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Abstract

The micropitting gear tooth flank damage has attracted considerable attention in
recent times. This is due to the fact that, as the performance of the lubricant oils
and surface coatings of the gears allows for an increase in speeds and power trans-
mission within the gearboxes, this type of damage becomes increasingly frequent,
especially in surface hardened materials with current surface finishing.

The micropitting damage consists in small craters (in the order of 10 µm in width
and depth) appearing on the surface of a gear tooth. These craters are produced by
the propagation of fatigue cracks that originate from the surface of the gear tooth,
where a highly complex stress state is to be found because of the interaction of the
roughness features of the teeth. Because the propagation of one such fatigue crack
is nearly instantaneous, when compared with the initiation time, and because of
the highly localized nature of the phenomenon, allied to the complex multi-axial
stress history of an initiation site, the classic fatigue criteria such as the Goodman
or Soderberg line are inadequate for the present use.

The aim of this work is to develop a model suitable for the analysis of tooth flank
surface fatigue damage in spur gears, in particular micropitting contact fatigue
initiation and mild wear. The prominent features of the model are a mixed film
lubrication model and the application of the Dang Van high-cycle multi-axial fatigue
criterion. By taking into account the roughness of the contacting gear teeth, the
non-Newtonian behaviour of the lubricating oil, the temperature variations within
the contact and the elastic and fatigue properties of the gear material, it allows for
a realistic, if approximate, modelling of the physical phenomena behind the onset
of micropitting.

The micropitting initiation model was used to simulate an actual micropitting
test. The comparison of the test with the simulation results proved sufficiently
satisfactory to warrant further work on the model.
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Resumo

O dano por micropitting nos flancos das engrenagens tem atráıdo uma considerável
atenção nos últimos tempos. Isso deve-se ao facto de que, à medida que as per-
formances dos óleos lubrificantes e dos revestimentos superficiais das engrenagens
vão permitindo aumentar as velocidades e potências transmitidas nas caixas de en-
grenagens, esse tipo de dano torna-se cada vez mais frequente, especialmente nas
engrenagens endurecidas superficialmente e com acabamento superficial corrente.

O dano de micropitting consiste no aparecimento de pequenas crateras (na ordem
de 10 µm em largura e profundidade) na superf́ıcie dos flancos de engrenagem.
Essas crateras são produzidas pela propagação de fissuras de fadiga originadas
na superf́ıcie do dente, onde um estado de tensão altamente complexo impera,
causado pela interacção entre as rugosidades dos dentes. A propagação dessas
fendas é praticamente instantânea, quando comparada com o tempo de iniciação.
Em conjunto com isso, a escala minúscula do fenómeno, aliada à complexidade do
historial de tensões duma zona de iniciação tornam inviável o uso de critérios de
fadiga clássicos, tais como as linhas de Goodman ou Soderberg.

O objectivo deste trabalho é o desenvolvimento de um modelo adequado para a
análise dos danos de fadiga nas superf́ıcies dos flancos de engrenagens ciĺındricas,
com particular incidência sobre a iniciação de fadiga de contacto de micropitting e
sobre o desgaste ligeiro. Os aspectos mais proeminentes do modelo são um modelo
de lubrificação por filme misto e a aplicação do critério de fadiga multi-axial de
elevado número de ciclos de Dang Van. Porque o modelo incorpora as rugosidades
das engrenagens, a reologia não Newtoniana dos óleos de lubrificação, as variações
térmicas no contacto e as propriedades elásticas e de fadiga do material de en-
grenagem, ele permite uma simulação realista, embora aproximada, dos fenómenos
f́ısicos que levam ao micropitting.

O modelo de iniciação de micropitting foi usado para simular um teste de mi-
cropitting. A comparação do teste com a simulação revelou-se suficientemente
satisfatória para dar continuação a trabalhos adicionais no âmbito deste modelo.

vii



viii



Résumé

L’endommagement de micropitting sur les flancs d’engrenage a attiré dans les
dernières années une attention considérable. Cela se doit au fait que, a mesure que
la performance des huiles de lubrification et des revêtements de surface des flancs
d’engrenage s’améliorent et permettent l’augmentation des vitesses et puissances
transmises dans les boites d’engrenages, ce type de damage devient de plus en plus
fréquent, spécialement dans le cas d’engrenages avec endurcissement superficiel et
une finition de surface courante.

L’endommagement de micropitting consiste en l’apparition de petites cratères
(de l’ordre de 10 µm en largeur et profondeur) sur les flancs des dents d’engrenage.
Ces cratères son produites par la propagation de fissures de fatigue originaires de
la surface du flanc, oû règne un état de tension extrêmement complexe, a cause
de l’interaction des rugosités des dents en contact. Parce que la propagation d’une
telle fissure de fatigue est quasiment instantanée, surtout si comparée a la durée
d’initiation, et parce que le phénomène est hautement local et a cause de la compexe
histoire de tensions multi-axiales du site d’initiation de la fissure, les critères de
fatigue classiques, tel que la ligne de Goodman ou de Soderberg, sont inadéquats a
l’utilisation présente.

