
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Managing System to supervise

professional multimedia equipment

Luís Soares de Azevedo

Master in Informatics and Computing Engineering

Supervisor: Professor Miguel Monteiro

18
th
 July 2012

© Luís Azevedo, 2012

Managing System to supervise professional multimedia
equipment

Luís Azevedo

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: Maria Eduarda Silva Mendes Rodrigues (PhD)

External Examiner: Daniel Castro Silva (PhD)

Supervisor: Miguel Monteiro (PhD)

__

i

Abstract

 This document describes the development process of a “Managing System to supervise

professional media equipment” and was suggested by MOG-Technologies (Media Objects and
Gadgets). The project consists in the implementation of a centralized system capable of

providing the user with a unique entry point to control, configure and manage all the different

services exposed by MOG’s products.

 MOG’s commercial solutions offer features related to video capture, media ingest to
editable formats and media outgest to broadcast extensions. These products are characterized as

independent solutions and only allow individual access. This means that in multiple equipment

environments, the user needs an extra effort to maintain and take advantage of all the products’
features. Thus, the objective is to present a solution capable of improving this scenario.

 The centralized system communicates with all the different equipment by means of Web

Services (SOAP) and exposes its features through a Web application. The implemented solution

detects and adds resources present in the network, monitors them, provides access to all the
media assets reachable by each product and allows multiple configurations and task assignment.

 In order to achieve complex workflows between products, a business process definition

approach was taken and a Business Process Management System called jBPM was used to
design and execute workflows. With this architecture it’s possible to design a sequence of

activities using a standard called BPMN2.0 (Business Process Model Notation), which assures

interoperability.
 With the implemented solution the user doesn’t need to know specifically which

features each product has. The only requirement is designing the intended result. It might be

capture followed file transcoding to an editable format, the user can simply define the business

process with the desired activities and the centralized solution will take care of assigning and

scaling tasks.

ii

iii

Resumo

 O presente documento descreve o projeto de desenvolvimento de um “Sistema de
Gestão e Supervisão para equipamento de multimédia profissional” realizado na MOG-

Technologies (Media Objects and Gadgets). A referida solução, consiste na implementação de

um sistema centralizado capaz de oferecer ao utilizador um único ponto de acesso para
controlar, configurar e gerir os diferentes serviços oferecidos pelos produtos da MOG.

 As soluções comerciais da MOG oferecem funcionalidades de captura de vídeo, de

ingest dos clips para formatos editáveis e outgest de modo a ser possível o seu broadcast. Estes

produtos são atualmente vistos como soluções independentes e permitem apenas acesso
individual. Ora, isto significa que em ambientes com múltiplos destes sistemas o utilizador

necessita de um esforço acrescido para manter e aproveitar corretamente todas as

funcionalidades existentes. O objetivo deste documento é apresentar uma solução possível de
modo a melhorar o referido cenário.

 O sistema centralizado comunica com todos os diferentes equipamentos utilizando Web

Services (SOAP) e expõe as suas funcionalidades através de uma aplicação Web. A solução
permite detetar e adicionar produtos existentes na rede, monitoriza-los, explorar quais os clips

disponíveis, configurar múltiplos equipamentos simultaneamente e atribuir tarefas.

 De modo a possibilitar complexos workflows de interação entre produtos, foi feita uma

abordagem de business process definition. Para tal foi usado um Business Process Management
System, chamado jBPM, que permite design e execução de workflows. Com esta arquitetura é

possível definir a sequência de atividades a ser executada pelos diferentes produtos utilizado um

standard denominado BPMN2.0, o que assegura interoperabilidade.
 Com a solução implementada o utilizador não tem de saber quais as funcionalidades de

cada produto, apenas tem de descrever o que pretende realizar. Seja uma captura seguida da

submissão de um vídeo de baixa resolução num site, o utilizador apenas necessita de indicar as

atividades na definição do processo e o sistema fica responsável por escalonar e atribuir as
tarefas.

iv

v

Acknowledgements

 I’d like to thank Eng. Miguel Sampaio and Eng. Pedro Ferreira from MOG technologies
for the great opportunity and support provided. Also Eng. Rui Amor, Eng. Ricardo Serra and all

MOG’s collaborators for the time they spent answering my questions, which weren’t few or

easy. Useful and “on the moment” help is rare and sometimes unappreciated, as such I can’t
stress enough the support I had during the period I was at MOG. Everyone was willing to offer

their valuable time answering any doubts I had.

 I also would like to thank the project supervisor, Professor Miguel Monteiro, for all the

help and availability showed during the entire process.

Luís Azevedo

vi

vii

Contents

1. Introduction... 1

1.1 Context .. 2

1.2 Project ... 2

1.3 Motivation and Goals .. 2

1.4 Thesis Structure ... 3

2. Bibliography Revision ... 4

2.1 Automation Process Brief Evolution .. 4

2.2 Control Protocols ... 4

2.2.1 The 9-Pin Protocol ... 5

2.2.2 The VDC Protocol ... 5

2.2.3 What is RS-422 .. 5

2.3 IP Based Protocols ... 5

2.4 SOA (Service Oriented Architecture) ... 5

2.5 The FIMS Project .. 6

2.5.1 How does it work? ... 6

2.6 Automated Workflow Systems .. 6

2.6.1 What already exists .. 7

2.7 Media Asset Management (MAM) ... 8

2.7.1 Avid Interplay .. 8

2.8 Supporting technologies... 9

2.8.1 SOAP .. 9

2.8.2 REST ... 9

2.8.3 Message Queuing ... 10

2.8.4 Authentication ... 11

2.8.5 WCF .. 11

2.8.6 Bonjour .. 11

2.8.7 MXF .. 12

2.9 MOG Technologies ... 12

2.9.1 F1000 Software .. 13

2.9.2 S1000 Software .. 14

2.10 Apache Flex .. 15

2.11 Java EE ... 15

2.12 JBoss ... 15

viii

2.13 Ext JS .. 16

2.14 Business Process Management (BPM) Systems ... 16

2.14.1 Business Process Modeling .. 16

2.14.2 What BPMLs are there? ... 16

2.15 Workflow Engines ... 18

2.15.1 jBPM ... 19

2.15.2 Activiti .. 20

2.15.3 Apache ODE .. 22

2.15.4 Intalio|BPMS ... 23

2.15.5 Bonita .. 24

2.16 Pros and Cons .. 26

3 Project Specification.. 30

3.1 The broadcast workflow .. 30

3.2 The Problem .. 31

3.3 The Centralized System Workflow .. 32

3.4 Functional Requirements ... 33

3.5 Non-functional Requirements .. 33

3.6 Architecture ... 34

4 Project Implementation .. 36

4.1 Methodology ... 36

4.2 The Implementation process .. 36

4.3 The communication between Web App and Server .. 37

4.4 The Overview Model ... 38

4.5 The Event Hub .. 41

4.6 Control .. 42

4.7 Config All ... 44

4.8 The Settings Module .. 45

4.8.1 Designing a business process ... 46

4.9 The Processes Module ... 50

4.9.1 How processes are run with jBPM .. 51

4.10 Asset Explorer ... 52

4.11 Tests and Results ... 54

4.12 Difficulties .. 57

4.12.1 jBPM Standalone Web Designer .. 57

4.12.2 The Event Hub ... 58

4.12.3 Synchronizing Settings between mxfSpeedRail .. 58

4.12.4 “Bubbling” Events ... 58

4.13 Conclusions ... 59

5. Conclusions and Future Work .. 60

ix

5.1 Goal Achievement ... 60

5.2 Future Work .. 61

References ... 62

x

List of Figures

Figure 1 – Telestream Solution.. 7
Figure 2 – Robots Technology .. 8
Figure 3 – mxfSpeedRail diagram ... 12
Figure 4 - F1000 interface ... 13
Figure 5 - Workflow Settings Window .. 14
Figure 6 - S1000 Interface ... 15
Figure 7 - Business processes related standards time-line ... 18
Figure 8 - Web designer .. 19
Figure 9 – jBPM Business Process Designer ... 20
Figure 10 - Activiti tool stack (Liempd) .. 21
Figure 11 - Activiti Business Process Designer.. 21
Figure 12 – Activiti Modeler - Signavio Web Designer for Activiti ... 21
Figure 13 - Business Process in Eclipse BPEL Editor .. 22
Figure 14 - WSDL using Eclipse WSDL plugin .. 23
Figure 15 - Apache ODE web tool .. 23
Figure 16 - Intalio process web app ... 24
Figure 17 – Intalio Designer .. 24
Figure 18 - BonitaSoftware Studio .. 25
Figure 19 - BonitaSoftware User Experience ... 25
Figure 20 - jBPM .. 26
Figure 21 - Activiti ... 26
Figure 22 - Apache ODE ... 27
Figure 23 - Intalio ... 27
Figure 24 – BonitaSoftware... 28
Figure 25 - Broadcasting Workflow .. 30
Figure 26 - mxfSpeedRail interaction flow .. 31
Figure 27 - Centralized System flow ... 32
Figure 28 - Centralized System Technologies .. 35
Figure 29 - Simplified JavaScript ad Web Server communication .. 37
Figure 30 - Overview, Individual Tab with multiple resources ... 39
Figure 31 - Add resource dialog .. 40
Figure 32 - Organize Resources by Group ... 40
Figure 33- Multiple Groups View ... 41
Figure 34 - Global View ... 41
Figure 35 - Event Hub comparison .. 42
Figure 36 - Possible commands to all resources ... 43
Figure 37 - Control group view ... 43
Figure 38 - Synchronizing Settings.. 43
Figure 39 - Config All module .. 44
Figure 40 - Storage Form .. 45
Figure 41 - Locking settings fields .. 45
Figure 42 - Football event workflow ... 46
Figure 43 - Activities .. 47
Figure 44 - Settings Processes Tab .. 47
Figure 45 - jBPM Standalone Web Designer ... 48
Figure 46 - Football coverage event business process .. 49
Figure 47 - BPMN2.0 source ... 49

xi

Figure 48 - Football event workflow preview .. 49
Figure 49 - Processes run .. 50
Figure 50 - jBPM/SOAP interaction .. 51
Figure 51 - Asset Explorer multiple locations .. 52
Figure 52 - Real time asset filter by name and metadata field... 53
Figure 53 - Adding “New Location 1” to fo2 by drag and drop .. 53
Figure 54 - Test Workflow .. 54
Figure 55 - Missing Assets Warning.. 55
Figure 56 - Asset Explorer and Workflow Interaction .. 55
Figure 57 - Selected Assets (left down corner) for Activity .. 56
Figure 58 - Test Result .. 56
Figure 59 - Workflow Completed Notification .. 57
Figure 60 - Events Architecture ... 59

xii

List of Tables

Table 1 - BPMS comparison 28
Table 2 - Web Sockets API browser support () 38

xiii

Abbreviations

AJAX Asynchronous JavaScript and XML
API Application Programming Interface

BPMN Business Process Model Notation

BPMS Business Process Management System
DBMS Database Management System

HD High Definition

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment

JSON JavaScript Object Notation

MAM Media Asset Management
MI Media Infrastructures

MOG Media Objects & Gadgets

MXF Material eXchange Format
SDI Serial Digital Interface

SDK Software Development Kit

SLA Service-level Agreement

SOA Service Oriented Architecture
SOAP Simple Object Access Protocol

SVG Scalable Vector Graphics

WSDL Web Service Description Language
WWW World Wide Web

XML Extensible Markup Language

XPDL XML Process Definition Language

YAWL Yet Another Workflow Language

1

1.Introduction

 The first TV programs were public service oriented with no commercial content and
limited air time. In fact, there wasn’t any kind of scheduling or other type of automation.

Channels were aired for a specific couple of shows, which were manually changed by an

operator. The idea of a continuously running schedule with dynamic content and ads based
revenue was far away in the future.

 This scenario gradually changed with the evolution of electronic components and

broadcast methods, which resulted in the increase of TV broadcasters and led to more
sophisticated equipment. Not long after, advertisers accepted the TV as a reliable media to

publicize their products and the main source of TV broadcasting revenue was born.

 Due to the exponential growth of TV content and with the addition of commercials, it

became increasingly difficult to efficiently manage the programs’ schedules. As such, higher
levels of automation were necessary.

 “The idea that we can take a manual process and apply technology to it in a way that

reduces costs and increases speed, reliability and accuracy is irresistible” (Atherton, 2002). This
notion of automation started to have a greater impact on TV broadcasters with the proliferation

of computer based systems. By resorting to IT solutions a TV Channel could easily achieve the

following advantages:
1. Permanently on the air

2. Improved ads management

3. Data gathering for quality control

4. Reduced staff costs
5. Complex scheduling

 These automated systems became very common on TV stations but due to the enormous

amount of different tasks involved in this environment, they also got rather complex. With
many components and distinct solutions, it was hard to easily interact with all of them. As such,

a centralized solution to manage, configure and supervise the equipment is crucial.

 From the capturing area to the broadcasting, it’s easy to understand that a system

capable of automating and unifying the access is an enormous addition. This thesis objective is
to define such system.

