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Resumo

As tecnologias de visualização de informação tornaram-se, nos últimos anos, ferra-
mentas indispensáveis para a compreensão de conjuntos complexos de informação.
Contudo, o desenvolvimento de aplicações neste campo foca-se muitas vezes em
domı́nios espećıficos que não permitem generalização. Grafos são estruturas mate-
máticas, que podem ser usados para modelar relações entre objectos que represen-
tem conceitos, e, por conseguinte, ser utilizados para generalizar a representação de
redes de informação.

Este relatório apresenta o Olympus Graph Editor : um controlo e um conjunto de
bibliotecas que utiliza grafos como uma forma de representar e interagir visualmente
com com redes de informação. Este controlo permite a criação, edição e interacção
com grafos de forma rápida e prática.

Foi feita uma extensa revisão do estado da arte sobre teoria de grafos, técnicas
de representação, tesauros, organogramas e ferramentas gráficas já existentes. Foi
depois definida uma metodologia baseada no paradigma de arquitectura MVC com
a intenção de manter as bibliotecas do controlo modulares e escaláveis para outros
projectos. Foi pensado um paradigma de interacção para providenciar uma interface
agradável ao utilizador, e foram implementadas várias técnicas de apresentação para
representar a informação de uma forma esteticamente agradável.

Embora o controlo tenha sido desenhado para representação de informação gené-
rica com grafos, foi feito um trabalho adicional para representar os conceitos pre-
sentes um sistema de gestão de arquivos: tesauros e diagramas organizacionais
(organogramas). Finalmente, para avaliar e demonstrar as funcionalidades do con-
trolo, é ainda implementada e apresentada uma aplicação protótipo.
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Abstract

Information visualization technologies have become indispensable tools for making
sense of complex sets of data over the last few years. However, the development of
applications in this field often focuses on specific domains that do not allow gener-
alization. Graphs are mathematical structures, that can be used to model relations
between objects representing various concepts and,hence, be used to generalize the
representation of information networks.

This paper presents the Olympus Graph Editor : a control and a set of libraries
that uses graphs as a means to represent and interact visually with information
networks. The control allows the creation, edition and interaction with graphs in a
fast and practical form.

Extensive literature review on graph theory, graph representation techniques,
thesauri, organograms and existing graphical tools was undertaken. A methodology
based on the MVC architectural paradigm was then defined, with the intention of
keeping the component libraries modular and scalable for other projects. An inter-
action paradigm was thought out to provide a user-friendly interface, and several
layout techniques were implemented to represent information in an aesthetically
pleasant way.

Although the control is designed for generic information representation with
graphs, additional work was made in terms of representing concepts present in an
archive management system: thesauri and organization charts (organograms). Fi-
nally, to evaluate and showcase the control’s functionality, a prototype application
is also implemented and presented.
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“The most overlooked advantage to owning a computer is that if they foul up
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Chapter 1

Introduction

The introductory chapter makes a brief description of the paper’s project — a graph

interaction control. Work context, project description, motivation, objectives and

paper structure are covered.

1.1 Project Context

This paper presents the investigation and development of a graph interaction control

during the Project course of the fifth year of the Mestrado Integrado em Engenharia

Informática e Computação from Faculdade de Engenharia da Universidade do Porto.

The project had a duration of twenty weeks during the second semester of the scholar

year of 2007/2008 and was conveyed through an internship in a software company

– ParadigmaXis S.A.[1].

ParadigmaXis S.A. (henceforth pX) is a software and architecture engineering

company based in Porto. It was founded in 2000 and works mainly on the areas

of archive management, information system’s safety and geographically referenced

information visualization. The graph interaction control described in this paper

is planned to be part of one of pX’s largest products - GISA [2]. GISA stands for

Gestão Integrada de Sistemas de Arquivo, and it is a commercial software application

oriented to the management of large archive systems. The application is based on

international standards, and is built on top of an integrated model that focuses on

the representation of several forms of information, including thesaurus and structural

organograms.

The graph interaction control itself deals with the following areas of computer

science: software architecture, graphic computation, information visualization and

human-machine interaction.
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1.2 Project Description

The project consists in the creation of a generic graph control for desktop appli-

cations that allows visualization and interaction with information in the form of

graphs. The visualization of this information should be rich and customizable, so

that different types of graphs, nodes and edges can represent different entities ac-

cordingly. The control should provide means to create and edit new graphs and to

navigate existing ones, loaded from a database. Usability is the main quality factor:

the control should strive to provide a user-friendly interface.

The final version of the control should also be platform independent and work

at least in Windows and Linux environments.

As stated previsouly, the graph interaction control encompasses a wide range of

fields — graph theory, information visualization, human-computer interaction, and

software engineering are the most important ones.

1.3 Motivation and Objectives

The main motivation for this project was to develop a control that could enhance

and facilitate the understanding and reading of two specific concepts used in GISA:

thesaurus and organograms (refer to subsection 2.3).

Thesauri are normally represented (both digitally and in printed form) as textual

lists, and understanding the underlying structure that connects different terms is

often difficult. Organograms, on the other hand, provide an interesting challenge in

the form of developing an automated way to draw them in an aesthetically pleasant

way. Graphs not only provide dynamic structures with the potential to represent

any number of entities and the way they interact with each other, but they have also

been the subject of developed work and studies that allow for automated layouts,

in-depth searches and other tools. Thus the motivation for the graph interaction

control was to find a way to use existing techniques and visualization processes to

represent thesaurus and organograms in an automated and aesthetically pleasant

way.

There are many good applications out in the market that are graph oriented, but

they normally focus on specific niches. The need for truly reusable tools for graph

editing and interaction was thus also a big motivation.

The objectives set by pX for the control include:

• Graph loading, creation and editing;

• Automatic layout of graphs to aesthetically pleasant forms;

• Broad range of visual properties to allow customizable graphs;

2
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• Standards-compliance with any related standards;

• User-friendly interface and easy-to-use tools;

• Use of an open-source graphic library;

• Multi-platforming to at least Windows and Linux;

• Modular architecture to allow reusability and expansibility;

• Written in C# code, to ensure compatibility with GISA.

However, this is just a brief summary. An extensive list of objectives can be

found in section 3.1.

1.4 Paper’s Structure

Aside from this introductory chapter, this project report is divided into four major

chapters, each depicting a different part of the development of the graph interaction

control. Chapter 2 presents a literature review of the state of the art on several

fields related to graphs and graph-oriented applications. Chapter 3 focuses on listing

precisely the objectives, explaining the decisions and defining the methodology and

the architecture for the project - it serves as a high-level, theoretical description of

the project. Chapter 4 summarizes the implementation of the prototype: it presents

the libraries, classes and the prototype developed for the project; it is a technical

summary of how the problem was solved. Finally, chapter 5 analyzes what objectives

were and weren’t fulfilled, sets a road map for future development and draws some

final conclusions about the project.

3
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Chapter 2

State of the Art

This chapter makes an overview of the state of the art for both graph drawing

theory and graph-oriented applications. It is important to understand that devel-

oping a graph interaction control is something that encompasses a broad spectrum

of technological areas: graph drawing techniques, graphic libraries, graph layout

algorithms, interaction paradigms and graph data models are all important areas,

each becoming subject to decisions based on what is better to the project’s future

and objectives.

With this in mind, the chapter is divided into several subsections, each building

on top of the previous and adding some insight into another area of work. Section 2.1

makes an introduction to graph theory; section 2.2 discusses graph drawing; section

2.3 presents the concepts of thesaurus and organograms, and how they will fit into

this project; section 2.4 introduces two possible data models to represent graphs;

section 2.5 presents several graph layout algorithms and takes some conclusions

about each of them; section 2.6 reviews existing graphic libraries that could be

used in the project; finally section 2.7 presents some of the existing graph oriented

applications;

2.1 Graph Theory

The first point to be taken into consideration in this project is the understanding of

what a graph is. Since most of the project revolves around working with such struc-

tures, it is important to comprehend the most common graph terms and concepts.

This chapter starts by presenting a summary of graph theory and of some simple

concepts and formulas.

5



State of the Art

Graph theory exists since the 18th century, with Leonhard Euler’s (1707–1783)

Seven Bridges of Königsberg [3], which addresses a mathematical problem using a

set of bridges on the German city of Königsberg. The problem was to find a path

that would cross the seven bridges once and only once on each bridge, as shown

in Figure 2.1. Euler formulated the problem replacing each landmass as a dot, or

node, and replacing each bridge as an edge connecting two nodes. He then used the

concept of a node’s degree to prove that such path is in fact non-existent.

Figure 2.1: The Bridges of Königsberg problem.

Since then, the interest in these conceptual structures has been increasing. Nowa-

days graphs can be used to represent information as diverse as molecular structures

or information flowcharts. The appearance of areas such as graph drawing and the

use of graph as a mean to represent sets of interconnected information both in a vi-

sual and mathematical way have contributed to the large amount of work developed

in this area. Visually, a graph can be presented in many different forms, such as the

one in Figure 2.2.

Figure 2.2: A simple example of a graph.

6



State of the Art

A very precise and complex introduction to graph theory is given in [4], which

provides an excellent reading on the subject. However, and since most of the con-

cepts introduced in said book are beyond the scope of this work, this chapter follows

closely the introduction texts from [5] and [6], as they present significantly fewer

concepts.

Mathematically speaking, a graph G = (V,E) is a pair of sets such that V is

a set of nodes or vertices, and E is a set of 2-element subsets of V called edges.

In a graph, edges connect different nodes, creating a network of information or

relation between concepts. If loops are allowed (a node connects to itself), then the

maximum cardinality E is defined as |E| = |V |2. A non-looping graph can have at

most V (V − 1) edges. The number of nodes in a graph G is called the graph’s order

and is represented as |G|. The number of edges in a graph G represents its size. A

node v is considered to be incident to an edge e, if v ∈ e. Two edges e 6= f are

incident if they have at least one node in common.

The degree of v is d(v), and is defined as the number of edges that start or

end a v(|E(v)|). If a node v has d(v) = 0, it is considered isolated. On the other

hand, if all pairs i, j of nodes are connected by an edge the graph is considered

complete. A path can also be defined as a set V ′ = {i0, i1, ..., in} of nodes connected

by the set of edges E ′ = {{i0, i1}, {i1, i2}, ..., {in − 1, in}}. A path connects two

nodes through a set of edges that crosses each node once only. If i0 = in we have

a closed path, called a cycle. The complement graph of G is GC = (V,EC), where

EC = V 2\E = {{i, j}|{i, j} 3 E}. That means the graph’s complement is obtained

by connecting all edges that aren’t adjacent with an edge, and removing all current

edges from a graph G. Finally, graphs can have a weight (or cost) associated with

each edge. A weighted graph is defined as G = (V,E, ω) where ω:E → R.

This introduction assumes that the graph has undirected edges, in the sense that

an edge {i, j} = {j, i}. A directed graph (or digraph from here on) can be defined

as a graph where an edge has a specific order, such that {i, j} 6= {j, i}. Normally,

these edges are represented with a small arrow at the end tip of the edge. Directed

edges represent a path that can be only taken in a given direction, and not the other

way around. A node v in a digraph has an indegree din(v) that is the number of

incoming edges to v, and an outdegree dout(v) that is the number of edges starting

in v; we can also say that d(v) = din(v) + dout(v).

Most graphs vary from the above in small ways: they are called mixed graphs

when they contain both directed and undirected edges, or simple graphs if they

contain only one type of edge; a node may have an edge connecting it to itself, in

which case it is called looping graph; also, if a graph has no isolated nodes (∀v ∈
V, d(v) 6= 0), all the edges are directed and there are no cycles whatsoever, it is

called a tree. Trees are special graphs, and are often treated differently in terms of
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visualization.

Finally, it is important for this work to define the density of a graph for purposes

of finding out the most suitable data structure to define a graph. While the imme-

diate ratio between the cardinality of V and E can be defined as ε(G) = |E|/|V |,
this will only give a measure of how many edges there are in average for each node.

The density of a graph represents the proportion between the number of edges and

nodes, and is defined for an undirected graph as 2E
V (V−1)

, 0 ≤ D ≤ 1. If D = 0

there are no edges, and if D = 1 the graph is complete. A graph can be considered

either sparse or dense. Figure 2.3 shows a sparse graph and a relatively denser one.

While there are no specific rules as to when a graph is to be considered either [7],

it is generally accepted that in terms of computational costs, a graph G is sparse if

|E| = Θ(|V |) and dense if |E| = Θ(|V |2). This means that if a graph is near to be

complete, and the number of edges is close to |V |2 we have a dense graph, otherwise

the graph is sparse.

Figure 2.3: A sparse graph (left) and a dense graph (right).

2.2 Graph Drawing

Equally important to understanding the mathematical definition of a graph is the

ability to draw them in a readable way. This is not always easy, specially when

the graph at hand has a large number of nodes, is too dense or contains additional

information elements such as a text identifier for each node. Hence, when graphs are

drawn for any model, conceptual and design conventions are defined to ensure both

consistency and readability between them: conceptual conventions impose certain

restrictions on the way a graph is drawn, while design conventions are used to make

it look aesthetically pleasant.
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Graph drawing is a broad concept, once that encompasses areas as diverse as

graph theory, geometry, topology, visual languages, perception, information visual-

ization or graphic design. There is an annual Graph Drawing symposium [8] with

extensive literature about all these areas individually and how they all relate to

graphs. In section 2.5, an important part of graph drawing (layouts) is further dis-

cussed. In this section, however, the discussion will be about graph drawing in terms

of visual languages and information visualization. In other words, the discussion is

about ways to draw graphs. The article [9] provides a good reading to understanding

graph drawing and constraints. [10] also provides an interesting insight into how to

draw graphs, although from a heuristic point of view. For the specific case of visual

representations of thesauri and organograms, the interested reader can look into [11]

and [12].

Graph drawing can be divided in two major aspects: drawing constraints and

drawing conventions.

Constraints are limitations imposed on the way the nodes and the edges can be

drawn; they limit the geometric representation of edges and nodes in a graph. One

can say, for example, that all edges must be drawn as straight-lines, never using

bends or curves. One can limit the placement of nodes to a standard grid. Or one

can establish that directed edges should point in a common direction as much as

possible. The most common constraints are:

• Polyline (fig. 2.4a): edges can have bends or curves;

• Straight-line (fig. 2.4b): edges must be a straight-line;

• Orthogonal (fig. 2.4c): edges must be drawn as orthogonal lines;

• Planar (fig. 2.4d): edges can’t cross each other;

• Grid-like: nodes must be placed at specific grid-like coordinates.

Figure 2.4 was taken from [9], and depicts the four first constraints in the same

graph. Of course, one graph can stipulate more than one of these constraints, save

a few exceptions. Not all graphs are planar, and in such cases applying planar

constraints will only result in a solution with the least possible amount of crossing.

Drawing conventions specify how the basic and additional elements alike should

be drawn for a specific graph. They will determine aspects like the form, color,

location of additional elements or whether edges lines are drawn filled or dashed.

There is, however, no specific standard on what should be used for any specific

case. Hence, different drawing conventions applied to the same graph will result in

a different appearance. The following is a list of possible parameters that may vary

in a graph’s appearance:

9
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(a) Polyline Drawing. (b) Planar Straight-line Draw-
ing.

(c) Orthogonal Drawing. (d) Planar Straight-line Orthog-
onal Drawing.

Figure 2.4: Types of graph drawing.

• Node: pertaining the aspect of individual nodes.

– Form: circle, square, ellipse, etc;

– Outline: presence or not of an outline;

– Fill Color: the color to fill the node;

– Outline Color: the color of the outline;

– Size: relative size of the node;

– Text: presence or not of a caption.

∗ Size: size of the text;

∗ Position: position of the text relative to the node;

∗ Alignment: text alignment;

– Others...

• Edges: pertaining the aspect of edges.

– Line-type: the type of line, such as single, dashed, double, etc;

– Color: the color of the line;

– Thickness: the thickness of the line;

– Value: the presence or not of a weighted value for the edge;

10
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– Text: presence or not of a caption.

∗ Size: size of the text;

∗ Position: position of the text relative to the edge;

∗ Alignment: text alignment;

– Others...

• Graph: pertaining the aspect of the graph as a whole.

– Size: the size of the graph;

– Border: the presence or not of a border;

– Back color: the back color of the graph;

– Border color: the color for the borders;

– Others...

This list is in no way complete. Conventions can be set for different types of

edges, or for different degrees of distance to a central node. In Figure 2.5, two

different graph conventions result in different appearances for the same graph. On

the left, all edges and nodes are black. On the right, second-generation edges are

dashed, the edge color is red, and the node color is orange, with a shading effect.

Figure 2.5: Different graph conventions applied to the same graph.

There are several quality metrics that may apply to the drawing of a graph. One

of them is the visual aspect of a graph. Special care should be put into using the

best set of constraints and conventions to create a readable graph.

2.3 Thesaurus and Organograms

Since the project described in this article will deal with the two specific cases of

thesaurus and organograms, the following subsection will present the most common

drawing conventions for said structures, along with some examples.
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A thesaurus is an indexed compilation of concepts and relations amongst them-

selves. They are normally ordered in an hierarchical way, such that broad-scope

terms (known as the domain of knowledge) act as roots. Thesaurus can also be a

compilation of expressions, but this is beyond the scope of our work. Each term has

a list of relationships to other related terms. These relationships can be of three

general types: hierarchical, equivalence, or association.

Hierarchical relationships represent connections between broader or narrower

terms. One may say, for example, that vehicle is a broader term than car. Re-

ciprocally, car is a narrower term than vehicle. These types of relationships are

always bidirectional. Equivalence can be used to refer a similar or equivalent term

with the same meaning. One may say that freedom is equivalent to liberty, or that

CEE and EU share a temporal relationship (CEE precedes EU in terms of time).

Finally, relations of association are often used to connect two terms that are related

neither hierarchically nor equivalently. One may say, for example, that Company A

is associated with Company B, and that often means that if the user is looking for

one term, it might be useful to look into the related term too.