L’objectif de ce travail est de développer un modèle propre a l’analyse des en-
dommagements sur la surface des flancs d’engrenage cylindrique, en particulier
l’initiation de fatigue de contact de micropitting et l’usure légère. Les aspects les
plus proéminents du modèle sont un modèle de contact en régime de lubrification en
filme mixte et l’application du critère de fatigue de Dang Van, un critère multi-axial
et de nombre élevé de cycles. Par le fait que le modèle prend en compte les ru-
gosités des flancs des dents d’engrenage, la rhéologie non Newtonienne de l’huile de
lubrification, les variations thermiques dans le contact et les propriétés élastiques
et de fatigue du matériau d’engrenage, il permet une modélisation réaliste, bien
qu’approximative, des phénomènes physiques qui conduisent a l’apparition du mi-
cropitting.

Ce modèle a été utilisé pour simuler un essai de micropitting. Les comparaisons
entre les résultats du test et de la simulation sont suffisamment satisfaisantes pour
encourager la continuation de travaux additionnels sur le modèle.
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Introduction

The trend in gear design has been, for the past few decades, in an improvement
of the gear materials and surface treatments. This, alongside the improvement in
lubricant oils formulation has allowed for ever higher speeds and power density in
gear boxes. These improvements have helped in reducing the effect of the most
destructive kinds of fatigue damage. In particular, the sort of progressive, in-
depth originated fatigue damages, whose most characteristic example is the spalling
damage, have been greatly reduced. As a result, surface originated fatigue damage
have gained importance in the determination of the life of a gear [3] [4].

These types of damage, and preponderant among them the micropitting damage,
come from the propagation of cracks that initiate at the surface of the gear and
progress, first inward and then outward, until a surface pit is produced [2]. A crucial
characteristic of these fatigue cracks is that they have a very short propagation time
[3]. Thus, in practice, the total life of a crack is equal to the initiation time. In
this setting, an initiation model is very useful when dealing with such a fatigue
mechanism.

Because these types of damage develop wholly within the first few tens of microm-
eters of the depth below the surface of a tooth, the important stress perturbations
caused by the interaction of the roughness of the teeth cannot be ignored [5] [6]. In
practise, this translates itself in the need for the solution of the lubrication prob-
lem in the mixed film regime, in which important surface pressure distributions
occur due to the interaction of the roughness peaks of each tooth with the surface
of the opposing one, be that interaction through direct metal-metal contact, be it
mediated by a very thin, highly pressurized lubricating film [7].

This work concerns itself with the prediction of micropitting damage and mild
wear in a spur gear. Micropitting is mainly defined by the small size of its pits,
typically in the order of 10 µm in width and depth [8]. While not immediately
destructive, the appearance of micropitting on the surface of a gear results in an
increase in the noise level and in the geometric inaccuracy of the teeth, causing
a loss in efficiency of the transmission. In extreme cases, a crack originating in a
micropit may progress in depth with catastrophic consequences. Another possible
scenario is that widespread micropitting so weakens the surface that a layer of
material is removed at once [9].

The aim of this work is to provide a numerical model for the prediction of the
initiation of micropitting fatigue cracks and mild wear. This model hinges on the
solution of the contact problem between gear teeth, characterized by the mixed film
regime of elastohydrodinamic lubrication, and on the application of the Dang Van
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Introduction

high cycle multi-axial fatigue criterion, selected for use in this work because of its
suitability for the prediction of fatigue crack initiation in complex loading cases.

This dissertation is divided into six chapters, in addition to the present intro-
ductory one. The next three chapters deal with the elements of the model, the
subsequent one integrates these into a cohesive numerical model, the last-but-one
presents an attempt at simulating an actual micropitting test and the final chapter
discusses the conclusions to draw from this work.

In Chapter 1, several aspects of the geometry of a gear tooth, the kinematics
of gear meshing and the Hertzian contact mechanics are presented. Notably, the
roughness is discussed regarding its meaning, measurement and several roughness
parameters relevant to the present work. The equations that describe the nominal
profile of a gear tooth are established, with a bias toward the discretization of the
surface of a tooth. In the sequence of this, the kinematics of gear meshing are
described mathematically, with particular emphasis on the notable points on the
meshing line. Finally, the Hertzian contact mechanics solution of the gear meshing
is presented.

In Chapter 2 an overview of lubricants and lubrication is provided. In particular,
lubricant oil rheology is discussed. Subsequently, a mixed film lubrication model
for rough elastohydrodinamic lubrication is presented.

