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“The absence of evidence is not the evidence of absence.”

Carl Sagan (1934-1996)





A B S T R A C T

Most damage models induce material softening, which, within a standard local

framework, consequently leads to a pathological dependency of results on the spa-

tial discretisation. In the specialised literature, the non-local approach, where a

given constitutive quantity is replaced by a weighted integral over a finite volume,

has been proposed to overcome the aforementioned issue. However, despite the

numerous advances in this field over the last years, many questions still remain

open. The main objective of the present work is to answer some of these ques-

tions, both from a theoretical and numerical point of view. To this end, this thesis

begins with a general overview on this topic as well as a brief review of some

important, well-established concepts on computational mechanics. In the follow-

ing, a thermodynamic consistent non-local ductile damage model at finite strains

is proposed in Chapter 3. It is shown that the non-local model retrieves many

of the advantages of the associated local model by assuming that the non-local

averaging operator is independent of the history of deformation. The numeri-

cal implementation of the proposed model, which requires a global approach for

its solution, is presented in detail, for which numerical examples clearly demon-

strate mesh-independent solutions. In Chapter 4, the theoretical principles and

numerical developments addressed in Chapter 3 are used to present a non-local

Gurson-based damage model containing a shear mechanism. Again, the associ-

ated numerical results have lead to mesh-insensitive results. In order to guarantee

the quadratic rates inherent to the Newton-Raphson Method, a general procedure

for the establishment of the algorithmic consistent non-local tangent operator is

presented in detail in Chapter 5. Numerical examples show that the approach is

generic and able to deliver quadratic rates of asymptotic convergence. In Chap-

ter 6, different non-local variables are selected to enhance the models presented

in Chapters 3 and 4, for which it is shown that the damage variable is a optimal

candidate for non-local variable in the case of implicit damage models. In Chapter

7, an approximate approach of the non-local method is proposed for explicit finite

element implementations, which is particularly suitable for commercial finite ele-

ment codes. This thesis ends with some final remarks and suggestions for future

work.





R E S U M O

A maioria dos modelos de dano acaba por induzir um regime de amaciamento a

ńıvel constitutivo, cujos efeitos refletem-se na dependência patológica dos resulta-

dos em relação à discretização espacial. A abordagem não-local, na qual se substi-

tui uma determinada variável local por uma média ponderada definida através de

uma integral de volume, foi então proposta visando eliminar este problema. En-

tretanto, apesar de inúmeras recentes contribuições neste tópico, muitas questões

continuam em aberto. O objetivo deste trabalho é responder a alguns destes pon-

tos, tanto de um ponto vista teórico, quanto computacional. Para este fim, esta

tese inicia-se com um visão geral do tópico em questão, bem como se apresenta uma

breve revisão de importantes conceitos relacionados à mecânica computacional. De

seguida, um modelo de dano dúctil não-local termodinamicamente consistente e

a grandes deformações é proposto no Caṕıtulo 3. É demonstrado que o modelo

não-local dispõe de muitas das vantagens do respectivo modelo local quando se

assume que o operador não-local é independente da história da deformação. A im-

plementação numérica do modelo proposto é apresentada em detalhe, cuja solução

há de ser alcançada através de um algoritmo global, o que claramente leva a

soluções independentes da malha. No Caṕıtulo 4, os prinćıpios teóricos e os desen-

volvimentos numéricos do Caṕıtulo 3 são utilizados em conjunto com um modelo

de dano baseado na teoria de Gurson, sendo que no presente trabalho incluiu-se um

mecanismo de danificação associado a estados de corte. Tal como para o modelo

do Caṕıtulo 3, os resultados mostram-se independentes do refino da malha. A fim

de se garantir taxas de convergência quadráticas inerentes ao método de Newton-

Raphson, um procedimento generalizado para a obtenção de operadores tangentes

não-locais consistentes é apresentado no Caṕıtulo 5. Exemplo demonstram que

a abordagem é genérica, ao mesmo tempo que proporciona taxas quadráticas de

convergência. No Caṕıtulo 6, o uso de diferentes variáveis não-locais sugerem que

o dano é a variável não-local ideal no caso de modelos impĺıcitos de dano. Em

seguida, uma aproximação do método não-local é proposta, no Caṕıtulo 7, visando

a sua utilização com esquemas expĺıcitos de integração de códigos comerciais de

elementos finitos. Encerra-se esta tese com alguns importanes comentários finais

e sugestões de desenvolvimentos futuros.
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português ou ainda em algum dos excelentes restaurantes que a cidade do Porto

tem a oferecer.

Ao meu colega e amigo Matthias Vogler, cujos conhecimentos do idioma português

estão cada vez mais aprimorados, pelo seu empenho e dedicação ao trabalharmos

juntos em novos desenvolvimentos e pelas diversas discussões no tema Modela-

mento Constitutivo, com as quais aprendi muito.
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Chapter 1

Introduction

A ductile material is characterised by the presence of moderate to large plastic

deformations (i.e., permanent deformations) before failure takes place after a cer-

tain external load has been applied. Within this class of materials are most steel,

aluminium and copper alloys, which are of crucial importance for the industrial

scenario nowadays. Concerning the extraction and production of these materials,

new techniques have been constantly brought to market in order to obtain metallic

alloys that possess the desired properties regarding endurance, resistance, weight,

wear and tear. Notwithstanding the importance of such production techniques, a

comprehensive understanding of how ductile materials behave when subjected to

mechanical loads is also necessary. In turn, this understanding allows the estab-

lishment of suitable constitutive laws that are capable of modelling the material

behaviour and predicting material degradation and failure. The accurate mod-

elling of materials plays a major role in product development, since the precise

prediction of deformation and failure allows the efficient design and optimisation

of a given product, preventing the use of unnecessary material and hence saving

financial resources.

Along the past century, many researchers have attempted to develop material laws

that have the ability of reproducing what is observed in experiments. Key con-

tributions on this topic are the pioneering works of Tresca [111], Huber [63], von

Mises [118] and Hencky [61]. These authors have proposed a mathematical ap-

proach to predict the onset of plastic behaviour through the establishment of yield

functions. In their approach, when a given critical material-dependent parameter

is reached, plasticity is assumed to take place. As a matter of fact, this kind

of approach is still extensively used nowadays for which new enhanced yield loci

have been constantly sought aiming to predict plastic initiation under complicated

stress states and loading conditions.

1
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After the first developments on the modelling of materials, it has soon become

evident that also plastic straining as well as the material progressive degradation

should be somehow taken into account for accurate predictions in practical engi-

neering problems. In this context, three main approaches have been extensively

used: (a) elasto-plastic models with post-processed failure criteria; (b) constitu-

tive modelling within the so-called Continuum Damage Mechanics (CDM); (c)

material laws established from micro-mechanical considerations.

The first approach is based on a purely elasto-plastic framework in which material

internal degradation is uncoupled from plastic straining. Thus, it is very appealing

from a practical point of view due to its relatively easiness of use (if compared to the

other two approaches) for which many authors have made important contributions

(e.g., [9, 60, 71], to cite a few).

The theory of CDM takes as main assumption the existence of internal mate-

rial damage, which is regarded in a phenomenological fashion. Within the CDM

framework, damage is treated as an internal variable that also participates in the

dissipative inelastic process. Plasticity and damage are then strongly coupled

within this approach. Key contributions within the CDM framework are due to

Lemaitre [74, 75, 76], whose constitutive model has served as the base of many

other material laws proposed in the literature.

Finally, the third approach assumes that material degradation is regarded through

some kind of theoretical analysis at the micro-structure of the material. For in-

stance, one possibility is the adoption of the postulate of mass conservation in

the analysis of voids at the micro-structure. In turn, this micro-mechanical anal-

ysis delivers equations that can be employed at the macro-scale. In this con-

text, Gurson [57] has proposed a pressure-sensitive yield function which is coupled

with plastic flow and porosity. His model has been later extended by several re-

searchers; perhaps, the most influential contribution has been given by Tvergaard

and Needleman [113], who incorporated the effects of void nucleation and coales-

cence in Gurson’s model. It is worth mentioning that, in this case, damage does

not energetically contribute to dissipation1 but it is rather a direct consequence of

mass conservation, in sharp contrast to the premisses of CDM.

Within the scope of this thesis, we shall restrict ourselves to the modelling of duc-

tile materials adopting the theoretical background provided by the second (b) and

third (c) aforementioned approaches. However, several of the concepts presented

1Damage does influence plastic straining indirectly but has no explicit contribution in the
Clausius-Duhem inequality.
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and conclusions drawn in this thesis can be straightforwardly extended to models

that are based on the first approach.

1.1 The issue of pathologically mesh-dependent

solutions

Many constitutive models established with one of the aforementioned approaches

have proved very effective in modelling material internal degradation and predict-

ing failure within a reasonable range of applications. They are, nevertheless, most

often based on the standard (local) continuum theory which inherently assumes

that the material is homogeneous and continuous at any size scale. However, this

assumption is not valid when deformation reaches a critical level. At this point,

the internal degradation of the material has an important influence on the macro-

structural response to external loads. Moreover, plastic strain tends to concentrate

in a localised zone while the body experiences a global strain-softening regime. At

this phase, heterogeneities in the micro-structure play a crucial role, being respon-

sible for the onset of the failure phenomenon which will lead, eventually, to the

appearance of a macro-crack.

Since classical local theories disregard important effects of the micro-structure of

the material, they cannot correctly describe the aforementioned localised failure

process. Likewise, the mathematical description of the failure phenomenon using

the local theory is inappropriate since it inherently suffers from spurious instabil-

ities. This can be explained as follows. In classical multi-variable calculus, the

partial differential equilibrium equations which govern static (dynamic) problems

are classified as elliptic (hyperbolic). As long as these equations remain ellip-

tic (hyperbolic) the solution of the static (dynamic) IBVP is guaranteed to be

unique. However, when the material tangent modulus becomes negative (that is,

under softening regimes), the ellipticity (hyperbolicity) is lost and uniqueness of

solution no longer exists. This lack of ellipticity (hyperbolicity) manifests itself

through a pathological dependence of solution on the spatial discretisation when

using numerical methods. Within a typical finite element framework, for instance,

the localised zone will have the size of the elements at the critical zone. As the

mesh is infinitely refined, plastic strain concentrates in an infinitely small layer of

elements and, in this case, the total dissipated energy of the process unrealistically

vanishes. In fact, it can be concluded that the problem of the local theory lies

on its lack of information about the size of the localised zone. Thus, the mathe-

matical interpretation of the problem implies that this missing information should
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be, in some manner, incorporated into the continuum theory in order to obtain

objective descriptions of the localised failure process. Looking now the problem

from the physical point of view, it turns out to be quite clear that the actual

size of the localised zone is related to the heterogeneous micro-structure of the

material. Therefore, both mathematical and physical interpretations imply that

the standard continuum theory must be somehow enriched in order to correctly

describe strain-driven localisation.

Many strategies have been proposed over the last three decades attempting to

overcome the issue of spurious localisation due to strain-softening. Among them, a

simple approach, which preserves all the facilities of the standard local method, has

been gaining good acceptance in the industry. We shall refer to this method herein

as adaptive hardening modulus strategy (AHMS). In this method, the hardening

modulus is systematically adjusted to the size of the element so that a certain

prescribed ratio is kept. This ratio is in turn associated to the size of the damaging

(or fracturing) zone or must fulfil some constraint related to the dissipated energy

within the element. It is worth mentioning that, instead of adapting the hardening

modulus, some researchers (see [52]) have chosen to compensate the effects of ill-

posedness through other dissipative constitutive variables; the underlying idea

of the method is, however, the same. As demonstrated in some contributions

(e.g. [24, 25]), the AHMS is quite simple to implement and, for numerous cases,

very effective as well. Furthermore, the size of the localising zone is very easily

controlled through the prescribed ratio, so that it can be explicitly calibrated to

match experiments. However, since the AHMS is merely an artificial compensation

of the effects of spurious localisation, the ill-posedness of the structural problem

still persists, which is a major disadvantage of the AHMS. For instance, this can be

critical when the finite element mesh has small imperfections (e.g. due to round-off

errors in the definition of the nodal positions in the input file). In this case, these

imperfections within a given element may be far too small to activate the AHMS,

but are large enough to capture non-physical solutions. In fact, to a larger extent,

it is generally not possible to predict whether spurious results will take place with

the AHMS or not; simply because ill-posedness is not eliminated at all. This fact

motivates the pursuit for a more reliable strategy that can effectively avoid any

kind of spurious mesh dependence.

This is the case of viscoplastic regularisation (VR). The VR effectively eliminates

the mathematical problem of ill-posedness because it introduces, in an implicit

fashion, the lacking information about the size of the localising zone into the struc-

tural problem, keeping the partial differential equations elliptic (or hyperbolic in
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the case of transient regimes). A key contribution on the use of VR for the elimina-

tion of pathological mesh dependence is due to Needleman [84]. Notwithstanding

its regularising properties, the VR is relatively simple to implement, especially

because the constitutive law keeps its standard local-like behaviour. Furthermore,

a variety of viscoplastic laws and the algorithms associated to their numerical im-

plementation are given in great detail in many references (e.g. [42, 90, 92, 106]).

However, in sharp contrast to the AHMS, the size of the localising zone (dictated

by the intrinsic length) cannot be easily controlled in the VR. In fact, expres-

sions correlating the material properties of the viscoplastic model and the intrinsic

length can be established (see [92]); however, the intrinsic length itself cannot be

defined in an explicit fashion, but rather through some other implicit parameters.

As a consequence, controlling the size of the localising zone with the VR turns out

to be quite difficult when compared to the AHMS.

Another suitable approach, which is the main subject of this thesis, is the so-called

non-local formulation (NLF). The NLF incorporates an intrinsic length into the

classical continuum by employing spatially weighted averages through an integral

operator. In contrast to the VR, the intrinsic length can be explicitly controlled

with the NLF. Moreover, it effectively eliminates ill-posedness, contrasting with

the major disadvantage of the AHSM. Therefore, the NLF has got the properties

that are expected from a good regularisation approach. Table 1.1 summarises,

in a general fashion, the properties of each of the three regularisation methods

described above.

Table 1.1: General properties of regularisation methods

Elimination of
ill-posedness?

Easy to im-
plement?

Easy control of
intrinsic length?

AHMS No Yes Yes

VR Yes Yes No

NLF Yes No Yes

Remark 1.1. The NLF has been classified as ’not easy to implement’ based on a

rather general, qualitative comparison with the other two strategies. As it will be

shown in detail throughout this thesis, very efficient numerical algorithms, which

require relatively minor implementation efforts, can be established within the non-

local framework.
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1.2 Non-local modelling

The first non-local models were proposed in the elasticity context in the 1960s

[48, 103]. Such models aimed to improve the description of micro-structural in-

teractions in elastic-wave dominated problems. However, the theory was limited

to the elastic domain and the first extension of the theory to the plastic domain

has been done by Eringen [49, 50]. In his formulation, the total strain tensor was

replaced by its non-local average; however, the model was not intended to act as

localisation limiter.

In the context of CDM, the first non-local damage model was proposed by Pijaudier-

Cabot and Bažant [93] where they applied a non-local averaging operator only

to variables that were related to the inelastic process and that could only grow

or remain constant [104]. This choice stemmed from the fact that the average

of the total strain tensor as in Eringen’s model could still lead to spurious in-

stabilities in the IBVP, as previously shown by Bažant and Chang [13]. In the

late 1980s, the first non-local plasticity model intended to serve as a localisation

limiter was proposed by Bažant and Lin [15]. After these initial developments,

a comprehensive number of relevant contributions have then rapidly emerged

[14, 21, 22, 41, 67, 68, 69, 70, 96, 104, 110].

Another class of non-local approaches are the enhanced constitutive theories that

incorporate the gradients of one or more variables into originally local models.

The gradient-enhanced models are the differential counterpart of the non-local

integral-type theory and have been developed as an alternative to the classical

non-local theory. Over the last years, several researchers have brought significant

developments comprising gradient-enhanced constitutive theories, plenty of them

with detailed contributions on effective and efficient numerical implementations

[2, 26, 35, 46, 55, 88, 123].

Despite the many advances accomplished in the non-local field over the last years,

many questions still remain unanswered. For instance, there is no general guide-

line, in a broad sense, on how to employ the non-local theory for the mesh-

insensitive description of ductile materials. In fact, most authors have adopted one

of the two general non-local formulations (either integral or gradient-enhanced),

employed it on their previously existing local model and shown, for a few exam-

ples, that pathological mesh sensitivity was, in their cases, circumvented. However,

it has not been made clear if these models would still preserve their regularising

properties if applied under several different stress states (i.e., tension, compression,
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shear, combined stress states). As a matter of fact, the current main disadvantage

of the NLF is that it is not clear enough how it should be used and implemented.

Therefore, the main goal of this thesis is to answer many of these questions and

to provide a more general guideline on how the concepts of non-locality should be

employed, both from a theoretical and numerical point of view, for the accurate

and efficient description of ductile materials under strain-softening regimes.

1.3 Thesis organisation

In order to facilitate the readability and comprehension, it is outlined how this

thesis has been organised and which are the main topics addressed in each chapter.

Chapter 2

In this chapter, the main concepts of the standard Continuum Mechanics and the

Finite Element Method are reviewed. The intention of Chapter 2 is not to be

exhaustive but rather to serve as the base for the developments addressed in the

following chapters.

Chapter 3

This chapter is devoted to the formulation and numerical implementation of a

ductile damage constitutive model enriched with a thermodynamically consistent

non-local theory of integral-type. In order to describe ductile deformation, the

model takes finite strains into account. To model elasticity, a Hencky-like hyper-

elastic free energy potential coupled with non-local damage is adopted. The ther-

modynamic consistency of the model is ensured by applying the first and second

thermodynamical principles in the global form and the dissipation inequality can

be re-written in a local form by incorporating a non-local residual that accounts for

energy exchanges between material points of the non-local medium. The thermo-

dynamically consistent non-local model is compared with its associated classical

formulation (in which non-locality is merely incorporated by averaging the dam-

age variable without resorting to thermodynamic potentials) where the thermo-

dynamical admissibility of the classical formulation is demonstrated. Within the

computational scheme, the non-local constitutive initial boundary value problem

is discretised over pseudo-time where it is shown that well-established numerical
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integration strategies can be straightforwardly extended to the non-local integral

formulation. A modified Newton-Raphson solution strategy is adopted to solve the

non-linear complementarity problem and its numerical implementation, regarding

the proposed non-local constitutive model, is presented in detail. The results of

two- and three-dimensional finite element analyses show that the model is able to

eliminate the pathological mesh dependence inherently present under the softening

regime if the local theory is considered.

Chapter 4

In this chapter, we enhance with non-locality a Gurson-based model containing

a phenomenologically defined shear mechanism similar to the one proposed by

Nahshon and Hutchison. The numerical implementation of the model within a

finite element framework is depicted in detail. It is shown that the solution of the

non-local constitutive problem has to be pursued in a global fashion where a global

system of equations containing other systems of equations, each one associated

with each material integration point, is present. A full and a modified Newton-

Raphson approach are proposed and assessed for the solution of the non-local

material problem. The results are scrutinised and reveal a much more pronounced

spurious mesh dependence of the local theory under shear stress states than in the

axisymmetric case.

Chapter 5

In Chapter 5, we firstly present the general expression of the consistent tangent op-

erator for elasto-plastic non-local models of integral-type, necessary for quadratic

rates inherent to the Newton-Raphson method. It is demonstrated that a global

compliance matrix needs to be inverted, in the general case, for the establish-

ment of the consistent algorithmic modulus. As an application of the developed

methodology, a classical J2 plasticity model is enriched with the non-local theory,

for which a closed-form tangent operator is obtained. This avoids the inversion

of the global matrix, rendering a very efficient numerical implementation. The

Lemaitre-based non-local model of Chapter 3 is also addressed in this chapter,

for which a closed-form tangent operator is also provided. The analysis of some

problems clearly demonstrates that the presented consistent linearisation is able

to provide quadratic rates of asymptotic convergence.
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Chapter 6

Aiming to answer the question of which non-local formulations effectively lead to

mesh-insensitive results, we select, in Chapter 6, several constitutive variables to

be non-local quantities by taking both Lemaitre and GTN models as the base

for the non-local enhancement. The resulting non-local constitutive models are

employed in the numerical simulation of various specimens which are subjected

to different values of stress triaxiality and Lode angle at the fracture zone. The

goal is to find which models present the best performance in the task of providing

mesh-insensitive solutions. The results show that strain-softening mesh depen-

dency is much stronger in plane strain and pure shear stress states than in the

axisymmetric case. It is also found that the variables that regularise the solution

in the axisymmetric case do not necessarily eliminate mesh sensitivity in the other

cases.

Chapter 7

In Chapter 7, we adopt an approximation of the non-local theory that is suitable

to easily transform existing local models in non-local, requiring only little modi-

fication. The technique is restricted to explicit finite element codes and has been

designed to be easily incorporated as a user-defined feature in the commercial

code LS-DYNA. The shortcoming of accessing the neighbour integration points

at once, which is a major difficulty when implementing non-local models in FE

commercial programs, is overcome by adopting an implementation strategy that

saves information of the previous time step. In a general sense, the disadvantage of

such approximated non-local formulation is the requirement of small time steps for

enough accuracy, so that it is not practicable in implicit codes. However, this does

not represent a problem in the present case since the explicit integration scheme

of LS-DYNA naturally demands very small time steps in order to guarantee stable

solutions. As a consequence, the results obtained with the present technique are

sufficiently accurate to attenuate the mesh dependency issue. Numerical simula-

tion shows that the non-local technique presented in Chapter 7 is able to avoid

the spurious mesh dependency for a wide range of material models, proving that

the proposed strategy is suitable for a wide spectrum of practical applications in

engineering.
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Chapter 8

Chapter 8 briefly summarises the main topics addressed in the thesis, emphasising

the theoretical and numerical advances accomplished during this work. Further-

more, the conclusions drawn from the results obtained in the preceding chapters

are highlighted and the contribution brought with the present work is discussed.

This thesis is then finalised with some closing remarks and recommendations for

future work in the topic of non-local modelling and regularisation approaches.

1.4 Related publications
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Chapter 2

Standard Continuum Mechanics

and the Finite Element Method

Before we can proceed to the definition of continuous media enriched with the

non-local theory, a general review of the main concepts of the standard (local)

continuum mechanics needs to be done. These concepts are necessary because

many of the aspects of the non-local theory are direct extensions from the local

case. Nonetheless, a suitable numerical method also needs to be defined so that

solutions in practical engineering can be achieved for a large number of cases and

applications. In view of that, we shall adopt the Finite Element Method (FEM)

throughout this thesis as the general method for the analysis of solids. In the

following chapters, we will very often make mention to the concepts presented in

this chapter, where the differences between the local and non-local case will be

highlighted.

It is important to remark that the present chapter has not the intention to be an

exhaustive review neither on Continuum Mechanics nor on the FEM but rather a

brief overview on these topics, which are comprehensively addressed in many well-

established publications (e.g. [20, 40, 58, 62, 78, 112] in Continuum Mechanics

and [12, 31, 33, 34, 65, 122] in FEM). Concerning the notation used, we will adopt

most of the symbology used by De Souza Neto et al. [40].

13
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2.1 Kinematics of deformation

Motion

Let p be a particle of a given body in a region Ω0, delimited by a regular boundary

∂Ω0. After a given motion ϕ, i.e. a deformation of the body within a certain time,

the position x of the material particle p at time t is given by

x = ϕ(p, t). (2.1)

The displacement field, u, of the material particle p is defined by

u(p, t) = ϕ(p, t)− p. (2.2)

Assuming that ϕ is invertible, the position p can be defined by

p = ϕ−1(x, t). (2.3)

The material particle p is said to be at the reference or undeformed configuration

meanwhile the position x is at the deformed configuration. The differences be-

tween reference and deformed configurations play a major role in the analysis of

finite deformations and therefore will be very often mentioned in this thesis.

The velocity of the particle p is defined by

ẋ =
∂ϕ(p, t)

∂t
. (2.4)

Applying the definition of Eq. (2.3), one can write

v(x, t) ≡ ẋ(ϕ−1(x, t), t), (2.5)

which corresponds to the velocity of the material particle x at time t.

The deformation gradient

The deformation gradient, F , is a second order tensor that relates p and x through

the following definition:

F (p, t) = ∇pϕ(p, t) =
∂xt
∂p

, (2.6)
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or, using the definition of displacement field of Eq. (2.2), we have

F = I +∇pu, (2.7)

where I is the second order identity tensor. In the equations above, the deforma-

tion gradient has been defined as a function of the reference configuration, where

the operator ∇p is generally called material gradient operator. Alternatively, the

deformation gradient, F , can also be defined using the spatial gradient operator,

∇x, that is,

F (x, t) =
[
∇xϕ

−1(x, t)
]−1

= [I −∇xu]−1 . (2.8)

The volume change ratio is represented by the determinant of the deformation

gradient, detF , for which the notation below will be adopted throughout this

thesis:

J ≡ detF , (2.9)

where J is called Jacobian of deformation.

To distinguish pure stretches from pure rotations, the polar decomposition can be

applied to the deformation gradient, which gives

F = RU = V R, (2.10)

where R is a proper orthogonal tensor called rotation tensor. In Eq. (2.10), the

symmetric positive definite tensors U and V are, respectively, the right and left

stretch tensors, which can also be expressed as

U =
√
C, V =

√
B, (2.11)

where C and B are, respectively, the right and left Cauchy-Green strain tensors,

defined by

C = U 2 = F TF , B = V 2 = FF T . (2.12)

Strain measures

If, after a given deformation, the material particles of a body occupy a different

position in space, but the relative distance between them remain the same, it

is said that a pure rotation has taken place. On the other hand, if the relative

distance between two material points has been modified over deformation due to

the action of stretching, the surrounding region is said to be strained. Straining

is related to pure stretches, which in turn are characterised by the right and left
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Cauchy-Green strain tensors, C and B, defined in the last subsection. However,

these quantities are not sufficient to properly quantify straining. Thus, a certain

strain measure needs to be adopted.

In a broad sense, there are virtually infinite possibilities to measure straining,

so the choice of a strain measure remains arbitrary. In practice, however, this

choice is dictated by mathematical and physical convenience. An important class

of strain measures is the so-called Lagrangian strain tensors, given by

E(m) =

 1
m

(Um − I) , m 6= 0

ln [U ] , m = 0
(2.13)

where m is a real number and ln[·] represents the logarithm of a tensor.

In similar manner, another important family of strain tensors can be defined by

using the left stretch tensor, V . The Eulerian strain tensors are expressed as

ε(m) =

 1
m

(V m − I) , m 6= 0

ln [V ] , m = 0.
(2.14)

In particular, the logarithmic strain tensor (m = 0) will be often adopted in the

following chapters of this thesis.

It is important to remark that, under pure rotations (i.e., F = R), any of the

strain measures defined above vanishes, that is,

U = I =⇒ E(m) = 0, (2.15)

V = I =⇒ ε(m) = 0. (2.16)

The velocity gradient

Similarly to the case of deformation, where an associated gradient has been defined,

it is also possible to define a gradient related to the velocity. The spatial field L,

called velocity gradient, is then expressed as

L = ∇xv, (2.17)

or, alternatively by

L = Ḟ F−1. (2.18)
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The velocity gradient can be split into a symmetric and a skew part, that is,

D = sym(L), W = skew(L), (2.19)

respectively called rate of deformation (or stretching) and spin tensors. In a

physical sense, D is associated with straining meanwhile W is associated with

rigid velocities.

Stress measures

Two stress measures will be often used throughout this thesis. The first one is the

Cauchy or true stress tensor, σ, defined as

t = σn, (2.20)

where t is the surface traction and n is its associated normal vector.

The Cauchy stress tensor can be split into two contributions

σ = s+ pI, (2.21)

where s = dev[σ] is the deviatoric part of the true stress tensor and p is the

pressure, a quantity related to the first invariant of the true stress tensor, defined

as

p =
1

3
tr[σ]. (2.22)

The second stress measure is the Kirchhoff stress tensor, denoted by τ , defined as

τ = Jσ. (2.23)

Analogously to the Cauchy stress, the Kirchhoff stress tensor can also be split into

two different parts, i.e.,

τ = τ d + τhI, (2.24)

where τ d = dev[τ ] and τh = 1
3
tr[τ ] are, respectively, the deviatoric and hydrostatic

(or spherical) parts.

Another important stress measure is the first Piola-Kirchhoff stress tensor, de-

noted by P , also often referred to as the nominal stress. This stress measure will

be only sporadically used in this thesis and therefore no detailed definitions will

be herein provided. The first Piola-Kirchhoff stress tensor relates to the other two
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stress measures presented in this section through the following expressions [40]:

P ≡ JσF−T , (2.25)

P ≡ τF−T . (2.26)

2.2 Fundamental laws

The quantities presented in the previous section are important for the mathe-

matical representation of phenomena such as deformation, motion and straining.

However, they cannot be used for predictions if no relation among them is made.

Therefore, in this section, we briefly review some fundamental laws that govern

the aforementioned physical phenomena and that will be important for the future

developments addressed in this thesis.

Conservation of mass

The postulate of conservation of mass requires that

ρ̇+ ρ divxu̇ = 0 (2.27)

where ρ is the density at the deformed configuration.

Momentum balance

The momentum balance, also referred to as strong form of the equilibrium equation,

of any given body can be expressed as

divxσ + b = ρü, (2.28)

where b denotes the body force vector in the deformed configuration. The equi-

librium equation (2.28) needs to fulfil the following boundary condition:

t = σn, (2.29)

where t is a traction vector applied on the boundary of the body.
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The first and second principles of thermodynamics

The first principle of thermodynamics postulates that the energy must be con-

served. This can be mathematically expressed as

ρė = σ : D + ρr − divxq, (2.30)

where e, r and q are, respectively, the specific internal energy, the density of heat

production and the heat flux. Throughout this thesis, only processes with constant

temperature will be considered. In this case, the first principle reduces to

ρė = σ : D. (2.31)

The equation above states that the rate of internal energy per unit deformed

volume must equal the stress power, σ : D, per unit deformed volume. Making

use of the relation below,

ρ̄ = Jρ, (2.32)

where ρ̄ denotes the reference density, it is possible to re-write Equation (2.31) as

ρ̄ė = τ : D. (2.33)

The second principle of thermodynamics is associated with the so-called irre-

versibility of entropy production, expressed by the following inequality:

ρT ṡ+ divxq − ρr ≥ 0, (2.34)

where s denotes the entropy and T the temperature. Similar to the case of the first

principle of thermodynamics, if only isothermal processes are considered, Equation

(2.34) is then given by

ρT ṡ ≥ 0. (2.35)

Pre-multiplying Equation (2.35) by J , we have

ρ̄T ṡ ≥ 0. (2.36)

The Clausius-Duhem inequality

Firstly, we introduce the Helmholtz free energy, ψ, defined by

ψ = e− Ts. (2.37)
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Re-arranging Equation (2.37) and differentiating with respect to time, we have

T ṡ = ė− ψ̇. (2.38)

We remark that the temperature has been assumed constant, thus, Ṫ = 0. Using

Equation (2.31), we conclude that

ρ̄T ṡ = τ : D − ρ̄ψ̇. (2.39)

Finally, substituting Equation (2.39) gives

τ : D − ρ̄ψ̇ ≥ 0. (2.40)

The fundamental inequality above is called Clausius-Duhem inequality.

2.3 The quasi-static IBVP

The fundamental laws presented in the last section allow us to define an Initial

Boundary Value Problem (IBVP) associated with the description of a given defor-

mation process. The solution of the IBVP delivers the prediction of how a given

solid will mechanically behave when subjected to certain boundary conditions.

Within the scope of this thesis, only quasi-static problems will be addressed, hence,

any inertial effects will be neglected1. Thus, the equilibrium equation (2.28), in

the strong form, is re-written to be given by

divxσ = 0. (2.41)

Multiplying Equation (2.41) by a virtual displacement, η, and integrating over the

volume, we have ∫
ϕ(Ω)

(divxσ)Tη dV = 0. (2.42)

After some straightforward operations, Equation (2.42) becomes∫
ϕ(Ω)

[σ : ∇xη − (divxσ · η)] dV = 0. (2.43)

1In Chapter 7, an explicit finite element formulation will be addressed. Although also in that
chapter only quasi-static problems will be analysed, the explicit framework requires the consid-
eration of the inertial effects on its formulation. Such requirement will be recalled accordingly
in Chapter 7, where the necessary equations will be properly reviewed.
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Making use of the divergence theorem, we have∫
ϕ(Ω)

σ : ∇xη dV −
∫
ϕ(∂Ω)

(σ · n)Tη dA = 0. (2.44)

Finally, substituting Equation (2.29) into Equation (2.44) leads to∫
ϕ(Ω)

σ : ∇xη dV −
∫
ϕ(∂Ω)

t · η dA = 0. (2.45)

Equation (2.45) is called weak form of the equilibrium equation. The use of the

weak form can significantly facilitate the use of efficient numerical methods for the

solution of the structural IBVP. With the definition of weak equilibrium at hand,

we can define the quasi-static IBVP, in the spatial description, as follows.

Problem 2.1. Given a prescribed deformation gradient history,

F (t) = I +∇pu(p, t), (2.46)

and the Cauchy stress, at each point of the body expressed as

σ(t) = σ (F (t),α(t)) , (2.47)

obtained from the solution of the constitutive initial boundary value problem where

α is the set of internal variables associated with the material, find a kinematically

admissible displacement function, u ∈ K, such that the equation∫
ϕ(Ω)

σ(t) : ∇xη dV −
∫
ϕ(∂Ω)

t(t) · η dA = 0 (2.48)

is satisfied for all t ∈ [t0, tn] and for all η ∈ Vt.

The set of kinematically admissible displacements, K, and the space of virtual

displacements at time t, Vt, are respectively given by

K = {u : Ω→ U|u(p, t) = ū(p, t), t ∈ [t0, tn],p ∈ ∂Ωu} , (2.49)

Vt = {η : Ω→ U|η = 0 ∈ ∂Ωu(t)} . (2.50)

Unfortunately, analytical solutions for the problem defined above exist only for

a restricted set of special cases. For accurate predictions of the mechanical be-

haviour of solids in the general case, the use of numerical methods is therefore

indispensable.
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The material version

For reference, the material version of the weak form of the equilibrium equation

is also herein provided, which reads∫
Ω

P : ∇pη dV −
∫
∂Ω

t̄ · η dA = 0, (2.51)

where t̄ is the surface traction per unit reference area. In the context of this thesis,

Equation (2.51) will be particularly useful for the linearisation of the equilibrium

equation provided in Appendix A.

2.4 Displacement-based finite elements

In this section, the general concepts of the finite element method formulated with a

displacement-based approach will be briefly addressed. The finite element method

has been chosen in this thesis as the base numerical tool mainly due to its ver-

satility and its high effectiveness when adopted for the simulation of deformation

processes.

2.4.1 Spatial discretisation

As stressed out above, the solution of Problem 2.1 often requires the use of some

sort of numerical strategy. Within a typical finite element framework, the field

variables are discretised through the so-called interpolation or shape functions. In

the case of displacement-based finite elements, the interpolated field variable are

the displacements. Within a given element e, the interpolation is assumed to be

u(x) ≡
nnode∑
i=1

N
(e)
i (x)ui, (2.52)

where N
(e)
i (x) is the shape function associated with node i (evaluated at x) and

nnode is the number of nodes of the element. In similar manner, a global interpo-

lation function can also be set, that is,

u(x) ≡
npoin∑
i=1

N g
i (x)ui, (2.53)
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where npoin is the total number of nodes of the finite element mesh and N g
i (x) is

the global interpolation matrix, which can be represented by

Ng(x) =
[

diag[N g
1 (x)] diag[N g

2 (x)] · · · diag[N g
npoin

(x)]
]
, (2.54)

where diag[N g
i ] denotes a ndim × ndim diagonal matrix defined as

diag[N g
i ] =


N g
i 0 · · · 0

0 N g
i · · · 0

...
...