Thesauri are normally organized into indexed alphabetical lists, simplifying the

search by presenting information in a structured simple way. Representing thesauri

graphically, however, poses a much harder challenge. However, there is an interna-

tional standard (ISO 2778, and the loosely based Portuguese version NP 4026 [12])

for the establishment and development of monolingual thesauri that provides some

guidelines on what should be taken into consideration when drawing a graphical

representation. It distinguishes two types of diagrams:

• Tree-like schema;

• Arrow-like schema.

Both types present only a small descriptor or identifier for the term. There is no

need to give each term a specific symbol, although the position may be determined

in a coordinate-like system. Although this standard is focused mainly on thesaurus

representation on actual paper, this may nevertheless be a good inspiration for

human-machine interaction with a virtual thesaurus.

The tree-like schema uses orthogonal undirected and straight-line edges to relate

terms in different levels. It resembles a tree, with a root term that is part of the

domain of knowledge, and all terms in it must be related hierarchically. Narrower

terms are placed beneath broader terms. The graph should be planar whenever

possible, and avoid multi-level edges as much as possible. No considerations are

made regarding equivalence or association relationships. This can be seen as an

tree-like representation of a thesaurus.
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The arrow-like schema, places the broader term in the center of the schema,

with an emphasized identifier. Subsequently narrower terms are placed around the

center. The narrower a term is, the farther it will be placed from the center, creating

layers around the broader term. Hierarchical relations are drawn with an arrow, and

association relations are drawn with a dashed line, pointing out of the diagram. No

considerations are made regarding equivalence relationships. This could be seen as

a graph representation of a thesaurus.

Appendix A presents an example of each of these types of diagrams. The dia-

grams are loosely based on the ones presented in the NP 4026.

Organograms are a special case of graphs. They have the same basic structure

of a graph, yet they are never closed. They are normally directed, with a root

term on top and subsequently subordinate terms in lower levels. They may be used

to represent the internal structure of a company, for example. They are normally

represented using orthogonal lines and rectangles for concepts or entities. They also

have a fourth type of relationship, used to specify a chronological order between

terms. It is called a temporal relationship.

2.4 Data Structures

In this section, two ways of implementing a data structure for the purpose of keeping

information about a graph are presented. Since a graph is basically a set of nodes and

edges between them, we will define two basic objects to represent graphs: Nodes and

Edges. An object node nrepresents information about a node, such as its caption,

unique identifier or its list of edges. An edge e represents an edge and its related

information, such as weight, caption, and starting and ending node. Additionally,

one may define a third container object Graph, that contains instances of the nodes

and edges on a given graph. An example of such object implementation can be found

in [7]. The course notes [13] and [14] also provide some insight into this subject.

According to [15], there are two ways of representing a graph in a data structure:

an adjacency list or an adjacency matrix. The two main differences between them

are the data types used to represent the information. An adjacency list uses a

collection of arrays, while the adjacency matrix uses a matrix. Furthermore, each

type has its advantages and disadvantages, depending on the density of the graph

and on the type of operations one may want to apply to the representation.

2.4.1 Adjacency List

An adjacency list (sometimes referred to as an incidence list) is simply an array A

composed of a set of |V | lists, one for each node in the graph, as shown in figure
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2.6. The nodes are normally stored in an arbitrary order. The list A [u] is filled

with all the adjacent nodes to u, or alternatively, with pointers to said nodes. For

undirected graphs, this means the space required for the lists of adjacent nodes is

2|E| since a connection (i, j) will be present in both node’s list. If the graph is

directed, however, this space is only |E|. The total amount of memory required for

this list is thus Θ(|V | + |E|). Should one want to keep information not only about

the nodes, but also about the edges, one can fill each list from A with pointers to

edge objects instead.

Figure 2.6: A graph and it’s corresponding adjacency list.

The main advantages of the adjacency list are its low memory cost and also its

low computational cost for some operations. Finding all the adjacent nodes to n,

for example, takes Θ(1) time. Adjacency lists are also better used when a graph

is considered sparse, since they will spend strictly the memory needed to represent

each node once.

2.4.2 Adjacency Matrix

The idea of the adjacency matrix is to use a grid-like structure to determine where

the edges are, as shown in Figure 2.7. An adjacency matrix is a matrix A of dimen-

sion |V | × |V | where cell Aij = [i] [j] is such that:

Aij =

{
1 if (i, j) ∈ E
0 otherwise

(2.1)

Hence we have a matrix where edge (i, j) is represented by a 1 in cell A [i] [j].

The adjacency matrix requires Θ(|V |2) memory space for any given graph. This

is assuming the edge information will be represented by a bit. If we want to keep

information about each of the edges, each cell will lodge an edge object, costing

significantly more. If the graph is undirected, the adjacency matrices for graph G

and its transpose GT will be the same, since an edge is represented both at A [i] [j]
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and at A [j] [i]. In this case, we can halve the memory needed by keeping only the

information of either of the triangular matrices of the adjacency matrix.

Figure 2.7: A graph and it’s corresponding adjacency matrix.

The advantages of this structure is mainly its use for dense graphs. If the graph

is almost complete (i.e, if |E| ≈ |V |2), one can consider it dense. In this situation,

the adjacency matrix will still only need Θ(|V |2) memory, while the adjacency list

will now need Θ(|V | + |V |2). In this case, the adjacency matrix is much more

efficient than the list. Although there is no exact boundary to determine when

a graph is dense, it has been calculated that above a density of 1
64

, the matrix

representation becomes less memory consuming. This analysis, however, assumes

that only connectivity is being stored, and for situations where we also intend to

keep information about each of the edges, this value is bound to be higher.

Adjacency matrices also behave differently than lists in some types of operations.

While finding out all the adjacent nodes to n only takes Θ(1) time in a list, it takes

Θ(V ) on a matrix, since a whole row must be checked. On the other hand, checking

if there is an edge between two nodes i and j takes Θ(min{d(i), d(j)}) in a list

representation, but only Θ(1) in a matrix.

2.5 Graph Layout Algorithms

A plethora of layout algorithms for graphs have been developed over the last twenty

years. They apply to different types of structures, from regular binary trees to di-

graphs, and involve drawing graphs so that they are easy to read and understand

[16]. This is normally achieved by defining a set of aesthetic metrics that act as op-

timization goals for any algorithm. For generic graphs, the most common aesthetics

to look for are:

• Display of symmetry (if existent);
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Figure 2.8: Different aesthetic criteria result in different graphs.

• Planarity (avoiding edge crossings);

• Linearity (avoiding bends in edges);

• Node uniformity (balanced distribution of nodes);

• Edge length uniformity (balanced medium length of edges).

• Direction (for directed graphs, edges should point in the same direction).

While trying to achieve as many of those criteria as possible, it is generally

impossible to conjugate them all. In Figure 2.8 (as found in [17]), the left graph

is planar and contains some degree of symmetry. However, the same graph can be

drawn as in the right, with symmetries being maximized at the cost of planarity.

Seldom can we get the best of both worlds. It is also important to determine the

computational cost of each of the criteria, and the final purpose of the graph. If a

graph is merely to be rendered and used as a static image, then planarization could

be one of the priorities and extra computational cost could be dispensed. Otherwise,

if a graph is to be used interactively, time is a major constraint, and some high-cost

aesthetic criteria must be sacrificed.

Graph-drawing algorithms can be divided into three major groups: algorithms

for straight-line drawing, for planarization, and for polyline drawing. The first

group provides general algorithms that focus on aesthetics such as symmetry, edge

distribution and fast computation, using only straight lines. The second group are

high-computation cost algorithms that try to draw a graph as planar as possible.

The last group focus on the use of dummy nodes to achieve a pleasant result, with

the dummy nodes being removed and replaced by polylines in the end.

For the purpose of this report, and since the project will deal almost exclusively

with straight-line graph drawing, only a simple explanation of how the major algo-

rithms in this area work will be presented. A slightly more complex algorithm for

polyline graph drawing that might be useful for drawing organograms will also be

described.
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The article [16] provides an extensive list of graph-drawing algorithms in all its

forms. In [17] there is also a brief description of the most important algorithms for

straight-line graph drawing.

2.5.1 Force Directed Spring Model

Considered by many as the first straight-line graph layout algorithm, the spring

model presented by Eades in [18] dates back to 1984, and was developed as an

embedder for one of Eades’ previous works. The objective was to create a simple

heuristic to assign coordinates to each node in a graph, in a way that the final result

would be somehow aesthetically pleasing. The author notes that “aesthetically

pleasing” is a subjective concept, and that as so, this task is a formidable one. The

criteria set by Eades are similar edge length and symmetry display, if it exists.

Perhaps the best way to explain the concept of the algorithm is to present the

author’s own metaphor:

“The basic idea is as follows. To embed a graph we replace the vertices

by steel rings and replace each edge with a spring to form a mechanical

system. The vertices are placed in some initial layout and let go so that

the spring forces on the rings move the system to a minimal energy state.

The algorithm outputs the positions of the vertices in this stable state.”

To model this system, logarithmic strength springs are used, instead of linear

strength springs like stated in Hooke’s Law. This deviation from reality is due to

the fact that linear strength makes forces too strong when vertices are too far apart.

Hence, the force created on a node by a spring is dependent of the length of the

spring d and of two constants C1 and C2 as follows:

Fa = C1× log(
d

C2
) (2.2)

Since d = C2 → Fa = 0, C2 represents the desired length for a spring. This

force is applied to all the adjacent edges. A second repellent force is also calculated

between all non-adjacent edges. This force is dependent of the linear distance d

between said edges and of a constant C3, and is given as:

Fr =
C3√
d

(2.3)

A fourth constant C4 is also defined to adjust the displacement of each particle.

He suggests that by experiment, C1 = 1, C2 = 1, C3 = 1, C4 = 0.1 works well

with most graphs, although no mathematical proof of this is given. The stopping

condition to the algorithm is also theorized to be around 100 iterations into the
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algorithm, at which point most systems attain a minimal energy state, although no

proof of it is provided. The pseudo-code for this algorithm is as follows:

Algorithm 1 Eades’ Spring Layout Algorithm
Place vertices of G in random locations;
repeat

for all v ∈ G do
Calculate Fa for v;
Calculate Fr for v;
Calculate FV from Fa and Fr;
Move vertex C4× Fv;

end for
until N iterations have passed

The algorithm is pretty simple in its own way, and has the disadvantage of

resulting in different layouts for different initial placements. The existence of a

small heuristic of initial placement to help the spring algorithm achieve a pleasant

result could be used as an optimization. In terms of costs, and since each iteration

treats nodes independently, calculating the force on one node costs Θ(|V |2), and this

is cycled through all of the nodes, costing Θ(|V |3) for each iteration of the algorithm.

Still, Eades argues that for small sparse graphs with less than 30 nodes, the running

time is almost unnoticeable. It is also stated that the algorithm runs quite faster on

graphs with no cycles (trees), and that the number of iterations in these cases could

be substantially lower. On the other hand, experience has shown that the algorithm

doesn’t do so well with dense graphs and graphs with a small number of bridges.

2.5.2 Kamada-Kawai

The Kamada-Kawai algorithm [19] is a direct descendant from the Eades’ algorithm

described in section 2.5.1. Conceptually, the idea is the same: to replace edges in a

graph with springs and to find a state of minimum energy in the system by solving a

set of differential equations. The difference here, however, is that Kamada connects

all the existing nodes, and not only the ones connecting to each other. Connecting

nodes have a smaller spring, but non-adjacent ones also have a spring keeping them

apart. This introduced the concept of ideal length between non-adjacent nodes,

keeping adjacent vertices closer to each other, but at the same time spreading the

graph so it doesn’t become cluttered. This ideal distance is proportional to the

shortest path between two non-adjacent nodes.

The article [19] provides a good presentation to the algorithm, however both [20]

and [9] also make an excellent resume on the mathematical principles behind the

layout technique.
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Kamada and Kawai stated that the total energy of a graph can be defined as

follows

E =
n−1∑
i=1

n∑
j=i+1

1

2
· kij(|(pi − pj)| − lij)2 (2.4)

where p1, p2, ...., pn represent the nodes of a graph, and where lij is the natural

length of a spring between pi and pj, defined as lij = L × dij. L is the desired

length for the edge, and dij is the length of the shortest path between pi and pj. L

is normally chosen in function of the size of the area available to drawn the graph.

The energy of the system is then reduced by solving a partial differential equation

for each node, in a process that tries to find a local minimum that minimizes the

energy of the system. As each node is repositioned in each iteration, the total

energy is recalculated and the process is repeated until the system reached a preset

threshold. Since only one node is repositioned at a time, recalculating the energy of

the system is faster than in Eade’s algorithm, as only the contribution of one node

needs to be taken into account.

The simplest heuristic to find all shortest paths takes Θ(N3) time to compute.

Still, if better heuristics are used, and if some bookkeeping is used, the algorithm

takes only Θ(T ×N) where T is the number of inner loops and N is the number of

nodes in a graph. This makes it more effective than Eade’s algorithm, at least for a

vast majority of graphs.

The Kamada-Kawai algorithm reduces the number of edge crossings and displays

planarity most of the times. This happens because edge crossings raise the energy

of the whole system. The algorithm also tends to reveal symmetries when present,

and can also be extended into layered graphs by assigning nodes in the same level a

fixed value for the y coordinate and allowing only x to vary.

2.5.3 Fruchterman-Reingold

The Fruchterman-Reingold algorithm (henceforth FR), described in detail in [20], is

a modification of Eades’ spring-model algorithm. It was designed for simple, undi-

rected graphs with linear connections, and its objective was to produce aesthetically

pleasing graphs in as little time as possible, using a simplified physics system, fo-

cusing on speed and simplicity. The article describes five essential aesthetic criteria:

even distribution of nodes, minimal edge crossing, edge length uniformity, inherent

symmetry and containment in the desired frame. While not trying specifically to

attain any of these criteria, the FR algorithm does naturally distribute the nodes in

an even way, displaying similar edge length and reflecting symmetry when existent.
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Instead of simulating a set of springs and the system’s energy state, the FR uses

a different metaphor, based on the behavior of a set of particles or bodies and the

forces that attract and repulse them. It represents an approximation to either a

molecular system or a planetary one. The simulation of such a model is normally

called a many-body problem [21], and is normally solved by finding the adequate

values for the forces within the system. The FR authors, however, derive from the

Eades’ algorithm that the simulation of the physical system doesn’t need to be exact,

and they simplify their system in a few ways. Hence, all edges repel each other, but

two nodes share an attractive force if they have an edge connecting it.

The other simplifications comes from the fact that the forces in a many-body

problem are generally calculated to find a dynamic equilibrium, and in this case a

static equilibrium is enough. Instead of finding the acceleration derived from actual

forces, FR uses the velocity given to a particle by the forces acting on it. FR uses a

constant k that is defined as the optimal distance between nodes, and is given as

k = C

√
area

number of nodes
(2.5)

where C can be considered 1 most of the times. The value of k represents the

radius around each node which can be considered as the free area. If another particle

comes into this area, it should be strongly repelled. For a distance of d between two

particles, it can be stated that the attractive force fa and the repulsive force fr can

be defined as

fa(d) =
d2

k
(2.6)

fr(d) =
−k2

d
(2.7)

Finally, a global temperature for the system is set, cooling down with time, and

limiting the displacement of the forces on each iteration of the algorithm. The

cooling function can be defined as a simple inverse linear function from a set start

value. The authors suggest a tenth of the frame’s width, but different options can be

used for best fine-tuning. The algorithm is then divided in three steps: calculating

the attractive forces between the particles, calculating the repulsive forces, and

finally limiting the particles’ individual displacement via the system’s temperature.

The basic FR has a computational cost of Θ(|E| + |V |2), since an iteration of

the algorithm calculates the attractive forces between each adjacent nodes (once for

each edge) and the repulsive forces between all nodes. The authors have devised an

improvement over the basic algorithm to reduce this cost to Θ(|E|+ |V |): it consists

of using a gridded version of the draw area, in which each node is only repelled by
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other nodes in a circular area of 2k radius around it. This discards the weaker force

effects of farther nodes, and is essentially the same as computing the repulsive force

as

fr =
k2

d
· u(2k − d) (2.8)

where

u(x) =

{
1 if x > 0

0 otherwise
(2.9)

The FR has also considered how the modeling of the frame’s limits should work,

as shown in Figure 2.9 (figures 5 and 6 from [20]). When a node has been displaced

such that its new location is outside the boundaries of the frame, two solutions

can be devised: the component can either be stopped when it reaches a boundary,

much like if it was stuck on the limit, or bounce back, which could lead to extensive

computation. The authors propose a solution where the component will be stuck

when it reaches a boundary, but the displacement that is normal to it will be allowed

to continue. Hence, if a component hits the top wall coming from the right, it will

stop moving up, but it will be allowed to slide left until that displacement is complete.

Figure 2.9: Frame limiting in FR algorithm.

The FR is a lightweight algorithm that focus on simplicity and speed. However,

this does not come without some cost. Firstly, it is important to understand that

the initial configuration of the nodes of the graph will result in unique graphs. Since

most programs simply randomize the initial position of the nodes, the results with

FR won’t always be the same, or even acceptable. However, the output result

for a specific graph can then be used as input by the same algorithm to attain
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more precise results. Another weakness is the lack of theory to support how many

iterations should be executed to get a aesthetically pleasing graph. The authors

clearly state that

”We too can offer little justification for the number of iterations, although

we experimented with making it a function of |V | or |E|.”

2.5.4 Sugiyama-Misue

The Sugiyama-Misue algorithm [22] is a four phase technique for automatically

drawing simple directed graphs and, in a later version [15], compound directed graphs

(or compound digraphs, henceforth CDG) in a layered way. The authors, Kozo

Sugiyama and Kazuo Misue, claimed back in 1991 that most automated algorithms

for graph placement normally focus on ordinary directed and undirected graphs.

Their focus on a different graph type has turned this algorithm in one of the most

famous layout algorithms, mostly due to its early conception. After all, layered

graphs have a practical use in many areas, such as PERT1 charts, organization

diagrams, and anything related to hierarchical drawing.

The algorithm focuses on finding a specific layer for each node, and guaranteeing

that nodes can only have edges to their adjacent levels. Although the algorithm has

a simpler base concept than those explained previously, implementing each of the

four phases can be as complex as any of the aforementioned algorithms for graph

layout. Hence, this paper presents only a high level explanation of each of the phases

of the Sugiyama methodology for directed graphs, as presented in [22].

