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Abstract

With the advent of automated management of wokflow processes, the need to sup-

port ever more flexible processes arises. Theses processes, also referred to as ad-hoc,

adaptive, or intelligent processes, are difficult to manage. This is because they

need to be formalized in order to be successfully automated and require continuous

adaptation due to a constantly changing environment.

Many techniques have been employed in order to support such ad-hoc processes.

The construction of processes via automated planning techniques, as used in Ar-

tificial Intelligence, is one of them. The problem with this approach, however, is

the difficulty in identifying and designing the operators definitions that describe a

planning domain. This thesis proposes a Machine Learning algorithm that acquires

these operators definitions from the non-obstructive observation of execution traces

of such ad-hoc processes. Unlike the related work, this machine learning algorithm

extends the state-of-the art because it is not provided with information on either

the number of operators that exist nor the operators’ names and parameters.

We formalize the learning problem as an instance of the Minimum Consistent

Subset Cover problem. A set of constraints are identified that determine which

covering rules are generated that may represent operator definitions. These con-

straints, together with the use of a greedy covering algorithm, are used to determine

the correct number of the operators and their definition when the data sets have no

noise.

The basic algorithm depends only on the co-occurrence of covering literals. The

basic algorithm was then extended to deal with overlap operators (operators that

consist of combinations of co-occurring literals). Dealing with noisy data is a funda-

mental requirement for the practical application of any machine learning algorithm.
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The proposed algorithm is able to deal with errors of omission and commission.

Experiments were performed using four planning domains. Three of these were

obtained from an International Planning Competition. The fourth domain describes

a workflow process that was specifically designed for testing the identification of over-

lap operators. Two main sets of experiments were made. The first used noiseless

data only. The second used three different settings of noisy data. These noisy exper-

iments used data sets that contained errors of commission only, errors of omission

only and combination of these.

The results using noiseless data show that the algorithm is capable of identifying

all of the operators without any errors, irrespective of whether or not overlap oper-

ators exist. When only errors of commission exist, all of the oracle’s operators are

also correctly identified. However a number of superfluous definitions are sometimes

generated. Errors of omission have proven to be the most difficult to deal with.

Whenever such errors are injected into the data sets, not all of the domain’s opera-

tors can be correctly identified. As with the case of errors of commission, additional

incorrect operator definitions may also be generated. Even though determining the

correct solutions in the presence of noise is not possible, the algorithm is robust,

producing results with low error rates.



Resumo

Com o advento da gestão automatizada de processos de wokflow, surge a necessidade

de apoiar processos cada vez mais flex́ıveis. Estes processos, também conhecidos

como processos ad-hoc, adaptáveis, ou inteligentes, são dif́ıceis de gerir. Isso porque

precisam de ser formalizados para que sejam automatizados com êxito e também

exigem uma cont́ınua adaptação devido ao meio que está em constante mudança.

Muitas técnicas têm sido empregues no apoio a processos ad-hoc. A construção

dos processos através de técnicas de planeamento, como usado na Inteligência Ar-

tificial, é um deles. O problema com esta abordagem, porém, é a dificuldade em

identificar e construir as definições de operadores que descrevem um domı́nio de

planeamento. Esta tese propõe um algoritmo de Aprendizagem Computacional que

adquire as definições de operadores a partir da observação dos registos da execução

dos processos ad-hoc. Ao contário de outros trabalhos nesta área, este algoritmo

de Aprendizagem Computacional estende o estado-da-arte porque não necessita de

informação sobre o número de operadores que existem nem os nomes e parâmetros

dos operadores.

O problema de aprendizagem foi formalizado como uma instância do problema

de cobertura de subconjunto mı́nimo consistente. Um conjunto de restrições é iden-

tificado permitindo determinar quais as regras que representam as definições do

operador. Essas restrições, juntamente com o uso de um algoritmo ganancioso de

cobertura, são utilizados para determinar o número correcto dos operadores e suas

definições, quando os conjuntos de dados não têm qualquer rúıdo.

O algoritmo básico depende somente da co-ocorrência de literais de cobertura.

O algoritmo básico foi então estendido para lidar com operadores de sobreposição

(operadores que consistem em combinações de literais em co-ocorrência). Lidar com
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dados com rúıdo é um requisito fundamental para a aplicação prática de qualquer

algoritmo de Aprendizado Computacional. O algoritmo proposto é capaz de lidar

tanto com os erros de omissão como comissão.

Experiências foram realizadas utilizando quatro domı́nios de planeamento. Três

destes foram obtidos de um Concurso Internacional de Planeamento. O quarto

domı́nio descreve um processo de workflow, que foi concebido especificamente para

testes de identificação dos operadores com sobreposição. Dois grandes grupos de

experiências foram realizados. O primeiro grupo de dados não possúıa rúıdo. O

segundo grupo de dados continha três configurações diferentes de dados com rúıdo.

Estas experiências com os dados com rúıdo utilizaram conjuntos de dados que con-

tinha só erros de comissão, só erros de omissão e uma combinação de ambos.

Os resultados utilizando dados sem rúıdo mostram que o algoritmo é capaz de

identificar todos os operadores, sem qualquer erro, independentemente de existirem

ou não operadores de sobreposição. Quando existem apenas os erros de comissão,

todos os operadores do oráculo também são identificadas correctamente. No en-

tanto, uma série de definições supérfluas são por vezes geradas. Erros de omissão

mostraram ser os mais dif́ıceis de tratar. Sempre que tais erros são introduzido

nos dados, nem todos os operadores do domı́nio podem ser correctamente identi-

ficados. Tal como no caso de erros de comissão, definições adicionais incorrectas

de operadores também podem ser geradas. Apesar de não ser posśıvel determi-

nar as soluções correctas na presença de rúıdo, o algoritmo é no entanto robusto,

produzindo resultados com baixas taxas de erro.



Résumé

Avec l’apparition de la gestion automatisée des processus des flux de travail, la

nécessité de supporter des processus toujours plus flexibles se fait sentir. Ces pro-

cessus, que l’on appelle aussi processus ponctuels, adaptatifs ou intelligents, sont

difficiles à gérer. Le raison en est qu’ils doivent être formalisés pour être automa-

tisés avec succès et qu’ils exigent une adaptation continue à cause des changements

constants de l’environnement.

De nombreuses techniques ont été employées pour supporter de tels processus

ponctuels. La construction de processus via des techniques de planification automa-

tique, comme celles qui sont utilisées en Intelligence Artificielle, est l’une d’entre

elles. Toutefois, le problème de cette approche est la difficulté d’identifier et de con-

cevoir les définitions d’opérateurs qui décrivent un domaine de planification. Cette

thèse propose un algorithme d’apprentissage artificiel qui acquiert des définitions

d’opérateur à partir de l’observation non obstructionniste des traces d’exécution

de tels processus ponctuels. A la différence d’un travail similaire, cet algorithme

d’apprentissage artificiel élargit la technologie de pointe parce qu’il n’est pas ali-

menté par une information basée sur l’un ou l’autre nombre d’opérateurs qui existent

ni sur les noms et paramètres des opérateurs.

Nous formalisons le problème d’apprentissage comme un cas de problème de la

Couverture Minimale d’un Sous-ensemble Cohérent. Une série de contraintes sont

identifiées, elles déterminent quelles règles de couverture sont produites, qui peuvent

représenter des définitions d’opérateur. Ces contraintes, jointes à l’utilisation d’un

algorithme glouton de couverture, sont utilisées pour déterminer le nombre correct

d’opérateurs et leur définition, quand la série de données n’a pas de corruption.

L’algorithme de base dépend seulement de la cooccurrence des littéraux de cou-
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verture. L’algorithme de base était alors étendu pour faire face aux opérateurs de

chevauchement (Opérateurs qui consistent en combinaisons de littéraux co-occurrents).

Faire face aux données corrompues est une exigence fondamentale pour l’application

pratique d’un algorithme d’apprentissage artificiel. L’algorithme proposé est capable

de faire face aux erreurs d’omission et de commission.

Des expériences ont été exécutées en utilisant quatre domaines de planifica-

tion. Trois de ceux-ci ont été obtenus à partir d’une Compétition Internationale

de Planification. Le quatrième domaine décrit un processus de flux de travail qui

a été spécifiquement conu pour tester l’identification d’opérateurs de chevauche-

ment. Deux séries principales d’expériences ont été réalisées. La première a seule-

ment utilisé des données non corrompues. La deuxième a utilisé trois différents

paramètres de données corrompues. Ces expériences corrompues utilisent des séries

de données qui contiennent seulement des erreurs de commission, seulement des

erreurs d’omission et une combinaison des deux.

Les résultats obtenus en utilisant des données non corrompues montrent que

l’algorithme est capable d’identifier tous les opérateurs sans aucune erreur, peu im-

porte s’il existe ou non des opérateurs de chevauchement. Quand il existe seulement

des erreurs de commission, tous les opérateurs d’oracle sont correctement identifiés.

Toutefois, un certain nombre de définitions superflues sont parfois produites. Il est

prouvé que le plus difficile est de faire face à des erreurs d’omission. Quand de

telles erreurs sont injectées dans les séries de données, les opérateurs de domaine

ne peuvent pas tous être correctement identifiés. Comme dans le cas d’erreurs de

commission, des définitions additionnelles d’opérateur incorrect peuvent aussi être

causées. Même si la détermination des solutions correctes en présence de corrup-

tion n’est pas possible, l’algorithme est bien élaboré et produit des résultats avec de

faibles taux d’erreur.
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Chapter 1

Introduction

Our work addresses the problem associated with workflow management. In the con-

text of this document Workflow refers to the automated management of processes.

This includes, amongst others, document management, office automation, adminis-

trative workflow, inter-enterprise Business to Business e-Commerce (B2B) processes

orchestration and choreography and scientific workflows.

The study of process automation, especially in the context of human orientated

processes, include a myriad of interesting and relevant issues in many areas such

as knowledge1 representation, knowledge management, process modelling, mod-

elling languages, requirements elicitation, and many of the social sciences (Sociology,

Ethnography and Language).

In addition to this, several authors have attempted to identify and use alterna-

tive theories and methodologies to deal with many of the softer problems related

to process (re)engineering (organisational learning, institutional theory, organisa-

tion culture and structuration) [SHH95, BR96]. Specifically cultural issues such as

changing behaviour and attitude and resolving conflicts associated with promoting

commitment and employee empowerment are dealt with. Nevertheless in our study

we focussed only on the technical aspects related specifically to process automa-

tion which includes process model representation, model construction and process

1We abuse the term knowledge. Knowledge as we use it refers to both the artefacts (text, fig-
ures, models, ontologies, dictionaries, etc.) and actions (dialogue between people, argumentation,
critiquing, memorization, learning, (automated) inference, (automated) verification, etc.) that give
rise to knowledge.

1
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control.

Even though we do not deal with the softer issues associated with the more

general and encompassing subject of process (re)engineering, we believe this work

also contributes to research that generally advocates the use of (continuous) organ-

isational learning [BR96] and knowledge management as an important means for

supporting process design and automation [Ber00].

1.1 Problem Statement

Much attention has been given to workflow systems, both in academia and in in-

dustry. Research in this area goes as far back as the 80s with the development

and deployment of office automation systems [BP84]. Even though a lot of ef-

fort has been put into these systems, they are still considered inflexible and brit-

tle [JSM+99, Car97]. The rigid control of workflow systems does not provide ad-

equate support for ad-hoc or collaborative processes. These processes are charac-

terised as being unstructured, knowledge intensive and highly context-dependent

processes [Jør04]. They depend on the creativity and adaptability of the human

participants. Examples of such processes include, amongst others, consulting and

engineering. As a result, research in these domains has focused on providing what is

commonly known as ad-hoc workflow systems, also referred to as adaptive, flexible

or intelligent workflow management systems. Some of these works specifically target

ad-hoc processes [Car97, Jør04], while others implicitly attempt to enhance system

adaptability (for example [BD00,JSM+99]).

Much of the inflexibility of the workflow management systems stems from the

fact that process deployment is done in two phases. The first phase is concerned

with process synthesis (modelling, testing and correction), while the second one is

concerned with process enactment (process execution and process instance admin-

istration). This presents two important issues. First and foremost, process models

by definition are rigorous, formal descriptions of the world amenable to automated

computation. Therefore one cannot conceivably expect to foresee and to plan for

all contingencies thereby creating the perfect model [Jør04].
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Second, as the models will never be complete they must be continuously adapted

and corrected. Naturally this was known since the inception of workflow manage-

ment systems, so process model correction and redeployment have always been an

integral part of the workflow management lifecycle [zM04,GT97]. However, the rigid

process models and the separate modelling and enactment phase make it difficult to

continuously incorporate corrections and quickly adapt to changes.

All research in this area has therefore attempted to: a) facilitate or enhance

modelling; and b) ease process adaptation and correction (thereby compensating for

modelling omissions and errors). Much of this work has given more importance to

either one of the issues in detriment to the other. Solutions usually trade model com-

pleteness for system reactiveness or vice-versa. The investigation that concentrates

on the modelling aspects are usually concerned with knowledge management in gen-

eral, modelling language expressiveness and ease of use, formal and simulated model

verification, modelling aids in the form of suggestions and critiquing, model reuse

and model identification and extraction. Research directed at process adaptability

and correction, in its turn, looks at dynamic process synthesis, dynamic and intelli-

gent resource allocation, automatic fault detection and correction, process auditing

and analysis and soliciting, promoting and incorporating changes based on process

execution experience. The result is that the models become richer and more expres-

sive, sophisticated methods of inference are adopted and ultimately the distinction

between the modelling and execution phase becomes blurred [zM99,MB99a].

Current research in adaptive workflow has succeeded in automating several stages

of the process management lifecycle, namely process composition (planing the se-

quence of tasks that constitute the process in order to attain a goal), process exe-

cution (controlling the execution of the tasks in order to complete the process) and

process correction (identifying and correcting plan execution). Some of this work

has also succeeded in automating the transition between these process management

stages. However, to the best of our knowledge, the automation of the full workflow

process management lifecycle has yet to be achieved. This is due to two main rea-

sons: a) modelling still requires the active involvement of the users to enumerate

the possible tasks; and b) fault detection and error correction do not attempt to
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identify modelling omission and automatically incorporate these into the process

models themselves.

This thesis contributes to the state-of-the-art by extending processes adaptability

at the processes modelling level. It does this by analyzing the execution of actions of

a set of processes, which will then allow for the automatic composition of workflows.

More specifically we learn the definition of planning operators, whose instances

formally describe workflow actions. The composition of workflows may then be

accomplished automatically via the use of an AI planner that generates a plan. In

this way we a) avoid much of the modelling effort by learning directly from users’

behaviour and b) allow for the incorporation of changes into the models as soon

as errors or omissions are detected. Learning task (or operators) definitions may

therefore make it possible to automate all stages of the full lifecycle of the workflow

process management by providing solutions to the two main issues referred to above.

The relationship between planning operator, workflow task, process and plan

are shown in Figure 1.1. An ad-hoc process consists of various actions with many

possible interactions (see the Ai in Figure 1.1 a)). The learning algorithm should be

able to automatically determine the definition of the various actions (Ai) that are

executed within one or more ad-hoc processes. Note that a single planning operator

(Oi) may represent one or more instances of an ad-hoc process action. In other

words there is not a one-to-one mapping between the Ai in Figure 1.1 a) and Oi in

Figure 1.1 b). A planning system may then be used to automatically compose an

ad-hoc process by instantiating and sequencing the appropriate actions in order to

satisfy one or more goals.

It is important to note that a single ad-hoc process may have many possibly

equivalent plans. In other words a set of different operator instantiations applied

in varying sequences may attain the same goals. The plan (workflow process) that

is composed depends on the AI planning algorithm used. This in turn requires

that the Machine Learning algorithm acquire operator definitions that use a specific

formalism. We must therefore, first select an appropriate planning algorithm that

supports the composition of ad-hoc worklfows (see Section 2.3.3) and then opt for

a Machine Learning algorithm that is able to learn planning operators that use the
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Figure 1.1: Learning Planning Operators to Automated Processes Composition.

selected planning formalism (see Section 2.3.5).

Even though this research focus on these two problems, many other issues will re-

main open. Issues regarding security, privacy, accountability and process control will

not be dealt with. These issues focus on process’ rigid model, that in effect enforces

control, but which may be inadvertently circumvented. Such control has the basic

aim of imposing behaviour that is required to ensure process rationalisation (enu-

merated as one of workflows’ major advantages) [Fis02] or even conformance to legal

requirements. In addition to this we will not delve into issues regarding knowledge

representation of the background knowledge (ontologies, controlled vocabularies),

natural language processing (dictionaries, thesauri) nor protocols (normative be-

haviour, agent collaboration and competition), which are required for facilitating

communication between the workflow participants themselves.

The ultimate goal of this work is to facilitate knowledge acquisition and dissem-

ination. It should provide the means by which cooperating users may share and

possibly create new process knowledge. We do not foresee, nor do we attempt, to

remove the human element from workflow management. People are the autonomous
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agents that will establish the goals and therefore set the system in motion. It is

they that provide the necessary intelligence and context awareness to drive process

creation, use and evolution.

The acquisition of (tacit) knowledge is often difficult and fails because: a) peo-

ple are not necessarily aware of the expert knowledge they possess; b) they have no

need to make such knowledge explicit in order to use it; and c) presents a dilemma

because it means they loose a “valuable competitive advantage” [Ste01]. In order

to circumvent such problems, knowledge elicitation may: a) acquire tacit knowl-

edge indirectly (recommender system example: instead of enumerating concepts of

interest, point out documents of interest to update a search profile); b) explicitly

provide the user with added value so that he is motivated to share such knowledge

(recommender example: letting the shared knowledge be used to find information of

interest by recommending documents based on similar profiles); and c) not make the

knowledge explicit but allow the user to retain it (recommender system: user keeps

and changes his profile independently of others). We use these results as guidelines

in this research.

Accordingly, we attempt to non-intrusively acquire expert knowledge by obser-

vation during problem solving episodes [RSDC99]. Learning by observation allows

us to acquire tacit knowledge that is effectively used during problem solving and not

depend on explicit, conformant and possibly irrelevant knowledge that is adopted

in organizations (for example job descriptions do not adequately describe ones re-

sponsibilities and tasks). This should allow one to substantially reduce the costly

and possibly undesired need of eliciting expert knowledge.

1.2 Objectives

The problem statement described above can be detailed further and expressed in

the following questions to be addressed:

Can we automatically identify and learn what the constituent parts of a process

are by the simple and non-obstructive observation of its execution?
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The objective is to ascertain if in effect it is possible to learn enough from the

executions of a process in order to automatically construct a model for it. To give

a better understanding of how this will promote the dissemination of knowledge

amongst workflow participants, consider a user that has a set of goals to achieve but

does not know (or does not have a clear idea of) how to do go about it. Chances

are that others have had similar experiences and have already successfully achieved

these goals. The user therefore queries the system in order to obtain the list of

actions necessary to achieve the goals. A process is then generated based on the

other participants’ previous experiences. The process may now be executed, however

any new information gained from this new experience is also incorporated into the

system so that someone else may later on take advantage of it. As the workflow

participants execute their tasks so the knowledge base should increase providing a

medium for recording and sharing process information.

In the above scenario several additional practical problems exist. These include

for example: sampling rates, incomplete and erroneous observation of actions, dy-

namic and possibly inconsistent changes in the background knowledge base, the

identification and setting of goals using a common semantics shared by all agents,

non-deterministic and probabilistic actions and the partial satisfaction of goals.

Some of these represent important, complex problems in themselves that require

in-depth research and much effort to solve. In order to make the current work fea-

sible these issues have been identified and pointed out, but we will nevertheless not

endeavour to solve them all. Instead, several simplifying assumptions are made.

However, care has been taken to make assumptions that will, not only, allow for the

practical implementation of a system based on our results, but also be useful. Exam-

ples of such assumptions include: full but possibly erroneous observation, sampling

triggered by events only, all dynamic changes to the background will be consistent,

all information that is exchanged is based on a common, previously agreed upon

syntax and semantics and all actions are instantaneous.
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1.3 Research Approach

1.3.1 Research Areas

According to the problem statement (Section 1.1) and objectives (Section 1.2) re-

search was conducted in order to identify the current repertoire of techniques and

tools used in (adaptable) workflow management. Emphasis was placed on flexibil-

ity and automation. This has provided the basis for identifying promising areas to

work on. Apart from the research material related to workflow management, we

have also done some preliminary work [Fer06] on Automated Planning and Machine

Learning. Subsequently these areas of AI were analysed and studied with the aim of

enabling the acquisition of process knowledge (task identification, task description,

consistency checking) and its use in the automated synthesis of processes (composi-

tion, error detection, error correction). This thesis however focuses only on the very

specific area of learning planning operators.

1.3.2 Evaluation and Validation

We formulate the hypothesis that current workflow management systems, in order

to provide flexible and adaptable systems that support ad-hoc processes, may be

further enhanced by combining the acquisition of information via the observation of

agents in the execution of their tasks and the automated synthesis and correction

of workflow process. To be able to answer this fully, one would require qualitative

and quantitative evaluation of experimental results using a workflow management

system that implements the proposed solutions. This is much too ambitious for the

following reasons:

� The implementation (or adaptation of) a (robust, stable and bug free) worklow

system would require a fully fledged development project;

� Qualitative and quantitative verification would require the installation and

use of the workflow management system by various enterprises for prolonged

periods of time;
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� Qualitative and quantitative verification require lengthy comparative studies

that depend on surveys, interviews and detailed analysis of auditing data;

� The core algorithms and methods are experimental in nature and therefore

require further work before being used in the development of robust and usable

workflow management systems.

On the other hand the methods proposed in this thesis are empirically evaluated

based on several experimental settings using simulation. This has several important

advantages:

� Provides a ready source of data for processing and analysis;

� Allows the control of simulation parameters that facilitate basic algorithm

testing and evaluation;

� Facilitates quantitative (albeit empirical) analysis via simple well known met-

rics;

� Reduces the dependency on external factors for testing;

� Reduces experiment set-up and evaluation times;

� Does not require solving related issues not directly related this work (see Sec-

tion 1.2).

It also presents some disadvantages which include:

� It does not provide a base for comparative analysis with existing solutions;

� Fails to provide a realistic test-bed that enables the identification of new prob-

lems in this context;

� Does not allow for qualitative analysis based on user feedback.

Because of this, experimental design takes some precautions in order to use realistic

data and obtain useful and realistic results. This includes, but is not limited to,

simulating sensing and sampling errors, considering multiple agents concurrently

executing processes and task execution failure. Such caution should provide this

study with a realistic and useful test-bed in which to work.
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1.4 Contributions

The aim of this work is to improve the state-of-the-art in workflow management.

Specifically it should allow for the future implementation of intelligent workflow

management systems that not only adequately support ad-hoc processes but also,

to a certain extent, provides a platform that facilitates knowledge acquisition and

dissemination. Specifically the resulting artifacts of this work include: a simple

simulation framework, test data (not included in simulation) and a Machine Learning

algorithm that acquires process action definitions that may be used by a planning

system.

1.5 Outline of the Thesis

The remaining chapters of this thesis are organized as follows. In Chapter 2 we re-

view the related work. We start off by looking at workflow mining, which specifically

deals with the identification of workflow processes based on the execution logs of

workflow engines. We point out several problems associated with these approaches

and explain why we have chosen automated planning as means of generating work-

flow process definitions. Next we give a general presentation on automated planning,

its use in the construction of processes definitions and how this results in the need

to learn operator definitions.

In Chapter 3 we describe the Machine Learning algorithm that was used to

acquire the planning operators. We first provide a set of formal definitions, which

includes descriptions of the data sets used and the type of operator definitions that

were learned. We then express the learning problem as a specific instance of the

general Minimal Consistent Subset Cover Problem. The description of the algorithm

is done in three parts. The first deals with learning standard operator definitions that

are encountered in the planning domains used by the automated planning research

community. The second describes how the algorithm may acquire a type of operator

definition found only in a planing domain that describes a workflow process. Finally

we show how the algorithm can learn using noisy data sets.

In Chapter 4 we detail the design and execution of the experiments. We first
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describe the planning domains that were used to generate the data sets. We then

explain how the generation of this data is parametrized in order to create several test

scenarios. A set of error measures are then described that were used in evaluating the

results. Experimental results are presented in two main groups: those experiments

that used noiseless data sets and those experiments wherein noise has been injected

into the data sets. Finally we analyse these results.

Chapter 5 presents the conclusion of this work. It reviews the contributions that

were made based on the experimental results and ends with a description of the

work that has been planned for the future.

Two appendices are also included. Appendix A contains formal descriptions of

all of the domains used in the experiments. Appendix B contains all of the results

that were obtained. Each result is represented as graph split into three parts, each

part representing an error measure that was used in evaluating the results.





Chapter 2

Related Work

2.1 Introduction

Flexible workflow support for ad-hoc processes should combine long-term process

evolution with short term adaptation. Very few studies have attempted to support

both short and long term process adaptation. To the best of our knowledge all re-

search on long-term process evolution is based on a process level analysis (workflow

mining). None of these solutions allow for task based adaptation. Neither do they

take advantage of the possibility of automatically composing processes in order to

support both short and long-term changes. In our work we have addressed the com-

bination of the support for long-term process evolution of processes (based on task

adaptation) and short-term plan changes (based on automated process composition).

Much research has been done in the area of AI planning providing us with a

wealth of information and an extensive range of solutions. In order to focus our

attention on the more relevant material and facilitate the description of AI related

techniques, we first characterize the planning requirements that enable us to compose

and execute workflow processes successfully. This will allow us to select and use the

appropriate planning system in the domain of automated workflow planning. The

objective is to use AI planning to automatically synthesize processes and thereby

support short-term changes. The emphasis here is on system reactiveness.

We will look next at research in Machine Learning specifically directed at AI

planning. This provides us with the means of evolving plans and thereby supporting

13
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the long-term evolution of workflow processes. The objective here is to describe what

planning techniques have been employed and what problems have been encountered

and solved. The focus is on the learning techniques that allow us to automatically

acquire a planning model, specifically to learn what planning operators exist and

what their definitions are in order to be able to plan.

Not all issues related AI planning will be dealt with. Specifically, we will not

delve into issues related to: re-planning, plan repair, planning with resources, mixed

initiative planning and planning aids (consistency and critiquing). This will allow us

to focus on the contributions of this thesis, which is the support of process evolution

based on Machine Learning to acquire operator definitions.

2.2 Workflow Mining

The area of workflow research that attempts to identify process models is known

as process mining (see [vdA10, vdAvDH+03, AGL98, ZGLL03, HK04, GABG05], for

a short introduction and case study see [IG06]). Much work has been done on

this subject (see [vdAvDH+03] for a survey). Process mining’s main motivation

concerns process discovery and optimization. The emphasis here is on identifying

and correcting inefficiency (performance indicators such as wait-time and utilization

can be used) in process executions. Most of the work attempts to identify a process

model by analysing the sequences in which actions are executed during the processing

of equivalent cases. The resulting process model consist of a set of activities that

are ordered according to their dependencies. This research area has also influences

from other areas of research such as identifying the interaction between ad-hoc web-

services from the control-flow perspective ( [GBG08]) and modelling the behaviour

of multi-agent robotic systems ( [RZV+09]).

Process mining poses many challenges that have yet to be adequately solved.

Such challenges include basic issues in identifying duplicate tasks, loops, ensur-

ing model completeness while minimizing model complexity and handling noisy

data ( [WWvdA+10]). Many of the studies attempt to solve these problems by

directly evaluating and optimizing the quality of the process ( [dMWvdA07]), fa-
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cilitating selective data mining and process model creation ( [vdARV+09]), using

well known relation mining techniques to deal with noise and background data

( [GMVB09], [GMB+07]), using time information to better establish dependencies

( [WWA+09]), allowing for the interactive analyses of processes based on temporal

mining ( [BPNG09]) or limiting the generation of the models to the case of block

structured processes ( [Sch04]).

In most of the approaches the resulting process model is obtained in two phases:

first the data is mined and then a process model is generated. A popular control

model that is used is Petri Nets ( [Rei92]), which itself introduces some problems

namely: the need to identify invisible1 tasks ( [WWvdA+10]) and non-free-choice 2

constructs.

First, we believe that all the issues mentioned above stem from a common root

cause. The main problem is that the effects of an action and therefore the flow

control dependencies cannot be fully determined solely by their ordering. This is

true for the case where datasets that are complete (in the sense that all of the

possible ordering of all actions for a given case are available) do not exist. This

problem also manifests itself in the identification of multiple occurrences of the

same action in loops. In order to cope with this, some work establish a horizon

of time for analysing global effects ( [GMVB09]), others attempt to determine this

global horizon dynamically ( [GBG08]) or simply consider only direct dependencies

( [Sch04]). These strategies however do not fully solve the problem and we find, for

example, that only short loops (loops with a limited number of repeated actions)

can be identified. This problem is exacerbated when the data is noisy.

The second issue is that some of the problems listed above are due to the use

of Petri Nets as a formalism for the flow control model. More specifically places

represent actions (events) and not the conditions under which the actions are exe-

cuted. This means, for example, that when an action is skipped, an invisible task

must be identified and added to the model ( [WWvdA+10]). In other words, a clear

1Petri Net places that do not represent concrete actions but are used for flow control such as
skipping another action.

2This represents a Petri Net transition that is both used for synchronization and flow control
such as a choice.
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distinction between the actions that are executed and the effects they have on the

running process are not made.

For the reasons above, we have adopted an alternative formalism that is used in

automated planning ( [Tra04]). Automated planning clearly differentiates between

an action, its pre-conditions and effects. Such a distinction also avoids the Petri

Net’s problem of non-free-choice transitions because the pre-conditions establish how

synchronization will be attained and the effects determine flow control. Automated

planning also has a large repertoire of algorithms that can be used for the automated

generation of plans. Such plans essentially express a control flow model. We will

focus particularly on learning planning operators that can be used by Model based

planners, which allow for the generation of state machine like plans that support the

execution and control of actions with non-deterministic effects and loops (iteration)

( [CPRT03]).

2.3 Automated Planning

2.3.1 Concepts and Definitions

AI planning is concerned with action planning in general. Many types of action plan-

ning exist such as motion and path planning (control trajectory of mobile robots),

perception planning (sensing actions), navigation planning (combination of path and

perception planning), manipulation planning (building assemblies) and communica-

tions planning (collaboration) [Tra04]. Planning attempts to build a predictive

model of the system’s possible states and what actions need to be executed in order

to transition between these states. AI planning is concerned with the automated

synthesis of these predictive action models.

AI planners may either be domain-specific (inference procedures specifically de-

signed for a given domain), domain-independent (planning algorithms that use gen-

eral planning domain descriptions) or domain-configurable (planning domain also

includes domain-specific knowledge that constraints the planners search) [Nau07].

The most efficient planning systems are domain-specific and is the reason why most

of today’s applications use such planners [Tra04]. Domain-configurable planners also
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provide an efficient viable solution, nevertheless we will focus our attention on the

use of domain-independent planners. The reason for this is our aim to support the

automated synthesis of workflow processes. Because workflow processes cover a wide

range of domains, it is not reasonable to limit ourselves to a given domain-specific

planning algorithm.

Planning is concerned with the selection and sequencing of actions in order to

change the state of a system. The model of state-transition (or discrete-event)

systems provide a general conceptual framework that describes such a dynamic

system. Formally, a state-transition system (in [Tra04], pages 5-6) is a 4-tuple

system Σ = (S,A,E, γ) where:

� S = {s1, s2, ...} is a finite3 or recursively enumerable set of states,

� A = {a1, a2, ...} is a finite4 or recursively enumerable set of actions,

� E = {e1, e2, ...} is a finite or recursively enumerable set of events,

� γ : S × A× E → 2S is a state transition function,

The state-transition system can be represented as a directed graph whose nodes are

states in S and the edges are the state transition between nodes. State transitions

may occur either due to the execution of an action (γ(s, a)5 where a ∈ A) or the

occurrence of an event (γ(s, e)5 where e ∈ E). The events e ∈ E represent contingent

transitions which cannot be controlled via plan execution but describe the intrinsic

internal behaviour of the system. We say that an action a is applicable to state s

when γ(s, a) 6= ∅; in other words when the action a is applied to state s it will

transition into a new state s′ = γ(s, a). Note that the state transition function

γ may partition state transitions into separate action and event state transitions

by considering actions and events separately. Planning, however, may also support

the combined action-event transitions γ(s, a, e) (for example via the use of temporal

effects).

3We will see later, when dealing with probabilistic planning, that such a set may be infinite.
4We assume that we will only be dealing with planning problems where a finite number of

objects are used, otherwise this set could be infinite.
5For convenience we introduce a no-op action and a neutral event ε so that we write

γ(s,no-op, e) as γ(s, e) and γ(s, a, ε) as γ(s, a).
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Figure 2.1: Conceptual model for dynamic planning [Tra04].