. . .
...

0 0 · · · N g
i

 . (2.55)

At this point, it is also convenient to define the global vector of nodal displace-

ments, given by

u =
[

u1
1, · · · u1

ndim
, · · · · · · u

npoin

1 , · · · u
npoin
ndim

]T
. (2.56)

With the above matrix notation at hand, Equation (2.53) can be re-phrased to be

given by

u(x) = Ng(x)u (2.57)

where the equation above represents the interpolation of the displacement field

by means of discrete functions. Analogously, we can write the field of virtual

displacements to be given by

η(x) = Ng(x)η. (2.58)

We also define the global discrete symmetric gradient matrix, Bg, which in the

case of plane stress and plane strain problems assumes the form

Bg =

 N g
1,1 0 N g

2,1 0 · · · N g
npoin,1

0

0 N g
1,2 0 N g

2,2 · · · 0 N g
npoin,2

N g
1,2 N g

1,1 N g
2,2 N g

2,1 · · · N g
npoin,2

N g
npoin,1

 , (2.59)

where use of the following notation has been made:

(·)i,j =
∂(·)i
∂xj

. (2.60)
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For completeness, the global discrete full gradient operator, Gg, is also provided

herein, whose format in plane stress and plane strain analyses is given by

Gg =


N g

1,1 0 N g
2,1 0 · · · N g

npoin,1
0

0 N g
1,1 0 N g

2,1 · · · 0 N g
npoin,1

N g
1,2 0 N g

2,2 0 · · · N g
npoin,2

0

0 N g
1,2 0 N g

2,2 · · · 0 N g
npoin,2

 . (2.61)

2.4.2 Temporal discretisation. The non-linear incremental

finite element procedure

In practical engineering applications, it is often required the modelling of materials

that are dependent of the deformation history. Such materials are called path-

dependent and, regardless whether they take strain rate effects into account or

not, a suitable temporal discretisation needs to be performed. Within the context

of most of this thesis, a pseudo-time discretisation between the time increments

[tn, tn+1] will be considered for which a fully implicit scheme is adopted2.

For a generic path-dependent material model, an incremental constitutive function,

σ̂, is assumed to exist, i.e.,

σn+1 = σ̂(F n+1,αn). (2.62)

In practice, the function σ̂ is associated with an integration algorithm that com-

putes the material behaviour for a given deformation gradient F n+1 and set of

internal variables, αn, which remain constant within [tn, tn+1]. Accordingly, a

similar incremental function for the set of internal variables is also defined:

αn+1 = α̂(F n+1,αn). (2.63)

Up to this point, it suffices to leave the incremental constitutive functions σ̂ and

α̂ unspecified for the sake of generality. In the following chapters, these functions

will be defined accordingly for the non-local case.

The non-linear incremental finite element equation

The definition of the incremental constitutive function of Section 2.4.2, combined

with the spatial discretisation presented in Section 2.4.1, allows the definition of

2In Chapter 7, an FE explicit scheme will be adopted for which the proper time discretisation
will be presented accordingly.
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the incremental finite element equilibrium equation, obtained after some straight-

forward substitutions and re-arrangements from Equation (2.45):

r(un+1) ≡ f int(un+1)− f ext = 0, (2.64)

where f int and f ext are, respectively, the internal and external force vectors, defined

for a given element e as

f int(e) =

∫
ϕn+1(Ω(e))

BT σ̂(F n+1,αn) dV , (2.65)

f ext(e) =

∫
ϕn+1(∂Ω(e))

NT tn+1 dA. (2.66)

Within the scope of this thesis, Equation (2.64) will be generally non-linear and

therefore requires an adequate (numerical) method for its solution. Considering

an incremental scheme, in which a given fraction of the external prescribed load

is applied at each increment, Equation (2.64) is solved as summarised in Box 1.

Remark 2.1. In practice, the external force is computed by the expression

f extn+1 = λn+1f̄
ext
, (2.67)

where lambdan+1 is the prescribed load factor at time tn+1 and f̄
ext

is computed

only once at the first iteration of the incremental procedure through the expression

f̄
ext
(e) =

∫
ϕn+1(∂Ω(e))

NT t̄ dA, (2.68)

where t̄ is a prescribed field which remains constant through the incremental pro-

cedure.

Numerical integration of f int and f ext

One important aspect of the finite element implementation is the substitution

of the exact integrals of Equations (2.65) and (2.66) by some sort of numerical

procedure. In this thesis, both the internal and external force vectors will be

integrated using standard Gaussian quadratures. For instance, in the case of the

internal force vector, f int is approximated by the following expression:

f int(e) =

∫
ϕn+1(Ω(e))

BT σ̂ dV ≈
ngp∑
i=1

wiJiB
T
i σ̂i, (2.69)
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Box 1: The incremental non-linear finite element scheme – implicit solution.

(i) Assemble the global external force vector, f̄
ext

(ii) Initialise increment counter i = 1

(iii) Set load factor λi

(iv) Solve the non-linear equilibrium equation

r(ui) = f int(ui)− λif̄
ext

= 0

(v) Update increment counter i = i+ 1

(vi) Check if prescribed number of increments has been achieved

IF i > NINCR THEN

EXIT

ELSE

GOTO (iii)
ENDIF

where wi and Ji are, respectively, the Gaussian weight and the Jacobian at the

ith integration point. A similar procedure is carried out for the external force

vector. The use of the Gaussian quadrature will be particularly important in the

numerical implementation of the non-local models developed in this thesis as it

will become clear in the following chapters.

The Newton-Raphson method

As stressed out before, the equilibrium equation (2.64) is generally non-linear

and demands an appropriate solution method. We will adopt herein the Newton-

Raphson method, which is particularly attractive due its quadratic rates of con-

vergence. Following standard procedures of the method and particularising for the

case of the finite element framework presented in this chapter, the displacements

are updated as

uk+1
n+1 = ukn+1 −

(
∂r

∂un+1

∣∣∣∣
uk
n+1

)−1

r(ukn+1). (2.70)

Equation (2.70) can be more conveniently written as

KT δu = −r(ukn+1), (2.71)
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where

u = uk+1
n+1 − ukn+1, (2.72)

and KT is called global tangent stiffness matrix, given by

KT =
∂r

∂un+1

∣∣∣∣
uk
n+1

. (2.73)

The correct derivation of the tangent stiffness is crucial to guarantee the quadratic

rates of convergence of the Newton-Raphson method. In the case of finite strains

within a spatial description, the expression for Equation (2.73) arises quite natu-

rally from the linearisation of the equilibrium equation in its weak form, given in

detail in Appendix A. Recalling that the internal force vector is integrated using

a Gaussian quadrature (Equation 2.69), the element stiffness matrix is then given

by

K
(e)
T =

ngp∑
i=1

wiJiG
T
i âiGi, (2.74)

where ai is the spatial tangent modulus whose components are given by

aijkl =
1

J

∂τ ij

∂F km
F lm − σilδjk. (2.75)

For convenience, the full Newton-Raphson procedure associated with the present

finite element framework at finite strains is summarised in Box 2.

Remark 2.2. In this thesis, superscripts in tensors will generally correspond to

their tensorial components, meanwhile subscripts correspond to the integration

point at which the tensor is evaluated. This notation will be particularly useful

in the following chapters, where distinction between constitutive quantities associ-

ated with different integration points is crucial in the non-local case.

2.5 Conclusions

In this chapter, the general concepts of continuum mechanics and of the finite

element method have been briefly reviewed. It is important to remark that the

concepts presented so far are well-established and widely accepted either by aca-

demic researchers or by the industry. Many of the concepts presented herein will be

used as base for comparison with the non-local theory and its associated numerical

treatment.
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Box 2: Newton-Raphson scheme for the solution of the incremental non-linear
finite element equilibrium equation – implicit solution.

(i) Set k = 1, initial guess and residual function array

ukn+1 = un; rk = f int(un)− λn+1f̄
ext

(ii) Compute the consistent spatial tangent moduli

aijkl =
1

J

∂τ̂ ij

∂F km
F lm − σilδjk

(iii) Assemble element tangent stiffness matrices

K
(e)
T =

ngp∑
i=1

wiJiG
T
i âiGi

(iv) Assemble global stiffness and solve for δuk+1

KT δu
k+1 = −rk

(v) Update displacements

uk+1
n+1 = ukn+1 + δuk+1

(vi) Update the deformation gradient

F k+1
n+1 =

(
I −∇xu

k+1
n+1

)−1

(vii) Update stresses and internal variables

σk+1
n+1 = σ̂(F k+1

n+1,αn); αk+1
n+1 = α̂(F k+1

n+1,αn)

(viii) Compute element internal force

f int
(e) =

ngp∑
i=1

wiJiB
T
i σ

k+1
n+1

(ix) Assemble the global internal force array and re-compute the residual function

rk+1 = f int − λn+1f̄
ext

(x) Check convergence

IF
∥∥rk+1

∥∥ < TOL EXIT

(xi) Set k = k + 1 and go to (ii).



Chapter 3

A Lemaitre-based Non-local

Ductile Damage Model of

Integral-type at Finite strains

The appropriate modelling of plastic straining and ductile damage, which is crucial

to describe the deformation of metals undergoing large deformations, has been

the focus of extensive research effort over the last decades. Since the pioneering

work of Kachanov [72] and Rabotnov [97], when initial concepts of Continuum

Damage Mechanics (CDM) were developed, several significant contributions have

emerged and new theories proposed for the description of material progressive

internal degradation [e.g., 57, 74, 75, 76, 113]. Likewise, numerical methods have

rapidly evolved and many authors have proposed efficient algorithms that are able

to simulate material deformation at finite strains [e.g., 91, 107, 119] and predict

ductile fracture onset [e.g., 5, 36, 38].

However, a large number of models within the CDM theory are rooted on the

assumption of the so-called local continuum. In local media, the behaviour of the

material is completely represented by a point-wise constitutive law, which is in-

dependent of the influence of surrounding material points. As a matter of fact,

the local theory assumes that the material is continuous at any scale and, there-

fore, size effects are inherently neglected. Nevertheless, when a structural problem

formulated within the local theory experiences softening regimes, it becomes in-

objective since the equilibrium partial differential equations lose ellipticity (or

hyperbolicity, in transient problems). As a consequence, the IBVP has no longer a

unique solution as it is dependent upon spatial discretisation [94]. This adversity,

often referred to as pathological mesh dependency, causes plastic strain (and other

29
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dissipative variables such as damage) to concentrate into a single element (or a

layer of elements) as the mesh is subsequently refined in a typical finite element

analysis.

To circumvent this pathology, the non-local theory has emerged as an alternative

approach which incorporates an intrinsic length into the traditional continuum

theory. If properly formulated, the theory overcomes the problem of pathological

mesh dependency and acts as a localisation limiter for both plasticity and damage,

either by means of gradient-enhanced or integral-type formulations.

Despite the fact that some contributions have shown that both integral-type

and implicit gradient-dependent non-local models are, in general, equivalent1 and

present similar characteristics [89, 109], these two competitive approaches have

been most commonly adopted to model distinct material behaviour. In particular,

ductile materials have been enhanced, almost exclusively, by means of gradient-

dependent constitutive models. In this case, numerical implementation issues and

extension to finite strains have been extensively addressed by many authors [e.g.,

26, 47, 55, 81, 101, amongst several others]. On the other hand, non-local formu-

lations of integral-type have been usually employed in cojunction with material

laws that are typically adopted for the description of quasi-brittle materials like

concrete and soil [e.g., 18, 22, 30, 41, 56, 87, 93, amongst many others]. Despite

significant advances both in theoretical and computational fields concerning the

integral-type formulation, only a limited number of works have been devoted to

model ductile deformation with this kind of non-local theory [e.g. 114].

The integral-type of non-local theory has been mainly avoided due to the inte-

gral averaging which, by definition, prevents the material model to be formulated

in a point-wise manner. Some authors claim [e.g. 88] that this approach can be

prohibitive, especially for elasto-plastic damage models which are, in the great

majority of cases, highly non-linear. Instead, if an implicit gradient-dependent

theory is used, a diffusive equation is added to the structural problem and the

non-local variable is treated as an additional degree of freedom. The main ad-

vantage of the gradient approach is that the problem keeps a local-like format;

however, additional FE discretisation is necessary and, since the non-local vari-

able is considered to be an additional degree of freedom of the structural problem

rather than a purely constitutive quantity, its physical interpretation becomes, to

some extent, abstract.

The integral-type formulation, on the other hand, keeps non-locality entirely at

the material level. This means that neither additional degrees of freedom nor

1The models are equivalent in the sense that they are both strongly non-local.
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extra diffusive equations are necessary within the integral-type framework. In

fact, its main attribute, when compared to the local approach, is that the non-

local constitutive problem has an extra degree of non-linearity since it depends

on neighbouring material points. As a consequence, the typical loading-unloading

conditions cannot be fulfilled point-wisely. Most recent gradient-enhanced theories

have tackled this shortcoming (which is also present in the gradient counterpart of

the non-local theory) by satisfying the loading-unloading conditions only in a weak

sense [e.g. 35, 55, 88], a direct consequence of the additional diffusive equation em-

bedded in the global structural problem. The integral-type theory, on the other

hand, needs to ensure these conditions on the material level and this has been

regarded as a major drawback. However, iterative methods can be used in order

to fulfil the loading-unloading conditions. For instance, Strömberg and Ristin-

maa [110] have proposed a strategy to solve a hybrid local/non-local elasto-plastic

model by means of a modified Newton-Raphson method. More recently, Benvenuti

and Borino [18] have solved a thermodynamically consistent non-local model for

quasi-brittle materials using a projected Jacobi method. Later, Benvenuti and

Tralli [19] have assessed different iterative solution methods for non-local models

of integral-type with linear hardening. As a matter of fact, elasto-plastic damage

models with complex non-linear evolution laws can also be efficiently integrated

by using these techniques.

With regard to the theoretical formulation of non-local constitutive models, the

works of Polizzotto et al. [96], Borino et al. [21] and Borino et al. [22] have, amongst

others, provided a consistent thermodynamic framework for the non-local theory.

These authors have made use of the concept of a non-local residual which accounts

for energy exchanges between material particles in non-local media. Hence, the

dissipation inequality, which has to be written in a global integral form due to

the nature of the non-local constitutive model, could be re-written in a convenient

local form. However, they have limited their theory to small-strain plasticity

and elastic-damage frameworks. More recently, some authors have extended these

concepts to finite strain plasticity but, to the author’s knowledge, exclusively for

gradient-enhanced theories (for instance in [95]).

The main goal of this chapter is to propose a non-local theory of integral-type suit-

able for finite strain analysis which incorporates many of the aforementioned ad-

vances. By adopting the well established multiplicative hyperelasto-plastic frame-

work [91, 107, 119], we can derive a straightforward numerical implementation of

the non-local constitutive model, which requires minor modifications to existing

finite element codes.
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This chapter is organised in the following fashion. In the first section, we briefly

revise some general concepts and definitions of the multiplicative hyperelasto-

plasticity framework. Then, we present the non-local theory and its underly-

ing assumptions together with the implications of extending the theory to finite

strains. The following section highlights the definition of the constitutive model

within a consistent thermodynamical framework which is followed by the estab-

lishment of the constitutive equations starting from the generalised normality rule.

Subsequently, the numerical implementation of the non-local model is described

in detail where an efficient material integration algorithm is provided. Finally,

some numerical examples show the ability of the proposed model to eliminate the

pathological mesh dependence, followed by general final conclusions.

3.1 General kinematics of multiplicative hyper-

elasto-plasticity

The intention of this section is to provide a brief review of some important def-

initions that will be employed in further developments rather than to provide a

detailed review on the multiplicative hyperlasto-plasticity framework which is al-

ready well established [see 40, 91, 106, 107, 119, for a more detailed discussion].

The deformation gradient, F , can be decomposed in the product

F = F eF p, (3.1)

where F e and F p are, respectively, the elastic and plastic deformation gradients.

The multiplicative split of F assumes the existence of a local unstressed interme-

diate configuration that corresponds to a deformed configuration which has been

elastically unloaded.

The polar decomposition can be straightforwardly employed within the multiplica-

tive framework and we obtain the following useful relations:

F e = ReU e = V eRe, (3.2)

F p = RpU p = V pRp, (3.3)

where Re, U e and V e are the elastic rotation, right and left elastic stretch tensors,

respectively. Likewise, Rp, U p and V p are named the plastic rotation, right and

left plastic stretch tensors.
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The velocity gradient, which can be defined as

L ≡ Ḟ F−1, (3.4)

may also be expressed in terms of F e and F p:

L = Le + F eLp (F e)−1 , (3.5)

where we have defined

Le ≡ Ḟ e
(F e)−1 , Lp ≡ Ḟ p

(F p)−1 . (3.6)

We can also define the plastic stretch and plastic spin as

Dp ≡ sym [Lp] , W p ≡ skew [Lp] . (3.7)

The plastic stretch, Dp, which is defined at the intermediate configuration, can

be rotated into the deformed configuration by:

D̃
p

= ReDpReT = Resym
[
Ḟ pF p−1

]
ReT . (3.8)

The strain tensor adopted to measure elastic deformations will be the logarithmic

elastic strain tensor, which is expressed as

εe = lnV e =
1

2
lnBe, (3.9)

where Be = (V e)2 = F eF eT is the elastic left Cauchy-Green tensor.

3.2 Non-local theory

The derivation of any non-local theory starts from the choice of the variable to be

enhanced by non-locality. Typical choices are, amongst others, the regularisation

of variables related to kinematics (such as the strain tensor), regularisation of

internal variables (e.g. scalar measurements of the amount of plastic strain or

damage) or regularisation of thermodynamic forces power-conjugated with internal

variables (for instance, the elastic energy release rate in damage models). With

this wide range of possibilities, it is difficult at first glance to decide which option

is more effective and which one should be used. In fact, the choice of the non-local

variable depends on the kind of material to be modelled and on the nature of

the problem to be solved. In the particular case of elasto-plastic damaging ductile
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solids, the internal degradation of the material, which in the CDM theory is usually

treated by means of some damage measurement as an internal variable, is closely

linked to the localisation phenomenon. Therefore, the choice of damage as the

non-local variable is quite natural if we are trying to model ductile deformation

and this option2 will be used in all the developments of this chapter. We remark,

however, that the developments presented here are limited to a scalar isotropic

damage variable, although many of the general concepts of the non-local theory

presented may be extended to more sophisticated measurements of damage.

Once the non-local variable is chosen, its non-local counterpart can be expressed,

in the integral-type formulation, by means of the spatially weighted averaging

integral as

D̄(x) =

∫
V

β(x, ξ)D(ξ) dV (ξ), (3.10)

where D and D̄ are, respectively, the local and non-local damage variables and

β(x, ξ) is a weighted averaging operator. It is important to remark that D̄(x)

represents the measurement of non-local damage at a generic material point de-

noted by x, which has been averaged over a finite volume V . The size of the

non-local volume is dictated by a constitutive parameter generally called intrinsic

length which has a physical dimension of length and takes, in an averaged sense,

the influence of the micro-structure into account.

The averaging operator, β(x, ξ), must satisfy the normalising condition∫
V

β(x, ξ) dV (ξ) = 1, (3.11)

in order to keep uniform fields. Usually, the normalisation is done by means of a

penalisation as [14, 68]

β(x, ξ) =
α(x, ξ)

Ωr(x)
, (3.12)

where Ωr is commonly referred to as representative volume [22, 110] and is given

by

Ωr(x) =

∫
V

α(x, ξ) dV (ξ), (3.13)

and α(x, ξ) is a prescribed weighting function. The disadvantage of this method

is that the averaging operator is not symmetric, i.e., β(x, ξ) 6= β(ξ,x). The

lack of symmetry stems from the fact that Ωr(x) varies near boundaries. This

characteristic is schematically illustrated in Figure 3.1. Evaluating the weighting

function for the points located at x1 and x2, we easily conclude that α(x1,x2) =

2A comprehensive comparison of different non-local variables in Chapter 6 will make clear
that the choice of damage as the non-local variable is preferred.
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x1

x2

Ωr(x1)

Ωr(x2)

d

Figure 3.1: Schematic illustration of the lack of symmetry of the non-
symmetric averaging operator β(x, ξ) of Equation (3.12).

α(x2,x1) since the distance between these points is the same, regardless the point

from which it is measured. However, the representative volumes measured from

both points will be distinct, that is, Ωr(x1) 6= Ωr(x2). Thus,

α(x1,x2)

Ωr(x1)
6= α(x2,x1)

Ωr(x2)
, (3.14)

and, consequently, using the definition of the non-symmetric averaging operator

of Equation (3.12), we conclude that β(x1,x2) 6= β(x2,x1).

It is worth mentioning that, for a material point sufficiently far from the bound-

ary, Ωr(x) becomes constant and is usually denoted by Ω∞. In practice, Ω∞ is

computed as the area of a circle (2D problems) or the volume of a sphere (3D

problems).

From a purely computational point of view, the use of a non-symmetric operator is

disadvantageous due to the additional amount of memory necessary for storage if

compared to the case of a symmetric operator (where the entries of the matrix are

equal with respect to the main diagonal and need not be stored twice). Beside the

advantages concerning memory management, the definition and use of a symmetric

averaging operator is also appealing for the concise theoretical elaboration of non-

local models which are consistent with thermodynamics [22]. For this purpose,

Borino et al. [22] have proposed a symmetric averaging operator, which is written

as

β(x, ξ) =

(
1− Ωr(x)

Ω∞

)
δ(x, ξ) +

1

Ω∞
α(x, ξ), (3.15)

where δ(x, ξ) is the Kronecker delta.
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Some authors [22, 96] have also adopted the following notation to define a non-local

variable

R(D) = D̄(x) =

∫
V

β(x, ξ)D(ξ) dV (ξ) (3.16)

where R(·) denotes an integral regularisation operator. In some developments

carried out throughout this thesis, this alternative notation will be useful for the

sake of clarity.

3.2.1 Weighting function

As pointed out before, the averaging operator contains a prescribed weighting

function which, in turn, depends on an intrinsic parameter with the physical di-

mension of length. The definition of the weighting function is, to some extent,

arbitrary. However, in order to obtain the diffusive effect expected from the non-

local theory, it should satisfy some basic characteristics. For instance, the function

should have its maximum at the origin and the decrease around it as the distance

of neighbouring points increases.

We will adopt in this thesis the bell-shaped function, which is frequently employed

in non-local theories of integral-type [e.g. 14, 68], that is given by

α(x, ξ) =

〈
1− ‖x− ξ‖

2

`2
r

〉2

, (3.17)

where 〈·〉 are the Macauley brackets. The intrinsic parameter is incorporated

through the quantity `r that will be hereinafter referred to as non-local intrinsic

length.

Remark 3.1. The non-local intrinsic length cannot be directly measured from

experiments but rather obtained through inverse analysis based on experimental

evidence [14]. The determination of `r is therefore intricate and demands, in

a general sense, a suitable numerical strategy. The intention in this chapter is

to propose a non-local constitutive theory for ductile materials and to describe its

associated computational implementation considering `r as a numerical parameter.

Thus, the results and conclusions obtained herein would need to be experimentally

validated. Nonetheless, as it will be shown in the following sections, the model

presented in this contribution is able to avoid the pathological mesh dependency

and can be conveniently used as a localisation limiter.
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3.2.2 Non-local averaging strategy

Under the assumption of infinitesimal strains, non-local averaging is independent

of the configuration since the difference between the undeformed and deformed

configurations can be neglected. However, this is clearly not true when finite

strains are present. In this case, the definition of the non-local averaging integral

on different configurations will lead to distinct results.

Inspired by the assessment carried out by Steinmann [108] and Geers et al. [55],

we will consider three different strategies for the non-local averaging: (a) Eulerian-

type; (b) total Lagrangian-type; (c) updated Lagrangian-type.

In the non-local averaging of Eulerian-type (see Figure 3.2), the weighted integral

is evaluated at the deformed configuration. With such a strategy, the non-local

volume of influence associated with the material point P is forced to remain the

same (a circle or a sphere in the three-dimensional case) as the body undergoes

deformation. As a consequence, material particles may enter or leave the repre-

sentative volume Ωr which remains undeformed throughout deformation.

P P

Ωt1
rΩt0

r

t0 t1 = t0 + ∆t1

F∆t1

Figure 3.2: Non-local averaging of Eulerian-type.

In the total Lagrangian-type of non-local averaging, the weighted integral is eval-

uated at the undeformed configuration (see Figure 3.3). Thus, according to this

concept, the final non-local influence volume will be distorted3 from the original

circle-shaped one in a two-dimensional analysis. This stems from the fact that

the material points that exert influence over P remain the same ones throughout

deformation.

3It it worth mentioning that the non-local volume of influence is not actually deformed but
rather its shape looks distorted when evaluated at the deformed configuration. This stems from
the fact that the averaging operator is independent of the history of deformation as alluded in
Section 3.2.3.
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P P

Ωt0
rΩt0

r

t0 t1 = t0 + ∆t1

F∆t1

Figure 3.3: Non-local averaging of total Lagrangian-type.

Finally, the updated Lagrangian-type of non-local averaging is defined by mixing

the two other strategies as the material points that influence P are kept the same

but only over the increment of deformation. Before a new increment is applied, the

non-local volume of influence is recomputed and different points may now exert

influence on P (see Figure 3.4). As a matter of fact, this strategy only makes sense

when working within an incremental framework. The updated Lagrangian-type

of non-local averaging recovers the total Lagrangian-type if only one increment of

deformation is applied. Likewise, if the size of the deformation increment tends to

be infinitesimal, the non-local averaging of Eulerian-type is recovered.

From a computational point of view, the different strategies for the evaluation

of the non-local averaging have a significant effect on the overall efficiency. If the

Eulerian concept is chosen, for instance, the computation of the averaging operator

β(x, ξ) has to be performed at every equilibrium iteration demanding additional

CPU time for this task. On the other hand, when the total Lagrangian-type of

non-local averaging is adopted, the evaluation of β(x, ξ) only needs to be carried

out once, saving significant computational time.

With regard to the theoretical implications, the distinct non-local averaging strate-

gies will behave quite differently under different stress states [55]. For example,

let us consider the necking of a bar subjected to axial tension. As the area in the

central section of the bar decreases due to necking, the Eulerian-type of non-local

averaging will have progressively less material points to account for the non-local

influence. The total Lagrangian strategy, on the other hand, preserves the same

number of materials points for the non-local averaging throughout deformation.

Conversely, if the bar is subjected to a compressive loading, more influence points

may enter the representative volume defined with the Eulerian-type of non-local

averaging. In the total Lagrangian strategy, however, no additional material points

will be used in the non-local averaging. In the section of numerical results, we will
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P
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Ωt1
r

Ωt1
r

t1 = t0 + ∆t1 t2 = t1 + ∆t2

F∆t2

P P

Ωtn−1
rΩtn−1

r

tn−1 = tn−2 + ∆tn−1 tn = tn−1 + ∆tn

F∆tn

Figure 3.4: Non-local averaging of updated Lagrangian-type.

employ the different averaging strategies in order to better understand their dif-

ferences.

3.2.3 Assumptions behind the non-local theory

One important assumption of the present non-local theory is that both the non-

local intrinsic length, `r, and the averaging operator, β(x, ξ), are completely in-

dependent of the deformation history. In computational terms, this means that
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β(x, ξ) is not altered when the body is subjected to a given deformation over

(pseudo-)time but it is simply evaluated at different configurations as described in

the last section. With this in mind, we can now evaluate the rate of the non-local

variable:
∂

∂t

[
D̄(x)

]
=

∂

∂t

[∫
V

β(x, ξ)D(ξ) dV (ξ)

]
. (3.18)

Under the hypothesis that β(x, ξ) is independent of the deformation history, the

volume of the integral of Equation (3.18) does not vary, which allows us to write

˙̄D(x) =

∫
V

[
β̇(x, ξ)D(ξ) + β(x, ξ)Ḋ(ξ)

]
dV (ξ). (3.19)

where the notation ˙(·) to denote rates has been adopted and the chain rule has

been applied. Since β(x, ξ) does not vary over (pseudo-)time, it is straightforward

to conclude that

β̇(x, ξ) = 0, (3.20)

which leads to the important relation:

˙̄D(x) =

∫
V

β(x, ξ)Ḋ(ξ) dV (ξ). (3.21)

From a numerical point of view, the format of the equation above is crucial. If

β(x, ξ) is assumed to be dependent of the deformation history or of any other con-

stitutive quantity, its rate might be different than zero, leading to a more compli-

cated expression to be worked out when developing the numerical implementation

of the constitutive model.

Finally, another consequence of the independence of β(x, ξ) on the history of

deformation is that the formulation of the non-local constitutive model is not

altered when a different averaging strategy is adopted.

3.3 Thermodynamic framework

Some local constitutive models are very appealing from a theoretical point of view

due to their thermodynamically consistent formulations [e.g., 28, 29, 74, 75, 76].

Therefore, we will provide herein the derivation of the non-local constitutive model

with the recourse of the theory of thermodynamics of irreversible processes. We

remark that the thermodynamical implications regarding the use of the logarithmic

strain tensor (which have already been developed for local models at finite strains)

can be directly extended to the non-local case since we have chosen damage to
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be the non-local variable. It is also important to mention that the theory will be

limited to the purely mechanical case, i.e., thermal effects are completely neglected.

To start with, let us recall the first principle of thermodynamics, which can be

given by ∫
V

ρ̄ė dV =

∫
V

τ : D dV , (3.22)

where ρ̄ is the density at the deformed configuration, ė is the rate of the internal

energy and τ is the Kirchhoff stress tensor. The quantity D is the stretching

tensor defined by

D ≡ sym [L] . (3.23)

In the standard local continuum theory, the volume V can be considered infinites-

imal. However, this is not the case of the non-local theory since V cannot be

smaller than a given finite volume size dictated by the intrinsic length of the

material [21, 22, 85, 96].

The integral format of Equation (3.22) can be conveniently re-written in a local

form:

ρ̄ė = τ : D + P, (3.24)

where P is called non-local residual. The use of a non-local residual has been firstly

introduced by Edelen and Laws [43] and Edelen et al. [44] in the elasticity context

and later exploited in small-strain plasticity and damage by others [21, 22, 85, 96].

More recently, Polizzotto [95] used the same concept in a strain gradient theory

at finite strains.

The residual P accounts for the energy exchanges among non-local material par-

ticles, which is tacitly considered if the integral form in Equation (3.22) is used

instead. Since it is reasonable to neglect energy exchanges with the exterior, the

following insulation condition [96] holds:∫
V

P dV = 0. (3.25)

We recall the expression for the Helmholtz free energy, which reads

ψ = e− Ts, (3.26)

where T is the absolute temperature and s is the entropy. Since in the present

model we consider isothermal processes only, then Ṫ = 0. With the expression of
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the Helmholtz free energy at hand (Equation 3.26), we know that

ρ̄T ṡ = ρ̄ė− ρ̄ψ̇ (3.27)

thus,

ρ̄T ṡ = τ : D + P − ρ̄ψ̇. (3.28)

Invoking now the second principle of thermodynamics, we have∫
V

ρ̄T ṡ dV ≥ 0. (3.29)

Equation (3.29) can be re-written in its local form as

ρ̄T ṡ ≥ 0, (3.30)

which can be substituted in Equation (3.28), leading to the Clausius-Duhem in-

equality, given by

τ : D + P − ρ̄ψ̇ ≥ 0. (3.31)

We remark that a non-local residual is not necessary in Equation (3.30) since it

has already been considered in Equation (3.28).

3.3.1 Determination of ρ̄ψ̇

Firstly, we assume that the specific free energy function is given by

ρ̄ψ (εe, R,R(D)) ≡ ρ̄ψe,d (εe,R(D)) + ρ̄ψp (R) , (3.32)

where ρ̄ψe,d (εe,R(D)) and ρ̄ψp (R) are respectively the specific free energy func-

tions associated with elastic-damage and plasticity. The potential ψ (εe, R,R(D))

is associated with a generic material point located at x and depends on the po-

tentials of other surrounding points due to non-locality. Therefore, this potential

does not hold alone as the energy exchanges among neighbour material particles

must be taken into account. Nevertheless, such energy exchanges have already

been considered through the non-local residual P in Equation (3.31).

At this point, it is necessary to define the elastic-damage specific free energy

potential. Considering a Hencky hyperelastic potential, we have

ρ̄ψe,d (εe,R(D)) =
1

2
εe : (1−R(D))De : εe, (3.33)
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where De is the typical linear elasticity fourth-order tensor. The rate of ρ̄ψ is then

given by

ρ̄ψ̇ = ρ̄
∂ψ

∂εe
: ε̇e + ρ̄

∂ψ

∂R(D)
R(Ḋ) + ρ̄

∂ψ

∂R
Ṙ, (3.34)

where the thermodynamic forces conjugated with isotropic hardening and non-

local damage read, respectively,

χ = ρ̄
∂ψ

∂R
, (3.35)

Y = ρ̄
∂ψ

∂R(D)
= −1

2
εe : De : εe. (3.36)

For the determination of the first term of the right-hand side of Equation (3.34),

we apply the chain rule, which, together with the definition of the logarithmic

elastic strain tensor of Equation (3.9), gives

∂ψ

∂εe
: ε̇e =

1

2

∂ψ

∂εe
:
∂ (lnBe)

∂Be : Ḃ
e

(3.37)

=
1

2

[
∂ψ

∂εe
:
∂ (lnBe)

∂Be

]
Be : Ḃ

e
Be−1. (3.38)

The function lnBe belongs to the class of functions called isotropic tensor functions

with a single argument. By the definition of εe and due to the isotropy of ψ, the

tensors εe, Be and ∂ψ/∂εe have the same principal axes. In view of that and

using closed-form formulas for the evaluation of isotropic tensor functions with

single argument [37, 82], we obtain (after some algebra) the following identity

∂ψ

∂εe
:
∂ (lnBe)

∂Be Be =
∂ψ

∂εe
. (3.39)

Therefore, we have
∂ψ

∂εe
: ε̇e =

1

2

∂ψ

∂εe
: Ḃ

e
Be−1. (3.40)

Using the multiplicative elasto-plastic decomposition of the deformation gradient

(Equation 3.1) in conjunction with the definition of the left elastic Cauchy-Green

strain tensor, Be = F eF eT , leads to

Be = F (F p)−1 (F p)−T F T . (3.41)
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Using the rate of the above expression and substituting in Equation (3.40) yields,

after some algebraic manipulation and by taking into account the elastic isotropy,

on
∂ψ

∂εe
: ε̇e =

∂ψ

∂εe
:
(
D −ReDpReT

)
. (3.42)

Finally, with the definition of the plastic stretch rotated to the deformed configu-

ration (Equation 3.8), we get

∂ψ

∂εe
: ε̇e =

∂ψ

∂εe
:
(
D − D̃p

)
. (3.43)

Hence, Equation (3.34) becomes

ρ̄ψ̇ = ρ̄
∂ψ

∂εe
:
(
D − D̃p

)
+ YR(Ḋ) + χṘ. (3.44)

Substituting into the Clausius-Duhem inequality (Equation 3.31), we have(
τ − ρ̄ ∂ψ

∂εe

)
: D + ρ̄

∂ψ

∂εe
: D̃

p
+ P − YR(Ḋ)− χṘ ≥ 0, (3.45)

from which the following constitutive relation applies since Equation (3.45) must

hold for any motion:

τ = ρ̄
∂ψ

∂εe
= (1−R(D))De : εe. (3.46)

The Clausius-Duhem inequality then reads

τ : D̃
p

+ P − YR(Ḋ)− χṘ ≥ 0. (3.47)

3.3.2 Determination of P

Since we have substituted the global integral version of the first and second prin-

ciples of thermodynamics by a local form which accounts for a non-local residual,

we can alternatively write the inequality of Clausius-Duhem in a purely local form

as

τ : D̃
p −XḊ − χṘ ≥ 0, (3.48)

where X is a thermodynamic force conjugated to local damage which inherently

takes into account the non-local energy exchanges among several material particles.
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Of course, the definition of X is not clear. Nevertheless, since the inequalities

(3.47) and (3.48) have to be equivalent, we can compare both expressions as

τ : D̃
p

+ P − YR(Ḋ)− χṘ = τ : D̃
p −XḊ − χṘ, (3.49)

which straightforwardly leads to

P = YR(Ḋ)−XḊ. (3.50)

Finally, we can apply the insulation condition from Equation (3.25):∫
V

P dV =

∫
V

(
YR(Ḋ)−XḊ

)
dV = 0, (3.51)

which results in ∫
V

XḊ dV =

∫
V

YR(Ḋ) dV . (3.52)

Since β(x, ξ) is symmetric, the following Green-type identity holds [22]:∫
V

YR(Ḋ) dV =

∫
V

R(Y )Ḋ dV . (3.53)

Therefore, we conclude that

X = R(Y ), (3.54)

hence,

P = YR(Ḋ)−R(Y )Ḋ. (3.55)

Finally, with Equation (3.55), the Clausius-Duhem inequality becomes

τ : D̃
p −R(Y )Ḋ − χṘ ≥ 0, (3.56)

or, equivalently,

τ : D̃
p

+R(−Y )Ḋ − χṘ ≥ 0. (3.57)

The local form of the Clausius-Duhem inequality including the non-local residual

facilitates the definition of the plastic and damage dissipation potentials which

now may also be defined in a local form (local in the sense that the potential is

the one associated with a generic material point).
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3.4 Constitutive equations

In order to derive the constitutive equations of the model, we first define a dissi-

pation potential, F , to be given by

F = Fp + Fd, (3.58)

where Fp and Fd are, respectively, the dissipation potentials associated with plas-

ticity and damage. By assuming plastic isotropy (which leads to a zero plastic

spin, i.e., W p = 0) and applying the generalised normality rule, we have

D̃
p

= γ̇
∂F

∂τ
, (3.59)

and

Ṙ = −γ̇ ∂F
∂χ

. (3.60)

We know from Equation (3.21) that the rate of non-local damage, which is the

internal variable that accounts for internal degradation in the present formulation,

is by definition given by
˙̄D = R

(
Ḋ
)
, (3.61)

i.e., it is a regularisation applied on the rate of local damage, which, following the

generalised normality rule, reads

Ḋ = γ̇
∂F

∂R(−Y )
. (3.62)

In order to get the evolution equations that define the non-local constitutive model,

functions for the plastic and damage dissipation potentials must be defined. For

the former, we adopt the undamaged von Mises yield function [75], given by

Fp ≡
q(τ )(

1− D̄
) − τy (R) , (3.63)

where τy is the uniaxial yield stress and q = q(τ ) is the von Mises equivalent stress

evaluated using the Kirchhoff stress tensor, defined as:

q(ξ) =
√

3J2(τ d(ξ)) =

√
3

2
τ d(ξ) : τ d(ξ). (3.64)
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For the dissipation potential associated with local damage, we define

Fd ≡
r

(s+ 1)(1−D)

[
R(−Y )

r

]s+1

, (3.65)

where r and s are scalar parameters for damage evolution. Equation (3.65) is

based on the damage dissipation potential proposed by Lemaitre [75]. The only

difference is that we have considered the averaging of the energy release rate, −Y .

