

Faculdade de Engenharia da Universidade do Porto

Mestrado Integrado em Engenharia Informática e Comp utação

STDF2EXF Converter Development at
Critical Software, SA

MIEIC Project Report 2007/2008

Daniel José Santos da Silva

Supervisor from FEUP: Prof.ª Ana Paula Rocha

Supervisor from Institution: Hugo Casimiro

March 2008

ii

Summary

This document reports the work made by Daniel José Santos da Silva in the company Critical
Software, SA, within the scope of the Project from the Integrated Master degree in
Informatics and Computing Engineering (Mestrado Integrado em Engenharia Informática e
Computação – MIEIC) at the University of Porto, Faculty of Engineering (Faculdade de
Engenharia da Universidade do Porto – FEUP), which took place between October 1st and
March 7th at Critical Software’s facilities in Porto, Portugal.

The project’s theme was the development of a converter, part of an Engineering Data
Analysis system, which would transform binary STDF (Standard Test Data Format) files into
editable XML (Extended Markup Language) based EXF (Engineering Data Analysis
Exchange Format) files. This process involved a study of the existing platform and the
semiconductor manufacturing process, a requirements definition phase, system modelling, a
test case specification, the solution development and the consequent system testing.

The main goals of the project were fulfilled and the initially planned activities were carried
out successfully. A preliminary version of the developed solution is already available to be
used in the company and the project described in this document is currently on open status in
Critical Software.

iii

Special thanks

I would like to thank everyone I worked with at Critical Software for all the help and
sympathy, in particular to the persons directly involved in this project – Hugo Casimiro and
Helder Ferreira –, the EBS DB project team – Pedro Figueiredo, João Nieto, Thiago Brito and
Isabel Gomes –, Vânia Castro and Filipe Pinheiro.

Special thanks to Prof.ª Ana Paula Rocha, from FEUP, for supervising the project, and once
again to Hugo Casimiro, for being my tutor at Critical Software.

Last but not least, my dearest ones – family and friends – for the constant support.

iv

Index of contents

1 Introduction..1
1.1 The company Critical Software, SA.. 1
1.2 The project “STDF2EXF Converter Development” at Critical Software, SA ... 1
1.3 The EBS system .. 2

Semiconductor production... 2
Data collection... 3
EBS and Engineering Data Analysis ... 4
EBS structure .. 5
Work packages.. 6
EBS Database and Data Loading.. 7

1.4 The STDF format ... 9
1.5 Report’s structure... 9

2 Problem analysis ...11
2.1 Persons and parties involved ... 13
2.2 Resources, equipment and knowledge .. 13

Would we have the knowledge needed?... 13
Would we have the time needed? ... 14
Would we have the material needed? ... 14

2.3 Plan and procedure.. 14
Initial project plan – October 2007... 14
Updated project plan – January 2008.. 16

2.4 Requirements and delimitation... 16

3 Technological review...18
3.1 The EXF format.. 18

File types ... 18
Structure.. 18

3.2 STDF and the ATE industry ... 19
PySTDF... 20
SEDana... 21
Spry Software.. 21
Examinator, optimiSE STDF Explorer and YieldWerx ... 21

3.3 Existing solutions and reusing.. 22
The converter template.. 23

3.4 Programming languages used in the project .. 24
C++.. 24
PL/SQL.. 24

4 Specification of the new solution...26
4.1 Software requirements catalogue... 26

Functional requirements .. 26
Implementation requirements .. 28
Interoperability requirements ... 28
Validation requirements... 29

v

4.2 Use cases catalogue.. 29
Actors list... 30
Use cases.. 31

4.3 Domain model .. 32
CSTDF2EXFProcess... 33
CSTDF2EXFConverterApp ... 33
CSTDFRawFile ... 33
CEBSProcess.. 33
CTraceObject .. 34
CConverterApp.. 34
CRawFileBin.. 34
CRawFile... 34
CConvFile.. 34

4.4 Sequence diagrams ... 35
4.5 State diagrams ... 36
4.6 Test cases catalogue ... 38

Working modes ... 38
Configuration ... 39
Conversion .. 39
Validation... 40
Logging.. 43
Structure.. 43
Integration with the EXF Loader .. 44
Loading parameter checking ... 52
Rosetta Net support... 64

4.7 Traceability matrix .. 66
Test cases to requirements matrix .. 66
Use cases to test cases matrix.. 67

5 Prototype development ...69
5.1 Prototype engineering .. 69

The standalone mode.. 70
Integration with EBS DB.. 72

5.2 Detailed design .. 73
STDF2EXF_main.cpp.. 74
STDF2EXF.cpp ... 75
STDF2EXFConverterApp.cpp ... 76
STDFRawFile.cpp ... 76

6 Project concretisation ..78
6.1 Testing phase 1 – standalone mode .. 78

Test run 1 .. 78
Test run 2 .. 79
Test run 3 .. 80

6.2 Testing phase 2 – integration with EXF Loader (regression testing) .. 80
Test run 1 .. 82

6.3 Results ... 85
6.4 Project review... 86

Other projects.. 87

vi

Plan comparison.. 87

7 Conclusions and future work perspective ...89

References and bibliography..92

ANNEX A: Project history ...94

vii

Index of figures

Figure 1: Decomposition of a lot into wafers and chips.. 3
Figure 2: Examples of a trend chart, lot and wafer reports .. 4
Figure 3: A wafer map example ... 5
Figure 4: The EBS modules... 6
Figure 5: Example of work packages ... 6
Figure 6: Data loading for text work packages... 7
Figure 7: Data loading for binary work packages... 8
Figure 8: The current processing of STDF files.. 12
Figure 9: A prototype for the future processing of STDF files .. 13
Figure 10: Initial project plan.. 15
Figure 11: Updated project plan... 16
Figure 12: EXF instance document example ... 19
Figure 13: Use case diagram... 30
Figure 14: Class diagram for the STDF2EXF Converter.. 32
Figure 15: Class diagram for the EXF Loader (changes to be made only) .. 34
Figure 16: The STDF2EXF Converter when running integrated with EBS DB... 35
Figure 17: The STDF2EXF Converter when running in standalone mode... 36
Figure 18: JM streams ... 37
Figure 19: State diagram for the STDF2EXF Converter (not applicable to standalone mode)............................... 37
Figure 20: Test cases to requirements matrix.. 67
Figure 21: Use cases to test cases matrix ... 68
Figure 22: STDF2EXF Converter working in standalone mode ... 71
Figure 23: STDF work package log after conversion in standalone mode... 71
Figure 24: Excerpt of a XML based EXF file generated by the STDF2EXF Converter .. 72
Figure 25: States of work packages in EBS DB... 73
Figure 26: EBS DB file structure .. 74
Figure 27: Database update through updateChipDataAttached() – CHIP_ATTAC value 83
Figure 28: Database update through updateChipDataAttached() – Measpart Attributes 84
Figure 29: Database update through updateChipDataAttached() – Enviroment Values .. 84
Figure 30: Database update through updateAllParameterTypes() – Parameter Aggregates................................. 85
Figure 31: Gantt chart with the real executed tasks... 86

viii

Index of tables

Table 1: Problem description overview .. 11
Table 2: Persons and parties involved in the project.. 13
Table 3: Test run 1 data... 79
Table 4: Test run 1 results ... 79
Table 5: Test run 2 data... 79
Table 6: Test run 2 results ... 80
Table 7: Test run 3 data... 80
Table 8: Test run 3 results ... 80
Table 9: Test cases for regression testing ... 82
Table 10: Regression test run 1 data... 82

ix

Acronyms and abbreviations

ANA: analytical

API: Application Programming Interface

ASCII: American Standard Code for Information Interchange

ATDF: ASCII Test Data Format

ATE: Automatic Test Equipment

CMMI: Capability Maturity Model® Integration

CVS: Concurrent Versions System

DA: Data Archiving

DB: Database

DL: Data Loading

EBS: Engineering Base System

EDL: Extraction Definition Language

EFF: Extraction File Format

ESA: European Space Agency

FCT: functional

FEUP: Faculdade de Engenharia da Universidade do Porto

GUI: Graphical User Interface

IBM: International Business Machines Corporation

JM: Job Management

MDA: Manufacturing Data Analysis

MIEIC: Mestrado Integrado em Engenharia Informática e Computação

MIT: Massachusetts Institute of Technology

NASA: National Aeronautics and Space Administration

PL/SQL: Procedural Language/Structured Query Language

Prof.ª: Professora (Female teacher)

SQL: Structured Query Language

STDF: Standard Test Data Format

UML: Unified Modeling Language

WP: work package

XE: Extraction Engine

XML: Extended Markup Language

XTI: Extraction Tool for Infineon

STDF2EXF Converter Development

1

1 Introduction

1.1 The company Critical Software, SA

Critical Software provides solutions, services and technologies for mission and business
critical information systems [1], supporting customers across diverse markets including
aerospace, defence, finance, energy, government, manufacturing and telecom.

The company was founded in 1998 and employs more than 200 people, in offices at Coimbra,
Lisbon, and Porto (Portugal), San Jose (California), Southampton (United Kingdom) and
Bucharest (Romania) [1].

Critical operates with a CMMI® (Capability Maturity Model® Integration) Level 3 certified
set of processes across all disciplines of Management and System Engineering and was
ranked as one of the fastest growing European Companies in the “Europe 500 Scoreboard”
published annually by BusinessWeek [1].

The company has developed strong expertise in several areas of competence, such as:

• Enterprise Application Integration and Databases;

• Dependability and Embedded Software;

• Command and Control;

• Networking Software;

• Software Product Assurance [1].

Some of the products already developed and commercialised by Critical include Xception™
and WMPI™, which are used by diverse companies around the world, mainly in the space,
defence, oil and gas sectors.

Critical Software has a high valuable collection of customers, having collaborated with major
entities such as NASA (National Aeronautics and Space Administration), Infineon
Technologies, Qimonda, MIT (Massachusetts Institute of Technology), Vodafone, Siemens,
IBM (International Business Machines Corporation), European Commission, ESA (European
Space Agency), among many others.

1.2 The project “STDF2EXF Converter Development” at Critical Software, SA

The project “STDF2EXF Converter Development” took place between October 1st and March
7th at Critical Software’s facilities in Porto, Portugal. Aimed to be done by an engineer
trainee, in a period of approximately 20 weeks, this project involved designing and
implementing a new component in the Engineering Base System (EBS), a system maintained
by Critical Software and used by Infineon Technologies within the semiconductor
Manufacturing Data Analysis context.

The project came to life with the objective of optimizing existing work tasks executed by
some of the Engineering Base System’s development teams at Critical Software, as well of
presenting a new and possibly rather advantageous solution for one of its modules – the EBS
DB (Engineering Base System Database) – to the system’s client, Infineon Technologies.

STDF2EXF Converter Development

2

The component to be developed – a STDF2EXF Converter, an application built in C++ that
should transform binary files in the industry standard STDF format into Infineon
Technologies’ proprietary XML based EXF format – would come as a substitute of an
existing component of EBS DB – the STDF Loader – introducing into the system more
homogeneity, easier file handling and possibly higher maintenance capabilities and better
performance. Added to such purposes, this converter should as well be used apart from an
EBS DB system installation – working in standalone mode – with the goal of quickly and
easily editing binary files in the STDF format. This came as an effort to fight the urge the
system’s developers had to view or edit information “on the go” of STDF files which are not
editable and need to be effectively converted into text files in a short amount of time.

The project milestones comprised gaining business know-how on the semiconductor
manufacturing process and the Engineering Base System, gathering and specifying the
application requirements and test cases, building a functional vertical prototype, testing and
validating the system, and reporting the work done.

The project was successful and the STDF2EXF Converter is already being used in its
standalone mode at Critical Software. High priority tasks were performed successfully and
low priority tasks were completed in a satisfactory level. The solution was properly
documented, requirements were gathered, test cases were specified and the developed
prototype was tested. The project status is open.

1.3 The EBS system

The Engineering Base System (EBS) is a Manufacturing Data Analysis (MDA) platform
which gets, stores, processes and extracts wafer and chip production data from the test
machines of Infineon Technologies’ fabric units.

Infineon Technologies is a multinational German company with offices worldwide which
offers semiconductors and system solutions for automotive and industrial electronics, chip
cards and security, as well as applications in communications [2]. The company’s test
machines – known as testers – generate wafer and chip production data which is loaded into
EBS and stored in a global database, further accessed by experts for analysis and other
purposes.

The following pages introduce this system in some detail and give an insight of the
semiconductor manufacturing process, two topics which are directly connected with the
project’s scope.

The subchapters Data collection, EBS and Engineering Data Analysis, together with EBS
structure, describe EBS based on what was presented in [5].

Semiconductor production

The chips and integrated circuits present in our everyday electrical and electronic devices are
manufactured in a process known as semiconductor device fabrication [3]. It is a multiple step
sequence of photographic and chemical processing phases during which electronic circuits are
gradually created on a wafer made of pure semiconducting material [3]. Silicon is the most
commonly used semiconductor material today, along with various compound semiconductors
[3].

STDF2EXF Converter Development

3

The necessary steps to produce a semiconductor integrated circuit can be grouped in two
areas:

• Frontend processing;

• Backend processing.

As described in [4], the former occurs in sites known as fabs, where wafers, grouped in lots,
are engineered and built, by incorporating transistors directly on the wafer silicon. A fab is
one of the most complex industrial facilities to be found anywhere. It has the cleanest
environment in the world – many times cleaner than the best hospital operating theatre. The
process of wafer fabrication is a series of 16-24 loops, each putting down a layer on the
device. At each stage, various inspections and measurements are performed to monitor the
process and equipment. Supporting the entire process is a complex infrastructure of materials
supply, waste treatment, support, logistics and automation. Once the various semiconductor
devices have been created they are interconnected with metal wires to form the desired
electrical circuits, connecting the different devices.

Continuing what is mentioned in [4], the backend processing incorporates phases such as
testing, assembly and packaging, where the finished wafer is split up into individual dies
(chips) that are then assembled into packages, which can be handled in the final applications
(Figure 1). A full functional electrical test is performed at both wafer and package level to
ensure the outgoing quality of a set of good, usable integrated circuits.

Figure 1: Decomposition of a lot into wafers and chips

Data collection

The data collection by EBS can occur on several levels, since test systems can provide data on
a sub-die, die (chip), wafer and lot level. Such data can include information regarding the
frontend process – wafer creation, process and testing – as well as the backend process –
probe, pre-assembly, assembly and module/component testing. The main data processed by
EBS is as follows:

• Wafer processing data, such as film thickness, sheet resistance, particle and defect
locations;

• Wafer, component and module electrical test data;

• Lot and wafer tracking data;

STDF2EXF Converter Development

4

• Process slit information.

EBS and Engineering Data Analysis

EBS comprises a set of tools that allow one to supervise chip manufacturing processes,
investigating their development and detecting possible errors. The system allows one to:

• Generate diverse types of reports, such as trend charts (bad lots identification), lot
reports and detailed wafer reports (Figure 2);

• Analyse wafer maps (Figure 3), which provide a good perspective of the different
wafer zones, in order to detect flaws or possible lot defects;

• Compare information between the stored data at EBS and data warehouses;

• Understand the relation between the analysed manufacturing data and the process
history, lot history and lot attributes information;

• Define chip, wafer or lot customized extractions;

• Schedule extractions and reports;

• Gather statistics and make use of data mining and recognizing patterns.

Figure 2: Examples of a trend chart, lot and wafer reports

STDF2EXF Converter Development

5

Figure 3: A wafer map example

The usage of such an Engineering Data Analysis tool helps one assure better quality on chip
manufacturing by properly identifying lot problems, correlating such problems with their
causes and initiating corrective actions.

EBS structure

The EBS system runs on a HP-UX (Hewlett-Packard’s Unix based operating system) platform
and is divided into different modules, each of them with a unique purpose (Figure 4):

• Database (EBS DB) – a data model to store memory and logic data from the frontend
and backend processing;

• Data Loading (EBS DB DL) – extracts, transforms and loads data into EBS, handling
over 50 different data types and executing complex normalization, validation,
consolidation and data aggregation operations;

• Extraction Engine (EBS XE) – extraction layer between the database and the user or
other applications, retrieving extraction requests in EDL (Extraction Definition
Language), translating such information into real SQL (Structured Query Language)
statements and generating an EFF (Extraction File Format) file with the results;

• Extraction Tool for Infineon (EBS XTI) – allows the user to define an extraction in
EDL;

• Data Archiving (EBS DA) – information archiving and de-archiving according to legal
requirements and customer needs.

STDF2EXF Converter Development

6

Figure 4: The EBS modules

As highlighted in the text and picture above, the EBS Database and Data Loading modules are
those which are directly related to the work developed in this project, therefore being
introduced in some detail in the following pages.

Work packages

Every unit that is moved and transformed in EBS is called a work package (WP). It is a folder
that contains one or more raw files1 of the same format inside, e.g., STDF, CP, 2DPATREC,
APRC (Figure 5).

Figure 5: Example of work packages

Work package files contain several records, each with a different meaning or purpose, with
information that will be analysed, validated and loaded into the system based on its record
type.

Work packages can be categorized in two distinct ways:

• Master data or fact data work packages;

• Binary or text based work packages.

1 The designation of raw files comes from the fact that such files contain raw, untreated information that is

extracted directly from test machines – testers – and can be further processed and validated by Engineering
Data Analysis tools, such as EBS. Raw files might have different formats, such as STDF or other file formats
handled by EBS, such as CP, 2DPATREC, among others.

STDF2EXF Converter Development

7

Master data work packages are usually related to fact data work packages, since their
information can be linked with a significant meaning. The former usually include information
that the latter require in order to be processed by EBS.

In another perspective, text or ASCII (American Standard Code for Information Interchange)
data – 2DPATREC, APRC, CP, among other formats handled by EBS – is easily readable by
the human being and editable with any text processing tool, while binary data – STDF format
–, on the contrary, is encoded in a way that does not allow one to understand it without
decoding it first to text data. EBS supports and processes the types described above in
different ways as detailed in the next pages.

EBS Database and Data Loading

The EBS Database module is an aggregation of three different databases, as follows:

• Repository database (EBS_REPO) – stores EBS configurations and supports the
system functioning.

• Stage database (EBS_STAGE) – temporary database, which contains information
extracted from work packages’ raw files.

• Analytical database (EBS_ANA) – final database, where information is saved for
further access; this information is usually stored during one year for lot and wafer data
and six months for chip data.

EBS Database is supported by EBS Data Loading, which is the process of getting, processing
and loading into the analytical database chip and wafer data from Infineon’s testers. Such
process is executed differently depending if the work packages contain text or binary data.
The differences can be seen in Figure 6 and Figure 7.

Figure 6: Data loading for text work packages

STDF2EXF Converter Development

8

Figure 7: Data loading for binary work packages

The major components that compose the EBS Data Loading module are described as follows:

• JM (Job Management) Emulator – the main process of EBS Data Loading which
controls all the other components, initializing and terminating them when needed,
through the exchange of YODA2 (Your Own Data Adapter) messages.

• WP Scanner – scans the system’s input data folders and detects the presence of new
work packages waiting to be processed; it analyzes the raw files contained in each
work package, detects their file types and formats, and registers the work package in
the repository database; moves the work package to the appropriate converter for
further processing or, if the work package is not valid, moves it to an error folder.

• Converters (text data only) – convert the raw data files included in each work package
into EXF files (XML based), which then become ready to be loaded into the staging
area (see EXF Loader); each raw file type has its own converter, e.g.,
2DPATREC2EXF Converter for 2DPATREC files, APRC2EXF Converter for APRC
files.

• EXF Loader (text data only) – loads the EXF files generated from the converters into a
stage database – a temporary database where data is analysed and normalized before
being moved to a final database.

• STDF Loader (binary data only) – converts and loads STDF files into the stage
database, working both as a converter and a loader specifically for such files – the

2 YODA is an application integration framework developed by Infineon Technologies which provides

functionalities for communication, security and configuration of applications that might be running on different
operating systems or using different technologies [6]. EBS uses the YODA framework and its components
communicate through YODA messages.

STDF2EXF Converter Development

9

main goal of the project is to transform this component into a new converter and
migrate its loading logic into the EXF Loader.

• Rules Engine – performs complex operations of analysis, validation, normalization
and aggregation on the data loaded into the stage database, in order to prepare it to be
loaded into the final database – the analytical database.

• Loader Oper – loads the information from the stage database into the analytical
database.

1.4 The STDF format

The Standard Test Data Format (STDF) is a proprietary file format for semiconductor test
information originally developed by Teradyne, now widely used throughout the
semiconductor industry [7]. It is commonly produced by Automatic Test Equipment (ATE)
platforms [7] from many major companies. STDF is a binary format and its extraction to
ASCII text is non trivial as it involves a detailed comprehension of the STDF specification,
the 2007 version 4 specification being over 100 pages in length [7].

The STDF format comes as an effort to define a common ground that allows testers, database
management systems and data analysis software to store and communicate test data in a form
that is useful, general, and flexible [8].

As described in [9], using a single format such as STDF gives one many advantages for lining
up the process of creating, storing and handling measurement data, namely:

• Data of different tester types can be compared to see if tests are correlating;

• The STDF file format is very compact and saves storage space;

• There are tester types which directly generate this STDF file format.

EBS supports the STDF format, processing and storing such files in the analytical database.
This is done, however, in a different way than for other data types, since STDF is a binary
format, opposing to the other formats handled by EBS, which are text based. This lead to the
introduction of a specific component into the EBS Data Loading module to process STDF
files. This component, the STDF Loader, converts raw STDF files into memory and loads
their information into the stage database, not following the mechanism used to process text
files, in which each file passes through a specific converter and is loaded by the EXF Loader
into the stage database. Such differences are the basis for the problem that boosted this
project, which will be analysed in more detail in Chapter 2.

1.5 Report’s structure

This document is specifically organised to fulfil the goal of describing in detail the different
phases of the project and the work that has been done.

Chapter 1, Introduction, gives an overview of the project and its context, namely the EBS
system, the semiconductor manufacturing process and the STDF format.

Chapter 2, Problem analysis, describes the problem, the conditions to carry it out, the project
planning and its delimitation.

STDF2EXF Converter Development

10

Chapter 3, Technological review, presents the EXF format, the position of the STDF format
in the semiconductor industry, the existing solutions for similar problems and the languages
that were used during the prototype development.

Chapter 4, Specification of the new solution, comprises the different models that were
designed prior to the prototyping stage, together with the gathered requirements, specified use
cases and test cases.

Chapter 5, Prototype development, introduces the developed prototype, showing how it was
built, the choices that were made throughout its development and the difficulties found.

Chapter 6, Project concretisation, reviews the work that was done, by analysing the system
tests and the obtained results, and by comparing the executed tasks with the initial project
plan.

Chapter 7, Conclusions and future work perspective, includes an overall summary of the
previous chapters, the conclusions drawn throughout and at the end of the project, and
demonstrates how the executed work can be carried on in the future.

A project log is included as annex in the end of the document.

The documents Software Requirements Specification [11], Test Case Specification [19],
System Test Report [20] and Regression Testing Specification [21], created by the author, and
the documents Standard Test Data Format (STDF) Specification Version 4 [8] and EXF
Schema Specification [12], are included as annexes to this document in electronic format.

STDF2EXF Converter Development

11

2 Problem analysis

The problem analysis reported in this document is not part of the project’s work since the
problem and its possible solutions had already been taken into consideration by the project
manager and its main stakeholders, who had already defined its goals in advance.

Below is shown a table containing an overview of the project’s problem, its possible solutions
and their advantages. Further discussion is based on what was described in [11].

Problems Solutions

STDF files are processed differently than other fil e types

- Extra component: STDF Loader

- Heterogeneous system

Process binary raw files similarly to text raw file s

- Develop a new standardized converter that transforms
binary raw STDF files into XML text based EXF files

- Eliminate the STDF Loader and integrate the new
developed converter into the existing system, making it in
this way homogeneous

It is difficult to quickly view and edit a STDF raw file

- Hard to edit binary data

- The EBS system needs to be installed and compiled in order
to achieve this

Introduce functionality that allows one to quickly decode
or edit a STDF raw file

- Generate easily editable XML files from STDF raw data

- Perform this independently, i.e., running apart from the EBS
system

Table 1: Problem description overview

The EBS system processes and loads into a database text and binary raw data files, which
contain chip and wafer test data, created by Infineon’s test machines.

The EBS system currently processes text raw data files, e.g., 2DPATREC, ChipXRef or
FAB300EDC, in a different way than binary raw data files, e.g., STDF. While the former are
firstly processed by a specific converter and then loaded into the database with a standard
loader component – EXF Loader –, the latter are converted and loaded directly into the
database using a specific loader – STDF Loader.

Figure 8 shows the flow of STDF data in the current system.

STDF2EXF Converter Development

12

cmp STDF Loader

JM Emulator

WP Scanner STDF Loader

«work package»
STDF Raw file

«database»
EBS_STAGE

Text data

«flow»

Binary data

«flow»

Yoda messages

«flow»

Yoda messages

«flow»

Figure 8: The current processing of STDF files

As seen above, STDF binary raw data is converted into text data and loaded into the
EBS_STAGE database using a single component – the STDF Loader. This component
converts the input binary data in memory and loads it afterwards into the database, not
generating any files during this process.