The objective of AI planning, given the a state transition system Σ, is to deter-

mine the sequence of actions that will result in an ordered set of transitions from

an initial state s0 or initial set of states S0 to a goal state sg or a set of goal states

Sg. The sequence of (sets of) actions is called a plan denoted by π. An initial set

of states S0 is used to model uncertainty in the initial state of a planning problem.

We will use the term belief state to refer to the set of states S0. In the case of set

of goals Sg, the objective is to reach any of the states sg ∈ Sg. Note that plan-

ning objectives need not be so restricted. Planning paradigms (such as probabilistic

planning based on Partially Observable Markov Decision Processes (POMDP)6 and

symbolic model-checking based planning [CPRT03]) allow for the use of extended

goals. Various types of extended goals can be defined: states to avoid, states the

system should maintain and state that must eventually be reached. A planning

problem is defined as the triplet P = (Σ, s0, Sg). Planning problems that use these

concepts will be formally and more rigorously defined in Section 2.3.2. Both, the set

of goals and planning paradigm determine the type of plan (π) generated. In order

to better understand the role that AI planning plays, we may illustrate the rela-

tionships between the following three main components that constitute a planning

system (see Figure 2.1) [Tra04]:

� A state-transition system Σ that evolves according to the events that occur

6http://www.pomdp.org
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and actions that are applied to it;

� A controller, that at a given state s, executes the action a according to the

plan π;

� A planner, that given a state-transition system Σ, an initial (s0 or S0) and

final goal (sg or Sg) synthesises a plan π.

Two important elements must be added to this model. The first is that it is neces-

sary to model uncertainty. Later we will see that state transition systems may be

used to model uncertainty by including a set of additional states that represent dis-

crete albeit non deterministic outcomes or associating probabilities to several state

transitions. Second, not all state information is available to the controller. This is

modelled by an observation function η : S → ω where ω is the set of discrete ob-

servations ω = {o1, o2, ..}. The input to the controller is therefore the set o = η(s),

which represents the current state.

Classical planning problems have several possible representations, which have the

same expressive power because each one may be translated into any other. Classical

planning may use one of the following types of representations:

Set-theoretic representation The states S in Σ are expressed as a set of propo-

sitional formulae. The actions also consist of a set of propositions. These

propositions specify when an action is applicable (pre-conditions) and the re-

sulting state when such an action is applied (post-conditions). The transition

to state s′ = γ(s, a) is defined by a set of propositions that are added to and

removed from s.

Classical representation The states and actions are described in the same way

as the set-theoretic representation, however first order logic and logical connec-

tives are used. This is the most widely used planning representation because

it is compact and clear.

State variable representation The state is represented by a set of n state vari-

ables X = {x1, .., xn} assigned certain values. The applicability of the action

is determined by a subset of state variables and their corresponding values,
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which must hold in the world state s. The state transition is defined as a

partial function that maps the tuple of values s to a another tuple of values

s′.

These basic representations can be extended in various ways. This includes the use

of axioms, quantified expression (universal and existential quantification in both

the pre-conditions and post-conditions), conditional planning (post-conditions de-

pend on the pre-conditions), disjunction in pre-conditions, functional symbols (for

example incrementing a counter) and attached procedures (for example the compar-

ison of numerical values). In additional to this, the use of extended goals used in

non-classical planning can also be mapped into classical planning by, for example,

altering the definitions of the actions themselves. This may include for example:

excluding certain states from the search, enforcing a specific order in action execu-

tion and enforcing the execution of a minimum number of actions. These types of

extensions are nevertheless limited.

2.3.2 AI Planning Paradigms

Research in this area has evolved with the growing capabilities of the planning

algorithms. Initial emphasis was on efficiently generating plans for deterministic

environments, referred to as classical planning. Currently work is now focused on

extending the planning to cover more complex environments dealing with ever more

realistic scenarios [Nau07]. As a result, many types of planning paradigms exist.

Each type makes a different set of assumptions, uses specific algorithms to generate

a plan and yield possibly more than one type of plan to solve the specific problem. A

very large body of research with a diverse set of goals exists within the AI planning

community. This work could be classified according to various criteria which include

the planning algorithms used [Tra04,Nau07], planning principles [RH01], the types of

plans generated, the assumptions under which the planning is defined or even based

on a view of its most significant developments [Wel99]. In addition to this, research in

this area covers many other topics, which include but are not limited to: replanning

and plan repair (for example [vdKdW04,vdKdWW03,FGLS06,AKYG07]), resource

aware planning and scheduling (for example [HS07, RKM06]), learning in planning
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and scheduling ( [LD06,YFG06,NLFL07,MOJ+07]), mixed initiative planning and

scheduling ( [ACBC+04, CC06]) and the interleaving of planning and execution for

example in [WSK+05,LAP06]). Naturally these subjects are not independent.

Because our objective is to identify and use a planning paradigm that will allow

us to adequately support the automated composition and execution of workflows, we

will classify these according to the characteristics of the planning problem and the

appropriateness of the plan type to solve it. Planning problems may be categorized

according to 7:

Plan action determinism : a planning domain may model actions whose effects

are deterministic. In other words, once an action is executed, its effects are

guaranteed. For example if the action of picking up an object takes place, then

the planning state will always reflect the fact that the object has been moved.

Alternatively the effects of an action may be non-deterministic. In this case,

picking up an object may fail. This possible failure may be encoded as two

belief states: one belief state maintains the object’s previous position (failure)

and a second belief state mirrors the fact that the block has been moved

(success). In addition to this, non-deterministic outcomes may be assigned

a probability. For example we may say that the picking up an object may

fail 20% of the time. Such actions are said to be non-deterministic with a

stochastic outcome. In such cases we refer to the belief states as probabilistic

belief states.

Plan state observability : describes the ability to monitor all modelled states

during plan execution. This implicitly determines the types of plans that

are generated. For a given planning domain we may have full, partial or no

observability. Partial observability requires that a sensing action be explicitly

executed in order to acquire the state. Note that the lack of complete observ-

ability is not limited to the period of plan execution. The initial state may

7This classification and the formal description used are based on the 6th International Planning
Competition Rules drawn up by Daniel Bryce and Olivier Buffet for the uncertainty track, see
http://www.icaps-conference.org/. A alternate and more complete characterization of planning
problems may be found in [Tra04] in Sections 1.5 and 1.6 and [Nau07].
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also include some measure of uncertainty.

Depending on the combination of the actions’ determinism and the states’ ob-

servability, several classes of planning systems may exists. The various possibilities

are enumerate in Table 2.1.

Table 2.1: Plan types.
Action Determinism State Observability Planning type

Yes
Full

Classical (optimize)
Classical (satisfice)

None -
Partial -

No
Full

Conditional
Probabilistic

None Conformant
Partial Probabilistic

The planning types above can be described via a high level language such as the

Planning Definition Description Language (PDDL) or any of its variants, which are

based on propositional logic [FL03]. The initial and goal states are represented by

logical formulae. The set of applicable actions (operators) and transition functions

are described by action schemata. This schemata is based on STRIPS8-like opera-

tors [Tra04]. Various levels of expressiveness are required to describe these models

adequately. This includes modelling constructs such as: variable typing, equal-

ity, negation, disjunction and existential quantification. Additional expressiveness

may also aid the efficient execution of automated inference procedures by including

domain-specific knowledge (control-rules) that allows search space pruning [Nau07].

Note that the various planning techniques are not limited to propositional logic

and may also be encoded and solved as (mixed integer) linear programming, non-

monotonic logic programming and CSP [RH01,Nau07]. In addition to this the basic

operator schema may be augmented with information such as cost9 and probability

of occurrence in order to support various types of planning problems.

8Stanford Technology Research Institute Problem Solver.
9We will use cost in all our descriptions of planning problems, but could alternatively use

reward, for example in relation to probabilistic planning.
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Classical and Neoclassical Planning

In this section we describe all planning types wherein the effects of an action are not

stochastic in nature. Classical planning systems assume full observability and action

determinism. The corresponding planning algorithms may generate partial-order

(non-linear) [Wel94, PW92, NK01], optimal [BF97] or linear plans. Both partial-

order and optimal planning minimise plan length (or make-span) by allowing for

the parallel execution of actions. Classical linear planning, on the other hand, only

allows for the sequential execution of actions. Note that the notion of optimality is

not limited to plan length. Other criteria can be used to evaluate plan quality. Such

criteria can be generically modelled via a cost for executing an action. In the case

of make-span this cost is a single constant value that is attributed to all actions.

Although neoclassical planning algorithms based on Graphplan [BF97, KS99]

generate minimum length plans, these plans are less flexible than those generated

by partial-order planners because concurrently executing actions are sequenced at

specific (fixed) intervals. So, even though several algorithms may solve the same type

of planning problem, the plans that are generated have different characteristics.

Note that all of classical planning is optimal in the sense that only the minimum

number of tasks required to reach the goal are used. However for larger problems

the computing time required to guarantee optimality is excessive. In such cases

a combination of non-admissible pruning strategies and heuristics may be used to

reduce the search space, which will result in acceptable, albeit non-optimal, plans.

We refer to classical planning of this kind as satisficing.

A more realistic setting however assumes that actions are non-deterministic. In

other words, task execution is not guaranteed to succeed. In AI planning such

failures are modelled as a set of possible outcomes of an action or as an initial

set of unknown facts in the planing problem. The possible consequences of non-

deterministic actions are described in a operator’s post-conditions.

In the case of non-deterministic planning with no observability, plan generation

must guarantee that the goal is reachable irrespective of the actual initial state and

the actions’ true effects during execution [SW98]. This is known as conformant

planning. Note that not all problems may have a conformant solution. Conformant
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planning caters for problems with no observability and non-deterministic actions.

In the case of non-deterministic actions with full observability, conditional10

planning is used [Rin04,WAS98,PS92,BCRT06]. Conditional planning attempts to

generate robust plans that consider all possible non-stochastic consequences of the

actions and select the next appropriate action based on these outcomes. The set

of states that describe all these possible outcomes are also referred to as (discrete)

belief states. The resulting plan is in fact a Direct Acyclic Graph (DAG), each

path representing a trajectory. Conditional plans consider all possible trajectories

thereby guaranteeing that the goal is reached. Several planning systems model non-

determinism via the use of sensing actions only and observables.

Probabilistic Planning

In the case of stochastic operators effects, probabilistic planning is used [BKS08,

BG01]. Probabilistic planning is a general approach to planning with uncertainty

that attempts to solve the stochastic shortest-path by specifying action policies that

minimize the cost of plan execution. Unlike conditional planning however, mini-

mization of the plan cost also depends on the probability of the actions’ outcome.

In other words probabilistic planning attempts to generate a policy that maximizes

plan success depending on the probability of the actions’ effects.

Probabilistic planning under partial observability is also possible. In this case

not all state values are visible. Actions may now non-deterministically change both

state and state observability. The planning objective is therefore to find a policy

that increases the chances of success by: a) avoiding actions with high cost and

b) opting for actions that increase state’s observability thereby allowing for more

informed choices. Note that unlike the case of full observability, we now have a

notion of probabilistic belief state, which is a probability distribution over all of the

states. When an action takes place, the system does not transition between state,

but between sets of states. Each state is associated with probability that reflects

the degree to which it is believed it reflects the true system.

10Also referred to as contingency planning.
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The cases where deterministic actions occur in contexts where either partial

or no observability is possible, is not contemplated. This is because plans using

deterministic actions do not need not consider alternate execution paths due to

non-deterministic outcomes or unobservable state.

Planning Complexity

In order to select an appropriate planning system to support the automated acquisi-

tion, composition and execution of workflows, it is necessary we not only understand

the type of planning problems that can be solved, but also be aware of the difficulty

that solving such problems poses. In this very brief discussion we will provide

some general information on planning decidability and (worst-case) computational

complexity of classical planning. Some comments will also be made in relation to

non-classical planning.

Planning problems complexity falls into two categories: a) verifying that a plan

exists (plan-existence) and and identifying (or generating) solutions that are bound

by a maximum number of tasks (plan length). All of classical planning is decidable

for both plan existence and plan length. This is true whether classical, set-theoretic

or state-variable representations are used to encode the planning problem [Tra04].

However, if function symbols are used, then plan-existence is semidecidable11. Note

that for obvious reasons plan generation is generally of greater importance, however

the ability to verify the existence of a plan does permit interesting solutions (for

example sound and incremental planner for a given class of problems [JB98]). In

our case, tractable plan-existence is a crucial requirement that makes the automated

acquisition of planning operators feasible. It stands to reason then that the planning

representation used through this work must be function free.

The planning complexity of unrestricted problems for both plan-existence and

plan-length is very high (EXPSPACE-complete and NEXPTIME-complete). EX-

PSPACE is the set of decision problems that can be solved by a deterministic Turing

11A planning procedure is semidecidable if: a) it always terminates and returns an answer yes
if a plan exists; b) never returns yes if no plan exists; and c) is not guaranteed to terminate if a
plan exists. [Tra04]
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machine using O(2p(n)) space, where p(n) is a polynomial function of n ( [Tra04]).

NEXPTIME represents the set of all problems that are solved by non-deterministic

Turing machine in O(2p(n)) time, where p(n) is a polynomial function of n ( [Tra04]).

Several restrictions, such as disallowing the use of negative pre-conditions12, disal-

lowing the use of negative effects, disallowing the use of functional symbols and fixing

the operators instances prior to planning, may be used to reduce this complexity.

In such cases planning complexity may vary from constant time to EXPSPACE-

complete [Tra04,ENS95]. However, save for the use of functional symbols, employing

these restrictions in the general context of workflow planning is not possible.

The classical and state-variable representations have greater expressiveness than

that of the set-theoretic representation in the sense that they allow for a more di-

rect and succinct description of the planning domain and problem. Nevertheless,

all representations can be translated from one form into another. The study in

complexity shows that the unrestricted use of the set-theoretic representation of

classical planning has the lowest complexity (both plan existence and plan length

are PSPACE-complete). We must nevertheless be aware that the set-theoretic repre-

sentation may potentially take exponentially more space than the equivalent classical

and state-variable encodings (in [Tra04], page 48). It may therefore be advantageous

to use a planning algorithm based on the set-theoretic representation, although this

is not guaranteed.

An interesting result is that conditional effects used to describe the non-deterministic

outcome of actions, do not influence planning complexity [Tra04, ENS95]. This is

significant because workflow planning needs to deal with uncertainty. It is important

to note that the results of planning complexity presented here are for a worst-case

scenario. Many practical planning problems have lower complexity. The modelling

of uncertainty nevertheless ensures that planning complexity remains high, which

explains why initial work (such as [PS92]) in this area did not present experimen-

tal results until the introduction of Graphplan [WAS98]. Conditional planning still

remains a challenge. Recent planners have therefore resorted to the use of heuris-

12This restriction is dominated by the operator’s negative effects and is therefore of limited use.
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tics [DBS06] and symbolic model-checking [BCP+01] to deal with the very large

search space.

Probabilistic planning has unmatched expressiveness when it comes to defining

goals as competing criteria (see [BKS08, BG01] for examples of probabilistic plan-

ners). It allows for the generation of optimal policies based on several criteria, which

is otherwise difficult to do in classical planning. The complexity results for unre-

stricted13 probabilistic planning with full observability are essentially the same as

those for classical planning (EXPSPACE-complete, see [LGM98]14). However, in the

case of probabilistic planning with partial observability, the state space is infinite

(in [Tra04], page 395). This is because state transitions are made between stochastic

belief states that are defined by a continuous probability distribution. Even though

we are unaware of a formal analysis of its complexity we assume this is the high-

est. Probabilistic planning with partial observability therefore presents the greatest

planning challenge of all.

2.3.3 Workflow Planning

Several examples that use AI planning in order to support flexible workflow exist

[RMBCO07,RMKM00,RMBM00b,RMBM00a,RMBM01,RMK01,RMK02,RMOB+04,

RMBO+05,MB99a,BD99,BD00,MB99b,AGF06,GDB+04,ESBPDWJHDN04,BJ03,

LADM07, MB99a]. Much of the work in automated process composition has been

done in the specific area of scientific workflow. Additional work, related to workflow

management, has also been done. According to this research, the automated syn-

thesis of workflow process definitions have several advantages: increased efficiency

(reduces the amount of effort used in modelling processes), ease of use (many of

the details are now taken care of automatically via inference) and greater adapt-

ability (replanning for example can be used to correct or adapt processes according

to changes) [MLR06]. However none of this research presents an analysis of the re-

13Restrictions include bounding plan length, disallowing cycles and allowing optimal, average
or pessimistic partial ordering.

14Some results are also presented for the case of restricted stochastic planning with partially
observability.
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quirements for automated workflow planning, nor is the selection and use of a given

planning system justified.

The aim of this section is to identify the modelling requirements for workflow

planning and to use this information to select an adequate planning system. This

selection considers both functional criteria (such as type of problem that can be

solved (see Section 2.3.2)) and non-functional criteria (such as the planning algo-

rithm’s completeness).

In their essence workflow process present task-based operational plans. First and

foremost these plans need to be robust in order allow for their successful completion.

To do this, several basic routing (or flow-control) constructs are used in the modelling

and execution of the process instances. These constructs allow for the selection and

ordering of task execution according to the observed state. Basic routing constructs

include conditional selection and iteration. This means that workflow planning

is clearly a non-deterministic AI planning problem. In other words conformant,

conditional, or probabilistic planning may provide the necessary problem solving

capabilities.

The objective of an operational plan is, in general, to reach a set of goals as effi-

ciently as possible. In other words both the number of tasks and the selected task’s

execution costs should be minimized (for example by reducing resource consump-

tion)15. Conformant planning enforces the execution of possibly needless actions in

order to attain a desired set of goals because it assumes no observability. In addition

to this, conformant planning may yield no solution in cases where the use of partial

or total observability would (see Section 2.3.2). We may therefore conclude that

conformant planning is not appropriate for workflow planning.

In order to use probabilistic planning it is necessary to have statistical data

regarding the non-deterministic outcome of actions (see Section 2.3.2). If we consider

the case of probabilistic planning with partial observability then statistical data

regarding the observations must also be used. In addition to this we need to include

the costs related to actions (or alternatively, and more problematically, the rewards

15Additional criteria such as process make-span can also be considered.
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associated with plan states). This information is hard to come by. In fact the aim

of this work is to identify the tasks themselves, so we do not even know what the

outcomes are, let alone their probability distribution. Using all this information to

model a planning problem correctly is difficult. In fact modelling planning domains

in a probabilistic setting is generally recognized as a difficult undertaking (in [Tra04],

page 399). If we consider that solving probabilistic planning problems, specially in

the case of partial observability where the state space is infinite, is computationally

a hard problem, then we can conclude that probabilistic planning is not a promising

solution.

We are left with conditional planning as a means to automatically compose a

workflow process. As was mentioned before we need to support loops (cycles) in

order to deal with uncertainty. Plans that allow for iterative, repetitive behaviour

can successfully deal with short-term errors during plan execution (for example com-

munications errors that occur during the execution of data gathering web-services).

Planning must also ensure that any such iterative behaviour also contribute to at-

taining the goal. Needless dead-ends must not be allowed (for example after suc-

cessfully executing a data gathering task we should not repeat it again). Although

conditional planning allows for task selection, it cannot generate plans with loops.

This is because conditional planning guarantees success under all circumstances

(see details in Section 2.3.2). We are therefore forced to conclude that conditional

planning is not a viable solution.

An alternative planning system, based on symbolic model-checking (known as the

Model Based Planner (MBP)16 planner) is available. It is based on a general frame-

work that provides supports for different classes of discrete, non-deterministic plan-

ning problems [BCP+01]. It can deal with uncertainty in the actions’ effects and any

of the planning states. It supports planning under full, partial and null observability.

It also allows for the use of extended goals based on temporal conditions (Computa-

tional Tree Logic - CTL). Depending on the planning problem it can generate sequen-

tial plans, conditional plans, plans that use an iterative trial-and-error strategy and

16http://sra.itc.it/tools/mbp/
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plans whose execution depends on its execution history [CPRT03,BCRT06,CRT98].

We are therefore interested in its ability to generate iterative conditional plans that

repeatedly sense the world (non-determinism with full observability). These plans

are state-action tables (partial functions that map actions to reachable states), which

also facilitates process monitoring and execution (simple interpretation of a finite

state machine is enough to implement a controller). In addition to this, these plans

may be weak (at least one execution path will reach the goal states), strong (all ex-

ecution paths are guaranteed to reach the goal states) or strong cyclic (an iterative

trial an error strategy ensures that all execution paths are guaranteed to reach the

goal states). We therefore opt for the use of the MBP planner in order to generate

strong cyclic plans under full observability (possibly using temporal extended goals).

2.3.4 Plan Learning Scenario

In order to better grasp the issues that have an impact on the automated learning of

planning, we will first describe the scenario where such learning will be applied. This

allows us to: a) identify the basic requirements for Machine Learning; b) provide a

basis for comparison with existing work in this research area; and c) determine the

set of goals and assumptions that can be made in order to successfully support the

automated composition of workflow processes.

The general setting consists of a group of agents interacting with each other in a

shared environment. Agent is a generic term that is used here to represent people or

information systems that consume and/or generate data. The shared environment

represents a common medium by which agents interact. It is also the repository

that holds the information that is generated and consumed by these agents. We will

assume that agents may concurrently access this medium in order to read and write

data. The read and write operations are atomic, so agents may obtain a consistent

state of the world. The agents actions are taken in accordance with this consistent

view of the world state.

As far as the data format and information semantics are concerned, we will

also make several additional simplifying assumptions. First we assume all data is

exchanged in a common format that is known to all agents. Second we will work
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under the premise that all agents share a common domain ontology. In other words

only one interpretation is possible. This allows agents to classify objects according

to a class hierarchy, exchange information and understand how to express goals

using a single vocabulary. We also admit that agents just exchange extensional

information (facts). Such data will be expressed as fully ground predicate in our

own representation. Note that these assumptions do not, in any way, restrict the

intentional information represented by the learning and planning system.

The agents that interact with each other have different levels of knowledge. Some

of these agents may be experts and therefore know how to attain a given set of

goals via the execution of a sequence of actions. Others are not as proficient and

may therefore attempt to execute invalid, erroneous and inefficient sequences of

actions. The difference between these agents is their knowledge base of actions.

We work under the important premises that: a) these agents are not adversarial;

on the contrary they have a vested interest in collaborating17; b) all tasks that

are executed belong to a domain of actions that adequately described the common

domain ontology, which is shared by all agents and the planning and learning systems

c) their is no way we can relate a set of actions to a given plan execution (after all

some of these agents might not have the necessary knowledge to plan correctly); and

d) goals cannot be associated with actions or plans (we assume that novice agents do

not have the necessary knowledge to correctly express actions nor compose plans18).

Recall that the objective of this work is to support the automated management of

ad-hoc workflow management. In this setting two types of actions exist: actions that

are planned by the workflow management system and actions that are pro-actively

executed by the agents. The first case represents tasks that have been sequenced

by the AI planning system in response to an agent’s request to achieve a set of

goals. The second case represents actions that are executed because a previously

planned process failed to complete correctly or simply because a new and previously

unknown action needs to be executed.

17Strictly speaking, even in environments where agents supposedly do collaborate, this may not
always be true [Jør04].

18Here we assume that novice agents may experimentally execute actions.
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Several assumptions regarding the execution of these actions are also made. First

of all the execution of the actions are signalled via an action execution signature that

contains information on its name, parameters and the states in which it initiates

and terminates execution. This data is made available to the Machine Learning

algorithm and plan controller. The action signature may not contain all of the above

information, for example its name and/or parameters may not be known. Second,

the execution of the actions need not be instantaneous, however it is guaranteed

that: a) during an action’s execution none of its pre-conditions are altered by any

concurrently executing action; b) at the end of the action’s execution all effects

are guaranteed to be true. Third, actions will only initiate execution if all their

pre-conditions are valid and if it does not alter other concurrently executing actions

pre or post-conditions19. Finally action execution fails when the expected outcome

is not observed. This may occur when actions are pro-actively executed by the

agents which inadvertently alter the world state or when unknown (for example

non-deterministic) outcomes of an action occur. This set of restrictions allows us to

use of classical planning algorithms, although errors caused by the execution of new

actions must be dealt with.

The aim of this work is to non-obstructively observe the interaction between

agents and identify what actions take place and the conditions under which this

occurs. These actions are then encoded as planning operators, which can later be

used to compose sequences of actions. These plans are generated on the behalf of

agents requests. New actions or alterations to existing actions are learned when

execution errors occur. These changes are incorporated into the planning system,

thereby allowing for the dissemination of information amongst agents. Because

agents may attempt the execution of new unknown and possibly invalid actions or

because of sensing errors, the learning algorithm must be able to deal with noise.

In this work we are not concerned with process optimization. In other words, the

objective is to discover and use planning operators that emulate the agents actions.

No care will be taken in identifying or re-engineering optimal operators. In addition

19Note that we assume here that the concurrent action may belong to other plans in simultaneous
execution.
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to this, AI planning used here will not deal with issues regarding resource allocation

or task scheduling.

2.3.5 Learning Operator Definitions

In this section we review research work in AI planning that uses Machine Learning

(ML). We are specifically interested in work that uses ML to identify and refine

operator schema so that these may subsequently be used by a planner. In order

to facilitate the description and classification of this work, a set of characteristics,

which are described in Table 2.2, will be used.

Table 2.2: Characterisation of research in learning AI planning models.
Sampling

Characteristic Values

Observability full, partial
Causal Relationship image, pre.lag, post.lag.
Trace plan, act.
Noise yes, no
Concurrency yes, no

Actions
Characteristic Values

Action Duration inst., durative
Action Effects det., cond., stoch., cond.stoch., cond.non-det.
Disjoint Effects yes, no
Action Pre-condition conj., disj., 1.lit., –conj., –disj.
Operator STRIPS, rule, quant.
Representation prop., rel.
Background Knowledge yes, no

Learning
Characteristic Values

Incremental yes, no
Examples ⊕, �, �
Induction ↑, ↓, ↑↓
Integrated yes, no
Evaluate Planning yes, no

Sampling refers to the set of features related to the data used for learning. This

data concerns the examples from which operator definitions are acquired. The first

of these features is the observability of the world-state, which may be full or partial.

Partial observability means that when an action is taken not all of the world-state
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can be sensed. The notion of causal relationship refers to knowledge of an action’s

cause and effects. Knowledge of the causal relationship is complete when both an

action’s pre-image and post-image are known (simply referred to as image). If a

set of candidate pre-images exist, then we say that we have a state where the true

pre-image lags (pre.lag). In this case we assume that no post-image is known. If

however the pre-image is known but a set of candidate post-images exist, then we

say that we have a state where the true post-image lags (post.lag). Note that the

last two cases naturally attempt to describe durative actions. The data trace refers

to the context under which the samples are collected. In the case of a plan, the

samples not only include the actions’ signatures (action name and parameter list)

but also information on the plan’s pre-image (initial state), intended goals and its

action’s ordering. Alternatively, only the actions’ signatures (act.) may be known.

The sampled data may or may not contain noise. Several sources of noise exist such

as extraneous actions and faulty sensors. Lastly, the sampled data may be used

to collect information on a single action or various actions that are taking place

simultaneously (concurrency).

The actions sub-group characterises the actions’ execution and corresponding

operator definition. Action duration refer to whether or not operators model instan-

taneous (inst.) or durative actions. Durative actions may execute over a period of

time. Their pre-conditions may not all be satisfied at the same instance in time nor

their effects take place simultaneously. The action’s effects may be deterministic

(det.), conditional (cond.), stochastic (non-deterministic) (stoch.) or a composi-

tion of conditional and non-deterministic effects. The conditional operators’ non-

deterministic effects may be modelled as a set of either stochastic (cond.stoch.) or

discrete (cond.non-det.) outcomes. When we presuppose the concurrent execution

of actions, we may or may not make the simplifying assumption that these action’s

effects overlap (disjoint effects). An action’s pre-conditions may be as simple as a

single positive literal (1.lit.), a conjunction of positive literals (conj.), or a disjunc-

tion of positive conjuncts (disj.). When either positive or negative literals are used,

we indicate this with explicitly (–conj., –disj.). An operator may be modelled via

an action schema using STRIPS -like notation (set of pre-condition, and add and
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delete lists) or may consist of a set of planning rules. The operators using STRIPS -

like notation may also include quantification (quant.). It is possible to translate

between either form. The operators, whether expressed via STRIPS-like schema or

rules, may be represented in propositional (prop.) or predicate logic (rel.). The ML

algorithm may or may not use background knowledge in order to infer additional

relationships. This background knowledge may be both extensional and intentional

in nature.

Learning refers to those key elements that distinguish current ML algorithms

and systems used in acquiring planning operators. Several of these ML algorithms

can continuously and iteratively refine operator definitions. In this case we say that

they are incremental. The data samples constitute the positive (⊕) and negative

examples (�) used by the ML algorithms. Most algorithms require only positive

examples or a combination of both positive and negative examples (�). The ma-

jority of the algorithms are based on induction. Induction may be based on the

generalization (↑) or specialization (↓) of the examples. A combination of these

two strategies is also possible (for example version space learning, ↑↓). Many of the

existing systems integrate learning, planning and execution in a single system. The

corresponding algorithms are interleaved in order to generate and process action

execution examples. The ML algorithm must then be assessed. This can be done

for example by: evaluating operator classification quality or using empirical mea-

sures to measure operator error. Research may also realistically evaluates planning

operators via AI planning (evaluate planning).

The ARMS System

One of the most recent work on learning action descriptions is presented in [YWJ07].

In this work a ML algorithm (ARMS - Action-Relation Modelling System) acquires

operator schema from a set of successful plan execution traces (positive examples

only). These traces also include the plan’s initial state and goals. This data is

modelled as an initial action’s post-conditions and final action’s pre-conditions re-

spectively. Although not required, ARMS may also take advantage of state-images

(called intermediate states) that may be obtained during plan execution. The sam-
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pled data, which basically consists of sequences of action signatures and the do-

main description (non-ground predicates with possibly typed parameters), are then

used to construct a set of action (existence of supporting pre-conditions and sup-

ported post-conditions), information (initial and intermediate states supporting ac-

tions, supported goal and intermediate states) and plan constraints (supporting pre-

conditions within a sequence of actions). In addition to this, a frequent-set mining

algorithm is used to obtain a frequent set of action-relation pairs. The constraints

(propositional formulae representing relationships) and frequent set action-relations

pairs (weights of relationships) are then encoded as a weighted maximum satisfi-

ability problem (weighted MAX SAT). The solution of this satisfiability problem

results in an action-model that describes the action and its most frequent (pre and

post-condition) relations. The satisfiability problem is parametrised according to

a probability threshold (which determines when a relation-pairs is considered fre-

quent) and an upper bound20 on the number of relationships in the pre-conditions

and post-conditions of each action (this actually determines when a action schema

is learned or not). It is important to note that this work did not evaluate plan

generation quality but used two quality measures (error and redundancy rates) to

evaluate its experimental results. The authors have considered extending this work

to include, amongst other things: accepting partial and possibly incorrect operator

schema, dealing with noise in the traces, evaluating plan generation quality, extend-

ing support for operator schema that include quantification for example, learning

HTN schema and evaluating how best to determine the upper bound on the number

of relationships in action schema.

Recently this work has been extended to learn operators from an environment

wherein various agents can execute actions [ZnAY11]. The Lammas ML algorithm

(Learning Action Models for Multi-Agent Systems) learns MA-STRIPS operators,

which are standard STRIP-like operators whose action parameters are augmented

with the indication of which parameter represents the agent that executes the action.

20This value can be obtained empirically by solving the problem for various bounds. For exper-
imental purposes in the article this value was directly obtained from the planning domains that
were tested.
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It uses this information in order to establish a set of additional constraints that

encodes the possible interactions amongst agents. These constraints expand on the

already existing ARMS action constraints. The evaluation criteria used counts the

number of incorrect pre-condition, add and delete literals in the operators. Both

false positives and false negatives are counted. Equal weight is given the error

counts of the pre-conditions add and delete errors. An error rate measures the total

number of counts for all actions and agents. The effectiveness of Lammas is shown

by comparing its performance with ARMS. Essentially the learning algorithm, which

is based on weighted MAX-SAT, remains unchanged.

The LAMP System

The LAMP algorithm (Learning Action Models from Plan Traces) attempts to learn

STRIP-like operators that use both quantification and logical implications. It is very

similar to the ARMS and Lamma ML algorithm in that it also attempts to learn

action models based on action traces that contain action labels, the initial state, final

state and possibly empty intermediate states (subsets of world states) [ZYHL10]. As

with those systems, LAMP first encodes each plan trace as a set of propositions,

generates a set of candidate formulae according to a number of constraints and

learns the weights of these formulae. However there are two major differences.