This choice is based on the implications from thermodynamics, addressed in the

last section, where the thermodynamic force conjugated with local damage should

be R (−Y ). By rearranging Equation (3.59) using the relations from Equation

(3.8), the non-local constitutive model can be derived from the following set of

equations:

Ḟ pF p−1 = γ̇Re T ∂F

∂τ
Re, (3.66)

Ṙ = −γ̇ ∂F
∂χ

, (3.67)

˙̄D = R
[
γ̇

∂F

∂R(−Y )

]
. (3.68)

Straightforward multi-variable calculus operations lead to

Ḟ pF p−1 =
γ̇(

1− D̄
)Re T

(
3

2

τ d
q

)
Re, (3.69)

Ṙ = γ̇, (3.70)

˙̄D = R
{

γ̇

(1−D)

[
R (−Y )

r

]s}
. (3.71)

Alternatively, Equation (3.71) can be more explicitly written as

˙̄D(x) =

∫
V

β(x, ξ)
γ̇(ξ)

(1−D(ξ))

[
1

r

∫
V

β(ξ,η) (−Y (η)) dV (η)

]s
dV (ξ). (3.72)

It is worth mentioning that the non-local constitutive model is by no means depen-

dent of a single point only. In fact, the equations above are simply those associated

with the generic material point located at x. Likewise, the Kuhn-Tucker conditions

associated with the material point at x read

γ̇(x) ≥ 0; Fp(x) ≤ 0; γ̇(x)Fp(x) = 0 ∀ x ∈ V. (3.73)

and must hold globally in V .
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3.4.1 Relation to classical non-local formulation

Most non-local theories are formulated within a classical approach [27], i.e., they

are merely ad-hoc extensions of previously existing local constitutive models for

which one or more local variables are replaced by their non-local counterparts.

Accordingly, the non-local theory presented above can also be defined in an ad-

hoc fashion by simply replacing local damage by its non-local counterpart. In this

case, the evolution of non-local damage is given by

˙̄D = R
[

γ̇

(1−D)

(
−Y
r

)s]
, (3.74)

which clearly differs from Equation (3.71) only due to the absence of regularisation

on −Y . Although less theoretically appealing, the classical version of the present

non-local damage model is thermodynamically admissible, i.e., it does not gener-

ate negative dissipations. This can be straightforwardly demonstrated as follows.

Recalling the Clausius-Duhem inequality in the global form, the dissipation for

the classical formulation reads∫
V

(
τ : D̃

p − Y ˙̄D − χṘ
)
dV ≥ 0. (3.75)

The equation above can be split into two dissipative contributions, the first one

due to plasticity and the other one associated with damage, respectively given by∫
V

(
τ : D̃

p − χṘ
)
dV ≥ 0, (3.76)∫

V

−Y ˙̄DdV ≥ 0. (3.77)

As a matter of fact, the dissipation associated with plasticity (Equation 3.76) is

always positive. This is rooted on the fact that, like in the local case, the plastic

potential, Fp, is a convex function that is zero-valued at the origin and for which

Ḟp ≥ 0. These properties tacitly fulfil the second principle of thermodynamics ’a

priori’ for which positiveness of dissipation must hold for any deformation [40, 76].

In order to verify the thermodynamical admissibility of Equation (3.77), we first

examine the expression for the damage energy release rate, which can be alterna-

tively written as

− Y =
q2

6G(1−D)2
+

τ 2
h

2K(1−D)2
, (3.78)

where G and K are respectively the shear and bulk modulus. Clearly, −Y is

always positive. Subsequently, close inspection of the rate of local damage, Ḋ,
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which is given by

Ḋ =
γ̇

(1−D)

(
−Y
r

)s
, (3.79)

demonstrates that Ḋ is also always positive. In order to obtain the rate of non-

local damage, Ḋ is averaged as in Equation (3.21) where the averaging function

β(x, ξ) is by definition always non-negative, leading us to the conclusion that
˙̄D ≥ 0 for any deformation. Therefore, since the product −Y ˙̄D is always positive,

we state that the inequality in Equation (3.75) holds under any circumstance and

we conclude that the classical non-local model is thermodynamically admissible.

3.5 Numerical implementation

The constitutive equations defined in the last section lead to an IBVP that needs

to be solved in order to describe the behaviour of the material when subjected to

a given history of deformation gradient. The constitutive behaviour of a generic

material point located at x is given by the functions F p(x, t), R(x, t) and D̄(x, t)

that satisfy

Ḟ p(x, t)F p−1(x, t) =
γ̇(x, t)(

1− D̄(x, t)
)Re T (x, t)

3

2

τ d(x, t)

q(x, t)
Re(x, t)

Ṙ(x, t) = γ̇(x, t)

˙̄D(x, t) = R
{

γ̇(x, t)

(1−D(x, t))

[
R(−Y (x, t))

r

]s}
(3.80)

subjected to the Kuhn-Tucker conditions:

γ̇(x, t) ≥ 0 Fp(x, t) ≤ 0 γ̇(x, t)Fp(x, t) = 0 (3.81)

for the given initial values F p(x, t0), R(x, t0) and D̄(x, t0), and given history of

the deformation gradient F (x, t) for any t ∈ [t0, tn].

Since an enriched non-local continuum has been considered, the constitutive IBVP

depends on other material points which implies that the consistency condition

Fp(x, t) ≤ 0 cannot be fulfilled in a point-wise fashion. In fact, an additional

degree of non-linearity is inherently incorporated by the non-local formulation

due to the integral averaging. Consequently, analytical solutions for the non-local

constitutive IBVP problem are only possible for a limited number of special cases.
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Nevertheless, the constitutive problem can be solved by using iterative solution

methods as it will be discussed in the following sections.

3.5.1 Numerical evaluation of the averaging integral

In a typical finite element framework, the well established Gaussian quadrature

is very often employed to numerically integrate the equations associated with the

elements of the mesh. As a consequence, all constitutive quantities are computed

at the Gauss points which are, in fact, the discrete version of the infinitesimal

material points at the continuum level. Likewise, the non-local averaging integral

can be worked out using the same method, keeping all constitutive quantities

computed at the Gauss points. This strategy has been often adopted in non-local

formulations of integral-type [e.g. 68, 85] and the integral of Equation (3.10) can

be expressed in its discrete form as

D̄i =

ngpi∑
j=1

wjJjβijDj, (3.82)

where βij ≡ β(x, ξ) is the averaging factor that relates the Gauss points i and j

respectively located at global coordinates x and ξ. D̄i and Dj are the damage

variables associated to the Gauss points i and j, respectively. The quantity wj is

the Gaussian weight and Jj is the Jacobian, both evaluated at the Gauss point j.

Finally, ngpi is the number of Gauss points that lie inside the non-local volume of

interaction measured from point i.

In similar manner, Equation (3.72) is re-phrased as

˙̄Di =

ngpi∑
j=1

{
wjJjβij

γ̇j
(1−Dj)

[
1

r

ngpj∑
k=1

wkJkβjk (−Yk)

]s}
, (3.83)

where βjk ≡ β(ξ,η) is the averaging factor that relates the Gauss points j and

k located at global coordinates ξ and η, respectively, and ngpj is the number of

Gauss points that have non-local influence over the jth Gauss point.

Remark 3.2. As typically observed in finite elements, element distortion will

inevitably affect the quality of the Gauss quadrature since it only guarantees exact

solutions for polynomial functions. As the elements of the mesh become distorted,

their polynomial character is gradually lost and the integration tends to have poorer

results. As a matter of fact, this will also influence the results of the non-local

problem, therefore creating some dependence on the quality of the mesh. However,
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this ’mesh dependence’ is of a different kind and absolutely not associated with the

pathological mesh dependence caused by the softening regime. In other words, if a

sufficient number of non-local interaction points are present, even if the elements

are heavily distorted, the ill-posedness of the structural problem will be avoided.

The numerical predictions may render poor results but uniquely due to inaccurate

numerical integration over the spatial domain.

Remark 3.3. Throughout this thesis, the subscripts i, j, k and l will be in the

majority of the cases employed to denote different Gauss points of the finite element

mesh. Therefore, they generally do not correspond to the components of vectors or

tensors, neither summations are implied, unless otherwise specified.

3.5.2 The global elastic predictor/return mapping scheme

As previously pointed out, the main difficulty of the solution of the non-local

constitutive problem is the fulfilment of the consistency condition. In fact, the

constitutive problem has a global character since one material point depends on

other points that, in turn, depend on other ones and so on.

A suitable manner to solve the non-local material problem is by adopting the gen-

eral concepts of the well known elastic predictor/return mapping scheme very often

used in numerical implementations of local constitutive models. Our intention here

is not to provide a detailed description of this strategy which is extensively docu-

mented elsewhere [e.g., 40, 106]. Instead, we aim to demonstrate how to employ

it with the constitutive model presented in the preceding sections leading to an

efficient numerical implementation.

To start with, we first discretise the constitutive IVBP of Equation (3.80) over a

(pseudo-)time increment. Following standard procedures of the implementation of

hyperelasto-plastic theories based on the multiplicative decomposition, we employ

the exponential map backward scheme for the discretisation of the plastic flow

which leads to

F p
in+1

= exp

[
3

2

∆γi(
1− D̄in+1

)ReT

in+1

dev(τ in+1)√
3J2(τ in+1)

Re
in+1

]
F p
in
. (3.84)

Due to the isotropy of the tensor exponential function, Equation (3.84) can be

re-written as

F p
in+1

= ReT

in+1
exp

[
3

2

∆γi(
1− D̄in+1

) dev(τ in+1)√
3J2(τ in+1)

]
Re
in+1
F p
in
, (3.85)
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which represents the update of the plastic deformation gradient. Equivalently,

we can define the update of the elastic deformation gradient, which in view of

Equation (3.1), is straightforwardly obtained as

F e
in+1

= F e trial
in+1

ReT

in+1
exp

[
−3

2

∆γi(
1− D̄in+1

) dev(τ in+1)√
3J2(τ in+1)

]
Re
in+1

, (3.86)

where F e trial
in+1

is the elastic trial deformation gradient, given by

F e trial
in+1

= F i∆F
e
in , (3.87)

and F i∆ is the incremental deformation gradient defined as

F i∆ = I +∇n [∆ui] , (3.88)

where ∆ui corresponds to the incremental displacement field of Gauss point i.

The use of the logarithmic strain as a strain measure is substantially beneficial

since it allows to re-write the plastic flow equation as [40]

εein+1
= εe trialin+1

− 3

2

∆γi(
1− D̄in+1

) dev(τ in+1)√
3J2(τ in+1)

, (3.89)

which remarkably retrieves the same format of equation as if the model were under

the hypothesis of infinitesimal strains, facilitating its numerical implementation.

The integration of the evolution of the internal variables R and D̄, respectively

given in (3.80)2 and (3.80)3, is done by using the conventional backward Euler

scheme. Thus, following the typical procedures of return mapping schemes, the

final system of equations to be solved when the material is on the plastic damage
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domain is given by

εein+1
= εe trialin+1

− 3

2

∆γi(
1− D̄in+1

) dev(τ in+1)√
3J2(τ in+1)

Rin+1 = Rin + ∆γi

D̄in+1 = D̄in +

ngpi∑
j=1

{
wjJjβij

∆γj(
1−Djn+1

) [1

r

ngpj∑
k=1

wkJkβjk
(
−Ykn+1

)]s}
√

3J2(τ in+1)(
1− D̄in+1

) − τy (Rin+1

)
= 0

(3.90)

Otherwise, the point is elastic and no return mapping is necessary.

We remark that the system above is by no means point-wise, i.e., its solution is

coupled to the solution of other material points. Before proceeding to the descrip-

tion of the solution of the constitutive problem, we can algebraically manipulate

the system of equations (3.90) and reduce the problem to the solution of a system

of equations where there is only one equation associated with each Gauss point of

the mesh. This simplification remarkably increases the efficiency of the algorithm,

to be defined in the following, where the single residual equation associated with

the generic Gauss point i, is given by

f̄i = 3G∆γi −
(
1− D̄in

) (
q̃trialin+1

− τyi
)

+
(
q̃trialin+1

− τyi
) ngpi∑
j=1

{
wjJjβij

(
q̃trialin+1

− τyi
)

3G

[
1

r

ngpj∑
k=1

wkJkβjk
(
−Ykn+1

)]s}
,

(3.91)

where q̃trialin+1
is the undamaged trial von Mises equivalent stress, which is given by

q̃trialin+1
=

√
3

2

∥∥2Gdev
(
εe trialin+1

)∥∥ . (3.92)

Despite the reduction from a system to a single equation associated with each

Gauss point, the solution of the non-local constitutive problem still must be sought

globally in order to ensure the fulfilment of the consistency condition. In fact, the

problem at hand belongs to the family of non-linear complementarity problems

(NCP) [19]. We can define f̄ to be a vector containing all the residual functions

associated with the Gauss points of the mesh. Likewise, the vector ∆γ corresponds
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to all the unknowns of the global problem. Using the Newton-Raphson solution

method to solve the NCP, we get

∆γk+1 = ∆γk −

(
∂f̄

∂∆γ

∣∣∣∣
∆γk

)−1

f̄
(
∆γk

)
, (3.93)

which can be more conveniently written as(
∂f̄

∂∆γ

∣∣∣∣
∆γk

)
δγ = −f̄

(
∆γk

)
, (3.94)

where

δγ = ∆γk+1 −∆γk, (3.95)

∂f̄

∂∆γ
=



∂f̄1

∂∆γ1

∂f̄1

∂∆γ2

· · · ∂f̄1

∂∆γngp

∂f̄2

∂∆γ1

∂f̄2

∂∆γ2

· · · ∂f̄2

∂∆γngp

...
...

. . .
...

∂f̄ngp
∂∆γ1

∂f̄ngp
∂∆γ2

· · · ∂f̄ngp
∂∆γngp


. (3.96)

We remark that, in the general case, the matrix ∂f̄
∂∆γ

is unsymmetric. A modified

Newton-Raphson strategy can be achieved if we replace the matrix above by the

following approximation that includes the diagonal terms and neglects all off-

diagonal ones:

∂f̄

∂∆γ

?

=



∂f̄1

∂∆γ1

0 · · · 0

0
∂f̄2

∂∆γ2

· · · 0

...
...

. . .
...

0 0 · · · ∂f̄ngp
∂∆γngp


(3.97)
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which is the matrix corresponding to the local case for which the following useful

relation applies:

∆γk+1
i = ∆γki −

(
∂f̄ki
∂∆γki

?)−1

f̄ki . (3.98)

Therefore, according to this strategy, there is neither the need to assemble a global

matrix nor to solve a linear system of equations per iteration since each equation

can be updated independently, which saves significant CPU time.

Finally, we can establish the algorithm for the integration of the non-local con-

stitutive model as depicted in pseudo-code format in Box 3. Remarkably, the

algorithm is very similar to those employed in local models within a multiplicative

hyperlasto-plasticity framework. The major difference is that the integration of

the constitutive problem has to be done in a global fashion, firstly by computing

and storing the elastic trial state for all integration points, then by solving the

global problem by means of a modified Newton-Raphson algorithm and finally by

updating the stress state for all Gauss points. Afterwards, the internal force vector

is computed as usual and the analysis is undertaken as in the local case.

3.5.3 The consistent tangent stiffness

In order to ensure quadratic rates of convergence when using the full Newton-

Raphson method, the use of the exact tangent stiffness is highly desired. It has

been often advocated that the derivation of the consistent tangent stiffness within a

non-local framework of integral-type requires non-standard procedures that are not

practicable. This argument has motivated many researchers to develop strong non-

local models through gradient-enhanced theories at the cost of having additional

degrees of freedom at each node of the finite element mesh. As pointed out in the

beginning of this chapter, gradient-dependent non-local formulations keep a local-

like format, for which the consistent tangent can be determined in a relatively

straightforward manner.

This aspect of the non-local formulation of integral-type has been, up to this date

and to the author’s knowledge, very little addressed in the literature. However, it

is in fact possible to obtain closed-form expressions for the tangent stiffness for the

integral case as well. During the course of this work, a general methodology for

the derivation of the consistent stiffness for elasto-plastic constitutive models has

been developed. This advance will be presented in detail in Chapter 5, together

with a closed-form expression of the consistent tangent operator associated with

the non-local constitutive model presented in this chapter.
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Box 3: Algorithm for the solution of the non-local constitutive problem.

(i) Update the deformation gradient of all Gauss points for given incremental
displacement ∆ui

DO I=1,NGP

F i∆ = I +∇n [∆ui] ; F in+1 = F i∆F in

END DO

(ii) Compute the elastic trial state for all Gauss points

DO I=1,NGP

Be
in = exp

[
2εein

]
Be trial
in+1

= F i∆B
e
in (F i∆)T

εe trialin+1
=

1

2
ln
[
Be trial
in+1

]
Rtrial
in+1

= Rin

q̃trialin+1
=

√
3

2

∥∥2Gdev
(
εe trialin+1

)∥∥
END DO

(iii) Solve the non-linear complementarity problem for ∆γ with the algorithm in
Box 4:

f̄ (∆γ) = 0

(iv) Update stress state and constitutive variables for all Gauss points

DO I=1,NGP

IF ∆γi = 0 THEN

D̄in+1 = D̄in

ELSE

D̄in+1 = 1−

(
3G∆γi

q̃trialin+1
− τy

(
Rin+1

))
END IF

εein+1
= εe trialin+1

−
√

3

2

∆γi(
1− D̄in+1

) dev
(
εe trialin+1

)∥∥∥dev
(
εe trialin+1

)∥∥∥
τ in+1 =

(
1− D̄in+1

)
De : εein+1

σin+1 =
1

detF in+1

τ in+1

END DO
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Box 4: Algorithm for the solution of the NCP.

1. Initialise k = 0 and ∆γk+1 = 0

2. Loop over Gauss points and evaluate residual function

DO I=1,NGP

IF F k+1
p i = q̃trialin+1

− τy(Rk+1
in+1

) ≤ 0 AND ∆γk+1
i = 0 THEN

f̄i
(
∆γk+1

)
= 0

ELSE

f̄i
(
∆γk+1

)
= Equation (3.91)

END IF

END DO

3. Check convergence

IF
∥∥f̄∥∥ < TOL EXIT

4. Update and switch incremental plastic multiplier vector

DO I=1,NGP

∆γki = ∆γk+1
i

∆γk+1
i = ∆γki −

(
∂f̄ki
∂∆γki

?)−1

f̄ki

END DO

5. Go to Box 2.
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3.6 Numerical results

3.6.1 Necking of a cylindrical bar

In the present section, we assess the effectiveness of the non-local model by simulat-

ing the necking of a cylindrical bar. This is a widely known benchmark commonly

employed in the assessment of finite strain theories. As schematically depicted in

Figure 3.5, only a quarter of the bar is simulated due to symmetry. An imper-

fection to trigger necking is introduced by decreasing the cross-sectional area at

the centre of the bar by 1.8%. Eight-noded quadrilateral elements with reduced

integration have been employed in all simulations. The material properties are

listed in Table 3.1 and a reference value of `r =
√
c = 0.6325 mm for the intrinsic

length has been adopted following [26] who used a value of c = 0.4 mm2 in the

context of a non-local implicit gradient model. The bar has been subjected to a

prescribed vertical displacement of uy = 2.756 mm. In order to capture the mesh

dependency of the local theory as well as to illustrate the regularising effect of the

non-local enrichment, different mesh refinements have been considered as shown

in Figure 3.5.

(a) (b) (c) (d)

12.826mm

53.334 mm

Figure 3.5: Necking of a Cylindrical bar: geometry and mesh refinement.

The results with the local model, depicted in Figure 3.6, clearly show the tendency

of damage to concentrate into a single element upon mesh refinement. In Figure

3.6c, damage attained the critical value of 1.0 before the prescribed displacement

reached its total value and the simulation was stopped.

When the non-local theory is adopted, damage converges to a stabilised value

after some subsequent mesh refinement as one can conclude after a close inspec-

tion of Figures 3.7, 3.8 and 3.9. The results demonstrate that the pathological
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Table 3.1: Material properties for the cylindrical bar.

Property Value

Elastic modulus E = 206.9 GPa

Poisson’s ratio ν = 0.29

Damage exponent s = 1.0

Damage denominator r = 1.25 MPa

Hardening function τy(R) = (715− 450)[1− exp(16.93R)]

+129.24R MPa

Non-local intrinsic length `r = 0.6325 mm

mesh dependency has been eliminated with any of the three non-local averag-

ing strategies alluded in the third section of this chapter with slight differences

on the maximum damage value reached. As one could expect, the Eulerian and

updated Lagrangian-type of non-local averaging have remarkably lead to quite

similar results since the time-steps employed were not too large. Moreover, the

total Lagrangian-type converged to a slightly lower value of maximum damage,

demonstrating a similar behaviour as the one reported by Geers et al. [55] who

used a gradient-enhanced elasto-plastic model coupled with damage.

(a) (b)

(c)

Figure 3.6: Damage contours at the critical region for the local case.
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(a) (b)

(c)

Figure 3.7: Damage contours at the critical region for the non-local case:
non-local averaging of Eulerian-type.

(a) (b)

(c)

Figure 3.8: Damage contours at the critical region for the non-local case:
non-local averaging of total Lagrangian-type.
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(a) (b)

(c)

Figure 3.9: Damage contours at the critical region for the non-local case:
non-local averaging of updated Lagrangian-type.

The efficiency of the material integration algorithm has also been assessed for the

present example. As depicted in Table 3.2, the typical convergence exhibits a

remarkably high rate although we have neglected the off-diagonal terms in Equa-

tion (3.96). It is important to mention that, within one equilibrium iteration, the

material problem has been solved for the whole body in just 4 iterations.

Table 3.2: Typical convergence of the projected modified Newton-Raphson
algorithm: simulation of the necking of a cylindrical bar.

Iteration Residual Norm

1 6.70× 10+04

2 3.43× 10+00

3 6.17× 10−06

4 1.55× 10−11
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3.6.2 Damaging of a notched bar

In order to further illustrate the regularising properties of the proposed non-local

model, we simulate the damaging of a notched bar. The geometry has been dis-

cretised by three meshes with different refinements (see Figure 3.10) with 8-noded

quadratic elements with reduced integration. The material properties are given in

Table 3.3.

The specimen has been subjected to a vertical prescribed displacement of uy =

0.555 mm. This example has also been carried out by Vaz Jr. and Owen [115]

in the context of local elasto-plastic damage model where it has been shown that

the fracture location has been correctly predicted since the damage evolution law

was a function of the triaxiality ratio, η = τh/q, as it is in the case of the present

model.

(a) (b) (c) (d)

40 mm

φ 18 mm

R4 mm

Figure 3.10: Damaging of a notched bar: geometry and meshes.

Table 3.3: Material properties for the notched bar.

Property Value

Elastic modulus E = 69 GPa

Poisson’s ratio ν = 0.3

Damage exponent s = 1.0

Damage denominator r = 1.25 MPa

Hardening function τy(R) = 589(10−4 +R)0.216 MPa

Non-local intrinsic length `r = 0.6325 mm
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Figure 3.11 shows the contours for damage in the local case. Noticeably, damage

shrinks to a single element upon mesh refinement. In Figure 3.11c, damage has

attained the value 1.0 before the total displacement was applied and the simula-

tion was stopped. Conversely, Figures 3.12 and 3.13 highlight the results for the

thermodynamically consistent and classical non-local models, respectively. Both

formulations lead to a regularised solution where pathological mesh dependency

was significantly alleviated. In Figure 3.14, we can observe a direct comparison

between the formulations. We conclude after a close inspection that the thermo-

dynamically consistent non-local model has demonstrated a higher diffusive effect

than the associated classical theory. This is due to the additional regularisation on

the energy release rate, −Y , which is a function of the triaxiality ratio, η = τh/q.

Finally, we observe again the convergence of the material integration algorithm.

As Table 3.4 clearly demonstrates, convergence has been attained very quickly and

the constitutive solution has been computed for the whole body in a few iterations.

(a) (b)

(c)

Figure 3.11: Damage contours at the critical region for the local case.
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(a) (b)

(c)

Figure 3.12: Damage contours at the critical region for the thermodynamically
consistent non-local formulation.

Table 3.4: Typical convergence of the projected modified Newton-Raphson
algorithm: simulation of the damaging of a notched specimen.

Iteration Residual Norm

1 1.65× 10+08

2 1.53× 10+04

3 1.31× 10−02

4 4.47× 10−11
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(a) (b)

(c)

Figure 3.13: Damage contours at the critical region for the classical non-local
formulation.

(a) (b)

Figure 3.14: Damage (a) and triaxiality (b) distributions along the central
section of the specimen: comparison among the local (L), classical non-local

(CNL) and thermodynamically consistent non-local (TCNL) formulations.
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3.6.3 Stretching of a perforated plate

This last example illustrates the regularising properties of the proposed non-local

model when applied in the three-dimensional simulation of a perforated plate

(Figure 3.15(a)). This case has been subjected of experimental testing by Bao

[7] especially due to the mid-range triaxiality value of η = 1/3 achieved at the

critical region of the specimen. The plate has been discretised with 8-noded linear

hexahedra as depicted in Figure 3.15.

(a) (b) (c) (d)

100mm
R20mm

10mm
50mm

Figure 3.15: Geometry and different mesh refinements for the perforated
plate.

Table 3.5: Material properties for the perforated plate.

Property Value

Elastic modulus E = 71.5 GPa

Poisson’s ratio ν = 0.3

Damage exponent s = 1.0

Damage denominator r = 6.0 MPa

Hardening function τy(R) = 908(0.0058 +R)0.1742 MPa

Non-local intrinsic length `r = 2.0 mm

In order to avoid spurious results due to element locking, the F-bar formulation

[39] has been adopted. F-bar elements can be seen as a finite strain counterpart

of the well-known B-bar methodology [64]. Since the intention of this example is

to demonstrate how the non-local model can effectively eliminate spurious mesh

dependence rather than to review an already well-established methodology, we

shall limit ourselves to directly employ the F-bar formulation and the reader is

referred to references [39, 40] for a comprehensive discussion on this topic. It is

important to remark that the use of F-bar elements is straightforward with the
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present non-local model. This stems from the fact that the non-local formulation

proposed herein exclusively incorporates the non-local enhancement on the ma-

terial level. Therefore, all implications demanded by the F-bar formulation keep

exactly the same format as in local theories since the F-bar methodology is an

element formulation that is independent of the constitutive model.

A prescribed displacement of uy = 0.5 mm has been applied at one of the end

surfaces of the plate while the other one has been kept fixed. As reported by Bao

[7], experiments with an aluminium 2024-T351 have shown that fracture initiation

takes place at the middle of the circumferential surface of the hole. Most of the

material properties (Table 3.5) adopted in the present example are similar to those

reported by Bao [7]. The internal length has been arbitrarily chosen to better

represent the effects of the non-local model with the present discretisations. We

remark again that the main goal of this chapter is to investigate the properties of

the non-local model in a rather numerical fashion.

(a) (b)

(c)

Figure 3.16: Damage contours for the local case at the critical region.
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The results obtained when the local case is considered are given in Figure 3.164.

Clearly, not only damage tends to concentrate in a narrow region upon mesh

refinement, but also its magnitude tends to grow unlimitedly. When the non-local

model is activated, this spurious result is significantly diminished as it can be

concluded from Figure 3.17.

Finally, the convergence of the material algorithm is once again verified. Table 3.6

clearly shows that the algorithm has exhibited very high convergence rates, only

requiring few iterations for the solution of the non-local constitutive problem.

(a) (b)

(c)

Figure 3.17: Damage contours for the non-local case at the critical region.

3.7 Conclusions

In this chapter, a non-local constitutive model of integral-type for the description

of ductile materials has been presented. The model has been formulated at fi-

nite strains where it has been shown that the well-established hyperelastic-based

4In the visualisations of this example, the results have been plotted on the undeformed mesh.
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Table 3.6: Typical convergence of the projected modified Newton-Raphson
algorithm: stretching of a perforated plate.

Iteration Residual Norm

1 2.35× 10+08

2 1.82× 10+03

3 2.75× 10−02

4 5.89× 10−11

multiplicative plasticity framework can be efficiently employed in a straightfor-

ward manner in conjunction with the non-local formulation of integral-type. The

exponential map backward integration scheme together with the use of the log-

arithmic strain measure has allowed the constitutive problem to be written in a

small strain-like format for which the non-local solution is achieved by means of

a projected modified Newton-Raphson strategy. Although the off-diagonal terms

of Equation (3.96) have been disregarded, the material integration algorithm has

exhibited remarkably high convergence rates.

Moreover, the derivation of the non-local model from thermodynamic potentials

has been shown. The use of a non-local residual, as proposed by other authors

for the description of small strain plasticity and damage of quasi-brittle materials,

has been employed in order to write the dissipation inequality in a local fashion.

The thermodynamical framework has implied the regularisation of the thermo-

dynamic force conjugated with damage, resulting in a dual averaging character.

The thermodynamically consistent model has been compared with its associated

classical, ad-hoc formulated counterpart. The thermodynamical admissibility of

the classical model has been demonstrated by re-writing the dissipation inequality

in a global form. Representative results have shown that the thermodynamically

consistent model tends to produce a higher diffusive effect on damage evolution

than the classical model due to the additional averaging of the energy release rate,

which in turn is directly associated with the triaxiality.

Finally, different averaging strategies evaluated at different configurations have

been defined and assessed. The results have shown that all the three definitions,

Eulerian-type, total Lagrangian-type and updated Lagrangian-type lead to distinct

but regularised solutions for the case analysed in the present contribution.

As a main final conclusion, the proposed non-local model and its associated numer-

ical implementation have proven to be a suitable tool to circumvent the pathologi-

cal mesh sensitivity inherently present in the local formulation for softening ductile

solids. Moreover, due to its straightforward implementation, the non-local model
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of integral-type can be seen as a competitive alternative to gradient-enhanced

models.



Chapter 4

Non-local Formulation of a

Gurson-like Damage Model

including a Shear Mechanism

The constitutive framework proposed by Gurson [57] is one of the pioneering

works that attempted to describe material degradation based on micro-mechanical

grounds. In his approach, material degradation, which is in a general sense charac-

terised by the presence of micro-voids, is regarded through a constitutive variable

denoted as porosity. The evolution of the porosity predicted by Gurson’s model

follows a direct consequence of the requirement for mass conservation of a rigid

plastic material assuming plastic incompressibility. The theory of Gurson has then

been very often adopted by many researchers in the prediction of ductile fracture.

However, his model was restrictive in the sense that it considered that only ex-

isting spherical micro-voids could growth. This means that no porosity evolution

would be predicted if the initial porosity were zero. Many authors have tried to

overcome this limitation by incorporating in the theory other constitutive mech-

anisms that would better describe observable phenomena such as the nucleation

and coalescence of voids. Perhaps, the most popular modification of Gurson’s the-

ory has been proposed by Tvergaard and Needleman [113] who modified the yield

function of Gurson to account for the coalescence effect and also introduced in the

evolution of porosity a term for micro-void nucleation.

It is interesting to observe that the phenomena described above (nucleation, growth

and coalescence of voids) are very closely linked to fracture at high stress triaxiali-

ties. Thus, its very conception implies that they might fail when subjected to other

stress triaxialities. In fact, recent research effort has precisely shown that neither

71
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Gurson’s nor Tvergaard-Needleman’s model could predict material degradation

under pure shear stress states, that is, when the triaxiality stress ratio is around

zero [53, 83, 121]. In particular, Feucht et al. [53] have carried out the simulation of

the so-called Iosipescu shear specimen where it has been shown that fracture could

not be correctly predicted by the Gurson model with the Tvergaard-Needleman

modification. In order to overcome this limitation, they have adopted a Johnson-

Cook-like ’a posteriori’ failure criterion. When the critical value of plastic strain

was reached through the application of the criterion, the corresponding element

was deleted from the finite element mesh, which rendered significantly improved

numerical predictions. However, the constitutive model itself has not been altered,

which means that failure was not predicted by a corrected evolution of porosity.

