
Faculdade de Engenharia da Universidade do Porto

Integrated Security Sub-System for IPBrick

Sub-Sistema de Segurança Integrado para IPBrick

Ricardo J. Moreira Teixeira

Project Report submitted to Faculdade de Engenharia da Universidade do

Porto in partial fulfillment of the requirements for the degree of Integrated
Master in Electrical and Computers Engineering Major Telecommunications

Supervisor: Jorge Barbosa, PhD

Co-supervisor: Eng. Hélder Rocha

June 2008

ii

iii

Integrated Security Sub-System for IPBrick

Sub-Sistema de Segurança Integrado para IPBrick

Ricardo J. Moreira Teixeira

Graduated in Electrical and Computers Engineering at Faculdade de
Engenharia da Universidade do Porto

Project Report submitted to Faculdade de Engenharia da Universidade do
Porto in partial fulfillment of the requirements for the degree of Integrated
Master in Electrical and Computers Engineering Major Telecommunications

Supervisor: Jorge Barbosa, PhD
Co-supervisor: Eng. Hélder Rocha

Faculdade de Engenharia da Universidade do Porto Departamento de
Engenharia Electrotécnica e de Computadores Rua Roberto Frias, s/n, 4200-

465 Porto, Portugal

June 2008

iv

v

I dedicate this work to my family

who put up with me for (too) many years
şi pentru Iulia Măierean

care mă suportă în fiecare zi.

vi

vii

Abstract

The present report intends to show the development of security sub-system, as well its

integration with the software package of network services developed by iPortalMais, the
IPBrick.

This project is part of a client demanded development to IPBrick and its outcome is
intended to be commercialized as an integrant part of the latter.

With this improvement, it is intended to lay a very useful set of tools to the hands of
System Administrators in a world where information security is of the upmost importance.

After a preliminary study of the solution to be applied it was developed an “on-the-fly”
connection blocker and a monitoring service for accesses occurred through SSH, FTP, VPN
PPTP, VPN SSL. The interface for the firewall rules ordering was also improved for easiness of
use and access policies that can be associated with VPN SSL client certificates were
implemented.

Thus, using exclusively open source software it was increased the security of IPBrick,
continuing its amazing growth throughout the recent years.

viii

ix

Resumo

O presente relatório tem a intenção de mostrar o desenvolvimento de um sub-sistema de

segurança, bem como a sua integração, com o pacote de software desenvolvido pela
iPortalMais, o IPBrick.

Este projecto é parte de o pedido de um cliente acerca do desenvolvimento da IPBrick e o
seu resultado tem como intenção ser comercializado como parte integrante da mesma.

Com este melhoramento, é intenção depositar nas mãos de Administradores de Sistemas
um poderoso conjunto de ferramentas num mundo onde a segurança da informação é da
maior importância.

Após um estudo preliminar das soluções a ser aplicadas foi desenvolvido um bloqueador de
conexões “on the fly” e um serviço de monitorização para acesso ocorridos por meio de SSH,
FTP, VPN PPTP e VPN SSL. Foi também melhorada a interface de ordenação de regras da
firewall e implementado politicas de acesso que podem ser associadas a certificados de
clientes VPN SSL.

Assim, usando exclusivamente software em código aberto a segurança da IPBrick foi
aumentada, continuando o seu extraordinário crescimento ao longo dos últimos anos.

x

xi

Index

1. INTRODUCTION ... 1

1.1. MOTIVATION .. 1
1.2. THE GOALS ... 2
1.3. REPORT STRUCTURE ... 3

2. SECURITY CONCEPTS AND TOOLS .. 5

2.1. IPBRICK ... 5
2.1.1. IPBrick.I .. 6
2.1.2. IPBrick.C ... 7
2.1.3. IPBrick.GT ... 9
2.1.4. IPBrick.KAV .. 10

2.2. LINUX SECURITY .. 12
2.3. SECURITY THREAT BY PROTOCOL ... 13
2.4. RINGS OF SECURITY .. 14

2.4.1. VPN ring of security ... 14
2.5. SECURITY SOLUTIONS ... 15

2.5.1. Conntrack-tools.. 15
2.5.2. Iptables .. 16
2.5.3. OpenVPN.. 18

3. SOLUTIONS FOR THE SECURITY SUB-SYSTEM .. 21

3.1. ACTIVE CONNECTIONS .. 21
3.1.1. System Breakdown Structure ... 21
3.1.2. State machine .. 22
3.1.3. Cutter ... 23
3.1.4. conntrack-tools .. 23
3.1.5. iptables .. 24

3.2. ACCESS MONITORING ... 25
3.2.1. Requirement analysis... 25
3.2.2. Log analysis.. 26

3.3. FIREWALL RULES ORDERING ... 28
3.4. OPENVPN ANALYSIS .. 29

3.4.1. Configuration file issues ... 29
3.4.2. Services integration ... 29

4. IMPLEMENTATION .. 31

4.1. ACTIVE CONNECTIONS .. 31
4.1.1. System implementation ... 31
4.1.2. PHP script ... 32
4.1.3. Web interface .. 37

FIGURE 4.16: ACTIVE CONNECTIONS INTERFACE .. 38

xii

4.2. ACCESS MONITORING .. 38
4.2.1. Database .. 38
4.2.2. Import script ... 41
4.2.3. System implementation ... 45
4.2.4. Web interface .. 46
4.2.5. PDF report .. 48

4.3. FIREWALL RULES ORDERING ... 49
4.4. VPN SSL ACCESS POLICIES... 50

4.4.1. System implementation ... 50
4.4.2. Database .. 50
4.4.3. PHP script ... 53
4.4.4. Web interface .. 56

5. TESTS AND RESULTS .. 59

5.1. TESTBED .. 59
5.2. ACTIVE CONNECTIONS TESTS .. 60
5.3. ACCESS MONITORING TESTS ... 61
5.4. FIREWALL RULES ORDERING TESTS ... 62
5.5. VPN SSL ACCESS POLICIES TESTS .. 62

6. CONCLUSION AND FUTURE WORK .. 65

REFERENCES .. 67

APPENDIX A .. 69

xiii

List of Figures

FIGURE 1.1: TOTAL VULNERABILITIES DISCLOSURES FROM 2000 - 2007(IBM ISS 2008) 1
FIGURE 2.1: IPBRICK.I SERVICES RESUME (IPORTALMAIS - SOLUÇÕES DE ENGENHARIA PARA INTERNET E REDES,

LDA. 2008) .. 6
FIGURE 2.2: IPBRICK.C SERVICES RESUME (IPORTALMAIS - SOLUÇÕES DE ENGENHARIA PARA INTERNET E REDES,

LDA. 2008) .. 7
FIGURE 2.3: IPBRICK.GT APPLIANCE (IPORTALMAIS - SOLUÇÕES DE ENGENHARIA PARA INTERNET E REDES, LDA.

2008) ... 9
FIGURE 2.4: IPBRICK.KAV APPLIANCE (IPORTALMAIS - SOLUÇÕES DE ENGENHARIA PARA INTERNET E REDES, LDA.

2008) ... 10
FIGURE 2.5: LINUX SYSTEM - A CRACKER'S MAZE (TOXEN 2003) .. 12
FIGURE 2.6: VIRUS PATH THROUGH A VPN (TOXEN 2003) ... 15
FIGURE 2.7: OPENVPN USES UDP PROTOCOL FOR EXCHANGING PACKETS .. 18
FIGURE 3.1: SYSTEM BREAKDOWN STRUCTURE FOR THE ACTIVE CONNECTIONS DEVELOPMENT 21
FIGURE 3.2: EXAMPLE OF THE OUTPUT OF A CAT TO IP_CONNTRACK .. 22
FIGURE 3.3: DIAGRAM OF THE TABLES AND BUILT-IN CHAINS OF IPTABLES (ANDREASSON 2006) 25
FIGURE 4.1: EXAMPLE TCP CONNECTION ENTRY IN THE CONNTRACK LIST ... 32
FIGURE 4.2: REGULAR EXPRESSION TO PARSE THE PROTOCOL OF A CONNTRACK ENTRY 32
FIGURE 4.3: REGULAR EXPRESSION TO PARSE THE TCP CONNECTION ENTRIES IN THE CONNTRACK LIST 33
FIGURE 4.4: EXAMPLE UDP CONNECTION ENTRY IN THE CONNTRACK LIST ... 33
FIGURE 4.5: REGULAR EXPRESSION TO PARSE THE UDP CONNECTION ENTRIES IN THE CONNTRACK LIST 33
FIGURE 4.6: EXAMPLE ICMP CONNECTION ENTRY IN THE CONNTRACK LIST.. 33
FIGURE 4.7: REGULAR EXPRESSION TO PARSE THE ICMP CONNECTION ENTRIES IN THE CONNTRACK LIST 33
FIGURE 4.8: EXAMPLE GRE CONNECTION ENTRY IN THE CONNTRACK LIST ... 33
FIGURE 4.9: GENERIC REGULAR EXPRESSION TO PARSE THE CONNECTION ENTRIES IN THE CONNTRACK LIST 34
FIGURE 4.10: COPYING OF THE DATA FROM THE MATCHING ARRAYS TO THE OBJECT-ARRAYS THAT WILL CONTAIN

ALL THE CONNECTIONS DATA ... 34
FIGURE 4.11: GENERATION OF THE LINK FOR THE ACTION PHP SCRIPT .. 36
FIGURE 4.12: PHP CODE TO INVERT THE MARK WHICH IS TO UPDATE THE CONNECTION 36
FIGURE 4.13: STRING TO ISSUE THE COMMAND TO UPDATE TCP AND UDP CONNTRACK ENTRIES 36
FIGURE 4.14: STRING TO ISSUE THE COMMAND TO UPDATE ICMP CONNTRACK ENTRIES 37
FIGURE 4.15: STRING TO ISSUE THE COMMANDS TO BLOCK GENERIC CONNECTIONS .. 37
FIGURE 4.16: ACTIVE CONNECTIONS INTERFACE ... 38
FIGURE 4.17: DATABASE SCHEME FOR THE ACCESS MONITORING ... 38
FIGURE 4.18: FUNCTION TO SET THE FILE POINTER TO THE END OF THE LOG FILE .. 41
FIGURE 4.19: DIAGRAM OF THE ALGORITHM IMPLEMENTED IN THE PHP SCRIPT ... 42
FIGURE 4.20: CONDITION TO FILTER THE SSH LOG LINES .. 43
FIGURE 4.21: IDENTIFYING STRING FOR THE LOG LINE OF A SSH ROOT LOGIN ATTEMPT 43
FIGURE 4.22: EXAMPLE OF THE PHP CODE TO PARSE THE LOG LINES .. 44
FIGURE 4.23: EXAMPLE OF AN ARRAY FOR THE VPN PPTP AFTER THE PARSING .. 45

xiv

FIGURE 4.24: MANAGEMENT OF THE ACCESS MONITORING PAGE ... 46
FIGURE 4.25: PAGE FOR VIEWING THE RECORDS OF THE ACCESS MONITORING .. 47
FIGURE 4.26: PDF REPORT FOR THE ACCESS RECORDS SHOWN IN FIGURE 4.25 ... 48
FIGURE 4.27: FIREWALL RULES ORDERING INTERFACE .. 49
FIGURE 4.28: DATABASE SCHEME FOR THE VPN SSL ACCESS POLICIES .. 51
FIGURE 4.29: DIAGRAM OF THE ALGORITHM USED TO IMPLEMENT THE POLICIES TO ONE CERTIFICATE 54
FIGURE 4.30: DIAGRAM OF THE ALGORITHM USED TO CYCLE THROUGH THE POLICIES AFFECTED TO THE CERTIFICATE

AND TO ADD THE NEEDED ENTRIES TO THE DATABASE ... 55
FIGURE 4.31: INTERFACE FOR ADDING THE POLICY MEMBERS .. 57
FIGURE 4.32: INTERFACE FOR CREATING A VPN SSL CERTIFICATE ... 57
FIGURE 5.1: TESTBED SCHEMA .. 60

xv

List of Tables

TABLE 2.1: SECURITY THREADS BY PROTOCOL .. 13
TABLE 3.1: KEY LOG MESSAGES OF THE VPN PPTP SERVER FOR ACCESS MONITORING 26
TABLE 3.2: KEY LOG MESSAGES OF THE VPN SSL SERVER FOR ACCESS MONITORING .. 27
TABLE 3.3: KEY LOG MESSAGES OF THE SSH SERVER FOR ACCESS MONITORING .. 27
TABLE 3.4: KEY LOG MESSAGES OF THE FTP SERVER FOR ACCESS MONITORING.. 27
TABLE 3.5: INTEGRATION OF THE VPN SSL ACCESS POLICIES WITH OTHER SERVICES OF IPBRICK 29
TABLE 4.1: ACCESS MONITORING EVENT CODE DESCRIPTION ... 40

xvi

xvii

Nomenclature List

AJAX Asynchronous JavaScript And XML
CSV Comma-Separated Values
DFA Deterministic Finite Automaton
DHCP Dynamic Host Configuration Protocol
DHTML Dynamic HTML
DMZ Demilitarized zone
DNS Domain Name Server
FPDF Free PDF (Library)
FTP File Transfer Protocol
GID Group Identification
GNU Gnu’s Not Unix
GRE Generic Routing Encapsulation
HTML Hypertext Markup Language
ICMP Internet Control Message Protocol
IP Internet Protocol
IPsec IP Security
ISDN Integrated Services Digital Network
LAN Local Area Network
LDAP Lightweight Directory Access Protocol
NFA Nondeterministic Finite Automaton
PBX Private Branch Exchange
PCRE Perl Compatible Regular Expressions
PDF Portable Document Format
PHP PHP: Hypertext Preprocessor
PID Process Identifier
PPP Point-to-Point Protocol
PPTP Point-to-Point Tunneling Protocol
PSTN Public Switched Telephone Network
QoS Quality of Service
RTP Real-time Transport Protocol
SIP Session Initiation Protocol
SOHO Small Office or Home Office
SSH Secure Shell
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
UID Unique Identification
UNIX Uniplexed Information and Computing System
VPN PPTP Virtual Private Network based on PPTP

xviii

VPN SSL Virtual Private Network based on SSL/TLS tunneling
XML Extensible Markup Language

Chapter 1

1. Introduction

1.1. Motivation

The authors of Linux Security Cookbook tell in their book the following story, about Scott,
a System Administrator of their acquaintance:

“In early 2001, I was asked to build two Linux servers for a client. They just wanted the
machines installed and put online. I asked my boss if I should secure them, and he said no,
the client would take care of all that. So I did a base install, no updates. The next morning,
we found our network switch completely saturated by a denial of service attack. We powered
off the two servers, and everything returned to normal. Later I had the fun of figuring out
what had happened. Both machines had been rooted, via ftpd holes, within six hours of
going online. One had been scanning lots of other machines for ftp and portmap exploits.
The other was blasting SYN packets at some poor cable-modem in Canada, saturating our
100Mb network segment. And you know, they had been rooted independently, and the

exploits had required no skill whatsoever. Just typical script kiddies.” (Barrett, Silverman and
Byrnes)

This story happened 7 years ago already! Last year’s ISS security trend report (IBM ISS
2008) showed the amazing difference in the software vulnerabilities disclosure, from 1.533 to
6.437, from the time when the story above took place (Figure 1.1). Furthermore, in the CSI

Survey 2007 (Richardson, Roberts 2007) it is shown that almost half of the surveyed
companies experienced a computer-related security incident during 2007.