First it extends the set of constraints of the ARMS algorithm (action consistency,

plan consistency and non-empty constraints) with additional pre-conditions, positive

and negative effects, and positive and negative conditional effects restrictions. All

possibilities of groundings of these new constraints are enumerated. All potential

quantifications of the enumerated formula are then generated. The second difference

is that the weights of the formula are learned using Markov Logic Networks and

not weighted MAX SAT. Once the set of formula that maximize the weights is

obtained, they are combined to form the final operator definitions using the Planning

Domain Definition language (PDDL). The evaluation criteria is also based on the

number of missing literals. However in this case the counts are more sophisticates

because now an operator may not only have an incorrect (sub-)set of propositions

but the quantifications learned may also be wrong. A comparison based on the
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grounding of the formulae is used. Additionally the errors regarding add and delete

propositions are not computed separately but as a single effects error. The pre and

post-conditions errors are given equal weight. An error rate base on the average

error counts of all actions is used to evaluate the experiments. Unlike many of the

other research efforts the authors of LAMP experimentally show that the algorithm

can successfully help humans in reducing the modelling time and error.

The SLAFS Algorithm

A ML technique called Simultaneous Learning and Filtering of Schemas (SLAFS)

is used in [SA06, SCA06, AC08, Ami04] to generate exact actions schema. In other

words, unlike the ARMS system [YWJ07], all action schema reflect every sample

that has been observed. It cannot therefore deal with noise. The trace is based on

actions, so no notion of plan is available. The sampled data consists of a set of state

images and action signatures. In addition to this the system can also use information

indicating whether or not the action has been successful applied (the assumption be-

ing that any failed action will not generate any effects). Unlike [YWJ07], this work is

able to produce schema for conditional operators in the form G
a−→ f , where a ∈ A is

an action, G a set of formulae (conjuncts) that represent the action’s pre-conditions

and f represents a fluent that is altered by a. The actions’ effects (or fluents) are

limited to a set of literals (not formulae). This means that some post-processing

may be required to allow for the use of these operators in automated planning. In

addition to this, the ML algorithm explicitly caters for partial observations thereby

yielding operators that may establish relationships between actions and unobserv-

able effects. The SLAFS works by establishing all possible relationship between

every fluent and action via a set of logical formula. These formulae are referred

to as explanations (one for each fluent). Whenever a sample is processed (a new

explanation is obtained), any of the existing formula that are made inconsistent, are

removed (filtered) from the knowledge base. Unlike many other solution, this means

that the ML algorithm is incremental. Additional constraints are used to ensure con-

sistency between actions, pre-conditions and effects:
∧

a,F,G ¬(G
a−→ F )∧ (G

a−→ ¬F )

(no action results in incompatible effects) and
∧

a,F,G→G′ ¬(G
a−→ G′) → (G

a−→ ¬F )
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(the set of more specific operator pre-conditions are always used). The knowledge

base is therefore a set of consistent formulae. The explanations are maintained in

a compact DAG that permits the efficient addition of new formulae and reuse of

existing (sub)formulae. The action schema is a valid assignment of the model (set

of formulae). It is obtained via the use of a Boolean Satisfiability Problem (SAT)

solver. Note that this ML requires that all samples be consistent, which explains

why it cannot handle noise. The result is a set of propositional rules whose pre-

conditions consist of possibly several conjuncts. The fluents are limited to a single

literal however. Because several rules may refer to the same action, these rule can ef-

fectively represent (ground) STRIPS operators with conditional effects and disjunct

pre-conditions.

The OBSERVER System

One of the earlier research efforts in the automated acquisition of domain knowl-

edge in AI Planning which did not require prior planning operator knowledge,

is [Wan95,Wan96b,Wan96a,WC94]. It is based on the learning-by-doing paradigm

and combines interleaved AI planning, plan execution and learning within an inte-

grated learning system called OBSERVER. This framework assumes that a basic set

of predicates that describe object types and relationships are available. Its’ traces

consists of a sequence of action signatures and their respective state-image (pre and

post-images), which are referred to as the expert solution traces. Most importantly,

and unlike [YWJ07] and [SA06], it also uses a number of (random) practice prob-

lems, that allow it to incrementally refine its operator definitions when planning. It

assumes the full error-free observability of deterministic actions only. Although it is

limited to learning STRIPS-like operators with conjunctive pre-conditions, it is still

able to learn negated pre-conditions and conditional effects.21 In addition to this, it

also assumes that when action execution fails it is due to unsatisfied pre-conditions.

In such cases no effects are observed.

Learning and planning uses two simultaneous representations of the planning

21Note however that is does not support conditional planning. It uses the non-linear determin-
istic planning system PRODIGY (http://www.cs.cmu.edu/˜prodigy/).
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operator Op: a most specific S(Op) and most general representation G(Op). Learn-

ing consist of three algorithms that infer the operator’s most specific pre-conditions,

most general pre-conditions and effects respectively. The first algorithm generalises

the pre-conditions of the most specific operator definition based on the successive

observation of successful action traces. If however an action trace fails then it as-

sumes that this is due to missing negated pre-conditions, which are then added to

the S(Op)’s pre-conditions22. The initial version of S(Op) consists of all of ground

predicates in the pre-image that are related to action. The second algorithm deter-

mines the necessary and critical pre-conditions of G(Op), which is initially empty.

These pre-conditions are obtained when action execution either fails due to near

misses (necessary pre-condition is a single condition in S(Op) that is not satisfied

in the pre-image) or succeeds in very similar conditions (critical pre-conditions is a

single condition in S(Op) that is satisfied in one pre-image but not another). Fi-

nally, the effects of the operator are learned by generalising the delta-states, which

represent elements that are added to the post-image or removed from the pre-image.

In this algorithm, conditional effects are also detected and further refined using the

two previously described algorithms.

Note that the learning algorithms initially use a set of expert traces to obtain

an initial version of the operators. Practice problems are then used to refine these

operators. The author reports that learning during problem solving is crucial in

order to allow for the generation of effective plans. So in addition to learning,

the issues related to planning with incomplete and inconsistent operators is also

tackled [Wan96b]. The planning module first attempts to solve the planning problem

using the G(Op), thereby increasing the chance for planning success. If planning is

possible, plan execution is attempted. During successful (state change is observed)

plan execution the operator’s S(Op) and effects are learned. If plan execution fails

(no state change is observed), failed plan traces provide opportunity for learning the

G(Op). Note that in the case of plan execution failure, a attempt is first made to

solve any pending goals. If this is possible plan execution and learning continues,

22Any state {p | p ∈ pre-image(i) ∧ p /∈ S(Op)} is added so that S(Op) = S(Op) ∪ ¬p where
pre-image(i) is the state prior to action’s execution failure.
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otherwise full replanning is attempted. If this is successful then plan execution and

learning continues. If planning is not possible, the system falls back on expert traces.

The Three Level Learning Algorithm

A recent effort to learn probabilistic planning rules is presented in [PZK04]. This

work is interesting for two reasons. First it shows that it is possible to learn op-

erators with non-deterministic, albeit stochastic, effects. Second, it demonstrates

how induction can be used to efficiently learn these (stochastic) relation planning

rules, as opposed to propositional planning rules as in the case of the SLAFS algo-

rithm [SA06]. This work assumes full observability of instantaneous actions. Only

one action can take place at any point in time. The data samples consists of an ac-

tion’s signature and its state-image. No concept of plan is used. In addition to this

all examples are covered by the induced rules, so this work cannot deal with sam-

pling noise. From the description provided it seems that only positive examples are

required to learning the planning rules (no information on action execution failure

is used). Although part of the ML algorithm is based on ILP, it is not evident that

a rich set of intentional background knowledge based on Horn clauses is supported.

The learning algorithm consists of three phases wherein each performs a greedy

search. The first phase (learn rules) is based on ILP and searches the hypothesis

space in order to determine the action’s pre-conditions. In the article, both gen-

eralisation and specialisation are described, however it is unclear if both types of

searches are performed simultaneously and if so, how. Nevertheless it is clear that

the initial rule set consists of a number of the most specific rules that are necessary

to cover all state-action pair examples. Whenever a new hypothesis is generated

by learn rules, a second phase (induce rules) is initiated in order to determine the

action’s outcomes. During this phase, the algorithm first determines the change in

state (equivalent to delta-state in [Wan95]) in order to identify the action’s effects

(possible outcomes). It then tries to generalise these effects in order to ensure that:

a) all examples are consistently covered; and b) no effects overlap (i.e.: all effects

are mutually exclusive). The final phase (learn parameters) is used to determine

the probability that must be assigned to each of the rules’ possible outcomes. There
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is no closed-form expression to do this, so a conditional gradient method is used to

determine these probabilities. As with standard ILP, a bias is also used to rank and

select which hypothesis are further refined. This bias ensures that the algorithm

favours the simplest (Occam’s razor) rules that assign high likelihood to the data.

The scoring metric that represents the bias depends on a weighing factor that is

empirically determined. The second phase also uses a similar scoring metric which

is maximised. Future work aims at providing an incremental learning algorithm and

allowing for the induction of planning rules based on partial observations.

The MSDD Algorithm based Learner

Another solution that can generate stochastic planning rules in presented in [OC96b,

OC96a]. It is similar to [PZK04] in that it generates stochastic planning rules. It

also assumes full observability of state and the execution of a single action at any

point in time. No notion of plan is available. However this work differs markedly

from the previous ones in that its actions are not instantaneous (scenario consists

a robot that must execute various tasks wherein sensor readings are sampled). An

action’s causal relationship is determined by a single pre-image and a set of post-

images that represent world states sampled at different instances after an action

has been initiated (history of multitokens). In other words, an action’s effects may

be delayed (this lag however is limited to a fixed value, in this case to a single

sample). The action signature is also simpler in that it consists of an action name

only. However, the sample consists of a set of all propositions (tokens). This set

of tokens (multitoken) reflects all of the robot’s sensors’ categorical values at any

given time. Multitokens are not only used to represent the pre-image and a set

of post-images, but also indicate the action taken. The planning rules generated

here also differ from those of [PZK04]. In the case of [PZK04], each planning rule

represents a single action. Such an action contains a single set of conjuncts that

represent an action’s pre-conditions. Each of these rules however contains one or

more outcomes with their corresponding probability of occurrence. All rules are

presented using literals consisting of predicates (relations). In this case however,

an action may be represented by one or more rules. Each rule contains two set of
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propositional conjuncts (the pre-conditions and post-conditions respectively) and

the action name.

Automated learning is based on the Multi-Stream Dependency Detection (MSDD)

algorithm. The input of this algorithm is a sequence of streams (history of multi-

tokens). It determines frequent co-occurrences of propositions (subset of multi-

tokens) that occur between fixed intervals of time (experiments limited to a sin-

gle sample). MSDD performs a general to specific best-first search. Initially all

propositions (tokens) are assigned a wild card. Two multi-tokens, representing the

pre-conditions and effects, have wild cards assigned to all their tokens (wild cards

represent “don’t care” values). Whenever the systematic search identifies a corre-

lation, the corresponding token is assigned a value (specialised). The first token

represents an action. As with the other tokens, when a dependency is detected, an

action token is assigned an action name. During the search a tree (trie-like struc-

ture) is generated. All nodes in this tree are assigned a probability of occurrence.

Any such node with a action name assigned to the first token represents a planning

operator. The algorithm is parametrised so that one may set a threshold to deter-

mine frequent occurrences. It can therefore deal with noise. In addition to this,

statistical measures are also used to determine if the probabilistic effects that oc-

curs in a more specific context are significantly different or not. If not the algorithm

retains the more general definition. The MSDD algorithm does not take advantage

of any background knowledge.

Learning Teleo-Reactive Operators

Another research effort in the general area of robotics is presented in [Ben95a,

Ben95b]. As with the [OC96b], actions are durative. However, the emphasis here

is in providing reactive agents with a means to continually observe and respond

to changes in the environment. Like [Wan95], the TRAIL (Teleo-Reactive Agent

with Inductive Learning) system integrates and interleaves planning, execution and

learning. Planning is based on a plan structure known as a teleo-reactive tree.

Each node in the tree represents a teleo-reactive operator that is linked to a par-

ent teleo-reactive operator. Each operator can only be executed according to a set
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pre-conditions (pre-image) and supports the execution of the parent operator by

altering the world state (one deterministic effect and several stochastic outcomes

known as side-effects). The root of the tree contains the goal of the plan. Paths

is the teleo-reactive trees are akin to plans generated by regression based planners.

Each path represents a plan starting at a given initial state. Execution therefore

starts by analysing the lower teleo-reactive operators of a given tree and executing

one of those whose pre-image is satisfied by the current world-state. This process

is repeated until either the goal is reached, planning fails or execution fails. During

execution both positive and negative (when a failure is detected) examples are col-

lected. During planning failure, the system requests examples from an oracle and

records those as positive examples. These examples are then used by the learning

module in order to generate new operators or refine existing operators. This work as-

sumes full observability of a single action. As with [OC96b], the causal relationship

is determined solely by the pre-image. However the traces consist of a sequence of

several pre-image only. This is because the learning algorithm only learns operator

pre-conditions.

Whenever a failure is detected the system first attempts to execute some simple

experiments (repeat the action for at least the mean observed time of previous

operator executions) in order to further diagnose the problem (detect possible side-

effects). If the error persists, then a standard ILP system (GOLEM [MF90]), is

provided with the execution examples of a single specific operator in order to learn

its pre-conditions. GOLEM is a bottom-up inductive logic programming system that

generates a determinate23 least general generalisation of a single operator. It then

generalises this operator in order to cover all positive, but no negative, examples.

Note that GOLEM does not generate the least general generalisation relative to

the background knowledge, so no background knowledge is used (more efficient).

GOLEM is also parametrised in order to handle noise in the examples. Because the

GOLEM does a systematic search, it may be used to incrementally refine existing

23This means that all pre-condition literals’ variables must be either directly or indirectly bound
to a variable in the operator’s parameter list. All literals variables are bound if at least one if its
variables are bound.
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operator definitions.

The WISER System

Unlike the work that has been surveyed until now, [TCH99] identifies and attempts

to improve on the results presented in previous research [OC96b,Wan95]. The focus

is on improving the efficiency of the ML algorithm and the correctness of the operator

definitions used in classical planning via experimentation. It assumes that the world

is fully observable and deterministic. It assumes that noise may be present in the

samples. As with [OC96b, Wan95] the traces are based on the actions’ execution

signature and pre and post-images. Like [Wan95] the post-image is processed as a

delta list and the operators’ negated pre-conditions are also learned. The world is

represented via predicate logic, but as in the case of [OC96b] a three valued logic

(true, false and do not care) in order to represent a state value. Unlike [OC96b]

however, the “don’t care value” is implicitly managed by first explicitly expressing

and learning operators using both true and false values of a literal. If neither are

applicable, then the ML algorithm implicitly assumes a “don’t care value”.

WISER’s algorithm is split into three phases: a) learning the initial set of pre-

condition of an operator, b) refining the operators pre-conditions and c) acquiring

the operator’s effects. The initial pre-conditions of an operator are learned using

a search that generates all possible transition states (pre and delta lists) much

like [OC96b]. It such state constitutes an experiment to be evaluated based on the

examples. Note that unlike [Wan95,Ben95a] these experiments are not generate by

a planner. Unlike [OC96b], which used all sensor values during learning, states are

iteratively and systematically increased in order to reduce the search space of the

following phases. To increase efficiency further, several other improvements where

made. First the naive domain assumption is used. It presumes that the modelled

world is regular in that any set of pre-conditions learned from a set of objects with a

given type signature will be the same for any other set of object with an equivalent

type signature. This allows sampling of action signatures to be directly proportional

to the types of the objects and not the number of objects themselves. Heuristics

are also used to order the literals that are added to the explored state space. These
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heuristics are based on user feedback or ordering literals using the highest-frequency-

first heuristic (here it is assumed that literals that are important for one operator

are also important for another). This effectively changes a random search into a

biased search.

The refinement phase of the operator’s pre-conditions is done in four steps:

a) generalising the operator’s pre-conditions, b) acquiring negative pre-conditions,

c) generalising object type and d) type specialisation of objects. The generalisa-

tion of pre-conditions is done by negating the existing literals and testing these

against the examples. If the operator remains valid then these literals are removed.

Negated pre-conditions allow for more robust operator definitions by detecting and

making explicit several relationships (for example in the robot world (arm-empty)

and ¬(holding x) may have the same meaning but may not be explicitly modelled).

WISER uses its three valued logic to test the operator’s pre-condition validity. If

the negated literal is consistent with the examples then it is retained and effectively

acquired. The ML algorithm assumes that a type hierarchy of classes is available.

Whenever objects of the same class are encountered their types are generalised using

simple disjunction (for example in the blocks world where keys, boxes and cars exist,

the pick-up operator may have its parameters generalise to (box ∨ keys)). Lastly,

type specialisation uses a information-theoretic system (C4.5 [Qui87]) to induce de-

cision trees that classify objects according to additional criteria (for example box

is portable if it is light and small). This criteria is used to further specialised the

operator’s parameters. Note however that both the background knowledge and an

initial definition of the target class must be provided. The use of the induction

algorithm allows the system to support partial observability and handle noise.

Similar to [Wan95], delta lists are used to acquire the operator’s post-conditions.

Several improvements are also made here. The first is related to the use of unbound

variables in the operator definition. Unlike [Wan95], [TCH99] this algorithm does

not assume that all the literals’ variables, which represent the operator’s effects,

are bound to the operator’s parameter. For example, in the blocks world we may

define the move(X,Y) operator with two parameters X and Y that represent any

object of type portable. A valid effect is then to set the place, where X was initially
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placed, to clear (in other the operator should have a pre-condition on(X,Y) and the

effects ¬on(X,Z)∧ clear(Z) where Z is not bound to the operator’s parameter list).

In addition to this, symmetrical relations such as next-to(X,Y) in robot world are

dealt with by adopting human modelling conventions. In this case the parameter

X is always assumed to be of the type robot. Finally, the use of naive domain does

not allow acquiring the operator’s effects correctly. This assumption is therefore not

used in this learning phase.

The LOPE Integrated Architecture

Another research effort that integrates and interleaves learning, planning and execu-

tion is [GMB00]. Although this work uses reinforcement learning and its planning

algorithm is not based on a (neo)classical planner, it does nevertheless generate

propositional STRIPS-like operators. What is most interesting about this work is

that it is one of the few research efforts able to generate planning operators based

on traces from several concurrently executing agents. This work assumes partial

observability of instantaneous actions. Samples (referred to as observations) include

the actions’ signature (name only) and pre and post-images. These samples are

also assumed to be noisy. The underlying representation is propositional logic, but

operator definitions are augmented with additional information in order to describe

the stochastic outcomes of the actions and the utility values used for reinforcement

learning. It is nevertheless assumed that each operator have only one set of effects.

A single ML algorithm is used to acquire both the operators’ pre and post-

conditions. It does this by checking if any previously recorded operator’s conditions

are similar to the new observation. If it is not, a new (most specific) operator is

introduced, which includes the observation’s pre and post-images. In addition to

this a counter P containing the number of times the operator has been successfully

applied (expected outcomes are satisfied) and a counter K containing the number

of times the action was applied under the same pre-conditions (pre-conditions are

satisfied) are initiated to one. If however an equal (and therefore similar) operator is

encountered, then it is rewarded (P is incremented) and all other similar operators

are penalised (K is incremented). If however no equal operator is not found, but
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a similar one is available, then this observation is added as a new operator. Its

P value is initiated to one. However its K is set to the same values as any other

similar operator that was previously found. This ensures that all similar operators

(operators that represent the same actions and share a common subset of the pre-

conditions) will have the same K and that the sum of the ratio P
K

over all similar

operators is one. All these similar operators are then penalised. At this point

several heuristics are used to generalise all similar operators irrespective of the last

observation’s action (One of these heuristics is for example parametrised by setting

a threshold. Any operators whose P
K

value is below this threshold is generalised

further). As a result a new set of more general operators are obtained and the

process is then repeated with any new observations that have yet to be processed.

Because this algorithm successively generalises all operators it supports incremental

learning.

Several additional characteristics of this learning framework should be pointed

out. First, unlike [Wan95] and in a similar vein to [TCH99] and [Ben95a] it is

assumed that actions may be executed in a given world-state even if not applica-

ble. This means that failed actions may result in the generalisation of operators

pre-conditions when these are not satisfied but a subset of its post-conditions are

(Hayes-Roth inclusion heuristic). In addition to this and like [Wan95], [OC96b]

and [TCH99] negated pre-conditions are learned (Hayes-Roth exclusion heuristic).

Note however that both here and in [OC96b] negative post-conditions are also

learned. Like [Wan95] and [Ben95a] a planner is used to generate a new sequences

of actions and therefore promote the creation of new examples. Here however, a

very simple stochastic planner is used to create experiments, in the same spirit

as [TCH99]. In addition to this, learned operator may be shared amongst agents

that concurrently in the same or different worlds (experiments where done using a

simple robot world). The authors report that the number of successful plans that

are generate, significantly increases with the sharing of operator definitions amongst

agents.
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The Two Phase Stochastic Local Search Algorithm

This research’s assumptions and objectives most resemble the characteristics and

requirements we have previously identified as necessary for supporting the auto-

mated composition and execution of workflows ( [JV07]). This work is specifi-

cally aimed at acquiring planning operators in environments where actions are con-

currently executed. It uses propositional logic to represent operators with condi-

tional and non-deterministic effects. To the best of our knowledge it is the only

work that generates operators with discrete non-deterministic effects. All other re-

search efforts model non-deterministic operator effects as stochastic outcomes. As

with [PZK04, SA06, OC96b], an operator is represented via planning rules. In this

case one operator may have several planning rules. Each rule consists of one or more

pre-conditions (a pre-condition is a conjunction of literals). Each pre-condition may

be associated with a set of one or more effects (effects consist of a conjunction of

literals). Non-deterministic outcomes are modelled by rules whose pre-conditions

are associated with more than one effect.

Samples are assumed to be noise-free and consist of an action’s signature and its

pre and post-image. The authors of this paper point out that learning conditional

non-deterministic operators based on samples of concurrently executing actions is

equivalent to learning disjoint formula in Disjunctive Normal Form (DNF). The

learnability of this problem has not been solved and they therefore resort to the

use of heuristics. In addition to this, and contrary to [PZK04], in order to avoid

the NP-hard (sub)problem of learning overlapping effects, they also assume that all

concurrently executing actions have no overlapping effects. Unfortunately the basic

premise of this work is that, not only is an initial version of the domain knowledge

available, but it is also fairly complete and correct. The learning algorithm, which

is inspired on the three phase learning algorithm of [PZK04], is therefore designed

to refine existing operators with a minimum number of differences.

Very succinctly, the algorithm consists of two phases. The first phase identifies

the operators’ modification set for an action. A modification set is a set of literals

that include all propositions that are used in the operators pre-conditions or effects.

A second phase then uses the identified modification set and the positive and nega-
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tive execution examples (which consist of pre and post-images) to obtain the actions’

pre and post-conditions. During this second phase it assumes that: a) all positive

examples are covered (no noise); b) the pre-conditions do not cover any negative ex-

amples; and c) no operator effects overlap. The first phase uses a generate and test

cycle in order to produce the possible modification sets used by the second phase.

The algorithm greedily searches for an assignment that allots all fluents to one or

more actions in such a way that it minimises the Hamming distance between the new

modification set and the modification set of the initial domain. In the second phase,

the modification sets are used to specialise or generalise the operator, depending

on whether a positive or negative example is processed. Note that specialisation

of pre-conditions allows for insertion of negated literals. It is also used to ensure

that no negative examples are covered and no overlapping of effects occurs. Care is

also taken to split rules so that a negated pre-condition can discriminate between

one effect and another. Generalisation on the other hand ensures that all positive

examples are covered, which may result in a new most specific rule. Finally during

this phase all operators are ranked in order to bias the search. Ranking selects

those operators that are simplest (smallest rules) and penalises those rules with a

greater number of non-deterministic effects. Experimental results seem to indicate

that very large number of experiments are required in order to attain reduced error

rates. Error rates were measured by counting the number of classification errors and

are not based on planning success.

A summary of the research that has been reviewed is presented in the table

below (see Table 2.3). It has been divided into three areas in order to facilitate its

interpretation: a) sampling of information used for learning the operator definitions;

b) the characteristics of the action themselves; and c) some of the more relevant

features of the learning algorithms.

Several interesting conclusions may be drawn from the summary. The first is

that all the work that has been reviewed requires that both pre and post-images be

available and associated (causal relationships) with an action (full action signature).

The only work that does not use both images is [Ben95a] because only the pre-

conditions are learned. In additional to this, all but two research efforts assume
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that an action’s pre-conditions or effects are not instantaneous [Ben95a, OC96b].

No one has attempted to learn pre-conditions and effects when both pre and post-

images and the causal relationships are not instantaneous and known (if this were

not so then the time-series segmentation problem would have to be solved). All

assume that the actions’ signatures, which include the actions’ name and respective

parameter list, are available.

The ML algorithms that are able to acquire the more complete operator defini-

tions learn action rules and not STRIPS-like operators. These rules have the same

expressiveness as STRIPS-like operators with: a) disjunct pre-conditions; b) con-

ditional effects; and c) non-deterministic effects (discrete or stochastic). Cases (a)

and (b) requires that the ML algorithm be able to learn several rules that refer to

the same action. Case (c) requires that the ML algorithm be able to learn several

rules with a single pre-conditions and several sets of effects. No one has attempted

to learn planning operator definitions that contain resource constraints.

All but two research efforts use the propositional representation of the planning

domain [Wan95,TCH99]. This may be an indication that the use of ML algorithms

based on propositional logic exhibit better performance or facilitates the implemen-

tation and testing of the ML algorithms.

Very few ML learning algorithms have been evaluated by verifying operator qual-

ity using AI planning directly (planning success) [Wan95,GMB00]. Those that were

evaluated, have integrated learning, planning and execution. We suspect that this

is because the integration of these procedures requires much effort, which includes

the development and use of a simulator. Note that even though [Ben95a] also in-

tegrates learning, planning and execution, a classical AI planning algorithm is not

used. In fact only one research effort does test operator quality using AI classical

planning [Wan95].

From the summary we can see that only two ML algorithms are not based on

induction [YWJ07, SA06]. Of those that are based on induction, only one uses

specialisation exclusively. All others either generalise the operator definitions which

are based on a single example, or use a combination of both generalisation and

specialisation. In addition to this we have noticed that those ML algorithms that
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execute a systematic search of the search space can be used to learn the planning

operators in an incremental fashion. This is true regardless of whether specialisation,

generalisation or a combination of these, is used.

Only [GMB00] and [JV07] can learn operators from sampled data whose effects

may be produce by concurrently executing actions. In the case of [GMB00] it is

unclear whether the inherent difficulties of learning operators in these conditions is

actually tested (tests assume that agents simultaneously acting in the same environ-

ment, but it is not explicitly stated whether actions execute concurrently or not).

As for [JV07], several important simplifying assumptions are made (no overlapping

effects of concurrently executing actions, initial domain knowledge is assumed to

be close to the target model and no noise). This means that learning operators of

concurrently executing actions with overlapping effects in a noisy environment has

not been solved. We believe that these requirements currently represents the most

difficult problem to be solved in this research area.

No one uses background knowledge to infer additional relationships that can be

used to complete or correct the planning operator definitions, save for [TCH99]. It

is nevertheless limited to type specialisation of objects based on existing type hi-

erarchies and object properties. However, [SA06] is able to establish relationships

between unobserved effects based solely on the sampled information. It is therefore

interesting to know if more complex background knowledge can be used, in con-

junction with the examples, to infer useful relationships in order to complete the

operators definition.

Finally, only two ML algorithms deal with durative actions [Ben95a, OC96b].

This is explained by the fact that both systems where developed for the robotics

domains, where this is the usual assumption. Our main interest however is in

(neo)classical where actions are assumed to be instantaneous. This is because work-

flow processes have tasks whose execution time varies widely (from milliseconds to

months). It is therefore not feasible that we treat actions as durative.
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2.4 Concluding Remarks

We have seen that unrestricted planning’s computational complexity is very high.

Several constraints may be applied to the planning representation and planning

domain in order to improve performance. However, because our aim is to support

workflow planning generically, it is neither possible to foresee nor to implement

domain specific constraints. In order to reduce such complexity, our best option is

therefore to use a proportional representation of the planning domain (PSPACE-

complete).

Fortunately the complexity results represent an upper bound on planning effi-

ciency. When solving many practical problems, planning algorithms usually exhibit

better behaviour. The simple fact that not all planning operators require the plan-

ning language’s full expressiveness, allows for more efficient planning. However,

supporting workflow planning, also requires that we be able to generate planning

types that are more difficult to solve due to the larger search space they represent.

Specifically we need to allow for the composition of plans with parallel actions, dis-

crete non-deterministic effects and iterative conditional behaviour24. In order to deal

with this, we will forego with the requirement that planning be optimal (minimise

plan make-span using parallel actions).

Recall that our main objective is the support of flexible ad-hoc workflows via

the automated generation and execution of plans. The analysis of the workflow-

patterns demonstrates that in order to do this, we need to be able to generate plans

with conditional iterative behaviour. Further investigation shows that AI planning

via model-checking can compose plans with non-deterministic conditional planning

actions. Planning via model checking however has several limitations: a) assumes

full observability; b) has limited support for dealing with resources; and c) generates

linear plans. Full observability does not present any real hindrance the to adoption of

this type of planning paradigm because automate workflow management inherently

24Planning complexity depends on the planning languages’ expressiveness because such expres-
siveness directly determines the planning problems’ search space. However, generating plans with
parallel actions and iterative behaviour inherently increase the planning search space without re-
quiring this to be explicitly expressed in the planning language.
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assumes full observability. Both the lack of support for reasoning about resources

and non-optimal planning means that the usefulness of the plans is limited to a

single agent. It nevertheless allows for efficient plan composition and the use of

extended goals may facilitate plan querying and generation.

Note that not all workflow-patterns can be expressed via AI planning. This is

because a lot of run-time behaviour is implicitly encoded into the patterns that allow

for the activation and cancellation of actions that are not strictly necessary in order

to attain the plan’s goals. The aim of this dynamic behaviour is to increase plan

responsiveness and flexibility, which allows workflow management systems to deal

with certain plan execution failures. In this work we will use replanning as means

to increase planning flexibility and correct execution failure. Another alternative is

to attempt plan repair prior to full replanning.

It is important to note that additional research into AI planning is required

in order to fully support workflow management. This includes, but is not limited

to: reasoning about resources, model-lite planning (planning with incomplete and

evolving domain models) [Kam07], plan repair and planning with extended goals

[LPT02,BK98]. Although interesting and of great relevance to our work, it will not

be pursued here because our main focus is on automatically acquiring the domain

knowledge via ML.

In order to fully appreciate the problem of learning the planning domain model,

an extensive yet very focused survey was done on this subject. Our interest lies

specifically in research that learns and refines operators for classical planning when

no initial partial operator definitions exist. We have observed that initial work in

this area attempted to solve the simpler problem of acquiring planning operators

in deterministic, fully observable environments where single instantaneous actions

are executed. The (chronologically) first algorithms are characterized by: a) being

specially conceived for the problem at hand; b) using several separate steps in order

to identify the operators’ pre and post-conditions; c) integrate learning, planning,

and execution; and d) use experimentation as a means to generate examples and

therefore induce results. The more recent work attempts to learn operators with

conditional and non-deterministic (discrete and stochastic) effects. It also relaxes
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several other restrictions imposed on the environment by: a) dealing with noise in

the samples (based on statistics); b) use only the observations and not the problem

solving episodes as a means to learning and; c) allowing for the concurrent execution

of actions. We have detected a trend towards: a) simpler more cohesive learning

strategies (single phase) b) the use of generic algorithms for learning (SAT solvers for

example) and c) learning without the integration with and interleaving of planning

and execution.

The survey has also allowed us to identify the more challenging problems that

need to be solved in order to learn planning operators effectively. These issues are

obviously closely related to the planning problem itself (plan type, plan goals and

assumptions made about the environment). We have seen that the hardest problem

to solve is that of acquiring planning operators with disjunct pre-conditions and

non-deterministic effects. This is especially challenging when several concurrently

executing operators may have overlapping effects [JV07]. The concurrency of actions

significantly increases the learning problem because it make it more difficult to

attribute an effect to any given action. However, being able to deal with concurrently

executing actions also means that the data set used by the ML algorithm have less

restrictions imposed on them.