This approach has two issues, as follows:

• The STDF data loading process is not achieved in a standard way: all the other data
type files are converted into XML based EXF files using a specific converter, e.g.,
2DPATREC2EXF Converter for 2DPATREC files or APRC2EXF Converter for
APRC files, and then loaded into the database with the EXF Loader component.

• STDF files contain binary data, which is difficult to interpret, and quite often the
system administrators need this information to be quickly accessible in a XML (EXF)
file. This is not possible in the current system, since the STDF Loader does not
generate output EXF files from the conversion, transforming instead the data in
memory before its loading into the database.

Figure 9 shows a model for a new solution proposed in this thesis, in which the system shall
process all data types in a homogeneous way, with the introduction of a STDF2EXF
Converter for the conversion of STDF files.

STDF2EXF Converter Development

13

cmp STDF Converter

JM Emulator

WP Scanner STDF Conv erter EXF Loader

«work package»
STDF Raw File

«database»
EBS_STAGE

Text data

«flow»

XML text data

«flow»

Binary data

«flow»
Yoda messages

«flow»

Yoda messages

«flow»

Binary data

«flow»

Yoda messages

«flow»

Figure 9: A prototype for the future processing of STDF files

A new STDF2EXF Converter should be added to the EBS Data Loading process, replacing
the existing STDF Loader and incorporating its main conversion logic. The converter should
process binary raw STDF files and generate EXF files as output, which should be loaded into
the EBS database by the EXF Loader component.

Once the STDF2EXF Converter is implemented, the STDF loading logic of the STDF Loader
should be migrated and integrated into the EXF Loader, to allow such files to be loaded into
the staging database successfully and as expected.

After the implementation of the converter and its full integration with EBS DB it should be
possible to evaluate the processing of STDF files, comparing the performances of the new and
old systems.

2.1 Persons and parties involved

This was an individual project, planned by a project manager from Critical Software,
supervised by a designated tutor at the company and a selected teacher at FEUP. Table 2
shows the persons and parties involved in the project.

Persons and parties directly involved Roles

Daniel Silva Project development, trainee

Helder Ferreira Project manager

Hugo Casimiro Tutor (EBS DB team)

Prof.ª Ana Paula Rocha Supervisor from FEUP

Table 2: Persons and parties involved in the project

2.2 Resources, equipment and knowledge

The paragraphs below describe some pertinent points regarding the work to be done.

Would we have the knowledge needed?

EBS is a complex system that one needs to be introduced to through a series of formation
sessions and documentation reading. The semiconductor manufacturing process would also

STDF2EXF Converter Development

14

need to be a subject of study, since many of the concepts approached in this project are related
to this matter. Nevertheless, no previous knowledge about this subject was required in order
to being able to take the project ahead.

Although the converter’s programming would be made using C++, a language which was not
studied by the trainee prior to this project, this matter was not seen as a barrier to the work to
develop, since C++ has an object oriented nature that is common to the languages the author
had experience in. The trainee was already familiar with the other languages and
environments used in this project such as XML, SQL and Unix.

Would we have the time needed?

The project was planned in a way that would allow the work to be distributed by balanced
time windows, allowing the necessary time to carry on the different tasks. The time initially
allocated for the project was somehow limited, in a way that it would allow the
implementation of the STDF2EXF converter, not leaving however any open time window for
this component’s integration with the EBS system.

Would we have the material needed?

The company was prepared with all the physical resources and equipment needed in order to
respond to the foreseen demands of the project.

2.3 Plan and procedure

The project was planned in accordance with the amount of work to be done, between the
project manager, tutor and trainee, having been approved by the supervisor from FEUP, Prof.ª
Ana Paula Rocha. All tasks were executed by the trainee, reviewed and approved by the
project tutor, Hugo Casimiro, in accordance to Critical Software’s existing Quality Assurance
procedures.

The project plan was updated throughout the project and significantly changed in mid
January. The two plan versions are detailed in the sections below.

Initial project plan – October 2007

The initial Gantt chart with the project tasks, milestones and deliverables is shown in Figure
10.

STDF2EXF Converter Development

15

ID WBS Task Name Duration Start Finish

1 DS Daniel Internship PLN 103,5 days Mon 01-10-07 Thu 28-02-08

2 WP-1000 Business Know-How 9,5 days Mon 01-10-07 Mon 15-10-07

3 WP-1100 EBS Data Loading 1 day Mon 01-10-07 Mon 01-10-07

4 WP-1200 EBS Data Model 2 days Tue 02-10-07 Wed 03-10-07

5 WP-1300 Converters Framework 2 days Thu 04-10-07 Mon 08-10-07

6 WP-1400 STDF Format 0,5 days Tue 09-10-07 Tue 09-10-07

7 WP-1500 EXFLoader 2 days Tue 09-10-07 Thu 11-10-07

8 WP-1600 STDFLoader 2 days Thu 11-10-07 Mon 15-10-07

9 WP-2000 Requirements Engineering Phase 20 days Mon 15-10-07 Tue 13-11-07

10 WP-2100 Softw are Requirement Specification 10 days Mon 15-10-07 Mon 29-10-07

11 WP-2200 Test Case Specification 10 days Mon 29-10-07 Tue 13-11-07

12 WP-3000 Phase 1 47 days Tue 13-11-07 Mon 21-01-08

13 WP-3100 Design Engineering Phase 30 days Tue 13-11-07 Wed 26-12-07

14 WP-3110 Code implementation 30 days Tue 13-11-07 Wed 26-12-07

15 WP-3200 Validation Phase 7 days Wed 26-12-07 Mon 07-01-08

16 WP-3210 System Testing 5 days Wed 26-12-07 Thu 03-01-08

17 WP-3220 Update documentation 2 days Thu 03-01-08 Mon 07-01-08

18 WP-3300 Internship Documentation 10 days Mon 07-01-08 Mon 21-01-08

19 WP-3310 Write documentation 10 days Mon 07-01-08 Mon 21-01-08

20 WP-4000 Phase 2 22 days Mon 21-01-08 Thu 21-02-08

21 WP-4100 Design Engineering Phase 15 days Mon 21-01-08 Tue 12-02-08

22 WP-4110 Code implementation 15 days Mon 21-01-08 Tue 12-02-08

23 WP-4200 Validation Phase 7 days Tue 12-02-08 Thu 21-02-08

24 WP-4210 System Testing 5 days Tue 12-02-08 Tue 19-02-08

25 WP-4220 Update documentation 2 days Tue 19-02-08 Thu 21-02-08

26 WP-5000 Performance Study 5 days Thu 21-02-08 Thu 28-02-08

27 WP-5100 Run Regression Tests 3 days Thu 21-02-08 Tue 26-02-08

28 WP-5200 Compare Results 1 day Tue 26-02-08 Wed 27-02-08

29 WP-5300 Write Performance Report 1 day Wed 27-02-08 Thu 28-02-08

30

31 ML Milestones 103,5 days Mon 01-10-07 Thu 28-02-08

32 ML-01 KOM 0 days Mon 01-10-07 Mon 01-10-07

33 ML-02 Business Know -How Complete 0 days Mon 15-10-07 Mon 15-10-07

34 ML-03 Requirements ready 0 days Tue 13-11-07 Tue 13-11-07

35 ML-04 Source Code is implemented 0 days Wed 26-12-07 Wed 26-12-07

36 ML-05 Source Code is Validated 0 days Mon 07-01-08 Mon 07-01-08

37 ML-06 Internship Report is done 0 days Mon 21-01-08 Mon 21-01-08

38 ML-07 EXFLoader is implemented 0 days Tue 12-02-08 Tue 12-02-08

39 ML-08 EXFLoader is tested 0 days Thu 21-02-08 Thu 21-02-08

40 ML-09 Performance conclusions are available 0 days Thu 28-02-08 Thu 28-02-08

41

42 DL Deliverables 74 days Tue 13-11-07 Thu 28-02-08

43 DL-01 Softw are Requirement Specification 0 days Tue 13-11-07 Tue 13-11-07

44 DL-02 Test Case Specif ication 0 days Tue 13-11-07 Tue 13-11-07

45 DL-03 Test Log Report (Phase 1) 0 days Mon 07-01-08 Mon 07-01-08

46 DL-04 Source Code (Phase 1) 0 days Mon 07-01-08 Mon 07-01-08

47 DL-05 Internship Report 0 days Mon 21-01-08 Mon 21-01-08

48 DL-06 Test Log Report (Phase 2) 0 days Thu 21-02-08 Thu 21-02-08

49 DL-07 Source Code (Phase 2) 0 days Thu 21-02-08 Thu 21-02-08

50 DL-08 Performance Report 0 days Thu 28-02-08 Thu 28-02-08

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

01-10

15-10

13-11

26-12

07-01

21-01

12-02

21-02

28-02

13-11

13-11

07-01

07-01

21-01

21-02

21-02

28-02

F S S M T W T F S S M T W T F S S M T W T F S S
10 Sep '07 01 Oct '07 22 Oct '07 12 Nov '07 03 Dec '07 24 Dec '07 14 Jan '08 04 Feb '08 25 Feb '08 17 Mar '08

Figure 10: Initial project plan

The first phase of the project had the goal of obtaining the business know-how and studying
the platform on which the work would focus. This involved getting familiar with the
semiconductor manufacturing process, the EBS system, the STDF and EXF formats, and the
architecture and design of EBS Data Loading’s main features, i.e., STDF Loader, EXF
Loader, EBS data model and the converters framework.

Once a solid knowledge base had been built, the requirements engineering phase should
follow, having as deliverables a software requirements specification and a test case
specification, as the basis of the work that would follow.

As one can see in the figure above, the project was divided into two phases after the
Requirements Engineering Phase. According to MIEIC’s regulations, the project should last
20 weeks, an amount of time which would not be enough to complete the project defined in
accordance to Critical Software’s interests and the six months contract made with the trainee.
Given the circumstances, it was decided in a meeting prior to the project start that only a
portion of the project would be presented to FEUP and the remaining portion would be done
as part of the internship at Critical Software. The plan was, thus, divided as follows:

• Phase 1, included in the protocol defined between Critical Software and FEUP, which
did not comprise more than 20 weeks, according to FEUP's regulations.

• Phase 2, exclusive to Critical Software, not presented to FEUP.

In Phase 1, a prototype for the STDF2EXF Converter to be used apart from EBS, working in
standalone mode, should be built. Both Phase 1 and Phase 2 should be followed by a
validation period in which the system would be tested and approved. In the end of this first
phase, two weeks would be allocated to allow the writing of this document.

STDF2EXF Converter Development

16

Phase 2 would involve integrating the created STDF2EXF Converter with the existing EXF
Loader, in order to complete the workflow started with the introduction of this converter, so
that STDF files could be fully loaded into the EBS system using this new component.

The last set of tasks, following Phase 2, would include running the system regression tests and
writing a performance report. These tests would have the goal of comparing the performances
of a system with the STDF Loader against a system with the new STDF2EXF Converter.

Updated project plan – January 2008

The project plan was significantly updated in mid January, due to changes on MIEIC’s
Project regulations for its initial semester of activity since it has been adopted by the course’s
direction. The project report delivery deadline was moved from February 29th to April 11th
2008, allowing in this way an extra margin for the project completion, originating a new plan
as seen in Figure 11.

ID WBS Task Name Duration Start Finish

1 DS Daniel Internship PLN 105 days Mon 01-10-07 Fri 29-02-08

2 WP-1000 Business Know -How 9,5 days Mon 01-10-07 Mon 15-10-07

3 WP-1100 EBS Data Loading 1 day Mon 01-10-07 Mon 01-10-07

4 WP-1200 EBS Data Model 2 days Tue 02-10-07 Wed 03-10-07

5 WP-1300 Converters Framework 2 days Thu 04-10-07 Mon 08-10-07

6 WP-1400 STDF Format 0,5 days Tue 09-10-07 Tue 09-10-07

7 WP-1500 EXFLoader 2 days Tue 09-10-07 Thu 11-10-07

8 WP-1600 STDFLoader 2 days Thu 11-10-07 Mon 15-10-07

9 WP-2000 Requirements Engineering Phase 20 days Mon 15-10-07 Tue 13-11-07

10 WP-2100 Softw are Requirement Specif ication 10 days Mon 15-10-07 Mon 29-10-07

11 WP-2200 Test Case Specification 10 days Mon 29-10-07 Tue 13-11-07

12 WP-3000 Phase 1 37 days Wed 31-10-07 Fri 21-12-07

13 WP-3100 Design Engineering Phase 30 days Wed 31-10-07 Wed 12-12-07

14 WP-3110 Code implementation 30 days Wed 31-10-07 Wed 12-12-07

15 WP-3200 Validation Phase 7 days Thu 13-12-07 Fri 21-12-07

16 WP-3210 System Testing 5 days Thu 13-12-07 Wed 19-12-07

17 WP-3220 Update documentation 2 days Thu 20-12-07 Fri 21-12-07

18 WP-4000 Phase 2 22 days Wed 09-01-08 Fri 08-02-08

19 WP-4100 Design Engineering Phase 15 days Wed 09-01-08 Tue 29-01-08

20 WP-4110 Code implementation 15 days Wed 09-01-08 Tue 29-01-08

21 WP-4200 Validation Phase 7 days Wed 30-01-08 Fri 08-02-08

22 WP-4210 System Testing 5 days Wed 30-01-08 Wed 06-02-08

23 WP-4220 Update documentation 2 days Thu 07-02-08 Fri 08-02-08

24 WP-5000 Performance Study 5 days Mon 11-02-08 Fri 15-02-08

25 WP-5100 Run Regression Tests 3 days Mon 11-02-08 Wed 13-02-08

26 WP-5200 Compare Results 1 day Thu 14-02-08 Thu 14-02-08

27 WP-5300 Write Performance Report 1 day Fri 15-02-08 Fri 15-02-08

28 WP-3300 Internship Documentation 10 days Mon 18-02-08 Fri 29-02-08

29 WP-3310 Write documentation 10 days Mon 18-02-08 Fri 29-02-08

30

31 ML Milestones 105 days Mon 01-10-07 Fri 29-02-08

32 ML-01 KOM 0 days Mon 01-10-07 Mon 01-10-07

33 ML-02 Business Know -How Complete 0 days Mon 15-10-07 Mon 15-10-07

34 ML-03 Requirements ready 0 days Tue 13-11-07 Tue 13-11-07

35 ML-04 Source Code is implemented 0 days Wed 12-12-07 Wed 12-12-07

36 ML-05 Source Code is Validated 0 days Fri 21-12-07 Fri 21-12-07

37 ML-06 Internship Report is done 0 days Fri 29-02-08 Fri 29-02-08

38 ML-07 EXFLoader is implemented 0 days Tue 29-01-08 Tue 29-01-08

39 ML-08 EXFLoader is tested 0 days Fri 08-02-08 Fri 08-02-08

40 ML-09 Performance conclusions are available 0 days Fri 15-02-08 Fri 15-02-08

41 ML-10 Start w ork on phase 2 0 days Wed 09-01-08 Wed 09-01-08

42

43 DL Deliverables 75,5 days Tue 13-11-07 Fri 29-02-08

44 DL-01 Softw are Requirement Specification 0 days Tue 13-11-07 Tue 13-11-07

45 DL-02 Test Case Specification 0 days Tue 13-11-07 Tue 13-11-07

46 DL-03 Test Log Report (Phase 1) 0 days Fri 21-12-07 Fri 21-12-07

47 DL-04 Source Code (Phase 1) 0 days Fri 21-12-07 Fri 21-12-07

48 DL-05 Internship Report 0 days Fri 29-02-08 Fri 29-02-08

49 DL-06 Test Log Report (Phase 2) 0 days Fri 08-02-08 Fri 08-02-08

50 DL-07 Source Code (Phase 2) 0 days Fri 08-02-08 Fri 08-02-08

51 DL-08 Performance Report 0 days Fri 15-02-08 Fri 15-02-08

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

01-10

15-10

13-11

12-12

21-12

29-02

29-01

08-02

15-02

09-01

13-11

13-11

21-12

21-12

29-02

08-02

08-02

15-02

F S S M T W T F S S M T W T F S S M T W T F S
10 Sep '07 01 Oct '07 22 Oct '07 12 Nov '07 03 Dec '07 24 Dec '07 14 Jan '08 04 Feb '08 25 Feb '08

Figure 11: Updated project plan

In the new plan, Phase 1 and Phase 2 were aggregated and the report writing stage was moved
so that the entire project could be completed in time of being presented to FEUP and included
in this document.

2.4 Requirements and delimitation

This project was delimited based on time constraints and its complexity, with its requirements
having been divided by priority.

STDF2EXF Converter Development

17

The following goals were set as being high priority:

• The development of a prototype for the STDF2EXF Converter, which could run in
standalone mode, apart from any EBS DB installation;

• The project report writing, together with the converter’s documentation, namely
Critical Software’s Software Requirement Specification and Test Case Specification
documents.

The following goals were set as being low priority (not part of the initial plan but included in
its second version of January 2008):

• The full integration of the STDF2EXF converter with the EXF Loader and EBS DB;

• A performance study involving the comparison between the new system and the
previous one, if time permitted, after the full integration of the STDF2EXF Converter
with the system.

STDF2EXF Converter Development

18

3 Technological review

This chapter presents the state of the art surrounding the problem approached in this work. In
the next pages an overview of the EXF format is made, as described in [12], followed by an
insight into the STDF format and existing associated applications. An explanation of how
existing solutions could be reused in this project is made in the next subchapter, followed by
an overview of the programming languages used during design and development.

3.1 The EXF format

Engineering Data Analysis Exchange Format (EXF) is Infineon Technologies’ exchange
format between the company’s Manufacturing Data Analysis (MDA) databases and MDA
tools. It is an Intermediate Data Format (IDF) into which raw data files are converted in order
to be loaded into a database. It is XML based and should be used for all kinds of complex data
structures which can not be expressed in a simple two dimensional table. The format is used
for general data exchange purposes, such as data extraction, although it was designed with
focus on data loading.

File types

There are two file types associated with EXF, being the EXF schema and the instance
documents.

The former is a XML Schema document (.xsd) that describes the structure and the syntax of
EXF data. Moreover, it includes the constraint definitions, such as primary, foreign and
unique keys, enumeration and data types, to ensure the data consistency and some general
database relations. This document is the actual EXF format description in XML language and
it is used to validate EXF data against the rules and structure specified in the XML Schema.

An EXF instance document contains the actual data expressed in XML syntax. The allowed
elements, attributes and structure are defined in the EXF schema, which can be used to
validate the EXF data. Validation is an optional process when parsing XML data and requires
a capable parser and a reference in the XML root element (for EXF data it is the root element
“EXF”) to the location of the corresponding schema document.

Structure

The XML elements of the EXF file have no hierarchical structure, mainly due to the EXF file
size restrictions and the compliance to the EBS data model.

Raw files can be substantially large, and the conversion from raw data types to XML causes
an additional overhead on the file size. One of the EXF requirements states that the ratio of
uncompressed EXF against raw data files can not exceed 10, as the ratio of compressed EXF
against raw data files can not exceed 5. To fulfil this requirement, some compromises were
made to the pure XML definition, e.g., content of certain elements consists of comma
separated values, which needs to be interpreted by the application program without or with
less help from the XML schema metadata.

The EBS data model is designed to support all Engineering Data Analysis data sources and its
business processes. Changes in the data model will also lead to adjustments and modifications

STDF2EXF Converter Development

19

on the EXF format specification. The frequency of data model changes should however
reduce with the lifetime and stabilization process of the EBS framework.

Figure 12 shows an example of an EXF instance document, based on real data.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by Thomas Giegold (Infineon
Technologies/I.S.) -->
<EXF xmlns =" http://www.infineon.com/exf " xmlns:xsi =" http://www.w3.org/2001/XMLSchema-
instance " xsi:schemaLocation =" http://www.infineon.com/exf
../EXF_Schema.xsd " Version =" V01.00 ">
 <TrackingUnit ID =" 1" TUType =" WAFER" CreateDate =" 2002-08-22T16:20:30 "
MotherLotID =" A95033 " WafNr =" 15"/>
 <MeasAllowed ID =" 2" MeasStep =" TVM" MeasDataSource =" PCM" SumDesc =""/>
 <Measurements ID =" 3" MeasAllowedID =" 2" MeasCounter =" 1" CompSeqNr =" 0"
TimestampBegin =" 2002-07-22T00:55:30 " TimestampEnd =" 2002-07-22T01:19:24 "
TimestampInsertion =" 2002-07-22T01:27:27 " MeasLotID =" A95033.1 " MeasCategory =" PRODUCTIVE"
SumMeasID=" 1" TUID =" 1"/>
 <MeasZoneVals ID =" 4" ZoneType =" NOZONE" Val =" NOVAL"/>
 <EnvVals MeasID =" 5" EnvType =" PROBER" ZoneValID =" 4" Val =" PROB92PA"/>
 <EnvVals MeasID =" 6" EnvType =" TESTER" ZoneValID =" 4" Val =" CLAS92PA"/>
 <EnvVals MeasID =" 7" EnvType =" DESIGN_ORIG" ZoneValID =" 4" Val =" 256M_D14_DD2"/>
 <EnvVals MeasID =" 8" EnvType =" BASIC_DESIGN" ZoneValID =" 4" Val =" 256M-D14"/>
 <EnvVals MeasID =" 9" EnvType =" SUB_DESIGN" ZoneValID =" 4" Val =" DD2"/>
 <ParmDefs ID =" 10" MeasAllowedID =" 2" ParmType =" ANA" Name=" xBV_C32_AD_PW"/>
 <ParmDefs ID =" 11" MeasAllowedID =" 2" ParmType =" ANA" Name=" xCA_C04_AD_PW"/>
 <ParmDefs ID =" 13" MeasAllowedID =" 2" ParmType =" ANA" Name=" DL_N_023"/>
 <MeasPartPos MeasID =" 3" PosType =" RETORIG">
 <Pos X =" 14" Y =" 1"/>
 <Pos X =" 6" Y =" 5"/>
 <Pos X =" 26" Y =" 5"/>
 <Pos X =" 2" Y =" 8"/>
 <Pos X =" 14" Y =" 8"/>
 <Pos X =" 18" Y =" 10"/>
 <Pos X =" 10" Y =" 11"/>
 <Pos X =" 6" Y =" 12"/>
 <Pos X =" 26" Y =" 12"/>
 <Pos X =" 14" Y =" 16"/>
 </ MeasPartPos >
 <MeasPartVals MeasID =" 1" ParmID =" 1">
 <NumVal>-1.144900E+01 -1.119500E+01 -1.102400E+01 -1.098800 E+01 -1.123500E+01
-1.116200E+01 -1.109900E+01 -1.091100E+01 -1.095200 E+01 -1.085800E+01 </ NumVal>
 </ MeasPartVals >
 <MeasPartVals MeasID =" 1" ParmID =" 2">
 <NumVal>+1.092825E-11 +1.118575E-11 +1.151915E-11 +1.132575 E-11 +1.109375E-11
+1.107695E-11 +1.120295E-11 +1.130855E-11 +1.170305 E-11 +1.171565E-11 </ NumVal>
 </ MeasPartVals >
 <MeasPartVals MeasID =" 1" ParmID =" 3">
 <NumVal>+1.946534E+01 +2.049802E-02 +3.633683E+01 +2.15706 3E+01 +1.783775E+01
+1.383182E+01 +1.781600E+01 +2.094952E+01 +3.505575 E+00 +2.116847E+01 </ NumVal>
 </ MeasPartVals >
</ EXF>

Figure 12: EXF instance document example

A superficial analysis of the EXF file structure is described in 5.1 Prototype engineering.

3.2 STDF and the ATE industry

The STDF file format specification document was created in the 80's, by Teradyne [10].
STDF was developed with the intent of being a simple, flexible, portable data format to which
existing data files and formats could be easily and economically converted [8]. Teradyne
aimed to cover the existing lack of test result data compatibility between test systems of
different manufacturers, and sometimes within the product lines of a single manufacturer [8],
by defining a file format used to store test results and making this file format a standard so
that the whole industry could benefit from it. By doing so, ATE users and ATE manufacturers

STDF2EXF Converter Development

20

were able to support a common database format and different brands of testers started
working with a unified statistical package.

As stated in [8], “STDF is flexible enough to meet the needs of the different testers that
generate raw test data, the databases that store the data, and the data analysis programs that
use the data. The fact that it is a single, coherent standard also facilitates the sharing and
communicating of the data among these various components of the complete ATE system.
STDF is not an attempt to specify a database architecture for either testers or the centralized
database engines. Instead, it is a set of logical record types. Because data items are described
in terms of logical record types, the record types can be used as the underlying data
abstraction, whether the data resides in a data buffer, resides on a mass storage device, or is
being propagated in a network message. It is independent of network or database architecture.
Furthermore, the STDF logical record types may be treated as a convenient data object by any
of the software, either networking or database, that may be used on a tester or database
engine.”

With STDF it is possible for a single data formatting program running on a centralized
database engine to accept data from a wide range of testers, whether the testers come from
one vendor or from different vendors or are custom-built by the ATE user. This data can be
exported to the user’s in-house network for further analysis in a form that is well documented
and thoroughly debugged [8].

The major objectives of the STDF format, as stated in version 4 of its specification, are the
following:

• Be capable of storing test data for all semiconductor testers and trimmers;

• Provide a common format for storage and transmission of data;

• Provide a basis for portable data reporting and analysis software;

• Decouple data message format and database format to allow enhancements to either,
independently of the other;

• Provide support for optional (missing or invalid) data;

• Provide complete and concise documentation for developers and users;

• Make it easy for customers to write their own reports or reformat data for their own
database.

