (6.16)

RMSE= %il(i—Y?)Z (6.17)
-V f Db )

S .
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d,=1-—F—"*— — (6.19)

MBE indicates if the observed values are over ateurestimated, with values
closest to zero being desirable. MAE and RMSE measesidual errors, which
give a global idea of the difference between theeoled and the modelled values.
Due to the power term, RMSE is more sensitive toeexe values than MAE. The
lower values of these parameters reflect a bettteinin terms of its absolute
deviation. These three performance indexes (MBE,BvBhd RMSE) have the
same units of the output variable Yowever, R anddare dimensionless. R is a
value that gives the quality of a least squardisdjtto the original data. Its values
are in the interval [0, 1], where values near Iregpond to better models. The
values of d compare the difference between the mean, the gqteediand the
observed variables, indicating the degree of draw for the predictions. Higher
values correspond to better models (Chaloulakowlgt 2003; Gardner and
Dorling, 2000).

6.8. Data

This study aims to evaluate the performance of fikie statistical models
described above for predicting the next day hoavlgrage @concentrations and
the daily average concentrations of BMin both cases, meteorological and
environmental variables were considered as preadicibhe environmental data
was collected in an urban siteMgtosinho$ with traffic influences. The
meteorological data was measuredSatra do Pilaron the left edge of Douro
River at an altitude of 90 m approximately. Theakigs are representative for all

Oporto Metropolitan Area.

Considering the prediction of;@oncentrations, the predictors were: (i) the hourl

average concentrations of S@O, NO, NQ and Q of the previous day; and (ii)
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hourly averages of air temperature (T), relativenidity (RH) and wind speed
(WS) of the previous day. The analysed period was/ Mnd June 2003. The
training period was May 2003 (403 data pointsktftevo fortnights of June 2003
was the validation period (306 data points); arsdl tavo fortnights of June 2003
was the test period (340 data points).

Considering the prediction of PMconcentrations, the predictors were: (i) the
daily average concentrations of $S@O, NO, NQ and PM, of the previous day;
and (ii) daily average of T, RH and WS of the poend day. Daily average values
for these variables were calculated and used ifentlkan 75% of hourly values
were available. The analysed period was from JgnR@®3 to December 2005.
The training period was 2003 and the first threeuah quarters of 2004 and 2005
(826 data points); the last annual quarter of 2@@4 the validation period (88
data points); and the last annual quarter of 2085 the test period (76 data

points).

The training period was used to determine the mpdeameters. The PLSR and
QR models are the only ones that required a vabidgteriod. In PLSR model, the
validation period was used to calculate the nunolbéatent variables. On the other
hand, QR model need a validation period to appkthearest neighbourg&-(NN)
algorithm. This algorithm was used to determine rinenber ofk-NN needed to
predict the percentile of the dependent variablthéntest period. The test period
was used to evaluate the performance of the adhienaelels when applied to new
dataset. The explanatory variables were Z starzizdido have zero mean and unit

standard deviation.

6.9. Results and discussion

The MLR, PCR and ICR models were determined thrasugbroutines in Visual
Basic for Applications developed for Microsoft Ekoahile PLSR and QR were
achieved using Matlab 7.0 (MathWorks Inc., Natibkd, USA). The statistical

significance of regression parameters in MLR, PQRI dCR models was
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evaluated through a t-test with significance leaeD.05. The final models were
obtained evaluating all combinations of input vhies and selecting the best one
(corresponding to the lowest RMSE value) with tbestraint that all regression
parameters must be statistically significant (Petal., 2008c). On the other hand,
for QR parameters, the bootstrap technique (withOl@placements) was applied
to define the parameters’ confidence intervals i significance level of 0.05.
As PLSR model considered only the latent variabtgsortant in the prediction of
the dependent variable, no procedure was applieévaduate the statistical
significance of the regression parameters. TaldeaBd 6.2 show the statistical
significant regression parameters obtained fotiradlar models for @and PM,,
respectively. The regression parametefs=1, 8) corresponded to SOCO, NO,
NO,, T, RH, WS and gPM,,, respectively, in MLR, PLSR and QR models. In
PCR and ICR models, these regression parametamsponded to PCi (i=1, 8)
and ICi (i=1, 8). In these models, to be possihke interpretation in terms of the
original variables their relationship with PCs d@d must be also analysed. Table
6.3 presents the varimax rotated factor loadings ésult from the application of
PCA to the original data. Values in bold corresptmdhe main contributions of
original variables on each PC. Fog, ®Ci (i=1, 8) were heavily loaded by CO,
WS, SQ, T, G;, RH, NO and N respectively. For PN, PC1 is heavily loaded
by CO, NO and N@and PC2 to PC6 had greater contributions of T, B(, RH

Table 6.1Regression parameters for all statistical mod®l€¥§ concentrations prediction

bO) b(1) b2 bE)  bAd) b)) bE) b(7) b8

MLR 51.35 2.05 -3.30  8.16 3.49  4.19
PCR 51.35 8.00 -3.67  4.29
ICR 51.35 -422 390 -245 -587 -426 -891 329 221
PLSR 0.07 -008 001 -0.07 017 -0.14 014 0.0
QR (1=0.1) 32.10 9.21 -1469 2441 7.07 5.35
QR (1=0.3) 49.15 555 -15.85 18.31 2.84
QR (1=0.5) 60.94 573 814 -1229 2029 582 295
QR (1=0.7) 69.80 -9.40 12.84 150
QR (1=0.9) 80.33 -0.18 8.63

78



Chapter 6: Linear Models

Table 6.2 Regression parameters for all statistical models PM,q concentrations

prediction
b) b(1) b2 b@B) b4 b(5)  b(6) b(7)  b(8)
MLR 42.12 2.36 2.88 198 -2.74 10.82
PCR 4212 735 435 141 4.82 4.87 5.19
ICR 26.39 7.57 3.14 -295 165 249 319
PLSR 0.03 012 0.04 0.17 0.15 -0.18 0.01 0.33
QR (t=0.1) 23.7 5.39 3.72 -3.50 4.6
QR (1=0.3) 33.6 0.64 -2.73 12.3
QR (t=0.5) 40.8 047 -241 15.7
QR (1=0.7) 49.0 2.25 -2.32 16.3
QR (t=0.9) 62.3 7.33 16.7
Table 6.3Varimax rotated factor loadings
PC1 pPC2 PC3 PC4 PC5 PC6 PC7 PC8
O3 SO, -0.060 0.003 -0.971 -0.149 -0.058 -0.114 0.076 -0.094
co -0.877 -0.074 -0.064 -0.146 0.180 -0.037 0.327 -0.244
NO -0415 0.027 -0.111 -0.120 0.227 -0.1190.827 -0.225
NO, -0.403 -0.131 -0.175 -0.190 0.231 -0.187 0.2890.763
T -0.149 0.066 -0.185 -0.897 -0.152 -0.293 0.102 -0.126
RH 0.054 -0.241 0.157 0.347 0.191 0.852 -0.110 0.139
WS 0.059 0966 -0.001 -0.058 -0.168 -0.165 0.010 0.072
O3 0.194 0.221 -0.079 -0.169 -0.884 -0.181 -0.197 0.158
PMy SO, -0.171 0.159 -0.061 0.960 0.065 -0.121 -0.035 0.002
CO -0.842 -0.277 -0.176 0.020 0.050 -0.318 -0.008 -0.280
NO -0.952 -0.090 -0.132 0.162 -0.003 -0.144 0.034 0.139
NO, -0.742 -0.014 -0.129 0.234 0.223 -0.355 -0.449 -0.004
T 0.177 0.957 -0.033 0.160 0.132 -0.088 0.000 0.010
RH 0.076 -0.127 -0.160 -0.065 -0.967 0.106 0.033  0.004
WS 0.194 -0.031 0.962 -0.062 0.161 0.077 0.021 0.008
PMy -0.440 0.129 -0.094 0.161 0.141-0.855 -0.053 -0.011

Values in bold indicate the original variables thatst influence each principal component.

and PM,, respectivelyConcerning the relation between the original vdeisland

the ICs, Table 6.4 presents the correlation mdtetween these variables fog O

and PM, According to the information presented in thestfifour tables, all

statistical

models can be

interpreted. Considerithg prediction of ©

concentrations, MLR considered that the variableat tmost influence the

predicted @ concentrations were SONG,, T, WS and @ of the previous day.
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Table 6.4 Correlation matrix between the original variatdes! the IC for @and PMq

IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8

0O; SO, -0.955 -0.093 -0.007 -0.249 -0.011 0.020 0.117 -0.010
CO -0.010 -0.301 0.753 -0.458 -0.022 0.247 0.165 0.234
NO 0.004 -0.793 0.299 -0.380 -0.137 0.193 0.305 0.230
NO, -0.123 -0.266 0.162 -0.696 -0.027 0.653 0.250 0.157
T -0.175 -0.012 -0.071 -0.703 -0.028 -0.281  0.296 0.427
RH 0.147 -0.013 0.184 0.469 0.291 0.185-0.728 0.168
WS 0.030 0.143 -0.120 0.108 -0.922 -0.278 0.149 0.099
O; -0.134 0.280 -0.280 -0.266 -0.289-0.659 -0.193 -0.414

PMy SO, 0.329 0.038 0.012 -0.129 0.014 0.923 0.107 0.096
CcO 0.410 0.203 0.005 0.486 -0.244 0.003 0.2880.642
NO 0.428 0.146 0.041 0.195 0.138 0.110 0.2350.818
NO, 0.807 0.170 0.167 0.228 0.027 0.128 0.323 0.346
T 0.291 0.040 -0.053 -0.901 -0.235 0.120 -0.081 -0.152
RH -0.521 0.776 -0.011 0.102 0.212 0.010 -0.256 0.071
WS 0.133 -0.543 -0.018 0.127 0.037 -0.0650.798 -0.172
PM,, 0526 0.141 0.582 0.010 -0.426 0.152 0.163 0.364

Values in bold correspond to significant correlatamefficients (absolute value greater than 0.5).