Nahshon and Hutchinson [83] and Xue [121] have instead sought to incorporate

into the constitutive law an additional damaging mechanism to account for the ma-

terial degradation under shear-dominated stress states. Both contributions have

proposed modifications based on experimental findings. As reported by many au-

thors [e.g. 10], under pure shear (i.e., when triaxiality is zero), the dominant frac-

ture mechanism is the so-called void-shearing, in which the micro-cavities present

in the matrix material tend to shear between themselves. In order to describe

such phenomenon, Nahshon and Hutchinson [83] proposed an additional term,

phenomenologically defined and dependent on the third invariant of the stress

tensor, to be introduced in the evolution of porosity. Conversely, Xue [121] de-

veloped the definition of the shear mechanism based on a theoretical analysis of

micro-voids. Both mechanisms share the property of being dependent on the third

stress invariant. Recently, Reis et al. [98] have carried out a comprehensive nu-

merical comparison of both mechanisms when subjected to pure shear, combined

tensile/shear and combined compression/shear stress states. They have found that

the shear mechanism proposed by Nahshon and Hutchinson presents an overall

better performance than Xue’s mechanism, although their results have suggested

that the material parameter of Nahshon-Hutchinson’s model needed to be changed

according to the stress state.

In spite of these significant advances on Gurson-based models, most of the pro-

posed constitutive theories have been conceived under the hypothesis of local con-

tinuum, that is, the material law is independent of the surrounding points. It is

widely recognised that this inevitably leads to spurious mesh dependence on the

finite element solution due to the loss of ellipticity of the equilibrium equations

under the softening regime. Nonetheless, some contributions have tried to tackle

this issue aiming to provide mesh-insensitive Gurson-based constitutive models.

For instance, Tvergaard and Needleman [114] have proposed a non-local model of
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integral-type by regularising the porosity variable. In their approach, they have

avoided the definition of an ’exact’ non-local formulation by only approximating

the non-local rate equation. This approach has also been adopted by Feucht [51]

who has also enriched Gurson’s model with a gradient-dependent theory. Reusch

et al. [99] have also employed a gradient-enhanced non-local formulation where a

new damage variable, which was related to the local porosity through a gradient

equation, has been incorporated in the yield function proposed by Tvergaard and

Needleman [113]. The model was later extended to finite strains [100]. Hakansson

et al. [59] provided a thermomechanical constitutive theory for porous materials

by including an additional equilibrium equation containing the gradient of the

porosity variable. In their formulation, the local mechanical, the thermal and the

non-local problem were solved in an uncoupled fashion. Enakousta et al. [45] have

considered a non-local porosity rate, defined through an averaging integral, which

was explicitly integrated. In their numerical strategy, the non-local porosity was

computed only after the material problem was solved for a fixed value of porosity.

More recently, Samal et al. [105] have enhanced Rousselier’s constitutive model by

adopting a similar approach to the one proposed by Reusch et al. [99], i.e., a new

damage variable has been incorporated through a gradient implicit formulation.

However, none of the aforementioned contributions has focused in developing a

Gurson-based non-local model within a ’full’ integral framework. As discussed

in Chapter 3, the integral-type non-local formulation has the advantage of be-

ing completely defined on the material level, avoiding the definition of additional

structural variables in the global system of equations. Besides, as demonstrated in

Chapter 3, many of the advantages of the constitutive modelling at finite strains

within the local framework can be straightforward extended to the non-local case.

Therefore, the goal of this chapter is to propose a non-local Gurson-based dam-

age model based on the integral approach. We adopt herein a shear mechanism,

similar to the one proposed by Nahshon and Hutchinson [83], to take into account

the degradation effects that take place whenever shear deformation is dominant.

A non-local theory associated with the constitutive model is proposed where the

damage variable is enhanced with non-locality. The numerical implementation of

the non-local model is presented in detail. The need for a global material integra-

tion scheme when the ’exact’ non-local formulation is adopted is highlighted. The

solution of the material problem through either a full and a modified Newton-

Raphson strategy is undertaken their efficiency is discussed. Furthermore, it is

shown that the non-local theory is able to attenuate the unlimited localisation

behaviour of the associated local theory.



Chapter 4. Non-local Formulation of a Gurson-like Damage Model 74

4.1 Non-local constitutive model

As discussed in Chapter 3, Section 3.2, the establishment of the non-local constitu-

tive model starts with the definition of the non-local quantity. Most Gurson-based

non-local models available in the literature have introduced non-locality through

some quantity related to the local porosity, f . This choice can be justified by

the fact that the porosity is the variable that triggers the softening regime in

Gurson-based constitutive models. Therefore, it sounds reasonable to regularise

this variable in order to avoid excessive and unlimited localisation1. Adopting a

non-local formulation of integral-type, we define

f̄(x) =

∫
V

β(x, ξ)f(ξ) dV (ξ), (4.1)

where f̄ is the non-local damage variable defined at spatial point x and f is its

associated local counter-part. We remark that f is herein regarded as a dam-

age variable instead of porosity due to its phenomenological definition, yet to be

presented in this chapter. In Equation (4.1), β(x, ξ) is the non-local averaging op-

erator, which has to respect the normalising condition of Equation (3.11). Unlike

the constitutive framework of Chapter 3, the use of a symmetric non-local averag-

ing operator is, in the present case, only advantageous from a numerical point of

view, for which less memory is required as pointed out in Chapter 3, Section 3.2.

One important assumption of the non-local theory adopted here is the indepen-

dence of the non-local operator on the deformation history. As discussed in Chap-

ter 3, this hypothesis leads us to draw the important conclusion that the rate of

the non-local operator vanishes, i.e., β̇(x, ξ) = 0. Hence, the following relation

holds:
˙̄f(x) =

∫
V

β(x, ξ)ḟ(ξ) dV (ξ). (4.2)

It is worth mentioning that the consideration of Equation (4.2) renders an ’exact’

or ’fully coupled’ non-local model. This kind of formulation has been generally

avoided by many authors in the field who have either employed gradient-enhanced

formulations [e.g. 59, 99, 105, amongst others] or adopted an approximation of the

rate of the non-local variable [e.g. 51, 114]. The latter strategy, as also pointed

out by its authors, has an increased dependency on the size of the time step used

in the calculations when compared to general fully implicit material integration

schemes (such as the typical return-mapping algorithm). Conversely, the present

1Similar to the case of the Lemaitre-based model of Chapter 3, where damage was adopted
as the non-local quantity, the choice of f as non-local variable will be more clearly justified in
Chapter 6.
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non-local formulation avoids the errors associated with the approximation of the

non-local rate2. Furthermore, in contrast to gradient-dependent non-local theories,

no additional degrees-of-freedom are necessary in the structural problem since non-

locality is herein strictly kept on the material level.

Before proceeding in the definition of the local evolution of the damage variable,

ḟ(ξ), we need to define some equations of the constitutive model first. This stems

from the fact that the evolution of local damage will be a function of plastic

straining. Firstly, we define the yield function to be given by

Fp(x) = J2(τ d(x))− 1

3

[
1 + q3f

∗2(x)− 2q1f
∗(x) cosh

(
q23τh(x)

2τy(x)

)]
τ 2
y (x), (4.3)

where f ∗ is the effective damage given by

f ∗(x) =


f̄(x) , f̄(x) < fc,

fc +

(
1

q1

− fc
) (

f̄(x)− fc
)

(ff − fc)
, f̄(x) ≥ fc.

(4.4)

In the equations above, J2(τ d(x)) denotes the second invariant of the deviatoric

stress tensor; q1, q2 and q3 are material parameters; fc is the critical damage (which

triggers the mechanism associated with coalescence of voids) and ff is the damage

at complete failure. The use of the effective damage f ∗ has been introduced by

Tvergaard and Needleman [113] in order to capture the effects of coalescence of

voids and is also adopted here. Note that the only difference between the yield

function proposed by Tvergaard and Needleman [113] and the one adopted here

is the presence of the non-local damage, f̄(x).

Plastic isotropy3 and associative plasticity are assumed and, therefore, plastic flow

is given by

Ḟ p(x)F p−1(x) = γ̇(x)ReT
[
∂Fp(x)

∂τ (x)

]
Re, (4.5)

where
∂Fp(x)

∂τ (x)
= τ d(x) +

1

3
q1q2f̄(x)τy(x) sinh

(
q23τh(x)

2τy(x)

)
I. (4.6)

2In Chapter 7, we will conversely adopt an approximation of the rate of the non-local variable
in the context of an explicit finite element formulation. In that case, the issue of the time step
dependency is considerably alleviated due to the small critical time steps inherently required by
the explicit formulation.

3The hypothesis of plastic isotropy leads to a zero plastic spin (i.e. W p = 0), which, asso-
ciated with the multiplicative hyperelastic plasticity framework presented in Chapter 3, allows
the plastic flow to be written in the form of Equation (4.5).
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The evolution equation of the isotropic hardening variable, R, is given by

Ṙ(x) =
γ̇(x)

1− f̄(x)

{
q1 q2 f̄(x) τh(x) sinh

(
q23τh(x)

2τy(x)

)
+

2

3

[
1 + q3f̄

2(x)− 2q1f̄(x) cosh

(
q23τh(x)

2τy(x)

)]
τy(x)

}
. (4.7)

Finally, we define the evolution of local damage to be given by

ḟ(ξ) = ḟN(ξ) + ḟG(ξ) + ḟS(ξ), (4.8)

where ḟN(ξ) and ḟG(ξ) represent the local evolution of damage respectively as-

sociated with the nucleation and growth of micro-voids. Following the works of

Gurson [57] and Tvergaard and Needleman [113], these mechanisms are defined as

ḟN(ξ) = A(ξ)ε̇peq(ξ), (4.9)

ḟG(ξ) = (1− f(ξ))ε̇pv(ξ), (4.10)

where

A(ξ) =
fN

sN
√

2π
exp

[
−1

2

(
εpeq(ξ)− εN

sN

)2
]
. (4.11)

The quantity ε̇peq(ξ) is the local evolution of the equivalent plastic strain, given by

ε̇peq(ξ) =

√
2

3
‖D̃p

(ξ)‖

= γ̇(ξ)

√√√√2

3

{
τ d(ξ) : τ d(ξ) +

1

3

[
q1q2f(ξ)τy(ξ) sinh

(
q23τh(ξ)

2τy(ξ)

)]2
}
,(4.12)

and ε̇pv(ξ) is the local evolution of the volumetric plastic strain:

ε̇pv(ξ) = D̃
p
(ξ) : I = γ̇(ξ)q1q2f(ξ)τy(ξ) sinh

(
q23τh(ξ)

2τy(ξ)

)
. (4.13)

The last term in the right-hand side of Equation (4.8), ḟS(ξ), incorporates, in

a phenomenological fashion, the effects of void shearing experimentally observed

when the material is subjected to low triaxialities, here assumed to be given by

ḟS(ξ) = kgξf(ξ)ε̇peq(ξ), (4.14)
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where

gξ = 1−
[

27

2

J3(τ d(ξ))

q3(ξ)

]2

, (4.15)

and k is a material parameter that has to be experimentally calibrated. Equation

(4.14) is in fact a slightly modified version of the shear mechanism proposed by

Nahshon and Hutchinson [83]:

ḟS(ξ) = kgξf(ξ)
τ d(ξ) : D̃

p
(ξ)

q(ξ)
. (4.16)

During this study, it has been observed that the modified version (Equation 4.14)

provides, in general, a more stable numerical algorithm and therefore it has been

adopted. In the equations above, q(ξ) denotes the equivalent von Mises stress,

defined in Equation (3.64).

In Equation (4.14), gξ can assume values within the range of 0 ≤ gξ ≤ 1. In the

case of axisymmetric stress states, gξ has a value near zero and therefore the shear

mechanism is inactive. Conversely, if the body is under pure shear, gξ equals to

the unity and then the damaging mechanism due to void shearing is fully active.

Any combined stress state, either tensile/shear or compression/shear, will render

an intermediate value that will only partially activate the shear mechanism. As

a matter of fact, experimental evidence has shown that, under combined stress

states, different fracture mechanisms will take place simultaneously or even com-

pete [10] and, therefore, Equation (4.14) remains physically sound.

It is also interesting to observe that Equation (4.14) is a linear function of the

damage variable itself. Thus, the shear mechanism can only contribute to overall

damage after some initial value of damage has already taken place. In fact, this

can be physically supported by the fact that the shearing effect only occurs to

existing voids, or, in other words, the void shearing phenomenon takes place only

after micro-voids have nucleated.

The constitutive model is complete with the loading/unloading (or Kuhn-Tucker)

conditions:

γ̇(x) ≥ 0; Fp(x) ≤ 0; γ̇(x)Fp(x) = 0 ∀ x ∈ V. (4.17)

The above equations are those associated with the material point located at x.

However, as discussed in Chapter 3 in detail, the Kuhn-Tucker conditions must

hold globally. Therefore, a suitable global material integration strategy will be

employed in the following.
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4.2 Numerical implementation

4.2.1 Discretisation of the averaging integral

Within a typical local finite element framework, the material problem is computed

at each Gauss point separately. Afterwards, the resulting stress is employed in the

element integration which is, in turn, carried out over the Gauss points. In the

local scheme, the spatial position of the integration point is not of importance since

only the strain increment and the values of the internal variables at the previous

iteration are needed for the solution of the material problem. However, in the case

of the non-local material model, the geometric location of the material point plays

a major role in the update of the stress state. In practice, this means that the

non-local averaging integral in Equation (4.2) needs to be spatially discretised due

to the non-local averaging operator. It is therefore very convenient to adopt the

Gaussian quadrature scheme to integrate the non-local equation. Hence, Equation

(4.2) becomes

˙̄fi =

npgi∑
j=1

wjJjβij ḟj, (4.18)

where βij ≡ β(x, ξ) is the averaging factor that relates the Gauss points i and

j respectively located at global coordinates x and ξ. f̄i and fj are the damage

variables associated to the Gauss points i and j, respectively. The quantity wj is

the Gaussian weight and Jj is the Jacobian, both evaluated at the Gauss point j.

Finally, npgi is the number of Gauss points that lie inside the non-local volume of

interaction measured from point i.

4.2.2 Integration of the material problem

In the previous subsection, the non-local averaging integral has been spatially

discretised. However, the material problem still needs to be integrated over a

pseudo-time increment from tn to tn+1. Employing the exponential map backward

scheme [3] for the time-discretisation of the plastic flow rule, defined in equation

(4.5), we have

F p
in+1

= exp

{
∆γiR

eT

in+1

[
τ di n+1

+
1

3
q1q2f̄in+1τyi n+1

sinh

(
q23τhi n+1

2τyi n+1

)
I

]
Re
in+1

}
F p
in
.

(4.19)
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The isotropy of the exponential tensor function ensures that the following holds:

F p
in+1

= ReT

in+1
exp

{
∆γi

[
τ di n+1

+
1

3
q1q2f̄in+1τyi n+1

sinh

(
q23τhi n+1

2τyi n+1

)
I

]}
Re
in+1
F p
in
.

(4.20)

At this point, it is convenient to define the elastic trial deformation gradient:

F e trial
in+1

= F i∆F
e
in , (4.21)

where F i∆ is the incremental deformation gradient given by

F i∆ = I +∇n [∆ui] , (4.22)

and ∆ui corresponds to the incremental displacement field of Gauss point i.

Making use of Equation (4.21), we can define the update of the elastic deformation

gradient as

F e
in+1

= F e trial
in+1

ReT

in+1
exp

{
∆γi

[
τ di n+1

+
1

3
q1q2f̄in+1τyi n+1

sinh

(
q23τhi n+1

2τyi n+1

)
I

]}
Re
in+1

. (4.23)

Finally, the use of the logarithmic elastic strain tensor allows us to rewrite the

equation above as

εein+1
= εe trialin+1

−∆γi

[
τ di n+1

+
1

3
q1q2f̄in+1τyi n+1

sinh

(
q23τhi n+1

2τyi n+1

)
I

]
, (4.24)

which clearly resembles a small strains format that makes easier its numerical

implementation.

Recalling that the strain tensor can be split into a deviatoric and a volumetric

contribution, Equation (4.24) can be rewritten in two independent equations, that

is,

εed in+1
= εe triald in+1

−∆γiτ di n+1
, (4.25)

εev in+1
= εe trialv in+1

−∆γiq1q2f̄in+1τyi n+1
sinh

(
q23τhi n+1

2τyi n+1

)
. (4.26)

Using the relation τh = Kεev, Equation (4.26) can be written in a residual form:

rτh i
= τhin+1

− τ e trialhin+1
+ ∆γiKq1q2f̄in+1τyi n+1

sinh

(
q23τhi n+1

2τyi n+1

)
. (4.27)
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Similarly, knowning that τ d = 2Gεed, we get the following relation after some

algebraic manipulations:

τ di n+1
=

1

1 + 2G∆γi
τ trialdi n+1

. (4.28)

The relation above prevents τ di n+1
to be an unknown of the constitutive problem

since it can be expressed by known quantities ( G and τ trialdi n+1
) and also by the

unknown ∆γi, which is present in all residual equations.

Attention is focused now on the time integration of the internal variables. In

contrast with the case of plastic flow, the conventional backward Euler scheme

will be adopted. Therefore, the discretised evolution of the isotropic hardening

variable and non-local damage are respectively given, in a residual form, by

rR i = Rin+1 −Rin −
∆γi

1− f̄in+1

{
q1q2f̄in+1τhi n+1

sinh

(
q23τhi n+1

2τyi n+1

)
+

2

3

[
1 + q3f̄

2
in+1
− 2q1f̄in+1 cosh

(
q23τhi n+1

2τyi n+1

)]
τyi n+1

}
, (4.29)

and

rf̄ i = f̄in+1 − f̄in −
npgi∑
j=1

wjJjβij∆fj, (4.30)

where

∆fj = ∆fNj + ∆fGj + ∆fSj . (4.31)

Clearly, Equation (4.30) has terms that belong to other Gauss points. Thus, the

solution of the material problem at Gauss point i depends on many points that

are whithin the interaction radius, dictated by the non-local characteristic length.

In the equation above, ∆fNj , ∆fGj and ∆fSj represent, respectively the discrete

version of the damage mechanisms associated with void nucleation, void growth

and void shearing. The first one is defined as

∆fNj = Ajn+1∆εpeqj , (4.32)

where

Ajn+1 =
fN

sN
√

2π
exp

[
−1

2

(
εpeqj n+1

− εN
sN

)2
]
, (4.33)
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and

∆εpeqj = ∆γjn+1

√√√√2

3

{
τ dj n+1

: τ dj n+1
+

1

3

[
q1q2fjn+1τyj n+1

sinh

(
q23τhj n+1

2τyj n+1

)]2

.

(4.34)

The term ∆fGj is associated with the growth mechanism and is given by

∆fGj = (1− fjn+1)∆εpvj , (4.35)

where

∆εpvj = ∆γjq1q2fjn+1τyj n+1
sinh

(
q23τhi n+1

2τyj n+1

)
. (4.36)

Finally, the (discretised) evolution of the mechanism associated with void shearing

reads

∆fSj = kgjn+1fjn+1∆εpeqj , (4.37)

where

gjn+1 = 1−

[
27

2

J3(τ dj n+1
)

q3
jn+1

]2

. (4.38)

It is worth to recall that, in the equations above, τ dj n+1
is replaced by the relation

of Equation (4.28) in the numerical implementation.

The yield function, given in its non-discretised form in Equation (4.3), constrains

the constitutive problem in such manner that it determines whether the material

response is elastic or plastic. For the ith integration point, the residual equation

associated with the yield function is given by

r∆γi = J2(τ di n+1
)− 1

3

[
1 + q3f

∗2
in+1
− 2q1f

∗
in+1

cosh

(
q23τhi n+1

2τyi n+1

)]
τ 2
yi n+1

. (4.39)

The four residual equations defined above are associated with a given ith inte-

gration point. In the local case, the solution of a system of equations containing

these residual equations would suffice to provide the constitutive behaviour. How-

ever, in the non-local case, the solution of the system of equations associated with

the ith integration point is in fact coupled with the solution of other system of

equations which are, in turn, associated with neighbour integration points. This

is completely analogous to the Lemaitre-based constitutive model of Chapter 3

whose solution of the associated non-local constitutive model had to be pursued

in a global fashion. In sharp contrast to the Lemaitre-based material model of

Chapter 3, the system of equations cannot be reduced to a single non-linear equa-

tion per Gauss point. Therefore, we will adopt henceforth the following notation
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1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

r1

r2

r3

rnpg

rτh 1
= 0

rR1 = 0
rf̄1

= 0
r∆γ1 = 0

rτh 2
= 0

rR2 = 0
rf̄2

= 0
r∆γ2 = 0

rτh 3
= 0

rR3 = 0
rf̄3

= 0
r∆γ3 = 0

rτhngp
= 0

rRngp = 0
rf̄ngp

= 0
r∆γngp = 0

Figure 4.1: Schematic representation of the global non-local system.

to denote the system of equations associated with the ith integration point:

ri =



rτh i
= 0

rR i = 0

rf̄ i = 0

r∆γi = 0

(4.40)

We recall that, in the non-local enhancement, the elastic counter-part of the con-

stitutive model remains local. Therefore, the system above needs to be solved for

τhi n+1
, Rin+1 , f̄in+1 and ∆γi only for plastic points and for all the Gauss points of

the body simultaneously. A schematic representation of the global system of equa-

tions is given in Figure 4.1 where an excerpt of a finite element mesh containing

quadrilateral elements with 4 integration points has been used for illustration pur-

poses. For the sake of clarity, we will also adopt henceforth the following notation
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to denote the group of unknowns associated with the ith Gauss point:

xin+1 =



τhi n+1

Rin+1

f̄in+1

∆γi


. (4.41)

The non-local constitutive model has to be solved in a global fashion since every

system of equation is in fact coupled with the ones associated with other integra-

tion points within its vicinity. Adopting the Newton-Raphson method, we have

xn+1 = xn −
[
∂r

∂x

∣∣∣∣
xn

]−1

r(xn), (4.42)

which can be conveniently re-arranged to be given by[
∂r

∂x

∣∣∣∣
xn

]
δx = −r(xn), (4.43)

where

δx = xn+1 − xn. (4.44)

If the full Newton-Raphson method is used, the matrix ∂r
∂x

is given by

∂r

∂x
=



∂r1
∂x1

∂r1
∂x2

· · · ∂r1
∂xngp

∂r2
∂x1

∂r2
∂x2

· · · ∂r2
∂xngp

...
...

. . .
...

∂rngp

∂x1

∂rngp

∂x2
· · · ∂rngp

∂xngp


. (4.45)

As a matter of fact, the use of the full Newton method, necessary for quadratic

convergence rates, requires the solution of a linear system with ngp equations.

Nevertheless, an approximation can be adopted by disregarding the off-diagonal
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terms, which leads to the following point-wise update:

∂r

∂x
=



∂r1
∂x1

0 · · · 0

0 ∂r2
∂x2

· · · 0

...
...

. . .
...

0 0 · · · ∂rngp

∂xngp


. (4.46)

Recall that such approximation has been adopted for the Lemaitre-based model

in Chapter 3 where, for that particular case, the state update procedure exhib-

ited remarkably high convergence rates. Such convergence rates have persisted

regardless of the stress state, which has greatly minimised the need of using the

full Newton-Raphson method. However, Gurson-based models may be more non-

linear that Lemaitre-based ones. Therefore, in the present case, both approaches,

full and modified Newton-Raphson, will be compared in the next section.

4.2.3 Consistent tangent stiffness

In order to achieve the quadratic rates of convergence inherent to the Newton-

Raphson solution method, a consistent linearisation of the constitutive integra-

tion procedure is necessary. As pointed out in Chapter 3, the use of consistent

tangent operators within a non-local framework of integral-type is often said to

be impracticable. However, as it will be shown in detail in Chapter 5, it is in-

deed possible to establish efficient tangent operators that are consistent with the

non-local scheme. In the present case, numerical derivatives have been used to

determine the terms ∂σi/∂εj in Equation (5.25). Note that, as it will be more

clearly addressed in Chapter 5, the numerical derivation of the associated local

derivative ∂σi/∂εi does not guarantee quadratic convergences, which can only be

achieved if the non-local cross terms are consistently considered when assembling

the global tangent operator, even with the use of numerical derivatives.
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4.3 Numerical results

4.3.1 Axisymmetric specimen

In this first example, we simulate the notched cylindrical specimen of Chapter 3,

Section 3.6.2, with the difference that in the present case we adopt the Gurson-

based non-local model addressed in this chapter. The geometry and mesh re-

finement adopted are depicted in Figure 4.2. Once again, quadratic quadrilateral

elements have been used where reduced integration has been employed to avoid

spurious element locking. The material properties of this example, which are dif-

ferent from the ones employed in Section 3.6.2, are summarised in Table 4.1. It

is worth mentioning that the effects of the shear mechanism do not take place in

the axisymmetric specimen. This stems from the fact that the normalised third

invariant remains constant and with the value of ξ = 1.0 during deformation.

Therefore, the underlying local constitutive model reduces to the one proposed by

Tvergaard and Needleman [113].

(a) (b) (c) (d)

40 mm

φ 18 mm

R4 mm

Figure 4.2: Geometry and discretisation of the axisymmetric specimen.

In Figure 4.3, we have the damage contours for the local case, that is, when the

non-local intrinsic length is set to `r = 0.0 mm. As expected, damage tends

to unreallistically concentrate into a single element as it can be concluded after

carefully inspecting Figure 4.3. This spurious mesh dependency is eliminated when

the non-local theory is used instead. Observing Figure 4.4, it is quite clear that

damage tends to converge to a given value upon mesh refinement. This is only

possible because the non-local formulation has been consistently formulated and,

therefore, its dissipative effects have taken place, preventing damage to unlimitedly

localise into a single element.
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Table 4.1: Material properties.

Property Value

Elastic modulus E = 71.15 GPa

Poisson’s ratio ν = 0.3

Hardening function τy(R) = 350 + 300R0.2 MPa

Micro-void volumetric fraction for
nucleation

fN = 0.04

Mean strain for void nucleation εN = 0.1

Deviatoric strain for nucleation sN = 0.05

Critical damage fc = 0.04

Damage at fracture ff = 0.18

Shear-damage factor k = 1.0

Non-local intrinsic length `r = 0.6 mm

(a) (b)

(c)

Figure 4.3: Damage contours at the critical region: local case.

We also observe the convergence of the material integration algorithm, given in

Table 4.2. When the modified Newton-Raphson method is adopted, the residual
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(a) (b)

(c)

Figure 4.4: Damage contours at the critical region: non-local case.

norm decreases relatively fast in the first 4 iterations. However, when approach-

ing the solution, the convergence rate tends to be linear, demanding extra itera-

tions until the convergence criterion is reached. In the first 4 iterations, the full

Newton-Raphson strategy delivers similar convergence rates; however, when near

the solution, the residual norm rapidly decreases to zero in a clearly quadratic con-

vergence rate. Although the full Newton-Raphson method provides by far much

better convergence rates, it is much more costly than the simple iterative up-

date required by the modified N-R scheme. The additional computational burden

stems from the fact that a global system of equations has to be solved. In fact,

the computational cost increases exponentially with the number of elements of the

finite element mesh. A mixed approach seems therefore appropriate, in which in

the first iterations the modified scheme would be used and then, only when the

residual norm had reached relatively low values (e.g. around 1.00 × 10−03), the

full Newton-Raphson method would be then adopted to obtain the final solution.

However, such strategy has not been considered in the present investigation and

is left here as a suggestion of future work.
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Table 4.2: Typical convergence of the material algorithm: Residual norm.

Iteration Full N-R Modified N-R

1 7.61× 10+01 7.62× 10+01

2 5.93× 10+00 6.07× 10+00

3 1.83× 10−01 1.94× 10−01

4 5.77× 10−03 5.92× 10−03

5 3.15× 10−09 4.03× 10−04

...
...

10 2.42× 10−09

4.3.2 3D shear specimen

The second example of this chapter is the analysis of a three-dimensional specimen

subjected to pure shear at the critical region. This specimen has been the subject

of investigation by Brünig et al. [23] and is adopted here to assess the Gurson-based

non-local model proposed in this chapter. In Figure 4.5, the geometry of the shear

specimen is given with its associated dimensions. In order to capture the effects

of spurious mesh dependency, three mesh refinements have been considered in the

spatial discretisation of the specimen (see Figure 4.6), where quadratic hexahedra

with reduced integration have been adopted. The material properties are the same

of the last example (see Table 4.1).

200 mm
3.3 mm

R4 mm

2.5 mm

Figure 4.5: Geometry of the shear specimen.
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Figure 4.6: Shear specimen: different mesh refinements at the critical region.

The contours of damage for the local case are given in Figure 4.7. Once again,

damage has the tendency of concentrating into a single element as the finite ele-

ment mesh is refined. This effect is a direct consequence of the loss of ellipticity of

the equilibrium equation when a material softening regime is present as it is in the

present case. This pathological dependency on spatial discretisation can be signif-

icantly alleviated with the application of the non-local formulation. In Figure 4.8,

the contours of damage now present a certain convergence as the mesh is refined.

In other words, the spurious effects of pathological mesh dependency have been

completely eliminated when the non-local model, presented in this chapter, was

activated. In particular, damage tends to spread over a finite area at the critical

region of the specimen, contrary to what has been observed in the local case (see

Figure 4.7).

Remark 4.1. It is worth mentioning that, although clearly present, pathological

mesh dependency is, in the present example, not as intense as in other simulations

presented in this thesis. This behaviour probably stems from the fact that the use

of the present shear mechanism delivers a more realistic description of damaging

when subjected to shear stress states, for which experimental evidence has shown

that localisation plays, to some extent, a less important role when compared to

tension stress states. In Chapter 6, where a comprehensive comparison of non-

local models will be undertaken, it is shown that Lemaitre-based models present

much more mesh sensitivity under shear than Gurson-based models enhanced with

the present shear mechanism, which seems to support the aforementioned idea.

However, it seems that in the specialised literature very little has been addressed

on this topic, for which further research is necessary.

Once again, the convergence of the material integration algorithm is subject of

investigation. In Table 4.3, the norm of the residual vector, r, is listed over the

iterations. As it can be clearly concluded after a close inspection of Table 4.3, the

full Newton-Raphson method was able to provide quadratic rates of convergence,

since the residual norm has very quickly decreased towards zero when close to the
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(a) (b)

(c)

Figure 4.7: Damage contours at the critical region: local case.

(a) (b)

(c)

Figure 4.8: Damage contours at the critical region: non-local case.
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solution. Conversely, the modified Newton-Raphson strategy has delivered linear

rates of convergence for the same problem. Again, similar to the previous example,

the full Newton-Raphson can be computationally more expensive, despite its high

convergence rates. This stems from the fact the full scheme requires the solution

of a global system of equations meanwhile the modified strategy only updates the

constitutive variables on a local level. Therefore, it seems reasonable to adopt a

hybrid scheme where the full Newton-Raphson method is only used after a certain

residual norm has been reached with the modified scheme.

Table 4.3: Typical convergence of the material algorithm: Residual norm.

Iteration Full N-R Modified N-R

1 3.87× 10+03 3.87× 10+03

2 2.76× 10+00 1.01× 10+03

3 4.12× 10−02 3.31× 10+02

4 3.89× 10−05 6.28× 10+01

5 1.78× 10−09 3.69× 10+00

...
...

12 7.32× 10−09

4.4 Conclusions

In this chapter, a non-local Gurson-based model has been proposed. The main

concern was the inclusion of a shear mechanism that accounts for damage evo-

lution under shear-dominated stress states since most Gurson-based constitutive

models cannot predict failure in shear. The shear mechanism was based on the

proposal of Nahshon and Hutchinson [83], where the mechanism has been slightly

changed for better overall numerical performance. A new damage variable has

been then defined in the Gurson constitutive theory where the effects of nucleation

and coalescence of voids have been based on the damage mechanisms proposed by

Tvergaard and Needleman [113].

The damage variable has been chosen to account for non-local effects aiming to

avoid any spurious results that may arise from pathological mesh dependency.

The non-local framework inevitably leads to a global system of equations whose

solution needs to be pursued in a global fashion. Unlike the non-local model of

Chapter 3, the present non-local constitutive model has one system of equations,

associated with every Gauss point of the finite element mesh, that cannot be
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reduced to a single equation. Furthermore, numerical investigation has shown

that the modified Newton-Raphson scheme, like the one adopted in Chapter 3,

may not deliver remarkably high convergence rates for the present Gurson-based

non-local model.

The proposed non-local material model has been assessed by simulating two dif-

ferent specimens. Firstly, an axisymmetric bar has been simulated for which the

effects of shear damaging do not take place. The results have clearly shown that

the spurious mesh dependency inherent to the local case could be effectively elim-

inated when the non-local theory was considered. Numerical investigation has

shown that the full Newton-Raphson method has a better performance in terms

of convergence rates than the modified scheme. However, the full Newton-Raphson

demands the solution of a global system of equations, requiring more computa-

tional effort, meanwhile the modified scheme is very fast since it can update the

solution very quickly.

A shear specimen has been also subject of investigation. The numerical results

have shown that the local solution tends to give pathologically mesh dependent

results upon mesh refinement. Again, the non-local formulation has been able

to avoid such spurious solutions where damage has remained practically constant

and distributed over a finite area, regardless of the spatial discretisation. Further-

more, the full Newton-Raphson solution method has presented higher convergence

rates than the modified scheme; nevertheless, the computational burden of the

full scheme may be impracticable in many circumstances. The modified scheme,

on the other hand, requires less memory storage and its update is performed very

rapidly.

Based on these results, it seems that the use of a mixed algorithmic strategy, in

which the full Newton-Raphson Method is only employed when relatively near

the solution, may yield an optimal numerical performance and it is left here as a

suggestion for future studies and developments on this topic.



Chapter 5

Consistent Linearisation of

Elasto-plastic Non-local Models

In the preceding chapters, elasto-plastic-based non-local ductile damage models of

integral-type have been established through suitable formulations aiming to cir-

cumvent the inconvenient pathological mesh dependency of strain-softening me-

dia. Despite the allegations of some authors, the integral formulation has already

proven itself an efficient methodology in computational terms [3, 19, 27, 69, 85,

110]. However, many non-local theories of integral-type lack a consistent tangent

operator. A consistent linearisation of the structural problem is highly desired

since it guarantees quadratic rates of convergence if the full Newton-Raphson

method is employed as it most commonly is in the solution of finite element

problems. In other to tackle the problem of consistent linearisation in non-local

formulations of integral-type, some approximations have been suggested in the

literature. For instance, De Vree et al. [41] and Nguyen and Einav [86] have used

the associated local material tangent operator. This option has been also adopted

later by Andrade et al. [3] who reported reasonable convergence rates for a con-

siderable number of problems. However, the need for a more robust and efficient

convergence is demanded under certain circumstances, especially when damage

has achieved high values (in coupled elasto-plastic damage models), the strain-

softening regime is active in most elements of the mesh or when `r is large enough

to span a considerable number of elements.

It is important to mention that two main classes of integral non-local models exist.

The first one is characterised by the use of non-local variables that are explicitly

defined. This is the case of many damage models intended for the description

of quasi-brittle materials (e.g. [16, 56, 67]). Generally speaking, the constitutive

93
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behaviour in these models is, in a first step, computed locally. Afterwards, the

non-local quantity is explicitly evaluated using a prescribed expression and then

the stresses are corrected considering the non-local effect. For these cases, the

consistent linearisation has already been provided by Jirásek and Patzák [69].

This chapter, on the other hand, is devoted to the second class of integral non-

local models in which the non-local variable is an implicit function of the other

constitutive variables. This was the case of the non-local models presented in

Chapters 3 and 4, for which regularisation can be only successfully achieved by

converting the rate of a given local variable into non-local. This inevitably leads

to a constitutive problem that needs to be solved in a global fashion (as discussed

in Chapter 3) for which the linearisation strategy presented by Jirásek and Patzák

[69] unfortunately cannot be directly used. In the case of implicitly defined non-

local models, the constitutive relation, which in the local case is represented by a

point-wise relation between stress and strain, turns out to be global as well.