Figure 1.1: Total vulnerabilities disclosures from 2000 - 2007(IBM ISS 2008)

2 1.2 The goals

Security should be a major concern for every System Administrator that has machines

operating in any kind of network. Attacks are not only result of someone trying to get in a
private network or in its servers. In the CSI Survey 2007 (Richardson, Roberts 2007) it may
also be seen that 37 percent of the inquired attributed more than 21 percent of their cyber
losses to be the cause of an inside attack.

1.2. The goals

It’s the intention of this project to reinforce the security system of IPBrick by adding
some extra features to it. These extra features are some specific demands of a client to

iPortalMais, the company that develops the software IPBrick. Namely, it is going to be
developed and integrated a connection blocker, an improved firewall rule ordering interface,
an access monitoring tool and access policies for VPN SSL clients.

The connection blocker must be able to block or terminate, on the fly, any TCP/IP
connection going to, through or out the server machine. This way if the System Administrator
suspects that a certain system is using a specific connection to, for example, perpetrating
some sort of computer crime, he can easily cut the connection first and ask questions later.

The access monitoring has to be able to monitor the accesses made to the machine by the
means of SSH, FTP, VPN SSL or VPN PPTP. It has to be able to show relevant information
about the access performed, as are the source IP of the access, username with which the

access was made, date and time of the access, etc. It also has to create PDF reports from the
filtered monitored data.

IPBrick has an interface that permits the ordering of the firewall rules. Although it’s a
working interface it has the inconvenient that one can only move the rule up or down one
position. Imagining there is a rule in the 53th position that is needed to be moved in 3rd, the
System Administrator would have to click on the rule’s up button 50 times! The goal here is to
create a different interface much more user friendly.

The client also wanted to restrict the access of some of his VPN clients to particular
machines of his network. So for this requirement we need to create access policies applicable
to VPN SSL clients, in a way that different clients may have different policies.

3 Chapter 1: Introduction

1.3. Report Structure

This report is divided into six chapters, structuring the work in the following manner:

The first chapter is an introduction to the project in its whole.

In the second chapter it’s presented the description of the technologies and tools used.

The third chapter is the approach to the problems of the diverse aspects of the project,
as the analyses of the possible solutions and the justification of the choices taken.

The fourth and fifth chapters describe the implementation of the choices taken and the
tests and results.

Finally, the last chapter is a sum up analyses of the work performed and it approaches the
meaning of this project in the future development of IPBrick.

4 1.3 Report Structure

Chapter 2

2. Security concepts and tools

2.1. IPBrick

This work was done taking as base the most recent version of the IPBrick software. As so,
it is important to understand what this software is about and what features it presents.

In an ever growing need for information share as well as communication solution,
companies can have in IPBrick a solution that adds speed, ease of use and security to these
requirements. Network administration, resources management, printers, files, e-mail
accounts, Internet access, security against intrusions, and all other threats that lurk every
system that is not isolated from the outside world like viruses and worms. IPBrick is a
complete integrated server, based on a Debian Linux distribution, having a function-directed
management interface with Web access, which enables a System Administrator to perform its

configuration even if she doesn’t possess background knowledge of the Linux system or even
networking and services knowledge. Besides the functional interface, IPBrick offers a more
advanced interface where a Network and Systems Administrator has direct access to all of
IPBrick’s services, as being DNS, DHCP, LDAP, mail server, file server, project manager, VPN
server, firewall, among others.

IPBrick is an operative system for network management with an easy and functional GUI.
This way companies don’t depend on Network/Systems experts to maintain its business
backbone functioning and with high availability.

IPBrick establishes a standard for stability and security in data transfer. As a center of all
the cooperative work, it has several integrations with this kind of software tools, as MS

Outlook and SugarCRM are an example. The Linux based technology ensures confidence,
speed and efficiency in data transfers.

6 2.1 IPBrick

2.1.1. IPBrick.I

Figure 2.1: IPBrick.I services resume (iPortalMais - Soluções de Engenharia para Internet e Redes, Lda.
2008)

IPBrick.I offers all the necessary services of an Intranet server. It can function as an
email, file, domain, fax, printing or backup server. Apart from the shared calendar and the

contacts organizer (which can be synchronized via MS Outlook or web browser), it’s possible
to manage all the projects from a central point using the integrated dotProject software.

This Intranet server can function in three different modes: master, slave and as a MS
Active Directory. Hence, it is possible to use IPBrick or a Windows AD to set the IPBrick users,
groups, SIP phones and terminals. The IPBrick services are then able to work in a Windows or
IPBrick Intranet environment.

IPBrick.I provides the following services:

 Collaborative Tools

o E-mail - SMTP, IMAP and POP protocols

o Address Book

o Diary/Calendar

 File server

o Individual and group work areas

 Domain Server

o LDAP Protocol

 Printer Server

 Database Server

 Data Security

o Work Area Backup Service

o Pre-installed Kaspersky Anti-Virus for Email and Work Areas

o Pre-installed Kaspersky Anti-Spam

Chapter 2:Security Solutions 7

 Business Applications Support

o Document Management - iPortalDoc

o Business Management - Gestix

o Authentication Antispam - Spam-No

o Enterprise Management - Primavera ERP

o CRM - Sugar CRM

2.1.2. IPBrick.C

Figure 2.2: IPBrick.C services resume (iPortalMais - Soluções de Engenharia para Internet e Redes, Lda.
2008)

IPBrick.C is IPBrick’s communication server. It provides and guarantees the security for

data transfer between the Intranet and the Internet. Downloaded and uploaded data are
analyzed, filtered and managed by several components of IPBrick, namely, the mail-relay, the
proxy server, the Intrusion Detection System, the Anti-Virus, Anti-Spam and firewall.

As is IPBrick.C’s objective to manage the connections from a company to the Internet, it
controls all the available interfaces of the company to the Internet. Among others, services
offered to do so are the web server, FTP server, VPN SSL, PPTP and IPsec gateways, as well as
VoIP telephony and an Instant Messaging server.

VPN technology allows not only the secure flux of data, as well the choice of physical
workspace in function of the company’s necessities. IPBrick.C manages permanent
connections between several points using IPsec and/or SSL/TLS tunnels for connection
reliability.

Electronic mail and web traffic is continuously filtered through configurable rules.
Statistical reports can be generated in order to present essential information in graphics of
easy interpretation.

Through webmail, accessible using a SSL secured HTTP session, e-mails can be consulted
and managed in a secure way, by a web browser any moment and at any time.

8 2.1 IPBrick

IPBrick.C can be set up to be placed in a firewall protected DMZ, as a communication
server, or even as a complete communication server with a firewall integrated system.

IPBrick.C can import users, groups and machines (workstations and SIP phones) from an
IPBrick.I or a Windows AD system. This way, installing IPBrick.C as communications server it
isn’t needed to redefine system information already configured in the company’s Intranet
server.

IPBrick.C offers the following communication, security and network management services:

 Email

o Mail Relay - SMTP, IMAP and POP protocols

o WebMail

 Fax 2 Mail - Mail 2 Fax

 Telephony Services

o VoIP Gateway

o PBX IP

o SIP Proxy

 Web Services

o Web Server - HTTP and HTTPS protocols

o WebPhone

o HTTP/FTP Proxy and Cache

 Instant Messaging

o WebChat

o Instant Messaging Server

 Communications Security

o Firewall

o VPN Server - SSL, IPSec and PPTP protocols

o IDS (Intrusion Detection System)

Chapter 2:Security Solutions 9

o Pre-installed Kaspersky Anti-Virus for Email and Proxy

o Pre-installed Kaspersky Anti-Spam

2.1.3. IPBrick.GT

Figure 2.3: IPBrick.GT appliance (iPortalMais - Soluções de Engenharia para Internet e Redes, Lda. 2008)

IPBrick.GT completes the software solution IPBrick.I and IPBrick.C with hardware designed
for enabling optimized Voice/Data-Integration. IPBrick.GT meets the demands of needed
integration between traditional telephony and new VoIP SIP phones and SIP providers.

IPBrick.GT implements a full PSTN/VoIP gateway allowing the direct connection to PBX
(ISDN E1/Bri and Analog Trunks), PSTN operator, LAN and Internet. The intelligent routing
enables voice to flow either via VoIP or traditional ISDN and Analog technologies. IPBrick
integrates traffic shaping functionality that will prioritize all telephony connections. The

number of active and parallel phone calls is only limited by the given capacity of your local
Internet connection bandwidth. The appliance is preinstalled with IPBrick.I and IPBrick.C and
usable right away.

Characteristics:

 VoIP Data communication based on standard Internet protocols (SIP, RTP)

 Secure delivery of VoIP data through your defined VPN-tunnels

 Intelligent Voice Call negotiation to foreign VoIP-Servers, SIP Provider and to the
traditional telephony network

 Isolation of the ISDN/Analog linkage to your PBX

 A migration path, incorporating your legacy ISDN/Analog phones and PBX towards
VoIP technology

 Highly available VoIP company site linking

 Extensive QoS features with integrated bandwidth-management

10 2.1 IPBrick

2.1.4. IPBrick.KAV

Figure 2.4: IPBrick.KAV appliance (iPortalMais - Soluções de Engenharia para Internet e Redes, Lda.
2008)

The IPBrick.KAV is a security appliance based on the dedicated software IPBrick.IC and
built to protect the enterprise in the four most important security areas on present days:

 E-mail Security

 Web Access Security

 Network Security

 Intranet Security

The IPBrick.KAV is a solution that puts together the better of two worlds in security
terms: communication server and security software.

The IPBrick.KAV communication server prevents workstations from connecting to the
Internet directly, not allowing trojan programs to establish tunnels with the exterior or open
backdoors that allow the access to the company network from the exterior, eliminating all
the problems caused by Trojans. In order to achieve this, the IPBrick makes use of a set of
Proxy services.

The Kaspersky Security software eliminates on the perimeter protection assumed by the
IPBrick.KAV, all the malware (trojans, worms, spyware, phishing, virus, etc) which intend to
infect the computers in the internal network.

Besides, IPBrick.KAV adds a new security function, an Intranet auditor, which is able to

verify and identify which workstations are infected and therefore capable of compromising
the security of the Intranet.

Security characteristics:

 Web Security

o Kaspersky Anti-virus, to remove dangerous contents existing in Web sites.

Chapter 2:Security Solutions 11

o "Black and White lists" for access control to the Internet hindering or
limiting the access to certain sites.

 Mail Security

o Kaspersky Anti-virus and Anti-Spam, clean the dangerous contents sent by
e-mail.

o Denial of service reduces the attacks that intend to block the e-mail
service of the company (mail bombing).

 Network Security

o Firewall, to block undesired access to the internal network coming from
the exterior

o VPN, to increase security level access of the users to the internal
resources

o Intrusion Detection, to identify or to alert the administrators of suspicious
accesses

 Intranet Security

o detection of infected machines in the Intranet

Additional services offered:

 WebMail: to allow you to consult your e-mail safely from any place.

 VPN SSL: to be able to access with total comfort and security the data and
applications of your company from the exterior.

 VoIP: to make calls via Internet or, being outside the company, to stay in touch
with all the people inside also via Internet.

 Web Server: to make contents available from your local network to the Internet

The information contained in the present subsection was collected from IPBrick’s
reference manual (iPortalMais - Soluções de Engenharia para Internet e Redes, Lda. 2006) and
from it’s web page (iPortalMais - Soluções de Engenharia para Internet e Redes, Lda. 2008).

12 2.2 Linux security

2.2. Linux security

To expose a Linux machine to the Internet safely is not an obvious task because there are
many ways that an intruder can take to broke a system, and not necessarily due to any
inherently insecure issue (Toxen 2003).

As shown in Figure 2.5 can be a maze labyrinth of unsecure programs, allowing the
cracker to just have to find one of the many entry points to the system, so she can soon be
granted root privileges or have access to important information, like access to user accounts,
access to databases, etc.

Crackers have also to concern about the cost of walking a certain part of the maze. This

cost may be traduced as the time actually spent to trying to walk that path; it might also be
the financial cost of purchasing new equipment to crack a certain password. While crackers
have the choice to take one or other path (or simply give up), System Administrators don’t
enjoy of this free will.

