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Abstract

The work presented in this thesis addresses the design and the simulation of hybrid
mechanically fastened joints for the railway industry.

The work includes different levels of detail in the simulation of the joints. An
experimental campaign is conducted on single and double lap joints with different
geometries and materials. As result of the experimental tests, design charts are
proposed to assist the engineers during the preliminary definition of a structure.

To simulate in detail the behavior of a bolted joint, a set of three-dimensional
failure criteria and a progressive damage model are proposed. It was shown that the
previously developed failure criterion for matrix compression works correctly for the
embedded lamina only if the in-situ parameters are correctly computed. For matrix
tension it was shown that previous failure criteria are not consistent.

The progressive damage model uses cohesive softening laws which are determined
experimentally measuring the R-curves in the longitudinal direction. A methodology
to measure the J-Integral around the crack tip using Digital Image Correlation
was proposed. It was shown that for compact-tension test the results are virtually
the same as those obtained using data reduction schemes based on Finite Element
analyses. For compression, the methodology provides a significant improvement on
the determination of the R-curve.

The cost of a 3D FE model in terms of computing time is not suitable for the
industry where the results must be obtained quickly. Therefore, a simple 2D FE
model, using a 2D version of the failure criteria proposed, is used and is applied to
a train subcomponent. A good agreement between the numerical predictions and
the experimental results was obtained.
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Résumé

Le travail présenté dans cette thèse aborde la conception et la simulation des joints
hybrides rivetés et boulonnés pour l’industrie ferroviaire.

Le travail concernant la simulation des joints a été conduit à différents niveaux
de détail. Une campagne expérimentale est menée pour les joints simples et doubles
avec différentes géométries et matériaux. Comme résultats de tests expérimentaux,
des tables de conception sont proposées pour assister les ingénieurs durant la première
phase de définition de la structure.

Pour simuler en détail le comportement d’un joint boulonné, une série de critères
tridimensionnels d’endommagement et une modélisation de propagation de l’endom-
magement sont proposées. On a montré que le critère d’endommagement précédem-
ment développé pour la compression de la matrice ne fonctionne proprement pour la
couche intérieure au laminé que si les paramètres in-situ sont correctement calculés.
Pour la traction de la matrice, il a été prouvé que les critères précédemment utilisés
ne sont pas cohérents.

Le modèle de propagation de l’endommagement utilise des lois cohésives qui
sont déterminées expérimentalement en mesurant les courbes de résistance dans la
direction longitudinale. Une méthode qui utilise la corrélation digitale d’images a été
proposée pour mesurer l’intégrale J autour de la pointe de la fissure. On a démontré
que pour les tests de compact-tension les résultats sont pratiquement équivalents à
ceux obtenus en utilisant les méthodes d’analyse basées sur les éléments finis.

Le coût d’un modèle tridimensionnel aux éléments finis en termes de temps de cal-
cul n’est pas approprié pour l’industrie ferroviaire pour laquelle les résultats doivent
être obtenus rapidement. En conséquence, il a été proposé un simple modèle 2D qui
utilise la version 2D des critères d’endommagement proposés. Une bonne concor-
dance a été trouvée entre les prédictions numériques et les résultats expérimentaux.

iv



Resumo

O trabalho apresentado nesta tese aborda o projecto e simulação de juntas apara-
fusadas h́ıbridas para a indústria ferroviária.

O trabalho inclui diferentes ńıveis de detalhe para simulação das juntas. Realizou-
-se um programa experimental com juntas de sobreposição simples e dupla usando
geometrias e materiais diferentes. Como resultado dos ensaios experimentais, foram
propostas regras de projecto para a definição preliminar da estrutura.

Para simular em detalhe o comportamento de uma junta aparafusada foi pro-
posto um conjunto de critérios de rotura e um modelo de dano progressivo. Foi de-
monstrado que o critério de rotura da matriz em compressão desenvolvido previa-
mente só funciona correctamente para uma camada embebida se forem utilizados
os parâmetros in-situ. Para o caso da tracção da matriz, foi demonstrado que os
critérios de rotura desenvolvidos previamente não são consistentes.

O modelo de dano progressivo usa leis de dano coesivas que são determinadas
experimentalmente através das curvas de resistência na direcção longitudinal. Foi
proposta a metodologia de Correlação Digital de Imagem para calcular o integral-J
na vizinhança da extremidade da fissura. Foi demonstrado que para o ensaio de
compact-tension os resultados são semelhantes aos obtidos através de análises em
métodos de elementos finitos. Para compressão, a referida metodologia resulta num
melhoramento significativo na determinação da curva de resistência.

O elevado custo computacional de um modelo de Elementos Finitos 3D torna-
-os inviáveis para utilização pela indústria, uma vez que normalmente pretende-se
obter resultados rapidamente. Assim, foi implementado um modelo 2D de Elementos
Finitos para projecto de um subcomponente de um combóio, usando a versão 2D
do critério de rotura proposto. Foi obtido um resultado numérico próximo dos
resultados experimentais.
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|σ| stress tensor.

σθθ hoop stress.

{σ} stress vector.

σxy shear stress.

σy yield stress.

τij shear component of the stress tensor.

τL component of the traction of the fracture plane in L direction.

τT component of the traction of the fracture plane in T direction.

Γ contour for the calculation of J Integral in 2D.

Ω contour for the calculation of J Integral in 3D.
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Chapter 1

Introduction

Composite materials are widely used in the industry because of their superior spe-
cific characteristics. They are light and stiff, and composite structures are easy to
manufacture and assemble.

Nowadays, however, the use of composites as main load-carrying structures is
often limited to the aerospace and automotive industries. While it is possible to
find in the railway industry some examples of the use of composites as main load-
carrying structures, this is limited to a few cases or to particular applications. In
the railway industry, composites are limited to non structural parts (cab, skirts,
interiors, etc.). This is justified by the fact that the use of composite requires a
know-how that the railway industry does not currently have, and for this reason
metals are preferred.

However, the use of composites is a vital issue for the railway industry. In fact,
their advantages are numerous, namely:

• the reduction of the weight and, consequently, of the energy necessary for the
railway transportation;

• the reduction of the cost of manufacturing: if a correct design is performed it
is possible to obtain a simplification of the parts that form a structure and,
consequently, a reduction of the time and of the costs required for the assembly
of the final structure;

• the reduction of the recurring costs, because composite structures require gen-
erally less maintenance when compared with metallic structures.

Comparing the different design solutions of the main structure of a train, namely,
the use of only metals, the use of only composites, the use of metals and composites
(hybrid solution), it is possible to shown [1] that for a train structure the hybrid
solution yields the lowest manufacturing cost. Similarly to other composite struc-
tures, one of the main design drivers in hybrid structures is the calculation of the

1
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strength and the behavior of the hybrid joints. In fact, the prediction of the stiff-
ness of hybrid structures is straightforward, and the main challenge in the design
of such of structures is the prediction of failure, which typically occurs at stress
concentrations, such as bolted joints.

Therefore, the main objectives of this work are to investigate the mechanical
response of mechanically fastened joints in composite materials and to define design
methods for such joints with different levels of refinement, ranging from full three-
dimensional Finite Element models to simple analysis models that can provide a
solution in a short amount of time.

The thesis is organized as follows.
Chapter 2 presents a literature review on composite bolted joints including both

experimental investigations and analysis models.
In Chapter 3, an experimental campaign conducted on bolted joints with different

geometries and materials (or material combinations) is presented. These results may
form an integral part of the design process.

Chapter 4 presents a new methodology to obtain the material properties that
are required for the numerical simulation of fracture of composite joints.

In Chapter 5, a three-dimensional (3D) numerical model to predict failure of
composite material is proposed. The numerical model includes, new, fully three-
dimansional failure criteria and the associated damage model that represent the
propagation of the different failure meechanism.

In Chapter 6, the proposed progressive damage model is used to predict different
failure modes in composite bolted joints. The numerical results are compared with
experimental data previously obtained.

The computational cost of a three-dimensional analysis is not suitable for an
industrial use, where results must be obtained in a short account of time. For this
reason, in Chapter 7 a two-dimensional numerical model is used to compute the
onset of the damage. The two-dimensional numerical model implement locally a
two-dimensional version of the failure criteria presented in Chapter 5. Finally, a
real industrial case is studied. A prototype was manufactured and tested and the
corresponding experimental results are compared with the numerical predictions.



Chapter 2

Literature Review

2.1 Experimental Analysis

The experimental research on composite bolted joints typically consists in the de-
termination of the geometric and material parameters that affect the joint strength.
Generally, two procedures are followed:

• the joint is tested until its final failure varying the parameter under study;

• the stress distribution in the vicinity of the hole is investigated.

2.1.1 Failure Modes

Figure 2.1 shows the classical geometry of the specimen and the geometrical param-
eters that influence its behavior:

• the width of the specimen (w);

• the end distance (e);

• the diameter of the hole (d);

• the thickness of the specimen (t).

Figure 2.1: Geometry of the specimen [2].

3
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The ASTM D 5961/D 5961 M-05 [3] norm reports five common in plane failure
modes:

• the lateral or net-tension failure mode;

• the shear-out failure mode;

• the bearing failure mode;

• the tear-out failure mode;

• the cleavage failure mode.

The pull-trough failure mode is an out-of-plane failure mode that must be also
considered. All these failure modes identified in ASTM D 5961/D 5961M-05 [3] are
shown in Figure 2.2. The joints may also fail in a combination of different failure
modes.

(a) lateral (b) shear-out (c) bearing (d) tear-out (e) cleavage

Figure 2.2: Bearing test failure modes for ASTM D 5961/D 5961M-05 [3].

If the tear-out and the cleavage failure modes are considered particular cases
of the shear-out failure mode, then the principal in plane failure modes are the
net-tension, the shear-out and the bearing planes. These planes are represented in
Figure 2.3. The circumferential coordinate direction, θ, and the fibre orientation
angle, α are also represented.

Figure 2.3: Definition of planes, θ and α [2].

The definitions of these planes allow the definition of the following ultimate
stress:
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• the ultimate bearing strength

σb(u) =
Pu

dt
(2.1)

• the ultimate tensile strength

σn(u) =
Pu

(w − d) t
(2.2)

• the ultimate shear strength

σxy(u) =
Pu

2et
(2.3)

where Pu is the peak (failure) load, w the width, e the end distance, d the hole
diameter and t the specimen thickness (see Figure 2.1).

2.1.2 Influence of the geometry

The importance of width (w), end-distance (e), bolt diameter (d) and laminates
thickness (t) was highlighted by several authors [4–9]. Hart-Smith [4] highlighted
the importance of the d/w ratio on the joint failure modes. When the diameter is
large compared with the width of the specimen net-tension failure modes occurs.
The critical value of the d/w ratio that defines the change in the failure modes from
net-tension to bearing depends on the material and on the lay-up used. Kretsis
and Matthews [5] showed that the transition from bearing to net-tension reduces
the load capacity of the joint as showed in Figure 2.4(a). The authors identified a
similar trend in the shear-out and bearing failure modes when e/w ratio varies, as
shown in Figure 2.4(b).

(a) (b)

Figure 2.4: Variation of bearing strength of (0/±45) laminates [5].

Collings [6] investigated CFRP specimens with different lay-ups and hole-sizes.
The author showed that the critical values of w/d and e/d depend on the lay-up
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used. The author highlighted that no thickness effects on the bearing strength are
noticed if a clamping pressure of 22MPa is applied on the washer.

Hart-Smith [4, 7] showed that when the ratio d/w decreases the joint structural
efficient increases until an optimum value. Moreover, the author demonstrated that
when the load is larger than a critical value delamination occurs near the edge
of the hole and this reduces the value of the stress concentration factor. Hart-
Smith [4,7] considered that a small value of the e/d ratio increases the tensile stress
concentration factor. He suggested, then, the use a minimum end distance equal to
3d.

Hodgkinson et al. [9] tested several types of joints in Kevlar fibre-reinforced
plastics (KFRP). Like in CFRP and GFRP, small values of e/d ratio caused shear-
out failures, large values resulted in tensile failures.

2.1.3 Influence of the fiber orientation

Collings [6] tested CFRP laminates with [0/±α]S lay-up. He observed that for these
laminates the bearing strength was dependent on the ratio between 0◦ plies and ±α◦

plies and, that the effect of these plies was dependent on the type of failure.

Collings [10] studied CFRP balanced laminates with [0/±45]S and [90/±45]S lay-
ups. It was observed that the presence of ±45◦ plies increases the bearing strength of
the laminate until these plies are approximately 75% of the total laminate thickness.

Kretsis and Matthews [5] showed that lay-up influences the strength and failure
mode of GFRP joints and that the critical values of w/d and e/d depend on the
lay-up used.

Hart-Smith [4,7] showed that for laminates rich in 0◦ and lacking of 90◦ or with
50% of 0◦ plies and 50% of ±45◦ plies, shear-out failure mode occurs. The author
demonstrated that bearing strength is maximum for quasi-isotropic laminates.

2.1.4 Influence of lateral constraint

Collings [6] showed that the bearing strength of CFRP joints increases when clamp-
ing pressure increases until a maximum of 22MPa. At higher clamping pressures,
negligible improvements are noticed. Obviously, clamping pressure has to be limited
to avoid failure in the clamped region.



2.1. EXPERIMENTAL ANALYSIS 7

Figure 2.5: Effect of lateral constraint on bearing strength [6].

Kretsis and Matthews [5] also demonstrated the beneficial effect of lateral pres-
sure on GFRP joints. They explained that the clamping pressure reduces the prop-
agation of the cracks that develop under the washer.

Matthews et al. [7] considered that the joint strength depends on the through-
thickness restrain offered by the fastener. For these reasons a pin loaded speci-
men gives the lowest bearing strength while bolted joints gives the highest bearing
strength.

Hart-Smith [4,7] concluded that the clamped area has a significant influence on
the joint strength. The author noticed that inner laps gives higher values of the
bearing strength with respect to the other laps. This occurs because the inner lap
is better constrained and because the clamped area is larger.

2.1.5 Influence of the stacking sequence

Quinn and Matthews [11] noticed that the joint strength depends on the stacking
sequence used: the through-thickness direct and shear stresses at the hole edge
depends on the stacking sequence and these influence the joint strength. Placing
90◦ plies at the surface of the laminate produces a compressive through thickness
direct stress that inhibits the delamination and that increases the joint strength.

Collings [6] also showed that interlaminar shear stress can produce delamination
at the hole edge and reduce the joint strength. Large variations in fiber orientation
angles in consecutive plies are responsable for higher shear stress, and this fact
reduces the strength of the joint.
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2.1.6 Influence of the fastener type

Different choices can be made when composite materials have to be joined. Fastener
typically used are screws, rivets and bolts. However the correct choice of the fastener
is a function of the particular application. Moreover, all fasteners used for metallic
joints cannot be used with composites. For this reason it is possible to find very
specialized fasteners for particular applications.

Collings [12] noticed that self-tapping screws are easy to install but reduce the
joint efficiency. A solution is to use helicoil metallic inserts to avoid thread stripping.

Hart-Smith [4] show that the use of countersunk fasteners reduce the efficiency
of the joint if compared with bolts.

Cole et al. [13] highlighted that galvanic corrosion is one of the biggest problem
if wrong material are chosen. The authors presented a compatibility chart showing
that titanium (and its alloys) is the best choice for CFRP laminates. To reduce the
damage during the installation Cole et al. [13] suggested to use fasteners with larger
countersunk angles and enlarged footprints.

2.1.7 Influence of metallic inserts

Several authors [14–17] proposed the use of bonded metallic insert to prevent the
damage of the hole due to repeated installations or due to the high stress that occurs
at the hole edge.

Nilsson [15] compared the strengths of bolted joints in the presence and in the
absence of metallic inserts. The authors highlighted that the introduction of the
insert reduces the ratios d/w and d/e and this changes the failure mode of the joint.
The use of metallic inserts can then either increase or decrease the bearing strength
of the joint.

Mirabella [16] performed experimental tests on single-lap CFRP laminates with
different insert’s configurations: the single and double straight, the top-hat and the
top-hat with tapered ends (See Figure 2.6).
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(a) single straigth (b) single top-hat (c) single tapered-top-hat

(d) double straigth (e) double top-hat (f) double tapered-top-hat

Figure 2.6: Inserts’ geometry [16].

It was shown that strength and failure mode depends on the material and on
the type of the insert used. Moreover, when compared with the specimens without
insert, the use of the insert may change the failure mode and the strength of the
joints.

2.1.8 Hybrid laminates

The use of carbon-glass hybrid laminates in mechanically fastened joints has been
investigated by several authors [4, 18, 19].

Hart-Smith [4] showed that the inclusion of glass fibre softening strips near the
loaded hole improved the net-tension strength of carbon fibre-reinforced laminates.

Matthews et al. [18] investigated hybrid carbon/glass laminates with different
lay-ups. It was shown that the trend of the strength versus the w/d and e/d ratios
is similar to that one exhibited by homogeneous laminates. The maximum strength
is achieved when w/d and e/d are greater than 4. For high values of e/d and w/d
(bearing failure mode) the full carbon laminate shows the highest values of the
strength. For small value of w/d, net-tension failure mode occurs and the hybrid
laminate exhibit an higher value of the strength when compared with the full carbon
joint. This result was confirmed by Hart-Smith [4].

Oh et al. [19] investigated the effects of clamping pressure and stacking sequence
on hybrid joints. It was shown that the bearing strength increases with increasing
clamping pressures up to 71MPa. It was found also that [0C/±45G/±45C/90C]S
(C:carbon; G:glass) laminates exhibit the higher value of the bearing strength when
±45◦G plies were located between the 90◦C and ±45◦C plies.
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2.1.9 Multi fastener joints

In practical applications, several fasteners are used to connect composite laminates.
For sufficiently large pitches, the interaction with other bolts is negligible and it
is possible to estimate the strength and the failure mode of the joint using single-
fastener joint data [6]. If small pitches are used interaction may occur and the
strength of the multi-fastener joint is lower than that estimated using single-fastener
joint data [8].

Godwin et al. [20] tested multi-bolts joints in GFRP. Lines (parallel to the load)
and rows (perpendicular to the load) of bolts were considered. It was found that if
the pitch is higher than 6 diameters bearing failure occurs.

When the pitch is equal to 2.5 diameters and the end-distance is 5 diameter
the strength is maximized. Net-tension failure (catastrophic) occurs and this corre-
sponds to an increase of 17% of the joint efficiency.

Figure 2.7: Bolts installed in rows and lines.

Hart-Smith [4,7] highlighted that the improvements in efficiency of multi-fasteners
joints is negligible with respect to single-fastener joints. To increase the strength of
the joint above the maximum strength of a single-fastener joint, the bearing stress
of the multi-fastener joint should be reduced and this is possible only if large pi/d
are used. The author concluded that using more bolts in line increases negligibly
the strength of the joint (two bolt increase the strength of about 10%, eight or
ten bolts 25%) and that the strongest joint has only one row of bolts. In practical
applications, multirow joints are used for stability in compression.

2.1.10 Stress distribution

A few experimental studies have also been made in order to determine experimentally
the stress distribution near a loaded hole.

Hyer and Liu [21] used the photoelastic technique in transparent glass-epoxy
plates. The radial and hoop stresses around the hole, the shear stresses in the
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shear-out section, the net-section tensile stresses and the compressive stresses in the
bearing plane were found.

Using the photoelastic technique, Prabhakaran [22] studied the effect of e on the
stress distribution in a pin-loaded hole. GFRP specimens with e/d equal to 2, 4 and
6 were considered. It was found that the highest shear stress near the hole occurs
in the specimen with the smallest end distance as previously indicated in the work
of other authors [4, 5].

2.1.11 Fatigue

Many authors considered that a joint designed for a static test satisfies the fatigue
design. Hart-Smith [7] showed that composite bolted joints do not show any damage
under fatigue load. On the contrary, if interference fits are used, the residual stress
may slightly increase due to the relief of stress concentration at the hole edge caused
by sub-critical damage. If clearance fits are used, fretting fatigue damage may occur
at the bolt-composite contact surface.

Collings [12] showed that after a fatigue test the hole show an elongation that
could up to 5% of the hole diameter. The author suggested to use the maximum
elongation as a criterion of bolted joints under fatigue load.

Crews [23] also tested CFRP bearing joints after water absorption. It was shown
that water can reduce fatigue life up to 40%. The author concluded that care should
be taken when designing bolted joints for wet enviroments.

Smith and Pascoe [24] and Herrington and Sabbaghian [25] showed that increas-
ing the clamping pressure results in an increase of the fatigue life and in a reduction
of the hole elongation.

2.2 Stress analysis

An accurate stress analysis is required for the prediction of the joint strength. Both
classical and numerical methods of stress analysis are present in the literature.

2.2.1 Classical methods of stress analysis

T. de Jong [26] obtained the stress distribution around the hole of a pinned fric-
tionless joint. The analysis was based on the complex function method proposed
by Muskhelishvili [27] and his adaptation to orthotropic materials proposed by
Lekhnitksii [28]. The authors considered unidirectional, quasi-isotropic and [0s/±45]s
CFRP laminates with different geometries (w/d = 2.5, 5,∞). The author showed
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that the stress distribution at the hole boundary is highly dependent on the lay-up
and geometry used.

Zhang and Ueng [29] proposed a way to calculate the direct and the shear stress
using Lekhnitksii’s [28] method. Considering infinite dimensions, the stress distri-
butions were found for several lay-ups. Figure 2.8 shows the stress distributions
at the hole boundary of a [04/±45]s laminate. It was highlighted that these stress
distributions were dependent on the lay-up and on the coefficient of friction.

Figure 2.8: Stress distributions around a pin-loaded hole in a [04/±45]S laminate for
several coefficients of friction [29].

2.2.2 Numerical methods of stress analysis

2.2.2.1 Two-dimensional models

Several authors [30–38] developed 2D models to find the stress distribution around
the hole of a loaded laminate. Since these models usually assumed a plane stress
state and used the classical lamination theory [39], they cannot account for the effects
of stacking sequence or clamping pressure. The contact angle φ of the pin with the
hole boundary was sometimes considered constant [30], or, more realistically, varying
non-linearly with the load [31–38,40].

Naik and Crews [31] studied the effect of clearance in a frictionless pinned lam-
inate. As expected, the contact angle varies with the clearance as shown in Figure
2.9(a) where cd is the diametral clearance. It can be concluded that increasing the
clearance decreases the contact angle. Figure 2.9(b) reports, for a bearing stress of
475 MPa, the distributions of radial and hoop stresses.
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(a) relationship between bearing load and
contact angle θC

(b) hole boundary stresses

Figure 2.9: Effects of clearance [31].

Crews et al. [34] considered six lay-ups [0/±45/90]s, [0], [90], [0/90]s, [±45]s and
[0/±45]s, assumed a frictionless contact and no clearance. The distributions of the
hoop stress, σθθ, the radial stress, σrr, and the shear stress, σxy, were found. As
these stress are related with tension, bearing and shear-out failure respectively, the
tensile stress concentration factor Ktb and the shear stress concentration factor Ksb,
were defined:

Ktb =
(σθθ)Max

Sb

(2.4)

Ksb =
(σxy)Max

Sb

(2.5)

where Sb is the bearing stress. Figure 2.10(a) shows that, for a constant value of
end distance, Ktb increases with decreasing w/d while Figures 2.10(b)-2.10(c), show
that both Ktb and Ksb increase with decreasing e/d.
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(a) Ktb as a function of w/d for
e/d = 10

(b) Ktb as a function of e/d
for w/d = 20

(c) Ksb as a function of e/d for
y = d/2 and w/d = 20

Figure 2.10: Effects of w/d and e/d on stress concentration factor [34].

2.2.2.2 Three-dimensional models

Unfortunately, simple 2D analysis cannot take into account for the through-thickness
effects that have an important effect on the joint strength. In order to have better
predictions on joints strength, 3D model have developed by several authors [40–47].
The use of three-dimensional models allows to study the influence of the friction,
geometry, clearance and through-thickness effect; unfortunately they are computa-
tionally expensive and require a severe modeling effort.

2.2.2.3 Multi-fastener joints

The numerical investigations of stress distributions in multi-fastener joints found in
the literature were based on two-dimensional finite element models. Both lines [48]
(parallel to the load) or rows [49–51] (perpendicular to the load) of fasteners have
been considered.

Naik and Crews [51] investigated the stress distribution of a frictionless multi-
row pinned joint [51] using an inverse technique previously developed [31]. The
coefficient βb was defined as:

βb =
Sb

Sbp

(2.6)

where Sb and Sbp are the bearing stress and the by-pass stress respectively and are
defined as:

Sb =
Pb

dt
(2.7)

Sbp =
Pbp

(w − d) t
(2.8)



2.2. STRESS ANALYSIS 15

where Pb and Pbp are respectively the load reacted at the hole and the by-pass load.
It was highlighted that, for a constant bearing stress, βb has a substantial influence
on the contact angle and peak stress at the hole boundary: when βb decreases the
contact angle φ increases. If a tensile by-pass load is applied, increasing Sbp the
hoop stress significantly increases and its peak is located near the contact region. If
a compressive by-pass load is applied, increasing |Snp| the peak value of the hoop
stress becomes compressive.

2.2.3 Strength prediction methods

The joint strength depends on the definition of the failure: the maximum load
supported by the joint, the maximum elongation of the hole [52], the first peak, the
first non linearity in the load vs. displacement plot [3] and the load at which crack
onset occurs [53].

2.2.3.1 Failure Theories

Several authors [54–57] used the peak local stress on the boundary and a failure
theory to predict the laminate strength.

Waszczak and Cruse [54] defined a criterion using the peak stress, the peak
strain and the distortional energy. Hart-Smith [4] noticed that the use of these
failure theories gives a conservative prediction because the real value of stress at
the hole boundary is lower than the elastic one. This is due to the hole size effect
(the strength decreases for larger holes). As noticed by Crews [58] and Whitney
and Nuismer [59], small holes are interested by high stresses in small regions. The
localized damage reduces the stresses and redistribute the load. This effect is less
pronounced for large holes.

2.2.3.2 Two-parameter methods

The parameters considered by these methods are the unnotched tensile strength and
a characteristic dimension. Two methods are used: the point stress and the average
stress method that compare the strength of the unnotched material with the direct
stress and the average stress respectively.

Agarwal [60] proposed to modify the average stress criterion. If case of tension
failure the stress (normal to the applied load) is averaged over a distance a0t along
the lines AB as shown in Figure 2.11.

Tension failure occurs when the averaged stress over a distance a0t (assumed
equal to 0.229 cm) along AB, A′B′ and A′′B′′ reached the laminate tensile strength
in the direction tangent to the point A, A′, A′′ respectively. The same procedure was
used to predict bearing failure (the average stress was calculated over a0c, assumed
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Figure 2.11: Definition of characteristic lengths [60].

equal to 0.622 cm) along CD, C ′D′ and C ′′D′′ and shear-out failure (average shear
stress along EF assuming a0s equal to 1.143 cm). It was concluded that the accuracy
of the method depends on the laminate lay-up.

Wilson and Pipes [61] proposed a point stress criterion to study the influence of
e/d and w/d on the shear-out strength. The stress distribution on the shear plane
was obtained using a FE model. The characteristic distance was assumed:

d0s =
1

c⋆

(

R

R0

)m⋆

(2.9)

where R is the hole radius, R0 a reference radius and c⋆ and m⋆ two parameters
experimentally obtained.

For a [45/0/-45/02/-45/0/45/02/90]s laminate, good agreement was found be-
tween predicted shear-out strength and experimental results obtained for three fas-
tener sizes.

2.2.4 Combined methods

Combined methods use a combination of a characteristic distance [59] and a failure
theory and were used by several authors [62–67].

Chang et al. [62] used the Yamada-Sun [68] failure criterion together with a
proposed characteristic curve in a 2D FE model.

The Yamada-Sun [68] failure criterion is expressed as:

(σ11

X

)2

+

(

σ12

Sc

)2

= e2f (2.10)
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where σ11 and σ12 are respectively the longitudinal and shear stress in a ply, X is
the ply longitudinal strength and Sc the ply shear strength measured from a cross-
ply laminate. Failure occurs when ef ≥ 1. The characteristic curve represented in
Figure 2.12 was defined as:

rc (θ) =
d

2
+ d0t + (d0c + d0t) cos θ (2.11)

d0t and doc are the characteristic dimensions for tension and compression, respec-
tively. Both parameters were obtained experimentally.

Figure 2.12: Characteristic curve [62].

Chang et al. [67] used a previous work [62] to account for the non-linear shear
stress-shear strain relation in the Yamada-Sun [68] criterion. Hahn and Tsai [69]
formula was used:

γxy =

(

1

Gxy

)

σxy + α1σ
3
xy (2.12)

where α1 is an empirical constant. It was shown that for cross-ply and angle-ply
laminates predictions agreed well with experimental data.

2.2.5 Progressive damage models

Progressive damage models try to simulate damage initiation and growth using
degradation models that are function of the type of damage predicted [70–89].
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The progressive damage model developed by Chang and Chang [70] is able to pre-
dict tensile and shear-out failures of notched laminates [71]. Four different damage
mechanisms were considered: matrix cracking, fibre-matrix shearing, fibre fracture
and matrix compressive failure. Matrix cracking was predicted using the Yamada-
Sun failure criterion [68]:

(σ22

Y

)2

+

σ2
12

2G12
+

3α1σ
4
12

4

S2
c

2G12
+ 3α1S4

c

4

= e2f (2.13)

where Y is the transverse tensile strength of a ply. When at one position in any of
the plies in a laminate ef is equal to or greater than 1, matrix cracking is assumed
to occur in that position and layer. Both fibre-matrix shearing failure and fibre
fracture were predicted using the Yamada-Sun [68] criterion:

(σ11

X

)2

+

σ2
12

2G12
+

3α1σ
4
12

4

S2
c

2G12
+ 3α1S4

c

4

= e2f (2.14)

where X is the longitudinal tensile strength of a ply. Matrix compressive failure was
predicted using the Hashin failure criterion [90]:

[

(

Yc

2Sc

)2

− 1

]

σ22

Yc

+

(

σ22

2Sc

)2

+

σ2
12

2G12
+

3α1σ
4
12

4

S2
c

2G12
+ 3α1S4

c

4

= e2f (2.15)

The material properties are modified when damage occurs, and this depends
upon the failure mechanisms. When matrix failure occurs is assumed that E22, ν21 =
0. If fiber failure occurs E22, ν21 = 0 and the longitudinal modulus E11 and the shear
modulus G12 vary following a Weibull distribution:
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where Ed
11 andGd

12 are the reduced moduli, δf is the fibre failure interaction zone [91],
A is the damage zone predicted by the failure criterion and β⋆

1 is the shape of the
Weibull distribution for the property degradation. Once damage propagated across
the laminate, total failure was assumed to occur. It was shown that for a large
number of laminate configurations and geometries the error was less than 20%. In
other work [74,75], the effect of matrix cracking on the elastic properties was modeled
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taking into account the analysis of cracked lamina and not assuming simply that
E22, ν21 = 0.

Lessard and Shokrieh [84] used 2D linear and non-linear models to predict the
strength of pin-loaded holes. Matrix tensile and compressive failure, fibre-matrix
shearing and fibre tensile failure were considered and predicted using the Hashin [90]
failure criterion:

(

σ11

Xc

)2

> 1, σ11 < 0 (2.18)

where Xc is the longitudinal compressive strength. Once again, when matrix failure
occurs it is assumed that E22, ν21 become equal to zero while if fibre-matrix shearing
occurs is assumed that ν12, ν21, G12 are zero. In case of fiber failure all elastic pa-
rameters are assumed to be equal to 0. It was shown that for several combinations
of e/d and w/d the model was able to predict the strength and the failure modes
of a [0/±45/90]s CFRP laminate. The non-linear model was based on Chang and
Lessard [72] work, and resulted in an improved prediction of the bearing failure load.

Chen et al. [41] proposed a 3D model capable of predicting delamination onset
based on the Ye [92] delamination criterion. The criterion takes the form:
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σ33
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)2
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+
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≥ 1, σ33 > 0 (2.19)

(

σ31

Z31

)2

+

(

σ23

Z23

)2

≥ 1, σ33 ≤ 0 (2.20)

For [06/906]s and [906/06]s laminates it was concluded that increasing friction de-
creased the delamination onset region at the bearing plane, but enlarged the delam-
ination onset region along the other zones of contact. Different delamination onset
regions were obtained for different lay-ups.

2.2.6 Application to multi-fastener joints

Many authors used the strength prediction methods previously described to predict
the strength of multi-holes joints [93–95].

Naik and Crews [56, 57] studied the effects of the bearing stress and of by-
pass stress ratio, β (see equations (2.6-2.8)) on a single fastener of a multi-fastener
joint. The bearing-by-pass diagram for a [0/45/90/-45]2s CFRP laminate is shown
in Figure 2.13.
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Figure 2.13: Bearing-by-pass diagram for damage onset strength [56].

where ◦ represents measured bearing stress Sb and by-pass stress Snp values at which
damage occurs and NT, TRB, NC, CRB indicate the failure mode: net-section
tension, tension reacted bearing, net-section compression and compression reacted
bearing respectively. The authors highlighted that for by-pass loading ( βb = 0) the
specimens failed soon after damage onset, while for bearing loading (βb = ±∞) the
specimens failed at an higher load respect to the damage onset load.

2.3 Relaxation in composite joints

The viscoelastic behavior of composites has to be considered during the design of a
joint, especially for severe environmental conditions. In fact, creep and relaxation
effects are amplified if high temperatures or moisture are present. Viscoelastic effects
mainly influence the matrix-dominated properties: for a composite joint, relaxation
modifies the value of the preload, and therefore the capacity to support a given load.

2.3.1 Experimental studies

Shivakumar and Crews [96, 97] investigated the clamp-up relaxation in T300/5208
laminates. Three environment’s temperature were investigated: the room-temperature
dry (RTD), the room-temperature ambient (RTA, specific humidity SH=0.46%),
the elevated temperature (66◦C) dry (ETD). A torque of 5.65 Nm was applied to
double-shear bolted joints and the specimens were kept at the chosen environment
conditions for 100 days. Specimens showed a relaxation of 12% for RTD and EDT
and of 14% for RTA conditions.

Horn and Schmitt [98,99] studied the effect of fastener type and torque on clamp-
ing relaxation of carbon-fiber single-bolted joint. Titanium bolts were installed with
torques of 6.8 and 11.3 Nm. It was shown that after 1000 hours all the specimens
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showed a relaxation between 3.8% and 19.3%. To investigate the effect of the bolt’s
relaxation on the bearing strength, the joints were tested before and after ageing:
it was shown that the influence of relaxation on the bearing strength is negligible.

Thoppul et al. [100] performed a comprehensive study on the effects of various
bolt pre-loads, viscoelasticity and external applied static and dynamic loads on bolt
load relaxation in carbon/epoxy bolted joints. Four levels of preload were selected:
4200 N, 5050 N, 6700 N and 7850 N that correspond to 12.5%, 15%, 20% and 23.5%
of the maximum tensile load. The joint were tested in a 3-point bending test to
study the combined effect of shear and bending. After applying an initial preload
to the composite bolted joint, the bolt load was monitored for a period of 30 h for
the following cases:

• bolt preload in the absence of external beam load;

• bolt preload plus a static applied load of 250 N at the beam midspan;

• bolt preload plus a dynamic load of 250 N amplitude and frequencies of 1 Hz
and 5 Hz at the beam midspan.

It was shown that, depending on the external load, in 30 hours the relaxation is
1.25-4.25%. It was also shown that increasing the preload decreases the relaxation
and it is concluded that a sufficiently high preload should be provided. Comparing
the bolt relaxation in steel and in composite joint it is possible to conclud that only
1/3 of the relaxation in composite joints is justified by the viscoelastic behavior
of the resin while the remaining 2/3 of the relaxation is due to other mechanisms
(tread slip, plasticity, external load).

2.3.2 FE analyses

To develop numerical models able to simulate the viscoelastic behavior of composite
joints several authors [96,97,100,101] used the data presented by Kibler and Carter
[102] and by Beckwith [103] respectively for epoxy 5208 and for Shell 58-68 epoxy at
75◦F (24◦C). The lamina properties are calculated from micro-mechanical equations
assuming that:

• the fibers have a linear elastic behavior;

• the composite is orthotropic and transversely isotropic;

• the matrix has a linear-viscoelastic behavior that can be described by a power
law:

D (t) = D0 +D1t
n (2.21)

where

– D (t) is the time dependent isotropic creep compliance of the matrix;
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– D0 is the initial elastic compliance of matrix;

– D1 is the creep coefficient of the matrix;

– t is the time;

– n is a dimensionless creep exponent.

• the matrix obeys hygrothermal shift factor rules for time-temperature/moisture
superposition;

• the viscoelastic response depends only on the time computed since the appli-
cation of the load;

• the effective time-dependent compliance, D(t), for the polymer matrix resin
is often represented by the empirical power law equation for creep compli-
ance [102].

