FAcULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Combining Loan Requests and Investment
Offers

Luis Pedro da Cunha Brandao Martinho

FiNnAL VERSION

Dissertation
Master in Informatics and Computing Engineering

Supervisor: Professor Doutor Luis Paulo Reis

July 2009

Combining Loan Requests and Investments Offers

Luis Pedro da Cunha Brandao Martinho

Dissertation
Master in Informatics and Computing Engineering

Aprovado em provas publicas pelo Juri:

Presidente: Jodo Pedro Mendes Moreira (Professor Auxiliar da Faculdade de
Engenharia da Universidade do Porto)

Arguente: José Manuel de Castro Torres (Professor Auxiliar da Faculdade de Ciéncia e
Tecnologia da Universidade Fernando Pessoa)

Vogal: Luis Paulo Gongalves dos Reis (Professor Auxiliar da Faculdade de Engenharia
da Universidade do Porto)

14 de Julho de 2009

Abstract

This dissertation integrates a broader effort to setup a Peer-to-Peer lending community in
Portugal. This work focuses on solving the infrastructural problem of combining investment
offers from potencial lenders with loan requests from potencial borrowers, an issue which has
yet to be given significant consideration within the literature.

The combination process must strive for an optimal result, which pleases lenders and
borrowers alike, despite their opposing agendas. Simultaneously the combination result should
also benefit the platform's business model, so as to keep it sustainable and profitable.

The text describes how several optimization metaheuristics — algorithms like Hill
Climbing, Simulated Annealing, Genetic Algorithms and Particle Swarm Optimization — were
applied to explore the solution space of the problem and to find optimal solutions, in light of a
proposed utility function. Supporting the metaheuristic guided exploration, was a solution
generation mechanism, powered by a constraint programming module.

During the process of building the combination system, a simple framework for reusable
heuristics emerged to support the implementation. This framework featured a component-
oriented architecture, and displayed modularity.

The results of this approach show how metaheuristic-driven optimization can be
successfully applied to Peer-to-Peer lending combination problems.

Resumo

Esta dissertacdo integra um esforco mais abrangente para estabelecer uma comunidade de
crédito colaborativo em Portugal. Este trabalho concentra-se em resolver o problema infra-
estrutural de combinar ofertas de investimento de potenciais investidores e pedidos de crédito de
potenciais creditados, um assunto que ainda nio recebeu atenc¢do significativa na literatura.

O processo de combinagdo deve procurar um resultado éptimo, que agrade a investidores e
creditados, apesar de perseguirem objectivos opostos. Simultaneamente o resultado da
combinacdo deverd também ser benéfico para o modelo de negdcio da plataforma, de forma a
manté-la sustentivel e rentdvel.

O texto descreve a forma como varias metaheuristicas de optimiza¢do — algoritmos como
Subida de Colina, Arrefecimento Simulado, Algoritmos Genéticos e Optimizacdo de Enxame de
Particulas — foram aplicadas para explorar o espaco de solugdes do problema e para encontrar
solugdes dptimas, a luz de uma fungdo de utilidade proposta. A suportar a exploragdo guiada por
metaheuristicas, encontra-se um mecanismo de geracao de solugdes, apoiado por um médulo de
programacdo de restrigdes.

Durante a constru¢io do sistema de combinagdo, emergiu uma plataforma simples para
heuristicas reutilizdveis para apoiar a implementagdo. A plataforma possui uma arquitectura
orientada por componentes, demonstrando modularidade.

Os resultados desta abordagem demonstram como a optimizagdo usando metaheuristicas
pode ser aplicada com sucesso a problemas de combinacio em crédito colaborativo.

ii

Acknowledgments

I would like to thank my supervisor, Prof. Luis Paulo Reis, for supporting my work even
when I digressed or got stuck, and helping me keep a clear focus on solving the problem at
hand. This work would not have been finished without his advice.

I would also like to thank my Roda project partner, Simdo Rio, who originally came up
with the idea of Peer-to-Peer loans back in 2007, and with which I have worked very hard to
build the Roda platform. This work puts us one step closer.

I also thank Hive Solutions Lda., my current employer, not only for the support I received
to complete this dissertation, but also for the skill set I have gained while working for the
company, which made solving a series of technical issues a lot easier than it was before.

I thank my parents, my sister and Catarina.

il

Contents

1 Introduction ceenerecsssnnene 1
1.1 BACKGIOUNA.eeiiiiiiiiiiiiee ettt et e et e ettt e ettt et e e e e e e e e e s aaaaas 1
1.2 Motivation and ODJECLIVES.cocutiriiiriiiiiieiieeie ettt ettt e e 1
1.3 Adopted Conventions and PractiCes...........ccvvieriuiierriiieeeeiiieeeciieeeieeeesieeeeeeesseseesnnnnnnnns 2
1.4 ThESIS SIUCLUIE.coutieiiiiiieeiiee ettt ettt ettt ettt st e e e bt e e bt e sateesabeesabeesbaeeeeenaas 2

2 Person-to-Person Lending 4
B B T Ted e o1 1 1 e OO SR PPPPPPPRPY 4
2.2 P2P Lending PlatfOrmis.ccoouiiiiiiiieieiii ettt ettt e s e e 5
2.3 Lending MOAEIS......ccouiiiiiiiiiiiiie ettt ettt sttt sttt st 6

2.3.1 Pooled Lending.........ccooiiiiiiiiiiiiiieiee ettt e 6
2.3.2 DIrect Lending.......cccccoociieiiiiriiiiiiieiieete ettt ettt st s 6
2.3.3 Group Lending.......ccccoeuieriieniiinieiiiieeieeeee ettt et 7
2.4 The Role of Social NetWOIKS......cccuiiiiiiiiiiiiiirieetee et 7
2.5 Impact 0N MICTOTINANCE.ccviieeiiieeeeiiieeeciteeerieeeeetteeeeteeeeseteeesssbaeesenseessnnseeesnsseeesanes 7
2.6 Current Research and Future DireCtions............coocueeiieeriiieiiiieiiieeiie et 8
2.7 SUINIMATYeeitiiiiiiiiieeee ettt ettt sttt ettt et e sae e e s et e sateesaneesaneeeesaannnneeesnnnen 9

3 Optimization Metaheuristics .10
3.1 Optimization Problemis.eiiiiiiiiiiiiiiie ittt e e 10
3.2 Metaheuristics in OPtimiZation..........cc.eeeiieeriiiniieniee ettt ettt saeeeseee e 11
3.3 Trajectory-based MetaheUIiStICS.c.c.eerruuiiriiiiiiiiieenieereeeee et e e 13

3.3.1 Pure Random Search...........coocuiiiiiiiiiiiiiiiiieceec ettt 13
3.3.2 Hill-CIMDINE. .ccuteiiiiiieiieeieeee ettt ettt ettt ettt e s s eitaeeee s 13
3.3.3 Simulated ANNEAIING........ccveiriiiieeeiieeeieee et et et e et eeerreee s e e s eenareeeeeees 13
3.3.4 Tabu SEATCH......eiiiiiiiiiiie e s 14
3.4 Population-based MetahEUIISTICS.cceivitiiiiiiiiieiie ettt ettt e e 14
3.4.1 Evolutionary COMPULATION.ccccuvieerririeeeiiieeeiiieeesiteeseiteesetteessnseeesnseeeessnsaeesennees 15
3.4.2 Particle sSwarm OptimMiZation...........cecueeeerrireeeriiieeeeiieeeeeieeeeerteeesieeeeesseneerreeeeeeeeas 16
3.5 Constraint Programmiing...........ooeeerueerieenieeniee ettt ete ettt et esieeesaeeesabeesbeeeaas 17
3.5.1 Constraint Satisfaction Problems.............cccoeiiiiiiiiiiiiniiiiiieee e 18
3.5.2 Constraint Programming Libraries.........ccccccovvuieriiiniiiiniiiniiiiinieiiieeeeeriieeee e 19
3.0 SUIMIMIATY.....eeiiiiiieiiiiee ettt ettt ettt e e sttt e e sab e e e e abteeesabteessabbeeeeasbteessbbbbeeeeeaaaeessananns 19

4 Loan Request and Investment Offer Combination ceessreecssnene 20
4.1 PlatfOrm OPEIatiOn........ccooueeeiuireiiiieieieeeieeeteeeiee et e et e e siteestteesabeesabeesabeesbeesnnbeeeeeesannrees 20
4.2 LLEIACTS ..vvvieiiiiiiiieeeeeee e e ettt e e e e e e e aaaaaaaaaaaaaaaaeaaaaeeaaaaaaaanaaaaaraes 21
4.3 BOTTOWETS ..eeuitiiiiiieiieeite ettt ettt ettt st e st sat et et et et e e bt e e sateesabeesateesabeeeessanbeeees 21
4.4 Security and Fraud Preventioncceeecueeeeeiiieeniiieeeiieeeesieeeeeiieeeeieeeesieeeesiveeeeeeeeas 21
4.5 BUSINESS MOGEL ...cuuiiiiiiiiiii ettt et e e 22

iv

4.0 LAl ISSUES ...uveiiniiieiiieeiteeetee ettt ettt ettt ettt e et e bt e at e et e st e e e e entaee e e e enneee 22

AT SUIIMATY ..ceeenetteeeiiieeeeiiee ettt e ettt e e sttt e e sttt e eabteeeaabteeesabbeeesbbeeesasbaeesaubaeeaeesssaaannnsnsbeeees 23
5 Proposed SOIULION.........ccceieveieseriseiiininseissniessisssisssisssisssisssisssisssisssssssisssssssssssssasssssssssssssaseses 24
5.1 Formal Problem Definition..........cccuiiiiiiiiiiniiiiiieiiee ettt s 24
5.2 ULIHEY fUNCHOMNS. ..eeiiviieeiiiie e et e eieeeertte e eette e e eaee e st eeeeseeessssaeessssaeeesssseeesnsseeesssseaeeens 25
5.2.1 DiSSAtiSTACTION COSL..utiiiuiriiiiriiiieiriiieeiitteeeitte e ettt e eebteeeebteeessabteessabbeessabbeeessasnannes 25
5.2.2 Tight Margin ULEYcoooeiriiiiriii ettt e 26
5.3 PropoSed SOIULION.......ceeiiiiiieieiiie ettt eite et e e eeite e ettt e e st eesateeessnbeeeesnsaeessnsseeeennsaeeeas 27
5.3.1 Constraint library eXteNSIONS.cccuvtrrreurreerriieerrireeerreeesereeessreeessssreesesesssssssnsssnes 27
5.3.2 Optimization framEWOTK.eeiiiiiiiiiiieiiee ettt ettt eseee e 28
5.3.3 Matcher optimization USE-CHENL..........cccueiiiiiiiiiieiieiie ettt e e 28
5.4 SUMMMATYuviiieiiiieeeeiie ettt ettt e e ettt e e e ttteesbtteeesstteesesteeeasaeesastseesantaeesesnnnssssssneeeeeeens 29
6 IMPleMENtation.....ccoivrierirrnrcsssseriosssancossssnsessssssessssasessssasesssrsssssssssssssssssessssasessrasssssssssssssssnsn 30
6.1 Constraint library €XteNSIONS.cco.utertieriieriieetee ettt stte et e st e stee et te sttt e e s seaieeeeeeas 30
6.1.1 Problem WIaPPeT.......cccceiriiiiiiiiiiiriteeee ettt ettt e et e e 31
0.1.2 SOLVET ...ttt ettt e e sttt e e sttt e ettt e e e e e e e e e e e aaaaa 32
6.1.3 CONSLIAINES. ...uveeeniiieiieeriteeiee ettt ettt ettt ettt e st e st e satee st esbeeebaeenbeeeeaas 32
6.2 Optimization frAMEWOTK.........ccuitieeiiieeeiiie et e e e e e e ereeeenraee s 33
6.2.1 ADSIIACt OPLIMIZET.....ceueieieiieeiiieeiiie ettt te ettt ettt et e e saeeesite e sateesabeteeeeesnteeeeeeanns 34
6.2.2 Random Search OPMIZET........ccouuteiiieriieiiieeieeeiteetteeiteeite et e siteesateeseeeeans 35
6.2.3 Hill Climbing OPtiMiZeT.........cc.ueieeirieeeiiieeeeiieeeeieeeestteeesteeeeesaeesesnreeesnsseeessnnnes 35
6.2.4 Simulated Annealing OPtiMIZeT..........ceorviiiiriiieeeiiie ettt et e e e e e e e e e e e eriiieees 35
6.2.5 Genetic Algorithm OPUMIZET.......ccocueeiitiiiiieiiieeie ettt ee e e 36
6.2.6 Particle SWarm OPtIMIZET........ccueeiuiiiiieiiieiiee ettt ettt e et e e s ee e e e 37
6.2.7 Framework INterfaces.........ccueiiiiuiiiiiiiiiiiiiiie ettt s 38
6.2.8 Helper fUNCLIONS.coc.uiiriiiiiiiieetccreeee ettt ettt st et e e e e 39
6.3 Matcher optimization USE-CLIENL..........cc.eveeerireeeiiieeriieeeeireeeeiee et e e e ereeeeeeeeeeeeens 39
6.3.1 SOIULION GENETALOT.eeiiiieiiieriieeniteeeiee ettt ettt ettt et e st e sabeesabeesabeesbeeeas 40
6.3.2 Solution EValUator.........coooiiiiiiiiiiiiiie ettt e 41
6.3.3 SOIULION VISUALIZET......eeiiiiiiiiiiiiiiiiiee ettt ettt et e e e e e e 42
6.4 SUMIMATYviiiiiiiieeeiieeeeitee ettt e e etee e ettt e ettteeessteeesasseeessseeesssseesassaeesssnnnnssssssneneeeeens 42
7 Results Interpretation . . e dd
7.1 EXperimental SCENATIOS. ... c..eeiuiiiiiiiiiiieiiteeie ettt ettt ettt sate e sttt e e e s aaeaeeee s 44
7.2 Metaheuristic parameter OPMIZAtiON........ccocueerrieiirieerieenieerieeneeeeeeeeireeeeeeeireeeeeeas 45
7.2.1 Random S@ArCh.........ciiiiiiiiiiiiiiiiiie ettt et s 45
7.2.2 Hill CHIMDING. ..eeitiiiiiiiiieeeeeee ettt ettt sttt e s e s e e 46
7.2.3 Simulated ANNEALING.........ccccviiiriiieeiiiie et ereee et e ertee e et e e e e eeeeeeeeesesannnnnnes 46
7.2.4 Genetic AlZOTItRIMS.cooiiiiiiiiiiieiic ettt e e 46
7.2.5 Particle Swarm OptimiZation.........c.cceeeueiriieerniirnieeniieee et enree e ereeeree e 46
7.3 MetaheuriStiC ANALYSIS ...uueiiecrireeiiiieeiiieeeeiieeeetee et e e et e e et e e eetteessnnnenbaeaeeeeeaaeeeens 46
7.3.1 Scenario 1: Tight Market..........cccoovviiiiiiiiiiiiie e e 47
7.3.2 Scenario 2: Lo0Se MArKet..........ceiuiiiiiiiiiiieiie ettt e e e 48