In Chapter 3 an overview of the method of obtaining the stresses within a gear
tooth as well as an overview of the Dang Van fatigue criterion are presented. In
particular, the method by which the Dang Van criterion may be applied from the
previous knowledge of the stress history of each point in the tooth is discussed. The
chapter closes with a discussion of the various types of damage to be encountered
when dealing with gears, with particular emphasis on the micropitting phenomenon
and its relation with fatigue crack initiation.

Chapter 4 presents an overview of the numerical model—which integrates the
various subjects discussed in the previous chapters—alongside with the algorithms
used to solve the most difficult numerical problems: the solution of the contact at
each instant, the calculation of the stresses in each point of the tooth and at each
instant and, finally, the calculation of the mesoscopic stresses, a quantity necessary
in order to apply the Dang Van criterion.

Chapter 5 describes a micropitting test and its simulation by the model developed
here. Subsequently, a comparison of the test and simulation results is presented in
order to validate the adequacy of the model for the simulation of the initiation of
micropitting cracks.

Finally, Chapter 6 closes this work with a presentation of the conclusions and
some proposals for future works that might extend and improve the present one.
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1 Geometry, kinematics and contact
mechanics of a spur gear

1.1 Introduction

The geometry of a disc or a bearing ball is so simple as to hardly need any discussion.
What is more, the geometric and kinematic conditions of such mechanical elements
do not change during a load cycle. Thus, the geometry of these elements need
hardly be mentioned when studying them. This is far from true in the case of spur
gears. Because of this an entire chapter—this one—is dedicated to the study of
the geometry of the spur gear tooth flank (in which is included its roughness), the
kinematics of the meshing of spur gears and its Hertzian contact mechanics.

1.2 Roughness

Every engineering surface possesses a nominal geometry, which is the mathemati-
cally ideal shape that is to be approximated to some specified degree. Because of the
imprecise nature of any manufacturing process, the actual shape is always different
from the ideal one. This difference is usually divided into shape imperfection—a
therm that is meant here to stand both for shape deviation and waviness—and
roughness. Simply put, a shape imperfection is a difference such that the macro-
aspect is altered; while the roughness is a small variation around the ideal shape.
The distinction between shape imperfection and roughness is largely conventional:
while extreme cases are easily distinguished the boundary is blurred; so that the
distinction between one and the other is dependent on the end use of the part, the
overall dimensions etc. . .

This is exemplified in Figures 1.1 to 1.3. Figure 1.1 shows the roughness mea-
surement of a gear tooth in the radial direction. It also shows the nominal shape of
the tooth as a dotted line. Figure 1.2 shows the shape imperfections of the tooth
and Figure 1.3 shows the roughness.

It has already been said that roughness is caused by the manufacturing processes.
This is only partly true: while initial roughness is caused by the manufacturing
processes, the roughness may vary with use because of running-in and surface dam-
age.
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Figure 1.1: Roughness measurement of a gear tooth (full line) and its nominal shape
(dotted line) in the radial direction.
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Figure 1.2: Shape imperfections of a gear tooth in the radial direction.
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Figure 1.3: Roughness of a gear tooth in the radial direction.

1.2.1 Roughness measurement

The most usual method of roughness measurement is to slide a stylus along the
surface to be measured. This stylus transmits the signal to a controller that trans-
lates these signals into coordinates and filters the data. This is the method used at
the Unidade de Tribologia, Vibrações e Manutenção Industrial (CETRIB.) where
a Hommewerke T4000 device is used to perform the measurements. A photograph
of this device is shown in Figure 1.4

1.2.2 Roughness parameters

Roughness parameters are numbers that allow the characterization of some aspect of
surface roughness. All roughness parameters are specified in standards. A detailed
overview of roughness measurement and roughness parameters is given in [10].

Prior to the calculation of the roughness parameters, the measured profile must
be filtered in order to obtain a roughness profile like the one shown in Figure 1.3.
Broadly put, the filtering process consists in decomposing the unfiltered profile in a
sum of simple sine waves, whose wavelengths are compared with the cut-off length
(λc), a parameter that differentiates between roughness on one side, and nominal
shape and shape imperfections on the other. The amplitude of the waves is then
reduced according to their wavelength: a wave whose wavelength is much higher
than the cut-off length will be all but eliminated and one whose wavelength is much
lower will be transmitted untouched.

After this, the measured length is divided into 5 segments of equal length, this
length being the cut-off length.
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1 Geometry, kinematics, contact mechanics

Figure 1.4: Photograph of a Hommelwerke T4000 controller and measurement rig.

A few parameters which will be used later in this work are now described.

• The average roughness, Ra, is given by the equation:

Ra =

√
1

lm

∫ lm

0
|y (x)| dx (1.1)

where lm is the measured length.

• The root mean-square profile height, Rq, is given by the equation:

Rq =

√
1

lm

∫ lm

0
y2 (x) dx (1.2)

where lm is the measured length. This is none other than the standard devi-
ation from statistics.