It is of importance, and may be considered as a security augmentation itself, the
improvement of the user interface with a security tool. This enhancement can prevent
situations were a System Administrator may overlook a security procedure or may even be
bored by the complexity of applying it.

Figure 2.5: Linux system - a cracker's maze (Toxen 2003)

Chapter 2:Security Solutions 13

2.3. Security threat by protocol

Many crackers use the technique of installing, by some mean, a little server (a type of
Trojan horse) to take hold of the system. This allows the cracker to remotely perform actions
on the compromised system. Thus, these are programs installed on the machine, listening for
packets on a predefined port; this port is known by the cracker. Through it the cracker sends
the requests for the server program to execute on the system. Some popular Rootkits contain
simple ones. Some more sophisticated ones require log password and perform communication
encryption.

These servers use the TCP or UDP protocol to communicate, usually listening to high port
numbers, above 1023. It is of extreme importance to use a tool, like netstat, to be able to
monitor those high numbered ports (Toxen 2003).

Having a tool that presents active connections in these high numbered ports is valuable,
even more valuable if it permits in the next instant to block the suspect connection.

Examples of threats by protocol are presented in Table 2.1 (some of them taken from
(Black Hat 2001)).

Table 2.1: Security threads by protocol

Protocol Security threats

TCP Trojans, Rootkits, Brute-force authentication attacks, etc.

UDP Trojans, Rootkits communication, UDP flood attack, RIP attacks, etc.

ICMP
ICMP packet magnification (ICMP Smurf), Ping of death, ICMP flood attack,

ICMP nuke attack, ICMP Tunneling, IRDP attacks etc.

GRE GRE tunnel intrusion

14 2.4 Rings of security

2.4. Rings of security

Rings of security is a term used in Bob Toxen’s book (Toxen 2003) to describe the security
levels or barriers that a cracker as to break until it gets control of the system or has access to
some type of sensible information.

Nowadays the original UNIX architecture of a single ring of security is not enough. A single
firewall is not the ideal protection when internal attacks are a big percentage of the threats
that a company is subjected to, as described in annual CSI survey (Richardson, Roberts 2007).
Many companies just relay on a well crafted firewall to protect them from a possible attack,
having behind it totally unsecured other systems. Of course that it is easy to see that a
network designed this way has to possess, not only a perfectly implemented firewall, as well

a System Administrator that is able to respond very rapidly and efficiently to changes in the
network and in used programs by updating the firewall rules accordingly to these changes.
Common sense tells us that nothing in life is perfect!

Instead of a single ring of protection, in a system with multiple rings of security is much
harder to be compromised. If this is done correctly, even if a cracker gets past one ring there
will be another ring to stop her and possibly even a third one. In a system implementation of
this kind a cracker will have to follow a sequence of at least two "hard-to-follow" path
segments to get to any goal that will cause substantial harm.

"Rings of Security" have been added to Linux in several places. It is the reason root should
not be allowed to use telnet. This restriction requires a cracker to break two passwords

(root's and some ordinary user's) before he can log in as root remotely via telnet. This creates
two rings of Security.

This is why IPBrick, besides having a firewall, has several others rings of security, like the
proxy, the Intrusion Detection System, Kaspersky Anti-virus, etc. This way it is, for example,
less probable that a network user can go to a phished website, download malicious software
and install it in the machine, having it afterwards infecting the private network.

2.4.1. VPN ring of security

People have the tendency to believe that successfully implementing a VPN (and only to
permit access to their private network through the latter) is enough to prevent hazardous
events to happen in their unsecured LAN. Although it represents an additional ring of security
in their network, it is not enough to prevent most of the common threats. As an example, a
common Windows virus, with which the VPN client machine was infected, can spread through
the VPN to the private network that the client machine is connecting to (Toxen 2003).

Chapter 2:Security Solutions 15

Figure 2.6: Virus path through a VPN (Toxen 2003)

Although Figure 2.6 refers to the path of a virus in a VPN, it is easy to imagine that a

compromised VPN certificate from a client would gain access to the entire corporate internal
network.

By this example we can see that an important additional ring of security would be to
restrict, selectively, the access of VPN clients to the machines of the private network it is
permitted to connect to.

2.5. Security Solutions

2.5.1. Conntrack-tools

Conntrack-tools presents itself as an userspace deamon, conntrackd, and an interface for
the command line, conntrack. These tools enables System Administrators to interact with the
connection tracking system (State Machine) of the popular Linux package, iptables, at
userspace level.

This program was created by Pablo Neira Ayuso, an active contributor and member of the
Netfiler Core Team, being the latter the developers of the most well known Linux command
line program for the configuration of the Linux kernel packet filtering ruleset: iptables.

16 2.5 Security Solutions

The userspace daemon conntrackd has two main functionalities:

 to implement an high availability cluster based on iptables, as it is demonstrated
on the project webpage, in the document “Simple high-availability Primary-
Backup testbed” (Ayuso, Test Case 2007).

 to collect statistics from the Connection Tracking System of the firewall.

The conntrack command line program enables to perform the following operations related
to the Connection Tracking System:

 List the connection or expectation tracking list

 Search for a particular entry in the table

 Delete an entry from the table

 Create new entries in the table

 Display a real-time event log

 Flush the whole given table

The author affirms that conntrack can be used to kill an established TCP connection
without adding an iptables rule. Using for this a sane stateful ruleset which would block a
packet that does not match any existing entry in the Connection Tracking Table. Basically,
the idea consists of removing the entry that talks about the victim TCP connection. Thus, the
client experiences a connection hang. Moreover, since conntrack is not dependent of the
layer 4 protocol, you can use to kill whatever layer 4 network flow (UDP, SCTP, ...).” (Ayuso,
conntrack-tools: Connection tracking userspace tools for Linux 2008)

2.5.2. Iptables

The Netfilter Project is the one who created iptables, the userspace tool to control

Linux’s firewall. Since the release of version 2.4 of the Linux kernel, in January 2001, this
userspace tool as been the standard to interact with the packet filtering framework, which
provides the firewall service in Linux.

After these years, Iptables is now the most formidable of the open source firewalls, being
able to compete with most commercial proprietary firewalls. Features like comprehensive
protocol state tracking, packet application layer inspection, rate limiting, and a powerful
mechanism to specify a filtering policy puts it as a very reliable, competent and powerful
firewall, suitable for commercial use. It is the default userspace tool for packet manipulation
of most of all the Linux distributions.

Chapter 2:Security Solutions 17

There is a common misunderstanding about what exactly are iptables and Netfilter.

Putting it in a simply way, Netfilter is the packet filtering framework that iptables, the
userspace tool, uses to manipulate the Linux kernels 2.4.x and 2.6.x packet filter ruleset. The
Netfilter is also the name of the project that supplies other programs related with the Linux
package filtering.

IPTables state machine

Iptables possesses a module that is called the state machine. It is used to track the
connections passing through the machine. Connection tracking is done to let the Netfilter
framework know the state of a specific connection. This feature makes iptables a stateful
firewall, this meaning that it can be created rules based on a certain connection state. Like
this, with iptables, it is possible to create tighter rulesets than with its non-stateful
counterparts.

As to which iptables its concerned, there are four types of states for the tracked
connections. These are NEW, ESTABLISHED, RELATED and INVALID. With the --state match
it is possible to control who or what is allowed to initiate new sessions.

All of the connection tracking is done by a special framework within the kernel called
conntrack. conntrack may be loaded either as a module, or as an internal part of the kernel
itself. Although conntrack lacks protocol specific states, it is possible to load additional
modules so that the state machine of iptables may handle and classify protocol specific
attributes. These extra modules are intended to handle TCP, UDP or ICMP protocols among
others. This gathered information is used to allow conntrack to classify the packets with its

particular states. In the case of UDP streams, they are generally identified by their
destination IP address, source IP address, destination port and source port.

With the conntrack module, the possibility to turn on and off defragmentation is no longer
present in the kernel configuration. As the connection tracking can not work properly without
defragmenting packets, defragmenting has been incorporated into conntrack and is carried
out automatically. The only possibility to disable packet defragmentation is by turning off the
connection tracking. Defragmentation is always performed if connection tracking is turned
on.

The connections are tracked in the PREROUTING and OUTPUT chains of iptables. The
inbound connections to the machine are tracked and its state calculated in the PREROUTING

chain. On the other hand, if a new connection is originated from the machine itself, the
connection’s state will be calculated and tracked within the OUTPUT chain. This way it is
used the first chains that handle the connections, both for inbound connections and for
outbound ones.

18 2.5 Security Solutions

2.5.3. OpenVPN

OpenVPN is a full-featured open source SSL VPN solution that can serve the most varied
finalities. It can be used for a broad range of purposes as it is remote access, site-to-site
VPNs, Wi-Fi security, and enterprise-scale remote access solutions with load balancing,
failover, and fine-grained access-controls. Being a simple to implement service, OpenVPN is a
cost-effective, lightweight alternative to other VPN technologies, targeted for the SME and
enterprise markets.

Security overview

OpenVPN has two authentication modes:

 Static Key: Use of a pre-shared static key

 TLS: Use of SSL/TLS + certificates for authentication and key exchange

The static key mode consists of the generation of a key that is shared between the two
machines before OpenVPN starts the tunnel. This static key consists of four independent keys:
HMAC send, HMAC receive, encrypt, and decrypt.

In SSL/TLS mode, it is used bidirectional authentication (i.e. each side of the connection
must present its own certificate). Upon success, OpenSSL's RAND_bytes function is used for
encryption/decryption and HMAC key source material generation and exchanging over the

SSL/TLS connection. This mode never uses any key bidirectionally. Thus, each peer has a
distinct sent HMAC, received HMAC, packed encryption, and packed decryption key. If --
key-method 2 is used, the actual keys are generated from the random source material using
the TLS PRF function. If --key-method 1 is used, the keys are generated directly from the
OpenSSL RAND_bytes function. --key-method 2 was introduced with OpenVPN 1.5.0 and
will be made the default in OpenVPN 2.0.

To avoid latency bottleneck the SSL/TLS rekeying is done with a set transition-window
parameter, where the old and new keys are permitted to co-exist.

Because SSL/TLS is designed to operate over a reliable transport, OpenVPN provides a
reliable transport layer on top of UDP (Figure 2.7).

SSL/TLS -> Reliability Layer -> \
 --tls-auth HMAC \
 \
 > Multiplexer ----> UDP
 / Transport
IP Encrypt and HMAC /
Tunnel -> using OpenSSL EVP --> /
Packets interface.

Figure 2.7: OpenVPN uses UDP protocol for exchanging packets

Chapter 2:Security Solutions 19

After each peer has its set of keys, the tunnel forwarding operation commences.

The encrypted packet is formatted as follows:

 HMAC(explicit IV, encrypted envelope)

 Explicit IV

 Encrypted Envelope

The plaintext of the encrypted envelope is formatted as follows:

 64 bit sequence number

 payload data, i.e. IP packet or Ethernet frame

The HMAC and explicit IV are outside of the encrypted envelope.

The per-packet IV is randomized using a nonce-based PRNG that is initially seeded from
the OpenSSL RAND_bytes function.

HMAC, encryption, and decryption functions are provided by the OpenSSL EVP library,
allowing the user to select an arbitrary cipher, key size, and message digest for HMAC. This
library uses BlowFish as the default cipher and SHA1 as its default message digest.

The mode where the users choose a pre-shared passphrase (or static key) in conjunction
with the --tls-auth directive to generate an HMAC key to authenticate the packets that
are themselves part of the TLS handshake sequence is one of the advantages of OpenVPN.
This protects against buffer overflows in the OpenSSL TLS implementation, because an
attacker cannot even initiate a TLS handshake without being able to generate packets with
the correct HMAC signature.

OpenVPN multiplexes the SSL/TLS session used for authentication and key exchange with

the actual encrypted tunnel data stream. OpenVPN provides the SSL/TLS connection with a
reliable transport layer (as it is designed to operate over). The actual IP packets, after being
encrypted and signed with an HMAC, are tunnelled over UDP without any reliability layer. So
if --proto udp is used, no IP packets are tunneled over a reliable transport, eliminating the
problem of reliability-layer collisions. Of course that in the case of tunneling a TCP session
over OpenVPN running in UDP mode, the TCP protocol itself will provide the reliability layer.

20 2.5 Security Solutions

Chapter 3

3. Solutions for the security sub-system

3.1. Active connections

3.1.1. System Breakdown Structure

Objectives

Block, on the fly,
active TCP
connections

Iptables Cutter Conntrack-tools

Solutions to study

Figure 3.1: System Breakdown Structure for the active connections development

As it may be seen in Figure 3.1, for this part of the development, it was accorded that the

objective to achieve was to develop a tool that would be able to immediately block, with a
simple command from the System Administrator, any active TCP connection going to, through
or from the machine.

Having this objective in mind, it was studied various solutions to accomplish, or even over
pass, the expectations of the client.

So, to meet client’s expectations, it was studied cutter, a program that sends reset
messages to both connection peers; conntrack-tools, to manipulate iptables state machine
and as well as iptables itself, because PBrick’s firewall is based in it.

22 3.1 Active connections

3.1.2. State machine

First there was the need to understand where to find the information about what
connections were actually passing in the machine. Although there are programs like netstat
and tcpdump that can do the job, there is one particular file that was found to be easily
parsed to extract the useful information. The state machine of iptables has a pseudo-file
where it is kept the records of all the connections, and their state, passing in the Linux
system. This pseudo-file is situated in /proc/net/nf_conntrack. By issuing the command

cat /proc/net/nf_conntrack |grep –v 127.0.0.1

it’s printed a list of all the connections tracked by the conntrack module of iptables, except

the ones that have the string “127.0.0.1”; this ones are internal connections of the system.
An example of this output can be seen in Figure 3.2.