8 Summary ConclusionsS.........cceieceirveriseississeissensseisseisssisssisssisssssssissssssssssssssssssssssssssssssaseses 49
81 SUMIMATY.....eiiiiiiiiiiiii ettt e ettt e e sttt e e sttt e e s bbbt e e e e e aaaeessennans 49
8.2 CONCIUSIONS. c...eeiteeitte ettt ettt et e sh e e sbb e e st esab e e st e s bt e e e e aabbaeeeeean 50
8.3 FULUIE WOTK.....eeiiiiiiiiiieetee ettt ettt et e e e s e abbae e e e 50
8.3.1 UtIlity AIEIMAtIVES. ..c..eeeriiiiiiiiriieeiie ettt ettt sieee e s e e e e 50
8.3.2 Distributed Framework............ccooiiiiiiiiiiiiiiiiiic e 50
8.3.3 Multi-Agent System Testbed and MatCher.............ccceeeriiiieriiieeeiiiee e 51
8.3.4 S0CIAl RAUNG.....cviiiieiiiieeiiiee ettt et e et e e e te e e sttee e e e s e s nneebaeeees 51

8.4 Final Remarks

References

vi

List of Figures

Figure 1.1: Impact timeline in the VCS [GitOOD].........coviiiiiiiiiiiiiiiiiieeeeeee e 2
Figure 2.1: Peer-to-peer loans US market value: estimated(*), and projected(**) data from
(0115 1 [[OS] (01 U U U U UUUPPURURRTOt 8
Figure 3.1: Population-based results in single optimum and multiple optima problems [ETHO5].
... 15
Figure 4.1: Miscellaneous final art from Web platform front-end [Rod09]...........ccccceeveerennnnnns 21
Figure 5.1: Proposed Solution Architecture OVEIrVIEW.cocueeeiiirnieeiiieniieenieeniieeee e 27
Figure 6.1: Proposed Solution Detailed Architecture.............ccocceeeviieniiiniiiniieeiniieee e 30
Figure 6.2: Constraint library and extensions archit@Cture............eeeecvveeeriieeesriiieeeeciieeeeieee e 31
Figure 6.3: Optimization framework architeCture.............ccceeveieeieriiiieeeiiee e eieeeeiee e 34
Figure 6.4: Matcher optimization use-client architeCture.........c..cevvereeneenieeneeneenieeneeneeneenens 39
Figure 7.1: Scenario 1 — Plot of utility function value against iterations (by metaheuristic)....... 47
Figure 7.2: Scenario 2 — Plot of utility function value against iterations (by metaheuristic)....... 48

vii

List of Tables

Table 7.1: Detailed scenario settings

viii

Abbreviations

API
BdP
CO
CP
CSP
EC
EP
ES
GA
HC
IoC
00
P2P
PEP
PRS
PSO
SA
SCM
SI
VCS
WWW

Application Programming Interface
Banco de Portugal (Bank of Portugal)
Combinatorial Optimization
Constraint Programming
Constraint Satisfaction Problem
Evolutionary Computation
Evolutionary Programming
Evolution Strategies

Genetic Algorithms

Hill-Climbing

Inversion of Control
Object-Oriented

Peer-To-Peer

Python Enhancement Proposal
Pure Random Search

Particle Swarm Optimization
Simulated Annealing

Software Configuration Management
Swarm Intelligence

Version Control System

World Wide Web

iX

1 Introduction

Arguably one of the most powerful concepts to emerge from the Internet was that of the
social web: a network made not only of machines, but also of people who could now relate
directly, no matter how geographically apart. This new interaction paradigm not only
challenged existing business models, but also motivated completely new ones. Some of the
business models that were most impacted were those that involved intermediation. This was the
case with the various forms of employment portals (where employees and employers could meet
directly) and auction portals (where buyers and sellers could meet directly). The next step
would be direct person-to-person lending or peer-to-peer lending, starting with Zopa in the
United Kingdom in February 2005 [Reg05].

This work reports on efforts made from early 2007 to the present day to create an online
Social or Peer-To-Peer (P2P) Lending platform, operating in Portugal. P2P lending is the "name
given to a certain breed of financial transaction (primarily lending & borrowing, [...] which
occurs directly between individuals ("peers") without the participation of a traditional financial
institution" [Wik09a].

1.1 Background

The project received the working name "Roda", meaning Circle in Portuguese, and
intended to offer a new approach to P2P lending. As all P2P lending efforts, the fundamental
aim was to create a simpler, more transparent financial vehicle than those currently available.
This new model also intends to be fairer, safer and even more profitable than existing corporate
options, e.g.: bank loans. To achieve these goals, the Roda project intends to gather a vibrant
community around the lending project, creating additional channels for human interaction in
true Web 2.0 style.

1.2 Motivation and Objectives

The success of the project was seen as greatly dependent on the individual satisfaction of
both lenders and borrowers, despite their opposing agendas. It was thus required to create a
mechanism that could combine loan requests and investment offers in a fashion which pleased

Introduction

the greatest amount of participants, while protecting the interest of the platform operator. It was
this key problem that motivated this dissertation.

The main objective of this work was then to build a system capable of successfully finding
optimal combinations of loan requests — defined by the amount requested and the maximum rate
at which the potential borrower is willing to repay the money — and investment offers — defined
by the amount offered by the lender and the minimum interest rate at which the potential lender
is willing to receive its money back. Simultaneously, the system should attempt to maximize the
amount of money traded, due to the volume based business model of the project.

The construction of a web-based application was also an issue when building an online
Social Lending platform, since the majority of customer interaction is to take place through it.
This issue, together with further interaction paradigms such as Social Rating, despite relevant
for the project as a whole, are considered outside the scope for this work.

1.3 Adopted Conventions and Practices

All references to code are done in monospaced font, references to external libraries or
products are done in italic font. The naming convention used in the actual implementation
followed PEPS (Python Enhancement Proposal) — Style Guide for Python Code [RW09], which
most significantly means method names and variables in lower case with words separated with
underscores and class names in camel case. All exceptions to these conventions are due to
conflicting conventions in third-party code.

To aid in Software Configuration Management (SCM) the Git Version Control System
(VCS) [Cha09] was put in place to keep track of changes to the source code. The VCS was
provided by GitHub [Git09a] and is publicly available at the project page [Git09b]. Figure 1.1
shows the “impact” timeline in the VCS, with “impact” defined as the number of lines added
plus lines deleted for all non-merge commits during a week period, the data was obtained from
[GitO9b].

Figure 1.1: Impact timeline in the VCS [Git09b]

1.4 Thesis Structure

This section provides a general introduction to the thesis, which contains 7 additional
chapters:

« Chapter 2 and 3 describe the the current environment for this work, in terms of the
competitive business landscape in terms of Peer-to-Peer credit and the existing state-of-
the-art regarding optimization solutions, respectively.

« Chapter 4 presents a detailed description of the problem which this work addresses.

Introduction

Chapter 5 presents an overview of the solution designed for the problem, as well as the
rationale behind it.

Chapter 6 thoroughly describes the solution, providing additional information about the
architecture as well as some relevant implementation details.

Chapter 7, the results analysis, shows how the solution performed under several test
scenarios, which intended to simulate potential operational environments.

Chapter 8 sums up the key contributions from this work, evaluates to what extent were
the initial objectives attained and presents possible investigation paths towards
achieving better loan combination results.

2 Person-to-Person Lending

This chapter introduces the concept of Person-to-Person lending, from an electronic
commerce perspective. Despite being a natural form of human interaction, which can be traced
to early human communities, the opportunities created by the advent of modern global
communities change the rules of the game and have spawned a number of distinct initiatives.

2.1 Background

A written record of early social lending can be found in a British XVIII century document
which states:

“Whereas it has been an Ancient Custom in this Kingdom for Divers Artists to Meet
together and unite themselves into Society (But more especially for those who follow any Art or
Mystery) to promote Amity and true Christian Charity” (Rules of the Second Mechanics
Society, Plymouth, 1794 as cited in [Gor98]).

Friendly societies can be traced back to the first half of the 17th century. Evolving from the
ancient gilds and despite being similar to freemasonry societies, members of friendly societies
were not as much merchants as they were wage earners or artisans. Throughout the 18th
century, friendly societies gained legal support regionally, until being nationally recognized by
the Friendly Societies Act of 1793, which aimed to grant various privileges in return for
registration ([Gor98]). The 19th century was a period of tremendous growth for these societies
with membership surging from from 600,000 in 1793 to 4 million in 1874, representing the
most well attended voluntary associations after churches ([Gor98]).

Portuguese social lending history stems from the tradition of an age-old nonprofit sector’.
According to work regarding the Portuguese nonprofit sector by Raquel Franco [Fra05], by the
end of the XV century there were three types of associations, in Portugal, focused on economic
concerns, that emerged as a way of providing people with means to face natural disasters, and
professional contingencies, and at the same time, promoting solidarity among people from the
same professional activity.

1 The Portuguese nonprofit sector is at least as old as the Portuguese nation-state. The
origins of the country date back to 1143 and organized charities existed in the territory even
before then.

Person-to-Person Lending

One example of these economic-based civil society associations was the celeiros comuns
(common granaries). These associations were the result of the initiative of common people who
asked the public authorities to provide them with a legal framework covering the solidarity
practices already in place. These associations were a way of accumulating stores of grains
supplied by all peasants during good times, to be loaned to peasants to ensure the continuity of
agricultural activity for those affected by natural disasters or difficult times.

These solidarity principles spread to other peasants’ activities such as cattle breeding. In
this context, other forms of local solidarity emerged as mutual insurance schemes and mutual
credit associations. Their aim was to provide means to those in need through contributions
collected from all members of the association. Members contributed goods and money equally
to a collective fund that could make low interest loans to members in difficulty.

As Franco describes, by the end of the XVIII century the middle class, namely state
officers, liberal professions, and merchants, were also losing status and income. As the
corporatist framework and assistance schemes were disappearing, new forms of association
among members of the middle class, emerged such as mutuality schemes that sought to provide
help in case of illness and provide credit in case of financial difficulties. The associations with
an insurance profile were designated as montepios, whereas the associations with a credit saving
deposits profile were designated as caixas economicas .

There are currently around 120 mutualist associations in Portugal, with about 900,000
members and 2 million beneficiaries. The Uniao das Mutualidades Portuguesas (Union of the
Portuguese Mutualities), is the federative organization which protects the interests of the
associations.

It is from this collective tradition that spawns the first model of online social lending, not
surprisingly in Europe. February 2005 marks the start of the UK-based operation Zopa, the first
venture into building a P2P Lending Platform ([Reg05]).

2.2 P2P Lending Platforms

Peer-To-Peers lending platforms are online platforms where borrowers place requests for
loans online and private lenders bid to fund these. This new approach to social lending enables
local communities to grow beyond its geographical borders by recruiting members and
connecting with similar groups no matter how distant. For individuals this means having access
to business opportunities which were, until now, exclusive to banks and other financial
institutions.

The ability to scale along with the customer base that online P2P lending platforms
displayed made them an alternative to what had become the standard mechanism for financing:
banks. With the increase in comercial trade, society evolved existing person-to-person lending
institutions to the modern day commercial banking system. With these new — more
sophisticated — institutions, lenders could get a fixed return and delegate risk management to a
third-party. Borrowers could now access larger sources of capital, as long as their financial
status could be proved to the bank. Intermediary institutions drew their profit from growing
economies of scale and from the spread between the rates payed to lenders and the rates charged
to borrowers.

Recently the continually growing structures of banks, and respective costs, the lack of trust
in the financial system with recent bankruptcies together with structure deficiencies in the
current ability to evaluate and upkeep loan contracts, as address in works such as [Par99], has
opened the door for alternative financing mechanisms such as P2P lending.

P2P lending presents itself as a disintermediation alternative to financing, with key
advantages being the reduced infrastructure that needs to be support, thus reducing overhead

Person-to-Person Lending

costs, and the increased sense of community with aids in differentiating good from bad loans
and helps keeps the repayment rate higher, as is described later in this chapter.

The next sections presents some of the current approaches to social lending, that have
taking place in the market.

2.3 Lending Models

2.3.1 Pooled Lending

This financing model created by Zopa, was first hinted at in Zopa's patent application
[CPOO]. The model consists of having a lender lend money to a pool of borrowers with similar
credit ratings. In this model the risk of capital and interest for the lender is defaulters in the
pool. The risk of capital and interest of the lender is reduced considerably. This model is similar
to the traditional bank model and does not allow the lenders to select individual borrowers
[Wik(09a]. Here the main platform provides a “match-making” service, which joins lenders and
borrowers behind the scenes.

Taking the example of Zopa, as described in [Zopa09a], the platform operator analyzes the
credit scores of people looking to borrow and determine their credit rating, usually with the help
of a third-party rating agency. Lenders make lending offers — stating that they would like to lend
a certain amount to a certain type of borrowers for a certain interest rate and during a certain
amount of type. Borrowers create loan requests, stating the amount they desire and the rate they
intend to pay. The platform takes care of diversifying the investments by spreading the lenders
money across multiple borrowers. If the system finds a so called Zone of Partial Agreement
(hence the name Zopa) a match is complete, and borrowers enter into legally binding contracts
with their lenders. Borrowers repay monthly by direct debit. If any repayments are missed, a
collections agency uses the same recovery process that the conventional banks use. Zopa earns
money by charging borrowers a transaction fee and lenders an annual servicing fee.

2.3.2 Direct Lending

This model carries a more peer-to-peer sentiment, and consists of having the lender
directly pick the borrower to which to lend. The choice is typically based on information
provided by the borrower (borrower's identity, occupation, residence, financial status), and
validated by the platform which serves as a trust anchor, typically with the support of traditional
rating and identity verification institutions.

Potential lenders bid on funding all or portions of loans for specified interest rates, which
are typically higher than rates available from depository accounts at financial institutions. Each
loan is usually funded with bids by multiple lenders. After an auction closes and a loan is fully
bid upon, the borrower receives the requested loan with the interest rate fixed by the platform
operator at the lowest rate acceptable to all winning bidders.

An example of this model is the US operator, Prosper Marketplace. At Prosper, individual
lenders do not actually lend money directly to the borrower; rather, the borrower receives a loan
from a bank with which Prosper has contracted. The interests in that loan are then sold and
assigned through Prosper to the lenders, with each lender receiving an individual non-recourse
promissory note.

Person-to-Person Lending

2.3.3 Group Lending

The idea of group lending emerged from credit institutions in developing countries which
choose to lend to self-selected groups of entrepreneurs, who are jointly liable for a single loan,
instead of lending directly to individuals. This approach has gained tremendous attention from
economists an innovative way of providing credit to those without access to the formal market
([Wyd99]). The interest in this delivery method came from the notorious success of several
group lending institutions, especially that of the Grameen Bank in Bangladesh, founded in 1983
by Bengali economics professor Muhammad Yunus and reported in works such as [Ho88].
What has also fascinated economists is the manner in which group lending appears to be able to
exploit social ties and the potential for peer monitoring and social pressure between borrowers
in small-scale credit transactions.

It is based on this notion that group lending has entered the realm P2P lending, motivating
an approach which emphasizes the importance of building tighter social networks inside the
lending environment to create opportunities for peer monitoring and social pressure. This topic
has seen little research, as of yet, as knowledge is still kept inside of each P2P lending platform
provider's proprietary loop as they experiment around the concept.