 The subject was suggested by MOG. A company that specializes in creating solutions

for TV broadcasting and understands the necessity of increasing its products features and
usability.

 Regarding this document structure, the remaining chapters are the bibliography

revision, where is presented the subject’s state of art, followed by the project specification, the
project implementation, testing, biggest difficulties and finally the conclusions and future work.

2

1.1 Context

 TV broadcasting has been evolving at an astonishing rate with increasing mediums to
air from, new data formats, ads management is more complex and viewers want to have access

to it wherever they are. Obviously this increases the workload of TV broadcasters’ IT

department, who needs more technologically evolved solutions. This is where MOG offers its
services and products.

 MOG was born from a research project at INESC and is presently the world leader in

MXF based solutions. Was officially created in 2002 and its core strength is developing TV

broadcast systems based on the flexibility of the MXF standard. It’s located in Tecmaia(Maia),
Portugal, and its main market is international.

 Considering the nature of their products, MOG realized that a managing system to

supervise their equipment was necessary.

1.2 Project

 MXF SDK was MOG initial commercial product which intended to provide other
organizations access to the referred standard. Afterwards, MOG realized there was a business

opportunity in the hardware area.

 From this initiative, 3 solutions were developed to date, which are divided into two

main objectives:

 Ingest

o mxfSPEEDRAIL F1000

o mxfSPEEDRAIL S1000

 Outgest

o mxfSPEEDRAIL O1000
 The issue with this configuration is that interacting with each system must be done

individually and considering the amount of activities that require the use of different products,

orchestrating the process is a problem. By implementing a managing system to supervise the
referred equipement, the performance and usability would be greatly increased.

 As such this thesis aim is to design and implement a system able to provide a global

view and control of the different products, but at the same time keep the individual interaction

depth.
 The implementation of the interface was done through the use of HTML5 and

JavaScript, while in the backend was used an application server, developed in Java, called JBoss

and a business process management system called jBPM. The communication between the Web
Server and the resources is accomplished through SOAP and REST interfaces. All of these tools

and technologies are explained in the respective sections.

1.3 Motivation and Goals

 Technologies are getting more and more complex but due to its proliferation user

interaction must be kept intuitive and the learning curve shouldn’t be steep. If not long ago
those who were responsible for editing and managing the TV station content had high IT

knowledge, nowadays professionals like journalists want to be able to interact with broadcasting

systems easily, even if it is only with the most basic features.

 With this paradigm in mind the developed system should provide access to numerous
features of a complex distributed system by using the latest technologies in GUI and cross-

3

platform communication, like HTML5, JavaScript and SOAP, but at the same time all this

layers of complexity should be kept away from the user.

 This mix of recent and various technologies used and the requirement of keeping things

simple, made this project extremely appealing. While it offered a challenge in the technical part
it also wasn’t trivial to keep the design of such multi-featured system intuitive. One other

positive aspect is learning how to approach problems from a business process perspective. With

the increase use of business process frameworks, the knowledge acquired during this thesis
promises to be very useful.

 The main goal of this thesis is to plan, design and implement a prototype of a managing

system to supervise and control professional multimedia equipment. The referred prototype
should be able to provide monitoring features, by allowing the user to view the different

equipment’s status, issue direct commands, synchronize settings and plan and execute tasks

through the design of workflows. The equipment in question is MOG’s mxfSpeedRail product

line.
 During the first part of this thesis a study about the relevant technologies was made in

order to understand how they compare to each other and which ones should be used during the

implementation phase. A deep comparison between BPMS was necessary as it is the
implementation’s core technology.

 The second part refers to the implementation of a functional prototype and the

validation of the thesis objective.

1.4 Thesis Structure

 The present chapter offers a contextualization to the thesis subject and its main goals.

 The next chapter includes a bibliography revision about the existing technologies and
other relevant concepts.

 In the third chapter an in depth specification of the project is made including

architecture, requirements and mockups.
 The fourth chapter focuses on the implementation process, by describing the approach

taken, how the system was tested and what were the main difficulties.

 Finally, the last chapter presents conclusions and future work.

4

2.Bibliography Revision

 Distributed systems and centralized solutions aren’t new and a lot of development has

been made in this area. Obviously, the intent of this thesis is not to reinvent the weal but instead
use what already exists about this subject and develop on top of it. Nevertheless, it’s relevant to

understand how the supporting technologies work, in order to take full advantage of them and

choose the right tools.
 Another important subject is the evolution of automated system, specifically in the TV

broadcasting department. Changing the workflow from almost exclusively manual operations to

fully automated environments didn’t happen overnight and several technological advances had

to happen.
 To have a better understanding of these topics, this section provides an overview of the

automation process present state, offers a contextualization of the main technologies used on

this subject, presents a few commercial solutions similar to the intended result and describes
MOG’s technologies

2.1 Automation Process Brief Evolution

 The early automation systems were a micks of mechanical and electrical system based

on a schedule which would determine when to load the next content. These systems were
implemented sooner in radio broadcasting and the first ones used in the TV department were

rather complex.

 “As automation systems improved, the goal was to eliminate the need for a master
control operator and let automation initiate events and switch them to air” (VCIS).

 With this evolution many new technologies were introduced with some becoming

standards used by the major manufactures.

2.2 Control Protocols

 As a way to communicate between the participating systems, it was necessary to define

an interface to transfer information and rules to determine how the data is packed. To do so,

several protocols where implemented and the following two were the most adopted.

5

2.2.1 The 9-Pin Protocol

 The 9-Pin protocol is a two-way communications protocol with various purposes like

VCR (Videocassette recorder) and VTR (Videotape recorder) remote control. It’s a rather low
layer protocol which serves as the foundation for other more specialized protocols, like the

VDCP. It was developed by Sony, has a Master Slave methodology and as a communication

protocol it has strict requirements regarding data transmission, for instance an Acknowledge

package is always sent after the connection is made.

2.2.2 The VDC Protocol

 The “VDCP (Video Disk Control Protocol) is a proprietary communications protocol
primarily used in broadcast automation to control hard disk video servers for broadcast

television” (Harris Corporation, 2011). It’s derived from the Sony 9-Pin protocol and uses the

RS-422 interface. Although a version of this protocol over TCP/IP interface has been
announced the serial cable based implementation is still the de-facto standard. This was due to

signal deterioration with long distance communications as the protocol does not include strong

data recovery methods.

2.2.3 What is RS-422

 The RS-422 is a technical standard which specifies the electrical characteristics of the
serial cables used to transfer information. How this information is packed and streamed through

the interface is defined by the protocols and both the VDC and 9-Pin are based in the RS-422

standard.

 To sum up the RS-422 is the technical standard for the media where the information is
transferred using a protocol which can be, among others, the VDC or 9-Pin. Finally the VDC

protocol derives from the 9-Pin protocol. It serves as the lowest layer to implement the referred

protocols and is the physical support for the communications.

2.3 IP Based Protocols

 Although the RS-422 is a widely adopted standard it’s not suitable for remote

communications over the Internet. These resulted in the TCP/IP protocols.

 In order not to dwell too much into these two protocols, because this serves only as an
introduction, the following is a brief definition.

 TCP/IP or transmission control protocol/internet protocol “describes a protocol which

will work on any sort of computer and operating system for transportation of data across the
internet between different systems” (Peter, 2003).

2.4 SOA (Service Oriented Architecture)

 The basic idea behind SOA is to implement the program functionalities in whatever
language suits best and then expose those features as services through a well-defined and

platform independent interface, like XML or JSON. This promotes reusability, abstraction and

interoperability.

 The interoperability is a great feature for the multimedia content management scenario
because it would allow seamlessly communication between the array of different components

by enforcing an unified interface.

 With this architecture it’s easy to use the technologies which best serves the purpose
and expose the features through web services allowing a language agnostic system.

6

 This is the goal of FIMS (Framework for Interoperable Media Service) which aims to a

fully interoperable professional media equipment system.

2.5 The FIMS Project

 The EBU (European Broadcast Union) and AMWA(Advanced Media Workflow
Association) have joined to make the Framework for Interoperable Media Service. Their

motivation was the increasing difficulty of interoperability due to different products having

distinct interfaces, forcing “the development of custom adapters to integrate components from
different vendors” (AMWA Wiki, 2011). Obviously this costs money and time.

 In order to remedy these issues, an evaluation of the use of Service Oriented

Architecture (SOA) in this environment is being undertaken.
 For the manufactures this would mean “reducing their costs and risks associated with

integration” (AMWA Wiki, 2011), and for the users means “faster time of integration, with

lower cost and risks” (AMWA Wiki, 2011).

2.5.1 How does it work?

 “The FIMS object model is described by a set of XML schemas, which provide the

object model representation for common objects and extensions for the different classes of
service.” (AMWA-EBU, 2011). In more detail, being “FIMS Compliant” means that messages

between services need to comply with the schemas definitions and “each service interface shall

comply with the FIMS WSDL” (Web Service Description Language) (AMWA-EBU, 2011).
 As it’s presently defined, the FIMS contemplates three services in its “Abstract Service

Layer”, which are Capture, Transform and Transfer. As these are the most common and basic

actions within TV content management the framework definition uses them for illustration

purposes.
 The two main service categories within FIMS are “workflow services able to realize a

given business goal” (AMWA-EBU, 2011) and “infrastructure services that are essential

components of the Media SOA system” (AMWA-EBU, 2011). In other words, the workflow
services define what sequence of actions should be done, for example capture and then

transform, and the Media Infrastructure (MI) “conducts the resource allocation, as well as other

common services like job scheduling and queuing” (AMWA-EBU, 2011).
 Considering that “SOA-based media workflows are often long running process”

(AMWA-EBU, 2011), which sometimes can take weeks, it’s essential to have persistence in the

SOA BPM (Business Process Model) platform. This feature enables the system to restart at any

given point in the workflow without data loss.
 In a nutshell, the FIMS has two major layers:

1. The workflow layer which is responsible to orchestrate the services calling

sequence, based on the user intentions, and has a persisting state in order to stop and
restart the workflow while maintaining data consistency.

2. The Media Infrastructure which contains the Resource Management and is

responsible for the scheduling, queuing and allocation of the jobs to be executed.
 What FIMS drives to achieve is a way to assure interoperability among different

broadcasting products while enforcing good principles on system design based on SOA.

Although the framework definition seems to be developing nicely, its success ultimately

depends on the manufactures’ will to adopt it.

2.6 Automated Workflow Systems

 “If the optimized integration of multiple systems in a broadcast process is the objective,

workflow is now the solution” (Wadle).

7

 Workflow management was defined by the Workflow Management Coalition (WfMC)

as “the automation of a business process, in whole or parts, where documents, information or

tasks are passed from one participant to another to be processed, according to a set of procedural

rules” (Allen)
 These workflow management systems are complex due to the need of accounting for the

following aspects when processing the activities sequence:

1. Data persistence
2. Priority

a. Some activities might need to be paused in order to more important jobs be

processed quicker.
3. Scalability capacity

a. The global performance of the workflow must improve with the addition of

processing units
1
.

4. Resource allocation
a. Load balancing must be assured, meaning that the workload is distributed

between the processing units considering performance capabilities.

5. Fall back
a. A fall back system must be placed to prevent failure when a not critical

component malfunctions.

2.6.1 What already exists

2.6.1.1 Telestream Vantage®

 Telestream launched their main workflow manager called Vantage® back in June 2010.

It works as a “server-based software products combine media capture, transcoding, clip

management, analysis, QC, and metadata processing into one future-proof video workflow
design and automation framework.” (Telestream, 2011)

 The workflow is defined using an interface in which each possible action is represented

by corresponding icons which are dragged and dropped. First the user sets the “firing”
condition, which represents the event that must happen in order to start the workflow, and then

using a connection tool, represented by lines, the activity sequence is implemented. A possible

result is illustrated in Figure 1.

Figure 1 – Telestream Solution

1 In this context processing units refers to the system components responsible for running the present

activity

8

 Media files encoding and other aspects of the workflow are defined within the

corresponding activities providing an overview of the actions sequence.

 Vantage® respects the enumeration previously referred regarding the aspects to be

accounted for when implementing the workflow process.

 2.6.1.2 Robots Technology Content Agent

 Robots Technology, which has Telestream as one of their partners, implemented a

workflow based solution for media management automation called ContentAgent.
 “ContentAgent is a product which provides automated encoding, media management

and metadata tracking for many video/audio formats with a complete toolset for automating the

transcoding, management and distribution of digital media files. Its user interface has been

designed to be operated by non-technical users using a graphical node based workflow tool and
it provides a highly efficient encoding engine to create MXF files including frame rate

conversion, audio channel mapping, deinterlacing
2
 tools etc” (Robots Technology).

