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Resumo

Ao longo dos últimos anos, sistemas de processador embebido têm vindo a ser cada vez mais
utilizados em aplicações nos mais diferentes campos. Algumas dessas aplicações são demasiado
exigentes em termos temporais para serem executadas unicamente por estes processadores. De
forma a aliviar a carga de processamento, blocos de hardware dedicados podem ser acoplados ao
processador para auxiliar no processamento de zonas da aplicação que sejam computacionalmente
mais intensivas.

Nesta dissertação, o principal objectivo foi acelerar uma aplicação de terceiros, originalmente
em linguagem C, preparada a executar num processador convencional. A aplicação a acelerar está
direccionada para um sistema de navegação estéreo onde, através do processamento de imagens
vindas de duas câmaras, um veículo autónomo poderá inferir a sua posição, rotação e translação
relativas. O objectivo de acelerar esta aplicação está inserido no projecto Europeu REFLECT.

Para o desenvolvimento deste trabalho foram identificadas três das funções que consumiam
mais tempo relativo de execução da aplicação num processador PowerPC 440 a 400MHz. Uti-
lizando a ferramenta de síntese de alto nível Catapult C, foram criados três módulos de hardware
para substituir essas mesmas funções. Os módulos criados foram finalmente implementados numa
FPGA da Familia Virtex-5 da Xilinx e executados a 100MHz.

Foi criado um sistema híbrido hardware/software onde as zonas computacionalmente mais
criticas foram executadas pelos blocos de hardware criados enquanto o resto da aplicação contin-
uou a ser executado como software. Ao usar estes módulos de hardware para auxiliar a aplicação
executada pelo processador PowerPC 440, conseguiu-se uma aceleração de cerca de 1,5 vezes
quando comparada com a mesma aplicação executando exclusivamente sob a forma de software
no processador.
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Abstract

Throughout the years, embedded processor systems are becoming more and more used for
applications in the most diverse fields. There are however some applications that are too time
demanding to be executed solely by a standalone embedded processor. To relieve some of the
processing load, dedicated hardware blocks can be coupled to the processor aiding it by processing
the parts of the application that are, computationally speaking, more intensive.

The main objective of this thesis was to hardware accelerate a third party C-language applica-
tion that was aimed to execute in a general purpose processor. The application to be accelerated
is aimed for a stereo navigation system where, through image processing of data coming from
two cameras, an autonomous vehicle could infer its relative position, rotation and translation. The
objective to accelerate this application is inserted into the European REFLECT project.

In this thesis, the three functions that consumed most of the application’s time were identified
when executed in an PowerPC 440 processor at 400MHz. Using the high level synthesis tool
Catapult C, the corresponding modules that would replace this three functions were created. These
modules were synthesized in a Xilinx Virtex-5 FPGA and executed at 100MHz.

It was created an hardware/software hybrid where the most computational intensive functions
were carried by the hardware blocks, being the rest left to be carried by the processor. Using
these hardware modules to aid the application that was executed by the PowerPC 440 processor, a
speed-up of 1,5 times was achieved when compared to the same application being carried solely
as software by the processor.
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“The winner ain’t the one with the fastest car,
it’s the one who refuses to lose.”
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Chapter 1

Introduction

With the advances in IC technology, more transistors can be arranged in a smaller area resulting

in more and more processing power at lower costs. With this constant evolution, one type of

hardware is becoming widely used for prototyping and final product implementation, that is the

case of Field Programmable Gate Arrays (FPGA). This type of hardware can be reconfigured by

a programmer "in the field" to do a specific functionality, having a flexibility similar to software

programming making them preferable to the more static ASIC implementation when facing low

volume applications. The possibility that these systems have of being customized allows them to

be specialized to perform the operation that they were tailor-made for, and thus makes them able

of achieving better performance than conventional computing systems.

A field that is gaining interest is the hardware acceleration of software applications like image

processing, data streaming, signal processing and other computational intensive applications. A

large community of software developers, usually makes use of C-language based programming to

provide the embedded systems with the desired behaviour. However, for cases where performance,

timing, power or area constrains are strict, custom hardware to optimize the performance can be

the only solution. Two approaches can be followed, depending on the application at hand, to create

a system that obeys to the constraints imposed: create a custom hardware device to execute all the

application or divide the system in two parts where the most critical parts are handled by dedicated

hardware while the rest is executed by software.

1.1 Motivation and objectives

The objective of this thesis is to hardware accelerate a stereo navigation application, making

use of reconfigurable hardware modules of a Virtex-5 FPGA, in order to be apt for an efficient use

in autonomous vehicles. The stereo navigation application to be accelerated (with C source code

provided by Honeywell [2]), is intended to be integrated in an airplane localisation system, in case
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2 Introduction

that the GNSS1 used is temporarily unavailable and the plane has to localise itself for some period

of time.

The idea of the application is that from independent images derived from two cameras looking

in approximately the same direction, dominant entities in the image, invariant to rotation and

translation, can be extracted. With the cameras taking the pictures at the same time, this features

can be localized in a three dimensional space. Images taken in adjacent instants can be used

to calculate the vehicle’s rotation and translation. The thesis’s work is inserted in the European

project REFLECT (Rendering FPGAs to Multi-Core Embedded Computing) [3].

These application is based on image processing which puts major demands on the processors.

By making use of dedicate hardware blocks to process the image data, its expected to relieve the

processor of the most intensive computations and obtain some degree of acceleration.

The parts of the applications that are consuming most of the time and are delaying the other

parts (and the application itself) will be implemented in hardware, while the "lighter" parts will

continue to execute in the PowerPC processor present in the development board that will be used

during this thesis. With this approach, both software and hardware will be working together for a

faster application.

1.2 Work Procedure

The basis of the proceeded work throughout this thesis had, as the main objective, to accelerate

the stereo navigation application with as little as possible changes to the original source code ,i.e,

no code optimization, no function inlining and no alterations that could, in any way, make the

original application execute faster.

The work flow followed through the project can be seen in figure 1.1.

1.3 Thesis Structure

After this chapter, the document is composed of five more chapters. In chapter 2, it is made

a study of the State of the Art. The chapter is comprised by hardware acceleration solutions,

technology options and the used tools for the development of the project.

Chapter 3 presents an analysis of the application running in the ML507 development board.

Composing this chapter is a detailed description of the application itself (functionalities, charac-

teristics etc.), how the application was ported (reconfigured in order to run) to the development

board and the detection of the slowest parts using some profiling techniques.

In chapter 4 it is made a description of how the hardware modules were developed using

Catapult C, as well as, the main dificulties and the solutions found.

Chapter 5 describes how the software-hardware interface was constructed. The required veri-

fications are made along with some critical analysis of the obtained solutions.

1Global Navigation Satellite System
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Finally, chapter 6 presents a conclusion of the thesis, as well as, some possible considerations

for future work.
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Chapter 2

State of the Art

2.1 Hardware Acceleration

Many of today’s applications, like data streaming, image processing, etc., are putting higher

demands on computing devices. At the same time, production costs and time-to-market targets are

getting more and more strict. Having a general computing device isn’t, normally, the best choice

to process computational intensive algorithms because of the overhead caused by the instruction

fetch, decode and execute cycle. General-purpose computing devices are designed to perform a

wide variety of tasks with reasonable performance rather than having high performance on specific

tasks. These devices are not well suited for applications that aim in executing one specific task with

high degree of processing speed. Designing hardware blocks dedicated solely in the execution of

these tasks provides a degree of specialization which gives place to higher performance degree.

The two main reasons why hardware can accelerate a given application is: parallelization and

data flow direction. By making use of a parallel architecture, multiple operations can be executed

at the same time. For instance, by parallelyzing the arithmetic operation D = (a+b)× (a−c), the

addition and subtraction operations can be made at the same time while the multiplication would

proceed in the following instant. This would not be possible in a general purpose processing

unit where, the same operation would take three cycles (addition, then subtraction and, finally,

multiplication) instead of the two cycles used in the hardware alternative. The second reason why

an application is accelerated when executed making use of hardware blocks is, that by being able

to organize all the functional units, it is possible to direct the data flow such that the maximum

number of functional units are operating at the same time.

Applications where hardware acceleration can provide excellent results are the ones that re-

quire:

• high processing power requirements ;

• high bandwidth requirements ;

• real-time constraints;

• data formats for which the general purpose CPUs are not optimized;

5
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• hardware interface (example: digital camera interface).

One example where hardware acceleration was used, was the "Hardware acceleration of a

Monte Carlo simulation for photodynamic therapy treatment planning". There, a TM-4 board

with four FPGAs of the Stratix I family provided the hardware blocks to accelerate a Monte Carlo

application based on the Monte Carlo for Multi-Layered media software. The hardware performed

the MC simulation, on average, 80 times faster and 45 times more energy efficient than its software

counterpart running on 3-GHz Intel Xeon processor[4].

2.1.1 Hardware Alternatives

To provide the required hardware acceleration, two main alternatives can be chosen: either use

an Application-Specific Integrated Circuit (ASIC) or a Field-Programmable Gate Array (FPGA).

An ASIC is an IC designed specifically for a particular use, rather than general purpose use.

Having the task to be carried well defined, the IC is designed to operate in the most efficient

way. By specializing this IC, only the required logic is implemented in the circuit thus eliminating

unnecessary transistors giving place to the most energy efficient solution, as well as, the smallest

area achievable. Also, hardware blocks with higher degrees of data transaction, can be placed as

close as possible, lowering the data transfer times, resulting in lower processing times.

The ASIC implementation provides a natural mechanism for implementing the large amount

of parallelism found in many computational intensive applications, according to [5]. However, de-

signing a custom integrated circuit, requires a lot of time from non-recurring engineering. Another

discouraging factor of this type of implementation is the mask costs which, according to [6], can

get as high as $4 million for an ASIC in a 40 nm process.

Perhaps the main disadvantage of an ASIC that makes them out of reach when designing a

prototype system is its lack of flexibility. After being fabricated, the circuit can no longer be

altered and, even if the slightest change is made to any part of its circuit, the chip can no longer

be used and therefore, a new one has to be redesigned and re-fabricated. To avoid that, hardware

designers spend most of the development time simulating the behaviour of the circuit to try and

eliminate any flaw. This disadvantages make the ASIC alternative out of reach for prototypes and

low volume applications.

Another alternative (and the one used in this project) to hardware accelerate an application is

to make use of the reconfigurable characteristics of an FPGA. This ICs are pre-fabricated using

the same techniques as the ASICs however, an array of programmable logic blocks interconnected

by a programmable routing fabric gives it the ability of being electrically programmed by the

designer to implement virtually any digital design. This characteristic makes it almost perfect for

the development of prototypes or low volume applications since the flexibility of software and the

processing power of hardware can be met at the same time.
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According to [1], current FPGAs are SRAM-programmable, meaning that the SRAM bits are

“connected” to the configuration points in the FPGA so, programming the SRAM bits config-

ures the FPGA. The way this works is, the SRAM bits are used to turn on or off a pass gate of

the programmable routing fabric, this in turn, will allow the signal to flow from one wire to an-

other. Configuration bits can also be used to control computational units, multiplexers, LUTs, etc.

To configure this devices, the designer makes use of an Hardware Description Language (HDL)

similar to the ones used to define the ASICs functionalities.

Because FPGAs are pre-fabricated by third parties, the hardware designer only has to con-

figure the connections between the required basic blocks to produce the desired system. This

eliminates the mask costs that an ASIC with the same functionality would have. Also, because of

its reconfigurable characteristics, all the layout can be changed without having to alter the phys-

ical characteristic of the FPGA, which results in reduced non-recurring engineering and shorter

time-to-market.

The reconfigurable fabric of an FPGA consist of a set of reconfigurable functional units, re-

configurable interconnect (which are used to connect the used functional units among themselves),

and a flexible interface to connect the fabric to the rest of the system as stated by [5]. There are

some different approaches of the reconfigurable fabrics topologies: fine-grained fabrics (useful for

bit-level manipulations), i.e., highly reconfigurable fabrics capable to better adapt to the applica-

tion specification or, coarse-grained fabrics (useful in datapath applications) that are more efficient

and smaller. These approaches can influence the constituents of the FPGA.

Fine-grained functional units perform a single function in a small number of bits. The most

abundant example of fine grained functional units are look up tables. By shifting a combina-

tion of bits, these units can output any kind of result. This flexibility gives them the power of

implement any digital circuit. However, fine grained functional units use significant areas, have

significant delays, and have high power consumptions when compared with the coarse grained

alternatives. Although less flexible, coarse-grained functional units can eliminate these problems,

like the DSP48E (fig.2.1) blocks present in the Xilinx Virtex family FPGAs. These functional

units although not as flexible, can perform faster and using less area.

The topology of the reconfigurable interconnects has also some impacts in the efficiency of

the FPGA’s reconfigurable fabric. In the fine-grained topology (fig.2.2a), every wire of a bus

can be switched independently while in the coarse-grained alternative all the bus’ wires have to be

mutually switched on or off (fig.2.2b). Usually, the reconfigurable interconnects and the functional

units go hand-in-hand, i.e., coarse grained units are, normally, connected using coarse grained

interconnects. While the fine grained approach provides flexibility, it also has the downside of

reconfiguration overhead, since every wire of a bus has to be configured.

Some disadvantages are observed when comparing an FPGA with an ASIC. In the design

of an FPGA, the basic logic blocks (AND gates, OR gates, NOT gates, etc.), the harder blocks

(multipliers,etc.), as well as all the other components, are already placed in the IC. When the
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Figure 2.1: DSP48E slice.

designer defines the connections of two components, the routing may not be the best solution.

For instance, if an output of a Multiplier is to be connected to an AND logic gate that is very far,

because of architecture constraints, a large routing wire (along with all the switching transistors)

will be used, causing propagation delays, reducing the overall performance of the circuit. This

also gives place to a greater silicon area and power consumptions.

Besides these two, more commonly used hardware alternatives, there are cases where pre-

made graphics processing units were used to hardware accelerate applications. For instance, in [7]

a GPU was used as a coprocessor to accelerate a Finite-Difference Time-Domain method. Another

example is the FFT acceleration processes using a GPU [8].

Through OpenGL and Direct X applications, modern GPUs can become programmable hard-

ware devices, being possible to implement various applications. GPUs can provide the required

processing speed because of their high parallel application purpose and floating point data type

capabilities. However, when using GPUs, the application has to be modelled to the architecture,

Figure 2.2: Different interconnect configurations. Fine-grained on the left and coarse-grained on
the right.
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Figure 2.3: Execution of an instruction without pipelining.

instead of generating a specialized architecture.

2.1.2 Hardware Techniques

Some techniques are used when proceeding to hardware acceleration. For Example, by con-

verting the floating-point data representation to fixed-point, the number of functional units are

reduced hence reducing the size used in the FPGA. Since the amount of parallelism that can be

used in an FPGA is directly proportional to its available logic elements, using fixed-point data

types will result in more units available to use in parallelization.

Another technique is the use of look up tables for expensive operations (trigonometric func-

tions, as an example). By storing the already computed values in memory, it is avoided the use of

larger computational blocks that would use a large number of elements. This technique also saves

FPGA space and can be used to provide hardware acceleration in the same way as the previous

technique.

The pipelining technique is widely used for hardware acceleration. This technique consists

in dividing the instruction’s execution in individual tasks so that each one can be processed by

different functional units. As an example, consider the figure 2.3. There, an instruction composed

by 4 tasks is being executed in line and, upon execution, the processor will start to execute the next

instruction. By pipelining this instruction, every task is executed by a different functional unit, as

shown in fig 2.4. In the ideal case, pipelining enables one instruction to be done at every cycle.

This however does not mean that the instruction will execute faster.

Since every sub-task is performed independently, more than one task can be performed at the

same time. Taking as an example the operation D = (a+b)× (a− c), it could be divided in two

stages: in the first, the addition and subtraction could be proceeded in parallel; the second stage is

composed by the multiplication. If the operation was to be made multiple times, the multiplication

A B C D    Instruction 1 

    A B … Instruction 2 

 

 

 

A B C D   Instruction 1 

 A B C D  Instruction 2 

  A B C … Instruction 3 

   A B … Instruction 4 

 
Figure 2.4: Execution of an instruction with pipelining.
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of the instruction n could be made at the same time as the addition and subtraction of the instruction

n+1.

2.1.3 Architecture Alternatives

There is a significant interest in hardware/software co-design aiming to accelerate a software

application where the most time critical parts are implemented in hardware blocks of the FPGA

while the parts that cannot be efficiently accelerated are handled by the embedded processor. Nor-

mally, complex control sequences such as variable length loop are better implemented in software,

while fixed datapath operations obtain better acceleration when mapped to hardware. This can pro-

vide high degrees of acceleration. By using an hardware/software hybrid “significant performance

improvements, approaching super-computer speeds, can be achieved in a number of application

areas, including cryptography, data compression and string matching” [9].

Most of the time, in the software/hardware hybrid, the reconfigurable fabric works as copro-

cessor to a microprocessor host (this can also be made with a custom circuit). In the reconfigurable

logic the most computational intensive parts are handled while, variable length loops and branch

control operations that cannot be efficiently mapped to the FPGA are handled by the micropro-

cessor. An inherent advantage of using the reconfigurable fabric as a coprocessor is the speed-up

resultant of the parallel computing. This speed up can be characterized by Amdahl’s law. The

modern version of Amdahl’s law states that if a fraction f of a computation is enhanced by a

speed-up S, the overall system speed-up is:

Speed−upenhanced( f ,S) =
1

(1− f )+ f
S

(2.1)

This of course, when both the processor and the reconfigurable mesh are executing in parallel.