To account for effects of temperature and moisture by using hygrothermal shift
factors, aTH , equation (2.21) can be written as [104]:

D (t) = D0 +D1

(

t

aTH

)n

(2.22)

A time-dependent matrix modulus, Em(t), can be estimated as [102]:

Em(t) ≈
(

1

D(t)

)

(2.23)

The viscoelastic properties of the lamina can be estimated using elastic fiber
properties and time-dependent viscoelastic resin properties [105].

Using this procedure, Shivakumar and Crews [96] investigated the effects of vis-
coelasticity, temperature and moisture on the clamping load of T300/5208 laminates
using a 2D FE model. Relaxation of bolt load was predicted for three steady state
temperatures (23◦C, 66◦C and 121◦C), for four moisture levels (0%, 0.5%, 1% and
1.5%) and for 1 day, 1 month, 1 year, 20 year exposure durations. The results showed
a 8% reduction in bolt load at RTD (23◦C and 0% moisture) conditions for the 1
day period and relaxation of 31% for the 20 year duration. It was highlighted that
increasing temperature and moisture levels increases the relaxation rate. Moreover
it was found that the relaxation due to environmental conditions are additive to the
viscoelastic effects. A simple equation was proposed to calculate the time-dependent
bolt clamp-up force/preload, Ft:

Ft =
F0

1 + F1tn
(2.24)



2.4. EFFECTS OF ENVIRONMENTAL CONDITIONS 23

where F1 and n are empirical constants obtained fitting the FE results for RTD case
and F0 represents the initial value of the preload. If it should take into account
the effect of the moisture the equation (2.24) should be modified introducing the
shift-factor aTH as:

Ft =
F0

1 + F1(t/aTH)n
(2.25)

Equations (2.24)-(2.25) can be used to determine the relaxation only in the case
of steady state temperature and moisture conditions.

Shivakumar and Crews [97] extended their previous work to transient tempera-
ture and moisture conditions using a small increment time method.A general equa-
tion to calculate bolt load relaxation was proposed:

Ft =
N
∑

i=1

∆F0i

1 + F1

(

∑N

j=1
tj+1−tj
(aTH)j

)n (2.26)

where:

• ∆F0i is the elastic clamp-up increment for the ith time interval;

• (aTH)j is the shift-factor at jth time interval;

• N is the total interval number.

Recently, 3D joint models have been used to predict the effect of viscoelasticity.
Gibson [105] used an approximate quasi-static approach to evaluate the bolt relax-
ation. In this approach, the quasi-elastic solutions were approximated by a series
of elastic solutions corresponding to different elastic properties at different times,
while the stresses were assumed to be constant during each time increment.

Thoppul et al. [101] compared the relaxation predictions made from an ABAQUS
[106] viscoelastic solution with those from the quasi-elastic approach for an unrein-
forced isotropic epoxy beam. The bolt preload relaxation was predicted for different
static and dynamic loads using both viscoelastic and quasi-elastic approaches. Re-
laxation of about 4.75% in the bolt preload was predicted for a period of 50 h, and
the difference between viscoelastic and quasi-elastic predictions was shown to be less
than 2%.

2.4 Effects of environmental conditions

As previously described the thermal and hygroscopic effects have a significant influ-
ence on the behavior of polymer-matrix materials.

Hygrothermal changes of the environment influence the composite behavior mainly
in two ways [105]:
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Figure 2.14: Stiffness as a function of temperature for a typical polymer matrix
material [105].

• when the temperature increases and becames higher than the glass-transition
temperature, Tg, the polymer becomes softer and cannot be used in structural
applications. Figure 2.14 shows this effect. The glass-transition temperature
in dry conditions is indicated as Tg0, while, when the material is fully wet Mm,
the wet glass transition temperature is denoted by Tgw;

• increase or decrease temperature or moisture cause differential residual hy-
grothermal stresses and strains.

Therefore, environmental conditions may influence the failure and the strength of
both bolted [107–116] or pinned [117–120] composite joints and for these reasons
these effects have to be taken into account.

2.5 State of art in the railway industry

Currently, the use of composites is often limited to the aerospace and automotive
industries. While it is possible to find in the railway industry some examples of the
use of composites, their use is limited to non structural parts (cab, skirts, interiors,
etc..). Composites are limited to high-speed trains (secondary structures) and are
absent in other kind of trains, such as tramway and metro. This results from the
fact that the use of composite requires a know-how that the railways industry does
not currently have, and for this reason metals are preferred.

However the use of composites is a vital issue for the railway industry. In fact,
their advantages are numerous:

• it allows to reduce the weight and consequently the energy necessary for the
transportation;
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• it reduces the cost of manufacturing: if the design is correctly performed
(integration of functions) a structure manufactured in composites requires less
parts and consequently less time to be assembled or disassembled.

• it reduces the recurring costs because composite structures require less main-
tenance than metal structures.

2.5.1 Comparison of different technologies

In the railway industry, the principal issue related with the use of composites is
to find the way to substitute an original structure (that generally is manufactured
in aluminum or steel) with another one, manufactured in composites, that gives
the same or better performances. Obviously, the new technical solution can only be
accepted if a gain in mass and in cost is obtained. Therefore if the composite version
of a structure does not ensure these gains in mass and in cost, the solution cannot
be accepted. Consequently, it is important to make a comparison between different
technologies to evaluate that one that gives the best performance in reduction of
weight and cost. Three different carbody-shell can be compared [1]:

• the carbody-shell manufactured completely in aluminum (aluminum carbody-
shell, standard);

• the carbody-shell manufactured completely in composites (composite carbody-
shell);

• the carbody-shell manufactured using steel and composites (hybrid carbody-
shell).

It was shown that the hybrid solution gives the best performances [1]. It can be
estimated that an hybrid carbody shell leads to a gain in mass of about 12-24% and
a gain in cost of about 20%. Improved performance could be reached by developing
enhanced design methods.

2.5.2 Connections in railway industry

Given that a hybrid carbody shell assures the best performance for the next gener-
ation of train designs, the most difficult task concerns the design of joints between
dissimilar materials (metals and composites). The section of a carbody shell and
the main connections are shown in Figure 2.15:

• the connection between the main frame and the floor, A1;

• the connection between the carbody shell and the top floor, A2 (in case of a
double deck carbody shell);

• the connection between the main frame and the carbody shell, B;
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• the connection between the carbody shell and the roof, C.

Figure 2.16 shows the details of these connections. Figure 2.16(a) shows the
current connection between the floor and the main frame. The roof is manufactured
in aluminum and is riveted or bolted to the main frame (manufactured in steel).
In the future, the floor would be manufactured using glass fiber reinforced compos-
ites. Figure 2.16(b) shows the connection of the top floor of a double deck with the
carbody shell. Currently, the floor is an aluminum profile, but it could be manufac-
tured using a sandwich structure. Figure 2.16(c) represents the connection between
the main frame and the carbody shell. This connection has to be made using two
different materials. In fact, the internal panel cannot be toxic, while the external
panel must have a good fire resistance [121]. For this reason, the internal panel can
be manufactured in phenolic resin, while the external panel can be manufactured in
vinylester resin. Figure 2.16(d) shows the connection between the carbody-shell and
the roof. Identical considerations as above can be done for the selection of the ma-
terials of external and internal panel. The roof could be manufactured in vinylester
resins or in epoxy to have better impact performance.

It is possible to find an analogy between the structural connections of Figure 2.15
and the simple connections like single or double lap joint.

To understand how all these materials behave, an experimental campaign is
conducted and it is presented in Chapter 3. Different parameters are considered in
the experimental work:

• geometrical parameters like e, w, d;

• the different of material used (steel-glass fiber,etc...)

The experimental results will be used to obtain design charts that can be used
to estimate in a easy and quick way the strength of a bolted joint.
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Figure 2.15: Main connections in a carbody shell.

(a) A1 connection

(b) A2 connection (c) B connection (d) C connection

Figure 2.16: Main connections in a carbody shell: details.
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Chapter 3

Experimental Work

This chapter describes the experimental work done performed on bolted joints with
different materials and joint configurations. The experiments aim to characterize
the behavior of the joint when the geometric parameters (w, e, d) vary, and to com-
pare different composite materials for multi-material bolted joints. In the previous
chapter (see Section 2.5.2) the typical joints that are used in railway applications
were described, and it was shown how it is possible to find an analogy between a
structural connection and a simple test configuration. It was found that it is possible
to obtain relevant information on the strength of the joint if two types of tests are
performed:

• the test for evaluating the bearing response of the composite;

• the test for measuring the fastener pull-trough resistance of the laminate.

The first test was performed using two different joint configurations: the double-
lap joint and the single lap-joint. Also, the three point bending test was performed to
evaluate the flexural properties of the laminates. The materials used to manufacture
the joints are metals and composites that are commonly used in the railway industry.

3.1 Materials used

3.1.1 Metals

The metals used are:

• steel S500MC;

• aluminum 6082 T6.

Both materials are intensively used in the manufacture of trains. The mechanical
properties of these materials, reported in Table 3.1, were obtained from the European

29
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norms [122,123]. Figure 3.1 shows the true-stress/true-strain curve of the materials
used.

Table 3.1: Mechanical properties of metals used

material E (MPa) ν σy (MPa) ρ (kg/m3) hardening law

S500MC 210000 0.3 500 7850 σ = 800ε0.745 [124]
6082 T6 70000 0.34 260 2700 σ = 460ε0.11
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Figure 3.1: True-stress true-strain curve for metals used

3.1.2 Composites

The composites used are:

• Fiber Glass-epoxy composite1;

• Fiber Glass-vinylester composite2;

• Fiber Glass-phenolic composite2

The glass-fiber(GF)-epoxy panel was manufactured using Hexply R©M9/M10 prepregs
with a ply orientation pattern of [±45/90/± 45/0/± 45]S. The 0-90 plies have an
initial thickness (thickness of the prepreg before lamination and curing) of 0.8 mm,

1Manufactured by Ecole des Mines de Douai
2Manufactured by Composites Aquitaine, EADS group
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and the ±45 plies have a thickness of 0.6 mm. After curing, the nominal thickness
of each ply is 0.5 mm and 0.4 mm for the 0-90 plies and for the ±45 plies respec-
tively. The characteristics of the unidirectional lamina of the GF-epoxy composite
are given by the supplier (Hexcel Composites) and are reported in Table 3.2.

The other laminates (i.e. GF-vinylester, GF-phenolic) were manufactured using
the technique of resin infusion and they have the quasi-isotropic lay-up reported in
Table 3.3. The mechanical properties of these laminates were measured by Compos-
ites Aquitaine and are reported in Table 3.4. The material was tested after a heat
ageing treatment according to the AFNOR norm [125].

Table 3.2: Material properties of GF-epoxy UD laminate

E (GPa) 3.2
XT (MPa) 85
εR (%) 3.75

Table 3.3: Orientation pattern for GF-vinylester / phenolic composite

ply type of product name supplier

14 ±45◦ − 610 g/m2 EBX 600 SELCOM
13 90◦ − 600 g/m2 roving UD 600 CHOMARAT GAZECHIM
12 ±45◦ − 610 g/m2 EBX 600 SELCOM
11 90◦ − 600 g/m2 roving UD 600 CHOMARAT GAZECHIM
10 ±45◦ − 610 g/m2 EBX 600 SELCOM
9 0◦ − 1246 g/m2 UNIE 1200 SELCOM
8 ±45◦ − 610 g/m2 EBX 600 SELCOM
7 ±45◦ − 610 g/m2 EBX 600 SELCOM
6 0◦ − 1246 g/m2 UNIE 1200 SELCOM
5 ±45◦ − 610 g/m2 EBX 600 SELCOM
4 90◦ − 600 g/m2 roving UD 600 CHOMARAT GAZECHIM
3 ±45◦ − 610 g/m2 EBX 600 SELCOM
2 ±90◦ − 600 g/m2 roving UD 600 CHOMARAT GAZECHIM
1 ±45◦ − 610 g/m2 EBX 600 SELCOM
isoftalic poliester gelcoat GCI S90000 VM10 SAF 1 POLYPROCESS
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Table 3.4: Mechanical properties of GF-vinylester
and phenolic UD laminate

materials GF-vinylestera GF-phenolicb

E1 (MPa) 42830 35200
E2 = E3 (MPa) 1530 3000

ν12 0.35 0.35
ν13 = ν23 0.3 0.3
G12 (MPa) 2800 3400

G13 = G23 (MPa) 2800 3400
XT (MPa) 350 355

YT = ZT (MPa) 35 35
XC (MPa) 300 300

YC = ZC (MPa) 30 30
ST (MPa) 10 19
SL (MPa) 22 14
ρ (kg/m3) 1863 1900

a Heat ageing @ 90◦C for 24 hours
b Heat ageing @ 80◦C for 24 hours

3.2 Strain gauges

3.2.1 Selection of strain gauges

The strain gauges used in this work are of the type C2A-13-125LW-350 (see Table
3.5). These general purpose strain gages are produced by Vishay Micro-Measurements.
These strain gauges were chosen due to the following reasons:

• Their 350 Ω resistance, associated with a high voltage supply, promotes a
better hysteresis effect and the zero load stability;

• The strain gauges already incorporate electrical wiring allowing the remaining
electrical cables to be welded without damaging the composite material;

• The grid size is approximately ten times bigger than the fibre diameter, allow-
ing the characterization of the composite material;

• The strain gauges are compensated for aluminum. Taking into account that
the tests will be performed at constant temperature, the effect of small tem-
perature variations was neglected.

The strain gauges were connected to the data acquisition system, Spider 80, in
quarter-bridge using the three wires technique. To collect the data the software
Catman 3.0 was used.
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Table 3.5: Strain gages technical data

Grid resistance (Ω) 350± 0.6%
Temp. Comp. of gage factor (%/100◦C) +1.3± 0.2

Gage factor @ 24◦C 2.130± 0.5%
Transverse sensitivity (0.3± 0.2)%

3.2.2 Surface preparation

Surface preparation is of crucial importance in strain gauging, because it influences
the quality of the adhesion between the test specimen and the strain gauge. The
surface preparation will be performed as follows:

• Surface degreasing using HBM-RMS1 cleaning solution (acetone and isopropanol);

• Manually abrasion of the specimen surface with sandpaper n◦ 400;

• Degreasing using HBM-RMS1 to assure a total removal of all the possible dust
and grease that may remain on the specimen surface.

3.2.3 Strain gauge bonding

After the cleaning process, and to complete the strain gauging process, it was nec-
essary to execute the steps described beneath:

• Orientation guidelines were drawn upon the specimen surface to aid the correct
alignment of the strain gauge;

• The strain gage was finally glued using MBOND 200, which is a cyanoacrylate
adhesive.

After these steps, the specimens were ready to be soldered to the data acquisition
system wires. The strain gages were installed according to the representation shown
in Figure 3.2.

Figure 3.2: Strain gage installation
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3.3 Test Plan and Taguchi method

3.3.1 Definition of the geometry

It was shown in the previous chapter that the behavior of the specimens (strength
and type of damage) depends on three parameters that are the diameter of the hole,
the edge-distance and the width of the specimen. It was shown how the width and
the edge distance influences the failure of the joint (2.1.2). In fact, when the ratio
w/d is approximately smaller than 3, the specimen exhibits a net-tension failure
while if w/d is larger the specimens exhibit a bearing failure. In the same way,
the ratio e/d influences the failure of the specimen; if e/d is smaller than 4 the
specimens exhibit shear-out failure while, if e/d is bigger, bearing occurs 3. As
showed by Camanho et al. [126] the diameter has also an influence on the behavior
of the specimen because it influences the characteristics dimensions in tension and
in compression. Therefore, it is necessary to study the influence of these three
parameters in the mechanical response of the joints manufactured using the material
selected. For this purpose, the Taguchi method [127] may be used. If only two levels
for each variable are considered the use of a Two-Level Full Factorial Design requires
23 = 8 runs for each material combination. In Table 3.6 the 23 factorial design (plus
and minus signs are the two levels for each factor, a, b, c are the three variables and
A, B, C are the effects of each variable) is reported. For 8 combinations using 3
specimens per test the total number of tests is equal to 23× 8× 3 = 128.

Table 3.6: 23 Factorial Design

Factorial Effect

Variable combination I A B C AB AC BC ABC

a + + - - - - + +
b + - + - - + - +
c + - - + + - - +

abc + + + + + + + +

ab + + + - + - - -
ac + + - + - + - -
bc + - + + - - + -
(1) + - - - + + + -

However, it is reasonable to assume that certain high-order interactions are neg-
ligible and to obtain information on the main effects and low order interactions only
a fraction of the complete factorial experiment plan is required [128,129]. It can be

3These consideration are rigorous for carbon-fiber composites but they can be generalized for
different types of composites
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assumed, for example, that only half of the full-factorial design that corresponds to
the above part of Table 3.6 is executed. In this case, using the linear combination
of the observations to estimate the main effects A, B and C it is possible to write:

eA =
1

2
(a− b− c+ abc) (3.1)

eB =
1

2
(−a+ b− c+ abc) (3.2)

eC =
1

2
(−a− b+ c+ abc) (3.3)

and the two factors iteration can be written as:

eBC =
1

2
(a− b− c+ abc) (3.4)

eAC =
1

2
(−a+ b− c+ abc) (3.5)

eAB =
1

2
(−a− b+ c+ abc) (3.6)

Thus the following relations can be written: eA = eBC , eB = eAC , eC = eAB;
consequently it is impossible to differentiate, for example, between the A and BC.
In fact when A, B and C are estimated using equations (3.1)-(3.3), the values of
A + BC, B + AC and C + AB are really estimated. However if the two-levels
interactions can be neglected also the error in evaluating principal effects can be
neglected.

In the case under investigation here, there are three parameters d, e/d and w/d
and so the two-levels interactions for these parameters are (d; e/d),(d;w/d) and
(w/d; e/d). The interaction between (d; e/d) can be neglected; in fact it is known
that the resistance and the behavior of the joint (shear-out or bearing) depends
only on e/d parameter and so there are not interactions. In the same way, there
are no interactions between (d;w/d); in this case the resistance and the behavior of
the joint (net-tension and bearing) depends only on the w/d parameter. Also the
interaction (w/d; e/d) can be neglected. Suppose, for example, that a joint has a
w/d lower than 3. In this case if the other parameter, e/d, is equal to 5 or 10 the
behavior of the joint does not change because it is a net-tension joint4. The same
thing happens in a joint that has, for example, the e/d parameter lower than 3;
changing the other parameter the behavior of the joint does not change and it will
be always a shear-out specimen.

After these considerations, the experimental plan for the tests is designed. For
each variable it is necessary to decide two levels, ( )+ and ( )−:

d− = 6 mm d+ = 10 mm (3.7)

4Rigorously if the parameter e/d became smaller than 3 the specimen could show a mixed
behavior (net-tension / shear-out / cleavage). However, generally, at least one parameters larger
than the critical value that differentiates between shear-out / net-tension and bearing behavior.



36 CHAPTER 3. EXPERIMENTAL WORK

Figure 3.3: Specimens’ geometry

(e/d)− = 2 (e/d)+ = 4 (3.8)

(w/d)− = 3 (w/d)+ = 5 (3.9)

The experimental plan is shown in Table 3.7.

Table 3.7: Experimental plan

run D w/D e/D

1 10 3 2
2 6 5 2
3 6 3 4
4 10 5 4

3.3.2 Samples denomination

The specimens are identified in terms of the materials, the geometry and the type
of the test. Three specimens were used for each type of test.

3.3.2.1 Three-point bending test (3PB)

The denomination of the specimen is the following:

C-M-I
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where M is the material used and I is the index that identify the number of the
sample:

• M=E (GF-epoxy), V (GF-vinylester), P (GF-phenolic);

• I=1,2,3

3.3.2.2 Double-lap bolted joint (DBJ)

The denomination of the specimen is the following:

M-J-I

where M is the material used, J is the index that identifies the geometry and I is
the index that identifies the number of the sample. For our case we have:

• M=E (GF-epoxy), V (GF-vinylester), P (GF-phenolic);

• J=1,2,3,4;

• I=1,2,3

3.3.2.3 Single-lap bolted joint (SBJ)

For SBJ specimens there are two different materials and so the denomination of the
specimen is the following:

M1-M2-J-I

where M1 and M2 are the material used, J and I have the same meaning and the
same values that for BDJ:

• M1=S (steel), A (aluminum), V (GF-vinylester);

• M2=E (GF-epoxy), V, P (GF-phenolic);

3.3.2.4 Pull-Trough test (PT)

For PT specimens the following denomination was used:

PT-M-d-I

where M is the material, d is the diameter (in millimeter) of the hole and I is
the number of the sample. M and I take the same values that were used in the
denomination of DBJ specimen. The d parameter takes the values d=6, 10.
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3.4 Specimen preparation

The laminates were cut using a wet cutting tile saw according to the dimensions spec-
ified in ASTM norms [3,130]. The dimensions of the specimen (shown in Figure 3.2)
were respected with a tolerance of 0.1 mm. The specimens were afterwards drilled
and the strain gages were installed as explained in Section 3.2. Figure 3.4 shows
the specimens after the installation of the strain gages. Metal tabs (in aluminum)
are bonded on the specimen and, at the end, bolts are inserted and preloaded (see
Section 3.4.2).

Figure 3.4: Specimens after the installation of the strain gauges

3.4.1 Hole Drilling

The method for the hole generation consists in drilling the laminate, which is sup-
ported by sacrificial frontal and backing plates.

Considering that 2 specimens are drilled in each operation, hard metal drills
with a tip angle of 140, for hole generations only, were used. The drills are manu-
factured by SGS Tool Company and are compliant with the DIN338 standard. The
commercial reference of the drills is DIN 338 - Standard Length Drills.

All holes were machined to achieve the tolerance of -0/ + 70 µm used in the
aerospace applications as reported in [126].

3.4.2 Bolts, characteristics and installation

To avoid plastic deformation at the bolts, high-strength bolts were chosen. The
bolts selected are manufactured by UNBRAKO and they have the following char-
acteristics:
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• Treads: ANSI B1.13M, ISO 261

• Property class: 12.9-ISO 898/1

• Material: ASTM A574M, DIN ENISO 4762-alloy steel

• Hardness: Rc 38-43

• Tensile Stress: 1300 MPa

• Yield Stress 1170 MPa

Figure 3.5 shows the bolt’s geometry and Table 3.8 shows the geometric parameters
of the bolt selected. The bolts were installed using the general purpose washers
having the dimensions shown in Table 3.9.

The pre-load applied to the bolt was defined imposing a 22MPa pressure to the
washer. Therefore the values of pretension torque was calculated using:

T = KFidmin (3.10)

where K is a factor that in standard conditions is equal to 0.2, Fi is the force applied
to the screw and dmin is the minimum diameter of the screw. Using equation (3.10)
the torques are Td=10 = 10 N/m and Td=6 = 2 N/m.

Figure 3.5: Unbrako bolts

Table 3.8: Bolts’ mechanical properties and geometry

Dc pitch Aa Da H a Jc G b T b L c Strength b

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (kN)

M6 1.0 10.0 6.0 6.0 5.0 2.3 3.0 35.0 26.1
M10 1.5 16.0 10.0 10.0 8.0 4.0 5.0 50.0 75.4
a maximum value
b minimum value
c nominal value
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Table 3.9: Washers’ geometrical parameters

dnom dint dext hnom

(mm) (mm) (mm) (mm)

6 7.5 11.8 1.4
10 10.6 19.6 1.9

3.5 Tests

3.5.1 Calculation and Report

3.5.1.1 Statistics

For each series of tests and for each property measured the average value x, the
standard deviation STDV (sn−1), the coefficient of variation CV and the confidence
interval IC at 95% are calculated using the following equations:

x =

∑n

i=1 xi

n
(3.11)

sn−1 =

√

√

√

√

n
∑

i=1

xi
2 − nx2 (3.12)

CV = 100× sn−1/x (3.13)

IC = t(n−1;2.5%)
sn−1√

n
(3.14)

where:

• xi is the measured or derived property;

• n is the number of the specimens

• t(n−1;2.5%) is the value of the t distribution for a symmetrical 95% confidence
interval.

3.5.1.2 Unities of measure

All measured or derived properties, if it is not otherwise specified, are expressed
using the following unities of measure:

• displacement in mm

• load in N
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• strain in m/m

• stress in MPa

3.5.2 Three Point Bending Test

The 3PB test was performed for two reasons: the first one is to compare the char-
acteristics of the materials without and with heat ageing. The material tested was
not aged as explained in section 3.1.2. Therefore, it is necessary to verify if the
characteristics of the material are the same as those reported in Table 3.4.

The second reason is that the value of the Young modulus of the laminate can
be calculated from the 3PB test. This information will be used for the calculation
of the bearing response of the laminate (Section 3.5.3.3).

The tests were performed in INEGI using the INSTRON 4208 testing machine.
The testing machine was equipped with a load cell of 100kN.

The experimental set-up is shown in Figure 3.6(a). During the test the temper-
ature was t = 23◦C and under the relative humidity of h = 50%.

To calculate the elastic moduli the following formula was used [130]:

EL
x =

PL3

4wh3δ
(3.15)

where δ is the displacement measured by the testing machine, L is the support-span,
P is the load, w and h are width and thickness of the specimens5.

The results are reported in Table 3.10. Figure 3.6(b) shows the load-displacement
curve obtained for different materials during the 3PB test.

5Rigorously the elastic modulus calculated by equation (3.15) is not the real modulus of the
material but the apparent modulus. In [130], in fact, the effects of the shear stresses are neglected.
If the effect of the shear is taken into account the displacement in the middle of the specimen can
be written as:

EL

x =
PL3

4wh3δ
+

3PL

8whG
=

PL3

4wh3δ
(1 + β) (3.16)

Therefore equation (3.15) neglects β. However for an high value of the span this approximation
is valid.
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Table 3.10: Elastic modulus of the specimens tested

specimen E specimen E specimen E
(MPa) (MPa) (MPa)

C-E-1 19861 C-P-1 17595 C-V-1 17387
C-E-2 17882 C-P-2 17615 C-V-2 16788
C-E-3 19663 C-P-3 18085 C-V-3 14644

Average 19135 Average 17765 Average 16273
STDV 1090 STDV 277 STDV 1442
CV (%) 6 CV (%) 2 CV (%) 9
IC (95%) 2708 IC (95%) 689 IC (95%) 3582

(a) equipment-setup
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(b) load vs. displacement for different ma-
terials

Figure 3.6: Three point bending test

3.5.3 Double-lap Bolted Joint

3.5.3.1 Description of the test

This test was done according to the norm ASTM D5961/D5961M-01 [3]. The test
was conducted using the MTS-810 testing machine in FEUP’s laboratories. Figure
3.7 shows the experimental set-up used: the specimen was clamped with a special
fixture defined in the norm, and two LVDTs6 were used to obtain the information
required to calculate the bearing strain in a more accurate way than that defined
in [3] (see Section 3.5.3.3.1). The two LVDTs are also used to measure the eventual
misalignment of the specimen.

The testing machine is equipped with a load cell of 100 kN. For each type of
configuration of the joint a strain gauge is used. The strain gauges were installed

6Linear Variable Differential Transformer.
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only in specimen M-J-1 (see Section 3.3.2.2 ). The speed of the machine in the
displacement controlled test was 2 mm/min.

After each test the damaged specimen was examined and the type of failure
was identified. The type of failure7 was identified for each specimen according to
Figure 2.2.

At the end of each test the eventual plastic deformation of the bolt was also
verified.

Figure 3.7: Equipment set-up for DBJ test

3.5.3.2 Experimental Data

3.5.3.2.1 Results obtained on specimens E-J-I

3.5.3.2.1.1 Specimens E-1-I Figure 3.8 shows the load displacement curve
for the specimens E-1-I. The values of maximum load for each specimen and the
statistics are presented in Table 3.11. Figure 3.9 shows the load-strain curve for
the specimen E-1-1. Finally, Figure 3.10 shows the damaged zone in the specimen
E-1-3. This specimen failed by tear-out and net-tension and showed the presence of
delamination.

7SO=Shear-Out, NT=Net-Tension, CL=Cleavage, TO=Tear-Out BE=Bearing
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Figure 3.8: Load vs. displacement for
E-1-I specimens
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Figure 3.9: Force vs. strain for E-1-1
specimen

Table 3.11: Maximum
load for E-1-I specimens

specimen maximum load

E-1-1 33695 N
E-1-2 32129 N
E-1-3 31408 N

Average 32411N
STDV 1169
CV (%) 4
IC (95%) 2905 N

Figure 3.10: E-1-3 specimen after load-
ing

3.5.3.2.1.2 Specimens E-2-I Figure 3.11 shows the load displacement curve
for the specimens E-2-I. The values of maximum load for each specimen and the
statistics are presented in Table 3.12. Figure 3.12 shows the load-strain curve for
the specimen E-2-1. Finally, Figure 3.13 shows the damaged zone in the specimen
E-2- 3. This specimen failed by net-tension and showed the presence of delamination.
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Figure 3.11: Load vs. displacement for
E-2-I specimens
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Figure 3.12: Load vs. strain for E-2-1
specimen

Table 3.12: Maximum
load for E-2-I specimens

specimen maximum load

E-2-1 23561 N
E-2-2 23268N
E-2-3 24468 N

Average 23766 N
STDV 626
CV (%) 3
IC (95%) 1554 N

Figure 3.13: E-2-3 specimen after load-
ing

3.5.3.2.1.3 Specimens E-3-I Figure 3.14 shows the load displacement curve
for the specimens E-3-I. The values of maximum load for each specimen and the
statistics are presented in Table 3.13. Figure 3.15 shows the load-strain curve for
the specimen E-3-1. Finally, Figure 3.16 shows the damaged zone in the specimen
E-3-3. This specimen failed by tear-out and showed the presence of delamination.
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Figure 3.14: Load vs. displacement for
E-3-I specimens
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Figure 3.15: Load vs. strain for E-3-1
specimen

Table 3.13: Maximum
load for E-3-I specimens

specimen maximum load
E-3-1 19533 N
E-3-2 17511 N
E-3-3 19760 N

Average 18935 N
STDV 1238
CV (%) 7
IC (95%) 3076 N Figure 3.16: E-3-3 specimen after load-

ing

3.5.3.2.1.4 Specimens E-4-I Figure 3.17 shows the load displacement curve
for the specimens E-4-I. The values of maximum load for each specimen and the
statistics are presented in Table 3.14. Figure 3.18 shows the load-strain curve for
the specimen E-4-1.

It should be noted that that the strain measured is not the bearing strain, but
the strain in the point where the strain gage is installed. For this reason, when the
load reaches the critical value the deformation measured by the strain gage decreases
or it remains constant (between 4000µm/m and 6000µm/m after failure occurs).

Finally, Figure 3.19 shows the damaged zone in the specimen E-4-3. This speci-
men failed by bearing and showed the presence of delamination.
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Figure 3.17: Load vs. displacement for
E-4-I specimens
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Figure 3.18: Load vs. strain for E-4-1
specimen

Table 3.14: Maximum load for E-4-I
specimens

specimen first load maximum load

E-4-1 34416 N 37954 N
E-4-2 37037 N 38527 N
E-4-3 37333 N 37333N

Average 36262 N 37938 N
STDV 1606 597
CV (%) 4 2
IC (95%) 3988 N 1483N Figure 3.19: E-4-3 specimen after

loading

3.5.3.2.2 Results obtained on specimens V-J-I

3.5.3.2.2.1 Specimens V-1-I Figure 3.20 shows the load displacement curve
for the specimens V-1-I. The values of maximum load for each specimen and the
statistics are presented in Table 3.15. Figure 3.21 shows the load-strain curve for
the specimen V-1-1. Finally, Figure 3.22 shows the damaged zone in the specimen
V-1-2. This specimen failed by shear-out and cleavage and showed the presence of
delamination.
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Figure 3.20: Load vs. displacement for
V-1-I specimens
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Figure 3.21: Load vs. strain for V-1-1
specimen

Table 3.15: Maximum
load for V-1-I specimens

specimen maximum load

V-1-1 21995N
V-1-2 20843 N
V-1-3 21136 N

Average 21325 N
STDV 599
CV (%) 3
IC (95%) 1487 N

Figure 3.22: V-1-2 specimen after load-
ing

3.5.3.2.2.2 Specimens V-2-I Figure 3.23 shows the load displacement curve
for the specimens V-2-I. The values of maximum load for each specimen and the
statistics are presented in Table 3.16. Figure 3.24 shows the load-strain curve for
the specimen V-2-1. Finally, Figure 3.25 shows the damaged zone in the specimen
V-2-3. This specimen failed by shear-out, bearing and net-tension and showed the
presence of delamination.
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Figure 3.23: Load vs. displacement for
V-2-I specimens
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Figure 3.24: Load vs. strain for V-2-1
specimen

Table 3.16: Maximum
load for V-2-I specimens

specimen maximum load

V-2-1 14134 N
V-2-2 14524N
V-2-3 13703N

Average 14120N
STDV 411
CV (%) 3
IC (95%) 1020 N

Figure 3.25: V-2-3 specimen after load-
ing

3.5.3.2.2.3 Specimens V-3-I Figure 3.26 shows the load displacement curve
for the specimens V-3-I. The values of maximum load for each specimen and the
statistics are presented in Table 3.17. Figure 3.27 shows the load-strain curve for
the specimen V-3-1. Finally, Figure 3.28 shows the damaged zone in the specimen
V-3-2. This specimen failed by shear-out and cleavage and showed the presence of
delamination.
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Figure 3.26: Load vs. displacement for
V-3-I specimens
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Figure 3.27: Load vs. strain for V-3-1
specimen

Table 3.17: Maximum
load for V-3-I specimens

specimen maximum load

V-3-1 14252 N
V-3-2 15431 N
V-3-3 14945 N

Average 14876 N
STDV 593
CV (%) 4
IC (95%) 1472 N

Figure 3.28: V-3-2 specimen after load-
ing

3.5.3.2.2.4 Specimens V-4-I Figure 3.29 shows the load displacement curve
for the specimens V-4-I. The values of maximum load for each specimen and the
statistics are presented in Table 3.18. Figure 3.30 shows the load-strain curve for
the specimen V-4-1. Finally, Figure 3.31 shows the damaged zone in the specimen
V-4-1. This specimen failed by bearing and shear-out and showed the presence of
delamination.
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Figure 3.29: Load vs. displacement for
V-4-I specimens
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Figure 3.30: Load vs. strain for V-4-1
specimen

Table 3.18: Maximum load for V-4-I
specimens

specimen first load maximum load

V-4-1 28779 N 31284N
V-4-2 27862 N 31184 N
V-4-3 26748 N 32377N

Average 27796 N 31615N
STDV 1017 662
CV (%) 4 2
IC (95%) 2527 N 1644 N

Figure 3.31: V-4-1 specimen after
loading

3.5.3.2.3 Results obtained on specimens P-J-I

3.5.3.2.3.1 Specimens P-1-I Figure 3.32 shows the load displacement curve
for the specimens P-1-I. The values of maximum load for each specimen and the
statistics are presented in Table 3.19. Figure 3.33 shows the load-strain curve for
the specimen P-1-1. Finally, Figure 3.34 shows the damaged zone in the specimen
P-1-1. This specimen failed by bearing, shear-out and cleavage and showed the
presence of delamination.
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Figure 3.32: Load vs. displacement for
P-1-I specimens
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Figure 3.33: Load vs. strain for P-1-1
specimen

Table 3.19: Maximum
load for P-1-I specimens

specimen maximum load

P-1-1 23357 N
P-1-2 23468 N
P-1-3 24592 N

Average 23806 N
STDV 683
CV (%) 3
IC (95%) 1697 N

Figure 3.34: P-1-1 specimen after load-
ing

3.5.3.2.3.2 Specimens P-2-I Figure 3.35 shows the load displacement curve
for the specimens P-2-I. The values of maximum load for each specimen and the
statistics are presented in Table 3.20. Figure 3.36 shows the load-strain curve for
the specimen P-2-1. Finally, Figure 3.37 shows the damaged zone in the specimen
P-2-2. This specimen failed by bearing and net tension and showed the presence of
delamination.
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Figure 3.35: Load vs. displacement for
P-2-I specimens
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Figure 3.36: Load vs. strain for P-2-1
specimen

Table 3.20: Maximum
load for P-2-I specimens

specimen maximum load

P-2-1 17028 N
P-2-2 17242 N
P-2-3 17618 N

Average 17296 N
STDV 299
CV (%) 2
IC (95%) 742 N

Figure 3.37: P-2-2 specimen after load-
ing

3.5.3.2.3.3 Specimens P-3-I Figure 3.38 shows the load displacement curve
for the specimens P-3-I. The values of maximum load for each specimen and the
statistics are presented in Table 3.21. Figure 3.39 shows the load-strain curve for
the specimen P-3-1. Finally, Figure 3.40 shows the damaged zone in the specimen
P-3-3. This specimen failed by bearing and cleavage and showed the presence of
delamination.
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Figure 3.38: Load vs. displacement for
P-3-I specimens
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Figure 3.39: Load vs. strain for P-3-1
specimen

Table 3.21: Maximum
load for P-3-I specimens

specimen maximum load

P-3-1 14893 N
P-3-2 15759 N
P-3-3 16114 N

Average 15589 N
STDV 628

CV (%) 4
IC (95%) 1560 N Figure 3.40: P-3-3 specimen after load-

ing

3.5.3.2.3.4 Specimens P-4-I Figure 3.41 shows the load displacement curve
for the specimens P-4-I. The values of maximum load for each specimen and the
statistics are presented in Table 3.22. Figure 3.42 shows the load-strain curve for
the specimen P-4-1. Finally, Figure 3.43 shows the damaged zone in the specimen
P-4-3. This specimen failed by bearing and showed the presence of delamination.
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Figure 3.41: Load vs. displacement for
P-4-I specimens
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Figure 3.42: Load vs. strain for P-4-1
specimen

Table 3.22: Maximum load for P-4-I
specimens

specimen first load maximum load

P-4-1 33360 33360
P-4-2 30276 31884
P-4-3 31080 33377

Average 31572 32874
STDV 1600 857
CV (%) 5 3
IC (95%) 3974 2129

Figure 3.43: P-4-3 specimen after
loading

3.5.3.2.4 Summary for DBJ specimens Table 3.23 presents the statistics
of the maximum load measured for each specimen type. The values obtained are
similar for GF-vinylestyer and GF-phenolic specimens, probably for the reason that
these two material were be manufactured using the same technique (resin infusion)
and because the same lay-up is used.
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Table 3.23: Maximum load for DBJ specimens

specimen Typea Average (N) STDV CV (%) IC @ 95% (N)

E-1-I TO, NT 32411 1169 4 2905
E-2-I NT 23766 626 3 1554
E-3-I TO 18935 1238 7 3076
E-4-I BE 36262 1606 4 3988

V-1-I SO, CL 21325 599 3 1487
V-2-I SO, BE, NT 14120 411 3 1020
V-3-I SO, CL 14876 593 4 1472
V-4-I BE, SO 27796 1017 4 2527

P-1-I BE, SO, CL 23806 683 3 1697
P-2-I BE, NT 17296 299 2 742
P-3-I BE, CL 15589 628 4 1560
P-4-I BE 31572 1600 5 3974

a SO=Shear-Out, NT=Net-Tension, CL=Cleavage, TO=Tear-Out, BE=Bearing

3.5.3.3 Analysis of bearing response (DBJ)

3.5.3.3.1 Correct calculation of εbri To analyze the bearing response of the
specimens it is necessary to calculate the value of the bearing stress (σbr

i ) and the
bearing strain (εbri ) for each specimen. The value of these properties can be calcu-
lated as:

σbr
i =

Pi

dh
(3.17)

εbri =
di − d

d
(3.18)

where:

• σbr
i is the bearing stress;

• εbri is the bearing strain;

• Pi is the load;

• h is the thickness of the specimen;

• d and di are respectively the diameter of the hole before and during the loading.