Figure 3.2: Example of the output of a cat to ip_conntrack

Later on, the lines that don’t correspond to actual active connections (as the connections
labeled UNREPLIED in Figure 3.2) have to be discarded for being of no actual interest in the
context of this work.

The state machine of iptables associates to the TCP protocol packages special states.
Using these special states is possible to further filter the entries of the conntrack list,
enhancing the performance of the script that will parse this information.

There is no actual documentation enumerating and explaining the TCP packets special
states, there is just the reference that these states can be found in the header file
ip_conntrack_tcp.h (can be consulted in Appendix A). Thus, analyzing this file the

following conclusions were taken:

udp 17 6 src=192.168.69.197 dst=192.168.69.255 sport=138 dport=138
packets=1 bytes=240 [UNREPLIED] src=192.168.69.255 dst=192.168.69.197
sport=138 dport=138 packets=0 bytes=0 mark=0 use=1
tcp 6 426417 ESTABLISHED src=192.168.69.19 dst=192.168.69.176
sport=39157 dport=22 packets=5677 bytes=335289 src=192.168.69.176
dst=192.168.69.19 sport=22 dport=39157 packets=5506 bytes=665840 [ASSURED]
mark=0 use=1
udp 17 28 src=192.168.69.230 dst=192.168.69.255 sport=137 dport=137
packets=3 bytes=234 [UNREPLIED] src=192.168.69.255 dst=192.168.69.230
sport=137 dport=137 packets=0 bytes=0 mark=0 use=1
tcp 6 431992 ESTABLISHED src=192.168.69.59 dst=192.168.69.176
sport=58912 dport=902 packets=35506 bytes=3902072 src=192.168.69.176
dst=192.168.69.59 sport=902 dport=58912 packets=52721 bytes=45717188
[ASSURED] mark=0 use=1
tcp 6 431999 ESTABLISHED src=192.168.69.59 dst=192.168.69.176
sport=37778 dport=902 packets=76839 bytes=4017994 src=192.168.69.176
dst=192.168.69.59 sport=902 dport=37778 packets=77625 bytes=27155364
[ASSURED] mark=0 use=1
udp 17 6 src=192.168.69.2 dst=192.168.69.255 sport=138 dport=138
packets=2 bytes=472 [UNREPLIED] src=192.168.69.255 dst=192.168.69.2
sport=138 dport=138 packets=0 bytes=0 mark=0 use=1
udp 17 20 src=192.168.69.176 dst=192.168.69.2 sport=32854 dport=53
packets=1 bytes=72 src=192.168.69.2 dst=192.168.69.176 sport=53 dport=32854
packets=1 bytes=142 mark=0 use=1

Chapter 3:Theoretical Approach 23

 All the packets marked with the state CLOSE are no longer part of active
connections and so they can be eliminated from the entries to be parsed.

 If an entry contains the WAIT string, means that it is no longer an actual active
connection, as so it can also be discarded from the parsing.

 The states with the SYN string and with LAST_ACK means that these packets
correspond to the handshake stage of the TCP connection. Most probably in a few
milliseconds after the cat command is performed this will be already an active
connection, so this entry is not discarded.

 NONE and ESTABLISHED states correspond to active connections and so they will
be included in the conntrack entries to be parsed.

 Due to the lack of documentation on these states, the LISTEN and MAX states
have unknown meaning; so they are also parsed.

With this information in hand it is now needed to find a solution to block the desired
connection “on the fly”.

3.1.3. Cutter

Cutter is a program that, supposedly, terminates a connection on the fly by sending raw
packets, both to the client as to the server of the connection.

Although the author claims that it’s a working program (Lowth 2005), it was never tested,
by the latter, in a Debian Linux distribution. The program was successfully compiled and the
commands to block the connections were issued without being presented any error, but any
TCP, UDP, GRE or ICMP protocol connections were unsuccessfully blocked.

In the end, it was concluded that this program doesn’t work with the present IPBrick
distribution of Linux.

3.1.4. conntrack-tools

In its webpage (Ayuso, conntrack-tools: Connection tracking userspace tools for Linux
2008), conntrack-tools author affirms that by removing the entry of the connection in the
connection tracking list is enough to drop the connection in question. After several exchanged
e-mails with the author, that lead to a bug fix of the program, it was clear that in the test
machine the program didn’t performed as expected: with any entry being deleted from the

24 3.1 Active connections

connection tracking list, a second or two after, the connection would reappear and no
connection would be terminated.

Nevertheless, using this program it was possible to successfully manipulate the mark on a
specific connection. This way we established a specific mark to blocked connections (10000)
and added rules to the firewall that would drop packets marked with “10000”.

3.1.5. iptables

It would be possible to use iptables as the solution to add or delete rules, on the fly, by
simply issuing a shell command. Although, due to IPBrick’s firewall configuration methods, it

would be necessary to create a complex tracking system for the rules added by this
development so that the fully integration would not be compromised.

As so, it was asserted that the best method to fulfill the goals of this development was to
use a set of iptables rules that, matching against the conntrack mark “10000”, blocks the
desired connection. For setting the marks “on the fly” it will be used the program conntrack-
tools.

The connections to block can have three possible origin-destination pairs, each of these
being handled by different built-in chains of the iptables structure (Figure 3.3). These are:

 INPUT chain: Handles connections that have its destination the system itself.

 OUTPUT chain: Handles connections that originate from the system itself.

 FORWARD chain: Handles connections that have its destination another host on
the network.

Chapter 3:Theoretical Approach 25

Figure 3.3: Diagram of the tables and built-in chains of IPTables (Andreasson 2006)

3.2. Access monitoring

3.2.1. Requirement analysis

The main required functionalities for this development can be categorized by the
following:

 Services: being able to monitor SSH, FTP, VPN SSL and VPN PPTP accesses to the
machine.

 Logged information: it should be shown relevant information about the access
logged, specifically, begin and end dates and time, IP source, username used for
the access.

26 3.2 Access monitoring

 Filtering: Having a functional interface, where filtering could be done easily in
the case of having extensive logged accesses.

 Reports: Having a mean to produce printed reports from the displayed information
on IPBrick’s interface, showing the filtering parameters used to display the
printed set of accesses.

3.2.2. Log analysis

To do the monitoring of the accesses, it was chosen to be the most efficient way to force

the syslog facility of IPBrick to be active in order to receive the log messages of the running
servers. As so, the programs that provide the services mentioned in the last subsection, were
configured to output the necessary verboseness so that the log messages outputted would be
sufficient to retrieve the desired information. It varied from program to program. As an
example, OpenSSH was just put into VERBOSE mode, while PopTop (the PPTP server program
of IPBrick) was put in DEBUG mode.

As all of the programs use undocumented log messages, it was needed to extensively
analyze the log messages output to syslog, of all four programs. In the next tables it is
presented all the key log messages that identify a particular event of the service access.

Table 3.1: Key log messages of the VPN PPTP server for access monitoring

Information retrieved Example log message

Successful log in
Date and time of event
Username
Source IP address

Feb 28 19:31:27 nici pppd[14105]: rcvd [CHAP Response
id=0xe9
<019dc9322a1bba1b05f9350bf1fd6bd30000000000000000fee24ed
9e30048bf91daa5d8d5a8edc5ba562451e82d111f00>, name =
"administrator"]
Feb 29 11:48:10 nici pppd[4678]: sent [IPCP ConfAck
id=0x8 <addr 192.168.69.91> <ms-dns1 192.168.69.202>
<ms-wins 192.168.69.202> <ms-dns3 192.168.69.202> <ms-
wins 192.168.69.202>]

Successful log out
Date and time of event
Sent and received bytes

Mar 13 19:08:48 fara pppd[28817]: LCP terminated by peer
(vM-O$M-^^^@<M-Mt^@^@^@^@)
Feb 29 12:19:53 nici pppd[4861]: Sent 60 bytes, received
26777 bytes.

Wrong password input
Date and time of event
Username

Mar 14 12:00:18 fara pppd[16317]: rcvd [CHAP Response
id=0xc6
<112d2cd6e340ba932c2bce983518b067000000000000000035a827c
40363c89938438450eaf4c59c98204f4d7392df3a00>, name =
"administrator"]
Mar 14 12:00:18 fara pppd[16317]: sent [CHAP Failure
id=0xc6 "E=691 R=1 C=d2958a2a22edf6a242f7555be5c43d60
V=0 M=Access denied"]

Wrong username input
Date and time of event
Username

Mar 14 11:57:11 fara pppd[16257]: No CHAP secret found
for authenticating dministrator

Blocked access
Date and time of event

Mar 13 19:11:59 fara pppd[29184]: sent [LCP TermReq
id=0x2 "MPPE disabled"]

Time out disconnection
Date and time of event

Mar 13 20:37:02 fara pppd[31177]: sent [LCP TermReq
id=0x3 "MPPE disabled"]

Chapter 3:Theoretical Approach 27

Table 3.2: Key log messages of the VPN SSL server for access monitoring

Information retrieved Example log message

Successful log in
Date and time of event
Username
Source IP address

Thu Mar 6 17:52:44 2008 192.168.96.200:1103 [bobby] Peer
Connection Initiated with 192.168.96.200:1103

Successful log out / Time
out disconnection
Date and time of event

Thu Mar 6 18:30:30 2008 bobby/192.168.96.200:1055
[bobby] Inactivity timeout (--ping-restart), restarting

Blocked access
Date and time of event

Tue Mar 18 13:44:53 2008 bobby/192.168.96.90:1111 write
UDPv4 []: Operation not permitted (code=1)

Table 3.3: Key log messages of the SSH server for access monitoring

Information retrieved Example log message

Successful log in
Date and time of event
Username

Mar 19 16:39:54 fara sshd[13531]: (pam_unix) session
opened for user operator by (uid=0)

Successful log out
Date and time of event
Source IP address

Mar 19 16:41:08 fara sshd[13531]: Connection closed by
::ffff:192.168.69.24

Wrong password input
Date and time of event
Username
Source IP address

Mar 20 19:46:21 fara sshd[17969]: Failed keyboard-
interactive/pam for operator from ::ffff:192.168.69.24
port 38810 ssh2

Wrong username input
Date and time of event
Username
Source IP address

Mar 19 16:44:14 fara sshd[13584]: Illegal user oprator
from ::ffff:192.168.69.24

Blocked access
Date and time of event
Source IP address

Mar 19 18:52:32 fara sshd[13608]: Read error from remote
host ::ffff:192.168.69.24: Connection reset by peer

Root log in attempt
Date and time of event
Source IP address

Mar 19 16:45:57 fara sshd[13608]: Failed none for root
from ::ffff:192.168.69.24 port 60225 ssh2

Table 3.4: Key log messages of the FTP server for access monitoring

Information retrieved Example log message

Successful log in
Date and time of event
Username
Source IP address

Mar 5 18:21:23 fara proftpd[12099]: fara.prostie.ro
(192.168.69.24[192.168.69.24]) - USER administrator:
Login successful.

Successful log out
Date and time of event
Source IP address

Mar 5 18:22:16 fara proftpd[12099]: fara.prostie.ro
(192.168.69.24[192.168.69.24]) - FTP session closed.

Wrong password input
Date and time of event
Username
Source IP address

Mar 5 18:24:20 fara proftpd[12132]: fara.prostie.ro
(192.168.69.24[192.168.69.24]) - USER administrator
(Login failed): Incorrect password.

Wrong username input
Date and time of event
Username
Source IP address

Mar 5 18:34:56 fara proftpd[12225]: fara.prostie.ro
(192.168.69.24[192.168.69.24]) - USER kimze: no such
user found from 192.168.69.24 [192.168.69.24] to
192.168.69.202:21

28 3.3 Firewall rules ordering

3.3. Firewall rules ordering

The existing interface of the ordering of the firewall rules presents itself as a list of
firewall rules. For ordering a rule, the user has to click on the link presented in the line of
rule as many times as positions it has to be moved.

The best way to make the ordering of the firewall rules an easy process is to apply to the
existing interface, a JavaScript library that will make this process as simple as dragging and
dropping the rule.

Using the scriptaculous framework (Fuchs n.d.) and the PHP wrapper class SLLists
(Neustaetter 2006), we have an easy way of implementing the functionality of having a

sortable and to translate the resulting outcome into PHP. SSLists features the following
functionalities:

 SLLists - constructor that basically sets the path to the JavaScript files

 addList - adds a list or other element as a new sortable entity

 printTopJS - prints the JavaScript into the head of a PHP file

 printForm - prints an HTML form that contains the hidden inputs needed.
Alternatively users can create their own forms or use the printHiddenInputs
functions to put these hidden inputs in existing forms

 printBottomJS - prints the JavaScript that should go right before the closing body
tag

 getOrderArray - returns an array with items and their order after being passed an
input with the serialized scriptaculous list

Chapter 3:Theoretical Approach 29

3.4. OpenVPN analysis

3.4.1. Configuration file issues

In order to block or permit access to internal machine, it will be used firewall rules that
will match against the specific IP address that the certificate is attached to.

To do this it is needed to add the capability of per certificate configuration, being a
certificate configuration file used to attribute a specific IP, chosen by IPBrick, to the VPN SSL
client machine.

3.4.2. Services integration

As this development will be using information from the LDAP server, to be able to easily
add defined machines and machine groups to the access, it will be also affected by services
that interact with the machine management system of IPBrick. Therefore it was assessed
which services, in fact, have influence on the defined policies that contain IPBrick defined
groups or machines.

Table 3.5: Integration of the VPN SSL access policies with other services of IPBrick

Services Actions performed

DHCP Modify and delete

DNS Modify and delete

Reverse DNS Modify and delete

Network interfaces management Modify

VoIP Delete

LDAP Modify and delete

In Table 3.5 we can see what type of action, and from which services, can influence the

integrity of defined policies. This happens because all the services presented also use the
information that is defined in IPBrick’s LDAP. This way if its information is changed by any of
the configuration pages of this services, this change of information will also affect the VPN
SSL access policies configuration. In the case of the network interfaces management, the
information changed is of the private network interface’s IP. So, it will be needed to create
functions that will update the database information of the VPN SSL implementation, when
these actions are performed.