Also, it should be noted the the maximum speed-up achievable depends on the time needed for the

sequential fraction of the program. As an example consider an algorithm that takes five minutes

to execute and of those five minutes, one cannot be parallelized. Regardless of the parallelization

degree, the overall algorithm cannot be executed in less than one minute.

Many computational structures, making use of a standard microprocessors and one or more

reconfigurable meshes have been proposed. Some with higher communication speeds between the

processor and the mesh, others with higher degree of computing independence. This structures are

presented in figure 2.5 and explained with more detail in [1].

In the first case (fig.2.5a) the reconfigurable unit is used within the microprocessor as func-

tional units connected to its main datapath. These functional units can provide the processor the

ability of being programmed with custom instructions that can be altered in the future. These func-

tional units require constant supervision of the processor and, therefore, is the alternative with the

greatest communication overhead. An example of this kind of architecture is the one present in the

Chimaera reconfigurable functional unit, a system design to overcome communication bottleneck
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Figure 2.5: Various Processor-FPGA architectures (adapted from[1]).

by integrating reconfigurable logic into the host processor itself [10]. The interconnect structure

of Chimaera lends itself well to automatic compilation.

The second case(fig.2.5b), uses the reconfigurable fabric as a coprocessor to which the micro-

processor sends data (and controls). The coprocessor executes independently of the processor, i.e.,

doesn’t require constant supervision from it, and after completion returns the results. These kinds

of architectures are designed to exploit large amounts of fine-grained parallelism in applications.

An architecture similar to this was presented by [11] where both, an FPGA and a reconfigurable

multimedia array coprocessor solutions were used to achieve speedups ranging from 2.3 to 7.3

times.

The alternative present in fig.2.5c, uses a reconfigurable mesh as a processor in a multipro-

cessor system. This implementation provides greater computing independence but at the cost of

communication speed.

In the alternative 2.5d the communication speed is even lower but the reconfigurable mesh

executes almost as a stand alone computing system.

Other alternatives can be followed. In the COSYMA[12] system, it is attempted to have most

of the operations executed by software while hardware is only synthesized for the operations that

violate timing constraints. On the other hand, the PAM system, is a reconfigurable hardware

coprocessor (making use of an FPGA) tightly coupled to a host workstation [13]. The PRISM[14]

approach compiles a program to produce an hardware image used to characterize a reconfigurable

platform, and a software image which is similar, in function, to the executable image produced by

a conventional compiler consisting of machine code ready to execute in a microprocessor along

with code that integrates the synthesized hardware.
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2.2 High-Level Synthesis

Using a HDL to develop an hardware design capable of performing complex functionalities is,

sometimes, a cumbersome and error-prone task. In fact, the creation of hardware modules from

both VHDL and Verilog requires the developer to have in mind the characteristics of the target

FPGA, timing constraints, communication delays, etc. For larger projects it is needed a set of

tools with a certain degree of abstraction where, only a description of the final implementation’s

desired behaviour is described.

Because C is one of the most widely used programming languages with high degree of ab-

straction, and because most of the software to be hardware accelerated is written in C, more and

more hardware designers and software programmers are looking at ways to configure hardware by

making use of this programming language.

But standard C is not a good choice for designing hardware, given that although it ensures

algorithm causality, timing constrains like execution time of a given function or when its input

values should be ready to be used are not specified. Since a software algorithm executes in a

sequential fashion, failing to meet temporal requisites does not have serious complications (being

the only exception in Real-Time systems) and only the execution time of the overall application is

affected. However, the same is not true for an hardware module where failing to respect temporal

constraints has catastrophic implications such as, errors in the handled data or even shutting the

hardware normal functioning.

"Successful hardware synthesis from C seems to involve languages that vaguely resemble C,

mostly its syntax"[15]. Some of those C-like hardware languages are:

• Cones — Synthesizes a single function to combinational blocks. Supports loops (unrolling

them), conditionals and arrays;

• HardwareC — Behavioural hardware syntax with C-like syntax ;

• SystemC — Set of C++ classes and macros that supports hardware and system modelling;

• Handel-C — C variant where every assignment takes exactly one clock cycle;

• SpecC — Extension to C with constructor for concurrency, pipelining, etc.;

The main disadvantage of this C-like tools is that their low resemblance to C implies that the

programmer has to, effectively, learn a new language. Also, providing software programmers with

these tools is not enough to make them good hardware designers since they are used to implement

algorithms that run in a sequential manner and, therefore, their ability of designing concurrent

tasks may not be well developed. According to [15], software follows a sequential, memory-based

execution model derived from Turing machines1, whereas hardware is fundamentally concurrent.

The reason for this comes from the difficult task of designing parallel algorithms, as well as, a dis-

agreement in which are the most efficient ways to provide parallelism to the software’s algorithms.

1Theoretical device that help to investigate the extent and limitations of what can be computed.
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Having these tools a different syntax from standard C, they’re also unsuitable when it comes to

accelerate functions of a pre-existing C application (or all the application) since, the code would

have to be rewritten.

It is the role of the HLS (High Level Synthesis) tools to transform algorithmic level behavioural

specification into an HDL capable of synthesize hardware modules that execute the same func-

tionalities as the application (or as the application’s function) to be accelerated. This tools also

improve the time-to-market since the debug, verification and validation processes of the design

are simplified when done at an high abstraction level. By guiding the automated synthesis flow to

generate the architecture that meets the desired goals, instead of manually transform the software

language to an HDL, it is obtained a gain in development and debugging time.

Some of these tools, generate only the hardware configuration of the system, i.e, when an HLL

(High Level Language) is processed by these tools, only the equivalent hardware is inferred. In a

software/hardware co-design, the designers will have to adapt the applications software to account

for the new generated hardware. There are however tools that enable the designer to specify which

parts will be mapped to hardware and which will continue to be executed as software, either by

the definition of pragmas or automatically by determining the acceleration gained through the

execution of a code fragment in hardware.

According to [16] an HLS tool shall execute the following steps: Compilation, allocation,

scheduling, binding and RTL (Register Transfer Level) generation.

In the compilation phase, a series of optimizations such as, loop transformation and dead-

code elimination, are made over the algorithm to be synthesized. Also, it is created a formal

representation where the control and data flow are defined.

In the second phase, i.e, the allocation phase, the type and number of hardware resources

needed to satisfy the design constraints are defined. This components are selected from an RTL

library where their power consumption, area and delay must be present.

The scheduling phase is responsible to define when the variables needed by a functional unit

shall be present in its inputs. Also in this phase it is specified when the operation should begin its

execution.

When there are multiple functional units capable of executing a function, the ones that opti-

mize the final hardware module shall be chosen in the binding phase.

Having all the decisions been made in the previous phases, they can be used to generate an

RTL model that respects the design.

One example of these HLS tools is Mentor Graphics’s Catapult C. This tool analyses pure

and untimed C++ to generate an RTL netlist in Verilog, VHDL and SystemC. There are some

reports[17][18] of applications using Catapult to transform C into RTL.
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2.3 Tools

A brief description of the tools that were used throughout the thesis’ project, will be described

in this section.

2.3.1 Virtex-5

To hardware accelerate the application at hand, it was used a Virtex-5 FPGA; more precisely

a XC5VFX70T with an embedded PowerPC 440 hard-core processor. The Virtex-5 is an evolu-

tion of other FPGAs of the Virtex family, using 65-nm copper process technology and provide a

programmable alternative to custom ASIC technology. Some of its common features are [19]:

• 6-LUT + Express Fabric;

• 36Kb Dual-Port Block RAM / FIFO with ECC;

• SelectIO with IDELAY/ODELAY and SerDes;

• 10/100/1000 Mbps Ethernet MAC;

• PCI-Express Endpoint Blocks;

• GTP 3.75 Gbps Transceivers;

• GTX 6.5 Gbps Transceivers;

• PowerPC440 Processors (one in the case of the XC5VFX70T);

• 550 MHz Clock Management;

• 25x18 DSP Slices;

• Integrated System Monitor A/D Converter;

• Advanced Configuration Options.

The Virtex-5 family has also some additional capabilities to extend the functionalities of the

PowerPC processor, like crossbar connections or auxiliary processing-unit controllers which can

be used to connect the processor to a 128-bit Floating Point Unit which is a soft co-processing

unit. This hardware coprocessor is used to address the lack of a floating point unit in the Pow-

erPC processor. Because it is external to the processor, arithmetic operations using floating point

datatypes will take longer to execute.

The XC5VFX70T belongs to the FXT sub-family characterized as being high-performance

embedded systems with advanced serial connectivity. The main reason for choosing an FPGA

of this sub-family instead of any other sub-family (LX for high-performance general logic ap-

plications, LXT for high-performance logic with advanced serial connectivity, SXT for High-

performance signal processing applications with advanced serial connectivity or TXT for high-

performance systems with double density advanced serial connectivity) was justified by the fact
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that the FXT sub-family is the only one that contains one (or two) PowerPC 440 RISC Core[20],

indispensable to execute the software application.

Perhaps the most important feature of this FPGA are its 128 DSP48E slices that operate at

550MHz[20]. With this, multiple slower operations can be implemented, using time-multiplexing

methods. These slices provide improved flexibility and utilization, supporting 40 dynamically con-

trolled operating modes, including multiply, multiply accumulate (MACC), multiply add, three-

input add, barrel shift, wide-bus multiplexing, magnitude comparator, bit-wise logic functions,

pattern detect, and wide counter.

To be able to work with this FPGA in a easier way, the ML507 (fig 2.6) development board

was used. This development board, provides a wide set of features, which saves much of the

development time if one would have to manually configure the controlling components. Some of

those are [21]:

• XC5VFX70T-1FFG1136 — Virtex-5 FPGA;

• Two Xilinx XCF32P Platform Flash PROMs — for storing large device configurations

(32 Mb each);

• Xilinx System ACE CompactFlash configuration controller — used to load the FPGA’s

configuration, as well as, the embedded Linux operating system.

• 64-bit wide, 256-MB DDR2 small outline DIMM

• 10/100/1000 tri-speed Ethernet PHY transceiver and RJ-45 with support for MII, GMII,
RGMII, and SGMII Ethernet PHY interfaces — Used in the project to send commands

and transfer executable files via Ethernet.

2.3.2 PowerPC 440

The PowerPC 440 (PPC440) is a processor of the IBM’s PowerPC 400 family. These are

32-bits embedded RISC processors that are built using the Power Architecture technology. These

processors are designed to fit inside dedicated circuits like ASICs, microcontrollers and FPGAs.

Having first appeared in 1999, the PPC440 core is a high-performance, low-power consump-

tion engine that implements the flexible and powerful Book-E Enhanced PowerPC Architecture.

Embedded in the XC5VFX70T FPGA, is capable of up to 550 MHz operation, 1000 DMIPS and

Out-of-order execution[20].

Some of the main features of this processor are[22]:

• High performance, dual-issue, superscalar2 32-bit RISC CPU;

• Separate 32 kB instruction and data L1 caches;

2Replication of some components built in order to allow more than one instruction to be executed in each cycle
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Figure 2.6: ML507 development board.

• Instruction cache parity;

• Data cache parity;

• D-cache full-line flush capability;

• Memory management unit;

• UTLB parity;

• Multiple core Interfaces defined by the IBM CoreConnect on-chip system architecture.

This processor has also a PLB(Processor Logic Bus) interface of 128 bits and is fully compati-

ble with the IBM CoreConnect on-chip system architecture, providing the framework to efficiently

support system-on-a-chip (SOC) designs[23]. The PLB interface serves as a mean of communica-

tion with all the peripherals external to it. In the case of this thesis, the PLB will be mostly used

for communicating with the hardware modules of the FPGA.

To simplify on-chip devices attachments, the core contains various interfaces[22], namely:

• Processor local bus (PLB);

• Device configuration register (DCR) interface;

• Auxiliary processor unit (APU) port;
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• JTAG, debug, and trace ports;

• Interrupt interface;

• Clock and power management interface.

The PPC440 includes a seven-stage pipelined PowerPC processor, which consists of a three-

stage, dual-issue instruction fetch and decode unit with attached branch unit, together with three

independent, four-stage pipelines for complex integer, simple integer, and load/store operations,

respectively. It also includes a memory management unit (MMU), separate instruction and data

cache units, JTAG, debug, trace logic, and timer facilities.

This processor is available in the ML507 development board used in this thesis. It’s aim will

be to execute the software part of the application. Also, through the PLB, it will send the data to

the FPGA’s RAMs, as well as the, the handshake signal to control the hardware modules.

2.3.3 Catapult C

Catapult C Synthesis is an algorithmic synthesis tool that outputs RTL (Register-Transfer-

Level), netlists (VHDL, Verilog, and SystemC), simulation scripts, schematics and reports from

C++ working specifications. This was the tool that was used throughout this thesis to convert

some of the functions of the application that were initially in C to Synthesizable hardware. The

strongest feature of this tool is it’s ability to accept untimed C++ algorithms to be synthesized to

RTL. Typically, the C++ code from a system designer can be used to generate correct results that

meet latency and timing constraints, having however, to be made some code changes to meet area

and power goals. Besides the C++ to hardware compilation, Catapult C also provides:

• C++ compiler and file editing — This compiler has more complete checking than a stan-

dard C++ compiler;

• Algorithm and architecture analysis — To analyse various algorithm parameters such

loop size, variable size, etc.;

• Micro-architecture constraints — Loop unrolling, pipeline, memory access,etc.;

• Optimization and RTL hardware generation — For better area and/or latency solutions;

• SystemC Verification Flow — Automates the generation of a SystemC testbench;

• Integrated tool flows— For power analysis, formal verification and source code linting.

The synthesis process flow to create an hardware module using Catapult C can be seen in

figure 2.7. The two leftmost blocks are the action that are not performed in Catapult C.
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Figure 2.7: Catapult C process flow.

In addition, the integrated SystemC verification flow automates the generation of a SystemC

testbench which allows to verify that the C++ design matches the resulting hardware. All these

automated processes can increase productivity significantly over standard RTL writing.

Catapult C works in a Solution basis, meaning that changes made to the source code, architec-

ture constraints etc., will be branched to different solutions so that all the alternative implementa-

tions are available for comparison.

2.3.4 Other Tools

• Gprof

The hardware acceleration process is best achieved if the most time consuming and computa-

tionally critical functions are identified. To that end, the profiling tool Gprof was used.

Gprof analyses the execution time of each and every function of a software application. This

analysis is proceeded in the actual execution of the program, using a sampling process. Afterwards,

two tables can be viewed where both the total and relative time spent by a function (both by itself

and all it’s children), the number of time it was called and functions’ hierarchy is shown.

• Precision RTL

Precision RTL is a comprehensive toolsuite, providing design capture in the form of VHDL,

Verilog and SystemVerilog entry, advanced register-transfer-level logic synthesis, constraint-based

optimization, timing analysis, schematic viewing, and encapsulated place-and-route. This tool was

mainly used because the Verilog files that were generated by Catapult C, were in too high level

to be recognizable by XILINX ISE, i.e., it contained statements not recognized by XILINX ISE.
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Precision RTL was needed to synthesize the gate level specification to be effectively used by the

ISE.

• Xilinx ISE

Development environment for synthesis and analysis of HDL designs. ISE (Integrated Syn-

thesis Environment) also enables to perform timing analysis and simulation of the synthesized

hardware when faced to external stimulus.

The Verilog files created by Precision RTL were passed to ISE where they were integrated in

a more complex core (in Verilog also) to create a netlist file that would describe the FPGA logic

blocks and connections.

•Modelsim

ModelSim is an advanced simulation and debugging tool. Either Verilog, VHDL or system C

languages are accepted to be simulated.

This tool was used to check if all the hardware modules to be synthesized, were performing

the required functionalities. By creating a testbench file containing input stimulus, they could be

then applied to the modules (in simulation) to analyse both their internal and external logic values.

• Xilinx XPS

The XPS (Xilinx Platform Studio) enables an easier integration of the designed hardware

blocks with the embedded PowerPC processor and all the other constituents of the FPGA(serial

ports, Ethernet ports etc.).
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Chapter 3

Analysis of the Stereo Navigation
Application

In this chapter, the Stereo Navigation application will be analysed to determine which parts

of the source code can be replaced by dedicated hardware blocks to obtain an acceleration in its

execution time. A description of the application will be made, followed by the steps made in order

to port the application’s algorithm to the targeted development board. The chapter is finalized with

an analysis of the application’s most critical parts.

3.1 Application Overview

The application to be accelerated, the Stereo Navigation application will analyse a stream of

images, in pairs, coming from two cameras. The algorithm analyses one image from each camera

taken at the same time by:

• Rectifying the image — To remove distortion in each image caused by the lenses of the

camera. One such example is the barrel distortion caused by the lenses curvature, present in

figure 3.1 (taken from [24]);

• Extracting features — To find significant elements in the images and describe them using

an hash-like information vector. Here, the Harris corner detector is used;

• Matching features — Compares the features extracted in a pair of images at a given mo-

ment with the features of another pair of images analysed in the preceding moment. This

step is used to increase the probability of a correct 3D reprojection;

• Making a 3D reprojection — Derive 3D coordinates of a point from its image projections;

21
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Figure 3.1: Example of image distortion caused by the camera lenses. In this case the Barrel
distortion.

• Robust pose estimation — To reliably remove members that were matched incorrectly

and to produce the estimate of the transformation between the two sensor reference frames,

allowing to detect motion.

By analysing pairs of pictures and comparing, in consecutive pairs, how the features of the

pictures have changed, the system can also calculate translation, rotation, speed, and position of

the vehicle.