PCR selected RH, WS and; @oncentrations as the important variables. ICR
considered important all the predictive variabl@R is the model able to evaluate
the influence of original variables in differentnges of Q concentration.
Accordingly, the results showed that: (i) CO preésdnnegative correlation for
percentiles higher than 0.5; (i) NO and WS presénpositive correlation for
percentiles lower than 0.5; (iii) NOpresented negative correlation percentiles
lower than 0.5; (iv) T presented positive corr@atfor percentiles lower than 0.7;
(v) RH presented positive correlation for percesti0.1, 0.5 and 0.7; and (viy O
concentrations of the previous day was only stesily significant in the
prediction of high @ concentrations. Considering the prediction of ;PM
concentrations, MLR considered CO, NO@, RH and PM, of the previous day.
PCR selected PC1 to PC6, which have important itenions of all original
variables. ICR considered statistically significaifite regression parameters
corresponding to IC1, IC3 and IC5 to IC8. Thus,dhginal variables relevant for
prediction of PMy concentrations were: $SOCO, NO, NQ, RH, WS and Ply.

QR considered RH and RMconcentration as the most important explanatory
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variables. CO concentration and T were importahy anlow values oft, while

NO, concentration was relevant in high values.of

The performance of the statistical models in tlening and test periods was
evaluated through the determination of the perfoxweaindexes referred above.
Table 6.5 presents the performance indexes obtaméde training period. QR
model presented better performances than the statstical models, as it was the
only one that analyse the entire distribution ofedicted Q and PM,
concentrations. PLSR and QR models require a uaitgeriod to determine
parameters needed for the test period. In PLSR It optimum number of
latent variables corresponded to the minimum valusum of squared errors in
the validation dataset. Thus, the results showatlahly one latent variable for;O
and two for PM, were needed. In QR model, a procedure must bedeap
determine the percentile of a given test pointgiginly the information available:
the explanatory variables. The percentile was detexd applying thek-nearest
neighbour k-NN) algorithm. This algorithm was used for clagsig objects based
on closest examples in the training data. It wasetheon the Euclidean distance
between the correspondent validation point andrtiring points. The evaluation
of the optimal value ok nearest training samples depends of the datasgbod
value of k can be achieved using cross-validation. KHgN algorithm is as

follows:

Step 1Selection of thé value;

Step 2Determination ok nearest training points from the validation point;

Step 3Determination of percentile of {&oncentration values correspondent to
these training points;

Step 4 Application of the QR equations correspondent &séhpercentiles using

~ k ~
the validation pointy, = 3, + > B x
i=1

Step 5Determination of the average of thealues ofy, ;

Step 6Repetition of the steps 2 to 5 for all validatiarirgs;
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Step 7.Determination of the error associated to the vaiti&, based on the
difference of the average of thkevalues calculated above and the true
values;

Step 8Repetition of the steps 1 to 7 for different valoék;

Step 9.Determination of the lowest value of error assedato the optimal
value ofk.

For the test step, it was necessary 27 and 23 stegaoits for prediction of the

percentile of the test data fogr @d PM,, respectively.

Table 6.6 presents the performance indexes of tdtéstical models in the test
period. PLSR presented better results, while QRirfaithe prediction of ©and

PM;, concentrations.

Table 6.5Performance indexes of the different statisticatleis for the training period

Model R MBE MAE RMSE d,
0O MLR 0.49 0.00 18.0 22.2 0.62
PCR 0.49 0.00 17.9 22.3 0.61
ICR 0.50 0.00 17.9 22.1 0.62
PLSR 0.48 1.22 18.0 22.4 0.63
QR 0.56 5.08 15.7 211 0.82
PM;o MLR 0.71 0.00 12.0 15.9 0.81
PCR 0.71 0.00 12.0 15.9 0.81
ICR 0.43 0.00 15.6 20.5 0.55
PLSR 0.70 0.00 12.5 16.4 0.81
QR 0.79 2.60 9.9 14.2 0.92

Table 6.6Performance indexes of the different statisticatleis for the test period

Model R MBE MAE RMSE d,
(0 MLR 0.43 9.41 19.2 23.9 0.64
PCR 0.41 1.21 19.2 24.1 0.62
ICR 0.44 2.06 19.0 23.7 0.65
PLSR 0.45 -10.48 18.7 23.7 0.65
QR - 1.76 25.2 30.1 0.60
PM;o MLR 0.74 -1.12 12.7 18.4 0.83
PCR 0.74 -0.90 12.7 18.4 0.84
ICR 0.68 -1.90 14.0 20.2 0.71
PLSR 0.75 -2.07 12.2 18.1 0.83
QR 0.60 2.16 15.2 22.0 0.86
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6.10. Conclusions

Five linear models were applied to predict the nday hourly average O

concentrations and the daily average ;PMoncentrations, using as predictors
environmental and meteorological data. At same ,tithe importance of each
predictor in the air pollutants formation was asaly based on the statistically
significant regression parameters for each mod®&. iQodel presented better
performance in the training period, because istteemodel the entire distribution
of the output value. However, it presented worstptions in the test period. This
means that a new procedure should be found béditer kNN algorithm to

estimate the percentiles of the output variabletha test dataset with more
precision. Concluding, the PLSR presented bettediptive performance than the

other linear models.
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Chapter 7

Stepwise artificial neural networks

This chapter shows the comparison of two systenmatithodologies to build artificial
neural network models for predicting the hourlyragge of Q concentrations and the daily
average of P} concentrations of the next day. They consisti)raqdding hidden neurons
one by one and (ii) adding input-to-hidden layemayses one by one. Different types of
input variables were tested: original variablesngipal components and independent
components. In addition, several activation funtdiovere used for the hidden nodes:
sigmoid, hyperbolic tangent and sine functions.

The contents of this chapter were adapted fromesPid.C.M., Martins, F.G., Alvim-
Ferraz, M.C.M., Pereira, M.C2009 Stepwise artificial neural networks for predigtin
tropospheric ozone and RjptoncentrationsSubmitted for publicatian

7.1. Introduction

The artificial neural networks (ANNSs) are one o tmost used nonlinear models
for the prediction of @(Heo and Kim, 2004; Sousa et al., 2006, 2007) Rig,
concentrations (Grivas and Chaloulakou, 2006; Paret Reyes, 2002, 2006).
ANN are adaptive statistical models inspired in thelogical neural processing
system (Tang et al.,, 2001; Tawadrous and Katsab@i86). The artificial
neurons of the networks are modelled attemptingritmic the performances of
neural cells in the brain. The first mathematiggbr@ach of this method was done
with the introduction of simplified neurons by Mcd@@eh and Pitts in 1943
(Montague and Quartz, 1999; Tang et al., 2001; Tawe and Katsabanis, 2006).
After a period of few applicability of these modeSNN only acquired great
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importance in the field of statistical models witfi) the introduction of the
backpropagation algorithm in the learning step, @pdhe development of new
hardware which increased the processing capag¢ifi@wadrous and Katsabanis,

2006), really important for their application.

ANN can perform several functions such as clas#ifin, regression, association
and mapping tasks (Corne, 1998; Perez and Rey@8, 2006; Sousa et al., 2006,
2007). They are applied to a wide variety of praigencluding adaptive control,
optimization, medical diagnosis, decision makirgyell as in information, signal
and speech processing (Gupta and Achenie, 2007y, NA&®7; Uncini, 2003).
ANN models are characterized by: (i) a set of pset®y neurons (also designated
by nodes); (ii) a pattern of connectivity among moes; (iii) an activation function
for each neuron; and (iv) a learning rule. The pssing neurons are distributed in
layers (Qingbin et al., 1996): (i) input layer ¢tirlayer); (ii) output layer (last
layer); and (iii) hidden layers (layers betweenitiput and the output layers). The
neurons in different layers are linked by synap@ssh one storing a weight
value) and the way which these linkages are doffimetethe structure of the
network. There are two main network topologies @dfiet al., 2004; Pacella and
Semeraro, 2007): (i) feedforward networks; andrégurrent networks. In the first
one, the information flows only feedforward, fronput to output neurons. These
networks do not present connections starting iputstof neurons and ending in
inputs of neurons in the same layer or previougryfeedback connections).
Recurrent networks derived from feedforward netwppresenting the two types
of connections, the feedforward and the feedbaaisi¢fet al., 2006; Hu et al.,
2007; Yang and Ni, 2005).

The neuron processes the information received byirputs and calculates an
output. An activation function is generally usedwhich the common functions
are: (i) the pure linear; (ii) the sigmoid; andi)(ithe hyperbolic tangent
(Hernandez-Caraballo and Marcé-Parra, 2003). Howenany others can be also

applied. Besides the inputs, a bias is also usezh@m processing neuron. Biases
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are constant terms that are adapted by the learoleg(like the weight values).

The output value of a neuron is given by:

- f(iwixi +3J (7.1)

wherey is the output valud() is the activation functiorx; is the input valuey; is

the weight value ané is the bias.

The adaptation of the ANN weights to minimize thetput error is called the
training step. In this step, a learning rule muwesirbplemented and the commonly
used in ANN is the backpropagation algorithm (Chiabal., 2004; Yamada et al.,
2005). The errors for the neurons of the hidderersiyare determined by
backpropagating the errors of the output neurormsvdy¥er, there are alternative
algorithms which can be used in the training stapthis study, the modified
Marquardt method (Edgar and Himmelblau, 1988) veagiuo evaluate the weight
and bias values that correspond to the minimumevalfi error between the
predicted and the observed output values. The imeaioce of ANN models
depends on several factors such as: (i) the legrnite and the number of
iterations that influence the minimization of theoe on the training step; (ii) the
number of learning samples (important for the galimation of the ANN); and
(iii) the number of hidden neurons which is infleed by the activation function

associated to them.

One of the most important problems to overcomehi@ training step is the

overfitting (Mi et al., 2005). During this step.etlerror is reduced due to the high
number of iterations, but the obtained network lgymesents a large error when
applied to a new set. In this case, the networknioa$earned to generalize for new
situations (Mi et al., 2005). A method commonly diséo improve the

generalization of a network is called early stogp{Nguyen et al., 2005; Ozesmi
et al., 2006). Using this technique, the availatdéa should be divided into three
sets (Chiang et al., 2004): (i) the training seedifor determining the network
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weights and biases; (ii) the validation set, usec\valuate the performance of
ANN during the training step (the increase of vatiidn error stops the training

process); and (i) the test set, used to evaliteANN performance.