Another issue that makes acquiring planning operators difficult is that of noise

in the sampled data. These errors may have several sources: a) faulty sensors;

b) exogenous events; and c) perceptual aliasing25 [Ben95b]. We have noticed that

all prior research has used statistical analysis to deal with sampling noise. This

usually implies a threshold that is empirically determined. In addition to this, sta-

tistical data provide a general framework that can also be used to solve the problem

of learning non-deterministic effects (independently of whether or not concurrent

actions occur). Note that we can think of exogenous events and perceptual aliasing

as representing the concurrent execution of actions whose signature is unknown or

whose effects have yet to assigned to the appropriate action, respectively.

25Perceptual aliasing is the problem that occurs when two identical inputs should lead to dif-
ferent outputs. In other words two or more actions may be applicable, but only a subset of these
actions is actually responsible for the effects. Alternatively, the same action may occur but the
effects are non-deterministic.
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Research in this area seems to support the conclusion that the use of negative

pre-conditions result in more robust set of operators [TCH99, Wan95]. Acquiring

negated pre-conditions however increases the difficulty of learning because it enlarges

the state space that must be analysed. In addition to this learning may also attempt

to establish and use relationships that are themselves acquired automatically. In

other words, background knowledge can provide a means to identify new and useful

relationships that are not directly observable. For examples, in a robot world with

two rooms (left and right), two switches may be placed in the left room and used to

switch on lights in the left and right rooms respectively. This means that a robot

in the left room may switch the right room’s light on and off, but this effect is

not directly observable. This is referred to as learning with partial observability26

and has so far been limited to the operator’s pre-conditions [SA06] and parameter

types [TCH99]. Like negated pre-conditions, this substantially increases the learning

complexity of the ML algorithms. To date only the sample data and object types

have been used as background knowledge due in part to the use of propositional

logic.

In addition to the above, we also see that some of the surveyed research as-

sumes that experiments (random problem solving episodes and (biased) state based

exploration) may be executed at any point in time in order to facilitate learn-

ing [Wan95, TCH99, Ben95a]. We will assume that in our case this is not possible

because in a workflow setting: a) experiments may be impossible, b) experiments

may be too costly and c) if the proposed actions do not solve an agents problem,

it will not be executed and the execution’s expected feedback (such as detecting an

action failure) is not produced. We must therefore obtain all our sampled data from

the agents. We make some simplifying assumptions here. First, we admit that any

agent that does execute an action, which is suggested by the system, will know if it

executed correctly or not. Second all agents that are requested to provide an exam-

ple, are assumed to have perfect knowledge and will therefore attempt the execution

26Note that this does not have the same meaning as in AI planning. In AI Planning, partial
observability means that plans may need to use knowledge acquisition actions (observations) in
order to correctly discern between states within belief state and thereby select an appropriate
state-effecting action.
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of a valid action. We do nevertheless accept some errors from these agents. Some

work has been done with durative actions [Ben95a,KL06]. We will nevertheless re-

strict ourselves to instantaneous action so that the resulting operators may be used

by the model-checking based AI planner. The surveyed work differs in the use of

negative examples. Most work assumes that actions will only be executed if all of

operator’s the pre-conditions are fulfilled. In this case, when an action does fails,

no information on the effects is obtained. We will also make this assumption.

All of the surveyed work requires that sampled data explicitly contain the ac-

tions’ (full) signature. This means that the ML algorithms are aware of the actions

names and the parameters27. We will however assume that no action signature is

available. Learning must therefore also identify what actions do exists and their

possible parameter list consists of. Note that we do admit that action names are

provided by the executing agents, but these need not be used consistently. Such

name will be simply used to facilitate human readability28. This is intended to be

our primary contribution to this research area.

A second contribution to this area is to acquire planning operator that adhere to

the following restrictions, assumptions and requirements, which to the best of our

knowledge, have yet to be supported simultaneously:

Sampling noise: assume that both faulty sensors and exogenous events may occur.

The main issue here is in discerning between the valid effects produced by

simultaneously executing actions and invalid data contained in inconsistent

samples.

Concurrent execution of actions: expect two or more actions to be executed

simultaneously. We admit that actions are instantaneous so the issue here is

to be able to correctly identify what effects are generated by which actions.

Disjunct pre-conditions: We presuppose that an action may occur in a number

situations that may only be adequately described via the use of disjunction.

27Note that some work assumes that all operators may depend on or affect any fluent. In this
case an operators’ parameter list implicitly consists of all possible fluents.

28The system is free to use any or all of these names so long as it consistently refers to the same
action.
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We must therefore be able to learn operator definitions whose pre-conditions

could include the use of disjuncts.

Discrete non-deterministic effects: in order to adequately support workflow plan-

ning, we must be able to represent the non-deterministic outcomes of actions.

This allows one to automate the composition of robust contingency plans,

which are essential for supporting workflows’ short-term adaptability.

Negated pre-conditions: allow for the modelling of robust operators by making

certain pre-conditions explicit. It may be possible, although unlikely, that

an operators pre-conditions solely use negated pre-condition (for example, the

pre-condition of the turn-on(S) operator is ¬on(S)).

Negated effects: are a standard modelling requirement in AI planning. Negation

describes the states values that are removed by an action. They are also

represented as terms in a delete list. It is therefore necessary to acquire these

conditions.

Conditional effects: describe an action’s outcome that depends on the current

world-sate in which it is applied. For example turn-switch(S) may be ex-

pressed as the conditional operator: ((on(S)→ ¬on(S))⊕(¬(on(S)→ on(S)).

This modelling construct is not essential because it can be represented by a

set of equivalent operators, each with a different set of pre-conditions and

effects. For example the turn-switch(S) can be expressed by the operators

turn-on-switch(S) and turn-off-switch(S) with their obvious definitions. Use

of conditional planners however facilitate understanding of modelling and may

improve planning efficiency. We therefore make this a soft requirement.

Partial observability of pre-conditions: it is advantageous to use all sampled

and background knowledge in order to identify relationships that are not di-

rectly observable but may be required to adequately describe an action’s pre-

conditions. The ML algorithm should be able to learn these automatically.

Partial observability of effects: as in the case of partial observability of pre-

conditions, relationships that are necessary to describe the action’s effects,
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should be acquired automatically.

No experimentation allowed: because, as was already explained, this could in-

cur high costs or even be impossible to perform. It is therefore necessary to

be able to learn from examples only. The ML algorithm should be able to use

both positive and negative examples in order to further refine the planning

operator. Note that negative examples do not provide any information on the

action’s effects.

Allow the generation conditional iterative plans: in order to support the ex-

ecution of workflows it is necessary to generate and execute plans that have

loop and branching control flow . This is required for workflows’ short-term

process adaptability. It is therefore necessary to encode the learned opera-

tors so that they may be used by a model-checking based planner in order to

successfully compose iterative conditional plans.

The following sections will describe the selection, analysis and empirical testing

of several Machine Learning algorithms. The assumptions, restrictions and goals

described here, will be used throughout the rest of this work.



Chapter 3

Machine Learning Algorithm

3.1 Introduction

In this chapter we present the algorithm that allows the determination of the number

of operators and their definitions. We first provide a set of formal definitions and a

formal description of the learning problem. This includes the clarification of known

terms such as operator, world state, transaction, rule and support set. We also

introduce definitions that are specific to the problem that include terms such as

qualification, overlapping operators and co-occurrence. With all these definitions in

mind we proceed with the explanation of how this learning problem is a particular

instantiation of the general Minimal Consistent Subset Cover Problem. We describe

a greedy heuristic that solves this problem for the case of standard operators and

later extend it to identify what are referred to as overlap operators. Finally we

describe the types of errors that noisy data may have and how the algorithm must

be adapted in order to deal with them.

3.2 A Formal Setting for Learning Planning Op-

erators

Before proceeding with the description of the algorithm we first present the rele-

vant definitions and adopted notation. We will use a first order predicate logic-like
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notation to describe the planning operators and world states. We will use some

general and basic definitions of first order predicate logic such as literals, ground

terms, (well formed) formula, sentence and clause as defined in [Hog90]. Infor-

mally all sentences of first order predicate logic consist of constants, functions,

variables, predicate symbols and logic connectives (conjunction, disjunction and

negation). All symbols will start with a lower-case letter except for variables,

which will start with an upper-case letter. A term can be a constant, function

or variable symbol or a function symbol applied to a tuple of terms. For exam-

ple: function1(constant0, V ar1, function2(V ar2)). An atomic formula is a pred-

icate symbol applied to a tuple of terms. Unlike standard predicate logic how-

ever we also allow for the typing of constants and variables. A constant or vari-

able may be typed with a constant, which appears after a colon. For example:

function1(constant1 : type1, V ar2 : type2, function2(V ar2 : type3)).

Definition 3.2.1 (world state) A world state is a ground clause that consists

only of conjunction of literals.

The world state represents a snapshot of the world at a given moment. We assume

that this state is consistent in that it represents the state when all actions have

terminated (no action is still in execution). It is also consistent in the logical sense

in that it does not contain a literal that also appears negated (contradiction).

Definition 3.2.2 (rule) A rule is a clause consisting of an antecedent and conse-

quent connected by a material implication. The antecedent and consequent each

consists of a conjunction of literals.

A rule need not be a definite clause1. Here we assume that the antecedent and

consequent may each have zero or more negative literals. For example (p1 ∧ (¬p2)∧

p3)→ (e1 ∧ e2 ∧ (¬e3))2.

Definition 3.2.3 (operator) An operator is a rule that has no constants (just

variables or functions with variables) such that:

1Definite clauses contain exactly one positive literal and zero or more negative literals.
2For reasons of clarity we represent literals such as p1(X,Y ) as simple proposition p1.
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� A negative literal can only be in the consequent part if and only if it is in the

antecedent,

� A positive literal can only be in the consequent part if and only if it is not in

the antecedent,

� The antecedent must have at least one literal,

� The consequent must have at least one literal,

� An antecedent must not have two literals that are a negation of each other

(consistency),

� A consequent must not have two literals that are a negation of each other

(consistency).

Example 3.2.1 shows the definition of the operator move down slow(Lift : elevator, F1 :

count, F2 : count).

Example 3.2.1

lift at(Lift, F1) ∧ above(F1, F2)∧

reachable floor(Lift, F2) ∧ is slow(Lift)

→

lift at(Lift, F2) ∧ ¬lift at(Lift, F1)∧

increase(Total cost : cost, travel slow(F1, F2))

Definition 3.2.4 (action) An action is an instantiation of an operator. An opera-

tor is instantiated by binding the appropriate constants to the variables. An action

is therefore a ground formula.

Example 3.2.2 shows the definition of the action move down slow(lift a : elevator, f1 :

count, f2 : count).
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Example 3.2.2

lift at(lift a, f1) ∧ above(f1, f2)∧

reachable floor(lift a, f2) ∧ is slow(lift a)

→

lift at(lift a, f2) ∧ ¬lift a(lift at, f1)∧

increase(cost 100 : cost, travel slow(f1, f2))

A set of operators can be used by an automated planning system to generate plans.

Such a set of operators is defined and used according to a domain, which we refer to

as a planning domain. For example the operator and action described in Examples

3.2.1 and 3.2.2 belong to the Elevator domain. A planning problem consists of a set

of goals (literals) and the respective planning domain. A plan is a description of the

order in which non-dependent operators are instantiated into actions and (possibly)

executed (simultaneously). An example of a plan is a state machine.

Definition 3.2.5 (qualified operator) A qualified operator is obtained from an

operator (as defined in Definition 3.2.3) by doing the following:

� Literals in the antecedent of an operator remain the same in the qualified

operator,

� Literals lk that are in the consequent but not in the antecedent of the operator

are qualified as add(lk),

� Literals lk that are in the consequent and are negated in the antecedent of the

operator are qualified as del(lk).

Note that any other combination of literals and qualification are not allowed. For

example the same literal may not be qualified simultaneously with the add/1 and

del/1 predicates. The restrictions that apply here are equivalent to those that

apply to the operator (see Definition 3.2.3). For example the operator (p1 ∧ (¬p2)∧

p3)→ (e1∧e2∧p2) is qualified as follows: p1∧(¬p2)∧p3∧add(e1)∧add(e2)∧add(p2)).

Definition 3.2.6 (qualified conjunction) A qualified conjunction is a conjunc-

tion of literals in negation normal form such that all literals are either positive or
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negative when not qualified or are positive only when qualified with the add/1 and

del/1 predicates.

It is important to note that qualified literals are always positive. A transaction is

a qualified conjunction. When we refer to a conjunction we assume it is qualified

unless explicitly stated otherwise or it is obvious from the context. We represent a

conjunction p consisting of literals lk using the angle brackets. For example p =

〈l1, l2, . . . ln〉.

Definition 3.2.7 (transaction) A transaction is a qualified conjunction that rep-

resents the change between two chronologically consecutive world states. Assume we

have world states Si and Si+1 that were recorded at instants i and i+ 1 respectively,

then the transaction Ti is a qualified conjunction such that:

� All literals’ constants are consistently substituted by variables,

� If a literal lk is in Si and remains in Si+1 then lk ∈ Ti,

� If a literal lk is in Si but not in Si+1 then del(lk) ∈ Ti,

� If a literal lk is not in Si but is in Si+1 then add(lk) ∈ Ti.

Any subset of literals of a transaction is a qualified conjunction. A qualified operator

is also a qualified conjunction. A transaction contains both the representation of

state prior to the execution of a set of actions (pre-image) and the representation of

the state after all these actions have completed execution (post-image)3. In order to

differentiate between the pre and post-image literals, post-image literals are qualified

with the predicates add/1 and del/14, which respectively indicate which literals

were added or removed from the pre-image. This format not only reduces the search

space but also allows for a direct means of identifying the operator definitions. Note

that the use of the qualification must also be consistent. In other words one cannot

3Note that invariant states are not represented. Any transaction must have at least one qualified
operator.

4We assume that no literals that describe the world state use the add/1 and del/1 predicate
symbols. Alternatively we may randomly assign any two unique symbols that do not exist in the
world state representation.
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qualify a literal and its negation with the add/1 or del/1 predicate. In addition to

this the same literal cannot be qualified with both the add/1 and del/1 predicates.

When we say that conjunction p θ-subsumes conjunction q (see definitions of

θ-subsumption in [NCdW95] and [RIAS97]) it means that p is more general than q

(see definitions of generality in [NCdW95] and [RIAS97]). In other words whenever

p is true q is also true (p→ q). Syntactically we say that p is a subset conjunction

(variant) of q (p � q). We will refer to θ-subsumption simply as subsumption.

Definition 3.2.8 (support set) The support set S of a conjunction p is the set

of transactions in which p is a subset conjunction. Formally let p be a conjunction,

T be a set of N transactions, T (i) the transaction at index i : i ∈ [1 . . . N ], then the

support S(p) = {T (i) | p � T (i)}.

Definition 3.2.9 (support value) The support value |S| of a conjunction p is the

number of transactions in which p is a subset. Formally let p be a conjunction, let

S(p) be the support set of p, then the support value of p is |S(p)|

Definition 3.2.10 (location) The location (idx, pos) is a pair that represents the

existence of a literal lk at the position pos within a transaction T (idx).

Definition 3.2.11 (cover set) The cover set C of a conjunction p is the set of

locations of all lk literals of p. Formally let p be a conjunction, lk be a literal of p,

T be the set of N transactions, T (i) be the transaction at index i : i ∈ [1 . . . N ],

then the cover set of p is C(p) = {(i, pos) | T (i) ∈ S(p) ∧ lk ∈ p ∧ pos =

location of lk in T (i)}

Definition 3.2.12 (co-occur) We say that a conjunction pj co-occurs with a con-

junction pk if whenever the conjunction pj is a subset of the transactions T ′ ⊆ T ,

then the conjunction 〈pj,pk〉 is also a subset of those transactions T ′. Formally we

write (pj � 〈pj,pk〉) ∧ (S(〈pj,pk〉) ⊆ S(pk)) ∧ (S(〈pj,pk〉) ⊆ S(pj)).

This is also true when either one or both of the conjunctions consist of a single

literal. When we say that two conjunctions are not equal it means they are not

variants. Two conjunctions are variants if they consist of the same literals and,
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after being uniformly renamed, have the same variable bindings modulo renaming.

We say that a conjunction p is a subset of another conjunction q if there exists a

variant of p in q such that p � q.

Definition 3.2.13 (anti-monotonic property) Let pj and pk be two conjunc-

tions. For any two conjunctions such that pj subsumes pk, it is always true that

S(pk) ⊆ S(pj). Formally we write pj � pk → S(pk) ⊆ S(pj).

The anti-monotonic property also applies to the support values. Note that (in both

cases) the anti-monotonic property is injective. In other words if S(pk) ⊆ S(pj) it

does not necessarily imply that pj � pk. Moreover if |S(pk)| ≤ |S(pj)| it also does

not imply that S(pk) ⊆ S(pj).

We use the anti-monotonic property to prune the search space when looking

for the co-occurrence of two conjunctions. Specifically we extend a conjunction pj

with all literals lk by first checking that |S(pj)| ≤ |S(〈lk〉)|. We then check for the

co-occurrence of the conjunction pj with the literal lk if S(pj) ⊆ S(〈lj〉). Both the

support value and support of the literal are used as upper bounds to quickly check

for co-occurrence.

Definition 3.2.14 (non-variants set) The non-variants set U is the set of unique

literals that are members of the set of literals in the transactions T . Unique means

that no two literals in U are variants. More formally let lk be a literal then U =

{lk | ∃i lk ∈ T (i) ∧ ∀jlj ∈ T, if lk 6= lj → non-variant (lk)}

Definition 3.2.15 (maximal) A maximal is a conjunction of linked literals that

co-occur with the maximum support value such that there is no other subsumed

conjunction consisting of more literals than the first. More formally if p and p′ are

conjunctions whose literals co-occur then maximal(p) ↔ @ p′ : (p � p′) ∧ (|p′| >

|p|).

A maximal’s literals must be either directly or indirectly linked. A literal is linked

to another if they share a variable. Two literals are indirectly linked if a chain of

common variables found in other literals are also linked. For example the literals
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in the conjunction 〈p(X), q(Y )〉 5 are not linked but 〈p(X), q(Y ), r(X, Y )〉 are. The

predicates p/1 and q/1 are indirectly linked by r/2.

Definition 3.2.16 (minimal cover set) The minimal cover set is the minimum

set of maximals with the highest support values such that:

� Only these maximals are required to cover all literals in all transactions (set

cover);

� The same conjunction of literals is covered by the same maximal in all trans-

actions where they co-occur (inter-transaction consistency);

� Each maximal covers at least one literal in a transaction not covered by any

other maximal (intra-transaction consistency).

The minimal cover set in effect represents the solution to the problem6. The objec-

tive of the algorithm is to identify this set.

Definition 3.2.17 (consistent conjunction) A consistent conjunction is a mem-

ber of the minimal cover set.

Note that the consistent conjunctions are qualified so that each represents a qualified

operator (assuming the structure of the maximal is in accordance with the definition

of the operator, see Definitions 3.2.3 and 3.2.5). To obtain the final solution we

therefore need only to transform these qualified operators into operators.

Definition 3.2.18 (composite) A composite is a maximal that consists of literals

that are members of all literals of two or more consistent conjunctions. More formally

let lk be a literal and C be the minimal cover set, then the composite is a maximal

conjunction p such that C′ = {ci | ci ∈ C ∧ ci � p} ∧ |C′| ≥ 2.

Definition 3.2.19 (combination) A combination is a possibly non-maximal con-

junction that consists of literals that are members of some (not all) literals of

two or more consistent conjunctions. More formally let lk be a literal and C be

5For clarity we will represent the connective AND as a comma.
6We will later see that this is not quite true in the case the transactions contain noise.
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the minimal cover set, then the composite is a maximal conjunction p such that

C′ = {ci | ci ∈ C ∧ {lj ∈ p} ⊆ {lk ∈ C′}} ∧ |C′| ≥ 2.

Definition 3.2.20 (overlapping operator) An overlapping operator is an oper-

ator that consists of two or more consistent conjunctions such that:

� These consistent conjunctions do not (always) co-occur with each other,

� At least one of these consistent conjunctions must not have the structure of a

(qualified) operator,

� These consistent conjunctions must combine to form at least two (overlapping)

operators,

� The support of the original consistent conjunction that is extended into overlap

operators must be covered by a combination of two or more other consistent

conjunctions.

In order to make the above definition clear we provide an example. Assume we have

the following set of consistent conjunctions: 〈pa, pb〉, 〈pc, pd〉, 〈e1, e2〉, 〈e3, e4〉. The

predicates pi represent the state of the pre-image in the transactions. The predicates

ej represent the state of the post-image in the transactions. If for every transaction

wherein 〈pa, pb〉 occurs either conjunction 〈e1, e2〉 or 〈e3, e4〉 also occur, then the

the combinations 〈pa, pb, e1, e2〉 and 〈pa, pb, e3, e4〉 represent a set of consistent state

changes. Moreover all transactions originally covered by the separate consistent

conjunctions can also be consistently covered by these combinations. In other words

(pa∧pb)→ (e1∧e2) and (pa∧pb)→ (e3∧e4) are operators in the solution. The same is

true for 〈pc, pd〉, 〈e1, e2〉 and 〈e3, e4〉 which result in the operators (pc∧pd)→ (e1∧e2)

and (pc∧pd)→ (e3∧e4). It is important to point out that as soon as we generate the

first pair of rules, the second pair must also follow in order to ensure full coverage.

If this were not the case we would end up with a more general conjunction (say

e1 ∧ e2)7 that would subsume a more specific rule (pa ∧ pb)→ (e1 ∧ e2).

7In the general case the consistent conjunctions that are combined may be rules themselves so
we could say more general rule instead of more general conjunction.
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Two issues arise here. The first is that the combining of consistent conjunctions

to form overlapping operators is not limited to combining two conjunctions. This

process may be repeated several times by continually extending the conjunctions.

The second is that assuming we have both overlapping and non-overlapping opera-

tors we need to know which of these conjuncts can be combined to form consistent

overlapping conjunctions. In both cases we require additional criteria that will allow

us to stop combining and/or limiting the selection of consistent conjunctions that

are combined. In order to prevent over-fitting the first criteria is to select only those

consistent conjunctions for combination that do not have the structure of an opera-

tor. These conjunctions however, can be combined with any other of the consistent

conjunctions. The second criteria is that a combination must result in at least two

new conjunctions. The third criterion is that the all of the combinations must have

the same support as conjunction that is common to all of the overlap conjunctions.

In the example above S(〈pa, pb〉) = S(〈pa, pb, e1, e2〉) ∪ S(〈pa, pb, e3, e4〉).

Note that the discussion above shows us that even though we may originally

have overlapping operators that generate the transactions, we will not identify these

if all the consistent conjunctions that comprise these overlapping operators have

the structure of an operator. For example if we identify the consistent conjunctions

〈pa, e1〉, 〈pc, e3〉, 〈pb, e2〉 and 〈pd, e4〉8 from the overlapping operators (pa ∧ pc) →

(e1 ∧ e3) and (pa ∧ pd)→ (e1 ∧ e4) and (pb ∧ pc)→ (e2 ∧ e3) and (pb ∧ pd)→ (e2 ∧ e4)

then we will not be able to determine these operators. Of course it now becomes

debatable whether or not those overlap operators are not redundant and therefore

possibly incorrect.

Definition 3.2.21 (overlap component) An overlap component is a consistent

conjunction that does not have the structure of a (qualified) operator and is com-

bined with one or more consistent conjunctions to form an overlapping operator.

More formally let C be the minimal cover set then o is the overlap component such

that (o = ci) ∧ ci ∈ C ∧ not operator(ci)

8〈pa, e1〉 occurs with 〈pb, e2〉 and 〈pd, e4〉, and 〈pc, e3〉 occurs with 〈pb, e2〉 and 〈pd, e4〉.



3.3. The Learning Algorithm 71

Definition 3.2.22 (overlap conjunction) An overlap conjunction is a non-consistent

conjunction that has the structure of a (qualified) operator consisting of at least one

overlap component and forms an overlapping operator. More formally let C be the

minimal cover set, ok = 〈c1, c2, · · · , cn〉 be a overlap conjunction and O be the set of

all overlap conjunctions, then ∀k,i ok = {ci | (ci, cj ∈ C)∧ (ci 6= cj) ∧ (S(〈cj, ck〉) 6=

∅)} ∧ (|ok| > 1) ∧ (∪ci∈OS(ci) = ∪kS(ok))

Definition 3.2.23 (candidate) A candidate conjunction is a member of the set of

candidate conjunctions. A candidates conjunction is either a consistent, composite,

combination or overlap conjunction.

Definition 3.2.24 (seed) A seed of a conjunction is the initial literal that is se-

lected and extended with co-occurring literals to form a maximal.

With the above set of basic definitions we are now in a position to describe the

proposed algorithm.

3.3 The Learning Algorithm

Given a set of transactions, it is possible for us to correctly identify a qualified

operator. More concretely, we may determine such an operator in the limit, that is,

when the number of transactions increases to infinity9.

To do this we need “only” to determine the maximum set of linked literals

that always co-occur i.e.: find a state transition that is consistently the same. For

example if the qualified literals 〈p1, p2, . . . , pj, e1, e2, . . . , ek〉, where pi∈[1...j] are pre-

image literals and el∈[1...k] are qualified post-image literals, that co-occur, then this

consistent conjunction represents a qualified operator. If there exists at least one

transaction wherein these literals do not co-occur then they cannot represent a

single state transition. For example assume we have N transactions wherein N − 1

transactions have the qualified conjunction 〈p1, p2, p3, e1, e2, e3〉 but there exists a

9Assuming we have L literals and that all transactions have anywhere between 1 to C simulta-
neously executing actions consisting of D literals, then we need only consider all possible f(L,C,D)
combinations of these concurrently executing actions.
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single transaction that has the qualified conjunction 〈p1, p3, e1〉. In this case it is

obvious that at least one state transition can always be described by the operator

(p1 ∧ p3)→ e1.

We assume that one or more actions may be executed concurrently. This means

that a transaction may contain a state transition produced by one or more actions.

It is therefore necessary to identify a set of consistent conjunctions that take into

account all of literals within the transactions. We must determine the minimum set

of conjunctions that cover all literals in the transactions. Specifically we must only

introduce a consistent conjunction if it covers at least one literal not covered by any

other consistent conjunction. This also implies that no two consistent conjunctions

in the final set of covering conjunctions subsume one another.

A consistent conjunction may cover one or more literals also covered by another

consistent conjunction. In the previous example not all of the literals 〈p1, p2, p3, e1, e2, e3〉

are covered by the single operator (p1 ∧ p3) → e1. In order to cover the com-

plete set of transactions we may find that an additional two operators are required:

(p1 ∧ p3) → e2 and p2 → e3. We can see that a non-deterministic operator exists:

both (p1 ∧ p3) → e1 and (p1 ∧ p3) → e2 have the same pre-conditions but differ-

ent effects. They can effectively be combined into a single operator (p1 ∧ p3) →

((e1 ∧ e2) ∨ (e1 ∧ e2)).

It is important to point out the following issue regarding truly non deterministic

actions. Assume we have the following three possible non-deterministic transitions:

〈p1, p2, e1〉, 〈p1, p2, e2〉 and 〈p1, p2, e1, e2〉. The transition may be identified as consis-

tent conjunctions which result in the following operator definitions: (p1 ∧ p2)→ e1,

(p1 ∧ p2)→ e2 and (p1 ∧ p2)→ (e1 ∧ e2). Because we must ensure that no subsump-

tion occurs, only the first two (consistent conjunctions) operators are retained. In

other words we assume that two actions take place in order for the effect 〈e1, e2〉 to

be observed simultaneously. Unlike the previous example we must combine these

operators without using mutually exclusion to obtain (p1 ∧ p2)→ (e1 ∨ e2) in order

to account for the simultaneous occurrence of 〈e1, e2〉. If such a combination of op-

erator definitions were to be undertaken in a post-processing phase then it would
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be necessary to check if disjunction or mutual exclusion should be used10.

Under the conditions described above, it is still possible not to identify one

or more operators. If two or more different actions co-occur in all of the set of

transitions T, then only one consistent conjunction and therefore one operator, may

be identified. However the probability that different actions co-occur decreases as

the number of transactions increases. In the limit, we will eventually encounter a

transaction where those two actions do not co-occur. In fact the probability that

two or more actions erroneously co-occur is very small. This probability (decreases)

also depends on: the number of operators in the domain (increases), the number of

actions that may be concurrently executed (decreases), whether or not a constant

or varying number of actions execute simultaneously (varying) and the distribution

with which the various operators (uniform).

3.3.1 Minimal Consistent Subset Cover Problem

In order to determine the complete set of operators, we need to search for the

minimum set of consistent conjunctions that cover all the literals in all the trans-

actions. As with many Machine Learning algorithms we must solve an instance of

the Set Cover (SC) problem, more specifically the Minimal Consistent Subset Cover

(MCSC) problem ( [GEC+07]). This is a covering and not a partitioning problem,

because the operators (and therefore the consistent conjunctions), may have (cover)

common literals. Note that this is a MCSC problem (as opposed to a SC problem)

because we do not have any prior knowledge of the conjunctions.

The MCSC problem is NP-hard ( [GEC+07]) and we must therefore resort to the

use of heuristics (page 15 in [Vaz01]) to make it tractable. We use a greedy heuristic

that selects an uncovered literal li from a transaction T (j). We then extend this seed

literal to form a maximal conjunction p. Once the consistent conjunction p has been

identified then all occurrences of this conjunction in the set of transactions T are

marked as covered. The process is repeated until no literal remains uncovered. This

resulting set of maximal conjunctions constitute the set of candidate conjunctions.

10Whenever combining operators with the same antecedents if there exists at least one trans-
action wherein both of the effects occur simultaneously, then a disjunction must be used.
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A final step removes all conjunctions that do not uniquely contribute to covering at

least one literal not covered by any other maximal. The remaining conjunctions are

then a set of consistent conjunctions that can be directly interpreted as operators.

The following sections describe the details of this algorithm. We describe the

proposed algorithm in three steps. In this subsection we present the first version

of the algorithm that learns non-overlapping operators in a noiseless setting Then

in sub-section 3.3.3 we extend the algorithm to account for the learning of overlap

operators. Finally in subsection 3.3.4 we further extend the algorithm in subsection

3.3.3 to learn in a noisy setting.

Algorithm 1: learnOperators(T, α, β, γ )

Input: T set of transactions
Input: α omission error extend frequency
Input: β commission error cut-off frequency
Input: γ omission error cut-off cover
Output: C set of maximal clauses (operator definitions)
T ← sort literals per transaction(T)1

T ← sort transactions by length(T)2

U ← identify unique literals(T)3

S ← count support of unique literals(U, T)4

M ← get maximal clauses(S, T, α, β)5

G ← purge subsuming clauses(M, α)6

C ← purge non unique cover clauses(G, γ)7

C ← is valid simplified operator(C)8

return C9

Algorithm 1 shows the main steps used in generating the set of consistent con-

junctions. It takes as input a set of transactions T that make up the data set and the

noise handling parameters α, β and γ. It outputs the set of operator definitions C.

This algorithm is structured into three parts: pre-processing (lines 1 to 4), learning

operators (line 5) and post-processing (lines 6 to 8).

In line 1 the literals in each transaction are ordered lexicographically. Next (in

line 2) we sort the transactions by increasing length so that transactions consisting

of fewer literals appear first. This ordering will later allow us to efficiently select a

seed from a transaction that has a minimum number of literals thereby reducing the

time used in testing co-occurrence. We then identify the set of non-variant literals

(line 3) and determine their support and support values (line 4). For each non-
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variant literal we also record the locations where they occur. The location consists

of a pair (idx, pos) where idx is the index of the transaction T (idx) and pos is the

index of the literal within the transaction. Note that, because actions of the same

operator may execute concurrently and because such literals may also be common

among actions of different operators, a non-variant literal may appear several times

within the same transaction.

In line 5 we start by generating the set of candidates using the greedy cov-

ering algorithm. Each candidate conjunction is a unique (non-variant) consistent

conjunction. For each of these conjunctions all locations that are covered by this

variant are recorded. For example the consistent conjunctions 〈p(X, Y ), q(X,Z)〉

and 〈p(X, Y ), q(Z,X)〉 are non-variants. The coverage of 〈p(X, Y ), q(X, Y )〉 is

recorded as {idx(1) : [〈1, 2〉, 〈1, 3〉] , idx(2) : [〈3, 4〉]} meaning that variants of this

conjunction occur in two transactions (T (1) and T (2)) and that this variant oc-

curs twice in the first transaction (〈1, 2〉 and 〈1, 3〉 occur in transaction T (1) =

〈p(X, Y ), q(X,Z), q(X,W )〉). Note that the literal p(X, Y ) is shared by the two

occurrences of the variant 〈p(X, Y ), q(X,Z)〉 in transaction T (1). It can also just

as easily be shared by another non-variant.