For the sake of completeness, we explain briefly what a CDG is: CDGs allows

two different types of binary relations between nodes: edges can be either inclusive

or adjacent, but they are always directed. If the edge is inclusive, the end node

includes the start node. If the edge is adjacent, the end node is adjacent to the start

node (and not necessarily the other way around).

Mathematically, a CDG is obtained by joining the inclusive graph GI = (V,E)

and the adjacency graph GA = (V, F ), such that V is the collection of nodes in the

graph, E is a finite collection of edges where (u, v) ∈ E represents an inclusive edge

where u includes v, and F is a finite collection of edges where (u, v) ∈ F represents

an adjacency edge where u is adjacent to v. The CDG is then defined as the triple

G = (V,E, F ) that fulfills the two following restrictions:

• Restriction 1: GI is a tree. This means that there must be a unique path

between any two nodes in the tree, and that there is only one parent node,

with no inclusive edges ending in it (called the root);

1PERT stands for Program Evaluation and Review Technique.
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• Restriction 2: In a CDG G = (V,E, F ) that satisfies restriction 1, there are

no adjacency edges between nodes that are already covered by an inclusive

edge. This means that there are no double edges.

The original Sugiyama algorithm for directed graphs, which is explained in the

following text, is described in [1]. The CDG have their own version explained in

greater detail in [15]. There are, however, others algorithms for directed graph

layout, such as the one given in [10]. An in-depth review and new approach at

Sugiyama-Misue’s algorithm is given in [23]. A simple, yet complete review of the

algorithm can also be found in [17].

The first phase, called Cycle Removal, will remove any cyclic relations between

nodes and turn the entry graph G = (V,E) into an acyclic graph Ga = (V,E),

considered hierarchical. The authors suggest condensing nodes to remove cyclic

connections, or alternatively, inverting the direction of a minimum number of edges

to guarantee a directed graph, keeping information about the inverted edges so that

the original direction can be replaced once the algorithm is complete. In preparation

for the following phases, dummy nodes are inserted into the graph, replacing edges

that span more than two consecutive layers. Finding the combinatorial solution to

the acyclic problem is a NP-Complete problem on itself.

The second phase, called Layer Assignment, assigns each node to a horizontal

layer. Using algorithms based on the shortest and longest path between two nodes,

each node of the graph can be place in a layer, or horizontal level, accordingly to its

distance to the root of the graph. In [24], for example, an algorithm which calculates

layer assignment and minimizes the total edge lenght is presented. Although no

polynomial time bound has been proven for this phase, some linear time heuristics

work well for this problem as well.

The third phase, called Crossing Reduction, experiments with the nodes on each

layer to minimize the number of crossing edges. Cross reduction is often done on a

layer-by-layer basis, each step trying to reduce the number of crossings between a

level and the following one. For Li = 0 to Li = n (n being the number of layers),

the position of nodes in layer Li is kept fixed and variations of nodes in layer Li+1

are performed to choose the one that reduced edge crossing the most. The process

is repeated until the last layer, and then repeated from the bottom to top. When

no further crossings can be removed or there are no edge crossings present, the

algorithm stops. Several heuristics have been proposed to solve this problem, such

as the barycentric, median, or greedy switch heuristics described in [25]. Another

important part of this phase is the so-called bilayer cross counting problem. This

refers to the counting of the number of edge crossings between two levels, and is
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considered also a NP-Complete problem. Some possible solutions are presented in

[26].

The fourth and final phase is called Horizontal Coordinate Assignment and cal-

culates an x coordinate for each of the nodes in the graph. This assignment must

take into the consideration aesthetic factors to provide a final nice result. Edge

crossing was already achieved as much as possible in previous sections. The fourth

phase focuses on keeping the graph compact, and edges as vertical as possible. It

also undoes the temporary changes made in the previous phases and renders the

final result: inverted edges are reverted back to its original directions, and dummy

edges are replaced with a chain edge that bends where the dummy edge was.

All in all, it is hard to estimate the computational cost of the Sugiyama algorithm.

Most of the problems in each phase are considered NP-Complete, but for all of them

there is extensive research and sometimes several solutions. It is nevertheless a hard

to implement algorithm.

2.5.5 Simmulated Annealing

Simulated Annealing derives from a metallurgy technique that consists in heating

material and then slowly cooling it off to allow the particles to roam randomly with

higher energy and have a better probability of finding some better configuration

with less flaws over the cooling process. Davidson and Harel proposed a heuristic

algorithm in [27] for the drawing of undirected straight-line graphs. [17] gives a

very complete overview of the algorithm and some considerations regarding different

parameters. [28] is also suggested for an in-depth look at the mathematical formulas

behind the algorithm.

The idea is simple: to use a weighted sum of several components of the graph

aesthetic appearance to give an idea of the graph’s energy. The higher this energy

is, the less favorable a specific configuration is, and the lower the energy is the more

acceptable it is. Thus one can search for local minimums to attain an attractive

looking graph. This system equation can be defined as Et = λ1E1 + ...+λiEi where

λn represents the the weighted importance of the aesthetic criteria En.

For each step of the algorithm, the energy for the current system and for a slightly

different one (called a neighborhood system or a perturbation) are considered. If

the neighborhood system energy is lower than the current one, the new system is

accepted, otherwise it is only accepted depending on a temperature function that is

proportional to the variation of energy. Thus, the larger the increase in energy, the

least probable it is that the new system will be accepted. If the increase is relatively,

small, it has a larger chance of being accepted and different configurations might be

looked into.
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The temperature function should decrease over time in a geometric manner [17],

such that Tp+1 = λTp, 0.65 ≤ λ ≤ 0.95. This guarantees that larger variations

may be initially explored, but that eventually the algorithm will look for a local

minimum within the state space. It is generally accepted that a value of 0.75 results

in a relatively rapid cooling with decent aesthetic results. The algorithm should be

run for a set number of iterations n performing at least 30n perturbations in each

iteration.

Davidson and Harel have defined five aesthetic criterion, as follows:

• Nodes should be spaced evenly around the drawing area, which ideally can be

defined as a 1x1 square. Then it’s simulated that they repel each other in a

manner that E1 = (d2
ij)
−1 where d2

ij is the Euclidean distance between nodes i

and j.

• The first criteria will probably scatter the nodes to the edges of the drawing

canvas, so to ensure that the graph is centered, one adds a force of repulsion

equal to the last one, between the nodes and the boundaries of the drawing

area, such that E2 =
∑

i,j=1..n( 1
x2

i
+ 1

y2
i

+ 1
(1−x2

i )
+ 1

(1−y2
i
).

• The third criteria is that if adjacent nodes are placed closer to each other, this

will help the overall readability of the graph as a whole. For that, one adds

that E3 =
∑

(i,j)∈E d
2
ij.

• There is also the need to discourage edge crossings, as they difficult the reading

of the graph. So the fourth criteria is added as E4 =
∑

(i,j)∈E sij where sij is 1

if edges i and j cross, 0 otherwise.

• Finally, edges should not be drawn too close to nodes that they do not belong

to, as it may confuse the viewer. For that, a final term is added such that

E5 =
∑

(ij)∈E,k∈V−(i,j)
1

max(d0,dijk)2
in which d2

ijk is the distance that goes from

node k to the edge i, j. The d0 is used as a means to avoid division by 0 when

the node is over the edge. This last criteria might be overlooked during an

initial phase of the algorithm due to its increased computational cost. Most

implementations of the algorithm use this one only for fine-tuning of a specific

result.

The relative importance of these aesthetic criterion can be altered to improve

readability for specific cases. In some graphs, planarity may be considered a priority,

and in others correct node distribution can be considered a major factor. In terms

of cost efficiency, this algorithm is very demanding. Even when the location of only

one node is changed in each perturbation, there is still the need to update up to |V |
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nodes and for each of them, up to |E| edges. Some papers, such as [20], commented

that Simulated Annealing was completely ineffective for interactive graph drawing.

The algorithm is known for being at least as efficient as Eades’ spring model,

and sometimes even better with large graphs, but unable to render some types of

graphs in a pleasing way [4].

2.6 Graphic API

The Graphic Application Programming Interface chosen for a project will be the

tools of the trade for a programmer who wants to develop a graph-oriented solution.

They will provide the means to develop a information visualization system, and

as so, they should provide high-level of customization and an easy way to use a

machine’s graphic hardware effectively. In our case, if said API has structures and

features that are graph-oriented, the better.

We can distinguish two main types of graphic APIs: high and low level. Each

provides different levels of abstraction and control over the graphic hardware of a

machine. And while high-level APIs may provide a larger range of features that are

graph oriented, low level APIs often possess other important features such as faster

rendering or more control over what is drawn on the screen. In this section we will

review some of the most prolific open source solutions available out there.

2.6.1 High Level APIs

High-level APIs are focused on the specific needs of a specific domain of knowledge.

They focus on details such as data representations for the information of the areas

of interest, interaction models with said information, or visualization modes for that

interaction. They normally try to provide reusable and extensible classes that can be

adapted to each project’s needs, together with filtering and layout tools to present

the information in a aesthetically pleasant way.

Since the level of abstraction is higher, there are some tools developed specifically

for graph handling. The following sections present some of the most important

libraries found in this area, regarding graphs and interaction features.

2.6.1.1 Piccolo

Piccolo [29] is an open-source toolkit for the development of 2D structured graphic

programs in general, and of zoomable user interfaces in particular. It provides

a high-level abstraction for user interfaces, since all the low level primitives and

event handling is managed by the library. Everything from raster drawing to event

handling is taken care of for the user, who can then create his user interface on top
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of this. The library is under the BSD Public License, meaning that commercial work

may derive from it. Its name was inspired by its size: piccolo stands for small in

Italian, and since the releases are about one tenth of the project’s predecessor Jazz,

the name was found adequate. A comparison between Piccolo and his predecessor

Jazz and an in-depth look at its architecture can be found in [30].

Piccolo has three similar distribution packages: Piccolo.Java, Piccolo.NET and

PocketPiccolo.NET. The first is based on the Java2D API and is written 100% in

Java making it useful for multi-platform applications. Piccolo.NET is written in C#,

and built on top of the GDI+2 API, allowing for full compatibility with the .NET

framework. PocketPiccolo is a different version for the Compact .NET Framework,

making the library viable for PDA-based applications.

The library uses a scene-graph model that keeps a hierarchical structure of el-

ements drawn on the canvas. Each of the elements has an associated transform

matrix that allows it to be scaled, translated and shaped around without interfering

with others. Additionally, Piccolo also has a camera element, that can be altered to

change the way a specific scene is viewed. This allows for a very decoupled object

oriented model, where a programmer can simply take the base elements from Piccolo

and extend them to their own purposes.

Figure 2.10: The Piccolo object structure.

Piccolo is built upon a few basic element types, as shown in Figure 2.10. A PRoot

is the basic element that represents the canvas itself. Every PRoot has at least one

PCamera and one PLayer. The camera element represents a specific view over the

canvas, whereas a layer represents a specific set of graphic elements that can be

clustered and treated as part of the same structure. Layers can be ordered along

the z-axis, disabled, or effected individually, preserving elements not in it. These

2GDI stands for Graphics Device Interface.
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elements can be either PImage or PNode, the former representing an image either

read from a file or built with other primitives, and the latter being a generic object

that can be extended. These nodes create the scene-graph itself, and can also be

distinguished as PText or PPath: the first may be used to write text output to the

screen, and the last to draw a specific path on the screen.

The project authors have reduced their effort on this project as of November of

2006. The library is stable and still used by many projects, but the public support

is now limited to a mail group.

2.6.1.2 Netron

The Netron [31] Diagramming Library is a generic graph visualization and layout

kit for the .NET platform, under the GPL Public License, and built on top of

Microsoft’s GDI API. It was originally under the LGPL license, but the author

of the kit eventually changed it to GPL and also released a reviewed version that

can be purchased for commercial use. The latests releases also come bundled with

the Cobalt IDE, a customized development environment by the same author. The

Netron library was however discontinued, due to the author’s focus on his recent

Unfold [32] library that focuses on the new Microsoft’s Presentation Foundation

paradigm. There are no papers on this tool, and the information available is strictly

that found in the official website.

The library does feature a large set of layout algorithms, such as force-directed

layouts, Fruchterman-Reingold, radial tree layouts and others. Graph analysis al-

gorithms include Kruskal, Dijkstra, Floyd and others. Filtering is also accessible

through panning, layering, grouping, z-ordering and other functionalities.

2.6.1.3 JUNG

JUNG [33] is a software library developed in Java for the modeling and visualization

of data that can be represented as a graph or network. Since it is focused on graphs,

it implements a set of defined classes and models that are specifically graph-oriented

and thus allow for a plethora of different graph-related algorithms to be easily applied

to data. The objective is to allow for a programmable, extensible and easy to use

framework that can either be used as basis to other programs or be extended to

allow for even more customization. The API also provides a large set of algorithms

for everything graph related, from layout techniques to in-depth search of graphs, as

well as tools to filter information graphically and in data structures. It is an open

source project, under the BSD Public License. An introduction to JUNG can be

found in [34].
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Figure 2.11: Graph types in the JUNG framework.

JUNG’s biggest strength is its inner class model. It is completely graph-oriented

and include implementations of simple graphs, sparse and dense graphs, hyper

graphs or directed and undirected graphs. Nodes and edges also have a myriad

of implementation, depending on the graphs they are attached to. A generic dia-

gram for graph classes is shown in Figure 2.11.

In terms of layout algorithms, JUNG provides the following: Fruchterman-

Reingold, Kamada-Kawai, Eade’s Spring algorithm and the Self-Organizing Maps

for large networks. JUNG also provides other algorithms for clustering, neighbor-

hood testing, connectivity problems, maximum flow, centrality and others.

2.6.1.4 Prefuse

Prefuse [35] is a software library built using the Java2D graphic library, and under

the BSD Public License. Its intention is of creating a single, reusable and extendable

information visualization user interface toolkit. The idea is to have extensive cover-

age of current visualization models in a large spectrum of areas, while still allowing

programmers to creatively develop new visualizations. It is a high-level API that

goes beyond interaction with data structures and focuses instead on the presenta-

tion, filtering and batch control of large sets of structured data. As so, it provides
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a large library that includes layout algorithms, navigation and interaction support,

integrated search, object modularization and others, as well as primitive implemen-

tations for visual representation of graphs, trees and networks. [36] provides an

in-depth look into the architecture of prefuse.

Prefuse uses canonical representations to represent data. The basic data element

type is Entity, which can be further refined as Node, TreeNode or Edge. These items

are then represented visually by NodeItems, EdgeItems or AggregateItems for sets.

These types are kept by a ItemRegistry, that keeps track of all the state information

on a specific visualization. Actions can then be applied to specific items in the item

registry, via ActionLists ; these actions include layout algorithms, interaction with

pieces and event handling, amongst others . Finally, a Renderer can be applied to

the item visual representation to model aspects such as color, appearance or position

on the screen.

2.6.2 Low Level APIs

Low level APIs are those that cater specifically to the rendering needs of programs.

They normally deal with a lower level of abstraction and its objects and concepts

are normally directed at graphic representations such as lines, colors, coordinates or

fonts. Some use states to keep information about important properties of the library,

and most of them provide no support for interaction with the drawing contents. In

fact, graphics drawn using these APIs are not considered as individual objects, but

only as a rendered image on a specific canvas.

Since these APIs are intended to be highly reusable and non-focused, there is

significantly less work developed at this level specifically for graphs. We now make

a small analysis at some of the main low level graphical APIs both related and

non-related to graphs.

2.6.2.1 System.Drawing

The System.Drawing namespace [37] is a library that provides access to the graphic

functionalities of Microsoft’s GDI+. This is the subsystem derived from the original

GDI – one of the three core components for the user interface of Windows. GDI

allows features such as drawing paths, rendering fonts and handling palettes. The

new GDI+ version additionally features anti-aliasing capabilities, floating point co-

ordinates, and support to output formats such as JPG or PNG. This is however

a low-level library, adequate to do immediate rendering on a canvas. There is no

support for interaction with the drawing, nor for anything related with graphs.

GDI+ provides services for three main categories: 2D vector graphics that can

be built with primitives such as lines, arcs or bitmaps; imaging for non-vectorial
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image needs (fast caching of bitmaps, for example); and typography for text related

needs.

The System.Drawing library has a main class Graphics that represents a canvas

where we can draw. Since it is an abstract class, we cannot instantiate one. We can

however get a reference to an object’s canvas and draw on it. Graphic objects can

then be edited via the Pen class, the Font class or the Brush class. The first is used

to draw lines with specified parameters such as width and line style. The second is

used to format a piece of text via its font, size or appearance. The last one is used

to define how a specific pen or font should be painted.

The System.Drawing library also provides many structures useful for program-

mers, such as the Rectangle, Circle, Point or Color structures. It also has the

advantage of being easily portable to other OS, especially to Linux via the Mono

framework [38].

2.6.2.2 Cairo

Cairo [39] is a 2D graphics library with support for multiple systems. Originally

written in C for Linux, the actual version has several wrappers and is available for

most output targets, such as PS, PDF, Windows, Linux or simple image buffers.

Cairo also features hardware acceleration through glitz, and Mac OS support via

Quartz. The original idea was to provide an adequate imaging model that could

match modern application needs, using a common API that could be used consis-

tently.

Figure 2.12: The Cairo architecture diagram.

The Cairo library is essentially a low-level one, dealing with direct rendering of

graphics, text and fonts and rasterization. It is also stateful, meaning that it keeps

track of the current path, coordinate system or color of the pen. Furthermore, the

library doesn’t provide any means of user interaction [40]. A rough schematic of
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the system’s architecture is shown in figure 2.12. A brief presentation on the Cairo

drawing model and architecture can be found in [41].

Cairo’s drawing model uses the concept of destination, source, mask, path and

context. The destination represents the canvas, it can either be a PDF file or a

computer screen. The source is the paint, with which we paint the canvas. This

can be a color, a gradient, a set of colors or even a prerendered image. It also

has transparency information. The mask acts as a stencil between the canvas and

the paint. Anywhere allowed by the mask, the source will paint the destination,

elsewhere it wont. The path is used to shape and model the mask into any desired

form. Finally, the context is the information about all the previous concepts and

some properties. This is then rendered using strokes, fillings or text characters.