30 3.4 OpenVPN analysis

Chapter 4

4. Implementation

4.1. Active connections

4.1.1. System implementation

Having in mind what was discussed in chapter 3 about iptables built-in chains, three
rules were added to the firewall. These rules were inserted in IPBrick’s PostgreSQL database,
in the existing table for the firewall. This way, it dynamically generates the file
firewall.sh. This file is the script that contains the commands for initializing IPBrick’s
firewall. The resulting commands added to this script file are:

iptables -A INPUT -m connmark --mark 10000 -j DROP
iptables -A OUTPUT -m connmark --mark 10000 -j DROP
iptables -A FORWARD -m connmark --mark 10000 -j DROP

These rules will make the packets marked with “10000”, in the conntrack entries, to be
dropped by IPBrick’s firewall. It was needed to add three rules, one for each built-in chain of
iptables. The mark “10000” was chosen for being known as a mark unused by any of the
services of IPBrick®.

Next it was needed to install conntrack-tools, the program that allows interaction
with the Connection Tracking System of Linux. As we can learn from conntrack-tools
webpage (Ayuso, conntrack-tools: Connection tracking userspace tools for Linux 2008) we
need two libraries that were not previously installed on IPBrick: libnfnetlink, a library
that “provides a generic messaging infrastructure for in-kernel netfilter subsystems (such as
nfnetlink_log, nfnetlink_queue, nfnetlink_conntrack) and their respective users
and/or management tools in userspace” (Netfilter core team 2007), and the
libnetfilter_conntrack library, a “userspace library providing a programming interface
(API) to the in-kernel connection tracking state table” (Netfilter core team 2007).

Both the libraries and conntrack-tools were downloaded from their sites, compiled
and made a Debian package out of them for further future installation in IPBrick systems. The
version of conntrack-tools that was installed was 0.9.5, the latest stable version at the
time. The library version dependencies for this version of conntrack-tools were 0.0.25-1
for libnfnetlink and 0.0.82-1 for libnetfilter_conntrack.

32 4.1 Active connections

4.1.2. PHP script

Now that the system is set up, the functionalities will be implemented through a PHP
script.

The file nf_conntrack has the permission 440 (only readable by root and its group), so
it cannot be read by the system user that is running the IPBrick PHP script (www-data). To do
so it was used the socket system already implemented in IPBrick to issue the command

cat /proc/net/nf_conntrack | grep –v 127.0.0.1

as root, through the PHP script. The output of this command is then passed to an array,
being each line of the output an element of the array. This way the subsequent parsing of the
information becomes easier.

Secondly, the array is filtered, using the srtpos() function, to remove the entries that
don’t represent active connections. These connections are the ones that contain one of the
following strings: UNREPLIED, WAIT or CLOSE. It was a rational option to do the filtering of
the conntrack entries in these two steps. This way it was taken advantage of the hybrid
NFA/DFA engine of the GNU grep program (Friedl 1997). Thus, the benchmarking of the script
showed that it was faster to do the filtering of the string 127.0.0.1 with the grep
command instead of using the PHP function. The rest of the filtering was done by the PHP
function as result of the same benchmarking showing no improvement in doing otherwise.

The filtered array is then separated into 4 other arrays, one for each type of connection

protocol. This connection protocols are: TCP, UDP, ICMP and other connection protocols.
After being separated, each one of them is parsed using the preg_match() function of PHP.

In Figure 4.1 we see an example TCP connection entry in the conntrack list. The entries in

the conntrack list, as said before, are first parsed for separating each protocol. This is done
by the regular expression of Figure 4.2 so that each protocol can be parsed by a specific
regular expression. The specific regular expression for TCP entries is shown in Figure 4.3.

ipv4 2 tcp 6 431966 ESTABLISHED src=192.168.69.59 \
dst=192.168.69.176 sport=58940 dport=902 packets=28785 bytes=2658792 \
src=192.168.69.176 dst=192.168.69.59 sport=902 dport=58940 packets=58029 \
bytes=64790576 [ASSURED] mark=0 use=1

Figure 4.1: Example TCP connection entry in the conntrack list

/^[a-zA-z0-9]+[]+[0-9]+[]+([a-z]+)/

Figure 4.2: Regular expression to parse the protocol of a conntrack entry

Chapter 4:Implementation 33

Figure 4.4 shows an example UDP connection entry in the conntrack list. These protocol
entries are parsed by the regular expression in Figure 4.5.

Figure 4.6 shows an example ICMP connection entry in the conntrack list. These protocol
entries are parsed by the regular expression in Figure 4.7.

ipv4 2 icmp 1 25 src=192.168.69.6 dst=192.168.69.10 type=8 code=0 \
id=33029 [ASSURED] src=192.168.69.10 dst=192.168.69.6 type=0 code=0 \
id=33029 mark=0 use=1

ipv4 2 udp 17 179 src=192.168.69.202 dst=192.168.69.2 sport=882 \
dport=2049 packets=15 bytes=1940 src=192.168.69.2 dst=192.168.69.202 \
sport=2049 dport=882 packets=14 bytes=2016 [ASSURED] mark=0 use=1

/^.*src=([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}) .*dst=([0-
9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}) .*sport=([0-9]+) .*dport=([0-
9]+) .*src=.*dst=.*sport=.*dport=.*mark=([0-9]+) /

Figure 4.3: Regular expression to parse the TCP connection entries in the conntrack list

/^.*src=([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}) .*dst=([0-
9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}) .*sport=([0-9]+) .*dport=([0-
9]+) .*src=.*dst=.*sport=.*dport=.*mark=([0-9]+) /

Figure 4.4: Example UDP connection entry in the conntrack list

Figure 4.5: Regular expression to parse the UDP connection entries in the conntrack list

/^.*src=([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}) .*dst=([0-
9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}) .*sport=([0-9]+) .*dport=([0-
9]+) .*src=.*dst=.*sport=.*dport=.*mark=([0-9]+) /

Figure 4.6: Example ICMP connection entry in the conntrack list

Figure 4.7: Regular expression to parse the ICMP connection entries in the conntrack list

Figure 4.8: Example GRE connection entry in the conntrack list

ipv4 2 gre 47 598 timeout=600, stream_timeout=18000 \
src=192.168.1.3 dst=84.91.32.190 srckey=0x4000 dstkey=0x280 packets=5 \
bytes=285 [UNREPLIED] src=84.91.32.190 dst=195.23.114.78 srckey=0x280 \
dstkey=0x4000 packets=0 bytes=0 mark=0 secmark=0 use=1

34 4.1 Active connections

For all the connections that are not of the protocols shown above, as it is the case of the

GRE protocol (Figure 4.8), it was used the more generic regular expression presented in
Figure 4.9.

With this parsing done, the values of the matching array are copied to an object-array
that will contain all the information of all the connections of a particular protocol. The
properties of each element of this object array will be data of a given connection. In Figure

4.10 it can be seen an example of the copying of the values to the object-arrays that will
have the information of the TCP protocol, the ICMP protocol and for the generic connections.
The object-array for the UDP protocol is similar to the TCP one, just changing its name from

$conn_data_tcp to $conn_data_udp.

<?
.
.
.
$conn_data_tcp[$a]->srcip = $match1[1];
$conn_data_tcp[$a]->destip = $match1[2];
$conn_data_tcp[$a]->srcport = $match1[3];
$conn_data_tcp[$a]->destport = $match1[4];
$conn_data_tcp[$a]->mark = $match1[5];
.
.
.
$conn_data_icmp[$c]->srcip = $match3[1];
$conn_data_icmp[$c]->destip = $match3[2];
$conn_data_icmp[$c]->type = $match3[3];
$conn_data_icmp[$c]->code = $match3[4];
$conn_data_icmp[$c]->id = $match3[5];
$conn_data_icmp[$c]->mark = $match3[6];
.
.
.
$conn_data[$d]->proto = $match0[1];
$conn_data[$d]->srcip = $match4[1];
$conn_data[$d]->destip = $match4[2];
$conn_data[$d]->srcport = "";
$conn_data[$d]->destport = "";
$conn_data[$d]->mark = $match4[3];
.
.
.
?>

/^.*src=([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}) .*dst=([0-
9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}) .*src=.*dst=.*mark=([0-9]+) /

Figure 4.9: Generic regular expression to parse the connection entries in the conntrack list

Figure 4.10: Copying of the data from the matching arrays to the
object-arrays that will contain all the connections data

Chapter 4:Implementation 35

The object-arrays for the TCP and UDP connections will have the following properties:

 srcip: The source IP of the connection

 destip: The destination IP of the connection

 srcport: The source port of the connection

 destport: The destination port of the connection

 mark: The current mark that the connection possesses

In addition to the srcip, destip and mark properties, the object-array for the ICMP
connections will have the following properties:

 type: ICMP type of the connection1

 code: ICMP code of the connection1

 id: ICMP id of the connection

For the generic connection type, the object-array will be the same as for the TCP and
UDP connections, but with the following differences:

 The srcport and the destport properties won’t contain data.

 It will have one more property, the proto property. This property will contain to
what protocol refers the conntrack entry.

Using then a mixture of PHP and HTML, these object-arrays are used to display and
identify, in the web interface of IPBrick, the active connections presently going through the
system.

In the end of the parsing, each object-array is checked if it contains any data with the
function count(). If it returns a true value, i.e., a greater value than “0”, using HTML a
table is created and the connections are displayed, using a for() cycle for that purpose.

For each connection it is also created a link to another PHP script that blocks or unblocks
the chosen connection. With the link to the PHP script (using the GET method) it’s also
passed the parameters needed to block/unblock the selected connection. In Figure 4.11 it’s
shown, as an example, the HTML/PHP code to generate that link, in the case of the ICMP
connections.

1 The meaning of these ICMP types and codes can be consulted in the online document ICMP TYPE NUMBERS (IANA,
et al. 2008)

36 4.1 Active connections

The second PHP script is a, so called, action script. It receives the information about the
connection in question and executes the command necessary to block or unblock the
connection.

Basically, what this script does is to invert the mark that the present connection possesses
in the iptables state machine, from 0 to 10000 or vice-versa, using the simple equation

 . (4.1)

This formula, translated into PHP, is represented in Figure 4.12.

Then, the PHP script was made to issue a command, as root, through the socket system
of IPBrick. This will be the command that will actually update the state of the desired
connection. If it is a TCP, UDP or ICMP connection it will update the connection entry of the
nf_conntrack module using the conntrack-tools program. In the case it is a generic
connection it will issue a series of commands, respectively:

1. It adds one rule to the PREROUTING chain and another to the OUTPUT chain of
iptables that marks the connection with the desired conntrack mark.

2. Waits 10 seconds issuing the command sleep.

3. Deletes the firewall rules previously added to iptables.

These commands are passed as strings to be executed as root user. For the TCP and UDP
connection it is used the string of Figure 4.13 to issue the update command to conntrack-
tools.

<?$mark = abs($mark-10000);?>

<a href="corpo.php?pagina=view_active_conn_acc&proto=icmp&s_ip=<?echo
$conn_data_icmp[$i]->srcip;?>&d_ip=<?echo $conn_data_icmp[$i]-
>destip;?>&icmp_type=<?echo $conn_data_icmp[$i]->type;?>&icmp_code=<?echo
$conn_data_icmp[$i]->code;?>&icmp_id=<?echo $conn_data_icmp[$i]-
>id;?>&mark=<?echo $conn_data_icmp[$i]->mark;?>"><?if ($conn_data_icmp[$i]-
>mark==10000) ?> Desbloquear ligação <? else ?> Bloquear ligação ?>

Figure 4.11: Generation of the link for the action PHP script

Figure 4.12: PHP code to invert the mark
which is to update the connection

<? $command = "conntrack -U conntrack -s ".$s_ip." -d ".$d_ip." -p
".$proto." --sport ".$s_port." --dport ".$d_port." -m ".$mark; ?>

Figure 4.13: String to issue the command to update TCP and UDP conntrack entries

Chapter 4:Implementation 37

The concatenated variables on this string are the values that were passed with the GET

method to this action script. For the ICMP connections it was used the string of Figure 4.14
and for the generic connections the string used is presented in Figure 4.15.

After executing the command, a small JavaScript script calls the original page so that the
user can perform other operations.

4.1.3. Web interface

In accordance with IPBrick’s ease of use, the most straightforward way for the user to
interface with this tool was to create an additional web page in the web interface of IPBrick.

In this web page there are listed the various connections to the machine (Figure 4.16).
These connections are organized in 4 different tables: TCP, UDP, ICMP and other active
connections. Each connection is identified by its source IP, source port, destination IP and
destination port. By pressing the link, in the action column, the user blocks/unblocks the
desired connection, changing its state description from “Enabled” to “Blocked” or vice-versa.

Using a clear, simple, but yet powerful interface, the user has a very direct way of
blocking the undesired connections, without having to deal with the complexity of
iptables, conntrack-tools and the Linux networking architecture.

