
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Design of Interactive User Interfaces for
Advanced Web Applications

António Filipe Magalhães Barros

Mestrado Integrado em Engenharia Informática e Computação

Supervisor at FER: Gordan Gledec (PhD)

Supervisor at FEUP: Maria Teresa Galvão Dias (PhD)

June 18, 2012

Design of Interactive User Interfaces for Advanced Web
Applications

António Filipe Magalhães Barros

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Doctor António Fernando Vasconcelos Cunha Castro Coelho
External Examiner: Doctor João Paulo Jorge Pereira

Supervisor: Doctor Maria Teresa Galvão Dias

June 18, 2012

Abstract

The web is changing, and with it, new technologies are emerging. The new Web 2.0 applications
are changing the way people interact with the web pages, and the users are getting every day more
demanding of the applications they use on the web.

The web is evolving fast and this evolution is helping the development of the new standards.
This is not a fast change as you can see by the history and evolution of these standards, but it is
what defines the path the web takes.

The aim of the project is to understand and define current trends in modern web design with
respect to usability, accessibility, search optimization, performance optimization and interactiv-
ity and develop a web-based interactive application that demonstrates the key principles of user
interaction on the web.

i

ii

Resumo

A web está em mudança, e com ela, novas tecnologias estão a surgir. As novas aplicações Web
2.0 estão a mudar a maneira como as pessoas interagem com a web, e os utilizadores estão a ficar
cada dia mais exigentes com as aplicações que usam na web.

Devido a esta mudança no comportamento dos utilizadores, a web está a evoluir rapidamente
e esta evolução está a ajudar ao desenvolvimento dos novos standards da web. Esta não é uma
mudança rápida como podemos ver pela história e evolução destes standards, mas é o que define
qual a direção que a web segue.

O objetivo do projeto é compreender e definir as tendências atuais do web design moderno
em relação à usabilidade, acessibilidade, otimização de pesquisas, otimização de desempenho e
interatividade e desenvolver uma aplicação web interativa que irá demonstrar os princípios funda-
mentais da interação do utilizador na web.

iii

iv

“Good design is all about making other designers feel like idiots because that idea wasn’t theirs”

Frank Chimero

“Design is easy. All you do is stare at the screen until drops of blood form on your forehead”

Marty Neumier

v

vi

Contents

1 Introduction 1
1.1 The Boom of The Web . 1
1.2 Goals . 2
1.3 Structure . 2

2 The History of Web 5
2.1 The History of HTML . 5
2.2 The History of CSS . 8
2.3 History of JavaScript . 8

3 Guidelines for Web Design 11
3.1 Importance of Web Standards . 11
3.2 Web Design . 13
3.3 Usability . 14
3.4 Web Directories . 16

3.4.1 Conclusions . 17

4 Modern Web Related Technologies 19
4.1 HTML5 . 20

4.1.1 Geolocation . 20
4.2 CSS3 . 21
4.3 Scripting Languages . 21

4.3.1 JavaScript . 21
4.3.2 PHP . 22

4.4 Conclusion . 22

5 Designing a Web Directory 23
5.1 Specification and Methodologies . 23
5.2 System Requirements . 24
5.3 Mockups . 24
5.4 Summary . 25

6 Implementation 27
6.1 Architecture . 27
6.2 Server . 27

6.2.1 Database . 27
6.3 Client . 28

6.3.1 Tag Cloud . 29
6.3.2 Python Scripts . 31

vii

CONTENTS

6.3.3 PHP Scripts . 32
6.3.4 jQuery Plugins . 33
6.3.5 File Compression . 35

6.4 Results . 35

7 Results and Discussion 41
7.1 Usability Tests . 41

7.1.1 Purpose of the Website . 41
7.1.2 Test Scenarios . 41
7.1.3 Conclusion . 42
7.1.4 Prototype . 42

7.2 Analysis . 43
7.2.1 Home Page . 43
7.2.2 Categories and Subcategories . 44
7.2.3 Submit Website Pages . 44
7.2.4 Conclusions . 45

7.3 Results Evaluation . 45
7.3.1 Drill Down Through Categories and Subcategories 45
7.3.2 Search Engine . 45
7.3.3 Submit Website . 45
7.3.4 Task Transversal . 46

8 Conclusions 47
8.1 Results . 47
8.2 Future Work . 48

8.2.1 Automatic Categorization . 48
8.2.2 Search Engine . 49

A Usability Tests Script 51

References 53

viii

List of Figures

2.1 Evolution of HTML and CSS [Tea10] . 6
2.2 The WorldWideWeb browser (later renamed to Nexus to avoid confusion) was de-

veloped on a NeXT Computer [wor] . 7
2.3 The Internet bubble timeline [Wik12] . 9

3.1 Yahoo! Web Directory [Yah12] . 16
3.2 Open Directory Project Web Directory [Net12] 17
3.3 Example of a font-size-weighted tag cloud [Fri07] 18

4.1 Browser usage by browser family [Awi12] . 20
4.2 Browsers usage by browser version [Awi12] . 21

5.1 Percentage of errors found, depending on the amount of testers [Nie00] 24
5.2 Use cases diagram with the possible user interactions with the system 25
5.3 The Home page mockup . 26
5.4 The Categories page mockup . 26
5.5 The Subcategories page mockup . 26
5.6 The Submit form mockup . 26

6.1 High level architecture of the system. Arrows indicate HTTP communications . . 28
6.2 Database schema . 29
6.3 Loading time of the website not using jQuery Lazyload Plugin 34
6.4 Loading time of the website using jQuery Lazyload Plugin 35
6.5 Comparison of loading times of CSS and JavaScript files with and without com-

pression (files with “.min” are compressed) . 36
6.6 Web directory screenshot: interface of the homepage 37
6.7 Web directory screenshot: the interface of a category page 37
6.8 Web directory screenshot: the interface of a subcategory page 38
6.9 Web directory screenshot: the interface of the submit website page 38
6.10 Web directory screenshot: the interface of the categorization page 39

7.1 Results of the usability tests . 43
7.2 Type of drill down the user chooses: tag cloud or categories and subcategories list 44

A.1 Script used in the usability tests . 52

ix

LIST OF FIGURES

x

Abbreviations

AJAX Asynchronous Javascript And XML
API Application Programming Interface
CERN Conseil Européen pour la Recherche Nucléaire (European Council for Nuclear

Research)
CRUD Create, Read, Update, Delete
CSS Cascading Style Sheets
DOM Document Object Model
FER Fakultet Elektrotehnike i Računarstva
HCI Human-Computer Interaction
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
JS JavaScript
OS Operative System
OWL Web Ontology Language
PHP PHP: Hypertext Preprocessor
RDF Resource Description Framework
SEO Search Engine Optimization
SGML Standard Generalized Markup Language
SOAP Simple Object Access Protocol
SPARQL SPARQL Protocol and RDF Query Language
SQL Structured Query Language
SVG Scalable Vector Graphics
URI Uniform Resource Identifier
URL Uniform Resource Locators
XHTML eXtensible HyperText Markup Language
XML eXtensible Markup Language
XSL eXtensible Stylesheet Language
XSLT eXtensible Stylesheet Language Transformations
WHATWG Web Hypertext Application Technology Working Group
WWW World Wide Web
W3C World Wide Web Consortium

xi

Chapter 1

Introduction

This thesis describes the process of creating a web directory, showing the research made, ex-

plaining the implementation, doing the tests and drawing the conclusions. This is intended to do

respecting the already existing standards of the web-technologies and without neglecting the user

experience.

This project was developed through a collaboration between Faculdade de Engenharia da Uni-

versidade do Porto, represented by Prof. Maria Teresa Galvão Dias, and Fakultet Elektrotehnike i

Računarstva — Sveučilište u Zagrebu — under the supervision of Prof. Gordan Gledec.

1.1 The Boom of The Web

Nowadays, the web keeps expanding in an unmeasurable rate. There was a boom with the massi-

fication of personal computers, but the growth continued and now expanded even more with the

appearance of the smartphones, televisions connected to the internet and gaming devices.

When the World Wide Web appeared, it was the integration of three different specifications:

HyperText Markup Language (HTML), HyperText Transfer Protocol (HTTP) and Uniform Re-

source Locators (URL).

The fast adoption of HTML and the slow pace of its development lead to the implementation of

non-standard specifications. The browser developers seized this opportunity to add non-specified

tags to their browsers, in order to take advantage in the browser wars. This had a negative impact in

web development because the web developers had to choose between the support for all browsers

or to provide the support for only one browser, adopting the non-standard tags that were provided

by the browser.

After some time, private vendors started to provide the developers with tools to generate more

appealing content, but that required the installation of external plug-ins to work.

With the standardization of the web, the aim is to walk towards a unified web, with all browsers

implementing the same functionalities that are set by a board formed to keep the standards of

1

Introduction

HTML. This board is composed by members of all the major browser developers. With HTML5,

this is the path we are walking towards.

1.2 Goals

The objective of this thesis is to develop a web directory and deliver a set of guidelines on how to

create a web directory using the current trends in web design. This will imply the study of several

web directories, web usability and the current trends in web design, in order to be able to deliver

a valid set of guidelines.

In order to test the validity of the web directory created, we need to perform some usability

tests with real users. To be able to do this we need to use some measures to help us quantify and

qualify the performance of the users in the tests:

1. Ease of Learning— how easy it is to an user who has never used the web application to

learn how to accomplish basic tasks;

2. Efficiency of Use— how fast can the user fulfill the tasks after they have learnt how to use

the web application;

3. Memorability— can an user who has used the web application before, use it effectively

thereafter or needs to re-learn how to use it?