• The mean peak to valley height, RZ.DIN , obtained with:

RZ.DIN =
1

5

5∑
i=1

zi (1.3)

where zi are the maximum peak to valley heights in each of the five segments
of length λc.

This gives a description of the amplitude of the roughness that is not too
sensitive to freak events, like a single abnormally deep valley in the profile.
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1.3 Profile of a gear tooth

• The reduced peak height, Rpk and the reduced valley depth, Rvk.

The method for obtaining these parameters, which are derived from the
Abbott-Firestone curve, is rather complex and its detailed explanation is
best left as supplementary reading in the work by Mummery [10].

Their interpretation may be stated thus: the roughness may be classified in
three parts. One is the core roughness, a roughness that falls within limits
that encompass 40% of the material on the surface. Above this core roughness
rise the highest peaks. Below the core roughness sink the lowest valleys.

Rpk is the average height of the highest peaks above the core roughness and
Rvk is the average depth of the lowest valleys below the core roughness.

These are useful parameters because, unlike Rq and RZ.Din, they not only
represent statistical averages and maxima, but also convey some information
as to the shape of the roughness profile. For instance, a roughness profile
with a low Rpk compared to Rvk is in the form of a plateau.

From the point of view of studying micropitting, they are also particularly
interesting because the micropits manifest themselves as abnormally deep
valleys in the roughness profile and therefore must influence the parameter
Rvk and leave essentially unchanged the core roughness.

1.3 Profile of a gear tooth

The nominal geometry of a spur gear tooth profile can usually be described as a
circle involute (see Figure 1.5). It is therefore convenient at this stage to recall the
main equations that govern this geometry.

The circle involute may be likened to the trajectory of the end of a length of string
unwinding around a disk. This is exemplified in Figure 1.6. Taking an arbitrary
point P on the circle involute, the length PQ is the length of the unwound string
and the arc length R̄Q is the space previously occupied by the string on the circle.
Therefore:

R̄Q = Rbθ = PQ (1.4)

Consider a pair of versors ~ı,~k respectively tangent and normal to the involute at
the point P . It is found that~ı is also parallel to the radius OQ, so that the position
of the point P may be expressed, in relation to the centre of the base circle, as:

−→
OP =

−→
OQ+

−→
QP = −Rb ·~ı−Rbθ · ~k (1.5)

If, as before, another arbitrary point P0 and its associated versors ~ı0 and ~k0 are
singled out, it must of necessity obey the same law as the previous point P :

−−→
OP0 = −Rb ·~ı0 −Rbθ0 · ~k0 (1.6)
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1 Geometry, kinematics, contact mechanics

bas
e cir

cle

involute

Figure 1.5: Profile of a spur gear tooth.

It would be most useful to write a parametric equation of the involute in the
coordinate system defined by point P0 and its associated versors. This is achieved
by considering P0 fixed and P moving on the curve.

It is readily observed that the pair of versors ~ı,~k is nothing more than the pair
~ı0, ~k0 rotated by an angle θ − θ0:

~ı = cos (θ − θ0)~ı0 − sin (θ − θ0)~k0

~k = sin (θ − θ0)~ı0 + cos (θ − θ0)~k0

(1.7)

Combining Equations (1.5), (1.6) and (1.7), a parametric equation for the curve
may be obtained.

−−→
P0P = Rb [1− cos (θ − θ0)− θ sin (θ − θ0)]~ı0+

Rb [θ + sin (θ − θ0)− θ cos (θ − θ0)]~k0 (1.8)

The coordinates x, z associated with the versors ~ı0, ~k0 are derived from Equa-
tion 1.8:

x = Rb −Rb cos (θ − θ0)−Rbθ sin (θ − θ0) (1.9)

z = Rbθ +Rb sin (θ − θ0)−Rbθ cos (θ − θ0) (1.10)

A parametric equation has now been obtained, but the parameter θ is not the
most convenient one from a physical standpoint. It would be much more interesting
to use the arc length R̄P on the involute.
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Figure 1.6: Circle involute.
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1 Geometry, kinematics, contact mechanics

As R̄P may be thought of as the trajectory of a particle as it travels from point R
to point P , this length may be obtained from the integration of the pseudo-velocity

vector d/dθ
(−→
OP

)
. It is simplest to derive this vector from Equation 1.5, in which

case the following is obtained:

d

dθ

(−→
OP

)
= −Rbθ ·~ı (1.11)

In order to obtain the arc-length one needs only to integrate the norm of this
pseudo-velocity vector:

R̄P = s (θ) =
∫ θ

0
Rbη dη =

Rbθ
2

2
(1.12)

It is now possible to rewrite the parametric equation of the x coordinate with
respect to s:

x = Rb

[
1− cos

(√
2s

Rb

−
√

2s0

Rb

)
−
√

2s

Rb

sin

(√
2s

Rb

−
√

2s0

Rb

)]
(1.13)

When trying to solve the contact problem between the meshing gear teeth, this
is not a very convenient form. It is desirable to obtain s and z as functions of x.