Next (line 6) all clauses that subsume any other clause are removed from the

candidate solution. In line 7 all of those candidates that do not cover a literal that

is not covered by any of the other maximal are removed. To test unique coverage

we start off by generating for each candidate the set of locations (idx, pos) that it

covers. We call this the cover set. Note that one n-tuple location exists for each

literal in every occurrence of the candidate variant. For each candidate we then

check if its cover set is a subset of the union of all other candidates. If it is then it

does not contribute to covering a unique literal and can therefore be safely removed.

Finally (line 8) all those conjunctions that do not represent an operator (rule) are

discarded.

Algorithm 2 does the actual greedy search for candidates described at the start

of this section. Let T be the set of transactions, S the non-variant set and M the

output set of candidates. In line 1 the literals that have yet to be covered are

recorded as the set of locations U, which is initialized with all of the literals in T .
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Algorithm 2: get maximal clauses(S,T,α,β) Greedy algorithm.

Input: T set of transactions
Input: S non-variant set of literals
Input: α omission error extend frequency
Input: β commission error cut-off frequency
Output: M Set of maximal clauses
// Order by (support, transaction length)
U ← coverage of non variant set(T, S)1

M ← ∅2

while U 6= ∅ do3

idx, pos, C ← select one uncovered(U)4

W ← rest of literals(T,idx,pos)5

max ← extend co occurring literals(T,C,idx,pos,W,α,β)6

if S(max ) > β then7

M ← M ∪ { max }8

endif9

U ← U \ cover(max)10

endw11

return M12

The n-tuples in the cover set U are ordered first by increasing support values and

then by increasing transaction length. We pick the seed literals with lower support

values first because then we need only test their co-occurrence against all literals

of the non-variant set whose support values are at least as large as its own. This

also reduces the number of transactions that have to be scanned when testing for

co-occurrence because lower support values mean occurrences in fewer transactions.

Assuming no noise in the data (specifically errors of omission) we need only test

co-occurrence against literals that occur in the same transaction as the seed (or for

that matter any other transaction where the seed’s variant occurs). If we select

the transaction with the least number of literals then we obviously also reduce the

number of co-occurrence tests.

In order to generate a candidate we first select an uncovered seed (C) that has

the location (idx, pos) (line 4). Next we obtain the set W of all the literals in the

transaction idx excluding the seed (line 5). The seed C is then extended with as

many of the co-occurring literals in W as possible (line 6). The resulting maximal

max is recorded as a candidate (line 8) and all of the literals covered by this maximal

are deleted from the set U (line 10). This process (lines 4 to 10) is repeated until all
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of the literals have been covered (line 3).

This algorithm is guaranteed to terminate if and only if we ensure that the

maximal that is generated at each iteration covers the seed’s original location. To

see why the algorithm may not terminate consider what happens when the seed is

extended. We may find several non-variant conjunctions that co-occur with the seed

but only one of these will cover the seed’s original location. For example assume the

seed p(X, Y ) located at (idx = 1, pos = 〈1〉) is extended with a literal q(X, Y ). We

may find that the conjunctions c1 = 〈p(X, Y ), q(X,Z)〉 and c2 = 〈p(X, Y ), q(Z,X)〉

exist at locations (idx = 1, pos = 〈1, 3〉) and (idx = 1, pos = 〈2, 3〉), respectively.

In order to find the maximal we must keep on extending one of these conjunctions.

Assume we deterministically select the conjunction that has the maximum support

value. This may be the c2 conjunction that does not cover the original seed’s

location. The cover of the set of U is then updated in line 10, which means that the

location (idx = 1, pos = 〈1〉) remains in U. The next iteration will select the same

seed, which will generate the same set of extended conjunctions and hence result in

the repeated generation of the same maximal. The process will then repeat itself

without terminating.

Algorithm 3 represents the core of the ML algorithm. Let T be the set of trans-

actions, C the maximally extended conjunction (initially this is set to the seed), the

pair (idx, pos) the original seed’s location and W the set of possibly co-occurring lit-

erals in transaction idx. This algorithm outputs a maximally extended conjunction

C.

In line 1 we initialize the flag did grow to false. This flag is set to true if

the current conjunction C was successfully extended with at least one co-occurring

literal from the set W. The initial set of literals again is made empty. It holds any

of the literals from W that are temporarily kept for later retesting of co-occurrence.

The algorithm starts off by selecting and removing a literal lit from the set

W (line 4). Currently the initial set of literals in W are ordered such that they are

linked.11 The function remove one() simply picks the first one that is available.

11See Definition 3.2.15 and the subsequent description of linked literals.
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Algorithm 3: extend co occurring literals(T,C,idx,pos,W,α, β)

Input: T set of transactions
Input: C clause to be extend
Input: idx transaction index of selected uncovered clause C
Input: pos position within transaction idx of selected uncovered clause C
Input: W possibly co-occurring literals in transaction idx
Input: α omission error extend frequency
Input: β commission error cut-off frequency
Output: C Clause of co-occurring literals
did grow ← false1

again ← ∅2

while W 6= ∅ do3

W, lit ← remove one(W)4

db ← extend if co occur(C, lit, α, β)5

linked, unlinked ← split list(db)6

linked ← filter covers original(pos, idx, linked)7

unlinked ← filter covers original(pos, idx, unlinked)8

linked ← commission error filter(linked, β)9

unlinked ← commission error filter(unlinked, β)10

linked ← omission error filter(linked, C, α)11

unlinked ← omission error filter(unlinked, C, α)12

switch linked, unlinked do13

case {. . . }, ∅14

C ← search best(linked)15

did grow ← did grow ∨ true16

endsw17

case ∅, {. . . }18

again ← again ∪ { lit }19

endsw20

case ∅, ∅21

// Do nothing. Try another.
endsw22

case {. . . }, {. . . }23

C ← search best(linked)24

did grow ← did grow ∨ true25

endsw26

if (W = ∅) ∧ (again 6= ∅) ∧ did grow then27

W ← again28

did grow ← false29

again ← ∅30

endif31

endsw32

endw33

return C34
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The ordering is done only once at the start so it does not guarantee that all literals

selected from W will be linked to the seed or among themselves. Alternate strategies

for ordering and selecting the literals in W can also be used.

The next step (line 5) is to check for the co-occurrence of the conjunction C =

C ∪ {lit}. The result is a set db of non-variant conjunctions if they do co-occur

otherwise an empty set is returned. The function extend if co occur() checks

for and groups all variants by matching the co-occurring conjunctions. It also records

all of the locations of each of these variants. Some of the conjunctions in db however

may be unlinked. As an example consider the co-occurrence check of 〈p(X)〉∪〈q(Y )〉.

We may find two conjunctions c1 = 〈p(X), q(X)〉 and c2 = 〈p(X), q(Y )〉. In line 6

these conjunctions are split into two sets: those conjunctions that are linked (c1)

and those that are unlinked (c2).

As was previously explained, in order to guarantee the convergence of the greedy

cover algorithm, we must ensure that the original seed’s location is still covered. In

lines 7 and 8 we remove all those conjunctions whose locations do not include the

original seed location.

According to the resulting sets of linked and unlinked conjunctions we have 4

cases to deal with. In the first case (line 14) no unlinked conjunctions were found.

In other words we have successfully extended C with the literal lit to form linked

conjunctions only. Of these we select the best one (line 15) and indicate, via the

did grow flag, that an extension was successful (line 16). The current criteria for

selecting a conjunction is to pick the one with the highest support value.

Case two (line 18) deals with the case when only unlinked co-occurring con-

junctions were found. Here we consider that the extension using the literal lit

failed. However we record it for possible retesting later (line 19). This is required

because a literal that is currently unlinked my later become linked once the con-

junction C has been extended with another literal from W. To demonstrate this,

consider the previous example’s unlinked conjunction c′2 = 〈p(X), q(Y )〉. We can-

not discard q(Y ) because once p(X) has been extended with the literal r(X, Y )

to form c2 = 〈p(X), r(X, Y )〉 then we may later successfully extend it to form

c3 = 〈p(X), r(X, Y ), q(Y )〉.
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The third case (line 21) occurs when neither linked nor unlinked literals were

found. Here we assume that there are no co-occurrences and the literal lit is

discarded. It is safe to discard such a literal due to the anti-monotonic property

of the support. The fourth and last case (line 23) is a combination of the first two

cases. In other words we found both linked and unlinked co-occurring conjunctions.

We proceed just as we did in the case one and discard the literal from further testing

because it has been successfully used.

The steps above are repeated (while loop in line 3) until the conjunction cannot

be extended any further, in other words C is a maximal. Note that the process is

restarted whenever the current pool of possibly co-occurring literals W is depleted but

the conjunction has been successfully extended and previously unlinked co-occurring

literals (in again) still exist (line 27).

3.3.2 Learning Non-overlapping Operators

As with any other heuristic, the solution is not guaranteed to be optimal. In this

section we explain how and why the algorithm may incorrectly produce some com-

posite and (non-maximal) combination conjunctions. This provides us with the

insight necessary to explain and possibly improve on the current results. We do this

by considering the conditions under which the strategies employed by the heuristics

fail and therefore induce error.

Let’s assume we have two operators whose definitions are op1 = 〈p(X, Y ), q(X,Z)〉

and op2 = 〈p(Y,X), q(Z,X)〉. Instances of these operators occur in a subset of the

transactions set T such that: op1 and op2 co-occur in U transactions, op1 occurs in

V transactions where op2 does not occur and op2 occurs in W transactions where

op1 does not occur. Lets also assume that |U | = |V | and |U | = |W | and that all

transactions V and W are longer (have more literals) than transactions U . The for-

mer conditions ensure that any of the literals p(X, Y ) or q(X, Y ) may be selected in

Algorithm 2 as seeds because the ordering by support value is effectively random.12

The latter condition ensures that a seed will be picked from one of the U trans-

12All literals have the support value of |U ∪ V ∪W | so any ordering is possible.
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actions. Let’s assume that a transaction T (i) in U , has the the following literals

〈p(X, Y ), q(X,Z), p(U,W ), q(Z,W )〉, and that its first literal is selected as the seed.

Under these conditions Algorithm 3 can start with the seed C set to p(X, Y )

and W containing three literals: p(X, Y ), q(X, Y ) and q(X, Y ). The initial tests of

co-occurrence use the support of the literals in W and determine that p(X, Y ) and

q(X, Y ) possibly co-occur (S(q(X, Y )) ⊆ S(p(X, Y ))13). A first attempt at extend-

ing the seed with p(X, Y ) verifies that the resulting conjunction is unlinked (the

conjunction 〈p(X, Y ), p(U,W )〉 in T (i) is unlinked). This literal is kept in again

for later retesting. Next the seed is extended to form the consistent conjunction

〈p(X, Y ), q(X,Z)〉. However it does not stop here.

The set W still contains the literal q(X, Y ) for testing. At this point the C

conjunction has the support S(〈p(X, Y ), q(X,Z)〉) = U ∪ V , the literal has sup-

port S(〈q(X, Y )〉) = U ∪ V ∪ W and hence they possibly co-occur (U ∪ V ⊆

U ∪ V ∪W ). The process continues reaching the point where C is the conjunction

〈p(X, Y ), q(X,Z), q(Z,W )〉 and the set again contains the literal p(X, Y ). Once

more the process does not terminate because the last attempt to extend the conjunc-

tion succeeds and the set again is not empty. The literal in again is used to extend

the conjunction C resulting is the composite 〈p(X, Y ), q(X,Z), p(U,W ), q(Z,W )〉.

The example above shows that the algorithm may generate composites. Note

that selecting the seed may use more sophisticated criteria such as picking the next

seed from a transaction which has the least number of co-occurring literals. However,

as we will see later, such criteria will not allow us to deal with the issue of errors of

omission in the data set.

For the next example let’s assume we have two operators whose definitions are

op1 = 〈p(X, Y ), q(X,Z), r(X,Z)〉 and op2 = 〈p(Y,X), q(Z,X), s(W,Z)〉. Instances

of these operators occur in a subset of the transactions set T such that: op1 and op2

co-occur in U transactions, op1 occurs in V transactions where op2 does not occur

and op2 occurs in W transactions where op1 does not occur. Let’s also assume that

|U | = |V | and |U | = |W | and that all transactions in V and W are longer (have

13In this case both are equal to U ∪ V ∪W
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more literals) than transactions in U . The former conditions ensure that any of the

literals r(X, Y ) or s(X, Y ) may be selected in Algorithm 2 as a seed because they

have the least support.14 The latter condition ensures that a seed will be picked

from one of the U transactions. Let’s assume that a transaction T (i) in U , which

has the the following literals 〈p(X, Y ), q(X,Z), r(X,Z), p(U,W ), q(Z,W ), s(W,Z)〉,

has the literal r(X,Z) selected as the seed.

Let’s assume that the conditions above, Algorithm 3 starts with the seed C set to

r(X,Z) and W contains four literals: p(X, Y ), q(X, Y ), q(X, Y ) and s(X, Y ). When

the algorithm first attempts to extend C with the literal s(X, Y ) the co-occurrence

test fails and this literal is therefore discarded.15 The algorithm then proceeds in

the same manner as the previous example generating the non-maximal combina-

tion 〈p(X, Y ), q(X,Z), r(X,Z), p(U,W ), q(Z,W )〉. It is non maximal because the

literal s(X, Y ) was discarded. Note however that if the literals were tested in a

different order (testing s(X, Y ) last) then the final conjunction would be maximal

(composite).

The example above shows that the initial co-occurrence testing of the literal may

inadvertently remove a literal from a conjunction making it non-maximal. This

is because every time we extend a conjunction its support may diminish (anti-

monotonic property) so that literals that previously did not co-occur may later

do so. Note that there exists an ordering of W for testing co-occurrence that will

ensure that all relevant literals will be added (the literals with least support value

should be tested last, in the previous example s(X, Y ) would be the last literal).

Determining and using such an ordering however is not advantageous because it not

only increases processing time but also generates composites and combinations that

do not contribute to the correct solution.

When the errors above are induced, it does not mean that the correct solution

cannot be found. After generating the composites and combinations, not all of

the literals will be covered. In both of the above cases literals in the transactions

U and V will not be covered. These literals will be selected later as seeds thereby

14The literal r(X,Y ) has support U ∪ V and literal s(X,Y ) has support U ∪W .
15Literals r(X,Y ) and s(X,Y ) do not co-occur because (U∪V ) * (U∪W ) and (U∪W ) * (U∪V )
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generating the consistent conjunctions. After coverage of all literals have been found

the composites and combinations can then be removed because they do not provide

unique coverage of at least one literal.

As concluding remarks we make the following observations. First we can see

that the pruning of the search space is a result of checking for the co-occurrence of

a conjunction and a literal. This pruning may inadvertently remove literals gener-

ating non-maximal conjunctions. Second we repeatedly check for linkage between

a conjunction and a literal. There may exist an order of literals in W, which could,

at worst, result in an exponential number of comparisons. Finally even if interme-

diate erroneous (non-consistent conjunctions) are generated this does not prohibit

the identification of the correct solution.

3.3.3 Learning Overlapping Operators

The algorithm described in the previous section is able to determine all of the

consistent conjunctions without error.16 However it is still unable to detect a specific

type of operator, referred to as overlapping operators (see Definition 3.2.20). These

operators’ literals do not always co-occur but they are made up of a combination of

two or more consistent conjunctions. The problem with identifying such operators

is twofold: the need to combine consistent conjunctions without over-fitting17 and

being able to combine the consistent conjunctions repeatedly in order to correctly

determine overlap operators consisting of several maximals. This section describes

an extended version of the algorithm that does exactly this.

Algorithm 4 takes as input the set of transactions T and the set of consistent

conjunctions C and produces a new set of candidates C so that the latter set of con-

junction may possibly contain the definitions of one or more overlap operators. First

we determine which of the candidates are overlap components (see Definition 3.2.21)

that can be combined to form overlap operators (line 2). We then generate a set18 of

16Without error here meaning that no additional candidates besides the consistent conjunctions
are retained.

17Over-fitting here refers to the combination of operators that should not be combined.
18Implemented as a Trie data structure.
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Algorithm 4: extend to overlap actions(T,C,β)

Input: T set of transactions
Input: C set of candidates
Input: β commission error cut-off frequency
Output: C set of possibly extended candidates
while true do1

to extend,extended with ← valid simplified operators(C)2

db ← non variants trie(C)3

if to extend = ∅ then4

return C5

endif6

extents ← extend pairs(T, to extend, extended with, β)7

extents ← purge super non unique cover(extents)8

if extents = ∅ then9

return C10

else11

all ← C ∪ extents12

C ← purge super non unique cover(all)13

// New set of conjunctions unchanged
if C ⊆ db then14

return C15

endif16

endif17

endw18
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unique variants db (line 3), which will be used to terminate the process of combining

components. If we find that no overlap components exist (line 4) then no (further)

combining of maximals is performed and the current set of candidates C is returned

(line 5). Otherwise the overlap components are combined with any maximal (line 7)

to produce the list extents of newly extended conjunctions, some of which may

possibly represent overlap operators.

The extents list is then purged of any conjunctions that do not provide unique

coverage (line 8). However, unlike the test of unique coverage used in the previous

algorithms, care must be taken here. Note that according to the definition of overlap

operators, these will never provide unique coverage because such coverage is already

provided by the set of its combined subsuming conjunctions. In order to solve this,

we purge all shorter conjunctions that do not cover at least one unique literal as

compared all of the conjunctions that are at least as long as itself. To do this

the function purge super non unique cover() simply orders the extents

in increasing order of their length and then checks each conjunction extents(i)

against all other extents(j) for all j > i19.

If no extents are generated (line 9) then the current set of candidates C is

returned (line 10). If, on the other hand, extensions were generated, then we must

check if a new set or the same set of candidates were generated. To do this we

first collect all of the prior and current conjunctions (line 12), remove any unneeded

conjunctions (line 13) and then check if the set of all conjunctions is the same as the

set of conjunctions we had last generated (or started off with). If this is so (line 14)

then we have reached a fixed-point and can return the current set of conjunctions

C (line 15). If not, then we can attempt to extend the current set of candidates

C (while loop that starts at line 1) until we cannot extend them further or keep

generating the same set of candidates.

The function extend pairs() is described in Algorithm 5. It takes as input

the set of candidates that have been split into overlap components Extend and non-

overlap conjunctions To extended with. The algorithm attempts to extend (line

19A total of n(n− 1)/2 checks are performed.
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Algorithm 5: extend pairs(Extend,To extend with,β)

Input: Extend set of non-action candidates
Input: To extend with set action candidates
Input: β commission error cut-off frequency
Output: Acc set of possibly overlapping candidates
Acc ← ∅1

foreach e ∈Extend do2

Extended with’ ← ( Extend \ {e} ) ∪ Extended with3

Extents ← combine pairs(e, Extended with’, β)4

Extents ← greedy set cover(e, Extents, α)5

if |Extents | > 2 then6

Acc ←Acc ∪ Extents7

endif8

endfch9

return Acc10

4) each overlap component e in Extend (line 2) with the set Extended with’ that

consists of every other overlap component and the non-overlap conjunctions (line 3).

From the resulting set of combined conjunctions Extents, only the minimum subset

of those conjunctions that once combined have the same support as the original

conjunction e, are selected. Once again a greedy heuristic is used to select these

conjunctions (line 5). If at least two such extended conjunctions exist (line 6) then

they are recorded in the accumulator Acc (line 7). Note that the requirement that

at least two new extended conjunctions have the same original support, ensures that

we do not inadvertently combine non-overlap conjunctions, which would otherwise

result in over-fitting.

Algorithm 6 takes as input a single overlap component To extend and a set

of candidates Extend with and returns a set of conjunctions, some of which may

represent possible overlap operators. Each conjunction e in Extend with (line

2) is used to extend the conjunction To extend (line 3). Note that the func-

tion extend if possibly co occur() unlike the function extend if co -

occur() in Algorithm 3, returns the set of locations db of any combination of the

conjunctions if their exists at least one transaction in which they simultaneously

occur (co-occurrence is not a requirement). The set db is then split into the sets

of conjunctions that are linked and unlinked (line 4). If any linked conjunc-

tions exist (line 7), then they are recorded in the accumulator Acc (line 8), which
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Algorithm 6: combine pairs(to extend,Extended with,β)

Input: To extend overlap component
Input: Extend with set of overlap components and non-overlap candidates
Input: β commission error cut-off frequency
Output: Acc set of possibly overlapping candidates
Acc ← ∅1

foreach e ∈Extend with do2

db ← extend if possibly co occur(To extend, e, β)3

linked, unlinked ← split list(db)4

linked ← commission error filter(linked, β)5

unlinked ← commission error filter(unlinked, β)6

if linked 6= ∅ then7

Acc ←Acc ∪ linked8

endif9

endfch10

return Acc11

is then returned as the result (line 11). Note that unlike Algorithm 3 no verification

is made to ensure that the original locations (idx, pos) of to extend are are

still covered. The equivalent check is performed by the the greedy set cover()

function (Algorithm 5, line 5).

Algorithm 7 once again uses a greedy heuristic to identify the minimum set of

overlapping candidates Extents that have the same cover as the original extended

conjunction To extend. It starts off by first ordering the Extents according to

a given criteria (line 2) and calculating the cover Must cover of the conjunction

To extend (line 3). The function S(c) represents the support set of the conjunction

c. It then selects one of the extents e at a time (line 5) and removes its coverage

Covered (line 7) from the required covering Must cover (line 8). The selected

conjunction e is recorded in the accumulator Acc to be retuned later (line 9). The

process is repeated until either all of the required cover has been provided by the set

of conjunctions in Acc or we run out of candidates (line 4). If the required coverage

can be guaranteed (line 11) then the accumulator is returned (line 12) otherwise an

empty set is returned (line 14).

Several orderings (line 2) were tested. The one that provided the best results

places those conjunctions that provide the correct operator definition first, it places

second those with the largest cover value and last the conjunctions with least number
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Algorithm 7: greedy set cover(To extend,Extents)

Input: To Extend overlapping component that was extended
Input: Extents set of possibly overlapping candidates
Output: Acc minimum cover set of possibly overlapping candidates
Acc ← ∅1

Extents ← sort greedy heuristic(Extents)2

Must cover ← {locationi | locationi ∈ S(To Extend )}3

while ( Must cover 6= ∅ ) ∧ ( Extents 6= ∅ ) do4

e← next(Extents)5

Extents ← Extents \ e6

Covered ← {locationi | locationi ∈ S(e)}7

Must cover ← Must cover \S(e)8

Acc ← Acc ∪{e}9

endw10

if ( Must cover = ∅ ) then11

return Acc12

else13

return ∅14

endif15

of literals. No tests that ordered by support value were assessed because the greedy

algorithm was only tested with coverage and not support.

3.3.4 Dealing with Noise

It is desirable that the ML algorithm be robust enough to deal with noise in the data

set. Noisy data may be present in the set of transactions as a result of two types of

errors: errors of commission and errors of omission. Errors of commission represent

the existence of literals in the transactions that should not be present. Errors of

omission represent literals that are missing from the transactions. A combination

of errors of omission and omission may also be present, in other words a correct

literal may be substituted by an incorrect one. A literal is incorrect if at least one

of its arguments is incorrect. In this section we will show how the algorithm must

be adapted in order to deal with errors of omission and commission.

It is important to note that the errors of commission do not necessarily represent

errors per se in the data. Transactions will naturally hold many literals (facts) that

are irrelevant to the actions that are executed. For example in a mobile robot

domain, the positions of the walls and other fixed objects may never change (non
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fluents that are not part of any operator’s effects) nor provide pre-conditions for

the execution of some actions (non fluents that are not part of any operator’s post-

conditions). So these literals should not be part of any of the operators’ definitions.

We will nevertheless treat this case as a common error of commission.20

Errors of Commission

Let’s assume that we have at least one transaction consisting of the literals 〈c1, c2, p1, p2, e1, e2〉

where the (possibly qualified) literals ci represent commission errors and pj and ek

an operator’s pre and post-condition respectively. The ML algorithm should there-

fore only identify the operator (p1 ∧ p2) → (e1 ∧ e2). However, as it stands, the

algorithm above will generate the following two consistent conjunctions: 〈c1, c2〉 and

〈p1, p2, e1, e2〉. To explain why, consider that if (p1 ∧ p2) → (e1 ∧ e2) is the correct

operator then there must exist at least one transaction T (i) such that 〈c1, c2〉 and

〈p1, p2, e1, e2〉 do not co-occur. Hence both these conjunctions will be identified and

retained as candidates. Because both candidates are required to cover all of the

transaction literals, neither is removed during the unique cover check. This means

that all commission error maximals that exist are kept in the final solution. More-

over, assuming a constant error rate and uniform distribution of these errors, as the

number of transactions increases so does the number of such maximals.

Two strategies were used to avoid such errors. First we observe that in the case

of commission errors due to the occurrence of possibly frequent non-fluents, we need

only to remove all those conjunctions that cannot be interpreted as an operator. We

therefore include a last call in Algorithm 1 (line 8) to a new function are valid -

simplified operator() which checks that each candidate has the following

conditions, otherwise it is are remove:

� At least one pre-condition must exist (at least one non qualified literal must

exist),

� At least one post-condition must exist (at least one qualified literal must exist),

20Non-fluents will never be qualified with the add/1 and del/1 predicates. However we treat
all commission error literals, qualified or not, in the same way.
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� All delete post-condition (literals qualified with the del/1 predicates) must

exist in the pre-conditions,

� All add post-condition (literals qualified with the add/1 predicates) must

exist in the post-conditions,

� No post-conditions clobber each other (the same function symbol does not

exist in any literals qualified with both the add/1 and del/1 predicates).

Second, we observe that in general the support values of the commission error con-

junctions are low. In such cases we can use a priori information to establish a

cut-off frequency, which we will refer to as β. Any maximal whose support value is

not greater than β is discarded. Note that the value of β should be a function of

the number of transactions because as the number of transactions increases so does

the chance that two or more literals will co-occur. Experiments show however that

even though the number of commission error conjunctions increases linearly their

support value remain low. So the use a of a constant β is quite effective. It has also

been observed that the algorithm remains relatively stable with respect to changes

in the β values.

In order to incorporate the β parameter into the ML algorithm changes are

required in the get maximal clauses() (Algorithm 2, line 7), extend co -

occurring literals() (Algorithm 3) and combine pairs() (Algorithm 6)

functions. In the get maximal clauses() we simply check that all maximals

must have a support value larger than that of β. Note that even if the maxi-

mal is not recorded, its cover is still removed to ensure convergence. In the case

of the extend co occurring literals() the extend if co occur() func-

tion (line 5 in Algorithm 3) an additional parameter β is added. This function per-

forms an initial test to check if S(C) ⊆ S(lit) or S(lit) ⊆ S(C). If neither is true

then the conjunctions do not co-occur and are therefore not combined. If they do,

then the upper bound21 S0 = S(C)∩S(lit) is calculated. If the |S0| ≤ β then we as-

sume the possibly combined conjunction is noise and an empty set is returned. Oth-

21This is an upper bound because the conjunctions may be unlinked or produce sets of non-
variants.
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erwise all locations of all possible combinations of these conjunctions are determined

and returned grouped by non-variants. Note that once we do extend the conjunc-

tion we may find two or more non-variants, each with a different support value less

than the upper bound |S0|. For example consider the conjunctions C = 〈p(X, Y )〉

and lit = q(X, Y ). Their combination may result in the non-variant extensions

c1 = 〈p(X, Y ), q(X, Y )〉 and c2 = 〈p(X, Y ), q(Y,X)〉, c3 = 〈p(X, Y ), q(Z,W )〉22

such that S0 = S(c1) ∪ S(c2) ∪ S(c3) and hence S0 ⊇ S(c1) ∪ S(c2). This means

that once we do determine the extensions and their correct support values we must

repeat the check for commission errors (lines 9 and 10 in Algorithm 3).

The changes in the combine pairs() (Algorithm 6) function are similar. The

function extend if possibly co occur() (line 3) also has an additional pa-

rameter β which is used to remove all extensions whose support is below this value.

However unlike the previous version of extend if co occur() this function only

checks that an S0 = S(C) ∩ S(lit) is not empty because the generation of over-

lap operators does not require (full) co-occurrence. Once the extensions have been

determined it also performs a final pruning of commission errors (lines 5 and 6).

Errors of Omission

Dealing with errors of omission is significantly more challenging. In order to under-

stand why assume we have an operator (p1 ∧ p2) → (e1 ∧ e2). In other words we

expect to find the consistent conjunction c1 = 〈p1, p2, e1, e2〉. Because of errors of

omission and given enough transactions we may nevertheless find all subsets of c1.

For example if for a given transaction the literal p1 is missing then we will find the

consistent conjunction 〈p2, e1, e2〉. Note that any number of literals may be missing

from an action thereby exacerbating the problem. In the worst case scenario we will

identify each unique literal of c1 as a consistent conjunction.23

The ML algorithm therefore exhibits a bias towards shorter consistent conjunc-

tions because only a single transaction with an error is required to prematurely

22Unlinked extension.
23This is possible even if only one literal per action is missing. For this to occur in the case of

an operator consisting of n literals, we need only have n transactions, each of which having one
different literal missing.
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terminate the extension of a conjunction. However because errors are fairly uncom-

mon we have observed that the relative difference in support between a conjunction

p and any of its error induced subsuming conjunctions p′ can be used to force the

extension of the subsuming conjunction. This may be formally expressed in the

following way. Let p be the maximal we expect to be consistent, p′ be the error

induced consistent conjunction such that p′ ≺ p and e = 〈e1, . . . , ek〉24 represent the

missing literals (p = p′ ∪ e). We can now calculate the relative support for p, p′

and e as follows: S0 = S(p), S1 = S(p′) \S(p) and S2 = S(e) \S(p). If |S1| � |S0|

or |S2| � |S0| then we may assume that p′ is error induced and must therefore be

extended further with e. Once again we introduce a parameter α that quantifies

the relative difference of support that will force further extending of a conjunction.

Using this parameter we say that if S1/S0 < α or if S2/S0 < α then the consistent

conjunction p′ is extended further.

In order to deal with omission errors, the first change requires that we force

the extension according to the conditions above. The function extend if co -

occur() (Algorithm 3, line 5) performs an initial check on the upper bounds of

the support. Assuming C is the conjunction to be extended with the literal lit, it

determines the supports: S0 = S(C)∩S(lit), S1 = S(C)\S0 and S2 = S(lit)\S0.

If |S0| > 0 and either |S1| > 0 or |S2| > 0, but not both,25 then we assume that

co-occurrence may be possible and all locations of all combinations of extended =

〈C ∪ {lit}〉 are identified. If on the other hand, |S0| > 0 and both |S1| > 0 and

|S2| > 0 then we calculate the ratio r = min(|S1|, |S2|)/(|S0| + min(|S1|, |S2|)). In

this case if r ≤ α then we assume that omission errors have been detected and the

locations of all possible co-occurring combinations of extended are identified. For

all other cases an empty set is returned.

Once the correct support values of the co-occurring combinations have been de-

termined, we must repeat the check above (Algorithm 3, lines 11 and 12). Here

we assume that we only have the initial conjunction C and the set of linked

and unlinked conjunctions consisting of the extensions extended(i). The sup-

24Possibly a literal.
25Both may be empty.
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ports S0(i) = S(extended(i)) and S1 = S(C) are evaluated and the ratio r(i) =

|S1|/(|S0(i)|+ |S1|) is calculated. For every extended(i) ∈ linked ∪ unlinked,

if r(i) ≤ α then we assume that omission errors have been detected and the extension

is recorded otherwise it is discarded.

The changes above can successfully generate non-consistent maximals that repre-

sent the most probable definitions of an operator. However it has several unintended

repercussions, most notably in regards to the selection of the literals that possibly

co-occur with the seed and the resulting convergence of the greedy covering heuristic.

To see why, recall that in the function get maximals clauses() (Algorithm 2)

an uncovered seed is selected and only extensions that cover its original location

are kept. This means that the greedy cover algorithm will keep selecting uncovered

literals until, sooner or later, none exist. This is possible if we assume that the seed’s

transaction contains all of the literals that constitute the consistent conjunctions. In

fact this is why we selected the shortest transactions first. With errors of omission

this is simply not true, one or more of the required literals may be missing.

In order to solve this problem we select the transaction that contains a seed

literal according to an alternate criteria: select the longest transaction. In this

way we increase the chances of finding all of the maximal’s literals. Alternative

strategies included selecting transactions with the greatest number of co-occurring

literals or greatest number of unique26 co-occurring literals. However the quality of

the solutions in these cases was generally worse. It is important to note that even if

we do select the longest transaction, we must still select a seed from that transaction

(function rest of literals() in Algorithm 2, line 5 must now return a new seed

(idx, pos)). Such a seed may inadvertently be linked to a maximal that is missing

one or more literals yielding the wrong solution.