In figure 3.2, the two top images are taken at the same time t1 by the left and right cameras.

The bottom images are taken also by the same two cameras in the next frame t2 to determine the

vehicle position and movement. However in theory it could be possible to infer the position of a

feature in a three-dimensional space using only a pair of images, the probability of having a correct

match in a cluttered urban environment is often around 20% as stated by [24]. To raise the correct

match probability, it is used a circular check where, the features detected by the two cameras are

compared with themselves and with the ones of the previous capture instant (the two left images

are matched with each other, being done the same to the two right images). This circular check is

presented in figure 3.2. With this, the probability of a correct assignment is increased.

The version that was used in this thesis was, however, a little different in the way that the

system did not have the two cameras installed. To simulate the camera input, two options were
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Figure 3.2: Detection of an obstacle, as well as, speed, translation and rotation of the vehicle by
the application.

possible: either the images in grayscale were stored in a file where the application would access

them or, a representation of the images was already present in the source code as data. The second

option was chosen. In this option, the image is represented by a matrix whose elements’s values

represent a pixel representation in 8-bit grayscale format, being that the value 0 represents white,

the 255 black and all the values in the middle represent shades of gray.

3.2 Porting the Application

In a first approach, there was the need to execute the original Stereo Navigation application in

the embedded processor of the ML507 board. This first step was of the utmost importance, in the

matter that it gave crucial data that was useful to, in the later stages, infer the degree of acceleration

obtained. The most critical information considered was:

• Execution time of each function — To determine which are the functions that take the

most time to execute and, therefore, are slowing down the overall application.

• Execution time of the overall algorithm — In order to be able to tell the amount of accel-

eration that was achieved.

• Output of the application — To ensure that the solution found with the hardware acceler-

ation is working correctly.

To make it easy to integrate the application’s source code into the embedded processor, it was

chosen to install a Linux kernel in the development board. The reason for that, is because the

interface between the software, the CPU, the memory and other devices is not specified by the

program.

There was the possibility of executing the application in a standalone fashion. Using XPS, it

was possible to import the application to run in the PowerPC processor however, some changes
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Figure 3.3: Kernel making the bridge between hardware and software.

to the code had to be made which could affect the final execution time of the application. The

biggest disadvantage of using this alternative was, that the profiling tool gprof could not be used

to determine the execution time of each function.

The use of an operating system eases the software development by providing a series of con-

venient services like access to a (RAM-based) disk file system, remote network access, virtual

memory management and also simplified procedures for profiling the application to estimate the

execution time of each function. These advantages far exceed the disadvantage of the overhead

caused by the operating system in the processor.

3.2.1 Installing the Kernel

As said before the Kernel makes the bridge in a machine between the software running on it

and its hardware. For that reason, and since the architecture of the processor and the other devices

present in the development board are not the same as the ones present in a standard computer, a

version of the Linux Kernel aiming the PowerPC 440 processor had to be installed. This kernel

was obtained from [25] and the instructions present there were followed.

The first step was to configure the reference design in XPS. The reference design is a set of

files recognized by XPS that represents all the components present in a given development board

(processor, LEDs, serial port, USB port, user defined hardware modules, etc.) and how they are

interconnected in the FPGA to the processor by being assigned to each an address code. Every

time a given core is needed to execute a specified action, the required data is sent to its address via

the PLB (Processor Local Bus). An example of how the cores are connected to the processor in

the reference design is shown in figure 3.4.
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Figure 3.4: Example of the addresses given by XPS to each of the cores.

A device tree was added to the design which, according to [26], is scanned during the boot

phase by the Linux Kernel to build an internal representation that will be used at run time to give

the information about the device. In other words, this will describe the hardware to the Kernel

by giving names to the components (like ttyS0 for serial port 0 or eth1 for the Ethernet port 1,

for instance), describing their functions, etc. The changes made were then processed by XPS to

generate a bitstream file. This file has the informations of the layout of all the IP Cores and is used

to configure the FPGA at the startup.

When the Kernel was, finally, operational in the development board, it could be accessed via

telnet1; by inputting commands in the development host’s console they were sent to the ML507

board. With this, the development board could be used to execute the application, but first it

would have to be compiled to a type of executable that the development PowerPC processor could

recognize.

For a more detailed explanation of how the Kernel was compiled to the target board, refer to

the appendix A.5.

3.2.2 Cross-Compiling the Application

The C-language files are, in fact, just text files which describe in a structured and well defined

manner the behaviour of the desired executable file. This files are intended for readability by the

user/programmer and not to be executed by the processor. It is the task of the compiler to interpret

the source code and translate it to machine code, producing a file that can be executed.

When writing a code, there are some functions that are widely used by the programmers. To

make the writing of the code easier, some functions are already present in the C standard library.

So, if a programmer wants to make an application that, for instance, calculates the tenth power of

1Network protocol based on bidirectional interactive text-oriented communication.
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the number two, instead of having to make himself a function that multiplies the number two, ten

times, the function pow() could be used. This facilitates the work and, also, eliminates the chances

of more complex functions to have errors or bugs.

Different platforms run different types of executable files. A C-language program compiled to

run in a platform may not work in a different one. The reasons for this are the different endianness,

word size, word alignment, etc. that each architecture has. Normally a computing device has a

compiler in order to build an executable file that respects its architecture constraints.

Because of the limited resources that the used embedded device has, having a compiler in-

stalled in it would consume too much memory space and, for that reason, most embedded devices

do not contain any compiler. To work around this problem, a cross-compiler is used which com-

piles the C-code in the cross-development host aiming for the target device. In this case, a general

purpose computer running a Linux distribution was used as a cross-development host to compile

the source code in order to build executable files that could, effectively, run in the development

board’s processor. To create an executable file, capable of running on an embedded system, the

editor of the cross-development host is used to create/alter the source code, the debugger is used

to check for errors, and the cross-compiler to create the executable file. After that, the executable

file is ported to the embedded system where it will be run.

The standard library of functions is not present in the development board, due to its limited

resources also. Instead, the libraries used are the ones present in the cross development host. To

include the standard library’s files in the final executable, the -static flag must be set when compil-

ing. This command instructs the compiler to copy all the functions used by the application directly

to the executable from the standard library during the linking phase. This makes an executable file

bigger in size but relieves the embedded system to have all the libraries present. On the other hand,

in the dynamic linking alternative, the executable file references only the library from which to get

the used function so, they would have to be present somewhere in the development board, using

memory space.

The cross-compiler used was the powerpc-linux-gcc contained in the ELDK 4.2 (Embedded

Linux Development Kit) package. According to [27], the provided package includes the GNU

cross development tools, such as the compilers, binutils, gdb, etc., and a number of pre-built target

tools and libraries necessary to provide some functionality on the target system. To cross-compile

the application using the powerpc-linux-gcc cross compiler the following command had to be im-

puted in the console:

powerpc-linux-gcc -static nameOfSourceFile.c -o nameOfExecutableFile
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Figure 3.5: Hardware accelerating the application (on the right) vs software-only implementation
(on the left).

With this, the executable file was set to run in the PowerPC 440 processor. Other compilation

options could be set in the same way that is done for the regular gcc compiler.

3.3 Profiling the Application

Because the application was running in one processor, when a function of the program that was

more time consuming was executing, it would delay the quicker functions. While in execution, the

slower function would make the others to be stopped waiting until they were called. This causes

a bottleneck. By speeding up the most time consuming functions of the code, the bottleneck is

"enlarged" and the application shall be accelerated respecting a balanced trade-off between speed

and FPGA area.

Only the most critical parts of the algorithm, or in other words, the most time consuming

functions, are desired to be hardware accelerated. The main reason for this is the limited reconfig-

urable mesh area available to create each hardware module which, would not be enough to create

hardware modules to replace all the application’s functions. Giving priority in the conversion of

the most critical functions to hardware modules, provides the highest degree of acceleration.

In order to determine the most critical functions, powerpc-linux-gprof was used to profile

the code compiled with four degrees of optimization: no optimization, -O1, -O2 and -O3. The

powerpc-linux-gprof is identical to gprof, the only difference being that it is aimed to profile ex-

ecutable files cross-compiled to the specific development board’s processor. For comparison with

the outputted values of the application and the speed obtained, the application was also compiled

in a computer with a i5 quad-core processor running at 3.20GHz.

The following results (from subsection 3.3.1 through 3.3.5) were taken from the flat profile2

tables obtained in Gprof (and powerpc-linux-gprof).

2Tells the total amount of time the program spent executing each function.
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% time
cumulative

secs
self
secs

calls
self
ms/-
call

name

28.20 76,59 76,59 1440 53,19 ConvVBRepl2_uS_hS_yS
28.13 152,98 76,39 1440 53,05 ConvVBRepl1_uS_hS_yS
13,49 189,62 36,64 960 38,17 ConvVBConst_uS_hS_yS
7,48 209,94 20,32 10 2032,22 R_c4_RobustPoseEstimate_library
7,06 229,12 19,18 2700 7,1 sift_match_one
6,52 246,84 17,72 480 36,92 harrisTile_model_step

Table 3.1: Profiling with no optimization in the PowerPC processor (ten executions).

3.3.1 Profiling With No Optimization

The first approach was to profile the code with no optimizations. By doing this, the com-

piler’s goal is to reduce the cost of compilation and to make debugging easier. However, since no

optimizations are made, the created executable file will take longer to execute.

With this in mind, the profiling of the executable file was made. Because the runtime figures

that gprof gives are based on a sampling process, they are subject to statistical inaccuracy. The

solution advised by [28] is to combine data from several runs. For better accuracy, the results that

will be presented throughout this document are based on ten executions of the profiled application.

The result of the “No optimization” flag can be seen in the table 3.1.

The information contained in each column of the table 3.1 represents:

• % time — Percentage of the time that is spent in the function present in the column "name".

This values do not account for the time the function is stopped waiting for others to execute.

• Cumulative secs — The time spent in the function plus the time spent in all the functions

above.

• Self secs — The amount of time spent on the function throughout the execution of the

application. It’s only accounted its execution time.

• Calls — Number of times the function was called in the application.

• Self ms/call — Average time spent on the function per call.

• Name — Name of the function.

It can be seen that there are three functions that consume much more time than the oth-

ers namely, ConvVBRepl2_uS_hS_yS, ConvVBRepl1_uS_hS_yS and ConvVBconst_uS_hS_yS.

With the use of powerpc-linux-gprof it could be determined that the total execution time for the

application took 27,16 seconds (or 271,57 seconds for ten executions).
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% time
cumulative

secs
self
secs

calls
self
ms/-
call

name

25,41 34,40 34,40 1440 23,89 ConvVBRepl2_uS_hS_yS
23,54 66,26 31,86 1440 22,12 ConvVBRepl1_uS_hS_yS
13,67 84,77 18,51 960 18,28 ConvVBConst_uS_hS_yS
9,73 97,94 13,17 480 27,44 harrisTile_model_step
8,16 108,98 11,04 10 1104 R_c4_RobustPoseEstimat
6,60 117,92 8,94 2700 3,31 sift_match_one

Table 3.2: Profiling with the -O1 optimization in the PowerPC processor (ten executions).

3.3.2 Profiling With the -O1 Optimization Flag

With the optimization flag set to -O1, the compiler proceeds to a series of optimizations with

the objective of reducing both the size of the executable file and execution time, without perform-

ing optimizations that require a great deal of compilation time. The results of this optimization

can be seen in table 3.2. Again, the same three functions detected in the subsection 3.3.1 are

consuming most of the time.

With -O1 optimization the application ran faster (as expected), having spent 13.54 seconds for

execution.

3.3.3 Profiling With the -O2 Optimization Flag

Setting the optimization flag to -O2 enables almost all the optimizations that do not involve

space-speed trade-off, as well all the optimizations that -O1 enables. The set of optimizations

contain alignment of the start of loops, integration of small functions into their callers (only when

the size of the code will not increase by this action) among others. The results of the profile with

-O2 can be seen in table 3.3.

The execution time of the application was 13.5 seconds. In this case, the two top functions

switched place however, looking from the percentages present in both the table 3.3 and 3.2 it can

% time
cumulative

secs
self
secs

calls
self
ms/-
call

name

23,98 32,37 32,37 1440 22,48 ConvVBRepl1_uS_hS_yS
23,97 64,73 32,36 1440 22,47 ConvVBRepl2_uS_hS_yS
13,76 83,31 18,58 960 19,35 ConvVBConst_uS_hS_yS
11,07 98,25 14,94 480 31,12 harrisTile_model_step
8,32 109,48 11,23 10 1123 RobustPoseEst_RANSAC_diag
6,58 118,36 8,88 2700 3,29 sift_match_one

Table 3.3: Profiling with the -O2 optimization in the PowerPC processor (ten executions).
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% time
cumulative

secs
self
secs

calls
self
ms/-
call

name

24,53 32,95 32,95 1440 22,88 ConvVBRepl2_uS_hS_yS
24,01 65,20 32,25 1440 22,39 ConvVBRepl1_uS_hS_yS
13,87 83,83 18,63 960 19,4 ConvVBConst_uS_hS_yS
11,04 97,31 13,48 480 28,08 harrisTile_model_step
8,42 108,62 11,31 10 1131 R_c4_RobustPoseEstimate_library
6,66 117,57 8,95 20 447,5 matc_lr

Table 3.4: Profiling with the -O3 optimization in the PowerPC processor (ten executions).

be seen that the presented values did not change much and did not influence the obtained profiling

data.

3.3.4 Profiling With the -O3 Optimization Flag

The -O3 optimization flag instructs the compiler to produce the fastest possible executable file.

Various optimizations are made such as function inlining. The obtained results are present in table

3.4.

With -O3, the application’s execution time wasn’t significantly altered, taking 13.43 seconds.

This optimization, as expected, was the one that produced the fastest executable file since all the

speed optimizations are implemented.

3.3.5 Profiling in the Computer

The code was also compiled but, using gcc for the cross development platform, to be com-

pared. The results of the profiling using gprof are present in tables 3.5, 3.6, 3.7 and 3.8.

% time
cumulative

secs
self
secs

calls
self

us/call
total

ms/call
name

32,45 0,86 0,86 1440 597,222 0.60 ConvVBRepl2_uS_hS_yS
26,79 1,57 0,71 1440 493,0556 0.49 ConvVBRepl1_uS_hS_yS
12,08 1,89 0,32 960 333,333 0.33 ConvVBConst_uS_hS_yS
8,30 2,11 0,22 480 458,333 4.48 harrisTile_model_step
6,79 2,29 0,18 2700 66,667 0.07 sift_match_one
3,40 2,38 0,09 10 9000 22.00 R_c4_RobustPoseEstimate_library

Table 3.5: Profiling with no optimization in the PC (ten executions).



3.4 Analysis of the Critical Functions 31

% time
cumulative

secs
self
secs

calls
self

us/call
total

ms/call
name

27.37 0.26 0.26 1440 180,556 0.18 ConvVBRepl2_uS_hS_yS
22.11 0.47 0.21 1440 145,833 0.15 ConvVBRepl1_uS_hS_yS
14.74 0.61 0.14 960 145,833 0.15 ConvVBConst_uS_hS_yS
10.53 0.71 0.10 2700 37,037 0.04 sift_match_one
5.26 0.76 0.05 15400 3.247 0.01 RobustPoseEstimate_AbsOrQuat
5.26 0.81 0.05 480 104.167 0.10 sfun_peakidx_tile_Outputs_wrapper

Table 3.6: Profiling with the -O1 optimization in the PC (ten executions).

% time
cumulative

secs
self
secs

calls
self

us/call
total

ms/call
name

32.86 0.23 0.23 1440 159,722 0.16 ConvVBRepl2_uS_hS_yS
18.57 0.36 0.13 480 270,833 1.17 harrisTile_model_step
14.29 0.46 0.10 1440 69,444 0.07 ConvVBRepl1_uS_hS_yS
14.29 0.56 0.10 960 104,167 0.10 ConvVBConst_uS_hS_yS
5.71 0.60 0.04 15400 2,597 0.00 RobustPoseEstimate_AbsOrQuat
4.29 0.63 0.03 2700 11,111 0.01 sift_match_one

Table 3.7: Profiling with the -O2 optimization in the PC (ten executions).

% time
cumulative

secs
self
secs

calls
self

us/call
total

ms/call
name

19.12 0.13 0.13 1440 90,278 0.09 ConvVBRepl1_uS_hS_yS
17.65 0.25 0.12 480 250 0.98 harrisTile_model_step
17.65 0.37 0.12 960 125 0.13 ConvVBConst_uS_hS_yS
13.24 0.46 0.09 1440 62,5 0.06 ConvVBRepl2_uS_hS_yS
10.29 0.53 0.07 20 3500 3.50 match_lr
7.53 0.58 0.05 10 5000 11.00 R_c4_RobustPoseEstimate_library

Table 3.8: Profiling with the -O3 optimization in the PC (ten executions).

3.4 Analysis of the Critical Functions

From the previous section, three functions were identified as the most time consuming, those

are: ConvVBCons_uS_hS_yS, ConvVBrepl1_uS_hS_yS and ConvVBrepl2_uS_hS_yS, hereafter

defined as ConvConst, ConvRepl1 and ConvRepl2. These three functions are all children of

the same function, named harrisTile_model_step, i.e., they are called by harrisTile_model_step.

Analysing the results given by linux-powerpc-gprof for the -O3 optimization (table 3.4) it can be

seen that this three functions spend 62.41% of the total execution time.