Cairo is still being actively developed, and is used by some important names in

the software industry – namely Inkscape, GTK+, Poppler and the Mozzila project

are using it for diverse ends.

2.6.2.3 GraphViz

Whereas most of the previous libraries provide either high-level graphic interaction

features directed specifically to graphs, or low-level graphic abstractions that cover

not only graphs, GraphViz [42] is somewhere in the middle. It is a filtering library for

graph drawing, taking text input from the user and producing a graph representation

output. A in-depth look at this project is presented in [43].

The GraphViz Toolkit has two basic libraries: Libgraph and Dynagraph: the first

implements attributed graph data structures and deals with input and output, and

the second contains a set of incremental layout algorithms. The toolkit also has

a set of graphical applications for specific functions, all built on top of these two

libraries. The native language is C.

The problem with applying different filters or layouts to the same graph is that

there isn’t a standard graph description language, and that it is hard to create

one that encompasses the needs of a wide range of algorithms. For that purpose,

the creators of the libraries have developed a simple language called Dot that uses a

simple syntax to describe graphs. This language allows for the user to input valuable

information regarding the graph, information that may or may not be important to

specific algorithms. Different algorithm implementations should look for specific

lines that are relevant and deal with them, otherwise the information should be

discarded.

After providing a correct text input, the second step is to apply a specific layout

algorithm to the graph. GraphViz is capable of applying the Kamada-Kawai algo-

rithm [19], the Fruchterman-Reingold algorithm [20], the radial layout algorithm by
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Graham Willis [44] for very large graphs, the circular layout algorithm by Six and

Tollis [45], and it also has its own hierarchical algorithm for directed graphs.

2.7 Graph Interaction

In this last section of literature review, we will make a brief overview on graph inter-

action, and on its importance on defining a positive working experience with graphs.

Graph interaction refers to the way human-computer interaction is developed when

it comes to graphs. It is the interface to the user, the tools we give the user to model

and view the information we are displaying. Different programs have different levels

of interaction: some allow for the nodes in a graph to be moved and others don’t,

for example. This level of interaction will guide the user to understanding what he

can and can’t do. The interaction model will determine whether all the hard work

put underneath the interface was worth it or not. We may have the best algorithms

and the best solution, but if all of that is topped off with a bad interface, all our

hard work will be going down the drain. Users will often use our system in ways we

never even though possible, and do mistakes they didn’t expect to happen. Hence,

the importance of a carefully thought out interface is invaluable. The book [46]

provides a simple example of how even a carefully thought out interface can make

experienced users make mistakes:

”[...] The word-processing package we originally used to write this intro-

duction is menu based. Menu items are grouped to reflect their function.

The ’save’ and ’delete’ options, both of which are correctly classified as

file-level operations, are consequently adjacent items in the menu. With

a cursor controlled by a trackball it is all too easy for the hand to slip, in-

advertently selecting delete instead of save. Of course, the delete option,

being well thought out, pops up a confirmation box allowing the user to

cancel a mistaken command. Unfortunately, the save option produces a

very similar confirmation box – it was only as we hit the ’Confirm’ button

that we noticed the word ’delete’ at the top...” [46].

Even simple well-thought out interfaces can make a nice interface look awful

in the user’s eyes. It is therefore important to think about the interface since the

very beginning of the project, to iterate certain functionalities as the program is

developed, to make it more concise and effective. As said before, [46] provides a

nice introduction to the area of human-computer interaction. For the interested

reader, we also suggest [47] for an academic overview of the field, and [48], which is

considered one of the classic books about human-computer interaction.

33



State of the Art

2.7.1 Graph Oriented Interfaces

The next subsections will describe some interesting interfaces for programs dealing

with graphs and with information visualization in general.

2.7.1.1 MusicMap

MusicMap is an ongoing project developed by DimVision [49] that presents infor-

mation about albums or bands through a graph on a web browser. The idea is to

allow the user to create and navigate a map of information to find out similar bands

or albums after a specific search. The interface is minimalist, yet strives to put the

control in the user’s hand as much as possible. The input should be a search quote.

The applet then returns a set of possible results, and the user should choose one

start a new search. After one result is chosen, it will appear as a single node on the

screen, with an image and a text caption.

Figure 2.13: The MusicMap interface working.

Navigation is then achieved by mousing over a node. The node will grow a bit

bigger, and present the user with choices to expand (show adjacent nodes), remove

(remove the node from the graph) or more info (obtain info about the album or

band). Presenting the choices near the node prevents the user from having to move

the mouse around to reach menus. As the network grows, the graph will always try
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to balance itself out. Users can still drag the nodes around, but as soon as they

release it, the whole graph will slowly balance itself out again.

There is also a preference bar that allows the user to limit the number of nodes

present at any one time, or zoom in or out on the graph area. The most impressive

feature of this project is its simple yet intuitive interface. Instead of guiding the

user, the applet encourages exploration, and allows the user to find out by itself how

to use the features. Simplicity also makes the learning curve really smooth. How

to navigate the graph is learned in a matter of minutes. The information showed is

also kept to a minimum, avoiding unnecessary saturation of the screen.

2.7.1.2 The Opte Project

The Opte Project is a finished work started by Barret Lyon as a bet between friends.

Back in 2003, Barret said he could map the entire Internet in a single day. His

friends wanted to see the deed, and so this project was born [50]. The result is an

open-source program that scans the net (or any other large scale network, for that

matter), and produces a visual graph of said network.

Since the program has not visible interface, one might wonder why the reference

here. We list this project because of two reasons: firstly, its outstanding work with

very large graphs - some of the images produced have over 5 million edges and over

50 million hop counts; secondly, because this project shows how even graphs of this

dimension can be drawn in an tractive and readable way. Of course that the idea

here is not to navigate and read each node individually. But this project shows

us that graphs can also be used to produce a visual representation of metaphysical

universes, such as the Internet.

2.7.1.3 Websites as Graphs

This project [51] consists of a small applet that looks at the DOM3 from any HTML

page and converts its tags into a colored graph. Different tags such as divs, anchors,

images or tables are given different colors. Since HTML is basically a set of nested

tags, this graph is more or less a tree (there are no cycles), however the result

is treated as a simple undirected graph. The interaction is very simple. The user

simply inserts the URL for the page he wants to see as a graph and presses a button.

The curious part is that the actual building and laying of the graph is done in real

time, as the file is read. As the graph grows and distributes itself in the canvas, we

get a visual representation of the structure of the site, its complexity, what type of

tags were used and what were not.

3DOM stands for Document Object Model.
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Figure 2.14: Representation of the apple.com site as a graph.

Although interaction is sparse in this applet, we decided to mention it because of

its outstanding layout algorithm, which runs smoothly while the page is parsed and

the graph is constructed. No indication is given, but we believe it to be a dynamic

version of the Fruchterman-Reingold algorithm.

2.7.1.4 TouchGraph

The TouchGraph application is being developed by LLC [52] and is sold as an

interface for exploring information from ever growing data collections. At their

official website, the company presents the users with two free implementations of

the tool for anyone to experience. One said implementation is the TouchGraph

Google, that allows the results of a search to be presented as graphs of interconnected

information, as presented in Figure 2.15.

The applet asks for a search as input and then constructs the graph using a

force-based algorithm. This algorithm may be paused at any moment, allowing the

user to drag nodes individually to obtain more visibility on a specific area. Different

concepts for the same search, or keywords that may mean different things in different

domains are clustered by color, allowing the user to quickly have a general idea of

what he’s searching for. The applet also allows users to specify a number of clusters,

and the program will recalculate and color the nodes according to the level of detail

specified. Colors can also be changed individually. Graphs can also be zoomed in

or out, and edge length can be adjusted according to the density of the results.

To the left of the graph area, there is a list of the sites presented in the graph.

This list can be filtered to show only one of the clusters, or only sites that would

also appear on a second search. Finally, the sites’ meta information will show up

when they are selected via mouse click, together with a link to said site.
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Figure 2.15: The TouchGraph interface for the search web 2.0.

With its many tools and features, TouchGraph is by far the most interactive

interface we found in graph-related applets. The interface is not always intuitive, and

the graph layout can sometimes get sluggish, specially if there is a lot of information

on the screen. However, the sheer number of features and the ability to represent

large quantities of information on the screen makes it a good example of graph

interaction.

2.7.1.5 Visual Thesaurus

Visual Thesaurus is an on line thesaurus with over 145000 words to be explored

using a graph. In the words of the official site [53],

“It’s a tool for people who think visually.”

Basic input is a search for a specific word. A graph with the search term and

related terms will be presented. The interesting concept here is that not only terms,

but also meaning will be represented. Rolling over a node will make a small pop up

show up, with the meaning of the word chosen. Green nodes represent verbs, violet

nodes adverbs, yellow ones are for adjectives, and red nodes are nouns. Any of these

groups can be turned on and off, to ensure that the exact word is found.
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Figure 2.16: The Visual Thesaurus interface.

Users can navigate the map at leisure. Nodes can be dragged, but they will

return to their original places. The layout is mostly circular, and once you double

click a word to navigate to it, that word becomes the center of the graph and a new

graph is designed. This guarantees that the screen will never be saturated. A sound

for most words is also available. An example of this interface is shown in Figure

2.16:

Visual Thesaurus distinguishes itself from other applications using graphs be-

cause it is one specifically tailored for a thesaurus. Different types of relations are

represented in different ways: an orange dashed line means that a word is also re-

lated to, while a gray dashed line means is a type of. The navigation is also more

focused on the concepts of the thesaurus than on the visual representation of it.

2.7.2 Visualization Tools

The next subsections will describe some interesting interfaces for programs dealing

with graphs and with information visualization in general.

2.7.2.1 We Feel Fine

We Feel Fine [54] is described by its authors as a feeling collector. What this applet

does is collecting sentences from blogs all around the world every ten minutes. Each

sentence with the expression i feel is saved and the associated feeling is marked
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down. Using the blog’s meta-information, it is sometimes possible to save additional

information about the location, gender or age of the person who wrote the post, or

the weather when he/she did so. All this information is saved in a database. The

applet then lets anyone query that database in different ways.

Figure 2.17: The We Feel Fine applet.

We Feel Fine give the users 6 movements to browse the information. It also

provides a filter to choose a specific population. Users can choose to see only one

feeling, or feelings from a certain age range or from a certain country. The feelings

that satisfy the filter are then shown in any of the movements as simple dots colored

according to the feeling they represent. One movement, for example, allows the users

to see how the current population is divided in terms of statistics as gender, feeling,

or date of post. Another lets the user extrapolate significant deviations between the

current population and the average one. This is all done with a particle system in

which each particle represents a feeling and its associated sentence. The particles

will organize themselves according to the selected movement.

This applet is mentioned here because of its easy to use interface and intuitive

features. Even though it doesn’t use graphs, its interface could be used as a hint as

to what a good interaction system could look like.

2.7.2.2 Web Trend Map 2008

The last project we would like to refer is the Web Trend Map 2008 [55]. Not really an

applet, nor anything related to graphs, it is nevertheless an impressive example on

how to visually present large amounts of information in a readable way. Created by

a design team from Japan called Information Architects, this work uses the central
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metropolitan Tokyo metro as a foundation to lay down the 300 trendiest sites in the

Internet, according to their importance and popularity. The quantity of information

is a big factor in determining how to represent it, and we feel that this work managed

to present it in an intuitive and at the same time meaningful way. Figure 2.18 shows

a part of the final work.

Figure 2.18: The Web Trend Map 2008 example.
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Chapter 3

Methodology

After all the analysis made in terms of state of the art, it was time to define and

decide how the graph’s representation and interaction problem could be solved. In

this chapter, a methodology is defined to create a graph interaction control (hence-

forth known as GIC). This involves a list of objectives for the project, the definition

of the list of use cases and an in-depth study of several architectural details and

choices made.

3.1 Problem Description and Objectives

As described in sections 1.2 and 1.3, the current project consists in the development

of a customizable control that allows representation and interaction with graphs.

These two fronts should focus on two specific cases of graphs: thesaurus representa-

tion and business organograms. By representation we mean a visual perspective of a

graph’s structure, one that helps users understand the bigger picture on a complex

network of information, for example; by interaction we mean a simple and reliable

way to navigate, edit and layout the graph, effectively simplifying the task of keeping

the information up to date.

It was also stated by ParadigmaXis that the final result should be a reusable

control, to be integrated with the GISA system to allow simple thesaurus navigation

and editing. The only ground rule established by the company was that the solution

should be coded in C#, and that it should be multi-platform. The following is a

complete list of objectives set for the solution:

• Basic Features:

– Graph Loading: the control should be able to load and read graph models

either passed by the parent application or from a file;

41



Methodology

– Graph Creation: the control should allow then creation of nodes, edges,

and structural information of graphs on the control area;

– Graph Editing: the control should provide tools to edit node and edge

related information, visual details (i.e, colors) as well as the graph aspect

and layout (i.e, dragging nodes around);

– Graph Navigation: the control should provide a mode for graphs to be vis-

ited like a road map, having one selected node and showing the connected

ones around it.

– Graph Layout: the control should provide a few layout algorithms to en-

hance user experience and present the graphs in a aesthetically pleas-

ant form. Thesaurus should be presented in a grid-like fashion, and

organograms in a directed, as planar as possible way;

– Style sheets: the control should be able to load and use style sheets created

by users. These style sheets determine the visual appearance of every

graph element on the control;

– Organograms: a different derived control should contain a slide bar at

the bottom, allowing users to define a specific time interval and show the

graph nodes pertaining to that interval.

• Interaction Paradigm:

– Standard-compliant: visual representation of graphs should follow as much

as possible the rules defined in the ISO 2778 (Establishment and Develop-

ment of Monolingual Thesauri) for thesaurus graphs; User-friendly: con-

trols and interaction with graphs should be as simple as possible. All

actions must provide visual clues so the user understands what is happen-

ing.

– Customizable: The depth of graph drawing when navigating and other

information should be customizable by the user;

– Event-driven: The control should raise events accordingly to the actions

performed on graph elements (i.e, creating or editing a node).

• Graphical Library:

– Open-source: the library should be open-source, preferably one with BSD

licensing;

– Community: the library should have a large community and presence on

the Internet, to allow for easy solving of problems;
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– Performance: the library should provide good to excellent performance

in terms of screen painting. At least basic support for anti aliasing and

double buffering should be provided;

– Multi-platforming: the ability to port the code built with the graphic

library easily to other operative systems such as Linux is highly valued.

– Graphic Acceleration: the use of graphic board capabilities would be an

advantage to the project.

• Architecture:

– Modularity: different concepts and data models should be kept indepen-

dent and the user should have access only to what is strictly necessary for

the control to work;

– Scalability: all data models should be expansible and easily changed to

accommodate new concepts and properties;

– Maintainability: classes and interfaces should be built in a way that small

changes won’t require much refactoring. Reusability is a big plus.

• C# Language: The control should be implemented in C#.

• Multi-platforming: The whole control should be, as much as possible, usable

in other operative systems than not its native one.

• Unit Testing: the use of unit tests on all major classes is encouraged.

The above list is by no means complete. Graph representation and interaction

using a control could go much further, but time constraints must also be taken into

account. This project’s focus was on proving that such a type of control could be

developed within the available timeframe (20 weeks), and as such the list presents

only a basic set of features desirable for the GIC.

Furthermore, some sort of priority had to be established between the goals set.

It was accepted that unit testing, graphic acceleration and multi-platforming were

considered secondary objectives.

Some concerns were also raised regarding two questions: firstly, how can the con-

trol follow the rules set by the ISO 2778 in a virtual environment? This ISO is quite

old, and refers nothing about computer interfaces, so the challenge here is to follow

the ISO as much as possible, while still maintaining fluid and user-friendly inter-

faces; secondly, how can the control provide such user-friendly interfaces? Human-

computer interaction is a huge research area, and time does not allow for an in-depth

analysis of many works to develop the perfect interface. For such a project, one can

also set the goal of finding the right balance between instinct and theory on user

interfaces.
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3.2 Use Cases

A list of use cases is defined to determine exactly what types of tasks a specific

application should provide, and what functionalities are present for each of the

actors involved with the system. An actor is a final user of the system, and a use

case is a feature of the system involving one or more actors. A use case diagram

presents a graphic overview of this information in a manner such that every actor is

easily identifiable and each use case is clearly connected to its associated actor.

For the GIC, we can define two types of actors:

• User: A general user that will interact with the control implemented in GISA

or other application. This user has access to the two control modes: navigate

and edit, and can perform most tasks regarding graphs, such as editing or

applying a layout.

• Programmer: Represents a programmer implementing the control in an ap-

plication. The programmer has control over some parameters that can be

tuned in for specific cases, such as what type of tasks are allowed to users, or

what are the default values for style sheets.

For the specific purpose of loading an existing graph on the control, we consider

a programmer the same as an user, since loading methods are essentially the same

for both actors. We can also subdivide the control in two specific sub-systems:

• Navigation Mode: This subsystem of use cases occurs when a graph is loaded

to the control and is simply being navigated upon.

• Edition Mode: This applies to use cases when CRUD1 occurs on a graph

element.

Figure 3.1 presents the use case diagram for the GIC. The following list details

each use case and what it refers to, grouping them according to their respective

subsystem:

• Navigation Mode

– Check Node: refers to the act of selecting a node from a graph and checking

information about it, such as its name or type;

– Check Edge: refers to the act of selecting an edge from the graph and

reading information about it;

1CRUD stands for create, read, update and delete”
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Figure 3.1: Use cases diagram.

– Apply Style Sheet: loading a new or different style sheet into the control,

to change the appearance;

– Set Level of Detail: set the level of depth of drawing for graphs. When

navigating on a large graph, this limits the number of nodes on the screen

to avoid cluttering;

– Navigate Graph: the act of selecting a different node and concurrently

centering the graph drawing around it.

– Apply Layout: applying a different layout to the current graph;

– Temporal Navigation (Organograms): using a slide bar on a control, the

user can control the temporal interval to be shown taking into account

the time stamp for each node, when presenting an organogram.
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• Editing Mode

– Node CRUD: The act of creating, reading, updating data about a node,

or deleting it from a graph;

– Edge CRUD: The act of creating, reading, updating data about an edge

or deleting it from a graph.