2.4 The Role of Social Networks

A relevant attraction in social lending, when compared to traditional investment vehicles,
is the inherently humane approach to financing. This provides lenders with a different kind of
financial instrument: the ability to lend assistance to those with whom the lenders feel an
affinity, despite inferior credit rating. An interview found in [Bog09] accurately illustrates the
kind of behavior which arises. The document reports on how a major in the U.S. Marines states
that, when faced with someone who has served in the military and maybe made mistakes in the
past, stating as example maxing out credit cards, he will fell more apt to invest, even when the
borrower does not present a high credit rating. The same document refers a case of a borrower
which got a significant part of its funding from lenders in some way connected to its hometown.
Cases like this illustrate the significance of human ties in environments where direct P2P
lending is made possible.

Social lending platforms have strived to both build communities of their own, within the
lending environment, and to connect with other existing social networking vehicles, leveraging
existing relationships between members.

2.5 Impact on Microfinance

The sector of microfinance, referenced above in concern to the Grameen Bank experiment,
has also witness the development of P2P platforms. These projects allow the general public to
directly fund microfinance institutions or even microentrepreneurs, allowing them to tap into
good-willed capital from any part of the world.

Kiva.org launched in 2005 and was the first micro-lending Website that enabled an
individual to lend money to a micro-entrepreneur in the developing world through a
microfinance institution. Kiva states its mission as “(...)to connect people through lending for
the sake of alleviating poverty” [Kiv09b]. At the time of writing, Kiva's 119 field partners

Person-to-Person Lending

collaborate with Kiva, dramatically extending its scope and reach. Kiva has raised and lent over
70 million USD.

2.6 Current Research and Future Directions

One of the first, and few, works to address the Peer-to-Peer lending problem is that of
Michael Klafft, [KlaO8]. The work presents the results from an empirical analysis of 54.077
listings on the Prosper platform. The results demonstrate that verified bank account information
and the credit rating are important factors for a listing's success. Additional personal
information, such as a photo of the borrower, also has a significant influence on funding, as is
shown in Klafft's work. Less important, though still relevant, are peer groups within the online
community. The study finds that, similarly to the traditional banking system, interest rates on
P2P-lending platforms are primarily determined by credit rating and debt-to-income ratios. As
empirical data show, it will mainly be the reliable, AA- or A-rated borrowers who can exploit
the opportunity of lower cost loans. High-risk borrowers, however, have serious difficulties in
successfully acquiring loans online, as only about 5.5% of their listings are funded.

A report published by Celent [Cel07], regarding the US market, showed that in 2005, there
were $118 million of outstanding peer-to-peer loans. In 2006, there were $269 million, and, in
2007, a total of $647 million. The projected amount for 2010 is $5.8 billion, as shown in Figure
2.1. The same work estimated that typical loan amounts range from $8,000 to $20,000; on some
sites, multiple lenders may fund a loan, each offering to lend $25 to $200 to a borrower.

6 58

31 0 P2P Loans (Bn.
3 usD)

0,6

03
0,1
0 —

2005(*) 2006(*) 2007(*) 2008(**) 2009(**) 2010(**)

Figure 2.1: Peer-to-peer loans US market value: estimated(*), and projected(**) data from
Celent [Cel07].

These numbers are nonetheless from before the height of the Financial crisis of 2007-2009
[Wik09b], which provoked a profound liquidity crisis and caused a decrease in international
trade. It is still not clear what will be the impact of the regulation and consumer awareness
changes, that are underway across the globe, on the social lending market. Nonetheless some,
such as the Uncrunch America initiative and other P2P lending proponents argue that social

Person-to-Person Lending

lending is not only not part of the problem, but might also be an important part of the solution.
The official site of the Uncrunch America initiative states that:

“With banks tightening credit, American families and businesses need new alternatives.
Two leading social lending companies Lending Club and Virgin Money have teamed up with
other consumer-friendly personal finance companies, including On Deck Capital, Credit
Karma, Geezeo and ChangeWave to create an awareness campaign called UNCRUNCH
AMERICA™, aimed at providing resources to consumers and businesses in need of credit
solutions. Its goal is to help resolve the credit crunch and rebuild the economy by delivering
consumers secure, trustworthy tools and infrastructure to finance necessary expenses and make
critical investments.” in [Unc09].

Although still requiring research, P2P may come across as logic answer to the current
problem of reduced liquidity, since there are large amounts of money frozen due to lack of
investor confidence in traditional institutions. The money flow between lenders and borrowers
does not harm reserves or expand public debt, and can have a sustainable positive effect on each
nations Gross Domestic Product as pointed out by [Hen09].

According to user edited list in [Wik09a], there are currently 35 social lending platforms
across the world, including countries such as the UK, the USA, Canada, France, Germany, Italy,
Spain, Switzerland, Poland, Sweden, Japan, China and India, among others.

2.7 Summary

This chapter intended to provide a comprehensive past, present and future presentation of
the person-to-person lending topic. The chapter begins with an historical contextualization, by
describing some of the social systems which predated the online P2P lending platforms. The
text goes on the present a review of different approaches made to this problem. Finally the
chapter presents results from the first studies on the subject and also uses work from existing
research to project into the future of the P2P lending. With a long history behind, and
demonstrating sustainable growth, even in troubled times such as ours, the evidence seems to
show that a bright future awaits P2P lending worldwide.

The next chapter provides a technical survey of the environment that surrounds the
optimization of problems of the type presented by investment-loan matching in peer-to-peer
lending.

Optimization Metaheuristics

3 Optimization Metaheuristics

The quest for solving problems in an efficient and effective way is, by definition, one of
the goals of all engineering work and probably one of the most consistent pursuits in human
activity. Many of these problems can be defined as a search for the best configuration of a set of
variables in order to achieve a certain goal, this field of study is called Optimization.

3.1 Optimization Problems

Optimization problems are usually categorized into two major families: those which
solutions come from a spectrum of continuous values and those which solutions come from a
discrete range of values.

Optimization problems which involve continuous ranges for parameters, imply the feasible
solutions space to be infinite. Methods for solving optimization problems under continuous
input parameters are found to be classified as either gradient-based or non-gradient based
[SHJO0O0]. Gradient based methods are the most used ones and three subclasses of these kind of
methods can be identified: Gradient Based Search Methods (GBSM), Response Surface
Methods (RSM) and Stochastic Approximation Methods (SAM) [Res06].

Due to the discrete nature of the problem's decision variables, these methods lie outside the
scope for this work and, as such, are not discussed here.

Inside the second family of problems, that of discrete variable optimization problems, there
is a broad class of problems which has been of particular interest for research in the recent years
and is relevant to work at hand. This is the class of Combinatorial Optimization (CO) problems.
According to [PS82], in CO problems we are looking for an arbitrary object from a finite — or
possibly countable infinite — set. This branch of optimization, lies where the set of feasible
solutions is discrete or can be reduced to a discrete one, and the goal is to find the best possible
solution [Wik(09c].

A more formal definition would be, found in [BRO3]:

10

Optimization Metaheuristics

Definition 3.1: Combinatorial Optimization Problem

A Combinatorial Optimization problem P=(S, f) can be defined by:

- aset of decision variables X ={x,,...,x,| ;
- variable domains D,,...,D, ;
« asetof constraints C,,...,C, , which relate the decision variables;

+ an objective function f to be maximized, where f:D X...XD, — R

From which results that the set of valid solutions, or problem space, for a CO problem is
thus:

- S={s={(x,v)), ... (x,,v,),}:v,ED,Assatisfies C1,...,C,,|

4 n

Solving combinatorial optimization problem is then the process of finding a solution
s“€S with minimum’ objective function value, i.e., f(s*)<f(s)V S

Due to the practical importance of CO problems, a number of algorithms have been
developed to approach them. These algorithms fall into two categories: complete and
approximate. Complete algorithms are guaranteed to find, for every finite size instance of a CO
problem, an optimal solution in bounded time [PS82]. Yet, for CO problems that are NP-hard
[GI79], no polynomial time algorithm exists. Therefore, complete methods might need
exponential computation time in the worst-case. This often leads to computation times too high
for practical purposes. Thus, the use of approximate methods to solve CO problems has
received a growing amount of attention over the years. In approximate methods we sacrifice the
guarantee of finding optimal solutions for the sake of getting good solutions in a significantly
reduced amount of time.

Classic approximate methods typically lend themselves to classification in constructive
methods and local search methods. Constructive methods build a complete solution putting
together distinct solution components. According to [BR03], they are thought to be faster but
also return lower quality results when compared to local search algorithms. Local search
approaches try to systematically cover the solution space by starting at some initial point and
then replacing the current solution with a better one, choosing from the set of neighbors. A
neighborhood is defined as the set of solution which can be created from applying a determined
set of operators which modify the solution only slightly, to yield a new solution. A definition of
neighborhood in presented below.

Definition 3.2 — Neighborhood of solution

A neighborhood structure is a function N:S—2° | that assigns to every s€ES a set
of neighbors N (s)SS

A significant amount of work has been put into a new category of approximate algorithm,
which tries to wrap basic heuristic knowledge in higher level frameworks, with the aim of
efficiently and effectively exploring the search space. These methods are called metaheuristics,
and are discussed in the following section.

3.2 Metaheuristics in Optimization

2 As minimization of a function f can be seen as maximization of symmetric function -f, the chapter focuses only
on minimization, without loss of generality.

11

Optimization Metaheuristics

The term metaheuristic, first introduced by Glover [Glo86], derives from the composition
of two Greek words: heuriskein, which means “to find”, together with the prefix meta which
means “above” or “beyond”. The term describes solution methods that mix higher level
strategies with local improvement procedures in order to escape from local optima and to
perform a robust search of a solution space. Today it refers to a broad class of strategies for
optimization and problem solving. Metaheuristics encompass techniques that range from basic
local search procedures to complex learning processes. They are often inspired by analogies
(biological, physical, ethological, etc) with real phenomena, but all with the same intent: to
guide the search process.

Metaheuristics are defined at a high level of abstraction, making them problem-agnostic,
although, at lower levels of abstraction, problem-specific knowledge may be used and is often
needed. They are approximate and usually non-deterministic.

Metaheuristics may use forms of memory in order to benefit from acquired search
experience. They are, to some extent, stochastic as they incorporate randomized processes in
order to promote diversification, to increase robustness and to counter the huge number
possibilities.

Despite the fact that even a straightforward implementation and application of a
metaheuristic to a given problem instance is usually able to get fairly good results, some degree
of customization tends to be required to obtain optimal performance from the methods. Both
adding domain specific knowledge to the lower level procedures of the metaheuristic as well as
the effective tuning of parameters are thought to be valid strategies to obtain performances that
easily improved on canned metaheuristic solutions.

The techniques described here are all based upon the idea of choosing a starting point and
then altering one or more variables in an attempt to increase the fitness or reduce the cost. The
various approaches have the following two key characteristics [HopO1]:

1. Whether they are based on a single candidate or a population of candidates : Some of
the methods to be described, such as hill-climbing, maintain a single “best solution so
far” which is refined until no further increase in fitness can be achieved. Genetic
algorithms, on the other hand, maintain a population of candidate solution. It is the
overall fitness of the population which is improved after each iteration.

2. Whether new candidates can be distant in the search space from the existing ones :
Methods such as hill-climbing take small steps from the start point until they reach
either a local or global optimum. To guard against missing the global optimum, it is
advisable to repeat the process several times, starting from different points in the search
space. An alternative approach, adopted in genetic algorithms and simulated annealing,
is to begin with the freedom to roam around the whole of the search space in order to
find the regions of highest fitness. This initial exploration phase is followed by
exploitation, i.e., a detailed search of the best regions of the search space identified
during exploration. Methods, such as genetic algorithms, that use a population of
candidates rather than just one allow several regions to be explored at the same time.

The next section group the presented metaheuristics into two groups according to the
characteristics described above:

« Trajectory-based metaheuristics, which usually use a single-candidate solution, but
comprises methods which only exploit locally and those which combine the exploration
and exploitation referred above;

» Population-based metaheuristics, which maintain a set of candidates, and usually
explore the solution space freely, in order to escape local optima.

12

Optimization Metaheuristics

3.3 Trajectory-based Metaheuristics

3.3.1 Pure Random Search

Pure random search is the simplest global random search algorithm. It consists of taking a
sample of n independent random points and evaluating the fitness function for each of them.
Not only very simple to implement, it is often used as a benchmark for comparing properties of
other global optimization algorithms [Zhi07].

3.3.2 Hill-Climbing

The name hill-climbing implies that optimization is viewed as the search for a maximum in
a fitness landscape. However, the method can equally be applied to a cost landscape, in which
case a better name might be valley descent. It is the simplest of the optimization procedures
described here. The algorithm is easy to implement, but is inefficient and offers no protection
against finding a local minimum rather than the global one. From a randomly selected start
point in the search space, i.e., a trial solution, a step is taken in a random direction. If the fitness
of the new point is greater than the previous position, it is accepted as the new trial solution.
Otherwise the trial solution is unchanged. The process is repeated until the algorithm no longer
accepts any steps from the trial solution. At this point the trial solution is assumed to be the
optimum. As noted above, one way of guarding against the trap of detecting a local optimum is
to repeat the process many times with different starting points.

3.3.3 Simulated Annealing

Originally described by Kirkpatrick in [KGV83], Simulated Annealing (SA) tries to
emulate the way in which a metal cools and freezes into a minimum energy crystalline structure
(the annealing process) and compares this process to the search for a minimum in a more
general system.

At that time, it was well known in the field of metallurgy that slowly cooling a material
(annealing) could relieve stresses and aid in the formation of a perfect crystal lattice. [KGV83]
realized the analogy between energy state values and objective function values, creating an
algorithm that emulated that process.

The SA algorithm tries to escape local optima by allowing the search to sometimes accept
worst solutions with a probability (p), which decreases along with the temperature of the system
(. In this way, the probability of accepting a solution that resulted in a certain increase in the
objective function (Af), at a certain temperature, would be given by the following formula
described in the original paper by [KGV83]:

Af
p(Af,t)=le’ ,Af=<0
1,A f>0
Observing the formula, it is clear that downhill transitions are possible, with the probability

of them occurring decreasing with height of the hill and inversely related to the temperature of
the system.

13

Optimization Metaheuristics

In order to implement the SA algorithm, the initial temperature of the system, and that
temperature is going to be lowered, still has to be decided. The slower the temperature is
decreased, the greater the chance an optimal solution is found.

Most times a reasonably good cooling schedule can be achieved by using an initial
temperature (7,), a constant temperature decrement («) and a fixed number of iterations
ate each temperature. These kind of cooling schedules are called fixed schedules. The problem
with these schedules is that it is often impractical to calculate the ideal values for 7', and

X

3.3.4 Tabu Search

Tabu search is based on the premise that problem solving, in order to qualify as intelligent,
must incorporate adaptive memory and responsive exploration. An analogy provided by [GLO07]
is that of mountain climbing, where the climber must selectively remember key elements of the
path traveled (using adaptive memory) and must be able to make strategic choices along the
way (using responsive exploration).

Algorithm 3.1 shows the outline of a simplified Tabu Search algorithm.