The key idea of the present chapter is to deal with the above mentioned shortcom-

ing by deriving the exact consistent algorithmic tangent operator for the general

elasto-plastic case. It is shown that, in the general case, a global compliance ma-

trix needs to be inverted, yielding on a global constitutive relation. Despite the

computational burden that such inversion may lead to, a J2 based non-local model

is herein presented for which an elegant closed-form expression for the consistent

tangent modulus is established. The closed-form operator avoids the global in-

version and therefore a computationally efficient implementation is achieved. The

methodology is also employed in the context of the Lemaitre-based non-local model

of Chapter 3, for which a closed-form consistent tangent is also herein presented.

This chapter is organised in the following fashion. In Section 5.1, we define a

general elasto-plastic non-local model within small strains which will serve as the

base for further developments. The absence of a continuum tangent modulus in

the non-local case is also highlighted in that section. In Section 5.2, the derivation

of the algorithmic consistent tangent operator for a general elasto-plastic non-local

model is presented in detail. It is shown that, in the general case, a compliance

matrix needs to be inverted. Section 5.3 addresses the application of the developed

methodology to the case of a J2 non-local plasticity model for which a closed-form

tangent operator is presented. The developed methodology is also employed in con-

junction with the Lemaitre-based non-local model of Chapter 3 whose associated

consistent tangent operator is presented in Section 5.4. The chapter is finalised

with some numerical examples in Section 5.5 and general conclusive remarks in

Section 5.6.
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5.1 Non-local modelling in elasto-plasticity

5.1.1 General elasto-plastic non-local model

In order to keep the concepts presented herein as general as possible, we shall

adopt a general elasto-plastic model enhanced with non-locality. We shall initially

restrict ourselves to the small strain domain for the sake of simplicity1. A linear

elastic constitutive relation of the kind

σ(x) = De : εe(x) (5.1)

is assumed to exist, where σ(x) is the stress tensor located at coordinate x, De is

the standard elasticity modulus and εe(x) is the elastic strain tensor. Following

Equation (2.21), The stress tensor can be split into two contributions, i.e.,

σ(x) = s(x) + p(x)I, (5.2)

where s(x) is the deviatoric stress tensor, p(x) = 1
3
tr [σ(x)] is the hydrostatic

stress and I is the second-order identity tensor.

The additive decomposition of the strain is considered, i.e.,

ε(x) = εe(x) + εp(x), (5.3)

where ε(x) and εp(x) are the total and plastic strain tensors, respectively. At this

point, we define two potentials, Fp and Fd, where the former is associated with

plastic yielding and the latter with dissipative internal variables. Both potentials

may be, in the general case, functions of the stress tensor, σ(x), and of the set of

non-local dissipative internal variables, ᾱ, that is,

Fp(x) = Fp (σ(x), ᾱ(x)) , (5.4)

Fd(x) = Fd (σ(x), ᾱ(x)) . (5.5)

Assuming the normality rule [76], the plastic flow and the evolution of the non-

local internal variables are respectively expressed as

ε̇p(x) = γ̇(x)N (x), (5.6)

˙̄α(x) =

∫
V

β(x, ξ)γ̇(ξ)H(ξ) dV (ξ), (5.7)

1The extension to the finite strain domain will be addressed in Section 5.2.3.
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where N (x) is the flow vector (at the material point located at x) defined as

N (x) =
∂Fp(x)

∂σ(x)
, (5.8)

and H(ξ) is the generalised hardening modulus at point ξ, expressed by

H(ξ) =
∂Fd(ξ)

∂A(ξ)
. (5.9)

In the equation above, A corresponds to the set of conjugate thermodynamical

forces associated with ᾱ. The Kuhn-Tucker (or loading/unloading) conditions for

the non-local constitutive model read

γ̇(x) ≥ 0; Fp(x) ≤ 0; γ̇(x)Fp(x) = 0 ∀ x ∈ V. (5.10)

Note that, due to the implicit non-local character of the internal variables, the

above Kuhn-Tucker conditions must hold for all material points simultaneously as

discussed in more detail in [27].

Remark 5.1. The normality rule, under which the plastic flow and the internal

variables are coupled through a single plastic multiplier, has been here adopted

merely for mathematical and numerical convenience. As a matter of fact, all the

concepts presented in this chapter can be straightforwardly extended to the general

case with several multipliers (e.g., one multiplier for plasticity and another one

associated with damage evolution).

5.1.2 The absence of a point-wise continuum tangent op-

erator

A point-wise stress-strain relation within the non-local continuum framework sim-

ply does not exist by definition. Since the Kuhn-Tucker conditions need to hold

globally, the non-local constitutive model itself has also a global character, pre-

venting a point-wise continuum material law to be defined.

The absence of a point-wise non-local continuum tangent operator can be easily

verified and will be critically demonstrated in the following. To start with, we

evaluate the rate of the stress tensor at a generic material point located in x,

given by

σ̇(x) = De : ε̇e(x). (5.11)
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Due to the additive decomposition of the strain tensor, we know that

ε̇e(x) = ε̇(x)− ε̇p(x) = ε̇(x)− γ̇(x)N (x). (5.12)

Therefore, Equation (5.11) becomes

σ̇(x) = De : (ε̇(x)− γ̇(x)N (x)) . (5.13)

The rate of the yield function is given by

Ḟp(x) =
∂Fp(x)

∂σ(x)
: σ̇(x) +

∂Fp(x)

∂ᾱ(x)
∗ ˙̄α(x) = 0, (5.14)

where ∗ denotes a suitable operation depending on the mathematical nature of

the internal variables.

Substituting the expressions for the rate of the stress tensor and non-local internal

variables in Equation (5.14), we have

Ḟp(x) =
∂Fp
∂σ

: De : [ε̇(x)− γ̇(x)N (x)]

+
∂Fp
∂ᾱ
∗
∫
V

β(x, ξ)γ̇(ξ)H(ξ) dV (ξ) = 0. (5.15)

After some straightforward rearrangement, we get the following expression:

γ̇(x) =

∂Fp(x)

∂σ(x)
: De : ε̇(x) + ∂Fp(x)

∂ᾱ(x)
∗
∫
V
β(x, ξ)γ̇(ξ)H(ξ) dV (ξ)

∂Fp(x)

∂σ(x)
: De : N (x)

. (5.16)

In the standard local case, an explicit function for γ̇(x) is generally sought so it

can be substituted into the stress rate expression (like in Equation 5.13) and, after

some algebraic manipulations, a term that relates stress and strain in a point-

wise fashion can be established. However, close inspection on Equation (5.16)

reveals that, in the non-local case, it is impossible to fully isolate γ̇(x) due to the

integral averaging on the right-hand side of the equation. Thus, this fact clearly

demonstrates that it is not possible to determine a point-wise continuum tangent

modulus analogous to the local case.
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5.2 The non-local consistent algorithmic tangent

operator

As in the continuum case, a point-wise tangent modulus, associated with the incre-

mental (discretised) version of the non-local material problem, cannot be obtained.

However, the spatial discretisation of the associated finite element problem and the

numerical integration of the internal force over the element volume (usually done

by means of Gaussian quadratures) allow us to assemble a finite global constitutive

relation.

To start with, we recall that within a standard finite element framework the equi-

librium is sought through the resolution of the following residual equation

r(u) = f int(u)− f ext, (5.17)

where u are the displacements, f ext is the external force vector and f int is the

internal force array, given by

f int =

∫
V

BTσ dV . (5.18)

In the equation above, B is the global matrix that contains the derivatives of the

element shape functions as in typical finite element analysis.

Applying the standard Gaussian quadrature, we have

f int =

nip∑
i=1

wiJiB
T
i σin+1 , (5.19)

where nip is the total number of material integration points of the finite element

mesh. In a given integration point i, the computed algorithmic stress tensor is a

function of the kind

σin+1 = σi
(
ε1, ε2, · · · , εnip

)
. (5.20)

One should bear in mind that, in sharp contrast to the local case, the computed

algorithmic stress tensor is a function of all other strain tensors of the finite element

mesh. This statement is very important for the correct definition of the consistent

non-local tangent operator. The conclusion that the stress tensor at a given Gauss

point depends on the strain tensors of all other integration points of the finite

element mesh can be draw quite easily through the standard linearisation of the

non-local stress integration procedure as shown in more detail in Appendix B.
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Remark 5.2. As thoroughly discussed elsewhere (e.g. [40, 106]), consistent al-

gorithmic tangent operators are highly dependent of the specific numerical algo-

rithm employed in the stress integration procedure. In this chapter, we will con-

sider that the stress state has been updated through a global version of the elastic-

predictor/return-mapping algorithm like those presented in Chapters 3 and 4.

The consistent non-local algorithmic tangent operator, Knl
T , is obtained from the

derivative of the internal force with respect to the displacements, that is,

Knl
T =

∂f int

∂u
=

∂

∂u

[
nip∑
i=1

wiJiB
T
i σin+1

]

=

nip∑
i=1

wiJiB
T
i

∂σin+1

∂u
. (5.21)

For the sake of clarity, we shall omit the subscript n+1 in the following derivations

of this section. At this point, it is important to recall that the algorithmic stress,

σi, is a function of all the other strains of the mesh. With this in mind, we apply

the chain rule to obtain

∂σi
∂u

=
∂σi
∂ε1

∂ε1

∂u
+
∂σi
∂ε2

∂ε2

∂u
+ · · ·+ ∂σi

∂εnip

∂εnip

∂u
, (5.22)

which can be written in a more compact form:

∂σi
∂u

=

nip∑
j=1

∂σi
∂εj

∂εj
∂u

. (5.23)

We know that, for a given integration point j,

Bj =
∂εj
∂u

. (5.24)

Thus, the consistent non-local tangent operator is expressed as

Knl
T =

nip∑
i=1

wiJiB
T
i

nip∑
j=1

∂σi
∂εj

Bj. (5.25)

The derivative ∂σi/∂εj is a fourth-order tensor that corresponds to the contribu-

tion of point j to point i in the constitutive relation. Note that in the local case

only the contribution of point i to point i exists. In order to determine the afore-

mentioned derivative, we first make use of the total differentiation of σi, which is
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expressed as

dσi =
∂σi
∂ε1

: dε1 +
∂σi
∂ε2

: dε2 + · · ·+ ∂σi
∂εnip

: dεnip
, (5.26)

or, more shortly,

dσi =

nip∑
j=1

∂σi
∂εj

: dεj. (5.27)

In the general case, the derivative ∂σi/∂εj can be, in fact, obtained from a global

algorithmic constitutive relation expressed by the following matrix:

dσ1

dσ2

...

dσnip


=



D11 D12 · · · D1nip

D21 D22 · · · D2nip

...
...

. . .
...

Dnip1 Dnip2 · · · Dnipnip





dεe1

dεe2

...

dεenip


. (5.28)

The matrix above is obtained through the linearisation of the global non-local

system of equations as shown in more detail in Appendix B. Again, the existence

of such global constitutive relation appears quite naturally when linearising the

non-local constitutive problem and is the cornerstone for the correct definition

of the consistent algorithmic tangent operator when the non-local variable is an

implicit function of other constitutive variables. As previously mentioned in this

section, the computed stress tensor in a given integration point is a function of

all other strain tensors of the mesh and the establishment of Equation (5.28)

mathematically supports this statement.

Straightforward comparison of Equation (5.27) and Equation (5.28) leads us to

the following relation:

Dij =
∂σi
∂εj

, (5.29)

that is, once the global constitutive relation has been found, the derivatives ∂σi/∂εj,

necessary for the tangent stiffness assembly, can be directly extracted from the ma-

trix in (5.28).

We remark that, in the local case, the fourth-order tensor Dij vanishes if j 6=
i, yielding on a diagonal matrix in Equation (5.28). In practice, the matrix of
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Equation (5.28) is not assembled in the local case. As a matter of fact, the local

model can be seen as a particular case of the non-local model.

It is also important to mention that the format of Equation (5.25) remains exactly

the same for any non-local elasto-plastic constitutive model within small strains.

The only difference will be the expression for Dij which, in turn, is exclusively

dependent of the constitutive model adopted.

5.2.1 Derivation of Dij

In local elasto-plastic models, the establishment of analytical expressions for the

consistent tangent modulus is extremely dependent of the constitutive model itself.

Closed-form expressions are highly desired since they often deliver very efficient

numerical implementations. The same is valid for non-local elasto-plastic mod-

els where a closed-form expression for Equation (5.29) may also be obtained by

employing standard differential calculus.

To demonstrate the use of analytical consistent tangent operators in the context

of non-local models of integral-type, we shall, in Section 5.3, enhance the classical

J2 plasticity model by non-locality where it will be shown that straightforward

operations lead to an elegant closed-form expression for the non-local tangent

operator. Moreover, an analytical expression for the tangent operator associated

with the ductile damage model presented in Chapter 3 will be given in Section

5.4. In fact, it seems that, if it is possible to derive a closed-form tangent modulus

associated with a given local constitutive model, it is also possible to establish

analytical expressions for the terms Dij in the non-local case. However, such a

rule cannot be proved.

As an alternative, Dij can be obtained through standard numerical differentiation

in the case of complex constitutive models. Although the procedure is a direct

extension of the one commonly employed in the local case, one should bear in

mind that, in the non-local case, the stress tensor in a given integration point is in

fact a function of the strain tensors associated with all the other integration points

of the finite element mesh. This substantially affects the way how the numerical

differentiation is performed since all the surrounding strain tensors need to be

numerically perturbed in order to obtain Dij. Thus, the direct use of numerical

differentiation exactly like in the local case, i.e. only computing the ∂σi/∂εi, does

not render a consistent linearisation of the non-local problem. Hence, no quadratic

rates of convergence are achieved. In other words, even with the use of numerical

derivatives, the non-local tangent operator needs to be assembled accordingly and
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only then are the non-local interactions across the elements consistently taken into

account. This fact clearly motivates the analytical derivation of consistent tangent

operators for non-local models.

5.2.2 Assembly of the non-local tangent operator

Due to the double sum in Equation (5.25), the non-local tangent operator in-

evitably needs longer assembly times than the local counterpart. It is important

to mention that the sum in j needs not be carried out over all Gauss points of

the finite element mesh but rather only over those Gauss points that influence the

integration point i. Thus, the computational time needed for the assembly of the

tangent operator depends on the quantity of neighbourhood points of non-local

influence. As a matter of fact, this quantity is directly linked to the size of the

non-local intrinsic length, `r. Thus, the bigger the intrinsic length, the longer the

assembly of the non-local tangent operator. In practice, the additional assem-

bly time required by the non-local tangent is greatly compensated by quadratic

convergence rates and mesh-independent solutions.

The assembly of the consistent non-local tangent stiffness can be conveniently

carried out from smaller matrices in full analogy to the local case. This has also

been stress out by Jirásek and Patzák [69] in their derivation of the non-local

consistent tangent. The only difference to the local case lies on the mapping from

each contribution to the global stiffness.

Remark 5.3. In sharp contrast to the tangent operator presented by Jirásek and

Patzák [69], the double sum in Equation (5.25) cannot be avoided in the general

elasto-plastic case due to the terms Dij = ∂σi/∂εj.

5.2.3 Extension to finite strains

In order to establish the consistent non-local tangent operator at finite strains,

we shall consider herein the hyperelastic-based multiplicative framework adopted

in Chapter 3. Straightforward extension of the linearisation of the virtual work

(Appendix A), applied in conjunction with the concepts presented in this chapter

under the assumption of small strains, leads to the following expression for the non-

local consistent tangent operator in the finite strain domain for spatial descriptions:

Knl
T =

nip∑
i=1

wiJiG
T
i

nip∑
j=1

aijGj, (5.30)
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where G is the discrete gradient operator and aij is the spatial tangent modulus

relating the integration points i and j.

For the case where j = i, the consistent spatial modulus is given by

aii =
1

2Ji
Dii : Li : Bi −Σi, (5.31)

where the fourth order tensor Σ is given by

Σijkl
i = σili δ

jk. (5.32)

In the equation above, the superscripts i, j, k and l denote tensor components

for which the Einstein’s sum convention has been adopted. The subscript i corre-

sponds to the ith integration point of the finite element mesh, following the usual

notation of this thesis.

If j 6= i, the consistent spatial tangent modulus is written

aij =
1

2Ji
Dij : Lj : Bj. (5.33)

The fourth order tensors Li and Bi are respectively defined as:

Li =
∂ ln

[
Be trial
i n+1

]
∂Be trial

i n+1

, (5.34)

Bijkli = δik
(
Be trial
i n+1

)jl
+ δjk

(
Be trial
i n+1

)il
. (5.35)

Remark 5.4. As alluded in Chapter 3, Section 3.2.3, both the intrinsic length

and the non-local averaging operator are assumed to be completely independent of

the history of the deformation. This hypothesis has been taken into account for

the establishment of Equations (5.30), (5.31) and (5.33). If the intrinsic length or

the non-local averaging operator were assumed to be dependent of the deformation,

the establishment of the consistent tangent operator would be considerably more

complicated, demanding intricate algebraic operations.

Remark 5.5. It should be noted that Dij is the only term associated with the

material model. Therefore, the consistent operator obtained under the hypothesis of

small strains can be straightforwardly used at finite strains, for which the necessary

operations associated with kinematics are performed in an uncoupled fashion.
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5.3 Application: J2 non-local plasticity

5.3.1 Non-local J2 plasticity model

A hybrid local/non-local J2 plasticity model, similar to the one proposed by

Strömberg and Ristinmaa [110], will be adopted in this section. The hybrid for-

mulation is necessary to avoid spurious instabilities as reported in Jirásek and

Rolshoven [70]. To start with, we first assume the existence of a local elastic law

given by

σ(x) = De : εe(x) (5.36)

where De is the elasticity modulus. Non-locality is introduced by adopting a hybrid

local/non-local rate of the isotropic hardening variable, i.e.,

˙̄κ(x) = m

∫
V

β(x, ξ)κ̇(ξ) dV (ξ) + (1−m)κ̇(x), (5.37)

where it has been assumed that

κ̇(x) = γ̇(x). (5.38)

In the equation above, m is a parameter that adjusts the level of non-locality. For

instance, if m is set to the unity, a pure non-local model is achieved. Conversely, if

m is set to null, the local theory is recovered. Any other value of m renders mixed

contributions of the local and non-local counterparts. Note that the parameter m

has no limiting range and its value can therefore be any real number. Nevertheless,

after a detailed investigation, Jirásek and Rolshoven [70] have concluded that for

a J2 plasticity model the optimal value for m is around 2. The yield function of

the constitutive model is expressed as

Fp = q(x)− σy(κ̄(x)), (5.39)

where q(x) is the von Mises equivalent stress, here defined by

q(x) =

√
3

2
‖s(x)‖ . (5.40)

Associative plasticity is assumed, therefore, the plastic flow is given by

ε̇p = γ̇(x)
∂Fp(x)

∂σ(x)
=

3

2
γ̇(x)

s(x)

q(x)
. (5.41)
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The model is complete with the Kuhn-Tucker conditions:

γ̇(x) ≥ 0; Fp(x) ≤ 0; γ̇(x)Fp(x) = 0 ∀ x ∈ V. (5.42)

Since the Kuhn-Tucker conditions need to be fulfilled for every material point si-

multaneously, the constitutive problem has a global character and demands special

care for its numerical implementation [3, 27].

5.3.2 Non-local stress integration

In order to solve the non-local constitutive problem and to compute the up-

dated stress tensor at integration point i, σin+1 , the global version of the elastic-

predictor/return-mapping algorithm is adopted [3]. In the present case, the elastic

trial state is expressed by the following equations:

εe trialin+1
= εein + ∆εi, (5.43)

ptrialin+1
= Ktr(εe trialin+1

), (5.44)

strialin+1
= 2GId : εe trialin+1

, (5.45)

qtrialin+1
=

√
3

2

∥∥strialin+1

∥∥ , (5.46)

κ̄trialin+1
= κ̄in . (5.47)

In the equations above, Id is the deviatoric projection tensor, defined as

Id = I− 1

3
I ⊗ I, (5.48)

where I is the fourth-order identity tensor.

Pseudo-time integration of the constitutive equations using a backward Euler

scheme leads, after some algebraic manipulations, to the following non-linear equa-

tion:

fi(∆γ1,∆γ2, · · · ,∆γnip
) = qtrialin+1

− 3G∆γi − σy(κ̄in+1), (5.49)

which is associated with the ith Gauss point and needs to be solved globally. The

algorithm for the global stress integration will be omitted herein and the reader is

referred to the references [3, 27, 110]. After finding the solution, the stress tensor

at the ith Gauss point is updated as follows:

σin+1 =

(
1− ∆γi3G

qtrialin+1

)
strialin+1

+ ptrialin+1
I. (5.50)
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5.3.3 Closed-form non-local consistent tangent operator

In the last section, a general expression for the non-local tangent elasto-plastic

operator has been derived. It remains to derive the terms ∂σi/∂εj. As a matter of

fact, they are dependent of the constitutive model and of the particular algorithm

adopted for the stress integration. In the case of the hybrid local/non-local J2

plasticity model presented above, closed-form expressions for these terms can be

straightforwardly obtained. We remark that, in the present case, the inversion

of a global matrix associated with the constitutive law is avoided, dramatically

reducing the corresponding computational burden and making the use of the exact

non-local consistent modulus plausible in computational terms.

The closed-form consistent algorithmic tangent operator for the hybrid local/non-

local J2 plasticity model is summarised as

Knl
T =

nip∑
i=1

wiJiB
T
i

nip∑
j=1

DijBj, (5.51)

where, for j = i,

Dii = De − aId + bN̄ in+1 ⊗ N̄ in+1 , (5.52)

where

a =
∆γi6G

2

qtrialin+1

, (5.53)

b = a− 1

3G+ (1−m)Hi +mwiJiβiiHi

(5.54)

and N̄ in+1 is the unit deviatoric flow vector defined as

N̄ in+1 =
εe triald in+1∥∥∥εe triald in+1

∥∥∥ . (5.55)

For the case where j 6= i:

Dij = cN̄ in+1 ⊗ N̄ jn+1 (5.56)

where

c = a− 1

3G+ (1−m)Hj +mwiJiβijHj

. (5.57)
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Note that meanwhile the fourth-order tensor of Equation (5.52) is symmetric, the

same is not true for Equation (5.56). Although both N̄ in+1 and N̄ jn+1 are sym-

metric, their product is necessarily symmetric only if they are linearly dependent;

however, such condition is not met in the general case. The presence of the non-

local factor βij also contributes to the unsymmetry of the tangent stiffness Knl
T

if the unsymmetric averaging operator in (3.12) is adopted. Nevertheless, even if

the symmetric operator of Equation (3.15) is chosen, the global tangent stiffness

is still unsymmetric due to the product N̄ in+1 ⊗ N̄ jn+1 .

5.4 Application: Lemaitre-based ductile damage

model

5.4.1 Closed-form non-local consistent tangent operator

In similar manner to the hybrid local/non-local J2 plasticity model of last section,

a closed-form expression for Dij can also be obtained for the Lemaitre-based non-

local ductile damage model of Chapter 3. Note that, in the Lemaitre-based model,

no parameterm has been defined. The derivation of the tangent modulus is lengthy

but follows standard differentiation procedures and will be omitted here for the

sake of readability. Following the expression of the non-local consistent tangent

operator at finite strains addressed in Section 5.2.3, the material-related consistent

tangent modulus, in the case where j = i, is given by

Dii = a1

[
I− 1

3
I ⊗ I

]
+ b1N̄ in+1 ⊗ N̄ in+1 + c1N̄ in+1 ⊗ I + d1I ⊗ N̄ in+1 + e1I ⊗ I.

(5.58)

If j 6= i, then Dij is written:

Dij = b2N̄ in+1 ⊗ N̄ jn+1 + c2N̄ in+1 ⊗ I + d2I ⊗ N̄ jn+1 . (5.59)

The scalars a1, b1, b2, c1, c2, d1, d2 and e1 are given in Appendix B.
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5.5 Numerical results and discussion

5.5.1 Plate in biaxial compression

In this first example, we numerically assess the efficiency and effectiveness of the J2

non-local model of Section 5.3 by simulating a two-dimensional plate under plane

strain conditions (see Figure 5.1). The plate is subjected to a vertical compressive

displacement ‖uy‖ = 0.6 mm. In order to trigger localisation, an imperfection of

size 10 mm × 10 mm has been introduced in the plate. Two mesh refinements

have been considered as depicted in Figure 5.1. The elasticity properties adopted

in this example are E = 200.0 GPa and ν = 0.49. The weakened part has a

yield stress of σy = 18.0 MPa meanwhile the rest of the plate yields at σy = 20.0

MPa. In both cases, a negative hardening modulus H = −245.0 MPa has been

considered. The non-local intrinsic length has been set to `r = 10.0 mm.

Firstly, the plate is simulated considering the standard local case (i.e., `r = 0.0

mm). As one should expect, the results for the equivalent plastic strain tend to

concentrate in a single layer of elements as the mesh is refined (see Figure 5.2)

where the size of the shear band gets narrower upon mesh refinement.

The non-local model of Section 5.3 is then employed by adopting three different

values for the parameter m, namely m = 1.0, 1.5 and 2.0. The results for the

coarse and fine meshes are respectively given in Figures 5.3 and 5.4. Close in-

spection reveals that the non-local formulation was able to prevent the excessive

localisation obtained with the local case since the size of the shear band has re-

mained practically constant upon mesh refinement. Despite small differences in

(a) (b) (c)

60.0mm

120.0 mm

Figure 5.1: Plate in biaxial compression: geometry and mesh refinement.
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the final contours of equivalent plastic strain, the three different values of m have

rendered solutions free of spurious localisation.

(a) Coarse mesh (b) Fine mesh

Figure 5.2: Equivalent plastic strain contours for the local case.

(a) m = 1.0 (b) m = 1.5 (c) m = 2.0

Figure 5.3: Equivalent plastic strain contours for different values of m: coarse
mesh.

(a) m = 1.0 (b) m = 1.5 (c) m = 2.0

Figure 5.4: Equivalent plastic strain contours for different values of m: fine
mesh.
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Figure 5.5: Convergence pattern for different values of m: coarse mesh (left)
and fine mesh (right).

The attention now is focused on the efficiency of the present non-local formulation.

Therefore, the convergence of the structural problem, for which the consistent

non-local tangent stiffness has been adopted, is carefully analysed. In order to

fully assess the consistent linearisation of the non-local model, the convergence

patterns obtained with the different values of m are investigated for the two mesh

refinements. The logarithmic of the residual function (Equation 5.17) is plotted

against the number of iterations as shown in Figure 5.5. Close observation on these

plots clearly reveals that the rate of asymptotic convergence remains quadratic even

for different values of m and for different mesh refinements, hence, proving that

the linearisation of the non-local model has been carried out consistently.

5.5.2 Double notched specimen

In order to further illustrate the algorithmic properties of the developed non-local

consistent tangent operator, we simulate the double notched shear specimen anal-

ysed by Mediavilla [80], for which the Lemaitre-based non-local model of Chapter

3 is here employed. The geometry and boundary conditions of the double notched

specimen are depicted in Figure 5.6 where rc = 1.0 mm. A vertical displacement

of uy = 0.315 mm is applied (as schematically shown in Figure 5.6), which is di-

vided over 20 equally spaced load increments. The material properties adopted are

summarised in Table 5.1. Similar to the example of the last section, two different

mesh refinements have been adopted (see Figure 5.7). In the present example, we

assess the numerical implementation of the Lemaitre-based non-local model (to-

gether with the associated algorithmic consistent tangent operator) for different

values of non-local intrinsic length: `r = 0.5 mm, `r = 1.0 mm and `r = 1.5 mm.

The different values of `r are plotted over the two mesh refinements (see Figure
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10mm

2.5mm

rc

rc

2
m

m

1
0
m

m

Figure 5.6: Double notched specimen: geometry and boundary conditions.

5.7) with the aim of giving a better visual conception of how many elements each

of these values of `r spans. Note that the m parameter has not been defined in

the case of the Lemaitre-based non-local model.

To start with, we firstly simulate the specimen adopting the local model. In this

case, the damage contours tend to very rapidly concentrate into a single layer

of elements as the mesh is refined (see Figure 5.8). The spurious localisation is

effectively avoided if the non-local model is employed, as it can be concluded after

observing Figures 5.9 and 5.10.

The numerical efficiency using the developed consistent linearisation of the non-

local model is also assessed with the present example. Firstly, we observe the

convergence of the structural problem when `r = 0.5 mm at different increments

for both mesh refinements (see Figure 5.11). A standard line-search procedure

[32, 33] has been adopted in order to optimise the convergence in large incre-

mental steps. A careful inspection of Figure 5.11 clearly reveals that the rate

of convergence remains quadratic over the increments. It is worth noting that

the steps at increments 15 and 20 were relatively large for which the line-search

Table 5.1: Material properties for the double notched specimen.

Property Value

Elastic modulus E = 220 GPa

Poisson’s ratio ν = 0.3

Damage exponent s = 1.0

Damage denominator r = 3.0 MPa

Hardening function τy(R) = 700 + 300R0.3 MPa
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(a) Coarse mesh (b) Fine mesh

Figure 5.7: Different values of `r plotted over the meshes.

scheme has been activated in the first iterations. Nevertheless, as the iterative

problem approaches solution, the norm of the residual equation rapidly decreases

towards the roots of the residual function, a clear demonstration that the full

Newton-Raphson method has been consistently employed.

We now focus on the sensitivity of the consistent linearisation in respect to the non-

local intrinsic length, `r. Therefore, the convergence is observed for the different

values of `r at increment 10 and for both mesh refinements as shown in Figure

5.12. Clearly, the convergence of the structural problem exhibits quadratic rates

even for different values of `r and for different element sizes.

Finally, the sparsity of the non-local stiffness tangent operator,Knl
T , at increments

5 and 20 are respectively given in Figures 5.13 and 5.14 for the different values

of `r. As one should expect, the stiffness matrix is much more populated when

the non-local intrinsic length is larger and therefore spans more elements. At

increment 20, more elements are damaged if compared to increment 5, which has

resulted in a larger number of non-zero entries in the stiffness matrix as it can be

concluded after inspecting Figures 5.13 and 5.14.
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(a) Coarse mesh (b) Fine mesh

Figure 5.8: Final damage contours for the double notched specimen: local
solution.

(a) `r = 0.5 mm (b) `r = 1.0 mm (c) `r = 1.5 mm

Figure 5.9: Damage contours for the coarse mesh (at increment 20).

(a) `r = 0.5 mm (b) `r = 1.0 mm (c) `r = 1.5 mm

Figure 5.10: Damage contours for the fine mesh (at increment 20).
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(a) Coarse mesh (b) Fine mesh

Figure 5.11: Convergence pattern over the increments: non-local solution
with `r = 0.5 mm.

(a) Coarse mesh (b) Fine mesh

Figure 5.12: Convergence pattern for different values of `r.
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(a) `r = 0.0 mm (b) `r = 0.5 mm

(c) `r = 1.0 mm (d) `r = 1.5 mm

Figure 5.13: Sparsity of the stiffness matrixKnl
T at increment 5 (coarse mesh).

(a) `r = 0.0 mm (b) `r = 0.5 mm

(c) `r = 1.0 mm (d) `r = 1.5 mm

Figure 5.14: Sparsity of the stiffness matrix Knl
T at increment 20 (coarse

mesh).
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5.6 Conclusions

In this chapter, a general methodology for the consistent linearisation of elasto-

plastic non-local models of integral-type has been presented in detail. A consistent

linearisation is highly desired since it guarantees the quadratic convergence rates

inherent to the full Newton-Raphson method. It has been shown that, when the

non-local variable is an implicit function of other constitutive variables, a point-

wise continuum tangent modulus does not exist. However, the finite element

discretisation permits the establishment of a finite global constitutive relation

that, in the general case, is obtained from the inversion of a global compliance

matrix.

The computational burden associated with the matrix inversion can be avoided

if analytical expressions for the terms Dij (Equation 5.29) are obtained. It has

been shown that, in the case of a J2 hybrid local/non-local plasticity model and

the Lemaitre-based non-local model of Chapter 3, such closed-form analytical ex-

pressions can be achieved by employing standard differential calculus, rendering

highly efficient numerical implementations.

The results documented in this chapter have clearly demonstrated that the present

linearisation is consistent with the associated non-local stress integration proce-

dure. Quadratic rates of convergence have been successfully achieved for both the

J2 hybrid local/non-local plasticity and the Lemaitre-based non-local models, re-

gardless the size of the non-local intrinsic length `r, the local/non-local parameter

m or the mesh refinement adopted.

Finally, it has been also demonstrated that, when compared to the local case, the

use of the consistent non-local tangent operator leads to more populated stiffness

matrices as shown in Section 5.5.2. This inevitably yields on longer computational

times when solving the structural problem. Gradient-enhanced formulations, on

the other hand, need additional degrees of freedom per node in order to take the

effects of non-locality into account, which also increases the solution time since

the system of equations to be solved is larger. Perhaps an interesting and rather

important assessment would be the direct comparison of both non-local strategies

concerning numerical efficiency, where this idea is left as a suggestion of future

work.



Chapter 6

Assessment and Comparison of

Non-local Models

Non-local models have been successfully used in the last two decades in the task

of circumventing the pathological mesh dependency. Despite the many advances

in this topic, many questions still remain unanswered. For instance, up to this

date, there is no exact guideline for how should non-locality be introduced in

most existing local models. In general, authors have usually chosen a promising

candidate variable to be a non-local quantity and have then developed and assessed

their models based on this candidate. For example, Pijaudier-Cabot and Bažant

[93] have adopted the damage variable as the non-local quantity for an elastic-

damage non-local model of integral-type for the description of brittle materials. De

Borst and Mühlhaus [35] have discretised the plastic multiplier within a gradient-

dependent plasticity framework. The accumulated plastic strain in the classical J2

plasticity was the choice of Strömberg and Ristinmaa [110], who employed a hybrid

local/non-local formulation. Geers et al. [55] have formulated a damage-induced

plasticity model where the gradient of the accumulated plastic strain has been

accounted for in the global structural problem. Mediavilla et al. [81] have enhanced

a damage variable, dependent of both plastic strain and triaxiality, with an implicit

gradient formulation. A similar approach was adopted by César de Sá et al. [26]

who have regarded damage as non-local within an implicit-gradient framework.

More recently, Andrade et al. [3] have adopted the damage variable as a non-

local quantity for the modelling ductile damage through a non-local formulation

of integral-type. All these works have provided numerical examples where it has

been shown that the pathological mesh sensitivity could be effectively eliminated.

However, it was unclear if their models could be differently formulated (e.g., with

another non-local quantity) and still preserving their regularising characteristics or

117
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if the models would still be able to tackle the mesh sensitivity issue when subjected

to different stress states.

Nonetheless, there are a few works which have focused on comparing different

non-local models. Perhaps the most valuable contribution to this topic has been

given by Jirásek and Rolshoven [70] who have compared various different non-

local formulations for elastic-damage and plasticity models. Their assessment has

been carried out through the analysis of one-dimensional bars under infinitesimal

strains and has focused specifically on verifying the ability of the many non-local

models in acting as effective localisation limiters. They have found that some

models, previously believed to be mesh-insensitive, could provide only a partial

regularisation of the solution and that they fail under some special circumstances.

Many important conclusions have been withdrawn on the comprehensive compar-

ison of Jirásek and Rolshoven [70]; however, their assessment still is not enough

to clearly answer the question of how should non-locality be accounted for in the

general case. This is mainly due to fact that they have limited their analysis to the

one-dimensional case. In fact, real structures are subjected to multi-axial stress

states that may dramatically influence their response to external loads. In turn,

the material laws that are employed to capture diverse structural responses be-

have quite differently when subjected to various stress states. This suggests that

a given non-local model, which preserves mesh-insensitivity under a given stress

state, may also respond differently when subjected to other stress states. Thus,

the one-dimensional analysis is not sufficient to completely characterise the effects

of non-locality if we are aiming to avoid pathological mesh dependence in real

structures.