 A possible state of the workflow interface is shown in Figure 2

Figure 2 – Robots Technology

2.7 Media Asset Management (MAM)

 Media Asset Management applications have features to facilitate user interaction with

media assets. Operations like cataloguing, storing and finding media files in a large storage

environment become more difficult due to increasing data. MAM software tries to resolve those

issues by providing options like:

 Indexing assets location so they are easy to find

 Advance search by metadata values

 Categorizing data by type and subject

 Collaborative features

2.7.1 Avid Interplay

 Avid interplay is a Media Asset Management software which MOG products are

compatible with. This decision was made considering the client’s installation base.

2 “Deinterlacing is the process of converting interlaced video, such as common analog television signals

or 1080i format HDTV signals, into a non-interlaced form” (Wikipedia, 2011)

9

 It’s currently one of the most used MAM applications with strong features like:

 Traffic system integration

 SOA structure for interoperability

 Web based tools

2.8 Supporting technologies

 Supporting all these processes in the background, are several technologies which will be
analyzed in this section.

 Considering that Service Oriented Architecture seems to be a great approach to system

designing and it has already been introduced previously. The first technologies to be evaluated
support this architecture.

2.8.1 SOAP

 SOAP stands for Simple Object Access Protocol. The function of this technology is to

provide web service evocation and response while using a standardize message format

facilitating a Service Oriented Architecture approach.
 As previously stated a protocol defines the rules for data changing and SOAP is no

different. It’s a standard which provides cross-platform compatibility first outlined by the W3C

(World Wide Web Consortium) and globally supported by the main software companies.

 The message structure used by this protocol is formed by an “envelope” which “wraps”
the content, it also has headers and the body message which contains the method to be invoked

and the parameters to be used. All of this data is represented using XML (Extensible Markup

Language) and usually sent by http (Hypertext Transfer Protocol).
 The following is a simple example of a message sent using SOAP:

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

 <soap:Header>

 </soap:Header>

 <soap:Body>
 <m:GetStockPrice xmlns:m="http://www.example.org/stock">

 <m:StockName>IBM</m:StockName>

 </m:GetStockPrice>
 </soap:Body>

</soap:Envelope>

2.8.2 REST

 REST means “Representational State Transfer and considers the web as data resource”
(Monteiro, 2010).Because of this more specialized focus, it keeps things simpler than SOAP

regarding implementation and functionalities.

 Usually the services are accessed through URI (Uniform Resource Identifier) which are
used “for naming the resources and data items. Operations are performed using the HTTP

protocol (and) operation verbs” (Monteiro, 2010). The data is transferred using the format

10

defined by the service implementation, which might be JSON (JavaScript Object Notation),

XML, CSV, or any other format.

 Operation verbs are responsible for describing the type of action to be performed on the

resources. For example the verb GET serves to “Retrieve the resource identified by the URI”
(Monteiro, 2010) as for the POST, it shows intent to “Send (to create) a resource to the server

identified by the URI” (Monteiro, 2010). The full list of available verbs is the following:

 GET

 POST

 PUT

o “Store (to modify) a resource in the server using the supplied URI”
(Monteiro, 2010)

 DELETE

o “Removes the resource identified by the URI” (Monteiro, 2010)

 HEAD

o “Retrieve metadata (more information) about the resource
identified by the URI” (Monteiro, 2010)

 In order to better understand how REST works the following URL
3
 represents Google’s

stock querying service:

http://finance.google.com/finance/info?q={stock_nick} (where stock_nick represents the stock’s

name we want to know more about, being the resource identification)

2.8.3 Message Queuing

 Most, if not all, Service Oriented systems have the communication between several
machines in mind and many of these network elements are spread around the Internet. Although

the majority of the internet components, mainly servers, are continually running it might happen

that a certain request can’t be fulfilled in a promptly fashion.
 For example, a Video Game Retailer has terminals in each shops which register client’s

orders and in the event of not having enough stock it sends a request for the Warehouse. Now

let’s assume the Warehouse server is powered off during the night time. The orders requests

sent by the store can’t simply be “dropped” because the server isn’t available to receive them at
the time. Therefore, a way to hold those requests and deliver them to the server at a later time is

needed. There’s where Message Queuing comes in.

 Message Queuing “provides a mechanism for integrating applications in a loosely
coupled, flexible manner by providing asynchronous delivery of data between applications in an

indirect way through an intermediary” (IBM).

 As there are several approaches to message queue implementation this section will only
describe the most common.

2.8.3.1 AMQP
 “The Advanced Message Queuing Protocol (AMQP) is an open standard application

layer protocol for message-oriented middleware. The defining features of AMQP are message

orientation, queuing, routing (including point-to-point and publish-and-subscribe), reliability
and security” (AMQP, 2011).

 AMQP defines a standard of how the messaging provider and client should be

implemented so it’s possible to achieve interoperability respecting SOA principles.

3 URL is a kind of URI

http://finance.google.com/finance/info?q=%7bstock_nick%7d

11

2.8.3.2 MSMQ

 MSMQ refers to the Microsoft Message Queuing implementation and it’s not an open

standard as AMQP. It’s obviously “developed by Microsoft and deployed in its Windows

Server operating systems since Windows NT 4 and Windows 95. The latest Windows 7 also
includes this component. In addition to its mainstream server platform support, MSMQ has been

incorporated into Microsoft Embedded platforms since 1999 and the release of Windows CE

3.0” (Microsoft, 2011).

2.8.3.3 JMS

 Java Message Service refers to the API used in java applications.
 “JMS is an API for enterprise messaging created by Sun Microsystems[…]. JMS is not

a messaging system itself; it’s an abstraction of the interfaces and classes needed by messaging

clients when communicating with messaging systems.

 It’s used to create a message, load the application data (message payload), assign
routing information, and send the message. The same API is used to receive messages

produced by other applications.” (Mark Richard).

2.8.4 Authentication

 When accessing information in a multiuser and distributed environment, security and

access privileges are always a concern. LDAP is a possible solution for this scenario.

2.8.4.1 LDAP

 If there is the need to implement a system which provides accessibility to a distributed
directory information service over a network, then Lightweight Directory Access Protocol is a

good option for the application layer.

 To, assure compatibility this protocol is defined using Abstract Syntax Notation One

which “is a standard and flexible notation that describes rules and structures for representing,
encoding, transmitting, and decoding data” (International Telecomunication Union, 2011). The

encoding used by ASN.1 is based on BER(Basic Encoding Rules).

 Security is the responsibility of the Bind operation which “establishes the authentication
state for a connection” by sending “the user's DN(Distinguished Name) and password in

plaintext, so the connection should be protected using Transport Layer Security (TLS)”

(AMQP, 2011).

2.8.5 WCF

 “The move to service-oriented communication has changed software development.
Whether done with SOAP or in some other way, applications that interact through services have

become the norm. For Windows developers, this change was made possible by Windows

Communication Foundation (WCF). First released as part of the .NET Framework 3.0 in 2006,
then updated in the .NET Framework 3.5, the most recent version of this technology is included

in the .NET Framework 4. For a substantial share of new software built on .NET, WCF is the

right foundation.” (Chappell, 2010)

2.8.6 Bonjour

 “Bonjour, also known as zero-configuration networking, enables automatic discovery of

computers, devices, and services on IP networks using industry standard IP protocols. It is a key

component of Apple applications (e.g., iTunes, iPhoto), services (e.g., MobileMe) and devices

12

(e.g., Apple TV, and AirPort). Developers can easily leverage Bonjour from both OS X and

iOS” (Apple).

2.8.7 MXF

 Considering that MXF is the core technology of MOG’s products and the reason why

the company exists in the first place, a definition follows:

 “The MXF file format enables the carriage of both the audiovisual material and its
related information. This ranges from structural information of the material such as compression

settings, to geo-localization information, to general descriptive information including transcripts

of the content. This why it represents more than a file format. It is a technology that enables the
gathering of crucial information as the audiovisual material travels through the workflow. It is

therefore the foundation technology driving the adoption of information Technology in the

professional media market”. (MOG Solutions, 2006)

2.9 MOG Technologies

 MOG specializes in the development of systems used to produce and manage

multimedia content.

 Currently there are three products, which can be grouped by its capabilities of ingest or
outgest. Ingest refers to the process of transferring and rewrapping a file. For instance, a file is

capture by the S1000 through SDI (Serial Digital Interface) and is sent to file storage. Then, the

F1000 is capable of rewrapping the asset so it can be used in the editing room. Both S1000 and
F1000 have ingest features. On the other hand there is the O1000, which is responsible for

outgest operations. If, for example, a TV station wants to broadcast stored media, it might be

necessary to convert the files from the editing enabled wrapper to the transmission format,

which is done through outgest and respectively the O1000.
 All of this outgest and ingest features are based on the MXF standard which is

responsible for the file level wrapper.

 To sum up the S1000 is able to capture video from SDI or HD-SDI and save it to a
storage server. The F1000 has the capability of wrapping saved files so they can be edited using

edition tools. Finally the O1000 makes the file understandable to the play out equipment.

 A simple diagram to better illustrate how the system works, is shown in Figure 3.

Figure 3 – mxfSpeedRail diagram

13

 While F1000 and O1000 have similar interfaces, as the only differencing aspect

between both solutions is the operation applied to the files, S1000 software is quite different.

Due to this similarity only F1000 and S1000 interfaces will be shown.

2.9.1 F1000 Software

 F1000 is a file based solutions and its main feature is ingesting stored media into
formats compatible with edition software. This allows broadcasters not to worry about

compatibility issues between the recording equipment and the software used in the edition

environment.
 F1000 accepts the following file formats as input:

 MXF OP1A

 QuickTime

 XDCAM

 The interface, depicted in Figure 4 , is composed by four main areas: the assets

explorer(1), activity controller(2), the workflow profiles(3), Job Control(4) and the notifications
area(5).

Figure 4 - F1000 interface

1. The assets explorer allows the user to choose files from multiple locations
2. The activity controller displays the current tasks statuses, which can be enqueued,

informing that the task is waiting to be processed, running, complete, failed and

cancelled.

3. Workflow profile is where the user defines the ingest operation settings, as seen in
Figure 5, which includes:

a. The output tab where the user sets the type of the file to ingest, the wrapper

and the storage which is where the ingested media will be saved to. There is
also the possibility of generating a proxy version of the standard output,

which is basically a file with lower quality, which can be used on the

internet for example.
b. The clip naming tab is related to how F1000 should name the outputted files

c. Metadata tab is where the user chooses the metadata profile, which in turn

sets what information should be added to the file, like duration, frame-rate,

name, etc.
d. Asset Management is related to MAMs, it’s where the user sets options

associated to Avid Interplay software and other supported media asset

managers.

14

e. Finally the advanced tab provides options to set the number of sound

channels, if the original file should be deleted after ingest operation, among

others.

4. The Job Control allows the user to start a Job, which is a group of workflows, or a
single workflow

5. The Notification Area is a simple history of the result of each Job/Workflow,

displaying error or success messages.

Figure 5 - Workflow Settings Window

 In order to perform an ingest operation, the user has to choose one or more assets,
select a workflow profile and press one of the Job Control’s button. This obviously requires that

the workflow profile, storage and location settings be already defined.

 To sum up, F1000 fetch a file from a location, applies a workflow profile and saves the
result to a storage server.

2.9.2 S1000 Software

 S1000 is used to capture video from a SDI or HD-SDI signals and ingest the media to a

storage server. The goal is to assure the media files are compatible with the most common

edition software’s, this means the supported output formats are:

 QuickTime, used in Final Cut Pro.

 MXF OP1a, for Sony products

 MXF OPAtom for Avid

 Figure 6 shows the S1000 interface composed by the monitor area, which displays the

media being captures, the profiles area, where the ingest settings are specified and the Clip List

refers to the time codes.
 One of the major advantages of the S1000 is allowing the file to be edited while the

capture is still in progress, saving precious time.

15

Figure 6 - S1000 Interface

2.10 Apache Flex

 Previously known as Adobe Flex, Apache Flex is a framework used to implement
multi-platform rich internet applications. Is compatible with Browsers because it uses Adobe

Flash as the runtime and for desktops it uses Adobe Air 3. Recently it was donated to the

Apache Foundation.
 Flex SDK provides a set of prebuilt functions and assets that improve development

speed, with greater emphasis in interface implementation.

2.11 Java EE

 What is commonly called Java is in fact the Java SE (Standard Edition) version which

contains the basic Java API. Java EE (Enterprise Edition) includes a more extensive set of tools

like, Java Servlets, web services, persistence API, among others, and is implemented using a
modular approach running on application servers.

 Each server application might differ in how the aspects of the Java EE standards are

implemented but they all commonly have database abstractions API, web services support and
multiple processes optimizations.

 Some of the known Java EE implementations are GlassFish Server, Apache Thomcat

Server, Apache Geronimo and Jboss. Some of these tools can be found on

http://www.oracle.com/technetwork/java/javaee/overview/index.html.

2.12 JBoss

 JBoss is a Web Application Server developed in Java, implements Java EE API, is open

source and was recently acquired by a company called Red Hat. JBoss has various frameworks
built-in like RestEasy, which is used to make REST request easier and was extensively applied

during the implementation.