4. Error Frequency and Severity— how often the user makes errors, the seriousness of the

errors and how does the system deal with the errors;

5. Satisfaction— how much the user likes to use the system;

1.3 Structure

This thesis is organized into three different parts, each of them relating to a different part of the

development of the final solution:

Part 1 - State of the art: — This first part is the literature review about the technologies used,

usability and web design.

• In chapter 2 is given a brief insight on the history of the web and some of its most used

technologies.

• In chapter 3 is explained the importance of following the standards and about the guidelines

in web design.

2

Introduction

• In chapter 4 are explained the technologies used in the development of the project in a more

detailed way.

Part 2 - Requirements and Implementation: — The second part is about the whole process of

requirements elicitation and implementation of the project.

• In chapter 5 are specified the methodologies followed during the whole project in a concise

way and is given an explanation about the results of the specification phase.

• In chapter 6 the implementation is detailed and is given the explanation about the decisions

needed to make during this phase.

Part 3 - Results and Conclusions: — In this part, is made the evaluation of the whole project

through usability tests performed by real users, explain the results, finalizing with the results

of these.

• In chapter 7 is explained the usability tests done and show the information that was gathered.

• In chapter 8 are drawn the conclusions, taking into account all that was learned during the

development phase and the tests with real users that were explained in the previous chapter.

3

Introduction

4

Chapter 2

The History of Web

Even if nowadays it is hard to imagine a website without styles, it was how it worked worked in the

beginning of the nineties, when the World Wide Web was born. Figure 2.1 illustrates the creation

and evolution of HTML and Cascading Style Sheets (CSS) in a better way.

In this chapter will be given a little insight about the history of the Web and related technolo-

gies: HTML, CSS and JavaScript.

2.1 The History of HTML

The creation of HTML was on 1989, when a physicist called Tim Berners-Lee proposed a sim-

ple hypertext system, with the aim of connecting all the distributed work of his fellow physics

researchers. This was integrated with two more specifications to create the World Wide Web: the

URL and the HTTP. With these three specifications, by 1990, Berners-Lee had created the first

web browser: the WorldWideWeb browser (figure 2.2).

He worked with is fellow researcher Mike Sendall to develop what is now seen as the first ver-

sion of HTML. To create it, they followed the basics of another markup language that was promul-

gated as an International Standard in 1986: Standard Generalized Markup Language (SGML) [Ber93].

This markup language is still regarded as the ancestor for HTML and eXtensible Markup Language

(XML) languages.

In 1992, Tim Berners-Lee published the first public HTML specification draft, with eighteen

different tags [Ber92]. It’s the beginning of the World Wide Web.

In order for his proposal to succeed, Berners-Lee knew that it should have the following char-

acteristics in order for the system to be futureproof [Ber89, Vee00]:

• Simplicity — HTML can’t be as complex as its ancestor.

• Universality — HTML has to be readable by any kind of computer and regardless of the

Operative System.

5

The History of Web

Figure 2.1: Evolution of HTML and CSS [Tea10]

• Degradability — any new version of the language must not break the previous versions. In

other words: a new version has to offer support for the previously defined tags.

In 1994 Berners-Lee founded World Wide Web Consortium (W3C), where, together with

members of some of the biggest Information Technology (IT) companies in the world, he con-

tinued to develop HTML. Amongst these companies we can find Adobe Systems, Apple, Conseil

Européen pour la Recherche Nucléaire (CERN), Facebook, Google, Mozilla Foundation, Opera

Software, Oracle Corporation, PayPal and Yahoo! [W3Ce].

In the second version only a few set of tags were added [Ber95], leaving this and its previ-

ous version with the same problem: it was only a structural language, with no support for page

styling. This was one of the features that users were craving the most: a way to “personalize” their

documents.

While the W3C was working on another version of HTML and a way to style the documents,

a problem arises: browsers like Netscape and Internet Explorer, in order to satisfy their users,

started to add proprietary tags [Wis]. The problem is that the tags they were adding were not in

the specification of HTML and because of that, it would matter the browser users were using to

6

The History of Web

Figure 2.2: The WorldWideWeb browser (later renamed to Nexus to avoid confusion) was devel-
oped on a NeXT Computer [wor]

get the most out of the pages they were visiting. For example, if they visited a website made with

these new Netscape tags with Internet Explorer, since Internet Explorer didn’t had the support for

these tags, they couldn’t see it properly, and vice versa.

So, instead of dropping those proprietary tags, W3C started collecting these tags and setting

them as current practices [WHA11]. This implied that the browsers should implement these “pro-

prietary” tags so users could have the same experience, regardless the browser they were using.

With this, users didn’t feel the need to have more than one browser to access specific websites

with proprietary tags.

At the same time, Dave Raggett introduced a new HTML draft: HTML 3.0. The changes

were so big and the browsers implementations were so slow that this version of HTML had to be

dropped and W3C had to turn their attention to another version of HTML: HTML 3.2 [RLAK98].

In this version W3C involved also a board made out of experts and browser companies mem-

bers. This board aim was to find common ground among the various browser companies and

extend the language in a way everyone agreed on. Most of the Netscape visual tags were adopted

and some other proprietary tags were removed (Netscape’s blink element and Internet Explorer’s

marquee element, for example).

In the next version they used the same strategy and it paid off. The functionalities that were

added were mostly from the HTML 3.0 draft and another big improvement: support for the new

presentational language: CSS.

7

The History of Web

Browser support for this version was not as troublesome as the previous versions, except for

Netscape. This browser couldn’t make it to this release and couldn’t even handle CSS.

In the year 2000, W3C issued another version as a recommended specification: eXtensible

HyperText Markup Language (XHTML). This was a new version of HTML with the strict com-

pliance of XML language.

In 2004, and when the W3C was making efforts towards the development of XHTML 2.0, a

group made of web technology fans, web browser developers and specification writers called Web

Hypertext Application Technology Working Group (WHATWG) started to build HTML5 on their

own. Some time after, W3C decided to drop XHTML 2.0 and work together with WHATWG in the

development of HTML5 [WHA11]. It is still not a recommendation by W3C but the steps towards

it are being taken. There is not a single browser that fully implements all the specifications but

there are some browsers with fully implemented modules and some other modules in an advanced

state of implementation [Dee10].

2.2 The History of CSS

The creation of CSS was made by another member of CERN, Håkon Wium Lie. It started when he

made the proposal [Wiu94] of a scheme to style HTML documents. This was not the first version

but it turned out to be a good starting point to discuss.

Bert Bos, at that time was developing Argo - a browser with style sheets already embedded in

the browser, decided to join forces with Lie and, together, they submitted another proposal.

One of the ideas that Bos gave was the generalization of CSS: instead of making it only work

with HTML, he recommended it to work with any type of markup language document. He took

this idea from Argo, that could apply style sheets to any document [LB99].

By the end of 1996 CSS1 was declared a W3C recommendation. This was possible due to the

interest of the HTML Editorial Review Board (HTML ERB), composed by representatives of IBM,

Microsoft, Netscape, Novell, Softquad and W3C [RLAK98], in a way to style the documents.

In the beginning of 1997, CSS got its own space inside W3C and they started working in its

next version of, with features that the first version of CSS didn’t address.

The second version of CSS became a recommendation of W3C in May of 1998, and, since

then, the development of any version of CSS is made by modules.

The new version of CSS, CSS3, has over fifty modules and, of those fifty, only three of them

are already a recommendation by W3C - Color [W3C11a], Namespaces [W3C11b], and Selec-

tors [W3C11c].

2.3 History of JavaScript

With the boom of the World Wide Web, also started the browser wars. When, in December of

1994, Marc Andreessen and Jim Clark created the Netscape Communications Corporation and

alongside this created the first web browser to the masses — Netscape Navigator — they started

8

The History of Web

Figure 2.3: The Internet bubble timeline [Wik12]

the Internet bubble (figure 2.3). Almost overnight their browser became the most popular browser

on the Web [Vee00].

In the second version of their browser they added a new feature, created by Brendan Eich,

that we call nowadays JavaScript. During the development phase, it was called Mocha and after

LiveScript, until they decided to name it JavaScript [You10].

Shortly after the introduction of JavaScript in the Netscape browser, they submitted it to the

European Computer Manufacturers Association (ECMA) in order for it to be standardized.

In the meantime, Microsoft developed their version of JavaScript, but named it JScript in order

to avoid problems of a row with Sun Microsystems over the naming rights. The first version of

JScript was introduced in Internet Explorer 3.0.

In June of 1997, ECMA standardized JavaScript and created the ECMAScript standard, which

embodied JavaScript core syntax. Later that year, Netscape 3.0 was released, and a new version

of JavaScript was embedded: JavaScript 1.1. This new version had a few improvements, making

page effects and changes on images when the mouse passed over them [Wil].

With the release of the fourth version of Netscape, another version of JavaScript was released:

JavaScript 1.2. In this new version, it was possible to make changes to the CSS styles of the

documents (position and visibility of elements of a page, for example), and these changes were

later adopted by the second specification of CSS.

Microsoft then played their trump card: their use of a proprietary Document Object Model

9

The History of Web

(DOM) model in Internet Explorer 4.0 enabled the user to reference any part of the document

thus enabling the user to have more control over the styles of the elements. Microsoft’s Internet

Explorer DOM model was more reliable and versatile, so W3C decided to adopt many of its

syntaxes and components in their next specification of the W3C DOM model [Wil].

With the fifth version of Netscape shipped with JavaScript 1.3, but the use of the poor DOM

model combined with their failure to correct the bugs that plagued their browser dictated a major

change in their plans: they released their source code and stopped charging for their browser. They

hoped for the open source community to take the lead and continue the development, but, instead

of this, they opted to completely rewrite the core of the browser in compliance with the new W3C

DOM model guidelines [Wil].