No closed form formula exists that meets this requirement, but a Taylor expansion
of Equation (1.13) at s = s0 to the 3rd power yields:

x = s− s0 +
(s− s0)3

12Rbs0

+O
Ä
(s− s0)4

ä
(1.14)

This means that in the vicinity of point P0, x can be taken to be s0 − s with
sufficient accuracy and:

x = s0 − s = Rb
θ2

0 − θ2

2
(1.15)

z = Rb [sin (θ − θ0) + θ (cos (θ − θ0))] (1.16)

The usefulness of this cannot be overstated for this is what allows one to use the
same discretization grid on the surfaces of both meshing teeth while solving the
numerical contact problem.

1.4 Mutual positioning of the gears

Figure 1.7 shows a spur gear when two pairs of teeth are meshing at once. One can
identify:

a′ the operating centre distance,

α′ the operating pressure angle,

8



1.4 Mutual positioning of the gears

T1T2 the contact line, on which the contact travels. It always remains at the same
place.

Rb(i), Rp(i), Ra(i) the radius of the base circle, the operating pitch circle, the adden-
dum circle of each gear,

ω1, ω2 the rotational speeds of the pinion and wheel.

Not shown in the figure are Z1 and Z2—the number of teeth of the pinion and
wheel.

Several geometric relations can be found from the examination of Figure 1.7:

α′ = arccos
Rb1 +Rb2

a′
(1.17)

T1T2 = a′ sinα′ = (Rb1 +Rb2) tanα′ (1.18)

Rp1 =
Rb1

cosα′
(1.19)

Rp2 =
Rb2

cosα′
(1.20)

Figure 1.8 zooms in on the meshing line, for a more detailed view of the ge-
ometry of the contacting teeth. The base pitch pb is defined as the distance PP ′

between the contact points of two consecutive pairs of teeth at a given instant.
From Equation 1.4 one concludes that:

PP ′ = Ṙ1R′1 = Ṙ2R′2 (1.21)

On the other hand, Ṙ1R′1 is the arc distance between two consecutive teeth on
the pinion, so that:

Ṙ1R′1 = Rb1
2π

Z1

(1.22)

Similarly, for the wheel:

Ṙ2R′2 = Rb2
2π

Z2

(1.23)

Which means that the gear ratio is equal to the ratio between the base radii of
the gears:

Z2

Z1

=
Rb2

Rb1

=
Rp2

Rp1

(1.24)

An important point that needs to be made, evident though it may be, is that to
guarantee contact during the meshing, any contact point must satisfy:

T1T2 = T1P + T2P = Rb1θ1 +Rb2θ2 (1.25)
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Figure 1.7: Position of the spur gears.
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Figure 1.8: Meshing of gear teeth.

11



1 Geometry, kinematics, contact mechanics

1.5 Kinematics of gear meshing

1.5.1 The contact history

During meshing, the contact points travel along the contact line but they do not
actually cover all the points on T1T2. Instead, they merely travel along a segment—
AE in Figure 1.9.

To illustrate this, it is useful to observe simultaneously Figure 1.9 and 1.10 that
represent the most significant instants during meshing in distinct manners: Fig-
ure 1.9 shows the superimposed positions of one pair of contacting teeth at dif-
ferent moments, identifying the contact points on T1T2; while Figure 1.10 shows
snapshots—in each of which the middle pair of teeth is the one represented in
Figure 1.9—of the gear at each of these instants.

An explanation of the events is given in non chronological order:

Instant (a) Contact begins at A, the intersection point of the addendum circle of
the wheel with the contact line.

Instant (e) Contact ends at E, the intersection point of the addendum circle of
the pinion with the contact line.

Instant (b) Contact is at B. At the same time, the pair on the left ends contact,
so that B is at a distance pb from point E.

Instant (d) Contact is at D. At the same time, the pair on the right initiates
contact, so that D is at a distance pb from point A.

Instant (c) Contact is at C (pitch point), the intersection of both pitch circles
with the contact line.

This means that:

T2A =
»
R2
a2 −R2

b2 (1.26)

T1E =
»
R2
a1 −R2

b1 (1.27)

T1B = T1E − pb (1.28)

T2D = T2A− pb (1.29)

T1C = Rp1 sinα′ =
Z1

Z1 + Z2

T1T2 (1.30)

T2C = Rp2 sinα′ =
Z2

Z1 + Z2

T1T2 (1.31)

Because the number of contacting teeth is variable in time, the load on a pair of
teeth varies as well. The determination of this load is a fairly complex dynamics
problem, but a fair approximation—that is used throughout this work—is shown
in Figure 1.9, where FN is the total contact load, parallel to the contact line, that
is borne by the gear.
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T1

T2

E FN/3

FN · 2/3

FN

D

ABC

Figure 1.9: Notable moments of the meshing: the consecutive positions of a pair of
contacting teeth are shown superimposed. Also shown: the share of the
normal load borne by this pair of teeth.