Particularly in the case of ductile materials, extensive research effort has estab-

lished that fracture has a strong dependence on the stress state. The works of

McClintock [79], Rice and Tracey [102] and Mackenzie et al. [77] have, amongst

others, identified, from experimental testing with round smooth and notched bars,

a relation between the stress triaxiality ratio and the effective plastic strain at

fracture initiation. Later, Hancock and Brown [60] have carried out similar exper-

iments with plane strain specimens and shown that, despite of having a different

geometrical fracture pattern due to the occurrence of shear bands at the critical

zone, the effective plastic strain at fracture also tends to decrease as triaxiality

increases. These works have provided a deeper understanding on the mechanisms

that cause material breakage for which many authors have sought to propose

constitutive models that could reproduce experimental evidence. Amongst them,

Gurson [57] proposed a theory where the material is regarded as a porous medium

in which the initially existing micro-voids may grow. The theory has been later
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extended by Tvergaard and Needleman [113] who introduced into the material

model the mechanisms of nucleation and coalescence of cavities. Following a dif-

ferent strategy by adopting a purely phenomenological approach, Lemaitre [74, 75]

has presented a thermodynamically consistent constitutive model where the mate-

rial progressive degradation has been treated by means of an internal continuous

variable. It is important to mention that all these models have particularly sought

to capture the effects of high stress triaxiality ratios on material degradation,

which, in turn, are closely linked to the phenomenon of nucleation, growth and

coalescence of voids.

However, the works of Bao [7], Bao and Wierzbicki [8, 9], Barsoum and Faleskog

[10, 11], Bai [6] and Gao et al. [54], amongst others, have more recently shown that

the third invariant of the stress tensor, usually regarded by means of the so-called

Lode angle, also plays an important role on fracture of many metallic alloys. In

fact, such works have also introduced the important concept of characterising the

stress state not only by the stress triaxiality ratio but also by the normalised Lode

angle, a statement also recognised by other authors, e.g. Nahshon and Hutchinson

[83].

In view of that, the objective of the present work is to enhance with non-locality

the classical models of Lemaitre and GTN, which have been very often adopted

to describe ductile deformation. We select different variables to be taken as non-

local and assess the established non-local models through numerical simulation

under different stress states. The main goal is to identify which options lead to

a completely mesh insensitive material description when subjected to different

loading conditions.

This chapter is organised in the following fashion. In Section 6.1, general defini-

tions concerning parameters for the characterisation of the stress state are pre-

sented. In Section 6.2, we review, very briefly, some general aspects of ductile

fracture observed in experimental tests where the main mechanisms of failure are

highlighted. This rather brief review will be relevant for the selection of the spec-

imens to be simulated using different non-local formulations. In the following

section, both Lemaitre- and Gurson-based models are enhanced by non-locality

adopting different non-local variables. Finally, the results and discussion of nu-

merical simulation are presented in Section 6.4, followed by general conclusions in

Section 6.5.
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6.1 Parameters for stress state characterisation

Firstly, we repeat the definition of the von Mises equivalent stress, q, which is

related to the second invariant of the deviatoric stress tensor, to be given by

q =
√

3J2(s) =

√
3

2
s : s, (6.1)

and the third invariant-related quantity t, which reads

t =

(
27

2
det[s]

)1/3

. (6.2)

The stress triaxiality ratio [77, 79, 102] is defined as

η =
p

q
, (6.3)

and is a practical measure of the stress state in a given point.

The third invariant-related quantity, t, can be conveniently normalised:

ξ =

(
t

q

)3

, (6.4)

where −1 < ξ < 1.

The so-called Lode angle, denoted by θ, is a quantity related to the third invariant

of the deviatoric stress tensor, given by

θ =
1

3
arccos(ξ), (6.5)

and has values between 0 < θ < 0.3. It can be normalised through the following

expression:

θ̄ = 1− 6θ

π
= 1− 2

π
arccos(ξ), (6.6)

for which −1 < θ̄ < 1.

Remark 6.1. All the parameters above have been defined using quantities related

to the Cauchy stress tensor just for convenience. In fact, they can also be defined

using the Kirchhoff stress tensor. Regardless the stress tensor measure adopted,

both the triaxiality ratio, η, and the normalised third invariant, ξ, render exactly

the same values. This can be easily verified using the relation given in Equation

(2.23). However, it is important to mention that this is not true in the case of the

equivalent stress, q. Therefore, whenever the symbol q is used in this thesis, it has
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been made clear if the equivalent stress has been defined using the Cauchy or the

Kirchhoff stress tensor.

6.2 Some aspects on ductile behaviour and fail-

ure

In a general sense, ductile failure is dictated by different mechanisms depending

on the stress state under which the material is subjected to. In the literature,

it seems consensual among many authors that progressive material degradation

plays a major role in the deformability of ductile materials where, in fact, plastic

straining and internal deterioration are strongly coupled.

As the result of extensive experimental testing, several authors have found that

the stress triaxiality ratio plays a major role upon ductile failure initiation [60, 71,

77, 79, 102]. These (and other) authors have then established a relation between

triaxiality and the effective strain at fracture, εpf , where the latter decreases as

the former increases. This behaviour is typically observed in many metallic alloys

commonly employed in industrial applications. More recently, it has been reported

that some other metals may have a different behaviour for triaxialities below η =

1/3, (e.g., [6, 7], among others). Both these behaviours are schematically depicted

in Figure 6.1, where the two-dimensional fracture curve defines the boundary of

fracture and no-fracture zone on the space of εpf versus η. In fact, relatively recent

research effort has additionally shown that not only triaxiality but also the third

invariant of the deviatoric stress tensor (very often regarded through the Lode

angle) can substantially affect the material behaviour. These developments have

lead to a more appropriate curve to depict fracture loci, where instead of using

two-dimensional plots (like in Figure 6.1), a third axis, denoting the third invariant

[120], has been included (see Figure 6.2)1. Indeed, the identification of the role

of the third invariant upon ductile failure was a major breakthrough in material

sciences.

In order to capture the curves like the ones depicted in Figures 6.1 and 6.2, various

specimens have been designed aiming to test materials at several triaxialities and

different values of the third invariant. For instance, smooth and notched round

bars are employed to capture values of η ≥ 1/3 meanwhile ξ remains constant

and around 1.0. Similar values of triaxiality can be obtained with plane strain

1It is important to remark that the two-dimensional fracture curves of Figure 6.1 are in fact
a projection of the three-dimensional fracture surface of the material.
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εpf

η

εpf

η1/31/3

Figure 6.1: Stress triaxiality ratio (η) versus equivalent strain at fracture (εpf ):
behaviour typically observed in different ductile metals.

Figure 6.2: A (symmetric) three-dimensional fracture locus as proposed by
Wierzbicki and co-authors [120] (adapted from Bai [6]).

specimens; however, the normalised third invariant parameter is completely dif-

ferent and has in this case the value of ξ = 0.0. In practice, the different value

of ξ characterises a different stress state than the one in the case of cylindrical

specimens. In the assessment carried out in this chapter, a notched bar and a

plane strain specimen have been selected for investigation

Since it has been identified that, for many metallic alloys, the pattern of the

fracture locus changes around the triaxiality of η = 1/3, some researchers have

concentrated their efforts in investigating plastic straining and fracture at this

turning point. For this purpose, Bao [7] has conducted a series of experiments using

a perforated plate specimen. This specimen has been simulated in the context

of the Lemaitre-based non-local damage model of Chapter 3 and will be again

adopted in the present chapter.
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To achieve pure shear stress states, i.e., when the triaxiality is zero, many spec-

imens have been considered as reported in many contributions (for instance, see

[6]). Within the scope of this chapter, we shall limit ourselves to adopt the shear

specimen used by Brünig et al. [23]. Note that the same specimen has also been

used in Chapter 4 to assess the non-local Gurson-based model proposed in that

chapter under shear-dominated stress states. It is worth recalling that, in the pure

shear condition, the normalised third invariant is zero.

For reference, some of these different specimens have been schematically arranged

in a diagram (see Figure 6.3) as function of the triaxiality and the normalised

third invariant, closely following the diagram presented by Bai [6]. In Figure 6.4,

a schematic representation of the geometry of the aforementioned specimens is

depicted in three-dimensions. These are the specimens that have been selected for

the present assessment

The general concepts of ductile failure briefly reviewed in this section are of ex-

treme importance for a consistent assessment of non-local models. It has been

widely recognised that ductile materials behave quite differently under different

stress states; therefore, this statement highly suggests that the issues of patho-

logical mesh dependency may also behave quite differently under different loading

conditions. Thus, aiming to unfold the question of which variable should be regu-

larised in a given ductile damage model, a comprehensive comparison of different

non-local formulations, when applied in the simulation of different stress states,

will be carried out in this chapter.
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Figure 6.3: Stress triaxiality ratio versus normalised third invariant.
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(a) Notched
Bar

(b) Plane Strain
Specimen

(c) Perforated
Plate

(d) Shear
Specimen

Figure 6.4: Schematic three-dimensional representation of the specimens.

6.3 Non-local models

The first step for the non-local enhancement of a previously existing local material

model is to choose where the integral operator (like in Equation 3.10) should be

incorporated in the constitutive equations. This step can be interpreted, to some

extent, as ’the choice of the non-local variable’. For the sake of readability, this

terminology will be frequently used throughout this chapter.

Since every single variable of a given constitutive model can be enhanced by non-

locality, a large number of possibilities seems to exist. Of course, some options

are at first glance more promising than others; however, a simple guess does not

guarantee a constitutive model free of spurious mesh dependence. Among the

limited number of contributions who worked in this direction, Bažant and Chang

[13] have concluded that the internal variables are the best candidates for non-

local quantities when compared to other quantities such as the stress and the

total strain tensors. However, which internal variable should be selected among

the many possibilities is, to a larger extent, uncertain for most models. Other

important contributions on the issue of the choice of the non-local variable are

due to Jirásek [67] and Jirásek and Rolshoven [70], who assessed many different

non-local formulations in order to verify their regularising properties, as mentioned

in the beginning of this chapter.

However, none of these efforts has focused on ductile damage models. Besides, the

aforementioned works have concentrated in one-dimensional analysis exclusively.

As stressed out in the beginning of this chapter, real structures are subject to multi-

axial stress states and extensive experimental investigation has already shown that
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the materials that compose these structures behave quite differently when under

different loading conditions.

During this investigation, several options have been considered and thoroughly

tested for both Lemaitre- and Gurson-based damage models. Inevitably, this has

lead to a huge amount of results whose comprehensive scrutiny would exhaust

the objectives of this chapter. Since many of the several considered options have

lead to very similar conclusions, we have limited ourselves herein to present the

results of four choices associated with each of the two constitutive local models.

Consistency has also been a concern in the present contribution, thus, some effort

has been made aiming to only regularise constitutive variables that are, to a some

extent, equivalent in both the Lemaitre- and Gurson-based models.

For the case of Lemaitre-based models, the following four options have been con-

sidered:

• regularisation of damage, D̄;

• regularisation of the isotropic hardening variable, R̄;

• regularisation of elastic energy release rate, −Ȳ ;

• simultaneous regularisation of damage, D̄, and the isotropic hardening vari-

able, R̄.

The choices listed above modify the Lemaitre local model in such manner that for

each case one (or more) evolution equation of the local model needs to be modified.

The necessary modifications in the constitutive model are directly summarised in

Table 6.1. For the sake of simplicity, we have attributed a reference label for each

non-local model. This will be particularly helpful when reporting the numerical

results in Section 6.4. We remark that all models listed in Table 6.1 belong to

the class of classical non-local models [27], which are simply ad-hoc formulated

based on a previously existing local constitutive model. In Chapter 3, it has

been shown that the classical non-local model formulated with D̄ does not violate

thermodynamical principles, i.e., the model does not predict negative dissipations.

In fact, the same conclusion can be straightforwardly withdrawn with the other

non-local models listed above by following similar procedures as the ones employed

to demonstrate thermodynamical admissibility in the case of L-D.

Remark 6.2. In the present assessment, the thermodynamically consistent model

proposed in Chapter 3 will not be considered. Our intention with that is to keep
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consistency by only comparing non-models that have been established without re-

sorting to thermodynamics. It it nonetheless worth mentioning that, during this

study, numerical analysis has shown that the results obtained with the thermody-

namically consistent model of Chapter 3 were qualitatively very similar to the case

of L-D, where the former has presented a slightly higher diffusive effect than the

latter, exactly as elucidated in the conclusions of Chapter 3. This statement has

persisted regardless the stress state investigated in the present study. In practice,

the main difference between L-D and the thermodynamically consistent model is

that each model will lead to slightly different values of `r when the model is cali-

brated to match experimental results, since the thermodynamic model produces a

higher diffusive effect.

Table 6.1: Lemaitre-based non-local models.

Associated Vari-
able

Symbol Associated Evolution Eq. Ref.

Damage D̄ ˙̄D = R
(
Ḋ
)

L-D

Isotropic Harden-
ing

R̄ ˙̄R = R
(
Ṙ
)

L-R

Energy Release
Rate

−Ȳ Ḋ =
γ̇

(1−D)

[
R (−Y )

r

]s
L-Y

Damage, Isotropic
Hardening

D̄, R̄ ˙̄D = R
{

γ̇

(1−D)

[
−Y
r

]s}
, L-DR

˙̄R = R
(
Ṙ
)

Similarly to the case of Lemaitre model, four candidate variables have been chosen

for the Gurson-based damage model:

• regularisation of damage, f̄ ;

• regularisation of the isotropic hardening variable, R̄;

• regularisation of the equivalent plastic strain, ε̄peq;

• simultaneous regularisation of damage, f̄ , and the isotropic hardening vari-

able, R̄.
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Again, each choice requires modifications in one or more evolutions equations

that are associated with the chosen constitutive variable, where the necessary

modifications are summarised in Table 6.2 for convenience. We remark that the

present Gurson-based models very closely follows the model proposed in Chapter

4 where the only difference is the non-local variable associated with each of the

choices listed above.

Table 6.2: Gurson-based non-local models.

Associated Vari-
able

Symbol Associated Evolution Eq. Ref.

Damage f̄ ˙̄f = R
[
Aε̇peq + (1− f)ε̇pv + ḟS

]
G-F

Isotropic Harden-
ing

R̄ ˙̄R = R
(
Ṙ
)

G-R

Equivalent Plastic
Strain

ε̄peq ḟ = AR (ε̇pacc) + (1− f)ε̇pv + ḟS G-EP

Damage, Isotropic
Hardening

f̄ , R̄ ˙̄f = R
[
Aε̇peq + (1− f)ε̇pv + ḟS

]
, G-FR

˙̄R = R
(
Ṙ
)

Remark 6.3. In Chapters 3 and 4, the decision of taking damage as the non-

local variable has been simply justified ’as a natural choice’ since damage is the

variable that triggers the softening regime in both Lemaitre and Gurson models.

Interestingly, this has also been the motivation of Pijaudier-Cabot and Bažant

[93] when they have, following the very same idea, chosen damage to be non-

local in a constitutive model intended to describe deformation and failure of quasi-

brittle materials. Later, Jirásek [67] and Jirásek and Rolshoven [70] have shown

that the choice of damage, in that particular situation, leads to locking results

and that the regularisation of other variables, such as the equivalent strain or the

energy release rate, −Y , would be preferred in order to achieve completely mesh-

independent solutions. We remark that this conclusion has, so far and to the

author’s knowledge, been verified for explicit damage models only, i.e., when the

damage variable is explicitly calculated from other quantities, such as the plastic

strain. This is not the case of the ductile damage models addressed in this thesis,

which take material degradation into account in an implicit fashion. As it will be

made clear in the following section, the conclusions obtained for explicit damage

models regarding the choice of the non-local variable do not apply for implicit
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damage models. In fact, the conclusions are completely different. This implies

that one has to be very careful when selecting the non-local quantity associated

with a given constitutive model.

6.4 Numerical analysis

In this section, we numerically assess the different non-local models formulated in

Section 6.3 when subjected to different combinations of stress triaxiality ratios, η,

and normalised third invariant, ξ. As pointed out in Section 6.2, ductile materials

may have very different behaviour upon fracture, with less or more dependency on

the parameters η and ξ. It is also true that certain materials exhibit more strain-

driven softening than others, so the need of non-local modelling is, in quantitative

terms, highly dependent of the specific material which one aims to simulate. Our

intention in this chapter is to numerically investigate the performance of the differ-

ent non-local models of Section 6.3 rather than reproducing experimental evidence

with accuracy. Therefore, for the present assessment, we will simply adopt hence-

forth generic material properties that very much resemble those typically observed

and calibrated from experimental testing of high strength steel alloys (see Tables

6.3, 6.4 and 6.5). The same material properties will be used in all simulations for

consistency.

Three different mesh refinements will be used in each case, for which the following

line pattern has been adopted in the XY-plots: the coarse, medium and fine meshes

are respectively represented by a full (−), a dashed (−−) and a dotted (· · · ) line.

Again, the main objective of the present assessment is to verify, exclusively through

numerical simulation, how each non-local model behaves under several different

stress states and to check whether the desired regularising effects are consistently

achieved. The conclusions withdrawn on the results obtained in the present investi-

gation are fundamental for the correct use of the non-local method when matching

the results of new constitutive models with experimental evidence. Only so it is

possible to be certain that the numerical framework, to be adopted in the param-

eter identification procedure, prevents spurious mesh dependency under several

stress states, providing a reliable calibration of the material properties.
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Table 6.3: Basic material properties employed in all simulations.

Property Value

Elastic modulus E = 220 GPa

Poisson’s ratio ν = 0.3

Hardening function τy(R) = 700 + 300R0.3 MPa

Table 6.4: Lemaitre-related material properties.

Property Value

Lemaitre damage exponent s = 1.0

Lemaitre damage denominator r = 3.0 MPa

Table 6.5: Gurson-related material properties.

Property Value

Micro-void volumetric fraction for nucleation fN = 0.04

Mean strain for void nucleation εN = 0.2

Standard deviatoric strain for nucleation sN = 0.1

Critical damage fc = 0.06

Damage at fracture ff = 0.22

Shear-damage factor k = 3.0

6.4.1 Analysis at high stress triaxiality (η > 1/3)

We start the assessment of the several non-local models by first observing how

they behave when subjected to triaxialities above the value of 1/3. It is con-

sensual in the literature that, for ductile materials at such high triaxialities, the

predominant internal degradation mechanism is governed by the phenomena of

nucleation, growth and coalescence of micro-voids.

To a major extent, the ductile damage models in this thesis (i.e., based on the

models of Lemaitre and Gurson) have been particularly conceived to capture the

aforementioned phenomena. Indeed, this fact was the main motivation for the

inclusion of the additional damage mechanism in Gurson’s model in Chapter 4,

since without the adopted modification no damage evolution would take place in

shear-dominated stress states with that model. In the case of Lemaitre, damage

does evolve when subjected to both high and low stress triaxialities.
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40 mm

φ 18 mm

R4 mm

10.1 mm

5 mm

R2.58 mm

50 mm

Figure 6.5: Geometry for the axisymmetric (left) and plane strain (right)
specimens.

Figure 6.6: Mesh refinements for the notched axisymmetric specimen.

Figure 6.7: Mesh refinement for the plane strain specimen.

For the analysis at high triaxialities, two specimens will be considered in the

present assessment: an axisymmetric notched bar and a grooved plate under plane

strain condition (see Figure 6.5). In order to facilitate readability, the labels

NOTCHED and PLANE will be henceforth adopted to make reference to these speci-

mens. The mean values of triaxiality are very similar in both cases (ηavg ∼= 0.8 for

NOTCHED and ηavg ∼= 0.7 for PLANE). Conversely, the mean values of the normalised

third invariant are quite different (ξavg ∼= 1.0 in the NOTCHED case and ξavg = 0.0 in

the case of PLANE), characterising different stress states. As it will become quite

clear after careful scrutiny of the results in this chapter, the stress state plays a
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major role on the issue of pathological mesh dependency.

Both specimens have been discretised with quadrilateral quadratic elements where

reduced integration has been adopted to avoid spurious element locking (see Fig-

ures 6.6 and 6.7). Three mesh refinements have been considered in order to capture

the effects of mesh dependency where only one quarter of the geometry has been

simulated in both cases. Different non-local intrinsic lengths have been assigned

to the specimens, namely `r = 0.6 mm for the NOTCHED case and `r = 0.35 mm

for the PLANE specimen. These values correspond to intrinsic lengths that span a

minimum necessary of elements (and their associated integration points) in order

to activate the effects of the non-local formulation.

Remark 6.4. We recall that, within the context of this work, the intrinsic non-

local length `r has been exclusively treated as a numerical parameter, for which

comparison with experimental evidence is necessary for the validation of many re-

sults presented in this thesis. However, in the present assessment, an accurately

calibrated `r is of minor importance since the main goal of this investigation is

to determine how each non-local model behaves when subjected to different triax-

ialities. Again, the yet qualitatively nature of the results obtained in the present

analysis is fundamental for a correct calibration of the constitutive parameters of

a given material model, ensuring that the appropriate non-local variable is selected

for the numerical parameter identification procedure.

Firstly, we observe how both the Lemaitre- and Gurson-based models behave in

the local case (i.e., `r = 0.0 mm) when subjected to triaxiality ratios greater

than 1/3. Figure 6.8 shows the reaction curves for both models when simulated

for the NOTCHED and PLANE cases. A close inspection on these curves reveals

that both Lemaitre- and Gurson-based models have the tendency of being much

more susceptible to mesh dependency in the PLANE case (when the normalised

third invariant is equal to ξ = 0.0) than in the NOTCHED case. Note that, despite

the fact that the underlying assumptions for the establishment of both ductile

damage models are very different, a very similar behaviour regarding spurious

mesh dependency has taken place in both cases. The more pronounced mesh

dependency in the PLANE case is again observed when the damage evolution is

plotted against the applied displacement (see Figure 6.9). Although the curves in

Figures 6.8 and 6.9 have shown almost no mesh dependency for the NOTCHED case,

the damage contours clearly reveal that spurious dependency has taken place as

it can be concluded by inspecting Figures 6.10 and 6.11. As one should expect,

the effects of pathological mesh dependency are more evident when observing the

damage contours in the PLANE case (see Figures 6.12 and 6.13).
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Remark 6.5. In all simulations of the present assessment, the damage values used

in the plots were always the maximum value of damage obtained in the specimen

at each time step. In most cases, the point of occurrence of the maximum value of

damage, which can be easily identified by observing the associated contours plots

provided throughout this chapter, has not changed during the simulation.

(a) (b)

Figure 6.8: Reactions in the local case. Results for the Lemaitre- (a) and
Gurson- (b) based models.

(a) (b)

Figure 6.9: Evolution of damage in the local case. Results for the Lemaitre-
(a) and Gurson- (b) based models.
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Figure 6.10: Damage contours for the Lemaitre-based model in the local case.

Figure 6.11: Damage contours for the Gurson-based model in the local case.

Figure 6.12: Damage contours for the Lemaitre-based model in the local case.

Figure 6.13: Damage contours for the Gurson-based model in the local case.
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We observe now how the different non-local models respond when subject to the

same circumstances of the local case. The reaction diagrams for the several non-

local formulations are given in Figures 6.14 and 6.15 meanwhile the evolution of

damage is depicted in Figures 6.16 and 6.17. A first inspection on these curves

demonstrates that, as expected, there are no differences in the reactions of the local

and non-local cases when the Lemaitre-based model is adopted for the NOTCHED

case. This prevents us to draw any conclusions concerning the question if any of

the adopted non-local formulations was able to alleviate the spurious dependency

clearly present when looking at the local damage contours in Figure 6.10. This

limitation is overcome if we observe the damage evolution for the different non-local

formulations in Figure 6.16 from which it is straightforward to deduce that, for the

NOTCHED case, the formulations L-D, L-Y and L-DR have provided mesh independent

solutions. Further observation of Figures 6.14 and 6.16 reveals that only L-D and

L-DR have eliminated the pathological mesh dependency in the PLANE. Note that

this statement automatically excludes the formulations L-Y and L-R from being

adequate variables for the non-local enhancement of Lemaitre-based models since

they cannot eliminate the loss of ellipticity for different stress states.

Remark 6.6. The conclusion that L-Y is not a good candidate for non-local vari-

able in an implicit damage model is particularly important. In the assessment

of non-local explicit damage models of Jirásek and Rolshoven [70], it has been

established that the regularisation of the energy release rate, −Y , delivers mesh

independent results. Conversely, in their investigation, the regularisation of dam-

age has rendered locking results and therefore it was not a recommended non-local

variable. Those conclusions dramatically differ from the ones drawn on the inves-

tigation carried out in this chapter. In fact, as already alluded in this text, the

choice of the non-local variable substantially depends if either an implicit or an

explicit damage model is used as the underlying local constitutive model.

Remark 6.7. It is worth mentioning that L-Y has provided slightly different results

when compared to the local case for the plane strain specimen. In fact, a certain

tendency to alleviate the pathological mesh dependency was to observe. However,

such tendency was substantially small, not enough to eliminate the issues of spuri-

ous mesh dependency. Further numerical experimentation has demonstrated that

higher values of `r have tended to mesh-independent solutions; however, such so-

lutions have required very large values of `r, triggering unwanted numerical insta-

bilities and over-stiff responses.

We focus attention now in the results obtained with the non-local models based on

Gurson model (see Figures 6.15 and 6.17). Similarly to the case of the non-local
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Lemaitre-based non-local models, the regularisation of damage (G-F) has elimi-

nated pathological mesh dependency for both the NOTCHED and PLANE cases. In

similar manner, the simultaneous regularisation of both damage and the harden-

ing variable (G-FR) has clearly provided mesh-independent results in the PLANE

case; however, inspection of Figure 6.17(d) reveals that a slightly spurious be-

haviour has appeared for the Mesh 3 after a certain displacement was applied in

the NOTCHED case. Unexpectedly, G-R has effectively diminished the effects of the

loss of ellipticity in the NOTCHED case. Nonetheless, this option has revealed itself

inadequate since if fails to avoid mesh dependency in the PLANE case. Finally,

the formulation denoted by G-EP could substantially alleviate the effects of spu-

rious mesh dependency for both NOTCHED and PLANE, where in the latter case the

regularisation effects seem not to have been enough. Since the choice of damage

(G-F) as non-local variable has presented superior results, and recalling that the

evolution of equivalent plastic strain is embedded in the evolution of damage itself,

these results suggest that the evolution of volumetric plastic strain, εpv, also plays

a significant role in the issue of pathological mesh dependency. Therefore, the

regularisation of both evolutions through the regularisation of damage seems to

be the optimal choice.

(a) L-D (b) L-R

(c) L-Y (d) L-DR

Figure 6.14: Reactions for the Lemaitre-based non-local models.
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(a) G-F (b) G-R

(c) G-EP (d) G-FR

Figure 6.15: Reactions for the Gurson-based non-local models.

(a) L-D (b) L-R

(c) L-Y (d) L-DR

Figure 6.16: Damage evolution for the Lemaitre-based non-local models.
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(a) G-F (b) G-R

(c) G-EP (d) G-FR

Figure 6.17: Damage evolution for the Gurson-based non-local models.

Figure 6.18: Damage contours for the Lemaitre-based model non-local case
(L-D).

Figure 6.19: Damage contours for the Gurson-based model non-local case
(G-F).
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Figure 6.20: Damage contours for the Lemaitre-based model non-local case
(L-D).

Figure 6.21: Damage contours for the Gurson-based model non-local case
(G-F).
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6.4.2 Analysis at moderate stress triaxiality (η = 1/3)

In order to assess the different non-local models defined in this chapter under

the triaxiality of η = 1/3, we simulate a perforated plate specimen (see Figure

6.22). We recall that this same specimen has already been the focus of analysis

in Chapter 3 where it has been shown that the thermodynamically admissible

non-local model proposed in that chapter could effectively eliminate the effects

of pathological mesh dependency. Three mesh refinements are considered (see

Figure 6.22) where 8-noded hexahedra finite elements have been used to discretise

the geometry. Like in Chapter 3, the F-bar element formulation is again adopted

in order to avoid spurious element locking. As discussed in that chapter, the use of

the F-bar formulation is straightforward within the present non-local framework

since the non-local enhancement is strictly kept on the material level.

(a) (b) (c) (d)

100mm

R20mm

10mm
50mm

Figure 6.22: Geometry and different mesh refinements for the perforated
plate.

Firstly the plate is simulated considering the local case. Figures 6.23 and 6.24

respectively depict the reaction diagram and the evolution of damage against the

applied displacement for both Lemaitre- and Gurson-based models. The contours

of damage are also plotted on the specimen in Figures 6.25 and 6.26. Clearly,

pathological mesh dependency has taken place in both cases. In particular, a very

peculiar behaviour is observed in the case of Gurson. Looking at Figures 6.23b

and 6.24b, it is possible to notice that Mesh 2 has actually given a more critical

response than Mesh 3. In Figure 6.26, we observe that a much higher value of

damage has been achieved with Mesh 2 than with Mesh 3, contrary to what has

been mostly seen in the results throughout this thesis. Such result is, to some

extent, unexpected and could perhaps mislead to the conclusion that some sort

of error has been made in the simulation set up. In fact, although unlikely, such

behaviour is not impossible to emerge within the present context. Pathological

mesh dependency within local constitutive frameworks occurs whenever material
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(a) (b)

Figure 6.23: Reactions in the local case. Results for the Lemaitre- (a) and
Gurson- (b) based models.

(a) (b)

Figure 6.24: Damage evolution in the local case. Results for the Lemaitre-
(a) and Gurson- (b) based models.

softening is active (like in the present case) and can virtually lead to any result,

since there is no uniqueness of solution. Even very small round-off errors in the

definition of a structured mesh can lead to very unexpected results by triggering

the spurious effects of loss of ellipticity. This is most probably the source of the

rather odd behaviour observed in the present case.

In Figures 6.27 and 6.28, the evolution of damage for the non-local case is pre-

sented. Observing the results for the Lemaitre-based non-local models, we con-

clude that the best results where achieved with formulations L-D and L-DR with

almost no differences between them. As expected, L-R was not able to regularise

the problem, still giving solutions that are very sensitive to spatial discretisation.

In the case of L-Y, some improvement in the solution when compared to the local

case can be observed (see Figures 6.24(a) and 6.27(c)), although not sufficient.

Similar to the case of PLANE, numerical experimentation with higher values of `r
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(a) (b) (c)

Figure 6.25: Damage contours for the local case at the critical region:
Lemaitre-based model.

(a) (b) (c)

Figure 6.26: Damage contours for the local case at the critical region: Gurson-
based model.

have provided more regularising effects; however, such higher values of `r were too

large and, like in the PLANE, some numerical instabilities have been experienced.

In the case of the Gurson-based models, all the four non-local formulations, G-F,

G-R, G-EP and G-FR have eliminated the effects of spurious mesh dependency.

Note that the peculiar behaviour observed in the local case has been completely

eliminated when the non-local theory was activated (see Figures 6.29 and 6.30).

This again supports the assumption that the odd results in Figure 6.26 are a

direct consequence of the loss of ellipticity of the equilibrium equation when under

softening. Due to its robustness, the non-local formulation was able to avoid

that spurious behaviour. This stems from the fact that, in contrast to other

regularising techniques, the non-local formulation effectively eliminates the source

of pathological mesh dependency by incorporating an intrinsic length into the

constitutive framework.

Finally, the initial and final contours of the norm of normalised third invariant of
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the deviatoric stress, ‖ξ‖, are plotted in Figures 6.31 and 6.322. Noticeably, these

values vary substantially for the Lemaitre- and Gurson-based non-local models

where a much lower value of ξ at the critical region has been achieved in the

Lemaitre case. Comparing with the results obtained at high stress triaxiality

(where two different values of ξ were examined), the present results seem to suggest

that the third invariant has a more pronounced effect on the issue of pathological

mesh dependency than the triaxiality. For instance, the L-Y formulation was able

to eliminate spurious dependency when η = 0.8 and ξ = 1.0 (NOTCHED case);

however, L-Y was not effective when ξ = 0.0 and η = 0.7 (PLANE case, see Figure

6.16(c)). In the perforated plate, a third invariant close to zero has predominated

the critical region with Lemaitre-based models; in this situation, L-Y was again

insufficient to resolve mesh dependency, which is in agreement with the conclusion

drawn in the high triaxility analysis: L-Y does not result under low values of ξ.

A similar thought seems to apply for the Gurson-based models in the present case.

In the perforated plate, the associated third invariant value in the critical region

was much higher than in Lemaitre case, now tending to the unity. Remarkably,

all the Gurson-based non-local formulations were able to eliminate the spurious

mesh dependency, following the same tendency observed in the analysis of the

notched round specimen (NOTCHED). Noticeably, the value of the third invariant in

the notched specimen is precisely equal to 1.0.

2The norm of ξ has been chosen to facilitate visualisation. Note that, in the particular case
of the present assessment, distinction between positive and negative values of ξ is not important.
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(a) L-D (b) L-R

(c) L-Y (d) L-DR

Figure 6.27: Damage evolution for the Lemaitre-based non-local models.

(a) G-F (b) G-R

(c) G-EP (d) G-FR

Figure 6.28: Damage evolution for the Lemaitre-based non-local models.
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(a) (b) (c)

Figure 6.29: Damage contours for the non-local case at the critical region:
Lemaitre-based model (L-D).

(a) (b) (c)

Figure 6.30: Damage contours for the non-local case at the critical region:
Gurson-based model (G-F).

(a) Initial (b) Final

Figure 6.31: Contours of the norm of the third invariant of the deviatoric
stress tensor, ‖ξ‖, for the Lemaitre-based non-local model (L-D).
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(a) Initial (b) Final

Figure 6.32: Contours of the norm of the third invariant of the deviatoric
stress tensor, ‖ξ‖, for the Gurson-based non-local model (G-F).

6.4.3 Analysis at low stress triaxiality (0 < η < 1/3)

Finally, we assess the non-local models listed in Tables 6.1 and 6.2 when subject

to low stress triaxiality. In the present study, we shall limit ourselves to observe

the behaviour of these models under pure shear stress states (i.e., η = 0) and no

analysis under compressive loadings will be carried out. The shear specimen used

by Brünig et al. [23] will be adopted for the present assessment where the geometry

of the specimen is depicted in Figure 6.33. Like in the previous sections, three

different mesh refinements have been considered in the analysis (see Figure 6.34).

In the present case, 20-noded quadratic hexahedra have been used in the spatial

discretisation of the specimen where reduced integration has been adopted.

200 mm
3.3 mm

R4 mm

2.5 mm

Figure 6.33: Geometry of the shear specimen.
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Figure 6.34: Shear specimen: different mesh refinements at the critical region.

We start our assessment by looking at the reaction diagrams for both models

(Lemaitre- and Gurson-based) when the local case is considered (see Figure 6.35).

At a first glance, it seems that the Lemaitre-based model presents a moderate

spurious mesh dependency meanwhile the Gurson-based model shows no mesh

dependency at all. In Figure 6.36, the evolution of damage in the local case is given.

A close observation of these plots reveals a more pronounced mesh dependency

with the Lemaitre-based model than with the Gurson-based one. This statement is

supported when we look at the damage contours for both cases in Figures 6.37 and

6.38. In particular, mesh dependent solutions are not so evident in the Gurson case,

although some sensitivity to spatial discretisation is noticeable, specially because

damage tends to concentrate in a single element upon mesh refinement. We recall

that such behaviour has been noticed in Chapter 4, where in the analysis of the

same shear specimen little mesh dependency was observable. Again, as discussed

in that chapter, it seems that this less pronounced mesh sensitivity is associated

with the added shear mechanism into the constitutive equations, which allows

for a more realistic modelling of the material behaviour when under shear stress

states. In turn, experiments tend to show that, under pure shear, localisation is

not as evident as in tension, corroborating the idea that mesh dependency should

be less present when subjected to shear stress states. Notice that, contrary to the

present Gurson-based model, Lemaitre’s model has not been established focusing

on capturing the effects of material behaviour in shear.