<? $command="conntrack -U conntrack -s ".$s_ip." -d ".$d_ip." -p ".$proto."
--icmp-type ".$icmp_type." --icmp-code ".$icmp_code." --icmp-id ".$icmp_id."
-m ".$mark; ?>

Figure 4.14: String to issue the command to update ICMP conntrack entries

<? $command="iptables -t mangle -A PREROUTING -p ".$proto." -s ".$s_ip." -d
".$d_ip." -j CONNMARK --set-mark ".$mark.";iptables -t mangle -A OUTPUT -p
".$proto." -s ".$s_ip." -d ".$d_ip." -j CONNMARK --set-mark ".$mark."; sleep
10; iptables -t mangle -D PREROUTING -p ".$proto." -s ".$s_ip." -d ".$d_ip."
-j CONNMARK --set-mark ".$mark.";iptables -t mangle -D OUTPUT -p ".$proto."
-s ".$s_ip." -d ".$d_ip." -j CONNMARK --set-mark ".$mark." &"; ?>

Figure 4.15: String to issue the commands to block generic connections

38 4.2 Access Monitoring

Figure 4.16: Active connections interface

4.2. Access Monitoring

4.2.1. Database

In Figure 4.17 it’s shown the diagram of the database implementation for the logging of
the accesses to the machine.

Figure 4.17: Database scheme for the access monitoring

a c c e s s _ a c t iv e

P K id

 a c c e s s _ ty p e
 a c t iv e

a c c e s s _ m o n ito r in g

P K id

 ty p e
 p id
 ip
 p o r t
 u s e rn a m e
 c o n n e c te d _ w h e n
 d is c o n n e c te d _ w h e n
 s e n t_ b y te s
 r e c e iv e d _ b y te s
 e v e n t

a c c e s s _ la s t_ p a r s e

P K id

 p o in te r
 d a te

Chapter 4:Implementation 39

The table access_monitoring will be the one containing all the information that will
be parsed, both from the syslog file, as from the openvpn-1.log file. The attributes of this
table are explained next:

 id: the numerical identification of the entries in the table; it’s also its primary

key.

 type: to which type of access the database entry refers. It can take four values:

o ftpd

o sshd

o ssl

o ppp

 pid: the process ID of the program that created the log

 ip: which IP accessed the machine

 port: what port used to access the machine

 username: which username was used to access the machine

 connected_when: when was the connection began

 disconnected_when: when the connection was terminated

 sent_bytes: the bytes the machine sent due to that connection; it’s exclusive
for the VPN PPTP connection

 received_bytes: the bytes the machine received due to that connection; it’s
exclusive for the VPN PPTP connection

 event: the present state of the access; it can take the nine values presented in
Table 4.1

40 4.2 Access Monitoring

Table 4.1: Access monitoring event code description

Value Meaning Refers to which accesses

1 Connected All

2 Disconnected normally (by the server or the client) SSH, FTP, VPN PPTP

3 Wrong pass inserted SSH, FTP, VPN PPTP

4 Wrong username inserted SSH, FTP, VPN PPTP

5 Disconnected due to blocking SSH, VPN PPTP, VPN SSL

6 Disconnected due to connection timeout VPN PPTP

7 Disconnected due to timeout or blocking FTP

8 Disconnected; connection attempt as root user SSH

9 Disconnected normally or due to connection timeout VPN SSL

As for the table access_last_parse of Figure 4.17, it will used to keep track of both
the date of the last parsing, as the last position of the file position indicator used by the file
system pointers of PHP. The attributes of the table are explained next:

 id: the numerical identification of the entries in the table; it’s also its primary

key. It will contain two identifying values:

o 0: ID of the entry for the syslog file.

o 1: ID of the entry for the openvpn-1.log file.

 pointer: the last position of the file position indicator from the last used file
system pointer; the position is measured in bytes from the begging of the file.

 date: it’s a UNIX timestamp that represents the moment when the last parsing
was made.

The table access_active, represented in Figure 4.17, is used to store the information
of what access types to parse. The attributes of the table are explained next:

 id: the numerical identification of the entries in the table; it’s also its primary
key.

 access_type: identifies the access type. It contains the following values:

o ftp: identifier of the FTP access type.

Chapter 4:Implementation 41

o ssh: identifier of the SSH access type.

o ppp: identifier of the VPN PPTP access type.

o ssl: identifier of the VPN SSL access type.

 active: this attribute takes a form of a Boolean variable: 1 for enabled, 0
disabled.

4.2.2. Import script

As discussed before, the most efficient and direct way to address the problem was to
create a script that does the parsing of the syslog and the openvpn-1.log files. Thus, again it
was used PHP scripting to create this import script.

The diagram of the algorithm in which this script was based is presented in Figure 4.19. It
was made various functions that, more or less, correspond to the blocks presented in the
diagram. Thus, there is the need to further analyze how this algorithm implementation was
putted forward.

Firstly the function getLastParseInfo()queries and parses the result of the query of
the database table access_last_parse. The values retrieved are the last parse date and

the value of the last file position indicator. After the return of the function being compared
to the date of the backup log file, the right file is open. Using the PHP function fseek(), the
file pointer is updated with the value of the attribute pointer of the previously queried
table access_last_parse. This way it will only read, parse and process the new lines of
the log file – a time saving solution.

Next, after the function getActiveAccessLogs() queries the table access_active,
it is assessed if there is any access that has the attribute active with the value 1. If not,
again using the fseek() function, the file system pointer (the $fp variable in Figure 4.18) is
updated.

In the case of any of the flags are active (the attribute active of the table
access_active), the function filterLog() is called. This function filters the log lines of
the accesses set to be analyzed and groups the lines by access type. This is accomplished by
doing a series of if()..else if(). As an example of the conditions used, the one for the
case of SSH log lines is shown below.

<? … fseek ($fp, 0, SEEK_END); … ?>

Figure 4.18: Function to set the file pointer to the end of the log file

42 4.2 Access Monitoring

P a r s e s t h e
in f o r m a t io n o f t h e
f i l t e r e d lo g e n t ie s

A d d s t h e p a r s e d
in f o r m a t io n t o t h e

t a b le
“ a c c e s s _ m o n it o r in g ”

I s t h e b a c k u p
lo g n e w e r t h a n t h e

la s t p a r s e ?

O p e n s t h e b a c k u p lo g
f i le ; s e t s t h e f i le

p o in t e r t o t h e v a lu e
t h a t w a s o n t h e

d a t a b a s e

A r e t h e r e
a c t iv e f la g s s e t ?

Y e s

F i l t e r s t h e l in e s f r o m
t h e lo g t h a t r e f e r t o
t h e a c c e s s e s s e t t o

m o n it o r

Y e s

Is t h i s a n e w
c o n n e c t io n ?

Y e s

O p e n s t h e c u r r e n t lo g
f i le ; s e t s t h e f i le

p o in t e r t o t h e v a lu e
t h a t w a s o n t h e

d a t a b a s e

N o

U p d a t e s t h e p a r s e d
in f o r m a t io n o f t h e

t a b le
“ a c c e s s _ m o n it o r in g ”

N o

W a s t h i s t h e
p a r s in g o f t h e

c u r r e n t lo g f i le ?

U p d a t e s t h e
a t t r ib u t e “ p o in t e r ”

o f t h e t a b le
“ a c c e s s _ la s t _ p a r s e ”

t o 0 a n d t h e
a t t r ib u t e “ d a t e ” t o
t h e c u r r e n t v a lu e o f

t h e d a t e

U p d a t e s t h e t a b le
“ a c c e s s _ la s t _ p a r s e ”

w it h t h e c u r r e n t
v a lu e s f o r t h e p o in t e r

a n d t h e d a t e

Y e s

N o

N o

S e ts th e f i le
p o in te r to th e e n d

o f th e f i le

Figure 4.19: Diagram of the algorithm implemented in the PHP script

Chapter 4:Implementation 43

If the monitoring of that particular access is active and if the identifier string as a match in
the line being analyzed, the content of that line is copied to a multi-level array. This multi-
level array has two levels of keys. The first is the PID of the program that generated the log.
The second level key is the numbering of the lines that belong to the same PID. This is
accomplished by parsing the PID information of the filtered line, using the
preg_match()function, and passing its match as the first level key. In the case of the VPN
SSL connections the identifier is the IP:port pair because its log doesn’t shows the PID value.

At this instance of the PHP script we have up to four two-level arrays. These arrays
already have the log lines that belong to a certain PID grouped together.

Next, each array is tested if it exists. If it does, that means that the type of access which
the array belongs to was marked to be monitored and that there was information in the log
file about it. Thus the array is started to be parsed.

The parsing is done doing a two level itineration of the array. The first level cycles
through the PID numbers that the array keys have. The second level itineration cycles through
the log lines that were written by the process that had the PID.

In each second level itineration, the log line is tested against a specific identifying string.
This string will be a common set of characters that belong to a log line that has relevant

information for the monitoring of the particular access. As an example of this identifying
string, Figure 4.21 shows the string used to identify the line that contains the information
that a root login attempt, through SSH, took place.

Once again, the function strpos() was used to search the particular identifying string
inside the log. This was done because it was assessed, by benchmarking, that it was much
faster to first use the strpos() to identify if the log line had some useful information than
to use the function preg_match() to identify and immediately parse the information of the

line. This is because preg_match() uses the much more complex and system-consuming
PCRE engine to do the matching.

When the log line is matched against the identifier, it is parsed to store its information in
the table access_monitoring of the database. Having in mind that performance is an issue
when running so many services at the same time, the use the preg_match() function was
deprecated. The benchmarks done showed an average increase of about 50% when other, less
system-consuming functions were used to parse the file.

<? … $active_logs[0]->active == "t" && strpos ($contents, "sshd[") … ?>

Figure 4.20: Condition to filter the SSH log lines

<? … $identifier="Failed none for root from ::ffff:"; … ?>

Figure 4.21: Identifying string for the log line of a SSH root login attempt

44 4.2 Access Monitoring

As it can be seen in Figure 4.22, it was used “lighter” functions, like the trim() and
explode() functions, to parse the information. This increased the complexity of the
programming of code itself, as in cases of one having to take care of situations were the day
as just one digit instead of two and therefore there’s more a space in the line, which changes
the key of the array that has the information needed to put in the database. For a quick
explanation of this example parsing code:

1. If the string $data_line contains the identifier string “Connection closed
by”, this log line string is parsed for information.

2. The log line is divided by its space characters using the explode() function.

3. The resulting array is filtered by removing the empty values and renumbering the
keys of the array. This is done by using the PHP function array_filter() that
filters the array using a callback function. If the callback function returns FALSE
the value of the array is discarded. The callback function validElement()
returns true if the array value is bigger than 0.

4. Using another explode() the array value with the key 8 (ex.:
::ffff:192.168.69.24) will be divided by the character “:”, resulting in the
array $ip, that will have in it’s 4th element the IP plus the trailing empty space.

5. The trailing empty spaces are trimmed with the function trim().

6. Next, the information parsed is added to a two-level array structure made to be
easy to add its values to the database table. Figure 4.23 shows the first-level keys
of this array, that are the PID values. The second level keys are the other
attributes of the database table access_monitoring.

<? …
else if (strpos ($data_line, "Connection closed by"))
 {
 $data_array = explode (" ",$data_line);
 $data_array = array_values(array_filter($data_array,
"validElement"));

 $ip = explode (":", $data_array[8]);
 $ip[3] = trim ($ip[3]);
 $ssh_access[$value] = array_merge($ssh_access[$value],array(
"disconnected_when" => $data_array[0]." ".$data_array[1]." ".date("Y")."
".$data_array[2], "ip" => $ip[3], "event" => 2));
 }
… ?>

Figure 4.22: Example of the PHP code to parse the log lines

Chapter 4:Implementation 45

In the end of the parsing each four arrays (one for each access type) are cycled through a
foreach() function. Each first level element is tested to see if it has the second level key
connected_when. If it doesn’t, the function updateAccessByPID() is called to update the
connection that already has an entry in the database table access_monitoring. In the case
were the array has a parsed new connection it calls the function insertAccess(), which
inserts the connection entry in the database.

Subsequently, if the log file analyzed was the current one, the script calls the function
updateLastParseInfo()that will update the database table access_last_parse with
the present values for the file position indicator and date. By the other hand, if the opened

file system pointer refers to the backup log, the table is updated with the present date and
the value 0 for the pointer attribute. The script will start again to check if the backup file
is newer than the value in the database. This time the value in the database will be newer
than the backup file and the script will open the current log file and parse it from the
beginning.

4.2.3. System implementation

All of the four configuration files of the services to be monitored were customized in
order to output to syslog just the essential debug needed to track the accesses. So, it was
needed to change the debug parameter in each of the services configuration file.

The script explained in the last subsection was made to be run each 10 minutes. This way
the load on the machine remains low for only few lines are parsed each time the import script
is run. Using the crontab file of IPBrick services, it was added a line to run the import
script.

Array
(
 [13769] => Array
 (
 [connected_when] => Mar 13 2008 17:53:34
 [username] => administrator
 [ip] => 192.168.69.24
 [event] => 2
 [disconnected_when] => 13 2008 18:12:49
 [sent_bytes] => 1234532
 [received_bytes] => 9856
)
)

Figure 4.23: Example of an array for the VPN PPTP after the parsing

46 4.2 Access Monitoring

4.2.4. Web interface

For this functionality it was created two web pages in the configuration interface of
IPBrick. It was created a webpage for easily managing which of the services have its
monitoring active (Figure 4.24). In this webpage it is displayed a table that shows all of the
services possible to be monitored and its present state. To change the state one has just to
click the link that has the name of the service. This link leads to a second page where there is
a drop-down style box, inside a HTML form, with the available states for the monitoring of
the selected access type. After selecting the desired state, the user presses the submit
button making the monitoring state of the selected type to change and for the main page of
the access monitoring management to be displayed with the updated state.

For the display of the records of the accesses monitored it was used, as a model, a
previous developed web page for displaying statistics that uses the Prototype (Prototype Core
Team 2007), the scriptaculous (Fuchs n.d.) and the MochiKit (Mochi Media, Inc. 2006)
frameworks, as well the SLLists PHP class (Neustaetter 2006). After customization of the
previously mentioned page, the access monitoring records page uses these frameworks to
switch between the filtering parameters and the records (as well to change the links from
“Filter” to “Records”), to sort the columns of the table of records and to do the Ajax
database requests each time the user filters the displayed information.