(a) the middle pair initiates
contact at A

(b) the left pair ends contact
at E

(c) the middle pair contacts
on the pitch point C

(d) the right pair initiates
contact at A

(e) the middle pair ends con-
tact at E

A

D

D

A

B
E

E
B

C

Figure 1.10: Notable moments of the meshing: the middle pair of teeth is followed
from the inception of contact to its end in snapshot fashion. Both the
pairs immediately to the right and to the left are shown as well.
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This analysis has shown what happens in a gear that, at most, admits contact
between two pairs of teeth. Other situations may arise in which more, or less,
teeth contact at the same time. This is determined by a parameter of the gear, the
contact ratio:

ε =
length of path of contact

base pitch
(1.32)

In this particular case:

ε =
AE

pb
=
T2A+ T1E − T1T2

pb
(1.33)

1.5.2 Velocities

To complete this kinematic analysis, the velocities of the teeth need to be discussed.

Figure 1.11 illustrates the contact of a pair of teeth at an arbitrary instant. The
instantaneous velocity of the surface point of the pinion that is superimposed on
the contact point is given by:

~V1 = −ω1 · ~×
−−→
O1P

= −ω1 · ~×
(
−Rb1 ·~ı− T1P · ~k

)
= −ω1 ·Rb1 · ~k + ω1 · T1P ·~ı

(1.34)

Similarly, the instantaneous velocity of the surface point of the wheel that is
superimposed on the contact point is given by:

~V2 = −ω2 ·Rb2 · ~k + ω2 · T2P ·~ı (1.35)

For the contact to be continuous, the normal velocities must be equal, so that:

ω1Rb1 = ω2Rb2 (1.36)

Or:
ω1

ω2

=
Rb2

Rb1

=
Z2

Z1

(1.37)

From Equations (1.34) and (1.35) one can conclude that the instantaneous tan-
gential velocities of the teeth are those of a fictitious pair of disks contacting at
P , as shown in Figure 1.11, such that: one is centred on T1, has a radius of T1P
and has an angular velocity of ω1; the other is centred on T2, has a radius of T2P
and has an angular velocity of ω2. This is what allows results of tests on twin-disk
machines to be extrapolated to the case of gears.

Let U1 and U2 be defined as the tangential velocities of the pinion and the gear.
Then the sliding velocity U2−U1—which may be interpreted as the relative velocity
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Figure 1.11: Velocities of driving and driven gear.
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T1A0.2BCD0.6E0.80.9T2
0

ω2T1T2

ω1T1T2

T1P
T1T2

U1 + U2

|U2 − U1|

Figure 1.12: Rolling and sliding velocities along the meshing line: right of C, U2 >
U1; left of C, U2 < U1.

of the movement of the wheel on the pinion—is given by:

U2 − U1 = ω2 · T2P − ω1 · T1P

= (ω1 + ω2)

Ç
ω2

ω1 + ω2

T2P −
ω1

ω1 + ω2

T1P

å
= (ω1 + ω2)

Ç
ω2

ω1 + ω2

Ä
T1T2 − T1P

ä
− ω1

ω1 + ω2

T1P

å
= (ω1 + ω2)

Ç
ω2

ω1 + ω2

T1T2 − T1P

å
= (ω1 + ω2)

Ç
Z1

Z1 + Z2

T1T2 − T1P

å
= (ω1 + ω2)

Ä
T1C − T1P

ä
(1.38)

It is very important—for reasons that are explained in the chapter on fatigue—
to determine the direction of the sliding velocity. From Equation (1.38) follows
immediately that there is no sliding when the contact point is on C, that U2−U1 > 0
when it is on the right of C and that U2 − U1 < 0 when it is on the left of C.

Figure 1.12 shows the evolution of the sliding and rolling velocities (the rolling
velocity is the sum of the tangential velocities of the individual teeth U1 +U2) of a
contacting pair of teeth along the meshing line.

Figure 1.13 shows the directions of the sliding velocities of each tooth on the
other. Focusing on a pinion tooth, it may be said that when the contact is below
the pitch circle, sliding is positive (directed towards the root of the tooth); and
when the contact is above the pitch circle, the sliding is negative (pointing towards
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driven gear tooth

~U2 − ~U1
~U1 − ~U2

~U1 − ~U2
~U2 − ~U1

driving gear tooth~U1, ~U2

Figure 1.13: Direction of sliding (and friction force) on a tooth surface.

the tip of the tooth). As will be seen later, this fact seems to determine the direction
of growth of fatigue cracks.