The suggested expression [3] to evaluate the bearing strain in equation (3.18) is (see
Figure 3.44):
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εbri =
v − v0

d
=

δLV DT

d
(3.19)

where δLV DT is the displacement registered by the LVDT. However as showed by
Camanho et al. [126] equations (3.18) and (3.19) are not completely equivalent. In
fact the ASTM norm [3] neglects the deformation of the specimen. The correct
equation that consider also the deformation of the specimen is:

εbri =
δLV DT − PL0

whEL
x

d
(3.20)

where EL
x is the Young modulus in the direction of the load Pi applied to the bolt.

Note that the value of EL
x has not be calculated but measured during the 3PB test.

Figure 3.44: Correct calculation of bearing strain

3.5.3.3.2 Effective bearing strain In the following plots of the bearing stress
as a function of the bearing strain, the later is not calculated directly using (3.20).
Rather, the effective bearing strain is calculated using equation (3.20) applying a
correction factor to evaluate the effective origin of the plot.

For this purpose the Bearing Chord Stiffness in the essentially linear part of
the bearing stress/bearing strain curve was calculated as Ebr = ∆σbr/∆εbr. The
effective origin is found by intersecting the chord stiffness line with the bearing
strain axis.

3.5.3.3.3 Derived Properties The properties evaluated after the bearing test
are:

• the Offset Bearing Strength at 2%, defined in [3] as the strength calculated as
the intersection between the bearing stress-bearing strain curve and the offset
of the chord line (offset=2%);
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• the Initial Peak Bearing Strength: this is the strength at the initial peak;

• the First Non Linearity Bearing Strength: the strength at the first non-
linearity in the curve.

Tables 3.25-3.27 show that these three values are practically the same and this
is due to the particular material. It should be noted that the Ultimate Strength
(defined as the maximum value of the strength) is not reported; this because the
material shows an initial peak and after that the load does not increase but rather
remains constant or decreases.

These properties depend also on the thickness of the specimens near the hole
that are reported in Table 3.24.

Table 3.24: Thickness of bearing specimens

Specimen h Specimen h Specimen h
(mm) (mm) (mm)

E-4-1 6.45 P-4-1 6.85 V-4-1 6.65
E-4-2 6.45 P-4-2 6.80 V-4-2 6.50
E-4-3 6.45 P-4-3 6.80 V-4-3 6.80

3.5.3.3.4 Experimental results for bearing specimens

3.5.3.3.4.1 Specimens E-4-I The curves of the bearing stress as a function
of the bearing strain are shown in Figure 3.45. Table 3.25 presents the bearing
strengths.
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Figure 3.45: Bearing stress vs. bearing
strain for E-4-I specimens

Table 3.25: Bearing response for E-4-I
specimens

Specimen OBSa 2% IPBSb FNLBSc

E-4-1 562 564 562
E-4-2 566 574 524
E-4-3 567 579 573

Average 565.278 572.556 552.947
STDV 2.544 7.379 25.794
CV (%) 0.450 1.289 4.665
IC (95%) 6.320 18.330 64.077
a Offset Bearing Strength
b Initial Peak Bearing Strength
c First Non-Linearity Bearing Strength



3.5. TESTS 59

3.5.3.3.4.2 Specimens P-4-I The curves of the bearing stress as a function
of the bearing strain are shown in Figure 3.46. Table 3.26 presents the bearing
strengths.
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Figure 3.46: Bearing stress vs. bearing
strain for P-4-I specimens

Table 3.26: Bearing response for P-4-I
specimens

Specimen OBSa 2% IPBSb FNLBSc

P-4-1 441 498 435
P-4-2 436 469 446
P-4-3 463 488 453

Average 446.507 485.010 444.542
STDV 14.656 14.734 9.214
CV (%) 3.282 3.038 2.073
IC (95%) 36.408 36.600 22.890
a Offset Bearing Strength
b Initial Peak Bearing Strength
c First Non-Linearity Bearing Strength

3.5.3.3.4.3 Specimens V-4-I The curves of the bearing stress as a function
of the bearing strain are shown in Figure 3.47. Table 3.27 presents the bearing
strengths.
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Figure 3.47: Bearing stress vs. bearing
strain for V-4-I specimens

Table 3.27: Bearing response for V-4-I
specimens

Specimen OBSa 2% IPBSb FNLBSc

V-4-1 398 444 402
V-4-2 389 390 390
V-4-3 370 396 396

Average 385.531 409.918 395.982
STDV 14.062 29.370 6.038
CV (%) 3.647 7.165 1.525
IC (95%) 34.932 72.959 14.999
a Offset Bearing Strength
b Initial Peak Bearing Strength
c First Non-Linearity Bearing Strength

3.5.3.4 Discussion on results for DBJ

In the previous sections, it was shown that specimens with the same geometry but
different materials exhibit different failure modes. To compare these results it should
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be noted that the laminates tested are all quasi-isotropic but they have different lay-
ups and thickness and they were manufactured using different techniques. For these
reasons, to compare the results the P/h parameter instead that the load P should
be used.

In fact, the different failure modes (net-tension, shear-out, bearing) are related
with different stresses defined for each failure mode as the net-tension stress, the
shear-out stress and the bearing stress (see equations (2.1-2.3)). These stress are
proportional to the P/h ratio and for this reason this parameter it is used to compare
the behavior of different laminates.

Figures 3.48-3.51 show the load-displacement curves and the histograms of the
(P/h)Max ratio for different specimens. The dashed rectangle in the histogram
represents the 95% interval of confidence.

(a) load vs. displacement curves (b) (P/h)
Max

for different materials

Figure 3.48: Comparison of results for specimens #1 (DBJ)

(a) load vs. displacement curves (b) (P/h)
Max

for different materials

Figure 3.49: Comparison of results for specimens #2 (DBJ)
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(a) load vs. displacement curves (b) (P/h)
Max

for different materials

Figure 3.50: Comparison of results for specimens #3 (DBJ)

(a) load vs. displacement curves (b) (P/h)
Max

for different materials

Figure 3.51: Comparison of results for specimens #4 (DBJ)

It is observed that the GF-epoxy specimens exhibit the highest strength. How-
ever, these specimens are characterized by a catastrophic failure while the other
specimens are characterized by a progressive failure after the peak load.

The specimens manufactured with GF-phenolic and GF-vinylester show the same
behavior after the peak load and this is due to the fact that both were manufactured
using the vacuum resin infusion technique.

Regarding the strength of the joint, the GF-epoxy specimens show the best
performances while the GF-vinylester show the worst.

3.5.4 Single-lap Bolted Joint

3.5.4.1 Description of the test

The test was effectuated according to the norm ASTM D5961/D5961M-01 [3].
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The test was conducted using the INSTRON-4208 test machine in the laborato-
ries of INEGI. The experimental set-up used is shown in Figure 3.52 .

The test machine is equipped with a 100kN load cell. For each type of con-
figuration a strain gauge was used. The strain gauges were installed only in the
specimens M1-M2-J-1 (see Section 3.3.2.3). The speed of the machine (displace-
ment controlled test) was 2mm/min. The temperature of the room was 23◦C and
the relative humidity was 50% for all the duration of the tests.

After each test the damaged specimen was examined and the type of failure was
identified. It was observed that the bolts did not suffer any plastic deformation.

Figure 3.52: Equipment set-up for SBJ test

3.5.4.2 Specimens P-A-J-I

3.5.4.2.1 Specimens P-A-1-I Figure 3.53 shows the force-displacement curve
for the specimens P-A-1-I. In Table 3.28 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.54 shows the force-strain curve
for the specimen P-A-1-1. Figure 3.55 shows the damaged zones in the specimen
P-A-1-2.

The composite is damaged and the aluminum deformed plastically, due to the
effect of bending moment. Before complete failure, it is possible to note that some
interlaminar cracks appear in the composite; these cracks are responsible for the
reduction of the stiffness of the specimen. These consideration are valid for all the
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specimens tested.
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Figure 3.53: Load vs. displacement for
P-A-1-I specimens
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Figure 3.54: Load vs. strain for P-A-
1-1 specimen

Table 3.28: Maximum load for P-
A-1-I specimens

specimen maximum load

P-A-1-1 19424
P-A-1-2 20876
P-A-1-3 20884

Average 20395
STDV 841
CV (%) 4
IC (95%) 2088

(a) side view

(b) top view

Figure 3.55: P-A-1-2 specimen after
loading

3.5.4.2.2 Specimens P-A-2-I Figure 3.56 shows the force-displacement curve
for the specimens P-A-2-I. In Table 3.29 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.57 shows the force-strain curve
for the specimen P-A-2-1. Figure 3.58 shows the damaged zones in the specimen
P-A-2-2.
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Figure 3.56: Load vs. displacement for
P-A-2-I specimens
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Figure 3.57: Load vs. strain for P-A-
2-1 specimen

Table 3.29: Maximum load for P-
A-2-I specimens

specimen maximum load

P-A-2-1 11340
P-A-2-2 12456
P-A-2-3 12148

Average 11981
STDV 576
CV (%) 5
IC (95%) 1432

(a) side view

(b) top view

Figure 3.58: P-A-2-2 specimen after
loading

3.5.4.2.3 Specimens P-A-3-I Figure 3.59 shows the force-displacement curve
for the specimens P-A-3-I. In Table 3.30 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.60 shows the force-strain curve
for the specimen P-A-3-1. Figure 3.61 shows the damaged zones in the specimen
P-A-3-3.
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Figure 3.59: Load vs. displacement for
P-A-3-I specimens
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Figure 3.60: Load vs. strain for P-A-
3-1 specimen

Table 3.30: Maximum load for P-
A-3-I specimens

specimen maximum load

P-A-3-1 12540
P-A-3-2 12788
P-A-3-3 13132

Average 12820
STDV 297
CV (%) 2
IC (95%) 739

Figure 3.61: P-A-3-3 specimen after
loading

3.5.4.2.4 Specimens P-A-4-I Figure 3.62 shows the force-displacement curve
for the specimens P-A-4-I. In Table 3.31 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.63 shows the force-strain curve
for the specimen P-A-4-1. Figure 3.64 shows the damaged zones in the specimen
P-A-4-2.
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Figure 3.62: Load vs. displacement for
P-A-4-I specimens

-2000 -1000 0 1000 2000 3000 4000 5000 6000
-5000

0

5000

10000

15000

20000

25000

30000

35000

lo
ad

 (N
)

strain (µm/m)

Figure 3.63: Load vs. strain for P-A-
4-1 specimen

Table 3.31: Maximum load for P-
A-4-I specimens

specimen maximum load

P-A-4-1 34012
P-A-4-2 33236
P-A-4-3 33404

Average 33551
STDV 408
CV (%) 1
IC (95%) 1014

(a) side view

(b) top view

Figure 3.64: P-A-4-2 specimen after
loading

3.5.4.3 Specimens P-S-J-I

3.5.4.3.1 Specimens P-S-1-I Figure 3.65 shows the force-displacement curve
for the specimens P-S-1-I. In Table 3.32 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.66 shows the force-strain curve
for the specimen P-S-1-1. Figure 3.67 shows the damaged zones in the specimen
P-S-1-2.
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Figure 3.65: Load vs. displacement for
P-S-1-I specimens
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Figure 3.66: Load vs. strain for P-S-1-
1 specimen

Table 3.32: Maximum load for P-
S-1-I specimens

specimen maximum load

P-S-1-1 23708
P-S-1-2 22592
P-S-1-3 21412

Average 22571
STDV 1148
CV (%) 5
IC (95%) 2852

(a) side view

(b) top view

Figure 3.67: P-S-1-2 specimen after
loading

3.5.4.3.2 Specimens P-S-2-I Figure 3.68 shows the force-displacement curve
for the specimens P-S-2-I. In Table 3.33 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.69 shows the force-strain curve
for the specimen P-S-2-1. Figure 3.70 shows the damaged zones in the specimen
P-S-2-2.
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Figure 3.68: Load vs. displacement for
P-S-2-I specimens
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Figure 3.69: Load vs. strain for P-S-2-
1 specimen

Table 3.33: Maximum load for P-
S-2-I specimens

specimen maximum load

P-S-2-1 12872
P-S-2-2 13500
P-S-2-3 13632

Average 13335
STDV 406
CV (%) 3
IC (95%) 1009

(a) side view

(b) top view

Figure 3.70: P-S-2-2 specimen after
loading

3.5.4.3.3 Specimens P-S-3-I Figure 3.71 shows the force-displacement curve
for the specimens P-S-3-I. In Table 3.34 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.72 shows the force-strain curve
for the specimen P-S-3-1. Figure 3.73 shows the damaged zones in the specimen
P-S-3-2.
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Figure 3.71: Load vs. displacement for
P-S-3-I specimens
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Figure 3.72: Load vs. strain for P-S-3-
1 specimen

Table 3.34: Maximum load for P-
S-3-I specimens

specimen maximum load

P-S-3-1 13180
P-S-3-2 13960
P-S-3-3 14232

Average 13791
STDV 546
CV (%) 4
IC (95%) 1356

(a) side view

(b) top view

Figure 3.73: P-S-3-2 specimen after
loading

3.5.4.3.4 Specimens P-S-4-I Figure 3.74 shows the force-displacement curve
for the specimens P-S-4-I. In Table 3.35 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.75 shows the force-strain curve
for the specimen P-S-4-1. Figure 3.76 shows the damaged zones in the specimen
P-S-4-2.
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Figure 3.74: Load vs. displacement for
P-S-4-I specimens
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Figure 3.75: Load vs. strain for P-S-4-
1 specimen

Table 3.35: Maximum load for P-
S-4-I specimens

specimen maximum load

P-S-4-1 38916
P-S-4-2 34704
P-S-4-3 38220

Average 37280
STDV 2258
CV (%) 6
IC (95%) 5609

(a) side view

(b) top view

Figure 3.76: P-S-4-2 specimen after
loading

3.5.4.4 Specimens V-A-J-I

3.5.4.4.1 Specimens V-A-1-I Figure 3.77 shows the force-displacement curve
for the specimens V-A-1-I. In Table 3.36 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.78 shows the force-strain curve
for the specimen V-A-1-1. Figure 3.79 shows the damaged zones in the specimen
V-A-1-3.
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Figure 3.77: Load vs. displacement for
V-A-1-I specimens
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Figure 3.78: Load vs. strain for V-A-
1-1 specimen

Table 3.36: Maximum load for V-
A-1-I specimens

specimen maximum load

V-A-1-1 18212
V-A-1-2 19964
V-A-1-3 19708

Average 19295
STDV 946
CV (%) 5
IC (95%) 2351

(a) side view

(b) top view

Figure 3.79: V-A-1-3 specimen after
loading

3.5.4.4.2 Specimens V-A-2-I Figure 3.80 shows the force-displacement curve
for the specimens V-A-2-I. In Table 3.37 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.81 shows the force-strain curve
for the specimen V-A-2-1. Figure 3.82 shows the damaged zones in the specimen
V-A-2-1.
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Figure 3.80: Load vs. displacement for
V-A-2-I specimens
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Figure 3.81: Load vs. strain for V-A-
2-1 specimen

Table 3.37: Maximum load for V-
A-2-I specimens

specimen maximum load

V-A-2-1 10684
V-A-2-2 10396
V-A-2-3 10840

Average 10640
STDV 225
CV (%) 2
IC (95%) 560

(a) side view

(b) top view

Figure 3.82: V-A-2-1 specimen after
loading

3.5.4.4.3 Specimens V-A-3-I Figure 3.83 shows the force-displacement curve
for the specimens V-A-3-I. In Table 3.38 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.84 shows the force-strain curve
for the specimen V-A-3-1. Figure 3.85 shows the damaged zones in the specimen
V-A-3-3.
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Figure 3.83: Load vs. displacement for
V-A-3-I specimens
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Figure 3.84: Load vs. strain for V-A-
3-1 specimen

Table 3.38: Maximum load for V-
A-3-I specimens

specimen maximum load

V-A-3-1 13052
V-A-3-2 12292
V-A-3-3 12872

Average 12739
STDV 397
CV (%) 3
IC (95%) 987

(a) side view

(b) top view

Figure 3.85: V-A-3-3 specimen after
loading

3.5.4.4.4 Specimens V-A-4-I Figure 3.86 shows the force-displacement curve
for the specimens V-A-4-I. In Table 3.39 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.87 shows the force-strain curve
for the specimen V-A-4-1. Figure 3.88 shows the damaged zones in the specimen
V-A-4-2.



74 CHAPTER 3. EXPERIMENTAL WORK

0 2 4 6 8 10 12 14 16 18
0

5000

10000

15000

20000

25000

30000

35000

lo
ad

 (N
)

displacement (mm)

Figure 3.86: Load vs. displacement for
V-A-4-I specimens
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Figure 3.87: Load vs. strain for V-A-
4-1 specimen

Table 3.39: Maximum load for V-
A-4-I specimens

specimen maximum load

V-A-4-1 33416
V-A-4-2 33968
V-A-4-3 31320

Average 32901
STDV 1397
CV (%) 4
IC (95%) 3470

(a) side view

(b) top view

Figure 3.88: V-A-4-2 specimen after
loading

3.5.4.5 Specimens V-S-J-I

3.5.4.5.1 Specimens V-S-1-I Figure 3.89 shows the force-displacement curve
for the specimens V-S-1-I. In Table 3.40 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.90 shows the force-strain curve
for the specimen V-S-1-1. Figure 3.91 shows the damaged zones in the specimen
V-S-1-2.
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Figure 3.89: Load vs. displacement for
V-S-1-I specimens
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Figure 3.90: Load vs. strain for V-S-1-
1 specimen

Table 3.40: Maximum load for V-
S-1-I specimens

specimen maximum load

V-S-1-1 20296
V-S-1-2 22156
V-S-1-3 19384

Average 20612
STDV 1413
CV (%) 7
IC (95%) 3509

(a) side view

(b) top view

Figure 3.91: V-S-1-2 specimen after
loading

3.5.4.5.2 Specimens V-S-2-I Figure 3.92 shows the force-displacement curve
for the specimens V-S-2-I. In Table 3.41 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.93 shows the force-strain curve
for the specimen V-S-2-1. Figure 3.94 shows the damaged zones in the specimen
V-S-2-2.
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Figure 3.92: Load vs. displacement for
V-S-2-I specimens
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Figure 3.93: Load vs. strain for V-S-2-
1 specimen

Table 3.41: Maximum load for V-
S-2-I specimens

specimen maximum load

V-S-2-1 12120
V-S-2-2 12108
V-S-2-3 11732

Average 11987
STDV 221
CV (%) 2
IC (95%) 548

(a) side view

(b) top view

Figure 3.94: V-S-2-2 specimen after
loading

3.5.4.5.3 Specimens V-S-3-I Figure 3.95 shows the force-displacement curve
for the specimens V-S-3-I. In Table 3.42 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.96 shows the force-strain curve
for the specimen V-S-3-1. Figure 3.97 shows the damaged zones in the specimen
V-S-3-3.
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Figure 3.95: Load vs. displacement for
V-S-3-I specimens

-500 0 500 1000 1500 2000 2500 3000 3500

0

2000

4000

6000

8000

10000

12000

14000

16000

lo
ad

 (N
)

strain (µm/m)

Figure 3.96: Load vs. strain for V-S-3-
1 specimen

Table 3.42: Maximum load for V-
S-3-I specimens

specimen maximum load

V-S-3-1 14408
V-S-3-2 14384
V-S-3-3 12568

Average 13787
STDV 1055
CV (%) 8
IC (95%) 2622

Figure 3.97: V-S-3-3 specimen after
loading

3.5.4.5.4 Specimens V-S-4-I Figure 3.98 shows the force-displacement curve
for the specimens V-S-4-I. In Table 3.43 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.99 shows the force-strain curve
for the specimen V-S-4-1. Figure 3.100 shows the damaged zones in the specimen
V-S-4-3.
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Figure 3.98: Load vs. displacement for
V-S-4-I specimens
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Figure 3.99: Load vs. strain for V-S-4-
1 specimen

Table 3.43: Maximum load for V-
S-4-I specimens

specimen maximum load

V-S-4-1 35844
V-S-4-2 34732
V-S-4-3 35876

Average 35484
STDV 651
CV (%) 2
IC (95%) 1618

(a) side view

(b) top view

Figure 3.100: V-S-4-3 specimen after
loading

3.5.4.6 Specimens V-P-J-I

3.5.4.6.1 Specimens V-P-1-I Figure 3.101 shows the force-displacement curve
for the specimens V-P-1-I. In Table 3.44 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.102 shows the force-strain curve
for the specimen V-P-1-1. Note that in this case there are two curves: one is the
strain detected by the strain gage installed on vinylester, the other is detected by
the strain gage installed on phenolic. Figure 3.103 shows the damaged zones in the
specimen V-P-1-3 and V-P-1-2 respectively.
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Figure 3.101: Load vs. displacement
for V-P-1-I specimens
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Figure 3.102: Load vs. strain for V-P-
1-1 specimen

Table 3.44: Maximum load for V-
P-1-I specimens

specimen maximum load

V-P-1-1 18324
V-P-1-2 20292
V-P-1-3 20204

Average 19607
STDV 1112
CV (%) 6
IC (95%) 2762

(a) V-P-1-3 specimen (side view)

(b) V-P-1-2 specimen (top view)

Figure 3.103: V-P-1-I specimens after
loading

3.5.4.6.2 Specimens V-P-2-I Figure 3.104 shows the force-displacement curve
for the specimens V-P-2-I. In Table 3.45 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.105 shows the force-strain curve
for the specimen V-P-2-1. Figure 3.106 shows the damaged zones in the specimen
V-P-2-1.
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Figure 3.104: Load vs. displacement
for V-P-2-I specimens

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000 6000

0

2000

4000

6000

8000

10000

12000

14000  vinylester
 phenolic

lo
ad

 (N
)

strain (µm/m)

Figure 3.105: Load vs. strain for V-P-
2-1 specimen

Table 3.45: Maximum load for V-
P-2-I specimens

specimen maximum load

V-P-2-1 12100
V-P-2-2 11376
V-P-2-3 11752

Average 11743
STDV 362
CV (%) 3
IC (95%) 899

Figure 3.106: V-P-2-1 specimen after
loading

3.5.4.6.3 Specimens V-P-3-I Figure 3.107 shows the force-displacement curve
for the specimens V-P-3-I. In Table 3.46 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.108 shows the force-strain curve
for the specimen V-P-3-1. Figure 3.109 shows the damaged zones in the specimen
V-P-3-2.
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Figure 3.107: Load vs. displacement
for V-P-3-I specimens
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Figure 3.108: Load vs. strain for V-P-
3-1 specimen

Table 3.46: Maximum load for V-
P-3-I specimens

specimen maximum load

V-P-3-1 13000
V-P-3-2 13712
V-P-3-3 10616

Average 12443
STDV 1622
CV (%) 13
IC (95%) 4028

(a) side view

(b) top view (c) bottom view

Figure 3.109: V-P-3-2 specimen after
loading

3.5.4.6.4 Specimens V-P-4-I Figure 3.110 shows the force-displacement curve
for the specimens V-P-4-I. In Table 3.47 the value of the maximum load for each
specimen and the statistics are reported. Figure 3.111 shows the force-strain curve
for the specimen V-P-4-1. Figure 3.112 shows the damaged zones in the specimen
V-P-4-1.
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Figure 3.110: Load vs. displacement
for V-P-4-I specimens
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Figure 3.111: Load vs. strain for V-P-
4-1 specimen

Table 3.47: Maximum load for V-
P-4-I specimens

specimen maximum load

V-P-4-1 33936
V-P-4-2 33020
V-P-4-3 31916

Average 32957
STDV 1011
CV (%) 3
IC (95%) 2513

(a) side view

(b) top view (c) bottom view

Figure 3.112: V-P-4-1 specimen after
loading

3.5.4.7 Analysis of bearing response (SBJ)

The analysis of bearing response is performed using the same procedure applied in
the analysis of the DBJ bearing specimen.

The calculation of the bearing strain is effectuated as described in 3.5.3.3.1. In
analogy with equation (3.19) the following formula to evaluate the bearing strain is
used:

εbri =
δLV DT − PL0

whEL
x,M1

− PL0

whEL
x,M2

d
(3.21)

In this case there are two materials to consider, M1 and M2 (see Figure 3.113).
It should be noted that when the second material is a metal as steel the correc-
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tion −PL0/whE
L
x,M2 can be neglected. However when M2 is aluminum or another

composite this correction must be used.

Figure 3.113: Bearing correction for SBJ

3.5.4.7.1 Specimens P-A-4-I Figure 3.114 shows the curves of the bearing
stress as a function of the effective bearing strain. Table 3.48 reports the derived
properties with statistics. These properties are illustrated in Section 3.5.3.3.3.

Figure 3.114: Bearing stress vs. bearing
strain for P-A-4-I specimens

Table 3.48: Bearing response for P-A-4-I
specimens

Specimen OBSa 2% IPBSb FNLBSc

P-S-4-1 419 587 320
P-S-4-2 427 522 310
P-S-4-3 468 570 350

Average 438 560 327
STDV 26.531 33.710 20.817
CV (%) 6.054 6.023 6.372
IC (95%) 65.907 83.739 51.711
a Offset Bearing Strength
b Initial Peak Bearing Strength
c First Non-Linearity Bearing Strength

3.5.4.7.2 Specimens P-S-4-I Figure 3.115 shows the curves of the bearing
stress as a function of the effective bearing strain. Table 3.49 reports the derived
properties with statistics.
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Figure 3.115: Bearing stress vs. bearing
strain for P-S-4-I specimens

Table 3.49: Bearing response for P-S-4-I
specimens

Specimen OBSa 2% IPBSb FNLBSc

P-S-4-1 419 587 320
P-S-4-2 427 522 310
P-S-4-3 468 570 350

Average 438 560 327
STDV 26.531 33.710 20.817
CV (%) 6.054 6.023 6.372
IC (95%) 65.907 83.739 51.711
a Offset Bearing Strength
b Initial Peak Bearing Strength
c First Non-Linearity Bearing Strength

3.5.4.7.3 Specimens V-A-4-I Figure 3.116 shows the curves of the bearing
stress as a function of the effective bearing strain. Table 3.50 reports the derived
properties with statistics.

Figure 3.116: Bearing stress vs. bearing
strain for V-A-4-I specimens

Table 3.50: Bearing response for V-A-4-I
specimens

Specimen OBSa 2% IPBSb FNLBSc

V-A-4-1 290 499 278
V-A-4-2 320 518 259
V-A-4-3 377 474 298

Average 329 497 278
STDV 44.110 22.068 19.502
CV (%) 13.410 4.440 7.007
IC (95%) 109.576 54.820 48.446
a Offset Bearing Strength
b Initial Peak Bearing Strength
c First Non-Linearity Bearing Strength

3.5.4.7.4 Specimens V-S-4-I Figure 3.117 shows the curves of the bearing
stress as a function of the effective bearing strain. Table 3.51 reports the derived
properties with statistics.
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Figure 3.117: Bearing stress vs. bearing
strain for V-S-4-I specimens

Table 3.51: Bearing response for V-S-4-I
specimens

Specimen OBSa 2% IPBSb FNLBSc

V-S-4-1 497 534 455
V-S-4-2 472 514 420
V-S-4-3 478 535 427

Average 482 527 434
STDV 13.051 11.846 18.520
CV (%) 2.706 2.245 4.267
IC (95%) 32.421 29.428 46.007
a Offset Bearing Strength
b Initial Peak Bearing Strength
c First Non-Linearity Bearing Strength

3.5.4.7.5 Specimens V-P-4-I Figure 3.118 shows the curves of the bearing
stress as a function of the effective bearing strain. Table 3.52 reports the derived
properties with statistics.

Figure 3.118: Bearing stress vs. bearing
strain for V-P-4-I specimens

Table 3.52: Bearing response for V-P-4-I
specimens

Specimen OBSa 2% IPBSb FNLBSc

V-P-4-1 330 512 317
V-P-4-2 352 498 322
V-P-4-3 365 483 320

Average 349 498 320
STDV 17.692 14.503 2.517
CV (%) 5.069 2.914 0.787
IC (95%) 43.949 36.027 6.252
a Offset Bearing Strength
b Initial Peak Bearing Strength
c First Non-Linearity Bearing Strength

3.5.4.8 Discussion on results for SBJ

To compare different SBJ specimens the load P is considered and not the P/h ratio
because the vinylester and the phenolic laminates have approximately the same
thickness.

Figure 3.122 shows the load-displacement curves for different materials combi-
nations. The curve related to the double bolted joint and the curves related to
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the single bolted joints are shown for each type of specimen and for each material.
Figure 3.123 shows the histograms of the strength for different single-bolted joint.
The dashed rectangle represents the confidence interval at 95%.

The DBJ configuration exhibits the highest value of the failure load for all types
of specimens, except for the bearing specimen (specimen #4, see Figures 3.122(g)-
3.122(h) and Figures 3.123(g)-3.123(h)). Surprisingly, for this type of specimen the
failure load of the DBJ is the lowest. This result obtained for multi-material joint
is not in agreement to the previous work presented in literature for other material
(carbon-epoxy) [126]. However, it may be possible to explain this behavior taking
into account that two effects occurs a single bolted joint is loaded:

• the first is that bending effects reduce the contact between the bolt and the
surfaces of the hole when increasing the load as described in Figure 3.119. This
create a stress concentration on the edge of the hole and reduce the strength
of the joint;

• the second is that bending effects change the failure modes from in plane failure
mode to in-plane/pull-trough failure modes. This increase the load capacity
of the specimen.

(a) bolted joint at low displacements (b) bolted joint at high displacements

Figure 3.119: Load case of a bolted joint

Figure 3.120: Load vs. displace-
ment for V-P-4-I specimens

Figure 3.121: Aluminium-vinylester connec-
tion after being loaded
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(a) P-J-1-I specimens (#1) (b) V-J-1-I specimens (#2)

(c) P-J-2-I specimens (#3) (d) V-J-2-I specimens (#4)

(e) P-J-3-I specimens (#5) (f) V-J-3-I specimens (#6)

(g) P-J-4-I specimens (#7) (h) V-J-4-I specimens (#8)

Figure 3.122: Comparison of results for SBJ
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(a) P-J-1-I specimens (#1) (b) V-J-1-I specimens (#2)

(c) P-J-2-I specimens (#3) (d) V-J-2-I specimens (#4)

(e) P-J-3-I specimens (#5) (f) V-J-3-I specimens (#6)

(g) P-J-4-I specimens (#7) (h) V-J-4-I specimens (#8)

Figure 3.123: Strength for SBJ specimens
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Figures 3.120 and 3.121 clarify this second effect. Figure 3.120 shows the load-
displacement curve for the V-A-4-I specimen. After the linear region, in the point A
of the curve, delamination occurs and it reduces the stiffness of the specimen. The
point B is the peak of the curve where the bearing became predominant. Figure
3.121 shows the joint with the delamination. It should be noted the deformation of
the specimen due to the bending moment. It may be noted also the bearing and the
penetration of the washer into the material. This penetration is responsible for the
increase of the load carried by the joint.

3.5.4.9 Design charts

In Section 3.5.4.8 a discussion on the relative performance of each material was
presented. However, it is more useful summarize the results using design charts
that can easily relate the strength of the joint to the geometric parameters d, w
and e. The experimental points were fitted using a smoothing spline imposing that
when w/d ≥ 5 and e/d ≥ 4 the strength is equal to the maximum the bearing
strength. These fitting functions allow to generate for each material combination
the contour plots of the P/dh as function of w/d and e/d. The variable P/dh is
used as normalized load and has the same meaning of the bearing stress. It should
be pointed out that the charts presented are affected by some limitations:

• the experimental points used, were generated for diameters of the bolts of
6mm and 10mm. The curves then, can be used for all the diameter between
6mm and 10mm, that are practically those used in industry. For diameter out
of the range the estimation may not be sufficiently accurate.

• it is assumed that the flexural compliances of the two joined parts of a SBJ are
comparable. If one of the two parts has a much higher compliance, the joints
does not exhibit high displacements out-of-plane when subjected to external
load; in this case, the DBJ chart should be used.

• as showed by Camanho et al. [126] the diameter influences the characteristic
distance in compression and in tension. In the present charts this effect is not
taken into account and it is considered negligible for the range of diameters
under investigation (6mm and 10mm).

Figures 3.124-3.131 show the design charts for the following cases: DBJ Glass-
Epoxy, DBJ Glass-Vinylester, DBJ Glass-Phenolic, SBJ Glass-Vinylester/Aluminum,
SBJ Glass-Vinylester/Steel, SBJ Glass-Phenolic/Aluminum, SBJ Glass-Phenolic/Steel,
SBJ Glass-Vinylester/Glass-Phenolic.

For all the materials (or material combinations), with the exception of the Glass-
Epoxy, when w/d or e/d increase, the strength of the joint increases. Only for
Glass-Epoxy joint when w/d decreases the strength increases. This is due to the
fact that Glass-Epoxy were manufactured using prepregs and these exhibit a much
higher strength if tension failure occurs. However the failure should be always the
bearing because a net-tension failure produces an instable failure.
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Figure 3.124: DBJ Glass-Epoxy design chart
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Figure 3.125: DBJ Glass-Vinylester design chart
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Figure 3.126: DBJ Glass-Phenolic design chart
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Figure 3.127: SBJ Glass-Vinylester/Aluminum design chart
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Figure 3.128: SBJ Glass-Vinylester/Steel design chart
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Figure 3.129: SBJ Glass-Phenolic/Aluminum design chart
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Figure 3.130: SBJ Glass-Phenolic/Steel design chart

w/d

P
/d

h 
[N

/m
m

2 ]

2
2.1

2.2
2.3

2.4

2.5

2.6
2.7

2.8

2.9

3

3.1

3.2

3.3

3.4
3.5

3.6

3.7

3.8

3.9

4

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

280

300

320

340

360

380

400

420

440

460

480

e/d

Figure 3.131: SBJ Glass-Vinylester/Glass-Phenolic design chart
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3.5.5 Pull-Trough Test

3.5.5.1 Description of the test

The pull-through is performed following the norm Standard Test Method for Mea-
suring the Fastener Pull-Through Resistance of a Fiber-Reinforced Polymer Matrix
Composite [131].

This test method contains two procedures, A and B. Since procedure A is
more complex and has inherent problems associated with the flexural stiffness of the
specimen to test, the specimens procedure B is used.