 Web Applications are implemented through the use of Java Servlets, which are

responsible for Http requests and responses, JavaServer Pages which allow joining HTML and

16

Java code and static files like images and JavaScript sources. The Web Application is archived

in War (Web Archives) which are executed by JBoss.

2.13 Ext JS

 Ext JS is a JavaScript framework which can greatly improve the development speed by
supplying pre-built models like, Image Viewers, Grids with sorting features, Hierarchical

structures, among others. It also has excellent Ajax features to load, delete and update data from

servers which for a real time Web Application is very useful.
 It has an Object Oriented structure and uses JSON and XML to exchange data with the

server. The official web site is www.sencha.com/products/extjs/.

2.14 Business Process Management (BPM) Systems

 Considering these thesis’s goals, the Business Process Management is an excellent
approach because “Business Process is a sequence of tasks that happen in a repeatable order,

executed by humans and/or systems to achieve a business goal” (Salatino) which in other words

is a workflow. This workflow is responsible for translating which activities the different
equipment must execute.

2.14.1 Business Process Modeling

 (Note: From this point on BPM refers to Business Process Modeling and not Business

Process Management, except when stated otherwise).

 BPM, in systems engineering is the activity of representing processes of an enterprise
where processes are “a collection of related, structured activities or tasks that produce a specific

service or product (serve a particular goal) for a particular customer or customers. It often can

be visualized with a flowchart as a sequence of activities.” (Wikipedia, 2011) So a business

process model is, in its essence, a workflow.

 But why get the complications derived from business processes modeling to

describe a workflow? Because a positive secondary effect of BPM is using business process

modeling languages
4
 to describe them, which in turn gives us standards and with that we get the

so much coveted interoperability.

 BPMLs might standardize the graphical representation of the workflow, the execution

semantics or both. But because BPML will mainly serve in this project to transport the
definition of the workflow and not its graphical representation, BPMLs which don’t have any

mapping of the execution counterpart, like EPC (event-driver process chain), will be dismissed.

2.14.2 What BPMLs are there?

2.14.2.1 WS-BPEL

 WS-BPEL stands for Web Services Business Process Execution Language which serves

to implement business process but “export and import functionality by using Web Service
interfaces exclusively” (OASIS). Meaning the input and output is done through web services.

 Microsoft and IBM each had their own business process language but when the success

of other organizations, like BPMI.org and the open movement led by JBoss and Intalio Inc,

4 Although business processing language also refers to a specific meta-language, in this context BPML

represents the general group of programming language tools for business processing model.

17

started to grow they combined efforts and came up with BPEL. From here an obvious advantage

of BPEL can be extrapolated, which is having the support of two very influential technologies

organizations.

 Although it has a considerable support from apache and the referred companies its
implementation is older than BPMN2.0

 The following is a list of WS-BPEL’s pros and cons:

 External interaction through web services using WSDL
5
 and defines a set of

those web services.

 Facilitates the sending and receiving of messages due to the use of WSDL

 Supports XPath by default due to the xml nature
 "Supports structures such as 'if-then-else-if-else' and 'while'" (Tony Andrews, et

al., 2011)

 Does not define a graphical representation of the processes

 A standardize solution for allocating human actions is absent but other
approaches do exist

2.14.2.2 BPMN 1.X

 BPMN (Business Process Modeling Notation) is seen as a complementation of BPEL

wherein its main function is defining the graphical representation of the business process
modeling (in our case also known as workflow) and not the execution counterpart. In fact

BPMN has an informal execution mapping to BPEL, however, due to “fundamental differences

between BPMN and BPEL” it’s very difficult “to generate human-readable BPEL code from

BPMN models” (OMG, 2011).
 To sum up, “BPMN diagrams express the execution flow of the steps to accomplish a

certain goal. Important to note that these models are used for people to people communication.”

(Activiti)
 SO BPMN pros and cons are:

 There are difficulties “Converting BPMN models to executable environments”

(OMG, 2011)

 Does not provide standard xml serialization
 Standardize support for graphical notation

2.14.2.3 BPMN 2.0
 In order to improve the issue of not having a standardize serialization the 2.0 version of

BPMN adds the execution model and respective serialized representation using XML. With this

addition it’s now possible not only to describe the workflow’s graphical component but also its
execution. The last revision was official launched on January 3

rd
 2011.

2.14.2.4 YAWL

 With so many languages there was still space for “Yet Another Workflow Language”
(YAWL). “YAWL is sometimes seen as an alternative to BPEL” but the last one has the

advantage of being “driven by a standardization committee supported by several IT industry

players” while “YAWL has a single implementation at present”. The main advantage over
BPEL is providing the possibility to allocate human actions with the use of a work list service.

 One single tool implementation

 Supports humans actions allocation

 Supports XPath also

2.14.2.5 XPDL
 The XML Process Definition Language basically defines a XML schema (standardize

by the Workflow Management Coalition) to interchange business process definition between

5 WSDL – Web Services Description Language

18

different workflow products. Graphical and semantics parts of the workflow are supported. As

such, it tries to join the best of both worlds by serializing the BPMN graphic presentation and

providing an execution layer like BPEL. In fact the XPDL site has cloud applications to convert

to BPMN and BPEL.
 Graphical support

 Execution support

 Convertible in BPMN and BPEL

2.14.2.6 Sum up

 Now that the main BPMLs have been analyzed, it’s possible to conclude the following:

 Although YAWL is newer than BPEL and has human task support from day

one it’s not a solid solution due to the low adoption rate.

 BPMN 1.0 is outdated.

 XPDL, BPMN2.0 and BPEL are the three main descriptions languages

 Figure 7 has a global timeline of the description languages.

Figure 7 - Business processes related standards time-line (BPMN: An introduction to the standard)

 Even if the modeling languages are important the execution tools are more, if the

BPPMS doesn’t fit the requirements, like external access so it can be embedded in the
application, then it won’t be used.

 The business process modeling language exist to support the BPMS which will be

analyzed in the following sections.

2.15 Workflow Engines

 Obviously the description languages without the workflow engine won’t have much use

because they serve as means to an end, which is implementing a business process.

 “The core of the entire workflow management system is the workflow engine.
Workflow engine is responsible to explain the process definition for the implementation of the

process instance; scheduling process instance, promoting the process of the work flow.”

(Implementation of Process Management and Control Based on JBPM4.4)
 With this and the conclusions stated above in mind, a workflow engine evaluation was

put together in order to conclude which one is more suited for the task.

19

2.15.1 jBPM

 “jBPM is a flexible Business Process Management (BPM) Suite. It makes the bridge

between business analysts and developers. Traditional BPM engines have a focus that is limited
to non-technical people only. jBPM has a dual focus: it offers process management features in a

way that both business users and developers like it” (jBPM) and is written in Java. “The jBPM

project has merged with the JBoss Drools project (an open source business rule management

framework) and replaced Drools Flow as the rule flow language for the Drools framework”
(Liempd).

 In a nutshell, jBPM main functionality is modeling a business process using BPMN2.0

and execute it.
 In order to define the business process this framework provides four main components:

 Eclipse Editor is a plugin for Eclipse which adds a designer to graphically

define the business process

 A web based designer, similar to the eclipse editor but for web browsers. An

example can be seen in Figure 8

 jBPM console which allows the business users to inspect and control the

process state.

 A REST API to interact with the engine.

Figure 8 - Web designer

 A business process is made of nodes which are connected using sequence flows. BPMN

2.0, which is used by jBPM, defines the following types of nodes:

 Events: They are used to represent the different kind of events included in the

business process. Could be a start event or an end event, for example.

 Actions: Are responsible for defining the actions to be performed during the process

execution. This is where the actual work of the workflow is represented, for

example a human task or sending an automated email to users. Actions can be

nested within other actions.

 Gateways: Are used to define multiple paths in the workflow.

 In Figure 9 it’s possible to see the Events(1), Actions(2) and Gateways(3).

20

Figure 9 – jBPM Business Process Designer

 How are business process implemented in jBPM? First a process description must be

implemented, either through the designers as in Figure 9, or writing the xml directly. Second
jBPM needs to know the process descriptions and for that there is an API component called

KnowledgeBase which is responsible for maintaining all the process definitions executed by a

session. The Session is the connection between the process description, included in the
KnowledgeBase, and the engine. Actions that interact with the process instance, like aborting

the workflow, are defined in the session interface. With only these two components is possible

to run a business process, but jBPM also has the option of implementing listeners to events,

which can occurred at any stage of the workflow.

2.15.2 Activiti

 “The Activiti project was started in 2010 by the former founder and the core developer
of jBPM (JBoss BPM), respectively Tom Baeyens and Joram Barrez. The goal of the Activiti

project is crystal clear: built a rock-solid open source BPMN 2.0 process” (Liempd). Due to this

fact there many similarities with jBoss but some implementation choices make Activiti different
enough to be a serious competitor.

 As with jBPM, Activiti also has an Eclipse-plugin to graphically design the business

process. It has a web based application called Activiti Explorer which allows users to monitor
and control business process but doesn’t provide features to design one. A REST API is also

available to support engine related functions from external tools, but is still in experimental

phase, meaning “should not be considered stable”(Activiti).

 One obvious difference is the web based designer. Although jBPM has a web designer
out of the box Activiti relies on an external solution, from Signavio, forcing extra configuration

and installation to make it work. This component name is Activiti Modeler.

 A summary of the Activiti tool stack is visible on Figure 10.

21

Figure 10 - Activiti tool stack (Liempd)

 To compare with jBPM, Figure 11 shows the graphical design plugin for Eclipse. As

BPMN defines the visual representation the result is similar to the one in Figure 9, which refers

to jBPM.

Figure 11 - Activiti Business Process Designer

 In Figure 12 is visible a business process modeled using the web designer by Signavio,

configured to work with Activiti.

Figure 12 – Activiti Modeler - Signavio Web Designer for Activiti

22

 How are business processes implemented in Activiti? As with jBPM, the workflow

engine needs a business process description which can be defined using the various

components, might be through the Eclipse Designer, writing the bpmn2.0 xml directly or with

the Activiti Modeler. Afterwards the model must be deployed using using the Activiti Explorer
or Activiti’s API.

 The Activiti’s API has 2 main components, the ProcessEngine and the Services. The

ProcessEngine is responsible for running the process business and exposing the Services, which
are an interface to interact with the Engine. While in jBPM there was a component called

Session which was responsible for all the interactions with the engine, in Activiti those methods

are divided by Services. For example if a developer wants to run a business process he must get
the RunTimeService from the ProcessEngine. The same thing happens with the deployment

actions, which is made using the RepositoryService returned by the ProcessEngine. With this

structure the methods are more fragmented and not as focused on a single component as in

jBPM.

2.15.3 Apache ODE

 This open source solution from Apache is quite different from the ones analyzed so far.

Mainly because, instead of BPMN2.0, Apache ODE supports the WS-BPEL description,

meaning there isn’t a standardize graphic representation of the business process. As such, the
main focus of Apache ODE is the business process execution through the interaction of web

services. While Activiti and jBPM have a complex API, the Apache solution relies on the

execution description of BPEL, by running the process in conjunction with the data received
through web services. This translates in a far simpler solution, installation wised, but the

interaction is not as strait forward.

 How are business processes implemented in Apache ODE? As with the other

Workflow Engines the first step is describing the business process, might be using the Eclipse
BPEL designer Plugin, like in Figure 13, or writing the xml directly. Then the web services

interface must be defined where the interaction and evolution of the business process is

exposed. Using the WSDL Editor in Eclipse is an easy way to do it, as in Figure 14. The
components defined using the web services description language are the binding between the

port where the process service is available, the process itself and the service. The final stage is

the deployment descriptor, which is responsible, among other things, to connect the interface

with the client.
 ”The deploy.xml file configures one or several processes to use specific services. For

each process, deploy.xml must supply binding information for partner links to concrete WSDL

services” (Apache).

Figure 13 - Business Process in Eclipse BPEL Editor

23

Figure 14 - WSDL using Eclipse WSDL plugin

 The web based tool for monitoring the processes is illustrated in Figure 15. It gives an

overview of the amount of processes running, displays the .wsdl of each service, has a
deployment feature to start new business processes and provides some management hover the

running workflow.

Figure 15 - Apache ODE web tool

2.15.4 Intalio|BPMS

 “Intalio|BPMS is the world's most widely deployed Business Process Management

System (BPMS). Designed around the open source Eclipse BPMN Modeler, Apache ODE

BPEL engine, and Tempo WS-Human Task service developed by Intalio, it can support any
processes, small or large.” (Intalio).

 Intalio is the most commercially driven solution of the ones analyzed so far. In fact, if

the free version is chosen only 80% of the source code is available and other features like

DBMS compatibility are fewer than in the paid option.
 The software is divided in two components, the server and the designer plugin for

eclipse. The server package has the actual business process engine which is the Apache ODE. A

web app to interact with it, much like the Apache solution, can be seen in Figure 16. A nice
detail is the language localization which detects the user idiom, setting it, in this case, to

Portuguese.