As it happens in the linear models, ANN is alsduehced by the collinearity of
the input variables. In this study, two differen¢étimods were used to remove the
correlation between the original variables (OVg)p(incipal component analysis
(PCA) and (ii) independent component analysis (ICH)ese statistical methods

were described in Chapter 6.

An additional problem to build ANN models is to &fre the adequate network
complexity which includes the determination of #ignificance of each weight

value in the network, as it is done for coefficgeaof linear regressions (Pires et al.,
2008c), and the definition of the number of hidseurons. In general there are
two fundamentals to build ANN models (Ghiassi amid&ne, 2005; Medeiros et
al., 2006; Rivals and Personnaz, 2003). The fing is called growing approach
that begins with a simple network and iterativetids hidden nodes and hidden
layers. The second one is called pruning apprdzethbiegins with a large network
with low training error and prunes the weights &mkes whose removal increase
the training error at least. After the removal, thetwork must be retrained to

enhance its performance. Besides the weights, migithod can prune also the
neurons. The pruning of all input or output weigbfsa neuron is equivalent to

prune the neuron itself.

7.2. Stepwise artificial neural networks

Stepwise artificial neural networks (SWANNSs) aresteynatic methodologies to
build ANN models in which it is not needed to defithe structure in advance.
The size of the ANN structures is determined dutimg training step. The two
SWANNSs here reported are based on feedforward heetaorks with a single
hidden layer. The first SWANN, designated by SWANMNorresponds to the
addition of hidden neurons one by one. The secASN (SWANN;) is based
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in addition of input-to-hidden layer (IHL) synapsesie by one. For both
methodologies, the initial values of the weightsl #mses are selected in such a
way that the initial network gives as output therage value of the training data
(that corresponds to the simplest model), i.e.bibs linked to the output neuron
has the output average of the training data asnikial value, the other biases

were equal to one and the weight values were gquaro.

Figure 7.1 (a to d) shows, as an example, the firste steps of SWANN
methodology and its final result (assuming the basdel with three hidden
neurons) for the case of three input neurons. Tieg fines correspond to the
parameters that are modified in the procedure. Alaek lines correspond to the
final parameters. Using this methodology, the medeith different number of
hidden neurons are initialized with the same out@ltie (the output average of
the training set). Thus, all of these models predem same error values at the
beginning. The iterative procedure starts with @voek with single hidden neuron
(Figure 7.1a). Then, the values of weights and hiese calculated. To obtain a
generalized network, the increase of the valida¢ioor stops the training process
(early stopping method). After, the Akaike Informoat Criterion (AIC) is
determined based on the training set. This parangete measure of goodness of
fit of a statistical model. The models can be rah&ecording their AIC. The one
having the lowest AIC represents the best modeC &l given by (Al-Rubaie et
al., 2007):

AIC = (n) |n(%Ej + 2K (7.2)
wheren is the number of data poinSSEis the sum of squared errors dnid the
number of parameters (weight and bias values).proeedure is repeated adding
hidden neurons one by one (Figure 7.1b-c). Thar@thumber of hidden neurons
corresponds to the minimum value of AIC in thertinag set (Figure 7.1d). The
procedure stops when the minimum value of AIC dbcoorespond to the last five

added hidden neurons.
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Figure 7.1 Example of the first three steps of SWANMethodology (a-c) and its final
result (d) for the case of three input neurons.

Figure 7.2 (a to f) shows, as an example, the fivgét steps of the SWANN
methodology and its final result (assuming the bestiel with five IHL synapses)
for the case of three input neurons. In this mettagd, the initial network (Figure
7.2a) contains a single hidden neuron and all weiglues stored in the synapses
linked to this neuron are equal to zero (designhtre as the free hidden neuron).
Thus, these synapses are considered inactive. Memedn each step, the
SWANN, models must have always one free hidden neurahelinitial network,
the bias linked to the output neuron has the owpeatage of the training set as the
initial value, while the other biases are equabne and the synapse weights are
equal to zero (grey lines in Figure 7.2). The tigeaprocedure starts with the
training of the weight values stored in an inactitl synapse and in the
correspondent hidden-to-output layer (HOL) synafi$e two biases, one linked
to the hidden neuron and other to the output newamnalso trained. The training

of only four parameters in each step is the maimaathge of the SWANN
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Figure 7.2 Example of the result of five steps of SWANMethodology (a-e) and its final
result (f) for the case of three input neurons.

methodology comparing to the previous one, whichresents a significant
reduction in computation time. The training steplemhen the validation error
starts to increase (early stopping method). Thscguure is repeated for all
inactive IHL synapses. The IHL synapse correspando the least validation
error is then selected. The correspondent weighievis fixed for the following

steps (black solid lines in Figure 7.2b-e). Thecakated values of the HOL

synapse weight and the biases are considered! iegiamates for the following
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steps (black dashed lines in Figures 7.2b-e). M@eaf the selected synapse
links an input neuron and the free hidden neuttoen bne hidden neuron must be
added (Figure 7.2b and 7.2d). The procedure isatedeadding IHL synapses one
by one. The optimal number of synapses correspotwiéde minimum value of
AIC in the training set. The procedure stops whHenrhinimum value of AIC do

not correspond to the last five IHL synapses.

The study reported in this chapter aims to comptre two systematic
methodologies presented early to build ANN modets fpredicting the
concentrations of two pollutants {@nd PMy), using as inputs the OVs, the PCs
and the ICs.

7.3. Data

The study aimed to predict the next day hourly agerof Q concentrations and
the daily average of P} concentrations with SWANN using environmental and
meteorological data as inputs. The concentratidnpotiutants (S@ CO, NO,
NO,, PM;, and Q) were recorded in an urban sitddtosinhoy. The
meteorological data were the hourly averages oftainperature (T), relative
humidity (RH) and wind speed (WS). For predictidrPd1;o concentrations, daily
averages for these variables were calculated ohignwat least 75% of hourly

averages were available.

In the evaluation of the ANN models, the input alates were SE CO, NO, NQ,

T, HR and WS. Additionally for prediction ofs@&nd PM, concentrations of the
next day, the @and PM, concentrations were used as inputs, respectivéilg.
period of measurements was from January 2003 tereer 2005. Two different
periods were studied for ;Gand PM,, due to the different type of variables
(hourly and daily average values, respectively) thiedseasonal variations for both
pollutants (Q usually presents high concentrations in summehusT for Q
concentrations, the training period was from Ma@260 August 2003 (2389 data
points), the validation period was May 2004 (74@adaoints) and the test period
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was June 2004 (periods when highdoncentrations are frequently measured; 715
data points). For PM concentrations, the forth quarter of 2004 was iclened as
validation period (88 data points), the correspogdperiod of 2005 (76 data
points) as test period and the remained data frd@3 20 2005 as training period
(826 data points). The explanatory variables werstahdardized to have zero

mean and unit standard deviation.

7.4. Results and discussion

SWANN; and SWANN were applied to predict £and PM, concentrations,
using OVs, PCs and ICs as input variables. The W& determined using a
subroutine developed in Microsoft Visual Basic Apations for Microsoft Excel
created by the author of this thesis. The ICs wab®ined using the FastiICA
package (available in http://www.cis.hut.fi/progeata/fastica/) for Matlab. The
author of this thesis also developed the code itldiao achieve the SWANN
and SWANN models. Different activation functions were alsed: (i) sigmoid
function (sig); (ii) hyperbolic tangent functiorgft); and (iii) sine function (sin).
Figure 7.3 shows, as an example, the variation IGf Yalue in the training set
with the increase of number of IHL synapses in SViMhodels, using OVs as

inputs and the activation function sine. In thisesathe minimum value of AIC

15300

15200 ]

15100 //
15000 ] //
14900 s /
W

14800 T T T T
0 20 40 60 80 100

AIC value

IHL Synapses

Figure 7.3 Variation of AIC value in the training set withethncrease of the number of
IHL synapses in SWANNmModels using OVs as inputs and the activationtfancine.
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Figure 7.4 SWANN, model using OVs as inputs and the activation fioncsine.

corresponded to the addition of 21 IHL synapsegui@ 7.4 presents the final
structure of the correspondent model. For this moalé input variables were
considered important in the prediction of €ncentrations. Table 7.1 shows the
number of hidden synapses, hidden neurons and ptgesrof the SWANNand
SWANN, models obtained for the different activation fuoes and type of input
variables. The SWANNmModels presented a significant reduction of thenler

of parameters, when compared with ANN models withgame number of hidden
neurons. For example, an ANN model with 8 inputd afh hidden neurons have
111 parameters, while the SWARNMKhodel using ICs as inputs and the activation

function sigmoid only had 52 (less than 50% offtheameters).

The models determined in the training step were tgplied to predict hourly
average @concentrations and daily average RBkbncentrations of the next day

in their correspondent test sets. Table 7.2, 78 ad present the performance
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indexes of the SWANNand SWANN models obtained in the training, validation
and test periods, respectively (these performamiexies are described in Chapter

6). From the two methodologies here presented neocowercame the other in both

predictions of @and PM, concentrations. In the prediction o Goncentrations,

SWANN, models presented, in general, better performanbas SWANN

Table 7.1 Number of IHL synapses, hidden neurons and pammgpresented by
SWANN; and SWANN models obtained for the different activation fuoes and type of

input variables.