In the ATE industry, STDF is the most commonly used data format for storing measurement
data in digital format [9]. The acceptance of this file format as a standard lead to its gradual
adoption by several companies that are part of the ATE industry, such as Teradyne, Verigy,
LTX, Credence [7] or SZ [10], giving birth to different kinds of both free and commercial
STDF converters and applications used in various distinct contexts and purposes.

Some of these applications that approach similar problems as the one studied in this project
are mentioned below.

PySTDF

PySTDF, developed by Casey Marshall and released under a GPL license, is a Python module
for processing STDF, which provides event-based stream parsing of STDF version 4, along

STDF2EXF Converter Development

21

with indexers that can help one rearrange the data into a more useful tabular form, as well as
generate missing summary records or new types of derivative records [13].

Potential applications of PySTDF include:

• Debugging a vendor's STDF implementation;

• Straight conversion to ASCII-readable form – STDF to ATDF (ASCII Test Data
Format) converter;

• Repairing STDF files;

• Developing an application that leverages STDF:

o Conversion to tabular form for statistical analysis tools;

o Loading data into a relational database [14].

Casey Marshall developed as well a basic STDF viewer named STDF Explorer, which allows
one to explore contents of STDF records.

SEDana

SEDana, as described in [15], is a tool from Salland Engineering for statistical analysis of
ATE test data, which is able to import, export or merge STDF version 4, CSV and ATDF
files, among others.

Test data and analysis results can be displayed in various table formats. A raw table displays
the raw (filtered) STDF data. The user can verify the data using this view or use parts of the
data by copying it to another application, e.g., Excel. The data in this table is static, but the
user is able to edit values in this view.

The application contains a STDF to ATDF converter.

Spry Software

Spry Software, as described in [16], offers a range of tools that handle STDF files.

QuickEdit STDF viewer and editor allow accessing data in STDF files. Parametric results by
part, software bin summaries, hardware bin summaries and test configuration data are all
visible in a tabular form. The application allows exporting any or all of these types of data in
comma separated files, suitable for loading into Excel or any analysis tool. Data can as well
be edited and re-saved in STDF format.

QuickChange provides a set of commands which allow one to convert STDF files to CSV,
XML or HTML. It offers as well the possibility to replace or alter specific data to correct data
entry, configuration or tester interface limitation.

Examinator, optimiSE STDF Explorer and YieldWerx

Galaxy’s Examinator, optimiSE’s STDF Explorer and YieldWerx are all ATE data analysis
tools that with more or less features allow visualizing, checking or even editing STDF files.

STDF2EXF Converter Development

22

3.3 Existing solutions and reusing

As seen above, the market offers solutions regarding the handling of STDF files but none of
them with the exact same purpose of the problem approached in this project, which, among
others, is to convert STDF files into the EXF format. Since such format is property of
Infineon Technologies and used internally, it is easy to understand that no solutions for this
particular problem exist in the market.

Nevertheless, the EBS system, due to its complexity and the diverse modules, components
and functionalities it offers, was programmed with a considerable amount of reusable code
that can be extended to new features to be developed. All software development at Critical
Software passes through a series of evaluations, part of the Quality Assurance system
established in the company. Each of its undergoing projects has its code and documentation
cyclically reviewed and approved, not only to assure that what is done is produced with
quality according to the client needs but also to improve the system’s maintenance and allow
effective code reusing.

The EBS Data Loading module is composed by various components – in particular, a set of
converters that transform raw data into EXF based information. Due to the significant amount
of data types and formats EBS deals with, and since its converters have similar ways of
working, there was an urge to standardize the process used to create such converters. A
converter template was created, including a set of predefined classes with a basic skeleton to
support the standard functionalities of a brand new converter. Besides guaranteeing easier
code maintenance, the new converter is, in this way, more likely to behave identically as the
other converters, concerning parameters such as functionality and performance.

Although one might think that it could be trivial to implement a new STDF2EXF converter
over a predefined structure, the truth is that the existing template was designed having in mind
the existing converters in EBS, which handle exclusively text based data, contrary to this new
converter that should handle binary data from STDF files. One of the challenges of making a
new STDF2EXF converter would be to integrate the existing logic of the STDF Loader –
which translates or converts a binary STDF file in memory and loads its data into the system’s
database – with the converter template, preserving the structure that is used by the existing
converters but at the same time keeping the core conversion logic provided by the STDF
Loader.

Added to the development of a new converter, one of the most interesting parts of the project
would be making the converter work in standalone mode. The existing converters and the
STDF Loader are fully integrated with the EBS system, meaning that all their configurations
are stored in a repository database – EBS_REPO – and several procedures require a
connection to a database in order to obtain information needed to execute their tasks. In
standalone mode this is not applicable, since the application would have to work
independently, without any database connectivity whatsoever. This would involve
incorporating into the converter new mechanisms that would allow it to work differently in
both contexts – integrated with EBS DB and in standalone mode – without loosing its
purposes in any of the situations.

Besides reusing the STDF Loader’s code and making use of the converter template, other
existing information could be used in this project, particularly some of the STDF Loader’s
test cases that were incorporated into the STDF2EXF Converter’s test cases catalogue
regarding the loading of STDF files into the system by the EXF Loader.

STDF2EXF Converter Development

23

The converter template

The converter template was designed in order to facilitate the development of new converters,
being comprised by different files as follows:

• _TYPEMakefile – Makefile that compiles the converter in the HP-UX operating
system.

• _TYPE_.cfg – Text file with configurations used by the converter to read text raw
data files – not relevant to binary converters, since such configurations only apply to
text/ASCII structured files.

• _TYPE__defines.h – Constants used by the converter’s classes.

• _TYPE_Rawfile.h – Structures and vectors common to the class that handles the
raw data files conversion process into XML based EXF files.

• _TYPE__settings__VERSION__cfg.cfg – Text file with configurations used by
the converter to read specific versions of text raw files – not relevant to binary
converters, since such configurations only apply to text/ASCII structured files.

• _TYPE__settings__VERSION_ – Text file with configurations used by the
converter to read specific versions of text raw files – not relevant to binary converters,
since such configurations only apply to text/ASCII structured files.

• _TYPE__VERSION_Defines.h – Constants used by the converter’s classes for a
specific version of the file type handled by the converter.

• _TYPE_Raw_VERSION_File.h – Structures and vectors common to the class that
handles the conversion process of a specific version’s raw data files into XML based
EXF files.

• _TYPE_Raw_VERSION_File.cpp – Handles the conversion process of a specific
version’s raw data files into XML based EXF files.

• _TYPE_2ExfConverterApp.h – Header file with functions and variables used by
the class that provides methods to support the input and output objects creation.

• _TYPE_2ExfConverterApp.cpp – Provides methods to support the input and
output objects creation.

• _TYPE_2EXF.h – Header file with methods and functions used by the class that
represents the converter’s process.

• _TYPE_2EXF.cpp – Represents the converter’s process. A new process is launched
every time the converter is called to take action on a file.

• _TYPE_2EXF_main.cpp – The main class of the converter. It handles the input typed
by the user, launches a new converter process and initializes the loggers.

In the file structure above, _TYPE_ represents the file type – STDF, in this case – whereas
VERSION represents the version of the file format – version 4 would be the current version
of STDF. This structure does not need to be strictly followed and it can be adapted according
to the different converters’ needs.

STDF2EXF Converter Development

24

3.4 Programming languages used in the project

EBS DB is programmed with C++ and PL/SQL (Procedural Language/Structured Query
Language). The logic beneath the EBS Data Loading components is coded with C++, whereas
the access to the Oracle databases is performed using PL/SQL, Oracle’s procedural extension
to the SQL database language.

Most of the work developed during the project was achieved using C++ and only a very small
portion using PL/SQL. Below is given an overview of these languages, as described
respectively in [17] and [18].

C++

C++ is a general-purpose programming language, regarded as a mid-level language, as it
comprises a combination of both high-level and low-level language features. It is a statically
typed, free-form, multi-paradigm, usually compiled language, supporting procedural
programming, data abstraction, object-oriented programming and generic programming.

The language came as an enhancement of the commonly known C language, with the addition
of classes, followed by virtual functions, operator overloading, multiple inheritance, templates
and exception handling, among other features.

Some of the principles beyond C++ are as follows:

• C++ is designed to directly and comprehensively support multiple programming
styles, thus giving the programmer the possibility to choose between its programming
or problem approach, even if this makes it possible for the programmer to choose
incorrectly;

• C++ is designed to be as compatible with C as possible, therefore providing a smooth
transition from C, being as efficient and portable as this language;

• C++ avoids features that are platform specific or not general purpose;

• C++ does not incur overhead for features that are not used;

• C++ is designed to function without a sophisticated programming environment.

C++ standard consists of the core language and the C++ standard library. The latter includes
most of the Standard Template Library (STL) and a slightly modified version of the C
standard library. The language provides useful tools as containers (such as vectors or lists),
iterators to provide these containers with array-like access, and algorithms to perform
operations such as searching and sorting.

PL/SQL

PL/SQL is one of three languages embedded in the Oracle Database, the other two being SQL
and Java. It supports variables, conditions, arrays and exceptions. Implementations from
version 8 of Oracle Database onwards have included features associated with object-
orientation.

The language allows defining classes and instantiating these as objects in PL/SQL code,
resembling object-oriented programming languages like Object Pascal, C++ and Java.

STDF2EXF Converter Development

25

PL/SQL functions analogously to the embedded procedural languages associated with other
relational databases, such as Sybase ASE and Microsoft SQL Server which use Transact-
SQL, or PostgreSQL which uses PL/pgSQL (tries to emulate PL/SQL to an extent).

STDF2EXF Converter Development

26

4 Specification of the new solution

After gaining business know-how on the semiconductor manufacturing process and on the
EBS system, two documents were written as the base of the work to be done throughout the
project.

A Software Requirements Specification [11] and a Test Case Specification [19] were written
based on templates previously produced in Critical Software’s Quality department. From the
needs of the application a requirements catalogue was gathered prior to the development
phases, comprising functional and non-functional software requirements with the purpose of
guiding in a correct way the developer when engineering the application. The former
document includes as well a use cases catalogue – comprising an actors list and a use cases
list –, a domain model, together with a state and sequence diagrams. Test cases were written
in the latter document and updated throughout the project, to assure that what would be
implemented could be tested in accordance to the specified requirements.

The use of such documents obliged one to understand the problem’s nature, by establishing,
in a methodical way, the different needs of the application and its structure, guiding the
trainee to start developing the converter with the conscience of what needed to be done and
how.

The requirements and diagrams shown in the following pages were designed using Enterprise
Architect and the UML (Unified Modeling Language) language.

4.1 Software requirements catalogue

This catalogue is divided by requirements type, where functional requirements are presented
first, followed by non-functional requirements – implementation, interoperability and
validation. There was not a need to establish further requirements, as the new converter
gathered most of its functionality from the STDF Loader component, an existing application
with a known purpose and defined requirements.

Functional requirements

Below are described the functional requirements for the STDF2EXF Converter as defined in
the Software Requirements Specification [11].

STDF2EXF-SRS-FUN-001 Data conversion

Type «Functional»

Status Proposed

Version 1.0 Phase 1.0 Priority Medium Difficulty Medium

Effort

Details Created on 12-10-2007. Modified on 12-10-2007.

The STDF2EXF Converter shall transform the binary data of a valid input STDF file into text data stored in a new output XML
file.

STDF2EXF-SRS-FUN-002 Working modes

Type «Functional»

Status Proposed

STDF2EXF Converter Development

27

Version 1.0 Phase 1.0 Priority Medium Difficulty Medium

Effort

Details Created on 12-10-2007. Modified on 12-12-2007.

The STDF2EXF Converter shall have two working modes:

- integrated in EBS, as a standard converter, communicating with the other system components and loading information from
one or more databases;

- in standalone mode, independently from an EBS installation, not accessing any database and being configured by reading .ini
files.

In order to work in standalone mode, the STDF2EXF Converter should be called in the command line, with an input STDF work
package path as argument, as follows:

- STDF2EXF -s {work package path}.

STDF files contain binary data, which is difficult to interpret and maintain; by running the converter in standalone mode it is
possible to quickly access the information of a STDF file in text format by opening the generated XML file, apart from the
EBS workflow process.

STDF2EXF-SRS-FUN-003 Configuration

Type «Functional»

Status Proposed

Version 1.0 Phase 1.0 Priority Medium Difficulty Medium

Effort

Details Created on 12-10-2007. Modified on 12-12-2007.

The converter shall have one or more .ini files in '/bin/config', containing configurations for its Basic Setup, Logger and WP
Logger. This information shall only be accessed when running in standalone mode, otherwise the converter shall get its
configurations from the EBS_REPO database.

STDF2EXF-SRS-FUN-004 Logging

Type «Functional»

Status Proposed

Version 1.0 Phase 1.0 Priority Medium Difficulty Medium

Effort

Details Created on 19-10-2007. Modified on 12-12-2007.

For each day the STDF2EXF Converter is used, a log containing its most relevant activity should be created.

The logfile should be named stdf2exf_{timestamp}.log and be stored in the folder '/bin/log'.

The {timestamp} value shall have the format YYYYMMDD,

with YYYY being the year, MM the month and DD the day.

Each work package shall have its own log as well.

STDF2EXF-SRS-FUN-006 Converter help

Type «Functional»

Status Proposed

Version 1.0 Phase 1.0 Priority Medium Difficulty Medium

Effort

Details Created on 22-10-2007. Modified on 22-10-2007.

STDF2EXF Converter Development

28

The converter shall display information regarding its version and working modes. The user shall access this information when
calling the application using the command STDF2EXF {argument}.

The parameter {argument} can have the following values:

- "-V" for version;

- "--help" for help.

Implementation requirements

The following requirements can be seen as non-testable and non-functional requirements,
regarding the implementation of the STDF2EXF Converter.

STDF2EXF-SRS-IMP-001 STDF2EXF Converter structure

Type «Implementation»

Status Proposed

Version 1.0 Phase 1.0 Priority Medium Difficulty Medium

Effort

Details Created on 12-10-2007. Modified on 12-10-2007.

The STDF2EXF Converter shall follow the same template used to build the other converters of the EBS system. Therefore, this
converter shall have the same structure as the other ones, being its logic adapted to handle STDF files.

Although each converter handles differently its data type, all follow the same pattern, being built from a single template, which
allows converters to be built and work in a similar way.

STDF2EXF-SRS-IMP-002 File naming convention

Type «Implementation»

Status Proposed

Version 1.0 Phase 1.0 Priority Medium Difficulty Medium

Effort

Details Created on 19-10-2007. Modified on 19-10-2007.

The generated XML files shall have the name: EXF_{input_file_name}.{old_extension}.xml.

Example:

Input STDF file: STDF_test.std -> Output XML file: EXF_STDF_test.std.xml

Interoperability requirements

The requirement shown below describes how the STDF2EXF Converter shall interact with
other applications or components of EBS Data Loading.

STDF2EXF-SRS-INT-001 Integration with EBS

Type «Interoperability»

Status Proposed

Version 1.0 Phase 1.0 Priority Medium Difficulty Medium

Effort

Details Created on 12-10-2007. Modified on 12-12-2007.

If not in standalone mode, the STDF2EXF Converter shall work integrated in EBS, communicating through Yoda messages with
the JM Emulator.

As other converters, the STDF2EXF Converter should communicate with the JM Emulator by Yoda messages, sending "wait"
messages and signalling the status of its tasks.

STDF2EXF Converter Development

29

Validation requirements

Below are presented the non-functional requirements concerning the validity of the files
handled and generated by the STDF2EXF Converter.

STDF2EXF-SRS-VAL-001 STDF validation

Type «Validation»

Status Proposed

Version 1.0 Phase 1.0 Priority Medium Difficulty Medium

Effort

Details Created on 12-10-2007. Modified on 12-12-2007.

The STDF2EXF Converter shall only process valid STDF files from its input folder.

STDF2EXF-SRS-VAL-003 XML data integrity

Type «Validation»

Status Proposed

Version 1.0 Phase 1.0 Priority Medium Difficulty Medium

Effort

Details Created on 16-10-2007. Modified on 16-10-2007.

The content of the generated output XML file shall not be corrupted, regarding the original data of the input STDF file.

4.2 Use cases catalogue

The next pages describe in detail the different use cases and the actors that interact with the
application as defined in the Software Requirements Specification [11].

Figure 13 shows the UML use case diagram for the STDF2EXF Converter followed by its
description.

STDF2EXF-SRS-VAL-002 XML structure validation

Type «Validation»

Status Proposed

Version 1.0 Phase 1.0 Priority Medium Difficulty Medium

Effort

Details Created on 12-10-2007. Modified on 12-12-2007.

The output XML file shall be built from and validated against a predefined EXF schema.

STDF2EXF Converter Development

30

uc Use Case Diagram

STDF2EXF

Administrator

STDF2EXF-SRS-USR-010
Start the conv erter

STDF2EXF-SRS-USR-030
Manage the conv erter's

files

JM Emulator

STDF2EXF-SRS-USR-040
Configure the conv erter

STDF2EXF-SRS-USR-011
Start the conv erter in

normal mode

STDF2EXF-SRS-USR-012
Start the conv erter in

standalone mode

Figure 13: Use case diagram

Actors list

Actors are the individuals or entities that interact with the system. They have an important
role as they are directly related to how a system behaves and the system itself shall be built so
that the interaction between actors and system is optimal. Two actors can be found in EBS
DB, within the context of the STDF2EXF Converter project: the Administrator and the JM
Emulator. Both actors are described in the following paragraphs.

Administrator

The administrator uses and manages EBS DB. Besides launching the JM Emulator, thus
initializing the EBS Data Loading workflow, this actor might be interested in using the
STDF2EXF Converter in standalone mode, with the goal of quickly converting and accessing
the information of a STDF file. The administrator shall be responsible for changing the
converter’s standalone configuration settings.

STDF2EXF Converter Development

31

JM Emulator

The JM Emulator controls the EBS Data Loading process, communicating with the different
EBS DB components, namely with the STDF2EXF Converter, by sending and receiving
YODA messages. It is also responsible for starting the STDF2EXF Converter, moving the
work package files between the converter’s folders and executing a controlled shutdown of
the component.

Use cases

Use cases describe the interaction between actor and system, represented as a sequence of
simple steps in order to describe possible scenarios of interactivity in accordance to the
defined requirements.

As shown in Figure 13, five use cases were considered for the STDF2EXF Converter. Each of
these is described in the following tables.

STDF2EXF-SRS-USR-010 Start the converter

Type

Status Proposed

Version 1.0 Phase 1.0 Priority Difficulty

Effort

Details Created on 11-10-2007. Modified on 11-10-2007.

The converter is started by the JM Emulator component, or is manually started by the administrator, in standalone mode.

STDF2EXF-SRS-USR-011 Start the converter integrated with EBS

Type

Status Proposed

Version 1.0 Phase 1.0 Priority Difficulty

Effort

Details Created on 11-10-2007. Modified on 11-10-2007.

The converter is started as part of the EBS workflow by the JM Emulator.

STDF2EXF-SRS-USR-012 Start the converter in standal one mode

Type

Status Proposed

Version 1.0 Phase 1.0 Priority Difficulty

Effort

Details Created on 11-10-2007. Modified on 11-10-2007.

An administrator manually starts the STDF2EXF Converter in standalone mode.

STDF2EXF-SRS-USR-030 Manage the converter's files

Type

Status Proposed

Version 1.0 Phase 1.0 Priority Difficulty

Effort

Details Created on 11-10-2007. Modified on 20-12-2007.

The JM Emulator adds, removes or moves files between the converter's folders, before and after STDF processing.

The administrator manually adds, removes or moves files from the converter's folders, to process a STDF work package of his choice.

STDF2EXF Converter Development

32

STDF2EXF-SRS-USR-040 Configure the converter

Type

Status Proposed

Version 1.0 Phase 1.0 Priority Difficulty

Effort

Details Created on 11-10-2007. Modified on 20-12-2007.

The administrator configures the converter by changing its basic setup and its loggers.

4.3 Domain model

The domain model for the STDF2EXF Converter, as defined in the Software Requirements
Specification [11], has the goal of giving an overall idea of how the converter classes shall be
organised and relate to each other. The UML class diagram is displayed in Figure 14.

class Domain Objects

CSTDF2EXFProcess

- m_createXMLOutput: bool
- m_standalone: int

+ CSTDF2EXFProcess(ebsstrings&, CEbsString) : SUCC
+ getInputFname(ebsstrings&, CEbsString&, CEbsString&, CEbsString&, CEbsString&) : int
+ getInputFnameStandalone(ebsstrings&, CEbsString&, CEbsString&, CEbsString&) : int
+ getOutputFname(CEbsString&, CEbsString&, CEbsString&, CEbsString&, CEbsString&) : SUCC
+ getOutputFnameStandalone(CEbsString&, CEbsString&, CEbsString&, CEbsString&) : SUCC
+ initProcessStandalone() : SUCC
+ processWPStandalone(CEbsString) : SUCC
+ runOnce(CEbsString) : SUCC

CSTDF2EXFConverterApp

+ m_createXMLOutput: bool
+ m_rawSequenceNumber: int

+ cbPostConvert() : SUCC
+ cbPreConvert() : SUCC
+ createInputFileObject(CEbsString&, int&, CEbsString&, CEbsString&) : SUCC
+ createOutputFileObject(CEbsString&, long) : SUCC
+ createOutputFileObjectStandalone(CEbsString&) : SUCC
+ getTypeFormat(CEbsString&, int&, int&, CEbsString&) : SUCC
+ initConverterObjs() : SUCC

CSTDFRawFile

+ m_createXMLOutput: bool
+ m_IDFname: CEbsString
- m_rawFileName: CEbsString
+ m_rawFilePath: CEbsString
+ m_standalone: bool
+ m_TRID: long

+ processFile() : SUCC

CTraceObject

CEbsProcess

theConfMng: CConfManagementAPI*
theDBAccess: CDBAccess*
theLogAPI: CLoggingAPI*
theLogger: CLogger*
theWPLogger: CLogger*
theWPMng: CWPManagementAPI*

+ initProcess() : SUCC
+ processWP(int) : SUCC
+ releaseProcess() : SUCC
+ runProcess() : SUCC

CRawFileBinCConvFile

CRawFile
CConverterApp

- inputFiles;: T_INPFILE_LIST
- outputFiles: T_OUTFILE_LIST

+ convert(long) : SUCC
+ processWPCfg() : SUCC

CEXF CSTDFRecord CSTDFReaderAPI

*

Figure 14: Class diagram for the STDF2EXF Converter

This diagram shows in some detail the three main classes of the converter
(CSTDF2EXFProcess , CSTDF2EXFConverterApp , CSTDFRawFile), plus the ones that are
directly related to these, as written in the next pages.

STDF2EXF Converter Development

33

CSTDF2EXFProcess

CSTDF2EXFProcess should be the main class of the converter, being responsible for its main
processing. It should handle the creation of the work package related records, input and output
file objects. To achieve this, it should use the converter framework, which is a set of classes
that supports raw and configuration file reading, together with EXF file writing
functionalities.

When integrated with EBS, this class should handle the converting process, regarding the
following steps:

1. Retrieve the settings from the repository database – EBS_REPO – for the converter
and IDF API (Application Programming Interface)3;

2. Find a WP to convert and perform the following steps for its raw file:

a. Create a new JM_WPS record in the repository database with converter and
WP information;

b. Create new input and output file objects to handle the input and output files;

c. Start the conversion process.

3. If ready, store the WP properties in the repository database and find the next WP to
convert.

In standalone mode, the following should be done:

1. Retrieve the settings from local configuration files for the converter and IDF API;

2. Perform the following steps for the WP passed as argument by the user:

a. Create new input and output file objects to handle the input and output files;

b. Start the conversion process.

CSTDF2EXFConverterApp

CSTDF2EXFConverterApp should provide methods to support the input and output object
creating. It should be a child class of the converter framework.

CSTDFRawFile

CSTDFRawFile should convert the STDF files into EXF files and implement the business
logic of the converter.

CEBSProcess

CEBSProcess represents a process in EBS. Each EBS component inherits methods from this
class.

3 The IDF API contains methods that support the handling of IDF files. Since EXF is an Intermediate Data

Format, the IDF API is used by the EBS components to access the information contained in such files.

STDF2EXF Converter Development

34

CTraceObject

CTraceObject represents a root object for class-level tracing.

CConverterApp

CConverterApp is the super class used by all the converters of EBS DB.

CRawFileBin

CRawFileBin handles the opening of a binary file. It is used by the STDF Loader and shall
be incorporated into the STDF2EXF Converter.

CRawFile

CRawFile is the super class of the CRawFileBin and CRawFileAscii (used similarly to
CRawFileBin for text files) classes.

CConvFile

CConvFile is the super class of the CRawFile class.