The fifth version of Internet Explorer shipped with JavaScript 1.5 and with a large set of the

W3C DOM 1 recommendations and the proprietary techniques used in Internet Explorer 4. The

W3C DOM recommendation, by then, allowed to create, remove and modify the elements of a

page after loading, granting even more functionalities than the previous recommendations.

In 2002 a new player appears: Mozilla Firefox. Firefox was the project the open source

community started when the source code of Netscape was made available. With a new rendering

engine and SpiderMonkey JavaScript engine and fully implemented W3C DOM recommendation.

The first steps towards a centrally recognized standard, W3C DOM, were given [Wil].

Nowadays, the W3C is on the third recommendation of W3C DOM and the last versions

of Firefox, Safari, Chrome, Opera and Internet Explorer partially support this last recommenda-

tion [Wil].

10

Chapter 3

Guidelines for Web Design

The best way to improve the chances of getting users and keep them on a website is to have a user-

centered design. Quoting Jakob Nielsen, on his book “Designing Web Usability: The Practice of

Simplicity" [Nie99]:

The web is the ultimate customer-empowering environment. He or she who clicks

the mouse gets to decide everything. It is so easy to go elsewhere; all the competitors

in the world are but a mouseclick away.

This, in summary, describes why the use of the guidelines are useful and extremely needed:

they were made to help the developers designing a usable website that will keep the users loyal to

it.

In this chapter will be given an introduction to web standards and why they are important, and

will also be presented the current state of the art in both web design and web directories.

3.1 Importance of Web Standards

The web standards are a set of recommendations by W3C. These are a set of guidelines with the

intent of keeping the web on the right track and to lead the Web to its full potential [W3Ca].

For the web to continue its development in order to achieve its full potential, W3C created and

maintains a group of technical specifications and guidelines known to promote and help maintain-

ing the consistency of the code which makes up a web page [W3Cd].

The advantages of correctly using and respecting these standards are many [Bre08]:

• Web pages display seamlessly in a wide variety of browsers and computers, including the

new technological gadgets like Personal Digital Assistants (PDA’s) and smartphones, re-

gardless of the operative system they use. This greatly increases the audience and the scope

of the Web.

11

Guidelines for Web Design

• The web standards greatly recommend the use of CSS attached to the page instead of em-

bedding it to the page. This increases the performance because of the reduced page file

size thus increasing the loading time. This also lowers the bandwidth usage for frequently

visited websites.

• Increases the maintainability since this makes it easier to change all the content present in

one simple page, instead of searching for the elements that need to be changed across all the

pages of the website.

• The search engines are able to access and index pages more efficiently if they are according

to the standards.

• As the standards are written to be compliant with the older browsers, this allows the users

that are still using older versions of a browser to access correctly to the web page. This

doesn’t mean the user will be able to see everything that newer browsers can, but the browser

will understand its structure. There are also tools to enable the developer to provide fallback

solutions to older browsers.

• Developing a web site following the standards can help the developer to spend less time

during the development and in the posterior maintenance phase, since it is easier to debug

the code.

• Accessibility is also an important issue in web standards: this allows people with disabilities

to fully use the website, but also means that people using unconventional browser to access

the web, will have better support.

The Web standards that are maintained by W3C are divided in seven groups, each and every

one of them responsible for several technologies/standards [W3Cd]:

• Web Design and Applications — this includes the standards for rendering pages, including

HTML, CSS, Scalable Vector Graphics (SVG), device Application Programming Interfaces

(API’s) and other technologies for Web applications [W3Cg].

• Web Architectures — focuses on the foundation technologies and principles that support

the Web, including Uniform Resource Identifiers (URI’s) and HTTP [W3Cf].

• Semantic Web — focused on the standards of the technologies that enable people to create

data stores on the Web, like Resource Description Framework (RDF), SPARQL Protocol and

RDF Query Language (SPARQL) and Web Ontology Language (OWL) [W3Cc].

• XML Technologies — responsible for the standards related to XML Technologies like

XML, XML Namespaces, eXtensible Stylesheet Language Transformations (XSLT), etc... [W3Cj].

12

Guidelines for Web Design

• Web of Services — refers to message-based design like HTTP, XML and Simple Object

Access Protocol (SOAP) [W3Ci].

• Web of Devices — focused on technologies to enable Web access anywhere, anytime, using

any device [W3Ch].

• Browsers and Authoring Tools — responsible for the maintenance of the universality and

interoperability of the Web [W3Cb].

Some of the most important standards maintained by W3C are:

• HTML — this is the first standard to emerge from W3C and is widely used on the web.

This is one of the most used tools for designing websites.

• CSS — this technology allows changes in the appearance of HTML, simply declaring the

styles to apply. The appearance of a complete website can be changed using CSS in a matter

of seconds.

• XML — since XML is also a markup language, it is also based in tags, like HTML, but this

is a more customizable language since it supports most of the elements that were shipped

with HTML 4.0 and also allows the user to define another elements, if needed by the user.

• XSL — this technology is the CSS of XML: it allows changes in the way a XML document

appears.

• DOM — this is what makes possible for a scripting language to interact with a web page.

This is a language neutral interface that allows the script to dynamically access and update

the content, structure and style of a web document.

3.2 Web Design

Designing is a complicated process. There’s no “right” way to design a website, there are only

a few useful guiding lines to help develop a usable interface. But, while these guidelines and

conventions might change, human nature is a constant and the Internet did not cause its change,

so far [Kru05].

That’s why the best way to get good design ideas is to follow the usability engineering method-

ologies and try to foresee the user reactions, taking into account the user data available. It is easier

to do it this way because web usability changes less rapidly than any web technology [Nie99].

13

Guidelines for Web Design

Most of the times, we have the idea that every user is going to read all the text on the website,

but that is not what happens: users take a glance at the website and read some text, and click on

the first link that seems related to what they are searching for [Kru05].

Here are some characteristics of what we see in new web design [Nie93, Hun, Fri10, Jon10]:

• Simplicity — is one of the main characteristics in today’s web design: a simple design

captivates the user, not only by the looks but also by the usability it brings and the browsing

experience it provides the user.

• Whitespace — this is used to make the website more clean and uncluttered, easier to read

and make it appear more professional. This does not mean the space has to be white, it just

means it has to be space.

• Rapid CSS3 adaptation — With this technology hitting the mainstream, more and more

web designers are using its powers to create more visual appealing websites.

• Strong, rich typography — The use of new capabilities enabled by CSS3, such as “@font-

face” and “text-shadow”, gives us another characteristic of modern web design: the typo-

graphic revolution.

• Soft, neutral backgrounds — Using soft background colors give the developer the oppor-

tunity to use strong colors and, combined with the use of strong and rich typography, also

provides the developer with the ability to draw the attention of the user to the most important

areas.

• Design the content, not the page — Instead of focusing solely in designing the web page,

more and more web designers choose to design its content instead. This leaves us without

as many boxed layouts and, because of this, the content of the whole website looks better.

3.3 Usability

Designing the user interface of a website is complicated, so we had to apply some usability guide-

lines. These guidelines help us understand the users needs and gives us some guiding lines on how

to design the user interface.

To help us achieve a better design, we needed to follow a set of heuristics, developed by Jakob

Nielsen [Nie05]:

• Visibility of system status — The system should always keep users informed about what’s

going on, through appropriate feedback within reasonable time.

14

Guidelines for Web Design

• Match between system and the real world — The system should speak the users’ lan-

guage, with words, phrases and concepts familiar to the user, rather than system-oriented

terms. Follow real-world conventions, making information appear in a natural and logical

order.

• User control and freedom — Users often choose system functions by mistake and will

need a clearly marked “emergency exit" to leave the unwanted state without having to go

through an extended dialogue. Support undo and redo.

• Consistency and standards — Users should not have to wonder whether different words,

situations, or actions mean the same thing. Follow platform conventions.

• Error prevention — Even better than good error messages is a careful design which pre-

vents a problem from occurring in the first place. Either eliminate error-prone conditions

or check for them and present users with a confirmation option before they commit to the

action.

• Recognition rather than recall — Minimize the user’s memory load by making objects,

actions, and options visible. The user should not have to remember information from one

part of the dialogue to another. Instructions for use of the system should be visible or easily

retrievable whenever appropriate.

• Flexibility and efficiency of use — Accelerators – unseen by the novice user – may often

speed up the interaction for the expert user such that the system can cater to both inexperi-

enced and experienced users. Allow users to tailor frequent actions.

• Aesthetic and minimalist design — Dialogues should not contain information which is

irrelevant or rarely needed. Every extra unit of information in a dialogue competes with the

relevant units of information and diminishes their relative visibility.

• Help users recognize, diagnose and recover from errors — Error messages should be

expressed in plain language (no codes), precisely indicate the problem, and constructively

suggest a solution.

• Help and documentation — Even though is better if the system can be used without doc-

umentation, it may be necessary to provide help and documentation. Any such information

should be easy to search, focused on the user’s task, list concrete steps to be carried out, and

not be too large.

15

Guidelines for Web Design

Figure 3.1: Yahoo! Web Directory [Yah12]

3.4 Web Directories

Most of the web directories that are frequently used, like Yahoo! Web Directory (figure 3.1),

Google Web Directory (not maintained anymore) or the Open Directory Project Web Directory

(figure 3.2), did not evolve their aspect at the same rate that the rest of the web did, keeping the

same old aspect.

As pointed before, the Google Web Directory is not maintained anymore because of the change

in the search paradigm: they state that searching content using a search engine is faster.

When these web directories were created, the user only needed to have the information, but

nowadays, with the trivialization of the web, the users have more options than they did in the

beginning, so they are more demanding than before: they want the content, but they also have high

expectations on the way the content is presented.