O; PMyg
OVs PCs ICs OVs PCs ICs
SWANN; sig (32,4,41) (8,1,11) (8,1,11) (48,6,61) (56,7,71(8,1,11)
tgh (16,2,21) (8,1,11) (16,2,21) (32,4,41) (8,1,11(24,3,31)
sin  (16,2,21) (40,5,51) (8,1,11) (24,3,31) (1612,2 (8,1,11)
SWANN, sig (12,4,21) (22,9,41) (29,11,52) (4,2,9) (1748,3 (10,5,21)
tgh (18,7,33) (19,5,30) (24,8,41) (6,3,13) (1298,2 (4,3,11)
sin  (21,7,36) (35,9,54) (23,9,42) (4,2,9) (5,2,10)(8,3,15)

Table 7.2 Performance indexes of the SWANBNd SWANN models in the training set
for predicting Q and PMg concentrations

SWANN; SWANN,

MBE MAE RMSE d, MBE MAE RMSE d,

O, (OVs,sig) 0.2 176 219  0.69 0 178 221  0.68
(OVs, tgh) 030 17.7 221  0.67 003 177 219 906
(OVs,sin) -0.01 17.8 221 0.68 011 17.6  22.0 .690
(PCs,sig) 0.03 179 222  0.67 0.03 174 218 90.6
(PCs,tgh) 0.02 17.9 223  0.67 0.04 175 219 00.7
(PCs,sin) 029 173 217  0.69 0.00 172 216 10.7
(ICs,sig) -0.07 17.9 223  0.67 007 174  21.7 710.
(ICs, tgh) -0.13 17.7 222  0.68 002 175 219 710.
(ICs, sin) 0 179 222  0.67 0 173 216 0.71

PMy, (OVs,sig) -0.28 11.8 157  0.82 001 125  16.7 .800
(OVs, tgh) -0.95 121 163 0.81 031 124  16.4 .810
(OVs,sin) -0.62 126 166 0.77 003 12.0  16.1 .820
(PCs,sig) 0.42 117 154 0.84 051 126  16.6 800.
(PCs,tgh) 0.15 122 161 081 333 137 175 80.7
(PCs,siny 001 119 158 0.83 001 128  16.9 780.
(ICs, sig) 0 163 213 051 010 168 21.7 041
(ICs, tgh) -1.10 17.0 22.0 0.27 002 171 22.0 .320
(ICs,sin) -0.79 17.2 222 0.20 0 172 222 0.38
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Table 7.3 Performance indexes of the SWANKNnd SWANN models in the validation
set for predicting @and PM, concentrations

SWANN; SWANN,

MBE MAE RMSE d, MBE MAE RMSE d,

O, (OVs,sig) 036 196 244 067 054 191  24.0 700.
(OVs, tgh) -058 19.8 248  0.67 025 19.0  23.8 .700
(OVs,sin) -0.88 19.3 243  0.68 015 191  23.8 .700
(PCs,sig) -059 195 245  0.68 121 189  23.7.710
(PCs, tgh) -0.57 195 245 0.68 091 188  23.8.710
(PCs,sin) 055 201 249 065 052 18.9  23.7 720.
(ICs,sig) -0.72 195 245 0.68 046 18.7  23.3 .720
(ICs,tgh) -0.64 19.7 246 0.66 -0.38 19.0  23.8 .710
(ICs,sin) -0.58 195 245 0.68 -0.04 188  23.3.730

PMy, (OVs,sig) 053 11.2 137 0.77 055 11.0 140 907
(OVs,tgh) 091 114 144  0.78 031 110 138 008
(OVs,sin) -0.40 113 140 0.75 028 111  14.1 770.
(PCs,sig) 068 109  13.7 0.80 019 106 131 008
(PCs,tgh) 0.18 114 141 0.76 3.86 115 140 907
(PCs,sin) 034 111 139 0.78 029 109 136 907
(ICs,sig) 3.08 156 192 0.48 254 137 165 405
(ICs,tgh) 157 149 182 031 1.85 144 172 80.3
(ICs,sin) 227 154 184 0.21 2.80 136 163 405

Table 7.4 Performance indexes of the SWANKBnNd SWANN models in the test set for
predicting Q and PM, concentrations

SWANN; SWANN,
MBE MAE RMSE d, MBE MAE RMSE d,

O, (OVs,sig) -0.11 17.6 220 0.73 -1.07 176 22.2 .720
(OVs, tgh) 0.17 184 226  0.69 -1.70 181 225 710.
(OVs,sin) -0.66 180 222 0.71 -1.49 176 22.0 .730
(PCs, sig) -023 17.7 220 0.72 145 182  22.9.710
(PCs,tgh) -0.21 17.7 220 0.72 -1.23 181  22.6.710
(PCs,sin) -0.84 17.6 221  0.72 200 17.9  22.6.730
(ICs,sig) -0.31 17.7 220 0.72 -1.72 175 221 .740
(ICs, tgh) -0.22 17.6 219 0.73 -1.94 18.4  23.1 .700
(ICs,sin) -0.31 17.7 220 0.72 238 181  22.6 .720

PMy, (OVs,sig) -1.94 137 201 0.75 155 143 21.3 .740
(OVs, tgh)y -2.77 143 217 0.72 226 13.9  20.9 .750
(OVs, sin) -4.36 147 236 0.62 2.00 13.7  21.2 .740
(PCs, sig) -1.93 133 195 0.79 277 135  20.6.740
(PCs, tgh) -2.15 134 205 0.74 021 131  19.9 770.
(PCs,sin) -2.16 134 199 0.78 -3.00 145  22.4.680
(ICs,sig) -0.97 162 242 050 058 16.8  24.7 490.
(ICs, tgh) -4.31 172 260 0.28 094 171  25.2 .370
(ICs,sin) -3.20 178 2656 0.21 0.08 17.2  26.8 360.
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models. No significant differences were verifiethgsthe different input variables
and activation functions. The sine function presdrglightly better results in all
sets comparing with the performance of the othévatton functions. However,

in the prediction of Pl concentrations, SWANNmModels generally presented
better results than SWANNmodels. The models using PCs as inputs and the
activation function sigmoid obtained the best prgdns. The artificial neural
networks obtained using ICs as inputs presentedwitist results for all sets.
Figure 7.5 (a and b) shows, as an example, theigtimts of QG and PM,
concentrations, respectively, using both methodek{PCs and sine function for
Os;; PCs and sigmoid function for RML The models presented similar

performances in the prediction of the air pollusardncentrations.

7.5. Conclusions

This study aims to predict;Gand PM, concentrations applying two systematic
methodologies to build ANN models. Several inputiatdles and activation
functions were used. From the two methodologiese hgresented, no one
overcame the other in both predictions of @d PM, concentrations. In the
prediction of Q concentrations, the models achieved by SWANMNthodology
presented better performances than the ones adhisv8 WANN, methodology.
The use of different input variables or activatimctions did not present
significant differences in the model performanddéawever, the application of the
activation function sine presented slightly betesults than the use of the other
functions. In the prediction of PMconcentrations, SWANNmodels using PCs
as inputs and the activation function sigmoid pnése the best results. Moreover,

the models that used ICs as inputs presented thst vesults in all sets.

Although the models obtained with SWARNKethodology did not always present
the best performances, this methodology shouldskee instead of SWANNThe

ANN models obtained through this methodology weskieved in less time (due
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to the optimization of few variables on each stpj consider only the important

parameters in the prediction of the dependent blia

Test period
180
o - e - SWANN1
160 -
o SWANN2
0 ® ° .
14 o Experimental data
00

Oz concentrations (ug m®)

a
Test period

180

[e]
160 | SWANN1

SWANN2

140 - o Experimental data
120 o°
100 -

PMzo concentration (pg m)

80

Figure 7.5 Example of the predictions of: (a);@oncentrations (with PCs and sine
function); and (b) PN} concentrations (with PCs and sigmoid function).
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Chapter 8

Threshold regression models

This chapter proposes a new technique based ortigehgorithms to define threshold
regression models (TR-GA). The threshold regresagsumes that the behaviour of the
dependent variable changes when it enters in erdiif regime. The change from one
regime to another depends of a specific value gttolel value) of an explanatory variable
(threshold variable). In this study, the thresh@dression models were composed by two
linear equations. The application of genetic althons allows evaluating, at the same time:
(i) the threshold variable; (ii) the threshold w&luand (iii) the statistically significant
regression parameters in each regime. The aim isf dtludy was to evaluate the
performance of TR-GA models in the prediction ofxtnelay hourly average O
concentrations.

The contents of this chapter were adapted fromesPid.C.M., Martins, F.G., Alvim-
Ferraz, M.C.M., Pereira, M.C2008 Genetic Algorithm Based Technique for Defining
Threshold Regression ModelBroceedings ofEMSs 2008: International Congress on
Environmental Modelling and Softwarg03-311.

8.1. Introduction

The threshold regression assumes that the behawiotivre dependent variable
changes when it enters in a different regime (Tand Dijk, 2002). The change
from one regime to another depends of a specifigevéhreshold value) of an
explanatory variable (threshold variable) (Fougeawal., 2007). The dependent

variable is given by:
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k
G, +D ax +&,if x, <t

y. = (8.1)

i=1
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Byt D Bx +&,,if x >r
i=1

where x (i=1,...,k) are the explanatory variableg, and ,fS’, (i=0,...,k) are the

regression parameteig, ande, are the errors associated with the regressioiss,
the threshold value ang; is the threshold variable (one of the explanatory
variables) that determines the division of the ioagdata in two parts (Terui and
Dijk, 2002). Multiple linear regression (MLR) wasen applied to each part of the
data and the regression parameters were deterrttineagh the minimization of
the sum of squared errors (Pires et al., 2008choth regression equations, only
the statistically significant regression parametetmuld be considered. The
evaluation of statistical significance of the reggion parameters was described in
Chapter 6.

Genetic algorithms (GAs) were applied to the thoésihegression model (TR-GA
model), aiming to optimize the values of(threshold value) and (index of

threshold variable) with the constraint of all reggion parameters must be
statistically significant. The main objective ofighstudy was to evaluate the
performance of TR-GA models in the prediction of thext day hourly average

ozone (Qu:24n CONcentrations.