Assuming we do select a transaction and respective seed that lead to the cor-

rect (possibly consistent) maximal, then only their locations are marked as visited

(Algorithm 2, line 10). This means that all literals of the subsuming error induced

conjunctions will not be covered. In the next rounds, the greedy algorithm will pick

26We do not count variants of the same literal.
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the same uncovered seed, which results in the selection of the longest transaction

and seed that was previously chosen, thereby generating the same maximal. The

process is then repeated indefinitely and therefore fails to terminate. In order to

solve this issue, for any given seed, we only select the longest transaction if it con-

tains at least one variant of the seed not yet covered. In this way, when we do pick

the same literal again, we will not repeatedly select the same (longest) transaction.

However this means we will not only generate the correct (possibly consistent) max-

imal but also all error induced consistent conjunctions. This significantly increases

the complexity of the algorithm. One may consider avoiding repeatedly selecting

the initial seed literal (or extending conjunction C) by marking it as visited as soon

as we detect a possible error of omission. This would avoid the needless generation

of all the error induced conjunctions, however it produces worse results because it

means that we may unintentionally remove shared literals that would otherwise lead

to the identification of other correct (possibly consistent) maximals.

We can now see that when errors of omission exist, the set of generated candidates

will also include a number of error induced subsuming conjunctions. These incorrect

conjunctions are eliminated in the learnOperators() function (Algorithm 1,

line 6) prior to the removal of non unique covering conjunctions. It is important

to point out that the removal of the error induced subsuming conjunctions must be

done prior to the filtering of non-unique covering conjunctions. To understand why

consider a maximal p and all its error induced conjunctions pi. We know that in

these conditions ∀i : p ≺ pi. Because of the anti-monotonic property this implies

that ∀i : S(p) ⊆ S(pi). In the worst case scenario we may have the case that

S(p) ⊆
⋃

i S(pi). In other words p will be removed because it does not cover any

unique literal not covered by any other conjunction.

The removal of the error induced conjunctions simply repeats the tests that

were already performed during conjunction extension (Algorithm 3, lines 11 and

12) as follows. All candidates are ordered in increasing length of the conjunctions.

Each conjunction pi is then compared to all of its longer conjunctions pj.
27 If the

27Total of n(n-1)/2 comparisons.
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conjunction subsumes some other (longer) conjunction (pi ≺ pj) then the supports

S0 = S(pi) and S1 = S(pj) are evaluated and the ratio r = |S1|/(|S0| + |S1|) is

calculated. If r ≤ α then we assume that omission errors have been detected and

the conjunction pi is discarded. In any other case the conjunction pi is kept.

Similar changes must also be made to the functions that deal with the overlap

operators. Accordingly extend pairs() has an α parameter that is only used

by the greedy set cover() function (Algorithm 5, line 5). The changes to

the greedy set cover() function are limited to the if statement in line 11

of Algorithm 7. Instead of verifying that all of the support of the To extend

conjunction is reached, we assume that due to errors part of this support need not be

guaranteed. We therefore stipulate a maximum support value can miss that can be

ignored such that can miss = α|S(Must cover)|. The if statement’s condition

is simply changed from S(Must cover) = ∅ to |S(Must cover)| ≤ can miss

thus allowing for some of the support to be missing.

Unlike extend if co occur() the function extend if possibly co occur()

in line 3 of Algorithm 6 does not require any changes. Recall that in this case we se-

lect only combinations of conjunctions that need only occur together at least once.

So no relative measure of co-occurrence error is available to be used with the α

parameter.

The removal of the error induced conjunctions in the function learnOperators()

(Algorithm 1, line 6) means that the literals of these conjunctions need not be

covered by the solution set of consistent and overlap conjunctions. As with the

greedy set cover() function above this means that both purge non unique -

cover clauses() (in Algorithm 1, line 7) and purge super non unique -

cover() (in Algorithm 4, lines 8 and 13) must also be changed to allow for some

of the literals not to be covered. A new parameter γ was therefore introduced that

allows us to indicate the maximum number of literals that need not be covered. It

is important to point out that the same parameter α was not used because it repre-

sents a fraction of the support value that does not need to be covered, whereas the

γ values is relative to the cover of the literals. The value of this parameter depends

on the length of the operators. If the average length of the operators is higher,
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then the number literals that need not be covered will also increase irrespective of

the support value. Experimentation show that in most cases a constant value of

approximately γ = α/10 works well.

In both functions above we define a value miss no more(i) such that it is equal

to γ|
⋃

i 6=j C(pj)| for all pj candidates excluding the candidate pi whose unique

coverage is being tested. The value miss no more(i) is calculated for all pi in the

set of candidates. If any of the pi conjunctions covers less that miss no more(i)

literals, then we assume that it does not have a unique cover. Such a conjunction is

discarded from the final solution. Recall that essentially the only difference between

these two functions is the order in which the literals pi are tested.

A final note on the parameters α and γ. Like β these values should not be con-

stant but should increase with the increase in the number of transactions. However,

experimentation has shown that the use of constant values works quite well.

3.4 Concluding Remarks

The algorithm described in this chapter addresses the solution of an NP-complete

problem. Moreover we have identified three situations: learning standard operators

in a noise free settings; learning overlap operators in a noise free setting; and learning

in a noisy setting. As is usual in these cases, because efficiency is at stake, we have

adopted an heuristic approach. A worst case exponential cost still occurs in both:

the search for standard operators (see Algorithm 3); and overlap operators (see

Algorithm 4). In the first case we have seen that the check for linkage between

literals may result in an exponential cost in the search. In addition to this it is

important to note that in both these phases of the algorithm we must identify all

non-variants of an extended clause and their locations. In order to check if two

clauses are or are not variants we must match these clauses, which is also NP-

complete.

We have also seen that in order to guarantee convergence in the presence of

noisy data, all clauses, including those candidates that will later be removed from

the solution, must be generated and evaluated. This means that a greater num-
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ber of clauses are generated thereby increasing the the computational cost of the

algorithm. We have also seen that dealing with errors of omission is particularly dif-

ficult because missing literals will generate multiple maximal clauses. These clauses

must be tentatively extended further in order to check for small changes in relative

support values. Such checks also increase the cost of the search.





Chapter 4

Experimental Evaluation

4.1 Introduction

In this chapter we present the design, execution an analysis of the experiments

that empirically demonstrate the effectiveness of the algorithms. This description

includes details on the planning domains used and parametrization selected in the

generation of the data sets for each domain. The analysis of the results provides

details on the error rates used to measure the learning effectiveness of ML algorithm

and reports on the error values obtained from the execution of experiments. A

general review of all the experiments are provided, but only two example graphs are

shown. The full set of graphs is available in Appendix B. We end this chapter with

a discussion of the results obtained.

4.2 Domains

In order to evaluate the effectiveness of the ML algorithm, a set of experiments were

performed using 4 different domains. The first 3, planning domains, were obtained

from the Sixth International Planning Competition (IPC).1 The planning domains

1The 2008 IPC can be found at http://www.icaps-conference.org/index.php/
Main/Competitions. We used the competition and example domains from the determin-
istic planning track found in http://ipc.informatik.uni-freiburg.de/Domains?
action=AttachFile&do=view&target=ipc2008-no-cybersec.tar.bz2 and
http://ipc.informatik.uni-freiburg.de/HomePage?action=AttachFile&do=

99
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used are the Mars Rover Domain ( [ECA+03]), the Elevator domain ( [KS00]), and

the Woodwork2 domain. An additional workflow specific domain was also included,

which describes a greater part of a bridge inspection process. We refer to this

domain as the Bridge Inspection domain. The description of this process is found

in Appendix A.1.4, which was copied verbatim from the Office Of Maintenance of

the Florida Department of Transportation. 3 All original STRIPS operators are

described using an equivalent material implication. The antecedents describe the

operator’s pre-conditions and the consequent the operator’s post-conditions. In the

case of STRIPS operators whose pre and post-conditions are not conjuncts, a set of

two or more material implications, which are equivalent, were generated. The full

set of definitions of the operators of all the domains that were used in generating

the data sets is found in Appendix A.1.

The Mars Rover domain describes the actions performed by the Mars Rover as it

roams around Mars’ surface sampling soil and rocks and photographing the terrain

in order to identify possible regions of geological interest. It includes operators

to navigate the rover, take samples, take photographs and communicate this data

back to the lander. No changes were made to the original IPC definitions. In all it

consists of 9 operators, made up of a total of 63 literals (38 literals in the non-variant

set). Each operator has an average of 7 literals. This domain is characterized by

a large difference in the number of literals in each operator (one operator has the

maximum of 9 literals, another operator with the minimum of 2 literals) and the

reduced number of literals in the operator’s post-conditions (average number of add

post-conditions is 1.2, average number of delete post-conditions is 0.7, maximum

number of post-conditions is 4 literals). Even though this domain seems simple it

has two sets of operators that are very similar and differ only in two literals (sampling

operators are similar save for the types of samples, the communication operators are

similar save for the type of data sent; both sampling and communications operators

view&target=example-domains.zip respectively. These domains were changed slightly.
These changes are also described.

2http://ipc.informatik.uni-freiburg.de
3http://www.dot.state.fl.us/statemaintenanceoffice/CBR/Bridge\

%20Inspection\%20Process2.pdf
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also share literals). This allows us to test the algorithm’s effectiveness in determining

all relevant literals even if shared amongst different operators.

The Elevator domain describes the operators that move a lift up or down between

two given floor counts and allow people to board and/or leave the lift. No changes

were made to the original IPC definitions. This seemingly simpler domain has a

mere 6 operators consisting of a total of 45 literals (20 literals in the non-variant set);

however all operators have either 7, 8 or 9 literals, 4 of which are post conditions (on

average each operator is therefore more complex). In addition to this, the number of

shared literals is higher. For example, all 4 operators that describe the lift moving

up/down fast/slowly differ in just two literals. In the case of the board and leave

operators, these just differ in 4 literals, one of which simply has a different ordering

of the arguments. The greater number of shared literals is used to test the ability for

the algorithm to identify very similar operators (which includes non-deterministic

operators).

The Woodwork domain describes the operators used for cutting wood parts and

in preparing and finishing the wood parts so that they can later be combined into

finished goods. The wood parts may be cut or sawed into three standard sizes (small,

medium or large). Any wood part that is cut with a saw must be loaded to and

unloaded from an automated saw machine. The wooden parts may be prepared by

either grinding or planing. Finally wood parts may be given a varnished (immersion

or spray) or glazed finish. This domain represents a significant increase in complexity

compared to the previous ones. It has 13 operators consisting of a total of 164 (2.6

times more than the Mars Rover domain) literals (57 literals; 1.7 times more than

the Mars Rover domain). This domain’s operators are also more complex in that

each consists of an average number of 12.6 literals (versus the 7.5 of the Elevator

domain; 1.68 times greater).

This original domain uses constants, such as small and large in order to

differentiate between the various similar operators. The ML algorithm does not

consider the use of constants (all transactions are variabalized prior to processing).

In order to deal with this, the literals that use such constants are either renamed

or the the constant themselves are transformed into function symbols. For example
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Listing 4.1: Bridge Inspection Domain: overlapping actions.
1 : check_girder_1(B:bridge, beam(S:support_structure))
2 made_of_wood(B, S) *
3 checked_for_woodrot(B, S) *
4 checked_for_crushing(B, S) *
5 checked_for_splitting(B, S) *
6 checked_for_cracking(B, S)
7 =>
8 checked_girder(B, beam(S)).
9

10 : check_girder_2(B:bridge, beam(S:support_structure))
11 made_of_concrete(B, S) *
12 checked_for_cracking(B, S) *
13 checked_for_spalling(B, S) *
14 sounded_for_hollow_areas(B, S)
15 =>
16 checked_girder(B, beam(S)).
17

18 : check_pier_caps_1(B:bridge, pier_caps(S:support_structure))
19 made_of_wood(B, S) *
20 checked_for_woodrot(B, S) *
21 checked_for_crushing(B, S) *
22 checked_for_splitting(B, S) *
23 checked_for_cracking(B, S)
24 =>
25 checked_pier_caps(B, pier_caps(S)).
26

27 : check_pier_caps_2(B:bridge, pier_caps(S:support_structure))
28 made_of_concrete(B, S) *
29 checked_for_cracking(B, S) *
30 checked_for_spalling(B, S) *
31 sounded_for_hollow_areas(B, S)
32 =>
33 checked_pier_caps(B, pier_caps(S)).

the literal goalsize(P, small) is changed to goalsize small(P) and the

literal increase(Total cost :cost, 30) is changed to increase(Total -

cost :cost, immersion varnish cost(X :part)). No additional changes

were made to the original domain.

The Bridge Inspection domain describes the operators used in a bridge inspection

process. It is made up of 80 operators consisting of a total of 349 (2.1 times more

than the Woodwork domain) literals (164 literals in the non-variant set; 2.9 times

more than the Woodwork domain). These operators are, however, less complex in

that they are made up of fewer number of literals (average of 4.4 versus the 12.6

of the woodwork domains and the 7.5 of the Elevator domain). The operators are

divided into four main groups: inspecting the riding surface, inspecting the super-

structure, inspecting the sub-structure and generating the final recommendations.

Each of these main groups contains a set of fairly short non-deterministic opera-

tors. In addition to this, many of these non-deterministic operators are required to
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Listing 4.2: Bridge Inspection Domain: overlap components.
1 Component(A):
2 0:checked_for_splitting(_0:bridge, _1:support_structure)
3 1:made_of_wood(_0:bridge, _1:support_structure)
4 2:checked_for_crushing(_0:bridge, _1:support_structure)
5 3:checked_for_woodrot(_0:bridge, _1:support_structure)
6 4:checked_for_cracking(_0:bridge, _1:support_structure)
7

8 Component(B):
9 0:sounded_for_hollow_areas(_0:bridge, _1:support_structure)

10 1:made_of_concrete(_0:bridge, _1:support_structure)
11 2:checked_for_spalling(_0:bridge, _1:support_structure)
12 3:checked_for_cracking(_0:bridge, _1:support_structure)
13

14 Component(C):
15 0:add(checked_girder(_0:bridge, beam(_1:support_structure)))
16 1:checked_for_cracking(_0:bridge, _1:support_structure)
17

18 Component(D):
19 0:add(checked_pier_caps(_0:bridge, pier_caps(_1:support_structure))),
20 1:checked_for_cracking(_0:bridge, _1:support_structure),

satisfy the pre-conditions of the operators across the four main groups. For exam-

ple the pre-condition of checking for cracking is common to operators for checking

the riding surface, girders, pier caps, columns and piles. These conditions are also

used irrespective of whether or not the material of the element is made of wood or

concrete (see Listing 4.1 for some examples). In addition to the above, this domain

also contains fully overlapping operators (see Definition 3.2.20 and Section 3.3.3 for

details). In other words two or more actions exist wherein both the same pre and

post conditions occur. In this case the common pre and post conditions do not

always co-occur but may still be combined to form correct operator definitions. To

make things clear the example in Listing 4.1 shows the definition of two operators4

check girder(B :bridge, beam(S :support structure)) and check -

pier caps(B :bridge, pier caps(S :support structure)). Each of

the four operator definitions is made up of a combination of two of the four overlap

components shown in Listing 4.2. It is important to note that a correct operator def-

inition may consist of two or more overlap components and that a domain (such as

the Bridge Inspection) may contain both non-overlap and overlap operators (which

do not necessarily have common overlap components).

4The naming convention for the operators uses the same base name operator but adds a
post-fix containing a unique numerical identifier. Unique post-fix identifiers are used to group
non-deterministic or otherwise similar actions. For example the same check actions that is done
for different materials.
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Appendix A.2 provides a table that shows some basic statistics regarding the

domains described in this section.

4.3 Experimental Parameters

The aim of the experiments is to determine if we can identify all of the domain

operators given a data set consisting of a fixed number of transactions. More specif-

ically we wish to know if all operators can be automatically acquired in the limit

(in respect to number of transactions) and if so under what conditions. The first

parameter is therefore the number of transactions. The ML algorithm was applied

to a number of data sets each consisting of an increasing number of transactions.

We start with a data set of 10 transactions and increase each new data set with

an additional 10 transactions. The maximum number of transactions used in an

experiment is the number of transactions at which all operators are successfully ac-

quired.5 Experiments may have data sets with a maximum number of transactions

that vary anything between 170 and 1500.

For a given set of parameter values the experiments were repeated a fixed number

of times. Each time a new set of transactions is randomly generated. Due to

the lengthy processing time required by the ML algorithm, only 5 such random

repetitions were executed. The results are reported according to the average of

these 5 runs.

We are interested in investigating whether and how the number of actions and

their distribution influence the efficacy of the learning algorithm. For that purpose

two additional experimental parameters were used:6 the number of actions concur-

rently executed per transaction and the distribution of the executing actions. The

following combinations of these parameters have been used: a uniform distribution

with a constant number of actions per transaction (uniform n, we have set n = 4),

5We usually extend this value to ensure that the results are stable. In other words the error
remains at its minimum.

6Initial experiments used an additional parameter to alter the order in which the literals in the
transactions are analysed. The Fisher-Yates shuffling algorithm was used to this end. No changes
were detected in the results and this test was therefore dropped.
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a uniform distribution with a varying number of actions per transaction (uniform n

to m, we have set n = 1 and m = 5), a non-uniform distribution with a constant

number of actions per transaction (non-uniform n, we have set n = 4) and a non-

uniform distribution with a varying number of actions per transaction (non-uniform

n to m, we have set n = 1 and m = 5).

Many non-uniform distributions are possible, however, according to research in

the workflow area,7 process descriptions usually exhibit an 80% − 20% distribu-

tion in the use of the process modelling constructs. We have therefore also used

the same distribution for our experiments. More specifically in each domain, a

set of 20% of the operators were selected for the generation of 80% of the ac-

tions in each transaction. The rest of the operators were assigned to actions a

mere 20% of the time. We have nevertheless retained a uniform distribution of ac-

tions within each of these two groups. For example in the Mars Rover domain, of

the 9 operators, 2 where assigned a higher probability of occurrence (both navi-

gate(X:rover, Y:waypoint, Z:waypoint) and calibrate(R:rover,

I:camera, T:objective, W:waypoint) were given a probability of 0.4 of

occurring. Each of the remaining operators are given a probability of 0.029 of oc-

curring.).

Note that we are still left with the choice of selecting the most appropriate

operator definitions. We have not used any specific criteria, such as operator length

or number of arguments, but have chosen these intuitively. In the case of the Mars

Rover domain for example it seems fairly obvious that the rover will invariably

navigate from point to point more often than it will either take samples or send

sample analysis results to the lander.

Actions that execute simultaneously may naturally share common state rela-

tions. Many of these relations represent non-fluents (in other words relations in

the world state that are not changed by the operators). For example two robots

in the same space may detect the same obstacles, whether they are fixed (such as

7http://www.bpm-research.com/2008/03/03/how-much-bpmn-do-you-need/.
See also http://www.razorleaf.com/2009/12/business-process-change-3/ and
http://en.wikipedia.org/wiki/80/20_rule
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walls) or not (such as people). We therefore use two parameters that allow us to

identify which literals may be shared amongst actions and the maximum number

of instances of such literals that can be shared in a single transaction. For example

in the case of the Mars Rover domain the intersect list contains the following liter-

als: visible(Y:waypoint, Z:waypoint), at(R:rover, Z:waypoint),

at lander(L:lander, Y:waypoint).8 In this case the maximum intersects

per transaction was set to 4. Each domain has its own set of intersect literals but

all domains have a maximum number of literal intersects set to 4.

In real world problems we expect each transaction to contain state data that may

not be pertinent to the definition of one or more of the operators. We are therefore

interested in knowing if the algorithm can avoid including such extraneous, albeit

related, data in operator definitions and hence prevent overfitting. For example

in a robot domain the operator definition describing how to open a door need not

include the relations regarding the lighting switch that’s on one of the door’s support

walls. Note that in general to avoid such overfitting may not be possible because

this can require additional information, inference or assumptions which may not be

available. For example no information may be available that allows us to infer that

the light switch is not relevant to opening a door.9 We include this extraneous data

as errors of commission in the transaction’s pre-image only (See Section 3.3.4). We

therefore include a parameter that indicates the rate of commission errors and if

such commission errors are limited to the pre-image only.

As with any research in ML we are also interested in knowing if the algorithm is

robust in the presence of noise. However we have several problems in determining

what are the expected error types and rates. This may depend on the domain itself

or even be unknown when considering human actions (which is our primary focus).

Consider the following error types. We may have errors at the level of relations:

some relations may be missing (errors of omission) or may represent extraneous

8Note that we have not restricted the use of these literals to non-fluents nor to the set of
pre-conditions only.

9Without additional inference the only way we can learn that the light switch is irrelevant is
if we have at least one example of opening a door wherein none of its supporting walls has a light
switch.
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relations (errors of commission). Even if the relations are correct they may also

contain incorrect argument values (such as typographical errors in the terms or

correct but slightly different values such as numeric values with limited precision).

The first question is: are these errors limited to the pre-image only? In the case

of a robot for example, whose proximity sensor has temporarily failed, attempting

to traverse a wall will (almost certainly) never succeed. So in such a case, no post-

image state will be affected by such an action10 and hence we need not consider

post-image errors in this domain. In human centred processes this may not be the

case. Take a (paperless) claim processing workflow for example. Assume that all

of a case’s data has been correctly pre-processed prior to verifying the policy terms

of the claim. If an adjudicator reviewing the claim incorrectly forgets to check a

legal requirement, then it is erroneously signed and routed for claim payment. No

Physics laws apply here which will avoid any invalid post-conditions as they do in

the case of the robot crashing into a wall. It is therefore, in general, necessary to

consider incorrect post-conditions.

The second issue is what are the expected error rates we should consider. Once

again this depends on the domain that is considered. For example robotic actuators

and sensors have known predefined maximum error rates that can be used to generate

the data set. In the case of human orientated processes this may be unknown. For

example, in the paperless claims processing workflow, error rates associated with

document scanning may be known, but pre-processing steps such as completing or

correcting claims entries, determining the claims type and matching membership

to the claims type may introduce an unknown amount of human errors (such as

misspelling). The only way to deal with this is to repeat the various experiments

with an ever increasing error rate and verify how robust the ML algorithm is.

The injection of errors significantly increases the number of candidates that are

generated and therefore the processing time that is required to execute the ML

algorithm. Because of this only a limited number of experiments with error were

executed. For all of the combinations of parameters described above (fixed and

10We may however record a new (incorrect) position which results in a non-deterministic action.
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varying number of concurrent actions, uniform and non-uniform distributions and

number of transactions), the experiments were repeated in 3 different settings: 10%

errors of commission only, 10% errors of omission only and finally a combination of

5% errors of commission and 5% errors of omission.

4.4 Data Set Generation

Each transaction contains a set of literals that represent the simultaneous execution

of one or more actions. The challenge is to generate such transactions consistently

for a given number of actions that are executed concurrently. The oracle’s set of

operator definitions are used to generate these transactions. Each such operator

may be assigned a real value representing the probability of occurrence of an action

of that operator. This allows us to set the distribution of the action executions. All

operators that are not assigned such a value are given a default value that ensures

the uniform distribution of the respective actions. In order to make this clear let us

assume we have a set of 10 oracle operator definitions. Let’s also assume that we

assign a uniform probability of occurrence of 40% to each of the two actions. This

means that the rest of the 8 actions can be assigned a value (1.0 − 0.8)/8 = 0.025

as their (uniform) probability of occurrence.

Once the operators for a given transaction have been selected they are instanti-

ated. At this point, both the parameters that contain the list of intersects and the

maximum value of intersects per transaction, are used to unify as many shared liter-

als within the same transaction as possible (never surpassing the maximum). This

allows us to generate transactions of non-separable actions, which would otherwise

be a trivial problem to solve.11 The final step assigns unique object identifiers to

each of the transaction’s variables thereby generating a set of ground literals that

represents a single change in world state. A list of these ground literals constitutes

the basic data set that is then used by the ML algorithm.

Unfortunately because we randomly generate intersecting literals, the resulting

11Separable actions means that we can identify each action within a transaction simply by
collecting only those literals that are linked to each other.
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transaction may not be consistent. We must therefore ensure that those intersecting

literals we add, do not (due to the binding of variables) create inconsistent transac-

tions. Every time a literal is selected as a possible intersect and is bound to another

variant, two consistency checks are done. First we check that the resulting pre and

post conditions of each action are compatible. In other words: all terms of the delete

literals must exist as a pre-condition literal, no terms of the add literals must exist

as a pre-condition literal and no literal must exist as a term in both an add and

delete literal. The second test ensures that no two concurrent actions clobber each

other. So all pairs of actions are compared to ensure that: the pre-condition of an

action is not the negated literal of another action’s pre-condition, a term of an add

literal of an action is not the same as a delete literal of another action, a positive

pre-condition of action is not a term of a del literal of another action, and a negative

pre-condition of action is not a term of an add literal of another action.

Although the tests above are fairly complete they cannot guarantee domain spe-

cific semantic consistency. A domain’s world state consistency does not only depend

on the operator definitions themselves, but is also determined by the initial world

state of a problem solving episode and possibly even by additional intrinsic back-

ground knowledge. To understand this statement let us consider the Mars Rover

domain. If we stipulate that only one rover and one Mars lander exist at any one

time and that the lander has only one communication channel, then it is not possi-

ble for that rover to send two sets of sample data simultaneously. Our transactions

however may have the same rover taking various samples simultaneously and even

sending data at the same time through the same channel. This should not affect the

correctness of the results we obtain because we are only interested in acquiring the

operator definitions.

In the experiments designed to assess the robustness of the algorithm we pro-

ceeded as follows. The ML algorithm receives a data set consisting of a list of ground

transactions. Before it parses and processes this data, it injects a given amount of

error into each of the transactions. It first adds errors of commission and then errors

of omission as per the corresponding parameters. Note that this step is executed as

a pre-processing step to the ML algorithm because the same base data set is pro-
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vided to a number of processors, each executing the same ML algorithm, for parallel

processing. The aim is to significantly increase experiment execution throughput in

order to facilitate experiment analysis.12

4.5 Analysing the Experimental Results

In order to measure the algorithm’s performance we compare the algorithm’s out-

put with the oracle’s list of operator definitions. Each of the final conjunctions of

qualified literals generated by the ML algorithm are directly compared to all of the

oracle’s operators, which are also represented as a conjunction of qualified literals.

The best of each of these comparisons is then used to evaluate the solution. The

average of all of the best comparisons are presented in the results.

Three types of error measures were defined: mean number of incorrect operator

definitions (ε1), mean number of incorrect literals in operator definitions (ε2) and

the mean number of oracle operators not correctly identified (ε3). The standard

deviation of each of these errors is also determined. We compare the results for each

of the parameters used in the experiments. We also compare results between the

various domains in order to detect common trends in performance.

The evaluation starts off by first matching each of the solution’s conjunctions

with all of the oracle’s operator definitions in order to determine which one is the

closest match13. At this point the number of matched operator and the number of

matched operators literals are also counted. We have the following values at our

disposal after matching and counting has been performed:

� nu ops: the total number of oracle operators;

� tot candidates: the total number of candidate clauses generated by the ML

algorithm;

12Experiments suggest that for some domains (such as the elevator domain) could have their
throughput significantly increased if the ground transactions were also distributed amongst pro-
cesses because much time is used checking and ensuring transaction consistency.

13Associative commutative idempotent (ACI) pattern matching is known to be NP-complete
( [KN87]). An algorithm that uses Constraints Solving Programming (CSP), which is based on a
more general subsumtpion algorithm ( [SM10]), is used to find a match. An optimal solution is
not guaranteed, but experiments show that the matching are of good quality.
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� tot num: the total number of literals that make up oracle operators;

� matched props: the total number of candidate clauses’ literals generated by

the ML algorithm that match;

� unmatched props: the total number of candidate clauses’ literals generated

by the ML algorithm that do not match.

The information above is then used to calculate the various errors described below.

error1a =
|tot candidates− nu ops|

nu ops
(4.1a)

matched candidates = tot candidates− nu unmatched (4.1b)

error1b =
|matched candidates− nu ops|

nu ops
(4.1c)

error1 = error1a + error1b (4.1d)

The mean number of incorrect operator definitions (Equations 4.1a, 4.1b, 4.1c, 4.1d)

evaluates how many candidates are incorrectly identified. A candidate match is

successful only if all of its literals match those of an oracle’s operator. The value

of error1 (Equation 4.1d) consists of two parts: error1a, which measures the total

number of incorrect operators (irrespective of a match or not) and error1b, which

measures the total number of incorrectly matched operators. We have opted to use

these two parts in order to correctly identify errors pertaining both to the number of

operators that are identified and the number of operators that are correctly identified

(for example all of the oracle’s operators may be correctly matched but an additional

number of candidates may also have been generated that will result in a non zero

error). A correct solution will yield a value of 0. In general this error will be the

largest of all errors because many operators may be partially identified (some literals
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may be missing or additional incorrect literals may be included).

matched total = matched props + unmatched props (4.2a)

error2a =
|matched total− tot num|

tot num
(4.2b)

error2b =
|unmatched props|

tot num
(4.2c)

error2 = error2a + error2b (4.2d)

The mean number of incorrect literals in operator definitions (Equations 4.2a, 4.2b,

4.2c, 4.2d) evaluates how many candidates literals are incorrectly identified. A can-

didate match may be partially successful in that only part of its literals match those

of an oracle’s operator. The value of error2 (Equation 4.2d) consists of two parts:

error2a, which measures the differences in total expected number of operator liter-

als and error2b, which measures the total number of incorrectly matched operator

literals. As with the previous error measure, we have opted to use these two parts

in order to correctly identify errors relative to the total number of literals and the

number of matched literals (for example all operator literals may be matched but

additional incorrect literals may also be generated, irrespective of whether or not

the correct number of operators is found, will result in a non zero error). A correct

solution will yield a value of 0. In general this error is lower than that of the mean

number of incorrect operator definitions.

The mean number of incorrect literals in operator definitions uses the counters

matched props and unmatched props whose calculation require some care. Four

cases should be considered when accumulating these values. Case 1 occurs when all

literals of the candidate operators match with those of an oracle’s operator. Here

obviously only the value of the matched literals is incremented by the number of

matched literals.

Case 2 occurs when the set of candidate’s literals is a subset of an oracle’s

operator literals. In this case we assume the candidate operator, as a whole, is

incorrect (extraneous) and we therefore only increment the value of the unmatched

literals by the number of literals in the candidate.

Case 3 occurs when the set of candidate’s literals is a superset of an oracle’s
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operator literals. Here we consider that the candidate is partially correct (one or

more extra literals) and therefore maximize the corresponding error by incrementing

only the value of the unmatched literals by the number of unmatched literals in the

candidate.

Case 4 occurs when the set of the candidate’s literals is neither a super-set nor

a subset of an oracle’s literals set. In this case we increment both the number of

matched and unmatched literals. Note that here we cannot decide whether the

candidate as whole is incorrect (case 2) or if only part of the candidate is incorrect

(case 4). We have therefore opted to count either the candidates or the oracle’s

unmatched literals, whichever minimizes the error14.

The mean number of oracle operators not correctly identified indicates the total

number of the oracle’s operators that are not present in the list of candidate op-

erators. As with the mean number of incorrect operator definitions the operator

definition is only correct if all of its literals match exactly. A correct solution will

yield a value of 0. Correct solutions will, in principal, allow successful automated

planning. However the planning problem increases substantially with the addition

of incorrect candidate operators. So these should also be reduced to a minimum.

4.6 Noiseless Data Experiments

We have carried out a series of experiments in order to determine if, for a given num-

ber of transactions, all of the oracle’s operator definitions are determined without

any error, assuming the data is noiseless. The ML algorithm that was used, save

for the case of the Woodwork domain, was the algorithm that incorporates error

handling. The parameters α, β and γ, which are related to error handling, were all

set to 0. The smallest point (number of transactions) after which all three errors

remain 0 is referred to as the stable point (Ts). It is important to note that we have

extended several experiments beyond the point of stability to ensure that the errors

14We should either opt to minimize this error to form a lower bound or maximize it in order to
consider a worst case scenario. If we minimize then case 3 should minimize the error accumulating
the matched literals. If we maximize the error then case 4 should be changed to select the oracle’s
or candidates unmatched literal set, whichever is is largest.
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remain 0. However it is not guaranteed that no error will be found at a later point.

In order to compare the results the following features were used: the number of

oracle operators that must be determined (ops.), the maximum number of trans-

actions used (T ), the stable point (Ts average number of transactions), number of

candidate conjunctions identified (max.), processing time per transaction (average

t/|T | in seconds), length of the transactions (∆|Ti| is the average number of literals

per transaction) and number of literals that are common to two or more actions

(∆|Ii| is the average number of literals per transaction). Both ∆|Ti| and ∆|Ii| are

rough indicators of the size and complexity of the problem. Larger values of ∆|Ii|

indicate a potentially larger number of linked literals per transaction. The values of

max., t/|T |, ∆|Ti|, and ∆|Ii| are the mean values of the 5 repeated experiments for

the maximum value of T where the solution is best.