With the failure in keeping the design of web directories according to the new standards, there

is an opportunity and need to identify the user requirements and to suggest ways to address these

requirements and enhance the current practices.

In general, web directories design follow the points enumerated in the previous section, but

there are some other points to focus, mainly related to the way the user navigates between pages:

• Categories and Subcategories — this is the most common way to present the content in

web directories.

• Tag Clouds — these are not as common as the categories and subcategories lists but, in

some web directories, they are used. This enables the user to access the most commonly

16

Guidelines for Web Design

Figure 3.2: Open Directory Project Web Directory [Net12]

accessed categories and subcategories without needing to make the whole way through the

list. Figure 3.3 is an example of a font-size-weighted tag cloud.

• Search Engine — nearly every web directory has a search engine to give the user the op-

portunity to make fast searches throughout the whole web directory, and, in some search en-

gines, the ability to make searches on the whole web (through a search engine like Google).

This is the fastest way to search for content since it spares the user the time to drill down

the categories and subcategories to get to the results.

3.4.1 Conclusions

From the analysis of some of the most well-known web directories (figures 3.1 and 3.2), we can

assert that, even if they lack the usage of new technologies, there are some important points to

make it easier for the user to browse through it in an an appropriate way.

There is not much information about web design in web directories, and this leaves us space

to develop a set of guidelines to help those who want to create a web directory using the new

technologies that are hitting the mainstream now.

17

Guidelines for Web Design

Figure 3.3: Example of a font-size-weighted tag cloud [Fri07]

18

Chapter 4

Modern Web Related Technologies

The technologies that are going to be used are mainly the ones that are recommended by W3C,

but a little difference: it is intended to use the most advanced versions of these technologies, when

possible.

Since these new versions are not fully supported by browsers, we will have to pay attention

to the features added and test everything to make sure it works in the most used browsers in the

market. Figure 4.1 shows us the browser usage, grouping by browser vendor (browser family).

The technologies that are going to be used are:

• HTML — it is intended to use the most advanced version of HTML (HTML5) when pos-

sible, but making sure it is usable by all the targeted browsers. In order to do this, it will be

used a JavaScript library to indicate if the functionality works in a browser and, if it doesn’t,

will be provided a fallback solution to correct that.

• CSS — CSS is needed to apply styles to the page. It is intended to use the last version of

CSS in the project (CSS3).

• PHP: Hypertext Preprocessor (PHP) — this will be used perform Create, Read, Update,

Delete actions (CRUD) in the web server and to allow us to dynamically create web pages.

• JavaScript — this will be the main scripting language used in the project. JavaScript will

be present in the project using a JavaScript library like jQuery or script.aculo.us.

• Asynchronous JavaScript and XML (AJAX) — this technology is the combination of

JavaScript and CSS. This will be used to display information dynamically without the need

to reload the whole page.

19

Modern Web Related Technologies

Figure 4.1: Browser usage by browser family [Awi12]

These are the technologies that are going to be used in the development of the project. Future

needs might change the technologies in use, but is fair to say that these are the backbone of the

application.

4.1 HTML5

HTML5 is the latest draft for the HTML specification. This version is already a Working Draft

at W3C, meaning that this will be the next version of HTML. Most of the browsers are working

towards this new specification, adding some of the features that are going to be present in this

version of HTML.

4.1.1 Geolocation

With the non-stopping growth of the smartphones market, more and more people are using this

method to access the internet from everywhere. This gives us the opportunity to combine this

emergent market with the new capabilities of HTML and provide another valuable piece of infor-

mation to the user: the physical place of a website.

With this information, we can provide the user information about the location of the store and,

with the user location, we can show the way to go to the store in a map, including the possibility for

the user to specify how he intends to go to the store (on foot, by car or by bike) and the information

will be displayed according to this information.

20

Modern Web Related Technologies

Figure 4.2: Browsers usage by browser version [Awi12]

4.2 CSS3

CSS is used to apply styles to markup languages as HTML. The specifications of CSS are main-

tained by W3C. CSS can be embedded in the HTML code or in a linked external file.

4.3 Scripting Languages

In order to have dynamic web pages, we need to use scripting languages to access data repositories

to fill in the pages. This will be done using JavaScript and PHP. With these technologies we have

covered the client side scripting and the server side scripting.

4.3.1 JavaScript

JavaScript is the scripting language that is going to be used to do all the client side programming.

This will be done using two JavaScript libraries: jQuery and Modernizr.

4.3.1.1 jQuery

jQuery is a JavaScript library that exists to simplify HTML document traversing, event handling,

animating and AJAX interactions, in order to have a rapid web development [The12].

21

Modern Web Related Technologies

4.3.1.2 Modernizr

Modernizr is a JavaScript library that enables the developers to check if the browser that is being

used supports a feature of HTML5 and CSS3 and, if it doesn’t, has a mechanism to help the

developer provide a fallback solution, so the page doesn’t loose any feature or its aspect become

incoherent.

Modernizr has appeared because some of the browsers that are still being used, even if they are

outdated. This is extremely useful since some of the browsers that are used are outdated and don’t

support some of these new features (as you can see in figure 4.2, more than 30% of the browsers

currently being used are not in its newest version).

4.3.2 PHP

PHP is a server side scripting language, that enables us the dynamical creation of webpages, with

information stored in a web server. Originally PHP stood for Personal Home Page Tools, but

in 1997, two israeli developers, Zeev Suraski and Andi Gutmans, rebuilt the core of PHP and

renamed it to PHP: Hypertext Preprocessor [NuS].

PHP allows the developers to perform CRUD actions on the web server.

4.4 Conclusion

In order to have a robust application, it needs to be well defined and that is why there are specifi-

cation and definition phases, before the start of the development phase.

Before designing the web directory, this needs to be well defined to minimize the number of

errors during the development phase.

In order to achieve the main objective of designing a good website we will use some of the

most advanced web technologies around like HTML5 and CSS3. There may be some problems

because HTML5 is still being developed but the most used browsers already have some of the new

features implemented and it is the same with CSS3.

JavaScript will be used also, but preferably using a framework like jQuery or script.aculo.us,

depending on the features that are going to be implemented and the features that the framework

offers.

To avoid the frequent reload of the pages it will be used AJAX to address this problem while

making the user experience better.

In order to validate the web application, there’s the need to apply some tests to it so it could

be checked for errors in the technical area and in the usability area.

The tests consist on the distribution of a list of tasks for each person, and tracking the time that

they need to achieve the tasks. After that will be done a small enquiry to the user.

The application is intended to support browsers like Google Chrome, Mozilla Firefox, Opera,

Safari and Internet Explorer. The user needs to be able to perform all kinds of actions supported

by the application even when JavaScript is not enabled.

22

Chapter 5

Designing a Web Directory

The aim of this project is to develop a web directory using the modern web related technologies

and, create a set of guidelines on how to create a web directory using these technologies.

In order to do this, we had to study the history of some of the most well known web tech-

nologies, like HTML, CSS and JavaScript, as well as the state of art of web technologies. This

includes HTML5, CSS3 and JavaScript (using libraries and some plugins).

5.1 Specification and Methodologies

This project, as stated in chapter 1, was developed through a collaboration between Faculdade de

Engenharia da Universidade do Porto and Fakultet Elektrotehnike i Računarstva.

Due to the nature of this application, we used a user centered development in all the project,

adapting ourselves to the nature of the users. This method is based on the analysis and the attempt

to foresee how the common user would interact with the system. However, this is not enough: for

a developer, it is not easy to foresee the way the user would interact with the system, but this can

be covered with tests with common users. According to Jakob Nielsen [Nie00], these kind of tests

should be done with, at least, five users, but we did these tests with seven users. With this amount

of users, as we can see in figure 5.1, almost 90% of the errors are covered. Normally it would be

used the maximum of fifteen testers, but, because of the time restrictions, we had to make only

one test, with seven testers. If we had the time, we would use the fifteen users, divided into three

groups of five users, and in different phases.

During the development of the web application it was used a agile process with sprints of two

weeks with meetings in the beginning of each week to discuss the work done to get feedback and

to discuss the new functions for the next sprint.

23

Designing a Web Directory

Figure 5.1: Percentage of errors found, depending on the amount of testers [Nie00]

5.2 System Requirements

Before the start of the development phase, there were discussions to elaborate the requirements of

the application and we ended up with a use cases diagram 5.2, with the actions that are needed

in order for the user to correctly browse through the web directory. The search engine was not

supposed to be implemented, but we needed to have the action presented in the web directory, so

we could gather information about the way the users would use the web directory.

Besides the actions listed in the use cases diagram 5.2, there are some more requirements we

need to address while developing the web directory:

• Make use of the state of art technologies;

• Usable in a large set of browsers without any flaws;

• Web directory not to rely heavily on JavaScript;

• The web directory should be usable on smartphones;

• Accommodate different kinds of users, by providing different ways of browsing the web

directory (search, tag cloud, categories and subcategories list);

• Make it easy for users to interact with the system;

• Provide feedback to the user, when executing more complex tasks;

5.3 Mockups

Before the implementation phase, we made the mockups of the pages we needed to create. This

are just guiding lines on the design of the web directory. We just needed to create four different

24

Designing a Web Directory

Figure 5.2: Use cases diagram with the possible user interactions with the system

mockups, since the categories page will be used for all the categories. The same applies to the

subcategories. The pages we created were:

• The Home page (figure 5.3);

• Categories page (figure 5.4);

• Subcategories page (figure 5.5);

• Submit form page (figure 5.6);

These pages were just guiding lines, and they could be changed if we felt the necessity to add

or change some things in the design.

5.4 Summary

In the project, we adopted a user-centered design methodology when designing the interfaces.