All the three functions named previously are called to analyse a matrix of 96 by 96 elements

(called the U matrix of the module) using an array with constant values (called the H array of the
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module) needed to make the appropriate calculations. In fact, the U matrix is represented in the

source code as an array consisting of 9216 elements (the U array). The main operation of these

three target functions is the same, a convolution. An equation representing the convolution present

in these modules is the following:

accn =U [u]×H[h]+accn−1; (3.1)

Where U and H are the inputs of the the function, u and h are the floating-point elements of the

arrays and acc is an accumulator that starts at zero. This operation is made eleven times in both

ConvRepl1 and ConvRepl2 and nine times for ConvConst. After that the value of the acc (which

contains the sums of the products of U[u] with H[h]) is passed as the y element of the matrix Y

(Y[y]) which is the output of these functions. This is made for every one of the 9216 elements

of the Y matrix and although the PowerPC has a single cycle multiplier, this is only true when

the operation is done between integer values, and not with real values. The problem with real

values (or floating-point values, in programming language) is that the PowerPC processor of the

used board cannot, by itself, do operations like additions and multiplications with them. Instead,

the values are passed to the Xilinx soft floating-point unit which is slower than the processor.

According to [29], using this unit for a multiplication with two floating-point values takes 4 cycles

at 200MHz which yields 20ns. For the case of the PowerPC processor, given that the defined

operating frequency is 400MHz and it has a single cycle multiplier, an integer multiplication takes

only 2,5ns.

The functions ConvRepl1 and ConvRepl2 are very similar, except that the matrix received by

the first one comes from ConvConst and is processed in a horizontal way. The ConvRepl2 receives

the matrix that comes from ConvRepl1 and does the calculations in a vertical way. ConvConst

receives a matrix composed by values ranging from 0 to 255, and besides the constant H array, it

has also six more arrays that are used as inputs namely, bSStart, bSEnd, bSPreEdges, bSPostEdges,

bSNumPreEdges, bSNumPostEdges. This six arrays are however, just used for control purposes.

A figure representing the data flow inside harrisTile_model_step can be seen in figure 3.6.

The operations represented by circles are simple multiplications of the matrices’ elements. Since

the software application executes in a sequential fashion, every function can only execute when

its preceding function has finished. This is the case of these three functions and therefore, har-

risTile_model_step calls them one after another starting by the convconst function and using the

order shown in the figure 3.6. As it will be shown in the chapter 5 one of the main advantages of

the hardware acceleration is that the modules corresponding to these functions can be executing in

parallel to further improve the final application’s execution time.

Since these functions were the ones that were going to be synthesized, special attention was

paid to how they were described in software and, more importantly, the output values of each of

them specially, the output of the function ConvRepl2, since this was the function that would drive

the final values of the flow.
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Figure 3.6: Dataflow of the application.

3.4.1 ConvConst

The ConvConst function receives, as an input, the grayscale values of the pictures (the U

matrix), divided in tiles, captured by the cameras. Each of this tile is composed by 96×96 pixels

and each captured picture contains 24 tiles. This function has, also as an input, two constant

matrices(Constant Value 1 and Constant Value 2 in figure 3.6), one for each time this function is

called by harrisTile_model_step. This two matrices have the values present in equations 3.2 and

3.3 and will be used as the H matrices along with the pictures’s tiles in a convolution process, as

per figure 3.7 .

ConstantValue1 =


−1 −1 −1

0 0 0

1 1 1

 (3.2)

ConstantValue2 =


−1 0 1

−1 0 1

−1 0 1

 (3.3)
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ConvConst

Constant Value 1 or Constant Value 2

Figure 3.7: Input data of the ConvConst model.

As said before, the input tiles are in fact 96×96 matrices. These, along with the H matrix are

used in a convolution process to crate a new matrix (the Y matrix) that will serve as the ConvRepl1

input (U matrix).

The calculus of the output array (array Y) follows the 2D convolution expression. The general

calculus for this 2D convolution is shown in the following equation, where u[i,j] is the element in

the column i and row j of the U matrix (tile of the picture) and h[i,j] is the element in the column i

and row j of the H matrix (either Constant Value 1 or Constant Value 2).

y[i, j] =u[i−1, j−1].h[i+1, j+1]+u[i, j−1].h[i, j+1]+u[i+1, j−1].h[i−1, j+1]+

u[i−1, j].h[i+1, j]+u[i, j].h[i, j]+u[i+1, j].h[i−1, j]+

u[i−1, j+1].h[i+1, j−1]+u[i, j+1].h[i, j−1]+u[i+1, j+1].h[i−1, j−1]

∀i ∈ [1 : 94], j ∈ [0 : 95] (3.4)

This function is called two times by the harrisTile_model_step. In the first time, one tile is pro-

cessed with the use of the Constant Value 1, while in the second time the same tile is processed, but

now, with the use of the Constant Value 2. This will generate two new matrices (Y1ofConvConst

and Y2ofConvConst). This matrices, after a multiplication or a power of two will give place to

three new matrices U1ofConvRepl1, U2ofConvRepl1 and U3ofConvRepl1.

U1o fConvRepl1 = Y 1o fConvConst2 (3.5)

U2o fConvRepl1 = Y 2o fConvConst2 (3.6)

U3o fConvRepl1 = Y 1o fConvConst×Y 2o fConvConst (3.7)

The ConvConst function has also six more inputs: bSStart, bSEnd , bSPreEdges, bSPostEdges,

bSNumPreEdges and bSNumPostEdges. These are used for control purposes for the case of the

outer margins of the U matrix where the normal convolution of equation 3.4 could not be used.
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3.4.2 ConvRepl1

The ConvRepl1 proceeds differently from the ConvConst function. In this, H is an array

instead of a matrix. The H vector (represented by Constant Value 3 in figure 3.6) is composed by

eleven elements (see array on equation 3.8) and is convoluted through eleven elements of the same

line of the U matrix (either U1ofConvRepl1, U2ofConvRepl1 or U3ofConvRepl1).

ConstantValue3 = [−3,548294306×10−2;−5,850147083×10−2;−8,630958945×10−2;

−1,139453053×10−1;−1,346104741×10−1;−1,423004717×10−1;

−1,346104741×10−1;−1.139453053×10−1;−8,630958945×10−2;

−5,850147083×10−2;−3,548293561×10−2] (3.8)

y[i, j] = u[i−5, j]×h[10]+u[i−4, j]×h[9]+

u[i−3, j]×h[8]+u[i−2, j]×h[7]+u[i−1, j]×h[6]+

u[i, j]×h[5]+u[i+1, j]×h[4]+u[i+2, j]×h[3]+

u[i+3, j]×h[2]+u[i+4, j]×h[1]+u[i+5, j]×h[0] (3.9)

The convolution process made in the ConvRepl1 function is present in the equation 3.9. This

function processes the input matrix U, line by line. Note that the index of the U matrix’s column

can never be smaller than 0 nor greater than 95 (if it is, the convolution process truncates it to

0 or 95 respectively). For instance, the first element of the U matrix that will be used in the

convolution for the element y[0,0] is u[0-5,0]. This value is automatically converted to u[0,0].

The output matrices Y (Y1ofConvRepl1, Y2ofConvRepl1 and Y3ofConvRepl1) will be directly fed

to the ConvRepl2 function (U1ofConvRepl2, U2ofConvRepl2 and Y3ofConvRepl2)

3.4.3 ConvRepl2

The ConvRepl2 function is very similar to ConvRepl1. The only differences are its inputs

where, the U matrix comes directly from the outputted matrix of the ConvRepl1 function and its H

array (matrix 3.10). Also, the convolution process itself is different since the U matrix is processed

vertically.

ConstantValue3 = [−3,548293561×10−2;−5,850147083×10−2;−8,630958945×10−2;

−1,139453053×10−1;−1,346104741×10−1;−1,423004419×10−1;

−1,346104741×10−1;−1.139453053×10−1;−8,630958945×10−2;

−5,850147456×10−2;−3,548293188×10−2] (3.10)
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3.5 Conclusions

The functions ConvConst, ConvRepl1 and ConvRepl2 were identified as the target functions to

be hardware accelerated. Through profiling methods it was determined that these functions could

consume as much as 62.41% of the application’s total execution time. All the three functions

execute additions and multiplications of floating-point variables (which is known to be a compu-

tational intensive task for processors), as well as, memory accesses (by making use of arrays).

To better understand the operations involved, a brief description of the target functions was

made. It was also explained some of the steps necessary to execute the application in the PowerPC

440 processor of the the ML507 development board (installation of the embedded Linux Kernel

and cross-compilation of the application).



Chapter 4

Creating the Hardware Modules

Having the application been executed in the embedded processor of the ML507 and the most

time consuming functions been determined, the next step was to start building the hardware mod-

ules that would replace them. These dedicated modules would operate a set of data provided by

the software application, the same way as their respective functions.

To create the hardware modules from the C language functions, it was used Catapult C from

Mentor Graphics. This tool, as said before, can convert the High-level language that is C, to

Verilog. However, the original C code cannot be directly converted by Catapult C instead, small

changes had to be made since assumptions taken by the programmer that wrote the code are valid

when implemented in software but not in hardware.

4.1 Catapult C

The first step taken to start working with Catapult was to adapt the C source files. That meant

optimizing the code so that redundant assignments of variables were eliminated, and defining the

size of the array values that served as the functions’s inputs. If the array size was not defined, there

was no way Catapult could tell how many elements the module needed to access. Although when

executing in software this care isn’t needed, hardware designing requires a strict definition of the

inputted and outputted values since its internal structure can’t be changed.

With the source code changes done, the modules to be synthesized could be characterized

in Catapult. In the first step, called the “setup design” phase, some options were made, like

choosing the target FPGA, setting the clock frequency and the handshake signals that would drive

the module. The handshake signals used in the modules were the start and done signals. These

two signals are used only for control purposes. At startup time, the done signal is initially at a high

level signalling that the module is not operating any data. By setting the Start signal to a logic one,

37
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Figure 4.1: Start and done handshake signals. Taken from [30].

the module starts to execute in the following clock cycle thus, bringing the done logic value from

one to zero. The design sets the done signal to high in the same cycle that the final return value is

written to the outputs. This process can be seen in figure 4.1 where the done signal coming from a

module is put to zero in the next clock cycle that it received a start from an external source. Upon

execution, the module brings again the Done signal to a logic one.

This will be used in the final application in the following way:

1. The processor is executing the application;

2. The application reaches the point where one of the functions that are now replaced by hard-

ware blocks were. The data needed by the module is stored in a memory by the processor

where the hardware module can have access;

3. The start signal is sent to the respective module ;

4. The application (running in the processor) waits until the module finishes its execution by

reading the logic value of the done signal;

5. The processor continues to run the application with the values retrieved from module’s op-

erations.

Catapult C has the ability to convert a function in C to synthesizable hardware. The hardware

module, has all the same functionalities of the function. When creating an hardware module from

a function, Catapult C will analyse all the the variables that are passed to the function and all

the variables that it returns. With that information it will infer the type of interface needed. For

the case of the function ConvRepl1 (which has the header shown in listing4.1) when analysed,
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Catapult will create a module with inputs for both the u and h values, since they are declared as

constants, while y will be defined as an output because it is detected that the module only writes

values to that variable.

Listing 4.1: ConvRepl1 function header

ConvRepl1 ( c o n s t r e a l 3 2 u [ 9 2 1 6 ] , c o n s t r e a l 3 2 h [ 9 ] , r e a l 3 2 y [ 9 2 1 6 ] ) ;

At this point, two alternatives were possible: either the input and output vales of the modules

were stored in a RAM or, every individual value was stored in a block of registers.

When using registers, every value is constantly present at the module’s inputs being used

when needed. Although in this alternative the module executes faster than when using a RAM, for

large matrices too much connections have to be made to the module, making the final architecture

complex. With a RAM, the connections between itself and the module are simplified, being only

used a wire for the enable signal (to activate the RAM) a bus where the module specifies the

address to be read, and another one to which the RAM’s values will be sent (it is also needed a

wire to enable to write to the memory and a bus to send data to the RAM when writing). However,

this alternative is slower because when the module requests a given value present in an address, it

has to send the corresponding address to the RAM memory where , in the next clock cycle, it will

send the requested value. A representation for both architectures using a RAM memory and a set

of registers is shown in figure 4.2

As said before, the three target functions operate the U matrix composed by 96x96 elements

and store their results in the matrix Y with the same number of elements. Having registers to

store this values would not be a good solution because it would be created a module with too

much inputs and outputs and, to connect them all to registers would be too much time consuming

and error prone (Catapult C does not handle the creation of the data storage elements outside the

modules). So, the RAM solution was adopted, where one RAM for each the U and Y matrices

was used. Although the H matrices/arrays were quite small and could be stored more efficiently

Addr  Value
000        32
001        12
010        45
011        87
100        45
101        10

32

45

45
10

12

87

Addr =010

Dout=45

En=1

Registers
ModuleModule

RAM memory

Figure 4.2: Differences in architecture designs when using a RAM memory for data storage (left
side of the figure) and using individual registers (right side of the figure).



40 Creating the Hardware Modules

in registers, that alternative was not pursued. Instead, another RAM was used for each. The

reason for this is justified by the convolution’s characteristics, where U and H are used at the same

time. Since the module would read both the values at the same time, if the H vector was stored in

individual registers, the values were immediately available but, since the operation would not start

until the elements of the vector U were available, H would not be used. So having the H values

readily available would not bring any speed advantages, but design complexity.

The RAM alternative was also used to store the bSStart, bSEnd , bSPreEdges, bSPostEdges,

bSNumPreEdges and bSNumPostEdges values of the ConvConst module.

When trying to synthesize the modules, a problem appeared: Catapult C could not accept

floating-point values in the functions that would be translated to synthesizable hardware. Ac-

cording to [30] the floating-point variables are automatically converted to fixed-point, using the

“hls_fixed” pragma. This was a major setback since the Virtex-5 FPGA can make use of IP-Cores

designed specifically for floating-point operations. So, although the rest of the application could

be left unchanged, the functions to be converted to hardware had to eliminate the use of floating-

point datatypes. Because it was desired to keep the application functionalities unchanged to the

maximum, the only acceptable solution was to have it using floating-point datatypes outside the

target functions and, just before these functions are called, convert the data from float to any other

datatype that Catapult C can accept. Immediately after the completion of each one of the target

functions, the values would have to be converted again to floats and the rest of the application

could resume normally.

But using the “hls_fixed” didn’t work for the intended application since although a fixed-point

could be created from a float, the same was not true for the opposite operation. A better solution

had to be found.

4.2 Solutions

To work around the no floating-point problem, the application’s source code had to be altered

so that all the functions that were going to be synthesized to hardware made use of other datatypes.

The rest of the application could, however, continue using floating-point variables.

So, to interface the target functions with the rest of the program, it was needed to create one

function that would take as argument the float value and return the resultant emulated value. The

target functions were also tuned to proceed to the multiplication and addition over the emulated

values. Another function was created to retrieve the floating-point value.

Three solutions were considered: a lighter solution composed by a 32-bit fixed-point datatype,

an highly flexible 32-bit soft floating-point solution and a mid-ground solution using a 64-bit

fixed-point datatypes.
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4.2.1 Fixed-point With 32 Bits

The first alternative that was studied was to make use of a 32-bit fixed-point notation. From a

series of tests made to the acc values used in the convolution equation in the target functions (refer

to equation 3.1) it was observed that the maximum value that it had to represent was 565931.75

(absolute value). To be able to represent this value, at least 20 bits were needed (as shown in

equation 4.1). Because the acc variable also comprises negative values, one more bit was used as

a sign bit.

log2(565931.75)≈ 19.1103 => 20 (4.1)

Having 21 bits for the integer part, leaves only 11 more for the fractional part. This gives a preci-

sion of approximately 0,000488 which is not enough precision for application’s values, according

to the tests that were made. Anyway, the application was tested to see how this solution would

affect the final application. To emulate this fixed-point solution, an int datatype was used.

Because it was used an int to emulate this fixed-point datatype, the multiplication process had

to be redefined (the addition did not needed to be changed). For that, the mymult function was

created. This function proceeded to a multiplication of two values and shifted the result 11 bits to

the right to maintain the same number of bits in the fractional part. The mymult was then included

in the three target functions.

When the application was run in the PowerPC processor (still with the mymult function in

software) the outputted results were incorrect (appendix A.2), having deviations from the values

outputted by the original application. So, the solution proved to be of no use. However, it was

decided to synthesize hardware blocks for the mymult function for comparison reasons.

Because the Virtex-5 has IP-Cores capable of doing multiplications and additions over floating-

point variables, mymult was converted to sinthesizable hardware using Catapult C in order to es-

timate how much processing power it was lost due its use. Five design solutions were made were

the only difference between them was their operating clock frequencies. The obtained results can

be seem in the table 4.1.

In this table, the column “Freq. From Catapult” represents the values that were asked, to

Catapult C, to be met by the hardware modules created. “Freq. in XST” is the frequency of the

actual modules obtained when synthesized by Xilinx ISE. The “PAR frequency” is relative to the

frequency obtained by the modules after being placed and routed in the FPGA. Both the synthesis

and the Place and Route processes (and their meaning) will be explained later in the document.

The column “Throughput cycles” represents the number of cycles that the module takes to execute.

The final two columns represent the time spent by the module when using the frequencies given

by the synthesis and the place and route process.

4.2.2 Fixed-point With 64 Bits

The 64-bit fixed-point solution was very similar to the 32-bit one, but now a long long datatype

(or long int) had to be used.
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Freq.
From

Catapult
(MHz)

Freq. in
XST

(MHz)

PAR
fre-

quency
(MHz)

Throughput
cycles

Throughput
time XST

(ns)

Throughput
time PAR (ns)

50 781,25 317,058 6 7,680 18,924
100 529,381 427,35 9 17,001 21,060
200 64,366 61,316 10 155,362 163,090
400 61,705 53,339 15 243,092 281,220
500 61,705 53,76 18 291,711 334,821

Table 4.1: Timimg results for the mymult module (32-bit multiplication).