Together with the UML class diagram for the STDF2EXF Converter, another diagram was
produced regarding the methods that should be added to the CLoaderStg class of the EXF
Loader component. Figure 15 shows the main classes of the EXF Loader and, more
importantly, the methods that should be added or changed in this component so that it can
support STDF files.

class EXFLoader

CEXF

CLoaderStg

chkSTDFParams(CIDFRecord*, CEbsString&, bool&) : SUCC
+ finishWP(bool) : SUCC
printTestPrgError(CIDFRecord*) : void
updateRecord(CIDFRecord*) : SUCC
updateSubMeasStep(int) : SUCC
updateTestPrgWithRevisionDate(CIDFRecord*) : SUCC

CEXFLoaderProc
CTraceObject

CEbsProcess

Figure 15: Class diagram for the EXF Loader (changes to be made only)

The EXF Loader’s CLoaderStg class is responsible for processing the EXF files that passed
through the different converters and have been transferred to the EXF Loader’s input folder,
so that their data can be loaded into the staging database. Since the STDF Loader overrides
this process for STDF files, there would be a need to incorporate some of the STDF handling

STDF2EXF Converter Development

35

logic of the STDF Loader into the EXF Loader. This should be done by updating the
functions shown in the picture above, if they exist, or migrate them to this class.

4.4 Sequence diagrams

The project’s UML sequence diagrams catalogue has the goal of showing the STDF2EXF
Converter’s sequence of main actions in its different usage scenarios.

Figure 16 shows the sequence diagram for the STDF2EXF Converter when running integrated
with EBS DB.

sd EBS

JM Emulator STDF Converter

runJMEmu()

getScannedWPs()

procScannedWP(wps)

startInstance(compProp, pid)

runProcess()

*processWP(wpTrID)

releaseProcess()

shutdownJMEMu()

Figure 16: The STDF2EXF Converter when running integrated with EBS DB

As seen above, the JM Emulator is started by an administrator, launching its own process in a
never ending loop. The JM Emulator retrieves the work packages that have been scanned
from the WP Scanner’s input folders and places them in the input folder of the appropriate
converter. If there are STDF files waiting to be converted, the JM Emulator starts an instance
of the STDF2EXF Converter, so that this component processes the files placed in its input
folder, converting them into EXF files, ready to be loaded by the next component in the
workflow – EXF Loader – into the EBS_STAGE database. The STDF2EXF Converter waits
until there are no more work packages to process and shuts itself down after a timeout period.
In a similar way, the JM Emulator shuts itself down after a period of inactivity.

STDF2EXF Converter Development

36

Figure 17 shows the sequence diagram for the STDF2EXF Converter when running
independently from EBS, in standalone mode.

sd Standalone

STDF ConverterAdministrator

STDF2EXF(standalone)

runProcess()

processWPStandalone(wpPath)

releaseProcess()

Figure 17: The STDF2EXF Converter when running in standalone mode

In this case, the administrator calls the converter with two arguments: one indicating it will
run in standalone mode and the other one with the work package to process. The application
converts the STDF raw file contained in the work package and generates a EXF file that
should be placed in the same folder. The converter terminates when conversion is finished and
frees its allocated resources.

4.5 State diagrams

UML state diagrams have the goal of showing the system’s behaviour through the
presentation of its states when specific sequences of actions are carried out.

To allow one to understand the state diagram presented in this section, it might be useful to
have an insight of how EBS work packages are prioritized and how this is achieved using
process streams. Work packages are processed using streams that have been defined in the
repository database; one stream can be associated with one or more file types, meaning that
one stream can process STDF, TDF and APRC files at the same time, for example, while one
file type can as well be associated with several streams, thus being possible to process the
same number of work packages of a same file type in parallel as the number of streams that
have such file type associated. Figure 18 shows an example of how the streams can be defined
in EBS DB.

STDF2EXF Converter Development

37

Figure 18: JM streams

In the figure above it is possible to see that STDF files can be processed in parallel for a
maximum of six files, corresponding to the six streams allocated to the STDF Loader. On the
contrary, the processing of the file types associated to stream 7 has less priority, since a single
stream has been defined to handle several file types, meaning that files of such type are
processed sequentially and never in parallel in this case.

Figure 19 presents the state diagram for the STDF2EXF Converter, when running integrated
with the EBS system (no state diagram for the standalone mode is presented, as the behaviour
of the application in this case is trivial and none of the concepts mentioned in this subchapter
apply to it).

stm Requirements Model

Initial

Waiting

Processing

Done

Error

Final

Sav ed

XML fi le optionally saved / copied to Save folder

Conversion failed / moved to Error folder

WP converted successfully / moved to Output folder

Stream becomes free
WP detected [stream is occupied]

WP detected [stream is free]

Figure 19: State diagram for the STDF2EXF Converter (not applicable to standalone mode)

When a work package is detected in the STDF2EXF Converter’s input folder, an action will
be carried on in order to handle the work package. The work package will be immediately
processed if an associated stream is free (not processing any work package at that time), or
waits until a stream which is currently busy finishes its task. Once the processing is finished,
the work package is moved to the converter’s output folder or, if an error occurs, moved into
an error folder. The generated EXF file might also be optionally saved into a proper folder
(/save) in case a flag has been activated for that purpose.

STDF2EXF Converter Development

38

4.6 Test cases catalogue

Test cases allow one to certify that the application is designed according to the requirements
that were specified in the beginning and throughout the project.

The converter should be tested according to the following items:

• Working modes;

• Configuration;

• Conversion;

• Validation;

• Logging;

• Structure;

• Integration with the EXF Loader;

• Loading parameter checking;

• Rosetta Net support.

Once the STDF2EXF Converter would be fully integrated with the EXF Loader, the latter
should be tested based on the STDF Loader’s loading test cases, which were modified and
included in the STDF2EXF Converter’s test cases catalogue [19].

All non-measurable non-functional requirements did not require testing, i.e., implementation,
interoperability and validation requirements.

Below are described the test cases for the STDF2EXF Converter, divided by modules. The
relation between these test cases and requirements or use cases can be seen in Chapter 4.7,
Traceability matrix.

Working modes

Standalone mode

Test case identifier: STDF2EXF-TCS-WRK-001 Standalone mode

Responsibility: Critical Software

Purpose: This test case shall verify if the STDF2EXF Converter runs in standalone mode.

Author(s): Daniel Silva

Input Specifications

a. Run the STDF2EXF Converter, by calling it using the command line as follows:

> STDF2EXF –s {work package path}

Output Specifications

a. The STDF2EXF Converter shall recognize the typed command and execute in standalone mode.

Other

N/A

Dependencies

N/A

STDF2EXF Converter Development

39

Configuration

INI file recognition (success case)

Test case identifier: STDF2EXF-TCS-CFG-001 INI file recognition (success case)

Responsibility: Critical Software

Purpose: This test case shall verify if the STDF2EXF Converter recognizes a valid configuration
file.

Author(s): Daniel Silva

Input Specifications

a. Make sure the files “stdf2exf_basic_setup.ini”, “stdf2exf_logger.ini” and “stdf2exf_wplogger.ini” are in the converter’s
“bin/config” folder and they have the correct structure and parameters.

b. Run the STDF2EXF Converter in standalone mode.

Output Specifications

a. The converter shall not generate any error message regarding its configuration and shall proceed with its execution.

Other

N/A

Dependencies

STDF2EXF-TCS-WRK-001 Standalone mode, STDF2EXF-TCS-VAL-001 STDF recognition (success case),
STDF2EXF-TCS-VAL-005 Raw files validation (success case), STDF2EXF-TCS-VAL-007 Work package validation
(success case)

INI file recognition (fail case)

Test case identifier: STDF2EXF-TCS-CFG-002 INI file recognition (fail case)

Responsibility: Critical Software

Purpose: This test case shall verify if the STDF2EXF Converter recognizes an invalid configuration
file.

Author(s): Daniel Silva

Input Specifications

a. Move, rename or introduce errors in the files “stdf2exf_basic_setup.ini”, “stdf2exf_logger.ini” or “stdf2exf_wplogger.ini”
in the converter’s “bin/config” folder.

b. Run the STDF2EXF Converter in standalone mode.

Output Specifications

a. The converter shall generate an error message regarding its configuration and terminate.

Other

N/A

Dependencies

STDF2EXF-TCS-WRK-001 Standalone mode, STDF2EXF-TCS-VAL-001 STDF recognition (success case),
STDF2EXF-TCS-VAL-005 Raw files validation (success case), STDF2EXF-TCS-VAL-007 Work package validation
(success case)

Conversion

Data conversion

Test case identifier: STDF2EXF-TCS-CON-001 Data conversion

Responsibility: Critical Software

Purpose: This test case shall verify if the STDF2EXF Converter generates a XML file from a valid
input STDF file.

Author(s): Daniel Silva

Input Specifications

STDF2EXF Converter Development

40

a. Introduce a valid STDF work package (exactly one STDF raw file) into the folder “$EBS_HOME/
data/wpscan/input/STDF”.

b. Run the JM Emulator.

c. Run the STDF2EXF Converter in standalone mode with the work package described in a) as argument.

Output Specifications

a. For step b),the application shall save a XML file in the “$EBS_HOME/ data/converters/STDF2EXF/output” folder with
the same name of the input raw file, preceded by “EXF_”.

b. For step c), the application shall save a XML file in the work package’s folder with the same name of the input raw file,
preceded by “EXF_”.

Other

N/A

Dependencies

STDF2EXF-TCS-WRK-001 Standalone mode, STDF2EXF-TCS-CFG-001 INI file recognition (success case),
STDF2EXF-TCS-VAL-001 STDF recognition (success case), STDF2EXF-TCS-VAL-005 Raw files validation (success

case), STDF2EXF-TCS-VAL-007 Work package validation (success case)

Validation

STDF recognition (success case)

Test case identifier: STDF2EXF-TCS-VAL-001 STDF recognition (success case)

Responsibility: Critical Software

Purpose: This test case shall verify if the converter recognizes valid STDF raw files.

Author(s): Daniel Silva

Input Specifications

a. Introduce a work package with a valid STDF file in the converter’s input folder (“$EBS_HOME/
data/wpscan/input/STDF”).

b. Run the JM Emulator.

c. Run the STDF2EXF Converter in standalone mode with the work package described in a) as argument.

Output Specifications

a. The Converter shall not generate any error message regarding the recognition of the input STDF file, after b) and c),.

Other

N/A

Dependencies

STDF2EXF-TCS-WRK-001 Standalone mode, STDF2EXF-TCS-VAL-007 Work package validation (success case),
STDF2EXF-TCS-VAL-005 Raw files validation (success case)

STDF recognition (fail case)

Test case identifier: STDF2EXF-TCS-VAL-002 STDF recognition (fail case)

Responsibility: Critical Software

Purpose: This test case shall verify if the converter recognizes invalid STDF raw files.

Author(s): Daniel Silva

Input Specifications

a. Introduce a work package with an invalid or non STDF file in the converter’s input folder (“$EBS_HOME/
data/wpscan/input/STDF”).

b. Run the JM Emulator.

c. Run the STDF2EXF Converter in standalone mode with the work package described in a) as argument.

Output Specifications

a. The Converter shall fail, after b) and c), to recognize the input raw file, generating an error message and terminating.

Other

N/A

Dependencies

STDF2EXF-TCS-WRK-001 Standalone mode, STDF2EXF-TCS-VAL-007 Work package validation (success case),
STDF2EXF-TCS-VAL-005 Raw files validation (success case)

STDF2EXF Converter Development

41

XML validation

Test case identifier: STDF2EXF-TCS-VAL-003 XML structure validation

Responsibility: Critical Software

Purpose: This test case shall verify if the structure of the XML files generated by the STDF2EXF
Converter is valid.

Author(s): Daniel Silva

Input Specifications

a. Introduce a work package with a valid STDF file in the converter’s input folder (“$EBS_HOME/
data/wpscan/input/STDF”).

b. Run the JM Emulator.

c. Run the STDF2EXF Converter in standalone mode with the work package described in a) as argument.

d. Validate the XML files generated in b) and c), against the predefined XML schema (“EXF_Schema_qualified.xsd”),
using an XML validator.

Output Specifications

a. No errors shall occur during the XML validation.

Other

N/A

Dependencies

STDF2EXF-TCS-CON-001 Data conversion

XML data integrity

Test case identifier: STDF2EXF-TCS-VAL-004 XML data integrity

Responsibility: Critical Software

Purpose: This test case shall verify if the data of the generated XML file was not corrupted during
the conversion process.

Author(s): Daniel Silva

Input Specifications

a. Activate the STDF_CREATE_XML flag in the STDF Loader (using the current system).

b. Introduce the regression tests’ STDF work packages into the input folder of the STDF Loader (“$EBS_HOME/
data/loader/STDF/input”).

c. Start the JM Emulator step by step until the WP has finished its processing in the STDF Loader.

d. Save the created EXF file (located in “$EBS_HOME/ data/loader/STDF/output”).

e. Introduce the regression tests’ STDF work packages into the STDF2EXF’s input folder (“$EBS_HOME/
data/wpscan/input/STDF”).

f. Run the STDF2EXF Converter in standalone mode with the work package described in e) as argument, and save the
created EXF file.

g. Compare the generated XML files from steps d) and f).

Output Specifications

a. The data of both XML files shall be similar (with different timestamps). Differences should be justified.

Other

N/A

Dependencies

STDF2EXF-TCS-CON-001 Data conversion

Raw files validation (success case)

Test case identifier: STDF2EXF-TCS-VAL-005 Raw files validation (success case)

Responsibility: Critical Software

Purpose: This test case shall verify if the converter only processes work packages that have
exactly one raw file.

Author(s): Daniel Silva

Input Specifications

a. Introduce a work package with exactly one raw file into the converter’s input folder (“$EBS_HOME/
data/wpscan/input/STDF”).

b. Run the JM Emulator.

STDF2EXF Converter Development

42

c. Run the STDF2EXF Converter in standalone mode with the work package described in a) as argument.

Output Specifications

a. The converter shall recognize, after b) and c), that the work package has one raw file and execute normally.

Other

N/A

Dependencies

STDF2EXF-TCS-WRK-001 Standalone mode, STDF2EXF-TCS-VAL-007 Work package validation (success case)

Raw files validation (fail case)

Test case identifier: STDF2EXF-TCS-VAL-006 Raw files validation (fail case)

Responsibility: Critical Software

Purpose: This test case shall verify if the converter does not process work packages that have zero
or more than one raw files.

Author(s): Daniel Silva

Input Specifications

a. Introduce a work package with zero or more than one raw files into the converter’s input folder (“$EBS_HOME/
data/wpscan/input/STDF”).

b. Run the JM Emulator.

c. Run the STDF2EXF Converter in standalone mode with the work package described in a) as argument.

Output Specifications

a. The converter shall recognize, after b) and c), that the work package has zero or more than one raw files and exit with
an error message.

Other

N/A

Dependencies

STDF2EXF-TCS-WRK-001 Standalone mode, STDF2EXF-TCS-VAL-007 Work package validation (success case)

Work package validation (success case)

Test case identifier: STDF2EXF-TCS-VAL-007 Work package validation (success case)

Responsibility: Critical Software

Purpose: This test case shall verify if the converter recognizes a valid work package path.

Author(s): Daniel Silva

Input Specifications

a. Start the converter in standalone mode:

> STDF2EXF –s {valid work package path}

Output Specifications

a. The converter shall detect a valid work package path and execute normally.

Other

N/A

Dependencies

STDF2EXF-TCS-WRK-001 Standalone mode

Work package validation (fail case)

Test case identifier: STDF2EXF-TCS-VAL-008 Work package validation (fail case)

Responsibility: Critical Software

Purpose: This test case shall verify if the converter recognizes an invalid work package path.

Author(s): Daniel Silva

Input Specifications

a. Start the converter in standalone mode:

> STDF2EXF –s {invalid work package path}

Output Specifications

STDF2EXF Converter Development

43

a. The converter shall detect an invalid work package path and exit with an error message.

Other

N/A

Dependencies

STDF2EXF-TCS-WRK-001 Standalone mode

Logging

Logging

Test case identifier: STDF2EXF-TCS-LOG-001 Logging

Responsibility: Critical Software

Purpose: This test case shall verify if a log file is created or updated after an execution of the
STDF2EXF Converter.

Author(s): Daniel Silva

Input Specifications

a. Run the JM Emulator.

b. Run the STDF2EXF Converter in standalone mode.

Output Specifications

a. A non-empty log file named stdf2exf_<yyyy><mm><dd>.log should exist in the application’s /log folder. Another log file
shall exist in the folder of the processed work package.

Other

N/A

Dependencies

STDF2EXF-TCS-WRK-001 Standalone mode

Structure

Structure

Test case identifier: STDF2EXF-TCS-STR-001 Structure

Responsibility: Critical Software

Purpose: This test case shall verify if the converter's structure follows the one defined in the
templates designed for the construction of new converters.

Author(s): Daniel Silva

Input Specifications

a. Open the converter’s source folder.

Output Specifications

a. The STDF2EXF Converter shall contain, at least, the following files (or similar):

• STDFdefines.h

• STDF2EXF.h

• STDF2ExfConverterApp.h

• STDFRawFile.h

• STDF2EXF_main.cpp

• STDF2EXF.cpp

• STDF2ExfConverterApp.cpp

• STDFRawFile.cpp

• Makefile

Other

N/A

Dependencies

N/A

STDF2EXF Converter Development

44

Integration with the EXF Loader

The following test cases were not developed during the project’s period and due to this fact
are not included in 4.7 Traceability matrix. Nevertheless, such test cases are necessary to test
the converter’s integration with the EXF Loader.

STDF. LOAD.1

Test case identifier: STDF. LOAD.1

Responsibility: Critical Software

Purpose: Loading STDF files into the DB

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully

• Oracle schemas shall be empty

Input Specifications

• STDF_TEST_WP_01, STDF_TEST_WP_04, STDF_TEST_WP_07, STDF_TEST_WP_09,
STDF_TEST_WP_10, STDF_TEST_WP_11, STDF_TEST_WP_12, STDF_TEST_WP_13,
STDF_TEST_WP_15, STDF_TEST_WP_16, STDF_TEST_WP_17, STDF_TEST_WP_18,
STDF_TEST_WP_19, STDF_TEST_WP_20, STDF_TEST_WP_21, STDF_TEST_WP_22,
STDF_TEST_WP_23, STDF_TEST_WP_24, STDF_TEST_WP_25, STDF_TEST_WP_26,
STDF_TEST_WP_27, STDF_TEST_WP_28, STDF_TEST_WP_29, STDF_TEST_WP_31,
STDF_TEST_WP_32, STDF_TEST_WP_33, STDF_TEST_WP_34, STDF_TEST_WP_36,
STDF_TEST_WP_37, STDF_TEST_WP_38, STDF_TEST_WP_39, STDF_TEST_WP_40,
STDF_TEST_WP_41, STDF_TEST_WP_42, STDF_TEST_WP_43, STDF_TEST_WP_44,
STDF_TEST_WP_45, STDF_TEST_WP_48, STDF_TEST_WP_49, STDF_TEST_WP_50,
STDF_TEST_WP_51, STDF_TEST_WP_52, STDF_TEST_WP_54, STDF_TEST_WP_55,
STDF_TEST_WP_58, STDF_TEST_WP_59 STDF work packages

Actions Specification

• Start the JM-Emu if it is not running
• Copy the STDF work packages into the STDF2EXF Converter’s input

Output Specifications

• The STDF2EXF Converter shall load all work packages successfully

Post-Conditions:

None

Dependencies

STDF. LOAD.2

Test case identifier: STDF. LOAD.2

Responsibility: Critical Software

Purpose: The loader checks the existence of the appropriate test program entry. If it does not exist,
it is an error

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully

• Oracle schemas shall be empty

• The configs table flag InsertNewTestprogram shall be Off

Input Specifications

• Content of the STDF_TEST_WP_01 directory from the test archive

Actions Specification

• Set the InsertNewTestprogram flag to off using the following script:

cd $TEST_CASES_DIR/STDF2EXF.inp/sql_scripts
sqlplus
$REPOSITORY_SCHEMA_NAME/$REPOSITORY_SCHEMA_PASSWORD@CONN_STR_REP
O

STDF2EXF Converter Development

45

@insertNewTestProgramOff.sql

• Copy the STDF_TEST_WP_01 into the STDF2EXF Converter input component.

cd $TEST_CASES_DIR
cp –r STDF_TEST_WP_01 $EBS_HOME/data/wpscan/input/S TDF
jm –askme

Output Specifications

• The status of the WP shall be ERROR.

• In the log file an error message should be present stating that no Testprograms record was present in the
database.

Post-Conditions:

None

Dependencies

STDF. ITMFG5312

Test case identifier: STDF. ITMFG5312

Responsibility: Critical Software

Purpose: Artificial Wafer numbers for Tracking Unit record

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully

• Oracle schemas shall be empty

Input Specifications

• TDF_EZ18A90L_S11P TDF WP

• Content of the STDF_TEST_WP_L01 directory from the test archive

Actions Specification

• Start the JM-Emu if it is not running

• Copy the TDF masterdata into the proper WPScan’s input

• Wait until the masterdata are loaded

• Insert a new record into the Tracking_Units table:

sqlplus <ebs_stage>/<ebs_stage>@<conn_string>
SQL> @ STDF.ITMFG5312.sql

• Copy the STDF WP into the STDF2EXF Converter’s input

• Wait until the STDF WP is loaded

• Copy the STDF WP again into the STDF2EXF Converter’s input
• Wait until the STDF WP is loaded again

Output Specifications

• The <EBS_ANA>.TRACKING_UNITS table shall contain one record:

sqlplus <ebs_ana>/<ebs_ana>@<conn_string>
SQL> SELECT id, motherlot_id, wafernumber, wafer_id FROM
tracking_units;

ID MOTHERLOT_ID WAFERNUMBER WAFER_ID
-- ------------- ----------- ----------
 1 EZ18A90L 2 K102GKN0

• The <EBS_ANA>.MEASUREMENTS table shall contain two records:

sqlplus <ebs_ana>/<ebs_ana>@<conn_string>
SQL> SELECT id, tunit_id, meas_counter FROM measure ments WHERE
component_seq = 0 ORDER BY meas_counter;

 ID TUNIT_ID MEAS_COUNTER
--- ---------- ------------
 1 1 1

STDF2EXF Converter Development

46

 2 1 2

Post-Conditions:

None

Dependencies

STDF. CQ1037

Test case identifier: STDF. CQ1037

Responsibility: Critical Software

Purpose: LimitFileName and WaferFileName are changed to LimitFilename and WaferFilename

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully

• SFET3_L9670_C06_CA_0202 TDF work package shall be loaded (TDF)

Input Specifications

• Content of the SFET3_L9670_C06_CA_0202 directory from the test archive

• Content of the SS_20050623231213_KSI35545_CA0P_N directory from the test archive

Actions Specification

• Copy the SS_20050623231213_KSI35545_CA0P_N into the STDF2EXF Converter’s input folder.

cd $TEST_CASES_DIR
cp –r SFET3_L9670_C06_CA_0202 $EBS_HOME/data/wpscan /input/TDF
cp –r SS_20050623231213_KSI35545_CA0P_N
$EBS_HOME/data/wpscan/input/STDF
jm –askme;stopjm

Output Specifications

• The status of the WP shall be ERROR and the error-message should be: Parameter number should be
greater than 0 in case of FCT/ANA parameters.

Post-Conditions:

None

Dependencies

STDF. EBS1096

Test case identifier: STDF. EBS1096

Responsibility: Critical Software

Purpose: Automatically generated wafer numbers beginning from 1.