Figure 6.39 shows the reactions for the Lemaitre-based non-local models. As ex-

pected, the L-R solution is very mesh dependent, just like in all other cases analysed

in this chapter. The solutions with L-D and L-DR have, on the other hand, been

able to effectively eliminate the pathological mesh sensitivity, meanwhile L-Y has

presented an enhanced solution (if compared to the local case) but not completely

free of spurious dependency on the spatial discretisation. These conclusions are

greatly corroborated when we observe the evolution of damage for all cases in

Figure 6.40. Similar to the cases in Sections 6.4.1 and 6.4.2, L-Y can progressively

improve the solution when the non-local intrinsic length is increased.
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In the case of Gurson-based non-local solutions, the reaction diagrams have re-

mained exactly like the one of Figure 6.35. Therefore, we shall omit these plots for

the sake of readability. However, if one carefully observes the evolution of dam-

age in Figure 6.41, it becomes quite clear that only G-F and G-FR could achieve

mesh-insensitive solutions upon mesh refinement.

The contours of damage are given for the Lemaitre- (L-D) and Gurson-based(G-F)

non-local models in Figures 6.42 and 6.43, respectively. Clearly, the effects of

pathological mesh dependency have been consistently eliminated since the damage

contours practically remain constant and distributed over a finite area as the mesh

is refined. Again, this undoubtedly demonstrates the effectiveness of these two

non-local models (L-D and G-F) where it is worth mentioning that they have been

able to tackle the issues of spurious mesh sensitivity in all cases analysed in this

chapter, regardless of the stress state.

Finally, the contours of the normalised third invariant are plotted in Figures 6.44

and 6.45. Clearly, it remains zero for the Lemaitre-based model and around ξ = 0.1

for the Gurson case. Comparing these values with those obtained in Sections 6.4.1

and 6.4.2, it is possible to note a certain tendency in the results. For instance,

in the case of PLANE (where ξ = 0.0), L-D resulted in mesh independent results

meanwhile L-DR has lead to satisfactory results. Such conclusions are in agree-

ment with the shear case of the present section, whose associated value for the

normalised third invariant is also around zero. The same idea seems to apply for

the Gurson-based non-local models, whose results under pure shear stress states

agree, to a larger extent, with the results observed in the PLANE case. In other

words, the results of the present assessment demonstrate a certain tendency that

the third invariant may have more influence in the issues of pathological mesh

dependency than the triaxiality.

(a) (b)

Figure 6.35: Reactions in the local case. Results for the Lemaitre- (a) and
Gurson- (b) based models.
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(a) (b)

Figure 6.36: Damage evolution in the local case. Results for the Lemaitre-
(a) and Gurson- (b) based models.

(a) (b) (c)

Figure 6.37: Damage contours for the local case at the critical region:
Lemaitre-based model.

(a) (b) (c)

Figure 6.38: Damage contours for the local case at the critical region: Gurson-
based model.
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(a) L-D (b) L-R

(c) L-Y (d) L-DR

Figure 6.39: Reactions for the Lemaitre-based non-local models.

(a) L-D (b) L-R

(c) L-Y (d) L-DR

Figure 6.40: Damage evolution for the Lemaitre-based non-local models.
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(a) G-F (b) G-R

(c) G-EP (d) G-FR

Figure 6.41: Damage evolution for the Gurson-based non-local models.

(a) (b) (c)

Figure 6.42: Damage contours for the non-local case at the critical region:
Lemaitre-based model (L-D).
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(a) (b) (c)

Figure 6.43: Damage contours for the non-local case at the critical region:
Gurson-based model (G-F).

(a) Initial (b) Final

Figure 6.44: Contours of the norm of the third invariant of the deviatoric
stress tensor, ‖ξ‖, for the Lemaitre-based non-local model (L-D).
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(a) Initial (b) Final

Figure 6.45: Contours of the norm of the third invariant of the deviatoric
stress tensor, ‖ξ‖, for the Gurson-based non-local model (G-F).

6.4.4 Summary of results

The large number of analysis that the present assessment has required makes the

scrutiny of the results difficult if one aims to have a general overview. Thus, in

order to facilitate comprehension, we have schematically summarised all the results

obtained in this chapter in Table 6.6. Reference values for the initial triaxiality

and the average normalised third invariant have been given for convenience. The

results suggest, to some extent, that the third invariant may have more influence

in the issue of pathological mesh dependency than the triaxiality.

Furthermore, the solutions in which damage has been regularised have been effec-

tive in all cases. Although L-D, L-DR, G-F and G-FR have in most cases resulted,

from a numerical point of view, it seems more advantageous the regularisation of

damage only than regularising both damage and the isotropic hardening variable

simultaneously. In the latter case, a dual integral averaging has to be carried out,

being more computationally costly.

We remark again that the conclusion that damage is the preferred variable to be

regularised in the case of Lemaitre- and Gurson-based models is significantly im-

portant. It seems that this is an inherent characteristic of implicit damage models.

In the case of explicit damage models, often used to model quasi-brittle materials,

the conclusion is completely different. As reported by Jirásek and Rolshoven [70],

the damage variable is a bad candidate for non-local variable for such explicit

damage models and should be avoided. Again, this utterly implies that one has

to be very careful when choosing the non-local variable for a given constitutive

model; in particular, it should analysed if the damage formulation of such material

model is done in an implicit or explicit fashion.
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Table 6.6: Summary of results.

Analysis η0 ξavg L-D L-R L-Y L-DR G-F G-R G-EP G-FR

NOTCHED 0.8 1.0 ++ −− ++ ++ ++ ++ ++ ++

PLANE 0.7 0.0 ++ −− − + ++ −− + ++

PLATE 1/3 ++ −− − ++ ++ ++ ++ ++

SHEAR 0.0 0.0 ++ −− + ++ ++ −− + ++
++ full regularisation − poor/little regularisation

+ partial but acceptable regularisation −− no regularisation

6.5 Conclusions

The main goal of this chapter was to unfold the question of which variable should

be regularised in order to obtain mesh-insensitive results under strain-softening

regimes. Therefore, several non-local models based on the constitutive theories

of Lemaitre and Gurson have been established. A brief overview on the aspects

of ductile behaviour and failure has been done where it has been emphasized the

importance of the stress state in the description of ductile materials. Since the

stress state plays a major role in material behaviour, several specimens, which

yield on different values of triaxiality and third invariant, have been considered

for the assessment of the distinct non-local models.

The results of the present assessment suggest that the third invariant of the de-

viatoric stress, rather than the triaxiality, may play a more important role in the

issue of pathological mesh dependency. Scrutiny of the results have revealed that

in both cases (Lemaitre- and Gurson-based models) the damage variable seems to

be the optimal candidate for non-local variable.





Chapter 7

An Explicit Finite Element

Formulation of Non-local Models

As thoroughly discussed and demonstrated throughout this thesis, the issue of

pathological mesh dependency can be conveniently overcome by the introduction

of a non-local enhancement, for which efficient algorithms for the numerical imple-

mentation of the non-local formulation have been presented in detail in Chapters

3 and 4. These algorithms integrate the constitutive equations in a global fash-

ion, requiring access to all integration points of the mesh. Unfortunately, this

requirement is often not met in most commercial FE-packages used by the indus-

try, which brings some difficulties when implementing the non-local enhancement

in such codes.

In the present chapter, we overcome this adversity by adopting an approximation

of the non-local theory that is suitable to be used with existing local models,

requiring only little modification. The technique is restricted to explicit finite

element implementations and it is designed to be easily incorporated as a general

user-defined feature in LS-DYNA. The shortcoming of accessing the neighbour

integration points at once is overcome by adopting an implementation strategy

that saves and uses information of the previous time step. In a general sense,

the disadvantage of such approximated non-local formulation is the requirement

of small time steps for enough accuracy. However, this does not represents a

problem in the present case since the explicit integration scheme of LS-DYNA

naturally demands very small time steps in order to guarantee stable solutions.

As a consequence, the results obtained with the present technique are sufficiently

accurate to attenuate the mesh dependency issue.

155
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In order to assess its validity, the proposed non-local technique is used with three

different material models. The first one is based on Lemaitre’s material model,

similar to the one proposed in Chapter 3. The second constitutive theory is the J2

based elasto-plastic damage model of Engelen et al. [47] intended for the simulation

of ductile materials. The third one is a recently proposed transversely-isotropic

constitutive model suitable for the description of fibre-reinforced materials prese-

tend by Vogler et al. [116]. Numerical simulation shows that the non-local tech-

nique is also able to avoid the spurious mesh dependency for these two different

material models, proving that the proposed strategy is suitable for a wider spec-

trum of applications.

This chapter is organised in the following fashion. Section 7.1 reviews very briefly

some aspects concerning explicit finite element frameworks. In particular, the

assumptions and conventions taken in the commercial software LS-DYNA are ad-

dressed, since the non-local enhancement of this chapter has been implemented

in that software. In Section 7.2, we review the three local models that will be

enhanced with the present non-local strategy. The non-local technique suitable

for the explicit integration scheme is presented in Section 7.3, where the neces-

sary modifications in the local models are demonstrated. Section 7.4 addresses

the numerical implementation in LS-DYNA, where the main necessary steps are

described in detail. Finally, selected numerical examples demonstrate the effec-

tiveness of the proposed non-local strategy, followed by some concluding final

remarks.

7.1 General aspects of the explicit finite element

framework

In this section, we briefly review some important aspects commonly associated

with explicit finite element formulations, in particular those adopted in the present

chapter. The present review has not the intention to be exhaustive since the

main objective of this chapter is to demonstrate how the non-local formulation

can be simplified to be very easily incorporated in explicit FE codes and therefore

motivating its direct use in industrial applications. We remark that comprehensive

accounts about the general aspects addressed here can be found elsewhere (e.g.

[17]). Moreover, since the non-local strategy, yet to be presented in this chapter,

has been implemented in LS-DYNA, we shall restrict ourselves to the concepts

that have been considered in this particular FE code.
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7.1.1 Objective stress rates

In the preceding chapters, hyperelastic-based plasticity models have been exclu-

sively considered.

The need for objective stress rates can be easily understood as follows. To start

with, let us superimpose a rigid body motion, denoted by Q, over the Cauchy

stress tensor:

σ = QσQT . (7.1)

Clearly, the true stress tensor, σ, remains unaltered after the rigid body motion

and therefore we can conclude that σ remains the same regardless the observer.

Such property is called as objectivity and is necessary for a concise, physically

sound constitutive theory.

Differentiating Equation (7.1) in respect to time, we get

σ̇ = Qσ̇QT + Q̇σQT +QσQ̇
T
. (7.2)

Note that, since σ̇ 6= Qσ̇QT , the rate of the Cauchy stress tensor is not objective.

In order to keep objectivity, many different expressions for the stress rate have

been proposed in the literature. In following, we review the three most usually

adopted.

The Jaumann stress rate

The Jaumann stress rate, σ5, is defined as

σ5 ≡ σ̇ + σW −Wσ, (7.3)

where W is the spin tensor, given by

W = skew[L], (7.4)

where L is the velocity gradient, defined as

L ≡ Ḟ F−1.

In LS-DYNA, the Jaumann stress rate is the default option and it will be used in

all the developments of this chapter.
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The Green-Naghdi stress rate

Another commonly used stress rate is the Green-Naghdi rate of the Cauchy stress

tensor. It is defined as:

σ♦ ≡ σ̇ + σΩ−Ωσ, (7.6)

where

Ω ≡ ṘRT . (7.7)

The Truesdell stress rate

The Truesdell stress rate is defined as

σ◦ ≡ σ̇ −Lσ − σLT + (tr[L])σ. (7.8)

7.1.2 Hypoelastic-based elastoplastic model

In LS-DYNA, hypoelastic-based plasticity is the formulation considered for most

material models. Note that up to this point in this thesis only hyperelastic-based

plasticity has been considered. One of the main advantages of hyperelastic models

is that, in sharp contrast to hypoelastic models, they are more physically consis-

tent since they do not generate dissipation in the elastic range. This can be crucial

in a large number of applications and therefore it is preferred than hypoelastic-

based formulations. However, hypoelastic frameworks are still dominant among

FE commercial codes, which are in turn extensively used by the industry. There-

fore, if one aims to apply a certain modelling strategy on industrial problems, it

turns out to be quite difficult to avoid using hypoelasticity.

Considering a general hypoelastic-plastic model, an additive decomposition of the

rate of deformation, D, into an elastic and a plastic part is usually assumed, that

is:

D = De +Dp. (7.9)

The elastic response is established by considering the following hypoelastic law:

σ5 = De : De = De : (D −Dp) , (7.10)

where De is the elasticity tensor, here considered to be constant and isotropic.
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The yield function is defined in similar manner to hyperelastic-based plastic mod-

els, that is, a certain function of the form

Fp = Fp(σ,α), (7.11)

is assumed to exist where α is the set of internal variables. Finally, we define the

plastic flow:

Dp = γ̇
∂Gp(σ,α)

∂σ
, (7.12)

where Gp is the plastic potential.

In LS-DYNA, the rate of deformation is used as the strain rate measure, i.e.,

ε̇ij =
1

2

(
∂vi

∂xj
+
∂vj

∂xi

)
. (7.13)

where v and x are, respectively, the current velocity and position vectors of a given

point. The aforementioned assumption considerably facilitates the establishment

of the material integration algorithm since small strains can be directly considered

within an incremental framework.

7.1.3 Integration of the constitutive law

Within an infinitesimal time interval, the stress tensor is given by

σij(t+ dt) = σij(t) + σ̇ijdt. (7.14)

As pointed out before, the Jaumann rate is the stress rate considered in the present

case. Within the incremental framework, we have

σ̇ij = σ5 ij + σikW kj + σjkW ki, (7.15)

where the spin tensor is given, in index notation, by

W ij = skew (L)ij =
1

2

(
∂vi

∂xj
− ∂vj

∂xi
,

)
, (7.16)

and σ5 = σ5 (ε̇,α) is the increment of the stress tensor, computed in the small

strain constitutive integration algorithm.
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The stress update procedure in LS-DYNA follows an incremental strategy, that is,

the stresses are updated from instant tn to tn+1 in the following fashion:

σijn+1 = σijn + rijn + σ5 ij
n+ 1

2

∆tn+ 1
2
, (7.17)

where the expression σ5 ij
n+ 1

2

∆tn+ 1
2

is the time discretised version of σ5 and is re-

trieved in the small strain material integration routine. The term rijn gives the

rotation of the stress from tn to tn+1 through

rijn =
(
σipnW

pj

n+ 1
2

+ σjpn W
pi

n+ 1
2

)
∆tn+ 1

2
. (7.18)

7.1.4 Discretised explicit finite element framework

In Chapter 2, the theory for the description of continua under motion has been

restricted for the quasi-static case. In that case, the components associated with

accelerations can be disregarded, since inertial forces are negligible. However,

in the explicit case, the consistent consideration of these forces is fundamental.

Therefore, we firstly recall the equilibrium equation in its strong form:

divxσ + b = ρü. (7.19)

Adopting the same procedures as in Chapter 2, Section 2.3, Equation 7.19 can be

rewritten, in its weak form, as∫
ϕ(Ω)

[σ : ∇xη − b− ρü] dV −
∫
ϕ(∂Ω)

t · η dA = 0. (7.20)

Similar to the framework provided in Chapter 2, the above equation has analyti-

cal solutions only for a limited number of special cases and practical engineering

applications require solutions using some sort of numerical strategy. As alluded

in Chapter 2, the numerical method chosen in this thesis is the Finite Element

Method, which requires Equation (7.20) to be discretised in space. A suitable time

discretisation of the Equation (7.20) is also generally required for which the Finite

Difference Method is herein adopted.

Discretisation in space

In the present case, the space discretisation follows exactly the same steps as in

Chapter 2, where geometry and displacements have been interpolated through
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shape functions. The use of these shape functions eventually leads to a set of

semi-discrete equilibrium equations:

Ma + Cv + f int(u) = f ext, (7.21)

where M and C are the mass and damping matrices, a = ü and v = u̇ are the

acceleration and velocity vectors and u is the displacement vector

Remark 7.1. For efficient numerical implementations, it is highly desirable that

the mass and damping matrices, M and C, be diagonal lumped. In this case,

the system of equations, defined in Equation (7.21), becomes uncoupled and each

equation can be solved separately, yielding on computationally efficient finite ele-

ment programs. Diagonal mass and damping matrices are the standard option in

LS-DYNA.

Discretisation in time

In order to set up an incremental finite element framework, where at every incre-

mental step we advance in time from tn to tn+1, the set of equations (7.21) needs

to be integrated over time. In LS-DYNA, the central difference scheme is adopted

for the time integration of the equilibrium equation. After some straightforward

manipulations, one gets

vn+ 1
2

= vn− 1
2

+ ∆tnan, (7.22)

un+1 = un + vn+ 1
2
∆tn+ 1

2
, (7.23)

where

an = M−1
(
f extn − f intn −Cvn

)
, (7.24)

and

∆tn+ 1
2

=
∆tn+1 + ∆tn

2
. (7.25)

For convenience, the general algorithm for the explicit time integration is given in

Box 5 where the main steps are schematically depicted.

Critical time step

Unlike implicit integration schemes, explicit finite element frameworks are con-

ditionally stable, i.e., they require suitable time steps in order to keep overall

stability. In the one-dimensional case, the critical time step is given through a
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Box 5: General algorithm for the explicit time integration.

(i) Initialise stresses, displacements, velocities and accelerations for t = t0

(ii) Update global velocity and displacement vectors

vn+ 1
2

= vn− 1
2

+ ∆tnan

un+1 = un + vn+ 1
2
∆tn+ 1

2

(iii) Update stress state, σn+1

(iv) Calculate the element internal force vector and assemble its contribution to
the global vector

f int(e) =

∫
V

BTσn+1 dV ,

f intn+1 = ASSEMBLEnelem
e=1

[
f int(e)

]
(v) Compute the global external force vector, f extn+1

(vi) Calculate the associated accelerations

an+1 = M−1
(
f extn+1 − f intn+1 −Cvn+ 1

2

)
(vii) If final time has not been reached, GOTO (ii).

relation of the following type:

∆tcrit =
Le
c
, (7.26)

where Le is the characteristic element length and c is the wave speed, which reads,

in the general case,

c =

√
E

ρ
, (7.27)

where E is the Young’s modulus and ρ is the density. If ∆t > ∆tcrit, numerical

oscillations may arise, dramatically reducing the quality of the solution. In LS-

DYNA, a standard time step of the form ∆t < 0.9∆tcrit is adopted in order to

prevent any numerical instability to take place.

Within the scope of this chapter, two- and three-dimensional elements have been

considered in the numerical analysis. In the case of two-dimensional elements, the

quantities Le and c read

L2D
e =

Ae
max(L1, L2, L3, L4)

, (7.28)
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c2D =

√
E

ρ (1− ν2)
, (7.29)

where Ae is the area of the element and L1, L2, L3 and L4 are the lengths of the

four sides of the elements.

Finally, in the three-dimensional case, we have

L3D
e =

Ve
Amaxe

, (7.30)

c3D =

√
E(1− ν)

(1 + ν)(1− 2ν)ρ
, (7.31)

where Ve is the element volume and Amaxe is the area of the largest size.

7.2 Local modelling of damage

In this section, we define the constitutive equations of three material models in

the local case. These models will serve as examples for application of the non-local

scheme yet to be presented in this chapter. For the sake of completeness, we also

provide the equations for the numerical implementation of these models but only

in a brief manner. Since local implementations of these models are already well

described elsewhere, we shall make reference to those contributions.

It is important to recall that the present hypoelastic-based plasticity formulation

allows the definition of the material integration algorithm under the hypothesis of

small strains where all the necessary kinematic operations are performed outside

of the material routine. Therefore, we shall restrict ourselves henceforth to present

the constitutive equations considering small strains.

7.2.1 Lemaitre’s ductile damage model

The constitutive model proposed by Lemaitre [see 74, 75, 76] was based on a

thermodynamic framework with internal variables. Recalling the first principle

of thermodynamics, Lemaitre stated that for isothermal processes there exists a

Helmholtz free energy potential such that

ψ = ψ (ε, εe, εp, R,D) , (7.32)
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where ε is the total strain tensor, εe is the elastic strain tensor, εp is the plastic

strain tensor, R is the isotropic hardening variable and D is the isotropic dam-

age variable. For the sake of simplicity, the effects of kinematic hardening have

been neglected here, differently of Lemaitre’s original formulation. Within the

assumption of small strains, the additive split of the strain tensor is valid, i.e.,

ε = εe + εp. (7.33)

The free energy function is re-phrased as being composed by the sum of two distinct

parts, i.e.,

ψ = ψe (εe, D) + ψp (R) , (7.34)

where ψe (εe, D) and ψp (R) are the amount of free energy due to elastic-damage

and due to plasticity, respectively.

The second principle of the thermodynamics of irreversible processes states that

the dissipated energy must be equal or greater than zero. Making use of the

Clausis-Duhem inequality, we write the dissipation ϕ as

ϕ = σ : ε̇− ρψ̇ ≥ 0, (7.35)

where ρ is the density of the material. The rate of the free energy function, ψ̇, is

given by

ψ̇ =
∂ψ

∂εe
: ε̇e +

∂ψ

∂R
Ṙ +

∂ψ

∂D
Ḋ. (7.36)

The partial derivatives in Equation (7.36) are thermodynamic forces given by

σ = ρ
∂ψ

∂εe
, χ = ρ

∂ψ

∂R
, Y = ρ

∂ψ

∂D
, (7.37)

where σ is the Cauchy stress tensor, χ is the thermodynamic force conjugated

with the isotropic hardening variable and Y is the damage energy release rate.

Substituting these relations in Equation (7.35), yields on

ϕ = σ : ε̇p − χṘ− Y Ḋ ≥ 0. (7.38)

In order to obtain the evolution of the internal variables εp, R and D, a dissipation

potential F can be defined as

F = F (σ, χ,−Y ) = Fp (σ, χ) + Fd (−Y ) , (7.39)

where Fp is the plastic dissipation potential and Fd is the dissipation potential

due to damage. Assuming the so-called normality rule, the rate equations for the
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plastic strain tensor, the isotropic hardening variable and the damage variable are

respectively given by

ε̇p = γ̇
∂F

∂σ
, (7.40)

Ṙ = −γ̇ ∂F
∂χ

, (7.41)

Ḋ = γ̇
∂F

∂ (−Y )
, (7.42)

where γ̇ is the plastic multiplier. In order to obtain the final equations for the

constitutive model, expressions for the dissipation potentials Fp and Fd in Equation

(7.39) must be defined. For the dissipation potential due to plasticity, the von

Mises yield function will be adopted:

Fp =
q

1−D
− σy (χ(R)) , (7.43)

where q is the von Mises equivalent stress and σy is the yield stress. Furthermore,

we adopt the damage dissipation potential proposed by Lemaitre [76]:

Fd =
r

(s+ 1)(1−D)

(
−Y
r

)s+1

, (7.44)

where r and s are material parameters and −Y is the damage energy release rate

given by

− Y =
q2

2E (1−D)2

[
2

3
(1 + ν) + 3 (1− 2ν)

(
p

q

)2
]
, (7.45)

where p is the hydrostatic stress, ν is the Poisson’s ratio and E is Young’s modulus.

Alternatively, it can also be expressed as

− Y =
q2

6G(1−D)2
+

p2

2K(1−D)2
, (7.46)

where G and K are respectively the shear and the bulk moduli. Considering the

above expressions for Fp and Fd in the dissipation potential F = Fp + Fd, the

evolution of each internal variable is given by

ε̇p =
3

2

γ̇

(1−D)

s

q
, (7.47)

Ṙ = γ̇, (7.48)

Ḋ =
γ̇

(1−D)

(
−Y
r

)s
, (7.49)
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where s is the deviatoric stress tensor given by

s = σ − pI, (7.50)

where I is the second order identity tensor. Finally, the constitutive model is

complete with the loading/unloading conditions,

Fp ≤ 0, γ̇ ≥ 0, γ̇Fp = 0, (7.51)

which must hold for any deformation process.

Numerical implementation

A detailed account of the numerical implementation of Lemaitre’s ductile damage

model without kinematic hardening can be found in [27, 36]. Therefore, we shall

only review some of the main steps. The algorithm for the numerical integration

of the local constitutive model follows a typical elastic predictor/return-mapping

strategy and therefore starts with the definition of the elastic trial state. Notice

that the constitutive behaviour is meant to be locally computed at every material

point within a generic time interval [tn, tn+1], where the constitutive variables εpn,

σn, Rn and Dn are known ’a priori’. The goal of the algorithm is to find the

updated values of εpn+1, σn+1, Rn+1 and Dn+1. The elastic trial tensor is given by

σtrialn+1 = σn + (1−Dn)De : ∆ε (7.52)

where ∆ε is the incremental strain tensor. Plastic admissibility is checked using

the yield function of Equation (7.43). If it is not satisfied, i.e. Fp > 0, the following

residual equation is solved:

r(∆γ) := 3G∆γ − (1−Dn)(qtrialn+1 − σy(∆γ)) +
(qtrialn+1 − σy)2

3G

(
−Y (∆γ)

r

)
. (7.53)

After convergence has been achieved, the stress state is updated as follows:

Rn+1 = Rn + ∆γ, (7.54)

Dn+1 = 1−
(

3G∆γ

qtrialn+1 − σy

)
, (7.55)

εen+1 = εe trialn+1 −
√

3

2

∆γ

(1−Dn+1)

dev
(
εe trialn+1

)∥∥dev
(
εe trialn+1

)∥∥ , (7.56)

σn+1 = (1−Dn+1)De : εen+1. (7.57)
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7.2.2 Engelen and co-workers’ ductile damage model

We will adopt herein a constitutive framework similar to the one proposed by

Engelen et al. [47]. The model of Engelen and co-authors was formulated in such

manner that non-locality was introduced through an implicit gradient approach.

Their results have shown that the gradient methodology is able to successfully

eliminate pathological mesh dependency. Our intention by adopting a similar

constitutive model is to show that our non-local technique, yet to be presented in

this chapter, has the same regularising characteristics of Engelen and co-authors’

formulation.

We firstly introduce the constitutive equations using the local theory. The yield

function of the present ductile damage model is given by

Fp = q − (1−D(κ))σy(κ), (7.58)

where q =
√
J2(s) is the equivalent von Mises stress, s = σ − pI is the stress

deviator, σ is the stress tensor, p = 1
3
trσ is the pressure, σy is the yield stress and

κ is the accumulated plastic strain. The scalar D(κ) is the local damage, which

here is considered to be

D(κ) =
κ

κc
, (7.59)

where κc is the critical value of accumulated plastic strain at which full material

failure occurs.

Associative plasticity is assumed, therefore, plastic flow reads

ε̇p = γ̇
∂Fp
∂σ

= γ̇

√
3

2

s

‖s‖
. (7.60)

Within the present constitutive framework, plasticity and damage are assumed to

take place respecting the loading/unloading conditions:

γ̇ ≥ 0; Fp ≤ 0; γ̇Fp = 0. (7.61)

Numerical implementation

The present ductile damage model has been implemented in LS-DYNA via user-

defined subroutines (umat41) where the classical elastic-predictor/return-mapping

scheme has been adopted in the numerical implementation. In the algorithm, the
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following trial state

σtrialn+1 = σn + De : ∆ε, (7.62)

is initially assumed and plastic admissibility is checked using the yield function

in Eq. (7.58). If Fp > 0, then the following residual equation is solved for ∆γ

through the Newton-Raphson method:

r(∆γ) := qtrialn+1 − 3G∆γ − [1−Dn+1(κn+1)]σy(κn+1), (7.63)

where κn+1 = κn + ∆γ. When a certain prescribed tolerance is reached, the stress

tensor is updated as

σn+1 =

(
1− 3G∆γ

qtrialn+1

)
strialn+1 + ptrialn+1I. (7.64)

7.2.3 Vogler and co-workers’ material model for short fibre-

reinforced polymers

The transversely-isotropic constitutive framework proposed by Vogler and co-

workers [116, 117] has been conceived to describe the observed material non-linear

behaviour of fibre-reinforced materials by means of an elastoplastic law. Unlike

conventional anisotropic theories, the present approach relies on the use of struc-

tural tensors, so that the constitutive equations are independent of the coordinate

system. Thus, the constitutive equations are established in a straightforward man-

ner meanwhile the material parameters can be determined more easily.

In contrast to metals, thermoplastic materials in general exhibit a strong pressure-

dependent material behaviour, which results in different yielding in uniaxial ten-

sion and compression, under shear and under biaxial loadings. Furthermore, the

assumption of volume constancy during plastification does not hold for thermo-

plastic polymers. Especially in the tensile range (uniaxial and biaxial tensile stress

states) this effect cannot be neglected. Due to reorientation of molecule chains and

due to fibre reinforcements, most thermoplastics also exhibit anisotropic material

behaviour. This direction-dependent behaviour does not only affect the plastic

yielding, but also the strain rate sensitivity. A material and failure model, aiming

to predict these effects, is therefore summarised in the following. A more detailed

description is given in references [116] and [117].
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The yield surface, a function of the transversely-isotropic invariants, is formulated

as

Fp = α1 I1 + α2 I2 + α3I3 + α32I
2
3 + α4 I4 + α42 I

2
4 − 1, (7.65)

with the yield surface parameters α1, α2, α3, α32, α4 and α42. The detailed

definition of the invariants is given by Vogler et al. [116]. Each of these parameters

represents a loading state. The parameter α1 stands for transverse shear, α2

for in-plane shear, α3 and α32 represent uniaxial compression and tensile loading

transverse to the preferred direction and the parameters α4 and α42 control yielding

in fibre direction both in compression and tension. The yield surface parameters

are directly related to the current yield stress, given by the respective hardening

curve for each stress state. Thus, different yielding and hardening in uniaxial

compression and tension transverse to the fibre direction and in fibre direction

as well as different yielding under in-plane and transverse shear can be described

using the present constitutive theory.

In order to enable a realistic representation of plastic Poisson’s coefficients observed

in experiments, a non-associated flow rule is adopted. The plastic flow potential,

which gives the direction of the projection onto the yield surface, is formulated as

Gp = β1 I1 + β2 I2 + β3I3 + β32I
2
3 + β4 I

2
4 − 1. (7.66)

The failure surface follows the same equation as the yield surface formulation, see

Equation (7.65). Therefore, the experimentally identified ultimate strengths in

each loading state are required for calculating the six failure surface parameters in

Equation (7.65). In particular, these are the fibre parallel strengths in tension and

compression, Rt
‖ and Rc

‖, the uniaxial tensile and compressive strength perpendic-

ular to the fibre direction, Rt
⊥ and Rc

⊥, and the material strength of transverse

shear R⊥⊥ and in-plane shear R‖⊥. If the failure criterion is active, a degradation

of the stresses is performed using a damage approach, where damage is added into

the model in an explicit fashion through the linear expression

Dn+1 = α(εpn+1 − εfail), (7.67)

where α is a damage-related parameter and εpn+1 is the norm of the plastic strain

tensor. In the equation above, εfail denotes a strain value, associated with failure,

obtained by applying the failure criterion. The stress tensor is then substituted

by

σdamn+1 = (1−Dn+1)σn+1. (7.68)
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Numerical implementation1

The numerical implementation follows a standard elastic-predictor/plastic-corrector

scheme assuming an additive decomposition of the strain increment. The stresses

at the end of each time step t = tn+1 are

σn+1 = σtrialn+1 −∆γn+1Ce : Nn+1, (7.69)

where σtrialn+1 are the elastic trial stresses, Ce is the transversely-isotropic elasticity

tensor, ∆γn+1 is the sought plastic multiplier and Nn+1 is the direction of the

plastic flow, given by the plastic potential

Nn+1 =
∂Gp(σn+1)

∂σn+1

. (7.70)

Inserting the stresses σn+1 into the yield surface formulation and enforcing the

yield surface to be zero at the end of the time step (consistency condition Fpn+1 =

0) leads to a non-linear equation in ∆γn+1 whose solution is pursued by employing

the Newton-Raphson method. When solution is reached, the plastic strains are

updated at the end of each time step by

εn+1 = εn + ∆γn+1Nn+1. (7.71)

7.3 Non-local formulation

As discussed in Chapter 1, a constitutive model formulated within the non-local

framework has the major advantage of being effectively free of spurious mesh

dependency, for which the size of the localizing zone (dictated by the internal

length) can be easily controlled. However, the non-local method is very often

avoided due to its non-standard implementation requirements.

In this chapter our intention is to present an alternative numerical implementation

that aims to considerably simplify the process of turning a local model into non-

local within the LS-DYNA environment. The technique has been designed in such

manner that the non-local enhancement has to be implemented in LS-DYNA (via

1The implementation of the local material routine of the present transversely isotropic mate-
rial model in LS-DYNA has been carried out by Dipl. Ing. Matthias Vogler, who is here greatly
acknowledged. The implementation was part of a cooperative work whose developments and
results have been published in [4, 117]. Again, the objective of this chapter is to demonstrate
the great applicability of the present non-local strategy with many different constitutive models
rather than exhaustively review material formulations that are already well established.
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user-defined subroutines) just once. After this initial implementation, any user-

defined local material model implemented in LS-DYNA can be transformed into

non-local in a few minutes.

The cornerstone of the technique is based on the approximation of the non-local

formulation proposed by Tvergaard and Needleman [114]. To start with, let us

consider that a generic variable z is the desired local quantity to be converted to

non-local. Using the approximated non-local strategy, the updated value of the

local variable, zn+1, is re-phrased as

z∗n+1 = Knlzn+1, (7.72)

where Knl is a non-local penalty factor defined as

Knl =
z̄n
zn
. (7.73)

In the equation above, zn and z̄n are respectively the local and non-local values at

the last converged incremental step. Therefore, the stress integration is performed

locally where the chosen variable z is penalized with the coefficient Knl. Note

that, in order to obtain stable results with the present strategy, it is imperative to

keep the size of the time step small enough2. As a matter of fact, an explicit finite

element framework naturally demands very small time steps dictated by a given

stability criterion. Therefore, the technique is perfectly suitable if the explicit

scheme is adopted.

The non-local average at a given spatial point x is defined as

z̄n(x) =

∫
V

β(x, ξ)zn(ξ) dV (ξ), (7.74)

where β(x, ξ) is the non-local operator expressed by

β(x, ξ) =
α(x, ξ)∫

V
α(x, ζ) dV (ζ)

, (7.75)

and α(x, ξ) is the weighting function, here considered to be the bell-shaped func-

tion, i.e.,

α(x, ξ) =

〈
1− ‖x− ξ‖

2

`2
r

〉2

. (7.76)

2Since the present methodology is actually an approximation of the full non-local formulation,
increases in the time step inevitably correspond to increases in the error of such approximation.



Chapter 7. An Explicit Finite Element Formulation of Non-local Models 172

7.3.1 Lemaitre’s ductile damage model

We start by modifying Lemaitre’s ductile damage model, described in Section

7.2.1. We recall that in Chapter 6 it has been concluded that, for implicit damage

models, damage is the most suitable choice for non-local quantity. Therefore, the

increment of damage is changed in Lemaitre’s case to be given by

∆D∗tn+1
= Knl∆Dtn+1 , (7.77)

where

Knl =
∆D̄tn

∆Dtn

. (7.78)

7.3.2 Engelen and co-workers’ based non-local ductile dam-

age model

In the case of the ductile damage model of Section 7.2.2, the updated damage

assumes the form

Dn+1(κ∗n+1) =
κ∗n+1

κc
, (7.79)

for which

κ∗n+1 = Knlκn+1, (7.80)

where Knl is the non-local penalty factor given by

Knl =
κ̄n
κn
. (7.81)

Remark 7.2. As pointed out in Chapter 6, in the case of explicit damage models,

the choice of damage as the non-local quantity leads to locking results as reported

by Jirásek and Rolshoven [70]. In this case, the regularisation of the variable that

drives damage is preferred. In the present model, this variable corresponds to the

accumulated plastic strain given by the quantity κ. For this reason, κ has been

chosen to be affected by the non-local penalty fractor, Knl.