From the tests made to the application, it was determined that one bit for the signal, 20 for the

decimal part, and 20 for the fractional part would be a good solution. Having 64 bits to dispose,

it was opted to have 32 bits to represent the integer part and signal, while the rest used to the

fractional part.

This solution was a bit more complex and slower than the one described in 4.2.1 because,

although the addition could be maintained, the multiplication involved, in fact, four multiplications

with integers.

The procedures that were made for the 32-bit fixed-point solution were redesigned having in

mind the 64 bits. A new function mymult64 was created to multiply the the new data types.

Again, to check the processing speed of the resultant modules of the mymult64, the function

was converted using Catapult C for five operating frequency scenarios. Those results are present

in table 4.2.

Freq.
From

Catapult
(MHz)

Freq. in
XST

(MHz)

PAR
fre-

quency
(MHz)

Throughput
cycles

Throughput
time XST

(ns)

Throughput
time PAR(ns)

50 154,131 117,398 4 25,952 34,072
100 80,682 71,495 7 86,760 97,909
200 64,366 61,316 15 233,042 244,634
400 61,705 53,339 20 324,123 374,960
500 76,511 71,649 23 300,610 321,009
Table 4.2: Timing results for the mymult64 module (64-bit multiplication).

This solution, at first sight, was good enough since the final output values were the same as

of the original application (appendix A.1). But a closer look has shown that the intermediate

values that were passed between functions changed by a certain degree and, since the tests made
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to the application were based only on two pairs of images , there was no guarantee that the 64-bit

fixed-point was, indeed, a good solution.

The fixed-point solution with 64 bits was discarded because of the lack of test pictures to use.

Nevertheless, this solution could be a serious candidate in future work, provided that some care is

taken with its integration in the application.

4.2.3 Soft Floating-point With 32 Bits

The soft floating-point approach used, flowed the IEEE 754 standard definition where, a 32-bit

single-precision float is divided in three components. The first (the leftmost), has only one bit, the

sign bit. This bit when set to zero represents a positive value, when set to one represents a negative

value. The second component has 8 bits that represent the exponential part of the number. The

third component contains the 23 remaining bits that compose the fractional [31]. The expression

of the soft float representation is as shown in equation 4.2:

(−1)S×2exponent−127×1. f ractional (4.2)

The soft floating-point is an approach to represent and operate real numbers using software rou-

tines (or functions) instead of hardware. This solution although mostly used to emulate floating-

point datatypes and operations in hardware architectures that do not contain an internal nor external

FPU (Floating-Point Unit), can be used to overcome the no floating-point problem that Catapult C

has, since a data type accepted by Catapult C can be used to replace the float. Once again, a 32-bit

int was used to store the binary representation of the original float.

The main disadvantages of the software process to handle floating-point variables, relative to

the hardware and the fixed point alternative is the slow operational speed as well as the memory

overhead of the final application since the libraries necessary for its calculus have to be compiled

along with the main source code. However, an advantage of the soft-float relative to the fixed point

notation is both its order of magnitude and precision.

The software functions that provide the soft-float addition and multiplication were obtained

by a library provided by [32]. According to the website, this software is completely faithful to

the IEEE Standard. This library is comprised by a wide range of operators like division, multi-

plication, addition, subtraction, square root, greater than, smaller than, etc. Because most of this

operations were not needed, only the ones related to the addition and multiplication were kept.

Also, to reduce the execution time, all the exception handling routines (like, multiplication with

infinity) were deleted and only one rounding mode was used (round to the nearest even).

Once again, the Stereo Navigation application had to be altered. In the harrisTile_model_step

function, the floating point values had to be casted to the new soft floating-point data type before

they could be used in the function ConvConst, ConvRepl1 and ConvRepl2. To do this, a function

making use of pointers was created, the crtFloat, which proceeded the following way:



44 Creating the Hardware Modules

• Get the address of the floating-point number and store it in the float pointer;

• Copy the value that is stored in the float pointer to an int pointer;

• Get the value pointed by the int pointer to an int data type.

With this, the same binary representation of the floating-point value was stored in the int datatype.

The tests made to the application using the soft float alternative, gave results equal to the

original Stereo Navigation application (appendix A.1). Also, the values that were passed between

the modules, remained very similar to the originals. The same can be said to the tests made to the

acc variable of the modules. So, the soft floating-point has proven to be a good solution to emulate

the float datatype. With this, it was found the solution for the no floating-point problem.

Because the addition and multiplication of the floating-point values were, with this solution,

processed purely by software functions, how the duration of the application as well as of all its

functions was influenced, needed to be found. Again, powerpc-linux-gprof was used to profile the

application. Since all the floating-point operations were made in software, it was expected that the

application would suffer from a decrease in processing speed. The profiling results of the applica-

tion, using again the four optimization degrees (no optimization, -O1, -O2, -O3), are present in the

tables 4.3, 4.4 and 4.5. The total time of the application using the same four optimization degrees

is present in table 4.6

Optimization level % time self (ses) children(secs) called
No optimization 18,2 10,45 231,08 960

-O1 15,9 5,23 43,87 960
-O2 15,9 4,83 38,66 960
-O3 14,7 4,63 27,44 960

Table 4.3: Profiling results for the ConvConst using the soft floating-point solution (ten execu-
tions).

Optimization level % time self(secs) children(secs) called
No optimization 34,0 28,00 423,66 1440

-O1 29,8 11.56 80,43 1440
-O2 28,6 9.78 68,54 1440
-O3 27,2 9.58 49,99 1440

Table 4.4: Profiling results for the ConvRepl1 using the soft floating-point solution (ten execu-
tions).

Where “% time” represents the percentage of the total time that was spent in this function,

including time spent in subroutines called by it, in this case, the soft floating-point functions are
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Optimization level % time self (secs) children(secs) called
No optimization 33,9 27,57 423,66 1440

-O1 29,9 11,57 80,43 1400
-O2 28,7 10,17 68,36 1440
-O3 27,2 9,58 49,99 1400

Table 4.5: Profiling results for the ConvRepl2 using the soft floating-point solution (ten execu-
tions).

taken in account; “self” is the total amount of time spent in this function; “children” is the total

amount of time propagated into the function by its children (the multiplication and addition using

the soft floating-point alternative).

Execution time (seconds) Deceleration
Optimization level Soft float original (times)
No optimization 1329,58 271,57 4,9

-O1 308,17 135,50 2,27
-O2 273,51 135,00 2,03
-O3 218,81 134,31 1,63

Table 4.6: Profiling results of the application using the soft floating-point solution (ten executions)

It can be seen from table 4.6 that this software alternative of emulating floating-point variables,

puts a major overhead on the application, delaying it 4,9 times in the worst case scenario. This

is expected to affect the final hardware structure since the soft floating-point functions will be

mapped in the modules created by Catapult C.

As done for the fixed point solutions, the hardware equivalent of the soft floating-point func-

tions was tested to determine its processing speed for both the multiplication (table 4.7) and addi-

tion (table 4.8).

Freq.
From

Catapult
(MHz)

Freq. in
XST

(MHz)

PAR
fre-

quency
(MHz)

Throughput
cycles

Throughput
time XST

(ns)

Throughput
time PAR(ns)

50 76,857 66,176 5 65,056 75,556
100 90,145 93,676 9 99,839 96,076
200 178,126 110,558 17 95,438 153,765
400 198,255 199,282 31 156,364 155,558
500 205,719 185,356 35 170,135 188,826

Table 4.7: Timimg results for the soft floating-point multiplication
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Freq.
From

Catapult
(MHz)

Freq. in
XST

(MHz)

PAR
fre-

quency
(MHz)

Throughput
cycles

Throughput
time XST

(ns)

Throughput time
for normalized
frequency (ns)

50 88,667 65,007 5 56,391 76,915
100 113,792 91,676 9 79,092 98,172
200 184,69 147,145 16 86,632 108,736
400 178,405 122,339 31 173,762 253,394
500 215,515 156,372 37 171,682 236,615

Table 4.8: Timimg results for the soft floating-point addition

It was tried to simplify the readability of the code by making use of operator overloading to

replace the multiplication and addition functions (listings 4.2 and 4.3 respectively). This required

that the application made use of classes. However, after testing that the application was working

correctly with this changes, when it was used in Catapult C to generate the hardware modules, it

ceased functioning and exited abnormally without giving any information about the cause of the

malfunction and therefore, could not be used as a solution.

Listing 4.2: Multiplication function header

r e s u l t = f l o a t 3 2 _ m u l (A, B ) ;

Listing 4.3: Addition function header

r e s u l t = f l o a t 3 2 _ a d d (A, B ) ;

4.2.4 IP-Cores

Although Catapult C cannot accept floating-point variables to create the modules targeting the

Virtex-5, that does not mean that this FPGA cannot operate this values. In fact, there are a set of

pre-generate cores specifically for mathematical functions over floats. These IP-Cores (Intellectual

Property Cores) are present in the standard library of components used by the Xilinx ISE.

To make a rough estimate about how much processing power was lost because of the solution

used (and the fixed-point solutions), two Verilog modules were created: one for the floating-point

addition and another for the multiplication. The used core was the Floating-point v4.0. The

comparison results are observed in the table 4.9.

As it can be seen from the table 4.9 the solutions found were always slower than the IP-Core.

This happens because the Floating-point v4.0 core is optimized at the maximum for the Virtex-

5 FPGA. Because it is designed by Xilinx for a Xilinx product, all the constraints and design

optimizations are known and strictly followed.
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Multiplication (ns) Addition (ns)
Floating-point v4.0 11,664 20,899
Soft floating point 75,556 76,915

Fixed-point (32-bit) 18,924 -
Fixed-point (64-bit) 34,072 -

Table 4.9: Execution time for the multiplication and addition process for different approaches.

4.3 Creating the ConvConst Module

With the solution of the no floating-point problem found, the modules could be finally synthe-

sized using Catapult C.

The first C function to be translated to a synthesizable hardware module was the ConvConst. In

the setup design phase of Catapult C, the module’s technology was chosen by defining the target

board to be used. Also, a Start and Done control signal was added to the module. To generate

a smaller and simple block, it was asked for the module to meet a low frequency constraint of

50MHz. Forcing the module to work at higher clock frequencies would make it larger since the

most used operations of the module would be parallel which involved cloning some groups of

components.

At this phase, the ConvConst function was chosen to be the top-level function. According to

[30] everything called by the top-level function will be hardware and everything outside of that

function is considered to be software or a test bench and will be ignored during the synthesis

process. Given that ConvConst included the soft floating-point functions created, those were also

synthesized.

With the design setup completed, the architectural constraints could be defined. Two options

were possible for the modules architecture: achieve the minimum possible area or the minimum

latency. This options could be chosen from the design goal constraint to specify the optimization

goal for the new scheduler. By choosing the area optimization, a module using less components

would be produced, however its latency time would be worse. Since the objective of this thesis

was to accelerate an application, it was opted to configure the module for a low latency time. At

this point, it was instructed that the module should obtain all its input values from RAM memories

and store its output values also in a RAM memory.

With this done, the hardware description language of the module was generated. However,

Catapult C creates a Verilog file that is too high-level for ISE to understand and synthesize. For

that, it was used PrecisionRTL which is also a synthesis tool just like ISE. This tool accepted the

high-level code (which contained statements like for loops and others) and was used to create a

Verilog file that Xilinx ISE could use.

When analysing the resources that the module takes after synthesis it was noted that most of

the FPGA components were being used, letting very few available for the other two modules. So

another code optimization was needed.
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As said earlier, the ConvConst function analyses a Matrix of 96 by 96 floating-point values

making use of an array H with nine floating-point elements, along with six other small arrays

composed by integer values. The matrix that serves as an input to ConvConst is in fact a tile of

the image being processed and, as stated earlier in chapter 3, the image is coded in gray-scale

using 8 bits, which represents only integer numbers ranging from 0 to 255. Also, the values of the

matrix H are either -1, 0 or 1. This values although being defined as of the floating-point type in

the original Stereo Navigation application’s source code are, in fact, integer values. By using the

int data type instead of float, all the operations using multiplications and additions can be made

without involving the soft floating-point functions described earlier and, a simpler module could

be synthesized.

Because the module ConvConst was altered, a new series of profiling were made to the appli-

cation.

ConvConst application
% time Self (sec) children (sec) time

No optimization 0,7 7,66 0 1083,22
O1 0,8 2,22 0 262,92
O2 0,8 1,83 0 234,87
O3 0,7 1,26 0 190,91

Table 4.10: Profiling results of the Convconst function using int data types running on the Pow-
erPC (ten executions).

From table 4.10 it can be seen that ConvConst relative duration dropped significantly. By

replacing the soft floating-point alternative with the integer one, the relative time of ten executions

of ConvConst, dropped from 14,7% (from table 4.3) to 0,7%. Although following this solution

makes the function ConvConst to cease to be critical in the duration of the application, it was

decided to continue to create its respective module to infer the degree of optimization obtained

from a function using ints when compared with a function that is using soft floats.

The ConvConst function using ints, was passed by Catapult to be analysed. To respect a trade-

of between area and latency, four solutions were implemented where the operating frequency of

the modules to be created were changed. Catapult C after generating the HDL that would describe

the modules outputted a series of characteristics for each that can be seen in table 4.11

The column "Minimum frequency" has the constraint asked to be met by the generated mod-

ule. "Latency cycles" represent the number of clock cycles that the module spends executing the

operation. Dividing the latency cycles by the minimum frequency, gives the latency time of the

module. "Throughput cycles" and "Throughput time" are referent to the overall module operation,

i.e, the time/cycles spent since a start signal is sent to the module until it ends its execution sending

a done signal. The "slack" is used by Catapult to inform if the timing constraints were met, being



4.3 Creating the ConvConst Module 49

Minimum frequency(MHz)
Latency
cycles

Latency
time(ns)

Throughput
cycles

Throughput
time(ns)

Slack

50 97937 1958740 97938 1958760 4,77
100 106845 1068450 106846 1068460 -0,02
200 142485 712425 142486 712430 -0,25
400 196569 491422,5 196570 491425 0

Table 4.11: Results of the Catapult report referring the ConvConst module.

a value greater than 0 presented in the positive case.

Looking at the column "slack" from table 4.11, the module operating at a minimum frequency

of 50MHz is the only one that is guaranteed to perform as expected in the respective frequency.

From the column "Throughput time", the module designed to meet the minimum frequency of

400MHz is the one that is the quicker to execute.

After creating the Verilog modules with Catapult C, and converting them to a description

language recognizable by the Xilinx ISE, the modules were synthesized to determine how the

estimates made by Catapult C were close to be correct, namely if the frequency constraints were

met. The Synthesis is a process made by Xlinx ISE that accounts for all the throughput times of

each individual component (flip-flops, logic gates, etc.) that is used in the module. The frequency

values resultant from the synthesis are presented in the table 4.12

Freq. from Catapult(MHz) Max. Freq. obtained in XST
50 120,584
100 125,235
200 177,085
400 179,324

Table 4.12: Frequency obtained for the ConvConst module in XST.

These frequencies deviated from the required ones which altered the throughput time as shown

in table 4.13. Where “Max. Freq. in XST” is the maximum frequency that the module can operate

correctly determined from ISE after the synthesis process. The “throughput time from XST” is the

time that the module takes to operate at the frequency given in “Max. Freq. in XST”.

Normally the values of the clock frequency used to drive the modules are multiples of 50MHz.

The normalized frequency is the biggest multiple of 50MHz that can be contained by value “Freq.

in XST”.

As it can be seen from table 4.13, because the frequency constraints were not met, the fastest

module solution was not the one that was designed to operate at 400MHz. In fact using the module

designed for a frequency of 200 MHz would produce a better result.
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Freq. From Catapult (MHz)

Max.
Freq. in

XST
(MHz)

Normalized
frequency

(MHz)

Latency
Cycles

Throughput
time from
XST(us)

Throughput
time for

normalized
fre-

quency(us)
50 120,584 100,00 97837 811,36 978,37
100 125,235 100,00 106845 853,16 1068,45
200 177,085 150,00 142485 804,61 949,9
400 179,324 150,00 196569 1096,17 1310,46

Table 4.13: Throughput time obtained for the module ConvConst.

4.4 Creating the ConvRepl1 Module

Again, the same minimum frequencies were chosen for this module the same way as described

in the previous section. These results can be seen in the table 4.14.

Minimum frequency(MHz)
Latency
cycles

Latency
time(ns)

Throughput
cycles

Throughput
time(ns)

Slack

50 839233 16784660 839234 16784680 -1,39
100 1447489 14474890 1447490 14474900 -0,36
200 3080065 15400325 3080066 15400330 -0,62
400 6159745 1539962,5 6159746 15399365 -1,41

Table 4.14: Results of the catapult report referring the convRepl1 module.

Proceeding the same way to synthesize the module, i.e., to generate a post-synthesis report,

new frequency values were obtained. These values are present in table 4.15 along with the nor-

malized frequency values .

Freq. From Catapult (MHz)
Freq. in

XST
(MHz)

Normalized
frequency

(MHz)

Latency
Cycles

Throughput
time from
XST(us)

Throughput
time for

normalized
fre-

quency(us)
50 66,095 50 839233 12697,37 16784,66
100 103,831 100 1447489 13940,82 14474,89
200 162,602 150 3080065 18942,36 20533,77
400 163,747 150 6159745 37617,45 41064,97

Table 4.15: Throughput time obtained for the module convRepl1.