 While jBPM, Activiti and Apache ODE are based only in one language, BPMN 2.0 or

BPEL, Intalio uses two. For the graphical design it uses BPMN, but for execution Intalio
converts it to BPEL. How this conversion is preformed is not documented and because there

isn’t any standard for it, figuring how it’s made is not trivial. The BPEL code is necessary

because Intalio uses the Apache ODE engine, but adds a layer of BPMN with the designer.

24

Figure 16 - Intalio process web app

How are business processes implemented in Intalio? Intalio relies heavily on the

designer when describing the business process. Even the web services layer, as Apache ODE

also has, is done graphically. This would be a great way to simplify things but the designer isn’t

as well developed as the others used in the other suites. For instance while undoing a

considerable amount of actions made using the eclipse plugin, some elements appeared even if

not added previously, connection arrows and empty tasks, among others. Nevertheless, after

having the business process defined using BPMN, the interface layers must be added. For

example, if the user wants to monitor the process using the Intalio|BPMS console a new layer

must be added to the design. The same for exposing the business process through web services.

To better understand how all is put together an example is show in Figure 17, with the interface

for the console in the top layer and the web services interactions in the lower one. The binding

for how the messages are exchanged is defined using a XML Schema. After all these artifacts

are correctly implemented the process is ready for deployment and because the execution engine

is Apache ODE this phase is similar to the one described in the Apache solution.

Figure 17 – Intalio Designer

2.15.5 Bonita

 The most user friendly and intuitive solution analyzed in this section, being clearly more
focused on the user than the developer. As such, it’s very easy to quickly design and run a

25

business process but implementing advanced external communication is not very strait forward.

Proving is the fact that “BOS [Bonita Software] does not yet provide a public API to build

processes so you'll have to develop them using the studio. So no possibility using a web browser

yet” (Bouquet).
 The studio, shown in Figure 18, is a designer where all the business process

implementation takes place. Bonita’s approach with the studio is to define all the process’s

aspects through graphical elements, even implementing web services is made using components

called connectors. By having this structure it’s very easy for a process Engineer to describe and

run a business process but at the same time it also limits the possibility of expanding its

functionalities, as seen with the constraint of using a customized web designer.

Figure 18 - BonitaSoftware Studio

 In order to monitor and control de running business processes BonitaSoftware has the

User Experience mode, visible in Figure 19, which is web based and has an email like layout.

Figure 19 - BonitaSoftware User Experience

How are business processes implemented in BonitaSoftware? There really isn’t

much to it, the business process can be designed or imported and when is started it will be

visible in the User Experience application. All of these actions are made through the self-

explanatory GUI. One favoring aspect for BonitaSoftware is being compatible with BPMN

2.0,XPDL or jPDL.

26

2.16 Pros and Cons

 In order to have a general idea of the advantages and disadvantages of each BPMS a
pros and cons list follows:

Figure 20 - jBPM

 Maturity

 Well defined REST

 Robust eclipse editor

 Documentation

 Task Services are straightforward

 Default web designer isn’t very intuitive

 API is too concentrated, Activiti’s service approach is neater

 Release Cycle not well defined

 Development team reorganization

Figure 21 - Activiti

 Should have a better support due to the high number of companies behind it

 Works well with Signavio Web Designer

 Well defined Release Cycle

 Maturity.

 Experimental REST

 Documentation not as good as jBPM

 Activiti uses the Signavio Web Designer and despite being the best web solution it still

requires extra configuration.

27

Figure 22 - Apache ODE

 It’s the “lighter” solution analyzed.

 The main, and almost only, goal is to execute the WS-BPEL model.

 Not very straightforward due to an almost none existing API

 Release Cycle it’s not very frequent

 Doesn’t have a standard graphic representation.

 Poor Documentation and designer support

Figure 23 - Intalio

 The installation and configuration process is very easy

 Due to the adoption of BPMN it has a standard graphic representation

 Execution is done using Apache ODE

 Community version, which is free, only comes with “80% of open source”

 The conversion from BPMN to BPEL is unknown.

 The eclipse designer isn’t very robust

 Web Designer isn’t included in the community version

28

Figure 24 – BonitaSoftware

 Very easy to install

 Self-explanatory

 “Pickup and play” feeling

 Great GUI

 Supports XPDL,BPMN2.0 and JBPM

 Doesn’t have web designer

 Due to the lack of “external” interfaces it isn’t easy to develop an external designer

 Service Tasks implementation is not easy

 Relies too much on graphic development, coding customized behavior is not easy

 In order to have a better idea on how each BPMS stack together a comparison table is

shows on Table 1 where is possible to understand that jBPM is the best option considering the

application’s requirements.

 External Interface Easily Embedded in application Open source

jBPM

Activiti

Apache ODE

Intalio

Bonitasoft

Table 1 - BPMS comparison

29

Supported through API

Although possible it requires considerable extra development

Not supported

30

3 .Project Specification

 This chapter provides a detailed description of the problem, followed by the solution
concept, requirements specifications and system architecture.

 It serves as a contextualization to the implementation chapter, restricting itself only to

the theoretical concepts.

3.1 The broadcast workflow

 Conceptually speaking, the fundamental activities needed to broadcast media are

acquiring the footage, editing the data and broadcasting the final result. Within these different
broadcasting stages there are sub-activities related to file management. For instance, when

capturing an event, the data might be saved to a file type not compatible with the editing

software. This is an inconvenient related to the number of different capturing solution existing
in the market. In order to solve this incompatibility issue, many TV Broadcaster buy MOG

products which have features of ingest and outgest. As explained earlier, ingest refers to the

steps needed when importing captured data into software, this might include rewrapping

operations so the final file type is compatible with the application. The outgest refers to the
inverse process, going from the file based solution to the play out equipment which is

commonly based in the serial digital interface.

 The ingest capabilities are related to the S1000 and F1000 products. While S1000
supports capture and has some ingest features, the F1000 is ingest only but provides a wider

range of file types. To play out the final media MOG has the O1000 solution.

 To better understand how the different products interact, a common workflow present in
the broadcasting environment is shown below:

Figure 25 - Broadcasting Workflow

 In the capture activity a S1000 would be used, then a F1000 would ingest the stored

data to different file types and before broadcasting the result, O1000 would outgest the edited

data to the play out equipment. All of these products are part of MOG’s mxfSpeedRail line.
 This example happens multiple times during the day to day broadcasting process. As

such, many TV Broadcasters need several ingest and outgest solutions from MOG.

 On the product level, translating the referred workflow to mxfSpeedRail interactions

can be represented by the following diagram:

31

Figure 26 - mxfSpeedRail interaction flow

 Basically each workflow can be summarized to input identification, applying a

configured operation and saving the file.

 Both F1000 and O1000 have rule based events which allow the user to specify
behaviors on specific events and automate this sequence to a certain degree. For instance, it’s

possible to configure F1000 in order to automatically start an ingest operation when a file is

saved to a specific location. This removes the necessity of supervision to assure the workflow
proceeds. Nevertheless, these rules still need to be set one by one, be it by importing settings or

defining them manually.

3.2 The Problem

 The current mxfSpeedRail interaction flow contains a considerable number of repetitive

tasks, which is worsened by the amount of products used by the client.

 For example, if a broadcaster has 12 S1000, 20 F1000 and 8 O1000, the above tasks
might demand some time to accomplish. The user would have to find among the 12 S1000

32

which one was free for capturing which might result in 12 authentications, considering the worst

case scenario. Besides having this same issue, F1000 and O1000 also have another one related

to network discovery. While the S1000 has Bonjour running, which improves the machine’s

visibility in the network, the remaining products haven’t. This means that to access one of the
twenty F1000, the user needs to know the machine’s name or have some tool to browse the

network.

 Monitoring the execution state of the workflow’s activities also gets difficult with so
many resources, if there were ingest operations on all of the F1000 it would be hard to keep

track of 20 interfaces.

 Configuration is also an issue, while the mxfSpeedRail products have import and export
settings options, this operation has to be done one by one, which makes keeping configurations

updated a difficult task.

 To sum up these are the main issues with the present system:

 Repetitive tasks

 Difficult to monitor multiple products at the same time

 Knowing what resources are available in the network

 Configuration management complexity increases with resources

3.3 The Centralized System Workflow

 By adding a new product to supervise and manage the mxfSpeedRail product line, the

interaction flow can be greatly simplified and optimized. All the user actions would be focused
on a single interface which provides access to all the S1000, F1000, O1000 and even future

products that might exist in the network.

 The Centralized System provides a global view of the mxfSpeedRail solutions, where

relevant events, like errors, are immediately identified and presented to the user. So, if among
20 F1000 one of the ingest operations fails a warning is shown, removing the need to keep track

of each individual state through the various interfaces.

 Another issue that the new system is able to resolve is the configuration hassle. Because
the user has now access to all the resources, importing and exporting settings becomes a lot

easier. For instance, the user could configure a media location in one F1000 and simply

replicate the configuration to the remaining products.
 To control the actions to be performed by each resource the user must define a

workflow with the activities to be executed, for instance a capture followed by an ingest and

then an outgest operation. Load balancing is transparent from the user perspective with the

system optimizing how the various tasks are distributed among the resources.
 With these features the previously referred three interaction flows can be merged into

one:

Figure 27 - Centralized System flow

Considering this new workflow the following advantages are easily accomplished:

 Replication is minimal due to the “define once apply to all” feature

 Unified interface with global view of all products

 Complexity is kept low even with increasing number of resources

 Instant information of important events

33

 It’s easy to understand that this solution provides a considerable increase in usability

and global system performance.

3.4 Functional Requirements

 With the referred issues in mind and by having a general idea of what improvements the

Centralized System needed to offer, a functional requirements specification was done.
 The following list presents those functional requirements in descending order of

relevance:

1. Add mxfSpeedRail products to the Centralized System

2. Display notifications and task history for each resource

3. Organize resources within groups

4. Provide a global view of the added resources, including:

4.1. How many there are

4.2. How many are performing work

4.3. What kind of work is being performed (ingest/outgest/capture)

5. Issue basic actions to all resources, selected groups and individually

 i.e: A global shutdown command must be possible

6. Synchronize configuration options between resources

 i.e: Copy an asset location from one F1000 to another

7. Design workflows with tasks to be performed by resources

i.e: A workflow with 3 different ingest operations to be executed at the same

time

8. Execute the workflows

 The first requirement refers to the possibility of adding new resources to the Centralized

System, be it by specifying the settings manually or by using Bonjour.

 The organization of resources within groups, referred in the third requirement, was
defined to divide the products by broadcast areas. For example, a TV broadcaster has both News

and Sports shows, but the first one needs to maintain a defined number of resources ready to

capture and ingest important events. As such, not everyone should be able to change those

resources settings nor should they be assigned with tasks at the time of need. By grouping these
resources it’s possible to keep them task free and with the settings correctly defined.

3.5 Non-functional Requirements

 After defining what the system had to do, some requirements regarding performance
and usability were set. These requirements cover aspects related to the system behavior and

overall experience. For instance, there is no functional requirement stating that the system

should be responsive and consistent, but in order to have a well-designed and implemented

application that obviously must be accounted for.
 The following list covers the non-functional Requirements:

34

 High level of responsiveness

 Performance

 Compatibility with different Browser versions

 Load balancing

 While the first and second requirement might seem the same, they are quite different in

the application context. Although the system should perform all the tasks as fast as possible the

interface should never hang during execution. For example, while the server side is performing
a task the user interface should continue responsive and provide the appropriated feedback after

completion.

 Because the interface is implemented in HTML5, browser compatibility is a concern
and the application should perform well in the following versions:

 Internet Explorer 8 or higher

 Chrome 18 or higher

 Firefox 11 or higher

 The last requirement refers to the use of load balancing when assigning tasks to

resources. This means that when a new ingest task is submitted by the user, the F1000 that will
execute it should be the one with less pending tasks.

3.6 Architecture

 Due to the number of components used in the solution implementation, the system

architecture got quite complex. In order to decide which technologies and tools to use, a deep
analysis of the system requirements was made.

 The interface had to be implemented in HTML5 and needed a web server. Deciding the

Web Server type required an analysis of the Business Process Management System in order to
assure compatibility. After choosing jBPM, the only possible Web Server was JBoss. This is

due to Drools Guvnor requirement of only working with JBoss application server.

 To better illustrate the technologies used and how they interact with each other, a
deployment diagram is shown in Figure 28.

 User interaction is done through the Web Application which will have two models: the

Centralized System interface which contains the monitoring, control and share settings features,

and a modified version of the jBPM Web Designer which will be used to define the workflow.
Although the second model will be integrated in the first one, it is also accessible from outside

the Centralized System application as a Standalone component.

 The JBoss Web Server will be the main component of the Centralized System. This is
where the jBPM API will run the business processes/workflows and interact with the

mxfSpeedRail stack through SOAP.

 Guvnor repository is used to persist and load business process models and related

assets. When a user saves the business process within jBPM Designer, the BPMN2.0 xml is
directly sent to the Guvnor repository and a SVG representation of the process goes to the Web

Server. To retrieve the process list the Web Server communicates through Rest with the

repository and if the user wishes to edit the jBPM Standalone Editor is opened with the process
definition.