Figure 4.24: Management of the access monitoring page

Chapter 4:Implementation 47

The filtering parameters that can be set through the filter form are:

 The access types to display

 The IP address

 The username

 The accesses active in a date interval. For this it was used the DHTML/JS Calendar
(Bozan 2008) to make it easy to set the date interval, by showing a calendar
where the user can select the dates from it.

 The access note to be displayed (“Connected”, “Illegal password”, “Timeout”,
etc.)

When the filtering parameters are set, the user presses the “Filter” button and the
parameters of the filter are read by a JavaScript file. This file does an AJAX request that calls
a PHP script that constructs the database query accordingly to the parameters of the filter,
queries the database and generates an XML file with the information retrieved from the
database. A function is then called that parses the XML file and updates the displayed web
page, hiding the filter and showing a table with the parsed XML information. The resulting
table is shown in Figure 4.25.

Figure 4.25: Page for viewing the records of the access monitoring

In this table, the System Administrator can further filter the displayed information by
simply clicking the item he wants to filter the table by. Clicking the values presented in the
columns “Access type”, “User”, “IP” or “Notes”, a JavaScript function is called that adds the
value clicked to the previous filter parameters and runs the AJAX call explained earlier, with
the additional parameter. This way the user can easily narrow down the initial search.

48 4.2 Access Monitoring

The access monitoring records page is also shown in the interface for the FTP, VPN PPTP

and VPN SSL services. When accessed through the links presented in these interfaces, the
records shown will be just the ones referring to that particular service.

4.2.5. PDF report

In each of the pages of the access monitoring records there is a link that the user can
press in order to generate a PDF report of the records that are currently displayed. Figure
4.26 is an example of a generated PDF report.

Figure 4.26: PDF report for the access records shown in Figure 4.25
Clicking the link, a JavaScript function is called, which builds a link to a PHP file, passing

the filter parameter by the GET method. This function then opens a browser window with the
built link.

The PHP file uses the filter parameters to query the database for the same records that
were displayed in the records page, with which (after some information processing) it creates
a CSV file, storing it in a temporary directory. This CSV file will be the actual information that
the table of the PDF report will contain.

The process of generating the PDF file is done by the included FPDF library (Plathey

2004). After extending the FPDF class included in this PHP script in order to customize the
two tables present in this report, the functions of this library are called. With these functions
the header table, containing the filter parameters passed to this script, is created and the
CSV file is read, parsed and used to fill the table of the records monitored. Before using a
FPDF function to output the resulting PDF to the previously opened window, the CSV file is
deleted from the temporary file.

Chapter 4:Implementation 49

4.3. Firewall rules ordering

The page for ordering the firewall rules was modified so that a user can easily drag and
drop the firewall rules to the desired place and then, when pressing the submit button, all
the changes are written to the database table firewall, that later will be used to write the
firewall script file.

Figure 4.27: Firewall rules ordering interface

Using the scriptaculous framework (Fuchs n.d.) and the PHP wrapper class SLLists
(Neustaetter 2006), each “tr” tag of the HTML table is transformed into a “dragable” item
(highlighted line in Figure 4.27). Each line of the HTLM table is also given a specific
identification using the “id” attribute. This is the initial position of the rule in the rules list.

For the submit of the new order of the firewall rules, it is used a customized version of
the printForm() function of the SLLists, which uses a scriptaculous function to read the
present order of the rules; then it prints an HTML form that passes this new order, by the
POST method, to the action PHP script, called upon submit.

The PHP action script called previously does a database query, retrieving the values of the
attribute order of the table firewall, in ascending order. Through a for() cycle it is
checked if there is some change in the rules order, comparing the initial position of the rule
in the list (through the previously mentioned “id”) with the actual position. If the initial
position is different from the new, a PHP function is called that updates the rule entry in the
database; changes it to the value of the order attribute that the previously rule in that
position had.

50 4.4 VPN SSL access policies

This way, in the end of the cycle, all the order attributes are updated without changing

IPBrick’s value scheme for ordering of the firewall rules; this way it is assured the integrity of
the firewall system.

4.4. VPN SSL access policies

4.4.1. System implementation

The first step for the implementation of this development was to create an additional

directory for the client configuration files, which will contain the defined fixed IP for each
VPN SSL certificate having access policies. This client configuration directory was created in
the path /etc/openvpn/1/ccd/.

The configuration file of the OpenVPN server, server.conf, was also modified so that it
includes the client configuration files. As the OpenVPN server configuration file is generated
by IPBrick, this modification just implied adding a supplementary entry in the database table
vpnssl - the one used by IPBrick to generate the previously mentioned file.

4.4.2. Database

For implementing the VPN SSL access policies it was necessary to create four new tables
in the database of IPBrick, namely, vpnssl_policies, vpnssl_policies_members,
vpnsslcrt_policies and vpnsslcrt_firewall. It was also needed to add the column
ip, to the table vpnsslcrt. The scheme of this database implementation is presented in
Figure 4.28; the arrows indicates a relationship of N:1 between two database tables.

Chapter 4:Implementation 51

vpnsslcrt

PK idvpnsslcrt

 idvpnsslsrv
 tipo
 file
 idpais
 pais
 cidade
 empresa
 nome
 mail
 pass
 activo
 key
 crt
 csr
 pem
 indextxt
 serial
 ip

vpnssl_policies

PK idvpnssl_policy

 name
 policy

vpnssl_policies_members

PK idvpnssl_policy_member

FK1 idvpnssl_policy
 member
 member_type

vpnsslcrt_policies

PK idvpnsslcrt_policies

FK1 idvpnssl_policy
FK2 idvpnsslcrt

firewall

PK idfirewall

 tipo
 regra
 interfacei
 interfaceo
 protocolo
 notorigem
 iporigem
 masorigem
 portoorigem
 notdestino
 ipdestino
 masdestino
 portodestino
 politica
 redirectporto
 outro
 estado
 ordem
 modulo
 tabela

vpnsslcrt_firewall

PK idvpnsslcrt_firewall

FK2 idvpnsslcrt
FK1 idfirewall

Figure 4.28: Database scheme for the VPN SSL access policies

In the above figure we can see that the main table of this implantation is the

vpnssl_policies table, which is the one that contains the numerical identification of the
policies. The name column will be the one containing the user-given names for the created
policies, while the policy column will contain one of two numerical values: 1 for the
permission policies or 2 for the restriction policies.

As each policy can have several members and even several member-types, there’s a
relationship of 1:N between the table vpnssl_policies and the table
vpnssl_policies_members. The attributes of the vpnssl_policies_members table
and its functional meaning are presented next:

 idvpnssl_policy_member: the numerical identification of the entry of each
policy member.

 idvpnssl_policy: it’s the foreign key from the table vpnssl_policies and
it indicates to which policy the member belongs to.

 member: it’s the actual value of the member that IPBrick will use to identify it.It
can take the form of a UID number for IPBrick’s registered machine, a GID for

52 4.4 VPN SSL access policies

registered machine groups, an IP subnet (ex.: 192.168.69.128/25), an IP value

for a machine defined by its IP or an IP range (ex.: 192.168.69.202-
192.168.69.240).

 member_type: like the name implies, is the type of member that the database
entry refers to. It can take the following values:

o 3: registered machine groups

o 4: registered machines

o 5: IP subnet

o 6:IP defined machine

o 7:IP range

The table vpnsslcrt was an already existing table in IPBrick’s database. This table

contains the certificates for the VPN clients as well all the information related to them. Now
that all the certificates that will have policies will be forced to have a particular virtual IP
address, it is necessary to associate the IP with the certificate in question. To manage this it
was added the column ip to this table. In this new attribute it is kept the reference to what
subnet the particular certificate was assigned, being the real IP address calculated later on.

The table vpnsslcrt_policies is a connection table for creating the relation of N:N
between the tables vpnssl_policies and vpnsslcrt. This relation exists because each
certificate can have various policies associated to it; as well each policy can be associated
with various certificates. Thus, this table has the foreign keys idvpnssl_policy and
idvpnsslcrt referring the tables named previously.

The table firewall, shown in the database model, already existed in IPBrick’s database
and was not modified. The relation between the tables vpnsslcrt and firewall was
implemented by adding the table vpnsslcrt_firewall. This way IPBrick keeps the records
of the firewall rules added to implement the VPN SSL access policies.

Chapter 4:Implementation 53

4.4.3. PHP script

For the implementation of the VPN SSL access policies it was needed to create various
functions that could be called in the various events that changes the configuration of the VPN
SSL access policies.

The events that change the VPN SSL are:

 Certificate creation

 Certificate revocation

 Certificate modification

 Policy member modification

 Modifying the IP of a IPBrick registered machine

 Modifying an IPBrick group of machines

 Erasing an IPBrick registered machine

 Erasing an IPBrick group of machines

Upon creating of a VPN SSL client certificate, the function vpnssl_build_firewall()
(described in Figure 4.29) is called having as reference the new id of the created VPN SSL
client certificate, retrieved from the database. This was the main function created. It
searches and retrieves the necessary information from all the policies that the user set to be
active in the created certificate and builds the needed firewall rules.

54 4.4 VPN SSL access policies

Gets firewall rules
for the given
certificate id

Is there firewall
rules for this id ?

Deletes firewall
rules of the

given id

Yes

Queries database
for the ip data

and calculates de
virtual IP

No

Queries database
for policy data
related to this

idvpnsslcrt

Is there policies
associated to this

certificate ?

Yes

Queries database
for IPBrick’s

private interfaces
IP’s

Queries database
for the type of

restriction to be
applied

Cycles through the
policies of the

cerificate, adding
needed entries to the

database

Is the IPBrick
machine in the

members ?

Introduces a firewall
database entry for
applying the rule
exceptions to the
IPBrick machine

Introduces a firewall
database entry for
applying the base

policy to this IP
address

Introduces a firewall
database entry for
applying the base

policy to the IPBrick
machine

Introduces a firewall
database entry for
allowing access to

the IPBrick machine

No

No

Yes

Figure 4.29: Diagram of the algorithm used to implement the policies to one certificate

Chapter 4:Implementation 55

In Figure 4.30 is shown in detail how is implemented the block that cycles through the
policy members and creates the firewall rules.

Start of the
cycle through all
the policies of
the certificate

Start of the
cycle through all
the members of

the policy

Member
type ?

Group type ?

Calculates
if the private IPs

of IPBrick are in the
defined IP

range

Sets flag to
include IPBrick
as a member of

the policy

Inserts firewall
rule in the
database

Inserts reference
to the rule in the
vpnsslcrt_firewall

database table

Start of the
cycle through all

the group
members

Sets flag to
include IPBrick
as a member of

the policy

Inserts firewall
rule in the
database

Inserts reference
to the rule in the
vpnsslcrt_firewall

database table

End of the cycle
through all the
group members

Is this IP
a private interface

of IPBrick ?

End of the cycle
through all the
policies of the

certificate

End of the cycle
through all the
members of the

policy

Yes

No

No

Yes

Sets flag to
include IPBrick
as a member of

the policy

Inserts firewall
rule in the
database

Inserts reference
to the rule in the
vpnsslcrt_firewall

database table

Is this IP a
private interface

of IPBrick ?

No

Yes

Sets flag to
include IPBrick
as a member of

the policy

Inserts firewall
rule in the
database

Inserts reference
to the rule in the
vpnsslcrt_firewall

database table

Calculates
if the private IPs
of IPBrick are in

the defined
subnet

No

Yes

Machines IP subnet

Sets flag to
include IPBrick
as a member of

the policy

Inserts firewall
rule in the
database

Inserts reference
to the rule in the
vpnsslcrt_firewall

database table

Is this IP a
private interface

of IPBrick ?

No

Yes

IP machine

Sets flag to
include IPBrick
as a member of

the policy

Inserts firewall
rule in the
database

Inserts reference
to the rule in the
vpnsslcrt_firewall

database table

Calculates
if the private IPs
of IPBrick are in

the defined
IP range

No

Yes

IP range
Machine
groups

Machines groupIP range

Figure 4.30: Diagram of the algorithm used to cycle through the policies affected to the certificate and
to add the needed entries to the database

When a certificate is changed, it is only needed to call this function to update the firewall
rules that implement the desired set of policies. In the case of the certificate being revoked,
the status of the certificate in the database table vpnsslcrt is set to revoked and all the

56 4.4 VPN SSL access policies

entries of this certificate in the table vpnsslcrt_policies are deleted. Thus, upon calling
this function it will only erase the firewall rules from the database.

In the other cases the situation is more complex. As the actions of modifying or deleting
groups and machines are spread throughout a variety of services in IPBrick, it was created a
set of function to deal with these situations.

When a machine group is modified or erased, a function is called that queries the
database for all the certificates that the modified machine group included. Then it checks
whether if the group was erased or just modified. If erased, it erases all the references to the
former machine group from the table vpnssl_policy_members. Then, in a for() cycle, it
calls the function vpnssl_build_firewall, passing as argument the id of the certificates
resultant from its first query.

In the case of a machine IP change or deletion it’s even more complex. A function is
called that checks if the computer belongs to any machine group. If so, it retrieves the id of
the certificates that have polices containing that group(s). It then checks if there is any
certificate with policies having the machine in question. If the machine was deleted it erases
all the references to the former machine(s) from the table vpnssl_policy_members.
Having at this point the arrays of ids of certificates that have the machine as individual and as
in part of a machine group, it merges the two arrays and filters the duplicated values out of
it. Using then a for() cycle, it calls the function vpnssl_build_firewall, passing as
argument the id of the certificates present in the merged array.

4.4.4. Web interface

It was created an interface, within the page of the VPN SSL service, where the System
Administrator can view the existent policy, separated by the categories “Permission Policies”
and “Restriction Policies”. In this interface it’s possible to add, modify and delete the
policies. The configuration/modification page is presented in Figure 4.31. In it can be
modified all the possible members of the selected policy.