Table 4.1 shows the results obtained. First and foremost they indicate that when

the data set has no noise, then the operator definitions can be learned without any

errors. Note that in the case of non-uniform distributions with varying number

of concurrent actions, the results of the Woodwork domain is not conclusive (Ts

marked with an asterisk). The Woodwork domain did not reach a stable point and

we therefore require larger values of T to confirm stability. This experiment was not

extended for lack of time.

The results also show that we do not require an exponential increase in the

number of transaction per data set in order to obtain a correct solution. Consider the

Woodwork domain, which exhibits the worst performance and the Bridge Inspection

domain, which is the largest domain with 80 operators. Even though the Bridge

Inspection domain has a little more than 6 times the number of operators than the

Woodwork domain, the increase in the number of transactions at the stable point,

is in the same order of magnitude.

We can observe that the non-uniform distribution of the actions causes the great-

est increases in error. This means that the number of transactions of the stable point

increases significantly (value of Ts in the last two rows of each domain). We can also

see that this is true irrespective of whether or not the transactions have a constant or

varying number of concurrently executing actions. This result is expected because
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Parameters
Elevator

ops. T max. t/|T | ∆|Ti| ∆|Ii| Ts
uniform, n=4 6 500 6.4 0.078 23.62 6.42 40
uniform, n=1 to m=5 6 500 6.4 0.075 18.40 4.25 20
non-uniform, n=4 6 500 7.4 0.140 25.48 7.29 70
non-uniform, n=1 to m=5 6 500 9.6 0.225 20.07 4.74 60

Parameters
Mars Rover

ops. T max. t/|T | ∆|Ti| ∆|Ii| Ts
uniform, n=4 9 1000 11.6 0.053 23.03 5.02 50
uniform, n=1 to m=5 9 1000 17.4 0.053 17.87 3.23 60
non-uniform, n=4 9 1000 12 0.032 18.13 6.88 340
non-uniform, n=1 to m=5 9 1000 23 0.054 14.68 4.20 230

Parameters
Woodwork

ops. T max. t/|T | ∆|Ti| ∆|Ii| Ts
uniform, n=4 13 170 24.6 5.38 41.69 8.63 60
uniform, n=1 to m=5 13 170 13.0 1.00 32.51 5.72 90
non-uniform, n=4 13 700 46.6 56.27 46.55 11.93 700∗

non-uniform, n=1 to m=5 13 700 13.0 7.70 35.67 8.47 590

Parameters
Bridge Inspection

ops. T max. t/|T | ∆|Ti| ∆|Ii| Ts
uniform, n=4 80 1000 75 0.034 15.74 1.71 220
uniform, n=1 to m=5 80 1000 75 0.026 12.03 1.12 290
non-uniform, n=4 80 1000 75 0.026 12.97 0.94 650
non-uniform, n=1 to m=5 80 1500 75 0.019 9.87 0.64 990

Table 4.1: Results of experiments with noiseless data. Parameters indicate the
distribution and number of actions that are executed per transaction, ops. the
number of operators in the domain, T the number of maximum transactions in the
experiment, Ts the stable point at which all errors become 0, max. the number of
maximals that were generated, t/|T | average time of execution per transaction in
seconds, ∆|Ti | the average number of literals per transaction and ∆|Ii | the average
number literals that are shared amongst the various concurrent actions.

non-uniform distributions of actions increase the chances that conjunctions, which

do not belong to the same actions, co-occur more often. Therefore a larger number

of transactions are required in order for such conjunctions not to occur.

Contrary to intuition, experiments wherein a varying number of actions are ex-

ecuted concurrently per transaction, did not obtain lower error rates. The ratio-

nal behind this is that transactions consisting of less literals will result in fewer

co-occurring literals thereby increasing the chances that conjunctions of different

actions do not co-occur. If we compare all 8 experiments with parameters n = 1 to

m = 5 against the equivalent experiments with parameters n = 4, we see that half
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of those cases show an increase in error (larger values of Ts and corresponding max.)

while the rest show a decrease (smaller values of Ts and corresponding max.). If we

limit our comparisons to those cases where only a non-uniform distribution was used,

then we do observe the expected reduction in error in all domains except that of

the Bridge Inspection domain. Note that this domain differs substantially from the

other domains in that it has many more operators, 5 of those operators are overlap

operators and, more significantly, the ratio between number of concurrent actions

per transaction versus the number of operators is much lower. Experiments using

the Bridge Inspection domain wherein the ratio just described is approximately the

same for all domains was not done due to the very large processing times required

by the algorithm.15 Until we do this, no conclusion can be drawn.

The Woodwork domain is the most demanding among all domains, as processing

time is concerned (larger values of t/|T |). We also see that relative to the other

domains, save the Bridge Inspection domain whose ratio between the number of

concurrent action and the number of oracle operators is substantially lower, the

value of its stable points are also higher. The Woodwork domain represents a more

complex problem because not only are its transaction length much larger (∆|Ti|) but

the number of linked literals are also larger (roughly proportional to ∆|Ii|). Note

that the greatest increase in t/|T | occurs when n = 4. We also see a corresponding

increase in max., which is expected. To understand why, recall that when we select

a literal with which to extend the conjunction, we select the first co-occurring one.

As was explained we may inadvertently select one that generates a conjunction that

does not have unique coverage. In the case of n = 4, the probability of generating

such a conjunction increases.16 Because the coverage is not ensured by these non-

consistent conjunction, the greedy cover algorithm repeats the search and therefore

ends up generating a larger number of maximals.

The results show that the ratio between the oracle’s operators versus the number

15We would need to generate transactions in which an average of about 37 actions are executed
simultaneously.

16The greater the number of concurrently executing actions in regard to the total number of
operators, the greater the chances that two or more actions co-occur. In these conditions it is
easier to find non-consistent maximals
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of concurrently executing actions may have a significant impact on the solution. We

can observe that the Elevator, Woodwork and Mars Rover domains, which have

approximately the same ratio, in general generate more candidates (especially in

the case for n = 4) than those required. The Bridge Inspection domain however

seems to always generate the correct number of consistent conjunctions.17 This re-

enforces the idea that with an increase in the concurrent execution of actions, the

ML algorithm also has a higher probability of finding non-consistent maximals.

In order to test the robustness of the original (no noise handling) ML algorithm,

initial tests (all domains for the single case of a uniform distribution and n =

4) were executed with data sets that contained 10% errors of commission.18 The

results where not acceptable and therefore discontinued. In all cases we were able

to correctly identify the oracle’s operator definitions, but the number of incorrect

operators definitions, grows steadily with the increase in the number of transactions

(no stable point exists). More specifically, each new combination of error induced

conjunctions not previously encountered, is added as a new potential operator.

4.7 Noisy Data Experiments

In order to test the robustness of the algorithm all the experiments described above

in Section 4.6 were repeated under three noise settings: 10% commission errors,

10% errors of omission, and a combination of 5% commission errors and 5% omission

errors. A few attempts were made to experimentally determine a better set of values

for the parameters α, β and γ although we usually used the values 0.1, 2 and 0.02

respectively. Results for the Woodwork domain are not presented because of the

excessive processing time that was required to execute the experiments. As a result

a total of 36 experiments19 were selected for comparison.

17Note that this is not the same number as the oracle operators due to the existence of overlap
actions.

18Note that this noise does not include literals used by the oracle definitions themselves. This
skews the results in our favour.

194 non-noise related parameters× 3 noise related settings× 3 domains
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Elevator
Parameters Commission (10%)

D Conc. α β γ ops. T Ts ε1(%) ε2(%) ε3(%)

uniform
n=4 0 3 0 6 500 40 0.0 0.0 0.0

n=1 to m=5 0 3 0 6 500 20 0.0 0.0 0.0

non-uniform
n=4 0 3 0 6 1000 70 0.04 0.03 0.0

n=1 to m=5 0 3 0 6 1000 60 0.04 0.06 0.0
Parameters Omission (10%)

D Conc. α β γ ops. T Ts ε1(%) ε2(%) ε3(%)

uniform
n=4 0.1 2 0.02 6 1000 40 1.92 3.99 0.0

n=1 to m=5 0.1 2 0.02 6 1000 20 3.54 5.52 0.77

non-uniform
n=4 0.1 2 0.02 6 1000 70 1.88 1.61 0.82

n=1 to m=5 0.1 2 0.02 6 1000 60 1.86 1.81 0.84
Parameters Both (5%+5%)

D Conc. α β γ ops. T Ts ε1(%) ε2(%) ε3(%)

uniform
n=4 0.1 2 0.02 6 1000 40 0.41 0.77 0.03

n=1 to m=5 0.1 2 0.02 6 1000 20 0.77 1.10 0.24

non-uniform
n=4 0.4 2 0.02 6 1000 70 0.57 0.76 0.28

n=1 to m=5 0.1 2 0.02 6 1000 60 1.19 0.73 0.60

Table 4.2: Results of experiments with Elevator domain noisy data. D is the type
of distribution, Conc. is the type of concurrency of actions used, α, β and γ are
the ML algorithm’s error handling parameters, ops. the number of operators in the
domains, range Ts to T is the total number of transactions within which the error
means are calculated and ε1, ε2 and ε3 the measured errors.

Figure 4.1: Bridge Inspection Noiseless Data Set: Non-uniform, nº of operators
n=1..5, Ts = 990.
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Mars Rover
Parameters Commission (10%)

D Conc. α β γ ops. T Ts ε1(%) ε2(%) ε3(%)

uniform
n=4 0 2 0 9 500 50 0.07 0.13 0.0

n=1 to m=5 0 2 0 9 500 60 0.0 0.0 0.0

non-uniform
n=4 0 2 0 9 1000 340 0.43 0.82 0.0

n=1 to m=5 0 2 0 9 1000 230 0.11 0.23 0.0
Parameters Omission (10%)

D Conc. α β γ ops. T Ts ε1(%) ε2(%) ε3(%)

uniform
n=4 0.1 2 0.02 9 1000 50 9.03 10.03 0.56

n=1 to m=5 0.1 2 0.02 9 1000 60 9.78 9.75 0.09

non-uniform
n=4 0.1 2 0.02 9 1000 340 10.22 11.85 5.51

n=1 to m=5 0.1 2 0.02 9 1000 230 2.22 1.29 1.23
Parameters Both (5%+5%)

D Conc. α β γ ops. T Ts ε1(%) ε2(%) ε3(%)

uniform
n=4 0.1 2 0.02 9 1000 50 1.44 1.94 0.46

n=1 to m=5 0.1 2 0.02 9 1000 60 0.75 0.85 0.21

non-uniform
n=4 0.1 2 0.02 9 1000 340 7.06 6.34 5.07

n=1 to m=5 0.1 2 0.02 9 1000 230 1.34 0.79 0.74

Table 4.3: Results of experiments with Mars Rover domain noisy data. D is the
type of distribution, Conc. is the type of concurrency of actions used, α, β and γ
are the ML algorithm’s error handling parameters, ops. the number of operators in
the domains, range Ts to T is the total number of transactions within which the
error means are calculated and ε1, ε2 and ε3 the measured errors.

Figure 4.2: Bridge Inspection Noisy Data Set: 5% omission and 5% commission
noise, Non-uniform, nº of operators n=1..5, Ts = 990.
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Bridge Inspection
Parameters Commission (10%)

D Conc. α β γ ops. T Ts ε1(%) ε2(%) ε3(%)

uniform
n=4 0 2 0 80 400 220 0.01 0.01 0.01

n=1 to m=5 0 2 0 80 500 290 0.0 0.0 0.0

non-uniform
n=4 0 2 0 80 1000 650 0.28 0.27 0.26

n=1 to m=5 0 2 0 80 1500 990 0.13 0.14 0.13
Parameters Omission (10%)

D Conc. α β γ ops. T Ts ε1(%) ε2(%) ε3(%)

uniform
n=4 0.1 2 0.02 80 1000 220 4.28 4.55 2.23

n=1 to m=5 0.1 2 0.02 80 1000 290 6.86 6.79 4.06

non-uniform
n=4 0.4 2 0.0 80 1000 650 7.08 7.23 4.24

n=1 to m=5 0.4 2 0.0 80 1500 990 7.95 8.08 4.69
Parameters Both (5%+5%)

D Conc. α β γ ops. T Ts ε1(%) ε2(%) ε3(%)

uniform
n=4 0.1 2 0.01 80 1000 220 2.22 2.71 0.84

n=1 to m=5 0.4 2 0.0 80 1000 290 3.90 4.39 1.58

non-uniform
n=4 0.1 2 0.01 80 1000 650 2.93 3.21 1.90

n=1 to m=5 0.4 2 0.0 80 1500 990 3.65 4.06 1.53

Table 4.4: Results of experiments with Bridge Inspection domain noisy data. D is
the type of distribution, Conc. is the type of concurrency of actions used, α, β and
γ are the ML algorithm’s error handling parameters, ops. the number of operators
in the domains, range Ts to T is the total number of transactions within which the
error means are calculated and ε1, ε2 and ε3 the measured errors.

These results were first graphically compared to the cases with noiseless data.

The Bridge Inspection domain, for the case of a non-uniform distribution and a

varying number of concurrent actions using noiseless data, is shown in Figure 4.1.

By comparing it to the noisy data case (see Figure 4.2), we can clearly observe an

increase in the errors.

We observed that when noise is present, no fixed point Ts exists for all of the

errors we calculated (see Section 4.5 for a description of these). However in the cases

of errors of commission only, both the Mars Rover and Elevator domains maintain

their Ts in respect to the mean number of oracle operators not correctly identified

(ε3). The Bridge Inspection domain, in the same conditions, does not retain the same

fixed point for ε3 but nevertheless does have one that occurs much later. Because in

all other cases no Ts exists that we may use for comparison, we instead use average

error rates, as measured between the original noiseless Ts and the maximum T .

The average errors for the Elevator, Mars Rover and Bridge Inspection domains are
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shown in the Tables 4.2, 4.3 and 4.4 respectively.

From these results we can see that in general the algorithm is robust to noisy

data. All of the average error rates that we have calculated are less than the injected

error itself. Of the 36 experiments only 3 show error rates above that of the 10%

injected noise. All instances occur in the Mars Rover domain. The error rates are

ε2 = 10.03% (uniform, n = 4), ε1 = 10.22% (non-uniform, n = 4) and ε2 = 11.85%

(non-uniform, n = 4) respectively.

We can also see that errors of omission have the greatest negative impact. All

errors of omission are larger than those of commission and less than the combination

of both types of errors. We also attempted to find out if any additional correlation

between the actions distribution, number of concurrent action or even the number

of operators and the error rates exist. However none was found.

4.8 Concluding Remarks

The experimental results show that combining co-occurring relations can be used to

successfully identify simple planning operators when the data has no noise. When

the data has errors of commission we are still able to learn all of the oracle’s sim-

plified operators. However, errors ε1 and ε2 indicate that a number conjunctions

were identified as planning operators when they should have not been (threshold

frequency β was too low). Note however that this is only true when the plan-

ning domain does not have overlap operators. Further investigation showed that

this occurs because the algorithm cannot determine the operator’s components and

therefore cannot combine them correctly. It does however extend several of the com-

ponents into overlap operators and the greedy covering algorithm therefore fails to

generate the correct set of overlap components.

The errors of omission do not allow us to identify all of the oracle’s simplified

operators. Even so most of the errors we observe are well below the 5% mark. The

only exception being the case of the Mars Rover domain with an error of ε3 = 5.51%.

We also observed that the errors of omission have the greatest impact on the final

results. We can observe that all omission errors for the case of 10% noise are larger



4.8. Concluding Remarks 122

than the combination of 5% omission and 5% commission errors.

Overall the algorithm is robust to noise showing a maximum error of ε2 = 11.85%

for the Mars Rover domain in the case of 10% omission errors. We believe that such

an error is because the heuristic search for a conjunction, only extends the seed with

a single20 co-occurring literals instead of considering all possible extensions. In the

latter case one could then select the resulting conjunction with the highest support

thereby avoiding the creation of non-consistent candidates.

20In an attempt to reduce the exponential cost of the search.



Chapter 5

Conclusions

5.1 Introduction

The goal of this thesis is to provide a means of learning the constituent parts of

ad-hoc processes by non-obstructive observation of their execution. To this end we

propose the identification of planning operators that can then be used to automati-

cally compose processes using AI automated planning techniques. Specifically this

work allows the learning of planning rules that can be used to generate Strong Cyclic

Plans via a planning system based on formal Model checking techniques. We have

successfully developed a Machine Learning algorithm that can learn planning oper-

ators using data generated by an experimentation platform. This platform allowed

us to test several planning domains under various conditions including a number of

noise settings to simulate sensing and sampling errors.

5.2 Contributions

Although the main focus of the work was the development and testing of the ML

algorithm, our first contribution is the formalization and the description of the

problem itself. First we point out that the observation of the state transitions

allow us only to determine simple operator rules. However several of these rules can

successfully describe more complex operators, such as actions with non-deterministic

or conditional effects, which can be used by model checking-based planners. In fact

123
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the ML algorithm can learn complex operators with disjunctive pre-conditions as a

set of simple operator rules. It is important to note however that the simple rules

that are automatically acquired by the ML algorithm can be used by a planning

system without any change.

Our second contribution is the parametrization used in the generation of the

experimental dataset. It consists of: the uniform and non-uniform distributions

of operator instantiation, using a given (fixed or variable) number of concurrently

executing actions and injecting several combinations of noise types into the dataset.

Noise includes errors of omission or commission only or a combination of both. We

have shown experimentally that the errors of omission are the most difficult ones do

deal with and have explained why that happens.

5.2.1 Formalizing the Problem

Our third, and arguably most valuable contribution, is expressing the Machine

Learning problem as a specific instance of the general Minimal Consistent Sub-

set Cover problem. In this formulation the dataset consists of a list of transactions.

Each transaction is a set of qualified literals that represents a single state transition.

A subset of these qualified literals expresses a rule that covers (explains) part of a

state transition (supported by evidence). We therefore require a minimum of these

rules to cover all of the transactions. Consistency is guaranteed by imposing the

following constraints on covering subsets of qualified literals: must consist of the

largest possible set of co-occurring literals (maximals) only; must have maximum

support; must be correctly qualified in order to express a rule; and the rule must

express a valid planning operator. The latter condition means that a negative lit-

eral of the rule’s consequent (operator effect) can only exist if it is also present in

the antecedent (operator’s pre-condition) and that a positive literal of the rule’s

consequent can only exist if it is not present in its antecedent.

We have found out that the above formulation allows us to determine operator

definitions of various planning domains used in the planning competitions. However

a set of operators specifically developed for the case of a workflow process shows

that the co-occurrence condition may be too restrictive. More specifically operator
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definitions may consist of combinations of two or more consistent conjunctions. The

resulting operators are referred to as overlap1 operators. The problem is then how

one should go about combining these maximals without causing the overfitting of

the result. To this end we have also determined an additional set of conditions that

allows us to solve this problem irrespective of whether or not the domain contains

overlap operators. More concretely, in order to determine the definitions of the

overlap operators, we must attempt to extend all consistent conjunctions with one

or more other consistent conjunctions if it does not represent a valid operator. If at

least two such extensions represent correct operators and ensure the same coverage,

then such extended conjunctions are recorded as overlap operators.

5.2.2 Heuristic Algorithm

Solving the MCSC problem is NP-complete. As with any other problem that has

an exponential cost to solve, we have also turned to the use of heuristics. Greedy

cover algorithms were used in order to determine both the minimal set of maximals

and to combine those maximals into overlap operators. This is done by attempting

to efficiently generate candidate maximals that have the highest possible support

values and adhere to the constraints referred to in the previous section. In addition

to this the base algorithm is also extended in order to deal with noisy data.

The challenges here consist in determining the order in which the maximals are

generated and pruned. For example, overlap operators consist of maximals which are

not valid rules. It is therefore necessary to proceed with the pruning of maximals,

which do not represent rules, only after the check for overlap actions. Another

issue is how to guarantee convergence of the algorithm when noisy data is used. In

such a case several literals may not be covered by a rule due to errors of omission

or commission. Our fourth and final contribution was therefore the design and

implementation of a robust ML algorithm that can solve the maximal consistent

subset cover of noisy datasets.

1Overlap in the sense that the various maximals that are combined do not co-occur but share
support of the transactions.
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5.2.3 Assessment of the ML Algorithm

Several experiments were executed based on four planning domains. Three of these

domains are obtained from a planning competition, having been slightly altered in

order to avoid the use of constants. The fourth domain was designed to specifi-

cally test the learning capabilities of non-deterministic and overlap operators. The

datasets were generated according to several parameters, the most significant among

them being the number of simultaneously executing actions and the type and amount

of noise injected into the datasets.

Experimental evaluation has shown that irrespective of the type of operators

and number of simultaneously executing actions, if the dataset is noiseless then the

number of operators and their definitions can be correctly determined. If however the

dataset contains only errors of commission, then an additional number of operators

may be inadvertently included in the result. However all of the oracles operators

will always be correctly determined. In the case errors of omission (independently

of whether or not it is combined with errors of commission), it is not possible to

ensure that all of the oracle’s operator definitions can be identified. However in such

cases, the ML algorithm has shown to be robust to noise, generating results with

low error rates.

5.3 Future Research

Although we strove to avoid the exponential cost of the MCSC problem, the use

of relations means that the algorithm still has a worst case exponential cost. The

experiments with the Woodwork domain show that this algorithm is intractable for

transactions consisting of more than 30 literals (compare values of ∆|Ti| and ∆|Ii|

in Table 4.1). To understand why, assume we express all relations and variables

of a conjunction as a graph.2. This means that each transaction and any operator

may be expressed as a graph If we use the non-optimal greedy set covering strategy

( [Vaz01]) described, then marking the coverage of an operator is equivalent to the

2Various representation are possible.
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sub-graph isomorphism problem, which is NP-complete ( [Sol10]). Note also that

because a single transaction may represent multiple instances of the same operator,

we must enumerate all such sub-graph isomorphisms which is at least NP-complete

( [LVG09]).

Besides marking the coverage of an operator, we must first determine what con-

stitutes such an operator. This is akin to the maximum common sub-graph iso-

morphism, which is also NP-complete ( [CGS03]). This is a difficult problem whose

approximations are still NP-hard ( [SAKZ+05]). Moreover it must be extended to

deal with a set of graphs (transactions). This problem is also referred to as the

multiple largest common sub-graph (MLCS in [BSJL92]).

Future work will therefore focus on the use of efficient algorithms for determin-

ing the maximum common (co-occurring) sub-graphs. Currently such algorithms

are based either on identifying the maximal clique ( [PX94]) or the use of intelligent

enumerative backtracking algorithms ( [KH04]). Various maximal clique based algo-

rithms exist including those that use a SAT solver ( [LQ10]), dynamic programming

( [Ö02]) and branch and bound algorithms ( [TK07]). We are also considering the

reorganization of the ML algorithm so that we may take advantage of parallel pro-

cessing (identifying each operator may be done independently; once an operator has

been determined its complete coverage may be tested independently) and caching

(can we use previous tests of maximum sub-graph isomorphism to speed up the

search). Finally we may consider the use of approximation algorithms that may be

used in cases of noiseless data ( [ZYJ10]) or the decomposition of the problem into

smaller manageable parts (for example identify operator’s pre-conditions and effects

separately).
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Appendix A

Domains

A.1 Case Studies Definitions

A.1.1 Elevator

Listing A.1: Elevator Domain.

1 : move_up_slow(Lift:elevator, F1:count, F2:count )

2 lift_at(Lift, F1) * above(F1, F2) * reachable_floor(Lift, F2) * is_slow(Lift)

3 =>

4 lift_at(Lift, F2) * !lift_at(Lift, F1) *

5 increase(Total_cost:cost, travel_slow(F1, F2)).

6

7 : move_down_slow(Lift:elevator, F1:count, F2:count )

8 lift_at(Lift, F1) * above(F2, F1) * reachable_floor(Lift, F2) * is_slow(Lift)

9 =>

10 lift_at(Lift, F2) * !lift_at(Lift, F1) *

11 increase(Total_cost:cost, travel_slow(F2, F1)).

12

13 : move_up_fast(Lift:elevator, F1:count, F2:count )

14 lift_at(Lift, F1) * above(F1, F2) * reachable_floor(Lift, F2) * is_fast(Lift)

15 =>

16 lift_at(Lift, F2) * !lift_at(Lift, F1) *

17 increase(Total_cost:cost, travel_fast(F1, F2)).

18

19 : move_down_fast(Lift:elevator, F1:count, F2:count )

20 lift_at(Lift, F1) * above(F2, F1) * reachable_floor(Lift, F2) * is_fast(Lift)

21 =>

22 lift_at(Lift, F2) * !lift_at(Lift, F1) *

23 increase(Total_cost:cost, travel_fast(F2, F1)).

24

149
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25 : board(P:passenger, Lift:elevator, F:count, N1:count, N2:count)

26 lift_at(Lift, F) * passenger_at(P, F) * passengers(Lift, N1) * next(N1, N2) *

27 can_hold(Lift, N2)

28 =>

29 !passenger_at(P, F) * boarded(P, Lift) * !passengers(Lift, N1) *

30 passengers(Lift, N2).

31

32 : leave(P:passenger, Lift:elevator, F:count, N1:count, N2:count)

33 lift_at(Lift, F) * boarded(P, Lift) * passengers(Lift, N1) * next(N2, N1)

34 =>

35 passenger_at(P, F) * !boarded(P, Lift) * !passengers(Lift, N1) *

36 passengers(Lift, N2).

A.1.2 Mars Rover

Listing A.2: Mars Rover Domain.

1 : navigate(X:rover, Y:waypoint, Z:waypoint)

2 can_traverse(X, Y, Z) * available(X) * at(X, Y) * visible(Y, Z)

3 =>

4 !at(X, Y) * at(X, Z).

5

6 : sample_soil(X:rover, S:store, P:waypoint)

7 at(X, P) * at_soil_sample(P) * equipped_for_soil_analysis(X) *

8 store_of(S, X) * empty(S)

9 =>

10 !empty(S) * full(S) * have_soil_analysis(X, P) * !at_soil_sample(P).

11

12 : sample_rock(X:rover, S:store, P:waypoint)

13 at(X, P) * at_rock_sample(P) * equipped_for_rock_analysis(X) *

14 store_of(S, X) * empty(S) =>

15 !empty(S) * full(S) * have_rock_analysis(X, P) * !at_rock_sample(P).

16

17 : drop(X:rover, Y:store)

18 store_of(Y, X) * full(Y) => !full(Y) * empty(Y).

19

20 : calibrate(R:rover, I:camera, T:objective, W:waypoint)

21 equipped_for_imaging(R) * calibration_target(I, T) * at(R, W) *

22 visible_from(T, W) * on_board(I, R) =>

23 calibrated(I, R).

24

25 : take_image(R:rover, P:waypoint, O:objective, I:camera, M:mode)

26 calibrated(I, R) * on_board(I, R) * equipped_for_imaging(R) *

27 supports(I, M) * visible_from(O, P) * at(R, P)

28 =>

29 have_image(R, O, M) * !calibrated(I, R).

30
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31 : communicate_soil_data(R:rover, L:lander, P:waypoint, X:waypoint, Y:waypoint)

32 at(R, X) * at_lander(L, Y) * have_soil_analysis(R, P) * visible(X, Y) *

33 available(R) * channel_free(L)

34 =>

35 communicated_soil_data(P).

36

37 : communicate_rock_data(R:rover, L:lander, P:waypoint, X:waypoint, Y:waypoint)

38 at(R, X) * at_lander(L, Y) * have_rock_analysis(R, P) * visible(X, Y) *

39 available(R) * channel_free(L)

40 =>

41 communicated_rock_data(P).

42

43 : communicate_image_data(R:rover, L:lander, O:objective, M:mode, X:waypoint,

44 Y:waypoint)

45 at(R, X) * at_lander(L, Y) * have_image(R, O, M) * visible(X, Y) *

46 available(R) * channel_free(L)

47 =>

48 communicated_image_data(O, M).

A.1.3 Woodwork

Listing A.3: Woodwork Domain.

1

2 : do_immersion_varnish(X:part, M:immersion_varnisher, Newcolour:acolour,

3 Surface:surface)

4 available(X) * has_colour(M, Newcolour) * surface_condition(X, Surface) *

5 is_smooth(Surface) * untreated(X) * colour_natural(X)

6 =>

7 increase(Total_cost:cost, immersion_varnish_cost(X)) * !untreated(X) *

8 varnished(X) * !colour_natural(X) * colour(X, Newcolour).

9

10 : do_spray_varnish(X:part, M:spray_varnisher, Newcolour:acolour,

11 Surface:surface)

12 available(X) * has_colour(M, Newcolour) * surface_condition(X, Surface) *

13 is_smooth(Surface) * untreated(X) * colour_natural(X)

14 =>

15 increase(Total_cost:cost, spray_varnish_cost(X)) * !untreated(X) *

16 varnished(X) * !colour_natural(X) * colour(X, Newcolour).

17

18 : do_glaze(X:part, M:glazer, Newcolour:acolour)

19 available(X) * has_colour(M, Newcolour) * untreated(X) * colour_natural(X)

20 =>

21 increase(Total_cost:cost, glaze_cost(X)) * !untreated(X) *

22 glazed(X) * !colour_natural(X) * colour(X, Newcolour).

23

24 : do_grind(X:part, M:grinder, Oldsurface:surface, Oldcolour:acolour,
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25 Oldtreatment:treatmentstatus, Newtreatment:treatmentstatus)

26 available(X) * surface_condition(X, Oldsurface) * is_smooth(Oldsurface) *

27 colour(X, Oldcolour) * treatment(X, Oldtreatment) *

28 grind_treatment_change(Oldtreatment, Newtreatment)

29 =>

30 increase(Total_cost:cost, grind_cost(X)) *

31 !surface_condition(X, Oldsurface) *

32 surface_condition(X, Newsurface:surface) * is_smooth(Newsurface) *

33 !treatment(X, Oldtreatment) *

34 treatment(X, Newtreatment) * !colour(X, Oldcolour) * colour_natural(X).

35

36 : do_plane(X:part, M:planer, Oldsurface:surface, Oldcolour:acolour,

37 Oldtreatment:treatmentstatus)

38 available(X) * surface_condition(X, Oldsurface) *

39 treatment(X, Oldtreatment) * colour(X, Oldcolour)

40 =>

41 increase(Total_cost:cost, plane_cost(X)) *

42 !surface_condition(X, Oldsurface) *

43 surface_condition(X,Newsurface:surface) * is_smooth(Newsurface) *

44 !treatment(X, Oldtreatment) * untreated(X) * !colour(X, Oldcolour) *

45 colour_natural(X).

46

47 : load_highspeed_saw(B:board, M:highspeed_saw)

48 empty(M) * available(B) =>

49 increase(Total_cost:cost, load_cost(B)) * !available(B) * !empty(M) *

50 in_highspeed_saw(B, M).

51

52 : unload_highspeed_saw(B:board, M:highspeed_saw)

53 in_highspeed_saw(B, M) =>

54 increase(Total_cost:cost, unload_cost(B)) * available(B) *

55 !in_highspeed_saw(B, M) * empty(M).

56

57 : cut_board_small(B:board, P:part, M:highspeed_saw, W:awood, Surface:surface,

58 Size_before:aboardsize, Size_after:aboardsize)

59 unused(P) * goalsize_small(P) * in_highspeed_saw(B, M) * wood(B, W) *

60 surface_condition(B, Surface) * boardsize(B, Size_before) *

61 boardsize_successor(Size_after, Size_before)

62 =>

63 increase(Total_cost:cost, cut_small_cost(P)) * !unused(P) * available(P) *

64 wood(P, W) * surface_condition(P, Surface) * colour_natural(P) * untreated(P) *

65 boardsize(B, Size_after).

66

67 : cut_board_medium(B:board, P:part, M:highspeed_saw, W:awood, Surface:surface,

68 Size_before:aboardsize, S1:aboardsize, Size_after:aboardsize)

69 unused(P) * goalsize_medium(P) * in_highspeed_saw(B, M) * wood(B, W) *

70 surface_condition(B, Surface) * boardsize(B, Size_before) *

71 boardsize_successor(Size_after, S1) * boardsize_successor(S1, Size_before)
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72 =>

73 increase(Total_cost:cost, cut_medium_cost(P)) * !unused(P) * available(P) *

74 wood(P, W) * surface_condition(P, Surface) * colour_natural(P) * untreated(P) *

75 boardsize(B, Size_after).