1.5.3 A reworking of the equations

The previous sections have described the operation of a gear in a somewhat un-
usual way, in that the technological aspect of gear design was disregarded. Such
aspects as addendum modification, for instance, remained unmentioned. For a more
mainstream and complete overview, the reader may refer to [11].

In any case, the equations hitherto obtained are here reworked to refer to more
usual technological parameters: the gear ration, the numbers of teeth, the operating
centre distance, the operating pressure angle, the addendum radii and the angular
velocities of the gears.

Mutual positioning of the gears (see Figures 1.7 and 1.8)

gear ratio: i =
Z2

Z1

(1.39)

primitive radii:
Rp1 =

a′

1 + i

Rp2 =
ia′

1 + i

(1.40)

base radii:
Rb1 =

a′

1 + i
cosα′

Rb2 =
ia′

1 + i
cosα′

(1.41)
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1 Geometry, kinematics, contact mechanics

operating gear module: m′ =
2Rp1

Z1

=
2Rp2

Z2

=
2a′

Z1 + Z2

(1.42)

base pitch: pb = πm′ cosα′ =
2πa′ cosα′

Z1 + Z2

(1.43)

meshing line: T1T2 = a′ sinα′ (1.44)

The contact history (see Figure 1.9 and 1.10)

T2A =

Ã
R2
a2 −

Ç
ia′ cosα′

1 + i

å2

(1.45)

T1E =

Ã
R2
a1 −

Ç
a′ cosα′

1 + i

å2

(1.46)

T1B =

Ã
R2
a1 −

Ç
a′ cosα′

1 + i

å2

− 2πa′ cosα′

Z1 + Z2

(1.47)

T2D =

Ã
R2
a2 −

Ç
ia′ cosα′

1 + i

å2

− 2πa′ cosα′

Z1 + Z2

(1.48)

T1C =
a′ sinα′

1 + i
=
Z1 tanα′

2π
pb (1.49)

T2C =
ia′ sinα′

1 + i
=
Z2 tanα′

2π
pb (1.50)

ε1 =
AC

pb
=
Z2

2π

ÖÃÇ
Ra2

Rb2

å2

− 1− tanα′

è
(1.51)

ε2 =
CE

pb
=
Z1

2π

ÖÃÇ
Ra1

Rb1

å2

− 1− tanα′

è
(1.52)

ε = ε1 + ε2 (1.53)

Velocities (see Figures 1.11 and 1.13)

U1 = (ω1 + ω2)
i

1 + i
T1P (1.54)

U2 = (ω1 + ω2)

(
a′ sinα′

1 + i
− T1P

1 + i

)
(1.55)

U1 + U2 = (ω1 + ω2)

Ç
a′ sinα′

1 + i
+ T1P

i− 1

1 + i

å
(1.56)

U2 − U1 = (ω1 + ω2)

Ç
a′ sinα′

1 + i
− T1P

å
(1.57)
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1.6 Contact mechanics of spur gear flanks

contact area

Figure 1.14: Approximate shape of the contact area.

1.6 Contact mechanics of spur gear flanks

In the previous sections, the meshing of the teeth has been studied as if they
were rigid bodies: the deformation of the teeth—due either to bending or contact
stresses—has been held to be null. From a kinematic viewpoint, the error thus
introduced is negligible.

However, this is an unacceptable premise when dealing with the contact stresses
between the teeth. While the stresses due to bending are not within the scope
of this work— their effect is only felt very far from the surface—the deformation
caused by contact stresses must be taken into account.

During meshing, the contacting area of the teeth is a very narrow band that
spans the full width of the teeth. It is a good approximation to consider that this
band is rectangular (see Figure 1.14); and because it is so narrow, it’s deviation
from an osculating plane is very slight, when compared to the radii of curvature of
the teeth.

Under such conditions, the theory of the elastic half-plane for a plane strain
state—laid out in such works as [12] and [13, Section 138–141]—may be safely
used. Indeed, the use of this theory requires that the surface slopes be very small.
With gear teeth, this is generally the case even when their roughness is taken into
account.

This section introduces the Hertzian solution to the contact between teeth. This
is by no means a detailed treatment of the subject. The interested reader may
complement this overview with the reading of [12].

One of the postulates of the Hertzian theory is that the surfaces in contact are
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1 Geometry, kinematics, contact mechanics

devoid of roughness. This approximation is valid when studying the effects of the
contact in the sub-surface, but must be abandoned when the conditions on the
surface must be ascertained. This is precisely the case of the study of micropitting.
Nevertheless, this theory is a good starting point to understand some of the factors
that influence micropitting. The solution obtained with this theory—while not
valid in this case—may also be seen as a standard against which more complex
models must be compared.