Firstly we designed the website, taking into account the requirements and trying to put ourselves

in the user’s point.

In the meetings that we had before the development we decided to have a meeting every two

weeks to assure the good development of the application and to be sure the schedule was being

followed, and to assure that all the deliverables were correctly developed.

During these meetings, we also discussed the tests script, and the testing methodologies. With

this script we want to cover every possible action the user could do within the web directory, in

order for the test to be the more accurate possible.

25

Designing a Web Directory

Figure 5.3: The Home page mockup

Figure 5.4: The Categories page mockup

Figure 5.5: The Subcategories page mockup

Figure 5.6: The Submit form mockup

26

Chapter 6

Implementation

In this chapter will be explained the architecture of the system, explaining the technologies and

for what they are used and, when necessary, will be given any explanation related to the imple-

mentation decisions that were needed to take.

6.1 Architecture

The whole web application is divided into two different parts: one for the server and another for

the client. This can be better understood with the aid of figure 6.1. The communications between

the server and the browser are done through HTTP.

6.2 Server

The configuration of the server is a very well known for the web: MAMP. MAMP stands for Mac

OS X, Apache, MySQL and PHP. The client of the application consists in a server and a database:

Apache server and MySQL database; the communications between the client and the database that

is running on the server is done using PHP.

We chose to use this because of its easy configuration and due to its ease of working and

because of the familiarity with this configuration. The use of MAMP is due to our use of Mac OS

X, but there are similar tools for Linux and Windows: LAMP and WAMP, respectively.

6.2.1 Database

To support the website was created a database 6.2 with the tables needed to insure the web direc-

tory has enough data to make the usability tests. This required the creation of five tables:

Categories — this table hosts the categories of the web directory. It contains the id, name and

number of times the category was accessed.

27

Implementation

Figure 6.1: High level architecture of the system. Arrows indicate HTTP communications

Subcategories — this table hosts the subcategories of the web directory. It contains the id, name,

category and number of times the subcategory was accessed.

Websites — this table hosts all the websites in the web directory. It contains the id, name, de-

scription, website, latitude and longitude and the number of times the website was accessed

by the users of the web directory.

Website_Categories — this table is needed to make the connection between a website and a

category. It contains the id of the website and the id of the category. This set (id of the

website and id of the category) is unique.

Website_Subcategories — this table is needed to make the connection between a website and a

subcategory. It contains the id of the website and the id of the category. This set (id of the

website and the id of the subcategory) is unique.

6.3 Client

As one of the main requirements was to use JavaScript at its minimum due to the restrictions some

people impose in order to be secured, the communications between the client and the server will

be done mostly using PHP.

28

Implementation

Figure 6.2: Database schema

Since every page is generated dynamically, every time the user navigates to another page, a

HTTP request is made to the server and, depending on the information passed to the next page, a

new page is generated.

In some pages, the use of JavaScript couldn’t be avoided, but this only interferes in one of the

requirements: submitting a website to the web directory.

6.3.1 Tag Cloud

As was pointed out in the chapter 3.4, one of the characteristics of a web directory is the presence

of a tag cloud. With a tag cloud, the user can view the categories or subcategories and, depending

on the font size, can assert the most and least accessed categories and subcategories: the bigger

the font size, higher the number of times it was accessed.

This was one of the requisites of the system, so the best option was to design it in a way that it

wouldn’t need JavaScript so everyone could see it properly, even people browsing with JavaScript

disabled.

The mechanism behind the tag cloud is simple: there are ten different levels of importance, the

more important the level, the bigger the text will be. In order to calculate the levels, it was made

a calculation that gives us the difference between each level, and, depending on the numbers of

accesses that a category or subcategory has, it will be placed in one of those levels. The formula

to calculate the step between levels is:

29

Implementation

am −al

10
= ls (6.1)

and to calculate the level of the subcategory:

ceiling(
ac

ls
) = lc (6.2)

where:

am is the number of accesses of the most accessed category or subcategory;

al is the number of accesses of the least accessed category or subcategory;

ls is the step between each level of the tag cloud;

ac is the number of accesses of the category or subcategory we want to calculate the level;

lc is the level of the category or subcategory;

The greater the difference between am and al , the higher the value of ls.

Using the following data as an example:

am = 176

al = 9

ac = 76

Now applying the data listed previously to the formula in 6.1:

ls =
176−9

10
(6.3)

The result of 6.3 would be:

ls = 16.7 (6.4)

Now applying the result of 6.4 to 6.2

lc = ceiling(
76

16.7
) (6.5)

The result of 6.5 is:

lc = 5 (6.6)

So, with this values, the level of the category or subcategory would be five, meaning that the

category wouldn’t get much emphasis on the tag cloud, but it wouldn’t be on the lowest levels.

30

Implementation

When the value of lc is higher than nine, the category level will always be ten, not having more

than this number of levels.

6.3.2 Python Scripts

All the required features were implemented, but in some cases, we could not implement them

using PHP or JavaScript due to the characteristics of these scripting languages.

6.3.2.1 webkit2png

As the users tend to want to see the website they are going to before really go there, we added

a thumbnail of the website’s home page so the user could check if the website is useful or not.

This feature eases the way the users interact with the system, providing them relevant information

about the websites they are searching.

In order to have the thumbnail of the website we had two different options:

User Added Image

The option of prompting the user the snapshot of the website when submitting the website

could be used if we did not want to overload the server. But there are a lot of downsides with this

approach: the image size could be different from what we were expecting; the image could be in

a format we don’t have a way to correctly process; and would be easily outdated.

Server-Side Application Snapshot

This option enabled us to, from time to time, take a snapshot of all the websites in the web

directory. Using this, the user does not have to worry about uploading a picture of a website when

submitting it, since we do it automatically; with this approach we can control the snapshot format

and size. The downside of this approach is that if we have a lot of websites on the web directory,

this can overload the server, but we can control it having a schedule to take the snapshots (for

example: we can choose several sites a day and take the snapshots and, the next day, choose the

websites with older images).

In a time where websites change in a blink of an eye, having an up-to-date image of the website

is a necessary requirement. Without this, the web directory would be easily outdated and would

lose credibility to the user: that’s why we chose to use the server side application snapshot option.

This script enables the server to take snapshots of the websites in the web directory. This script

uses WebKit, the rendering engine behind Apple’s Safari and Google Chrome.

31

Implementation

This could not be done in JavaScript because it is a client-side scripting language, and the

images needed to be saved on the server, so we had to discard the option of doing this in JavaScript.

PHP is a server-side scripting language, but it lacks the functionalities to use the WebKit API

to take the snapshots.

The possibilities were to write a new script using a language that could connect with the

WebKit API or to try to find a script that could do it. We used a script developed by Paul Ham-

mond [Ham] that fulfills our needs.

This concrete script only works on Mac OS X, but there’s a version for Linux that uses

libkhtml, the library of the Konqueror browser used in KDE environments.

6.3.3 PHP Scripts

As we used this scripting language to generate the dynamic pages, we tried as much as possible to

use this language in other scripts, to maintain consistency throughout the project and only in cases

where the language couldn’t provide us the necessary conditions to use it.

6.3.3.1 Page Parsing

This script is used to parse a web page and extract information available in the meta tags of the

page. The objective of this script is to spare the user the time to fill in the information of a website.

Currently it already parses the following tags:

• <title>

• <meta name="description">

• <meta name="keywords">

• <meta name="geo.position">

The content of the <title> tag is used to get the name of the web site: in a web directory,

normally, only home pages are added, so, if the web site has this tag, we can automatically fetch

it, sparing the user the time needed to add this, and the information will probably be more accurate.

The content of the <meta name="description"> tag is used to get the description of the web-

site, and after being fetch is added automatically to the description of the website, but, if the user

wants, can be changed.

The content of the <meta name="keywords"> tag gives is used to get the keywords of the web-

site. These keywords currently are not used, but can be used to categorize the website. This would

imply the implementation of a categorization system.

The content of the <meta name="geo.position"> tag gives us the physical location of a web-

site. This physical location can be a store, or the headquarters of the company that owns the

website. This is used to provide the user the information about the distance from the place the user

is located to the place of the website.

32

Implementation

6.3.3.2 Image Manipulation

When searching for a website in a web directory, in order to provide better information to the

users, we attach a snapshot of the websites present on the web directory.

When a user submits a website, a snapshot of the website being added is taken, as explained

in section 6.3.2. This snapshot has to be manipulated to be with the correct size and to be in the

format we need, in order to use it.

When adding a website to the web directory, the user has to provide the URL of the website,

and a snapshot of the website is taken, to show the user a preview of the website. The problem is

that the image that is displayed when adding the website is too big for what we need, so, after the

website is added, the website snapshot preview is resized, to occupy less space on the server, since

the thumbnail of the site that is going to be shown is a small image.

6.3.4 jQuery Plugins

As jQuery is a rich library, there are a lot of plugins already developed that add a lot of useful

functionalities. This is extremely useful since these plugins normally have a good stability, are

well maintained since the community contributes detecting the bugs and, sometimes, helping to

solve them and another big reason to use them is to lose less time implementing features that have

already being implemented.

6.3.4.1 GMAP3

This plugin was used to smooth the interaction of the web application with the Google Maps

API [Goo]. The use of this is connected to the use of the Geolocation functionality of HTML5.

We could provide the user the information about his distance to the website’s physical location

just with his position coordinates and the coordinates of the website’s physical location. As the

coordinates would not be easily read by the user, we converted the website’s physical location to

a easily understandable format: the address.

This is also used to provide the user the address when filling the information of the website.

This is very useful to facilitate the task of the user, when providing the physical address of the

website the user is adding to the web directory. This enables the user to input the address instead

of the coordinates, since the coordinates would not be very intuitive to the user and they would be

easily confused with this method.