P < GeneratelnitialSolution()
s*¥ e s
TabuList — &
while termination conditions not met do:
N(s) < {zE€N/(s):z&TabuListV zis allowed by aspiration
s < BestOf(N)
if fis) < fis*) then
s*¥e—g
UpdateTabulList
end while

Algorithm 3.1: Tabu Search algorithmic outline

3.4 Population-based metaheuristics

Population-based metaheuristics deal, in every iteration of the algorithm, with a set (i.e. a
population) of solutions, usually dubbed individuals, rather than a single solution. The final
outcome of such an approach is also a population which implies that, if the problem has a single
optimum, population members should converge to it, but if the problem has multiple optima, a
population has a better chance at capturing each of them as is shown is Figure 3.1.

14

Optimization Metaheuristics

N\
g
TS
BOES
al

Figure 3.1: Population-based results in single optimum and multiple optima problems [ETHOS5].

3.4.1 Evolutionary Computation

Evolutionary Computation (EC) is the family of algorithms which share the metaphor of
natural evolution, loosely adapted from the field of biology. The underlying concept is that,
given an initial population, by selecting only the fittest elements to survive and reproduce, one
should expect that each new generation of offspring generates fitter individuals. With this
principle in mind a series of methods have been developed, most notably: Genetic Algorithms
(GA), Evolution Strategies (ES) and Evolutionary Programming (EP). All of these methods
share at the core the following approach: a population of solutions, each one of them having a
certain fitness (calculated by evaluating the objective function for each solution), to whom a
series of probabilistic operators, like mutations, selections and recombinations, are applied. By
using these kinds of stochastic solution manipulation, innovative solutions can be unlocked
which explore the solution space in a new way, eventually escaping local optima. Manipulation
is generally followed by selection: in which only a subset of the individuals, the ones which
exhibit better fitness values, is allowed to continue reproducing.

Algorithm 3.2 shows the outline of a standard EC method ([BR03]).

P < GeneratelnitialPopulation()
Evaluate(P)

while termination conditions not met do:
P' — Recombine(P)

P" < Mutate(P)

Evaluate(P")

P < Select(P"U P)

end while

Algorithm 3.2: Evolutionary Computation algorithmic outline [BRO3]

As has already been stated, the three different approaches to evolutionary computing share
the same basic structure. The main differences between them lie in their objectives, the way
their population is coded and the way they use the different evolutionary operators.

15

Optimization Metaheuristics

EP has been initially developed having in mind machine intelligence. Its main particular
characteristic is the fact that solutions are represented in a form that is tailored to each problem
domain. EP tries to mimic evolution at the level of reproductive populations of species, and
recombinations do not occur at this level, so EP algorithms seldom use it.

On the other hand GAs use a more domain independent representation (normally bit
strings). The main problem with GA is how to code each solution into meaningful bit strings. Its
advantages are that mutation and recombination operators are easily implemented as bit flips
(mutations) and string cuts followed by concatenations (recombination).

The main difference between ES and the other two methods just discussed is the fact that
selection in ES is deterministic (the worst N solutions are discarded) and that ES uses
recombination as opposed to EP.

For the interested reader, a more detailed taxonomy of EC algorithms is available in
[CCH99].

3.4.2 Particle swarm optimization

According to its authors in [KE95], particle swarm optimization (PSO) has its roots in two
main component methodologies. Perhaps more obvious are ties to artificial life in general and
bird flocking, fish schooling and swarming theory in particular. It is also related, however, to
evolutionary computation, and has ties to both genetic algorithms and evolutionary
programming. The basic underlying concept is the way how social learning influences our
beliefs and behaviors.

The particle swarm simulates this kind of social optimization. For a given problem, with a
known fitness function a population of individuals, or particles, defined as random solutions for
the problem is initialized. An iterative process to improve these candidate solutions is set in
motion. The particles iteratively evaluate the fitness of the candidate solutions and remember
the location where they had their best success. The individual's best solution is called the
particle best or the local best. Each particle makes this information available to their neighbors.
They are also able to see where their neighbors have had success. Movements through the
search space are guided by these successes, with the population usually converging, by the end
of a trial, on a problem solution better than that of non-swarm approach using the same methods
[Wik09d].

The main algorithmic characteristic of this method, is that of considering each individual
as a particle, with a given position and velocity at each time. It is the velocity that affects its
displacement throughout the search space, and also serves as entry point for social influence. At
each iteration, the velocity of each particle is influenced by the global optimum (social
component) as well as the particle's own local optimum (cognitive component).

Algorithm 3.2 shows the outline of a simple PSO formulation.

16

Optimization Metaheuristics

-

Xx; < GeneratelnitialParticleSolutions()
Vv, « GeneratelnitialParticleVelocities()
InitializeGlobalBestSolution(:g;)

InitializeLocalBestSolutions(3)

while termination conditions not met do:
Evaluate(X;)
§ — BestOff X;)
Update each particle's velocity using:

(= F) W i F i (8= X))

V,=wv, +c social ! social® (

cognitive r cognitive

where T, and 7L.0g,”-n-w are random vectors created for each particle and
used to apply the social and cognitive constant.. The o operator represents the
Hadamard matrix multiplication operator;

Update each particle's position, applying the velocity using: X;=X;,+v; ;

-
A

return g

Algorithm 3.3: Particle Swarm Optimization algorithmic outline [BR0O3]

3.5 Constraint Programming

Constraint Programming is a programming paradigm, where the programming is done by
defining variables with relationships in the form of constraints. This differs from traditional
programming paradigms, including object oriented programming, which provide little support
for specifying constraints among programmer-defined entities. In the traditional programming
paradigms it is the role of the programmer to explicitly state and maintain such relationships.
Using a Constraint Programming approach the programmer only need to state this kind of
relationships once.

The CP paradigm is closely related to Constraint Satisfaction Problems. Using CP the
programmer describes the combinatorial aspects of the program as a CSP. The CSP is then
solved by a Constraint Solver.

Constraint programming has been successfully applied in numerous domains. Recent
applications include computer graphics (to express geometric coherence in the case of scene
analysis), natural language processing (construction of efficient parsers), database systems (to
ensure and/or restore consistency of the data), operations research problems (like optimization
problems), molecular biology (DNA sequencing), business applications (option trading),
electrical engineering (to locate faults), circuit design (to compute layouts), etc.

The nature of the matching problem suggests itself the usage of this paradigm for solution
generation, as each solution must comply with all the conditions specified by the members.
More detail on this can be found in chapter 4 and 5.

17

Optimization Metaheuristics

3.5.1 Constraint Satisfaction Problems

A finite constraint satisfaction problem is composed by a finite set of variables, each of
which with an associated finite domain of possible values and a set of constraints that restricts
the values the variables can simultaneously take.

The domain of a variable X, is the set of all possible values that can be assigned to Xi .
The domain of X, will be denoted DX,

An assignment is a binary relation between a variable and a value in the variable’s domain.
An assignment of a value to a variable is denoted <X,,v,>

A compound assignment is a simultaneously assignment of values (possibly empty) to a set
of variables. This is denoted (<X, v,>,..., <X,,v,>).

A constraint is a restriction of the values that a set of variables can simultaneously be
assigned. To denote a constraint on the set of variables § , C; will be used. Constraints
are categorized by the number of subject variables.

A unary constraint is a constraint which has exactly one subject variable e.g. X;>0

A binary constraint is a constraints which has exactly two subject variables e.g. X;> X

A N-ary constraint is a constraint which has exactly N subject variables. Unary and binary
constraints can be visualized using undirected graphs.

Satisfies is used as a binary relation between an assignment or compound assignment and a
constraint. If the compound assignment CA contains a set of variables S that are the subject of a
constraint Cg ,then CA satisfies Cg if and only if CA is not in conflict with C.

A more formal definition of a CSP is now possible:
Definition 3.3: Constraint Satisfaction Problem ([])
A Constraint Satisfaction problem can de defined as a triple (X ,D,C)
+ Xis the CSP's finite set of variables,ie., X=X, .., X ;
« D is afunction which maps every variable in X to a domain of possible values;

« C is a finite (can be empty) set of constraints on a subset of variables in X. C can be
seen as a set of sets of possible compound assignments.

Solving a CSP implies assigning each variable a value of its respective domain, creating a
compound assignment containing all the variables X which satisfies all of the constraints C. A
solution tuple for a CSP is a compound assignment containing all the variables of the problem,
where all the constraints are satisfied. A CSP is said to be satisfiable if a solution tuple exists for
1t.

A common approach to solving CSPs, and one that has motivated significant research
work is that of search-based methods [Tsa93]. Many of the search algorithms discovered derive
from the same base algorithm called Backtracking. Techniques include constraints propagation
and local search. These techniques can be used on problems with nonlinear constraint. Variable
elimination and the Simplex algorithm are used for solving linear and polynomial equations and
inequalities [Wik(09e]. For further background on CSP solving methods please refer to
[RBWO06] and [Bar99].

18

Optimization Metaheuristics

3.5.2 Constraint Programming Libraries

The constraint programming paradigm can be used together with a number of other
paradigm. It is common to embed the ability to declare constraints in an host language.
According to [Wik09e] the first host languages used were logic programming languages, so the
field was initially called constraint logic programming. The two paradigms still share many
important features, like logical variables and backtracking. Today most Prolog implementations
include one or more libraries for constraint logic programming.

Nonetheless, the need to easily integrate the matching system produced by this work, with
a separate Web application suggested the need for a language that was dynamic, to allow the
necessary interactive experimenting, had a strong base library to facilitate integration with the
Web system so that the overall development time was shortened. The choice was narrowed
down to Ruby, since the existing Web application had been built using Ruby on Rails [TH(09]
and Python due to its very mature base library and extensive multi-paradigm support (which
would make for smoother connection between the object-oriented and the constraint
programming paradigms used).

The most significant available constraint programming solutions for these dynamic
languages were [Wik09e]:

« Cassowary constraint solver, open source project for constraint satisfaction (accessible
from C, Java, Python and other languages);

+ logilab-constraint, open source constraint solver written in pure Python with constraint
propagation algorithms;

« python-constraint (Python library, GPL);

« Gecode, an open-source portable written in C++ developed as a production-quality and
highly efficient implementation of a complete theoretical background. Bindings
available for Ruby via Gecode/R;

« Conssolv, a simple constraint solver in pure ruby;

The choice was python-constraint essentially due to its pure Python nature, its small size
(circa 1400 library lines of code, including comments and whitespace) and the documentation
available in [Nie05]. These characteristics improve the learning experience due to the high
readability of the code base and the quality of the documentation, which together make the
learning curve less steep, and open the way to future extension.

3.6 Summary

This chapter presented various works related to the subject of discrete variable
optimization. A formal definition of this kind of optimization problem was shown, which can
later be applied to the optimization problem at hand. A series of optimization techniques, known
as metaheuristics, which provide reusable strategies for solving optimization problems were
also presented.

The chapter goes on to describe a programming paradigm which is of particular interest for
the kind of problem at hand: Constraint Programming (CP). The text discusses what is CP,
presents the underlying concept of Constraint Satisfaction Problems and presents technologies
to solved them in the context of the current work.

The next chapters will use the concepts of Optimization and CP and apply them to the
problem at hand.

19

4 Loan Request and Investment Offer
Combination

Despite the main focus of this work is the optimization component, some aspects regarding
the overall project must be detailed to allow complete understanding of the problem. The next
section provides further information about the operating model for the platform.

Building the foundation for an online social lending community, requires work in several
areas namely:
« building a match optimization system, the primary focus of this work;
- developing a web application, with the associated user experience concerns;
« legal issues arising from establishing this kind of social platform under the local law.

4.1 Platform Operation

The platform is operated by a for-profit organization, which intends to provide alternative
financial services, as much as possible, outside the modern banking system. The underlying
principle is direct person-to-person lending. The existence of an online hub, which allows
people to meet and establish social and financial connections, solves the scale issue with
traditional credit communities. As people can join together to provide money for a single
borrower, it is possible to finance larger loans without making each individual lender have lend
a significant amount of money to the same borrower. This collaborative concept give each
investor the opportunity to diversify its investments by choosing different loan types, and only
investing the amount of money intended. The illustration in Figure 4.1 depicts final art from the
Web application that represents the kind of collaborative and social sentiment that is intended
for the platform.

20

Loan Request and Investment Offer Combination

do & mais recente
le de investimentos
de Portugal.

Figure 4.1: Miscellaneous final art from Web platform front-end [Rod09].

4.2 Lenders

Lenders or investors provide the money for the loans, and received the agreed interest
through the loan life cycle. Lenders submit investment offers specifying the bid as:
+ maximum amount invested;
+ minimum interest rate offered.
Investment offers target specific lending markets. Lending markets are groups of similar
loan requests, regarding borrower risk and loan duration. Investors are advised to carefully pick
their loan markets, according to their investment strategy and to diversify as much as possible.

4.3 Borrowers

Borrowers receive money from loans, and pay it back with the agreed interest along the

loan life cycle. Borrowers submit loan requests specifying the loan as:
+ minimum amount required;
+ maximum interest rate accepted;
+ loan duration.

Borrowers are categorized according to the associated credit risk. The credit risk associated
with each borrower will be initially determined according to information provided by the
member, after validation and evaluation by a third-party rating agency. Other models for risk
management are proposed in the Future work section.

4.4 Security and Fraud prevention

21

Loan Request and Investment Offer Combination

Due to the nature of the project, an identity management strategy is required. To make the
platform a safe means of interaction for everybody, users are consider to have different access
levels:

« Member (basic): signed up for the platform, and confirmed e-mail address.

« Lender (verified identity) : Same as member, and provided additional personal data (full
name, address, tax number, etc.) which should be verified by a specialized third-party.

« Borrower (credit rated): Same as lender, and provided additional financial data (housing
conditions, existing debt, etc.) which should also be verified and evaluated by a rating
agency

4.5 Business Model

The business model of the platform relies on two fundamental sources of income:
« An opening fee, which corresponds to charging for the successful matching of lender
and borrower. This fee is charged to borrowers only.
+ A commission over the interest received by investors, which corresponds to charging
for the processing of borrower payments. This fee is charged to lenders only.
+ An expense fee for withdrawing money for the Member's Private Account.

Despite being a for-profit initiative the business model is thought to be value-driven, in
that it charges only for the services which actually deliver value to members (the remaining
usage of the site, bid placement, account management is free of charge), and is at the same time
transparent, in that it charges for the real expenses that the platform operators have to deal with.

Due to business and legal implications, the platform operator itself does not intend to
continuously supply money directly or otherwise invest in loans inside the system in the long
term, but still may need to it initially to achieve critical mass. In case the platform operators do
invest, they will operate under the exact same conditions as lenders.

4.6 Legal issues

The Portuguese law is particularly restrictive in terms of financial operations. Both paying
back interest for money deposits, and charging interest for loaned money is restricted to very
small amounts outside which a different regulation altogether applies: the "Regime Geral das
Institui¢des de Crédito e Sociedades Financeiras" (General Regime of Credit Institutions and
Financial Societies, loosely translated), regulates the conditions under which Banks and other
Financial Institutions operate [BdP04]. The legal document specifies the activities which are
reserved for each kind of institution, none of which can be performed by other types of
organizations.