7.3.3 Vogler and co-workers’ non-local transversely-isotropic

model

In a similar manner to the ductile damage model, the transversely-isotropic model

of Section 7.2.3 has incorporated damage in an explicit fashion. To avoid spurious
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results, we will replace Equation (7.67) by

Dn+1 = α(εp ∗n+1 − ε
p
fail), (7.82)

where

εp ∗n+1 = Knlεpn+1, (7.83)

and

Knl =
ε̄pn
εpn
. (7.84)

Remark 7.3. Similarly to the case of Engelen and co-workers’ model, the variable

that drives damage, which is in the present model related to the norm of the plastic

strain tensor, has been here chosen to be non-local. This stems from the fact that

the damage law in the transversely-isotropic model of Vogler and co-workers has

been established in an explicit fashion.

7.4 Numerical Implementation in LS-DYNA

It is worth mentioning that LS-DYNA has the option of using non-local formu-

lations through the keyword MAT NONLOCAL since Version 960 [1]. However,

this option is restricted to some elastoplastic models and is not accessible for

user-defined constitutive models.

Concerning the implementation of the proposed non-local technique, the first step

is the spatial discretisation of the integral of Equation (7.74). Following the same

procedures of Chapters 3 and 4, we adopt the Gaussian quadrature, i.e.,

z̄i =

npgi∑
j=1

wjJjβijzj (7.85)

where βij ≡ β(x, ξ) is the averaging factor that relates the Gauss points i and

j respectively located at global coordinates x and ξ. The quantities z̄i and zj

are the constitutive variables associated to the Gauss points i and j, respectively.

The quantity wj is the Gaussian weight and Jj is the Jacobian, both evaluated

at the Gauss point j. Finally, npgi is the number of Gauss points that lie inside

the non-local volume of interaction measured from point i. In the numerical im-

plementation, z is substituted by the associated constitutive variable according to

the model that is enhanced with non-locality.

In order to facilitate comprehension, a schematic flowchart for the implementation

of the non-local technique in LS-DYNA is depicted in Figure 7.1. In Appendix C,
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we have listed a FORTRAN code excerpt with the main steps of the implemen-

tation in file dyn21.f. Two main steps are need for the implementation of the

non-local stratey. The first one concerns the computation of the factors wj, Jj and

βij of Equation (7.85). These factors are merely geometrical3, i.e., they depend on

the finite element mesh itself and not on the material model. Therefore, once this

step has been implemented, it can be re-used whenever the non-local formulation

is activated.

Remark 7.4. In the case of large strain analysis, different strategies for the non-

local averaging can be considered as discussed in Chapter 3, Section 3.2.2. In

the case of explicit integration schemes, where the time steps are much smaller

than the ones employed in implicit analysis, the computational burden associated

with the non-local averaging of Eulearian-type makes it a very unattractive option,

since the βij factors need to computed at every time step with that strategy. On

the other hand, a modified version of the updated Lagrangian-type of non-local

averaging, described in Chapter 3, Section 3.2.2, could be adopted, in which the

βij factors should be updated every n time steps. However, it does not seem to

exist any evidence supporting the fact that such strategy should be preferred over

the total Lagrangian-type, for instance. Hence, the total Lagrangian-type of non-

local averaging seems to be the most appropriate strategy in explicit integration

schemes, especially due its high computational efficiency (the βij factors just need

to be computed once), and therefore it has been adopted in all the simulations

carried out in this chapter.

The second step concerns the computation of the non-local penalty factor, Knl.

Since it uses the local values of the previous time step, the local variable can

be stored in the array var loc after calling the user material routine umat41.

Note that in the code excerpt of Appendix C the arrays var loc and var nonloc

contain the local and non-local values of every element of the mesh. The statement

SAVE var loc guarantees that the information stored in the array var loc will

be available in the next time step. It is important to remark that the calculations

performed for the computation of the non-local values (through the discretised

integral of Equation 7.85) and of the non-local penalty factor are the same for

any material model. The only difference is in the variable which is used in these

calculations. For instance, in the case of the ductile damage model of Section 7.2.2,

one needs to store the updated accumulated plastic strain, κn+1, in var loc. In

the case of the transversely-isotropic model of Section 7.2.3, the updated values

of the plastic strain norm are saved in the array var loc at every time step.

3In order to compute the non-local factors, one needs to have the element connectivities and
the nodal coordinates.
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Knl = z̄n
zn

Figure 7.1: Schematic flowchart of the implementation of the non-local strat-
egy.

One important aspect for the non-local technique to be successful is the use of

numerical provisions after the calculation of the penalty factor, Knl, where such

provisions are, to some extent, model-dependent and, therefore, they need to be

adjusted to different constitutive models accordingly. This step has been repre-

sented in the sample code of Appendix C in the line CALL analyse k. Numerical

instabilities and round-off errors may arise whenever one of the variables used

for the penalty factor calculation reaches extreme values (for instance, very small

values in the denominator of Equation 7.73), which may cause unwanted oscilla-

tions in the results. During this study, a much greater sensitivity to numerical

instabilities in the implicit damage model has been experienced than in the ex-

plicit ones. This is mainly due to the fact that, in the case of implicit damage

models, the magnitudes of the rate of the chosen non-local variable are in general

very small at each time-step. Thus, the implementation of the non-local technique

with implicit damage models requires special attention. Nonetheless, adjusting

the numerical provisions is not a time-consuming task, especially when compared

with the implementation of a full non-local model from scratch.

It is also worthwhile emphasizing that, since the non-local effects are incorporated

using values of previous time steps, the present non-local technique can be em-

ployed either in scalar or in vectorized LS-DYNA implementations. Thus, the
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advantages of parallel processing are not lost within the present non-local frame-

work.

7.5 Examples

7.5.1 Lemaitre’s ductile damage model

In this first example, the analysis of an axisymmetric specimen (see Figure 7.2)

is carried out in order to assess the regularising effects of the proposed numerical

implementation. We recall that a similar specimen has been investigated by the

authors in Chapter 3 using an implicit finite element formulation. Three mesh re-

finements using linear quadrilateral elements with reduced integration (see Figure

7.2) have been considered in order to capture the pathological mesh dependency.

The material properties adopted are given in Table 7.1.

It is worth mentioning that the regularising effects of the non-local theory can

only be achieved if the characteristic length is large enough to span at least some

elements. Therefore, in the present case, the value of `r has been chosen aiming to

fulfil this condition rather than based on experimental measurements. Nonetheless,

this consideration is reasonable enough to assess the non-local algorithm.

The specimen is loaded at its ending edge with a low velocity that grows linearly

with time, therefore, minimising the effects of inertia. Figure 7.3 shows the damage

contours for the local case. We notice that damage tends to concentrate at the

critical element meanwhile its numerical value also tends to increase. Conversely,

Figure 7.2: Geometry and meshes for the axisymmetric specimen.
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Table 7.1: Material properties for the axisymmetric specimen.

Property Value

Elastic modulus E = 210 GPa

Poisson’s ratio ν = 0.3

Damage exponent s = 1.0

Damage denominator r = 2.5 MPa

Initial yield stress σy0 = 80.559 MPa

Hardening function σy(R) = σy0 +
[
589 (10−4 +R)

0.216 − σy0

]
MPa

Non-local intrinsic length `r = 1.0 mm

Figure 7.3: Damage contours in the local case.

the non-local solution provides a different behaviour. Observing Figure 7.4, it is

possible to notice that both the damaging area and the damage values are kept

nearly constant upon mesh refinement.

In Figure 7.5, the evolution of the damage variable and of the non-local penalty

factor, Knl , are plotted at the critical point of the finest mesh. At the initial

stages, when damage is still low, the penalty factor is kept constant and equal to

unity. However, when damage begins to evolve rapidly, the penalty factor decreases

accordingly, which slows down the rate of damage evolution. As a consequence,

spurious localisation is avoided. Note that some oscillations in the penalty factor

are observed (see Figure 7.5). This stems from the fact that the rates used in the

computation of the penalty factor are very small due to the small time steps of
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the explicit analysis. The use of numerical provisions, as pointed out in Section

7.4, tends to minimise such oscillations.

Figure 7.4: Damage contours in the non-local case.

Figure 7.5: Evolution of damage and the non-local penalisation factor, Knl.
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7.5.2 Engelen and co-workers’ ductile damage model

We continue to assess the non-local strategy with the ductile damage model of Sec-

tion 7.2.2. Therefore, we simulate two specimens commonly used in the experimen-

tal determination of the properties of metals (see Figure 7.6). The first specimen

can be simulated using an axisymmetric formulation meanwhile the second one

can be analysed considering a plane strain state. It is worth mentioning that both

specimens deliver similar triaxiality ratios at the critical region (0.7 . η . 0.8);

however, the value of the normalised third invariant, ξ, is different (i.e., around 1.0

in the axisymmetric specimen and about 0.0 in the plane strain one). As discussed

in Chapter 6, not only the triaxiality but also the third invariant of the deviatoric

stress tensor plays an important role in the characterisation of the stress state and

also in the failure onset. The specimens have been considered to be made of steel

(E = 200 GPa, ν = 0.3) with a yield stress function given by σy(κ) = 700+300κ0.3

MPa.

The damage contours resulting from the simulation of axisymmetric and plane

strain specimens are respectively given in Figures 7.7 and 7.8. The force dis-

placement diagrams are also plotted for both specimens. Close inspection on

these figures reveals that spurious mesh dependency is much stronger in the plane

strain specimen than in the axisymmetric one. This fact has also been alluded

in Chapter 6 where local and non-local models based on the constitutive theories

of Lemaitre and Gurson have been comprehensively compared. Note that those

models are quite different from the one employed in the present analysis. Finally,

it is evident from the results that the proposed non-local technique has effectively

alleviated the spurious mesh dependency associated with the strain-softening.

40 mm

φ 18 mm

R4 mm

10.1 mm

5 mm

R2.58 mm

50 mm

Figure 7.6: Geometry of the specimens for the ductile damage analysis using
Engelen and co-workers’ based model.
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(a) (b) (c)

(d) (e) (f)

Figure 7.7: Damage contours for the axisymmetric specimen: (a–c) local;
(d–f) non-local.

(a) (b) (c)

(d) (e) (f)

Figure 7.8: Damage contours for the plane strain specimen: (a–c) local; (d–f)
non-local.
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(a) (b)

Figure 7.9: Force-displacement diagrams: (a) axisymmetric specimen; (b)
plane strain specimen.

7.5.3 Fibre-reinforced materials

In order to further assess the proposed non-local technique, we simulate three

specimens commonly used in the experimental determination of the properties of

fibre-reinforced materials (see Figure 7.10). The transversely-isotropic material

model of Section 7.2.3 is then adopted for the numerical analysis. The selected

specimens comprise three different stress states, namely tension, compression and

shear. Each specimen has been discretised with three different mesh refinements

in order to verify if the non-local formulation is able to prevent spurious results.

In Figure 7.11, the results for the tension specimen are illustrated. Clearly, if the

local theory is assumed, the numerical solutions become highly mesh dependent

when the softening regime takes place. The non-local solution, on the other hand,

(a) (b) (c)

Figure 7.10: Specimens for (a) tension, (b) compression and (c) shear test.
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is able to provide mesh-insensitive results since damage spreads over the elements

at the central region. The results for the shear specimen are provided in Figure

7.12. We observe a very accentuated mesh sensitivity of the local solution, where

damage tends to concentrate into a single layer of elements. When the non-local

strategy is activated, the spurious mesh dependency is prevented, rendering more

physically sound results. Finally, Figure 7.13 depicts the results obtained in the

compression test. Again, pathological mesh dependency is evident within the

standard local theory, which has been significantly alleviated with the use of the

non-local formulation.

(a) (b)

Figure 7.11: Results for the tension specimen: (a) damage contours; (b) force-
displacement diagram.

7.6 Conclusions

In this chapter, a strategy for the implementation of non-local models in LS-DYNA

has been presented. The technique has been designed to be generically applicable

to several user-defined material models, requiring only little modification in the

original local routines. Three different constitutive models, two of them suitable

for the description of ductile metals and the other one intended for the simula-

tion of fibre-reinforced materials, have been coupled with the present non-local

technique. The numerical analysis has demonstrated that the non-local strategy

has been able to prevent unlimited localisation and physically sound results have

been obtained. It is important to mention that, once the general routines of the

non-local scheme have been implemented, the non-local extension of the aforemen-

tioned material models was straightforward. Thus, the obtained mesh-insensitive
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results and the generality of implementation make the present non-local technique

a strong candidate against other competitive regularisation methods and also plau-

sible for industrial applications.

(a) (b)

Figure 7.12: Results for the shear specimen: (a) damage contours; (b) force-
displacement diagram.

(a) (b)

Figure 7.13: Results for the compression specimen: (a) damage contours; (b)
force-displacement diagram.





Chapter 8

Final Remarks

Indeed, in a progressively more competitive industrial scenario, the need for more

reliable predictions of ductile deformation and material failure is fundamental.

Only so it is possible to substantially reduce the use of unnecessary material and

thus achieving robust designs. A precise modelling of the ductile behaviour in-

evitably involves the description of observed phenomena like plastic straining and

strain-driven softening, often requiring highly non-linear constitutive models. In

particular, the use of strain softening laws inevitably leads to pathological mesh

dependency if the standard local continuum theory is considered.

The main goal of this thesis was to resolve the issues of spurious mesh sensitivity

through a non-local approach of integral-type, especially because many questions

were open and and some are still matter of dispute in the specialised literature.

In particular, the integral-type formulation of the non-local theory seems to have

been ignored by most researchers. The main claim was that non-local formula-

tions of integral-type are prohibitive, rendering in inefficient numerical implemen-

tations. Throughout this thesis, it has been shown that such argument is not

true, where efficient algorithms have been presented in detail. In particular, it

is worth mentioning that a general framework for the establishment of consistent

tangent stiffness for non-local models of integral-type has been developed, making

the integral approach competitive with gradient-enhanced models.

In the following, the main advances accomplished in this thesis have been sum-

marised by chapter, where the principal achievements are again reviewed.

185
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Chapter 3

In Chapter 3, some important theoretical aspects concerning non-local theories

of integral-type have been addressed. In particular, we have shed some light on

the underlying hypothesis that either the non-local averaging operator or the non-

local intrinsic length are independent of the deformation history. This clarification

is fundamental for the correct establishment of the non-local models addressed

in this thesis. It is due to this assumption that the extension of the non-local

theory to the finite strain domain can be done straightforwardly. Some finite strain

gradient-dependent theories available in the literature have directly assumed that

kinematics are local. As a matter of fact, local kinematics are a direct consequence

of the independence of the non-local averaging operator (or the non-local gradient

kernel, in gradient-dependent theories) on the history of deformation. This tacitly

implies that the intrinsic length is kept constant with regard to deformation.

The advances of thermodynamically consistent non-local models, first exclusively

adopted in the literature to model quasi-brittle materials, have been extended

to describe deformation of ductile materials at finite strains. Nonetheless, it has

been shown that the simple ad-hoc extension of the local model to the non-local

case do not infringe thermodynamic principles since no negative dissipations are

generated.

A general numerical framework for the numerical integration of the constitutive

equations considering the non-local case has been developed and presented in de-

tail. An algorithm that integrates all the Gauss points of the structure simultane-

ously has been proposed. It has been shown that, in the case of the Lemaitre-based

ductile damage model, a modified Newton-Raphson approach that substantially

saves computational time and storage space provides high convergence rates.

Chapter 4

Since most Gurson-based damage models available in the literature are not able

to describe material degradation when subject to shear stress states, an additional

shear mechanism, based on the work of Nahshon and Hutchinson [83], has been

incorporated in the constitutive model of Chapter 4. In order to avoid spurious

mesh dependency, the damage variable has been rewritten to be non-local. The

establishment of the associated constitutive equations as well as the numerical

framework for the update procedure have been present in detail. It has been

shown that in the case of the non-local Gurson-based damage model, a global

system of equations that contains smaller system of equations (each one associated
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with a given Gauss point of the mesh) has to be solved. A full and a modified

Newton-Raphson strategies have then been established for the solution of the

constitutive problem. Numerical investigation has shown that the additional shear

mechanism together with the regularised damage approach have lead to mesh-

insensitive results when subjected to different stress states.

Chapter 5

Many authors have advocated that non-local models of integral-type are pro-

hibitive especially because it is (allegedly) not possible to define consistent tan-

gent operators and therefore the convergence rates obtained with those models are

rather poor. In Chapter 5, it has been shown that this is not true and, indeed,

it is possible to have consistent tangent operators, associated with the non-local

integral scheme, that are plausible in computational terms. The absence of a

continuum tangent modulus has been clarified in this chapter, where it has been

demonstrated that the discrete finite element problem allows us to define a global

constitutive relation. A general procedure for the establishment of non-local con-

sistent tangent operators has been then developed and demonstrated in detail.

Later, the presented framework has been particularised for the cases of J2 plas-

ticity and the Lemaitre-based ductile damage model of Chapter 3. Numerical

examples have clearly shown that the quadratic rates of convergence inherent to

the Newton-Raphson method have been achieved.

Chapter 6

The main goal of Chapter 6 was to unfold the question of which constitutive

variable should be regularised to avoid spurious mesh dependency. In order to

properly answer this question, a comprehensive assessment of several non-local

models has been carried out where these models have been subjected to different

values of stress triaxiality and third invariant of the deviatoric stress tensor. Since

the stress state plays a fundamental role in the behaviour and fracture of ductile

materials, it was the main concern to observe how the different non-local models

respond under distinct external load conditions. It has been found that some op-

tions that are able to tackle spurious mesh sensitivity in a certain stress state fail

completely when subject to another stress triaxiality or third invariant. Further-

more, the conclusions reported by other authors in the context of explicit damage

models are completely different from those drawn in the assessment of Chapter 6,

where implicit damage models have been considered. This utterly implies that one
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has to be very careful when choosing the non-local variable of a given constitutive

model. After a very careful scrutiny, the assessment has shown that, in the case

of implicit damage models, the damage variable seems to be the optimal choice.

Chapter 7

In Chapter 7, a numerical strategy concerning non-local models of integral-type

suitable for explicit finite element frameworks has been presented. The main

advantage of the strategy is that it avoids the solution of a global system of

equations, making it particularly useful for the implementation in commercial

codes. This is accomplished by taking advantage of the explicit scheme itself.

Since the critical time step requirements necessary to keep stability in the explicit

scheme are very small, an approximation of the non-local integral operator can be

done where it is evaluated using the constitutive quantities of the previous time

step. Therefore, the integration of the constitutive equations is kept local, where a

penalisation factor based on a non-local average is applied. Another advantage of

the technique is that it is very flexible, which permits its use with different material

models. In Chapter 7, the strategy has been applied to two ductile damage models

and to a recently proposed transversely isotropic constitutive model intended to

describe deformation and failure of fibre-reinforced materials. The proposed non-

local approach has been implemented in the FE commercial code LS-DYNA and

the numerical results have shown that it was able to effectively eliminate spurious

mesh dependency for different materials under different stress states.

8.1 Suggestions for future work

Identification of the non-local intrinsic length

Throughout this thesis, the non-local intrinsic length, `r, has been regarded as

a numerical parameter. The main intention of that was to concentrate in spe-

cific theoretical and numerical aspects that, from the author’s point of view, still

needed developments as of the writing of thesis. However, a comprehensive com-

parison with experimental results should be performed. Up to this date, there is no

procedure for the measurement of the non-local intrinsic length, especially in the

case of ductile materials. In fact, a direct measurement seems impracticable, so

that some sort of parameter identification procedure should be adopted in order to

quantify `r. Recent advances accomplished in the non-local field have achieved a
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very mature stage that allow the combination of the available numerical tools with

optimisation strategies in order to identify the non-local intrinsic length properly.

Comparison between the integral and gradient non-local approaches

As pointed out in Chapter 3, gradient and integral non-local theories seem to have

been employed to model distinct materials; the former mostly used to describe

ductile materials like steel and aluminium, the latter for quasi-brittle materials

like concrete. Some comparisons between the two competitive approaches have

been done in the literature (e.g., see [89]). However, most of them have solely

concentrated in demonstrating that the implicit gradient and the integral schemes

are equivalent. One of the main arguments against the non-local formulation of

integral-type was the lack of consistent linearisation. However, the work of Jirásek

and Patzák [69] and the developments carried out in Chapter 5 of this thesis have

shown that consistent tangents are also practicable in the integral non-local case.

An important future study is therefore to compare both implicit gradient and

integral approaches in terms of numerical efficiency, so that future regularised

constitutive models may adopt, already from its conception, the most efficient

regularisation method.

Application of the non-local theory with complex constitutive models

The majority of the non-local developments of this thesis have been combined

with classical constitutive models. However, in the last few years, many new

material models, able to describe complicated strain path more accurately, have

been proposed in the literature. An important step for the precise prediction of

plastic straining, material degradation and failure in practical applications would

combine these novel advanced models with an appropriate non-local formulation,

so that softening regimes can be simulated without spurious mesh dependency, for

which complicated strain paths can be described properly.

Development of theories containing an evolving non-local intrinsic length

A main assumption made in the developments of this thesis was that the history

of deformation has no influence on the non-local averaging operator. This means

that, in the underlying formulation, the non-local intrinsic length remains con-

stant as the body undergoes deformation. Thus, the size of the fracturing area

is inherently assumed to be related to a constant dictated by `r. However, there
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is no experimental evidence neither supporting nor contradicting this hypothesis.

Apparently, a more realistic modelling would consider an evolving non-local in-

trinsic length, for which `r would be a function of other variables that are known

to significantly influence the dissipative fracturing process (e.g. the plastic strain,

the stress state, the damage or the history of deformation itself). However, the

consideration of a non-local theory with a non-constant intrinsic length as well as

an averaging operator which is dependent on the history of deformation (or some

other constitutive quantity) is still very challenging, both from the theoretical and

the computational point of view. Nevertheless, the development of such enhanced

theories would help to better understand material failure and also would widen

the application of the non-local theory to a larger number of materials.



Appendix A

Linearisation of the Weak

Equilibrium Equation

The linearisation of the equilibrium equation in its weak form (also often called

virtual work equation) is a very well-established procedure in the literature (e.g.,

see [40]) and will be briefly reviewed here. The intention is not to be exhaustive

but rather to provide a reference for the developments addressed in this thesis.

The correct linearisation of the equilibrium equation is crucial for the consistent

derivation of tangent moduli, either in the local or in the non-local case.

To start with, we define a functional, G, associated with the material version of

the equilibrium equation, by writing

G(u,η) =

∫
Ω

P : ∇pη dV −
∫
∂Ω

t̄ · η dA. (A.1)

Applying the concept of directional derivative [62], we have

DG(u∗,η)[d] =
d

dε

∣∣∣∣
ε=0

∫
Ω

P (F (ε)) : ∇pη dV −
∫
∂Ω

t̄ · η dA. (A.2)

Assuming that the surface traction field, t̄, is configuration-independent, Equation

(A.2) reduces to

DG(u∗,η)[d] =
d

dε

∣∣∣∣
ε=0

∫
Ω

P (F (ε)) : ∇pη dV (A.3)
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where the first Piola-Kirchhoff stress tensor is a function of the perturbed gradient

deformation, F (ε), defined by

F (ε) = I +∇p(u
∗ + εd) (A.4)

= F ∗ + ε∇pd (A.5)

where F ∗ denotes the deformation gradient for the displacement field u∗, which

reads

F ∗ = I +∇pu
∗. (A.6)

Straightforward multi-variable calculus leads to

DG(u∗,η)[d] =

∫
Ω

A : ∇pd : ∇pη dV (A.7)

where A is the material tangent modulus, defined by

A ≡ ∂P

∂F

∣∣∣∣
F ∗
. (A.8)

Considering the standard identities [58]

∇xa = ∇paF
−1, (A.9)∫

ϕ(Ω)

a(x) dV =

∫
Ω

J(p)a(ϕ(p)) dV , (A.10)

which are valid for any scalar field a and vector field a, straightforward substitu-

tions and re-arrangements allows us to express the directional derivative for the

spatial description as

DG(u∗,η)[d] =

∫
ϕ(Ω)

a : ∇xd : ∇xη dV (A.11)

where a is the spatial tangent modulus, which in index notation is defined as

aijkl =
1

J
AimknF jmF ln (A.12)

where A is the material tangent modulus, defined by

Aimkn =
∂P im

∂F kn
. (A.13)
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The first Piola-Kirchhoff stress tensor P can be related to the Cauchy and Kirch-

hoff stress tensors by the expressions P = JσF−T and P = τF−T , respectively.

These identifies allows us to straightforwardly re-phrase Equation (A.13) to be

given by

Aimkn =
∂

∂F kn

[
τ ip (Fmp)−1] . (A.14)

By making use of the chain rule, we have

Aimkn =
∂τ ip

∂F kn
(Fmp)−1 + τ ip

∂ (Fmp)−1

∂F kn
(A.15)

where derivative of the last term of the right hand side of Equation (A.15) is given

by
∂ (Fmp)−1

∂F kn
= −

(
Fmk

)−1
(F np)−1 . (A.16)

In the derivation above, Equation (A.16) has been obtained using relations for the

derivative of the inverse of a tensor given in the literature [40, 66, 73]. Substituting

(A.16) into (A.15) gives

Aimkn =
∂τ ip

∂F kn
(Fmp)−1 − τ ip

(
Fmk

)−1
(F np)−1 . (A.17)

Finally, the substitution of (A.17) into (A.12) eventually leads, after some straight-

forward algebraic manipulations, to the following expression for the spatial tangent

modulus:

aijkl =
1

J

∂τ ij

∂F km
F lm − σilδjk. (A.18)





Appendix B

Linearisation of the Non-local

Stress Integration

B.1 Linearisation in the general case

Let us firstly consider a local constitutive model which has been discretised with

the typical fully implicit backward Euler scheme:

Aσ = σn+1 −De :
[
εe trialn+1 −∆γNn+1

]
Aα = αn+1 −αn −∆γHn+1

AF = Fpn+1


=



0

0

0


. (B.1)

In the equations above, N is the flow vector and H is the generalised hardening

modulus. In the general case, the non-local constitutive problem is a global system

of constitutive equations for which the solution must be found simultaneously, i.e.,


S1

S2

...

Snip

 =


O1

O2

...

Onip

 (B.2)
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where

Si =



Aσi = σin+1 −De :
[
εe trialin+1

−∆γiN in+1

]
Aαi

= ᾱin+1 − ᾱin −
nip∑
j=1

wjJjβij∆γjHjn+1

AFi
= Fp in+1

(B.3)

and

Oi =


0

0

0

(B.4)

In order to keep the notation clear, we shall omit the subscript n + 1 in the

following derivations. The global system of equations in (B.2) in its linearised

form is expressed by 
L1

L2

...

Lnip

 =


B1

B2

...

Bnip

 (B.5)

where

Li =



nip∑
j=1

∂Aσi
∂σj

: dσj +

nip∑
j=1

∂Aσi
∂ᾱj

∗ dᾱj +

nip∑
j=1

∂Aσi
∂∆γj

d∆γj

nip∑
j=1

∂Aαi

∂σj
: dσj +

nip∑
j=1

∂Aαi

∂ᾱj
∗ dᾱj +

nip∑
j=1

∂Aαi

∂∆γj
d∆γj

nip∑
j=1

∂AFi

∂σj
: dσj +

nip∑
j=1

∂AFi

∂ᾱj
∗ dᾱj +

nip∑
j=1

∂AFi

∂∆γj
d∆γj

(B.6)

and

Bi =


dεe trialj

0

0

(B.7)
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The linearised system can be conveniently organised in a symbolic matrix format,

i.e., 

[C]11 [C]12 · · · [C]1nip

[C]21 [C]22 · · · [C]2nip

...
...

. . .
...

[C]nip1 [C]nip2 · · · [C]nipnip





[X]1

[X]2

...

[X]nip


=



[B]1

[B]2

...

[B]nip


(B.8)

where

[C]ij =



∂Aσi
∂σj

∂Aσi
∂ᾱj

∂Aσi
∂∆γj

∂Aαi

∂σj

∂Aαi

∂ᾱj

∂Aαi

∂∆γj

∂AFi

∂σj

∂AFi

∂ᾱj

∂AFi

∂∆γj


(B.9)

and

[X]i =


dσi

dᾱi

d∆γi

 . (B.10)

In practical terms, we have two vectors of order ncv × nip and one square matrix

of order (ncv × nip)× (ncv × nip) where ncv is the number of constitutive variables

per integration point. The exact global constitutive relation between stresses and

strains is established by inverting the global compliance matrix, [C], which yields

on 

[X]1

[X]2

...

[X]nip


=



[E]11 [E]12 · · · [E]1nip

[E]21 [E]22 · · · [E]2nip

...
...

. . .
...

[E]nip1 [E]nip2 · · · [E]nipnip





[B]1

[B]2

...

[B]nip


(B.11)
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where [E] = [C]−1. The lines and rows associated with the other constitutive

variables can be disregarded of the final matrix and only the terms associated

with the stress and strain are needed. Therefore, the global constitutive relation,

written in symbolic matrix notation, assumes the following form

dσ1

dσ2

...

dσnip


=



D11 D12 · · · D1nip

D21 D22 · · · D2nip

...
...

. . .
...

Dnip1 Dnip2 · · · Dnipnip





dεe trial1

dεe trial2

...

dεe trialnip


. (B.12)

Thus, the constitutive relation of a given integration point is always dependent of

the surrounding points. The global relationship of matrix in Equation (B.12) has

to be afterwards used in the assemblage of the global stiffness matrix.

B.2 Non-local tangent operator: Lemaitre-based

non-local model

We repeat here again the non-local consistent tangent operator associated with

the Lemaitre-based non-local ductile damage model of Chapter 3. For the case

when j = i, it is given by

Dii = a1

[
I− 1

3
I ⊗ I

]
+ b1N̄ in+1 ⊗ N̄ in+1 + c1N̄ in+1 ⊗ I + d1I ⊗ N̄ in+1 + e1I ⊗ I.

(B.13)

If j 6= i, then Dij is written:

Dij = b2N̄ in+1 ⊗ N̄ jn+1 + c2N̄ in+1 ⊗ I + d2I ⊗ N̄ jn+1 . (B.14)
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The scalars used above are given by

a1 = s12, (B.15)

b1 = s11 −
s13

F ′11

F11, (B.16)

b2 = s21 −
s23

F ′21

F21, (B.17)

c1 = − s13

F ′11

F12, (B.18)

c2 = − s23

F ′21

F22, (B.19)

d1 = p12 −
p13

F ′11

F11, (B.20)

d2 = p22 −
p23

F ′21

F21, (B.21)

ee = p11 −
p13

F ′11

F12, (B.22)

where

F11 =

√
2

3

(
−Yn+1

r

)s
− 2G

√
3

2

(1−Dn+1)(
q̃trialn+1 − τy

) , (B.23)

F12 =
s

r

(
q̃trialn+1 − τy

)
K

3G

(
−Yn+1

r

)s−1
1

3
tr
(
εe trialin+1

)
, (B.24)

p11 = (1−Dn+1)K, (B.25)

p12 = −2GK

√
3

2

(1−Dn+1)(
q̃trialn+1 − τy

) 1

3
tr
(
εe trialin+1

)
, (B.26)

p13 = [3G+ (1−Dn+1)H]
K(

q̃trialn+1 − τy
) 1

3
tr
(
εe trialin+1

)
, (B.27)
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s11 = −2G (1−Dn+1)

(
2q̃trialn+1 − τy

)
τy(

q̃trialn+1 − τy
)
q̃trialn+1

, (B.28)

s12 = 2G (1−Dn+1)
τy
q̃trialn+1

, (B.29)

s13 =

√
2

3

[
3Gτy(

q̃trialn+1 − τy
) +

(1−Dn+1) τyH(
q̃trialn+1 − τy

) + (1−Dn+1)H

]
, (B.30)

F ′11 = 3G+ (1−Dn)H

− 2

3G

(
q̃trialn+1 − τy

)
H

(
−Yn+1

r

)s
+

s

r

(
q̃trialn+1 − τy

)2
τyH

9G2

(
−Yn+1

r

)s−1

. (B.31)

F11 =

√
2

3

(
−Yn+1

r

)s
− 2G

√
3

2

(1−Dn+1)(
q̃trialn+1 − τy

) , (B.32)

F12 =
s

r

(
q̃trialn+1 − τy

)
K

3G

(
−Yn+1

r

)s−1
1

3
tr
(
εe trialin+1

)
, (B.33)

p11 = (1−Dn+1)K, (B.34)

p12 = −2GK

√
3

2

(1−Dn+1)(
q̃trialn+1 − τy

) 1

3
tr
(
εe trialin+1

)
, (B.35)

p13 = [3G+ (1−Dn+1)H]
K(

q̃trialn+1 − τy
) 1

3
tr
(
εe trialin+1

)
, (B.36)
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s11 = −2G (1−Dn+1)

(
2q̃trialn+1 − τy

)
τy(

q̃trialn+1 − τy
)
q̃trialn+1

, (B.37)

s12 = 2G (1−Dn+1)
τy
q̃trialn+1

, (B.38)

s13 =

√
2

3

[
3Gτy(

q̃trialn+1 − τy
) +

(1−Dn+1) τyH(
q̃trialn+1 − τy

) + (1−Dn+1)H

]
, (B.39)

F ′11 = 3G+ (1−Dn)H

− 2

3G

(
q̃trialn+1 − τy

)
H

(
−Yn+1

r

)s
+

s

r

(
q̃trialn+1 − τy

)2
τyH

9G2

(
−Yn+1

r

)s−1

. (B.40)





Appendix C

LS-DYNA Implementation Code

Excerpt

We provide herein an excerpt of the FORTRAN code necessary for the implemen-

tation of the non-local strategy in LS-DYNA as a user-defined option (see Chapter

7). Only the main steps have been listed here and the sample code is intended to

serve as a general guide only. The implementation has to be incorporated in file

dyn21.f.

SUBROUTINE urmathn (...)

....

COMMON/bk06/idmmy,iaddp,ifil,maxsiz,ncycle,time(2,30)

....

! Declare dimensions for nonl-ocal formulation

DIMENSION betaij(...), var_loc(mxelem), var_nonloc(mxelem)

DIMENSION connect(mxelem,8), coord(mxnode,3)

! Save data for the next step

SAVE betaij, var_loc, connect, coord

....

! Get connectivities and nodal coordinates (only at cycle #1)

IF(ncycle.EQ.1)THEN

CALL get_connectivities (..., connect )

CALL get_coordinates (..., coord , r_mem(dm_x) )

ENDIF

! Compute non-local factors beta_ij (only at cycle #2)

IF(ncycle.EQ.2)THEN

CALL compute_nonlocal_factors (..., betaij , connect , coord )
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ENDIF

! Compute non-local variable (at every cicle)

IF(ncycle.GE.2)THEN

CALL compute_nonlocal_variable (..., betaij , var_loc , var_nonloc )

ENDIF

....

DO 90 i=lft,llt

! Get external element ID (solids)

ielem=lqfinv(nnm1+i,2)

! Compute penalty factor K

factor_k=var_nonloc(ielem)/var_loc(ielem)

CALL analyse_k (...)

....

! Local user material routine

41 CALL umat41 (..., factor_k)

....

! Store local variable to be used in the next step

var_loc(ielem)= hsv(...)

....

90 CONTINUE

....

END SUBROUTINE urmathn
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[68] M. Jirásek. Nonlocal damage mechanics. Revue Européene de Génie Civil,
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