From table 4.15 the best solution is to use the module designed for 100MHz frequency since

it is the one that has the lower normalized throughput time.
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4.5 Creating the ConvRepl2 Module

Again, the same minimum frequencies were chosen for this module (as shown in table 4.16).

Minimum frequency(MHz)
Latency
cycles

Latency
time(ns)

Throughput
cycles

Throughput
time(ns)

Slack

50 839233 16784660 839234 16784680 -1,39
100 1447489 14474890 1447490 14474900 -0,36
200 3080065 15400325 3080066 15400330 -0,62
400 6159745 1539962,5 6159746 15399365 -1,41

Table 4.16: Results of the catapult report referring the convRepl2 module.

After synthesis, the module frequencies were the ones presented in table 4.17.

Freq. From Catapult (MHz)
Freq. in

XST
(MHz)

Normalized
frequency

(MHz)

Latency
Cycles

Throughput
time from
XST(us)

Throughput
time for

normalized
fre-

quency(us)
50 63,307 50 837889 13235,33 16757,78

100 103,831 100 1446145 13927,87 14461,45
200 159,388 150 3078721 19315,89 20524,81
400 168,714 150 6150509 36455,24 41003,39

Table 4.17: Throughput time obtained for the module convRepl2

Once again, the best solution is to choose a module designed for 100MHz which has a through-

put time of 14461,45us.

4.6 Conclusion

In this chapter was presented how the critical functions were used by Catapult C to create

hardware modules. Because Catapult C did not accept floating-point datatypes, a solution making

use of of soft floating-point had to be used, which penalized the original application’s execution

time.

Although there were requested modules that could be driven by clocks with a frequency rang-

ing from 50MHz to 400MHz, catapult had an hard time to create modules with more than 150MHz.

Because of that, the faster modules that were obtained, where driven with a clock frequency of

100MHz.
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Chapter 5

Module Design

To obtain a software-hardware interface where the created modules could communicate with

the PowerPC processor, the reference design used originally in XPS when the Linux kernel oper-

ating system was ported to the FPGA in 3.2.1, had to be altered. To simplify the communication

process between the processor and the created modules, a single IP core was added to the device

tree. This core contains the three implemented modules and the dual-port RAMs (DPRAMs)1

used to store and obtain the required matrices/arrays of the modules. There was also added inside

the core some additional logic for the correct communication between the modules, the DPRAMs

and the outside.

A simple representation of this core is in figure 5.1. To keep this diagram simple, the DPRAMs

used for the control arrays (bsStart, bsEnd, bsPreEdges, bsNumPreEdges, bsPostEdges and

bsNumPostEdges) are not represented. It can also be seen that the PowerPC processor, through

the PLB, can access one set of ports of the DPRAMs while each module can access the other set

of ports. With this architecture, both the PPC440 and the modules “see” the DPRAMs as single

port RAMs. Furthermore, although the modules were designed to make use of three RAMs (nine

for the ConvConst module), in the figure 5.1 only two are connected to each module. The reason

for this is that the array H was stored in the same RAM used for storing the matrix Y, as it will be

explained later in the subsection 5.1.1.

Because the processor communicates with the core using just one bus, it was easier to have it

access data from only one memory instead of the 12 necessary. So, the DPRAMs were made to

look like a single bigger RAM to the PLB (the RAMX6 of the figure 5.1). This is done using the

three msb of the address coming from the PLB as enable signals for the RAM as will be explained

in section 5.3

1Type of random access memory that contains duplicated ports to enable multiple reads or writes to occur at the
same time.
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PPC convConst

convRepl1

convRepl2

RAM1

RAM2

RAM3

RAM4

RAM5

RAM6PLB

RAMX6

Figure 5.1: Architecture of the core to be implemented (in dashed line) as well its interface with
powerPC via PLB.

The used core was derived from one pre-generated by XPS through the “create and inport

peripheral wizard”. By using this wizard, XPS creates an empty core with all the connections

to the PLB already defined and respecting the communication protocol. With this module, there

is no need to redefine all the PLB specifications like port connections, transaction signals, etc.

This core, named user_logic, was represented by a Verilog file (user_logic.v). This file could be

imported inside a project in ISE where, it could be altered to include the created modules. The

generated core’s interface can be seen in figure 5.2.

In figure 5.2 all the core’s outputs are the ports on the right of the module, while the inputs are

on the left side (this pattern will be used through the rest of the document). The ports were used

in the design the following way:

• Bus2IP_Addr — Used to determine the address of the DPRAM that will be accessed;

• Bus2IP_BE — Not used in the design;

• Bus2IP_CS — Used to enable the DPRAM;

• Bus2IP_Data — Used to transfer data from the PLB bus to the IP core;

• Bus2IP_RdCE — Used to point the register to be read from;

• Bus2IP_WrCE — Used to point the register to be written to;



5.1 The Target Modules 55

Figure 5.2: Core’s interface diagram (left ports are inputs, right are outputs).

• Bus2IP_Clk — The clock signal to drive the modules;

• Bus2IP_Reset — To reset the module;

• Bus2IP_RNW — Used to enable the writing mode of the RAM;

• IP2Bus_Data — Sends the value present in the RAM’s address pointed by Bus2IP_Addr if

Bus2IP_CS is 0 else, sends the value present in the control register pointed by Bus2IP_RdCE;

• IP2Bus_Error — Never used, always at 0;

• IP2Bus_RdAck — Only used to confirm the reception of the Bus2IP_RdCE signal;

• IP2Bus_WrAck — Only used to confirm the reception of the Bus2IP_WrCE signal.

5.1 The Target Modules

The modules that were created and described in chapter 3, are very similar: all of the three

analyse a 96 by 96 matrix and, using the H array, proceed to a series of operations to produce an

output that will, itself, be a 96 by 96 array. The ConvConst module has six more input arrays that

are used for control purposes, however its basic procedure is similar to the other two modules.
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5.1.1 ConvRepl1 and ConvRepl2

The ConvRpel1 module included in the user_logic core, is the one created by Catapult C

that was designed to achieve a minimum frequency of 100MHz. The representative schematic is

present in figure 5.3. The module’s port names were given by Catapult C and are relative to the

used RAM outputs and inputs.

Figure 5.3: Interface representation of the ConvRepl1 module (left ports are inputs, right are
outputs).

This ports are used for:

• u/h/y_rsc_singleport_data_out — To read the data that comes from the RAM memory;

• u/h/y_rsc_singleport_addr — To select the index of the array/vector to be read/written to

the RAM;

• u/h/y_rsc_singleport_data_in — Sends the data to be stored in the RAM;

• u/h/y_rsc_singleport_re— Enables the read mode of the RAM;

• u/h/y_rsc_singleport_wr— Enables the write mode of the RAM;

• clk— Input for the clock that drives the module;

• rst— Used to reset the module;

• start— Used to start the module;
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Figure 5.4: Waveform for some of the ConvRepl1 module’s outputs .

• done— Used to signal that the module completed its operations.

The way the module requests a value from one of its DPRAMs is by putting a logic 1 in one of

u/h_rsc_singleport_re ports by one clock cycle. During that period, the module presents a stable

address value in the corresponding u/h_rsc_singleport_addr, the rest of the time, the addr values

that the module outputs in these ports are ignored. The ConvRepl1 module (and the other two

modules, for that matter) is configured so that in the following clock cycle it will expect the RAM

answered value in the u/h_rsc_singleport_data_out input port.

ConvRepl1 only reads the u and h values from the RAMs and therefore, it will never need to

use the output ports u_rsc_singleport_wr and h_ rsc_singleport_wr. So in the design, this ports

were left unconnected. The same happens with the output buses u_rsc_singleport_data_in and

h_rsc_singleport_data_in.

The RAM used to store the y values that the ConvRepl1 module outputs, will never be used

to transmit its y values to the module so, the module’s output y_rsc_singleport_re and input

y_rsc_singleport_data_out are not used, and therefore, are not connected.

Proceeding to a behavioral analysis of this module (figure 5.4) it can be seen that the module,

when reseted, has its done output at one, signaling that no operation is being made at the moment.

Putting the start line to high, makes the module run (the done signal is brought to 0). When the

module finishes executing its output signal done is brought again to a logic one.

Looking at the waveform of figure 5.4, u_rsc_singleport_re and h_rsc_singleport_re are at one

exactly at the sime time (at the same clock cycle). As said before these signals are used to request a

RAM value present in the address requested. Because the signals are at one at the same time, both

the RAMs will access their values at the same time. That however does not happen for the RAM

that is used to store the y values. As seen in the figure 5.5 (a zoomed version of the figure 5.4 ),

the y_rsc_singleport_we is at one in a different clock cycle. This means that the RAM will access

its values at different times. This enables the H array and the Y matrix to be stored in the same

DPRAM (in different addresses though), making the module interfacing with only two DPRAMs

which allows less memory space to be wasted.
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Figure 5.5: Waveform for some of the ConvRepl1 module’s outputs (the image was compressed
for readability reasons).

The ConvRepl2 module is similar to the ConvRepl1 in its interface and communication logic,

being the only difference the sequence of words accessed in the RAMs. So, all the connections

and controls are exactly the same. The module that was included in the user_logic core was also

the one designed to have a minimum clock frequency of 100MHz.

5.1.2 ConvConst

The ConvConst module is very similar to the two ConvRepl modules. The connections to

the two main RAMs for the U, H and Y matrices/vectors are the same. Besides that, the module

also makes use of six more smaller RAMs for storing the values bSStart, bSEnd, bSPreEdges,

bSPostEdges, bSNumPreEdges and bSNumPostEdges. Like the main arrays, these are also stored

in DPRAMs, being that each of the first four made use of a DPRAM of 16 words of 32 bits, while

the last only needed to save 8 words of 32 bits.

The interface representation of this module can be seen in the appendix A.3. Because the

module never writes values to the six smaller RAMs, all the (...)_we and (...)_data_in ports corre-

spondent to this arrays aren’t connected to any DPRAM.

Analysing the waveform of the module (figure 5.6), it is possible to see that the h values are

accessed a clock cycle before the u values (looking at the (...)_re signals), while the y values are

only stored five clock cycles a after the h vector ceases to be read. Therefore, just like ConvRepl1

and ConvRepl2, one of the memories can be used for both the y and h values.

Four of the six control values are accessed at the same time (refer to the waveforms to the

signals (...)_re of figure 5.6 ) while the other two are accessed at the previous clock cycle. Although

only four DPRAM modules could be used for these 6 values, since two of them are required at

different instants, 6 RAMs were used. These RAMs were mapped to some of the same addresses

of the RAM2, i.e., the RAM used for the Y and H matrices of the ConvConst module.
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Figure 5.6: Waveform for some of the ConvConst module’s outputs.

5.2 DPRAM Module

Each DPRAM is shared by the processor and one of the created modules. Being that every

port is duplicated (two DOUT ports, two ADDR ports, two EN ports, etc.), half of the ports will

be used by the processor and the other half by one of the modules to control the RAM, as shown

in figure 5.7 .

Linking the DPRAM in this way, both the processor (via the PLB) and the connecting module

actually “see” the DPRAM as a single port RAM. The advantage of using a DPRAM, is that both

its sides can be operated at the same time which eliminates the need to multiplex its input signals.

To store the input and output data of each module, a pair of DPRAMs is used. One memory

receives all the values of the U matrix sent by the PowerPC via the PLB, keeping them until

requested by its corresponding module. The second memory is used to store both the h values sent

by the processor and the Y matrix coming from the module’s output.

As said before each element of the used matrices and arrays are composed by 32 bits. The

DPRAMs used, were designed so each element had one specific address. Because both the U and

Y matrices are composed by 9216 elements (resulting in the same number of required addresses),

a minimum of 14 bits is needed to address all their elements in the DPRAM. Since it’s common

practice to have a potency of 2 as the number of words that a memory has, it was opted to create

two DPRAMs with 16384 (214) words of 32 bits for each module.

For the control arrays of ConvConst, six more smaller RAMs were added to the user_logic
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Figure 5.7: RAM’s port connections (left ports are inputs, right are outputs).

module. Four of those, were designed with 16 words of 32 bits and assigned to the bSStart,

bSEnd, bSPreEdges and bSPostEdges. The two other RAMs, had 8 words of 32 bits and were

assigned to bSNumPreEdges and bSNumPostEdges.

As said in the previous section, the Y matrix and the H array are never used at the same time

by the same module. For that reason, the same RAM is used to store both this two data sets, but in

different addresses. The y values are stored in the RAM starting at address 0 and ending in address

9215. The address code of the final y value is therefore 10001111111111b and, to avoid overlap

the H array can be placed anywhere from that address up.

For the used solution, the H array’s data were stored in the RAM starting in the address 14336

(11100000000000b), as shown in figure 5.8. This required some adaptation of the connecting

wires since the addresses that the modules send to the RAM, when requesting for the h values,

range from 0 to 11 (or 9 in the case of the ConvConst module), i.e., always start at zero and have

only 4 address bits. To extend the number of bits of the H address from four to 14 and also to give

the desired offset value, ten more wires were added to the bus that connects the address output of

the module to the address input of the DPRAM. Three of added wires (the three msb) were fixed

at the high logic level and the remaining seven were fixed to the logic 0 (connected to ground).

Because both the h_rsc_singleport_addr and y_rsc_singleport_addr outputs of the module

drive the DPRAM ADDR2 input, a multiplexer is used to select which of the module’s out-

puts are used as the DPRAM’s input. The selection bit of the multiplexer was connected to the

h_rsc_singleport_re output of the module that, when set to one (meaning that the module is re-

questing to read an h value from the RAM), will let through the h_rsc_singleport_addr otherwise,



5.3 The user_logic Core 61
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Figure 5.8: Example of one RAM organization.

the y_rsc_singleport_addr is connected to the DPRAM ADDR input. This logic can be seen in

figure 5.9

5.3 The user_logic Core

The user_logic core contains the three modules and the 12 DPRAMs (6 for the u, h and y values

and 6 for the control arrays of the ConvConst module). Because the PLB can only communicate

with one DPRAM memory, a 17-bit address is used to communicate with all the DPRAMs making

it appear like one bigger RAM to the bus. The 14 lsb are used to access each word of a given

memory, while the 3 msb used to distinguish between RAMs as shown in table 5.1.

Address Bit RAM Stored data Structure
16 15 14
0 0 0 1 U of ConvConst
0 0 1 2 Y and H of ConvConst
0 1 0 3 U of ConvRepl1
0 1 1 4 Y and H of ConvRepl1
1 0 0 5 U of ConvRepl2
1 0 1 6 Y and H of ConvRepl2

Table 5.1: Address of each RAM in the user_logic module

If, for instance, the first element of the H array of the ConvRepl1 module is to be accessed by

the processor (which is stored in the RAM4), the address value would be 011_111_00000000000b.
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DPRAMModule

1

0

ADDR

y_rsc_singleport_addr

h_rsc_singleport_addr

h_rsc_singleport_re

Vcc

Figure 5.9: Interface between a module and the DPRAM.

The first three bits(011b) are the RAM selecting bits and the following three (111b) are the offset

used for the H array.

These address bits were connected to the enable ports of each RAM through AND gates along

with the Bus2IP_CS (Refer to figure 5.10 for an example). If the three msb (seven for the case of

the smaller RAMs) of the address coming from the PLB correspond to the number of the RAM

and Bus2IP_CS is at logic 1, that RAM will be enabled and, altering the input values will only

take effect on it. So, if the PLB is moving data to RAM5, the 3msb of the address will be 101b,

this will activate that RAM while all the others are deactivated and, although the buses of DIN,

ADDR, etc. are connected between all the RAMs and the PLB, only RAM5 will “listen” to these

stimulus.

DPRAMModule

1

0

ADDR

y_rsc_singleport_addr

h_rsc_singleport_addr

h_rsc_singleport_re

Vcc

Bus2IP_CS

Addr14
Addr15
Addr16

EN2 (RAM 6)

Figure 5.10: Example of how the DPRAM6 is enabled.

To simplify how the six smaller RAMs would be accessed by the PLB, they were mapped to

some of the same addresses of the RAM2. The processor stores data in them just the same way as

it would store the h values of ConvConst however, these values are stored in 6 individual RAMs

that will be used by the ConvConst module. The base addresses seen by the PLB for each of these

small DPRAMs is as shown in table 5.2. Note that the 3 msb are 001b meaning that they are

mapped to the RAM2.

The organization of this RAMs and how they are put together to create the RAMX6 can be

seen in appendix A.4.
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Address Bit Stored Data Structure
16 15 14 13 12 11 10

1 0 0 1 bSStart
1 0 1 0 bSSEnd

0 0 1 1 0 1 1 bSPreEdges
1 1 0 0 bSPostEdges
1 1 0 1 bSNumPreEdges
1 1 1 1 bSNumPostEdges

Table 5.2: Address of each RAM of the ConvConst module.

There was still the need to define how the start and done ports of each module would be ac-

cessed. The core that was automatically generated by XPS made use of height 32-bit registers that

could be accessed from the outside. Four of them are used to store the data coming from the input

Bus2IP_Data, while the other four can send their stored values to the IP2Bus_Data output. The

input bus Bus2IP_WrCE selects which register will save the value of the Bus2IP_data, while the

bus Bus2IP_RdCE chooses which register will send its value to the IP2Bus_Data. By connecting

six of these eight registers to the the modules, the start and done ports could be accessed from the

outside.