8.2. Genetic algorithms and TR-GA procedure

GA is a search methodology based on the mecharicmtaral selection and
population genetics (Goldberg, 1989; Holland, 19Thjs method starts with a set
of individuals (the population) chosen randomly.e3$é individuals (also called
chromosomes) have genes that represent a solutian given problem. GA
generates a sequence of populations (the genesptimnapplying the genetic
operators (selection, crossover and mutation) éoinldividuals. GA presents the

following advantages: (i) optimization with contwws or discrete variables; (ii)
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derivative function not necessary; (iii) dealingtlwa large number of variables;
(iv) optimization of variables with extremely coregl cost surfaces; and (v)
providing a list of optimal solutions (not just mmgle solution). Even that, GA is
not the best method to solve all the problems. é&s@mple, traditional methods
quickly find the solution of a well behave convexalytical function with few

variables, while GA is still evaluating the initipbpulation (Haupt and Haupt,
2004). The optimizer should select the best metbablve the problem that has
in hands. In this study, GA was selected due tdifierent type of parameters to
optimize and the complexity of the constraints (@asthat all regression

parameters are statistically significant).

The population size is the number of individualothosomes that is presented in a
population. A large number of chromosomes incredisespopulation diversity,
but it also increases the computation time dueht fithess evaluation step.
Goldberg (1989) reported that the population sizdeded by many GA
researchers usually ranges from 30 to 200. Inghidy, the population size was
fixed to 100 chromosomes. Preliminary simulatiorfsoveed that for this
population size the number of generations shoulbidpe to achieve convergence.
Thus, the number of generations was 500. FiguresBdlws the codification of
chromosomes. Each chromosome was divided in fdoisings that correspond
to: (i) the value ofd; (ii) the value ofr; (iii) the explanatory variables used in the
first regression (1 — consider the correspondeplagatory variable); and (iv) the

explanatory variables used in the second regre¢®oRr;>r).

IUI'I'IIIH'Iﬁlﬂ\ﬁlﬂllllll\lIllﬂll\ﬂllllllll\lIOI'IUIO\JI'I

d first regressmn second regressmn

Figure 8.1 Codification of chromosomes.

The selection operator determines which chromoscanesused to generate the

next population based on their fithess in the curgeneration (survival of the
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fittest). The fitness function measures the pertoroe of the individual with

respect to the particular search problem. Thed#rienction was defined as:

SSE x10"* + SSE x10"2

(8.2)
nl

argmin f =\/

whereip is the number of statistically insignificant regs@®n parameters amilis
the number of the training points. The indetesnd?2 correspond to the first and
second regressions, respectively. In many seleatethods, the best solutions can
be not selected to reproduce. Therefore, thesdimmducan be lost after the
application of crossover and mutation. To avoia thituation, the best elements
were copied to the next generation (elitism). Hoerethis procedure decreases
the population diversity in the next generations. rEduce this effect, all the
chromosomes in the current generation had equdlapility to be chosen by

crossover and mutation procedures.

The crossover operator consists in exchanging gemgiterial (binary substrings)
of two parents (two chromosomes of the current gaima), creating two new
individuals. High crossover rates increase the [atjmn diversity, promoting the
mixing of chromosomes (Siriwardene and Perera, ROl used crossover rate

was 0.7.

The mutation operator consists in modifying theoamsomes at random. In bit
string representation, the mutation is done by gimanO to 1 and vice versa in one
or more bits. High mutation rates increase the gibdity of destruction of the best

chromosomes (Siriwardene and Perera, 2006). Treeraagation rate was 0.1.

Figure 8.2 shows how GA is applied for definingesitold regression models.
First, the initial population is randomly creatdthen, for each individual in the
population, the values ofandd must be calculated to divide the initial datavio t
parts. Applying MLR to each part (taking into acobwnly the explanatory
variables selected by the chromosome), the regressirameters are determined

and also their statistical significance. After, timglividual fithess is evaluated.
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Randomize the initial
population

|

Calculate the valuesg
of r andd

|

Divide the data in two parts
(for x4=r and for x>r)

Apply MLR to the Apply the genetic
two parts of data operations

Evaluate the fitness

Continue to the
next generation

Stop when a termination
criterion is satisfied

@

Figure 8.2Procedure to apply GA for defining threshold regien models.

Finally, the genetic operators are applied to eresw individuals in the next
generation. This procedure stops when a stoppinterion is achieved

(achievement of the maximum number of generatiorzgsdesired training error).

8.3. Data

MLR and TR-GA models developed to predict Goncentrations considered
environmental and meteorological variables as mptithe environmental data,
hourly average concentrations of carbon monoxid®)(Giitrogen oxide (NO),
nitrogen dioxide (N@ and Q, were collected in an urban sitentag with traffic
influences. The meteorological variables were teatpee (T), solar radiation
(SR), relative humidity (RH) and wind speed (WS)eTanalysed period was from
May to July 2004. It was divided in the trainingNthy 2004 to 15 July 2004) and
test (16 to 31 July 2004) periods.
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8.4. Results and discussion

Different TR-GA models were obtained corresponding different threshold
variables. As MLR was the model selected for eagnassion in TR-GA models,

it was considered the basis for comparison for dohieved models. For all
models, a t-test (witha=0.05) was performed to evaluate the statistical
significance of the regression parameters. Table @Besents the statistically
significant regression parameters for TR-GA (M1IM6) and MLR models and
corresponding root mean squared error (RMSE) vatuéise training period. The
regression parameters (i=1 to 8) correspond to CO, NO, NOI, SR, RH, WS

and Q, respectively ¢, is the Y intercept value). As all regression pasters

were considered statistically significant, the d#s value (calculated in GA
procedure) corresponded to the RMSE value in thimitrg data. Therefore, all
TR-GA models presented slightly better performartbes MLR approach in the

given period.

In almost TR-GA models, the MLR parameters werg/ wémilar (when validated
at same time) to the parameters of the first resfjpasof TR-GA models. Thus, the
improvement of the achieved models was expectedhén prediction of @

concentrations corresponding to their second regnes

For test period, the regression equations obtaméade training step were applied
to predict the G)..4nconcentrations. The performance of the modelsevakiated
through the calculation of the commonly used diatifindexes: mean bias error
(MBE), mean absolute error (MAE), RMSE, Pearsorraiation coefficient (R)
and index of agreement of second ordeg) (see Chapter 6). Table 8.2 shows the
performance indexes presented by TR-GA and MLR isoddBE was always
positive, showing that, in average, the predictebne concentrations were
overestimated. The MAE, RMSE (absolute error mesuR and ggive a global
idea of the difference between the observed andetiembvalues. Thus, slightly

better model predictions were obtained in four TR-@odels when compared to
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Table 8.1 Statistically significant regression parametersT®-GA (M1 to M6) and MLR

models and correspondent RMSE value in the traidatg

w1 421 17 -41 85 3.6 32 178 fT=<230 10.9
226 -83 85 22.4 53 9.0 if T>230 '
435 2.1 45 2.4 45 151 If RH<820

M2 , 20.0
26.8 54 145 3.7 137 17.2 if RH >820

) if 0, <750

va 412 39 73 6.1 54 125 IO 0.0
77.2 16.4 10.6 if O, >750

va 437 26 51 82 35 53 30 142if NO, <723 0.1
402 -6.9 6.9 5.1 8.4 6.0 if NO, >723 '

vs 125 84 53 -156 46 100 If RH<557 0.1
433 1.7 -38 7.0 33 -39 34 149if RH>557 '

ve 575 239 54 49 22 -40 43 157if CO<3044 0.1
447 28 43 3.1 -22 38 14.4if CO>3044 '

MLR 42.6 22 53 39 -37 35 139 20.7

Table 8.2Performance indexes of the TR-GA and MLR modekh@test period

Model MBE MAE RMSE R d,
M1 0.31 15.42 19.66 0.74 0.83
M2 1.61 15.63 19.77 0.74 0.83
M3 0.81 15.92 20.68 0.71 0.81
M4 0.14 16.01 20.94 0.70 0.80
M5 0.43 1551 19.98 0.73 0.81
M6 1.66 15.45 19.80 0.74 0.83

MLR 0.25 15.59 20.29 0.73 0.81

MLR. The TR-GA1 model presented the best resultbadth training and test

periods. Figure 8.1 shows the codification of tber@spondent chromosome. This

model assumed that theQ.nbehaviour changed at the temperature of 23 °C. For
temperatures below 23 °Cg(4n depended on CO, NO, NOSR, WS and ¢
while for higher values, it depended on CO, NOWIS and Q.

The main differences of the regressions in M1 madele the incorporation of

NO, concentrations and SR as important variables in f@mation for
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temperatures below 23 °C, being T only importamt teomperatures above this
threshold value. These observations could be engididby the relative influence of
volatile organic compounds (VOC) and nitrogen ogidBlQ,) in O; formation.
Seinfeld and Pandis (1998) presented the complemidal reactions involved in
this system and showed that there is a competetween VOC and NCor the
hydroxyl radical (OH), very important in the;@rmation. At high VOC to NQ
ratio, OH reacts with VOC; otherwise, the N@action predominates. In general,
increasing VOC concentrations means the appea@o®re ozone. The effect
of NOy concentration increase depends on the VOC tg Kdio (positive
correlation for high ratios and negative correlatfor low ratios) (Seinfeld and
Pandis, 1998). The temperature has a great inftuemc Q formation. High
temperatures favour VOC to N@atio because VOC concentrations increase more
with temperature than NQconcentrations. Accordingly, the results showedt th
temperature increase lead to higheg €bncentrations (positive correlation
between @concentrations and temperature was observed isett@nd regression
of M1). Simultaneously, as expected, a positiveeation between NO and;O
concentrations was also observed. At lower temperaf VOC to NQ ratio
decrease andjoncentrations are greatly dependent on, R@hcentrations. As
the correspondent chemical reactions are catalygesolar radiation (Seinfeld and
Pandis, 1998), this variable was considered stlbt significant in the first
regression of M1, presenting a positive correlatwith O; concentrations.
Furthermore, as expected for lower VOC to ,N@tio, a negative correlation

between NO and £xoncentrations was observed.