• Other

– Edit Parameters: Setting default values for the control, and determining

its behavior via code, to specify it

3.3 Solution Architecture

With all the objectives set for the project, the design of the architecture for the

solution was the next milestone. Finding a methodology for solving the graph in-

teraction problem was no easy task: there were several decisions to be made and

justified. In the following subsections, all the reasoning and decisions are presented:

the decision of the data model to use in subsection 3.3.1, the choice of layout al-

gorithms in subsection 3.3.2, the tests made to decide which graphical library to

use in subsection 3.3.3 and the definition of the interaction paradigm in subsection

3.3.4. Finally, an in-depth look of the architecture of the control will be given in

subsection 3.3.5.

3.3.1 Data Models Discussion

The data model is an abstract representation of how information should be accessed

and treated by an application. For this project, it holds special importance, as it

will be the main link between the GIC and GISA: the application will build or load

instances of the data model and pass them to the control, who in turn will create

an internal visual representation and keep a correspondence between each of the

graph objects. This will keep internal control information and graph representations

modular and independent from each other.

As presented in section 2.4, two models have been considered for representing

graphs: incidence lists and incidence matrices. The first uses a list of nodes, each

node having a list of related edges. Edges also keep information about each of the

nodes they are attached to. The second uses a matrix of dimension |V |2 and lists

edges by filling matrix cells accordingly.

Three differentiating parameters arose while studying the above mentioned mod-

els:
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• Graph density: incidence lists work better with low density graphs, incidence

matrices prove better with denser graphs;

• Data access speed: checking a node’s edges takes less time in an incidence

list than in a matrix, but checking if an edge between two nodes exists is the

exact opposite;

• Redimensioning: adding a node to an incidence matrix forces a new ma-

trix to be draw, while adding an edge doesn’t. The incidence list should be

built on top of dynamic structures, otherwise each object added will force a

redimensioning too.

A brief comparative study of the computational cost of several tasks on both of

these models was undertaken to help decide which would be the most adequate for

our project. Table 3.1 presents the results of that study, for a graph G = (V,E),

where |V | is the number of nodes, |E| is the number of edges, and v, u are nodes of

G.

Table 3.1: Comparative study between incidence lists and matrixes.

Task List Matrix Best Choice

Does edge (v, u) exists? Θ(|E|) Θ(1) Matrix
What are the edges connecting to v? Θ(1) Θ(|V |) List
How long to check all the graph? Θ(|V |+|E|) Θ(|V |2) List
How long to create an edge? Θ(3) Θ(1) Matrix

Total memory space needed. |V |+ |E| |V |2 List, if graph
density is low

Checking if an edge (v, u) exists is immediate on a matrix, since the result is

on cell M [v, u]. However in an incidence list it forces a run through the edge list,

taking up to |E| iterations to check if the edge doesn’t exist. On the other hand,

checking the edges starting or ending on a node is immediate on the list, since each

node contains a list of edges associated. On a matrix, this takes |V | iterations,

since a full row of the matrix must be checked. Running through the whole graph

is faster on the list as long as |V | + |E| < |V |2, but since the control will work

with sparse graphs, we can assume that lists are a better choice here. Creating or

deleting edges is quite fast on matrices, since its a matter of changing the value of

a cell; on a list, this can take up to three times longer, since one must add the new

edge to the edge list, and to each of the nodes’ edge list that the new edge connects.

Finally, the total memory space needed is also lower in an incidence list as long as

|V | + |E| < |V |2. Once again, since sparse graphs are what will be loaded into the

control, the incidence list is considered a better option.
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After this brief study, two things must be considered before making a decision:

that the GIC will be essentially working with low density graphs, and that dynamic

editing of the graph is one of the main objectives for the control. This leads to the

conclusion that the incidence list the most adequate choice.

According to [13], a simple and effective implementation of an incidence list can

be made with three classes: Graph, Node and Edge. A Graph object contains a

list of nodes and a list of edges. A Node object contains information about a node

(name, value, type), and a list of pointers to Edge objects associated with itself. An

Edge object contains information about an edge (directionality, label, type) and a

pointer to its start and end nodes. Each object also has an unique identifier.

Figure 3.2 presents a class diagram for this implementation:

Figure 3.2: Class diagram for the incidence list.

Further details on the implementation of this data model can be found in section

4.1.
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3.3.2 Layout Algorithms Discussion

The layout algorithm will be responsible for the aesthetic look of any graph loaded

on the control. The choice of an appropriate algorithm is important, since one of

the main goals of the project is to provide a visual and accurate representation of a

graph. For the GIC, several straight-line algorithms were considered, both for the

thesaurus and the organogram case. In section 2.5 a description of the following

layout algorithms was given:

• Force Directed Spring Layout[18]: edges are simulated as springs and a

system with minimum energy is calculated. It was one of the first straight-line

algorithms for graph layout;

• Kamada-Kawai[19]: an improved version of the previous algorithm, this al-

gorithm rectifies some of the formulas used by Eades and presents some opti-

mizations – it can be extended to layout hierarchical graphs;

• Fruchterman-Reingold[20]: nodes act as small particles, repelling each other

the closer they are, and drawing closer if there’s an edge connecting them.

There is also an improved version of the algorithm, that optimizes run times;

• Sugiyama-Misue[15]: this algorithm uses four different heuristics to solve and

present a graph as planar, whenever possible. The trade out is computational

cost. The algorithm was made specifically for hierarchical graphs;

• Simmulated Annealing[27]: simulating a physical phenomena, this algo-

rithm makes a high number of small variations on a system and checks if the

total energy of the system is lower, over a number of iterations. Displacement

is limited by a thermometer, that gradually cools the system down.

The first three algorithms are force based, and simulate a system of particles;

the last two use different heuristics to find the best possible system from a set of

possibilities. We can compare the advantages and disadvantages of both kinds of

algorithms:

• Force-based: Simple to implement, with low computational costs, and hence

suited for dynamic graph layout. Results are fast and aesthetically pleasant,

provided the graph isn’t too dense. They tend to reveal symmetries and to

distribute nodes evenly across the drawing area. However, planarity is not

ensured, even with planar graphs. Optimization isn’t the best, since different

number of iterations and initial layouts result in very different results;
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• Heuristically oriented: Optimal results can be found, since the value of

different aesthetic criteria can be varied to find the best solution. Planarity is

normally achieved, provided the graph is planar. These algorithms are harder

to implement, and have a high computational cost. Not suited for dynamic

graph layout.

Table 3.2: Comparative study of layout algorithms.

Algorithm Iteration Cost
Iterations
Suggested

Other Details

Spring Layout Θ(|V |3) 100 n\a

Kamada-
Kawai

Θ(|V |3)
Depends on

iterations t of inner
loop.

Can be extended to
hierarchical graphs.

Fruchterman-
Reingold

Θ(|E|+ |V |2)
Can be made

function of |V | or
|E|.

Has improved
version with
iteration cost
Θ(|E|+ |V |)

Sugiyama-
Misue

Θ(|V |2×3+Θ(t|V |))

Four phase
algorithm with one

pass. Phase 3
iterates t times.

Works only on
hierarchical graphs.
Composed of three
NP-hard problems

and one
NP-complete.

Simulated
Annealing

|V |2 × |E| 30|V |
Uses temperature
concept, found by
experimentation.

Table 3.2 presents a brief comparative study of the computational costs and

details of each algorithm. Together with the layout algorithms, section 2.5 presented

several aesthetic criteria, describing metrics that help enhance the visual aspect of a

graph. These include planarity (no edge-crossing), symmetry, straight-line drawing,

even distribution of nodes in the drawing area, and directionality (directed edges

should point in the same general direction). It was also said that it is most of the

times impossible to conjugate all these criteria, so it becomes important to define

what will be considered more and less important.

Planarity helps a user perceive a graph more logically and with structure, should

it exist. It is however a hard criterion to achieve, as not all graphs are planar.

Symmetry and even node distribution, when present, tend to add structure to a

graph, and to simplify the understanding of any subjacent structure. Most of the

algorithms studied simulate particles or physical systems’ behavior, and both nor-

mally tend to distribute objects evenly, showing symmetric patterns if they exist.

It could be argued that these two criteria are easier to achieve given the proposed
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algorithms. Straight line drawing adds simplicity to the graph, and saves the user

the work from following complex edges between two nodes. Since most algorithms

studied are straight-line oriented (except for Sugiyama-Misue, who allows for bends

when necessary), this is an easy to achieve metric. Directionality mostly applies

to organograms, where a specific hierarchy flow must be present. Of all the pro-

posed algorithms, Sugiyama-Misue is the only one that deals with this criterion,

although Kamada-Kawai can be extended to draw directed graphs as long as nodes

are separated in a level-wise manner [17].

The GIC will deal essentially with two kinds of graphs: thesauri graphs, who

should present themselves in a structured way, and organograms, who should be

shown as a directed and planar set of entities. This means each case needs a different

treatment, and that at least two algorithms need to be chosen for graph layout.

Since interaction is the fulcrum of the control, fast and effective algorithms must be

chosen.

For thesaurus representation, all force based algorithms and simulated annealing

could be considered. However, Fruchterman-Reingold seems to be the appropriate

choice. It has the lowest iteration cost for force based algorithms, provides an

optimization model to reduce the iteration cost, shows existing symmetries, reduces

edge crossing, while still distributing nodes evenly across the control. It is also

trivial to implement, contrary to simulated annealing.

For organograms, two options arise: Sugiyama Misue and Kamada-Kawai. While

Sugiyama’s solution seems appropriate for hierarchical graphs, it is also true that

its computational cost is high, and that implementing such an algorithm would

be complicated. Kamada-Kawai provides a similar solution with a much simpler

implementation and a simple variation to achieve the desired result. Sugiyama’s

algorithm is also not optimized for dynamic graph layouts, which makes Kamada

the best option for organograms.

3.3.3 Graphic Library Choice

The choice of the graphic library is an important one, as it will define greatly the

architecture of the GIC. The decision is twofold: firstly, the level of abstraction

a library provides will influence the work that needs to be developed: a low level

library will give the developers more control over the drawing tools and force the

development from scratch of all interaction and layout task, whereas a high abstrac-

tion framework will probably provide some of those functionalities inherently at the

cost of less customization power. Secondly, details like the license type, the ability

to port code to other operative systems that not the native one or the languages it

provides support for are all factors that need to be taken into consideration.
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Table 3.3: Brief comparison of graphic libraries.

Library License Portable Acceleration Abstraction Languages

System.Drawing Free Yes No Low C#

Cairo LGPL Yes Yes Low
C, C++,

C#
Piccolo BSD No No High C#, Java
Netron GPL No No High C++, C#
JUNG BSD Yes No High Java
prefuse BSD Yes No High Java

During the course of the investigation, several libraries were considered and stud-

ied, as presented in section 2.6:

• System.Drawing: part of the .NET Framework, this namespace provides

access to GDI+ basic functionalities. There is a framework called Mono that

covers System.Drawing making it portable.

• Cairo[39]: 2D graphic library with support for multiple output devices, includ-

ing graphic acceleration through the X Render extension. Several wrappers

exist for different languages;

• Piccolo[29]: toolkit that supports development of 2D structured graphic ap-

plets, with some focus on zoomable and pannable projects. Uses a scenegraph

to describe objects on the screen and interact with them;

• Netron[31]: generic diagramming and graph layout library for the .NET. Pro-

vides users with a vast array of layout algorithms and a customized integrated

development environment called Cobalt IDE;

• JUNG[33]: graph oriented framework for modeling and visualization of net-

work data. Provides several algorithms for depth search, layout and filtering,

built in Java;

• Prefuse[35]: library that provides extensive coverage of current visualization

models in a large spectrum of areas, including graphs. Focuses on interaction

and presentation of large sets of information.

The GraphViz [42] framework was also mentioned, but won’t be considered for

the solution, since it provides support for output devices not of our interest. Table

3.3 shows a comparison between the different libraries in terms of license, portability,

graphic acceleration capabilities, level of abstraction and native languages:

The process of choosing one library for the control was divided into several steps.

Several factors were taken into account, namely: the native language, the ability to
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port the solution, the license type, the performance, the stability and finally the

community activeness of the graphic library.

The GIC will, in the foreseeable future, integrate itself with the GISA application,

built on C# language. This helped to limit the choice to those libraries that provide

at least a wrapper for C#. This was not particularly promising, as both solutions

that were only available in Java (JUNG and Prefuse) appeared to be well designed

and oriented at graphs.

It was also stated by ParadigmaXis that, if possible, a free solution should be

used. The license for each library was also a factor to ponder. The GPL license that

Netron is under means that any derived work from the library would also have to

release its code freely, hence Netron was also discarded as an option.

Piccolo also presented itself as a powerful tool. The license was acceptable and

so was the language. Some test applications were run to verify the potential of

the library. However, as questions and the need for some more information arose,

it became clear that the community using Piccolo was not as active as desirable.

Apart from a sparsely visited mailing list, there is virtually no support for using this

library.

This narrowed the choice down to two candidates: Microsoft’s own System.Drawing

library, or Cairo. The latter appeared to have the upper hand, providing easy porta-

bility, a thriving community on the Internet, and the possibility to add graphic

acceleration to the code. However, the C# wrapper for it provided a performance

issue when not using graphical acceleration.

In order to compare the performance of System.Drawing and Cairo, a small

implementation of the popular Tetris game was made with both libraries. The

game was built in C#, with each version doing the drawing part using the respective

graphic library. The game field was refreshed on a regular interval, with a preview of

the next piece also being drawn when necessary. The pieces for the game were drawn

using circular gradients in Cairo, and rectangular gradients in System.Drawing. The

result was similar in terms of appearance, but not in terms of performance. Figure

3.3 shows a screenshot of both versions of the game:

Cairo’s wrapper for C# worked well in Windows, but the image had to be com-

posed in memory and then copied onto the canvas to work. This made the program a

bit more sluggish than the System.Drawing counterpart, with some flickering show-

ing up when the game board was refreshed. On the other hand, System.Drawing

showed a much better performance, with no visible flickering even without double

buffering. The game also proved to be cross-platform enabled through the use of

Mono to port the graphic capabilities of the System.Drawing namespace on other

OS.
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Figure 3.3: Screenshot comparison of tetris on System.Drawing (left) and Cairo (right).

In order to further compare the two versions of the program, a profiler was used

to check times spent by both applications in common drawing tasks of the game.

The test case was the same on both programs, corresponding to a period of 10

seconds of run time with a piece falling down on the game field. Table 3.4 shows

the results of these tests, express in percentage of the total time spent doing the

respective action, for a program that takes 100 units of time to complete:

Table 3.4: Time comparison between System.Drawing and Cairo.

Action System.Drawing Cairo

Erase Piece 0.10 0.93
Redraw Piece 0.03 1.10
Apply Gradient 0.58 1.53
New Game (Draw Field) 0.61 0.93

The profiling results were clear. In virtue of having to copy the image composed

by Cairo onto the canvas for every drawing task, the library took generally more

time to refresh the game area. This resulted in some visible flickering, as previously

mentioned, and a clearly lower performance than the Microsoft counterpart. This

lead to the choice of the System.Drawing library to develop the GIC: not only does it

provide good performance and a good level of control over the drawing capabilities of

the processor, it is also free to use and has a large active community on the Internet.

Furthermore, System.Drawing’s cross-platforming capabilities through Mono [38]

perfectly fits one of the objectives set for the GIC: portability to Linux.
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3.3.4 User Interface Principles

It is difficult to justify the choices made in this aspect, as the theory about user

interfaces and usability issues is vast and many times contradictory or misleading.

Although some works of major relevance in this field have been briefly studied ([46],

[47] and [48]), the amount of information and analysis needed to decide the most

adequate interaction process for this project would be tremendous. Therefore, the

choices made for the GIC were mainly based on the team’s personal experience

developing user interfaces.

Since the control will deal with objects on the screen, an OOUI2 is the obvious

type of user interface to implement. This means that users should be able to perceive

and act on objects, classify them based on how they behave, and maintain a coherent

overall representation of the objects on the screen. A simple interface metaphor was

thought out for this, similar to the famous desktop metaphor [56]. Instead of the

desktop with elements of everyday work, this metaphor represents a table on which

puzzle pieces are being placed. Each node is basically a piece of the puzzle, and each

edge is represents the connection between two pieces. Users can then add new pieces

or remove existing ones, move the pieces around to structure the puzzle and connect

the pieces to add coherence to the graph. This takes advantages of the specific

knowledge that users have of other domains, making the learning curve easier and

the interaction process fairly faster.

On the next subsections, some ground rules are set regarding design principles,

and an interaction paradigm is devised for the GIC.

3.3.4.1 Design Principles

Design principles are principles of human perception that can be utilized to create

an effective user interface. They help reduce the number of errors, increase user

efficiency and satisfaction, and smooth the learning curve. In [57], the authors

mention thirteen main principles of display design, aimed at supporting human

perception, situation awareness and high understandability. Some of these principles

may seem contradictory, or even impossible to implement for specific cases. Indeed,

there are no rules as to which should be considered more or less important Each case

is a case, and these principles are meant to be tailored to best suit specific problems.

For the GIC, the following have been selected as paramount to the success of the

user interface:

• Legibility: good legibility is important to help users discern what is that they

are interacting with. If nodes or edges cannot be correctly identified, then the

control won’t help the user to understand underlying structures;
2OOUI stands for Object Oriented User Interface.
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• Redundancy gain: if a signal is presented several times, chances are it will be

understood correctly. A selected node, for example, can be presented with a

doubled outer shape, to help users understand its importance;

• Pictorial realism: objects should be represented as they are normally on real

world. A father node is expected to be higher than its son, and organograms

are expected to present its nodes as rectangular shapes, for example;

• Proximity compatibility: different sets of information about the same object

should be linked by proximity. A node’s label will be easily paired with the node

if it is placed near it. However, an appropriate threshold of information must

be found, as too many information sources too close may result in cluttering;

• Predictive aiding: helping the user with information that is not necessarily

important but might reduce time spent performing tasks in the future helps

the users consider future possibilities. Showing an edge’s label when the mouse

is near it reminds the user about information with potential value in the near

future;

• Consistency: As the saying goes, old habits die hard. Long term memory

from experience with other interfaces will arise, and users will expect the new

interface to work in a consistent manner. Many users will expect a right click

to raise a context menu, for example.