6.3.4.2 Autocomplete

In the case of this web directory, we have a closed group of categories and subcategories, and the

user does not have the possibility of adding a new category or subcategory. So, when adding a

website, the user needs to be able to see the categories and subcategories the user can use. To

make it easier for the user to have this information, we added this feature, that shows the user the

categories and subcategories the user can choose from.

33

Implementation

Figure 6.3: Loading time of the website not using jQuery Lazyload Plugin

As the information like the tags accepted in the categorization are all in the database and the

users can’t add new tags, when adding a website, the user needs to know which categories are

possible and the best way to provide this information to the user is to present this when the user is

adding the website.

This plugin was also used to present the information about the address of the website’s physical

location. Google doesn’t have all of the addresses in their database, so it is needed to provide a

way for the user to try to input the address and, if they don’t find, they can ignore the address since

it’s an optional value, or they can choose an address that exists on Google’s database and it’s close

enough to the website’s physical location.

6.3.4.3 Lazyload

All the websites listed in the web directory will have a picture of their main page. This can have

a bad impact in the loading times of the web page. To address this problem, instead of loading

all the pictures at the beginning, the pictures are loaded on demand: when a user scrolls the web

page, the pictures of the listed websites are fetched from the database and then the blank picture is

replaced by the website picture.

This increases the performance, since the pictures are not loaded in the beginning, making the

user spend less time when loading the website. For example, a website that is in the end of the list,

if the user doesn’t scroll until the end, its picture will not be loaded.

Basically, their pictures will not be loaded, sparing time and bandwidth to the user, as can be

seen in figures 6.3 and 6.4.

In figure 6.3 we can see the images of the websites (9.png, 10.png, 12.png, 13.png, 16.png

and 42.png)the thumbnails of every website of that page are loaded before the browser sends the

DOM event signalizing the page is fully loaded.

34

Implementation

Figure 6.4: Loading time of the website using jQuery Lazyload Plugin

In figure 6.4 one thumbnail is loaded to be used in all the website thumbnails and only when

the user sees a website, the image associated with that website is loaded.

As some of the users don’t enable JavaScript to run, a fallback solution was provided but it

will work like in the figure 6.3.

6.3.5 File Compression

File compression reduces the loading times of the webpages. This works by applying the com-

pression to the CSS and JavaScript files. This removes unnecessary white spaces and comments,

reducing significantly the size of the files.

Applying this to the CSS and JavaScript files, help getting a better performance by reducing

the initial loading times, as can be seen in figure 6.5.

6.4 Results

Resulting of the design and implementation processes, we successfully implemented the web di-

rectory. As a result, we have the interfaces of the web directory. The design of the interfaces are

similar to the mockups presented in section 5.3, but there are slight changes in some of them. We

also have another interface that wasn’t presented in section 5.3: the categorization interface. This

wasn’t a requisite, but we wanted to know the opinion of the users about a new feature, so we had

to implement this new interface. The interfaces we implemented were:

• The Home page (figure 6.6);

• Categories page (figure 6.7);

35

Implementation

Figure 6.5: Comparison of loading times of CSS and JavaScript files with and without compression
(files with “.min” are compressed)

• Subcategories page (figure 6.8);

• Submit form page (figure 6.9);

• Categorization form page (figure 6.10);

These screenshots were taken in a computer with Mac OS X Lion 1.7.4 installed and the

browser was Apple Safari 5.1.7.

We also tested the application in other browsers, to be assured everything was correctly im-

plemented. The other browsers we tested were Mozilla Firefox 13.0, Opera 11.64 and Google

Chrome 19.0.1084.56. The tests were performed under the same specifications pointed in the

previous paragraph.

We also tested the application under an Android Ice Cream Sandwich Operative System (ver-

sion 4.0.4), using the native Android browser.

36

Implementation

Figure 6.6: Web directory screenshot: interface of the homepage

Figure 6.7: Web directory screenshot: the interface of a category page

37

Implementation

Figure 6.8: Web directory screenshot: the interface of a subcategory page

Figure 6.9: Web directory screenshot: the interface of the submit website page

38

Implementation

Figure 6.10: Web directory screenshot: the interface of the categorization page

39

Implementation

40

Chapter 7

Results and Discussion

7.1 Usability Tests

In order to assert the scientific validity of this set of guidelines, we needed to elaborate a set of

tests. To test the application, we had the help of seven people, asking them for feedback on the

application and putting them executing some tasks. The task were to be executed without any help

from us, but with clarifications whenever the user felt necessary. While the user was testing the

application, the time was being measured by us.

In the end we asked what was the difficulty in a three level scale: easy, medium and hard.

7.1.1 Purpose of the Website

• What is your general impression of the website?

• What do you think you can do with the website?

7.1.2 Test Scenarios

1. Search for a website in the web directory (search engine or drill down);

2. Search for a website in the web directory (method not used in the first test);

3. Submit website to the web directory (add at least one Tag);

41

Results and Discussion

7.1.3 Conclusion

• What do you think about the web directory?

• What are the positive points? and the negatives?

• What you would like to have implemented as a feature?

In this part, our aim was to get to know more of what the user thought about the web directory,

to address the negative points and get some ideas of the real users.

7.1.4 Prototype

• Would you like to have a feature to suggest you tags when adding a website to the web

directory?

• Where would you like to see the map with the path to the website physical location?

• What do you think of this page? Would you like to have this to warn you when going to

another page? Would you prefer to go directly to the page?

• What do you think of the breadcrumbs bar? Is it useful or not? Do you think it is a good

idea to have it?

In this phase, we wanted to get the user inputs on some of the features that some users could

have missed. When asking the questions we show the feature we are talking about (if imple-

mented), so users could answer more accurately, and give their ideas about it.

The tests were made in a closed and controlled environment in order for the tester not to have

any distractions. While the user was executing the actions, we were taking notes on the actions

made by the user and what they were saying.

During the execution of the tasks, and whenever the user asked, we made some explanations

of the task.

After the actions were executed, we asked the user about the things that he was saying and

making, in order to understand their actions. During this phase, most of the users gave their input

on the tasks, leaving us with just a few questions in the end about possible features and adjustments

on the web application.

The script of the test can be found in appendix A.

42

Results and Discussion

Figure 7.1: Results of the usability tests

7.2 Analysis

After the tests were done, we compiled them according with the responses we got (figure 7.1).

We asked the reasons for the answers we got and we received a lot of answers, but a lot of them

focused on the same points.

The test on the search, was only done to see the pattern of users that would choose the search

engine first: five out of seven did. The difficulty of this test was related to some users that were

using the drill down strategy and combined the search with it. It was giving all the results that

matched the query, and they were trying to get the results that matched the query and were present

in that category. Basically they were filtering the query, but it wasn’t fully developed.

We had a lot of feedback from the users, all of them telling us the negative and positive aspects

of the website. With this information we can provide a better solution. We are going to talk about

the input received by the users, regarding each of the page where the users had to interact when

testing.

7.2.1 Home Page

In the homepage (figure 6.6), A few users were complaining that the web directory looked too

much like a company website, because of the logo and the navigation. They were saying the links

in the upper part of the website had too much emphasis and should be smaller in order not to catch

too much of their attention.

A bigger part said that the tag cloud should be bigger yet staying in the left part of the website.

Their opinion is that they would firstly try to find the category they were searching in the tag

cloud and only if they didn’t find anything interesting there they would use the categories and

subcategories.

The thing that most of the users complaint was because the link to submit a website was

too small, and this proved to have a major impact in the difficulty of the third task: most of the

users found it hard to find the button and this took them a longer time, compared to the action

43

Results and Discussion

Figure 7.2: Type of drill down the user chooses: tag cloud or categories and subcategories list

of submitting. Most of the users approximately took one quarter of the time spent in the whole

process just to find the the button. They demanded a bigger button and an advanced feature: when

adding a website, they wanted to automatically add the tag of the category or subcategory they

were browsing at that time.

7.2.2 Categories and Subcategories

When asked about the categories (figure 6.7) and subcategories (figure 6.8) pages, the users talked

about the breadcrumbs. They had problems because of its position: they found it confusing be-

cause the tag cloud wasn’t under it and they had doubts if the links of the tag cloud were related

to the category they were viewing. Their solution would be to put the tag cloud below the bread-

crumbs.

Regarding to the website links presentation and the redirection, there were two suggestions: to

remove the address from the website area, because this takes too much space; and, when clicking

the button, redirect to a page where the information of the website would be shown, including the

address and a map showing how to go to the physical place of the website.

7.2.3 Submit Website Pages

The input we had regarding the submit pages (figure 6.9 and 6.10) was good. The users liked the

automatic information extraction of the information when inputting a website, but they suggested

the website not to allow any change while the data is fetched from the website and present a better

loading message.

There was also a little obstacle in the second part of this action: in the tags division, some

users were clicking in order to understand where to add a tag.

When asked about the automatic categorization, all users stated that it would be a good feature,

but always giving the user the option to remove the tags the system could find related to the

website. The reason is that the users could find that the tag was not accurate enough and could

want to specify it.

44

Results and Discussion

7.2.4 Conclusions

The tests made were extremely useful in order to understand how the users use this kind of websites

and how they think when browsing. These inputs were taken during the whole duration of the tests

and not only in the end. With this we could ask the user the reasons why something was bad and

have a better understanding of the problems they found.

7.3 Results Evaluation

From the results of the tests, we can infer that the design was well received by the users, but we

can still improve the interface to make it even easier for the users to execute their tasks. Within

this section, and to make it more understandable, we will talk about the improvements by tasks,

instead of pages.