8.5. Conclusions

GA was applied to define threshold regression @l prediction of the next
day hourly average £concentrations. These models assume that the depien
variable changes its behaviour when an explanatargble takes a specific value.
Applying the procedure presented in this studyfediint TR-GA models were

obtained corresponding to different threshold J@ea and threshold values. In
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Chapter 8: Threshold regression models

both training and test periods, four of these megetsented slightly better results
than MLR approach. Additionally, the best modelvgad that Qy..4, changed its
behaviour at the temperature of 23 °C. For tempegatbelow that value, £2,4n
depended of CO, NO, NOSR, WS and ¢ while for higher temperatures, it
depended of CO, NO, T, WS and.O
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Chapter 9

Genetic Programming

This chapter shows how genetic programming can pfpiead to predict the next day
hourly average © concentrations. Due to the complexity of this peoly genetic
programming is an adequate methodology as it cimize, simultaneously, the structure
of the model and its parameters. It is an artifigiéelligence methodology that uses the
same principles of the Darwinian Theory of EvolatiGGenetic programming enables the
automatic generation of mathematical expressioasate modified following an iterative
process applying genetic operations.

The contents of this chapter were adapted fronesPid.C.M., Alvim-Ferraz, M.C.M.,
Pereira, M.C., Martins, F.G2009 Prediction of Tropospheric Ozone Concentrations:
Application of a Methodology Based on the Darwiiilseory of EvolutionSubmitted for
publication

9.1. Introduction

The formation of @ is a complex, nonlinear, time and space varyinacgss.
Accordingly, several studies presented differeatigical approaches to predict
O; concentrations (Al-Alawi et al., 2008; Coman et &008; Omidvari et al.,
2008; Pires et al., 2008c; Sousa et al., 2006, ,28009), including linear and
nonlinear models. The applied linear models foundthie literature were: (i)
multiple linear regression; (ii) principal compomneregression; (iii) quantile
regression; and (iv) time series. On the other h#amel most common nonlinear
model was the artificial neural network. The setetiof a model must consider
some features, such as, complexity, flexibilityguwracy and speed of computation

(Pires et al., 2008d). Artificial neural network dats usually presented better

109



Part II: Prediction of Air Pollutant Concentrations

performance than the linear ones (Al-Alawi et 2008; Sousa et al., 2006, 2007)
due to the nonlinearity behaviour associated toQhéormation. However, they
are included in a group called black box modelsjirtgalimited interpretation.
Moreover, the selection of the optimal network #etiure and the computation

time are the main disadvantages of these models.

Besides the structure, the success of a statistiodel depends of several factors:
() the data size; (i) the method to optimize thparameters; (iii)) the input
variables; and (iv) the collinearity between theuhvariables. The collinearity
between the input variables can be eliminated tjinahe application of principal

component analysis (see Chapter 6).

As many factors could influence the performancanofdels, their development
should have more degrees of freedom. For the moddésred above, their
structure is fixed in advance and only the pararsedee optimized. In stochastic
processes, such as the prediction gt@ncentrations, the structure of the models
should be more flexible. In this context, genetiogpamming (GP) could be a
successful methodology, as it does not assumevanaé any structure for the
model. GP can optimize both the structure of thedehaand its parameters,
simultaneously. As far as it is known, no study wablished applying GP for
predicting air pollutant concentrations. This stumlygns to predict the next day
hourly average ©concentrations applying GP to the original inpatiables and

their correspondent principal components.

9.2. Genetic programming

Genetic programming is an artificial intelligencetimodology that uses principles
of the Darwin’s Theory of Evolution. Its searchaségy is based on genetic
algorithms (GAs) introduced by John Holland in 860s (Goldberg, 1989). GAs
use bit strings as chromosomes and are commonlyiedppn function

optimization. This algorithm has several disadvgesa for example, the length of

the strings is static (Koza, 1992). Additionalljzetsize and the shape of the
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model, solution of a given problem, are generatly known in advance. Similar
to the GAs, the GP, introduced by John Koza in $9®@za, 1992), is based on
simple rules that imitate biological evolutionidta good alternative for GA due to
its valuable characteristics, such as the flexidariable-length solution
representation. Moreover, GP enables the autorgetieration of mathematical
expressions. The expressions are representedessstreictures (see Figure 9.1),
which contains functions as nodes and terminalkeals. The terminals are the
input variables and constants and the functionsatu@perators that are available
to solve the problem (Grosman and Lewin, 2004; Kd&92; Tsakonas, 2006).
There is specific syntax to create solutions in GBr example, the addition
operator must have at least two inputs and therexp@l operator must have only
one input. On the other hand, GAs have no grammarkins and Nandi, 2004).
Both methods (GAs and GP) use the genetic operafi#iection, crossover and
mutation). In selection, part of population (thieft individuals) is retained and
the remainder new generation is the result of enesand mutation operations on
the individuals of the actual population. In cros=o represented in Figure 9.2,
two individuals are selected, their tree structuaes divided at a randomly
selected crossover point, and the resulting swstege recombined to form two
new individuals. In mutation, a random change isfggmed on a selected
individual by substitution (Chen et al., 2008; Grma:m and Lewin, 2004).

(%, xx, +codx;)) xsin(axx,)

Figure 9.1 Example of tree representation of expressions use@P and respective
formula.
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Generatiorn

(%, xx, +cogx,))xsin(axx,)

Generatiom+1

X, —CXX,

(x, xx, +cogx,))x X sinfax x,)

Figure 9.2 Example of crossover operation between two trees.

Figure 9.3 shows two examples of mutation operafldns genetic operation can

change a functional group or a terminal.

In this study, several populations were considaaedhe same time. After the
application of genetic operations to each poputatimigration of individuals
between the populations was allowed. Populationstwtio not normally interact
will have different combinations. Through this pedare, the migration will delay
the individual convergence (Oussaidéne et al., 198¥% constant creation of new

combinations of individuals from different poputais will have an important role
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- Generatiom
|

(1, + code)) xsin(axx) Joe,

Generatiom+1

(x, xx, +codx,))

sin(ax x, )
a b

Figure 9.3 Examples of mutation operation in: (a) a functiang (b) a terminal.

for the achievement of the best solutions. For gagulation, it must be chosen
different data to avoid premature convergence.driggnal data was resampled to
create different data for each population. As aultesf migration, the best

individual could go to another population and ip@ssible that this individual will

not be the best in the new population. In this c#se former population lost the
best individual. To avoid this possibility in thiudy, the migration was not
applied to the best individuals in each populatiaut, to the other individuals that

were randomly selected.
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Part II: Prediction of Air Pollutant Concentrations

Figure 9.4 summarizes the GP procedure. The inftalctions are created
randomly. Then, each individual is evaluated thioaditness function, using the
data set created for the correspondent populalitve. genetic operations are
applied to all individuals and then the migratioh applied. This iterative
procedure finishes when a termination criterionh{@eement of the maximum

number of generations or a determined error definedivance) is satisfied.

9.3. Data

The inputs of GP models were the hourly averagesrgbollutant concentrations
and meteorological variables measured 24 hours rdefdhe atmospheric

concentrations of carbon monoxide (CO), nitrogerd@XNO), nitrogen dioxide

Randomize the initial
population

l

Evaluation

Termination
criterion
satisfied?

Genetic operations

|

Migration

]

Figure 9.4 GP procedure.
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(NO,) and Q, were collected in an urban sit&ntag with traffic influences. The
meteorological variables were the hourly averageaiotemperature (T), solar
radiation (SR), relative humidity (RH) and wind sdgWsS).

The analysed period was from May to July 2004.dswlivided in the training (1
May 2004 to 15 July 2004 — 1443 data points) astl(te5 to 31 July 2004 — 369
data points) periods. The data was Z standardiaeldave zero mean and unit

standard variance.

9.4. Results and discussion

GP procedure was coded by the author of this thessigy Matlab 7.0 (MathWorks
Inc., Natick, MA, USA). Table 9.1 shows the maimtol parameters of GP. The
tree size is defined as the number of levels intrbe. For example, in Figure 9.1,
the tree size is 4. The fittest individuals coragp to the ones that presented the
lowest errors in the training step. As the reswltgained by GP method are
probabilistic, several runs should be made befakint) conclusions. In this study,
four different runs were done using 3, 4 and 5 jpatns at same time. GP

models were determined using as inputs the origmakbles (OVs) and PCs.

Table 9.1Values of GP control parameters

Parameter Value
Population size 100
Number of populations {3, 4,5}
Maximum number of generations 100
Maximum initial tree size 7
+, -, %, [, 7V, sin, cos, tan, exp, log, sinh, cosh, tanh,

Function set A
sign

Input variables (OVs or PCs) and constants (090 9.

Terminal set with step of 0.1)

Selection method Elitism

Crossover method Random single point
Crossover rate 0.7

Mutation method Random node or terminal replacement
Mutation rate 0.1

Migration method Random selection of individuals
Migration rate 0.1
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Table 9.2 shows the results of the varimax rotatonthe eight PCs and the
cumulative variance (in percentage). Values in botarespond to the main
contributions of the explanatory variables on eB¢h Additionally, the loadings
having an absolute value greater than 0.4, wereassidered important (values
in italic). Accordingly, the first PC (PC1) had immpant contributions of two
meteorological variables (T and RH); PC2, PC3, P35, PC6, PC7 and PC8
were heavily loaded by NOSR, WS, @ CO, NO and RH, respectively.

Besides the ability of construction of a functionallationship between the output
and the input variables, GP can also detect retewvgout variables. Figure 9.5
shows the percentage of the occurrences of eachfioipthe 4 GP runs in the best
20 individuals of the last generation using 3, 4 &mpopulations. Considering the
occurrences greater than 50%, using OVs, the inpurtsidered relevant were T,
RH and Q. Using PC, the inputs most important were PC1, BG@ PC5. The
QV that have important contributions on the sel@®€ were T, RH, Noand Q.
The importance of these variables can be justliigethe photochemical formation
of Oz involving NG, and VOC in which T and RH have important roleslghadri

et al., 2004). The presence in the models gft@nhcentrations measured on the

previous day represents the accumulation from aydaa another.