35

Figure 28 - Centralized System Technologies

36

4 Project Implementation

4.1 Methodology

 There are several methods to develop software and the challenge is not only knowing
them, but also when to use each one. After ruling out several alternatives, only two

methodologies seemed suited for this project, namely the Iterative and incremental development

and the Spiral model. However there was a favoring aspect towards the iterative implementation

which was the evasiveness of dividing the Application in models and implementing those
models through small increments.

 The Iterative and Incremental basic idea is to develop the system by implementing small

portions at a time through systematic cycles. By doing this the developer is able to better apply
the knowledge acquired during previous iterations, concentrate all the attention in the iteration

at hand, execute well defined and automated tests on each cycle and do detailed planning.

 The development process is divided in the following phases:

1. Initial planning
2. Implementation cycle, which includes:

a. Planning

b. Requirements
c. Analysis and Design

d. Implementation

e. Testing
f. Evaluation

3. Deployment

 The first phase is done to assess the general requirements, including non-functional, the

system main objectives, scope and risks. Although this phase shouldn’t go into implementation
details, it should provide enough information to estimate the project duration.

 The second phase is the longest and the core of this methodology. The cycle starts by

planning the development to be done during the iteration, this is when developers decide where
to start, for instance which application model should be implemented. Then the requirements for

the iteration are defined followed by an analysis of those same requirements and respective

design. This is all done to assure that the implementation phase goes as smooth as possible by
relieving programmers from other responsibilities besides coding. After implementation, the

application is tested within the iteration scope and an evaluation is done to assess what will

carry on to the next iteration.

 This methodology also had the advantage of being flexible when requirements change.

4.2 The Implementation process

 The initial planning was made during the first meeting with Eng. Miguel Sampaio and
Eng. Rui Amor, where the core notions and requirements of the prototype were defined. The

main conclusion from this meeting was dividing the Web Application by models, which were:

 Overview

 Control

 Asset Explorer

 Config All

37

 Processes

 Settings

 Afterwards the iteration cycle started with the planning of the first model, “Overview”,

which led to a preliminary mockup design, followed by analysis and implementation. Due to the

systematic approach of the Iteration Process this cycle was repeated through the development
process.

 To design the mockups during the planning phases, two different tools were used: a

plugin for Firefox called “Pencil Project” and a Web App named Gliffy. While the latter was the
easiest to use, the former had interaction events which proved to be crucial in the more complex

modules. After the mockup was defined, it was validated in conjunction with the requirements

and it would be modified or used accordingly.
 Before implementing any of the application’s modules, a crucial system layer had to be

developed, the SOAP layer. This layer allows the Web Server, implemented in Java, to interact

with the mxfSpeedRail products, implemented in .Net. To accomplish the task of creating the

Java stubs a tool called Axis2 and another called Wsimport were used. These tools parse the
WSDL of the corresponding SOAP Web Services to output java classes used during the services

evocation. The resulting artifacts were grouped within .jar files and added to the jBoss library as

it is depicted in Figure 28.
 Eclipse was the chosen IDE due to the amount of different technologies used in this

project. Although Eclipse might not be the best for HTML or JavaScript development, it has a

balanced performance in all of the programming languages used.
 To improve the implementation speed and the application design two JavaScript

frameworks were used: JQuery UI, for basic components like dialogs and tabs, and Ext JS4 for

more complex interactions and visual components.

 Another crucial implementation phase was studying the SOAP services provided by the
mxfSpeedRail products.

4.3 The communication between Web App and Server

 Due to the Web Application nature, the user should get a sensation of high
responsiveness and performance while using the interface. To achieve a non-statically feeling,

Ajax was heavily used on the communication between the Browser and the Web Server. By

using Asynchronous JavaScript and XML(Ajax) requests the browser doesn’t need to refresh

the page in order to display new content received from the server. To facilitate the complex
synchronization operations between the Web Application and Web Server and to increase code

reutilization, the following Object Oriented approach was made:

Figure 29 - Simplified JavaScript ad Web Server communication

 This simplified diagram shows an Application class in JavaScript, which is responsible

for synchronizing the resources between the client and the web server. F1000 and S1000 are the

38

two resource classes and serve as mirrors to invoke the Web Server methods. For instance, the

getLocations() method in the JavaScript class is responsible for encoding the request in JSON,

invoking the mirrored server getLocations() method through Ajax and returning the result to the

caller function through a Callback system. By using this architecture a Web Application module
that needs to communicate with the S1000 and F1000 only has to include the .js class and call

the respective methods, instead of rewriting them.

 Unfortunately JavaScript only supports single class inheritance (Mozilla), which means
that it wasn’t possible to make a Resource Class with the common attributes, like name,

port,etc, and then inherit the S1000 and F1000 classes.

 Web Sockets is a new HTML5 API which facilitates the asynchronous communications
between Browser and Server by implementing a socket based solution which allows the Server

to send data to the client “whenever it needs to” (WebSocket.org). This API comes to fix the

hassles of comet implementation in Ajax, meaning that techniques like long polling wouldn’t be

necessary. Unfortunately, due to requirement of being Internet Explorer 8 compatible, this
technology couldn’t be used and long polling was chosen instead (). Table 2 displays in green

which Browser versions support Web Sockets.

IE Firefox Chrome Safari

3.6

6.0 9.0Moz

7.0 10.0Moz 17.0

8.0 11.0 18.0 5.0

Current 9.0 12.0 19.0 5.1

Near future 10.0 13.0 20.0 5.2

Farther future

14.0 21.0

Table 2 - Web Sockets API browser support ()

4.4 The Overview Model

 The starting point of the Centralized System’s Web Application is the Overview Model,

which provides a global view of the system and at the same time also displays what each

mxfSpeedRail resource is doing in real time. This module is responsible for the system’s main

monitoring features and its main goal is to inform the user about the resources state.
 As most of the other application models, this one was divided in three sections:

 Individual, where the user can:

o View detailed information about task execution progress.

 As shown in Figure 30, the “Activity” list displays what tasks are
being executed at the moment and which ones have completed.

o Consult event notifications list

 The “Notifications” list displays the outcome of each task, which
can be completed, error and canceled.

o Check the resource status

 This information is given by the circle near the resource’s name

 “Disconnected”: The centralized system can’t reach the
resource

 “Retrieving”: The centralized system is trying to connect to

the resource
 “Connected”: The centralized system has full access to the

resource’s services

o Access each resource interface

39

 By using the “Jump to” Button the user will open a new window

with the resource’s Flex interface

o View multiple resources simultaneously (Figure 30)

o Add new resources to the Centralized System (Figure 31)
 The user can define the resource connection data through the form

manually

 Automatically fill the form by selecting one of the resources found
in the network through Bonjour and clicking the Apply button.

 Group, where the user can:

o Organize resources by groups (Figure 32)

o View multiple groups simultaneously (Figure 33)
o View the group progression, which depends on the task progression of each

group resource

o Discover resources with errors, visually indicated by the symbol.

 Global (Figure 34), where the user can:

o Consult how many resources exist in the System and what type they are
(System area)

o View the last errors from each resource (Errors list)

o View what kind of operations are being performed (ingest/outgest/capture)
and how many resources are executing them (Activity list)

 A system administrator can greatly benefit from the use of this new tool. Instead of

keeping track of the resources individually, it’s now possible to have a real time understanding
of what’s happening in the mxfSpeedRail products as a whole.

Figure 30 - Overview, Individual Tab with multiple resources

40

Figure 31 - Add resource dialog

Figure 32 - Organize Resources by Group

41

Figure 33- Multiple Groups View

Figure 34 - Global View

 To achieve the idealized performance of this model a rather complex solution called

Event Hub had to be implemented in the Server.

4.5 The Event Hub

 Due to the high level of responsiveness demanded by the system, the interface had to be
constantly updated in order to display new events fired by the mxfSpeedRail products. This

translated in a high number of SOAP requests to keep track of what was happening in the

product level, which in turn meant an overburden to the machines. Therefore, the ideal scenario

would be the mxfSpeedRail layer warning the Web Server when something relevant happened,
instead of constants requests from the server. To achieve this, it was implemented, in the Web

Server side, a mechanism called Event Hub Client to which the mxfSpeedRail products were

already prepared for, as it is used in the Flex interface. A sequence diagram in Figure 35 shows
the difference between the requests sequence with the Event Hub (right) and without it (left).

It’s obvious that when using the Event Hub the number of requests lowers considerably.

42

Figure 35 - Event Hub comparison

 This feature was accomplished by implementing a thread that uses a socket which

listens for new events returned by the mxfSpeedRail products. The Web Server makes a SOAP

request in order to know in which addresses the mxfSpeedRail products are broadcasting their
events list. Then the Web Server launches a new thread for each address and opens a socket.

This socket will block until a new event description is sent through the respective address,

which will then be processed. The next time the Browser asks if there are new events the Web

Server will return the received data.
 Implementing this feature on the Web Server was trickier than in the Flex interface, as

the server needs to account for multiple mxfSpeedRail products while the Flex interface is used

for one at a time.

4.6 Control

 The Control model provides an almost direct interaction with the resources and as the

Overview model it is also organized in Global, Group and Individual sections. This serves to
give different abstraction levels by providing common commands for all the selected resources.

For example, in the Global tab, the user has access to the actions that are supported by all the

Centralized System’s resources. As shown in Figure 36 there are 4 common commands to all

the resource types:

 Shutdown and Restart: which will power off or restart the selected resources

 Download Logs: which will download a zip file from each selected resource

containing information about execution history

 Sync settings; which allows to import and export resource settings

 On the Groups tab and with the “F1000 only” group selected (Figure 37), an additional
option is shown, which is specific to F1000 resources.

 The “Sync Settings” command provides a handy feature by allowing the user to choose

one source, multiple destinations and synchronize their settings. For example, the user has
added two new F1000 to the system and wishes to set them with the same configuration as

another one which is already configured. Instead of exporting the settings of the configured one

and manually going to the interface of the other two and individually import the file, it’s

possible to simply identify the “from” and the “to” and click sync (Figure 38). The Centralized
System will export the settings from the resource in the “From” list and import to each one of

the resources in the “To” list, using the appropriated SOAP methods

43

Figure 36 - Possible commands to all resources

Figure 37 - Control group view

Figure 38 - Synchronizing Settings

44

4.7 Config All

 Obviously, configuring the Centralized System’s resources isn’t always as easy as

synchronizing settings, sometime the user might want to use the configuration values of a
particular resource as the starting point to configure another. “Config All” module provides

features to do just that. The user is able to use an existing configuration from one resource and

tweak it before applying to another one.
 Although there are multiples configuration options (Figure 39) this section will only

focus on one to illustrate how this module works.

 Before describing in detail the Storage feature, some contextualization is necessary.
Storage represents a server where the output of a specific operation, like ingest, is going to be

stored. What adds complexity to this notion is that the server might be of different types and

each type has its own configuration fields. For instance, a storage server of the type “Avid Unity

Medianet” needs a Fiber-channel interface address which is absent on other storage types.
 The storage configuration procedure is done through the form depicted on Figure 40.

The form provides access to all the resources’ storages and when the user chooses one, the

fields are automatically set with the corresponding configuration values. Then, it’s possible to
replicate the settings to all the resources, to a specific group or to a single product by selecting

the Global, the Group or the individual tab respectively. The user can even mix settings values

between configurations by “locking” the fields. For instance, to use the same username and

password from the lanshares storage (Figure 40) to configure a new Storage of the type “Smb
Cifs” the user can simply check the lock field and the values won’t be changed when the user

chooses another existing storage configuration from the list (Figure 41). Obviously it’s possible

to create a new set of configuration or edit an existing one by changing the form’s values.

Figure 39 - Config All module

45

Figure 40 - Storage Form

Figure 41 - Locking settings fields

4.8 The Settings Module

 This module is where the user can define activities and design processes. To actually

run the processes the user has to access the “Processes” Module. This division between

designing and running was made because each feature is targeted for different users. While the

process design is more technical, demanding a basic knowledge of business process modeling
using BPMN2.0, running the workflow should be simple to non-technical users. With this

module organization the workflow engineers will be responsible for designing the BPMN2.0

process and other users like journalists just need to run it without knowing the subtleties of
process design.

46

 To better illustrate the advantages of using a business process based approach to control

the resources operations and interactions, an example follows:

 A Sports channel is preparing to cover a Football game and the producer wants to save

the highlights along with descriptions and then simultaneously send the result to a news channel
and to the web. This workflow can easily be described through a business process using the

Centralized Solution (Figure 42). A detailed explanation of the diagram follows:

1. The producer describes to the workflow engineer the football coverage sequence
2. The workflow engineer defines the activities to be applied within the business

process using the Web Application interface.

3. The defined activities are persisted in the Drools Guvnor.
4. The Workflow Engineer designs the Business Process using the activities retrieved

by the jBPM Designer from the Drools Guvnor Repository.