The test was conducted using the INSTRON-4208 testing machine in the lab-
oratories of INEGI. Figure 3.132 shows the experimental set-up used. The testing
machine was equipped with a load cell of 100kN. The speed of the machine (dis-
placement controlled test) if 2mm/min. The temperature of the room was 23◦C and
the relative humidity was 50% for all the duration of the tests.

Figure 3.132: Equipment set-up for PT test

After each test the damaged specimen was examined and the type of failure was
identified.

The test results depend on Clearance Hole parameter (Cb). This is the diameter
of the plate that it is used in procedure B of the test. In the tests performed
Cb = 30mm. For each specimen are reported the dimensions, the ratio of the
Clearance Hole Diameter Cb to Fastener Hole Diameter d, and the ratio of the
Fastener Hole Diameter to the thickness of the specimen (h). Specimens are squares
with a length of 120mm.
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3.5.5.2 Derived properties

The curve of the load as a function of the displacement for a pull-through test is
used to identify three important characteristics that are:

• the Initial Sub-Critical Failure Force: the force at the first sub-critical failure
of the specimen;

• the Initial Sub-Critical Failure Displacement: the displacement at the first
sub-critical failure of the specimen;

• the Failure Force: the maximum force attained in the test.

The specimen shows a first failure mode (generally delamination) at a low load.
After delamination, the specimen is able to support increasing loads. This point is
identified in the curve by a changing of the linearity or by a peak.

3.5.5.3 GF-epoxy specimens

Table 3.53 reports the dimensions of the specimens and the geometric parameters of
the equipment used. Figure 3.133 shows the plots of the force/load curves for epoxy
specimens. Plot 3.133(a) shows the curves for PT-E-6-I while plot 3.133(b) show
the curves for PT-E-10-I. In Table 3.54-3.55 the derived properties for the specimen
tested are reported.

It should be noted that some specimen exhibited a bolt failure8.

Table 3.53: GF-E specimens’ dimensions

Specimen Diameter Cb/D h D/h
(mm) (mm)

PT-E-6-1 6 5 6.45 0.930
PT-E-6-2 6 5 6.30 0.952
PT-E-6-3 6 5 6.40 0.938

PT-E-10-1 10 3 6.50 1.538
PT-E-10-2 10 3 6.50 1.538
PT-E-10-3 10 3 6.40 1.563

8The bolts used for these tests were not those described in 3.4.2 but general purpose
bolts (D933 8.8)
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Table 3.54: Pull-trough test, results for PT-E-6-I specimens

specimen In. Sub-crit. failure load failure load In. Sub-crit. failure displ.
(N) (N) (mm)

PT-E-6-1 12184 17272 1.344
PT-E-6-2 12004 16596 1.447
PT-E-6-3 12312 17068 1.258

Average 12167 16979 1.350
STDV 155 347 0.095

CV (%) 1 2 7
IC (95%) 384 861 0.236

Table 3.55: Pull-trough test, results for PT-E-10-I specimens

specimen In. Sub-crit. failure load failure load In. Sub-crit. failure displ.
(N) (N) (mm)

PT-E-10-1 19140 32460 1.462
PT-E-10-2 20532 32724 1.477
PT-E-10-3 20584 34888 1.829

Average 20085 33357 1.590
STDV 819 1332 0.208

CV (%) 4 4 13
IC (95%) 2035 3309 0.516
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Figure 3.133: Pull-trough test; load vs. displacement for GF-epoxy specimens
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3.5.5.4 GF-phenolic specimens

Table 3.56 reports the dimensions of the specimens and the geometric parameters of
the equipment used. Figure 3.134 shows the plots of the force/load curves for epoxy
specimens. Plot 3.134(a) shows the curves for PT-E-6-I while plot 3.134(b) show
the curves for PT-E-10-I. In Table 3.57-3.58 the derived properties for the specimen
tested are reported.

Table 3.56: GF-P specimens’ dimensions

Specimen Diameter Cb/D h D/h
(mm) (mm)

PT-P-6-1 6 5 6.80 0.882
PT-P-6-2 6 5 6.80 0.882
PT-P-6-3 6 5 6.80 0.882

PT-P-10-1 10 3 6.60 1.515
PT-P-10-2 10 3 6.80 1.471
PT-P-10-3 10 3 6.50 1.538

Table 3.57: Pull-trough test, results for PT-P-6-I specimens

specimen In. Sub-crit. failure load failure load In. Sub-crit. failure displ.
(N) (N) (mm)

PT-P-6-1 12340 17348 1.228
PT-P-6-2 11752 17236 1.301
PT-P-6-3 12384 17132 1.360

Average 12158 17238 1.296
STDV 352 108 0.066

CV (%) 3 1 5
IC (95%) 876 268 0.164
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Table 3.58: Pull-trough test, results for PT-P-10-I specimens

specimen In. Sub-crit. failure load failure load In. Sub-crit. failure displ.
(N) (N) (mm)

PT-P-10-1 19140 32460 1.462
PT-P-10-2 18528 32780 1.403
PT-P-10-3 17976 31608 1.492

Average 18548 32282 1.452
STDV 582 605 0.045

CV (%) 3 2 3
IC (95%) 1446 1504 0.112
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Figure 3.134: Pull-trough test; load vs. displacement for GF-phenolic specimens

3.5.5.5 GF-vinylester specimens

Table 3.59 reports the dimensions of the specimens and the geometric parameters of
the equipment used. Figure 3.135 shows the plots of the force/load curves for epoxy
specimens. Plot 3.135(a) shows the curves for PT-E-6-I while plot 3.135(b) show
the curves for PT-E-10-I. In Table 3.60-3.61 the derived properties for the specimen
tested are reported.
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Table 3.59: GF-V specimens’ dimensions

Specimen Diameter Cb/D h D/h
(mm) (mm)

PT-V-6-1 6 5 7.00 0.857
PT-V-6-2 6 5 7.15 0.839
PT-V-6-3 6 5 6.80 0.882

PT-V-10-1 10 3 7.00 1.429
PT-V-10-2 10 3 6.70 1.493
PT-V-10-3 10 3 7.20 1.389

Table 3.60: Pull-trough test, results for PT-V-6-I specimens

specimen In. Sub-crit. failure load failure load In. Sub-crit. failure displ.
(N) (N) (mm)

PT-V-6-1 11200 17184 1.127
PT-V-6-2 11404 17624 1.315
PT-V-6-3 11340 17204 1.463

Average 11314 17337 1.302
STDV 104 248 0.168

CV (%) 1 1 13
IC (95%) 259 617.213 0.418

Table 3.61: Pull-trough test, results for PT-V-10-I specimens

specimen In. Sub-crit. failure load failure load In. Sub-crit. failure displ.
(N) (N) (mm)

PT-V-10-1 18448 34172 1.447
PT-V-10-2 18920 32864 1.440
PT-V-10-3 18876 39692 1.477

Average 18748 35576 1.455
STDV 260 3624 0.020

CV (%) 1 10 1
IC (95%) 647 9002 0.049
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Figure 3.135: Pull-trough test; load vs. displacement for GF-vinylester specimens

3.5.5.6 Damaged zones

Figure 3.136 shows the photos of a specimen after being tested. Both sides of the
specimen are visible. The bottom side, Figure 3.136(b), shows delamination near the
hole. As explained before, delamination occurs at the begin of the test when the load
is relatively low (initial sub-critical failure). If the load increases, the intralaminar
fracture in the material starts and, at the end, the specimen is totally penetrated
by the washer.

(a) intralaminar fracture (b) delamination at sub-critical failure

Figure 3.136: Pull-trough specimens after loading

3.5.5.7 Comparison of the PT test results

Figure 3.137 shows the failure loads of the specimens tested. As expected, increasing
the diameter increases both the sub-initial critical failure load and the failure load



3.6. CONCLUSIONS 101

of the specimen. The results show that the material exhibit slight differences in
the values of the two failure loads considered. This is in contrast with the previous
tests on bolted joints where epoxy specimens had better performance. It should be
also noted that increasing the diameter also increases the ratio between the initial
sub-critical failure load to the ultimate failure load. This means that larger holes
exhibit an initial sub-critical failure load that is relatively lower when compared to
the ultimate failure load.
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Figure 3.137: Comparison of PT tests failure loads

3.6 Conclusions

In this chapter a comprehensive experimental study on hybrid joints was presented.
Two types of test were considered: in plane shear test and pull-through tests. All
the tests were conducted considering specimens with different geometries and with
different materials or material combinations. It was shown that the geometry affects
the failure mode and that materials with the same geometries may show a different
failure mode.

The main differences in the failure load of the in-plane shear test occur in the
epoxy specimens that always show a value of the failure load higher than that of
the other specimens. This was attributed to the fact that epoxy-specimens were
manufactured using prepregs while the other specimens (phenolic and vinylester)
were manufactured using resin infusion.

The results of the in-plane shear tests are presented as design charts that can be
used during the conception of a hybrid structure (see section 3.5.4.9).

If pull-trough is considered, the results are approximatively the same for the three
materials, both in terms of the failure load and of the initial sub-critical failure load.
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Chapter 4

CT-CC experimental tests

A simple empirical design methodology for multi-material bolted joints was pre-
sented in the previous chapter. However, a purely empirical design methodology
require a high number of experimental tests in bolted joints. An improved design
methodology, consists in performing a few experimental tests to characterize the
basic material properties, and use these properties in analysis models. This chapter
addresses the measurement of two properties that are required to simulate the frac-
ture of composite bolted joints: the fracture toughness associated to fiber-dominated
failure mechanism. For this pourpose, the measurement of the crack resistance curve
is essential. In fact, crack resistance curves not only characterize the fracture tough-
ness of the material but it also allows to identify the parameters of softening laws
used in the numerical simulation of failure in composite bolted joints [132–134].
These parameters are used in the numerical 3D model presented in Chapter 5.

The test is performed following the procedure described by Pinho et al. [135]
and using the Digital Image Correlation (DIC) to compute in a fast way the crack
resistance curve of the material. The proposed method is based on the identification
of the crack tip location using Digital Image Correlation and the calculation of the
J-integral directly from the test data using a simple expression derived for cross-ply
composite laminates.

The material tested are carbon IM7/8552 and epoxy-glass fiber (presented in
Chapter 3) respectively.

4.1 DIC technique

4.1.1 Introduction

The digital image correlation, developed by Sutton et al. [136,137] allows to compare
digital images of the body at the undeformed state (reference state) and deformed
state (state of the body at time t). Each image is described using a discrete function
that represents the gray level at each pixel. At time t∗, this function can be expressed

103
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as:

f ∗ (x∗) = f (x+ d (x)) (4.1)

where f is the discrete function at the reference state, f ∗ is the function at the
deformed state, x ans x∗ are the vector of the coordinate of the points at the
reference state and at the deformed state, d (x) is the displacement of each point.
The determination of the displacements, d (x), is obtained minimizing the coefficient
of correlation C defined as:

C = 1−
∫

∆M
f (x) f (x+ d (x)) dx

√

∫

∆M
f 2 (x) dx

∫

∆M
f 2 (x+ d (x)) dx

(4.2)

where ∆M is the surface of the reference pattern. The displacements are expressed
as:

d (P ) =
∑

j

nj (P )uj (4.3)

where, uj are the unknown displacements, P is a point of the pattern, and nj are
the functions chosed. d (P ) is found minimizing equation (4.2).

Since the displacements uj are unknown, equations (4.3) is written j times. In
this case the problem admits a solution.

Finally, equation (4.3) can be written in a compact way as:

d = [M]u (4.4)

where d is the vector of displacements that minimizes equation (4.2), [M] is the
matrix of functions nj and u is the vector of unknown displacements. The problem
is solved merely inverting the matrix [M]:

u = [M]−1 d (4.5)

The functions nj are generally bilinear ({nj} = {x, y, xy, 1}) and a cubic-spline
interpolation is used to find the displacement field [138].

The Figure 4.1 shows a pattern ABCD centered in P and the deformed pattern
A∗B∗C∗D∗ centered in P ∗.
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Figure 4.1: Initial and deformed pattern

The displacement of a point of the pattern can be written as:

dx (x, y) = u1x̃+ u2ỹ + u3x̃ỹ + u4 (4.6)

dy (x, y) = u5x̃+ u6ỹ + u7x̃ỹ + u8 (4.7)

where x̃ = x−xA

L
and ỹ = y−yA

L
are the homogenized coordinate on the pattern and

L is the length of the side of the pattern.

In the equations (4.6) there are 8 displacements unknown, for this reason it is
written for each point of the undeformed and deformed pattern (ABCD,A∗B∗C∗D∗).
The matrix [M] in Equation 4.5 is then 8× 8.

It should be observed that the technique of digital image correlations uses con-
tinuous functions and for this reason it is complicated obtain good results in the
case of a fracture in the material. For this reason a numerical algorithm [139] is
used to evaluate the crack length in the case of discontinuous displacements.

4.1.2 Crack detection algorithm

The algorithm used should be able to detect a crack into the material. The following
assumptions are made:

• M and N are two points in the reference image;

• d (x) is the displacement applied at the image;

• M∗ and N∗ are the two points in the deformed image and are separated by a
geometric or material discontinuity (see Figure 4.2).
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Figure 4.2: Points M and N before and after crack propagation

The measure of the variation of distance between these two points, M ≀ N , in
presence of a discontinuity can be expressed as:

M ≀N =

∥

∥

∥

∥

→

M∗N∗ −
→

MN

∥

∥

∥

∥

(4.8)

Generally, ∀ (P, P ∗),
→

O∗P ∗=
→

OP +d (P ). Equation (4.8) can be re-written as:

M ≀N = ‖d (N)− d (M)‖ (4.9)

If the discontinuity between two points is defined in this way a criterion that
allows to detect a discontinuity into a pattern ABCD should be written as (see
Figure 4.3):
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Figure 4.3: Different position of the discontinuity respect to the pattern

K (P ) = max (A ≀ C;B ≀D)

max (‖d (C)− d (A)‖ ; ‖d (D)− d (B)‖) (4.10)

Figure 4.3 shows that this criterion is able to detect a crack into the material
independently of the direction that assumes this crack into the pattern. It should
be noticed that this criterion is able to detect the crack only in the case of brittle
fracture.

Equation (4.10) provides a measure of the discontinuity inside the pattern. To
discriminate if a pattern is damaged or undamaged a threshold should be applied to
this function. If is assumed that the threshold applied is proportional to the arith-
metic average of function K (P ) overall the image, the threshold function KT (P )
can be defined as:

K (P ) ≥ αK ⇒ KT (P ) = 1 (4.11)

K (P ) < αK ⇒ KT (P ) = 0 (4.12)

K (P ) = NaN ⇒ KT (P ) = 0 (4.13)

where K is the average of K (P ) overall the image, α is a threshold value that can
be chosen by the operator and NaN indicate that for that pattern the information
is not available. In this work a low value of α, α = 2, was chosen to do not lose the
information in proximity of the crack tip. Figure 4.4 shows the relation between the
crack length and time for different values of α.
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Figure 4.4: Relation between the crack length and time for different values of α

Using equations (4.11-4.13), the function KT (P ) takes the values:

• KT (P ) = 0 in the patterns where the material is undamaged:

• KT (P ) = −1 if no information are available. Typically this happens in the
pattern where the material is completely damaged and no information is pos-
sible obtain using the digital image correlation;

• KT (P ) = 1 in the patterns where a discontinuity is present but the material
is not completely damaged. This happens at the crack tip.

Figure 4.5 shows the KT function computed for a CT carbon specimen. It is
noted that the function takes the value KT = 0 where the material is undamaged,
KT = −1 where the material is completely fractured and KT = 1 at the crack tip
where damage occurs.
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Figure 4.5: KT function

The information that has to be extracted from the DIC system is the crack
length that is computed as the distance from the crack point in the deformed image
and the crack tip in the undeformed image. Considering that patterns of 15 × 15
pixels2 are used, spatial resolution of the method is ±7 pixels. Considering that the
conversion factor assumed the average value of cf ≈ 0.016 mm

pixel
the crack length was

obtained with an approximation of ±0.10 mm. The Matlab R©code that implements
this algorithm is shown in Appendix A.

4.1.3 J-Integral computation

4.1.3.1 J-Integral of a composite laminate

This section presents a procedure to calculate the J-integral for the CT and CC
specimens using the Digital Image Correlation (DIC). Kang et al. [140] used a similar
way to evaluate the J-Integral for cracks in metallic foils. The procedure is extended
here for the case of a composite laminate.

Figure 4.6 shows the contour at the crack tip used for the calculation of the
J-integral in 2D case.
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(a) Contour around crack tip (b) AA detail

Figure 4.6: Contour for the calculation of the J-Integral in 2D case

The 2D J-Integral for an elastic material can be written as:

J =

∫

Γ

(

Wdy − Ti

∂ui

∂x
ds

)

(4.14)

where Γ is an anticlockwise contour around the crack tip, W is the strain energy
density, Ti and ui are, respectively, the components of the traction and displacement
vectors on Γ. s is the curvilinear coordinate on Γ.

From the equilibrium of the triangular element d̂xdyds shown in Figure 4.6(b),
the following relations are derived:

n1 = cosα =
dy

ds
(4.15)

n2 = sinα = −dx

ds
(4.16)

(4.17)

and

{T} = [σ] {n} =

[

σxx σxy

σxy σyy

]{

cosα
sinα

}

=

[

σxx cosα σxy sinα
σxy cosα σyy sinα

]

(4.18)

where n1 and n2 are the directions cosines of the outer normal vector of the arc
element ds as reported in Figure 4.6(b).

The strain energy density can be written as:

W =

∫ εij

0

σijdεij =
1

2
{σ} {ε}T =

1

2
(σxxεxx + σyyεyy + σxyεxy) (4.19)

where {σ} = {σxx σyy σxy}T and {ε} = {εxx εyy εxy}.
Equation (4.14) allows to evaluate the value of the J-Integral in the 2D case. In

the case of a laminate the equation (4.14) should be extended to the 3D case and
the thickness of the laminate must be taken into account.
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Figure 4.7 shows the contour for the calculation of the J-integral in the case of
a body with thickness t.

Figure 4.7: Contour for the calculation of J-integral in 3D case

The surface surround the crack is equal to Ω = Ω0 + Ω1 + Ω2. As n1 = 0 and
Ti = 0 on Ω1 and Ω2, the J-integral is written as:

J =
1

t

∫ t

0

∫

Ω0

(

Wdx2dx3 − Ti

∂ui

∂x1

dsdx3

)

(4.20)

If the laminate is a cross-ply only 0◦ and 90◦ laminae are present. If the thick-
nesses of 0◦ and 90◦ laminae are t0 and t90 respectively, equation (4.20) can be
re-expressed as:

J =
1

t

∫

Ω0

(

∫ t0

0

(

W 0dx2 − T 0
i

∂ui

∂x1

ds

)

dx3 +

∫ t90

0

(

W 90dx2 − T 90
i

∂ui

∂x1

ds

)

dx3

)

(4.21)
Equation (4.21) implicitly assumes that strains (and displacements) through the

thickness are constant. Moreover, assuming that no bending occurs (the laminate
is balanced), substituting equations (4.18-4.19) in equation (4.21) results in:

J =
1

t

∫

Ω0

(

∫ t0

0

W 0n1dx3 −
∂ui

∂x1

∫ t0

0

T 0
i dx3 +

∫ t90

0

W 90n1dz −
∂ui

∂x1

∫ t90

0

T 90
i dx3

)

ds =

=
1

t

∫

Ω0

(

1

2

(

∫ t0

0

{

σ0
}

dz +

∫ t90

0

{

σ90
}

dx3

)

n1 {ε}T ds+ . . .

. . .−
(

∫ t0

0

[

σ0
]

dz +

∫ t90

0

[

σ90
]

dx3

)

{n}
{

∂u

∂x1

}T

ds =

=
1

t

∫

Ω0

(

1

2

({

σ0
}

t0 +
{

σ90
}

t90
)

n1 {ε}T −
([

σ0
]

t0 +
[

σ90
]

t90
)

{n}
{

∂u

∂x1

}T
)

ds

(4.22)
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If the thickness t0 = t90 = t/2 equation (4.22) can be simplified as:

J =

∫

Ω0

(

1

2

(

1

2

{

σ0
}

+
1

2

{

σ90
}

)

n1 {ε}T −
(

1

2

[

σ0
]

+
1

2

[

σ90
]

)

{n}
{

∂u

∂x1

}T
)

ds

=

∫

Ω0

(

1

2
{σ̄}n1 {ε}T − [σ̄] {n}

{

∂u

∂x1

}T
)

ds (4.23)

where σ̄ are the averaged values of the stresses (σ̄ = σ0 + σ90).
Therefore, the J-Integral for the laminate can be calculated using the averaged

stress through the laminate in equation (4.14). Using the Digital Image Correlation,
only the strains are obtained and the averaged value of the stress can be obtained
averaging the values of the elastic matrix of the material ({σ̄} =

[

C̄
]

{ε} where
[

C̄
]

= 1
2
([C0] + [C90])).

Details of the algorithm used to calculate the J-Integral are presented in Section
4.1.3.3.

4.1.3.2 J-Integral for quasi-brittle materials

Figure 4.8 shows the contour for the calculation of J-Integral in the presence of a co-
hesive zone. For the path-independence of the J-Integral the following conservation
integral is defined:

Figure 4.8: Contour in presence of a cohesive zone

I =

∮

Γ+C0+C++C
−

(

Wn1 −
∂u

∂x1

· t
)

ds = 0 (4.24)

I is equal to zero because the complete path is closed and the limited region is
simply connected.

Equation (4.24) can be extended as:
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I =

∫

Γ

(

Wn1 −
∂u

∂x1

· t
)

ds+

∫

C0

(

Wn1 −
∂u

∂x1

· t
)

ds+

+

∫

C+

(

−∂u+

∂x1

· t+
)

ds+

∫

C
−

(

−∂u−

∂x1

· t−
)

ds (4.25)

since n1 = 0 on C+ and C−. The two last integrals in equation 4.25 represent the
contribution of the cohesive zone. Since t+ = −t− = t from equilibrium considera-
tions, and dx =dx1:

ICOH =

∫

C
−

(

t
− ·
(

∂u+

∂x1

− ∂u−

∂x1

))

dx1 = −
∫

C

(

t · ∂ ‖u‖
∂x1

)

dx1 (4.26)

where ‖u‖ is the crack opening. From Rice [141]:

ICOH = −
∫

C

∂

∂x1

(

∫ ‖u‖

0

t · d ‖u‖
)

dx1 =

∫ ‖uT ‖

0

t · d ‖u‖ (4.27)

where ‖uT ‖ is the crack opening at the beginning of the FPZ.
Therefore, equation (4.25) can be re-written as:

∫

Γ

(

Wn1 −
∂u

∂x1

· t
)

ds+

∫ ‖uT ‖

0

t · d ‖u‖ −
∫

Γ

(

Wn1 −
∂u

∂x1

· t
)

ds = 0 (4.28)

∫

Γ

(

Wn1 −
∂u

∂x1

· t
)

ds+

∫ ‖uT ‖

0

t · d ‖u‖ =

∫

Γ

(

Wn1 −
∂u

∂x1

· t
)

ds (4.29)

In equation (4.29) the first integral represents the J-Integral at the crack tip,
JTIP , the second, as explained before is the J-Integral at the cohesive zone, JCOH ,
while the third integral is the J-Integral calculated on the external path, JEXT .

Equation (4.29) can be re-written as:

JEXT = JCOH + JTIP (4.30)

During the development of the R-curve:

JTIP +

∫ ‖uT ‖

0

t · d ‖u‖ = JEXT (4.31)

During steady-state propagation:

JTIP +

∫ ‖u∗

T‖

0

t · d ‖u‖ = JEXT (4.32)
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4.1.3.3 Algorithm implemented in Matlab

Using the digital Image correlation the following parameters can be obtained:

• the matrices of the displacements on the plane [u1], [u2]

• the matrices of the strains [ε11], [ε22], [ε12]

This information will be used for the calculation of the J-integral and are stored
as matrices m×n where m and n are the dimension, in pixels, of the processed part
of the original image. Therefore, displacements and strain are m× n matrices.

Figure 4.9 shows the rectangular contour used and the boundary of the images.
This contour contains a finite number of pixels at therefore only discrete quantities
of the relevant parameters are determined along this pattern.

Figure 4.9: Contour used in Matlab algorithm

The calculation of the J integral follows the following steps:

• Average stresses, {σ}. The average stresses are computed from the trans-

formed stiffness matrices of the 0◦ and 90◦ plies, [C
0
] and [C

90
] respectively,

as {σ} = 1
2

(

[C
0
] + [C

90
]
)

{ε}.

• Differentials dx1, dx2 and dS. The differentials dx1 and dx2 are taken as
the differences between the centers of adjoining subsets, measured along the
corresponding axes. The differential dS is the Euclidian norm of dx1 and dx2.

• Vectors normal to the contour, {n}. These vectors are directly defined by the
simple contour sub-divisions shown in Figure 4.9, taking the following forms:
{1, 0, 0}T on C3, {0, 1, 0}T on C4, {−1, 0, 0}T on C1, and {0,−1, 0}T on C2.
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• Derivative of the displacement field,
{

∂u
∂x1

}

. This vector is calculated using

the central difference method applied in three adjoining subsets:

{

∂u

∂x1

}

≈
{

∆u

∆x1

}

=

{

ui+1 − ui−1

2∆x1

}

(4.33)

The algorithm to calculate the J-Integral of a composite laminate is implemented
in Matlab code and is reported in Appendix B. The Algorithms for the calculation
of the crack length and the J-Integral are used in a interactive Matlab code that
allows an easy and fast calculation of the crack R-curve. Figure 4.10 shows the main
window of the developed software.

Figure 4.10: Main window of Matlab software developed

4.2 Experimental Work

4.2.1 Experimental Setup

4.2.1.1 Preparation of the specimens

The specimen where manufactured as described in Pinho et al. [135]. Figure 4.11
shows the geometry for CT and CC specimens.
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(a) CT specimen (b) CC specimen

Figure 4.11: Geometry of CT-CC specimens

For the carbon specimens (IM78552) the lay-up was [0◦/90◦]8s for a total thick-
ness of h=4 mm. For the glass-specimens the lay-up was [0◦/90◦]2s for a total
thickness of h=6 mm.

To use the Digital Image Correlation, the specimens where painted with a speckle
of the average dimension of 0.1 mm.

Pinho et al. [135] noticed that paint peeled in compression specimens and this
effect did not allow to have data for the region near the crack tip. To avoid this
effect the surface of the specimens was treated as in the case of strain gauges are
used (see 3.2.2). The manual abrasion of the specimen surface and the degreasing
using acetone and isopropanol permit a perfect adhesion between the paint and the
specimen. Not peeling effects were observed in the vicinity of the crack tip during
the tests.

4.2.1.2 Specimens nomenclature

The denomination adopted for the specimens is the following:

J-M-I

where J identifies the type of test (CT or CC) where M is the material used, and I
is the index that identifies the number of the sample:

• J=CT, CC;

• M=C (carbon), G (glass);

• I=1,2,3.

4.2.1.3 Testing machine set-up

The test was conducted using the MTS 312.31 testing machine in FEUP’s labora-
tories. The capacity of the testing machine is 250 kN. Tests were performed using
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a load cell of 100 kN. The speed of the machine (displacement controlled test) was
2mm/min. Figure 4.12 shows the equipment set-up adopted during CT-CC tests.

Figure 4.12: Equipment set-up during CT-CC tests

4.2.1.4 Photomechanical set-up and measurement parameters

The digital image correlation ARAMIS software by GOM (http://www.gom.com/)
was used in this work. This measurement system is equipped with an 8-bit Baumer
Optronic FWX20 camera (resolution of 1624×1236 pixels, pixel size of 4.4µm and
sensor format of 1/1.8”) coupled with a Schneider-Kreuznach Componar-S 50mm
f/2.8 lenses. For mobility and adaptability, the support of the cameras was mounted
on a Foba ALFAE tripod, which was positioned facing the testing machine.

In the set-up, the optical system was positioned with regard to the surface of the
specimen, mounted into the testing machine. A laser pointer was used to guarantee
a correct alignment. The working distance (defined between the specimen’s surface
and the support of the cameras) was set in the range of 200 mm. The lens was
adjusted to be in focus with regard to the surface of interest, setting the lens aperture
to f/2.8 in order to minimize the depth of field. The aperture of the lens was then
slightly closed (f/11) in order to improve the depth of field during testing. The
shutter time was set to 50 ms, according to the cross-head displacement rate during
testing (2 mm.min−1) and the size of the camera unit cells (4.4 µm). The light source
was finally adjusted in order to guarantee an even illumination of the specimen’s
surface and to avoid over-exposition (i.e., the saturation of pixels over the field of
view).
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Table 4.1: Parameters used in the ARAMIS-
GOM software

Project parameter - Facet
Conversion factor 0.180 mm/pixel

Facet size 30 pixel
Step size 30 pixel

Project parameter - Strain
Computation size 5 macro-pixel
Validity code 55%

Strain computation method Total

Image recording
Acquisition frequency 1 Hz

Table 4.1 reports the parameters used in ARAMIS-GOM software. For the re-
gion of interest was set about 20×20 mm2, defining a conversion factor of about
0.185 mm.pixel−1. In the digital image correlation method, the displacement field
is measured by analysing the geometrical deformation of the images of the surface
of interest, recorded before and after loading. For this purpose, the initial (un-
deformed) image is mapped by square facets (correlation windows), within which
an independent measurement of the displacement is calculated. Therefore, the facet
size, on the plane of the object, will characterise the displacement spatial resolution.
The facet step (i.e., the distance between adjacent facets) can also be set either for
controlling the total number of measuring points over the region of interest or for
enhancing the spatial resolution by slightly overlapping adjacent facets. Typically, a
great facet size will improve the precision of the measurements but also will degrade
the spatial resolution [142]. Thus, a compromise must be found according to the
application to be handled. In this work, a facet size of 30×30 pixel2 was chosen,
attending to the size of the region of interest, the optical system (magnification) and
the quality of the granulate (average speckle size) obtained by the spray paint. The
facet step was also set to 30×30 pixel2 (Table 4.1), in order to avoid statistically
correlated measurements. The in-plane displacements were then numerically differ-
entiated in order to determine the strain field need for the material characterization
problem.

4.2.2 Experimental results

To evaluate the fracture toughness of the fiber CT and CC specimens are used and
two techniques are used to calculate the fracture toughness. The first technique [135]
requires the use FEM to evaluate the J-integral. The J-integral is calculated for a
FE model representing a specimen with unitary thickness. The fracture toughness
of the specimen is obtained as:
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G = JFEM

(

P

h

)2

(4.34)

where JFEM is the J-integral calculated from the FEM, P is the load during the
experimental test and h is the thickness of the composite.

The second technique, here proposed, consists in the calculation of the J-Integral
using directly the data that come out from Aramis, as explained in Section 4.1.3.3.

4.2.2.1 Calculation of J-integral using FEM

To evaluate the J-integral directly from the FEM a parametric numerical model was
defined using Abaqus 6.7 [106]. The Python [143] script of the parametric model
is reported in Appendix C. This allows to automatically generate and run several
CT-CC FE models for different crack lengths. The function JFEM of equation (4.34)
is calculated from the FE model and it can be used to compute the energy release
rate G of the laminate when at a given value of the crack length. The energy release
rate of the fiber is shown by Pinho et al. [135] to be equal to twice this value.

Figure 4.13: FEM model of CT/CC specimen

The J-Integral can be fitted by a function of the crack length a:

JI = (p0 + p1a
p2)

p3 + p4a

p5 − p6a
(4.35)

where pi are the best-fitting parameters. In Table 4.2 the parameters for the Glass
Fiber and IM7/8552 tested are reported. It should be noted that these parameters
are function of the geometry of the specimen.

Table 4.2: Parameters for the J-integral fitting (thickness h = 4mm)

Specimen p0 p1 p2 p3 p4 p5 p6

IM78552 -1.870e-6 -6.984e-21 9.044 -4.996 1.517 -4.269e+1 -8.874e-1
GF -8.775e-7 -2.571e-21 9.145 -7.312 1.004 -4.584e+1 -9.556e-1
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Figure 4.14 reports the fitting function and the numerical point from FEM. A
good level of approximation is observed.
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Figure 4.14: J-Integral for CT/CC specimens: numerical values and fitting functions.

4.2.2.2 CT-C-I specimens

A typical load-displacement relation obtained in the CT tests is shown in Figure
4.15.
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Figure 4.15: Load-displacement in a CT-C-I test specimen

The load was measured using the 100kN load cell, and the displacement was
measured using the linear variable differential transformer (LVDT) connected to the
hydraulic actuactor of the test machine.

Figure 4.15 shows that the load-displacement relation is linear up to approxi-
mately 80% of the peak load, and that crack propagation occurs in discrete jumps.
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Figure 4.16 shows the R-curve measured from the FEM post-processing of the
test results method proposed by Pinho et al. [135] and that obtained by post-
processing the displacement and strain fields measured by the DIC system.
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Figure 4.16: R-curves extracted from a CT-C-I specimen using FEM and DIC
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Figure 4.17: R-curves extracted from all CT-C specimens using DIC, and corre-
sponding mean R-curve. Each symbol corresponds to one CT test

Figure 4.16 shows a good correlation between the FEM and DIC data reduction
methods. This means that the fracture process zone that bridges the crack has a
minor effect on the displacement and strain fields in the regions where the Finite
Element model computes the J-integral.

Figure 4.17 shows the R-curves obtained from the three CT tests. Figure 4.17
also shows the mean value of the fracture process zone, 3.4mm, and the mean values
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Figure 4.18: Load-displacement in a CC-C-I test specimen

of the initial fracture toughness and that corresponding to steady-state crack prop-
agation, 97.8J/m2 and 133.3J/m2 respectively. These values are slightly lower than
the mean values of the fracture toughness for initiation and steady-state propaga-
tion, 113.8J/m2 and 146.7J/m2 respectively, measured by Pinho [144] for the same
material system.

4.2.2.3 CC-C-I specimens

A typical load-displacement relation obtained from a CC test is shown in Figure
4.18.

Figure 4.18 shows the R-curve measured from the FEM post-processing of the
test results obtained by the method proposed by Pinho et al. and the R-curve
obtained using the DIC data reduction procedure proposed here.

Figure 4.19 shows that the FEM-based solution yields unrealistically high values
of the fracture toughness during the propagation of fiber kink bands. For 15mm of
kink-band propagation the fracture toughness computed using the FEM is approxi-
mately twice that calculated using the DIC system. The reason for this fact is that
the FEM-based calculation of the J-integral does not account for the contact and
load transfer across the band of the kinked fibers. These effects clearly affect the
displacement and strain fields along the contours of the J-integral computed using
FEM. On the other hand, the DIC-based method uses the actual displacement and
strain fields on the surface of the specimen, thus providing a more accurate R-curve.
However, the contact stresses that are transferred along the kink band still pollute
the data obtained using DIC because they introduce one additional term on the
LHS of equation (4.29).

Delamination associated with the propagation of the kink band from the initial
notch was also observed in the CC-C tests. The presence of delamination renders
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Figure 4.19: R-curves extracted from a CC specimen using FEM and DIC

this test method unsuitable to measure the R-curve in compression because there
is another energy dissipating mechanism apart from those related to the kink band
itself. In addition, the presence of delamination invalidates the assumptions of a
two-dimensional crack, and of constant strain through the thickness of the laminate
(assumption used in equation 4.29). Delamination was also the reason why the DIC-
based method could not detect the tip of the kink band for 2mm≤ ∆a ≤11mm.
The out-of-plane displacement of the delaminated plies renders the experimental
determination of the displacement and strain fields impossible with just one camera.
The delamination propagation stopped after 11mm of kink-band propagation, and
the identification of its extremity was again possible.

4.2.2.4 CT/CC-G-I specimens

Unfortunately, no results are available for the glass specimen tested. In fact, during
the test several problems arose.

First of all, a straight crack propagation was not observed during the test. In fact,
indentation in the proximity of the holes, large delaminations and crack propagation
in the direction perpendicular to the main crack were observed.

All these phenomena do not allow the use of FEM or of DIC to calculate the R-
curve. Figure 4.20 shows a CC-G-I specimen during the loading and the associated
function KT defined in equation (4.11).

It can be noticed that the use of DIC and the crack detection algorithm enable
the identification of complicated crack paths. However, the J-Integral computed is
wrong because using DIC the out-of-plane displacements are considered zero and
obviously this is not the case. It means that the strains calculated by DIC are
affected by this error. Moreover, the other failure mechanism that appears during
the test (in addition at the propagation of the main crack) are not negligible.
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(a) photo from experimental test (b) KT function

Figure 4.20: CC-G-I specimen during the loading

4.2.2.5 Conclusion on CT and CC tests

The comparison between the R-curves obtained in CT specimens using the FE-based
post-processing and the DIC-based method indicates that the results are virtually
the same and that the method proposed here is a valid alternative to measure R-
curves associated with longitudinal tensile failure mechanisms in composite materi-
als. The initial value of the fracture toughness associated with longitudinal tensile
failure mechanisms in IM7/8552 is 98.7J/m2, and it raised up to 133.7J/m2 for
steady state propagation. The mean value of the associated cohesive zone is 3.4mm.