Upon creation of the certificate, the System Administrator can choose the permissions to
associate to the certificate by a simple interface that lists the permissions available in a box

and lets the user to selected them and associate them to the certificate, appearing in the box
of the policies associated with the certificate (Figure 4.32).

Chapter 4:Implementation 57

Figure 4.31: Interface for adding the policy members

Figure 4.32: Interface for creating a VPN SSL certificate

58 4.4 VPN SSL access policies

Chapter 5

5. Tests and Results

5.1. Testbed

IPBrick is a software that not only offers efficiency and reliability, but also aims to ensure
fast throughput.

Being this project integrant part of this software, CPU load and code optimization, as it
was described before, were two concepts always taken in consideration during the
development of this project.

To verify that this development meets the standards of all IPBrick’s development, it was
used as test server a SOHO appliance, with the following modest characteristics:

 Intel Celeron processor at 1.7 MHz

 256 MB SDRAM memory

 4x Ethernet 10/100 Mbps

 2x USB ports

With the latest version of IPBrick installed, and with the new developments that are part

of this project, this machine was the gateway for 14 development workstations of iPortalMais
during the tests. IPBrick was run having it’s default services running.

Figure 5.1 is the graphical representation of the scheme of this testbed. Although it
appears two computers connected to the internet, these were only used in the tests for the
access monitoring development and for the VPN SSL access policies. For the active
connections development tests it was only used one computer connected to the internet.

60 5.2 Active connections tests

INTERNET

Workstation 1 Workstation 7 Workstation 14

IPBrick Server

.

Figure 5.1: Testbed schema

5.2. Active connections tests

Tested during development and in a posterior test phase, it was possible to assert that all
the connections tested were blocked by this new IPBrick feature. SSH sessions, VPN tunnels,
FTP sessions, among others where part of this successful test.

Although it was created a tool to virtually block any type of connection, the goal of this
part of the project was to successfully block, on the fly, the TCP/IP protocol connection type.
As so, it will be described one of the tests made to acknowledge that, in fact, it can block
TCP/IP protocol connections.

1. In IPBrick, it was permitted the SSH access through the public interface.

2. In the machine connected to the internet, it was started two SSHs session in the
IPBrick server.

61 Chapter 5:Results

3. In the remote machine it was issued the command top –d.1 in both shells, to
allow a visible refresh of information from the server.

4. In IPBrick’s interface, one of the connections with the IP of the remote machine
and with destination port 22 (default port for SSH), was set to be blocked.

5. Roughly after one second, one of the shells froze.

6. After setting the second port 22 connection to be blocked, both shell, in the
internet connected machine, are frozen.

7. Using ngrep, in IPBrick, it can be seen that no connections with the source port
22 is being sent to the remote machine.

8. After clicking the unblock link in IPBrick’s interface, first in one, then in both
connections, it was seen that each remote SSH shell started again to refresh.

5.3. Access monitoring tests

This development was run against three different sets of tests. One, it was tested the
speed and CPU consume of the import script. Other was to assess if it correctly displayed the
information that it imported from the syslog file. The last test to this development was the
generation of the PDF report.

During several days it was made all four kinds of accesses to IPBrick, being some of them
manually recorded in a separate log file, so to compare it with the displayed information for
appraising.

This way it was able to be confirmed the correctness of the imported log information.

From the log files generated from the previous testing, it was created worst case scenario
log files, i.e., each log file had the maximum size before it would be rotated, corresponding
to 1 Megabyte and all the lines of the log files were fitted to be matched and parsed while
IPBrick was configured to monitor all the four access types.

During different times of a day the import script was made to run on that machine, to
always analyze the same test files.

It took an average of proximally 3.45s to complete the script execution in a machine that
had a CPU load average of 0.8 at tests time.

62 5.4 Firewall rules ordering tests

5.4. Firewall rules ordering tests

The most presentable result of this development is the interface itself (Figure 4.27),
which successfully allows the System Administrator to order the firewall rules in a much more
comfortable and practical way.

5.5. VPN SSL access policies tests

Because of the extended integration that this development was subjected to, this was the
longest and most complex test made.

At first two policies were created, one restriction policy and one permission policy, with a
random set of policy members. After this, was created two client certificates, for the two
machines connected directly to the internet, having one certificate the permission policy
associated with it and the other the restriction policy.

The two machines successfully started a VPN SSL tunnel to the IPBrick server.

After this connection being established it was performed a series of tests to evaluate if all
the functionalities of this development were working correctly. The following configuration
changes were performed while the machines were connected to the server, as the policies
are implemented through IPBrick’s firewall; like this, one is able to change the policies

associated to the certificates without having to interrupt the active connection. After
introducing the configuration changes it was check if they made effect by pinging and
establishing a SSH connection to the affected workstations from the VPN SSL client machines.

1. It was randomly changed each type of policy members, both from the restriction
and from the permission policies.

2. It was removed and added the policies to the certificates, to test if without
policies the VPN SSL client as access to the entire network.

3. It was created new policies and added to the certificates, in order to test the
certificates with multiple policies associated.

4. To one of the certificates was removed all members, and then added the member
that was the IP of the server itself. To the other it was removed all members and
then added an IP subnet that was the one of the server. This was done in order to
test if the code regarding the checking of the server IP in the policy members was
correctly working.

5. It was associated with a certificate a policy that only had one member. This
member was an IPBrick registered machine group. In all the interface pages that
perform action upon the VPN SSL access policies (see Table 3.5), except for the

63 Chapter 5:Results

network interface management page, it was performed a change of IP and/or a

deletion of an IPBrick registered machine that belonged to the machine group
defined on the certificate. This was done both to assess if the functions were well
implanted in this web pages of the services, as well to check if the part of the
code that checks which policies are affected by these changes, and calls the
function to reconstruct the VPN SSL firewall rules, is working correctly.

These tests were all performed with a positive outcome, confirming that, in all the above
described situations, this development is working correctly.

There were more three situations needed to be tested, these ones or implying that the
VPN SSL clients would not be connected at the time of these changes in IPBrick’s
configuration or not being directly related to the connected VPN SSL clients. These tests
were:

1. The IP for the private network interface of IPBrick was changed. This was done to
check if the firewall rules were updated accordingly with this change.

2. It was tried to set the VPN SSL network to have a mask of 30, and to have a mask
of 28 when there were 5 active certificates. Like this, it was tested the
implemented protection against erroneous configuration of the VPN SSL network
value.

3. Having the VPN SSL network a mask of 28, it was tried to create a 4th certificate.
The protection for the creation of more certificates than the defined subnet VPN
SSL network mask should not allow this.

Again, all the above described tests made resulted in a positive appraise of the integrity
of this development.

After performing these various tests during development and in a posterior test phase it
was possible to confirm that the functionalities of this development enable a System
Administrator to add another “Ring of Security” to its VPN SSL gateway.

64 5.5 VPN SSL access policies tests

Chapter 6

6. Conclusion and Future Work

It was studied in this work ways to meet the strict demands of iPortalMais’s client for a
security sub-system for IPBrick.

Various questions were approached and from the various studied choices it was
implemented four developments were implemented and integrated in IPBrick: a “on the fly”
connection blocker using an integration of the conntack-tools program with IPBrick’s
firewall; it was added to IPBrick the capability to do monitoring of accesses, using a PHP
script completely developed from scratch; the firewall rules ordering interface improvement
and associating of access policies to the VPN SSL client certificates.

Therefore it was with success that the customer wishes were fulfilled. In the case of the
demand to block connections the expectations were even surpassed, as the implemented

solution is able to block “on the fly” virtually any type of connection/protocol that is passing
through the IPBrick machine. Also with access monitoring, apart from the required
information to display, it was possible to display some notes about the why of the
disconnection of the access.

Even so, the possibilities of the expansion of the functionalities are huge. Using the “on-
the-fly” connection blocker together with an Intrusion Detection System we could create a
adaptive firewall. When the Intrusion Detection System would detect an attempt of intrusion
we could set a trigger that would update the respective connection tracking entry and
virtually the connection would be terminated immediately.

Also in the case of the access monitoring, this work could be the starting point of a

extensive monitoring system of almost every services that IPBrick has, such as the Samba
Server, Apache Server, etc.

This solution has the particularity of being inserted in IPBrick which is a Portuguese
software directed to the easiness of use but with service quality always in mind.

With this IPBrick is even more feature reach and ready to take a stand on the competitive
IT market of nowadays.

66 5.5 VPN SSL access policies tests

References

Andreasson, Oskar. Iptables Tutorial 1.2.2. 2006. http://iptables-
tutorial.frozentux.net/iptables-tutorial.html (accessed Junho 2007).

Ayuso, Pablo Neira. 2008. http://conntrack-tools.netfilter.org/index.html (accessed March
2008).

—. "Test Case." conntrack-tools: Connection tracking userspace tools for Linux. 2007. (accessed
March 2008).

Barnum, Sean, and Amit Sethi. Attack Patterns as a Knowledge Resource for Building Secure
Software. Cigital, Inc., 2007.

Barrett, Daniel J., Richard E. Silverman, and Robert G. Byrnes. Linux Security Cookbook. 1st
edition. California: O'Reilly, 2003.

Black Hat. "Routing & Tunneling Protocols Attacks." BlackHat Briefings. Amsterdam: Black Hat,
2001.

Bozan, Mihai. The DHTML / JavaScript Calendar. 2008.
http://www.dynarch.com/projects/calendar/ (accessed April 2008).

Friedl, Jeffrey E. F. Mastering Regular Expressions. Sebastopol, California: O'Reilly & Associates,
1997.

Fuchs, Thomas. script.aculo.us it's about the interface, baby! http://script.aculo.us/ (accessed
April 2008).

IANA, Jon Postel, David Johnson, Tom Markson, Bill Simpson, and Zaw-Sing Su. "ICMP TYPE
NUMBERS." iana: Internet Assigned Numbers Authority. February 13, 2008.
http://www.iana.org/assignments/icmp-parameters (accessed June 2008).

IBM ISS. "IBM X-Force 2007 Trend Statistics Report." IBM Internet Security Systems. 2008.
http://www.iss.net/documents/literature/x-force_2007_trend_statistics_report.pdf (accessed
May 2008).

iPortalMais - Soluções de Engenharia para Internet e Redes, Lda. IPBrick - Manual de
Referencia. Porto: iPortalMais - Soluções de Engenharia para Internet e Redes, Lda., 2006.

—. IPBrick Unified Communications over IP. 2008. http://www.ipbrick.com/ (accessed June
2008).

Lowth, Chris. Introducion "Cutter 1.03". April 2005. http://www.lowth.com/cutter/ (accessed
March 2008).

Mochi Media, Inc. MochiKit. April 2006. http://mochikit.com (accessed April 2008).

Netfilter Core Team. "The netfilter.org "iptables" project." 2008.
http://www.netfilter.org/projects/iptables/index.html (accessed March 2008).

Netfilter core team. The netfilter.org "libnetfilter_conntrack" project. 2007.
http://www.netfilter.org/projects/libnetfilter_conntrack/index.html (accessed February 2008).

—. The netfilter.org "libnfnetlink" project. 2007.
http://www.netfilter.org/projects/libnfnetlink/index.html (accessed February 2008).

Neustaetter, Greg. Scriptaculous Lists with PHP. August 2006.
http://www.gregphoto.net/sortable/ (accessed April 2008).

Plathey, Olivier. FDPF Library. December 2004. http://www.fpdf.org/ (accessed May 2008).

Porteneuve, Christophe. Prototype and script.aculo.us. USA: The Pragmatic Programmers LLC.,
2007.

Prototype Core Team. Prototype JavaScript framework. 2007. http://prototypejs.org/
(accessed April 2008).

Rash, Michael. Linux firewalls : attack detection and response with iptables, psad, and fwsnort.
No Starch Press, inc., 2007.

Richardson, Roberts. "CSI Survey 2007." Computer Security Institute. 2007.
http://i.cmpnet.com/v2.gocsi.com/pdf/CSISurvey2007.pdf (accessed June 2008).

Telethra, Inc. 2008. http://openvpn.net/ (accessed April 2008).

The PHP Group. PHP Manual. 2001-2008. http://www.php.net/manual/en/index.php
(accessed March 2008).

Toxen, Bob. Real world Linux security. 2nd Edition. New Jersey: Prentice Hall PTR, 2003.

Turnbull, James. Hardening Linux. Apress, 2005.

Appendix A

ip_conntrack_tcp.h

#ifndef _IP_CONNTRACK_TCP_H
#define _IP_CONNTRACK_TCP_H
/* TCP tracking. */

enum tcp_conntrack {
 TCP_CONNTRACK_NONE,
 TCP_CONNTRACK_ESTABLISHED,
 TCP_CONNTRACK_SYN_SENT,
 TCP_CONNTRACK_SYN_RECV,
 TCP_CONNTRACK_FIN_WAIT,
 TCP_CONNTRACK_TIME_WAIT,
 TCP_CONNTRACK_CLOSE,
 TCP_CONNTRACK_CLOSE_WAIT,
 TCP_CONNTRACK_LAST_ACK,
 TCP_CONNTRACK_LISTEN,
 TCP_CONNTRACK_MAX
};

struct ip_ct_tcp
{
 enum tcp_conntrack state;

 /* Poor man's window tracking: sequence number of valid ACK
 handshake completion packet */
 u_int32_t handshake_ack;
};

#endif /* _IP_CONNTRACK_TCP_H */

	Capa
	Abstract
	Resumo
	Index
	List of figures
	List of tables
	Nomenclature list
	1. Introduction
	2. Security concepts and tools
	3. Solutions for the security sub-system
	4. Implementation
	5. Tests and results
	6. Conclusion and future work
	References
	Appendix A