5. Finally, the business process model serialized to BPMN2.0 xml is submitted to the

Drools Guvnor Repository
 The football sequence is now ready to be used during the event. The next sub section

demonstrates how this workflow can be actually implemented using the Centralized Solution.

Figure 42 - Football event workflow

4.8.1 Designing a business process

 As previously mentioned a process is a sequence of activities. As such it’s necessary to

first define the activities and then the process.
 Activities are added in the “Activity” tab of the “Settings” module (Figure 43). The

necessary activities for the football workflow are:

1. Capture: during the event will be used to capture the video
2. Highlights and metadata: an operator will be editing the captured video to isolate

the Highlights and will add the respective descriptions

3. Ingest Hi-res: after the highlights and metadata are completed the final result will

be ingested to a Hi-resolution version
4. Ingest proxy: a lower resolution version of the highlights is processed

5. Post on web site: add the proxy video version to the channels web site

6. Send to news channel: Send the Hi-resolution version to a news channel
 Each one of the activities present in this module is persisted in the Guvnor Repository

through a REST interface. By doing this they will be available in the jBPM Designer as Service

Tasks.

47

 Service tasks referrers to activities that are domain-specific, meaning that have some

sort of specialization related to a domain area. In this case the activities are part of the

Centralized System domain and hold attributes to be used with the mxfSpeedRail products.

 The form present in Figure 43 is used to configure the ingest settings to be used by the
F1000.

Figure 43 - Activities

 After settings the activities, the workflow engineer needs to design the process, which is

done in the “Processes” tab.

 As shown in Figure 44, the Processes tab displays a list of already designed processes,

like the News Workflow, and provides the user a preview so it’s not necessary to open jBPM
Designer to view the activities. The user also has the option to “Add” a new business process or

“Delete” an existing one.

Figure 44 - Settings Processes Tab

48

 To “Add” a business process the user must specify a name and afterwards the jBPM

Standalone Web Designer opens in a new window.

Figure 45 - jBPM Standalone Web Designer

 The previously defined activities are available under “Service Tasks”, on the left, and

the user can apply them to the workflow. The final business process is visible on Figure 46.

 All BPMN2.0 business processes need a starting point which has one output and zero
input. The start event defines the beginning of the workflow and has a corresponding end

event , which is also required. The first two activities of the business process are capturing

the game and simultaneously isolate the highlights with metadata. To achieve this parallelism a

BPMN2.0 component called “parallel gateway” is used, which forks the workflow in two

branches: the “Capture” and “Highlights and Metadata” activities. While the first is a “Service
Task”, which should be automatically handled by the Centralized System in conjunction with

the S1000 product, the second will be performed by a user. This distinction between both

activities is visually identified by the and icons respectively. Only when both activities

have finished, will the workflow proceed. This condition is forced by the second parallel

gateway. The sequence will then be divided again in two branches, one to ingest the commented
highlights into a Hi-res file and send it to a news channel and the second where a lower version

of the video is made and posted on the Web site. As before, the activities that are domain-

specific to the Centralized System and the mxfSpeedRail products are identified accordingly,
differentiating themselves visually from the other ones. Because the two last activities don’t

involve the mxfSpeedRails products and might be a mixed of manual and automatic interaction

they are general activities and have no associated icon. The great advantage of using BPMN2.0
is that all these graphic components are standards, which means that anyone who knows the

modeling language understand the business process.

 After finishing the design, the user can save it to the drools guvnor repository under

version control along with a comment. Right before the jBPM Web Designer sends the
serialized BPMN2.0 (Figure 47) to the repository, a SVG representation of the business process

is sent to the Web Application and is associated with the respective workflow. By doing this,

it’s possible to provide the preview illustrated in Figure 48.

49

Figure 46 - Football coverage event business process

Figure 47 - BPMN2.0 source

Figure 48 - Football event workflow preview

50

4.9 The Processes Module

 The Processes Module is responsible for running the designed business processes by

interacting with the jBPM API. A similar list to the one shown in the Settings module is visible
in the processes tab but has now a “Run” option (Figure 49).

Figure 49 - Processes run

 The workflow design and execution features were separated so users from different
areas, like the producer and workflow engineer, have well defined roles. The producer doesn’t

need to know how to design a business process but should be able to easily run it when

necessary. On the other hand, the workflow engineer is only responsible for implementing the

BPMN2.0 description. By keeping the modules separated this organization is forced on the
users. The implementation approach even allows a TV channel to outsource the workflows

design as the Drools Guvnor repository where the BPMN2.0 xml’s are stored can be accessed

from the internet.
 Although the F1000 is able to perform up to 3 tasks in parallel, the workflow will be

completed faster if the Centralized System balances the resources’ workload. Because the

system has access to what the resources are doing in real time it should be “smart” enough not
to overburden an already busy resource with new tasks. As such a workload balancing algorithm

was implemented. When the user runs the business process, the Centralized System assigns the

tasks to the resources which have the least running operations. For instance, in the example

shown in Figure 49 the Web Server asks each F1000 how many uncompleted operations they
have and orders them accordingly. The least busy gets the first task, the second least busy gets

the other task and so on. All of this balancing is transparent to the user, who doesn’t even need

to know which mxfSpeedRail is able to perform an ingest operation.

51

4.9.1 How processes are run with jBPM

 This sub-section explains how the Centralized System makes the connection between

the jBPM API and the mxfSpeedRail SOAP layer in order to run the business process.
 jBPM API has three main components:

 The knowledge base, which is used to load the business process model. This

involves parsing and validating the BPMN2.0 asset.

 The session, which provides methods to interact with the engine, for instance,

starting the business process.

 The events, which is nothing more than an interface with methods like

afterProcessCompleted.

 When the user issues the run command, an AJAX request is sent to the Server with the

selected process name and id. On the server side this information is used to create an URL
pointing to the BPMN2.0 file saved on Drools Guvnor repository. Then the following

implementation sequence is used:

1. The knowledge base is instantiated using the process model from the URL.

2. A StatefulKnowledgeSession instance is returned from the knowledge base so it’s
possible to interact with the workflow engine.

3. In order for the workflow engine to know what to do when the execution sequence

reaches the ingest operations it’s necessary to register WorkItemHandlers.
WorkItemHandler are classes which implement the methods executeWorkItem and

abortWorkItem. These classes hold the logic to communicate with the

mxfSpeedRail products during Service Tasks execution.
4. Finally the business process is started by invoking

statefulKnowledgeSession.start(processID). The processId is necessary because a

Session might have more than one process from the knowledge base.

5. Whenever the workflow engine finds a Service Task it will call the corresponding
WorkItemHandler, which in turn invokes the associated SOAP method.

The described sequence is illustrated in Figure 50.

Figure 50 - jBPM/SOAP interaction

52

4.10 Asset Explorer

 Assets are basically clips saved on locations and are used as inputs for the ingest and
outgest operations. Obviously things get more complicated when an Asset is a group of files

with one of them serving as a pointer to the others, but to keep things simple they are referred as

single files during this section.
 A location is a folder which has an Asset Type associated and contains the respective

Assets. Finding a specific asset within all the locations configured in a single mxfSpeedRail

product is quite easy, the user only needs to select the locations to search in and write a text

representing the asset name or field on metadata. What isn’t as trivial is searching for a file in
all the locations of all the mxfSpeedRail products. The user would have to access each product

interface, select all the locations and search for the asset. This operation gets even harder with

the increase of resources and it’s common for locations to be scattered along different products.
The centralized Solution remedies this problem by allowing searching for an asset on multiple

locations even if they are configured in different mxfSpeedRail products. This feature is

implemented on the Asset Explorer Module.
 The module provides a tree view of the resources and respective locations (Figure 51).

By selecting a single location the user is able to access all the assets in that location. The real

advantage is the freedom this module provides by allowing the user to select multiple locations

and joins the results together, even if the locations are from distinct resources. The user can
easily view all the assets on all the resources by selecting the “folder like” icons which represent

a mxfSpeedRail product. In Figure 52, the user is searching on multiple resources for assets

which have the word David on the name or metadata field. The filtering is done in real time
through Ajax.

 Another handy feature is the possibility to exchange locations between mxfSpeedRail

products. For example, the user wants to ingest a specific clip with the F1000 (fo2) but doesn’t
know where the asset is. With the asset explorer the user only needs to search for the file and

drag and drop the corresponding location to the fo2 folder (Figure 53), then the resource is

properly configured to use the clip.

Figure 51 - Asset Explorer multiple locations

53

Figure 52 - Real time asset filter by name and metadata field

Figure 53 - Adding “New Location 1” to fo2 by drag and drop

54

4.11 Tests and Results

 This section describes the outcome of the load balancing algorithm, how complex
workflows are handled, the integration between process execution and the Asset Manager and

describes the testing approach.

 While there are numerous workflows possibilities, this section will focus on a single
example that covers the main difficulties of task assignment.

 The workflow depicted on Figure 54 is composed by two parallel tasks which should be

done simultaneously and a third which uses the combined output of the first pair. This means

that the user must specify the input for the initial tasks while the last activity automatically uses
all the Assets from the previous ingest operations.

 In order to run the process the user clicks the “Run” button and is presented with a

message informing that assets are missing for the “QuickTime to OP1a” activity. Then the user
is able to select the respective clips through the Asset Explorer (Figure 56). The user has now

access to all the assets in any of the added resources. After selecting all the desired assets

(Figure 57) and pressing “Done” the same process is repeated for the other activity “MXF to
OP1a”. When all the assets are chosen jBPM starts the process execution. When it reaches a

task it queries the system in order to find which of the resources has less workload and assigns

the activity to it. In this test only two resources were being used and both were free, as such the

first parallel activity is assigned to a F1000 called “pc-lazevedo” and the second to a F1000
called “fo2”. Only after the two initial tasks are completed will the jBpm proceed to the final

one. The third activity will use as input the output from the previous tasks. This is proved in

Figure 58 where “pc-lazevedo” finished one of the first tasks “Ingest MXF to Op1a”, while the
second was assigned to “fo2”. Finally the third activity “Op1a to Avid” was performed by the

F1000 “pc-lazevedo” which was free at the time.

 Instead of assigning all the operations to one resource, the work was balanced to the two
mxfSpeedRail products and assets were “exchanged” between resources and all of this was done

in a way transparent to the user.

 Notifying the user about events that happened in the lower SOAP level wasn’t trivial.

The user had to be informed when a workflow was completed (Figure 59) which could take
minutes or even hours and http protocol does not allow “pushing” data from the server to the

client (Google). How this “inconvenient” was handled is detailed in the next section.

Figure 54 - Test Workflow

55

Figure 55 - Missing Assets Warning

Figure 56 - Asset Explorer and Workflow Interaction

56

Figure 57 - Selected Assets (left down corner) for Activity

Figure 58 - Test Result

57

Figure 59 - Workflow Completed Notification

 In order to validate the application with the system requirements and to review if the

features were correctly implemented, tests were performed at the end of the iterations. The

majority of the testing was done manually because most of the Centralized System operations
affected the mxfSpeedRail products. This meant that unless unit testing was implemented in the

mxfSpeedRail .NET layer, the only way to efficiently validate the results was by analyzing the

outcomes through the interfaces.

4.12 Difficulties

 Due to the Centralized System and mxfSpeedRail complexity there were some

implementation challenges. The following three were the most difficult ones:

4.12.1 jBPM Standalone Web Designer

 The jBPM API and the Drools Guvnor repository were relatively easy to integrate with
the Web Application but the Standalone version of the jBPM Web Designer was fundamentally

broken and required several hacks to function properly.

 The basic usage of the Standalone designer is to open a BPMN2.0 process in a new
window so it is embedded in the caller application. The parameter required by the designer is an

AssetID which uniquely identifies the asset to be loaded from the repository. The problem is

that when the designer opens the BPMN2.0 process, it automatically changes the URL which
makes impossible to refresh the window. Another problem was related to consecutive saves

through the “save all changes” button. The Web Designer needs to be refreshed after each save

otherwise an error related to check in authorization. Finally the “close” button also didn’t work.

 To resolve these issues the Standalone Web Designer was loaded within an iframe and
because the Web App was served in the same domain and port as the designer, there wasn’t

“Cross domain” restriction, which allowed adding event handlers to the buttons. The final

solution was a pair of JavaScript functions which implemented the refresh call in the “save all
buttons” and the close operation in the “close” button.

58

 Taking an image capture of the business process to show it as a preview also wasn’t

trivial due to the Web Designer JavaScript API not being documented and required more code

injection.

4.12.2 The Event Hub

 As previously referred, developing the Event Hub wasn’t trivial and although its
objective was already described, the implementation subtleties weren’t.

 The Event Hub listens for events fired from the mxfSpeedRail products and makes them

available to the Web interface. These events can be of several types and come from multiple
mxfSpeedRail products. To properly handle them, it was required to have a thread for each

resource and use a mapping system to identify what to do with a certain event. This mapping

was done by implementing events on the server side. When an event of type x was listened by
the corresponding Event Hub thread, a handling event of type y was triggered on the Server.