This means in no way that the remaining principles aren’t important: they should

all be taken into consideration when designing the interaction paradigm. It means

only that these are mostly oriented to aspects related to the control being developed.

3.3.4.2 Interaction Paradigm

Interaction paradigm refers to the interaction process that users will have on the

graph control. Some points were taken into considerations when deciding how inter-

action should work. First of all, the mouse should be the main tool for interacting

with the control. Keyboards could (and should) be used as shortcuts to certain

tasks, but tasks performed on a two-dimensional canvas needs to be both fast and

precise. Interaction with a mouse provides this. It was also clear from the start

that similar operations should be performed in similar ways. So the process of, for

example, deleting a node or an edge should be essentially the same. This prevents

the user from shifting to a different paradigm when editing different parts of a graph.

Finally, it seemed logic that each mouse button should process a set of tasks

based on their type. Creating or moving a node are different types of actions. While

creating involves drawing something on the screen that wasn’t there before, moving
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involves selecting an already existing object. Several ideas were tossed around the

table and one came up that seemed to be quite logical:

• Left mouse button: Access to existing objects in the graph. Provides inter-

action to generic, non harmful tasks.

– Node/edge selection: left mouse click over the desired node/edge selects

it for editing or navigating.

– Node moving: left mouse click over a node and dragging the mouse around

will move the selected node until the mouse button is released;

• Right mouse button: Creation and deletion of graph objects. Provides

interaction to specific tasks.

– Node creation: right mouse click on an empty place shows a context menu

with the option to create a new node. Alternatively, double click on an

empty spot will do the same thing;

– Node erasing: right mouse click over a node shows a context menu with

the option to erase the selected node;

– Edge creation: right mouse click over the start node and dragging the

mouse over the end node will create an edge between the two selected

nodes;

– Edge erasing: right mouse click over an edge shows a context menu with

the option to erase the selected edge;

Since the left mouse button is commonly considered the main mouse button,

simple and unchanging tasks were assigned to it. This means that a new user won’t

accidentally change or delete potentially vital information by clicking around and

trying out the control. This boosts the user’s confidence by giving him a sense of

ease of control while protecting him from unwanted changes.

The right mouse button, on the other hand, is assigned to important tasks that

change the layout and structure of graphs such as creating new nodes or edges.

Users tend to use the right mouse button for specific tasks and don’t generally click

this button unless they are looking for a way to perform those actions. This further

encourages the user to feel in control. Also, all actions performed with the right

mouse button will either make a context menu appear or require some dragging to

complete. This will force the user to further prove what he intends to do, reinforcing

safety against unwanted actions.
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3.3.5 Architecture Description

Architectural patterns describes the fundamental structural organization schema for

a software project. They presents the most basic subsystems of the software, their

responsibilities and interrelations, and provide a broad representation of the project

and all its encompassed parts. Some common architectural patterns include peer-to-

peer, where each participant on a network is able to communicate to all others with

no need for a centralized control point (such as a server); or the service-oriented

architecture, where functionality is grouped around processes that can be described

as services.

Despite the fact that different patterns focus on different software types, they are

not by themselves an architecture. Instead they convey an image which captures

the essential components of a system and how they relate to each other. In this

chapter, justification for the use of the the model-view-controller (MVC for short)

paradigm is given, explaining why it fits the restrictions and objectives for the GIC.

The MVC paradigm (as presented in [58] and [59]) is used with the intention

to isolate each of the business logic components from user interface considerations.

This means that a correct implementation of the MCV allows data models, data

controllers and user interfaces to be essentially independent. Further changes in

each of these subsystems are subsequently easier to perform, as they won’t affect

other parts of the software. Since view, model and controlling of both are decoupled,

this pattern reduces the overall complexity of the system and adds flexibility and

reusability. Figure 3.4 shows a rough diagram of the MCV paradigm.

• The model is the basic data representation for the domain of information of

the software application. It gives basic meaning to raw data, and is possibly

used by external applications to feed information into a program. In this sense,

they are also responsible for exposing functionality and information;

• The view renders the information from the data model into a form suitable

for interaction with users. It also requests the control to update the model,

sending the controller information about user inputs;

• The controller takes care of event handling and user input through the in-

formation received from the view. This information is processed and mapped

accordingly, and the necessary changes are invoked in the model. It basically

controls the behavior of the application.

Objective wise, three quality factors concerning the architecture of the GIC were

mentioned in section 3.1: modularity, scalability and maintainability. The MVC

paradigm was our choice because it fits the aforementioned factors: modularity is
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Figure 3.4: The model-view-controller diagram.

achieved because even though the controller, model and views work together for the

application, they can be built independently. Scalability is also achieved, since new

additions to any of the modules won’t require refactoring of the remaining ones. The

MVC paradigm also has a low maintenance cost, as debugging and updating can

also be done just on the required parts of the software, leaving the rest untouched.

In the GIC case, the domain are graphs, so the model will represent information

about them, its nodes and edges. The incidence list described in section 2.4 will be

implemented with this objective in mind, so the model will consist of three classes,

one for each of the basic components of the domain: Graph, Node and Edge.

The view will present to the user a graphical representation of a graph. The

domain here focuses on graphical equivalents to nodes and edges. Most visual con-

cepts for graphs revolve around simple shapes representing nodes and some sort of

line connecting them. Therefore, a generalization for the view should include at

least two basic concept: shapes and lines. Putting together these two objects, an

accurate rendering of the information kept in the model can be constructed. The

view should then contain the two basic classes depicted previously: Shape and Line.

The GIC itself will represent the controller, managing information in the inci-

dence list and showing information to the users through the view. The control is

responsible for raising events and for keeping a matching between the objects rep-

resenting the view and the model. An application using the control will know only

about the model, whereas the users will interact only with the view. It is up to the

GIC to guarantee that any changes in one of the components will be correctly re-

flected on the other. The GIC is also in charge of keeping a style sheet and applying

it correctly to the view of the graph.

One of the main goals of the MVC is to provide the decoupling of subsystems

of an application. This allows future and independent use of at least some parts

of it in other projects. For the GIC, it was established since the very beginning
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that the data model should be reusable, or at the very least usable as a standalone

library. The objective of this is simple: to allow any kind of software to build graph

representations that could be used with the control.

Furthermore, complete independence between a graph representation and the

visual representation of it is also important. This addresses security concerns such

as the level of control users have over the graph information. Since interaction is

mainly done with the visual representation, if both models are independent, changes

can be checked and validated before the real representation is changed too. Figure

3.5 shows a scheme of how the system (codenamed Olympus) has been thought out

to work:

Figure 3.5: Scheme depicting the main classes to be used by the GIC.
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The project has been thought out as a set of three separate libraries, one for each

module of the MVC paradigm. The names given to each are all inspired in Greek

mythology and reflect the purpose and intention of each part:

• Calliope library: This library is the data model implementation of an inci-

dence list to represent Graph. It consists of the three basic concepts needed

to represent a graph: graphs, nodes and edges;

• Athena library: This library represents the visual side of the project, and

contains the basic elements needed to represent a graph on a screen: shapes

and lines;

• Kratos library: This library contains the control itself, as well as the imple-

mentation of the style sheets.

The user interacts solely with the control and with a visual representation of a

graph. Typically, a graph constructed using the model is loaded by the user into

the control. The control then uses this information together with the information

contained in the style sheet to build the view for that specific graph. The view is

presented to the user, and raises events accordingly as the user interacts with it.

These events are dealt by the controller, who is in charge of validating and changing

the model and the view as requested by the user.

The controller should also keep an exact correspondence between the model and

the view at all times. Each node in the graph should be paired with a shape, and

each edge with a line. This way, if a shape is changed, the control also changes the

corresponding node as needed. If a line is erased, the correspondent edge is also

erased. If a new object is created, the corresponding object in the model should also

be created.
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Chapter 4

Implementation

In the previous chapter, the GIC’s architecture, codenamed Olympus Library, was

described as a set of three smaller libraries that represent the three components

of the Model-View-Controller paradigm: the Calliope library corresponds to the

model and provides an abstract representation of a graph and its information; the

Athena library corresponds to the view and provides the controller with visual rep-

resentations of graph objects on the screen; finally, the Kratos library represents

the controller and contains not only the controller itself, as the means to keep in-

formation flowing between the two other libraries. This division is meant to allow

reusability of any of the classes for other projects, as well as allowing GISA to work

independently from the control. A prototype was also developed in the form of an

independent application that serves as a showcase to the control’s functionalities.

A description of the prototype constructed for the GIC is made in this chapter:

each of the libraries is presented in greater detail, and the implementation of the

prototype is explained. This provides the reader with a technological and low level

insight into the process of developing the GIC, whereas the previous chapter focused

on high-level architectural details and decisions. It also shows what was changed

from the decisions taken in the previous chapters, and why.

Sections 4.1, 4.2 and 4.3 describe the Calliope, Athena and Kratos libraries in

greater detail; section 4.4 focuses on the prototype itself and the functionalities it

provides; finally, section 4.5 draws a closing line on the implementation of the project

with some final words. Class diagrams will be presented as the example diagram

presented in Appendix B.
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4.1 The Calliope Library

The Calliope library is a direct implementation of the data model described in section

2.4.1, and provides an effective method for storing information about a graph – an

incidence list. It is loosely based on the implementation suggested in [13], which

suggests the use of three basic classes: class Node for representing nodes, class Edge

for represented edges and a global class Graph that keeps track of the nodes and

edges of a graph. A graph can have any number of nodes and edges associated to

it. A Node has any number of edges associated to it too, but an edge can only (and

must) have two nodes associated with it, as shown in Figure 4.1.

Node Edge

Graph

1

0..*

1

0..*

2 0..*

Figure 4.1: The Calliope class diagram.

The implementation of this library was pretty straightforward: there were no

special functionalities to achieve, and no special cautions to take. The major im-

plementation decision here was regarding element types. Both nodes and edges in a

graph should be categorized by specific types: this allows not only for style sheets

to be applied to specific types of elements, but also to categorize parts of thesaurus

accordingly to their types, in conformity with GISA.

The original idea was to allow these types to be a dynamic list applied to ele-

ments and graphs. However, and as time passed and the GIC was implemented, this

became a secondary concern and more of a roadmap feature1 than a primary objec-

tive. The solution to this was to use simple enumerations in each class that contain

the types of nodes and edges present in GISA. This allows for compatibility with

GISA in the near future, and leaves room to turn the type concept into something

more dynamic at some point in the future.

The next sections present each of the aforementioned classes in detail, explaining

the information they contain and a summary of the functionalities they provide.

1A road map objective is one that is set for the far future.
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4.1.1 The Node Class

The Node class represents instances of nodes of a given graph, in a conceptual form,

as presented in Figure 4.2.

«C» -Node()
«C» +Node(in caption, in type, in edges)
+AddEdge(in edge : Graph) : void
+RemoveEdge(in edge : Graph) : void
+ReplaceEdge(in edge : Edge, in newEdge : Edge) : void
+Clear() : void
+Cardinality() : int

-counter : int
-visited : bool
-level : int
+ID : int
+Caption : string
+Type : NodeType
+Edges : Edge

Node

Figure 4.2: The Node class.

The ID property identifies an instance of the class as an unique member of a

graph by incrementing the static int counter each time the class is instanced.

The Caption property contains the node’s text description, and is optional. The

Type property identifies the generic type of node the instance represents. This type

follows the NodeType enumeration of the same class that contains all the types of

entities present in GISA: Form, Place, Name, Topic, and Creator. The Custom type

was added for any other types of entities being represented. Eventually, the idea is

to turn this property into something more dynamic, allowing for new types of nodes

to be defined on the fly. Finally, the Edges array of edges represents the edges that

either start or end at the instanced node.

The class provides two constructors: a private Node() that is barred to external

users, and a generic Node(caption, type, edges) that builds a new node with a

specified caption, type, and edge list. The edge list can be null.

The three AddEdge(edge), RemoveEdge(edge) and ReplaceEdge(edge,newEdge)

methods are self-explanatory, and fill the information about edges connected to the

instance. Additionally, the Clear() and Cardinality() methods allow program-

mers to clear the edge list and see how many edges there are in the list of the instance

respectively.

The Node class also raises two events: CaptionChanged when its caption is

changed, and TypeChanged when its type is changed. The first allows the control

to know when to update the caption in the visual representation of the node. The

second allows the control to refresh the visual representation of the node accordingly

to the new node type.
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4.1.2 The Edge Class

This class represents instances of edges of a given graph, in a conceptual form.

Together with the Node class described in section 4.1.1, a coder can use the Graph

class to create a conceptual representation of a graph. Figure 4.3 presents the class

constitution.

«C» -Edge()
«C» +Edge(in caption, in type, in directed, in startNode, in endNode)
+ReplaceNodes(in newStartNode : Node, in newEndNode : Node) : void
+Validate() : bool

-counter : int
+ID : int
+Caption : string
+Type : EdgeType
+Directed : bool
-StartNode : Node
-EndNode : Node

Edge

Figure 4.3: The Edge class.

The ID property acts as the object’s unique identifier by incrementing the static

int counter each time the class is instanced. Caption keeps information about the

edge’s label text caption, and is optional. The Type property defines what kind of

relation this edge represents, and uses the EdgeType enumeration of the same class.

This enumeration presents all the regular edge types existing in GISA: Hierarchical,

Equivalence, Association and Temporal. The Directed property flags if the current

edge has a defined direction from node Start to node End, or if the edge is simply

undirected.

The class provides a private and a public constructor. The private constructor

Edge() is test-oriented and internal-only, while Edge(caption, type, directed,

startNode, endNode) allows external users to create a new, already filled edge.

Two methods were implemented: ReplaceNodes(newStartNode,newEndNode)

replaces the current start and end nodes associated with the edge. Validate()

checks if the edge has a starting and ending node. If it doesn’t (if the start or end

nodes are null), the edge isn’t valid. This validation is used by the Graph class to

validate a graph as a whole.

The Edge class also raises three different events: DirectedChanged when the

Directed flag is changed, CaptionChanged when the caption is changed, and Type-

Changed when the type is changed. The first two allow the control to know when to

update the corresponding flags in the visual representation of the edge. The third

is to allow refreshing of the visual representation accordingly to the new type.
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4.1.3 The Graph Class

The Graph class represents a graph in its entirety, using both the Node and the Edge

classes to define entities. The implementation of this class takes into account the

needs of both the control and external applications when building graphs. Since it

is the basic class used to define a graph digitally, it provides users and the control

with tools to manage and control the information, rather that just tools to add and

create a graph. These tasks include:

• Node and Edge addition: to add new instances to the graph;

• Node and Edge removal: to remove existing nodes or edges from the graph. If

a node is removed, so are all the edges that are related to it;

• Node and Edge replacing: to replace existing instances with new ones;

• Validation: Validating a graph requires that no edges be present without as-

signed start and end nodes, that those nodes are all present in the graph, and

that the graph has a defined start node;

• Acyclic check: to check if a graph has any cycles, i.e if there are any loops

between adjacent nodes.

Figure 4.4 describes this class.

The Name property sets the name for the graph, and is optional. The StartN-

ode refers to what node should be used as a navigation start point when the graph

is loaded into the GIC. CountNodes and CountEdges simply return the number

of nodes and edges in the graph. The private variables nodes and edges are Ar-

rayLists of the Node and Edge objects that compose the graph.

Three constructors exist for this class: Graph() creates a new, empty graph with

no name or start node. Graph(name) creates an empty graph with a specific name,

and Graph(name,startNode) also adds a node to the node list and sets it as the

start node.

AddNode and AddEdge are self-explanatory methods that add new objects to the

graph. Nodes and edges can also be removed or replaced either by indicating the

object itself or its unique ID using RemoveNode, RemoveEdge, ReplaceNode and

ReplaceEdge. GetNodeByIndex and GetEdgeByIndex use the absolute object index

in the graph list to get the correspondent object. GetNode and GetEdge get a node

or edge based on its ID. GetEdge, however, also gives the option to find an edge given

its start and end nodes. Validate() checks if the graph is valid by checking all its

edges validity and the presence of a start node. IsAcyclic() checks if the graph

is acyclic using the private method GetLeaf(). Clear() clears the whole graph
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«C» +Graph()
«C» +Graph(in name)
«C» +Graph(in name, in startNode)
+AddNode(in node : Node) : void
+AddEdge(in edge : Edge) : void
+RemoveNode(in node : Node) : void
+RemoveNode(in id : int) : void
+RemoveEdge(in edge : Edge) : void
+RemoveEdge(in id : int) : void
+ReplaceNode(in node : Node, in newNode : Node) : void
+ReplaceNode(in id : int, in newNode : Node) : void
+ReplaceEdge(in id : int, in newEdge : Edge) : void
+ReplaceEdge(in edge : Edge, in newEdge : Graph) : void
+GetNodeByIndex(in index : int) : Node
+GetEdgeByIndex(in index : int) : Edge
+GetNode(in id : int) : Node
+GetEdge(in id : int) : Edge
+GetEdge(in startNode : Node, in endNode : Node) : Edge
+Validate() : bool
+Clear() : void
+TrimGraph() : void
-GetLeaf() : Node
+IsAcyclic () : bool

+Name : string
+StartNode : Node
+CountNodes : int
+CountEdges : int
-nodes : Node
-edges : Edge

Graph

Figure 4.4: The Graph class.

content. TrimGraph() removes any unused space from the array lists containing

nodes and edges.

A large number of methods were implemented to allow easy control and cus-

tomization of a graph object by the programmers. When possible, several ways to

perform one task were implemented: for example, one may replace a specific node by

either indicating which node should be replaced, or simply by using the correspond-

ing ID. Security measures were also implemented in this class to prevent errors and

minimize the effect of erroneous elements. The list of nodes and edges of a graph,

for example, is protected and can’t be replaced like any regular property. Most

functions also perform value-checking on the parameters they receive, stopping any

changes on the data that may corrupt it.