7.3.1 Drill Down Through Categories and Subcategories

When drilling down through the categories and subcategories, the biggest problem was due to

the breadcrumbs positioning that was causing confusion in a few users. According to the users, a

solution would be to put the tag cloud under the breadcrumbs, promoting the separation of content,

thus becoming more clear that the tag cloud was related to the category.

7.3.2 Search Engine

About this we can only say a few things, since this is not fully implemented. The input we had

was about filtering automatically the search, depending on the category we were browsing. This

doesn’t mean discard information unrelated to the category, but reorganize the information giving

a bigger weight to the information related to the category from which the search was done.

7.3.3 Submit Website

This is the part that the users said that needed more changes due to the confusion and misleads it

gives.

The button to submit the website should be bigger, because most of the users had problems

finding it, even scrolling down and up, trying to find something. After some seconds, and without

any help, they managed to find it but it is still a flaw that needs to be corrected.

Another problem that needs to be addressed is the fact the website allows interaction when

loading information about the website that is being submitted. In order not to allow the interaction

with the website, we can use JavaScript to block the interactions.

A few users also mentioned the use of an alternate message, more explicit than the current

one.

45

Results and Discussion

7.3.4 Task Transversal

The problems related to the execution of one task were listed, but there is a problem that is related

to every task: the website button. As the website button leads us to another page, some users said

that, instead of showing one page with almost no content, warning the user he was leaving the

website was annoying, they said that it would be better to show some detailed information of the

website there, instead of showing too much condensed information on the button.

With this, we could be showing the user more information, while still warning the user of the

fact they were leaving the website. With this, we could manage to show all the information about

the website on this new redirect page, and minimize the amount of text on the website button.

46

Chapter 8

Conclusions

8.1 Results

With the tests we made, we managed to get a few guidelines related to web directories. These

guidelines don’t have the objective to replace the guidelines that can be found in the website

www.usability.gov [oHSA06], this is just a complementary set of guidelines specific to the devel-

opment of web directories.

Along with the guidelines that are defined in [oHSA06], we have some more that are more

defined for web directories and its structure. These guidelines we propose were extracted from the

tests we done with the users.

• Provide a search engine to the user! A great part of the users, during the usability tests,

chose to use the search engine first, instead of drilling down through the tag cloud or the

categories and subcategories list.

• Get the emphasis on the tag cloud! The users preferred to drill down using the tag cloud,

instead of the categories and subcategories.

• Do not give navigation links more emphasis than they deserve. It shouldn’t be too catchy,

or the user will lose sight of what really matters on the site.

• Clearly define the boundaries between different sections. If the sections are not clearly

defined, the users will be confused.

• Do not overload the sections with information. It’s better to provide the information after

the user clicks the link. Sometimes is better to have an extra click and show information

better.

• Automatic categorization is a very important feature. All the users would like to see this

feature implemented, since it would make it easier for the users to categorize the website.

47

Conclusions

• Whenever necessary and possible, use already built JavaScript libraries and/or plug-ins.

This spares us the time to implement them, and normally they are better developed and

maintained, because of the huge community that develops and maintains these libraries

plug-ins.

8.2 Future Work

Outside of the scope of the project, there were two features that were researched in order to possi-

bly add to the web directory, but due to the time spent in the development and writing the thesis,

these features weren’t added. Despite this, we tested one of this features and even asked the users

about the other one. The search engine is a must in every web directory due to the nature of the

users nowadays and also because this is a very good way to spare the time searching. The auto-

matic categorization of the websites added to the web directory was not tested, but, when asked

about the possibility of integration with this feature, all the users said that this would be a great

feature.

In the next sections will be given a brief contextualization and explanation of the feature and

the inputs we got from the users, when testing the web directory.

8.2.1 Automatic Categorization

In web directories like Yahoo! Web Directory (figure 3.1) or the Open Directory Project (fig-

ure 3.2) where there is a large team supporting and contributing, the whole process of addition

is done manually, including the categorization of the website, but, with the number of websites

that exist nowadays, even with a large team supporting, there are some processes that can be done

automatically, like the categorization of the website.

Based on the <meta name="keywords"> we can sort the categories and/or subcategories of a

website. This is only intended to be a suggestion and not an automatic categorization without the

user input.

There are some requirements for this to work: the website needs to have the <meta name="

keywords"> defined, for us to use this. If the website doesn’t have this, then we can’t generate the

suggested categorizations, but the user can categorize the website manually.

We also have to deal with some websites where they put website unrelated keywords to appear

in more searches.

The suggested categorizations could be removed if the user thinks that they are not correct or

accurate. The user can also add other tags manually.

Of course that, having the user input, the objective is for the algorithm to learn from the users

input in order to deliver better results in the long term.

48

Conclusions

8.2.2 Search Engine

Web directories were once the main way to search for websites on the internet, but due to its

expansion of the web, it’s nearly impossible to have all the websites categorized in one place and,

even if possible, it would be extremely hard for the users to find anything.

A different approach was made, using a search engine, where a user only needed to use some

keywords to find websites related to the keywords inputted.

Since nowadays most of the users are "search oriented", this is a feature that most of the users

want implemented. During this phase there wasn’t enough research to suggest a good way to do

it.

From the input we got we can say that users would like to search depending on the level they

are browsing: if they are in the homepage, they want all the results and if they are browsing the

categories, they want to, at least have the subcategories related to that categories first.

49

Conclusions

50

Appendix A

Usability Tests Script

In order to do the tests we had to prepare a script to guide us during the whole phase. This script

was followed with the seven users that were helping us.

Some of the users used an adaptation on the script: while drilling down through the categories,

they used the search bar. While this wasn’t in our previsions, this gave us ideas on adaptations to

make in the web application.

One of the adaptations was to use the search engine in the scope the user was in. For example,

if the user was in the home page, show the categories first, and the subcategories after, but if the

user was in the categories, show the subcategories related to the categories first, and only after

show the other results.

51

Usability Tests Script

1. Introduction

1.1. Purpose

! You have been invited for this session to help us do some tests on our website, which is still in development. Your
help will be very useful to improve and validate our ideas. We are here testing the tool, not you, you can’t do anything
wrong here. First we would like to know some things about you.

1.2. User Profiling

• Age
• Occupation
• Education
• Experience using web directories.

! We are going to ask you some questions and do the tests. We would like to ask you to explain your thought
process aloud. We are going to be taking notes of your interactions with the website and your thoughts. As we told you,
there’s nothing here you can do wrong, and there are no right or wrong questions and your feedback will be very
valuable for us.

2. Purpose of the Tool

• What do you think is the purpose of this website?
• What do you think you can do in this website?

3. Tests

! We ask the user about one of his interests firstly, and then ask him, looking at the website, what would he do to
find a website related and waiting for his input.
! Depending on the way he would do, we would make a different test: drill down through the categories and
subcategories or use the search bar.
! Tell the user the scale: easy, medium and hard.

3.1. Drill Down

• Ask the user to drill down until he reaches one website given to him.
• Watch the if the user uses the tag cloud or the categories and subcategories.
• When the user ends, ask for his input and ask for the difficulty.

3.2. Search

• Ask the user to write the query he thinks that is better to find the website.
• When the user ends, ask for the difficulty of using this.

3.3. Submit Website

• Find the link to the submit webpage.
• Write the website on the input box.
• Submit website.
• Select tags.

4. Conclusion

• What do you think about the website?
• In a scale of easy, medium and hard, how you you classify the website?
• What do you think would be a good feature?

5. User Ideas

• What do you think of having a mechanism to automatically categorize the websites?
• What do you think of having a redirect page? Is it a good idea?
• Do you think that the use of breadcrumbs is good? Is it intuitive and easy to use?
• How would you show the map of the path to the physical location of the website?

Figure A.1: Script used in the usability tests

52

References

[Awi12] Awio Web Services LLC. Web Browser Market Share Trends. http://www.
w3counter.com/trends, May 2012. last access: Jun 10, 2012.

[Ber89] Berners-Lee, Tim. Information Management: A Proposal. http://www.w3.org/
History/1989/proposal.html, March 1989. last access: Jun 02, 2012.

[Ber92] Berners-Lee, Tim. HTML Tags. http://www.w3.org/History/
19921103-hypertext/hypertext/WWW/MarkUp/Tags.html, November
1992. last access: Jun 01, 2012.

[Ber93] Berners-Lee, Tim and Connolly, Daniel. Hypertext Markup Language(HTML) — A
Representation of Textual Information and MetaInformation for Retrieval and Inter-
change. http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt,
June 1993. last access: May 27, 2012.

[Ber95] Berners-Lee, Tim and Connolly, Daniel. Hypertext Markup Language - 2.0. http://
www.w3.org/MarkUp/html-spec/html-spec_toc.html, September 1995.
last access: Jun 05, 2012.

[Bre08] Brewer, Dustin. Why web standards are impor-
tant in web design. http://dustinbrewer.com/
why-web-standards-are-important-in-web-design/, January 2008.
last access: Jun 08, 2012.

[Dee10] Deep Blue Sky. HTML5 CSS3 Support. http://www.findmebyip.com/
litmus/, July 2010. last access: Jun 10, 2012.

[Fri07] Friedman, Vitaly. Tag Clouds Gallery: Examples And Good Prac-
tices. http://www.smashingmagazine.com/2007/11/07/
tag-clouds-gallery-examples-and-good-practices/, November
2007. last access: Jun 14, 2012.

[Fri10] Friedman, Vitaly. Web Design Trends 2010: Real-Life Metaphors and
CSS3 Adaptation. http://www.smashingmagazine.com/2010/05/20/
web-design-trends-2010-real-life-metaphors-and-css3-adaptation/,
March 2010. last access: Feb 01, 2012.