This registers are connected to the modules in the way described in table 5.3

Reg Connected to pin
In0 start of ConvConst
In1 start of ConvRepl1
In2 start of ConvRepl2
In3 Not connected

Out4 done of ConvConst
Out5 done of ConvRepl1
Out6 done of ConvRepl2
Out7 Not connected

Table 5.3: Register interface with the modules.

Having the my_ip core been completely defined and tested using ModelSim to simulate all the

input, output and internal signals, it could be synthesized to produce a netlist that could be used by

XPS. This netlist describes the logic components used by the module (logic gates, look up tables,

etc.) and their connecting paths.

Finally, the netlist of the my_ip core was added to the reference deign used in XPS where the

bitstream for configuring the FPGA at start time was created.
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5.4 Software-Hardware Interface

With the user_logic core defined, it was time to integrate it with the software application. For

that, the the original ConvConst, ConvRepl1 and ConvRepl2 software functions were deleted and

re-edited so that they would only make use of the designed modules. This involved sending the

required u and h values to the module’s RAMs, send a start signal, wait for the done signal and

retrieve the y values from the other module’s RAM memory.

To establish an hardware-software communication, Linux device drivers were used. These,

are software functions specific to the operating system that allow high level programs in the user

space to communicate with the hardware peripherals. In other words, the device driver acts as a

translator between the application and the hardware, which for the case at hand will be useful to

communicate to the user_logic core. To gift the operating system with the ability to communicate

with the designed core, it was created a kernel module associated with the address of the core that

was previously defined in XPS.

To send a start signal to one of the target modules, it is needed to send that information to the

register that is connected to its input. The stimulus are sent by the processor by including in the

application the function setone() . Listing 5.1 shows the header of this function.

Listing 5.1: setone function header

s e t o n e ( r e g i s t e r , v a l u e ) ;

Where “register” is the identifier of the desired register to send the value present in “value”.

In the case of sending a start signal to the module ConvRepl2, the register 2 shall have a logic 1

in its lsb so, setone(2,1) is used to start the module.

To check when one of the target modules has finished executing, the function getone() (listing

5.2) is used inside a loop. This function gets the value of a register and can be used to determine

the value of the done output of the modules.

Listing 5.2: getone function header

v a l u e = g e t o n e ( r e g i s t e r ) ;

To read and write to the DPRAMs of the my_ip module (which is seen as only one), the

functions setm and getm are used (listings 5.3 and 5.4).

Listing 5.3: setm function header

setm ( number_of_e lement s , s t a r t i n g _ a d d r e s s , a r r a y ) ;

Listing 5.4: getm function header

a r r a y =getm ( number_of_e lement s , s t a r t i n g _ a d d r e s s ) ;

Where “array” is the name of the array that is used inside the C application that will be passed

to/retrieved from the RAMs, “staring_address” is the first position where the array will be stored
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in the RAMX6 defined for the core module and “number_of_elements” is simply the number of

elements that is desired to write to/read from the RAM.

By using these functions, the Software running in the PowerPC could communicate with the

hardware modules. Since the algorithms of the functions ConvConst, ConvRepl1 and ConvRepl2

are now substituted by the modules with the same name, all the algorithm present inside them was

substituted by the appropriate functions to communicate with the modules. The listings 5.5, 5.6

and 5.7 have a small portion of the code that was included in each function

Listing 5.5: example of the new ConvConst function.

setm ( 1 6 , 2 5 6 0 0 , b S S t a r t ) ;

se tm ( 1 6 , 2 6 6 2 4 , bSEnd ) ;

setm ( 1 6 , 2 7 6 4 8 , bSPreEdg ) ;

setm ( 1 6 , 2 8 6 7 2 , bSPstEdg ) ;

setm ( 8 , 2 9 6 9 6 , bSNumPreEdges ) ;

se tm ( 8 , 3 1 7 4 4 , bSNumPostEdges ) ;

se tm ( 9 2 1 6 , 0 , u ) ;

se tm ( 9 , 30720 , h ) ;

s e t o n e ( 0 , 1 ) ; / / Sends a s t a r t s i g n a l t o ConvConst

whi le ( g e t o n e ( 4 ) ! = 0 ) { } / / Wai t s u n t i l done i s a t 0

s e t o n e ( 0 , 0 ) ; / / Lowers t h e s t a r t s i g n a l

whi le ( g e t o n e ( 4 ) = = 0 ) { } / / Wai t s u n t i l t h e done s i g n a l

/ / i s a t one aga in

getm ( 9 2 1 6 , 16384 , y ) ; / / R e t r i e v e s t h e v a l u e p r e s e n t i n t h e

/ / DPRAM t o t h e code ’ s v a r i a b l e

Listing 5.6: example of the new ConvRepl1 function.

setm ( 9 2 1 6 , 32768 , u ) ;

setm ( 1 1 , 63488 , h ) ;

s e t o n e ( 1 , 1 ) ; / / Sends a s t a r t s i g n a l t o ConvRepl1

whi le ( g e t o n e ( 5 ) ! = 0 ) { } / / Wai t s u n t i l done i s a t 0

s e t o n e ( 1 , 0 ) ; / / Lowers t h e s t a r t s i g n a l

whi le ( g e t o n e ( 5 ) = = 0 ) { } / / Wai t s u n t i l t h e done s i g n a l

/ / i s a t one aga in

getm ( 9 2 1 6 , 49152 , y ) ; / / R e t r i e v e s t h e v a l u e p r e s e n t i n t h e

/ / DPRAM t o t h e code ’ s v a r i a b l e

Listing 5.7: example of the new ConvRepl2 function.

setm ( 9 2 1 6 , 65536 , u ) ;

setm ( 1 1 , 96256 , h ) ;

s e t o n e ( 2 , 1 ) ; / / Sends a s t a r t s i g n a l t o ConvRepl2
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whi le ( g e t o n e ( 6 ) ! = 0 ) { } / / Wai t s u n t i l done i s a t 0

s e t o n e ( 2 , 0 ) ; / / Lowers t h e s t a r t s i g n a l

whi le ( g e t o n e ( 6 ) = = 0 ) { } / / Wai t s u n t i l t h e done s i g n a l

/ / i s a t one aga in

getm ( 9 2 1 6 , 81920 , y ) ; / / R e t r i e v e s t h e v a l u e p r e s e n t i n t h e

/ / DPRAM t o t h e code ’ s v a r i a b l e

These changes to the target functions were tested again and the obtained results, making use

of the hardware modules and the my_ip core, were equal to the original ones. It was time to see

the obtained acceleration degree.

5.4.1 Profiling the Application

With the application running aided by the hardware modules, the overall system was profiled

to calculate the obtained degree of acceleration. Once again it was used powerpc-linux-gprof to

profile the application. The first function to be profiled was the ConvConst which, as said before,

had all its original operations replaced by algorithms to control the hardware module.

The target functions were redesign to make use of the functions setm(), setone(), getm() and

getone() to interact with the hardware modules. The functions setm() and setone() made them-

selves use of the pwrite() function, while the getm() and getone() made use of the pread() function.

These functions were considered by the profiler as spontaneous and, therefore, it was not possible

to know which of their parent functions called them. Because of this, it was not possible to deter-

mine how much time was spent by the pread() function when called by the getm() or the getone()

function. If the getone() function execution time could not be identified, it was not possible to

determine the time the hardware modules took. So, the functions used to retrieve and store data to

the memory had to be removed from the altered ConvConst function to determine how much time

it was spent by the modules. With this, it was known that the time spent by pread() was relative

only to the function getone() while the time spent from pwrite() was only realative to the setone().

The same problem would appear if the application made use of more than one hardware mod-

ule: because both the three modules’ done flags were read by the getone() function, it was not

possible to know how much individual time was spent by this function when reading a given mod-

ule. For that, it was opted to execute the application with the ConvConst function prepared to call

the respective module while the ConvRepl functions were left has they originally were, i.e., exe-

cuting completely as software. Having only one part of the application where the pread() function

was called, made it possible to determine the module’s execution time, since this execution time

was equal to the execution time of getone() function and, looking at listing 5.5, it is possible to

note that the module’s throughput time is approximately the same as the time spent in the getone()

function.

These changes would not produce a working application with the desired results but neverthe-

less, it enabled to retrieve the actual execution time of the hardware modules. The profiling results

of the ConvConst function now making use only of the functions to start the module and detect



5.4 Software-Hardware Interface 67

the end of the module’s execution (which will translate in the hardware module’s execution time)

and a comparison of the function that was used to create the hardware module ( the ConvConst

function making use of int datatypes) can be seen in the table 5.4.

Optimization Level Original (secs) Hardware Module (secs) Times Called Speed-up
No optimization 7,66 1,44 960 5,32

-O1 2,22 1,44 960 1,54
-O2 1,83 1,44 960 1,27
-O3 1,26 1,44 960 0,88

Table 5.4: Relative speed-up obtained by the ConvConst hardware module when compared with
its software homologous (ten executions).

The ConvConst module took relatively the same time as the value predicted in 4.13 (1,44s/960

= 1500us). This module did not provide a serious acceleration when compared to the software

function with the same name. In fact, with the -O3 optimization flag, the software function took

less time to execute in the processor.

The same procedure was made to the ConvRepl1 function: only the signals to start the module

and to check when its was finished were used. Once again, the other two functions had to be

operating has software module so that their pwrite() and pread() functions did not interfere with

the ones needed to determine the module’s execution time.

Optimization Level Original (secs) Hardware Module (secs) Times Called Speed-up
No optimization 451,66 17,42 1440 25,93

-O1 91,99 17,42 1440 5,28
-O2 78,41 17,42 1440 4,50
-O3 59,57 17,42 1440 3,41

Table 5.5: Relative speed-up obtained by the Convrepl1 hardware module when compared with
its software homologous (ten executions).

As it can be seen in table 5.5 an high degree of acceleration was obtained when the hardware

module is compared with the function that was used in Catapult to generate it (the function using

soft floating-point datatypes).

The final hardware module to be profiled was the ConvRepl2. The same changes made for the

previous modules were proceeded.

Being the ConvRepl modules very similar, the obtained speed-up factor of the ConvRepl2

module is itself very similar to the ones obtained for the ConvRepl1 module (table 5.6).
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Optimization Level Original (secs) Hardware Module (secs) Times Called Speed-up
No optimization 451,23 17,84 1440 25,29

O1 92,00 17,84 1440 5,16
O2 78,53 17,84 1440 4,40
O3 59,57 17,84 1440 3,34

Table 5.6: Relative speed-up obtained by the Convrepl2 hardware module when compared with
its software homologous (ten executions).

These individual speed-up times will, as expected, contribute to a faster final application. The

obtained total execution times for each optimization level can be seen in the table 5.7.

Optimization level Execution time (secs)
No optimization 145,46

-O1 105,55
-O2 108,26
-O3 107,59

Table 5.7: Total execution time of the application making use of hardware modules (ten execu-
tions).

When analysing the profiling results of the total Stereo Navigation application it was noted that

most of the time was spent in the pread() function. As said before, this function is used for both

reading the done signals of the hardware modules and the RAMs for their outputted values (RAM2,

RAM4, RAM6). Since the time spent by the pread() function when it was used by getone() was

already accounted for as the execution time of the hardware modules, it was subtracted from the

overall time spent. The resulting values are a reflex of the time that was spent to read the output

RAMs, i.e, the time spent by the getm() function. The execution time of these functions, along

with time spent by the setm() is present in the table 5.8.

Optimization Level Setm() (secs) Getm() (secs)
No optimization 5,04 5,44

O1 4,27 5,97
O2 5,14 6,94
O3 5,11 6,06

Table 5.8: Total time spent to read and write to the core’s memories (ten executions).

These actions of reading and writing to the RAMs consume a relatively high percentage of

the application run time, ranging from 7,2% to 11,16% of the total. This results make the final

application a little slower and should be taken into account.
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Recalling the results of the original application in the four optimization scenarios shown in the

subsections 3.3.1, 3.3.2, 3.3.3 and 3.3.4, the execution time for the application using the soft

floating-point datatypes (table 4.10) and the results of the total application’s execution time from

the table 5.7, a comparative analysis about the relative acceleration could be made (as shown in

the table 5.9). In the table 5.9, the column “hardware aided” is relative to the software application

with hardware acceleration; “Soft & int” to the solution with the ConvConst function using only

int datatypes and ConvRepl functions using the soft floating-point datatypes; column “Original”

has the total application running time of the original algorithm.

Total execution time Relative execution time
Optimization

Level
Hardware

aided
Soft &

int Original Hardware
/Soft Hardware/Original

No
optimization

145,46 1083,22 271,58 13,43% 53,56%

-O1 105,55 262,92 135,36 40,15% 77,98%
-O2 108,26 234,87 135,01 46,09% 80,19%
-O3 107,59 190,91 134,30 56,36% 80,11%

Table 5.9: Relative execution time of the solutions found (ten executions). Time in seconds.

The columns "relative execution time" of the table 5.9, represent the duration of the solution

found with hardware acceleration compared with the original application. The calculus made for

the column Hardware/Original was:

timeO f HardwareAcceleratedApplication
timeO f OriginalApplication

(%) (5.1)

The equivalent calculus was made for the column “Hardware/Soft”.

From table 5.9 it can be seen that the best case of the obtained acceleration happens when no

optimization to the code is made, giving a relative execution time of 13,43% relative to the total

execution time of the application that was redesigned to make use of the soft-float datatypes for

the ConvRepl functions and ints for the ConvConst function. When compared with the original

application, the solution that was found, made the same operations taking only 53.56% of the

execution time (again, in the best case scenario).

The fastest solution took 10,76 seconds to execute which corresponds to a relative execution

time of 80,11%.

5.5 Improving the Hardware Acceleration

In this section, some alternatives to improve the performance of the Stereo navigation applica-

tion are studied. Some are based in redundancy elimination, while others are based in architecture

optimization.
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5.5.1 Memory Mapping

Because too much time was being spent with the actions of writing and retrieving the data

from the core’s RAMs, a faster alternative had to be found. The solution that was found maps the

RAMs in the hardware into the user space.

Instead of using the getm() and setm() functions, a page of memory relative to the core mod-

ule’s address is mapped into the user space. This way, when a variable is changed in the hardware

side it will be propagated to the software side and vice-versa. Because this solution does not make

use of kernel module functions that cause high software overhead, the time spent in this operations

is only due to the communication delay between the processor and the core.

This alternative reduced a little the time spent to send/retrieve the values from the RAMs, as

shown in table 5.10.

Optimization Level Hardware aided (secs) Time memmap (secs) Difference (secs)
No optimization 145,56 144,43 1,13

-O1 105,55 101,37 4,18
-O2 108,26 102,69 5,57
-O3 107,59 102,63 4,96

Table 5.10: Comparison of the total execution time of the StereoNav application with and without
memory mapping (ten executions).

5.5.2 Memory Sharing

Recalling the data flow of the three target functions inside the harrisTile_model_step presented

in the figure 3.6, it can be seen that the data that is inputted in the ConvRepl2 function is the

direct output of the ConvRepl1 function. This of course, is also true for the hardware modules.

Therefore, a single RAM can be used to store the Y matrix of the ConvRepl1 module and feed it to

the ConvRepl2 module as its U matrix decreasing the overall used component count of the FPGA.

In the original design, the RAM that stored the y values of ConvRepl1 was a different one that

of the RAM for the u values of ConvRepl2. This required that in the final system, after ConvRepl1

finished to write its y values in RAM4, the software application retrieved the data storing it inside

a matrix/array and then send it to the RAM of u values of the ConvRepl2 module (RAM5). This

puts an unnecessary overhead that would cause delays to the application. By using the same RAM

to store this values, both a faster application with less occupied area is obtained. The reason why

this makes the application faster is that both one call to the function getm() and setm() is discarded

every time harris_Tile_model_step is called

Although shared by the two modules, only one of the RAM’s ports is accessed by both, that is
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the ADDR port. The bus y_rsc_singleport_addr2 of the ConvRepl1 module and u_rsc_singleport_addr

of the ConvRepl2 had to be multiplexed so that both could drive the ADDR input port of the

RAM module. To select which bus would drive the ADDR input port, the u_rsc_singleport_re

was used as a select bit for the multiplexer. This bit when set to one would let through the

u_rsc_singleport_addr bus, making it drive the ADDR RAM’s input port otherwise, it was the

y_rsc_singleport_addr that would pass thought the multiplexer to drive the same RAM port (shown

in figure 5.11).

h_rsc_singleport_re

h_rsc_singleport_addr

y_rsc_singleport_addr

u_rsc_singleport_addr

u_rsc_singleport_re

ADDR

RAM

ConvRepl1

ConvRepl2

0

0

1

1

Figure 5.11: RAM shared by ConvRepl1 and ConvRepl2.

The application was again executed, using now the new generated hardware architecture aided

with the memory mapping solution. As it can be seen in the table 5.11 as much as 0.71 seconds

can be eliminated in an application that took 10.76 seconds by sharing one of the memories (and

therefore eliminating one getm() and setm() function).

Optimization Level Hardware aided (secs) Time 5 Mems(secs) Difference (secs)
No optimization 145,46 139,97 5,49

-O1 105,55 97,96 7,59
-O2 108,26 100,86 7,40
-O3 107,59 100,45 7,14

Table 5.11: Comparison of the total execution time of the StereoNav application with 6 and 5
memories (ten executions).

2Although called y_rsc_singleport_addr, this signal is in fact the multiplexed signal derived from
y_rsc_singleport_addr and h_rsc_singleport_addr presented in the end of the section 5.2.
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5.5.3 Including the Constant Values Inside the Modules

As said previously, the h values used by the three modules are in fact constant values. There is

no need to keep them in external memories where the module would have to access them so, the

H arrays were included inside the modules. To do this, the application source code was altered,

so that the target functions have these constants declared inside them instead of receiving the h

values as their arguments.