The Graph class was though out to be used as a fill-in class. A programmer using

the Calliope library should simply declare and construct a variable of type Graph,

and then use AddNode, AddEdge and any complimentary functions needed to specify

the contents of a graph. These contents are then easily loadable into the GIC.
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4.2 The Athena Library

The Athena library is used to create a visual representation of a graph. Its classes

provide a way to keep information about screen objects and the way they look. The

two basic elements are shapes and lines. A shape can be rectangular or ellipsoidal

in form, and has several other aesthetic attributes that define the way it looks.

It is used to represent a node of a graph visually, and also contains information

about attached lines. A line is a connector between two shapes, with some aesthetic

parameters that define the way it shows to users, as well as pointers to its start and

end shapes.

Class-wise, this means that a Shape object can have any number of Line objects

attached to it, but that a Line can only (and must only) have two related Shape

instances, as shown in Figure 4.5.

Shape Line

2 0..*

Figure 4.5: The Athena class diagram.

Typically, a shape will correspond to a node and a line will correspond to an

edge in the GIC. The advantage of keeping both these representations separate is

that each representation only needs to store information about details that are of

importance to it. The color of a shape, for example, is of no importance to the node

the shape represents. This guarantees modularity, so that users will have only the

information they need for the classes they are using.

The next subsections depict the implementation for the Shape and Line class.

4.2.1 The Shape Class

The Shape class is used to represent nodes in a visual way. It keeps information

about the location, size, and aesthetic look of concepts and entities. It basically

describes to the GIC how one specific node should be presented to the user. At

the same time, it also stores information about other entities that are connected to

it through the graph, by the use of a simple list of Line objects. This way, when

redrawing the scene after a node has been moved, the control knows what lines

are attached to the shape and can redraw them too correspondingly. The class is

presented in Figure 4.6.

The ID property identifies the object uniquely among shapes. It is calculated by

incrementing the static int counter variable each time a new Shape is created.

The ArrayList Lines contains the list of lines associated with a specific shape.
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«C» -Shape()
«C» +Shape(in point, in ..., in spacing)
+ShapeToRectangle() : Rectangle
+ShapeToRectange(in shape : Shape) : Rectangle
+MiddlePoint() : Point
+AddLine(in line : Line) : void
+RemoveLine(in line : Line) : void
+ClearLines() : void
+SameStyle(in shape : Shape) : bool

-counter : int
+ID : int
+Lines : ArrayList
+Coordinates : Point
+ShapeSize : Size
+Text : string
+BoundingBox : bool
+FillColor : Color
+LineColor : Color
+TextColor : Color
+BackColor : Color
+Font : Font
+Spacing : int
+Angle : int
+Type : ShapeType

Shape

Figure 4.6: The Shape class.

Coordinates uses the System.Drawing Point class to specify the absolute position

of the shape’s top left corner in the control; ShapeSize uses the Size class to specify

the width and height of the shape; the Text property contains the text for the shape’s

label. The BoundingBox flag is used to determine whether a bounding box should

be drawn around the shape’s text label; FillColor, LineColor, TextColor and

BackColor keep information about the shape’s fill color, line color, text color and

bounding box back color; Font is the selected font for the text label; Spacing refers

to the vertical distance that should be applied between the shape’s bottom and the

text label’s top; Angle is the angle at which the gradient color (explained in section

4.3) will be applied for the shape; finally, Type uses the ShapeType enumeration to

specify if the shape is either rectangular or a circular.

The class contains two constructors: a private Shape() for internal use, and a

public Shape(point, ... , spacing) that fills all the aforementioned properties.

The ShapeToRectangle method returns a Rectangle object with info regarding

the shape’s bounding box, or the shape’s bounding box related to another shape.

The MiddlePoint() method returns a Point object with the coordinates of the

absolute center of the shape. SameStyle(shape) compares the visual properties of

the shape against the same properties of another shape, and checks if they match.

All these methods are used by the control to determine what and where to draw the

graph representation.
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AddLine(line), RemoveLine(line) and ClearLines() are used to add, remove

and clear lines from the Line ArrayList.

The Shape class also raises two events: TextChanged when the text is changed for

the shape (so that the control can update the corresponding text in the information

model); and a more generic event ObjectChanged when any other parameter is

changed. The control uses this signal to raise its own event informing the program

that a change was made in the visual representation of a graph.

4.2.2 The Line Class

The Line class implements the visual representation of a graph’s edge, or connection

between two distinct entities. It keeps information about the way this line is drawn

in the control, as well as pointers to the two Shape objects it connects. This allows

the control to know what nodes will need to be updated if a user wants to delete an

existing line, for example. The class is presented in Figure 4.7.

«C» -Line()
«C» +Line(in start, in end, in ..., in backTextColor)
+GetBoundingBox() : Rectangle

-counter : int
+ID : int
+Start : Shape
+End : Shape
+Width : int
+Style : DashStyle
+Directed : bool
+Text : string
+BoundingBox : bool
+LineColor : Color
+TextColor : Color
+BackColor : Color
+Font : Font

Line

Figure 4.7: The Line class.

The ID property is used to identify an instance of the class uniquely, and is

based on the incrementation of the static int counter each time a constructor

is called; the Start and End properties point to the Shape objects that the line

connects; Width is used to define the pixel width of the line when drawn; Style uses

the System.Drawing DashStyle class to define the line’s drawing style (solid, dashed,

dotted, or other); Directed flags if an arrow cap should be drawn at the end of the

line; Text is the string to apply at the line’s label; the BoundingBox property specifies

if a bounding box should be drawn around the line’s label. LineColor, TextColor

and BackColor set the colors for the line, the text label, and the bounding box’s

back color; the Font is used to define the font used in the text label.
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The Line class provides a private and a public constructor: the Line() method

is used only internally, while the generic Line(start,end, ... ,backTextColor)

creates a new instance that fills the aforementioned properties with the passed pa-

rameters.

The class also implements an auxiliary method GetBoundingBox() that returns

a Rectangle object with the bounding box that includes the line and the two shapes

it connects, and is used by the control to define what areas to paint when shapes

are moved around.

Finally, three events are raised by this class: DirectedChanged, TextChanged

and ObjectChanged. They occur when the Directed, the Text, or any other prop-

erty are changed. They are used to signal the control about these changed, so that

changes in the data model can be made as needed.

4.3 The Kratos Library

Kratos is the third and most important library of the GIC, implementing the con-

troller of the MVC paradigm presented in section 3.3.5, and using both the view

and model implementations present in the Athena and Calliope libraries to manage,

represent and interact with the user with graph information. Figure 4.8 shows the

class diagram and the relationships between each of the interacting classes.

Node Edge

Graph

1

0..*

1

0..*

2 0..*

Shape Line

2 0..*

BidirHashtable

Fruchterman

GraphPanelStylesheet

1 0..*
1

1*

1

*

*

*

*

*

0..1

Figure 4.8: The Kratos class diagram.

The central class of the Kratos library is the GraphPanel. It is this class that

represents the GIC and controls all the information flow between users, model and

72



Implementation

view. This class keep information about one Graph instance at all times. It also

keeps a list of Shape and Line objects that represent visually the objects present in

the Graph object. Correspondence between Shape and Line objects and Node and

Edge objects is kept at all times through a BidirHashtable, an open-source class

that implements a bidirectional hashtable.

The GraphPanel class also points to one Stylesheet class that contains all the

aesthetic information associated with each of the types defined for Node and Edge

objects, as well as visual details that pertain the whole GraphPanel class. Finally,

the Fruchterman class is an accessory class used to calculate the Fruchterman-

Reingold algorithm.

The implementation of the Fruchterman and the BidirHashtable classes are

not fundamental for understanding the way the GIC works, so a brief explanation of

their purposes is given here. The first simply implements the algorithm described in

section 2.5.3 for a given set of nodes. The second works just like a regular hashtable,

except that it allows recovery of associated values in both ways. This means that

both objects used in an entry of the table are considered keys. The BidirHashtable

object used by the main class stores pairings (Node,Shape) or (Edge,Line) to allow

quick access between the view and the data model.

The Stylesheet and the GraphPanel, however, are major pieces of the GIC.

The next two subsections present these classes in detail.

4.3.1 The Stylesheet Class

The Stylesheet class is used by the GIC to store information about two things: the

visual properties that should be used with the different types of nodes and edges, and

the general properties that are considered general and should apply to all graphical

elements, despite of their type. Figure 4.9 shows the structure of the class.

The class not only keeps information about how default and selected objects

should appear to the user, but also provides the means to add new styles for custom

types of shapes or lines. A new style is basically an instance of the Shape or Edge

classes, whose properties can be changed to achieve the desired visual aspect. This

is then recorded by the Stylesheet class via a string key that is used to match a

type with a style. When the control is drawing an entity, it checks its type, and

looks in the style sheet for styles whose key matches the entity type. If a style is

found, the control applies it; if its not, the control uses the default style for the

entity being drawn.

The DefaultShape and DefaultLine properties define the default visual details

for shapes and lines; SelectedShape and SelectedLine define the same visuals for

selected shapes and lines. The private properties shapeStyle and lineStyle both
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«C» +Stylesheet()
«C» -Stylesheet(in defaultShape, in ..., in defaultShapeType)
+AddShapeStyle(in type : string, in newStyle : Shape) : bool
+AddLineStyle(in type : string, in newStyle : Line) : bool
+RemoveShapeStyle(in type : string) : bool
+RemoveLineStyle(in type : string) : bool
+ReplaceShapeStyle(in type : string, in newStyle : Shape) : bool
+ReplaceLineStyle(in type : string, in newStyle : Line) : bool
+GetStyleForShape(in type : string) : Shape
+GetStyleForLine(in type : uint) : Line

+DefaultShape : Shape
+DefaultLine : Line
+SelectedShape : Shape
+SelectedLine : Line
+BackColor : Color
+GradientColor : Color
+MinDistanceToLine : int
+MaxTextLenght : int
+ShapeType : ShapeType
-shapeStyle : Hashtable
-lineStyle : Hashtable

Stylesheet

Figure 4.9: The Stylesheet class.

use a regular Hashtable to match records of new styles created with a string key.

These provide support for the new types of styles that users may define.

The BackColor property defines the back color of the control; GradientColor is

used to define the gradient start color that is used to paint the shape’s fill; MinDis-

tanceToLine is the minimum distance in pixels that the user’s mouse must be from

a line to show the line’s label; the MaxTextLength property sets the maximum num-

ber of characters the text label for shapes and lines may have – if a text string is

longer than that, it will be trimmed down; ShapeType defines the default shape

for new shapes – rectangular or circular. These define the general properties of the

visual appearance of graphs in the GIC.

Two public constructors are used: Stylesheet() creates a new, default style

sheet; Stylesheet(defaultShape, ... ,defaultShapeType) creates a new style

sheet with the properties set as those passed by parameter.

Some method were implemented so that the control or the programmer could

manage information in a Stylesheet object. AddShapeStyle(type,newStyle) and

AddLineStyle(type,newStyle) provide methods to add new shape and line styles.

Similar methods exist to remove or replace a specific style. There are also two

methods to recover a specific style for a given key.

4.3.2 The GraphPanel Class

The GraphPanel class is the main piece in the GIC. It serves both as the control

implementation and as the manager for the graph information contained in the

74



Implementation

model. It also builds and keeps the visual representation of the graph. The class

details can be found in Figure 4.10.

Drawing of the visual representation of the graph is done through functions of

the System.Drawing library chosen in section 3.3.3. These drawings are made using

double buffering2 to reduce control flickering, and using anti-aliasing to give shapes

and lines a smoother feel.

The number of internal private methods used by the class is quite large. The

inner workings of said methods is not necessary to understand how the control works.

Instead, the following will explain how the control works and present all the public

tools that the control presents to users, as well as the properties deemed necessary

for that explanation.

«C» +GraphPanel()
+RedrawAllScene() : void
+SetStylesheet(in stylesheet : Stylesheet) : void
+LoadGraph(in graph : Graph, in layoutMode : LayoutMode) : void
+ClearGraph() : void
+DoLayout(in justCenter : bool) : void
+SetLayout(in layoutMode : LayoutMode) : void
+GetShape(in index : int) : Shape
+GetShapeForNode(in node : Node) : Shape
+GetLine(in index : int) : Line
+GetLineForEdge(in edge : Edge) : Line
+IsDAG() : bool

+CircularRadius : double
+ConstantC : double
+IterationMax : int
+TemperaturePercentage : double
+Iterations : int
+Stylesheet : Stylesheet
+LayoutMode : LayoutMode
+Mode : Mode
+SelectedShape : Shape
+SelectedLine : Line
-objs : ArrayList
-lines : ArrayList
-graph : Graph
-hash : BidirHashtable

GraphPanel

Figure 4.10: The GraphPanel class.

The Stylesheet property is used by the control to store information about how

visual objects should be drawn. In each redraw cycle, the control takes each of the

objects it is supposed to draw, checks its type, and looks for a corresponding style

in the Stylesheet. If none is found, the default is used. If the user has manually

changed a preset style, the control will keep the changes.

The Mode property uses the values from the enumeration with the same name.

This mode sets the way the control should respond to users, using the interaction

paradigm defined in section 3.3.4.2. The possible modes are:

2Graphical technique that uses a memory back buffer to reduce overhead on the actual picture redrawing
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• Edit: edit mode means that the graph nodes are scattered around the control

and that the user may move, edit, create or erase them. Concurrently, edges

may also be created, edited or erased between nodes. Layouts may be applied

at will, and no node is presented visually as selected (though one is selected);

Nodes and edges are drawn accordingly to their types and to the styles defined

in the Stylesheet property;

• Navigate: navigate mode means that the selected node will be drawn with

the selected node style from the Stylesheet property. The graph is centered

around the selected node in this mode, and if a new node is selected, the graph

will center itself around it. Editing or moving the nodes is not allowed in any

way, but applying layouts is;

• Show: show mode is similar to the navigate mode, except the graph is just cen-

tered in the control as a whole and no interaction is possible with it. Applying

layouts is still possible.

The LayoutMode property sets which layout technique is to be used on the current

graph. It uses the enumeration with the same name and that contains the layout

techniques that were implemented for the GIC:

• Fruchterman-Reingold layout: this was the algorithm chosen in section

3.3.2 for representing thesauri graphs. Simple, fast and aesthetically pleasant,

the result of the layout is calculated by the accessory class Fruchterman;

• Radial layout: this layout simply places the nodes evenly in a imaginary

circle centered by the center of the control. It is a good way to find subjacent

patterns present in the relations of a graph. Its implementation is simple, and

is done by a private function inside the class. If the Mode property is set to

anything other than the edit mode, the selected node is presented at the center

of the circle, and not at the border of it;

• Random layout: this layout simply randomizes the location of the nodes of

a graph, and is done by the GraphPanel class;

• Orthogonal layout: the original plan stated in section 3.3.2 was to implement

a modified version of the Kamada-Kawai algorithm to achieve a pleasant layout

for organograms. However, Kamada-Kawai doesn’t allow for multiple roots to

exist in a graph, so the algorithm was not implemented. Instead, a part of the

Sugiyama algorithm was tentatively implemented. The algorithm only works

with directed acyclic graphs, but allows for more than one root to be present.

If the graph is directed and acyclic, the algorithm uses a simple algorithm to
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layer the nodes according to their longest path to any root, and then distributes

them evenly on each level. This corresponds roughly to the first two phases of

the Sugiyama algorithm, and works for most of the basic cases of organograms.

However, it is not complete, and the result is not always the most appropriate

one. The algorithm also does not draw lines as orthogonal sets (more about

this in section 5.3).

The way layouts work in the control is simple: when a redraw is forced, the

GraphPanel class calls the appropriate method and receives the new positions of

each node. It then uses the Iterations property to determine how many iterations

should the animation between the current and the new positions have. The anima-

tion simply moves each piece a percentage of the displacement they must incur in

a logarithmic fashion: the nodes appear to move faster at first and then slow down

until a complete stop at their final coordinates. Appendix C presents how the same

graph might look using each of the aforementioned layouts.

Information about the currently selected shape and line is kept by the Select-

edShape and SelectedLine properties. This information is used to override style

properties when the selected object is drawn and to draw it with the selected style.

Although the SelectedLine property is implemented, it is not used.

CircularRaidus, ConstantC, IterationMax and TemperaturePercentage are

properties that apply solely to the Fruchterman-Reingold algorithm and are passed

by the control to the Fruchterman class when that layout is necessary.

A list of shapes and lines is kept by the control in the private properties objs

and lines.These are instances of the ArrayList class. The actual graph is kept

in the graph property, also private to prevent users from inadvertently changing

something. Finally, hash is an instance of the open source class BidirHashtable

(section 4.3) and is used to keep a match between view objects and model objects.

The only constructor for the class is GraphPanel(). The constructor starts the

double buffering with the size of the control, and initializes any necessary variables.

The RedrawAllScene() method forces a redraw of the complete scene in the

control. SetStylesheet(stylesheet) is used to load a new or modified stylesheet

into the control. LoadGraph(graph,layoutMode) is the method used to load a

Graph object into the control: not only does it become the actual graph, as the

layout mode will be updated to what is specified in layoutMode. A complete redraw

of the scene is also forced when a new graph is loaded. ClearGraph() clears the

current graph in the control and allows a fresh start.

For applying new layouts or forcing the recalculation of the current layout,

the control provides the DoLayout(justCenter) and the SetLayout(layoutMode)
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methods. The first applies the current layout, using the justCenter flag to deter-

mine if the result should also be centered as a whole on the control; the second sets

the new layout mode to be that expressed in layoutMode.

Some auxiliary methods have also been included to allow easy access to the ob-

jects being manipulated by any programmer. GetShape(index) and GetLine(index)

can be used to get pointers to a shape or line in the objs or edges array lists. Get-

ShapeForNode(node) and GetLineForEdge(edge) can be used to obtain a pointer

to the shape or line that corresponds to a specific node or edge. Finally, IsDAG()

can be used to check if the graph loaded on the control is a directed acyclic graph.

This method is also used when calculating the orthogonal layout for a graph.

The GraphPanel class also raises a set of events meant to signal the programmer

that important changes have been made with the information in the control. These

events can then be used accordingly to the needs of the application using the control:

• NodeSelected occurs when a node/shape is selected;

• NodeAltered occurs when a node is changed in any way;

• NodeCreated occurs when a new node/shape is created;

• NodeErased occurs when a node is erased;

• EdgeSelected occurs when an edge/line is selected;

• EdgeAltered occurs when an edge is changed in any way;

• EdgeCreated occurs when a new edge/lin is created;

• EdgeErased occurs when an edge is erased;

4.4 The GIC Prototype

In addition to the GIC that was described in the previous sections, a small appli-

cation was built using the .NET Framework 2.0 and the C# language to serve as a

prototype wrapper of the control, and to showcase its capabilities. The implemen-

tation and overview of that application is now given.