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully

• The Oracle schemas shall be empty (before loading the TDF WP)

• TDF_EZ18A90L_S11P TDF WP shall be loaded

Input Specifications

• Content of the TDF_EZ18A90L_S11P directory from the test archive

• Content of the STDF_TEST_WP_L11, STDF_TEST_WP_L12, STDF_TEST_WP_L13,
STDF_TEST_WP_L14, STDF_TEST_WP_L15, STDF_TEST_WP_L16, STDF_TEST_WP_L17,
STDF_TEST_WP_L18, STDF_TEST_WP_L19 directories from the test archive

Actions Specification

• Start the JM-Emu if it is not running

• Copy the TDF masterdata into the proper WPScan’s input

• Wait until the masterdata are loaded
• Copy the STDF WPs into the STDF2EXF Converter’s input

Output Specifications

• The <EBS_ANA>.TRACKING_UNITS table shall contain 9 records, the wafernumber-wafer_id pairs can be

STDF2EXF Converter Development

47

different:

sqlplus <ebs_ana>/<ebs_ana>@<conn_string>
SQL> SELECT id, motherlot_id, wafernumber, wafer_id FROM
tracking_units;

 ID MOTHERLOT_ID WAFERNUMBER WAFER_ID
--------- --------- ----------- ---------
 1 EZ18A90L 1 K102GKN0
 2 EZ18A90L 2 K102H2N0
 3 EZ18A90L 3 K402IGN0
 4 EZ18A90L 4 KJ02I1N0
 5 EZ18A90L 5 KN02HFN0
 6 EZ18A90L 6 KR02HCN0
 7 EZ18A90L 7 KS02GUN0
 8 EZ18A90L 8 KT02GTN0
 9 EZ18A90L 9 KX02H6N0

Post-Conditions:

None

Dependencies

STDF. EBS1234

Test case identifier: STDF. EBS1234

Responsibility: Critical Software

Purpose: Wrong error handling of inserting MeasZoneVals in STDF2EXF Converter

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully

• The Oracle schemas shall be empty

Input Specifications

• Content of the EXF_L40_L41 directory from the test archive

• Content of the STDF_TEST_WP_L40 directory from the test archive

• Content of the STDF_TEST_WP_L41 directory from the test archive

Actions Specification

• Copy the EXF_L40_L41 WP into the EXF Loader’s input and wait until it is loaded

• Stop the jm and copy the two STDF WPs into the STDF2EXF Converter’s input

• Start the jm step by step (with the “jm;stopjm“ command) until the STDF2EXF Converter starts
• Check the state of the WPs

Output Specifications

• The state of the WPs shall be OK/Done and OK/Delayed

• The number of measurements record in the stage shall be 1

sqlplus <ebs_stage>/<ebs_stage>@<conn_string>
SQL> SELECT count(*) FROM measurements;

 COUNT(*)

 1

Post-Conditions:

None

Dependencies

STDF. ITMFG9223.1

Test case identifier: STDF. ITMFG9223.1

Responsibility: Critical Software

Purpose: Update TESTPROGRAMS.REVISION_DATE field

STDF2EXF Converter Development

48

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully

• The Oracle schemas shall be empty (before loading the TDF WP)

• TDF_TESTPROGRAMS TDF WP shall be loaded

• The flag EnableMeasTestTypeChecking in the STDF2EXF Converter‘s configuration should be set to ‘Off’

Input Specifications

• Content of the STDF_TEST_WP_L30 directory

Actions Specification

• Copy the STDF_TEST_WP_L30 into the STDF2EXF Converter ‘s input component.

cd $TEST_CASES_DIR
cp –r STDF_TEST_WP_L30 $EBS_HOME/data/wpscan/input/ STDF
jm –askme

Output Specifications

• The <EBS_ANA>.TESTPROGRAMS table shall contain:

sqlplus <ebs_ana>/<ebs_ana>@<conn_string>
SQL> SELECT name, revision, to_char(revision_date,' YYYY-MM-DD')
FROM testprograms WHERE revision_date IS NOT NULL;

NAME REVISION TO_CHAR(REVISION_DATE ,'YYYY-MM
----------------- ----------- --------------------- ---------
BTS443 1.25 2003-02-27

Post-Conditions:

None

Dependencies

STDF.ITMFG9939.2

Test case identifier: STDF.ITMFG9939.2

Responsibility: Critical Software

Purpose: Generate DF_ORDER from STDF.TSR

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully

• The Oracle schemas shall be empty (before loading the TDF WP)

• TDF_EZ18A90L_S11P TDF WP shall be loaded

Input Specifications

• Content of the TDF_EZ18A90L_S11P directory from the test archive

• Content of the STDF_TEST_WP_L11 directory from the test archive

Actions Specification

• Get the DF_ORDER values from EBS_ANA:

sqlplus <ebs_ana>/<ebs_ana>@<conn_string>
SQL> SELECT p.partp_name, p.pnumber, pa.value FROM
parameter_definitions p, pardef_attribute_values pa WHERE
pa.pardef_id = p.id AND pa.pdfattrtyp_name = 'DF_OR DER' and
p.pnumber IN (1,0,32072);

• Copy the WP into the STDF2EXF Converter’s input and start jm if it is not running and wait until the WP is
loaded

• Get the DF_ORDER values from EBS_ANA:

sqlplus <ebs_ana>/<ebs_ana>@<conn_string>
SQL> SELECT p.partp_name, p.pnumber, pa.value FROM
parameter_definitions p, pardef_attribute_values pa WHERE
pa.pardef_id = p.id AND pa.pdfattrtyp_name = 'DF_OR DER' and

STDF2EXF Converter Development

49

p.pnumber IN (1,0,32072);

Output Specifications

• The DF_ORDER values in EBS_ANA after loading the masterrecord shall be:

PARTP_NAME PNUMBER VALUE
----------------- ---------- -------
FCT 32072 561
HBIN 1 836
SBIN 1 871

• The DF_ORDER values in EBS_ANA after loading the STDF WP shall be:

PARTP_NAME PNUMBER VALUE
----------------- ---------- -------
ANA 32072 561
HBIN 1 836
SBIN 1 871
SBIN 0 489

Post-Conditions:

None

Dependencies

STDF. ITMFG00011508

Test case identifier: STDF. ITMFG00011508

Responsibility: Critical Software

Purpose: Test WP in case of missing Raw file. If the WP doesn’t include the raw file an error
message shall be logged in the WP log file.

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully

• The jm-emu shall be stopped

Input Specifications

• Content of the MISSING_RAW_FILE work package.

Actions Specification

• Copy the work package into the STDF2EXF Converter’s input directory

cp –r MISSING_RAW_FILE $EBS_HOME/data/wpscan/input/ STDF

• Go to the start directory:

cd $EBS_HOME/bin

• Start jm-emu in single step mode:

jm/jm; jm/stopjm

• Wait until the STDF2EXF Converter finishes

Output Specifications

• The state and phase of the WP shall be ERROR.

• The following text should be found in the log:

Error. Raw file missing

Post-Conditions:

None

Dependencies

STDF. ITMFG00013779

Test case identifier: STDF. ITMFG00013779

Responsibility: Critical Software

Purpose: Test the parsing of Lot Summary Values.

Author(s): Leonardo Fraga, Daniel Silva

STDF2EXF Converter Development

50

Preconditions

• EBS system shall be installed successfully

• The jm-emu shall be stopped

Input Specifications

• Content of the ITMFG00013779 directory.

Actions Specification

• Copy the input directory into the STDF2EXF Converter’s input directory

cp –r ITMFG00013779 $EBS_HOME/data/wpscan/input/STD F

• Go to the /bin directory:

cd $EBS_HOME/bin

• Start jm-emu:

jm/jm

• Wait until the work package is processed
• Perform the following query on the Analytical schema:

SELECT tunit_type, wafernumber FROM tracking_units WHERE
motherlot_id=’EL616153’;

• The result of the query shall be: WAF, 4 ;
• Re-create schemas (cleanDB.sh);
• Update the configuration on the Repository schema:

UPDATE configs
SET cf_config = TO_CLOB(UPDATEXML(XMLTYPE(cf_config),
'//LotSummaryValues/text()', 'SUMMARY 004'))
WHERE cf_cfgname = 'Basic Setup'
AND cf_dlcid = (SELECT dc_id
FROM dlcomps
WHERE dc_name='STDF');
COMMIT;

• Copy the input directory into the STDF2EXF Converter’s input directory.
• Wait until the work packages is processed
• Perform the following query on the Analytical schema: select tunit_type, lot_id from

tracking_units where motherlot_id=’EL616153’;

Output Specifications

• The result of the query shall contain:

LOT, EL616153Y01.

Post-Conditions:

None

Dependencies

STDF.ChipIDLoading

Test case identifier: STDF.ITMFG00011698

Responsibility: Critical Software

Purpose: Fill MEASPART_CHIPIDS table

Author(s): Hugo Casimiro, Daniel Silva

Preconditions

• EBS system shall be installed successfully

• The Oracle schemas shall be empty

Input Specifications

• Content of the STDF_CHIPID_TEST directory from the test archive

Actions Specification

STDF2EXF Converter Development

51

• Copy the WP into the STDF2EXF Converter’s input and start jm if it is not running and wait until the WP is
loaded

• Run the following command and query:

sqlplus <ebs_ana>/<ebs_ana>@<conn_string>
SQL> spool result.txt
SQL> SELECT * FROM measpart_chipids;

This shall create a results.txt file with the result of the SQL query;

Output Specifications

• No differences shall exist between the obtained file (result.txt) and the expected results file
STDF_CHIPID_TEST/MEASPART_CHIPIDS.txt.

• WP shall end with OK/DONE.

Post-Conditions:

None

Dependncies

STDF.ChipDataAttached

Test case identifier: STDF.ITMFG00012868

Responsibility: Critical Software

Purpose: Fill MEASUREMENTS.CHIP_DATA_ATTACHED column

Author(s): Hugo Casimiro, Daniel Silva

Preconditions

• EBS system shall be installed successfully

• The Oracle schemas shall be empty

Input Specifications

• Content of the STDF_CHIPID_TEST directory from the test archive

Actions Specification

• Copy the WPs into the STDF2EXF Converter’s input and start jm if it is not running and wait until the WP is
loaded

Output Specifications

• WP shall end with OK/DONE.

• Run the following SQL query:

SELECT * FROM measurements;

One record shall be returned with the column CHIP_DATA_ATTACHED set to ‘Y’.

Post-Conditions:

None

Dependencies

STDF.RawFileSequence

Test case identifier: STDF.ITMFG00011698

Responsibility: Critical Software

Purpose: Create ‘RAWFILE_SEQ’ MeasPartAttribute

Author(s): Hugo Casimiro, Daniel Silva

Preconditions

• EBS system shall be installed successfully

• The Oracle schemas shall be empty

Input Specifications

• Content of the STDF_CHIPID_TEST directory from the test archive

Actions Specification

• Copy the WP into the STDF2EXF Converter’s input and start jm if it is not running and wait until the WP is
loaded

• Run the following command and query:

STDF2EXF Converter Development

52

sqlplus <ebs_ana>/<ebs_ana>@<conn_string>
SQL> spool result.txt
SQL> select * from measpart_attribute where
partattrtp_name='RAWFILE_SEQ';

This shall create a results.txt file with the result of the SQL query;

Output Specifications

• No differences shall exist between the obtained file (result.txt) and the expected results file
STDF_RAWFILESEQ_TEST/MEASPART_ATTRIBUTE.txt.

• WP shall end with OK/DONE.

Post-Conditions:

None

Dependencies

STDF.updateSubMeasStep

Test case identifier: ITMFG00014894

Responsibility: Critical Software

Purpose: This test case tests the update of the SubMeasStep value to ‘0’ in case the STDF WP
has a ‘FCT FE’ data source. For all other datasources the SubMeasStep value shall
remain unaltered.

Author(s): Hugo Casimiro, Daniel Silva

Preconditions

• EBS system shall be installed successfully

Input Specifications

• Both WPs in the STDF_SUBMEASSTEP directory from the input directory

Actions Specification

• Copy the WPs into the STDF2EXF Converter’s input

• Start/stop JM until the WPs end processing in the STDF2EXF Converter component.

> jm –askme; stopjm

• Run the following SQL query on EBS_STAGE:
select ev.value as wpname, m.id as measID, m.sub_me as_step from MEASUREMENTS m,
ENVIRONMENT_VALUES ev where ev.value like '_E!_WP' escape '!' and
ev.envtp_name='WPName' and ev.meas_id = m.id;

• Run JM again and wait until both WPs finish loading.

Output Specifications

• Both WPs shall end with OK/DONE.

• The query on EBS_STAGE shall have returned two rows. In the row for the ‘FE_WP’ we shall have
SUB_MEAS_STEP set to ‘0’. In the row for the ‘BE_WP’ we shall have SUB_MEAS_STEP set to ‘1.

Post-Conditions:

None

Dependencies

Loading parameter checking

The test cases described in this chapter were created for testing the parameter definition
checks. They were not developed during the project’s period and due to this fact are not
included in 4.7 Traceability matrix. Nevertheless, such test cases are necessary to test the
converter’s integration with the EXF Loader.

STDF.PCHK.01

Test case identifier: STDF.PCHK.01

Responsibility: Critical Software

Purpose: HBIN/SBIN parameters have been loaded before loading the STDF.

STDF2EXF Converter Development

53

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully.

Input Specifications

• TDF_PCHK_01 TDF WP

• STDF_TEST_WP_CHK01 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy the STDF WPs into the STDF2EXF Converter’s input

Output Specifications

• The STDF2EXF Converter shall load the WP successful ly

• The WP-related log file shall contain the line:
ParmDefs (PARAMETER_DEFINITIONS) records: found 90 inserted 0

Post-Conditions:

None

Dependencies

STDF.PCHK.02

Test case identifier: STDF.PCHK.02

Responsibility: Critical Software

Purpose: There is no HBIN/SBIN parameter loaded before loading the STDF. The STDF2EXF
Converter throws error (InsertNewParamDefs is Off)

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully.

Input Specifications

• TDF_TESTPROGRAMS TDF WP

• STDF_TEST_WP_CHK01 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Set InsertNewParamDefs to Off in the config (STDF, Basic Setup)

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy the STDF WPs into the STDF2EXF Converter’s input

Output Specifications

• The WP shall be moved into the error

• The error message shall be similar to:

ParmDefs (Name: 'BIN_1', ParmNr: '1', ParmType: 'HB IN',
MeasAllowedID: '400', TestprgID: '3') was not loade d previously!

Post-Conditions:

None

Dependencies

STDF.PCHK.03

Test case identifier: STDF.PCHK.03

STDF2EXF Converter Development

54

Responsibility: Critical Software

Purpose: There is no HBIN/SBIN parameter loaded before loading the STDF. The STDF2EXF
Converter inserts them.

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully.

Input Specifications

• TDF_PCHK_01 TDF WP

• STDF_TEST_WP_CHK01 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Set InsertNewParamDefs to On in the config (STDF2EXF Converter, Basic Setup)

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy the STDF WPs into the STDF2EXF Converter’s input

Output Specifications

• The STDF2EXF Converter shall load the WP successful ly

• The WP-related log file shall contain the line:
ParmDefs (PARAMETER_DEFINITIONS) records: found 90 inserted 0

Post-Conditions:

None

Dependencies

STDF.PCHK.04

Test case identifier: STDF.PCHK.04

Responsibility: Critical Software

Purpose: FCT/ANA parameters have been loaded before loading the STDF. The STDF file is “test
by number” type. (parmNr field is filled).

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully.

Input Specifications

• TDF_PCHK_04 TDF WP

• STDF_TEST_WP_CHK04 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy the STDF WPs into the STDF2EXF Converter’s input

Output Specifications

• The STDF2EXF Converter shall load the WP successful ly

• The WP-related log file shall contain the line:
ParmDefs (PARAMETER_DEFINITIONS) records: found 90 inserted 0

Post-Conditions:

None

Dependencies

STDF2EXF Converter Development

55

STDF.PCHK.05

Test case identifier: STDF.PCHK.05

Responsibility: Critical Software

Purpose: There is no FCT/ANA parameter loaded before loading the STDF.

The STDF file is “test by number” type (parmNr field is filled) and the STDF2EXF
Converter throws error (InsertNewParamDefs is Off).

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully.

Input Specifications

• TDF_PCHK_05TDF WP

• STDF_TEST_WP_CHK05 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy the STDF WPs into the STDF2EXF Converter’s input

Output Specifications

• The WP shall finish with error.

• The error message shall be similar to:
ParmDefs (Name: 'IPD_TEST', ParmNr: '4010', ParmTyp e: 'ANA', MeasAllowedID:
'200', TestprgID: '1') was not loaded previously!

Post-Conditions:

None

Dependencies

STDF.PCHK.06

Test case identifier: STDF.PCHK.06

Responsibility: Critical Software

Purpose: There is no FCT/ANA parameter loaded before loading the STDF.

The STDF file is “test by number” type (parmNr field is filled) and the STDF2EXF
Converter inserts the missing parameters (InsertNewParamDefs is On).

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully.

Input Specifications

• TDF_PCHK_05TDF WP

• STDF_TEST_WP_CHK04 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy the STDF WPs into the STDF2EXF Converter’s input

Output Specifications

• The STDF2EXF Converter shall load the WP successful ly

• The WP-related log file shall contain the line:
ParmDefs (PARAMETER_DEFINITIONS) records: found 42 inserted 148

Post-Conditions:

None

STDF2EXF Converter Development

56

Dependencies

STDF.PCHK.07

Test case identifier: STDF.PCHK.07

Responsibility: Critical Software

Purpose: FCT/ANA parameters have been loaded before loading the STDF. The STDF file is “test
by number” type. (parmNr field is filled). The STDF2EXF Converter finds the parameters
through the parameter name and not the number.

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully.

Input Specifications

• TDF_PCHK_07TDF WP

• STDF_TEST_WP_CHK04 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy the STDF WPs into the STDF2EXF Converter’s input

Output Specifications

• The STDF2EXF Converter shall load the WP successful ly

• The WP-related log file shall contain the line:
ParmDefs (PARAMETER_DEFINITIONS) records: found 190 inserted 0

Post-Conditions:

None

Dependencies

STDF.PCHK.08

Test case identifier: STDF.PCHK.08

Responsibility: Critical Software

Purpose: FCT/ANA parameters have been loaded before loading the STDF. The STDF file is “test
by number” type. (parmNr field is filled). The STDF2EXF Converter finds the parameters
through the parameter number, but the parameter type shall be updated (FCT=>ANA,
ANA=>FCT).

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully.

Input Specifications

• TDF_PCHK_08TDF WP

• STDF_TEST_WP_CHK04 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy the STDF WPs into the STDF2EXF Converter’s input

Output Specifications

STDF2EXF Converter Development

57

• The WP shall be loaded successfully

• The WP-related log file shall contain the line:
ParmDefs (PARAMETER_DEFINITIONS) records: found 190 inserted 0

• The <EBS_ANA>. PARAMETER_DEFINITIONS table shall co ntain:

sqlplus <ebs_ana>/<ebs_ana>@<conn_string>
SQL> SELECT pnumber,partp_name,name FROM parameter_ definitions
WHERE partp_name NOT LIKE '%BIN' AND pnumber IN
(1010,3010,3200,3464,4010,4031,10000) ORDER BY pnum ber;

 PNUMBER PARTP_NAME NAME
---------- ------------ ----------------
 1010 FCT CONT_SHORT_TEST
 3010 FCT SCAN_CHECK_SPO
 3200 FCT BSCAN_FUNC
 3464 FCT BSCAN_MAX_BS
 4010 ANA IPD_TEST
 4031 ANA IPDS_TEST
 10000 FCT BIST_TEST_FUNC

Post-Conditions:

None

Dependencies

STDF.PCHK.09

Test case identifier: STDF.PCHK.09

Responsibility: Critical Software

Purpose: FCT/ANA parameters have been loaded before loading the STDF.

The STDF file is “test by number” type. (parmNr field is filled)

The STDF2EXF Converter finds the parameters through the parameter name and the
parameter type shall be updated (FCT=>ANA, ANA=>FCT).

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully.

Input Specifications

• TDF_PCHK_09 TDF WP

• STDF_TEST_WP_CHK01 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Set InsertNewParamDefs to On in the config (STDF2EXF Converter, Basic Setup)

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy the STDF WPs into the STDF2EXF Converter’s input

Output Specifications

• The WP shall be loaded successfully

• The WP-related log file shall contain line:
ParmDefs (PARAMETER_DEFINITIONS) records: found 190 inserted 0

• The <EBS_ANA>. PARAMETER_DEFINITIONS table shall co ntain:

sqlplus <ebs_ana>/<ebs_ana>@<conn_string>
SQL> SELECT pnumber,partp_name,name FROM parameter_ definitions
WHERE partp_name NOT LIKE '%BIN' AND name IN
('BIST_TEST_FUNC','BSCAN_FUNC','BSCAN_MAX_BS',
'CONT_SHORT_TEST','IPDS_TEST','IPD_TEST',
'SCAN_CHECK_SPO') ORDER BY name;

STDF2EXF Converter Development

58

 PNUMBER PARTP_NAME NAME
---------- ------------ ----------------
 FCT BIST_TEST_FUNC
 FCT BSCAN_FUNC
 FCT BSCAN_MAX_BS
 FCT CONT_SHORT_TEST
 ANA IPDS_TEST
 ANA IPD_TEST
 FCT SCAN_CHECK_SPO

Post-Conditions:

None

Dependencies

STDF.PCHK.10

Test case identifier: STDF.PCHK.10

Responsibility: Critical Software

Purpose: FCT/ANA parameters have been loaded before loading the STDF.

The STDF file is “test by name” type. (parmNr field is NULL)

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully.

Input Specifications

• TDF_PCHK_10 TDF WP

• STDF_TEST_WP_CHK10 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Set InsertNewParamDefs to On in the config (STDF, Basic Setup)

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy the STDF WPs into the STDF2EXF Converter’s input

Output Specifications

• The STDF2EXF Converter shall load the WP successful ly

• The WP-related log file shall contain the line:
ParmDefs (PARAMETER_DEFINITIONS) records: found 116 inserted 0

Post-Conditions:

None

Dependencies

STDF.PCHK.11

Test case identifier: STDF.PCHK.11

Responsibility: Critical Software

Purpose: There is no FCT/ANA parameter loaded before loading the STDF.

The STDF file is “test by name” type (parmNr field is NULL) and the STDF2EXF
Converter throws error (InsertNewParamDefs is Off).

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully.

Input Specifications

STDF2EXF Converter Development

59

• TDF_PCHK_11 TDF WP

• STDF_TEST_WP_CHK10 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Set InsertNewParamDefs to On in the config (STDF, Basic Setup)

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy the STDF WPs into the STDF2EXF Converter’s input

Output Specifications

• The WP shall finish with ERROR

• The error message shall be similar to:
ParmDefs (Name: 'B_N01__25U', ParmNr: '', ParmType: 'ANA', MeasAllowedID: '600',
TestprgID: '1') was not loaded previously!

Post-Conditions:

None

Dependencies

STDF.PCHK.12

Test case identifier: STDF.PCHK.12

Responsibility: Critical Software

Purpose: There is no FCT/ANA parameter loaded before loading the STDF.

The STDF file is “test by name” type (parmNr field is NULL) and the STDF2EXF
Converter inserts the missing parameters (InsertNewParamDefs is On).

Author(s): Norberto Leite, Daniel Silva

Preconditions

• EBS system shall be installed successfully.

Input Specifications

• TDF_PCHK_11 TDF WP

• STDF_TEST_WP_CHK10 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Set InsertNewParamDefs to On in the config (STDF, Basic Setup)

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy the STDF WPs into the STDF2EXF Converter’s input

Output Specifications

• The STDF2EXF Converter shall load the WP successful ly

• The WP-related log file shall contain line:
ParmDefs (PARAMETER_DEFINITIONS) records: found 114 inserted 2

Post-Conditions:

None

Dependencies

STDF.PCHK.13

Test case identifier: STDF.PCHK.13

Responsibility: Critical Software

STDF2EXF Converter Development

60

Purpose: FCT/ANA parameters have been loaded before loading the STDF. The STDF file is “test
by name” type. (parmNr field is NULL). The STDF2EXF Converter finds the parameters
through the parameter name and the parameter type shall be updated (FCT=>ANA).

Author(s): Norberto Leite

Preconditions

• EBS system shall be installed successfully.

Input Specifications

• TDF_PCHK_13 TDF WP

• STDF_TEST_WP_CHK10 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy the STDF WPs into the STDF2EXF Converter’s input

Output Specifications

• The WP shall be loaded successfully

• The WP-related log file shall contain line:
ParmDefs (PARAMETER_DEFINITIONS) records: found 116 inserted 0

• The <EBS_ANA>. PARAMETER_DEFINITIONS table shall co ntain:

sqlplus <ebs_ana>/<ebs_ana>@<conn_string>
SQL> SELECT pnumber,partp_name,name FROM parameter_ definitions
WHERE name LIKE 'M%' ORDER BY name;

 PNUMBER PARTP_NAME NAME
--------- ------------ ---------------
 ANA MB_N02__C
 ANA MB_P01__C
 ANA MB_P28.L
 ANA MIC_N02
 ANA MIC_N08
 ANA MIC_P01
 ANA MIC_P28.L
 ANA MR_SPH.A/B__C

Post-Conditions:

None

Dependencies

STDF.PCHK.14

Test case identifier: STDF.PCHK.14

Responsibility: Critical Software

Purpose: If the parameter is only in TSR, the parameter type in the database shall be updated only
if the new type is ANA and the old one (in the database) is FCT. The STDF file is “test by
number” type. (parmNr field is filled)

Author(s): Norberto Leite

Preconditions

• EBS system shall be installed successfully.

Input Specifications

• TDF_PCHK_2x TDF WP

• STDF_TEST_WP_CHK20 STDF WP

• STDF_TEST_WP_CHK21 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

STDF2EXF Converter Development

61

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy STDF_TEST_WP_CHK20 WP into the STDF2EXF Converter’s input

• Wait until it is loaded and execute the query (see below)

• Copy STDF_TEST_WP_CHK21 WP into the STDF2EXF Converter’s input

• Wait until it is loaded and execute the query (see below)

• Copy STDF_TEST_WP_CHK20 WP into the STDF2EXF Converter’s input

• Wait until it is loaded and execute the query (see below)

Output Specifications

• The WPs shall be loaded successfully

• The <EBS_ANA>. PARAMETER_DEFINITIONS table shall co ntain after the first loading:

• sqlplus <ebs_ana>/<ebs_ana>@<conn_string>

SQL> SELECT pnumber,partp_name FROM parameter_defin itions WHERE
pnumber=7 AND partp_name NOT LIKE '%BIN';

 PNUMBER PARTP_NAME
--------- ------------
 7 FCT

• The <EBS_ANA>. PARAMETER_DEFINITIONS table shall co ntain after the second and third loadings:

sqlplus <ebs_ana>/<ebs_ana>@<conn_string>
SQL> SELECT pnumber,partp_name FROM parameter_defin itions WHERE
pnumber=7 AND partp_name NOT LIKE '%BIN';

 PNUMBER PARTP_NAME
--------- ------------
 7 ANA

Post-Conditions:

None

Dependencies

STDF.PCHK.15

Test case identifier: STDF.PCHK.15

Responsibility: Critical Software

Purpose: If the parameter is only in TSR, the parameter type in the database shall be updated only
if the new type is ANA and the old one (in the database) is FCT. The STDF file is “test by
number” type. (parmNr field is filled)

Author(s): Norberto Leite

Preconditions

• EBS system shall be installed successfully.