One of the alternatives considered as the legal framework for the project was creating a
new financial institution dedicated to operate the Person-To-Person lending platform.
Nonetheless, the stringent conditions imposed to these kinds of institutions in the regulation and
the number of subjective criteria used in approving the creation of a new bank or other credit
institution made it extremely hard to approach the alternative.

Another model was then designed which consisted of taking the platform operator out of

the way, allowing members to directly borrow and lend to each other. In this model the entities
involved in the loan contracts are the exclusively members and not the platform operator. In

22

Loan Request and Investment Offer Combination

turn, the platform operator and the members are bound by the Terms and Conditions, modeled
upon the Zopa Principles [ZopaO9b] and the Prosper Terms of Use [Pros09]. These terms
essentially specify how the users move money to and from the platform, and how they accept
being charged for the matching service done by the system. The terms also clarify the
procedures upon payment default by any borrower, and the steps which the platform operators
take, from the initial notifications, to the assignment of a credit recovery agency to the collect
the missing amount in the name of the lenders.

4.7 Summary

This chapter presented a comprehensive description of the problem, intending to describe
the particular formulation of P2P credit, in the context of the project which this work relates to.
The chapter defined the core concepts required to understand the loan request and investment
offer combination platform, and presented them from different perspectives, ranging from the
more operational platform management issues to more legal-oriented considerations.

The next chapter introduces a formal definition of the presented problem, and proposes a
corresponding solution.

23

S Proposed Solution

5.1 Formal Problem Definition

The problem of combining loan requests and investment offers, can be considered as an

optimization problem, taking the decision variables as the rates at which loans are matched,
together with the amounts involved. The constraints would be set by the conditions specified by
the members, when placing their terms for intended rates and amounts. The objective function
would take into account the stated goals of the platform: to maximize the satisfaction of both
borrowers and lenders, while contributing for the platform's profitability.

More formally the problem P=(S, f) can be defined as a generic optimization

problem by specifying:

the set of parameters:
° N 1is the number of lenders participating;

° M is the number of borrowers participating;

° Rmin, is the minimum rate at which lender i is willing to lend its money;
° Rmaxj is the maximum rate at which borrower j is willing to borrow money;
° Amax ., Amin,; are the maximum and minimum amounts of money, lender i is

willing to lend;

(o}

Amax i Aminj are the maximum and minimum amounts of money, borrower]
wants to borrow.

the set of the decision variables X={r”,a11,rlz’alz’...,r”,a”,...rNM,aNM} ,

where:
° r; represents the rate at which lender i lends to borrower j and

° a; represents the amount of money lender i lends to borrower j;

24

Proposed Solution

« the variable domains defined for each instantiation of the matcher where:

° D(rij) is the interval [(,1] , where the maximum allowed rate is 100%, due
to business considerations;

° D(al.j) is the interval [0, A j] , where A, represents the maximum amount

requested by borrower j.

« the constraints which result from the members terms, which consist of:

N
2 a;xr;

i=1

N
Z a;
i=1

j must be less than or equal to the proposed maximum rate;

o CI: SRmaij jE€{1,...,M} ,i.e., the overall loan rate for borrower

M

Z aij*rij

=1

M
Z a;
Jj=1

lender i must be greater than or equal to the proposed minimum rate;

ZRminiViE{l,...,N} , 1.e., the overall investment rate for

(o)

M

C3: Amin,<). a;<Amax,Yi€(l,..,N| , ie., the total amount invested by
j=1

lender i must be less than or equal to the amount offered;

N
C4: Aminisz a;< Amax/.VjE[l,...,M} . ie., the total amount received by
JT e .
borrower j must be less than or equal to the amount requested;

o]

« afunction f:D(r)XD(a;)X..XD(r;)XD(a;)X..XD(ry,)XD(ay,)—>R
which computes the utility to maximize, defined as mapping the decision variable's
domains into a decimal value.

The solution space is then the set of valid solutions, or:

. S ={ S={“'(rij’ Rl])’ (aij s le)’ } L R;€D(ry) NA;ED (ay)As satisfies all the constraints]

5.2 Utility functions

Defining an utility function is a sensible issue and has a great impact on the overall
business quality of the solutions. Nonetheless validation of such a function presents a non-trivial
challenge, which may fit better the field of efficient markets or an even more social science
domain, rather than the field of computer science. This is why the comparative study of
different utility functions was deemed out of scope for this work, and although two utility
functions are presented, for illustration purposes, only the latter will be subject to experiments.

5.2.1 Dissatisfaction cost

25

Proposed Solution

A simple approach for evaluating solutions was first proposed, which tried to make sure
that all the members were as close as possible to their specified terms. The underlying belief is
that, for one, people state their limits within their comfort zone (are comfortable with a deal
closing on the limit) and that, on the other hand, as everyone nears the limit of what they
specified, they will be accepting deals which are better for the community as a whole, since they
are being more competitive. This is obtained considering the sum of the squared margins
obtained by each member, and minimizing it.

5.2.2

N M
DissastisfactionCost=)_ | (r;— Rmin,)*+ (Rmax ;— r,.j)2

i=1 j=1

Tight margin utility

The tight margin utility function tries to reward profitable and fair solutions. Its base
rationale is that people specify their limits as their baseline, from which they expect some sort
of profit margin. To achieve this, the function takes into account three key factors:

member profit: how much did the members benefit from the solution, what was their
margin;

fairness: how evenly distributed are these benefits;

demands satisfaction: how well where the demands fulfilled in the solution, this is
particularly significant for the platform's profitability which comes from the volume of
money successfully matched.

More formally the tight margin utility is computed by:

TightMarginUtility=(k

where:

Tightness=

* MemberMargin)*(k xTightness)*(k * FulfillmentRate)

MemberMargin Tightness FulfillmentRate

Member Margin represents the sum of margins obtained by each member. Here margin
is understood as the difference between the initial terms the member specified and the
actual deal conditions proposed by the solution. This can be computed as:

N M
MemberMargin= Z (r;— Rmin,)+ Z (Rmax ;—r;)
i=1 j=1
Tightness represents how close together are the individual gains of each member, a
solution where some member make are highly favored in the detriment of others
exhibits low tightness where a solution where margins are homogeneous is considered
tight. Tightness can then be computed as:

1

U({(rij—Rmini):iE[l,N],jE[l,M]}V[(Rmaxj—rij):iE[l,N],jE[l,M]})

Fulfillment Rate indicates the relevance of the amount that was matched, in the light of
the total amounts of money which were in stake. A fulfillment rate of 1 or 100% means
that all the available money was invested and all the money requested was fulfilled.
This can be computed as:

26

Proposed Solution

2xTotalMatchedAmount

FulfillmentRate=
ulfillmentRate (TotalOfferedAmount + TotalRequestedAmount)

« Each of the factors is weighed according to a specific parameter (KyemberMargins Krightness and
Krunfiimenrae), Which allows to fine tune the utility function for the kind of results
intended.

5.3 Proposed Solution

Formulating the problem as a generic optimization problem as stated in 5.1, allows the
application of a number of meta-heuristics, and to directly compare results in order to propose
an approach for the final platform matching system.

The designed system consists of three components: a constraint solving tool; the
optimization suite and an adapter for the suite that uses the constraint solving library to solve
the specific problem. Figure 5.1 illustrates these blocks and shows their high-level interactions.

metaheuristic implementation domain specific adaptation

(optimization matcher_optimizer |

A

solution generation

b

[matcher_constraint |
(pyconstraint ’

Figure 5.1: Proposed Solution Architecture Overview

5.3.1 Constraint library extensions

The first problem to address was that of efficiently producing feasible solutions, complying
with all the existing constraints. As discussed in section 3.5, the constraint programming
paradigm is a natural choice for this class of problems. The python-constraint library, described
in section 3.5.2, was chosen and extended to match the specific system requirements. The
extensions made to the base library intend both to provide additional constraints missing from
the original library and to add functionality required by a large number of meta-heuristics which
would depend on the solution generation mechanism to explore the solution space. The added
constraints where necessary for the correct specification of the optimization problem, as
formulated earlier. This was the case with providing constraints on weighted averages, as
required by the member rate terms, both for lenders and borrowers, which are weighed by the

27

Proposed Solution

amount involved in each contract. From the optimization standpoint, there were low-level
functionalities that required close interaction with the solution generation strategy, yet were
relevant for solution space exploration. This was the case with a an API method for retrieving
the valid neighborhood for a given solution, as well a way for obtaining the closest feasible
solution to a specified solution, even if invalid. These operations could not be efficiently
implemented at a higher-level or would otherwise require replicating a large part of the solution
generator behavior in the optimization adapter layer.

5.3.2 Optimization framework

The optimizer framework provides strategies for solving optimization problems. An
Object-Oriented (OO) framework is a reusable design together with an implementation [JF88].
The design represents a model of an application domain or a pertinent aspect thereof, and the
implementation defines how this model can be executed, at least partially [Rie00]. Although the
concept may be similar to object-oriented libraries, the key difference relies in the control of
program flow, which is not imposed by the caller, as with libraries, but by the framework itself
[Wik09f, Rie00]. It is commonplace to find frameworks which use Inversion of Control (IoC)
[Fow04] techniques to define the basic operation flow, providing well-defined entry-points for
the use-case specific code.

The optimizer framework specifies the abstract behavior of an optimizer object, and
provides concrete implementations of popular search meta-heuristics such as those described in
chapter 3. The problem specific use-client code needs only to take care of what is really domain
specific: the solution generation, solution evaluation and solution visualization. The components
which provide these adaptation services are then injected into the optimizer object which wraps
the meta-heuristic algorithm. This dependency injection design decision aims to reduce
coupling, allowing to easily apply the same problem-specific adapters to other meta-heuristic
optimization objects and to reuse the same meta-heuristic optimization objects on different
problem-specific adapters. The optimization classes can also be extended to provide new meta-
heuristic techniques, which will work with existing problem adapters as long as the framework
contract is kept: typically only the core optimization routine needs to be implemented as the
abstract Optimizer class already provides flow-control tools such as termination criteria
detection, which can also be extended.

5.3.3 Matcher optimization use-client

The problem-specific adapter bridges the two components described above. An
optimization adapter is placed inside the IoC framework, providing solution generation,
evaluation and visualization services to the Optimizer classes. The adapter produced for the
current problem uses the solution generation infrastructure introduced above, to model the
problem, as it was formulated, offering wrapping in generic solution generation and
manipulation services. The adapter also provides a solution evaluation service, which
implements the utility function; and a simple character-based solution output service to aid
development. Although the solution generator component and the underlying constraint solving
libraries and necessarily coupled, it would be easy to replace it with another generator using any
other technique. This holds true for the remaining components of the adapter, which give it a
degree of flexibility.

28

Proposed Solution

5.4 Summary

This chapter builds on the qualitative presentation of the matching problem, provided by
earlier chapters, and describes a quantitative approach to solving it. A formal definition is
proposed, specifying all of the typical components of an optimization problem. Having
adequately formulated the problem, a solution design is presented which includes a reusable
framework for optimization problems, and a problem specific use-client adapter for this
particular matching problem. The next chapter will present how this design was executed, and
how the components operate and interact, with additional detail.

29

6 Implementation

This chapter presents the low-level details relating to the solution which was implemented
to address the problem discussed in the previous chapters.

The diagram in figure 6.1 provides a detailed vision of the solution architecture, with
additional detail on the components discussed in section 5.3. The figure depicts the developed
components in white background, and re-used components in grey background. Below is a
breakdown of the responsibility of each of the classes involved and the main interactions that
take place in each component.

Optimization Framework Matcher optimization use-client

Constraint library extensions

NeighborhoodBacktrackingsalver

Figure 6.1: Proposed Solution Detailed Architecture.

6.1 Constraint library extensions

Figure 6.2 illustrates how the constraint library extensions module extends the python-
constraint library, depicted in grey background. This module provides additional functionality

30

Implementation

which is relevant for the current problem domain. The features include neighborhood
generation, useful for several search meta-heuristics, getting approximate valid solutions from
an initial solution, whether or not valid, and new constraints to enforce the members' terms as
formulated in section 5.1.

matcl er_cons Traznt]

<<constraint.Constraint=>>
MaxWeightedAverageConstraint <<constraint.BacktrackingSolver>>

<<constraint.Problem>>
MatcherProblem

-max weighted average NeighborhoodBacktrackingSolver

+get_neighborhood ()
+set_operators()

- +get_neighborhood()
+get_variables(): List . R <<constraint.Constraint>=> ~ +is_valid_solution()
+get_closest_valid_solution(}: Map MinWeightedAverageOrDefaultConstraint | (. ot cjocest valid_solution()

-min_weighted_average
-default value

Constraint]
Problem Solver
—solver: Solver +getSolution(domains, constraints,vcenstraints)
+_linit_(solver:Solver=Nane} ‘+getSolutions(domains, constraints,veenstraints)
+reset() +getSolutionite fdomains, constraints, vconstraints)

+setSolver{solver:Solver)
+getSolver()
+addVariable(variable,domain)
+addVariables(variables,domain)
+addConstraint{constraint variables=None) <=50lver==
+getSolution()
+getSolutions(}
+getSolutioniter()
-_getArgs()

BacktrackingSolver

+getSolution{domains,constraints,vconstraints)
+getSolutions (domains, constraints,vconstraints)
+getSolutioniteridomains,constraints, vcenstraints)
+_init__(forwardcheck=True)

Constraint

+_ca\#wwaarréaclﬁlgcs&?umams.assignmemﬁ,

+preProcess(variables,domains.constraints,
vconstraints)

+forwardCheck{variables,domains,_unassigned)

Figure 6.2: Constraint library and extensions architecture.

Below is a description of the main object classes introduced, and the purpose they serve.

6.1.1 Problem wrapper

The MatcherProblem class extends constraint.Problem, the python-constraint

facade class used to define a problem and retrieve solutions from a solver [Nie05].

Introduces the getNeighborhood method which accepts a solution, in the form used
throughout the constraint library, and returns a list of the adjacent solutions produced
using the Solver object's getNeighborhood and the MatcherProblem's set of
operators. Operators are functions which generate new solutions from existing ones,
allowing to navigate within the solution space.

The problem wrapper also provides the getClosestValidSolution method which
returns a valid solution, closest to a specified solution, whether or not valid. The
strategy consists of search for adjacent solutions which are valid, using the operators,
and if not found by gradually replacing values in each of the variables, always trying to
change as little as possible. This feature is relevant for search meta-heuristic that
potentially generate invalid solutions which must be converted to valid ones, this is the
case with evolutionary approaches such as genetic algorithms.

31

Implementation

6.1.2 Solver

A new solver was developed that provided new solution space exploration capabilities, The
NeighborhoodBacktrackingSolver: extends the constraint.BacktrackingSolver
provided by python-constraint, which provides a constraint solver with backtracking
capabilities. This subclass introduces the getNeighborhood, the isValidSolution and the
getClosestValidSolution methods used by the new MatcherProblem:

- getNeighborhood returns the neighborhood of solutions, for a specified solution. It
does so by applying the provided operators to all the existing variables, to generate all
the adjacent solutions, in the solution space. After each operator is applied, each
solution is tested for validity, according to the existing constraints. If the solution is not
valid, an alternate solution is generated by adjusting one of the variables. The set of
valid generated solutions is returned as a list, corresponding to the initial solution's
neighborhood. This method uses an internal getNeighborhoodGenerator function,
which returns a python generator object [Sche0O1], that can be used to generate new
solutions on demand.