It is concluded that the FE-based data reduction method is inadequate for the
measurement of R-curves in CC specimens because it severely overpredicts the frac-
ture toughness. The DIC-based method is an improvement over FE-based data
reduction methods because it is based on the actual displacement field on a pre-
defined contour. However, the contribution of the contact tractions to the J-integral
still needs to be quantified and used in the data reduction method to improve the
accuracy of the data. The initial value of the fracture toughness associated with
longitudinal compressive failure mechanisms in IM7-8552 measured using DIC was
47.5J/m2; the measured fracture toughness increased up to 315J/m2 for 15mm of
propagation of a kink-band. However, the values computed for the fracture tough-
ness using the CC specimen do not account for the energy dissipated by the de-
lamination that accompanied the propagation of the kink-band. In addition, the
delamination does not allow the accurate measurement of the tip of the kink-band.
Therefore, it is concluded that these difficulties render the CC test method unsuit-
able to generate R-curves and that an alternative test method should be developed.

The same considerations apply for Glass fiber specimens. In addition, these
specimens showed additional failure mechanisms that render the use of the CT/CC
specimens unsuitable to measure the fracture toughness of fiber-dominated failure
mechanism. In this case a new test method should be developed.
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4.2.2.6 Determination of the parameters of the softening law

The CT and CC tests were performed to compute the parameters of the softening
law of the progressive damage model. For each damage mode the softening laws are
used to represent the evolution of the damage in terms of the dissipated energy (see
Figure 4.21).

Figure 4.21: Softening law used in the progressive damage model.

Dávila et al. [132] proposed a methodology to compute the parameter of the
exponential law proposed by Maimı́ et al. [133,134]:

XPO = (1− n)Xcf(m,n) (4.36)

GL
c = Gc [1− (1−m) f (m,n)] (4.37)

GL
c = Gc (1−m) f (m,n) (4.38)

with:

f (m,n) = 1− 1− n

n

m

1−m
(4.39)

m = G1/Gc (4.40)

n = 1− 2

3
γ
1−m

lp

EGc

X2
c

(4.41)

where Xc is the ultimate failure strength, XPO is the pull-out or transition strength,
lpz is the length of process zone (LPZ), γ is the parameter for the models for the LPZ
(γ = 0.884 for Rice model), Gc, G1, G

L
c and GE

c are respectively the energy release
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rate, the initiation value of the energy release rate, the linear and the exponential
partitions.

Using equations (4.36-4.41) and considering that for IM7/8552 carbon specimen
the following values were measured: Gc = 133.8, Xc = 2326.2, lp = 3.4, E =
90.65E3, G1 = 98.7, the parameters computed for the longitudinal cohesive law in
tension are:

X+
PO = 161.0MPa, GL+

c = 119.9J/m2, GE+
c = 23.8J/m2.

For the longitudinal cohesive law in compression no parameters are available and an
inverse identification technique was used; the parameters obtained were:

X−
PO = 600MPa, GL−

c = 72.6J/m2, GE−
c = 77.4J/m2.



Chapter 5

3D Numerical Model

Having defined a new experimental technique to measure the fracture toughness
associated to fibre-dominated failure mechanism, this chapter describes the 3D nu-
merical model developed to predict the strength of composite bolted joints. As
previously mentioned, the strength of a mechanically fastened joint depends on the
pressure applied by the bolt. In fact, a pressure of 22MPa on the washer is suggested
in the literature for carbon fiber joints to maximize the strength [6] while for glass
this value increases up to 70MPa [19]. The application of a lateral pressure has a
beneficial effect on the strength of the composite (obviously until the pressure is
lower than a critical value). For this reason the failure criteria used in the numerical
model has to consider 3D stress states.

The objective of this chapter is to develop a new 3D numerical model that is
applicable to composite bolted joints.

5.1 Matrix Failure Criteria for 3D stress states

The failure criteria proposed in this chapter can be thought as an extension of the
LARC03 criteria to 3D stress states [145]. It should be noticed that the effect of the
lateral pressure σ33 has an influence mainly on the matrix-dominated failure modes
(matrix failure and fiber kinking). The influence of σ33 on the fiber tensile failure
mode was taken as negligible.

For a general stress state, the failure criteria is a function of the traction vector
acting on the fracture plane as shown in Figure 5.1. Defining α as the angle between
the fracture plane and the through-the-thickness direction, the failure index depends
on the stresses acting on the fracture surface and therefore on α.

The stress tensor is denoted as T :

T =





σ11 τ12 τ13
τ12 σ22 τ23
τ13 τ23 σ33



 (5.1)
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Figure 5.1: Components of traction on the fracture plane

and the unit normal vector to the fracture plane is n =
{

0 cos (α) sin (α)
}T

the
vector of the traction stress tn acting on the fracture plane is obtained as:

tn = T · n =







cos (α) τ12 + sin (α) τ13
cos (α) σ22 + sin (α) τ23
cos (α) τ23 + sin (α) σ33







(5.2)

The orientation of the fracture plane is function of the components of the traction
vector that maximizes a failure index for a particular value of α. These components
are the normal stress and the two shear stresses (longitudinal and transverse) as
shown in Figure 5.1.

The component in N direction is obtained as

σN = tn ·







0
cos (α)
sin (α)







T

= cos (α)2 σ22 + 2 cos (α) sin (α) τ23 + sin (α)2 σ33 (5.3)

while the component in T direction, τT , is given by

τT = tn ·







0
− sin (α)
cos (α)







T

=

= − sin (α) cos (α) σ22 − sin (α)2 τ23 + cos (α)2 τ23 + cos (α) sin (α) σ33

(5.4)

Finally, the component in L direction, τL, is obtained as

τL = tn ·







1
0
0







T

= cos (α) τ12 + sin (α) τ13 (5.5)
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The failure criteria developed here depend on the sign of the normal stress. There
is a failure criterion for matrix compression if σN > 0, and failure criterion for matrix
tension when σN < 0.

5.1.1 Failure criteria for matrix compression

5.1.1.1 Puck criterion

Puck et al. [146–149] performed matrix compression tests and noticed that a modi-
fied Mohr-Coulomb criterion can be used to predict the orientation of the fracture
plane. For pure transverse compression loading (σ22 6= 0 and σij = 0) the maximum
shear stress occurs for α = ±π/4. However, experimentally, it was observed that,
generally, for fiber reinforced plastics the fracture angle is equal to α0 = 53±2◦. The
difference between the two angles was associated to the presence of the compressive
stress.

Puck and Shürmann’s criterion [148] is expressed as:

FMC =

(

τL
Sis
L − ηLσN

)2

+

(

τT
Sis
T − ηTσN

)2

(5.6)

where Sis
L is the longitudinal shear strength, Sis

T is the in-situ transversal shear
strength, and ηL and ηT are the two slopes in the σN -τ diagram when σN = 0 and
are defined as:

ηL = − ∂τL
∂σN

∣

∣

∣

∣

σN=0

ηT = − ∂τT
∂σN

∣

∣

∣

∣

σN=0

(5.7)

It should be noted that in all the formulation presented here the in-situ strengths
are used. Equation (5.6) can be used to evaluate in a consistent way the different
parameters that define the failure criteria.

5.1.1.1.1 Hypothesis 1: σ22 = −Y is
C If a only compression σ22 = −Y is

C is
applied in the transverse direction (2) the material should fail with a fracture angle
equal to α = α0.

If the loading stress is used in equation (5.6) the failure index is expressed as:

FMC =
sin (α)2 cos (α)2 Y is

C

2

(

Sis
T + ηT cos (α)2 Y is

C

)2 (5.8)

while the derivative of this function with respect to α yields:
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∂FMC

∂α
=2

sin (α) cos (α)3 Y is
C

2

(

S is
T + ηT cos (α)2 Y is

C

)2 − 2
sin (α)3 cos (α)Y is

C

2

(

S is
T + ηT cos (α)2 Y is

C

)2

+ 4
sin (α)3 cos (α)3 Y is

C

3
ηT

(

S is
T + ηT cos (α)2 Y is

C

)3

(5.9)

The fracture should occur at the plane α = α0 or α = π − α0. For this value
of the angle α it should be FMC = 1 and ∂FMC/∂α = 0. Substituting α = α0

in equations (5.8) and (5.9), the transversal shear strength and the compressive
transversal strength can be obtained solving this system of equations:

{

FMC|α=α0
= 1

∂FMC
∂α

∣

∣

α=α0
= 0

(5.10)

Assuming the following relationship for the friction coefficients [149]

ηL
ηT

=
Sis
L

Sis
T

(5.11)

and considering that the in-plane shear strength and the longitudinal friction coef-
ficient are material parameters that can be measured, the system of equation (5.10)
can be solved obtaining the following values for Y is

C and Sis
T :

Y is
C = −Sis

L

(

2 cos (α0)
2 − 1

)

ηL cos (α0)
2 (5.12)

Sis
T =

1

2

(

2 sin (α0)
2 − 1

)

Sis
L

√

1− sin (α0)
2 sin (α0) ηL

(5.13)

If these definitions are used the failure index is equal to 1, the first derivative is
equal to zero and the second derivative reads:

∂2FMC

∂α2

∣

∣

∣

∣

α=α0

=
2

cos (α0)
2 (cos (α0)

2 − 1
) (5.14)

which is negative as required. This assures that for α = α0 the maximum of the
function is found. If the conditions expressed by equations (5.12) and (5.13) are
not satisfied the function will take the value 1 for α = α0 but the maximum of the
function will be somewhere else. This will result in errors if the failure angle is found
maximizing numerically the equation (5.8).

For example, for carbon IM7/8552 (Sis
L = 130.2, ηL = 0.5) the failure index as

a function of the angle α is shown in Figure 5.2. It should be noticed that the
maximum is correctly calculated for α = α0.
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Figure 5.2: FMC as a function of α for IM-78552 (σ22 = −Y is
C )

5.1.1.1.2 Hypothesis 2: τ12 = Sis
L If only the shear τ12 = Sis

L is applied the
fracture plane must be defined by α = 0.

In this case the failure index of equation (5.6) assumes simply the value

FMC = cos (α)2 (5.15)

while the derivative of this function assumes the value

∂FMC

∂α
= −2 cos (α) sin (α) (5.16)

As expected, the failure index and the derivative assume the value of 1 and 0
respectively when α = 0. The second derivative of this function takes a negative
value (∂2FMC/∂α2 = −2) and this assures that the point found is a maximum for
the failure index function. Figure 5.3 shows the failure index as a function of the
angle α. The fracture angle is well predicted.
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Figure 5.3: FMC as a function of α (τ12 = Sis
L )

Figure 5.4: FMC as a function of α (τ23 = Y is
T )
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5.1.1.1.3 Hypothesis 3: τ32 6= 0 Supposing that only τ23 6= 0 the failure index
is:

FMC =

(

− sin (α)2 τ23 + cos (α)2 τ23
)2

(S is
T − 2 ηT cos (α) sin (α) τ23)

2 (5.17)

If τ23 reaches its critical value (τ23 = Y is
T ) the fracture plane occurs at an angle

of α = 45◦. However, in this case equation (5.17) does not take the value of 1 but 0
as shown in Figure 5.4. This means that this type of fracture cannot be computed
using Puck’s criterion for compression.

5.1.1.1.4 Conclusion Puck’s failure criterion describe very well the fracture of
the matrix if Y is

C and Sis
T are defined according to equations (5.12) and (5.13). If

only τ23 is different from zero the criterion cannot be used to predict the fracture
angle. For this reason, Puck’s criterion should be only used when σN < 0 and not
when σN = 0.

5.1.2 Failure Criteria for Matrix Tension

5.1.2.1 Quadratic Interaction Criterion

The quadratic interaction criterion proposed by Pinho [150] assumes a quadratic re-
lationship between the components of the stress on the fracture plane. The criterion
is given by the following expression

FMT =

(

σN

Y is
T

)2

+

(

τL
Sis
L

)2

+

(

τT
Sis
T

)2

(5.18)

5.1.2.1.1 Hypothesis: σ22 = Y is
T Consider that a stress σ22 = Y is

T is applied
to the material. The fracture plane should be α = 0◦. Under these hypotheses
the failure index assumes the value FMT = 1. However, if the fracture angle is
not given, but rather searched by maximizing the failure index as a function α, as
normally done, the failure index reads:

FMT = cos (α)4 + sin (α)2 cos (α)2 k2 (5.19)

where k = Y is
T /Sis

T .

Figure 5.5 shows the FMT function as a function of k.



134 CHAPTER 5. 3D NUMERICAL MODEL

Figure 5.5: FMT as a function of α for different k (σ22 = −Y is
T )

The derivative of equation (5.19) is:

∂FMT

∂α
= −4 cos (α)3 sin (α) + 2 sin (α) cos (α)3 k2 − 2 sin (α)3 cos (α) k2 (5.20)

while the second derivative reads:

∂2FMT

∂α2
= −4 + 2 k2 (5.21)

that should be negative for a maximum of the function given by equation (5.19).
Consequently in the case of a unidirectional compression the criterion results in
correct prediction only if:

k ≤
√
2

2
⇒ Y is

T ≤
√
2Sis

T (5.22)

For example, in the case of IM7/8552 carbon the k assumes the value kIM78552 =
Y is
T IM78552

Sis
T IM78552

= 160.2/74.7 = 2.1. It should be noted that the value of Sis
T is calculated

using equation (5.10). The failure index FMT for IM7/8552 is reported in Figure
5.6
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Figure 5.6: FMT as a function of α for IM7/8552 (quadratic criterion)

This means that under pure transverse tension, the failure criterion will predict
that the failure occurs when σ22 < Y is

T , and the corresponding fracture plane will be
different than α = 0. This is obviously wrong.

5.1.2.2 Puck criterion

Puck proposed an elliptical interaction criterion that can be written as [151]:

FMT =
( τ

Sis

)2

+ c1
σN

Y is
T

+ c2

(

σN

Y is
T

)2

(5.23)

where τ is the shear on the fracture plane, σN is the normal stress and c1 and c2 are
parameters that can be determined imposing appropriate boundary conditions. Sis

is the shear strength on the fracture plane. The shear on the fracture plane is given
as

τ =
√

τ 2L + τ 2T (5.24)

and the angle ω between the shear stress τT and τ is equal to:

ω = arctan

(

τL
τT

)

(5.25)
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5.1.2.2.1 Determination of Sis If only τT and τL are present and σN is equal
to zero the failure criteria for tension (equation (5.23)) and for compression (equa-
tion (5.6)) should give the same results. If not the two criteria are not consistent.
Therefore, FMC = FMT when σN = 0.

Under this hypothesis the following expression for Sis is derived:

Sis =
1

√

(sin(ω)/Sis
L )

2 + (cos(ω)/Sis
T )

2
(5.26)

Obviously, Sis depends on Sis
L , S

is
T and ω.

5.1.2.2.2 Determination of c1 and c2 To evaluate c1 and c2, assume that a
unidirectional tensile stress σ22 = Y is

T is applied in the transverse direction. The
failure index is equal to 1 and the angle of fracture α is equal to 0. Imposing these
conditions the following condition is obtained:

c1 + c2 = 1 (5.27)

Taking the derivative of the failure index of equation (5.23)

∂FMT

∂σN

=
2τ

Sis2

∂τ

∂σN

+
c1
Y is
T

+
2c2 σN

Y is
T

2 (5.28)

and supposing that σN = 0 equation (5.28) results in:

∂FMT

∂σN

∣

∣

∣

∣

σN=0

= −2τ η

Sis2
+

c1
Y is
T

(5.29)

where η = − ∂τ
∂σN

∣

∣

∣

σN=0
.

The expression of η can be expressed in function of ηL and ηT . In fact, considering
the following equation:

τ 2 = τ 2L + τ 2T (5.30)

and differentiating in ∂
∂σN

it results in:

2τ
∂τ

∂σN

= 2τL
∂τL
∂σN

+ 2τT
∂τT
∂σN

(5.31)

then remembering the definition of the friction coefficients (equation (5.7)), under
the hypothesis of σN = 0, equation (5.31) yields:

η = ηL
τL
τ

+ ηT
τT
τ

(5.32)

To calculate the coefficient c1, consider the following stress state: σN = 0, τT = 0
and τL = Sis

L . In this case the matrix should fail and the derivative of equation (5.29)
should be equal to zero because the failure index is a maximum at that point. Under
these hypotheses η|τT=0 = ηL and equation (5.29) can be re-written as:
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∂FMT

∂σN

= −2ηL
Sis
L

+
c1
Y is
T

= 0 =⇒ c1 =
2ηLY

is
T

Sis
L

(5.33)

Substituting the c1 in equation (5.27) c2 is obtained

c1 + c2 = 1 =⇒ c2 = 1− 2ηLY
is
T

Sis
L

(5.34)

The failure index of equation (5.23) assumes that the following expression:

FMT =
( τ

Sis

)2

+
2ηLσN

Sis
L

+

(

1− 2ηLY
is
T

Sis
L

)(

σN

Y is
T

)2

(5.35)

5.1.2.2.3 Hypothesis: σ22 = Y is
T If σ22 = Y is

T with σij = 0 the material should
fail by transverse matrix cracking and the angle should α = 0. The failure index
under this hypothesis is FMT = 1 and the first derivative is equal to ∂FMT/∂α = 0.

However the second derivative reaches:

∂2FMT

∂α2

∣

∣

∣

∣

α=0

=
2Y is

T

2

Sis
T

2 − 4ηLY
is
T

Sis
L

− 4 (Sis
L − 2ηLY

is
T )

Sis
L

(5.36)

that should be negative if the fracture angle α corresponds to the maximum of the
function FMT . The second derivative is negative when:

(

−ηLS
is
T +

√

ηL2Sis
T

2
+ 2Sis

L

2

)

Sis
T

Sis
L

< Y is
T <

(

−ηLS
is
T −

√

ηL2Sis
T

2
+ 2Sis

L

2

)

Sis
T

Sis
L

(5.37)

For example, for carbon IM7/8552 equation (5.37) can be written as

−129 < Y is
T < 86 [MPa] (5.38)

that is not respected. This means that in this case, the point for α = 0 will not be a
maximum for the function FMT , as clearly shown in the Figure 5.7 that represents
FMT as a function of α.
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Figure 5.7: Puck criterion: FMT as a function of α for IM7/8552 (σ22 = Y is
T )

5.1.2.3 Conclusion

The 3D interaction criteria previously proposed cannot be used to predict the failure
of the matrix in general conditions. In fact, both the quadratic and the elliptical
criteria, for the case of a simple transversal compression work if some condition are
satisfied. These conditions are not realistic for most technical composites. It should
be noted that the equations (5.22) and (5.37) assure the applicability of the failure
criteria only in the case of pure transversal tension. Otherwise the applicability of
the criterion used depends on the stress state applied.

5.1.2.4 Proposed Criterion

It was previously demonstrated that the quadratic interaction criteria of equations
(5.18)-(5.23) cannot be used to predict the failure of the material under general
stress states. Therefore, a new failure criterion is proposed in this chapter.

First of all it should be noticed that, experimentally, when a tensile stress is ap-
plied to a brittle material the fracture plane is always perpendicular to the maximum
principal stress.

Puck noticed that the presence of the shear stresses reduces the strength of the
matrix. However, the orientation of the fracture plane is defined by the maximum
principle stress, and not by the shear stress [151].

A criterion that uses the maximum principal stress on the transverse plane (23)
and considers that fracture occurs when the principal stress reaches the value of the
transversal strength Y is

T could be expressed as:
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FMT =

(

τL
Sis
L

)2

+

(

σI

Y is
T

)2

(5.39)

where σI is the maximum principal stress on the transversal plane (23) and τL is the
shear in direction 1 that acts on the surface perpendicular to σI . Obviously σI ≥ 0.

The principal stress σI is given as:

σI =
σ22 + σ33

2
+

√

(

σ22 − σ33

2

)2

+ τ 223 (5.40)

The angle between the direction of the highest principal stress and the 22 axis
is given by

αI =
1

2
arctan

(

2τ23
σ22 − σ33

)

(5.41)

The shear stress τL that acts on the fracture plane is given as:

τL = cos (αI) τ12 + sin (αI) τ13 (5.42)

It should be noted that the criterion proposed yields accurate predictions for the
several load cases that were previously considered. In fact:

• if σ22 = Y is
T and σij = 0 the failure index takes the value FMT = 1 and the

fracture plane is αI = 0;

• if σ33 = Y is
T and σij = 0 the failure index takes the value FMT = 1 and the

fracture plane is αI = π/2;

• if τ23 6= 0 and σij = 0 the failure index takes the value FMT = 1 when
τ23 = Y is

T and the fracture plane is αI = π/4.

However, the criterion defined is only applicable if the principal stress is predom-
inant with respect to the shear τL.

Consider for example the following stresses state: τ12 = Sis
L , 0 < σ33 < Y is

T and
σij = 0. Under this hypothesis the material should fail. However, if the criterion of
equation (5.39) is used the fracture plane is given by α = π/2. Using equation (5.5)
results in τL = 0 and consequently FMT < 1, that is obviously wrong.

Consequently the criterion proposed here is written as:

FMT =

(

τL
Sis
L

)2

+

(

σN

Y is
T

)2

(5.43)

where σN and τL are defined in equations (5.3) and (5.5) respectively and are deter-
mined maximizing the failure index FMT respect to α.

If τL is not predominant the criteria of equations (5.43) and (5.39) give the same
results. Different stresses states are considered in the following to show that the
criterion proposed can be effectively used to predict failure of matrix when σN ≥ 0.
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5.1.2.4.1 Hypothesis 1: σ22 = Y is
T Consider that a stress σ22 = Y is

T is applied
to the material. The function FMT assumes the value:

FMT = cos(α)4 (5.44)

Figure 5.8 shows the failure index FMT as a function of α. The predicted
fracture plane is correctly computed as α = 0 and the failure index takes correctly
the value of FMT = 1.

Figure 5.8: FMT as a function of α (σ22 = Y is
T )

5.1.2.4.2 Hypothesis 2: σ33 = Y is
T Consider that a stress σ33 = Y is

T is applied
to the material. The function FMT assumes the value:

FMT = sin(α)4 (5.45)

Figure 5.9 shows the failure index FMT as a function of α. The predicted
fracture plane is correctly computed as α = π/2. The failure index takes correctly
the value FMT = 1 at the fracture plane.
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Figure 5.9: FMT as a function of α (σ33 = Y is
T )

5.1.2.4.3 Hypothesis 3: τ23 = Y is
T Consider that a stress τ23 = Y is

T is applied
to the material. The function FMT assumes the value:

FMT = 4cos(α)2sin(α)2 (5.46)

Figure 5.10 shows the failure index FMT as a function of α. The predicted frac-
ture plane is correctly computed as α = ±π/4 and the failure index takes correctly
the value of FMT = 1.

5.1.2.4.4 Hypothesis 4: τ12 = Sis
L Consider that a stress τ12 = Sis

L is applied
to the material. The function FMT assumes the value:

FMT = cos(α)2 (5.47)

Figure 5.11 shows the failure index FMT as a function of α. The predicted
fracture plane is correctly computed as α = 0 and the failure index takes correctly
the value of FMT = 1.

5.1.2.4.5 Hypothesis 5: τ13 = Sis
L Consider that a stress τ13 = Sis

L is applied
to the material. The function FMT assumes the value:

FMT = sin(α)2 (5.48)

Figure 5.12 shows the failure index FMT as a function of α. The predicted
fracture plane is correctly computed as α = π/2 and the failure index takes correctly
the value of FMT = 1.
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Figure 5.10: FMT as a function of α (τ23 = Y is
T )

Figure 5.11: FMT as a function of α (τ12 = Sis
L )
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Figure 5.12: FMT as a function of α (τ13 = Sis
L )

5.1.2.4.6 Summary The criterion defined provides accurate predictions for the
different load cases analyses. In fact:

• if σ22 = Y is
T and σij = 0 the failure index takes the value FMT = 1 and the

fracture plane is α = 0;

• if σ33 = Y is
T and σij = 0 the failure index takes the value FMT = 1 and the

fracture plane is α = π/2;

• if τ23 6= 0 and σij = 0 the failure index takes the value FMT = 1 when
τ23 = Y is

T and the fracture plane is αI = π/4;

• if τ12 = Sis
L and σij = 0 the failure index takes the value FMT = 1 and the

fracture plane is α = 0;

• if τ13 = Sis
L and σij = 0 the failure index takes the value FMT = 1 and the

fracture plane is α = π/2.

In the case that only τ23 is different from zero, Puck’s criterion for compression
cannot predict the fracture angle (see Section 5.1.1.1.3). However experimental
evidence shows that if the only τ23 is present, the fracture plane is oriented at 45◦.
This criterion can detect the right fracture plane and so it should be used when
σN ≥ 0, while the Puck’s criterion for compression should be used only in the case
of σN < 0.
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5.1.2.5 Failure envelopes for matrix failure

Figures 5.13-5.17 show the failure envelopes for matrix failure when Puck’s criterion
is used for compression, σN < 0, and the proposed criterion is used for tension
σN ≥ 0, for an IM7/8552 carbon laminate. The parameter used to the definition of
the material are reported in Table 5.11

Table 5.1: Mechanical properties of IM7/8552

XT (MPa) XC (MPa) Y is
T (MPa) Y is

C (MPa) Sis
L (MPa) ηL α0 (◦) G12(MPa)

2323.5 1200.1 160.2 198 130.2 0.5 53 5290.0

Figure 5.13(a) shows the shear τ12 as a function of σ22. As a 2D case is considered
the two criteria takes simply the form of the Puck criterion for 2D, when σ22 < 0,
and Hashin criterion, when σ22 ≥ 0. As expected, when σ22 becomes compressive
the apparent shear strength increases.

Figure 5.13(b) shows the shear τ13 as a function of σ22. As τ13 and σ22 act on
different planes no interaction between them is noticed and the value of τ13 remains
always lower than Sis

L .

-250 -200 -150 -100 -50 0 50 100 150 200
0

50

100

150

200

Sis
L

-Yis
C

M
Pa

 [MPa]

Yis
T

(a) τ12-σ22

-250 -200 -150 -100 -50 0 50 100 150 200
0

50

100

150

Sis
L

-Yis
C

M
Pa

 [MPa]

Yis
T

(b) τ13-σ22

Figure 5.13: Shear stresses as a function of σ22

1It should be noted that in-situ strength are used; therefore, an embedded lamina is considered.
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Figure 5.14: τ12 as a function of σ22 for several value of the transverse stress σ33

Figure 5.14 shows the shear τ12 as a function of σ22 when a transverse stress, σ33,
is applied. The red envelopes are obtained when σ33 is positive and the blue ones
when it is negative. If σ33 > 0 the envelope remain constant when σ22 > 0. This can
be explained with the fact that there is no interaction between σ22 and σ33 when
both are positive. In this case the fracture plane is calculated using the principal
stress on the transverse plane (23). If σ22 < 0, an application of a positive σ33

decreases the strength. In the case that a compressive σ33 is applied the reduction
of strength is noticed in tension (σ22 > 0) although in compression (σ22 < 0) the
compressive σ33 is beneficial.

Figures 5.15-5.17 show the failures envelopes of σ33 as a function of σ22 when the
shear stresses (respectively τ12, τ13, τ23) vary.

As expected, when the shear stresses (τ12, τ13, τ23) are equal to zero the failure
envelope intercept the two axis in the points (YT , 0), (0, YT ), (−YC , 0) and (0,−YC).
Moreover, it should pointed out that when σ22 and σ33 are both positive the failure
envelope remains correctly inside the region defined by σ22 ≤ 0 and σ33 ≤ 0. Finally,
it should be observed that the failure envelopes are open in the region characterized
by hydrostatic pressure (σ22 = σ33 = −p).

In Figures 5.15-5.16 the shear stresses (τ12, τ13) vary between 0 and Ss
L while

in Figure 5.17 τ23 varies between 0 and Sis
T . This for the reason that outside these

values the material should fail. However, it should be noticed the maximum value
of τ23 for σN ≥ 0 is Y is

T . This is not represented in Figure 5.17 because in the case
of compression it does not make any sense.
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Figure 5.15: σ33 as a function of σ22 for different values of τ12
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Figure 5.16: σ33 as a function of σ22 for different values of τ13
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Figure 5.17: σ33 as a function of σ22 for different values of τ23

5.2 Fiber Failure Criteria for 3D stress states

5.2.1 Fiber tension failure (σ11 > 0)

The failure index for failure in compression as suggested by Dávila et al. [145] can
be calculated simply as:

FIF =
ε11
εT1

(5.49)

In this case it is simply assumed that transversal stress has a negligible influence on
the longitudinal strength of the fibers.

5.2.2 Fiber kinking failure (σ11 ≤ 0)

The 3D stress state has a relevant influence on on fiber kinking. Two hypotheses
are normally made:

• the first hypothesis, from Rosen, considers that kink band are the final result
of micro-buckling of the fibers [152];

• the second hypothesis, from Argon, assumes that kink bands are triggered by
localized matrix failure in the vicinity of misaligned fibers [153].
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Schultheisz andWaas [154] concluded that in technical composites kinking is orig-
inated by local micro-structural defects that could trigger the kinking phenomenon.

The model presented here is based on Argon’s approach [153] and on the subse-
quent developments by Dávila et al. [145] and Pinho et al. [150].

Figure 5.18 shows the different coordinate systems and planes that are used in
this model. The coordinate system 123 is aligned with the material axes of the
composite: 1 represents the fiber direction, 2 and 3 the transverse directions.

In Figure 5.18(a) the kinking plane is highlighted. The coordinate system relative
to the kinking plane is 1(θ)2(θ)3(θ) and it is obtained by 123 rotating itself around
the axis 1 of an angle θ.

Figure 5.18(b) show the fibers on the kinking plane. The kinking-angle is ϕ and
the respective coordinate system is 1(ϕ)2(ϕ)3(ϕ) that can be obtained by 1(θ)2(θ)3(θ)

after a rotation of an angle ϕ around the axis 3(θ). Then it is possible use the
failure criteria of equations (5.6) and (5.43) in the misalignment coordinate system
1(ϕ)2(ϕ)3(ϕ) to check for failure.

Figure 5.18(c) shows the fracture angle with respect to the misalignment frame,
and identified by the angle α.

(a) (b) (c)

Figure 5.18: Fiber kinking, coordinate systems

Kinking failure can then be predicted using the matrix failure index in the mis-
alignment frame. This require a double rotation of the stress tensor.

First of all the angle θ should be calculated. Generally, the kinking plane is
triggered by the defects in the composite and so it means that θ is function of the
local defects of the material. However, if we make the hypothesis that the influence
of the defects can be neglected the angle θ can be taken as a function of the stresses
and it can be calculated by the maximum principal stress that acts on the transverse
plane 23. In fact, if τ

(θ)
23 6= 0 this will result in a movement perpendicular to the

kinking-plane contradicting the evidence that fibers kink on this plane. For this
reason, using the Mohr’s circle theory the angle θ can be obtained as:

tan (2θ) =
2τ23

σ22 − σ33

(5.50)
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Using the stress tensor defined in equation (5.1), if a rotation of θ (counterclock-
wise) is applied the stress tensor in the new coordinate system results:

T (θ) = R (θ) · T ·R (θ)T (5.51)

where R (θ) is the rotation matrix defined as:

R (θ) =





1 0 0
0 cos (θ) sin (θ)
0 − sin (θ) cos (θ)



 (5.52)

In the θ coordinate system stresses assume the values:

σ
(θ)
11 = σ11 (5.53)

σ
(θ)
22 = cos (θ)2 σ22 + 2 cos (θ) sin (θ) τ23 + σ33 sin (θ)2 (5.54)

σ
(θ)
33 = sin (θ)2 σ22 − 2 cos (θ) sin (θ) τ23 + σ33 cos (θ)2 (5.55)

τ
(θ)
12 = cos (θ) τ12 + sin (θ) τ13 (5.56)

τ
(θ)
23 = − sin (θ) cos (θ) σ22 + cos (θ) sin (θ) σ33 +

(

cos (θ)2 − sin (θ)2
)

τ23 (5.57)

τ
(θ)
13 = − sin (θ) τ12 + cos (θ) τ13 (5.58)

Having found the fiber-kinking plane, the stresses should be rotated in the mis-
alignment frame. The stresses on this coordinate system can be written as:

T (ϕ) = R (ϕ) · T (θ) ·R (ϕ)T (5.59)

where R (ϕ) is the rotation matrix defined as:

R (ϕ) =





cos (ϕ) sin (ϕ) 0
− sin (ϕ) cos (ϕ) 0

0 0 1



 (5.60)

Finally the stresses in the misalignment frame can be expressed as:

σ
(ϕ)
11 = cos (ϕ)2 σ

(θ)
11 + 2 cos (ϕ) sin (ϕ) τ

(θ)
12 + σ

(θ)
22 sin (ϕ)2 (5.61)

σ
(ϕ)
22 = sin (ϕ)2 σ

(θ)
11 − 2 cos (ϕ) sin (ϕ) τ

(θ)
12 + σ

(θ)
22 cos (ϕ)2 (5.62)

σ
(ϕ)
33 = σ

(θ)
33 (5.63)

τ
(ϕ)
12 = − sin (ϕ) cos (ϕ)

(

σ
(θ)
11 − σ

(θ)
22

)

+
(

cos (ϕ)2 − sin (ϕ)2
)

τ
(θ)
12 (5.64)

τ
(ϕ)
23 = − sin (ϕ) τ

(θ)
13 + cos (ϕ) τ

(θ)
23 (5.65)

τ
(ϕ)
13 = cos (ϕ) τ

(θ)
13 + sin (ϕ) τ

(θ)
23 (5.66)
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Then, matrix failure can be predicted using equations (5.6,5.43). The compo-
nents of the traction on the fracture plane can be expressed as:

σ
(ϕ)
N = cos (α)2 σ

(ϕ)
22 + 2 cos (α) sin (α) τ

(ϕ)
23 + sin (α)2 σ

(ϕ)
33 (5.67)

τ
(ϕ)
T = − sin (α) cos (α)

(

σ
(ϕ)
22 − σ

(ϕ)
33

)

+
(

cos (α)2 − sin (α)2
)

τ
(ϕ)
23 (5.68)

τ
(ϕ)
L = cos (α) τ

(ϕ)
12 + sin (α) τ

(ϕ)
13 (5.69)

If σ
(ϕ)
N < 0 the failure index becomes:

FKMC =

(

τ
(ϕ)
L

Sis
L − ηLσ

(ϕ)
N

)2

+

(

τ
(ϕ)
T

Sis
T − ηTσ

(ϕ)
N

)2

(5.70)

while if σ
(ϕ)
N ≥ 0 the failure index reads:

FKMT =

(

τ
(ϕ)
L

Sis
L

)2

+

(

σ
(ϕ)
N

Y is
T

)2

(5.71)

The failure index for fiber kinking will assume the value

FK = max {max {FKMC} ,max {FKMT}} (5.72)

where max {FKMC} and max {FKMT} are the maximum values of equations (5.70)
and (5.71) with respect to α.

5.2.2.1 Determination of the angle ϕ

Dávila et al. [145] used a combination of Argon’s approach and LaRC02/03 failure
criterion to calculate the angle ϕ in the 2D case. The stresses in the misalignment
coordinate frame of Figure 5.19 are:

σ
(m)
11 = cos (ϕ)2σ11 + sin (ϕ)2σ22 + 2 sin (ϕ) cos (ϕ) |τ12| (5.73)

σ
(m)
22 = sin (ϕ)2σ11 + cos (ϕ)2σ22 − 2 sin (ϕ) cos (ϕ) |τ12| (5.74)

τ
(m)
12 = − sin (ϕ) cos (ϕ) σ11 + sin (ϕ) cos (ϕ) σ22 +

(

cos (ϕ)2 − sin (ϕ)2
)

|τ12| (5.75)

Figure 5.19: Stresses in the misalignment frame (2D)
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Supposing that the material fails under axial compression the stresses take the
values σ11 = −XC , σ22 = τ12 = 0. Substituting these values, equations (5.73) can
be rewritten

σ
(m)
11 = −cos (ϕC)

2XC (5.76)

σ
(m)
22 = −sin (ϕC)

2XC (5.77)

τ
(m)
12 = sin (ϕC) cos (ϕC)XC (5.78)

where ϕC is the angle at the failure when a pure axial compression is applied.
Substituting these stress in the LaRC02/03 failure criterion it becomes:

Sis
L = XC

(

sin (ϕC) cos (ϕC)− ηL sin (ϕC)
2) (5.79)

Equation (5.79) can be solved for ϕC obtaining

ϕC = arctan









1−
√

1− 4
(

Sis
L

XC
+ ηL

)

Sis
L

XC

2
(

Sis
L

XC
+ ηL

)









(5.80)

The total misalignment ϕ can be thought as the sum of an initial constant
misalignment angle ϕ0 (that represents the manufacture defects and imperfections
in the materials) and a γm angle that is originated by the shear loading applied and
depends on the shear constitutive law τ = f (γm).