Input Specifications

• TDF_PCHK_3x TDF WP

• STDF_TEST_WP_CHK30 STDF WP

• STDF_TEST_WP_CHK31 STDF WP

Actions Specification

• Stop the JM and wait until all components exist

• Re-create the Staging Area and Analytical (and Operational) Schemas and packages

• Start the JM

• Copy the TDF master WP into the proper wpscan's input

• Wait until the masterdata are loaded

• Copy STDF_TEST_WP_CHK30 WP into the STDF2EXF Converter’s input

• Wait until it is loaded and execute the query (see below)

STDF2EXF Converter Development

62

• Copy STDF_TEST_WP_CHK31 WP into the STDF2EXF Converter’s input

• Wait until it is loaded and execute the query (see below)

• Copy STDF_TEST_WP_CHK30 WP into the STDF2EXF Converter’s input

• Wait until it is loaded and execute the query (see below)

Output Specifications

• The WPs shall be loaded successfully

• The <EBS_ANA>. PARAMETER_DEFINITIONS table shall contain after the first loading:
sqlplus <ebs_ana>/<ebs_ana>@<conn_string>
SQL> SELECT pnumber,partp_name,name FROM parameter_ definitions
WHERE name='AAAA_N_.6/1.3_5V';

 PNUMBER PARTP_NAME NAME
--------- ------------ ------
 FCT AAAA_N_.6/1.3_5V

• The <EBS_ANA>. PARAMETER_DEFINITIONS table shall contain after the second and third loadings:

sqlplus <ebs_ana>/<ebs_ana>@<conn_string>
SQL> SELECT pnumber,partp_name,name FROM parameter_ definitions
WHERE name='AAAA_N_.6/1.3_5V';

 PNUMBER PARTP_NAME NAME
--------- ------------ ------
 ANA AAAA_N_.6/1.3_5V

Post-Conditions:

None

Dependencies

STDF.PCHK.16

Test case identifier: STDF.PCHK.16

Responsibility: Critical Software

Purpose: Do not update transaction_id when updating parameter type and adaptation SQL
statements in STDF2EXF Converter's parameter update

Author(s): Norberto Leite

Preconditions

• EBS system should be installed successfully

• Oracle schemas (stage, ana and oper, if it exists) shall be empty

• JM shall be running.

Input Specifications

• TDF_PCHK_2x, TDF_PCHK_3x TDF WPs

• STDF_TEST_WP_CHK21, STDF_TEST_WP_CHK31 STDF WPs

Actions Specification

• Set LoaderSQL to 1 in the config (STDF, Logging)

• Copy the TDF WPs into the input and wait until they are loaded

• Stop the JM and update the staging area:

sqlplus <ebs_stage>/<ebs_stage>@<conn_string>
SQL> UPDATE parameter_definitions SET partp_name=’F CT’,
recordstate=’MASTERRECORD’, transaction_id = 1 WHER E partp_name
IN ('ANA','FCT') AND (name='AAAA_N_.6/1.3_5V' OR pn umber=7);
SQL> commit;

• Copy the STDF_TEST_WP_CHK21 and STDF_TEST_WP_CHK31 WPs into the STDF2EXF Converter’s
input and start the jm step by step until the STDF2EXF Converter instances start processing that WPs

• Get the parameter types from the staging area:

sqlplus <ebs_stage>/<ebs_stage>@<conn_string>
SQL> SELECT partp_name, pnumber, name, transaction_ id,
recordstate FROM parameter_definitions WHERE partp_ name IN

STDF2EXF Converter Development

63

('ANA','FCT') AND (name='AAAA_N_.6/1.3_5V' OR pnumb er=7) ORDER
BY name;
PARTP_NAME PNUMBER NAME TRANSACTION_ID RECORDSTATE
--------- -------- ---------------- -------------- -----------
ANA AAAA_N_.6/1.3_5V 0 M ASTERRECORD
ANA 7 0 M ASTERRECORD
SQL> UPDATE parameter_definitions SET recordstate=’ OK’,
transaction_id=0;
SQL> UPDATE parameter_definitions SET partp_name=’F CT’ WHERE
partp_name IN ('ANA','FCT') AND (name='AAAA_N_.6/1. 3_5V' OR
pnumber=7);
SQL> commit;

• Load these WPs, stop the jm and copy the STDF_TEST_WP_CHK21 and STDF_TEST_WP_CHK31 WPs
into the STDF2EXF Converter’s input and start the jm step by step until the STDF2EXF Converter instances
start processing that WPs

• Get the parameter types from the staging area:

sqlplus <ebs_stage>/<ebs_stage>@<conn_string>
SQL> SELECT partp_name, pnumber, name, transaction_ id,
recordstate FROM parameter_definitions WHERE partp_ name IN
('ANA','FCT') AND (name='AAAA_N_.6/1.3_5V' OR pnumb er=7) ORDER
BY name;
PARTP_NAME PNUMBER NAME TRANSACTION_ID RECORDSTATE
--------- -------- ---------------- -------------- -----------
ANA AAAA_N_.6/1.3_5V 0 A ggr
ANA 7 0 A ggr

• Wait until all of the STDF2EXF Converter instances exit and check the latest component-related log file:

bash-2.05$ cd $EBS_HOME/data/loader/STDF/log
bash-2.05$ cat stdf_*.log | grep "PARAMETER_DEFINIT IONS" | grep
-e "[n|N][v|V][l|L]"
bash-2.05$

Output Specifications
• The queries shall return the same result as above

Post-Conditions:

None

Dependencies

STDF.PCHK.17

Test case identifier: STDF.PCHK.17

Responsibility: Critical Software

Purpose: Oracle deadlocks because of update on par_def. The STDF2EXF Converter shall update
the parameter definitions table in order of the primary key

Author(s): Norberto Leite

Preconditions

• EBS system should be installed successfully

• Oracle schemas (stage, ana and oper, if it exists) shall be empty

• JM shall be running.

Input Specifications

• TDF_TESTPROGRAMS TDF WP

• STDF_TEST_WP_07, STDF_TEST_WP_08 STDF WPs

Actions Specification

• Copy the TDF WPs into the input and wait until they are loaded

• Copy the STDF WPs into the input and wait until they are loaded

• Update the staging area:

sqlplus <ebs_stage>/<ebs_stage>@<conn_string>
SQL> UPDATE parameter_definitions SET partp_name = decode (
partp_name,’ANA’,’FCT’,’ANA’)WHERE partp_name IN(’A NA’,’FCT’);

STDF2EXF Converter Development

64

SQL> commit;

• Copy the STDF WPs into the input and wait until they are loaded

Output Specifications

• The wp-related log-file of STDF_TEST_WP_07 WP shall contain:

156 existing parameter definitions were updated to ANA type

• The wp-related log-file of STDF_TEST_WP_08 WP shall contain:

69 existing parameter definitions were updated to A NA type

Post-Conditions:

None

Dependencies

STDF.PCHK.18

Test case identifier: ITMFG00011957

Responsibility: Critical Software

Purpose: For the field STDF4.Wir.wafer_id no control characters are allowed (hex 01 til 1F

and 7F). If some of this invalid chars are found the WP should end with error.

Author(s): Norberto Leite

Preconditions

• EBS system should be installed successfully

• JM shall be stopped.

Input Specifications

• INVALID_CONTROL_CHARS WP

Actions Specification

• Copy the INVALID_CONTROL_CHARS WPs into the input of the STDF loader

• Start the jm-emulator

cp –r INVALID_CONTROL_CHARS $EBS_HOME/data/loader/S TDF/input
jm –askme;

• The WP should end with error and placed in the error folder.

Output Specifications

• The wp-related log-file of INVALID_CONTROL_CHARS shall contain:

(STDF) - (ERROR) - Error occurred, invalid con trol
character:

Post-Conditions:

None

Dependencies

Rosetta Net support

The test cases shown below should test the integration of the loaded information from STDF
files with an external component of EBS – the Rosetta Net Converter. Such test cases were
not developed during the project’s period and due to this fact are not included in 4.7
Traceability matrix. Nevertheless, such test cases are necessary to test the converter’s
integration with the EXF Loader.

STDF.ITMFG14696.1

Test case identifier: STDF. ITMFG14696.1

Responsibility: Critical Software

STDF2EXF Converter Development

65

Purpose: This test case test the.mapping of several STDF fields into the
ENVIRONMENT_VALUES and PARDEF_ATTRIBUTE_VALUES tables, related to the
Rosetta Net STDF files.

Author(s): Hugo Casimiro, Daniel Silva

Preconditions

• EBS system should be installed successfully

• DB schemas should be clean

Input Specifications

STDFLoader.inp\STDF\STDF_TEST_WP_ROS2

Actions Specification

• Copy the WP directory into /data/loader/STDF/input directory;

• Start JM;

• Wait until WP is fully loaded and run the following queries on EBS_ANA:

1. select envtp_name, value from environment_values wh ere
meas_id = (select meas_id from environment_values e where
e.value='STDF_TEST_WP_ROS2') order by envtp_name;

2. select * from pardef_attribute_values where
pdfattrtyp_name='TEST_NO' or pdfattrtyp_name='CATEG ORY';

Output Specifications

• The WP should have ended with status OK/Done

• After running the first query you should have a list of environment types and corresponding values. The
following should be part of the list:

ENVTP_NAME VALUE
--- -------------
ConverterVersion c_st3_XML_version 1.0.0
CustomerPN 0000032N5247
FileCreationDate 2007-04-13T19:53:23Z
FlatNotchLocation 270
OriginLocation 45
TestLocation BTV
WaferDiameter 200
XIsHorizontal Y

• The result of the second SQL query should be a list of ParDefAttributeValues for type ‘CATEGORY’ only. No
results should exist for type ‘TEST_NO’.

Post-Conditions:

None

Dependencies

STDF.ITMFG14696.2

Test case identifier: STDF. ITMFG14696.2

Responsibility: Critical Software

Purpose: This test case test the.mapping of ParDef_Attribute_Values for type ‘TEST_NO’

Author(s): Hugo Casimiro

Preconditions

• EBS system should be installed successfully

Input Specifications

STDFLoader.inp\STDF\STDF_TEST_WP_ROS1

Actions Specification

• copy the WP directory into /data/loader/STDF/input directory;

• Start JM;

• Wait until WP is fully loaded and run the following queries on EBS_ANA:

1. select envtp_name, value from environment_values wh ere

STDF2EXF Converter Development

66

meas_id = (select meas_id from environment_values e where
e.value='STDF_TEST_WP_ROS1') and envtp_name='Conver terVersion';

2. select * from pardef_attribute_values where
pdfattrtyp_name='TEST_NO';

Output Specifications

• The WP should have ended with status OK/Done

• After running the first query you should have the following Environment value:

ENVTP_NAME VALUE
--- -------------
ConverterVersion c_st4_XML_version 1.0.0

• The result of the second SQL query should be a list of ParDefAttributeValues for type ‘TEST_NO’.

Post-Conditions:

None

Dependencies

4.7 Traceability matrix

A traceability matrix provides an easy way to relate test cases to requirements or use cases,
providing developers a good insight of which tests should be executed for a specific purpose.
For any use case or requirement it is possible to determine which test or tests shall be
executed in order to validate what was described in such items. Whenever a cross connects a
line of the matrix with a column, it means that a relationship is present between the line and
column, thus between a use case or requirement and a test case, as seen in the following
matrixes presented below.

Test cases to requirements matrix

Figure 20 shows the traceability matrix between test cases and requirements for the
STDF2EXF Converter.

STDF2EXF Converter Development

67

Figure 20: Test cases to requirements matrix

As seen above, each functional requirement has at least one test case associated with it. This
guarantees that every requirement will be tested somehow, assuring that the application to be
developed behaves as specified and as expected. Some requirements might, however, have
more than one test case associated with them, as it happens with STDF2EXF-SRS-VAL-001 ,
which has four correspondent test cases.

Use cases to test cases matrix

Figure 21 shows the traceability matrix between use cases and test cases for the STDF2EXF
Converter.

STDF2EXF Converter Development

68

Figure 21: Use cases to test cases matrix

Analogously to the test cases to requirements matrix, each use case has one or more test cases
associated with it, guaranteeing that each use case is properly tested. Please note the use case
STDF2EXF-SRS-USR-010 is a super use case which includes the sub use cases STDF2EXF-

SRS-USR-011 and STDF2EXF-SRS-USR-012.

STDF2EXF Converter Development

69

5 Prototype development

A vertical prototype for the STDF2EXF Converter was built, based on the requirements that
were gathered for this new component, and later tested according to its test case specification.

It was developed with the Eclipse Platform using the programming language C++, together
with PL/SQL and XML. There were not alternative technologies to be considered for
development purposes, since the new component would be part of an existing complex system
that was developed with such languages. The trainee had no specific experience with C++,
nevertheless, had made previous projects using C together with object oriented programming
languages such as C# or Java. The trainee had as well previous experience with database
programming, using SQL, and a good knowledge of the XML format.

All development was made on top of the latest stable version of EBS DB available at Critical
Software’s CVS (Concurrent Versions System) by the beginning of the project’s Design
Engineering Phase. The prototype was built based on EBS DB v2.3.0.3 and it was intended to
support the functionalities provided in this version.

This prototype aims to show its working mode beyond a basic level, as if the user would be
using a released version. In fact, when working in standalone mode, the STDF2EXF
Converter prototype is fully functional, meaning that it can be used with no limitations, even
if not running over any EBS DB installation whatsoever. When in this mode, the converter
processes STDF work packages from an input path selected by the user and transforms its raw
files into XML based EXF files. As a result, a prototype of this level allows one to have a
clear idea of what the developed application should do and how it should behave. This should
allow the client to decide with a high percentage of confidence whether or not this converter,
when introduced in EBS DB, could indeed be a real advantage in comparison to the currently
used solution.

5.1 Prototype engineering

The business know-how gained during the first week of this project was an essential step
towards the understanding of how the EBS Data Loading components are structured and
connected, due to the system’s high complexity and the fact that various development teams
have embraced it since its creation.

The goals of the project concerning the prototype development were clear, to design a new
STDF2EXF converter that could work both integrated in EBS and independently from it. This
converter would incorporate the logic regarding the conversion process of the existing STDF
Loader, being integrated at a later stage with the EXF Loader, the component that loads the
information processed by the converters into a staging database.

Most of the conversion processes are shared by the different converters, and this lead to the
creation of coding templates that can and should be used when a new converter needs to be
developed. Although, in general terms, these processes are identical independently of the
converter type to be used, it is not less true that the conversion logic itself changes
considerably depending on the file type to be converted. Each file type which is extracted
from the factory testers is processed by EBS DB differently according to its characteristics. It
is common that the information of such files is divided into zones which are organised

STDF2EXF Converter Development

70

differently according to their zone type, e.g., header or data. Among zones of the same type in
different file formats, the information can be handled differently as well, e.g., setsign or
lookup. These differences, as one can see, added to the different requirements of each
converter and their inherent logic, might lead to quite significant variations in the way EBS
Data Loading converters are designed and implemented.

Although what was mentioned above is valid for text based raw file formats, such as
2DPATREC or APRC, it is not true for binary files like STDF. The existing converter
templates were designed according to the structural needs of the different text type based
converters, which are in various ways different than binary type based converters. The
STDF2EXF Converter would, in this way, share a significant percentage of the structure built
for the existing converters, but also have in some extent nuances that one might notice as
structurally different from the standard text based converters that are part of EBS DB.

The existing STDF Loader combines the structure and the logic of existing converters and the
EXF Loader, making it a unique component in the EBS Data Loading scenario. Not only the
STDF Loader was implemented with some of the conversion mechanisms that exist in other
converters but it also has common steps of the loading process obtained from the EXF
Loader. However, such mechanisms have their uniqueness since they process binary data,
significantly different from text data, as mentioned before. Added to this, a major difference
between the processing steps made by the STDF Loader and the converters plus EXF Loader
resides in the fact that, while the latter transform raw data files into EXF files and load the
generated information into the system’s staging database, the former skips EXF file creation
and converts the files in memory, loading their data afterwards into the database by itself.

In this way, a compromise between the standard converters’ structure and the STDF Loader’s
approach to the handling of STDF files had to be made. This was done in order to create a
new converter that would incorporate the properties a converter must have in order to act as
one, but at the same time being able to handle STDF files in an autonomous and practical
way.

The standalone mode

Besides acting as a standard converter that would transform STDF raw files into XML files
that would be later loaded into the staging area of EBS DB, this application should as well
have the capability of being completely independent from EBS DB, something which is not
shared by the system’s other converters. Each component of the EBS Data Loading retrieves
and stores data from and into the repository database, which contains configurations and
information that are essential to the execution of every component that runs in EBS DB.

The Data Loading mechanism is controlled by the JM Emulator, a process that, supported by
the repository database, manages the EBS DB components by launching them and sending
them instructions so that these can carry out their tasks. Each component is registered in the
EBS_REPO database, which stores core information to the EBS Data Loading such as
running processes and their states, the streams associated to the different components, the
workflows that must be followed, paths for the components’ logfiles and binaries, the work
packages and raw files that are present in the system, their status and other data which the
system is supported by in order to run properly.

The fact that each component is so intimately connected with the system’s workflow and the
repository database made the process of creating such a unique converter as something

STDF2EXF Converter Development

71

interesting and challenging. In order to achieve it, the configurations used by the new
converter were copied from the database to .ini files that could be accessed locally by the
application, if in standalone mode. When running in this mode, the application does not
require a single connection to any database, making use of information that can be accessed
locally, either through the code itself or by retrieving information from such configuration
files. This allows the application to be added, for instance, to a compressed file such as .zip,
.rar or other, and to be extracted by any user to his HP-UX machine, being ready to use
without any installation procedure whatsoever. On the other hand, the application when not
running in standalone mode acts as a standard converter, integrated in the EBS workflow and
transforming input raw STDF files into XML based EXF files which are then forwarded to
the next component in the workflow as defined in the repository database.

The STDF2EXF Converter can be initialized in two distinct ways: by the user or by the EBS
system – JM Emulator. The former is valid when the program is to be launched in standalone
mode, while the latter happens when the converter is used in its normal environment,
integrated with EBS. The principle behind the standalone mode is that a user can call the
program through the command line using the path of a STDF work package to be converted
as argument, preceded by the flag -s (Figure 22). The application will simply convert the
binary information of the STDF raw file contained inside the work package into an EXF file
placed inside this same folder.

Figure 22: STDF2EXF Converter working in standalone mode

As seen above, the process of converting a STDF work package in standalone mode is quite
straightforward. The user invokes the required command line and the application quickly
converts the data, exiting afterwards.

Figure 23 and Figure 24 show examples of two generated files from the STDF2EXF
Converter: firstly, a log generated after the conversion of a STDF work package; secondly, a
EXF file generated from a STDF raw file. Such examples are valid for the STDF Loader as
well and they should be identical.

Fri Mar 7 11:10:38 2008 - (STDF) - (INFO) - Start converting 'IT_BTC_D' RAW file
Fri Mar 7 11:10:40 2008 - (STDF) - (INFO) - Start processing PRR records, collecting
MeasPartAttrs elements
Fri Mar 7 11:10:40 2008 - (STDF) - (INFO) - Start processing PTR/FTR records,
collecting MeasPartVals elements
Fri Mar 7 11:10:40 2008 - (STDF) - (INFO) - Datalog sequence is serialized
Fri Mar 7 11:10:42 2008 - (STDF) - (WARNING) - Warning. 4 PTR records were ignored,
because they were found before the first PIR record
Fri Mar 7 11:10:42 2008 - (STDF) - (INFO) - Start processing ParmAggrs records
Fri Mar 7 11:10:42 2008 - (STDF) - (INFO) - Writing out MeasPartPos, MeasPartChipIDs,
MeasPartAttrs and MeasPartVals records
Fri Mar 7 11:10:43 2008 - (STDF) - (INFO) - 'IT_BTC_D' RAW-file converted in 5.20
seconds
Fri Mar 7 11:10:43 2008 - (STDF) - (INFO) - 'IT_BTC_D' WP converted SUCCESSFULLY
Fri Mar 7 11:10:43 2008 - (STDF) - (INFO) - 'IT_BTC_D' WP converted in 5.21 seconds

Figure 23: STDF work package log after conversion in standalone mode

STDF2EXF Converter Development

72

<?xml version="1.0" encoding="UTF-8"?>
<EXF xmlns="http://www.infineon.com/exf"
xmlns:exf2db="http://www.infineon.com/exf2db"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
xsi:schemaLocation="http://www.infineon.com/exf /ho me/ebsdb3/ebsDBVersions/EBSDBLGC-BUI-
STDF2EXF-0_1-TEST-09/EXF_schema/EXF_Schema_qualifie d.xsd"
Version="V02.7">
<MeasAllowed ID="1" MeasStep="S3" MeasDataSource="F CT FE" SumDesc="NA"/>
<TrackingUnit ID="2" TUType="WAF" CreateDate="2008- 03-07T11:10:40" WafNr="001"
MotherLotID="02HN0P78"/>
<MeasZoneVals ID="3" ZoneType="NO_ZONE" Val="NOVAL" />
<MeasZoneVals ID="4" ZoneType="SITE_NO" Val="0"/>
<MeasZoneVals ID="5" ZoneType="SITE_NO" Val="1"/>
<MeasZoneVals ID="6" ZoneType="SITE_NO" Val="2"/>
<MeasAllowedZoneTypes MeasAllowedID="1" ZoneType="N O_ZONE"/>
<MeasAllowedZoneTypes MeasAllowedID="1" ZoneType="S ITE_NO"/>
<PosTypes ID="36" Name="CHIP" IsNormed="N"/>
<Testprgs ID="37" MeasAllowedID="1" Name="SSSSSSSSS SSSSSS" Rev="3.12" TdfStatus="missing"/>
<VirtualProductKeys ID="38" DWHProductCol="PRODUCT_ TYPE"
DWHProductColVal="M1481N02314ZHOC"/>
<TUVirtualProductKey TUID="2" VirtualProductKeyID=" 38" DWHProductCol="PRODUCT_TYPE"/>
<TestprgVirtualProductKey TestprgID="37" VirtualPro ductKeyID="38"/>
<Measurements ID="39" MeasAllowedID="1" MeasCounter ="1" CompSeqNr="0" TimestampBegin="2005-
05-10T22:51:13" TimestampEnd="2005-05-10T23:13:18" TimestampInsertion="2008-03-07T11:10:40"
TimestampLoading="2008-03-07T11:10:40" MeasCategory ="PRODUCTIVE" TUID="2"
MeasLotID="02HN0P78" SubMeasStep="1" IsMaxSubMeasSt ep="Y" IsMaxMeasCounter="Y"
SumMethodName="ORIGINAL" TestType="N" ChipDataAttac hed="not_loaded"/>
<MeasTestprg MeasID="39" TestprgID="37" SeqNr="0"/>
<ParmDefs ID="40" MeasAllowedID="1" ParmType="HBIN" TestprgID="37" ParmNr="1"/>
</EXF>

Figure 24: Excerpt of a XML based EXF file generated by the STDF2EXF Converter

As one can see in the figure above, the EXF file is comprised by different records, each of
them with a record type, such as MeasAllowed or Testprgs , and some related to other
records through the use of foreign keys, as seen, for example, in the figure’s blue line, where a
ParmDefs record is connected to a MeasAllowed record through a MeasAllowedID and to
a Testprgs record through a TestprgID .

Integration with EBS DB

The STDF2EXF Converter was successfully integrated with EBS DB, although a few
implementation points were left out due to time constraints. All the logic from the STDF
Loader was successfully migrated to the STDF2EXF Converter and the EXF Loader, except
for the following requirements, regarding the loading of work packages into the staging area:

• EBSDL_STDFLoader_151_EBS1096 – generation of automatic wafer numbers;

• ITMFG00009511 – prevention of Oracle deadlocks when a parameter_type of a
parameter_definitions record is updated in two parallel streams;

• ITMFG00012868 – chip data attached update on the MEASUREMENTS table.

Such issues were migrated to the STDF2EXF Converter but the existence of conflicts that
were not solved on the time allocated for the project left them as an open topic to be dealt
with in the future.

The impact of the first issue on the system is considerably low, meaning that it was
implemented in the STDF Loader with the purpose of handling situations that occur with low
frequency. It concerns the generation of an automatic wafer number for work packages with
“WAF” tracking unit type that have their wafer identifier as a non-numeric string. The amount
of work packages that are included in this scenario are, however, as mentioned above, low.

STDF2EXF Converter Development

73

The second and third issues have low/medium impact on the system, affecting a considerable
amount of STDF work packages. They implicate the modification and creation of specific
STDF related records, which affect the loading result of the majority of STDF work packages,
although with not more than slight changes in comparison to the expected results. More
information on this topic is available at 6.2 Testing phase 2 – integration with EXF Loader
(regression testing).

With the situations described above controlled, meaning that although not implemented they
do not affect the system’s behaviour, EBS Data Loading can in this way now support the full
loading of STDF work packages into the system through the new STDF2EXF Converter and
the EXF Loader, a process which becomes now standardized for all raw data types.

Figure 25 shows an example of a database query through which it is possible to check the
states of a set of work packages loaded into the system.

Figure 25: States of work packages in EBS DB

Each work package, as seen above, is represented by a transaction id that uniquely identifies
the work package being processed by the system. One can see if the work packages are loaded
successfully – OK status – or with error – ERROR status – as well if the work packages were
processed entirely or not, the component which is processing, among other useful information
for an EBS DB user or administrator.