Table 9.2Principal components varimax rotated loadings

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

(e{0)] -0.041 0.294 -0.016 0.134 0.1130.891 0.292 0.031
NO -0.100 0.278 0.086 0.102 0.183 0.3150.873 0.029
NO, 0.102 0.896 -0.043 0.150 0.096 0.291 0.256  -0.045
T 0.948 0.073 0.212 -0.099 -0.129 -0.031 -0.079 -0.132
SR 0.224 -0.036 0.950 -0.084 -0.154 -0.010 0.067 -0.099
RH -0.516 -0.094 -0.250 0.281 0.371 0.053 0.0480.663
WS 0.124 -0.141 0.087 -0.937 -0.208 -0.122 -0.090 -0.113
O, 0.170 -0.111 0.178 -0.232-0.898 -0.119 -0.177 -0.149
% Cumulative

. 41.2 66.5 75.7 84.5 90.6 94.8 97.9 100.0
Variance

Values in bold indicate the variables that mosiuience the correspondent principal component.
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Figure 9.5 Occurrence (in percentage) of each input for théR runs in the 20 best

solutions of the last generation using 3, 4 andputations (P3, P4 and P5): (a) OV and
(b) PC.

The GP models were obtained using the training & their predictive

performances were evaluated using a different sesdt (set). The selected
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Figure 9.6 Box and whisker diagrams with the performance xedeof GP models in
training (a and b) and test (c and d) periods.

performance indexes were the Pearson correlatiefficent (R) and index of
agreement of the second ordej) (bee Chapter 6). Figure 9.6 shows the box and
whisker diagrams with performance indexes (in ttaéning and test periods) of
the GP models using 3, 4 and 5 populations (P3arfedP5) for OVs and PCs. In
the training period, the GP models that used OVsnasits presented good
performances. However, their predictive performanocsere worse when
compared with the models using PC. Additionallye thest GP models were
obtained using 4 populations. Equations 9.1 andé&pesent the GP model with
best predictive performance using PCs and OVsemsely:

O, 100n =35.53+9.60x PC,+5.70x PC,~10.60x PC,+ PC,x PC, - ©9.1)
- 2xPCxPC,-PC,xPC,+PC*+PC.’
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Ogi24n =38.95+9.50x0O,, -~ RH, x (8.90+ e’ +T,— RHt) (9.2)

Figure 9.7 shows the performance of these GP mounfelthe test period.

Comparing the two GP models, the one using PC sthdve¢ter performance in
the prediction of the next day hourly average cdncentrations. Taking into
account the flexibility for creation the models ahe results obtained from them,
GP showed to be a very useful methodology to peoedrly warnings to the

population about high £concentrations episodes.
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Figure 9.7 Performance of the best GP model in all test perio

9.5. Conclusions

Aiming the prediction of the next day hourly averagf O; concentrations, GP
was applied using as inputs the OVs and their F@is. methodology was able to
select the relevant variables. Applying GP withgoral variables, T, RH and;O
were considered significant inputs for predicti@m the other hand, when applied
to PCs, the selected ones had important contribsitad the same variables and
also of NQ. GP models using the OVs presented better perforenan training
period but worse performance in test period, whemmared with the models
obtained using the PCs. Additionally, the best jteés models were obtained

using 4 populations at the same time. The goodopeence of the models
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associated to the facility to achieve them showed GP can be very useful to

solve several environmental complex problems.
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Chapter 10

Multi-gene Genetic Programming

This chapter aims to apply a multi-gene genetigm@mming methodology for predicting
the daily average of P} concentrations on the next day. This methodolegased on
the principles of the simple genetic programmingpathm. The models are also encoded
in tree structures that are modified following &arative process; the model structure and
parameters are optimized at same time. The mafereifces between the simple and the
multi-gene genetic programming methodologies adeafi individual is composed by
several tree structures, called genes, and nohglesbne; and (ii) the output value is
calculated through the linear combination of thipats of the different genes belonging to
the same individual.

The contents of this chapter were adapted fronesPid.C.M., Alvim-Ferraz, M.C.M.,
Pereira, M.C., Martins, F.G., 2009. A Multi-Genernggc Programming Methodology to
Generate Models for Predicting the Daily AveragePdf;, Concentrationssubmitted for

publication

10.1. Introduction

The choice of a model for any case study occumifierent steps in which the
first one is the selection between the two mainssg#a: mechanistic and
phenomenological models. The mechanistic modelsrem® concerned with the
underlying processes (physical, chemical and bioldg processes), using
functions based on theoretical expectations (BolR@08). On the other hand,
phenomenological models are concentrated on obdgatterns in the data, using
functions that organize the experimental obsermatiaithin a formal structure.
The use of phenomenological models has becomeaisioigly recommended for

applications where the mechanistic descriptionhef interdependence between
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variables is either unknown or very complex. Thedution of air pollutant

concentrations is a complex problem and, speciji¢éal PM,o, phenomenological

models are particularly attractive, due to the clexipy of the involved processes
(Corani, 2005; Perez and Reyes, 2002; Fuller g2@02; Pires et al., 2008d).

The studies presented in Chapter 5 showed thastitueture definition is an
important step for the model success, being foltblwg the optimization of its
parameters. In all studies aiming the prediction Rdfl,, concentrations, the
structures of the models were defined in advanckater the parameters were
determined minimizing an objective function. As BMoncentrations are highly
influenced by stochastic processes (such as mébgaral effects, dry deposition
and chemical reaction), the determination of thel@hehould be done optimizing
the model structure and parameters simultaneoddlys, this study aims to
predict the daily average of RMconcentrations optimizing the model structure
and parameters simultaneously, using multi-genetiprogramming (MGP). As
far it is known, no study was presented applyingMi@r the prediction of PM

concentrations.

MGP follows the same principles of genetic prograngrdescribed in Chapter 9.
It is a method that predicts the output variableodlgh the weighted linear
combination of the outputs from several symboleetstructures that correspond
to the different genes. The weights are determipgdminimizing the sum of

squared errors of the predicted values.

10.2. Data

The variables selected as RMpredictors were the concentrations of several air
pollutants (S@ CO, NO, NQ and PMg and meteorological variables (air
temperature - T; relative humidity — RH; and wingeed - WS). The
concentrations of pollutants were recorded in apanrsite fatosinho¥ with
traffic influences. Daily average values for thesgiables were calculated and

used if more than 75% of hourly averages were alvksl
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The period of measurement (from January 2003 teDéer 2005) was divided in
training and test periods. The training data weseduto determine the MGP
models and the test data were used to evaluaieetfi@rmance of application to a
new set. The test data corresponded to the lastequaf 2005 (76 data points),
considering training data the remaining period (84t points). The explanatory

variables were Z standardized to have zero meanmihdtandard deviation.

10.3. Results and discussion

The MGP algorithm was coded in Matlab 7.0 (Math\othkc., Natick, MA,
USA) by the author of this thesis. Several paramsateist be defined for the MGP
approach. In this study, the population size waedito 200. The maximum
number of generations was 100. The crossover antiow rates define the
probability that an individual is selected for t®ssover or mutation operation,
respectively; their values were 0.8 and 0.1. Th& I the best individuals (20
individuals) were selected for the next generafelitism). The fittest individuals
were the ones presenting the lowest root mean sduarror (RMSE) in the
training period. To avoid early convergence, a mataset for the evaluation of
individuals was created, by random sampling thgimai data, with replacement
when the 20 best individuals of the actual genenativere the same of the
previous one. However, in the last 10 generatibmsindividuals were evaluated
using the original data. Since the MGP resultspaobabilistic, several MGP runs
of the algorithm must be performed and their resalbalysed before taking
conclusions. Ten MGP runs were done with the imlligls composed by five
genes. The predicted RMconcentrations were calculated through the linear

combination of the outputs from the five correspamidree expressions.

Besides the ability of construction of a functionalationship between the output

and the input variables, MGP also detects the agleinputs. Figure 10.1 shows
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Figure 10.1 Occurrence of each input for the 10 MGP runs ia llest solutions (10
individuals) and in the 20 best solutions of the& @eneration (200 individuals).

the occurrences of each input in the best solutioeach of the 10 runs (10
individuals) and in the 20 best individuals in tlest generation (20x10=200
individuals). According to the results, NOHR and PM, were the inputs that
were selected in almost all solutions presentedthem 10 MGP runs. The
monitoring site is highly influenced by traffic essions, which is, in this
environment, the main source of RMind nitrogen oxides (Pereira et al., 2005);
thus, the concentrations of these two air pollgasftould be correlated and this
justifies the importance of NOconcentrations in the prediction of RM
concentrations. Also important is the RMoncentration of the previous day since
it represents the accumulation of RMrom one day to another. The relative
humidity is determinant for P prediction, since wet and dry deposition has an
important role on the removal of Rpfrom the air. The results showed that,SO
T and WS presented less relevance in the prediofi®M,, concentrations.

Table 10.1 presents the best solutions obtainethen10 MGP runs and the
correspondent value of RMSE in the training daiagst these models, the inputs
were Z standardized. The performances of the tedetadn the training period

were very similar, being evaluated through the igpfibn to a new data (test
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Table 10.1Best solutions of the 10 MGP runs and corresponB&M&E in the training
period

Model Solution RMSE

y =37.05+ 2.87x[tan(PM,,) - RH+1.54 +1.54x[log(NO, |
+7.89x[0.40+ PMyo] + 0.42¢ [cO- 3 20 PMol =1

M1 15.91
+4_15{5m[%]+%]

[10.41-Cq
y = 43.21- 2.57x [sign(cog0.70- NO, - cosHsign(SQ, )))) - NO,|
M2 ~2.46x [RH] +3.33x[sin(PM,, )] +10.92 [PM,] 15.89

+0.78%[1- PM,o- tanH{RH+ NO, )]

y = 42.53+11.84x[PM,] - 0.38x [codWS) + NO| + 4.29x [NO, |

M3 —0.53{—w} -2.70x[RH] 1589
SO,
g Y= 4061261 [NO,%24410)| 0 16x[Jog(tanHRH))x CO] 15 88
- 2.72x[RH]+3.94x[NO, + sin(PM, )|+ 9.40x [PM,
y = 42.27+11.68¢[PM,] + 0.6 7x [sign(NO, )| + 3.45x[NO, |
M5 sin(logqsin(cos(RHx PMlO)])) 15.88

—0.26><|: :|—2.80>< [RH]