At failure under axial compression the additional angle γm becomes:

γmC = f−1
(

τ
(m)
12

)

= f−1 (sin (ϕC) cos (ϕC)XC) (5.81)

For a material that exhibits linear behavior in shear, τ
(m)
12 = G12γm equa-

tion (5.81) can be solved in close form obtaining

γmC =
sin (2ϕC)XC

2G12

≈ ϕCXC

G12

(5.82)

considering small angle approximation.
The initial misalignment angle can then obtained as

ϕ0 = ϕC − γmC (5.83)

For a generic loading the strain γm is obtained solving the equation f (γm) = τ
(m)
12

that can be written as:

f (γm) = − sin (ϕ) cos (ϕ) (σ11 − σ22) + 2
(

cos (ϕ)2 − sin (ϕ)2
)

|τ12 | (5.84)
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Solving equation (5.84) for γm the angle ϕ becomes:

ϕ = sgn {τ12} (ϕ0 + γm) (5.85)

Assuming small angle approximation equation (5.84) results

f (γm) = (ϕ0 + γm) (−σ11 + σ22) + |τ12| (5.86)

that for a material that exhibits linear behavior can be solved as:

γm =
ϕ0G12 + |τ12|

G12 + σ11 − σ22

− ϕ0 (5.87)

Pinho et al. [150] suggested to apply the the equations (5.84- 5.87) considering
the stresses that acts on the kinking plane. Equation (5.84) becomes:

f (γm) = − sin (ϕ) cos (ϕ)
(

σ
(θ)
11 − σ

(θ)
22

)

+ 2
(

cos (ϕ)2 − sin (ϕ)2
)

∣

∣

∣
τ
(θ)
12

∣

∣

∣
(5.88)

Finally for linear shear behavior equation (5.88) results:

γm =
ϕ0G12 +

∣

∣

∣τ
(θ)
12

∣

∣

∣

G12 + σ
(θ)
11 − σ

(θ)
22

− ϕ0 (5.89)

5.2.2.2 Failure envelopes for fiber failure

Figures 5.20-5.23 show the failure envelopes for an IM7/8552 carbon laminate. The
parameter used to the definition of the material are reported in Table 5.1.

Figure 5.20 shows the σ11-σ22 failure envelope where are highlighted the regions
interested by different failure phenomena.
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Figure 5.20: σ11-σ22 failure envelope for IM7/8552 carbon

In the region characterized by kinking for matrix compression, the LaRC03 fail-
ure criterion predicts an increase of the axial compressive strength and this is con-
firmed by experimental results [155]. The criterion proposed here show an increase
of the compressive strength only in a small region of the envelope2 but there is not
an increasing of the compressive strength if a biaxial compression is applied. This
seems to contradict the experimental evidence but it is not the case. First of all, it
should be highlighted that the fact that the compressive stress does not increase can
be explained remembering the definition of the angle θ that identify the kink band
plane. When σ22 becomes smaller than zero (σ33 = 0), the angle of the principal
stress changes from 0◦ to 90◦. If a compression in 2 direction is applied this will not
influence the fiber kinking because the fiber will kink in the perpendicular plane.
It is consistent with the model defined having a constant value of the compressive
strength when σ22 < 0. However, if the loading condition or the manufacture of the
material can justify a predisposition of the material to kink with an angle θ = 0 (in
2 direction) the proposed failure criteria can detect the increasing of compressive
strength in the biaxial compression region.

Figure 5.21 shows the σ11-σ22 failure envelope when a transverse stress is applied.

2Near the point that identifies the switching of failure from kinking for matrix tension to kinking
for matrix compression
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Figure 5.21: σ11-σ22 failure envelope for different values of transverse stress σ33 for
IM7/8552 carbon

In this case, as both σ22 and σ33 are compressive the increase of the strength in
the biaxial compression region is shown. It should be noticed that when a transverse
compression is applied (σ33 < 0) the strength of the material decreases in tension
(σ22 > 0) and increases in compression (σ22 < 0). When a transverse tension is
applied the compressive strength decreases (σ22 < 0) but no effects can be noticed
in the tensile strength (σ22 > 0) and this is due to the fact that in tension (σN >
0,τL = 0) the failure index is function of the principal stress on the transversal
plane (23), it means that there is not interaction between σ22 and σ33 because the
failure depends only on the maximum value of σ22 or σ33. In this case in fact
σN = max {σ22, σ33}.

Figure 5.22 shows the σ11-τ12 failure envelope. For the symmetry the envelopes
σ11-τ12 and σ11-τ13 should be the same. It should be noticed that when only σ11 and
τ12 (or τ13) are applied, the principal stresses on the transverse plane are zero and
for these reason θ assume infinite values. Under these conditions, the kinking-plane
is triggered by the defects of the material and theoretically infinite solutions are
possible because θ can take all the values between 0 and π. Figure 5.22 shows the
two envelopes for θ = 0 and θ = π/2 that represent the boundaries of the relevant
region. As the envelope for θ = 0 gives the most conservatives results this should
be used.

Figure 5.21 shows the σ11-τ12 failure envelope when a transverse stress σ33 is
applied. When σ33 < 0 the kinking plane is calculated by θ = 0 while is σ33 > 0,
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Figure 5.22: σ11-τ12 failure envelope for IM7/8552 carbon

θ = π. An increasing in transverse compression or tension results in a reduction of
the strength of the material.

5.3 Verification Problems

5.3.1 Example 1: Relationship between Y is
C , ηL and Sis

L

In Section 5.1.1.1 the following relationship between Y is
C , ηL and Sis

L was found:

Y is
C = −Sis

L

(

2 cos (α0)
2 − 1

)

ηL cos (α0)
2 (5.90)

This relationship is written for the in-situ properties but has to be respected
also in the case of a unidirectional lamina.

It is shown here that equation (5.90) is respected for the technical compos-
ites commonly used. Table 5.2 reports the material parameters of AS4/55A, E-
Glass/LY556/HT907/DY063 and T800/3900-2 unidirectional laminae.



156 CHAPTER 5. 3D NUMERICAL MODEL

-1500 -1000 -500 0 500 1000 1500 2000 2500
0

50

100

150

-0.2Yis
C
 =-0.4Yis

C

-0.6Yis
C

0.
8Y

is T

0.
6Y

is T

0.
4Y

is T

 [M
Pa

]

 [MPa]

0.
2Y

is T
-0.8Yis

C

Figure 5.23: σ11-τ12 failure envelope for different values of transverse stress σ33 for
IM7/8552 carbon

Table 5.2: Material properties of investigated composites

material AS4/55A E-Glass/LY556/HT907/DY063 T800/3900-2

reference
XT (MPa) – 1140 –
XC (MPa) – 570 –
YT (MPa) 27.0 35 48.8
YC (MPa) 91.8 130 201.7
SL (MPa) 66.0 72 100.9
G12 (MPa) 6600 5830 5500

α0 (◦) 53 53 53

Figure 5.24 shows the τ12 as a function of σ22 for the materials of Table 5.2. For
each curve the tangent is calculated for σN → 0 and remember the definition of ηL
(equation (5.7)) is possible to calculate its value for each material as the angular
coefficient of the tangent.

Table 5.3 reports for each material the measured SL, YC , ηL and the value of
YC that can be calculated using equation (5.90). The predicted values of YC are in
good agreement with the experimental results.
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Figure 5.24: τ12 as a function of σ22 for different materials and correspondent values
of Y is

C , ηL and Sis
L

Table 5.3: Material properties of investigated composites

material SL ηL measured YC calculated YC

AS4/55A 51.3 0.43 91.8 90.2
E-Glass/LY556/HT907/DY063 66.0 0.41 130.0 123.0

T800/3900-2 100.9 0.36 201.7 212.0

5.3.2 Example 2: σ22-τ12 failure envelopes

Figure 5.25 show the σ22-τ12 failure envelopes for four different materials: AS4/55A,
E-Glass/LY556/HT907/DY063, T800/3900-2 and IM7/8552. The mechanical pa-
rameters are reported in Tables 5.2 and 5.4. For carbon IM7/8552 static and dy-
namic results are reported. It can be noticed that the proposed model fits well the
experimental results for static and dynamic case.
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Figure 5.25: σ22-τ12 failure envelopes for different material

Table 5.4: Material properties of IM78552

test type static dynamic

XT (MPa) 2323.5 –
XC (MPa) 1017.5 1428.0
YT (MPa) 160.2 –
SL (MPa) 89.6 122.3

ηL 0.38 0.41
G12 (MPa) 5290 5290

α0 (◦) 55.3 56.3

5.3.3 Example 3: Compression of thick lamina

Koerber et al. [156] presented compression test based on ASTM Standard D 695
of end-loaded thick specimens. The specimens are manufactured using IM7/8552
carbon-epoxy. The material parameters are shown in Table 5.4.
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Two types of test are performed:

• transverse compression;

• off-axis compression at 0◦, 15◦, 30◦, 45◦, 60◦, 75◦.

The test are conducted statically and dynamically. Experimental data and nu-
merical results are reported in Figure 5.26. Good agreement between experimental
results and the proposed model is observed.
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Figure 5.26: Off-axis compression test of IM7/8552 carbon lamina

5.3.4 Example 4: σ11-σ22 failure envelopes

Hinton et al. [157] report biaxial test of E-Glass/MY750 epoxy lamina. Table 5.5
shows the material properties of E-Glass/MY750 epoxy.

Table 5.5: Material properties of E-Glass/MY750 epoxy

XT (MPa) XC (MPa) YT (MPa) YC (MPa) SL (MPa) G12 (MPa) α0 (◦)

1280 800 40 145 73 5830 53

The experimental data and the numerical results are shown in Figure 5.27. It
should be noted that some data are not taken into accounts to validate the numer-
ical model because they are affected by experimental errors due to the presence of
buckling. These points are highlighted in Figure 5.27. For the other points good
agreement between experiments and the proposed model is observed.
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Figure 5.27: σ11-σ22 failure envelope for E-Glass/MY750 epoxy lamina

5.3.5 Example 5: σ11-τ12 failure envelopes

Hinton et al. [157] present experimental test of T300/914C. The mechanical param-
eter of the material are shown in Table 5.6.

Figure 5.28 show the failure envelope generated by the proposed failure criteria
and the experimental data.

The model reports the two extreme solutions for θ = 0 and θ = π. The disper-
sion presented by the data could be an effect of the different angles of the kinking
plane. The data present a high dispersion and some of them are clearly affected
by experimental error (as those that present a shear strength higher than Sis

L ). For
this reason, it could be concluded that the comparison between experiments and the
proposed model is acceptable.

Table 5.6: Material properties of T300/914C

XT (MPa) XC (MPa) YT (MPa) YC (MPa) SL (MPa) G12 (MPa) α0 (◦)

1500 900 27 200 80 5500 53
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Figure 5.28: σ11-τ12 failure envelope for T300/914C lamina

5.3.6 Example 6: Influence of hydrostatic pressure

As discussed previously, the proposed model predicts higher value of the strength
when a hydrostatic pressure is applied to the composite.

However, to predict the correct value of the strength under high hydrostatic
pressure is a formidable task. In fact, hydrostatic pressure [155] has a very important
influence on the mechanical parameter of the composites. If a hydrostatic pressure
is applied:

• the elastic and shear moduli increase. Depending on the resin used the elastic
and shear moduli are linear or bilinear functions of the hydrostatic pressure.
The bilinear behavior is considered an effect of the hydrostatic pressure that
shifts the sub-zero secondary glass transition temperature;

• some resins exhibit yielding when the applied pressure is greater than 200 MPa.
As the yielding phenomenon is pressure-dependent a pressure-dependent yield
criterion should be used to predict this behavior. Pae [155] proposed for the
resin a criterion that consider the second invariant of the deviatoric stress
tensor, J2, a material constant αm, and the first invariant of the stress tensor
I1. Successively, this theory was extended to the anisotropic materials;

• the composites exhibit a plastic behavior.

Hine et al. [158] presented experimental results of a E-glass/MY750 lamina tested
in compression and in shear under hydrostatic confinement. The mechanical prop-
erties of the material are shown in Table 5.5.
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Figures 5.29-5.30 show the compressive strength and the shear strength as a
function of the superimposed hydrostatic pressure of thick lamina tested under hy-
drostatic pressure.
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Figure 5.29: Compressive strength as function of the hydrostatic pressure
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Figure 5.30: Shear strength as function of the hydrostatic pressure

It can be concluded that the proposed criterion can tackle the increase in the
strength of the composites under high values of the idrostatic pressure. However the
correlation between predictions and experimental data appears to be acceptable up
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to a pressure of 200 MPa. This pressure should represent the pressure that shifts
the sub-zero secondary glass temperature at the room temperature at which the test
are conducted. After this pressure, some material parameters change for the reasons
explained before, and as these effects are not taken into account in the proposed
failure criteria, the experimental data and the predicted model are different for
hydrostatic pressure higher than 200MPa.

5.3.7 Conclusions

The proposed failure criteria are able to consider the effect of a three-axial stress
state on a composites. The model is completely defined when these parameters are
known: XT , XC , α0, Y

is
T , ηL, S

is
L and G12. It was shown that Y is

C is function of α0,
Sis
L and ηL. As experimentally the value of Y is

C is very difficult to measure, equation
(5.90) gives a very easy method to calculate Y is

C .
The model can predict the experimental results in different load conditions and

a good agreement is shown. If high value of hydrostatic pressure are applied the
elastic properties of the material change and this is not taken into account.

The introduction of the non-linear behavior and the hydrostatic pressure effect
should be subjects of further developments.

5.4 Damage Model

Maimı́ et al. [133, 134] proposed a constitutive damage model for laminated com-
posites that has its foundation in irreversible thermodynamics, and that uses the
LaRC04 criteria as damage activation functions.

In this work the same damage model is used but with different damage activation
functions. Changes made concern the introduction of the softening law for fiber
compression and the extension to the 3D stress state. The details will be explained
in the following points.

5.4.1 Complementary free energy and damage operators

The scalar function proposed for the complementary free energy density [133] is:

G =
σ2
11

2 (1− d1)E1

+
1

2E2

(

σ2
22

(1− d2)
+

σ2
33

(1− d3)

)

− ν12
E1

σ11 (σ22 + σ33) +

−ν23
E2

σ22σ33 +
σ2
12 + σ2

13

2 (1− d6)G12

+ (α11σ11 + α22 (σ22 + σ33))∆T +

+(β11σ11 + β22 (σ22 + σ33))∆M (5.91)

where:
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• E1, E2, ν12 and G12 are the in-plane elastic orthotropic properties of the uni-
directional lamina

• d1,d2 and d6 are the damage variable.The damage variable d1 is associated
with longitudinal (fiber) failure, whereas d2 is the damage variable associated
with transverse matrix cracking and d6 is a damage variable influenced by
longitudinal and transverse cracks

• α11 and α22 are the coefficients of thermal expansion in the longitudinal and
transverse directions

• β11 and β22 are the coefficients of hygroscopic expansion in the longitudinal
and transverse directions

• ∆T and ∆M are the differences of temperature and moisture content with
respect to the corresponding reference values.

Using this definition of the free energy it can be shown that the strain tensor is
equal to the derivative of the complementary free energy density with respect to the
stress tensor:

ε =
∂G

∂σ
= H : σ + α∆T + β∆M (5.92)

where the compliance tensor H can be written as:

H =
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(5.93)
To determine the active damage variables, it is necessary to define the longitu-

dinal and transverse damage modes as follows:

d1 = d1+
〈σ11〉
|σ11|

+ d1−
〈−σ11〉
|σ11|

d2 = d2+
〈σ22〉
|σ22|

+ d2−
〈−σ22〉
|σ22|

d3 = d2+
〈σ33〉
|σ33|

+ d2−
〈−σ33〉
|σ33|

(5.94)

where 〈x〉 is the McCauley operator defined as 〈x〉 := (x+ |x|) /2.



5.4. DAMAGE MODEL 165

5.4.2 Damage activation functions

The four damage activation functions, FN , associated with damage in the longitu-
dinal (N = 1+, 1−) and transverse (N = 2+, 2−) directions, are defined as:

F1+ = φ1+ − r1+ ≤ 0 ; F1− = φ1− − r1− ≤ 0

F2+ = φ2+ − r2+ ≤ 0 ; F2− = φ2− − r2− ≤ 0
(5.95)

where the loading functions φN (N = 1+, 1−, 2+, 2−) depend on the strain ten-
sor and material constants (elastic and strength properties). The elastic domain
thresholds rN (N = 1+, 1−, 2+, 2−) take an initial value of 1 when the material
is undamaged, and they increase with damage. The elastic domain thresholds are
internal variables of the constitutive model, and are related to the damage variables
dM (M = 1+, 1−, 2+, 2−, 6) by the damage evolution laws.

The criterion for fiber tension failure (see equation 5.49) is:

φ1+ = FIF =
E1

XT

ε11 (5.96)

where the effective stress tensor σ̃ is computed as σ̃ = H0
−1 : ε. H0 is the undam-

aged compliance tensor obtained from equation (5.93) using d1 = d2 = d6 = 0.
The damage activation function used to predict damage under longitudinal com-

pression (σ̃11 < 0) is established to be equal to

φ1− =
√
FK (5.97)

where FK is defined in equation (5.72).
The damage activation function used to predict damage under transversal tension

(σN > 0) is (see equation (5.43)):

φ2+ =
√
FMT =

√

(

τL
Sis
L

)2

+

(

σN

Y is
T

)2

(5.98)

The damage activation function used to predict damage under transversal com-
pression (σN ≤ 0) is (see equation (5.6)):

φ2− =
√
FMC =

√

(

τT
Sis
T − ηTσN

)2

+

(

τL
Sis
L − ηLσN

)2

(5.99)

5.4.3 Damage evolution

The evolution of the threshold values rN is mathematically expressed by the Kuhn-
Tucker conditions :

ṙN ≥ 0 ; FN ≤ 0 ; ṙNFN = 0 (5.100)
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The damage activation functions, equations (5.95), must always be non-positive
and if the gradient is positive, there is damage evolution; the consistency condition
to satisfy is:

ḞN = φ̇N − ṙN = 0 (5.101)

The evolution of the elastic domain can be represented by the following equa-
tions [133]:

• transverse loading :

Tension loading: ṙ2+ = φ̇2+ and ṙ2− = 0

Compression loading: ṙ2− = φ̇2− and ṙ2+ =

{

φ̇2− if r2+ ≤ r2−
0 if r2+ > r2−

The integration of the previous expressions results in:

r2+ = max

{

1,max
s=0,t

{

φs
2−

}

,max
s=0,t

{

φs
2+

}

}

r2− = max

{

1,max
s=0,t

{

φs
2−

}

} (5.102)

• longitudinal loading

Tension loading: ṙ1+ = φ̇1+ and ṙ1− = 0

Compression loading: ṙ1− = φ̇1− and ṙ1+ =

{

φ̇1− if r1+ ≤ r1−
0 if r1+ > r1−

(5.103)

The integration of the previous expressions results in:

r1+ = max

{

1,max
s=0,t

{

φs
1+

}

,max
s=0,t

{

φs
1−

}

}

r1− = max

{

1,max
s=0,t

{

φs
1−

}

} (5.104)

5.4.4 Dissipation

The rate of energy dissipation per unit volume resulting from the evolution of damage
is given by:
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Ξ =
∂G

∂d1
ḋ1 +

∂G

∂d2
ḋ2 +

∂G

∂d6
ḋ6 = Y1ḋ1 + Y2ḋ2 + Y6ḋ6 ≥ 0 (5.105)

The form of the complementary free energy assures that the thermodynamic
forces (YM) conjugated to their respective damage variables (dM) are always positive:

Y1 =
∂G
∂d1

=
σ2
11

2(1−d1)
2E1

≥ 0

Y2 =
∂G
∂d2

=
σ2
22

2(1−d2)
2E2

≥ 0

Y6 =
∂G
∂d6

=
σ2
12

2(1−d6)
2G12

≥ 0

(5.106)

Therefore, the condition of positive evolution of damage variables (ḋM ≥ 0) is a
sufficient condition for the fulfillment of the second law of thermodynamics.

5.4.5 Damage evolution laws

To define the constitutive model, the damage variables dN must be related to the in-
ternal variables rN . In particular, when material is undamaged the internal variables
rN take the initial value of 1, and dN(rN = 1) = 0.

5.4.6 Computational Model

Using Bažant’s crack band model [159], the damage evolution laws for each damage
variable take the values [134]:

Bažant’s crack band model [159] assures the correct response of the finnite elemen
model regularizing the dissipated energy:

gM =
GM

l∗
, M = 1+, 1−, 2+, 2−, 6 (5.107)

where GM is the fracture toughness, gM is the energy dissipated per unit volume,
and l∗ is the characteristic length of the finite element.

d1+ = 1− 1
r1+

exp [A1+ (1− r1+)]

d1− = 1− 1
r1−

exp [A1− (1− r1−)]

d2+ = 1− 1
r2+

exp [A2+ (1− r2+)]

d2− = 1− 1
r2−

exp [A2− (1− r2−)]

d6 (r2+) = 1− 1
r2+

exp [A6 (1− r2+)]

(5.108)

The energy dissipated per unit volume for uniaxial stress conditions is obtained
by integrating the rate of dissipation, equation (5.105):

gM =

∫ ∞

0

YM ḋMdt =

∫ ∞

1

∂G

∂dM

∂dM
∂rM

drM , M = 1+, 1−, 2+, 2−, 6 (5.109)
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Applying the crack band model, equation (5.107):

∫ ∞

1

∂G

∂dM

∂dM
∂rM

drM =
GM

l∗
, M = 1+, 1−, 2+, 2−, 6 (5.110)

Using equations (5.107) and (5.109) and substituting in (5.110), it is possible
to calculate the damage law parameters AM that assure that the dissipated energy
computed by the numerical model is independent of mesh refinement. It is possible
to obtain the following analytical closed form solutions:

A1+ =
2l∗X2

T

2E1G1+ − l∗X2
T

(5.111)

A1− =
2l∗X2

C

2E1G1− − l∗X2
C

(5.112)

A2+ =
2l∗Y 2

T

2E2G2+ − l∗Y 2
T

(5.113)

A2− =
2l∗Y 2

C

2E2G2− − l∗Y 2
C

(5.114)

A6 =
2l∗S2

L

2G12G6 − l∗S2
L

(5.115)



Chapter 6

Numerical Results

A 3D numerical model was presented in Chapter 5, while in Chapter 4 a method-
ology to measure the resistance curves in the longitudinal failure of composites was
proposed. The R-curves allow the calculation of the parameters of the softening
laws used in the progressive damage model, and describe the damage in function
of the dissipated energy for each failure mode. The softening law parameters are
calculated from empirical data in Section 4.2.2.6 for IM7/8552 carbon in tension
and are computed using an inverse technique method for compression.

In this chapter, the numerical results will be compared with experimental data
on IM7/8552 double shear bolted joints presented by Camanho et al. [160].

The tests were performed on double shear bolted joints having three different
geometries that results in different failure modes: bearing, shear-out and tension
failure modes. The geometries of the specimens are presented in Table 6.1.

Table 6.1: Nominal dimensions of the bolted joints
tested.

specimen d w w/d e e/d dw
4 h 5

mm mm mm mm mm

DBJB 1 7 42 6 21 3 12.5 3
DBJT 2 6 12 2 24 4 12 3
DBJS 3 6 36 6 9 1.5 12 3

1 Double Shear Bolted Joint Bearing
2 Double Shear Bolted Joint Tension
3 Double Shear Bolted Joint Shear-Out
4 diameter of the washer
5 thickness

Three different Finite Element models of the double shear bolted joints, shown
in Figure 6.1, were created using a Python parametric model. The numerical results
are compared with experimental data in terms of both the stresses and the damaged
zones.

169
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Figure 6.1: FE models
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6.1 FE model

6.1.1 Python scripts

Using Python script, a parametric model of the double bolted joint was developed.
The scripts that generate the models, written in Python, enable the generation

of several FEM models simply running these script in the Abaqus CAE utility. It
should be noticed that the following parameters can be easily changed:

1. The materials of the joint. The materials are managed using Python dictionar-
ies [143]. The user can introduce other materials just adding other dictionaries.

2. The geometry of the joint. The following parameters can be set:

(a) The diameter of the bolt db

(b) The clearance c between the diameter of the bolt db and the diameter of
the hole d

(c) The width of the joint w

(d) The end-distance e

(e) The length of the joint L

(f) The type and the geometry of the bolt (screw, nut and washer)

(g) The thickness of each ply and the thickness of the cohesive elements (if
cohesive elements are requested)

(h) The orientation of the fiber for each lamina

3. The loads applied during the steps (and in particularly the thermal load during
the thermo-mechanic step, the pressure on the washer, and the displacement
applied to the joint)

4. Other numerical parameters that influence the analysis (time step, time incre-
ment, mass scaling, etc...)

6.1.2 Details of the models

6.1.2.1 Geometry of the model

Figure 6.2 shows the isometric view of the DBJM. As explained before, all the
geometric parameters can be set in a input file and are generated automatically in
Abaqus CAE. It can be observed that different parts are modeled: the bolt (screw,
nut and washers) and the composite laminate.

First of all, it is possible to observe that the laminate it is not modeled taking
advantage of the symmetry. Even if the plane xy is a symmetry plane the joint was
entirely modeled. This for two reasons: first, if a damage model is used, damage can
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occur in one side of the joint and the symmetry is lost; second, if a plane of symmetry
is used, on the symmetry plane the cohesive elements have to have a thickness that
is half of that of the other cohesive elements. In an explicit analysis this means that
the critical time increment is reduced and so, CPU time increases. With cohesive
elements the use of a plane of symmetry can result in an higher computational cost.

Figure 6.2: Isometric view of DBJ model

6.1.2.2 TIE constraints

The use of cohesive elements and a damage material model results in high computa-
tional times. To mitigate this problem, it is possible to use the damage model only
in the parts of the joint where damage occurs. In the other regions, not affected
by damage propagation, the composite is simulated as a linear elastic material. For
this reason, the composite laminate consists of two different regions that can be
easily identified in Figure 6.4. The region around the hole is modeled using cohesive
elements and damage model for bricks. In the second region only elastic elements
are present.

The dimensions of the elements in these two region are quite different. As ex-
plained before in Section 5.4.6, in order to guarantee that the numerical solution is
independent of the discretization, the elements must have a size lower then a crit-
ical value [159]. Obviously this is not necessary for the elastic elements. For these
reasons the two regions are modeled with different elements sizes that are shown in
Figure 6.4.

To connect these two region TIE constraints are used on the two surfaces with
non-conforming meshes. If a TIE constraint is applied nodes are tied only where
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the surfaces are close to one another and this connection is kept during the entire
analysis. Generally one surface in the constraint is designated to be the slave surface;
the other surface is the master surface. Figure 6.3 shows a magnified view of the
connection between this two region. The red surface is that one where TIE constraint
are applied.

Figure 6.3: Isometric view of DBJ model, detail

Figure 6.4: DBJ model, mesh

6.1.2.3 Loading

To reproduce the experimental tests for a Double Bolted Joint the simulation is
divided in three load steps:
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1. first step: thermo-mechanical step. In this step a thermal load, ∆T < 0
is applied to the composite laminate. This correspond to the thermal load
occurring during the curing process. This thermal load generates residual
stresses that have influence on the damage of the composite.

2. second step: bolt pre-loading. The pre-load is generated applying two opposite
forces to the screw and the nut. This two forces are designated with P in Figure
6.5(a). During this load step the surface of contact between the bolt and the
nut is characterized by:

(a) frictionless tangential behavior. The friction on the surface highlighted
in Figure 6.5(b) is equal to f = 0.

(b) hard contact normal behavior, that avoids interpenetration between the
screw and the nut.

(c) the separation after contact is allowed.

3. third step: loading of the joint. In this step the u displacements are applied
to the joint. During this step the contact surface is defined as:

(a) rough tangential behavior. The friction on the surface between screw and
nut is equal to f = ∞.

(b) hard contact normal behavior, that avoids interpenetration between the
screw and the nut.

(c) the separation after contact is not allowed.

(a) loading configuration (b) Contact area between screw and nut

Figure 6.5: DBJ model, loading configuration

It should be noted that using this technique the behavior of the bolt is simulated
in a very efficient way. Many authors simulate the presence of a bolt simply intro-
ducing a pressure on the area of contact between washers and laminate. However,
the simple use of a pressure is not suitable to study bolted joint for different rea-
sons. First of all, if a progressive damage model is used, as the damage occurs in the
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proximity of the hole the pressure on the contact area has to decrease because if the
material is damaged the stiffness of the bolted joint reduces and also the bolt load
is reduced. Therefore, the use of a constant pressure on the washers is not correct.
In the same way, in the case of single bolted joint, the application of the load gen-
erally causes a deformation of the joint in the direction normal to the laminate. In
this conditions the heads of the bolt contribute with the bottom surface to the load
carried by the joint. Therefore the pressure applied on the washers has to increase.

6.1.2.4 Elements used and typical size

Three different type of elements are used:

• 8-node brick elements, with elastic material;

• 8-node brick elements, with VUMAT constitutive model;

• 8-node brick elements, with VUMAT constitutive model for cohesive elements.
The explicit formulation for cohesive elements is described in the work of
González et al. [161]

6.1.2.5 Contacts

In 6.1.2.3 the different contact definitions will be explained for the contact pair
nut/screw. For all other surfaces the general explicit contact has be used. The
general contact algorithm has to be chosen because it allows to consider the contact
of a body with itself and the failure of the elements. The friction is set to be equal
to f = 0.3.

6.2 Comparison between FEM and experiments

6.2.1 Bearing

Figure 6.6 shows the relation between the bearing stress and the corrected displace-
ment for the FE model and for the experimental tests. The bearing stress (see
Section 2.1.1) is defined as:

σb =
P

dh
(6.1)

where P is the load, d is the diameter of the hole, h is the thickness of the specimen.
The displacement is corrected to take into account the compliance of the testing
machine. If δmeas is the measured displacement and C is the compliance of the
machine, the corrected displacement δ can be computed as:

δ = δmeas − CP (6.2)
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Figure 6.6: Bearing stress as function of the corrected displacement

It should be noted that the first-peak load is predicted accurately but after that
damage occurs the experimental and the numerical curves show a difference that is
attributable mainly to two reasons:

• the proposed failure criteria are fully 3D while the damage model used is
quasi-3D. This means that the failure onset is accurately predicted but not
the evolution of the damage in conditions where the 3D stress states prevail;

• the damage evolution in bearing failure mode depends primarily to the soften-
ing law for fiber in compression. This was not found experimentally but using
an inverse identification technique. The parameters used may differ from the
real parameters.

Figure 6.7 shows the contour plot of the damage index of the fiber, d1, in func-
tion of the bearing stress σb. The damaged zones correspond to those observed
experimentally (see Figure 6.8) and are located uniformly in the neighborhood of
the hole.
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Figure 6.7: Contour plots of the damage index of the fiber in function of the bearing
stress for the bearing specimen

Figure 6.8: Bearing specimen after loading
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6.2.2 Net-Tension

Figure 6.9 shows the relation between the bearing stress and the corrected displace-
ment for the FE model and for the experimental tests of the tension specimen.
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Figure 6.9: Tensile stress as function of the corrected displacement

Figure 6.11 shows the contour plot of the damage index of the fiber, d1, in
function of the bearing stress σb. As expected for tension failure (see Figure 6.10 ),
the main damaged zones are located along the net-section plane of the specimen.

Figure 6.10: Tension specimen after loading
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Figure 6.11: Contour plots of the damage index of the fiber in function of the bearing
stress for the tension specimen
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6.2.3 Shear-Out

Figure 6.12 shows the relation between the bearing stress and the corrected dis-
placement for the FE model and for the experimental tests of the shear specimen.

Figure 6.14 shows the contour plot of the damage index of the fiber, d1, in
function of the bearing stress σb. It should be noted that when damage is developed,
the fracture is located on the shear plane (see Figure 6.14(h)).
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Figure 6.12: Shear stress as function of the corrected displacement

Figure 6.13: Shear specimen after loading
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Figure 6.14: Contour plots of the damage index of the fiber in function of the bearing
stress for the shear specimen
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6.3 Conclusions

The first-peak load for each specimen is reported in Table 6.2, and the mean value is
compared with the numerical predictions. Good agreement is found in the prediction
of the first peak load.

Table 6.2: First-peak load (N)

Specimen Ref. 1 2 3 4 5 mean numerical error (%)

DBB 15060 15950 16080 16300 16120 15902 16120 1.4
DTB 10136 9356 9428 9344 9560 9564.8 9348 2.3
DSB 12450 13140 12780 12180 13180 12746 13610 6.3

It can be concluded that 3D numerical simulations can predict with accuracy
the value of the first peak load. However the computational cost is not suitable for
industrial applications because each model takes about 3 days to run using a cluster
of 32 cpus. Therefore a simplified two-dimensional method will be presented in the
following chapter.



Chapter 7

2D Numerical Model

7.1 Introduction

3D failure models provide a good prediction for the behavior of a composite bolted
joints, from damage onset to failure of the joint. However, the use of such type
of analysis is not applicable in an industrial environment where results should be
obtained quickly. For this reason, a two-dimensional (2D) model is proposed here
to provide fast predictions of the strength of composite bolted joints. Experimen-
tal tests of a subcomponent are performed, and the results are used to verify the
accuracy of the model.

In Section 2.5 the connections that can be manufactured using a combination of
different materials (metals and composites) in train structures were identified.

Here, one of these connection (connection C in Figure 2.16) is analyzed. An
industrial design method is proposed and experimental test are performed. Numer-
ical simulations are compared with experimental results. A quick-design method
is discussed in the last part of the chapter and a methodology to predict the joint
strength in a fast way is proposed.

7.2 Experimental Analysis

7.2.1 Subcomponent Design

The design of the industrial sub-component is shown in Figure 7.1. It represents the
connection between the side of the carbody shell (in steel, 1 in Figure 7.1) and the
omega beam of the roof (in glass-fiber, 2 in Figure 7.1).

The lay-up of the laminate is [(0/±45)6/0]s where 0
◦ corresponds to the longitu-

dinal direction of the omega beam. The nominal thickness of the composite beams,
in the neighboring of the holes is equal to 11.8mm. The mechanical properties of
the unidirectional lamina are shown in Table 7.1.

The connection is made using the 5mm UNBRAKO bolts (3 in Figure 7.1)
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already used in experimental test described in Chapter 3. Section 3.4.2 provides the
mechanical parameters of these bolts. It should be highlighted that, as explained
before, the torque used to install the bolts is very low and therefore bolts work in
shear and not in traction. This means that for this kind of application the use of
bolts or rivets is indifferent.

Table 7.1: UD mechanical properties

E1 (MPa) 37500
E2 = E3 (MPa) 3000

ν12 0.35
ν13 = ν23 0.3
G12 (MPa) 2715

G13 = G23 (MPa) 2715
XT (MPa) 617

YT = ZT (MPa) 20
XC (MPa) 300

YC = ZC (MPa) 30
ST (MPa) 19
SL (MPa) 20 Figure 7.1: Design of the sub-component

7.2.2 Experimental Setup

To study the behavior of the joint, when a bearing failure mode is present, the
sub-component is tested as shown in Figure 7.2. As the steel panel is very flexible,
the load has to be applied using a hinge in order to guarantee a predominant shear
stress field on the plane of the bolts.

Figure 7.2: Loading configuration

Figure 7.3 shows the experimental setup of the Instron machine used to test the
sub-component.

Figure 7.4 shows the solution used to connect the component to the test fixture.
On the top, the component is connected to the main structure of the machine as
shown in Figure 7.4(a). Bolts are used in conjunction with a drilled steel-plate to
prevent damage of the composite during loading.
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Figure 7.4(b) shows the connection on the bottom of the sub-component. An
hinge was designed to connect the component to the cylinder of the servo-hydraulic
machine. The hinge allows testing the sub-component in the presence of misalign-
ment of the load rig.

Figure 7.3: Equipment setup

(a) top connection

(b) bottom connection

Figure 7.4: V-P-4-1 specimen after loading

7.2.3 Experimental Results

To reduce the value of the peak-load during the test, only a few bolts were used to
connect the two parts of the sub-component. For safety reasons, it was decided to
use only 2 bolts during the tests. The tests were performed in displacement control
and a speed of 1mm/min was used.

Figure 7.5 shows a representative load-displacement curve obtained during the
experimental test.

Figure 7.5 compare the load-displacement curve with the elastic load-displacement
curve (tangent to the curve). The first non-linearity point is for Pnl ≈ 15000N and
the peak-load is Pmax ≈ 25800N.
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Figure 7.5: Load - displacement curve

When the load P reach the critical value Pnl the composite start to fail (elastic
limit). The failure mode is bearing as shown in Figure 7.6(a). At the same load,
also the steel panel exhibits bearing failure in proximity of the bolts as reported in
Figure 7.6(b). Finally, when the load reach the peak-load Pmax the bolts fail (see
Figure 7.6(c)) because of the combination of shear and traction applied.