5.2 Detailed design

This section describes with some detail the prototype’s structure and the sequence of actions
that define its functioning.

Figure 26 shows the EBS DB file structure and, in particular, the files that compose the
STDF2EXF Converter, which are described below.

STDF2EXF Converter Development

74

Figure 26: EBS DB file structure

STDF2EXF_main.cpp

This is the main class of the STDF2EXF Converter, initialized whenever a user or the JM
Emulator calls the application. This can be done in two distinct ways, through the HP-UX
command line:

• STDF2EXF

• STDF2EXF -s <work package path>

The former command is used by the JM Emulator when the converter is running integrated in
EBS DB, whereas the latter is used by a user in the command line with the purpose of running
the application in standalone mode, apart from an EBS DB installation. When called in this
mode, the user shall provide the parameter –s followed by the path of a STDF work package
that contains a raw file to be converted into EXF.

STDF2EXF Converter Development

75

More commands can be used in the command line as follows:

• STDF2EXF -v

• STDF2EXF --help

The former shows the converter’s compiled version while the latter provides a list of the
different commands supported by the application.

When the application is called by the JM Emulator, it starts by initializing and setting up the
Logging API – the EBS API that handles all its logging activities – together with the database
access. Once this is achieved, this class launches a CSTDF2EXFProcess process that runs
cyclically until the JM Emulator decides to terminate it. This process runs in a loop due to the
fact that the converter can process several queued work packages sequentially or in parallel.

When called in standalone mode, the application executes some of the procedures mentioned
above differently or skips them. Namely, the database access is not initialized since the
application in this mode is autonomous and does not require database access, and the loggers
are initialized in a different way, so that they don’t require such database access. The
converter process is launched with a standalone flag and is run once, instead of being called in
a loop. This difference can be explained by the fact that when running in this mode, the
converter processes only one work package in one run, opposed to the processing of multiple
work packages when integrated with EBS DB.

STDF2EXF.cpp

The class CSTDF2EXFProcess represents the STDF2EXF Converter’s operating system
process called by the main class each time the converter runs. This process can run in a loop –
when integrated with EBS DB – or run once – when in standalone mode. Whenever the
converter is active, an instance of CSTDF2EXFProcess is running in the operating system.

This class is a subclass of a common EBS class denominated CEbsProcess which represents
each process running in EBS. CSTDF2EXFProcess inherits from CEbsProcess the
following methods:

• runProcess() – this function is commonly called by the main classes after instantiating
a new process object. It initializes the process (see initProcess() below) and waits for
incoming YODA messages from the JM Emulator, in particular one that includes a job
request for the processing of a work package. When such event occurs,
processWP(int) is called. The process is active until the JM Emulator sends it a
termination instruction through a YODA shutdown message.

• initProcess() – initializes variables and the necessary APIs for the functioning of the
converter – Work Package Management API, Configuration Management API and
Logging API – as it loads the converter’s configuration values from the repository
database.

• processWP(int) – receives a work package id as argument and retrieves its information
and configuration values to be used in the converting process from the repository
database. Each work package scanned by EBS DB is listed in the repository database
and the converter retrieves its information by accessing the appropriate table. It
verifies if the work package is valid and creates input and output objects, prior to the
launching of the conversion method.

STDF2EXF Converter Development

76

• releaseProcess() – deletes variables and stops logging.

Such classes are standard in every converter and although they are inherited from
CEbsProcess , their logic is defined in CSTDF2EXFProcess for all the previous methods
except for runProcess().

This new converter has, however, a different logic when working in standalone mode and, in
this way, new classes were created specifically for this converter, as follows:

• runOnce(CEbsString) – called by the main class after a new process object is
instantiated in standalone mode. It does no more than calling the methods
initProcessStandalone(), processWPStandalone(CEbsString) and releaseProcess()
consecutively.

• initProcessStandalone() – initializes variables and loggers only, since API
initialization is made using database access and this procedure is not necessary for the
conversion of a single work package. It loads the converter’s configuration values
from .ini files stored locally.

• processWPStandalone(CEbsString) - verifies if the work package to process is valid
and creates input and output objects, prior to the launching of the conversion function.
The concept of work package id is not valid in standalone mode, since the work
package to be processed is passed as argument in the command line and not listed in
the repository database as it happens in the EBS DB mode.

STDF2EXFConverterApp.cpp

STDF2EXFConverterApp is responsible for handling the conversion process and the
operations that precede and follow it. It inherits its methods from the converter framework
class CConverterApp that is used by every converter.

It supports the creation and handling of input and output file objects, which represent
respectively the raw STDF file to be converted and the destination EXF file. The conversion
operations will be executed based in the input file object, while its results are temporarily
stored in the output file object and afterwards saved in the EXF file.

The following methods are part of this class and worth being mentioned:

• createInputFileObject(…) – creates an object for the raw data input file and sets its
variables with the configurations previously retrieved from the repository database.

• createOutputFileObject(…) - creates an object for the EXF output file.

• convert(long) – calls processFile() from CSTDFRawFile , cbPreConvert() and
cbPostConvert() methods before and after the previous call, respectively.

• cbPreConvert() – opens the EXF file object for writing before conversion occurs.

• cbPostConvert() – closes the EXF file object after conversion and writing.

STDFRawFile.cpp

CSTDFRawFile contains all the logic regarding the transformation process of the STDF raw
file into a XML based EXF file.

STDF2EXF Converter Development

77

The same class in the STDF Loader contains logic regarding not only the conversion process
of raw data into EXF structured data, but also the loading of such information into the staging
database. In order to migrate the conversion logic into the STDF2EXF Converter, there was a
need to select and arrange the existing code in a way that only the conversion logic would be
incorporated into the converter.

STDF2EXF Converter Development

78

6 Project concretisation

6.1 Testing phase 1 – standalone mode

Once the first Design Engineering Phase was completed and the STDF2EXF Converter
prototype designed to be used in standalone mode, a testing phase followed with the goal of
validating the work that had been done, assuring that the prototype had been designed
according to its requirements. The result of such tests was a document entitled System Test
Report [20], which was created and filled according to Critical Software’s Quality guidelines.

All tests were based in the test cases previously defined in the Test Case Specification [19]
and performed in the HP-UX operating system environment. A part of the tests involved
comparing results between the new STDF2EXF Converter and the existing STDF Loader.
The STDF Loader version used in the test was part of version 2.3.0.3 of EBS DB.

A test was considered as successful if the application behaviour was consistent with the test
case’s specified output. If the application did not behave as specified, the test was considered
as failed.

The following scale was the base for the classification of the identified problems (faults), as
defined in [19]:

• Level 1. Serious fault that compromised the use of the system or a relevant part of the
system.

• Level 2. Fault which implied that functionality was not fully achieved but did not
prevent the system from being used.

• Level 3. Fault that did not compromise the use of the system and did not represent a
loss in functionality. Typically these faults are problems with the GUI (Graphical User
Interface).

The specified test cases were carried on in three test runs. Some changes were performed on
the source code that needed test case STDF2EXF-TCS-LOG-001 to be retested, after Test Run
1 was finished. This was performed in Test Run 2. Test Run 3 was executed due to a change
on the test case STDF2EXF-TCS-VAL-004 XML data integrity .

In this way, 16 tests were executed, all of them ending with success, meaning that the
STDF2EXF Converter was tested successfully and is ready to be used in its standalone mode.

Below are shown the results of the executed tests. Each test run was performed over a CVS
testing tag, so that test results could be controlled effectively and changes tracked successfully
between test runs. This is a standard procedure in different kinds of software projects inside
Critical Software.

Test run 1

The first test run was executed as detailed in Table 3 and its results are shown below in Table
4.

STDF2EXF Converter Development

79

Test Case Execution

Run date: 2007-12-20

User: Daniel Silva

CVS tag (build): EBSDBLGC-BUI-STDF2EXF-0_1-
TEST-06

Test specification reference CSW-EBSDBLGC-2007-TCS-7636

Table 3: Test run 1 data

Test ID Success (S)/

Failure (F)

Error level

(1/2/3)

Problems found

STDF2EXF-TCS-
WRK-001

S

STDF2EXF-TCS-
VAL-007

S

STDF2EXF-TCS-
VAL-008

S

STDF2EXF-TCS-
VAL-005

S

STDF2EXF-TCS-
VAL-006

S

STDF2EXF-TCS-
VAL-001

S

STDF2EXF-TCS-
VAL-002

S

STDF2EXF-TCS-
LOG-001

S

STDF2EXF-TCS-
CON-001

S

STDF2EXF-TCS-
CFG-001

S

STDF2EXF-TCS-
CFG-002

S

STDF2EXF-TCS-
STR-001

S

STDF2EXF-TCS-
VAL-004

S

STDF2EXF-TCS-
VAL-003

S

Table 4: Test run 1 results

Test run 2

The second test run was executed as detailed in Table 5 and its results are shown below in
Table 6.

Test Case Execution

Run date: 2007-12-20

User: Daniel Silva

CVS tag (build): EBSDBLGC-BUI-STDF2EXF-0_1-
TEST-07

Test specification reference CSW-EBSDBLGC-2007-TCS-7636

Table 5: Test run 2 data

STDF2EXF Converter Development

80

Test ID Success (S)/

Failure (F)

Error level

(1/2/3)

Problems found

STDF2EXF-TCS-
LOG-001

S

Table 6: Test run 2 results

Test run 3

The third and last test run was executed as detailed in Table 7 and its results are shown below
in Table 8.

Test Case Execution

Run date: 2008-01-03

User: Daniel Silva

CVS tag (build): EBSDBLGC-BUI-STDF2EXF-0_1-
TEST-07

Test specification reference CSW-EBSDBLGC-2007-TCS-7636

Table 7: Test run 3 data

Test ID Success (S)/

Failure (F)

Error level

(1/2/3)

Problems found

STDF2EXF-TCS-
VAL-004

S

Table 8: Test run 3 results

6.2 Testing phase 2 – integration with EXF Loader (regression testing)

The regression tests are performed to verify the correct work of the data loading components
of EBS DB. They are executed before each release and consist in loading several work
packages into the system to assure the it behaves as expected.

A test framework, known as regression framework, was created in Critical Software for this
purpose, allowing one to run a series of tests regarding the loading of specific work packages
into the system. One can define the work packages to be loaded, such as memory (master
data) or fact data work packages.

The results are obtained by performing a database extraction of the data loaded through the
work packages and comparing it to the expected results generated in the previous version.
Each extraction portraits the information that was loaded into the system per work package,
meaning that each fact data work package will have its extract, which can then be compared
to the same extract performed in the previous version. If no significant changes were made in
the new version, then the generated extraction files of both versions shall be identical. If
differences occur, they should be justified.

The regression test framework comprises several test cases, each consisting on loading a work
package into EBS DB. Table 9 contains the list of test cases executed in EBS DB modified
version 2.3.0.3 that includes the STDF2EXF Converter.

STDF2EXF Converter Development

81

Test Case Name WP Name Converter

TDF000 DT_N_TDF TDF

TDF001 INV_NUMBER_TDF TDF

TDF002 IT_BTC_TDF TDF

TDF003 IT_BTR_TDF TDF

TDF004 IT_PCM_TDF TDF

TDF005 IT_TDW_XML TDF

TDF006 TDF_Additional_Analysis TDF

TDF007 TDF_PCRBnumber TDF

TDF008 TDF_TESTPROGRAMS TDF

TDF009 TDPW_TDF TDF

TDF010 WT_ANYC_TDF TDF

TDF011 WT_L1_TCSV5_TDF TDF

TDF012 WT_L_PCM_TDF TDF

TDF013 WT_W5_TPR4_TDF1 TDF

TDF014 WT_W5_TPR4_TDF2 TDF

TDF015 WT_WN_TDF TDF

STDF000 DT_C2_D STDF

STDF001 DT_C_D STDF

STDF002 DT_N_D STDF

STDF003 DT_R_D STDF

STDF004 DT_TR_D STDF

STDF005 INV_NUMBER_D STDF

STDF006 IT_BTA_D STDF

STDF007 IT_BTC_D STDF

STDF008 IT_BTP_D STDF

STDF009 IT_BTR_D STDF

STDF010 IT_PCM_TR STDF

STDF011 IT_PCM_WAF_1_D STDF

STDF012 IT_PCM_WAF_2_D STDF

STDF013 IT_SMS_NSMR_D STDF

STDF014 STDF_Additional_Analysis STDF

STDF015 STDF_PCRBnumber STDF

STDF016 STDF_TEST_WP_01 STDF

STDF017 STDF_TEST_WP_08 STDF

STDF018 STDF_TEST_WP_09 STDF

STDF019 STDF_TEST_WP_33 STDF

STDF020 TDPW_WDNE_D STDF

STDF021 WT_ANYC_N_D STDF

STDF022 WT_L1_TCSV5_D1 STDF

STDF023 WT_L1_TCSV5_D2 STDF

STDF024 WT_L1_TCSV5_D3 STDF

STDF025 WT_L5_TPR_TR1 STDF

STDF026 WT_L5_TPR_TR2 STDF

STDF027 WT_L_ANYC_N_D STDF

STDF028 WT_L_ANYC_TR STDF

STDF029 WT_L_PCM_D STDF

STDF030 WT_L_PCM_TR STDF

STDF031 WT_L_TR STDF

STDF032 WT_TR_1 STDF

STDF033 WT_TR_3 STDF

STDF034 WT_TR_6 STDF

STDF035 WT_TR_9 STDF

STDF2EXF Converter Development

82

STDF036 WT_TR_SMS-1_MC-P_W-1_D STDF

STDF037 WT_TR_SMS-1_MC-P_W-4_D STDF

STDF038 WT_TR_SMS-1_MC-P_W-5_D STDF

STDF039 WT_TR_SMS-1_MC-S_W-1_D STDF

STDF040 WT_TR_SMS-1_MC-S_W-4_D STDF

STDF041 WT_TR_SMS-1_MC-S_W-5_D STDF

STDF042 WT_TR_SMS-1_MC-X_W-1_D STDF

STDF043 WT_TR_SMS-1_MC-X_W-3_D STDF

STDF044 WT_TR_SMS-1_MC-X_W-4_D STDF

STDF045 WT_TR_SMS-2_MC-P_W-2_D STDF

STDF046 WT_TR_SMS-2_MC-P_W-4_D STDF

STDF047 WT_TR_SMS-2_MC-P_W-5_D STDF

STDF048 WT_TR_SMS-3_MC-P_W-2_D STDF

STDF049 WT_TR_SMS-3_MC-P_W-3_D STDF

STDF050 WT_TR_SMS-3_MC-P_W-5_D STDF

STDF051 WT_TR_SMS-3_MC-S_W-1_D STDF

STDF052 WT_TR_SMS-3_MC-S_W-2_D STDF

STDF053 WT_TR_SMS-3_MC-S_W-5_D STDF

STDF054 WT_W5_TPR4_D1 STDF

STDF055 WT_W5_TPR4_D2 STDF

STDF056 WT_WC_D STDF

STDF057 WT_WN_D STDF

STDF058 WT_WR_D STDF

STDF059 WT_WTR_D STDF

STDF060 S_20061114055255_PF702488_S11P_N.st4_005_VIH STDF

Table 9: Test cases for regression testing

The regression testing was performed using master data TDF work packages and fact data
STDF work packages. Some work packages had to be loaded in a specific order so that their
data would be loaded correctly, assuring linked data was preserved.

Test run 1

The first and only test run was executed as detailed in Table 10 and its results are shown
below.

Test Case Execution

Run date: 2008-02-28

User: Daniel Silva

CVS tag (build): EBSDBLGC-BUI-STDF2EXF-0_1-
TEST-09

Test specification reference CSW-EBSDBLGC-2008-TCS-01687

Table 10: Regression test run 1 data

All tests were successful, although justifiable differences were detected. Such differences
were present constantly throughout the different database extracts, and related to the non-
implementation of previously existing functionalities in EBS DB. Such differences will be
exemplified below regarding a single work package and are valid for the remaining work
packages loaded in the regression tests, as their extracts have similar differences, resulting
from the same identified causes.

STDF2EXF Converter Development

83

updateChipDataAttached()

The first two differences are noticed for all work packages that contain attached chip data
information. One of the three functionalities that were not implemented in the STDF2EXF
Converter and the EXF Loader concerns the handling of chip data.

In EBS DB v2.0, a column was created in the MEASUREMENTS table in the EBS_ANA
database with the aim of being filled with ‘Y’ whenever chip data has been loaded for a
measurement or ‘not_loaded ’ if the loader has not loaded this data into the database. The
function updateChipDataAttached(), implemented in STDF Loader’s CSTDFRawFile class,
was not successfully migrated to the STDF2EXF Converter and thus not fully implemented in
this modified version of EBS DB.

Figure 27 shows the differences that were found.

Report_WP_DT_C2_D.lst – Original v2.3.0.3 file

Measurements table
TYPE ;MEASSTP_NAME ;MEASDS_NAME ;SUB_MEAS_STEP ;MEAS_LOT_ID ;MEASCAT_NAME
;MEAS_COUNTER;TEST_TYPE ;COMPONENT_SEQ;TEST_TYPE ;T_BE_INS ;T_LOAD ;CHIP_ATTAC
LOT ;B2 ;FCT BE ;1 ;VE527626M12 ;PRODUCTIVE ; 1;C ; 1;C ; ;28-FEB-08;Y

Report_WP_DT_C2_D.lst – Modified v2.3.0.3 file

Measurements table
TYPE ;MEASSTP_NAME ;MEASDS_NAME ;SUB_MEAS_STEP ;MEAS_LOT_ID ;MEASCAT_NAME
;MEAS_COUNTER;TEST_TYPE ;COMPONENT_SEQ;TEST_TYPE ;T_BE_INS ;T_LOAD ;CHIP_ATTAC
LOT ;B2 ;FCT BE ;1 ;VE527626M12 ;PRODUCTIVE ; 1;C ; 1;C ; ;28-FEB-08;not_loaded

Figure 27: Database update through updateChipDataAttached() – CHIP_ATTAC value

The original database extract, Report_WP_DT_C2_D.lst, regarding the STDF work package
DT_C2_D, indicates that chip data was loaded, while the new generated report for the same
work package has such value equal to ‘not_loaded ’ due to the fact that such data is not
processed by the STDF2EXF Converter as this functionality was not implemented.

The fact that this function was not implemented will cause the extracts to show additional
differences, as shown in Figure 28 and Figure 29.

Report_WP_DT_C2_D.lst – Original v2.3.0.3 file

Measpart_Attribute table
TYPE ;MEASSTP_NAME ;MEASDS_NAME ;SUB_MEAS_STEP ;MEAS_LOT_ID ;PARTATTRTP_NAME ;VALUE_T
LOT ;B2 ;FCT BE ;1 ;VE527626M12 ;IS_LAST_VALID ;VAR CHAR2_32_V('Y', 'Y', 'Y', 'Y', 'Y', 'Y',
'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', ' Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y',
'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', ' Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y',
'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', ' Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y',
'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', ' Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y',
'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', ' Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y',
'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', ' Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y',
'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', ' Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y',
'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', ' Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y',
'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', ' Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y',
'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', ' Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y',
'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', ' Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y')
LOT ;B2 ;FCT BE ;1 ;VE527626M12 ;test-count ;VARCHA R2_32_V('1', '1', '1', '1', '1', '1',
'1', '1', '1', '1', '1', '1', '1', '1', '1', '1', ' 1', '1', '1', '1', '1', '1', '1', '1',
'1', '1', '1', '1', '1', '1', '1', '1', '1', '1', ' 1', '1', '1', '1', '1', '1', '1', '1',
'1', '1', '1', '1', '1', '1', '1', '1', '1', '1', ' 1', '1', '1', '1', '1', '1', '1', '1',
'1', '1', '1', '1', '1', '1', '1', '1', '1', '1', ' 1', '1', '1', '1', '1', '1', '1', '1',
'1', '1', '1', '1', '1', '1', '1', '1', '1', '1', ' 1', '1', '1', '1', '1', '1', '1', '1',
'1', '1', '1', '1', '1', '1', '1', '1', '1', '1', ' 1', '1', '1', '1', '1', '1', '1', '1',
'1', '1', '1', '1', '1', '1', '1', '1', '1', '1', ' 1', '1', '1', '1', '1', '1', '1', '1',
'1', '1', '1', '1', '1', '1', '1', '1', '1', '1', ' 1', '1', '1', '1', '1', '1', '1', '1',
'1', '1', '1', '1', '1', '1', '1', '1', '1', '1', ' 1', '1', '1', '1', '1', '1', '1', '1',
'1', '1', '1', '1', '1', '1', '1', '1', '1', '1', ' 1', '1', '1', '1', '1', '1', '1', '1',
'1', '1', '1', '1', '1', '1', '1', '1', '1', '1', ' 1', '1', '1', '1', '1', '1', '1', '1')

STDF2EXF Converter Development

84

Report_WP_DT_C2_D.lst – Modified v2.3.0.3 file

Measpart_Attribute table
TYPE ;MEASSTP_NAME ;MEASDS_NAME ;SUB_MEAS_STEP ;MEAS_LOT_ID ;PARTATTRTP_NAME ;VALUE_T

Figure 28: Database update through updateChipDataAttached() – Measpart Attributes

When attached chip data is not updated, some values are not loaded into the Measpart
Attributes table, such as the IS_LAST_VALID and test-count attributes.

Report_WP_DT_C2_D.lst – Original v2.3.0.3 file

Environment_Values table
TYPE ;MOTHERLOT_ID ;MEAS_LOT_ID ;SUB_MEAS_STEP ;MEA SSTP_NAME ;MEASDS_NAME ;
SEQ_NR;ENVTP_NAME ;ZONETP_NAME ;ZONE_VALUE ;VALUE
LOT ;VE527626 ;VE527626M12 ;1 ;B2 ;FCT BE ; 0;Compo nent_Merge_Info ;NO_ZONE ;NOVAL ;merged
into lot aggregation

Report_WP_DT_C2_D.lst – Modified v2.3.0.3 file
Environment_Values table
TYPE ;MOTHERLOT_ID ;MEAS_LOT_ID ;SUB_MEAS_STEP ;MEA SSTP_NAME ;MEASDS_NAME ;
SEQ_NR;ENVTP_NAME ;ZONETP_NAME ;ZONE_VALUE ;VALUE

Figure 29: Database update through updateChipDataAttached() – Enviroment Values

The picture above shows that some environment values might not be loaded, in particular
Component_Merge_Info , as a result of such data not being updated.

The assumptions made above were based on parallel regression testing made on the original
v2.3.0.3 build by disabling the call to the updateChipDataAttached() function in the STDF
Loader’s code. The extractions of this version and the one with the STDF2EXF Converter
were identical.

updateAllParameterTypes()

Occasionally, the parameter type of parameter definitions has to be updated, changing
between ANA (analytical) and FCT (functional). This is done in v2.3.0.3 by calling the
function updateAllParameterTypes() from the STDF Loader’s CSTDFRawFile class.

In some work packages, a minor percentage of records – less than 5% – might have their
parameter type set incorrectly, since this functionality was not yet implemented into the
STDF2EXF Converter and some parameter types are not updated as it happens in v2.3.0.3.

Differences as seen on Figure 30 might affect not only Parameter Aggregates records but also,
in some cases, Measpart Values records.

Report_WP_DT_C2_D.lst – Original v2.3.0.3 file

Parameter_Aggregates table
TYPE ;MEASSTP_NAME ;MEASDS_NAME ;SUB_MEAS_STEP ;MEAS_LOT_ID ;MEASCAT_NAME
;MEAS_COUNTER;TEST_TYPE ;COMPONENT_SEQ;PARTP_NAME ;NAME ; PNUMBER;ZONETP_NAME ;VALUE ; EXEC;
MIN; MAX; MEAN; MEDIAN; STDEV; Q01; Q02; Q05; Q10; Q15; Q25; Q75; Q85; Q90; Q95; Q98; Q99;
IQR; RANGE; FAIL; PASS;RDCAT_AGGR ;INLINE_AGGR;SPEC _YIELD;VALID_YIELD;
ALL_YIELD;BASE_CHIPS;VALID_CHIPS;SPEC_CHIPS;BASE_TY PE ; COUNT; SUM;
SQR_SUM;FAIL_GEO_RATIO;FAIL_TOTAL_RATIO;EXEC_GEO_RATIO;EXEC_TOTAL_RATIO;FAIL_EXEC_RATIO;COUN
T_GEO_RATIO;COUNT_TOTAL_RATIO
LOT ;B2 ;FCT BE ;1 ;VE527626M12 ;PRODUCTIVE ; 1;C ; 1;ANA ;XKT1 ; 1;NO_ZONE ;NOVAL ; ; 0; 8;
0; 0; 0; ; ; 0; 0; ; ; ; ; 0; 0; ; ; ; ; 1; ; ; ; ; ; ; 203; ; ;P ; ; 8; 64; ; .054229935; ;
; ; ;

STDF2EXF Converter Development

85

Report_WP_DT_C2_D.lst – Modified v2.3.0.3 file

Parameter_Aggregates table
TYPE ;MEASSTP_NAME ;MEASDS_NAME ;SUB_MEAS_STEP ;MEAS_LOT_ID ;MEASCAT_NAME
;MEAS_COUNTER;TEST_TYPE ;COMPONENT_SEQ;PARTP_NAME ;NAME ; PNUMBER;ZONETP_NAME ;VALUE ; EXEC;
MIN; MAX; MEAN; MEDIAN; STDEV; Q01; Q02; Q05; Q10; Q15; Q25; Q75; Q85; Q90; Q95; Q98; Q99;
IQR; RANGE; FAIL; PASS;RDCAT_AGGR ;INLINE_AGGR;SPEC _YIELD;VALID_YIELD;
ALL_YIELD;BASE_CHIPS;VALID_CHIPS;SPEC_CHIPS;BASE_TY PE ; COUNT; SUM;
SQR_SUM;FAIL_GEO_RATIO;FAIL_TOTAL_RATIO;EXEC_GEO_RATIO;EXEC_TOTAL_RATIO;FAIL_EXEC_RATIO;COUN
T_GEO_RATIO;COUNT_TOTAL_RATIO
LOT ;B2 ;FCT BE ;1 ;VE527626M12 ;PRODUCTIVE ; 1;C ; 1;FCT ;XKT1 ; 1;NO_ZONE ;NOVAL ; ; 0; 8;
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 1; ; ; ; ; ; ; ; ; ;A ; ; 8; 64; ; .054229935; ; ; ; ;

Figure 30: Database update through updateAllParameterTypes() – Parameter Aggregates

6.3 Results

Throughout the project, there was a concern in documenting all the work in conformity with
Critical Software’s quality standards. Various documents were created, being the first one a
Software Requirements Specification [11] that included the description of functional and non-
functional requirements the solution should be based on, its use cases catalogue, a domain
model and sequence and state diagrams. A Test Case Specification [19] was produced
afterwards, including the test cases catalogue and traceability matrixes connecting such test
cases with requirements and use cases. This document was the basis for all the software and
system testing.