This small changes in the functions were then processed by Catapult C to generate the equiva-

lent modules. Again the modules designed around 100MHz were chosen to integrate the user_logic

core. The timing results for each of these modules is present in the table 5.12.

Hardware Module
Freq. in

XST
(MHz)

Normalized
frequency

(MHz)

Latency
Cycles

Throughput
time from
XST(us)

Throughput
time for

normalized
frequency(us)

ConvConst 144,702 100 80265 554,69 802,65
ConvRepl1 103,767 100 1346113 12972,46 13461,13
ConvRepl2 102,302 100 1446145 14136,04 14461,45

Table 5.12: Throughput time obtained for the modules using internal constants.

Because these modules take less logic to address the constants that were, in the previous ver-

sion, in external memories, they could be designed by Catapult to have less latency cycles. Mak-

ing this modules operating at the same frequency as the previous modules will make them execute

much faster giving place to a faster final application.

The modules were included inside the same user_logic core defined in the subsection 5.5.2.

Because they do not have any h values to read from the RAMs the logic interconnects (the mul-

tiplexers defined to choose if the H array is to be read from the RAM or if the Y matrix is to

be stored) that connect the modules to its seconds RAMs (RAM2, RAM4 and RAM5) could be

deleted, making the final module simpler. After a general simulation of the produced module, its

bitstream could be generated to configure the FPGA.

The software part of the application could also be simplified. There was no need to use the

functions to send the h values to the FPGA’s RAMs. This alone could also provide a small accel-

eration degree. Once again the application produced the expected results and at a faster pace, as

shown in the table 5.13.

This time, the application was accelerated due to the optimization of the modules instead

of redundancy elimination. Aided by the memory sharing and mapping solutions used in the

subsection 5.5.2, the modules with the included constant values eliminated a maximum of 0,9

seconds of a 10,83 seconds application, almost a 10% drop in execution time. The minimum

execution time is present at the -O3 optimization flag, where one execution of the application

would take approximately 9,87 seconds.
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Optimization Level Hardware aided (secs) Time Const Inside(secs) Difference (secs)
No optimization 145,46 137,96 7,5

-O1 105,55 96,56 8,99
-O2 108,26 99,17 9,09
-O3 107,59 98,72 8,87

Table 5.13: Comparison of the total execution time of the StereoNav application with five memo-
ries and the constant h values inside the hardware modules as opposed to the application making
use of six memories (ten executions).

Comparing this solution with both the original and the soft floating-point software application

running on the PowerPc processor (table 5.14) it can be seen that the highest degree of acceleration

is obtained when no optimization is made to the application making use of the soft float solution,

the designed hardware/software hybrid takes only 12,74% of the execution time. In the fastest

scenario, i.e, with the -O3 optimization flag, the application takes 73,51% of the execution time of

the original application.

Total execution time Relative execution time
Optimization

Level
Hardware

aided
Soft &

int Original Hardware
/Soft Hardware/Original

No
optimization

137,96 1083,22 271,58 12,74% 50,8%

-O1 96,56 262,92 135,36 36,73% 71,34%
-O2 99,17 234,87 135,01 42,22% 73,45%
-O3 98,72 190,91 134,3 51,71% 73,51%

Table 5.14: Relative execution time of the solutions making use of the included constants (ten
executions).

5.5.4 Using Parallel Modules

The first alternatives shown up until now, used an approach where the convConst, convRepl1

and convRepl2 functions’ algorithms were replaced by the actions needed to execute the hardware

modules and retrieve the data of the resulting operations. These alternatives made the final appli-

cation faster because the resulting functions (the functions making use of the hardware modules)

executed faster. This however, does not exploit one of the strongest characteristics of the hardware

implementation, which is the parallelization of independent operations.

Recalling the dataflow representation of figure 3.6, it can be seen that there are 8 phases of

processment inside the harrisTile_model_step function. Making use of hardware modules, there

is no reason why the convConst module can’t be executing at the same time of the convRepl1 or

convRepl2 module, since they are independent.
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To use the three designed modules in parallel, some constraints had to be met in the design

phase of the new user_logic core, those are:

• A module can only start to execute if its preceding module has finished. For instance,

convRepl1 can only start after convConst has finished executing;

• Two instances of the same module can’t be executing at the same time.

• Different modules can’t access to the same RAM at the same time

There was also a constraint of using only one instance of each hardware module (i.e, not using

repeated hardware modules) to save FPGA final area. This new alternative made possible a new

system configuration where the same operations could be made in 5 phases as opposed to the

initial 8 phases present in figure 3.6. The phases of this solution are shown in figure 5.12. As

it can be seen, two modules can be operating at the same time. If more instances of the modules

were used, the same operation could be made in 4 or even 3 phases.

It is important to note that the operations that are represented by circles in the figure 5.12

are carried out by the processor. This causes some delay because the output values of convConst

that were stored in the FPGA’s DPRAMs (RAM2 and RAM3) must be read to the software space

where the multiplication will be proceeded and, after that, the results will be sent, again, to the

FPGA’s DPRAMs.

To meet this new architectural constraint, the three used modules are the same that were pre-

sented in the previous subsection (subsection 5.5.3). There was however the need to alter the

user_logic core’s architectural design to have in mind the new connections between the modules

and the RAMs since now, one module can access more than one memory in both the writing and

reading operations and, more than one module access the same memory. These changes to the

core were made by using multiplexers in all the modules’ and RAMs’ inputs. These multiplexers

used as the selector bits, registers that represented the 5 phases. For instance, for the Addr input of

the RAM2, both the convConst and the convRepl2 modules use it to indicate the address that they

will use to store their y values; also, convRepl1 will use this input to indicate the address where its

u values will be read. So there are three output signals that will drive the addr input of the RAM2.

By using a multiplexer just before the addr input of the RAM, it can be selected which module

will drive the RAM’s input: convConst in phase 1, convRepl1 in phase 2 and convRepl2 in phase

4. The same logic is used for everyone of the other inputs of both the modules and the RAM in

the modules-RAMs interface.

With the new solution validated with modelsim, it could be synthesized and its bitstream could

be transfered to the ML507 development board. To attend to the changes made to the user_logic

core, the harrisTile_model_step function had to be altered so it could make use of two modules

in parallel. A small flowchart of the software source code operations to control the modules can

be seen in figure 5.13 (the actions to write/read from the memories are not shown as they are the

same presented earlier in this section).
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Figure 5.12: Data and timeflow of the hardware solution making use of parallel modules.

After the the new solution was validated, it was time to, once again, profile the application to

determine the speed-up factor. As it can be seen in the table 5.15, the total execution time could be

reduced to 8,4 seconds per execution of the application, representing only 62,06% of the time that

the original Stereo Navigation application took. When comparing with the application using the

software functions that gave place to the hardware modules, i.e., the application with the soft float

datatypes, it can be seen, also from table 5.15, that a greater speed-up was obtained. This was the

best solution found thus far on this thesis and the one that concludes the work done to optimize

the original Stereo Navigation application.

5.6 Comparing the Hardware Solutions

The Xilinx ISE is capable to determine how much of the FPGA’s resources are used by a given

module when it is implemented. This information is obtained through the place and routing pro-

cess. As it is implied this process consists of two tasks: in the placement task it is defined where
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Start the 1st convConst Start the 2nd convConst
Start the 1st convRepl1 

Start the 2nd convRepl1
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convConst 
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Figure 5.13: Flowchart of the software control operations.

to place all and logic elements in the reconfigurable fabric while, the routing task is where it is

decided the exact design of all the wires needed to connect the placed components. This measure-

ment is very important for the project because it gives the information about all the the resources

used by the functional components of the designed core as well as all its interconnects. The post

place and route characteristics of the four different hardware alternatives for the user_logic are in

table 5.16 where “Original” is relative to the original solution found in 5.3, “5 mems” to 5.5.2 and

“Constant h” to the 5.5.3 and “Parallel” is referent to the solution found in 5.5.4.

The solution “Constant h” is the most area efficient. Because it makes use of 5 memories and

because its h values are internal to the modules, both memory and logic space are reduced. The

parallel solution uses a little more logic, since every connection between the DPRAMs and the

modules had to be through multiplexers.
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Total execution time Relative execution time

Optimization
Level

Hardware
aided w/
parallel
modules

Soft &
int Original Hardware

/Soft Hardware/Original

No
optimization

125,49 1083,22 271,58 11,58% 46,21%

-O1 84,00 262,92 135,36 31,95% 62,06%
-O2 84,90 234,87 135,01 36,15% 62,88%
-O3 88,99 190,91 134,30 46,61% 66,26%

Table 5.15: Relative execution time of the solutions found using the hardware modules in parallel
(ten executions).

Original 5 mems Constant h Parallel
Number of Slice Registers used as Flip Flops 13046 13046 12359 12371

Number of slice LUTs 24487 24490 23916 24194
Number of occupied Slices 8395 8596 8383 8239

Number of LUT Flip Flop pairs 26426 26547 25812 25924
Number of BlockRAM/FIFO 102 86 86 86

Number of 36 k BlockRAM used 6 6 6 6
Number of 18 k BlockRAM used 192 160 160 160

Total Memory used 3672 3096 3096 3096
Number of DSP48Es 17 17 17 17

Table 5.16: Comparison of the place and route characteristics, in a Virtex-5 FPGA, for the four
solutions found.
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Chapter 6

Conclusion

6.1 Conclusion

Throughout this project, some hardware alternatives to accelerate a software by deriving an

HDL from C-language using Catapult C were shown. After being identified the application’s

most critical functions, the hardware modules created specifically to replace them have indeed

accelerated the Stereo Navigation application running on the Vitex-5 FPGA with the embedded

PowerPC processor. The three hardware modules that were created and operating at a frequency

of 100MHz were used to aid the rest of the software application. This solution proved to take only

66,26% of the execution time (or executing 1,5 times faster) of the same application executing

solely in the software format in the PowerPC processor at 400MHz. This results proved that

providing hardware acceleration to a software application can improve the system’s performance.

This speed-up factor between software and hardware could be further improved by taking

some care in the development of the software application. Such an example was the use of the

floating point variables inside the convConst function where they were not needed. Also, for the

convRepl functions, because these made use of the floating point datatypes, some performance in

the final solutions was lost. By using other kind of variables such as fixed point, the conversion

from software to hardware could produce improved modules.

The soft floating-point solution found to work around the no floating-point problem inherent

from Catapult C, did make the hardware acceleration less effective when comparing the multi-

plication and addition modules generated by Catapult with the the floating-point ones designed

specifically to the Virtex-5 FPGA by the CoreLogic wizard of the Xilinx ISE.

It was determined that the operations to read and write to the user_logic’s DPRAMs took a

considerable percentage of the application’s execution time and therefore, should be reduced to

the minimum possible.

Including the constant values inside the hardware modules, provided Catapult C the ability of

creating simpler and faster solutions.
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6.2 Future Work

There could be some improvements to enhance the final system.

One improvement would be the use of duplicated hardware modules in order to decrease the

number of execution phases from five (as shown in the subsection 5.5.4) to four, or even three.

There could also be investigated some alternative designs created by Catapult C by setting some

architecture specifications like, pipelining and loop unrolling.

Regarding the data types, some further work could be made to study how the fixed point

alternatives studied here would adapt to the application an infer also how much acceleration degree

could be obtained. Also, it should be made an attempt to create modules that would use the the

floating-point multiplication and addition modules provided by the CoreLogic functionality of

Xilinx ISE that are targeted to the Virtex-5 FPGA.

One of the main problems that was found when using Catapult C, was its inability to create

modules that could operate over the 200MHz frequency. This could be due to incorrect definition

of parameters and could be an area of interest to explore in the future.

To further improve the application, other software functions could be converted to hardware,

like the harrisTile_model_setp function.

Finally each and every hardware module could make use of more input RAMs (9 for the

ConvConst module and 11 for the ConvRepl) enabling various u elements to processed at the

same time.
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Appendix

A.1 Output of the Original Application

main(): start

...

===== FRAME=59 ==========================

cmp=0 do_sort L: found 139 features

cmp=0 do_sort R: found 116 features

cmp=0 do_match_lr: found 34 matches

===== FRAME=60 ==========================

cmp=0 do_sort L: found 131 features

cmp=0 do_sort R: found 117 features

cmp=0 do_match_lr: found 40 matches

cmp=0 L do_match_t1t2: found 29 matches

cmp=0 R do_match_t1t2: found 30 matches

cmp=0 do_circular_check: found 22 matches

cmp=0 do_reproj: reprojected 22 points

cmp=0 do_ransac: n_inliers_ransac=10.000000, pass_ransac=1.000000, n_inliers_joint_2=10.000000,

n_inliers_final_2=10.000000

Vector dR: 001.00 000.01 -00.00 -00.01 001.00 -00.01 000.00 000.01 001.00

Vector dT: 000.56 000.01 000.00

===== TERMINATE ==========================

...

main(): finish
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A.2 Output of the Application Using the 32-bit Fixed-point Solution

main(): start

...

===== FRAME=59 ==========================

cmp=0 do_sort L: found 140 features

cmp=0 do_sort R: found 117 features

cmp=0 do_match_lr: found 34 matches

===== FRAME=60 ==========================

cmp=0 do_sort L: found 132 features

cmp=0 do_sort R: found 116 features

cmp=0 do_match_lr: found 39 matches

cmp=0 L do_match_t1t2: found 29 matches

cmp=0 R do_match_t1t2: found 29 matches

cmp=0 do_circular_check: found 22 matches

cmp=0 do_reproj: reprojected 22 points

cmp=0 do_ransac: n_inliers_ransac=10.000000, pass_ransac=1.000000, n_inliers_joint_2=10.000000,

n_inliers_final_2=10.000000

Vector dR: 001.00 000.01 -00.00 -00.01 001.00 -00.01 000.00 000.01 001.00

Vector dT: 000.56 000.01 000.00

===== TERMINATE ==========================

...

main(): finish
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A.3 ConvConst module

Figure A.1: Interface representation of the ConvConst module (left ports are inputs,right are out-
puts).
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A.4 Memory Organization
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Figure A.2: Memory organization for the user_logic core.
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A.5 Configure the Powerpc Linux Kernel in the Xilinx ML507 De-
velopment Platform

This appendix section specifies the installation steps to build the PowerPC Linux Kernel source

code and run it on an ML507 Xilinx development board. Most of the steps were followed from

[25] and [33].

The first step is to download the ppc-2008-04-01.iso file. After obtaining this file, a virtual

drive shall be created.

sudo mkdir -p /media/virtual

After that, the directory where the iso file is located, must be accessed. There, the image file

shall be mounted by inputting the following command:

sudo mount –o loop –t iso9660 ppc-2008-04-01.iso /media/virtual

The directory /media/virtual will now have an emulated version of the installation DVD. Now,

the files can be installed with the command:

sudo ./install –d /opt/dev/ELDK/4.2 ppc_4xxFP

After changing to the /opt/dev/ELDK/4.2 directory:

source eldk_init 4xxFP

sudo /media/virtual/ELDK_FIXOWNER –a ppc_4xxFP

sudo /media/virtual/ELDK_MAKEDEV –a ppc_4xxFP

With these steps, the tools for cross-compiling the software application are ready to be used.

Among them is the powerpc-linux-gcc and the powerpc-linux-gprof.

After obtaining the reference design from [34] (user account required), a device tree must be

downloaded. This device tree is used to describe the hardware so that the kernel can be configured

during boot. The device tree can be obtained using git:

git clone git://git.xilinx.com/device-tree.git

After that, the bsp folder in the device-tree must by joined with the folder with the same name

in the reference design. With this done, it’s time to run the XPS software. In there, it shall be open

the downloaded reference design. By selecting "software platform settings", the window in figure

A.3 shall open. In the OS drop-down menu the device-tree shall be selected.
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Figure A.3: Software platform settings.

On the left menu, selecting the "OS and Libraries" will open a new tab. There, lines shall be

changed as shown in A.4:

Figure A.4: Changes to be made.
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In the main XPS window, click on “Generate libraries and BSP’s”. A file called Xilinx.dts

will be created inside the project in the directory ppc440_0/libsrc/device_treev0_00_x. Click on

"update bitstream" to generate the download.bit file in the implementation folder inside the project.

Now the linux-2.6-xlnx kernel can be download by inputting the following command in the

command line

git clone git://git.xilinx.com/linux-2.6-xlnx.git

When the download is complete, the Xilinx.dts file shall be copied inside the linux-2.6-xlnx

directory in the arch/powerpc/boot/dts directory and rename it to virtex440-ml507.dts. Also, a

ramdisk image shall be copied to arch/powerpc/boot (refer to [25] for instructions on how to

download and [35] for instructions on how to expand its capacity).

After changing to the linux-2.6-xlnx directory the following commands shall be inputted

Source /opt/dev/ELDK/4.2/eldk_init 4xxFP

Make menuconfig ARCH=powerpc 44x/virtex5_defconfig

In the menu that will appear, “Enable Xilinx Soft FPU” shall be selected. After that, the

following line must be inputted to create an *.elf file.

Make ARCH=powerpc simpleImage.initrd.virtex440_ml507

An *.elf file will be created. This file, along with the file download.bit, can be used to create

an *.ace file. This file is the one that will configure the development board, at boot time.

Xmd –tcl genace.tcl -jprog -hw «path_to_file_download.bit» -ace my_ace.ace -board ml507

-elf «path_to_elf_file» -target ppc_hw -start_address 0x00800000

Finally, the my_ace file can be transferred to the cfg6 directory of the compact flash disk

provided with the development board.
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