Generally, in design, the elastic limit is considered as the limit condition and not
the ultimate failure of the bolt. The methodology described in the following will
enable the prediction of the load at which the composite start to fail (i.e. the value
of Pnl).

(a) bearing in the composite (b) bearing steel (c) fracture of the bolt

Figure 7.6: Failure modes of the multi-material sub-component
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7.3 Quick Design Tool and Analysis Results

7.3.1 Generalities

Camanho and Lambert [126] proposed a methodology that enables the prediction
of the elastic limit and of the ultimate joint failure load in a short amount of time.
This methodology uses the Complex Variable Theory of Elasticity (CVTE) to obtain
analytical solutions for the stress distribution around the hole avoiding the use
of the Finite Element Method. Using the Classical Lamination Theory the stress
distribution is calculated for each ply.

The prediction of the elastic limit is based on the LaRC03 failure criteria while
the prediction of the joint failure is based on the use of a characteristic curve [162],
applying the failure criteria on the characteristic curve, using local and averaged
stresses. Obviously, the characteristic distances in compression and in tension should
be measured.

The stress distribution around the hole, considering plane stress, is based on the
use of the Airy stress function F :

σxx =
∂2F

∂y2
(7.1)

σyy =
∂2F

∂x2
(7.2)

σxy = − ∂2F

∂x∂y
(7.3)

The general expression for the function F depends upon the root of the charac-
teristic equation and is defined as:

F = 2ℜ{F1 (Z1) + F2 (Z2)} (7.4)

where F1 (Z1) and F2 (Z2) are analytical functions of the complex variables Z1 =
x+R1y and Z2 = x+R2y respectively.

The methodology used to define the function Fi (Zi) is based on the work done
by Garbo and Ogonowski [163]. The stress distribution is considered as obtained by
the superposition of the in-plane bearing and by-pass loads as shown in Figure 7.7.
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Figure 7.7: Superposition of load cases

Therefore, the stress distribution of a laminate with a loaded hole is obtaining
superimposing two stress distributions: that one a cosinusoidal distribution of pres-
sure on the contact zone of the hole (in-plane bearing) and the stress distribution
of a laminate with an open hole remotely loaded.

The resulting stress distribution is a good approximation of the real stress state
when the ratio w/d ≥ 4 and e/d ≥ 3, i.e. when bearing failure mode is present. It
should be noted that the stress distribution is calculated under the hypothesis that
no bending is present in the mid-plane of the laminate and when the pressure can
be assumed cosinusoidal (this happens when the laminate is quasi-isotropic and the
clearance is small).

However some problems arise in industrial application. For example, in some
parts the geometrical conditions w/d ≥ 4 and e/d ≥ 3 are not respected and in
this case the stress distribution around the hole could not be sufficiently approxi-
mated. The 2D method proposed here try to solve this problem and presents several
advantages that are fundamental in an industrial environment, namely:

• the method is fast;

• the method is sufficiently realistic;

• different failure criteria can be implemented (for composite parts, metal parts,
bolts and rivets);

• the method uses automatically the results of the FE analysis and this simplify
the work of the engineers.

A bolt is simply represented by a kinematic constraint of different nodes that
are as many as the parts connected together. For example, for a simple connections
of a two panels, two nodes will be part of the same kinematic constraint.

For each node is possible to consider a path of nodes that lie around the coupled
node. Figure 7.8 show the coupled node (in red) and the nodes (in blue) that lie
in a path around the coupled node (contour nodes). After the analysis has been
performed, it is possible postprocess the data and obtain the nodal loads applied
to each node. In particular F bolt

x , F bolt
y and F i

x, F
i
y are obtained for the coupled
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node and the contour nodes respectively. x and y lie on the plane identified by the
contour nodes, z is parallel to the axis of the bolt.

Figure 7.8: Coupled node and contour nodes considered for the submodelling.

For each coupled node, a submodel can be defined and solved to obtain a good
approximation of the stress distribution around the hole. Figure 7.9 shows the
submodel generated by the algorithm for each coupled node. At each of the contour
nodes of Figure 7.8 corresponds a node on the contour. At this node the nodal loads
F i
x and F i

y are applied. At the edge of the hole an equivalent cosinusoidal pressure
is applied.

Figure 7.9: Loads and pressure applied to the sub-model

Solving this model the real stress distribution is found and the Failure Indexes
of the materials and of the bolts can be evaluated. In the case of a composite the
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Failure Index is computed using the set of failure criteria presented in Chapter 5 but
limited at the 2D case while for metals the failure criterion is simply FI = σeq/σy

where σeq is the von-Mises stress. The Failure Indexes for the connected parts are
then locally calculated for each element. Failure Indexes for bolts (shear, traction,
combined shear/traction) are defined following NF EN 1993-1-8 norm [164]. The
failure index for shear, FIs, is:

FIs = Ps/P
R
s (7.5)

with

PR
s =

αvfubAb

γM2

(7.6)

where Ps is the shear load acting on the bolt, PR
s is the shear load at rupture, Ab

is the gross section area of the bolt, αv is a parameter that depends on the class of
the bolt and fub is the ultimate tensile strength of the bolt. For tension the failure
index FIt is calculated as:

FIt = Pt/P
R
t (7.7)

with

PR
t =

k2fubAs

γM2

(7.8)

where Pt is the tensile load acting on the bolt, PR
t is the tensile load at rupture,

As is the tensile stress area of the bolt and k2 is a parameter that is equal to 0.63
for countersunk bolts and 0.9 for the others. The failure index for the combining
presence of shear and traction, FIst, is calculated as:

FIst = FIs +
FIt
1.4

(7.9)

7.3.2 Industrial application

The methodology explained in 7.3.1 is applied to a real industrial case and in par-
ticularly at the prototype designed and tested as discussed in 7.2.

The commercial software ANSYSv10 is used to define the FE model of the pro-
totype. Figure 7.10 shows the FE model of the prototype where the loads and
displacement applied and the coupled nodes are shown. As only two components
are linked together the each kinematic constraint consist of only 2 nodes: 4334-20708
and 4329-20711 are the two couples of nodes that represent the bolts. Between the
two components contact elements are used to avoid element interpenetration.
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Figure 7.10: FE model of the prototype

A non-linear static analysis is conducted and for each step the algorithm is run.
For each coupled node the algorithm is run and the distribution of the Failure Index
in the material is obtained.

Figure 7.11: Contour plot of the Failure Index around the hole for the submodel

Figure 7.12 shows the Failure Indexes at the critical element as function of the
applied load. The material starts to fail in proximity of the bolt 4329-20711. Steel
and composite have approximately the same failure index and the load at which
failure begins is equal to 15000 N. This finding is in agreement with the experimental
results.
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Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis, an investigation of composite bolted joints was presented at different
levels of detail.

A preliminary experimental campaign was performed to investigate the influence
of the geometric parameters on single-shear or double-shear bolted joints with dif-
ferent materials or material combinations. The results were used to present design
charts that can be used by engineers during the preliminary design of a composite
joint. Two types of test were considered: in plane shear test and pull-through tests.
All the tests were conducted considering specimens with different geometries and
with different materials or material combinations. It was shown that the geometry
affects the failure mode, and that materials with the same geometries may show a
different failure mode.

The main differences in the failure load of the in plane shear test concerns with
the epoxy specimens that show always a value of the failure load that is higher than
that shown by other specimens. This is due to the fact that epoxy-specimens were
manufactured using prepregs while the other specimens(phenolic and vinylester)
were manufactured using resin infusion.

If pull-trough is considered the results are almost the same for the three materials,
considering both the failure load and the initial sub-critical failure load. As expected,
it was found that increasing the diameter, increases both the sub-initial critical
failure load and the failure load of the specimen. This means that larger holes
exhibit an initial sub-critical failure load that is relatively lower if compared to the
ultimate failure load. The values of the sub-critical load and of the failure load are
virtually the same for the different material tested.

After this preliminary study a 3D set of failure criteria to take into account the
clamping pressure applied to the bolt was developed.

It was shown that, for matrix compression, Puck’s failure criterion can be used
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for the unidirectional laminate and for the embedded lamina, but only if the in-situ
parameters are correctly computed. If not, the model does not work properly. In
particular it was shown that YC and ST are in-situ parameters that can be calculated
knowing ηL, α0 and Sis

L .

For matrix-tension, it was shown that Puck’s elliptical failure criterion and
Pinho’s quadratic criterion cannot be used for composite materials. The new failure
criterion proposed for matrix-tension allows to obtain a consistent definition of the
failure index for a general 3D stress state. It was also shown that the failure criterion
proposed is applicable for σn ≥ 0, and that it can be used consistently together with
Puck criterion for compression. As the matrix failure has a critical influence on the
fiber kinking, the failure criteria for fiber kinking were also modified.

The predictions of the fully 3D failure criteria were compared with experimental
results and good agreement is generally observed. It was shown also that if a hy-
drostatic compression is present, up to a critical value, the difference between the
experimental data and the predicted values is acceptable.

The failure criteria proposed were used in a progressive damage model. Even if
the failure criteria is fully 3D the progressive damage model is only quasi-3D.

The progressive damage model uses softening laws that define the evolution of
the damage in terms of the dissipated energy. To compute the parameters of the
softening laws, an experimental campaign was performed using CT and CC specimen
for both IM7/8552 and glass fiber.

Using the digital image correlation (DIC) a new methodology was proposed to
compute the J-integral around the crack tip and to measure the crack length.

The comparison between the R-curves obtained in CT specimens using the FE-
based post-processing and the DIC-based method indicates that the results are vir-
tually the same and that the proposed method is a valid alternative to measure
R-curves associated with longitudinal tensile failure mechanisms in composite ma-
terials. The initial value of the fracture toughness associated with longitudinal
tensile failure mechanisms in IM7/8552 is 98.7J/m2, and it raised up to 133.7J/m2

for steady state propagation. The mean value of the associated cohesive zone is
3.4mm.

It is concluded that the FE-based data reduction method is inadequate for the
measurement of R-curves in CC specimens because it severely overpredicts the frac-
ture toughness. The DIC-based method is an improvement over FE-based data
reduction methods because it is based on the actual displacement field on a pre-
defined contour. However, the contribution of the contact tractions to the J-integral
still needs to be quantified and used in the data reduction method to improve the
accuracy of the data. The initial value of the fracture toughness associated with
longitudinal compressive failure mechanisms in IM7/8552 measured using DIC was
47.5J/m2; the measured fracture toughness increased up to 315J/m2 for 15mm of
propagation of a kink-band. However, the values computed for the fracture tough-
ness using the CC specimen do not account for the energy dissipated by the de-
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lamination that accompanied the propagation of the kink-band. In addition, the
delamination does not allow the accurate measurement of the tip of the kink-band.
Therefore, it is concluded that these difficulties render the CC test method unsuit-
able to generate R-curves and that an alternative test method or test procedure
should be developed.

The same considerations apply for Glass fiber specimens. In addition, these
specimens showed additional failure mechanism that render the use of the CT/CC
specimens unsuitable to measure the fracture toughness of fiber-dominated failure
mechanisms. In this case, a new test method should be proposed.

Having defined the relevant parameters for the cohesive laws, a progressive dam-
age model was used to simulate failure in IM7/8552 double-shear bolted joints.

Using a parametric Python script, three FE models were defined: bearing, ten-
sion, and shear models. It was concluded that the 3D numerical simulations can
predict with accuracy both the value of the first peak load and the damage zones.

However, the computational cost of a 3D numerical simulation is not suitable for
industrial applications because each model takes about 3 days to run using a cluster
of 32 cpus. Therefore, a simplified two-dimensional method was developed.

The two-dimensional numerical model computes the damage of the composite
using a two-dimensional version of the previously proposed failure criteria. Since
this FE model is generally applied to the entire structure, or to a sub-assembly,
the model also considers the onset of the damage in the other connected parts,
or in the bolts. If the connected parts are metallic, the failure index is simply
calculated using the von-Mises stress. The failure indexes for the bolts (shear,
traction, combined shear/traction) are defined following the NF EN 1993-1-8 norm.
To validate the model, a mock-up of a real train connection was manufactured and
the experimental data was compared with experimental results. It was concluded
that the two-dimensional model proposed can accurately predict the onset of the
damage in the connected parts of the sub-assembly.

8.2 Future work

The following topics will be the subject of further studies:

• a fully three-dimensional progressive damage model will be defined to be con-
sistent with the three-dimensional failure criteria already proposed;

• a methodology to evaluate the R-curve in compression will be developed as
no methodologies to evaluate the energy release rate in compression currently
available;

• a methodology to homogenize the cohesive laws on the laminate thickness will
be proposed. This will allow the use of one brick/shell element for the entire
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thickness of the laminate and will enable the use of the progressive damage
model at the laminate level, thus reducing the computational cost.
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Appendix A

Crack detection algorithm

1 % Algoritm to find crack length

2 % G. Catalanotti, 2009

3 clear all

4 % name of the project

5 specimen=’CC_G_2’;

6 % name of the directory

7 dir=’F:\PhD\CT-CC\Fracture’;

8 % load the data

9 string_path=strcat(dir,’\’,specimen,’\rawdata.mat’);

10 eval([’load -mat’ ’ ’ string_path ]);

11 string_path=strcat(dir,’\’,specimen,’\misc.mat’);

12 eval([’load -mat’ ’ ’ string_path ]);

13 string_path=strcat(dir,’\’,specimen,’\matdata.mat’);

14 eval([’load -mat’ ’ ’ string_path ]);

15 dir_res=[dir ’\’ ’Mat_Res’ ’\’ specimen ’\’ specimen];

16 % displacement of the image

17 stages = length(aramis2D.displ);

18 % find size of image

19 Size=size(aramis2D.displ(1,1).X);

20 m=Size(1,1);

21 n=Size(1,2);

22 % preallocated variables

23 K_all= struct;

24 length_windows=zeros(stages,1);

25 length_J_windows=0;

26 % foor loop for all stages of the test

27 for J = 1:stages

28 % load displacement along x for stage J

29 displ_x = aramis2D.displ(1,J).X;

30 % load displacement along y for stage J

31 displ_y = aramis2D.displ(1,J).Y;

32 % find the dimensions of the matrix

33 Size=size(aramis2D.displ(1,J).X);

34 m=Size(1,1);

35 n=Size(1,2);

211
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36 %

37 % find the matrix of the displacements

38 displ= (displ_x.^2+displ_y.^2).^0.5;

39 % zeros

40 n_zeros=zeros(m,1);

41 m_zeros=zeros(1,n+1);

42 % the algorithm is implemented here

43 % this variable are defined concatened the displacement

44 % values with a empty row and a empty colon

45 % if displacement matrix has dimension m*n these

46 % matrices have dimensions (m+1)*(n+1)

47 displ_A= vertcat(horzcat(displ,n_zeros),m_zeros)./4;

48 displ_B= vertcat(horzcat(n_zeros,displ),m_zeros)./4;

49 displ_C= vertcat(m_zeros,horzcat(displ,n_zeros))./4;

50 displ_D= vertcat(m_zeros,horzcat(n_zeros,displ))./4;

51 matr_transf=ones(m+1,n+1);

52 matr_transf(1:m+1, 1)=2;

53 matr_transf(1:m+1, n+1)=2;

54 matr_transf(1, 1:n+1)=2;

55 matr_transf(m+1, 1:n+1)=2;

56 matr_transf(1, 1)=4;

57 matr_transf(1, n+1)=4;

58 matr_transf(m+1, 1)=4;

59 matr_transf(m+1, n+1)=4;

60 % grid_values is the matrix that contains the values

61 % of the displacements for the vertex of the patterns

62 grid_values=(displ_A+displ_B+displ_C+displ_D).*matr_transf;

63 displ_A=grid_values(1:m, 1:n);

64 displ_B=grid_values(1:m, 2:n+1);

65 displ_C=grid_values(2:m+1, 1:n);

66 displ_D=grid_values(2:m+1, 2:n+1);

67 % modulus of displacement for vertex of the patterns

68 displ_CA=abs((displ_C-displ_A));

69 displ_DB=abs((displ_D-displ_B));

70 % compute matrix K (criterion)

71 K=max(displ_CA,displ_DB);

72 % treshold

73 alpha=2.0;

74 K_=K;

75 % apply criterion

76 % K_T = -1 if value of K for the pattern is NaN

77 % in this case the material is completed damaged

78 K_NaN=isnan(K);

79 K(isnan(K))=-1;

80 % K_T equal to zero if the value of K is less

81 % the the average for the image. in this case the

82 % material is undamaged

83 K_(isnan(K_))=0;

84 avg_K=sum(sum(K_))/sum(sum(K_NaN));

85 K((K<alpha*avg_K)&(K>0)) = 0;

86 % K_T = 1 for the crack tip

87 K(K>=alpha*avg_K) = 1;

88 % delete solutions for the edge of the image

89 edge=5;
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90 K(1:edge,:)=0;

91 K(m-edge:m,:)=0;

92 K(:,1:edge)=0;

93 surf(K)

94 set(gca, ’CLim’, [-1.0, 1.0]);

95 colorbar

96 zlim([-1 +1])

97 xlabel([’stage = ’,num2str(J)])

98 zlabel(’K_T’)

99 % eval( [’print -dpng’ ’ ’ dir_res ’-’ num2str(J,’%03.4g’)] )

100 M(J) = getframe;

101 [row,col] = find(K~=0);

102 if isempty(col);

103 length_J_windows=0;

104 else

105 length_J_windows=n-col(1);

106 end

107 K_all(1,J).K= K ;

108 % compute the crack length (unity of measure is in this

109 %case the length of the size of the pattern= 15mm)

110 length_windows(J)= length_J_windows;

111 if length_J_windows>0.95*n

112 break

113 end

114 end

115 photo_number=(1:1:J)’;

116 crack=zeros(J,1);

117 % apply conversion factor to obtain the crack legth in mm

118 pixel_window=15;

119 for I = 1:J

120 crack(I,1)=(length_windows(I)-...

121 length_windows(1))*pixel_window*...

122 converfactor+a0;

123 end

124 filename_movie=[specimen ’.avi’];

125 % movie2avi(M, filename_movie)

126 % find time of the stages.

127 % this is useful for the correlation

128 % of the data from the MTS to find the

129 % function load=load(crack)

130 time_photo=photo_number.*deltaT;

131 plot(time_photo,crack,’-o’);

132 xlabel(’time [s]’);

133 ylabel(’crack length [mm]’);

134 % save data

135 string_path=strcat(dir,’\’,specimen,’\Aramis.mat’);

136 save(string_path, ’time_photo’, ’crack’)
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Appendix B

J-Integral algorithm

1 % J-integral calculation algorithm

2 %G. Catalanotti, 2009

3

4 clear all

5

6 Ex=90650;

7 Ey=90650;

8 v_xy=0.32;

9 Gxy=5290;

10

11 % name of the project

12 specimens=[’CT_C_1’; ’CT_C_2’; ’CT_C_3’; ];

13 % name of the directory

14 dir=’F:\PhD\CT-CC\Fracture’;

15

16 for JJ=1:3,

17 specimen=specimens(JJ,:);

18 % load the data

19 string_path=strcat(dir,’\’,specimen,’\rawdata.mat’);

20 eval([’load -mat’ ’ ’ string_path ]);

21 string_path=strcat(dir,’\’,specimen,’\misc.mat’);

22 eval([’load -mat’ ’ ’ string_path ]);

23 string_path=strcat(dir,’\’,specimen,’\matdata.mat’);

24 eval([’load -mat’ ’ ’ string_path ]);

25 string_path=strcat(dir,’\’,specimen,’\Aramis.mat’);

26 eval([’load -mat’ ’ ’ string_path ]);

27

28 % displacement of the image

29 stages = length(aramis2D.displ);

30 % find size of image

31 Size=size(aramis2D.displ(1,1).X);

32 m=Size(1,1);

33 n=Size(1,2);

34 %contour for J integral

35 ji_vect=zeros(stages,1);

36 % homogeneize matrix

37 SIZES=zeros(stages,2);

38

39 for J = 1:stages

40 SIZES(J,:)=size(aramis2D.displ(1,J).X);

41 end

42 M=min(SIZES(:,1)) ; N=min(SIZES(:,2)) ;

43

44 % foor loop for all stages of the test

45 for J = 2:stages

46
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47 % load displacement along x for stage J

48 displ_x = aramis2D.displ(1,J).X;

49 % load displacement along y for stage J

50 displ_y = aramis2D.displ(1,J).Y;

51

52 % find the dimensions of the matrix

53 Size=size(aramis2D.displ(1,J).X);

54 m=Size(1,1);

55 n=Size(1,2);

56

57 %

58 % find the matrix of the displacements

59 displ= (displ_x.^2+displ_y.^2).^0.5;

60

61 % zeros

62 n_zeros=zeros(m,1);

63 m_zeros=zeros(1,n+1);

64

65 % compute the J integral directly from ARAMIS

66

67 delt=2;

68 N_=N-delt;

69 M_=M-delt;

70

71 % coordinate of top-left vertex of the image

72 vm=int8((m-M_)/2);

73 vn=int8((n-N_)/2);

74

75 % contour is the matrix that has the value 1

76 % in the points of the contours

77 % used for the calculation of the J integral

78 top=zeros(m,n);

79 top(vm,vn+1:vn+N_)=ones(1,N_);

80 top_left=zeros(m,n);

81 top_left(vm,vn)=1;

82 top_right=zeros(m,n);

83 top_right(vm,vn+N_+1)=1;

84 %

85 bot=zeros(m,n);

86 bot(vm+M_,vn+1:vn+N_)=ones(1,N_);

87 bot_left=zeros(m,n);

88 bot_left(vm+M_,vn)=1;

89 bot_right=zeros(m,n);

90 bot_right(vm+M_,vn+N_+1)=1;

91

92 right=zeros(m,n);

93 right(vm+1:M_-1+vm,vn)=ones(M_-1,1);

94 left=zeros(m,n);

95 left(vm+1:M_-1+vm,vn+N_+1)=ones(M_-1,1);

96

97 contour=top+bot+bot_left+bot_right+...

98 top_left+top_right+right+left;

99 %

100 Dx=top-bot-1/2*bot_left-1/2*bot_right+...

101 +1/2*top_left+1/2*top_right;

102 Dx=Dx*converfactor;

103

104 Dy=left-right+1/2*bot_left-1/2*bot_right+...

105 +1/2*top_left-1/2*top_right;

106 Dy=Dy*converfactor;

107 %

108 eps_x = aramis2D.strain(1,J).X;

109 eps_y = aramis2D.strain(1,J).Y;

110 eps_xy = aramis2D.strain(1,J).S*100;

111 %
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112 sigma_x=eps_x.*Ex-v_xy*Ey.*eps_y;

113 sigma_y=eps_y.*Ey-v_xy*Ey.*eps_x;

114 tau_xy=Gxy*eps_xy;

115 %

116 Wxy=1/2*(sigma_x.*eps_x+sigma_y.*eps_y+...

117 tau_xy.*eps_xy);

118

119 Wdy=Wxy.*Dy;

120 Wdy(isnan(Wdy))=0;

121

122 % compute derivatives

123 [d_displ_x,FY] = gradient(displ_x);

124 [d_displ_y,FY] = gradient(displ_y);

125

126

127 Dx(Dx==0)=Inf;

128 d_displ_x_dx = -d_displ_x/converfactor;

129 d_displ_y_dx = d_displ_y/converfactor;

130

131 % compute Ds

132 Ds=(Dx.^2 + Dy.^2).^0.5;

133

134 % compute directions cosines

135 n1=Dy./Ds;

136 n2=-Dx./Ds;

137

138 % compute tractions

139 T1=sigma_x.*n1+tau_xy.*n2;

140 T2=tau_xy.*n1+sigma_y.*n2;

141

142 t_du_dx_ds=T1.*d_displ_x_dx.*Ds+...

143 T2.*d_displ_y_dx.*Ds;

144 t_du_dx_ds(isnan(t_du_dx_ds))=0;

145 ji_=Wdy-t_du_dx_ds;

146 ji_=ji_.*contour;

147

148 ji=(sum(sum(ji_)));

149

150 ji_vect(J,1)=ji;

151

152 end

153

154 % ji_vect refers to the laminate as the thickness of zero degree laminae is

155 % half of the total thickness, to find the ji-integral for zero-degree laminae

156 % this value has to be multiply by 2

157 ji_zero=ji_vect*2.0;

158

159 incr_crack=crack-ones(size(crack))*crack(1,1);

160

161 eval([’crack_’ specimen ’=crack’])

162 eval([’G_’ specimen ’=ji_zero’])

163 eval([’incr_crack_’ specimen ’=incr_crack’])

164 end

165

166 plot(incr_crack_CT_C_1,G_CT_C_1,’--ro’,...

167 incr_crack_CT_C_2,G_CT_C_2,’--b*’,...

168 incr_crack_CT_C_3,G_CT_C_3,’--^k’)

169
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Appendix C

Parametric Model for J-Integral
calculation

Filename: MAIN.py

1 # parametric model to calculate J-Integral in CT specimen

2 # G. Catalanotti, 2009

3

4 import os

5 # name of working directory

6 os.chdir(r’D:/results_JI/IM78552/CC_T=0’)

7

8 # maximum and minimum value of effective crack length

9 a_eff_max=45.0

10 a_eff_min=15.0

11

12 # increment in the crack length

13 INCR=.25

14

15 incr=(a_eff_max-a_eff_min)/INCR+1.0

16 incr=int(incr)

17

18 for incr_ in range(incr):

19 a_eff=a_eff_min+incr_*INCR

20 print a_eff

21 execfile(’main_.py’)

22 mdb.Job(name=string_name, model=string_name)

23 mdb.jobs[string_name].submit(consistencyChecking=OFF)

24 mdb.jobs[string_name].waitForCompletion()

25 execfile(’read_odb.py’)

26

Filename: main .py

1 # CT_CC model

2 # G. Catalanotti, 2009

3 #

4 # symmetric model

5 #

6 # L

7 # _______________________

8 # | |

9 # | _ |

10 # | d1 (_) d |
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11 # H | |

12 # | |

13 # | d2 |

14 # | |

15 # |________...............|

16 # a

17 #

18 #

19 #

20 H=30.0

21 L=65.0

22 #a=40.0

23 D=12.5

24 d1=7.5+12.5/2.0

25 d2=10.0+12.5/2.0

26

27 string_material=’IM78552’

28

29 thickness_plies=32*[0.125]

30 angle_plies=8*[0, 90, 90, 0]

31

32 size_el=0.5

33

34 # type ’CT’ or ’CC’

35 type_specimen=’CC’

36 #---------------------------------------------------------------------#

37

38 a=a_eff+d1

39 from abaqus import *

40 from abaqusConstants import *

41 from caeModules import *

42 from driverUtils import executeOnCaeStartup

43 executeOnCaeStartup()

44

45 mdb.Model(name=’Model-A’)

46

47 s = mdb.models[’Model-A’].ConstrainedSketch(name=’__profile__’,

48 sheetSize=200.0)

49 g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints

50 s.setPrimaryObject(option=STANDALONE)

51 s.Line(point1=(0.0, 0.0), point2=(L-a, 0.0))

52 s.Line(point1=(L-a, 0.0), point2=(L-a, H))

53 s.Line(point1=(L-a,H), point2=(0.0, H))

54 s.Line(point1=(0.0,H), point2=(-a, H))

55 s.Line(point1=(-a,H), point2=(-a, 0.0))

56 s.Line(point1=(-a, 0.0), point2=(0.0, 0.0))

57 s.CircleByCenterPerimeter(center=(-(a-d1), d2), point1=(-(a-d1), d2+D/2.0))

58

59 p = mdb.models[’Model-A’].Part(name=’Part-1’, dimensionality=THREE_D,

60 type=DEFORMABLE_BODY)

61 p = mdb.models[’Model-A’].parts[’Part-1’]

62 p.BaseShell(sketch=s)

63 s.unsetPrimaryObject()

64 p = mdb.models[’Model-A’].parts[’Part-1’]

65

66 del mdb.models[’Model-A’].sketches[’__profile__’]

67

68 # finish geometry

69

70 #materials

71 execfile(’library_materials.py’)

72 mdb.models[’Model-A’].Material(name=string_material, description=’’)

73 exec(’MatId=’+string_material)

74

75 mdb.models[’Model-A’].materials[string_material].Elastic(type=ENGINEERING_CONSTANTS,
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76 table=((MatId[’E1’], MatId[’E2’],MatId[’E2’], MatId[’v12’], MatId[’v12’], MatId[’v23’],

77 MatId[’G12’], MatId[’G23’], MatId[’G23’]), ))

78

79 mdb.models[’Model-A’].materials[string_material].Density(table=((MatId[’density’], ), ))

80 mdb.models[’Model-A’].materials[string_material].Conductivity(table=((1.0, ), ))

81 mdb.models[’Model-A’].materials[string_material].SpecificHeat(table=((1.0, ), ))

82 mdb.models[’Model-A’].materials[string_material].Expansion(type=ORTHOTROPIC, table=((MatId[’alpha1’],

83 MatId[’alpha2’], MatId[’alpha2’]), ))

84

85

86 # definition of section

87 Layup=[]

88

89 for i in range(1,len(thickness_plies)+1):

90 exec("sectionLayer"+str(i)+"=section.SectionLayer(material=’"+string_material+"’,

91 thickness="+str(thickness_plies[i-1])+ ", orientAngle="+str(angle_plies[i-1])+",

92 numIntPts=3, plyName=’ply_"+str(i)+" ’) " )

93 exec("Layup.append(sectionLayer"+str(i)+")" )

94

95

96 mdb.models[’Model-A’].CompositeShellSection(name=’Section-1’, preIntegrate=OFF,

97 poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,

98 useDensity=OFF, nodalThicknessField=’’, integrationRule=SIMPSON, layup=tuple(Layup))

99

100 # assign sections

101 p = mdb.models[’Model-A’].parts[’Part-1’]

102 f = p.faces

103

104 region = regionToolset.Region(faces=f)

105 p.SectionAssignment(region=region, sectionName=’Section-1’, offset=0.0)

106

107 # mesh

108 p.seedPart(size=size_el, deviationFactor=0.1)

109 p = mdb.models[’Model-A’].parts[’Part-1’]

110 f = p.faces

111 pickedRegions = f

112 p.setMeshControls(regions=pickedRegions, elemShape=QUAD, algorithm=MEDIAL_AXIS)

113 p = mdb.models[’Model-A’].parts[’Part-1’]

114

115 elemType1 = mesh.ElemType(elemCode=S8R, elemLibrary=STANDARD)

116 elemType2 = mesh.ElemType(elemCode=STRI65, elemLibrary=STANDARD)

117

118 p = mdb.models[’Model-A’].parts[’Part-1’]

119 f = p.faces

120 faces = f

121 pickedRegions =(faces, )

122 p.setElementType(regions=pickedRegions, elemTypes=(elemType1, elemType2))

123

124 p.generateMesh()

125

126 # assembly

127 a = mdb.models[’Model-A’].rootAssembly

128 a.DatumCsysByDefault(CARTESIAN)

129 p = mdb.models[’Model-A’].parts[’Part-1’]

130 a.Instance(name=’Part-1-1’, part=p, dependent=ON)

131

132 # steps

133 mdb.models[’Model-A’].StaticStep(name=’thermo_mechanic’, previous=’Initial’)

134

135 # symmetry

136 a = mdb.models[’Model-A’].rootAssembly

137 e1 = a.instances[’Part-1-1’].edges

138 edges1 = e1.getSequenceFromMask(mask=(’[#4 ]’, ), )

139 region = regionToolset.Region(edges=edges1)

140 mdb.models[’Model-A’].YsymmBC(name=’BC-1’, createStepName=’thermo_mechanic’,
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141 region=region)

142

143 # constrain displacement on x

144 a1 = mdb.models[’Model-A’].rootAssembly

145 v1 = a1.instances[’Part-1-1’].vertices

146 verts1 = v1.getSequenceFromMask(mask=(’[#1 ]’, ), )

147 region = regionToolset.Region(vertices=verts1)

148 mdb.models[’Model-A’].DisplacementBC(name=’BC-3’, createStepName=’thermo_mechanic’,

149 region=region, u1=0.0, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET,

150 amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName=’’,

151 localCsys=None)

152

153 # static

154 if type_specimen==’CT’:

155 fact=1.0

156 else:

157 fact=-1.0

158

159 a1 = mdb.models[’Model-A’].rootAssembly

160 v1 = a1.instances[’Part-1-1’].vertices

161 verts1 = v1.getSequenceFromMask(mask=(’[#1 ]’, ), )

162 region = regionToolset.Region(vertices=verts1)

163 mdb.models[’Model-A’].ConcentratedForce(name=’Load-1’,

164 createStepName=’thermo_mechanic’, region=region, cf2=fact, localCsys=None)

165

166 a = mdb.models[’Model-A’].rootAssembly

167

168 v1 = a.instances[’Part-1-1’].vertices

169 verts1 = v1.getSequenceFromMask(mask=(’[#4 ]’, ), )

170 crackFront = regionToolset.Region(vertices=verts1)

171 a = mdb.models[’Model-A’].rootAssembly

172 v1 = a.instances[’Part-1-1’].vertices

173 verts1 = v1.getSequenceFromMask(mask=(’[#4 ]’, ), )

174 crackTip = regionToolset.Region(vertices=verts1)

175 v1 = a.instances[’Part-1-1’].vertices

176 v11 = a.instances[’Part-1-1’].vertices

177 a.engineeringFeatures.ContourIntegral(name=’Crack’, symmetric=ON,

178 crackFront=crackFront, crackTip=crackTip,

179 extensionDirectionMethod=Q_VECTORS, qVectors=((v1[1], v11[2]), ),

180 midNodePosition=0.5, collapsedElementAtTip=NONE)

181

182 mdb.models[’Model-A’].fieldOutputRequests[’F-Output-1’].setValues(variables=(

183 ’S’, ’E’, ’U’, ’JK’ ))

184

185 mdb.models[’Model-A’].historyOutputRequests[’H-Output-1’].setValues(variables=(

186 ’ALLAE’, ’ALLCD’, ’ALLDMD’, ’ALLEE’, ’ALLFD’, ’ALLIE’, ’ALLJD’, ’ALLKE’,

187 ’ALLKL’, ’ALLPD’, ’ALLQB’, ’ALLSE’, ’ALLSD’, ’ALLVD’, ’ALLWK’, ’ETOTAL’,

188 ’DBS’, ’DBT’, ’DBSF’))

189

190 mdb.models[’Model-A’].HistoryOutputRequest(name=’H-Output-2’,

191 createStepName=’thermo_mechanic’, contourIntegral=’Crack’,

192 sectionPoints=DEFAULT, rebar=EXCLUDE, numberOfContours=25)

193

194 a_eff_s=str(a_eff)

195 ind=a_eff_s.index(’.’)

196 a_eff_s_1=a_eff_s[0:ind]

197 a_eff_s_2=a_eff_s[ind+1::]

198 a_eff_s_2_=str()

199 for i in range(0,3):

200 try:

201 a_eff_s_2[i]

202 a_eff_s_2_=a_eff_s_2_+a_eff_s_2[i]

203 except IndexError:

204 a_eff_s_2_=a_eff_s_2_+’0’

205
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206 a_eff_s=a_eff_s_1+’d’+a_eff_s_2_

207

208 string_name=type_specimen+’_’+string_material+’_’+a_eff_s

209

210 mdb.models.changeKey(fromName=’Model-A’, toName=string_name)

211

212 #---> go to odb

Filename: library materials.py

1 IM78552={’type’:’composite’,

2 ’density’:1.59e-9,

3 ’E1’:171420.,

4 ’E2’: 9080.,

5 ’G12’:5290,

6 ’v12’:0.32,

7 ’alpha1’:-5.5E-6,

8 ’alpha2’: 25.8E-6,

9 ’XT’: 2323.5,

10 ’XPO’:232.3,

11 ’XC’:1201,

12 ’YT’:160.2,

13 ’YC’:199.8,

14 ’ALPHA0’:0.925,

15 ’SL’: 130.2,

16 ’SLud’: 92.3,

17 ’GIC_F1’: 31.5,

18 ’GIC_FE’: 50.0,

19 ’GIC_M’:0.2774,

20 ’GIIC_M’: 0.7879,

21 ’GIC_FC’: 106.3,

22 ’GIIC_M-’: 1.3092,

23 ’beta1’:0.000,

24 ’beta2’:0.005,

25 ’DM’: 0.0,

26 ’Eta_viscous’:0.001,

27 ’v23’:0.52,

28 ’G23’:42000, # check it

29 ’GIC’:0.969,

30 ’GIIC’:1.719,

31 ’S3_o’: 120.0,

32 ’S1_o’:120.0,

33 ’ETA’: 1.2,

34 ’Em’:120000.0,

35 ’POISm’: 0.3,

36 ’del_ele’:0.9,

37 ’Em’:9000,

38 ’vm’:0.3,

39 ’density_m’:1.59e-9,

40 ’alpha_m’:25.8E-6}

Filename: read odb.py

1 import os

2 dir_path=os.getcwd()

3

4 odb = session.openOdb(name=dir_path+’\\’+string_name+’.odb’)

5

6 assembly = odb.rootAssembly

7 step=odb.steps

8 skey=step.keys()[0]

9 J_integral_contours=step[skey].historyRegions[’ElementSet PIBATCH’].historyOutputs

10 J_integral_keys=J_integral_contours.keys()
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11

12 J_integral=[]

13

14 for key__ in J_integral_keys:

15 J_integral.append(J_integral_contours[key__].data[0][1])

16

17 import cPickle

18 FILE = open(string_name+’.JI’, ’w’)

19 cPickle.dump(J_integral, FILE)

20

21 FILE.close()

Filename: analyze data.py

1 import numpy as n

2 import matplotlib.pyplot as plt

3 import cPickle

4 import os

5 dir_path=os.getcwd()

6

7 files_dir=os.listdir(dir_path)

8

9 files_JI=[]

10

11 for file_name_ in files_dir:

12 if file_name_[-3::]==’.JI’:

13 files_JI.append(file_name_)

14

15 print files_JI

16

17 CL0=[] #

18 JI0=[] #

19 JI_all0=[]

20

21 for file_name_ in files_JI:

22 FILE = open(file_name_, ’r’)

23 JI_= cPickle.load(FILE)

24 JI_all0.append(JI_)

25

26 ind1=file_name_[::-1].find(’.’)