« isValidSolution checks the provided solution against all the existing constraints,
verifying if all hold.

+ getClosestValidSolution returns a valid solution which is obtainable by applying
the smallest number of transformations to the given solution, whether or not valid. The
method leverages the getNeighborhoodGenerator method and simply returns the
first solution yield by the generator.

6.1.3 Constraints

In the addition to maximum and minimum sum constraints, two new constraints where
developed for the constraint library: maximum weighted average constraint and minimum
weighted average constraints. Both of these constraints are relevant for restricting the average
rate a member gets in the final match result, since the rate is weighed by the amount of money
in each match. Below is a detailed description of each constraint:

+ MaxWeightedAverageConstraint: concrete subclass of
constraint.Constraint, the python-constraint abstract class for constraints
[NieO5]. Specifies a new constructor which accepts the value of the maximum weighted
average a set of variables in the problem can assume. Provides an implementation of the
__call__ which allows instances of this class to be called as functions [PSF09a], and
is used to implement the constraint checking code. The checking algorithm is described
below.

1. Initialize running weighted average and running weight sum;

2. Group the variables list, in {Wl,Vl,W; Vy e Wy, V| order, into a list pairs, in the
order {(w,v),(w,v,),...(wy,v\)| | where w, is the i-th weight variable and
v, s the i-th value variable.

3. For each weight-value pair:

1. If both weight and value variables have been assigned:

32

Implementation

1. Update the running weighted average: V.=

i—1
2. Update the running weight sum W':Z:‘) witw,
=
4. If the running weighted average is below or equal to the maximum specified value,
the constraint holds;

5. Else the constraint does not hold, and that is signaled to the calling function.

+ MinWeightedAverageOrDefaultConstraint: another concrete subclass of
constraint.Constraint, similar to MaxWeightedAverageConstraint. The
difference relies in the final constraint check, which in this case checks if the running
weighted average, at the end of the iteration, is above or equal to the initially defined
minimum weighted average or to an initially defined default value, such as 0, as will be
shown in the matcher problem.

6.2 Optimization framework

The optimization framework provides a standard design for building solutions for
optimization problems as well as actual implementations of optimization strategies. The
framework provides a core abstract Optimizer class, which defines the behavior of a generic
optimizer, as well as concrete implementations of meta-heuristics wrapped in Optimizer
subclasses. The framework also includes a set of interfaces® for the use-client objects to
implement, that specify and document the API contract for handling solution generation,
solution evaluation and solution visualization.

3 The term interface is used here in the broad context of an abstraction that an entity provides of itself to the
outside [Wik09g], not a standard Python construct. Presently there seems to be no consensus in the Python
community about a common standard for interfaces, with previous attempts at standardization rejected [Pel09].
Therefore, this work adopted a popular, despite non-standard approach to this problem, which takes from the
Zope web application framework [Zope09].

33

OpTIniZation

Implementation

<=Interface>>

Optimizer

“+solution_generator: ISolutionGenerator
+solution_evaluator: ISalutionEvaluator
+solution visualizer: ISoluti

ISolutionGenerator

<<Interface>>
ISolutionEvaluator

<<Interface>>
Isolution Visualizer

F_int_(parameters:Map=None)
+get_solution_iterator()
+get_parameters()

“_init_{solution generator,solution_evaluator,
solution_visiralizer)

“+optimizel)
+set_time_budget(time_budget)
+set_iterations_budget(iterations_budget)
+set_solution_generater(selution_generator)
+set_solution_evaluator(solution_evaluator)
+set_solution_visualizer(solution_visualizer)

+set_parameters()

+get_neighborhood (solution:Map)
+get_closest_valid_solution(candidate_solution:Map)
+get_variables()

+_init_{utility_function)
+evaluate (parameters:Map,solution:Map)
+set_utility function(utility function)

+dis play(parameters,solution, utility)
+display_solution{parameters solution)
+dis play_utility(utility:Map)

P

<<Optimizer>>

Hillcli

<<Optimizer>>
i A

<<Optimizer>>

ptimizer

<<Optimizers>
GeneticAlgorithmOptimizer

<<Optimizers>

ParticleSwarmOptimizer

+optimize()

+optimize}

+optimize()

-pick_at_r

ion_list): Solution

-apply_acceptance criterion(state:solution,
P e Score next
next_state_score;

e
-apply_cooling_schedule(energy)

Foptmizel)
-create_population()
-evaluate fitness()
-get_fittest()
-breed_generation()
-replace_worst()

.next_state:solution,

-create_chromosomes()
crossover()

-mutate()
-mutate_chromosome()
-create individual()
-create_binary_stringf)
evaluatef)
-compare_individuals()

-set_maximum trait value()

“optimize()
~evaluate_swarm(particle_solutions)

-get best_particle(particle fitnesses_local_bests)
~get_closest_valid_solution(particle_candidate_solution)

Figure 6.3: Optimization framework architecture.

The following sections present the specifics on each of these components.

6.2.1

Abstract Optimizer

The Optimizer class holds the search strategy used to optimize the problem, using the
provided generator and evaluator. Subclasses of this abstract optimizer template provide the
concrete implementations of each meta-heuristic. The abstract class already defines basic
termination management code which can be reused or augmented by child classes. Below is a
breakdown of the most relevant methods:

« abstract optimize method where concrete subclasses start the optimization loop and
typically contains the following generic steps:

1.

2
3.
4

Resetting termination conditions;

Obtaining parameters from the generators;

Initializing the meta-heuristic specific structures;,

While termination conditions have not been met:

1.
2.
3.

Searching for a new solution;

Evaluating the new solution;

Update the iteration count and the best fitness so far (for termination

detection);

Return the best solution found.

34

Implementation

- termination conditions met predicate method indicates if the configured
termination conditions have been reached. The abstract Optimizer class offers support
for the most common termination conditions: time limit (maximum interval since the
execution start), iterations limit (defining a maximum number of iterations for the
search process) and fitness target (defining a value of the utility function considered
satisfactory).

- reset termination_conditions re-initializes the structures used to keep track of
the status of the optimization execution which are consulted by the
termination_conditions_met method.

6.2.2 Random Search Optimizer

The RandomSearchOptimizer class implements the pure random search meta-
heuristic described in section 3.3.1. Implements the optimize method, using the solution
generator object to get each possible solution in the search space. Evaluates each solution,
updating the best at each iteration, until termination conditions have been met

6.2.3 Hill Climbing Optimizer

The HillClimbingOptimizer class implements the hill-climbing meta-heuristic,
described in section 3.3.2. Starts with the first solution retrieved from the generator object, and
calculates its neighborhood. Evaluates each node in the neighborhood and picks the best. If the
best neighbor node is worse than the current node returns, else calculates the best neighbor
nodes neighborhood and enters the next iteration. This procedure is repeated until the
termination conditions have been met.

6.2.4 Simulated Annealing Optimizer

The SimulatedAnnealingOptimizer class implements the simulated annealing meta-
heuristic, relies on the standard solution generator functionality and contains additional helper
methods to aid in the overall meta-heuristic execution.

« concrete method optimize follows a standard simulated-annealing algorithm, detailed
below:

1. Reset termination conditions,
2. Initialize state and energy;
3. Initialize best solution;
4. While termination conditions not met:
1. Pick a neighbor;
2. Compute the neighbor's score;
3. Ifthe neighbor is a new best move to it, and store it as best solution;
4

Else, determine if the solution should still be accepted using
apply acceptance criterion;

35

Implementation

5. Update energy with apply cooling schedule;
5. Return the best solution found.

« apply acceptance criterion method implements the stochastic component of the
meta-heuristic, accepting values which are not better than the current best but still
exploring them for search space comprehension. The probability p of given solution

’

s , is replaced by solution s’ in a system with energy FE is determined by:
fls)=f(s")
E

pls,s' E)=e

- apply cooling schedule implements the cooling schedule of the meta-heuristic
which, in this implementation, consists of applying a constant factor between 0 and 1 to
the current energy.

6.2.5 Genetic Algorithm Optimizer

The GeneticAlgorithmOptimizer class implements a variant of this popular
evolutionary algorithm, presented in 3.4.1. Below is a description of the flow of the main
optimize method, and the detailed responsibilities of the auxiliary functions developed.

« The concrete optimize method articulates the optimization flow, using the following
simplified algorithm (phrasing adapted from [Wik0%h]):

1. Reset the termination conditions;
2. Choose initial population (create population);

3. Evaluate the fitness of each individual in the population
(evaluate fitness);

4. While termination conditions not met:
1. Select best-ranking individuals to reproduce (get fittest);

2. Breed new generation through crossover and/or mutation (genetic
operations) and give birth to offspring (breed generation);

3. Evaluate the individual fitnesses of the offspring (evaluate fitness);

4. Replace worst ranked part of population with offspring
(replace worst);

5. Return the best element in the population.

« create population uses the optimizer's solution generator to create a N-sized list
of initial solutions, where N is the initial population size parameter.

+ evaluate fitness takes in a population list and computes the fitness function for
all individuals, returning an evaluated population list, i.e., a list of (individual, fitness
score) pairs.

+ get fittest takes in an evaluated population list, sorts it according by ascending
fitness, and returns the top K individuals, where K is the reproduction sample size;

- The breed generation takes in an evaluated population list, and generates a set of
offspring produced by crossover and mutation operations. The main breeding algorithm
is as follows:

36

6.2.6

Implementation

1. Choose the fittest member of the population to pair up with an eventual lonely
individual. This is required whenever the K, the reproduction sample size, is
odd, since the breeding mechanism used is more strictly nature inspired and
uses combinations of two individuals to reproduce;

2. For all the pairs of individuals, or couples:

1. Calculate the genetic representation for each individual
(create chromosomes);

2. Apply the crossover operator (Crossover) obtaining the two children's
genetic representation;

Mutate each child's chromosomes (mutate);

4. Create the children individuals from the chromosomes
(create _individual);

5. Use the solution generator to convert each child into a valid problem
solution (genetic manipulation operations tend to generate invalid
solutions), by finding the closest valid solution for each child.

6. If no valid solution can be reached by the generator, for the current child,
one of the original individuals is used as replacement in the offspring list.

replace worst replaces the bottom n elements of the population, with
n€ll,..., P} , with the top n elements of the offspring;

create_chromosomes creates a genetic representation of a solution individual. The
approach create a map of binary strings, where each key represents a trait of the
individual, in this case a variable of the solution. Each binary string is obtained with the
Python bin built-in function, recently introduced with Python 2.6.2 [PSF09b], which
converts an integer number to a binary string. This binary string is then padded for the
standard size. The standard chromosome length is computed for each problem,
depending on the domain of each of the decision variables;

crossover combines the chromosomes belonging to two individuals into two new
individuals, which composed of different parts of the genetic material of the parent
individuals. In this implementation there is a single crossover-point, exactly at the
middle of the each individuals' chromosomes.

mutate uses the bit-flipping approach to each of the individual's trait, picking a
random bit to flip on each of the solution variable's representation.

create_individual generates an individual based on its genetic material, i.e.,
creates a solution by converting the binary string representation of the value of each of
its variables.

Particle Swarm Optimizer

The ParticleSwarmOptimizer class provides a sample implementation of the particle
swarm meta-heuristic. As described in section 3.4.2, this population-based algorithm takes
advantage of the simulated social interaction between individuals, searching for the best
solution while communicating its achievements with a group of neighboring individuals. In this
sample implementation the core methods are:

37

Implementation

The concrete optimize method, which coordinates the execution of the particle swarm
meta-heuristic implements the following algorithm:

1.
2.

S

8.

Reset the termination conditions;

Initialize the key parameters for the algorithm:

1. N , swarm size, i.e., the number of particles;
2. w , aninertia constant;
3. Csocial » € cognirive > CONStants use to weigh-in the importance give to both the

social and cognitive components of the each particle;

Initialize the X, particle solutions, using the provided solution generator;

-

Initialize the v; particle velocities, with the corresponding null-vectors;
Initialize the § global best solution, and the global best score;

Initialize the X, local best solutions and the local best scores for each
particle;

While termination conditions not met:

1. Evaluate the swarm: calculate each particle's fitness using the provided
solutions evaluator;

2. Update the local bests for all the swarm;

3. Pick the best performing particle and update the global best solution and

respective fitness;
4. Update each particle's velocity using:
Vi =w Vi +c cognitive r cognitive © (xi - 'xi) + Wmcial r social © (g -X i) 4 Where Fsocial

and T puime are random vectors created for each particle and used to

apply the social and cognitive constants. The o operator represents the
Hadamard matrix multiplication operator;

5. Update each particle's position, applying the velocity using: X=X, +v; ;

Return :é

Helper methods include evaluate swarm and get best particle, which aid in
manipulating the underlying data structures used to manage particles and particle
fitnesses.

6.2.7 Framework Interfaces

Below are the framework's set of interfaces for the use-client objects to implement, as
mentioned earlier:

ISolutionGenerator: Implementors of this interface generate solutions inside the
search space of the specific problem, holding all the required domain specific
knowledge for navigation therein. Implementors must provide the get parameters,
get solution, get neighborhood and get closest valid solution
methods.

38

Implementation

- ISolutionEvaluator: Implementors wrap the utility function from the problem
domain and must implement the evaluate method, which receives the problem initial
parameters and the current solution and evaluates it in context. The method must return
a dictionary with a “score” key which resolves to the float value attributed to the
evaluated solution. The resulting dictionary may also be used to transport additional
meta-data about the solution evaluation, that can be used, for example, in the problem's
solution visualizer.

- ISolutionVisualizer: Implementors provide mechanisms to display the specified
solution, along with the problem's parameters. This entry-point for use-client code was
included in the framework to allow real-time update of a potencial visualizer. The
framework's optimizers are prepared to call upon the visualizer, to update its
representation on every iteration if configured to do so. The relevant method is
display, which expects the problem's parameters, the solution itself and the solution's
utility for display purposes.

6.2.8 Helper functions

The timed optimizer run auxiliary function is part of the optimization framework's
module and is to be used in conjunction with Python's decorator feature [SmiO8], which allow
for function or method transformation. In this particular usage it measures the time expended by
a method call to an Optimizer subclass object, relying on a _set last run duration
method to store the value in the instance. It is used to decorate the optimize method.