A functional vertical prototype was designed and tested, based, respectively on the gathered
requirements and the specified test cases. This prototype incorporated some of the STDF
Loader’s logic and was built based on an existing converter template. The prototype was
tested in two distinct phases: the first one had the goal of testing the STDF2EXF Converter’s
standalone mode, while the second one tested its working mode integrated in EBS.

The first test phase consisted in checking that the converter executed its conversion
mechanisms accordingly to what had been specified, without errors, and that the application
working modes had been implemented as expected. The behaviour of the application was
constant, having all tests finished with success. This first phase involved as well converting a
set of predefined STDF work packages and comparing the results with the expected outputs
obtained with the EBS DB v2.3.0.3 release. All conversions were executed successfully and
the new generated output files were identical to the expected ones. These tests indicated that
the converter is fully prepared to be used in standalone mode.

The second test phase involved testing the integration of the STDF2EXF Converter with the
EXF Loader and EBS DB, by running the EBS DB regression tests, which allowed one to
verify the information loaded into the EBS databases by introducing work packages into the
new workflow comprising the STDF2EXF Converter. The tests involved extracting the
information from the EBS databases and comparing such extractions with the ones previously
executed in the v2.3.0.3 release. The results matched the expectations, having in mind that
some of the loading functionalities of the STDF Loader were not migrated into the
STDF2EXF Converter and the EXF Loader.

These tests showed, in an EBS DB system processing STDF work packages with the
STDF2EXF Converter and the EXF Loader (contrary to the existing procedure with the STDF
Loader), the following results:

STDF2EXF Converter Development

86

• 100% of the STDF work packages were converted as expected, with the converted
information being 100% accurate;

• 100% of the STDF work packages were loaded as expected, with the loaded
information being between 99% and 99.9% accurate in 78% of the cases, between
97% and 98.9% accurate in 16% of the cases, and below 97% accurate in 6% of the
cases.

A Regression Testing Specification [21] document was produced, explaining how such tests
were performed and their main goals.

The system behaved and performed as expected, being the measured conversion and loading
times similar to the ones observed in version 2.3.0.3.

6.4 Project review

This section summarizes the real work that was done by describing a Gantt chart showing the
performed tasks, their duration, their start and finish times.

ID WBS Task Name Duration Start Finish

1 DS Daniel Internship PLN 22 wks Mon 01-10-07 Fri 07-03-08

2 WP-1000 Business Know-How 0,8 wks Mon 01-10-07 Thu 04-10-07

3 WP-1100 EBS Data Loading 1 day Mon 01-10-07 Mon 01-10-07

4 WP-1200 EBS Data Model 0,5 days Tue 02-10-07 Tue 02-10-07

5 WP-1300 Converters Framew ork 0,5 days Tue 02-10-07 Tue 02-10-07

6 WP-1400 STDF Format 0,5 days Wed 03-10-07 Wed 03-10-07

7 WP-1500 EXFLoader 0,5 days Wed 03-10-07 Wed 03-10-07

8 WP-1600 STDFLoader 1 day Thu 04-10-07 Thu 04-10-07

9 WP-2000 Requirements Engineering Phase 2 wks Mon 08-10-07 Fri 19-10-07

10 WP-2100 Softw are Requirement Specif ication 5 days Mon 08-10-07 Fri 12-10-07

11 WP-2200 Test Case Specif ication 5 days Mon 15-10-07 Fri 19-10-07

12 WP-3000 Phase 1 10,8 w ks Mon 22-10-07 Tue 08-01-08

13 WP-3100 Design Engineering Phase 7,6 wks Mon 22-10-07 Thu 13-12-07

14 WP-3110 Code implementation 38 days Mon 22-10-07 Thu 13-12-07

15 WP-3200 Validation Phase 1,2 wks Fri 14-12-07 Fri 21-12-07

16 WP-3210 System Testing 3 days Fri 14-12-07 Tue 18-12-07

17 WP-3220 Update documentation 3 days Wed 19-12-07 Fri 21-12-07

18 WP-3300 Internship Documentation 2 wks Mon 24-12-07 Tue 08-01-08

19 WP-3310 Write documentation 10 days Mon 24-12-07 Tue 08-01-08

20 WP-4000 Phase 2 8,4 wks Wed 09-01-08 Fri 07-03-08

21 WP-4100 Design Engineering Phase 4,8 wks Wed 09-01-08 Tue 12-02-08

22 WP-4110 Code implementation 24 days Wed 09-01-08 Tue 12-02-08

23 WP-4200 Validation Phase 0,4 wks Wed 13-02-08 Thu 14-02-08

24 WP-4220 Update documentation 2 days Wed 13-02-08 Thu 14-02-08

25 WP-3300 Internship Documentation 3,2 wks Fri 15-02-08 Fri 07-03-08

26 WP-3310 Write documentation 12 days Fri 15-02-08 Fri 07-03-08

27 WP-5000 Performance Study 0,8 wks Wed 27-02-08 Mon 03-03-08

28 WP-5100 Run Regression Tests 3 days Wed 27-02-08 Fri 29-02-08

29 WP-5200 Compare Results 1 day Mon 03-03-08 Mon 03-03-08

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

S W S T M F T S W S T M F T S W S T M F T S W S T M
10 Sep '07 08 Oct '07 05 Nov '07 03 Dec '07 31 Dec '07 28 Jan '08 25 Feb '08 24 Mar '08 21 Apr '08 19 May '08 16 Jun '08

Figure 31: Gantt chart with the real executed tasks

The project was divided into nine main tasks, included in five distinct phases.

The initial phase involved getting familiar with the EBS system, namely its purpose, its
structure and the semiconductor manufacturing process. The business know-how was gained
through formation sessions that were carried out with slide presentations and some code
insights, together with individual study complementary to such sessions. The EBS DB was in
this way introduced through a series of steps, being the modules with the most interest for the
project presented in appropriate detail. The different tasks seen on the plan for this phase were
executed in sequence, although not following the indicated order at all times.

The Requirements Engineering Phase was initialized one week after the kick-off meeting,
with the writing of the Software Requirements Specification [11] and the Test Case
Specification [19] documents. This phase involved understanding in detail the problem and
gathering the fundamental requirements for the system, in order to establish a solid base from
where the problem solution could be progressively built. The requirements specification was
based on discussion between the persons involved in the project – trainee, tutor and project

STDF2EXF Converter Development

87

manager – following the main topics defined in the project’s kick-off meeting. Once the
requirements were defined and still prior to the initial coding, the system was modelled using
UML use case, class, state and sequence diagrams. These models served as a starting point
and high level sketches to the coding process that would follow during the next weeks. Not
less important was the definition of test cases that would assure that the established
requirements had been satisfied after coding completion.

The first coding phase comprised the STDF2EXF Converter initial prototype design, with the
goal of having a fully functional version of this prototype working in standalone mode by the
end of the phase. This was done by incorporating the conversion logic of the existing STDF
Loader into a new STDF2EXF Converter structured according to an EBS DB converter
template. The prototype was developed in less than eight weeks, being tested and validated in
mid December. The project report writing process followed the prototype testing and
validation but was interrupted in the beginning of January, after being decided that the
prototype to be presented in the end of the project should have the capability of working
integrated in EBS DB as well. This decision was based, as mentioned previously in this
report, on changes to MIEIC’s Project regulations.

The second coding phase comprised, thus, the integration of the STDF2EXF Converter with
EBS DB, by migrating the loading logic of the STDF Loader into the EXF Loader. Contrary
to Phase 1, the converter and the EXF Loader were not fully tested, since not all their
functionalities were successfully implemented.

The Software Requirements Specification [11] and Test Case Specification [19] documents
were updated after the development phases, with new requirements that were born throughout
the project, changes to the previous models and catalogues, together with other relevant
information.

The last weeks of the project comprised the report writing, the EBS regression testing and the
deliverables handling.

Other projects

The time allocated for the author to carry out this project was not constant at all times, with
the existence of periods where the focus on the project would drop to 50%, due to the
integration of the trainee in Critical Software’s EBS DB maintenance team and the EBS-DB-
LOGIC project.

From December 2007 to March 2008, and in parallel to this project, the trainee was involved
in three releases of EBS DB. The trainee was involved in version 2.4.1.0 (specification,
implementation, testing), version 2.4.2.0 (specification, implementation, testing, release tasks)
and in version 2.5.0 (specification). Such tasks consumed a period of over two weeks –
approximately 12 days – throughout the project’s time – between October 2007 and February
2008.

Plan comparison

Estimated to be carried out in 22 weeks, the plan was executed as expected and its major and
high priority tasks were achieved successfully. The project lasted for 23 weeks and it included
parallel activities not part of the project nor its plan, starting from December 2007 (as
mentioned above in Other projects). By subtracting such parallel work – 12 days – to the total

STDF2EXF Converter Development

88

project duration – 23 weeks – it can be concluded that the project’s real work was done in less
than 21 weeks, thus, fulfilling what had been defined in MIEIC’s Project Regulations, where
it is stated that the Project’s duration shall be of 20 weeks.

Although there have been slight differences between what was planned and what was indeed
executed, the plan was in general followed and the project was completed on time. Comparing
what has been done with the plan, some conclusions can be drawn. The development phases
took longer than expected – 38 days against the 30 days initially estimated for the first coding
phase, 24 days against the initially estimated 15 days for the second coding phase – together
with the project’s report writing – 22 days against the initially estimated 10 days. On the
contrary, Business Know-How and the Requirements Engineering Phase took about half of
the expected time to be fulfilled – one week against the two weeks estimation and two weeks
against the four weeks estimation, respectively – even though some of these tasks were at
some points resumed throughout the project. The system testing of Phase 2 and the
performance report writing were skipped as such tasks were not valuable due to the current
system state, which does not have all its functionalities implemented at this time.

One shall notice that the durations indicated above do not necessarily indicate the real effort
put into such tasks but the total time in days or weeks such tasks lasted until they were
completed, e.g., a task which lasted 10 days might have been done with an effort of 60%,
meaning 6 days were required to complete it, while 4 days were used in another project, not
included in the plan but still affecting the time taken to complete the task.

STDF2EXF Converter Development

89

7 Conclusions and future work perspective

The “STDF2EXF Converter Development” project at Critical Software was successful in
various levels, with its main goals being reached and matching the initial stakeholders
expectations. The project was completed on time even though the plan was changed
significantly comparatively to what had been defined in the beginning of the project.

This was an experimental project that aimed to introduce into EBS DB a new way of
processing information, through the removal of the existing STDF Loader component and the
introduction of a converter that would process STDF binary files as other existing converters
process their own text file types. By doing this the system would be comprised by a single
loader and the processing of all raw files would be identical regardless of the binary or text
nature of the input data. Besides making the system more homogeneous and possibly
increasing its performance, the project had also the goal of developing a converter that could
work in standalone mode, apart from EBS DB, added to the normal behaviour of converters
that work integrated with EBS DB.

The implementation of the converter in standalone mode was straightforward and entirely
successful. It was developed according to a Software Requirements Specification [11], a
document produced after discussion among the project’s stakeholders about the main needs of
the application and the way it should behave. This document included the main software
requirements for the application together with useful diagrams modelled in UML.

Some problems arose during the second stage of the converter’s implementation, regarding its
integration with the EXF Loader. Due to the existence of process conflicts when running the
system with some of the STDF Loader’s functionalities, some methods were not migrated
successfully until the development end time of the project. These functionalities, which could
possibly be successfully migrated in a matter of a couple of weeks, have a low impact on the
system and can not be seen as alarming regarding its functioning as it has been developed.
Below are shown the items not migrated from the STDF Loader into the STDF2EXF
Converter and/or EXF Loader in this project:

• EBSDL_STDFLoader_151_EBS1096 – generation of automatic wafer numbers;

• ITMFG00009511 – prevention of Oracle deadlocks when a parameter_type of a
parameter_definitions record is updated in two parallel streams;

• ITMFG00012868 – chip data attached update on the MEASUREMENTS table.

The prototype of EBS DB with the STDF2EXF Converter processed STDF files behaving and
performing as expected, with no significant differences in the work packages conversion and
loading times, even though this was executed in a preliminary build of the system without the
functionalities described above.

The system was tested in two phases. In a first stage, after the initial development phase, the
STDF2EXF Converter was tested as an isolate component, in its standalone mode, while in a
later stage this component was integrated with the EBS DB system. The former aimed to test
the converter’s STDF conversion process while the latter had the goal of testing the STDF
loading process of EBS DB – regression testing. These tests were based, respectively, in a
Test Case Specification [19] – based in the previous Software Requirements Specification
[11] document – and in a Regression Testing Specification [21].

STDF2EXF Converter Development

90

All performed tests returned the expected results, regarding the implemented functionality by
the date tests were carried on.

The STDF2EXF Converter is ready to be used in standalone mode and a build has been
released for internal usage. This release is used by the EBS DB team for testing purposes
involving STDF work packages, allowing members to quickly handle and edit STDF files
used in tests. This application brings such users a major advantage when compared to the
previous existing solution for the matter, which involved manually editing the STDF Loader
code and compile it specifically to perform this action. This used to be done by changing a
flag in the STDF Loader, followed by a rollback when EXF generation would not be needed
anymore so that the STDF Loader would behave as expected inside the EBS DB.

By having a version of the STDF2EXF Converter compiled and compressed in an extractable
file, any user can download this application to a place of his choice and quickly convert any
STDF work package in a matter of seconds, without having the need of installing an EBS
build, compiling components, or launching work packages into the EBS DB workflow. The
standalone mode makes the conversion process simple, fast and straight into the user
expectations and aims, which is to access information in an easy, quick and reliable way. It is
a tool that optimizes the process of accessing and modifying STDF data and, although not
crucial for the success of a project, it is definitely a time saver and an indispensable tool to
have daily at hand in such a development team in Critical Software.

Prototype completion

The next logic step to carry out within the project’s scope would be to integrate the STDF
loading functionalities that were not implemented in this build with the EXF Loader. This
issue was aborted due to the existence of process conflicts when executing such operations
after an approach to incorporate such logic into the STDF2EXF Converter, having not been
solved in proper time.

Once such items are successfully incorporated into the prototype, the STDF2EXF Converter
application will then be indeed fully integrated with EBS DB, in comparison to version
2.3.0.3 of this system, presenting together with the EXF Loader the same functionalities the
STDF Loader does in this version.

EXF Loader testing

Although the regression testing is a reliable mechanism to verify the work packages loading
process, specific testing shall be made regarding the EXF Loader’s operation, similarly to
what was executed for the STDF2EXF Converter.

The STDF Loader loading test cases had been previously defined by the EBS DB team as part
of the system’s regular testing and were in this project adapted – when applicable – to be used
in the EXF Loader’s testing for the STDF format. Instead of comparing the whole results of
the work packages loading, such test cases allow a deeper analysis of the component itself and
a different opportunity of detecting possible flaws. Each test case has the goal of checking if
one or a set of functionalities are correctly implemented and this, added to the general picture
provided by the regression tests, would complete the testing needed to be done regarding the
loading of STDF work packages.

The EXF Loader testing shall be carried out once all the STDF Loader’s functionalities have
been migrated successfully.

STDF2EXF Converter Development

91

Performance testing

One of the goals of the project, if time permitted, was to eventually compare how a system
without the STDF Loader would behave compared to the solution that was adopted and is
being currently used by Infineon Technologies. The transformation of a system with two
loaders into one with a single loader that handles all file types would have an impact on the
system due to the importance and complexity of such components in the process. Such impact
might be positive or negative, although it is clear that the system is more homogeneous with
the new solution, having a single EXF Loader instead of this component being complemented
with a specific loader that handles STDF files. From a coding point of view, not much new
code was produced, having happened instead a migration of the STDF Loader’s code, its
rearrangement and slight optimization when integrated into the STDF2EXF Converter and the
EXF Loader.

Performance testing was not executed at this time, since the new developed system does not
include all the loading logic of the STDF Loader. Once this is achieved, performance tests
shall be carried out, results compared and a report shall be produced.

Update to current EBS DB version

Once completed the steps mentioned above, new conclusions can be drawn from the obtained
results. If the proposed solution is indeed worthy to be exploited and adopted in the future by
Critical Software and Infineon Technologies, all the changes since version 2.3.0.3 until the
current EBS DB version (currently 2.4.2.0) will eventually need to be incorporated into the
system that has been developed. In particular, all the logic added to the STDF Loader since
version 2.3.0.3 shall be migrated to the STDF2EXF Converter and EXF Loader, depending on
its conversion or loading purposes, and all the system shall be properly tested according to the
updated test cases specifications for each component.

STDF2EXF Converter Development

92

References and bibliography

[1] Critical Software SA – Company. Critical Software, SA, March 2008
<http://www.criticalsoftware.com/company.html>.

[2] Company – Infineon Technologies. Infineon Technologies, January 2008
<http://www.infineon.com/cms/en/corporate/company/index.html>.

[3] Semiconductor device fabrication – Wikipedia, the free encyclopedia. Wikimedia
Foundation, December 2007 <http://en.wikipedia.org/wiki/Semiconductor_fabrication>.

[4] Semiconductor Manufacturing Tour. Infrastructure, December 2007
<http://www.infras.com/Tutorial/>.

[5] Ferreira, Helder. EBS Data Model – an overview. Infineon Technologies, January
2006.

[6] Pessoa, Luis. Y.O.D.A. Training Session – Y.O.D.A. Overview. Critical Software,
SA, June 2007.

[7] Standard Test Data Format – Wikipedia, the free encyclopedia. Wikimedia
Foundation, December 2007 <http://en.wikipedia.org/wiki/Standard_Test_Data_Format>.

[8] Standard Test Data Format (STDF) Specification Version 4. Teradyne, December
2007 <http://etidweb.tamu.edu/cdrom0/image/stdf/spec.pdf>.

[9] Salland Engineering B.V.. Salland Engineering, March 2008
<http://www.salland.com/>.

[10] Galaxy Examinator. Galaxy Semiconductor Solutions, March 2008
<http://www.galaxysemi.com/examinator/support/faq.htm>.

[11] Silva, Daniel. STDF2EXF Converter Software Requirements Specification. Critical
Software, SA, March 2008. CSW-EBSDBLGC-2007-SRS-7556.

[12] Casimiro, Hugo and Fraga, Leonardo. EXF Schema Specification. Critical Software,
SA, August 2007. CSW-EBSDBLGC-2006-SPC-3961.

[13] Marshall, Casey. PySTDF Blog. March 2008 <http://pystdf.blogspot.com/>.

[14] Pystdf – Google code. Google, March 2008 <http://code.google.com/p/pystdf/>.

[15] SEDana – the practical data analysis tool. Salland Engineering, March 2008
<http://www.salland.com/brochures/SEDana.pdf>.

[16] Spry Software. Spry Software, March 2008
<http://www.sprysoftware.net/Products.shtml>.

[17] C++ – Wikipedia, the free encyclopedia. Wikimedia Foundation, March 2008
<http://en.wikipedia.org/wiki/C%2B%2B>.

[18] PL/SQL – Wikipedia, the free encyclopedia. Wikimedia Foundation, March 2008
<http://en.wikipedia.org/wiki/PL_SQL>.

[19] Silva, Daniel. STDF2EXF Converter Test Case Specification. Critical Software, SA,
February 2008. CSW-EBSDBLGC-2007-TCS-7636.

STDF2EXF Converter Development

93

[20] Silva, Daniel. STDF2EXF System Test Report. Critical Software, SA, February 2008.
CSW-EBSDBLGC-2007-TSR-9755.

[21] Silva, Daniel. STDF2EXF Regression Testing Specification. Critical Software, SA,
February 2008. CSW-EBSDBLGC-2008-TCS-01687.

Deitel, H.M. and Deitel, P.J.. C++ How to Program. New Jersey: Prentice Hall, 1994.

STDF2EXF Converter Development

94

ANNEX A: Project history

Week 1: from 01/10/2007 to 05/10/2007

• EBS DB formation.

• EBS DB documentation reading and source code overview.

• Project website development.

Week 2: from 08/10/2007 to 12/10/2007

• STDF2EXF Converter software requirement specification.

• STDF2EXF Converter test case specification.

• Project kick-off meeting.

Week 3: from 15/10/2007 to 19/10/2007

• STDF2EXF Converter software requirement specification.

• STDF2EXF Converter test case specification.

• EBS DB formation.

Week 4: from 22/10/2007 to 26/10/2007

• STDF2EXF Converter code analysis.

• STDF Loader’s logic migration into the existing converter template.

Week 5: from 29/10/2007 to 02/11/2007

• STDF2EXF Converter coding, compilation and testing.

• Progress meeting.

Week 6: from 05/11/2007 to 09/11/2007

• STDF2EXF Converter coding (standalone mode – work packages reading).

• Progress meeting.

Week 7: from 12/11/2007 to 16/11/2007

• STDF2EXF Converter coding (standalone mode – I/O).

Week 8: from 19/11/2007 to 23/11/2007

• STDF2EXF Converter coding (standalone mode – I/O, conversion and logging).

• Progress meeting.

• Coordination meeting.

STDF2EXF Converter Development

95

Week 9: from 26/11/2007 to 30/11/2007

• STDF2EXF Converter coding (standalone mode – WP/EXP processing).

Week 10: from 03/12/2007 to 07/12/2007

• STDF2EXF Converter coding (standalone mode – first working version and code
enhancements).

Week 11: from 10/12/2007 to 14/12/2007

• STDF2EXF Converter code enhancements.

• Internal project presentation preparation.

• Documentation update.

• Progress meeting.

Week 12: from 17/12/2007 to 21/12/2007

• Internal project presentation.

• STDF2EXF Converter testing.

• Documentation update.

Week 13: from 24/12/2007 to 28/12/2007

• Project report writing.

• EBS-DB-LOGIC maintenance.

Week 14: from 31/12/2007 to 04/01/2008

• Project report writing.

• EBS-DB-LOGIC v2.4.1.0 development.

• STDF2EXF Converter testing.

• Progress meeting.

Week 15: from 07/01/2008 to 11/01/2008

• Project report writing.

• EBS-DB-LOGIC v2.4.1.0 development.

• EXF Loader and STDF Loader API study.

• EXF Loader development.

Week 16: from 14/01/2008 to 18/01/2008

• EBS-DB-LOGIC v2.4.1.0 installation testing.

• EXF Loader development.

• Progress meeting.

STDF2EXF Converter Development

96

Week 17: from 21/01/2008 to 25/01/2008

• EXF Loader development.

Week 18: from 28/01/2008 to 01/02/2008

• EXF Loader development.

• Documentation update.

• EBS-DB-LOGIC v2.4.2.0 technical specification and development.

Week 19: from 04/02/2008 to 08/02/2008

• EBS-DB-LOGIC v2.4.2.0 technical specification and development.

• EXF Loader development.

Week 20: from 11/02/2008 to 15/02/2008

• EBS-DB-LOGIC v2.4.2.0 release tasks.

• EXF Loader development.

• Project report writing.

Week 21: from 18/02/2008 to 22/02/2008

• Project report writing.

Week 22: from 25/02/2008 to 29/02/2008

• Project report writing.

• EBS DB regression testing (STDF2EXF Converter and EXF Loader).

Week 23: from 03/03/2008 to 07/03/2008

• Project report writing.

• Deliverables handling.

Regular contact was made by MSN Messenger, e-mail or personal meetings between the
author and Prof.ª Ana Paula Rocha, the supervisor at FEUP.

	Início
	Summary
	Special thanks
	Index of contents
	Index of figures
	Index of tables
	Acronyms and abbreviations
	1. Introduction
	2. Problem analysis
	3. Technological review
	4. Specification of the new solution
	5. Prototype development
	6. Project concretisation
	7. Conclusions and future work perspective
	References and bibliography
	Annex A - Project history