27 ind2=file_name_[::-1].find(’_’)

28 str_crack=file_name_[::-1][ind1+1:ind2][::-1]

29 ind_d=str_crack.find(’d’)

30 crack=float(str_crack[:ind_d]+’.’+str_crack[1+ind_d::])

31

32 CL0.append(crack)

33

34 JI_orig=[]

35 JI_orig.extend(JI_)

36

37

38 while JI_[-1]<0.0:

39 JI_.remove(JI_[-1])

40

41

42 JI0.append(JI_[-1])

43

44 print ’----------------’

45 print ’crack length=’

46 print crack

47 print ’J-integral value=’

48 print JI_[-1]

49 print ’contours JI’

50 print JI_orig



225

51 print ’modified contours JI’

52 print JI_

53

54 FILE.close()

55

56 # graphs

57 plt.plot(CL0,JI0,’-o’)

58 plt.ylabel(’Energy Release’)

59 plt.show()

60

61 #

62 data_=[]

63 data_.append(CL0)

64 data_.append(JI0)

65

66 data=n.array(data_)

67 data=n.transpose(data)

68 n.savetxt(’JI_data.txt’, data, fmt="%12.6G")

69 #

70 import cPickle

71 FILE = open(’CL_JI’, ’w’)

72 cPickle.dump(CL0, FILE)

73 cPickle.dump(JI0, FILE)

74 FILE.close()
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Appendix D

2D Model for Industrial
Application

1 !* 2D failure model for industrial application

2 !* G. Catalanotti 2010

3

4 /NOPR

5

6 /OUT,output,txt

7 /COM,------------------- ANALYSIS RESULTS ---------------------

8 /COM,

9 /COM, | node | F_Index | Shear | Tension | Combined | L Pres |

10 /COM,

11 /OUT

12

13 /UIS, MSGPOP,3

14 !/UIS,ABORT,OFF

15

16 *SET,ALL

17 PARSAV,ALL,’savedparameter’,’txt’,’ !initialize parameters file

18 /CLEAR !clear database

19 RESUME ! resume original job

20 ALLSEL,ALL

21

22 /INPUT,’zinput’,’txt’,,, 0 ! import input data

23

24 ! find all the coupled nodes

25 *GET, MAX_coupled_number, CP, ,MAX

26 NSEL,S,CP,,1,MAX_coupled_number,1

27 *GET,highest_node,NODE,,NUM,MAX, , , ,

28 *DIM,all_nodes,ARRAY,highest_node,,, , ,

29 *VGET,all_nodes,NODE, ,NSEL,, , ,2

30

31 ! number of selected nodes

32 *GET,n_number,NODE,,COUNT, , , ,

33 *DIM,coupled_nodes,ARRAY,n_number,,, , ,

34

35 ff=0

36 *DO, I, 1, highest_node,1

37 *IF,all_nodes(I,1,1),EQ,1,THEN

38 ff=ff+1

39 coupled_nodes(ff,1,1)=I

40 *ENDIF

41 *ENDDO

42

43 *DIM,EL_NUMBER,ARRAY,n_number,,, , ,

227
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44 *DIM,TYPE_NUMBER,ARRAY,n_number,,, , ,

45 *DIM,CS_NUMBER,ARRAY,n_number,,, , ,

46 *DIM,REALC_NUMBER,ARRAY,n_number,,, , ,

47 *DIM,MAT_NUMBER,ARRAY,n_number,,, , ,

48 *DIM,SEC_NUMBER,ARRAY,n_number,,, , ,

49 !

50 *DO,I,1,n_number

51 NSEL,S, , , coupled_nodes(I,1,1)

52 ESLN,S

53 ESEL,R,ENAME,,element_used

54 *GET,highest_elem,ELEM,,NUM,MAX, , , ,

55 ALLSEL,ALL

56 !*

57 *GET,TN,ELEM,highest_elem,ATTR,TYPE

58 *GET,CSN,ELEM,highest_elem,ATTR,ESYS

59 *GET,RN,ELEM,highest_elem,ATTR,REAL

60 *GET,MN,ELEM,highest_elem,ATTR,MAT

61 !*

62 EL_NUMBER(I,1,1)=highest_elem

63 TYPE_NUMBER(I,1,1)=TN

64 CS_NUMBER(I,1,1)=CSN

65 REALC_NUMBER(I,1,1)=RN

66 MAT_NUMBER(I,1,1)=MN

67 !*

68 *ENDDO

69

70 !* get highest defined section in the model

71 *GET,highest_section, SECP, NUM, MAX

72

73 *DO, I, 1, n_number

74 *DO, J, 1,highest_section

75 ESEL,S, , , EL_NUMBER(I,1,1)

76 ESEL,U,SEC,,J

77 *GET,highest_elem,ELEM,,NUM,MAX, , , ,

78 *IF,highest_elem,EQ,0,THEN

79 SEC_NUMBER(I,1,1)=J

80 *EXIT

81 *ENDIF

82 *ENDDO

83 *ENDDO

84 !*

85 PI = 3.14159

86 *DIM,DIAMETERS,TABLE,n_number,1,1, , ,

87 *TREAD,DIAMETERS,’input_diameter’,’txt’,’ ’,1,

88

89 *DIM,FURS,TABLE,n_number,1,1, , ,

90 *TREAD,FURS,’input_fur’,’txt’,’ ’,1,

91

92 ! get jobname

93 *GET,jobname,ACTIVE, ,JOBNAM ! get current jobname

94

95 *DO, coupled_nodeI, 1, n_number, 1

96

97 PARSAV,ALL,’savedparameter’,’txt’,’

98 coupled_node=coupled_nodes(coupled_nodeI,1,1)

99

100 diameter=DIAMETERS(coupled_node)

101 fur=FURS(coupled_node)

102

103 ALLSEL,ALL

104 CSYS,0

105

106 allsel,all

107 *GET,highest_node,NODE,,NUM,MAX, , , ,

108 *DIM,all_nodes,ARRAY,highest_node,,, , ,
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109

110 *GET,highest_elem,ELEM,,NUM,MAX, , , ,

111 *DIM,all_elem,ARRAY,highest_elem,,, , ,

112 *DIM,all_elem2,ARRAY,highest_elem,,, , ,

113 *DIM,all_elem3,ARRAY,highest_elem,,, , ,

114

115 *DIM,before_nodes,ARRAY,highest_node,,, , ,

116 *DIM,after_nodes,ARRAY,highest_node,,, , ,

117

118 ! select coupled node

119 NSEL,S, , , coupled_node ! select coupled node

120

121 *GET,high_elem_4,ELEM,,NUM,MAX, , , ,

122 *GET,elem_area,ELEM,high_elem_4,AREA

123

124 side_elem=sqrt(elem_area)

125

126 half_side=NINT(2*diameter/side_elem)

127

128 *IF,half_side,EQ,0,then

129 half_side=1

130 *ENDIF

131

132 ! select coupled node

133 NSEL,S, , , coupled_node ! select coupled node

134

135 *DO, I, 1, half_side, 1

136 ! selected node in array

137 *VGET,before_nodes,NODE, ,NSEL,, , ,2

138 ! select elements attached to coupled node

139 ESLN,S

140 ! select nodes attached to elements

141 NSLE,S

142 *VGET,after_nodes,NODE, ,NSEL,, , ,2

143 *ENDDO

144

145 *DIM,contour,ARRAY,highest_node,,, , ,

146 *VOPER,contour,after_nodes,SUB,before_nodes, , ,

147

148 *VSCFUN,contour_n,SUM,contour

149 contour_n=contour_n/2

150

151 *DIM,contour_nodes,ARRAY,contour_n,,, , ,

152

153 NSEL,NONE

154

155 K=0

156 *DO, I, 1, highest_node, 1

157 *IF,contour(I,1,1),EQ,2,THEN

158 NSEL,A, , , I

159 K=K+1

160 ! array with the number of nodes on the contour

161 contour_nodes(K,1,1)=I

162 *ENDIF

163 *ENDDO

164

165 *DIM,contour_x,ARRAY,contour_n,,, , ,

166 *DIM,contour_y,ARRAY,contour_n,,, , ,

167 *DIM,contour_z,ARRAY,contour_n,,, , ,

168

169 *DO, I, 1, contour_n, 1

170 *GET,xcoord,NODE,contour_nodes(I,1,1),LOC,X

171 *GET,ycoord,NODE,contour_nodes(I,1,1),LOC,Y

172 *GET,zcoord,NODE,contour_nodes(I,1,1),LOC,Z

173 !
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174 contour_x(I,1,1)=xcoord

175 contour_y(I,1,1)=ycoord

176 contour_z(I,1,1)=zcoord

177 !

178 *SET,xcoord

179 *SET,ycoord

180 *SET,zcoord

181 *ENDDO

182

183 !!!!! sort nodes

184

185 NSEL,S, , , coupled_node !select copled node

186 ESLN,S !select attached node

187 ESEL,R,ENAME,,element_used

188

189 *GET,elem_sys_n,ELEM,,NUM,MAX, , , ,

190

191 *GET,elem_sys,ELEM,elem_sys_n,ATTR,ESYS ! get element coordinate system

192

193 *GET,max_coord_sys,CDSY, ,NUM,MAX

194

195 *IF,max_coord_sys,LT,10,THEN

196 max_coord_sys=10

197 *ENDIF

198

199 max_coord_sys=max_coord_sys+1

200 ! define coordinate system concord to the nodes

201 CSYS,0,

202 DSYS,0,

203

204 *GET,center_x,NODE,coupled_node,LOC,X

205 *GET,center_y,NODE,coupled_node,LOC,Y

206 *GET,center_z,NODE,coupled_node,LOC,Z

207

208 CSYS,0,

209 DSYS,0,

210 CLOCAL, max_coord_sys,0, center_x,center_y, center_z

211

212 CSYS,0,

213 DSYS,0,

214 CLOCAL, max_coord_sys+1,1, center_x,center_y, center_z

215 !*

216 CSYS,max_coord_sys+1,

217 DSYS,max_coord_sys+1 ,

218

219 *DIM,contour_angle,ARRAY,contour_n,,, , ,

220

221 *DO, I, 1, contour_n, 1

222 *GET,angle_coord,NODE,contour_nodes(I,1,1),LOC,Y

223 *IF,angle_coord,LT,0,THEN

224 contour_angle(I,1,1)=angle_coord+360

225 *ELSE

226 contour_angle(I,1,1)=angle_coord

227 *ENDIF

228 *SET,angle_coord

229 *ENDDO

230

231 !sort_nodes

232 *DIM,key_points,ARRAY,contour_n,,, , ,

233 *DIM,key_points_x,ARRAY,contour_n,,, , ,

234 *DIM,key_points_y,ARRAY,contour_n,,, , ,

235 *DIM,key_points_z,ARRAY,contour_n,,, , ,

236

237 *VSCFUN,index_min_angle,LMIN,contour_angle

238 *VSCFUN,index_max_angle,LMAX,contour_angle
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239

240 *IF,(360-contour_angle(index_max_angle,1,1)),LT,contour_angle(index_min_angle,1,1),THEN

241 contour_angle(index_max_angle,1,1)=contour_angle(index_max_angle,1,1)-360

242 *ENDIF

243

244 *DO, I, 1, contour_n, 1

245 *VSCFUN,index_min_angle,LMIN,contour_angle

246 key_points(I,1,1)=index_min_angle !contour_nodes(index_min_angle,1,1)

247 key_points_x(I,1,1)=contour_x(index_min_angle,1,1)

248 key_points_y(I,1,1)=contour_y(index_min_angle,1,1)

249 key_points_z(I,1,1)=contour_z(index_min_angle,1,1)

250 contour_angle(index_min_angle,1,1)=361

251 *ENDDO

252

253 CSYS,0

254 !

255 *GET,center_x,NODE,coupled_node,LOC,X

256 *GET,center_y,NODE,coupled_node,LOC,Y

257 *GET,center_z,NODE,coupled_node,LOC,Z

258

259 DSYS,0

260 section=SEC_number(coupled_nodeI,1,1)

261

262 *IF,section,NE,0,THEN

263 FLAG=’C’

264 ! numero layer

265 *GET, num_layer, SHEL, section, PROP, NLAY

266 ! thickness

267 *GET, tot_thick, SHEL, section, PROP, TTHK

268 !

269 *DIM,thick_layer,ARRAY,num_layer,,, , ,

270 *DIM,ori_layer,ARRAY,num_layer,,, , ,

271 *DIM,mat_layer,ARRAY,num_layer,,, , ,

272

273 *DO, I,1,num_layer,1

274 *GET, thick_layer_i, SHEL, section,LAYD, I, THIC

275 *GET, mat_layer_i, SHEL, section,LAYD, I, MAT

276 *GET, ori_layer_i, SHEL, section,LAYD, I, ANGL

277 thick_layer(I,1,1)=thick_layer_i

278 ori_layer(I,1,1)=ori_layer_i

279 mat_layer(I,1,1)=mat_layer_i

280 *ENDDO

281 *ELSE

282 FLAG=’H’

283 *ENDIF

284 !

285 /POST1

286 INRES,ALL

287 FILE,,’rst’,’.’

288 SET,LIST,999

289 SET,,, ,,, , setnumb

290 ALLSEL,ALL

291 !*

292 NSEL,S, , , coupled_node

293 !*

294 RSYS, max_coord_sys

295 FSUM,RSYS,ALL

296 !*

297 *GET,FX,FSUM,,ITEM,FX

298 *GET,FY,FSUM,,ITEM,FY

299 *GET,FZ,FSUM,,ITEM,FZ

300 !*

301 *GET,uz_node,NODE,coupled_node,U,Z

302 FINISH

303 ALLSEL,ALL
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304 /PREP7

305 EDELE,ALL

306 NDELE,ALL

307

308 *GET,max_elem_type,ETYP,1,NUM,MAX

309

310 *DO,I, 1, max_elem_type, 1

311 *IF,I,NE,TYPE_NUMBER(coupled_nodeI,1,1), THEN

312 ETDEL,I

313 *ENDIF

314 *ENDDO

315

316 ALLSEL,ALL

317

318 *SET,AFTER_NODES

319 *SET,ALL_ELEM

320 *SET,ALL_NODES

321 *SET,BEFORE_NODES

322 *SET, CONTOUR

323 *SET,ALL_ELEM2

324 *SET,ALL_ELEM3

325

326 FINISH

327 PARSAV,ALL,’savedparameter’,’txt’,’

328

329 *SET,ALL

330

331 CDWRITE,DB,,’cdb’,,’’,’’

332

333 /CLEAR

334

335 /INPUT,’savedparameter’,’txt’,,, 0

336

337 /PREP7

338

339 rad=diameter/2

340 rad_bolt=1.7*rad

341

342 meshsize=(rad_bolt-rad)/10

343

344 *DO, I, 1, contour_n, 1

345 K,I,contour_x(I,1,1),contour_y(I,1,1),contour_z(I,1,1),

346 *ENDDO

347

348 *DIM,key_points_all,ARRAY,contour_n+1,1,1, , ,

349 *DO, I, 1, contour_n, 1

350 key_points_all(I,1,1)=key_points(I,1,1)

351 *ENDDO

352 key_points_all(contour_n+1,1,1)= key_points(1,1,1)

353

354 !* b spline

355

356 *DO, J, 0, 7, 1

357

358 FLST,3,half_side+1,3

359 *DO, I, 1, half_side+1, 1

360 FITEM,3, key_points_all(I+J*half_side,1,1)

361 *ENDDO

362 BSPLIN, ,P51X

363

364 *ENDDO

365

366 K,1000,center_x,center_y,center_z,

367

368 ! cartesian
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369 CSKP,11,0,1000,key_points(1,1,1),key_points(2,1,1),1,1,

370 ! cylindrical

371 CSKP,12,1,1000,key_points(1,1,1),key_points(2,1,1),1,1,

372

373 DSYS,12

374 CSYS,12

375

376 *GET,k_y1,KP,key_points(1,1,1),LOC,Y

377 *GET,k_y2,KP,key_points(1+contour_n/4,1,1),LOC,Y

378 *GET,k_y3,KP,key_points(1+2*contour_n/4,1,1),LOC,Y

379 *GET,k_y4,KP,key_points(1+3*contour_n/4,1,1),LOC,Y

380

381 K,1001,rad,k_y1,0

382 K,1002,rad,k_y2,0

383 K,1003,rad,k_y3,0

384 K,1004,rad,k_y4,0

385

386 *GET,k_y1a,KP,key_points(1+contour_n/8,1,1),LOC,Y

387 *GET,k_y2a,KP,key_points(1+contour_n/4+contour_n/8,1,1),LOC,Y

388 *GET,k_y3a,KP,key_points(1+2*contour_n/4+contour_n/8,1,1),LOC,Y

389 *GET,k_y4a,KP,key_points(1+3*contour_n/4+contour_n/8,1,1),LOC,Y

390

391 K,1005,rad,k_y1a,0

392 K,1006,rad,k_y2a,0

393 K,1007,rad,k_y3a,0

394 K,1008,rad,k_y4a,0

395

396 LARC, 1001, 1002, 1005

397 LARC, 1002, 1003, 1006

398 LARC, 1003, 1004, 1007

399 LARC, 1004, 1001, 1008

400

401 K,2001,rad_bolt,k_y1,0

402 K,2002,rad_bolt,k_y2,0

403 K,2003,rad_bolt,k_y3,0

404 K,2004,rad_bolt,k_y4,0

405

406 K,2005,rad_bolt,k_y1a,0

407 K,2006,rad_bolt,k_y2a,0

408 K,2007,rad_bolt,k_y3a,0

409 K,2008,rad_bolt,k_y4a,0

410

411 LARC, 2001, 2002, 2005

412 LARC, 2002, 2003, 2006

413 LARC, 2003, 2004, 2007

414 LARC, 2004, 2001, 2008

415

416 DSYS,0

417 CSYS,0

418

419 LSTR, 2001, key_points(1,1,1)

420 LSTR, 2002, key_points(1+contour_n/4,1,1)

421 LSTR, 2003, key_points(1+contour_n/2,1,1)

422 LSTR, 2004, key_points(1+3*contour_n/4,1,1)

423

424 LSTR, 1001, 2001

425 LSTR, 1002, 2002

426 LSTR, 1003, 2003

427 LSTR, 1004, 2004

428

429 LCCAT,1,2

430 LCCAT,3,4

431 LCCAT,5,6

432 LCCAT,7,8

433
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434 AL,1,2,18,13,17

435 AL,18,3,4,19,14

436 AL,19,5,6,20,15

437 AL,20,7,8,17,16

438

439 AL,22,14,23,10

440 AL,23,15,24,11

441 AL,24,16,21,12

442 AL,21,13,22,9

443

444 ratio=5

445

446 LESIZE,21,meshsize, , ,ratio, , , ,1

447 LESIZE,22,meshsize, , ,ratio, , , ,1

448 LESIZE,23,meshsize, , ,ratio, , , ,1

449 LESIZE,24,meshsize, , ,ratio, , , ,1

450

451 ALLSEL,ALL

452

453 Fboltx=FX

454 Fbolty=FY

455 Fboltz=abs(FZ)

456 Fboltxy=sqrt(Fboltx**2+Fbolty**2)

457 pres_max=Fboltxy/2/rad

458 beta=atan2(Fbolty,Fboltx)/PI*180

459

460 CDREAD,DB,,’cdb’,,’’,’’

461

462 TYPE, TYPE_NUMBER(coupled_nodeI,1,1)

463 MAT, MAT_NUMBER(coupled_nodeI,1,1)

464 REAL, ,REALC_NUMBER(coupled_nodeI,1,1)

465 *IF,SEC_NUMBER(coupled_nodeI,1,1),NE,O,THEN

466 SECNUM, SEC_NUMBER(coupled_nodeI,1,1)

467 *ELSE

468 SECNUM, ,

469 *ENDIF

470

471 ESYS, max_coord_sys

472

473 CSYS,max_coord_sys+1,

474 K,1200,rad*2,beta,,

475 !*

476 CSKP,max_coord_sys+2,1,1000,1200,1003,1,1,

477

478 ! store results for all layer

479 KEYOPT,TYPE_NUMBER(coupled_nodeI,1,1),8,1

480

481 LCCAT,1,2

482 LCCAT,3,4

483 LCCAT,5,6

484 LCCAT,7,8

485

486 ndiv0=10

487 LESIZE,9, , ,ndiv0, , , , ,1

488 LESIZE,10, , ,ndiv0, , , , ,1

489 LESIZE,11, , ,ndiv0, , , , ,1

490 LESIZE,12, , ,ndiv0, , , , ,1

491 LESIZE,13, , ,ndiv0, , , , ,1

492 LESIZE,14, , ,ndiv0, , , , ,1

493 LESIZE,15, , ,ndiv0, , , , ,1

494 LESIZE,16, , ,ndiv0, , , , ,1

495

496 siz1=2*PI*rad/4/10*2

497 LESIZE,17,siz1, , , , , , ,1

498 LESIZE,18,siz1, , , , , , ,1
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499 LESIZE,19,siz1, , , , , , ,1

500 LESIZE,20,siz1, , , , , , ,1

501

502 MSHKEY,1

503 AMESH,ALL

504

505 CSYS,max_coord_sys+2,

506 NSEL,S,LOC,X,rad

507 NSEL,R,LOC,Y,-90,+90

508

509 ! pressure on hole’s edge

510 *DEL,_FNCNAME

511 *DEL,_FNCMTID

512 *DEL,_FNC_C1

513 *DEL,_FNCCSYS

514 *SET,_FNCNAME,’COSIN’

515 *DIM,_FNC_C1,,1

516 *SET,_FNC_C1(1),pres_max

517 *SET,_FNCCSYS,max_coord_sys+2

518 *DIM,%_FNCNAME%,TABLE,6,3,1,,,,%_FNCCSYS%

519 !

520 ! Begin of equation: pres_max*cos({Y})

521 *SET,%_FNCNAME%(0,0,1), 0.0, -999

522 *SET,%_FNCNAME%(2,0,1), 0.0

523 *SET,%_FNCNAME%(3,0,1), %_FNC_C1(1)%

524 *SET,%_FNCNAME%(4,0,1), 0.0

525 *SET,%_FNCNAME%(5,0,1), 0.0

526 *SET,%_FNCNAME%(6,0,1), 0.0

527 *SET,%_FNCNAME%(0,1,1), 1.0, -1, 10, 1, 3, 0, 0

528 *SET,%_FNCNAME%(0,2,1), 0.0, -2, 0, 1, 17, 3, -1

529 *SET,%_FNCNAME%(0,3,1), 1, 99, 0, 1, -2, 0, 0

530 ! End of equation: pres_max*cos({Y})

531

532 SF,ALL,PRES, %COSIN%

533

534 ALLSEL,ALL

535

536 FINISH

537 /SOL

538 !*

539 ANTYPE,0

540 DELTIM,1,1,1

541 OUTRES,ERASE

542 OUTRES,NSOL,LAST

543 OUTRES,RSOL,LAST

544 OUTRES,NLOA,LAST

545 OUTRES,STRS,LAST

546

547 submodelname=strcat(’node_’,CHRVAL(coupled_node))

548 !*

549 !******* submodel

550 !* select exterior lines

551 FLST,5,8,4,ORDE,2

552 FITEM,5,1

553 FITEM,5,-8

554 LSEL,S, , ,P51X

555 !* select attached nodes

556 NSLL,S,1

557 /PREP7

558 !* write NODE file

559 NWRITE, submodelname,’NODE’

560 allsel,all

561 FINISH

562

563 SAVE,submodelname,’db’,
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564 PARSAV,ALL,’savedparameter’,’txt’,’

565

566 !*

567 /CLEAR,START

568 /INPUT,’savedparameter’,’txt’,,,0

569 RESUME,jobname,’db’

570 ALLSEL,ALL

571

572 /INPUT,’savedparameter’,’txt’,,,0

573 /POST1

574 INRES,ALL

575 FILE,jobname,’rst’,’.’

576 SET,LAST

577 CBDOF,submodelname,’NODE’,’ ’,submodelname,’CBDO’,’ ’,0, ,0

578 PARSAV,ALL,’savedparameter’,’txt’,’

579 !*

580 FINISH

581 /CLEAR

582

583 /INPUT,’savedparameter’,’txt’,,, 0

584 RESUME,submodelname,’db’,,0,0

585

586 /INPUT,’savedparameter’,’txt’,,, 0

587 /SOL

588 /INPUT,submodelname,’CBDO’,,, 0

589 DCUM,ADD

590 !*

591 FINISH

592 command=strcat(’/FILNAME,’,submodelname)

593 SAVE,submodelname,’db’,

594 PARSAV,ALL,’savedparameter’,’txt’,’

595 /clear

596 /INPUT,’savedparameter’,’txt’,,, 0

597 /FILNAME,submodelname,0

598 RESUME,submodelname,’db’,,0,0

599 /SOLU

600 !*

601 SOLVE

602 !*

603 FINISH

604 !

605 /POST1

606 SET,LAST

607 !*

608 ! SEC_number(coupled_nodeI,1,1)

609 ! FLAG=’C’

610 ! num_layer

611 ! tot_thick

612 ! thick_layer

613 ! ori_layer

614 ! mat_layer

615 ! thick_layer_i

616 ! mat_layer_i

617 ! ori_layer_i

618 ! thick_layer(I,1,1)

619 ! ori_layer(I,1,1)

620 ! mat_layer(I,1,1)

621 !*

622 ! FLAG=’H’

623 !*

624 *GET,High_elem_sub,ELEM,,NUM,MAX, , , ,

625 !*

626 *DIM,F_MATRIX,ARRAY,High_elem_sub,1,1, , ,

627 *DIM,F_FIBER,ARRAY,High_elem_sub,1,1, , ,

628
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629 ! select areas near the bolts

630

631 FLST,5,4,5,ORDE,2

632 FITEM,5,5

633 FITEM,5,-8

634 ASEL,S, , ,P51X

635 ESLA,S

636

637 *DIM,dam_elem,ARRAY,High_elem_sub,1,1, , ,

638 *VGET,dam_elem,ELEM, ,ESEL, , ,2

639

640 *DIM,dam_elem2,ARRAY,High_elem_sub,1,1, , ,

641 *VGET,dam_elem2,ELEM, ,ESEL, , ,2

642

643 ALLSEL,ALL

644

645 *VFUN,dam_elem2,PWR,dam_elem2,2, , ,

646

647 *VOPER,dam_elem,dam_elem,EQ,dam_elem2, , ,

648

649 ! define F ETABLE (full of zeros)

650 ETABLE,F,U,X

651 *VPUT,F_FIBER,ELEM, ,ETAB,F, , ,2

652 !*

653 *DIM,Mises_vect,ARRAY,High_elem_sub,1,1, , ,

654 !*

655 *IF,SEC_number(coupled_nodeI,1,1),EQ,0,THEN

656 num_layer_ALL=1

657 *ENDIF

658

659 *DO,LAYER_Imo,1,num_layer_ALL,1

660

661 *IF,SEC_number(coupled_nodeI,1,1),NE,0,THEN

662

663 RSYS,SOLU !RSYS, max_coord_sys

664 LAYER,LAYER_Imo

665 !*

666 ETABLE,S11,S,X

667 ETABLE,S22,S,Y

668 ETABLE,S12,S,XY

669 !*

670 mat_string=strcat(’material_’,CHRVAL(mat_layer(LAYER_Imo,1,1)))

671

672 /INPUT,mat_string,’txt’,,, 0 ! import material parameters

673 !*

674 ST_is=0.5*(2.0*sin(alpha0)**2-1.0)*SL_is/(sqrt(1.d0-sin(alpha0)**2)*sin(alpha0)*eta_L)

675 YC_is=-SL_is*(2.0*cos(alpha0)**2-1.0)/(ETA_L*cos(alpha0)**2)

676 eta_T=eta_L*ST_is/SL_is

677

678 *DIM,S11vect,ARRAY,High_elem_sub,1,1, , ,

679 *DIM,S22vect,ARRAY,High_elem_sub,1,1, , ,

680 *DIM,S12vect,ARRAY,High_elem_sub,1,1, , ,

681 *VGET,S11vect,ELEM, ,ETAB,S11, ,2

682 *VGET,S22vect,ELEM, ,ETAB,S22, ,2

683 *VGET,S12vect,ELEM, ,ETAB,S12, ,2

684

685 *DO,I,1,High_elem_sub,1

686

687 s11=S11vect(I,1,1)

688 s22=S22vect(I,1,1)

689 s12=S12vect(I,1,1)

690

691 FMC=0

692 FMT=0

693
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694 *DO,alpha_deg,0 ,180,30

695

696 alpha=alpha_deg*PI/180.0

697

698 sigma_N=s22/2.0+s22/2.0*cos(2.0*alpha)

699 tau_T=-sin(alpha)*cos(alpha)*s22

700 tau_L=s12*cos(alpha)

701

702 *IF,sigma_N,LT,0,THEN

703 FM_C=(tau_T/(ST_is-eta_T*sigma_N))**2+(tau_L/(SL_is-eta_L*sigma_N))**2

704 *IF,FM_C,GT,FMC,THEN

705 FMC= FM_C

706 *ENDIF

707 *ENDIF

708

709 *IF,sigma_N,GE,0,THEN

710 FM_T=(sigma_N/YT_is)**2+ (tau_L/SL_is)**2

711 *IF,FM_T,GT,FMT,THEN

712 FMT=FM_T

713 *ENDIF

714 *ENDIF

715 *ENDDO

716

717 F_MATRIX(I,1,1)=max(FMT,FMC)

718 FIfT=0

719 FKC=0

720 FKT=0

721 FK_MAX=0

722 FF_MAX=0

723 FK=0

724

725 *IF,S11,GE,0,THEN

726 FIfT = S11/XT

727 *ELSE

728

729 THETA=PI/2

730 cc = ABS(SL_is/XC)

731 aa = cc+ETA_L

732 *IF,1.0-4.0*aa*cc,LE,0, THEN

733 FMcCAULEY = 0.0

734 *ELSE

735 FMcCAULEY = 1.0-4.0*aa*cc

736 *ENDIF

737 sqr = sqrt(FMcCAULEY)

738 phiC = atan((1.0-sqr)/(2.0*aa))

739 ! calculation of gamma_mc

740 gamma_mc=sin(2.0*phiC)*XC/2.0/G12

741 ! calculation of phi_0

742 phi_0=phiC-gamma_mc

743

744 s11THETA=s11

745 s22THETA=s22*cos(THETA)**2

746 s33THETA =s22*sin(THETA)**2

747 s12THETA= cos(THETA)*s12

748 s23THETA=-sin(THETA)*cos(THETA)*s22

749 s13THETA= - sin(THETA)*s12

750

751 ! calculation of phi_0

752 phi_0_theta=PHI_0

753

754 gamma_m=(phi_0_theta*G12+abs(s12THETA))/(G12+s11THETA-s22THETA)-phi_0_theta

755

756 *if,s12THETA,GT,0,then

757 PHI=PHI_0_theta+gamma_m

758 *else
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759 PHI=-(PHI_0_theta+gamma_m)

760 *endif

761

762 s11PHI=cos(PHI)**2*s11THETA+2.0*cos(PHI)*sin(PHI)*s12THETA+s22THETA*sin(PHI)**2

763 s22PHI=-2.0*cos(PHI)*sin(PHI)*s12THETA+s22THETA*cos(PHI)**2+sin(PHI)**2*s11THETA

764 !*

765 s12PHI=-sin(PHI)*cos(PHI)*s11THETA

766 s12PHI=s12PHI+cos(PHI)*sin(PHI)*s22THETA

767 s12PHI=s12PHI+2.0*cos(PHI)**2*s12THETA-s12THETA

768 !*

769 s23PHI=-sin(PHI)*s13THETA+cos(PHI)*s23THETA

770 s13PHI= cos(PHI)*s13THETA+sin(PHI)*s23THETA

771 s33PHI=s33THETA

772

773 FMCi=0

774 FMTi=0

775

776 *DO,alpha_deg,0 ,180,30

777

778 alpha=alpha_deg*PI/180.0

779

780 sigma_N=(s22PHI+s33PHI)/2.0+(s22PHI-s33PHI)/2.0*cos(2.0*alpha)+s23PHI*sin(2.0*alpha)

781 tau_T=-sin(alpha)*cos(alpha)*s22PHI-sin(alpha)**2.0*s23PHI+cos(alpha)**2.0*s23PHI

782 tau_T=tau_T+cos(alpha)*sin(alpha)*s33PHI

783 tau_L=s12PHI*cos(alpha)+s13PHI*sin(alpha)

784

785 *IF,sigma_N,LT,0,THEN

786 FM_C=(tau_T/(ST_is-eta_T*sigma_N))**2+(tau_L/(SL_is-eta_L*sigma_N))**2

787 *IF,FM_C,GT,FMC,THEN

788 FMCi= FM_C

789 *ENDIF

790 *ENDIF

791

792 *IF,sigma_N,GE,0,THEN

793 FM_T=(sigma_N/YT_is)**2+ (tau_L/SL_is)**2

794 *IF,FM_T,GT,FMT,THEN

795 FMTi=FM_T

796 *ENDIF

797 *ENDIF

798

799 *ENDDO

800

801 FK_MAX=max(FMCi,FMTi)

802

803 *ENDIF

804

805 *IF,FIfT,GE,FK_MAX,then

806 FF_MAX=FIfT

807 *else

808 FF_MAX=FK_MAX

809 *ENDIF

810

811 F_FIBER(I,1,1)=FF_MAX

812

813 *ENDDO

814

815 *VSCFUN,F_MATRIX_MAX,MAX,F_MATRIX

816 *VSCFUN,F_FIBER_MAX,MAX,F_FIBER

817

818 ETABLE,F_MATRIX,U,X

819 ETABLE,F_FIBER,U,X

820 *VPUT,F_MATRIX,ELEM, ,ETAB,F_MATRIX, , ,2

821 *VPUT,F_FIBER,ELEM, ,ETAB,F_FIBER, , ,2

822

823 SMAX,Fnew,F_MATRIX,F_FIBER,1,1,
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824

825 *ELSE

826

827 mat_string=strcat(’material_’,CHRVAL(MAT_NUMBER(coupled_nodeI,1,1)))

828

829 /INPUT,mat_string,’txt’,,, 0 ! import material parameters

830

831 ETABLE,Mises,S,EQV

832

833 SMULT,Fnew,MISES, ,1/yield_stress,1,

834

835 *ENDIF

836

837 SMAX,F,Fnew,F,1,1,

838

839 *ENDDO

840

841 *DIM,F,ARRAY,High_elem_sub,1,1, , ,

842 *VGET,F,ELEM, ,ETAB,F, ,2

843 *VOPER,F,F,MULT,dam_elem, , ,

844 *VSCFUN,F_MAX,MAX,F

845 *VPUT,F,ELEM, ,ETAB,F, , ,2

846

847 FINISH

848 !*

849

850 Fshear=Fboltxy/0.6/fur/PI/diameter**2*4*1.25

851 Ftension=Fboltz/0.6/fur/PI/diameter**2*4*1.25

852 Fcomb=Fshear+Ftension/1.4

853

854 alph=1

855 Flpres=Fboltxy/2.5/fur/alph/diameter/tot_thick*1.25

856 !

857

858 /OUT,output,txt,,APPEND

859 *VWRITE,coupled_node, F_MAX, Fshear, Ftension, Fcomb, Flpres

860 (F11.0,’ ’,F11.6, ’ ’,F11.6, ’ ’,F11.6, ’ ’,F11.6, ’ ’,F11.6 )

861 /OUT

862 !

863 PARSAV,ALL,’savedparameter’,’txt’,’

864

865 /clear

866 /INPUT,’savedparameter’,’txt’,,, 0

867 /FILNAME,jobname,0

868 RESUME

869 /INPUT,’savedparameter’,’txt’,,, 0

870 *ENDDO

871

872 /GOPR