6.3 Matcher optimization use-client

This component provides the adapters required to use the optimization framework in the
context of loan request and investment offer combination. It leverages the constraint library
extensions to build use-client code that can fit in the framework's entry points. This adapter also
serves as an example implementation of a component for the optimization framework, as new
adapters for different domain problems, would have some structural likeness due to the imposed
API contract by the framework. Nonetheless, the internal details of the adapter classes presented
here are specific for the solution manipulation mechanism used by this component and for this
problem domain itself.

matcher_opiimization

<<optimization.ISolutionGenerator>>
MatcherSolutionGenerator

<<optimization.|SolutionEvaluator==>
MatcherSolutionEvaluator

<<optimization.ISolutionVisualizer>>
MatchersolutionVisualizer

-solver: NeighborhoodBacktrackingSolver
-problem: MatcherProblem

-utility function

+_init__(parameters:Map=None}
+get_solution_iterator()
+get_parameters()
+set_parameters()
+get_neighborhoodisolution:Map)
+get_closest_valid_solution{candidate_solution:Map)
+get_variables(}
-create_variables()
-create_constraints()
-increment_variable()
-decrement_variable()

+evaluate(parameters:Map,solution:Map)

-calculate_aggregate _results(parameters,
sofltion): results map

+tight_margin_utility(parameters, results): Map
-calculate_lender_rates_margin(parameters,
- ~ resdits)
-calculate_borrower_rates margin(parameters,
results)
{alcu\ate_mtal_nffered_amnuﬂt(?arameters.
resilts) cons

-calculate_total_requested amount{parameters,
resulfs)

ul
-calculate_total matchedl 3mnunt(parameters.
- T results

-calculate_fulfillment_rate{parameters results)

-calculate_tightness(parameters,results)

-calculate_lender_rates_margins(parameters,
- ~ resilts)

-calculate_borrower_rates_marginsiparameters,
resufts)

+display(parameters,solution, utility)

+display_solution(parameters,solution)
+display_utility(utility:Map)

Figure 6.4: Matcher optimization use-client architecture.

39

Implementation

6.3.1 Solution Generator

The MatcherSolutionGenerator class generates matcher solutions for the configured

problem, according to a defined parameter specification for credit matching problems. It uses
the matcher constraint library as the solution generation mechanism.

The set parameters method receives the map with the problem parameters, as
presented in section 5.1, stores them in an instance variable and starts the generator
initialization process (initialize generator).

The initialize generator method creates all the objects required for solution
generation, initializes them according to available parameters and connects them
together to prepare for solution generation. The initialization steps are as follows:

1. Create the solver, instantiating NeighborhoodBacktrackingProblem;

2. Create the problem, instantiating MatcherProblem with the solver and the
operators (increment and decrement variable);

3. Create the decision variables using create variables;

4. Constrain the variables according to the lenders' and borrowers' terms, using
create constraints;

5. Create a new generator object using the problem object's getSolutionIter.

The create variables adds the required decision variables to the problem. It adds a
rate variable and an amount variable for each lender borrower combination in the
format rate_i_j and amount_i_j, respectively. These string identifiers for the constraint
library correspondto 7; and a; from the earlier formal definition found in section
5.1. Due to the finite-domain nature of the constraint library, the range for the variables
is necessarily integer. Due to the need to represent rates with fixed point precision of 2
decimal places, the strategy adopted consisted of ranging the rate variables from O to
10000, where 10000 corresponds to 100,00% times 10000. The original parameter
values are converted into this range and back when the solution is presented. The
amount variable is ranged from 0 (which means no deal) to the maximum amount
offered of the lender (which would implied the lender gives all its money to the same
borrower). The precision for amount computation is integer, with no decimal places.

The create constraints method applies the members' terms, as defined in section
5.1, to the decision variables in the form of constraints from the constraint library
extensions built for the matcher. The step followed are:

1. Add lender constraints, for each lender:
1. Build a list with all the amount variables, involving the current lender;

2. Add a maximum sum constraint to the problem, based on the lender's
maximum offered amount parameter, and apply it to the list of lender
amount variables (C3);

3. Add a minimum sum constraint to the problem, based on the lender's
minimum offered amount parameter, and apply it to the list of lender
amount variables (C3);

4. Build an auxiliary list with all the rate variables, involving the current
lender.

40

6.3.2

Implementation

5. Build a list of pairs, combining the amount and rate variables to use as
input to the weighted average constraint. Using this format will enable the
constraint to consider the amount variable as the weight and the rate
variable as the value.

6. Add a minimum weighted average or default constraint, using the lender
minimum rate and 0 as the default value, and apply it to the list of amount-
rate variable pairs (C2).

2. Add borrower constraints, for each borrower:
1. Build a list with all the amount variables, involving the current borrower;

2. Add a maximum sum constraint to the problem, based on the borrower's
maximum requested amount parameter, and apply it to the list of borrower
amount variables (C4);

3. Add a minimum sum constraint to the problem, based on the borrower's
minimum requested amount parameter, and apply it to the list of borrower
amount variables (C4);

4. Build an auxiliary list with all the rate variables, involving the current
borrower.

5. Build a list of pairs, combining the amount and rate variables to use as
input to the weighted average constraint.

6. Add a maximum weighted average, based on the borrower maximum rate,
and apply it to the list of amount-rate variable pairs (C1).

The increment variable and decrement variable are the operators made
available for traversing the solution space. These simple operators add or subtract one
unit from the specified variable in the specified solution. The resulting solutions are not
guaranteed to be valid, but can be generated in an efficient manner and allow traversing
the complete solution space.

The get solution and the get solution iterator methods, required by
ISolutionGenerator, are direct solution retrieval methods, rely on the internal
solution iterator, which is a Python generator object, which can be recurrently call to
yield further solutions.

The get neighborhood method, required by ISolutionGenerator, is used to
explore the solution space by retrieving solutions adjacent to a specified solution.

The get closest valid solution, also required by ISolutionGenerator, is
useful for converting solutions obtained by an outside mechanism into valid ones, for
which all the constraint apply.

The get parameters and get variables methods, are useful for retrieving
metadata about the solution generator itself, which can then be provided to a visualizer
or used for other purposes.

Solution Evaluator

41

Implementation

The solution evaluator built for the matcher adapter is MatcherSolutionEvaluator. It

evaluates solutions according to a selected utility function. Below is a description of the most
relevant methods:

evaluate, required by ISolutionEvaluator, aggregates the standard format
solution into a final result map, similar to the problem parameters, using
calculate_aggregate_results. It then evaluates the configured utility function, specifying
the problem's parameters and the resulting matches for the specified solution;

calculate aggregate results takes in the problem's parameters and the standard
format solution and calculates the final aggregate rates and amounts for each member,
according to the values of r; and a; ,as described below:

o Foreachlenderi: r,=

o For each borrower j: r =

The tight margin utility function is a straightforward implementation of the
formula presented in 5.2.2, which makes uses of several smaller auxiliary functions
included in the MatcherSolutionEvaluator. All of these methods were extracted
from the main utility function to improve readability and to allow their reuse in
additional utility functions®.

6.3.3 Solution Visualizer

This component provides simple visualization services for displaying the solutions during

development. It uses a character-based representation of the member rates and amounts in a
tabular fashion. Its display method, as required by ISolutionVisualizer, wraps its two
inner display methods: display_solution and display utility.

6.4 Summary

This chapter covered the implementation details on the solution which was previously

presented. The text includes a detailed description of the responsibilities of each class involved,
together with its methods, providing pseudo-code whenever relevant and trying to explain all
the interactions that take place between all the system components.

4 This is the case with: calculate lender rates margin,
calculate borrower rates margin, calculate total offered amount,
calculate total requested amount, calculate total matched amount,
calculate fulfillment rate, calculate lender rates margins and

calculate borrower rates margins methods.

42

Implementation

The next chapter will demonstrate how this solution behaved in different scenarios which
intended to simulate real operational settings.

43

7 Results Interpretation

A series of experiments where designed to test and validate the solution described in the
previous chapters. This chapter describes how the experiments where assembled, and how the
solution behaved in different scenarios and using different internal strategies.

7.1 Experimental Scenarios

A key concern while testing the solution was to have a sufficient amount of quality data
that could be used to exercise the solution under different conditions, but maintaining a set of
constant parameters. The solution was to design a simple data generator which would receive a
high-level specification of the test scenario, and would then, stochastically, create a complete
dataset to use as input for the matcher system.

To cater to the different types of settings, the following parameters stood out as relevant:

. N and M , the number of lenders and borrowers, respectively;
. f”i , the mean lender rate;

. o, thelender rate standard deviation;

. &i , the mean lender amount;

. o, »thelender amount standard deviation;

. r i the mean borrower rate;

. o, > the mean borrower standard deviation;

. El_ i the mean borrower amount;

. O, > the borrower amount standard deviation.

This information comprehensively describes a scenario, i.e., a template containing a high-
level definition of the environment parameters. Using this type of templates, with the help of a

44

Results Interpretation

stochastic environment generator — which was developed on top of a statistics module for
Python [ASO7] — it is possible to generate different matching environments each time a run is
made.

The two scenarios which define the input for the different experiments were as follows:

1. Tight market: lenders offer lower interest rates, with borrowers allowing higher rates
when finding a loan. Small deviation for both lenders and borrowers, keeping the
market homogeneous.

2. Loose market: offer lower interest rates, with borrowers allowing higher rates when
finding a loan. Larger deviation in rates distribution for both lenders and borrowers,
providing some diversification and heterogeneity.

Table 7.1 show the exact settings for each of the referenced scenarios.

Table 7.1: Detailed scenario settings

Scenario parameters
Parameter | Tight market Loose market

N 5 5
5 5

r, 5,00% 5,00%
o, 1,00% 5,00%
a, 1.000,00 € 1.000,00 €
0y 100,00 € 100,00 €
f»j 20,00% 20,00%
o, 1,00% 5,00%
&/. 1.000,00 € 1.000,00 €
T, 100,00 € 100,00 €

The scenarios were used as background for the experiments conducted, and allowed to
understand how the different strategies and settings behaved under different environment
conditions.

7.2 Metaheuristic parameter optimization

A set of undocumented experiments were empirically performed to fine tune each of the
metaheuristic for the main utility function. Each section briefly describes the parameters which
are supported by each metaheuristic implementation, and provides some considerations about
the tuning that was performed.

7.2.1 Random Search

The metaheuristic was used only as baseline, representing uninformed search. As such no
parameters were available to control the search strategy and no tuning was performed. For
results for this algorithm, and how it compared with others, please refer to section 7.3.

45

Results Interpretation

7.2.2 Hill Climbing

The provided implementation of the Hill Climbing metaheuristic did not offer tuning
capabilities, which results from the simplicity of the algorithm.

7.2.3 Simulated Annealing

The standard specification of the SA algorithm includes two key parameters: the initial
energy and the cooling alpha constant. Some experimentation explored these parameters, but
also a new parameter proposed by the created implementation was used with significant results:
the neighborhood sample. This parameter allows to pick not just a random neighbor, but to
gather a sample of the neighborhood for a given solution, and to pick the best member. Best
values values concentrated around a 5% sample of each neighborhood, with much better results
than just picking a random neighbor.

7.2.4 Genetic Algorithms

Key parameters in GAs include the initial population size, the number of individuals
picked for reproduction, the size of the population to keep throughout the algorithm runs and the
number of replacements to make in each generation. Successful results tended to appear around
a 10 element population, with 5 individuals used for reproduction and substitution in each
generation. Also relevant to the GA performance was going from a one-point crossover to a
two-point crossover approach, as described in [Wik09i] and performing the genetic coding on
the concatenated genetic string, instead of separate strings for each trait/variable.

7.2.5 Particle Swarm Optimization

The PSO algorithm reference specification considers 4 core parameters: the number of
particles in the swarm, the inertial constant, the cognitive weight and the social weight.
Together with the manipulation of these values, and additional optimization took place by
applying the particle velocity not to all the variables (which resulted in very low solution
feasibility) but to just one random variable per iteration, per particle (which returned solutions
which were either valid or could be converted to valid ones by neighborhood exploration).

7.3 Metaheuristic analysis

The performance of each metaheuristic on the utility function was measured by successive
executions, under different environments as mentioned above. Using the prepared scenario
templates, an environment was generated for each type. Under each scenario, the metaheuristics
were executed with a fixed 1000 iteration budget. The result of the utility function in each run
was then recorded, and the experiment repeated using the same settings to record the mean
utility score.

In the following section, the results of the successive executions are presented and
analyzed.

46

Results Interpretation

7.3.1 Scenario 1: Tight market

The graph in figure 7.1 presents the results for the utility function under optimization at
each iteration during the algorithm runs. The utility values are plotted for each of the
implemented metaheuristics:

« Pure Random Search (PRS);

« Hill-Climbing (HC);

» Simulated Annealing (SA);

« Genetic Algorithm (GA);

« Particle Swarm Optimization (PSO).

The results suggest that the most efficient method was GA, converging towards better
results considerably faster than the other algorithms and finishing with a better overall result
after the all the runs were completed. The evolution is nonetheless irregular, exhibiting relevant
breakthroughs at certain iterations, suggesting the importance of certain exceptional mutations
and crossovers, as opposed to a continuous evolutionary improvement. With a more regular
progression is the PSO algorithm, with strong results appearing late (by iteration 400) but
keeping a consistent progression until stagnation at a local optima. The HC algorithm displays
an interesting, near linear, improvement of the utility score as iterations increase. The PRS
approach had very bad results, with the solution space exploration mechanisms trapping the
metaheuristic in a region with bad solutions. The PRS did not offer a relevant contribution to the
specific scenario, as it didn't provide a reasonable baseline. The results indicate that the baseline
could be considered to be the SA approach due to its below average performance in this
environment.

Metaheuristic Performance
Tight Market

0,800000

0,780000

0,760000

0,740000 =PRS

= HC

(2]
S 0,720000 SA
g =-GA
3 ==pPS0
= 0,700000

0,680000

0,660000

0,640000

0 200 400 600 800 1000 1200

Utility score

Figure 7.1: Scenario 1 — Plot of utility function value against iterations (by metaheuristic)

47

Results Interpretation

7.3.2 Scenario 2: Loose market

The graph in figure 7.2 presents the results for the utility function under optimization at
each iteration during the algorithm runs. The utility values are plotted for each of the
implemented metaheuristics. Notably the best performance also belongs to GA, although, in this
setup, the HC and even the PRS have interesting performances. Near the end of the iteration
budget, these two trajectory based algorithms surpass the results of the PSO implementation.

Metaheuristic Performance

Loose Market

0,570000

0,560000

0,550000

0,540000

0,530000 —=PRS
o =HC
8 0,520000 SA
= =GA
5 0,510000 —Pso

0,500000

0,490000

0,480000

0,470000

0 200 400 600 800 1000 1200

Iterations

Figure 7.2: Scenario 2 — Plot of utility function value against iterations (by metaheuristic)

48

8 Summary Conclusions

This chapter synthesis the work described in this dissertation, evaluates if the initial goals
where attained and proposes directions for further work.

8.1 Summary

Chapter 1 Introduces the concept of Peer-to-Peer lending, describes the context for this
work and defines the goals to reach at the end of the project.

Chapter 2 Provides detailed context on the topic of P2P lending and describes the state-
of-the-art in the field, reviewing practices and trends.

Chapter 3 Provides a description of existing techniques in the fields of Optimization and
Constraint Programming that will be used throughout the project.

Chapter 4 Describes the specific problem at hand, in light of the previously presented
concepts on P2P lending platforms.

Chapter 5 Formalizes the problem described in Chapter 4, and presents an architecture
for the solution to implement to solve it.

Chapter 6 Presents the implementation details of the problem, providing the rationale
behind key implementation decisions.

Chapter 7 Describes the experimental settings used to validate the system which was
built, and provides a critical analysis of the experimental results.