[Goo] Google. Google Maps API — Google Developers. https://developers.
google.com/maps/. last access: Jun 11, 2012.

[Ham] Hammond, Paul. webkit2png. http://www.paulhammond.org/webkit2png/.
last access: Jun 10, 2012.

53

http://www.w3counter.com/trends
http://www.w3counter.com/trends
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt
http://www.w3.org/MarkUp/html-spec/html-spec_toc.html
http://www.w3.org/MarkUp/html-spec/html-spec_toc.html
http://dustinbrewer.com/why-web-standards-are-important-in-web-design/
http://dustinbrewer.com/why-web-standards-are-important-in-web-design/
http://www.findmebyip.com/litmus/
http://www.findmebyip.com/litmus/
http://www.smashingmagazine.com/2007/11/07/tag-clouds-gallery-examples-and-good-practices/
http://www.smashingmagazine.com/2007/11/07/tag-clouds-gallery-examples-and-good-practices/
http://www.smashingmagazine.com/2010/05/20/web-design-trends-2010-real-life-metaphors-and-css3-adaptation/
http://www.smashingmagazine.com/2010/05/20/web-design-trends-2010-real-life-metaphors-and-css3-adaptation/
https://developers.google.com/maps/
https://developers.google.com/maps/
http://www.paulhammond.org/webkit2png/

REFERENCES

[Hun] Hunt, Ben. Current Style in Modern Web Design. http://www.
webdesignfromscratch.com/web-design/current-style/. last access:
Dec 02, 2011.

[Jon10] Jones, Brandon. The State of Web Design Trends: 2011 Annual Edi-
tion. http://webdesign.tutsplus.com/articles/design-theory/
the-state-of-web-design-trends-2011-annual-edition/, December
2010. last access: Dec 02, 2011.

[Kru05] Steve Krug. Don’t Make Me Think: A Common Sense Approach to the Web (2nd
Edition). New Riders Publishing, Thousand Oaks, CA, USA, 2005.

[LB99] Hakon Wium Lie and Bert Bos. Cascading Style Sheets: Designing for the Web.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.

[Net12] Netscape. ODP - Open Directory Project. http://www.dmoz.org, 2012. last
access: Jun 15, 2012.

[Nie93] J. Nielsen. Iterative user-interface design. Computer, 26(11):32 –41, nov. 1993.

[Nie99] Jakob Nielsen. Designing Web Usability: The Practice of Simplicity. New Riders
Publishing, Thousand Oaks, CA, USA, 1999.

[Nie00] Nielsen, Jakob. Why You Only Need to Test with 5 Users. http://www.useit.
com/alertbox/20000319.html, March 2000. last access: May 21, 2012.

[Nie05] Nielsen, Jak. Ten Usability Heuristics. http://www.useit.com/papers/
heuristic/heuristic_list.html, 2005. last access: Mar 2, 2012.

[NuS] NuSphere. PHP History. http://www.nusphere.com/php/php_history.
htm. last access: Jun 10, 2012.

[oHSA06] United States. Dept. of Health, Human Services, and United States. General Services
Administration. Research-Based Web Design & Usability Guidelines. U.S. Depart-
ment of Health and Human Services, 2006.

[RLAK98] Dave Raggett, Jenny Lam, Ian Alexander, and Michael Kmiec. Raggett on HTML 4
(2nd ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[Tea10] Teague, Jason. The Evolution of HTML & CSS. http://www.jasonspeaking.
com/index.php/2010/04/the-evolution-of-html-css/, April 2010. last
access: Jan 29, 2012.

[The12] The jQuery Foundation. jQuery: The Write Less, Do More, JavaScript Library.
http://jquery.com, 2012. last access: Jun 11, 2012.

[Vee00] Jeffrey Veen. The Art and Science of Web Design. Pearson Education, 2000.

[W3Ca] W3C. About W3C. http://www.w3.org/Consortium/. last access: Jun 09,
2012.

[W3Cb] W3C. Browsers and Authoring Tools - W3C. http://www.w3.org/standards/
agents/. last access: Jun 09, 2012.

54

http://www.webdesignfromscratch.com/web-design/current-style/
http://www.webdesignfromscratch.com/web-design/current-style/
http://webdesign.tutsplus.com/articles/design-theory/the-state-of-web-design-trends-2011-annual-edition/
http://webdesign.tutsplus.com/articles/design-theory/the-state-of-web-design-trends-2011-annual-edition/
http://www.dmoz.org
http://www.useit.com/alertbox/20000319.html
http://www.useit.com/alertbox/20000319.html
http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.nusphere.com/php/php_history.htm
http://www.nusphere.com/php/php_history.htm
http://www.jasonspeaking.com/index.php/2010/04/the-evolution-of-html-css/
http://www.jasonspeaking.com/index.php/2010/04/the-evolution-of-html-css/
http://jquery.com
http://www.w3.org/Consortium/
http://www.w3.org/standards/agents/
http://www.w3.org/standards/agents/

REFERENCES

[W3Cc] W3C. Semantic Web - W3C. http://www.w3.org/standards/
semanticweb/. last access: Jun 09, 2012.

[W3Cd] W3C. Standards - W3C. http://www.w3.org/standards/. last access: Jun 09,
2012.

[W3Ce] W3C. W3C Current Members. http://www.w3.org/Consortium/Member/
List. last access: Jun 10, 2012.

[W3Cf] W3C. Web Architecture - W3C. http://www.w3.org/standards/webarch/.
last access: Jun 09, 2012.

[W3Cg] W3C. Web Design and Applications - W3C. http://www.w3.org/standards/
webdesign/. last access: Jun 09, 2012.

[W3Ch] W3C. Web of Devices - W3C. http://www.w3.org/standards/
webofdevices/. last access: Jun 09, 2012.

[W3Ci] W3C. Web of Services - W3C. http://www.w3.org/standards/
webofservices/. last access: Jun 09, 2012.

[W3Cj] W3C. XML Technology - W3C. http://www.w3.org/standards/xml/. last
access: Jun 09, 2012.

[W3C11a] W3C. CSS Color Module Level 3. http://www.w3.org/TR/css3-color/,
June 2011. last access: Jun 04.

[W3C11b] W3C. CSS Namespaces Module. http://www.w3.org/TR/css3-namespace/,
September 2011. last access: Jun 04.

[W3C11c] W3C. Selectors Level 3. http://www.w3.org/TR/css3-selectors/,
September 2011. last access: Jun 04.

[WHA11] WHATWG. HTML5: A technical specification for Web developers. http:
//www.whatwg.org/specs/web-apps/current-work/multipage/
introduction.html#history-1, 2011. last access: Jun 03, 2012.

[Wik12] Wikipedia. Dot-com bubble. http://en.wikipedia.org/wiki/Dot-com_
bubble, June 2012. last access: Jun 15, 2012.

[Wil] Wilton-Jones, Mark. JavaScript history. http://www.howtocreate.co.uk/
jshistory.html. last access: Jun 07, 2012.

[Wis] Wise, Cheryl. History of HTML CSS. http://www.wdtonline.com/
wdtMagazine/MemberWorks/WiserWays/csshtml.htm. last access: Feb 01,
2012.

[Wiu94] Wium Lie, Håkon. Cascading HTML style sheets — a proposal. http://www.w3.
org/People/howcome/p/cascade.html, October 1994. last access: Jun 07,
2012.

[wor] WorldWideWeb (The First ever Web Browser). http://www.
googlechromedownload.com/worldwideweb-the-first-ever-web-browser/.
last access: May 20, 2012.

55

http://www.w3.org/standards/semanticweb/
http://www.w3.org/standards/semanticweb/
http://www.w3.org/standards/
http://www.w3.org/Consortium/Member/List
http://www.w3.org/Consortium/Member/List
http://www.w3.org/standards/webarch/
http://www.w3.org/standards/webdesign/
http://www.w3.org/standards/webdesign/
http://www.w3.org/standards/webofdevices/
http://www.w3.org/standards/webofdevices/
http://www.w3.org/standards/webofservices/
http://www.w3.org/standards/webofservices/
http://www.w3.org/standards/xml/
http://www.w3.org/TR/css3-color/
http://www.w3.org/TR/css3-namespace/
http://www.w3.org/TR/css3-selectors/
http://www.whatwg.org/specs/web-apps/current-work/multipage/introduction.html#history-1
http://www.whatwg.org/specs/web-apps/current-work/multipage/introduction.html#history-1
http://www.whatwg.org/specs/web-apps/current-work/multipage/introduction.html#history-1
http://en.wikipedia.org/wiki/Dot-com_bubble
http://en.wikipedia.org/wiki/Dot-com_bubble
http://www.howtocreate.co.uk/jshistory.html
http://www.howtocreate.co.uk/jshistory.html
http://www.wdtonline.com/wdtMagazine/MemberWorks/WiserWays/csshtml.htm
http://www.wdtonline.com/wdtMagazine/MemberWorks/WiserWays/csshtml.htm
http://www.w3.org/People/howcome/p/cascade.html
http://www.w3.org/People/howcome/p/cascade.html
http://www.googlechromedownload.com/worldwideweb-the-first-ever-web-browser/
http://www.googlechromedownload.com/worldwideweb-the-first-ever-web-browser/

REFERENCES

[Yah12] Yahoo! Inc. Yahoo! Directory. http://dir.yahoo.com, 2012. last access: Jun
15, 2012.

[You10] Young, Alex. History of JavaScript: Part 1. http://dailyjs.com/2010/05/
24/history-of-javascript-1/, May 2010. last access: Jun 10, 2012.

56

http://dir.yahoo.com
http://dailyjs.com/2010/05/24/history-of-javascript-1/
http://dailyjs.com/2010/05/24/history-of-javascript-1/