The prototype was named Olympus Graph Editor in conformity with the project’s

codename. It is a simple program that allows the creation, edition, navigation and

layout application of graphs. Users may load an example graph to the control or

build one from scratch. The individual properties (both visual and internal) of graph

entities can be changed with little effort, and the program also introduces a style

sheet editor to create new styles or modify existing ones.
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The program contains two GICs. One in the main program window, and another

in the style sheet editor, used to preview the current style sheet. There are three

classes:

• MainForm: the window form that contains an instance of the GraphPanel class

and the tools to manage it;

• Editor: the class that implements the style sheet editor. It also uses a Graph-

Panel to preview styles;

• Style: a small class that is used by the Editor class to create new styles.

Figure 4.11: A screenshot of the GIC prototype.

Figure 4.11 presents an example screenshot of the application with a graph de-

picting the borderline connections of some European countries: Label 1 is the control

bar used to change parameters, access the style editor, try the preset graph, apply

layouts and choose the GIC mode to use; label 2 is the property editor, used to

change both the visual and the internal properties of a selected graph object; label

79



Implementation

3 shows the GIC itself, and the drawing area it encompasses; finally, label 4 gives

an example of how a node might look like in the GIC.

The application starts in the edit mode by default, allows users to construct new

graphs, but the mode, as many other parameters, can be changed easily. The control

bar provides the following immediate tools to the user:

• Shape and Line formatting:

– Default Shape: drop-down list allows selection of either square or circle

as default shape;

– Default Direction: drop-down list allows choice between directed and

undirected new lines;

– Default Line Width: drop-down list allows choice from 1px to 6px as

default width for new lines;

– Default Line Style: drop-down list allows choice from a selection of

line styles as default for new lines.

• Color formatting:

– Gradient Color: choses the color for the gradient of shapes;

– Fill Color: chooses the color for filling the shapes;

– Line Color: chooses color for new lines;

– Shape Color: chooses color for the shape outer line of new shapes;

– Control Back Color: chooses the background color of the GIC;

– Text Color: chooses the color of text in text labels;

– Text Back Color: chooses the color for the bounding box that may be

shown behind text labels.

• Graph Options:

– Clear Graph: completely erases any graph objects in the screen;

– Load Preset Graph: loads a preset graph with four nodes to the con-

trol, cleaning any graph objects present;

– Style Sheet Editor: opens the style sheet editor.

• Layout Options:

– Fruchterman-Reingold: applies the FR algorithm to the current graph;
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– Orthogonal Layout: applies the orthogonal to the current graph, if

the graph is directed and acyclic (DAG). If its not, an error message is

displayed;

– Circular Layout: applies the circular layout to the current graph;

– Random Layout: applies a random placement for the current graph.

• Mode Options:

– Navigation Mode: switches the GIC to navigation mode;

– Edit Mode: switches the GIC to edition mode.

Interaction with the GIC is as described in section 3.3.4.2. Selecting a node or

an edge by left clicking them will pass the node’s information to the property editor.

This editor has the Visual and Internal tabs on top: these switch between visual

(shape/line related) and internal (node/edge related) properties for the selected

object. Any change that directly influences the aspect of the selected object will

be reflected on the control immediately. Concurrently, modifying properties in one

model will update the other model if needed as well.

(a) The Editor Window. (b) Creating a Style.

Figure 4.12: A screenshot of the style sheet editor.

The style sheet editor can be used to alter currently defined styles and to create

new ones. Figure 4.12a shows a screenshot of the style sheet editor and its main

control zones. Label 1 represents the style explorer. It presents a list of GIC’s

miscellaneous properties, preset styles, and custom made styles. Left clicking one
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of the styles here makes it the selected style to edit. The first five items in the list

represent generic GIC properties, default shape and line styles, and selected shape

and line styles. The two last items can be expanded and contain custom made shape

and line styles.

Label 2 shows the preview area. This zone contains a GIC that is used to show

how the currently selected style appears. This GIC is set to view mode, which means

no interaction is possible with it. It simply shows two test shapes (a normal and a

selected one) and a line connecting them. Users can move the mouse near the line

to see how the line style applies to the text label.

Label 3 is the property editor, similar to the one in the main window form. Once

a style is selected in the style explorer, its properties will be shown here. Changes

in this area will be reflected in the preview GIC.

Label 4 shows the control buttons area. The four available button allow users to

create, delete and save styles, and to close the window and accept changes. The save

button was not implemented in this version of the prototype, but it will eventually

save style information to a file. The delete button will delete the currently selected

style, as long as it is a custom one. A check message is presented before actually

deleting the style.

Finally, the create style button will open a small window as shown in Figure

4.12b. This window allows users to define a new style by giving it a name and

defining if the new style applies to shapes or lines, as shown in label 1. After this

information is inserted, the user may create the style or cancel the creation process

as shown in label 2.

Custom styles will then appear in the style editor’s explorer. They will only be

used if the name given to the style matches the type of object it was designed for.

So if a new shape style is created with the name Situation, its aspect will only be

used on shapes whose type is also Situation.

4.5 Final Remarks

With the project implementation explained, and the prototype of the GIC presented,

some final remarks about the GIC and its inner workings are taken.

First and foremost, it is important to understand that the implemented version

of the GIC is indeed only a prototype, far from what the final version should look

like. Section 5.2 provides some insight into what objectives were and were not

achieved during the course of the project. However, during the course of the twenty

weeks of work, it has become clear that even after all the objectives set initially are

achieved, this project will still have many possibilities of being developed further.

Some reflexions on this matter are made on section 5.3.
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Secondly, it was stated as an important objective since the very beginning that

the GIC would be platform independent and work at least under Windows and

Linux OS. Important choices during the course of the project were made in function

of this requisite – namely the choice of the graphic library to use. In the end, the

objective was achieved: the GIC can be run on Linux as well as in Windows if the

Mono framework [38] is used to replace the System.Drawing methods utilized by the

control.

Finally, the GIC has two simple requirements to be run: the .NET Framework

2.0 must be installed in the computer where the prototype application is to run;

and that the Mono Framework is also installed if the application is to run on an

operative system different from Windows.
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Chapter 5

Conclusions and Future Work

In the previous chapters this report has focused on making a literature review, de-

scribing a methodology revolving around the use of the MVC architectural paradigm,

and explaining the implementation of a graph oriented control meant to allow simple

representation and interaction with graphs. This chapter summarizes on what was

achieved during the course of this work and what are the future plans for the results

of it.

Section 5.1 summarizes the work done during the project. Section 5.2 overviews

a list of achieved objectives and failed goals. Section 5.3 makes some considerations

about the future work for the project.

5.1 Work Developed

Through the course of twenty weeks, a reliable and easy to use graph interaction con-

trol was developed from scratch. A thorough literature review was made on several

aspects regarding graph theory, interaction, layout algorithms, existing applications

and drawing conventions. An in-depth list of objectives was then set, and a list of

use cases was defined.

A methodology was then developed for the control using the model-view-controller

architectural paradigm. The paradigm uses a data model to represent graphs, a view

model to visually show the graphs, and a controller that unifies the two data mod-

els. This gives the solution reusability, maintainability and modular design. The

control was created using the .NET Framework 2.0 and the C# language. The Sys-

tem.Drawing [37] graphic library from Microsoft was used for graphical plotting due

to its low-level abstraction and ease of portability to other OS through the Mono

Framework [38]. The data model chosen to represent graphs was the Incidence List.
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Four layout techniques were implemented for the control, one of which is a direct

implementation of the Fruchterman-Reingold [20] algorithm, and another which is

a partial implementation of the Sugiyama-Misue [22] algorithm. A simple and effec-

tive interaction paradigm was also chosen for the control based on the developer’s

previous experience in the field.

All the decisions made regarding the methodology and tools to use have taken

into consideration both the needs of ParadigmaXis and GISA and the time there

was available to implement the control.

The implementation itself is composed of three separate libraries and a proto-

type application to showcase the control’s functionality. The libraries represent the

graph data model (Calliope), the visual representation model (Athena) and the con-

troller (Kratos). Calliope uses the classes Graph, Node and Edge to represent graph

information; nodes and edges have specific types associated to them. Athena uses

the Shape and Line classes to represent graph objects on the screen. Kratos imple-

ments the GraphPanel class to manage information in the other two libraries and

the Stylesheet class to keep information about styles applicable to visual objects

according to their type in the data model. The prototype application wraps all the

libraries and provides users with tools to edit, navigate and create new graphs using

the control.

5.2 Achieved Objectives

The original list of objectives described in section 3.1 was successfully implemented

only to a certain level. Some objectives became road map features as time passed,

others were just dropped out due to the lack of available time. After the methodology

was completely defined and the development of the control started, the objectives

were all prioritized as very important, important, secondary and negligible. Un-

achieved objectives were mostly cause to the lack of time to develop, and to the fact

that their priority was secondary or negligible.

The following list checks what objectives from the original list were and weren’t

achieved:

• Regarding basic features:

– Graph loading, creation, editing and navigation were totally implemented

as proposed in the original objective list. Graph loading is possible through

code and is meant for programmers. Creation, editing and navigation of

graphs are available to any user;

– Four graph layouts were implemented. A layout for thesauri was suc-

cessfully developed and two additional layouts were also implemented. A
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specific layout for organograms was tentatively developed, but the results

don’t match those set by the original objective list;

– Style sheets were implemented almost to a full extent. Original plans

allowed saving and loading of already created style sheets. The prototype

allows creation and use of style sheets, but does not allow saving and

loading them;

– A separate control for organograms displaying a temporal slide bar was

not built, due to the lack of time and the fact that this was considered a

low priority objective.

• Regarding the interaction paradigm:

– The displaying of thesauri is standard compliant with the ISO 2778, fol-

lowing when possible the visual representations proposed in the document;

– Measuring how user-friendly the interaction with the control is is rather

subjective. The developer’s previous experience with user interface was

taken into account when designing the interface however;

– Customization of the graph elements was developed to an extreme. Vi-

sual properties for both shapes and lines on the screen allows for a great

diversity of aesthetic looks. One aspect was not developed though: the

depth of nodes to present to the user when navigating through a graph.

The prototype simply shows all the graph when navigating;

– The control is entirely event-driven, as can be seen in the prototype ap-

plication built.

• Regarding Graphical Libraries:

– The chosen graphical library is free to use, and has a large thriving de-

veloper community. It provides tools to enhance performance (such as

double buffering and anti-aliasing) and allows multi-platforming with the

use of an additional framework;

– Graphic acceleration was not implemented due to the lack of support for

the chosen library.

• Regarding architectural pattern: the use of the MVC paradigm for architec-

ture guarantees modular design, scalability and maintainability as originally

intended;

• The C# language was used as originally intended;

• Multi-platforming was achieved with the help of the Mono Framework;
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• Unit testing was not implemented due to the lack of time available.

Additionally to the achieved goals described in this list, there were some other

points that were not mentioned in the original objective list and that ended up

implemented in the prototype. Interaction with graph elements can be done using

a context menu. This menu provides some tools such as the possibility to invert

an edge’s direction. Animation of the graph when applying layouts was also not

in the original list of objectives, but ended up being implemented to improve user

experience.

Style sheet loading and saving was intended to allow saving the style sheet infor-

mation in a file using some sort of marking language such as XML. The objective

was considered secondary as it was not vital to the correct working of the control.

The customization of the depth of nodes to show during navigation was not

implemented due to lack of time. It is, however, a simple objective to achieve and

one of the first on the current prioritized list of objectives.

The separate control for time oriented organograms was never even considered in

the prototype version since the work with organograms is far from done. The biggest

problem with the control in its current version is the inability to correctly lay most

organograms due to the poor orthogonal layout implementation used. The fact that

lines are not yet drawn as orthogonal in this version is also a major setback. Since

the separate control should focus specifically on organograms, there was no interest

in developing it for an incomplete representation of these structures.

Unit testing was since the beginning regarded as a secondary objective. It would

add consistency and safety to the control, but since the work focused only on the

development of a prototype, the implementation of unit testing became less impor-

tant.

5.3 Future Work

As stated previously in the report, the GIC is far from complete. Many improve-

ments and new features could still be implemented in a final and consistent version

of the control. Together with the obvious debugging and testing the prototype still

requires, the following list presents some of the objectives considered of most interest

to the future development of the control:

• Loading and saving style sheets: using a markup language, the idea here is to

allow saving style sheets and even evolving them into a rule-based language

that could be uniquely applied to all the control;

• Organogram layout and orthogonal drawing: the development of the current

orthogonal algorithm into the actual Sugiyama-Misue algorithm would allow
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work with organograms to progress quickly. The next steps are orthogonal

line drawing and the development of the control with the time slider bar for

time-oriented organograms;

• Unit testing: unit testing is not present since the control is considered a pro-

totype. A final version, however, would benefit greatly from the consistency

unit testing brings; It is an essencial objective before integrating the GIC with

GISA;

• Dynamic use of entity types: Style sheets allow the creation of styles for any

number of types. The data model, however, only allows a preset set of types

for nodes and edges. It would be interesting to evolve this model and add

support to customizable lists of types;

• Dynamic loading of graphs: the prototype supports loading of new graphs into

the control, erasing previous graphs. The next step is to allow dynamic loading

of graphs that would keep nodes common to the current and the loaded graph,

erase those that don’t exist in the loaded graph and add only those that still

don’t exist in the control;

• New layout algorithms: it would also be interesting to see new layout algo-

rithms to diversify even more the user experience with the control.

The possibilities for long-term development, however, are much bigger. Graphs

interconnect several areas of research, and as time and new solutions appear, the

functionality of the control could also grow much bigger. The following is a list of

road map features that would be interesting to implement eventually:

• New shapes: hexagon, triangle, or polylinear shapes;

• New customization properties: new gradients, arrow types or color properties;

• Three dimensional graph interaction: the use of a three dimensional space to

represent graphs, hypergraphs and more complex structures;

• Graphic acceleration: to provide increased performance for the control;

• Search algorithms: implementing algorithms that don’t focus on how graphs

look but rather on what information graphs contain;

• Generalization: use the control not only for graphs, but also for other, more

general concepts such as drawing and networking.
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On a final remark, the author would like to add that the addition of any of

these plans would also depend greatly on the type of application using the control.

Although shown as part of an application prototype, the control is the core of the

project and the part of it that truly has the potential to evolve into whatever external

applications may need.
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Appendix A

Types of Diagrams in ISO 2778

In section 2.3 the ISO 2778 [12] for the establishment and development of monolin-
gual thesauri was used as source of information about how to best represent thesauri
as graphs. The standard presents two possibilities for visual representation of the-
sauri: tree-like schemas and arrow-like schemas. An example of both is presented
in this appendix.

Câmaras Stereo Câmaras Sub-aquáticas
Câmara Instantânea

CÂMARAS

Câmara de Estúdio
Câmara Fótográfica

Câmaras de Cinema
Câmaras de Filmar

Câmaras de Cinema Sub-aquáticas
Câmara Miniatura Câmara Reflexa Câmaras de Televisão

Câmara de 35mm Câmara Reflexa Mono-objectiva Câmara Reflexa de Duas Objectivas

Figure A.1: Example of a tree-like schema.
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Câmaras Stereo Câmaras Sub-aquáticasCâmara Instantânea CÂMARAS
Câmara de Estúdio Câmara Fótográfica Câmaras de CinemaCâmaras de Filmar Câmaras de Cinema Sub-aquáticasCâmara Miniatura Câmara Reflexa Câmaras de TelevisãoCâmara de 35mm Câmara Reflexa Mono-objectiva Câmara Reflexa de Duas Objectivas

Mergulho

Fotografia
Cinema
Televisão

1

2

3

4

5

6
a ec g hfb d

Figure A.2: Example of a arrow-like schema.
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Class Diagrams

Class diagrams are used several times through chapter 4 to present and introduce
the properties and methods available in a class. This appendix serves the purpose
of presenting an example class diagram and the terminology to read said diagrams.
Figure B.1 represents the diagram for the example class.

«C» +Constructor()
«C» +ConstructorWithParameters(in param1, in param2)
+ExampleMethod(in param1 : double, in param2 : bool) : int
+MethodWithManyParameters(in p1, in ..., in pN)

-privateAttribute : int
-anotherPrivateAtribute : string
+PublicAtribute1 : object
+PublicAtribute2 : bool

Example

Figure B.1: A class diagram example.

The class diagram is divided in three horizontal bars:

• Class Name: in this case, the class name is Example.

• Property List: the rectangle directly beneath the class name provides a list
of properties for the class.

• Method List: the rectange directly beneathe the property list provides a list
of method implemented in the class.

The following terminology is used to represent properties and methods:

• The plus and minus sign behind each property or method represent its visibility
to other classes. A - means the property or method is private. A + sign means
that the item is public;

• The �C� tag behind a method means that method is a constructor for the
class;

• Private properties start with lowercase letters. Public properties start with
uppercase letters. Methods always start with uppercase letters.
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• The parameter list of constructors does not state the datatype for each param-
eter, but the parameter list for methods does. Additionally, if the parameter
list for any item is very long, the list will be abbreviated like the MethodWith-

ManyParameters method shows.

• Parameters with the in tag before the name are input parameters. Those with
the out tag are output parameters.

• The datatype for a property is set after the property name. The return
datatype for a method is set before the method name.
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Layout Algorithms in the GIC

This appendix presents how a test graph is laid out by the four layout methods im-
plemented in the GIC. The four layout methods are: Fruchterman-Reingold layout,
Radial layout, Random layout and Orthogonal layout. The graph used represents
a set of European countries and the border adjacency between them. To allow the
orthogonal layout to work with this graph, the adjacencies have been given direction
in such a way that the graph is considered a DAG.

Figure C.1: Fruchterman-Reingold layout.
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Figure C.2: Radial layout.

Figure C.3: Random layout.
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Figure C.4: Orthogonal layout.
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