49

Summary Conclusions

8.2 Conclusions

From the experiments presented in Chapter 7 , it results that the system is effectively
performing successful matches, and it is possible to pick the best performing metaheuristics in
each scenario to use in a production environment. To that extent the goal of building a system
capable of successfully finding optimal combinations of loans requests and investment offers, is
believed to have been reached. The optimization approach worked and was successful in
exploring the solution space considering the provided utility function. Further work could be
done in experimenting with different utility functions, as is discussed in section 8.3.1.

Together with the successful results of the matching system, which was the main goal of
this work, the optimization framework is seen as of value in itself. The framework was flexible
enough to support multiple metaheuristics, gradually added as the work progressed, and was
adequately decoupled from the problem to be used in solving other test problems. This level of
modularity also allowed the problem specific code to be evolved by itself, while keeping the
API contract, without breaking the optimizer as a whole.

8.3 Future Work

8.3.1 Utility Alternatives

Having seen the various optimization strategies applied to the utility function, it seems that
the solution is effectively verified, i.e., solving the problem right. Nonetheless the question
remains if the current solution solves the right business problem, i.e., a question of validation.
This issue would naturally require a different approach, that analyzed the results from a business
perspective, taking the members' and the platform's best interest into account. Relevant and
important as it would be, this study would still be closer to the subject of Efficient Markets in
the field of Economics, and was determined out of scope for this work.

8.3.2 Distributed Framework

Despite carefully designed and effectively reusable, the optimization framework left out of
its scope a significant topic in optimization, which is distribution. Work on distributed
optimization solutions is not new and distributed frameworks with similar goals to that
produced in this work have been build in past [Res06]. Future extensions to this work, in what
concerns the optimization architecture, should prepare the existing framework for parallelized
work to allow distribution across multiple cores or even multiple nodes. The way the framework
is designed should support evolving to a distributed architecture, but still there are
communication and synchronization mechanisms that need to be put in place and may involve
relevant work. An interesting direction for this work, could be leveraging existing distribution
strategies such as MapReduce (see [DG04] for an introduction to MapReduce and [NMS07] a
PSO implementation based on the MapReduce programming model). Complying with a popular
programming model could significantly simplify the deployment to a cloud computing host,

50

Summary Conclusions

enabling access to virtually unlimited source of computational resources at a reasonable
implementation and hardware cost.

8.3.3 Multi-Agent System Testbed and Matcher

Another approach which could bring significant insight into the problem, would be that of
multi-agent systems. For one, building a multi-agent system that simulated the problem, with
agents modeling lenders and borrowers with distinct profiles, would provide an interesting
testbed for the existing matching system. Additionally, if negotiation mechanisms were to be
added to the multi-agent platform, one could expect to achieve an alternative matching system
with several advantages: not only would it solve the distribution issues with its naturally
distributed nature, but also it would mimic more closely the underlying phenomena of Peer-to-
Peer lending.

8.3.4 Social Rating

The third and final point to explore, would be that of trust management in the Peer-to-Peer
lending community. As was reviewed during this work, existing P2P lending platforms rely on
external trust anchors to determine the reliability of members. This is, by nature, a centralized
approach which does not honor the social emphasis of a P2P network, and implies additional
costs for both the platform operators and the users.

The trust management angle to this solution would imply designing a social rating scheme,
based on work done in the fields of collaborative filtering and trust management, which allowed
users to get involved in evaluating other users they knew and trusted. The system should be self-
regulating, equipped with an effective reward and punishment system which protected the
member's and the platform's interests.

Future work in this particular area seems the most promising, would positively influence
the success of the Person-to-Person project in course.

8.4 Final Remarks

The final solution that results from this work may not be of production quality, due to the
considerations presented earlier, but still, significant headway has been made into creating the
infrastructure for an innovative community driven project in Portugal. As the overall goals have
been reached, despite its limited resources, one cannot help but think that this project was
indeed successful, and that its usefulness will be proven in the near future.

51

References

[ASO7]

[Bar99]

[BdP04]

[Bog09]

[BRO3]

[CCH99]

[Cel07]

[Cha09]

[CPOO]

[DGO04]

[ETHO5]

[Fow04]

Istvan Albert, Gary Strangman. python-statlib - Google Code, 2007.
http://code.google.com/p/python-statlib/, retrieved June 09 retrieved in June 2009.

Roman Bartdk. Constraint Programming: In Pursuit of the Holy Grail. In
Proceedings of WDS99 , pp. 10. MATFYZPRESS, 1999.

Banco de Portugal. Regime Geral das Instituicdes de Crédito e Sociedades
Financeiras, 2004. www.bportugal.pt/publish/legisl/RGICSF2004 p.pdf retrieved
in June 2009.

David Bogoslaw. Peer-to-Peer Lending: Problems and Promise — BusinessWeek,
2009.

http://www.businessweek.com/investor/content/apr2009/pi2009043 811816.htm
retrieved in June 2009.

Christian Blum, Andrea Roli. Metaheuristics in Combinatorial Optimization:
Overview and Conceptual Comparison. In , pp. . ACM Computing Surveys, Vol.
35, No. 3, September 2003, pp. 268-308., 2003.

Patrice Célegary, Giovanni Coray, Alain Hertz, Daniel Kobler, and Pierre Kuonen.
A taxonomy of evolutionary algorithms in combinatorial optimization. In , pp.
145-158. Journal of Heuristics, 1999.

Celent. Up Close and Personal with Online Lending. In Celent Report , pp. n/a.
Celent LLC, 2007.

Scott Chacon. Git - Fast Version Control System, 2009. http://git-scm.com/
retrieved in June 2009.

Eric Collins, Alan Price. Apparatus and Method for Facilitating Agreement Over a
Network . In United States Patent Application 20020007362 , pp. n/a. United States
Patent and Trademark Office, 2000.

Jeffrey Dean, Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation , pp. 107-113., 2004.

ETH Zirich. Population Based Methods, 2005.
www.tik.ee.ethz.ch/tik/education/lectures/.../population based.pdf .

Martin Fowler. Inversion of Control Containers and the Dependency Injection
pattern, 2004. http://www.martinfowler.com/articles/injection.html retrieved in
May 2009.

52

[Fra05]

[Git09a]

[GitO9b]

[GJ79]

[GLO7]
[Glo86]

[Gor98]

[Hen09]

[Ho88]

[HopO1]

[JF88]

[KE95]

[KGV83]

[KivO9b]

[K1a08]

[NieO5]

[NMSO07]

[Par99]

References

Raquel Campos Franco. Defining the Nonprofit Sector: Portugal. In Working
Papers of the Johns Hopkins Comparative Nonprofit Sector Project, no. 43 , pp.
n/a. The Johns Hopkins Center for Civil Society Studies, 2005.

GitHub. Secure source code hosting and collaborative development - GitHub,
2009. http://github.com/ retrieved in June 2009.

GitHub, Luis Martinho. Imartinho's collaborative credit_matcher at master -

GitHub, 2009. http://github.com/lmartinho/collaborative credit matcher/ retrieved
in June 2009.

Michael R. Garey, David S. Johnson. Computers and Intractability. W. H.
Freeman, , 1979.

Fred Glover, Manuel Laguna. Tabu Search. Springer, First Edition, 1997.

Fred Glover. Future paths for integer programming and links to artificial
intelligence. In Computers and Operations Research , pp. 533-549., 1986.

Martin Gorsky. The Growth and Distribution of English Friendly Societies in the
Early Nineteenth Century. In Economic History Review , pp. 489-511. Economic
History Society, 1998.

Colin Henderson. The right idea for the times | UncrunchAmerica | Fast Company.
In , pp.., 2009.

Mahabub Hossain. Credit for Alleviation of Rural Poverty: The Grameen Bank in
Bangladesh. Bangladesh Institute of Development Studies, First Edition, 1988.

Adrian A. Hopgood. Intelligent Systems for Engineers and Scientists. CRC Press,
Second Edition, 2001.

Ralph E. Johnson and Brian Foote. Designing Reusable Classes. In Designing
Reusable Classes, pp. 22-35., June/July 1988.

James Kennedy, Russel Eberhart. Particle Swarm Optimization. In Proceedings of
IEEE International Conference on Neural Networks, Piscataway, NJ , pp. 1942-
1948. IEEE, 1995.

S. Kirkpatrick , C. D. Gelatt , Jr., M. P. Vecchi. Optimization by Simulated
Annealing. In Science , pp. 671-680. New Series, Vol. 220, No. 4598, 1983.

Kiva. Kiva - What Is Kiva?, 2009. _http://www.kiva.org/about/what/ retrieved in
June 20009.

Michael Klafft. Peer to Peer Lending: Auctioning Microcredits over the Internet. In
Proceedings of the International Conference on Information Systems, Technology
and Management , pp. n/a. A. Agarwal, R. Khurana eds., IMT, Dubai, 2008.

Gustavo Niemeyer. API Documentation (python-constraint), 2005.
http://labix.org/doc/constraint/ retrieved in May 2009.

Andrew W. McNabb, Christopher K. Monson, Kevin D. Seppi. MRPSO:
MapReduce particle swarm optimization. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation , pp. 177-177. ACM New
York, NY, USA, 2007.

Partnoy, Frank. The Siskel and Ebert of Financial Markets: Two Thumbs Down for
the Credit Rating Agencies. In Washington University Law Quarterly, Vol 77 , pp.
619-712. Washington University, 1999.

53

[Pel09]

[Pros09]

[PS82]

[PSF09a]

[PSFO9b]

[RBWO06]

[Reg05]

[Res06]

[Rie00]

[Rod09]

[RW09]

[ScheO1]

[SHJO00]

[SmiO8]

[THO9]

[Tsa93]

[Unc09]

[Wik(09a]

References

Michel Pelletier. PEP 245 -- Python Interface Syntax, 2009.
http://www.python.org/dev/peps/pep-0245/ retrieved in June 2009.

Prosper Marketplace CA, Inc.. Terms Of Use - Prosper Loans Marketplace, 2009.
http://www.prosper.com/legal/terms of use.aspx retrieved in June 2009.

Christos H. Papadimitriou, Kenneth Steiglitz. Combinatorial optimization:
Algorithms and Complexity. Dover Publications, Inc., New York, , 1982.

Python Software Foundation. The Python Language Reference, 20009.
http://docs.python.org/reference/ retrieved in June 2009.

Python Software Foundation. The Python Standard Library — Python v2.6.2
documentation, 2009. http://docs.python.org/library/ retrieved in June 2009.

Francesca Rossi, Peter van Beek, Toby Walsh. Handbook of Constraint
Programming. Elsevier, , 20006.

The Register. Zopa — the bank that likes to say 'Hello There!' - The Register, 2005.
http://www.theregister.co.uk/2005/07/29/zopa_p2p banking/ retrieved in June
2009.

André Restivo. Dynamic Scenario Simulation Optimization. Master Thesis,
Universidade do Porto, Faculdade de Engenharia, 2006.

Dirk Riehle. Framework Design: A Role Modeling Approach. Ph.D. Thesis, No.
13509, Switzerland, ETH Ziirich, 2000.

Roda Crédito Colaborativo. roda.cc - Roda Crédito Colaborativo, 2009.
http://www.roda.cc/ retrieved in June 2009.

Guido van Rossum, Barry Warsaw. PEP8 - Style Guide for Python Code Style
Guide for Python Code, 2009. http:// www.python.org/dev/peps/pep-0008/

retrieved in May 2009.

Neil Schemenauer, Tim Peters, Magnus Lie Hetland. PEP 255 -- Simple
Generators, 2001. http://www.python.org/dev/peps/pep-0255/ retrieved in June
2009.

J. Swisher, P. Hyden, S. Jacobson and L. Scruben. A survey of simulation
optimization techniques and procedures. In Proceedings of the 2000
Winter Simulation Conference, pp. . K. Kang J.A. Joines R.R. Barton and P.A.
Fishwick, editeurs, 2000.

Kevin D. Smith, Jim J. Jewett, Skip Montanaro, Anthony Baxter. PEP 318 --
Decorators for Functions and Methods, 2008.
http://www.python.org/dev/peps/pep-0318/ retrieved in June 2009.

Dave Thomas, David Heinemeier Hansson. Agile Web Development with Rails.
The Pragmatic Programmers, Third Edition, 2009.

Edward Tsang. Foundation of Constraint Satisfaction. Academic Press,
Department of Computer Science, University of Essex, UK, , 1993.

Uncrunch America. About UNCRUNCH AMERICA™ - Uncrunch America,
http://www.uncrunch.org/uncrunchAmerica/about.action .

Wikipedia. Person-to-person lending, 2009. http://en.wikipedia.org/wiki/Peer-to-
peer lending retrieved in June 2009.

54

[Wik09b]

[Wik09c]

[Wik09d]

[Wik09e¢]

[WikOOf]

[Wik09g]

[Wik(09h]

[Wik09i]

[Wyd99]

[Zhi07]
[Zopa09a]

[Zopa09b]

[Zope09]

References

Wikipedia. Financial crisis of 2007-2009 - Wikipedia, the free encyclopedia,
2009. http://en.wikipedia.org/wiki/Financial crisis of 2007-2009 retrieved in June
2009.

Wikipedia. Combinatorial optimization - Wikipedia, the free encyclopedia, 2009.
http://en.wikipedia.org/wiki/Combinatorial optimization retrieved in June 2009.

Wikipedia. Particle swarm optimization - Wikipedia, the free encyclopedia, 2009.

http://en.wikipedia.org/wiki/Particle Swarm Optimization, retrieved in June 2009
retrieved in June 2009.

Wikipedia. Constraint satisfaction - Wikipedia, the free encyclopedia, 2009. http://
en.wikipedia.org/wiki/Constraint satisfaction, retrieved June 2009 retrieved in
June 2009.

Wikipedia. Software framework - Wikipedia, the free encyclopedia, 2009.
http://en.wikipedia.org/wiki/Software framework retrieve in June 2009.

Wikipedia. Interface (computer science) - Wikipedia, the free encyclopedia, 2009.
http://en.wikipedia.org/wiki/Interface (computer science) retrieved in June 2009.

Wikipedia. Genetic algorithm - Wikipedia, the free encyclopedia, 2009.
http://en.wikipedia.org/wiki/Genetic algorithm retrieved in June 2009.

Wikipedia. Crossover (genetic algorithm) - Wikipedia, the free encyclopedia,
2009. http://en.wikipedia.org/wiki/Crossover (genetic_algorithm) retrieved in June
20009.

Bruce Wydick. Can Social Cohesion be Harnessed to Repair Market Failures?
Evidence from Group Lending in Guatemala. In The Economic Journal, Vol. 109,
No. 457 , pp. 463-475. Blackwell Publishers, 1999.

Anatoly Zhigljavsky. Stochastic Global Optimization. Springer, , 2007.

Zopa Ltd.. How it works, 2009. http://uk.zopa.com/ZopaWeb/public/about-
zopa/how-it-works.html retrieved in May 2009.

Zopa Ltd. FAQs - What are the Zopa Principles?, 2009.
http://uk.zopa.com/zopaweb/public/help/help-fags-interested.html#principles
retrieved in June 2009.

Zope 3 project team. Zope 3 API Documentation, 2009. http://apidoc.zope.org/+
+apidoc++/ retrieved in June 2009.

55