Java doesn’t have a direct notion of events like Flash or C# but it has interfaces which can have

multiple implementations. Thus, a class implements a CallBack interface and registers itself on

map hashed by event types. When the thread receives an event, it only needs to call the run
method of the corresponding interface. eventHandlerMap[eventType].run(). The method

implementation depends on the class associated to that event type.

4.12.3 Synchronizing Settings between mxfSpeedRail

 In general, most of the exposed features of the mxfSpeedRail products behaved fairly
well when used in a Centralized Environment, but there was an exception related to the settings

synchronization.

 Exporting settings from a mxfSpeedRail product and then importing to another is done
through the Flex interface and involves downloading and uploading a zip file. To automate this

operation the Centralized System had to download the zip file from an URL and then simulate a

Browser upload to multiple mxfSpeedRail resources. This meant low level XML manipulation

and because even a character would invalidate the parsing operation it took more time than
expected.

4.12.4 “Bubbling” Events

 Due to http’s request/response unidirectional nature it’s not easy to “bubble up” events

from the SOAP layer to the Web Browser (Google).

 When a SOAP request for a long running operation, like the ingest tasks described in
the test section, is made, the method returns instantly and monitoring its progression required

the use of the Event Hub. A similar difficulty happens with notifying the GUI (Web Browser)

about events like workflow completion which might occur minutes or even hours after

invocation. This required implementing an event registration architecture that allows GUI
instances to monitor events from specific workflows. In order to minimize the performance

“hit” of constant pooling, which involves regular queries from the GUI to the Web Server and

consequently to the mxfSpeedRail products, a rather complex thread synchronization scheme
was used.

 When the user runs a Workflow the Web Browser makes an Ajax request to the web

server which in turn starts the business process execution and returns a processId. After
receiving the response the GUI makes a “monitoring” request using the processId and an

eventCounter, which informs the server about the last event received by the client instance.

Upon receiving this request the server sends an Object instance to a Map which associates a

processId to monitors. Right after, the server blocks the servlet thread by calling .wait() on the

59

Object instance. While this happens the workflow is being run asynchronously by threads.

Whenever an operation is completed by the mxfSpeedRail products an event is sent to the

respective listening socket on the server, which in turn will unblock and call .notify() on the

process monitor using the processId. This will unblock the servlet instance, which was waiting
on the corresponding monitor Object instance and in turn sends to the Web Browser the

workflow event.

 Figure 60 depicts the events architecture which is compliant with FIMS guidelines
(AMWA-EBU, 2011).

Figure 60 - Events Architecture

4.13 Conclusions

 This chapter covered the implementation process of the web application and showed the

main functionalities of the Centralized System. The iteration methodology fit quite well with the

modular approach during development, resulting in a flexible structure where features were
easily added. The requirements were followed and testing was done after iterations. Some

difficulties related to the jBPM Web Designer were found and due to the component complexity

they weren’t trivial to resolve.
 As with most complex systems there was some trial and error during implementation

and wasn’t easy to efficiently connect all the different elements. Although the user doesn’t

realize from using the Centralized System the mxfSpeedRail products are quite distinct and
have particular subtleties. A lot of hairsplitting debugging had to be done, sometimes even to

the degree of comparing complex HTTP packages.

 The defined schedule for each feature implementation was respected and although some

took more time than planned the iteration period was always calculated considering possible
delays.

 The final prototype does the intended job of implementing all the required modules.

60

5. Conclusions and Future Work

 Users have become extremely demanding when dealing with computer systems. They want
to do more with less effort and have access wherever they are. Even if a system is very complex

with a lot of technical layers and complicated features, the user won’t give it a chance unless the

experience has been streamlined. Furthermore, the system should also have an adaptation for
mobile devices and require as less configuration as possible. Applications need to be agile and

provide the user with a plug and play feeling. This notion has to be applied even in an

environment as complex as TV Broadcasting. Aware of this, MOG realized that their

mxfSpeedRail products required a new solution to unify the user experience.
 TV Broadcaster use MOG’s mxfSPeedRail products during capture and file based tasks.

When the broadcaster has a small number of equipment, interacting with each one is relatively

simple but when that number increases the user experience is hampered considerably. The
solution to this problem was a managing system to supervise MOG’s products.

 By having a Centralized System, users can control and access features in a unified and

simpler environment. While the number of equipment could increase the user experience stayed
simple. Due to the requirements of connectivity, availability and usability of modern systems, a

Web application was the best choice. The platform agnostic nature of web development allowed

running the implemented solution in multiple environments.

 The Centralized System exposes the mxfSpeedRail products as services. Instead of
knowing what features each equipment has, the user only needs to know what action should be

performed and let the Centralized System decide which product is more suited for the task. For

instance, if a journalist wanted to capture an event, edit it and then broadcast the result, he only
needed to design the workflow and leave the heavy lifting to the Centralized System. Knowing

which equipment is able to perform the different activities, balancing the workload and

assigning operations is the Centralized System’s responsibility. In order to implement these

complex features a Workflow Engine and a full featured business process designer were used.
 The first part of this project was a deep analysis about what kind of technologies already

existed and how they could be used to achieve the Centralized System solution. It also included

understanding the system’s requirements which helped deciding the implementation process.
The second part was the development work which was made using an Iteration approach due to

the application’s modular nature. The iterations cycles started with an initial planning to decide

which application module would be implemented followed by requirements specification and
the actual implementation. At the end of each iteration, testing was done and incomplete

features had to be carried over to the next iteration.

5.1 Goal Achievement

 This thesis required a thorough analysis of SOA technologies in order to fully

understand the mxfSpeedRail organization and to choose the implementation tools. As a

realization of the SOA approach, a SOAP interface was implemented to interact with the
mxfSpeedRail products and a business process management system was responsible for

orchestrating these interactions. With this organization, the system was able to scale properly

and allow complex workflow executions. All of these features and capabilities were

implemented in the Centralized System prototype.
 The developed prototype allows the user to perform all the planned features for the

Managing System to supervise multimedia equipment:

61

 Has a unified access point

 Allows designing and running workflows

 Has interoperability through multiple resources types

 Balances workload during operations assignment

 Provides overview and configuration tools

 Has a global Asset Explorer

 In order to implement the workflow design and execution features, a business process

management system called jBPM was used together with the respective BPMN2.0 Web

Designer.
 To sum up, all the goals inherit to the implementation of the Managing System

prototype, were completed.

5.2 Future Work

 There is always room for improvement and this project is no exception. Due to time
restrictions and priorities some features could use further developing.

 The load balancing algorithm always chooses the resource with less uncompleted tasks

to run the next operation. The problem with this approach is that tasks have different completion

times, which means that a resource with 3 running tasks might finish faster than another with
only 1 task. This might happen simply because of task complexity. To improve the work

balancing feature, the algorithm should have in consideration the number of uncompleted tasks

and how long each will take to complete.
 Support for more complex business processes is also important. While parallel and

sequential workflows work correctly, it’s not possible to use human-tasks. This means that

activities must be configured prior to running the workflow.
 Other improvement area would be the design. Due to the framework nature of this

project, the application aesthetics didn’t receive much development time.

62

References

Activiti. Activit FAQ. Activiti. [Online] [Cited: November 22, 2011.]
http://www.activiti.org/faq.html#WhatIsBpm.

Allen, Rob. Workflow: An Introduction. In: Workflow Handbook. s.l. : Workflow Manage-ment

Coalition.
AMQP. 2011. amqp. Advanced Message Queuing Protocol. [Online] November 16, 2011.

[Cited: November 17, 2011.] http://www.amqp.org/about/what.

AMWA Wiki. 2011. Main Page. Wiki. [Online] November 3, 2011. [Cited: November 13,

2011.] http://wiki.amwa.tv/ebu/index.php/Main_Page.
AMWA-EBU. 2011. Framework for Interoperable Media Services FIMS Media SOA

Framework 10.0. s.l. : AMWA-EBU, 2011.

Apache. Apache ODE. [Online] http://ode.apache.org/creating-a-process.html#UserGuide-
DeployingaProcessinOde.

Apple. Open Source Apple Development. [Online] Apple. [Cited: May 22, 2012.]

https://developer.apple.com/opensource/.
Atherton, Michael. 2002. 2002, Darwin Magazine.

Bouquet, Frédéric, BOS Consultant BONITA SOFTWARE FORUM. [Online]

www.bonitasoft.org/forum.

BPMN: An introduction to the standard. Michele Chinosi, Alberto Trombett. Computer
Standards & Interfaces.

Chappell, David. 2010. Introducing Windows Communication Foundation in .NET Framework

4. Microsoft Developer Network. [Online] March 2010. [Cited: January 24, 2010.]
http://msdn.microsoft.com/library/ee958158.aspx.

FIMS initiative. AMWA-EBU. [Online] [Cited: June 13, 2012.]

http://wiki.amwa.tv/ebu/index.php/Main_Page.

Google. ServerPushFaq. [Online] [Cited: June 15, 2012.] http://code.google.com/p/google-web-
toolkit-incubator/wiki/ServerPushFAQ.

Harris Corporation. 2011. Video Disk Control Protocol. Wikipedia. [Online] August 20, 2011.

[Cited: November 12, 2011.]
http://www.harris.com//view_pressrelease.asp?act=lookup&pr_id=476.

IBM. Introducing the Java Message Service. developerWorks. [Online] [Cited: January 23,

2012.] http://www.ibm.com/developerworks/java/tutorials/j-jms/.
Implementation of Process Management and Control Based on JBPM4.4. Jian Hu, Zhiqiang

Zhao, Zhongnan lv. 2011 Second International Conference on Networking and Distributed

Computing.

Intalio. Business Process Management. Intalio. [Online] [Cited: January 04, 2012.]
http://www.intalio.com/bpms.

International Telecomunication Union. 2011. Abstract Syntax Notation One. Wikipedia.

[Online] November 17, 2011. [Cited: November 17, 2011.] http://www.itu.int/ITU-
T/asn1/introduction/.

jBPM. jBPM. jBoss. [Online]

Liempd, Tijs Rademakers and Ron van. Activiti in Action.
Mark Richard, Richard Monson, David A. Chappell. Java Message Service.

Microsoft. 2011. Microsoft Message Queuing. Wikipedia. [Online] September 21, 2011. [Cited:

November 17, 2011.] http://msdn.microsoft.com/en-us/library/ms834460.aspx.

MOG Solutions. 2006. MOG Solutions. WHITE PAPERS. [Online] 2006. [Cited: November
16, 2011.] http://www.mog-

solutions.com/img_upload/PDF/MOG_Solutions_mxf_overview_by_mog_solutions.pdf.

63

Monteiro, Professsor Miguel. 2010. Distribution and Integration Technologies. Distribution

and Integration Technologies. [Online] 2010. [Cited: November 16, 2011.]

http://paginas.fe.up.pt/~apm/TDIN/docs/tdin12.pdf.

Mozilla. Introduction to Object-Oriented JavaScript. [Online] Mozilla. [Cited: May 22, 2012.]
https://developer.mozilla.org/en/Introduction_to_Object-Oriented_JavaScript.

OASIS. Web Services Business Process Execution Language. [Online]

OMG. 2011. Business Process Modeling Notation. Wikipedia. [Online] November 15, 2011.
[Cited: November 20, 2011.] http://www.omg.org/bpmn/Documents/FAQ.htm.

Peter, Ian. 2003. Internet protocols history. Internet History. [Online] 2003. [Cited: November

13, 2011.] http://www.nethistory.info/History%20of%20the%20Internet/protocols.html.
Robots Technology. Content Agent. Robots Technology. [Online] [Cited: November 16, 2011.]

http://www.root6technology.com/products/ContentAgent/documents/Automating_file_based_w

orkflows_whitepaper.pdf.

Salatino, Mauricio. jBPM Developer Guide.
Telestream. 2011. Video Workflow Automation. Telestream. [Online] 2011. [Cited: November

13, 2011.] http://www.telestream.net/vantage/overview.htm.

Tony Andrews, et al. 2011. Business Process Execution Language. Wiki. [Online] November
4, 2011. [Cited: 20 November, 2011.]

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf.

VCIS. Improving Automation Efficiency.
Wadle, John. Workflow and System Integration in the Content Management Process.

WebSocket.org. WebSocket org. [Online] [Cited: May 23, 2012.] http://www.websocket.org/.

When can I use. [Online] [Cited: May 23, 2012.] http://caniuse.com/#search=websocket.

Wikipedia. 2011. Business Process. Wikipedia. [Online] 2011. [Cited: November 19, 2011.]
http://en.wikipedia.org/wiki/Business_process.

—. 2011. Deinterlacing. Wikipedia. [Online] October 22, 2011. [Cited: November 16, 2011.]

http://en.wikipedia.org/wiki/Deinterlacing.
—. 2011. XPDL. Wikipedia. [Online] 2011. [Cited: November 20, 2011.]

http://en.wikipedia.org/wiki/XPDL.

—. 2011. YAWL. Wikipedia. [Online] 2011. [Cited: November 20, 2011.]

http://en.wikipedia.org/wiki/YAWL.