SO,

y = 32.46+10.68x[1+ PM,,] - 4.11x | fexplsin(codRH)) x1.29- 2.19
M6 -1.57x {exr{sigr{log[ tan){cosl{,/|NO| D]x PMlOJH 15.93

- 2.13x[RH] +3.66x[NO, |
y = 41.02- 2.83x [RH| - 0.08x [NO| + 7.59 [tanH{PM,,) + PM, |

M7 +1.30% {—1.18— NO+ ex;{%ﬂ +3.47x[NO,| 15.88
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Table 10.1Best solutions of the 10 MGP runs and correspanB&SE in the training
period (continued)

Model Solution RMSE

87xPM1 WS»+ RHJ
M8 +4.22x [tan*{sin[\/lNOzl el D + NOZ} +1.20%[T] 15.86

- 0.37%[RH+cosHPM,, )]

y = 41.48+11.12x[PM, ] - 2.66x [sin(tanhﬂRH

y = 41.65+1.20x [codlog(sin(NO) )| + 1.43x [NO,+ WSx log[NO, |

M9 : 15.91
-3.31x[RH] +3.81x [sin(NO, )] + 11.99x [PM, ]
y = 44.37+5.10x[tanNO, )] + 2.13x[CO- 0.99 +10.86x [PM,]
M10 - 2.68x[RH] +1.96x|T] 15.91

Table 10.2Performance indexes of the best solutions of hMGP runs in the test period

Model MBE MAE RMSE R d,
M1 -0.32 13.31 19.07 0.72 0.82
M2 -0.53 12.89 18.83 0.73 0.82
M3 -0.34 12.81 18.58 0.74 0.83
M4 -0.42 12.76 18.94 0.73 0.82
M5 -0.35 12.71 18.70 0.73 0.83
M6 -0.46 12.77 18.53 0.74 0.83
M7 -0.48 12.99 18.82 0.73 0.82
M8 -1.61 13.24 19.39 0.71 0.79
M9 -0.50 12.91 18.90 0.73 0.82
M10 -1.20 12.66 18.66 0.74 0.82

data). The selected performance indexes were tlaa s error (MBE), mean
absolute error (MAE), RMSE, Person correlation ioeint (R) and index of
agreement of second ordeg)(@see Chapter 6). Table 10.2 shows the performance
indexes of the MGP models in the test period; MB&wegative in all models,
meaning that, in average, the RMoncentrations were underestimated; moreover,
the performances achieved by the models in thepersdd were also very similar.
One of the several advantages of MGP is the actmere of a list of optimal
solutions (not just a single one). Consequently dther solutions were also

applied to the test period. Besides presenting @stwierformance in the training
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period (RMSE=15.95) when compared to the best isoluh the correspondent
run (RMSE=15.89), the solution represented by thaaon 10.1 was the model
with best predictions of PMconcentrations (RMSE=17.92).

T-NO
3.10%" - tanHPMy,)

y =42.01+ o.oex{ }+3.80X[N02]—2.78><[RH]

sin(CO+ 10.6() (10.1)

s oo v

Figure 10.2 shows the performance of the best M@Bein(represented by the

+12.10x[PM,,] - 0.30x

Equation 10.1) in the whole test period. Althougk todel underestimated the
highest PM, concentrations, the model had in general goodnesitins. The
difficulty of predicting the extreme values could bolved applying the quantile

regression to this methodology. QR model has thearstdge of allowing the
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Figure 10.2Performance of the MGP model in the test period.
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examination of the entire distribution of the vafe of interest rather than
measuring the central tendency of its distributieor. example, Sousa et al. (2009)
compared the performance of MLR and QR in the ptexi of tropospheric

ozone concentrations and concluded that QR prebdrgtter performance than

MLR especially in the extreme values.

Considering the flexibility for creating the pretive models, MGP is a promising

methodology to estimate environmental complex allution problems.

10.4. Conclusions

Aiming the prediction of the daily average of RMoncentrations on the next day,
MGP was applied. The results showed two importaatures of MGP: the
selection of the relevant inputs and the constoactf the predictive model. The
variables considered important for RMconcentrations prediction were BO
concentrations, RH and RBbyconcentrations measured in the previous day. MGP
provided several models that presented similaropeidnces indexes. The good
performances of the models showed that MGP is &uluszol to public health
protection as it can provide early warnings to puopulation about high P}

concentrations episodes.
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Chapter 11

Final Words

In this thesis, two important issues in the fiefcam quality management were approached.
First, statistical methods were applied to charamtethe air pollution behaviours in
Oporto-MA, which was followed by the determinatiohredundant measurements in the
air quality monitoring network. Second, the statatmodels were developed and applied
to predict the @ and PM, concentrations. This chapter also proposes futuoek
concerning these two issues.

11.1. General conclusions

The characterization of the air pollution behavéoun Oporto-MA was an
important step to determine redundant measurementte local air quality
monitoring network. If two different monitoring si present similar air pollution
behaviour, only one should operate, since the medstalues at this monitoring
site are representative for the two regions. Witle tactual distribution of
monitoring sites, several redundant measurements wientified. The applied
statistical methods were able to determine theep&iton air quality data and to
evaluate the minimum number of monitoring sites #hould operate for each air
pollutant. For principal component analysis, twedent criteria were applied to
select the number of principal components. Usingé&acriterion (which is often
applied), the principal components selected didreptesent sufficient variance of
the original data. Other criterion, which selectse thnumber of principal
components representing at least 90% of the ofiglata variance, presented
better results, when the concentrations of airypatits at the removed monitoring

sites were predicted. This means that this methodne that selects principal
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components with more information about the origwveliables should be applied
for these studies. Accordingly, the number of manmig sites could be reduced

more than 50% in some of the analysed air pollstant

The air pollution behaviours are greatly influendeyd the relative location of
emission point sources. This was observed fop, S& which the principal
component analysis determined the existence afagt Isix monitoring sites (the
highest number selected with Kaiser criterion). Téwation of emission sources
was determined analysing the variation of air gaht concentrations with the
wind direction. For Sg) an emission source was identified inside the defmed
by the air quality monitoring network. Thus, forchawind direction, different
places will be affected by the emissions from gwitrce and, for that reason, they

presented different air pollution behaviour.

The statistical methods should be applied using datresponding to smaller
periods. Longer periods hide seasonal differencesii pollution behaviours
between monitoring sites. In this case, a wrongsiat (remove or displace a
monitoring site) can be taken. For example, appglyrincipal component analysis
(using the Kaiser criterion) to the Rvtlata of three years, théla do Condesite
was grouped with other sites, when this site preskehigher concentrations and
different daily profiles of P\, concentrations. This happens in several periods
from 17 h to 22 h. In the remaining perioddla do Condesite had similar P}
behaviour. The emission source responsible ofdifisrence was identified at N-
NW direction sector. However, this source took ledsvance in the last year of
study. Despite this different behaviour, the siswgrouped with other sites by the
principal component analysis using Kaiser criteridtsing other criterion for
selection of the number of principal components andlysing smaller periods

(annual quartersyila do Condesite belonged to a different group.

In the second part of the thesis, statistical nodedre developed to predict énd
PMyy concentrations. The linear models had an advanwfgdgaking less

computational time than the other models. Takirig account the performance of
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these models, quantile regression was the bestInmodee training period, as it
tries to model the entire distribution of the degemt variable. However, this
method presented bad predictive performance. Phéist squares regression was
the linear model with best predictive performanaa both air pollutant

concentrations.

Until now, no study was presented aiming the ptesiic of air pollutant

concentrations through statistical models using epahdent components.
Independent component regression and stepwiséiattifieural networks (using
independent components as inputs) were applied eMeryboth models presented

bad performances.

The recommended statistical approaches to solwehastic problems, such as
prediction of air pollutant concentrations, were thnes using the evolutionary
procedure. They presented the best predictive prdioces for both air pollutants:
() threshold regression using genetic algorithmd genetic programming forzO
and (ii) multi-gene genetic programming for RMrhey have the advantage of not
defining the model structure in advance. The mattelcture and parameters were
optimized simultaneously. The threshold regressinich was applied to predict
O3 concentrations, assumed different relationshipge/dxen the @ concentrations
and their precursors. This is important for this @ollutant, as it is formed by
chemical reactions that are influenced by differegimes. In this study, only two
regression equations were applied (assuming twime=g. This method is also
similar to quantile regression with the advantdgs it is not needed to predict the

percentile of the output variable.

The accuracy of the predictions from statisticalele is a function of the quality
of the data in the various databases. The lackdefj@ate data on air pollutant
concentrations is a major limitation of the stadet methods. When the data
needed to drive the models are available, the rsgalelvide policy makers with

useful information on the exposure of the poputatmair pollutants.
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11.2. Future work

Concerning the management of the equipment of thegaality monitoring
networks, the method to evaluate redundant measmtsmwas tested and
presented adequate results. After the selectiareahfndant monitoring sites, the
correspondent equipment can be displaced to otkgrons increasing the
monitored area. The location of new monitoringssitean be determined using a
mobile air quality monitoring equipment. Using tl@quipment, the air pollutant
concentrations should be measured in a determiteex mluring sufficient large
period. Principal component analysis should beiaegpio data of the fixed and
mobile monitoring sites. If the place presentsatdht air pollution behaviour

from other regions, it should have a monitoring.sit

Concerning the prediction of air pollutant concatitms, the data size should be
reduced. It was observed that the models havecdifies to predict extreme
values, tending for the average value of the tngimiata. The data corresponding a
large period contain different relationships betweariables, which is difficult to
model in only one equation. The reduction of théadsize also decreases the
computation time to achieve the statistical modatditionally, it is important to
explore the potentialities of the threshold regmssThis model could be applied
assuming more than two equations and also nonrliedetionships between input
and output variables in each regime. In this cdmecodification of chromosomes
in GA should be modified.

To improve the results of these models in the aality modelling, the objective
function could also be changed. In air quality nilidg, it is not important to
know the exact concentrations of the air pollutdntt to predict the range of
values that will limit these concentrations. An exde of an objective function
that can be applied in this field is the minimipatiof the sum of absolute errors,

when the absolute error is greater than a defiadky
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