76

77 : cut_board_large(B:board, P:part, M:highspeed_saw, W:awood, Surface:surface,

78 Size_before:aboardsize, S1:aboardsize, S2:aboardsize, Size_after:aboardsize)

79 unused(P) * goalsize_large(P) * in_highspeed_saw(B, M) * wood(B, W) *

80 surface_condition(B, Surface) * boardsize(B, Size_before) *

81 boardsize_successor(Size_after, S1) * boardsize_successor(S1, S2) *

82 boardsize_successor(S2, Size_before)

83 =>

84 increase(Total_cost:cost, cut_large_cost(P)) * !unused(P) * available(P) *

85 wood(P, W) * surface_condition(P, Surface) * colour_natural(P) * untreated(P) *

86 boardsize(B, Size_after).

87

88 : do_saw_small(B:board, P:part, M:saw, W:awood, Surface:surface,

89 Size_before:aboardsize, Size_after:aboardsize)

90 unused(P) * goalsize_small(P) * available(B) * wood(B, W) *

91 surface_condition(B, Surface) * boardsize(B, Size_before) *

92 boardsize_successor(Size_after, Size_before)

93 =>

94 increase(Total_cost:cost, saw_small_cost(P)) * !unused(P) * available(P) *

95 wood(P, W) * surface_condition(P, Surface) * colour_natural(P) *

96 untreated(P) * boardsize(B, Size_after).

97

98 : do_saw_medium(B:board, P:part, M:saw, W:awood, Surface:surface,

99 Size_before:aboardsize, S1:aboardsize, Size_after:aboardsize)

100 unused(P) * goalsize_medium(P) * available(B) * wood(B, W) *

101 surface_condition(B, Surface) * boardsize(B, Size_before) *

102 boardsize_successor(Size_after, S1) * boardsize_successor(S1, Size_before)

103 =>

104 increase(Total_cost:cost, saw_medium_cost(P)) * !unused(P) * available(P) *

105 wood(P, W) * surface_condition(P, Surface) * colour_natural(P) *

106 untreated(P) * boardsize(B, Size_after).

107

108 : do_saw_large(B:board, P:part, M:saw, W:awood, Surface:surface,

109 Size_before:aboardsize, S1:aboardsize, S2:aboardsize, Size_after:aboardsize)

110 unused(P) * goalsize_large(P) * available(B) * wood(B, W) *

111 surface_condition(B, Surface) * boardsize(B, Size_before) *

112 boardsize_successor(Size_after, S1) * boardsize_successor(S1, S2) *

113 boardsize_successor(S2, Size_before)

114 =>

115 increase(Total_cost:cost, saw_large_cost(P)) * !unused(P) * available(P) *

116 wood(P, W) * surface_condition(P, Surface) * colour_natural(P) *

117 untreated(P) * boardsize(B, Size_after).
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A.1.4 Bridge inspection

Listing A.4: Bridge Inspection Domain.

1 /* riding surface */

2 : check_riding_surface(B:bridge)

3 at(B) * part_of(deck(S1:riding_surface),B) * checked_surface(B, deck(S1)) *

4 part_of(roadway(S2:riding_surface),B) * checked_surface(B, roadway(S2)) *

5 part_of(parapet(S3:riding_surface),B) * checked_surface(B, parapet(S3)) *

6 part_of(deck_joints(S4:riding_surface),B) * checked_surface(B, deck_joints(S4))

7 =>

8 checked_riding_surface(B).

9

10 : check_surface_1(B:bridge, deck(S:riding_surface))

11 checked_for_potholes(B, S) *

12 checked_for_cracking(B, S) *

13 checked_for_excessive_ware(B, S) *

14 checked_for_seepage(B, S) *

15 sounded_for_hollow_areas(B, S)

16 =>

17 checked_surface(B, deck(S)).

18

19 : check_surface_2(B:bridge, roadway(S:riding_surface))

20 checked_for_potholes(B, S) *

21 checked_for_cracking(B, S) *

22 checked_for_excessive_ware(B, S) *

23 checked_for_seepage(B, S) *

24 sounded_for_hollow_areas(B, S)

25 =>

26 checked_surface(B, roadway(S)).

27

28 : check_surface_3(B:bridge, parapet(S:riding_surface))

29 checked_for_cracking(B, S) *

30 checked_for_excessive_ware(B, S) *

31 sounded_for_hollow_areas(B, S)

32 =>

33 checked_surface(B, parapet(S)).

34

35 : check_surface_4(B:bridge, deck_joints(S:riding_surface))

36 checked_for_loose_armour(B, S) *

37 checked_for_correct_expansion(B, S)

38 =>

39 checked_surface(B, deck_joints(S)).

40

41 /* non-deterministic */

42 : check_for_potholes_1(B:bridge, S:riding_surface)

43 !checked_for_potholes(B, S)

44 =>



A.1. Case Studies Definitions 155

45 checked_for_potholes(B, S) * no_potholes(B, S).

46

47 : check_for_potholes_2(B:bridge, S:riding_surface)

48 !checked_for_potholes(B, S)

49 =>

50 checked_for_potholes(B, S) * has_potholes(B, S).

51

52 : check_for_cracking_1(B:bridge, S:riding_surface)

53 !checked_for_cracking(B, S)

54 =>

55 checked_for_cracking(B, S) * no_cracking(B, S).

56

57 : check_for_cracking_2(B:bridge, S:riding_surface)

58 !checked_for_cracking(B, S)

59 =>

60 checked_for_cracking(B, S) * has_cracking(B, S).

61

62 : check_for_excessive_ware_1(B:bridge, S:riding_surface)

63 !checked_for_excessive_ware(B, S)

64 =>

65 checked_for_excessive_ware(B, S) * no_excessive_ware(B, S).

66

67 : check_for_excessive_ware_2(B:bridge, S:riding_surface)

68 !checked_for_excessive_ware(B, S)

69 =>

70 checked_for_excessive_ware(B, S) * has_excessive_ware(B, S).

71

72 : check_for_seepage_1(B:bridge, S:riding_surface)

73 !checked_for_seepage(B, S)

74 =>

75 checked_for_seepage(B, S) * no_seepage(B, S).

76

77 : check_for_seepage_2(B:bridge, S:riding_surface)

78 !checked_for_seepage(B, S)

79 =>

80 checked_for_seepage(B, S) * has_seepage(B, S).

81

82 : check_for_loose_armour_1(B:bridge, S:riding_surface)

83 !checked_for_loose_armour(B, S)

84 =>

85 checked_for_loose_armour(B, S) * no_loose_armour(B, S).

86

87 : check_for_loose_armour_2(B:bridge, S:riding_surface)

88 !checked_for_loose_armour(B, S)

89 =>

90 checked_for_loose_armour(B, S) * has_loose_armour(B, S).

91
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92 : check_for_correct_expansion_1(B:bridge, S:riding_surface)

93 !checked_for_correct_expansion(B, S)

94 =>

95 checked_for_correct_expansion(B, S) * no_correct_expansion(B, S).

96

97 : check_for_correct_expansion_2(B:bridge, S:riding_surface)

98 !checked_for_correct_expansion(B, S)

99 =>

100 checked_for_correct_expansion(B, S) * has_correct_expansion(B, S).

101

102 : sound_for_hollow_areas_1(B:bridge, S:riding_surface)

103 !sounded_for_hollow_areas(B, S)

104 =>

105 sounded_for_hollow_areas(B, S) * no_hollow_areas(B, S).

106

107 : sound_for_hollow_areas_2(B:bridge, S:riding_surface)

108 !sounded_for_hollow_areas(B, S)

109 =>

110 sounded_for_hollow_areas(B, S) * has_hollow_areas(B, S).

111 /* 19 */

112

113 /* super structure, beam is a girder */

114 : check_super_structure(B:bridge)

115 at(B) * part_of(beam(S1:support_structure),B) * checked_girder(B, beam(S1)) *

116 part_of(bearings(S2:support_structure),B) * checked_bearings(B, bearings(S2))

117 =>

118 checked_super_structure(B).

119

120 : check_girder_1(B:bridge, beam(S:support_structure))

121 made_of_wood(B, S) *

122 checked_for_woodrot(B, S) *

123 checked_for_crushing(B, S) *

124 checked_for_splitting(B, S) *

125 checked_for_cracking(B, S)

126 =>

127 checked_girder(B, beam(S)).

128

129 : check_girder_2(B:bridge, beam(S:support_structure))

130 made_of_concrete(B, S) *

131 checked_for_cracking(B, S) *

132 checked_for_spalling(B, S) *

133 sounded_for_hollow_areas(B, S)

134 =>

135 checked_girder(B, beam(S)).

136

137 : check_girder_3(B:bridge, beam(S:support_structure))

138 made_of_steel(B, S) *
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139 checked_for_cracking(B, S) *

140 checked_for_corrosion(B, S) *

141 checked_for_peeling_paint(B, S)

142 =>

143 checked_girder(B, beam(S)).

144

145 : check_bearings(B:bridge, bearings(S:support_structure))

146 checked_for_excessive_deformation(B, S) *

147 checked_for_temperature_change_movement(B, S)

148 =>

149 checked_bearings(B, bearings(S)).

150

151 /* non-deterministic */

152 : check_for_woodrot_1(B:bridge, S:support_structure)

153 made_of_wood(B, S) * !checked_for_woodrot(B, S)

154 =>

155 checked_for_woodrot(B, S) * no_woodrot(B, S).

156

157 : check_for_woodrot_2(B:bridge, S:support_structure)

158 made_of_wood(B, S) * !checked_for_woodrot(B, S)

159 =>

160 checked_for_woodrot(B, S) * has_woodrot(B, S).

161

162 : sound_for_hollow_areas_1(B:bridge, S:support_structure)

163 !sounded_for_hollow_areas(B, S)

164 =>

165 sounded_for_hollow_areas(B, S) * no_hollow_areas(B, S).

166

167 : sound_for_hollow_areas_2(B:bridge, S:support_structure)

168 !sounded_for_hollow_areas(B, S)

169 =>

170 sounded_for_hollow_areas(B, S) * has_hollow_areas(B, S).

171

172 : check_for_crushing_1(B:bridge, S:support_structure)

173 made_of_wood(B, S) * !checked_for_crushing(B, S)

174 =>

175 checked_for_crushing(B, S) * no_crushing(B, S).

176

177 : check_for_crushing_2(B:bridge, S:support_structure)

178 made_of_wood(B, S) * !checked_for_crushing(B, S)

179 =>

180 checked_for_crushing(B, S) * has_crushing(B, S).

181

182 : check_for_splitting_1(B:bridge, S:support_structure)

183 made_of_wood(B, S) * !checked_for_splitting(B, S)

184 =>

185 checked_for_splitting(B, S) * no_splitting(B, S).
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186

187 : check_for_splitting_2(B:bridge, S:support_structure)

188 made_of_wood(B, S) * !checked_for_splitting(B, S)

189 =>

190 checked_for_splitting(B, S) * has_splitting(B, S).

191

192 : check_for_cracking_1(B:bridge, S:support_structure)

193 !checked_for_cracking(B, S)

194 =>

195 checked_for_cracking(B, S) * no_cracking(B, S).

196

197 : check_for_cracking_2(B:bridge, S:support_structure)

198 !checked_for_cracking(B, S)

199 =>

200 checked_for_cracking(B, S) * has_cracking(B, S).

201

202 : check_for_spalling_1(B:bridge, S:support_structure)

203 made_of_concrete(B, S) * !checked_for_spalling(B, S)

204 =>

205 checked_for_spalling(B, S) * no_spalling(B, S).

206

207 : check_for_spalling_2(B:bridge, S:support_structure)

208 made_of_concrete(B, S) * !checked_for_spalling(B, S)

209 =>

210 checked_for_spalling(B, S) * has_spalling(B, S).

211

212 : check_for_corrosion_1(B:bridge, S:support_structure)

213 made_of_steel(B, S) * !checked_for_corrosion(B, S)

214 =>

215 checked_for_corrosion(B, S) * no_corrosion(B, S).

216

217 : check_for_corrosion_2(B:bridge, S:support_structure)

218 made_of_steel(B, S) * !checked_for_corrosion(B, S)

219 =>

220 checked_for_corrosion(B, S) * has_corrosion(B, S).

221

222 : check_for_peeling_paint_1(B:bridge, S:support_structure)

223 made_of_steel(B, S) * !checked_for_peeling_paint(B, S)

224 =>

225 checked_for_peeling_paint(B, S) * no_peeling_paint(B, S).

226

227 : check_for_peeling_paint_2(B:bridge, S:support_structure)

228 made_of_steel(B, S) * !checked_for_peeling_paint(B, S)

229 =>

230 checked_for_peeling_paint(B, S) * has_peeling_paint(B, S).

231

232 : check_for_excessive_deformation_1(B:bridge, S:support_structure)
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233 !checked_for_excessive_deformation(B, S)

234 =>

235 checked_for_excessive_deformation(B, S) * no_excessive_deformation(B, S).

236

237 : check_for_excessive_deformation_2(B:bridge, S:support_structure)

238 !checked_for_excessive_deformation(B, S)

239 =>

240 checked_for_excessive_deformation(B, S) * has_excessive_deformation(B, S).

241

242 : check_for_temperature_change_movement_1(B:bridge, S:support_structure)

243 !checked_for_temperature_change_movement(B, S)

244 =>

245 checked_for_temperature_change_movement(B, S) * no_temperature_change_movement(B, S).

246

247 : check_for_temperature_change_movement_2(B:bridge, S:support_structure)

248 !checked_for_temperature_change_movement(B, S)

249 =>

250 checked_for_temperature_change_movement(B, S) * has_temperature_change_movement(B, S).

251 /* 45 */

252

253 /* sub structure */

254 : check_sub_structure(B:bridge)

255 at(B) *

256 part_of(pier_caps(S1:support_structure),B) * checked_pier_caps(B, pier_caps(S1)) *

257 part_of(columns(S2:support_structure),B) * checked_columns(B, columns(S2)) *

258 part_of(piles(S3:support_structure),B) * checked_piles(B, piles(S3))

259 =>

260 checked_sub_structure(B).

261

262 : check_pier_caps_1(B:bridge, pier_caps(S:support_structure))

263 made_of_wood(B, S) *

264 checked_for_woodrot(B, S) *

265 checked_for_crushing(B, S) *

266 checked_for_splitting(B, S) *

267 checked_for_cracking(B, S)

268 =>

269 checked_pier_caps(B, pier_caps(S)).

270

271 : check_pier_caps_2(B:bridge, pier_caps(S:support_structure))

272 made_of_concrete(B, S) *

273 checked_for_cracking(B, S) *

274 checked_for_spalling(B, S) *

275 sounded_for_hollow_areas(B, S)

276 =>

277 checked_pier_caps(B, pier_caps(S)).

278

279 : check_pier_caps_3(B:bridge, pier_caps(S:support_structure))
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280 made_of_steel(B, S) *

281 checked_for_cracking(B, S) *

282 checked_for_corrosion(B, S) *

283 checked_for_peeling_paint(B, S)

284 =>

285 checked_pier_caps(B, pier_caps(S)).

286

287 : check_columns_1(B:bridge, columns(S:support_structure))

288 made_of_wood(B, S) *

289 checked_for_woodrot(B, S) *

290 checked_for_crushing(B, S) *

291 checked_for_splitting(B, S) *

292 checked_for_cracking(B, S)

293 =>

294 checked_columns(B, columns(S)).

295

296 : check_columns_2(B:bridge, columns(S:support_structure))

297 made_of_concrete(B, S) *

298 checked_for_cracking(B, S) *

299 checked_for_spalling(B, S) *

300 sounded_for_hollow_areas(B, S)

301 =>

302 checked_columns(B, columns(S)).

303

304 : check_columns_3(B:bridge, columns(S:support_structure))

305 made_of_steel(B, S) *

306 checked_for_cracking(B, S) *

307 checked_for_corrosion(B, S) *

308 checked_for_peeling_paint(B, S)

309 =>

310 checked_columns(B, columns(S)).

311

312 : check_piles_1(B:bridge, piles(S:support_structure))

313 made_of_wood(B, S) *

314 checked_for_woodrot(B, S) *

315 checked_for_crushing(B, S) *

316 checked_for_splitting(B, S) *

317 checked_for_cracking(B, S) *

318 checked_for_settlement(B, S) *

319 checked_for_scour(B, S)

320 =>

321 checked_piles(B, piles(S)).

322

323 : check_piles_2(B:bridge, piles(S:support_structure))

324 made_of_concrete(B, S) *

325 checked_for_cracking(B, S) *

326 checked_for_spalling(B, S) *
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327 sounded_for_hollow_areas(B, S) *

328 checked_for_settlement(B, S) *

329 checked_for_scour(B, S)

330 =>

331 checked_piles(B, piles(S)).

332

333 : check_piles_3(B:bridge, piles(S:support_structure))

334 made_of_steel(B, S) *

335 checked_for_cracking(B, S) *

336 checked_for_corrosion(B, S) *

337 checked_for_peeling_paint(B, S) *

338 checked_for_settlement(B, S) *

339 checked_for_scour(B, S)

340 =>

341 checked_piles(B, piles(S)).

342

343 /* when piles sink into ground, dangerous */

344 : check_for_settlement_1(B:bridge, S:support_structure)

345 !checked_for_settlement(B, S) => checked_for_settlement(B, S) * no_settlement(B, S).

346

347 : check_for_settlement_2(B:bridge, S:support_structure)

348 !checked_for_settlement(B, S) => checked_for_settlement(B, S) * has_settlement(B, S).

349

350 /* when piles' surrounding soil is washed away or falls away, dangerous */

351 : check_for_scour_1(B:bridge, S:support_structure)

352 !checked_for_scour(B, S) => checked_for_scour(B, S) * no_scour(B, S).

353

354 : check_for_scour_2(B:bridge, S:support_structure)

355 !checked_for_scour(B, S) => checked_for_scour(B, S) * has_scour(B, S).

356 /* 60 */

357

358 /* recomendation */

359 : analyse_and_inspect(B:bridge)

360 reviewed_previous_inspection(B) *

361 checked_riding_surface(B) *

362 checked_super_structure(B) *

363 checked_sub_structure(B) *

364 checked_profile(B)

365 =>

366 analysed_and_inspected(B).

367

368 : check_profile_1(B:bridge)

369 !checked_profile(B) => checked_profile(B) * not_smooth(B).

370

371 : check_profile_2(B:bridge)

372 !checked_profile(B) => checked_profile(B) * is_smooth(B).

373
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374 : generate_recomendation_1(B:bridge)

375 analysed_and_inspected(B:bridge) *

376 has_settlement(B, S:support_structure)

377 =>

378 generated_recomendation(B) * to_close_bridge(B) * do_emergency_repair(B).

379

380 : generate_recomendation_2(B:bridge)

381 analysed_and_inspected(B:bridge) *

382 has_scour(B, S:support_structure)

383 =>

384 generated_recomendation(B) * to_close_bridge(B) * do_emergency_repair(B).

385

386 : generate_recomendation_3(B:bridge)

387 analysed_and_inspected(B:bridge) *

388 not_smooth(B)

389 =>

390 generated_recomendation(B) * to_close_bridge(B) * do_emergency_repair(B).

391

392 : generate_recomendation_4(B:bridge)

393 analysed_and_inspected(B) *

394 has_potholes(B, S:riding_surface)

395 =>

396 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

397

398 : generate_recomendation_5(B:bridge)

399 analysed_and_inspected(B) *

400 has_cracking(B, S:riding_surface)

401 =>

402 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

403

404 : generate_recomendation_6(B:bridge)

405 analysed_and_inspected(B) *

406 has_excessive_ware(B, S:riding_surface)

407 =>

408 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

409

410 : generate_recomendation_7(B:bridge)

411 analysed_and_inspected(B) *

412 has_seepage(B, S:riding_surface)

413 =>

414 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

415

416 : generate_recomendation_8(B:bridge)

417 analysed_and_inspected(B) *

418 has_loose_armour(B, S:riding_surface)

419 =>

420 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).
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421

422 : generate_recomendation_9(B:bridge)

423 analysed_and_inspected(B) *

424 no_correct_expansion(B, S:riding_surface)

425 =>

426 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

427

428 : generate_recomendation_10(B:bridge)

429 analysed_and_inspected(B) *

430 has_hollow_areas(B, S:riding_surface)

431 =>

432 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

433

434 : generate_recomendation_11(B:bridge)

435 analysed_and_inspected(B) *

436 has_woodrot(B, S:support_structure)

437 =>

438 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

439

440 : generate_recomendation_12(B:bridge)

441 analysed_and_inspected(B) *

442 has_crushing(B, S:support_structure)

443 =>

444 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

445

446 : generate_recomendation_13(B:bridge)

447 analysed_and_inspected(B) *

448 has_splitting(B, S:support_structure)

449 =>

450 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

451

452 : generate_recomendation_14(B:bridge)

453 analysed_and_inspected(B) *

454 has_cracking(B, S:support_structure)

455 =>

456 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

457

458 : generate_recomendation_15(B:bridge)

459 analysed_and_inspected(B) *

460 has_spalling(B, S:support_structure)

461 =>

462 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

463

464 : generate_recomendation_16(B:bridge)

465 analysed_and_inspected(B) *

466 has_corrosion(B, S:support_structure)

467 =>
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468 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

469

470 : generate_recomendation_17(B:bridge)

471 analysed_and_inspected(B) *

472 has_peeling_paint(B, S:support_structure)

473 =>

474 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

475

476 : generate_recomendation_18(B:bridge)

477 analysed_and_inspected(B) *

478 has_excessive_deformation(B, S:support_structure)

479 =>

480 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

481

482 /* 80 */

483 : generate_recomendation_19(B:bridge)

484 analysed_and_inspected(B) *

485 has_temperature_change_movement(B, S:support_structure)

486 =>

487 generated_recomendation(B) * to_coordinate_traffic(B) * do_routine_repair(B).

The Bridge Inspection domain describes the steps required to generate maintenance

recommendations. Such recommendations may involve routine repair requiring only

traffic rerouting or emergency repairs that needs the closing down of the bridge.

This domain was inspired by a description of the process provided on-line by the

Florida Department Of Transportation of the USA (Office of Maintenance, Struc-

tures Operations1), which we reproduce verbatim here only for reference purposes

(see Figure A.1 and Section A.1.4). It is by no means complete and has not been

tested by an AI planner. It serves only as a test-bed for the ML algorithm.

Bridge Inspection Process

“The bridge inspection process starts with the bridge inspectors reviewing the previous

bridge inspection report and planning the inspection. The inspectors identify areas

where defects were found in previous inspections. This allows them to determine

if the defects previously identified have been repaired or have increased in size and

severity. The inspectors coordinate traffic control and access equipment.

When the inspectors arrive at the bridge site they observe the bridge from a

1http://www.dot.state.fl.us/statemaintenanceoffice/CBR/Bridge\
%20Inspection\%20Process2.pdf
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Figure A.1: Bridge Inspection Terminology1.
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distance. Some major problems may be indicated if the profile of the bridge is not

smooth, in other words the bridge will not look right to the experienced bridge inspec-

tor. The inspectors will then concentrate on discovering the cause and determining

the extent of the problem. Depending on the exact nature of the problem emergency

repair or immediate closure of the bridge may be required.

The inspectors use a systematic method to inspect the bridge, to ensure that the

entire bridge is inspected. The exact order of the inspection will vary depending on

the type of bridge being inspected.

The deck is the riding surface for traffic. The deck surface and road way barrier

or parapet are looked at for potholes, cracking, excessive wear, and sounded for hollow

areas. The deck joints are looked at for evidence of seepage, loose armor angles and

if the deck joints are properly functioning to allow expansion and contraction as

temperature changes.

The superstructure supports the deck and generally consists of beams or girders

that may be constructed of timber, concrete or steel, and the bearings that connect

the superstructure to the substructure. The inspectors pay close attention to areas

of high stress and those prone to deterioration, but the entire superstructure is in-

spected. Timber members are inspected for wood rot, crushing, splitting and cracking.

Concrete members are inspected for cracking, spalling and hollow areas. (Spalling

is where a portion of the concrete has fallen away leaving a hole in the concrete.)

Steel members are inspected for paint peeling, corrosion and cracking. The bearings

serve to transmit loads from the superstructure to the substructure and allow the

movement of the bridge that occur due to changes in temperature. The bearings are

inspected for excessive deformation and evidence that they are functioning properly

allowing the movements of the bridge due to temperature change.

The substructure supports the superstructure and transmits loads from the super-

structure to the ground. The substructure generally consists of pier caps, columns

and piles. The substructure may be constructed of timber, concrete or steel. Tim-

ber members are inspected for wood rot, crushing, splitting and cracking. Concrete

members are inspected for cracking, spalling and hollow areas. Steel members are

inspected for paint peeling, corrosion and cracking. In addition, the substructure is
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inspected for evidence of settlement or scour. Settlement is elements of the substruc-

ture move downward due to soil conditions. Scour is the undermining of a structure

due to water flow removing soil which supports the structure.

The inspectors’ actions will vary depending on their findings. The inspectors

will recommend immediate closure or emergency repair of the bridge if a critical

condition is found that endangers the public. The inspectors will recommend a repair

be performed quickly when a situation exists that if not addressed may lead to a

condition that could endanger the public. The inspectors will recommend routine

repairs or maintenance to correct defects that if not repaired could increase in size

and severity and shorten the service life of the bridge.”

A.2 Domain Statistics

The Table A.1 provides some basic statistics on the domains. The statistics includes

the number of operators in the domain (|O|), average number of pre-condition literals

(Pre-condition), average number of add effects literals (Add), the average number of

delete effect literals (Delete) and the total number of literals (All) in the operators.

We note that the Woodwork domain generates problems that have proven to be the

hardest to solve. We can see that its operators consists of 12.6 literals on average, at

least 68% more literals than any of the other domains. We also note that although

the Bridge domain has by far many more literals than any other domain (more has

6 times), its processing time is reduced. This shows that processing time is greatly

influenced by the transaction size (number of literals in the transactions).

Table A.1: Domain definition Statistics.
Domain |O| Pre-conditions Add Delete All
Elevator 6 4.2 2.0 1.3 7.5
Mars Rover 9 5.0 1.2 1.0 7.0
Woodwork 13 5.9 5.1 1.6 12.6
Bridge Inspection 80 2.4 2.0 0.0 4.4





Appendix B

Results

B.1 Noiseless Data

B.1.1 Elevator

Figure B.1: Elevator: Uniform distribution, number of operators n=4, Ts = 40.
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Figure B.2: Elevator: Uniform distribution, number of operators n=1..5, Ts = 20.
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Figure B.3: Elevator: Non-uniform, number of operators n=4, Ts = 70.
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Figure B.4: Elevator: Non-uniform, number of operators n=1..5, Ts = 60.
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B.1.2 Mars Rover

Figure B.5: Mars Rover: Uniform distribution, number of operators n=4, Ts = 50.
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Figure B.6: Mars Rover: Uniform distribution, number of operators n=1..5, Ts = 60.
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Figure B.7: Mars Rover: Non-uniform, number of operators n=4, Ts = 340.
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Figure B.8: Mars Rover: Non-uniform, number of operators n=1..5, Ts = 230.
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B.1.3 Woodwork

Figure B.9: Woodwork: Uniform, number of operators n=4, Ts = 60.
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Figure B.10: Woodwork: Uniform, number of operators n=1..5, Ts = 90.
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Figure B.11: Woodwork: Non-uniform, number of operators n=4, Ts = 700.
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Figure B.12: Woodwork: Non-uniform, number of operators n=1..5, Ts = 590.
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B.1.4 Bridge inspection

Figure B.13: Bridge Inspection: Uniform, number of operators n=4, Ts = 220.
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Figure B.14: Bridge Inspection: Uniform, number of operators n=1..5, Ts = 290.
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Figure B.15: Bridge Inspection: Non-uniform, number of operators n=4, Ts = 650.
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Figure B.16: Bridge Inspection: Non-uniform, number of operators n=1..5, Ts =
990.
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B.2 Noisy Data

B.2.1 Elevator

Elevator with 10% Commission Noise

Figure B.17: Elevator: Uniform distribution, number of operators n=4, Ts = 40.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

E
rr

o
r 

ε
1

Ts = 40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

E
rr

o
r 

ε
2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 50 100 150 200 250 300 350 400 450 500

E
rr

o
r 

ε
3

Number of transactions



B.2. Noisy Data 182

Figure B.18: Elevator: Uniform distribution, number of operators n=1..5, Ts = 20.
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Figure B.19: Elevator: Non-uniform, number of operators n=4, Ts = 70.
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Figure B.20: Elevator: Non-uniform, number of operators n=1..5, Ts = 60.
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Elevator with 10% Omission Noise

Figure B.21: Elevator: Uniform distribution, number of operators n=4, Ts = 40.

-0.1

 0.1

 0.3

 0.5

 0.7

 0.9

E
rr

o
r 

ε
1

Ts = 40

-0.1

 0.1

 0.3

 0.5

 0.7

 0.9

E
rr

o
r 

ε
2

-0.1

 0.1

 0.3

 0.5

 0.7

 0.9

0 100 200 300 400 500 600 700 800 900 1000

E
rr

o
r 

ε
3

Number of transactions



B.2. Noisy Data 185

Figure B.22: Elevator: Uniform distribution, number of operators n=1..5, Ts = 20.
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Figure B.23: Elevator: Non-uniform, number of operators n=4, Ts = 70.
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Figure B.24: Elevator: Non-uniform, number of operators n=1..5, Ts = 60.
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Elevator with 5% + 5% Omission and Commission Noise

Figure B.25: Elevator: Uniform distribution, number of operators n=4, Ts = 40.
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Figure B.26: Elevator: Uniform distribution, number of operators n=1..5, Ts = 20.
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Figure B.27: Elevator: Non-uniform, number of operators n=4, Ts = 70.
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Figure B.28: Elevator: Non-uniform, number of operators n=1..5, Ts = 60.
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B.2.2 Mars Rover

Mars Rover with 10% Commission Noise

Figure B.29: Mars Rover: Uniform distribution, number of operators n=4, Ts = 50.
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Figure B.30: Mars Rover: Uniform distribution, number of operators n=1..5, Ts =
60.
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Figure B.31: Mars Rover: Non-uniform, number of operators n=4, Ts = 340.
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Figure B.32: Mars Rover: Non-uniform, number of operators n=1..5, Ts = 230.
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Mars Rover with 10% Omission Noise

Figure B.33: Mars Rover: Uniform distribution, number of operators n=4, Ts = 50.
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Figure B.34: Mars Rover: Uniform distribution, number of operators n=1..5, Ts =
60.
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Figure B.35: Mars Rover: Non-uniform, number of operators n=4, Ts = 340.
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Figure B.36: Mars Rover: Non-uniform, number of operators n=1..5, Ts = 230.
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Mars Rover with 5% + 5% Omission and Commission Noise

Figure B.37: Mars Rover: Uniform distribution, number of operators n=4, Ts = 50.
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Figure B.38: Mars Rover: Uniform distribution, number of operators n=1..5, Ts =
60.
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Figure B.39: Mars Rover: Non-uniform, number of operators n=4, Ts = 340.
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Figure B.40: Mars Rover: Non-uniform, number of operators n=1..5, Ts = 230.
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B.2.3 Bridge inspection

Bridge Inspection with 10% Commission Noise

Figure B.41: Bridge Inspection: Uniform, number of operators n=4, Ts = 220.
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Figure B.42: Bridge Inspection: Uniform, number of operators n=1..5, Ts = 290.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8
E

rr
o

r 
ε
1

Ts = 290

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

E
rr

o
r 

ε
2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

0 50 100 150 200 250 300 350 400

E
rr

o
r 

ε
3

Number of transactions

Figure B.43: Bridge Inspection: Non-uniform, number of operators n=4, Ts = 650.
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Figure B.44: Bridge Inspection: Non-uniform, number of operators n=1..5, Ts =
990.
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Bridge Inspection with 10% Omission Noise

Figure B.45: Bridge Inspection: Uniform, number of operators n=4, Ts = 220.
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Figure B.46: Bridge Inspection: Uniform, number of operators n=1..5, Ts = 290.
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Figure B.47: Bridge Inspection: Non-uniform, number of operators n=4, Ts = 650.
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Figure B.48: Bridge Inspection: Non-uniform, number of operators n=1..5, Ts =
990.
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Bridge Inspection with 5% + 5% Omission and Commission Noise

Figure B.49: Bridge Inspection: Uniform, number of operators n=4, Ts = 220.
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Figure B.50: Bridge Inspection: Uniform, number of operators n=1..5, Ts = 290.
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Figure B.51: Bridge Inspection: Non-uniform, number of operators n=4, Ts = 650.
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Figure B.52: Bridge Inspection: Non-uniform, number of operators n=1..5, Ts =
990.
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