1.6.1 Equivalent elastic cylinder/rigid plane problem

Looking at Figure 1.11, it is seen that the radius of curvature of the driving gear
is T1P and that of the driven gear is T2P = T1T2 − T1P .

Mathematically, and within the framework of the Hertzian contact, this is the
same problem as that of an elastic cylinder pressed against a rigid surface. This
equivalent cylinder has a radius of curvature equal to:

req = 2
Ä
r−1

1 + r−1
2

ä−1

= 2ξ (1− ξ) · T1T2

(1.58)

where:

r1 is the radius of curvature of the driving gear

r2 is the radius of curvature of the driven gear

req is the radius of curvature of the equivalent cylinder

ξ is: T1P
T1T2

The equivalent radius of curvature of a gear can be seen plotted against the po-
sition of the contact on the meshing line in Figure 1.15. It shows that although the
equivalent radius of curvature given in Equation (1.58) is a parabola and symmetric
in relation to the midpoint of the line segment T1T2, this symmetry is broken by
the eccentricity of the position of the actual meshing line.

The equivalent Young’s modulus of the equivalent cylinder is given by:

Eeq =

Ç
1− ν2

1

E1

+
1− ν2

2

E2

å−1

(1.59)

where:

Eeq is the equivalent Young’s modulus

E1 is the Young’s modulus of the driving gear

ν1 is the Poisson’s ratio of the driving gear
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1.6 Contact mechanics of spur gear flanks

T1A0.2BCD0.6E0.80.9T2
0

0.1

0.2

0.3

0.4

0.5

ξ = T1P
T1T2

r e
q
/T

1
T

2

Figure 1.15: Dimensionless plot of the equivalent radius of curvature vs. the posi-
tion on the meshing line.

E2 is the Young’s modulus of the driven gear

ν2 is the Poisson’s ratio of the driven gear

It is important to note that these equivalent properties can only be used to de-
termine the contact deformation and stresses. The bulk stresses must be calculated
with the actual elastic properties.

1.6.2 Hertzian stress and half-width of contact

According to the Hertzian theory the solution of the contact problem is as shown
in Figure 1.16. The pressure distribution follows the equation:

p =

 p0

 
1−

Åx
a

ã2

, |x| < a

0 , |x| > a

(1.60)

Thus, the variables of the problem are:

a the Hertzian contact half-width

p0 the maximum Hertzian pressure
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p0

2a

pressure distribution

Figure 1.16: Hertzian solution to the contact problem: a is the contact half-width;
p0 is the maximum contact pressure.

These variables are given by the equations:

a =

√
2

π
fN

req
Eeq

(1.61)

p0 =

√
2

π
fN
Eeq
req

(1.62)

where fN is the actual contact load per unit of length between one single pair of
teeth (see Figure 1.9). This is calculated by:

fN =



0 T1P > T1E or T1A > T1P

FN
b

1

3

(
1 +

AP

AB

)
T1B > T1P > T1A

FN
b

T1D > T1P > T1B

FN
b

1

3

(
1 +

EP

DE

)
T1E > T1P > T1D

(1.63)

Figures 1.17 and 1.18 show the evolution of these variables along the meshing line.
The dotted lines represent the values of these variables if fN were kept constant
at the key values of FN/(3b), (2/3)(FN/b), FN/b. As was the case with the graph
of the equivalent radius of curvature, these lines are perfectly symmetric in the
interval T1T2. It’s the placement of the actual meshing line that introduces the
asymmetry in the values of a and p0.
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Figure 1.17: Dimensionless plot of the contact half-width vs. the position on the
meshing line.
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Figure 1.18: Dimensionless plot of the Hertzian stress vs. the position on the mesh-
ing line.
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2 Lubricant oils and lubrication

2.1 Introduction

Lubricants play a crucial part in the contact of solids. They have mainly three func-
tions: to separate the contacting surfaces, to reduce friction and to evacuate heat
from the contact area. Unfortunately, these are often contradictory requirements
so that a choice of lubricant is always a careful exercise in compromise.

Lubricants may roughly be classified according to their physical state in normal
operating conditions: lubricant oils, lubricant greases, solid lubricants and gas
lubricants. Of these, the first type is by far the one most used with gears. It
is also the only one with which this work concerns itself.

In what follows, most aspects of the study of a lubricant oil but the ones that
directly concern the simulation of contact will be glossed over. The interested reader
may complement this overview by reading the course notes by Seabra et al. [14].

2.2 Lubricant oil classification according to origin

A lubricant oil may be classified according to its origin. Thus these may be distin-
guished:

vegetal and animal oils Historically, these were the very first oils used by Man
for lubrication. They have mainly fallen into disuse, since their performance
is not comparable to those of other types of oils. As an example, one can
mention sperm-whale oil and colza oil.

mineral oils These are obtained from the distillation of petroleum. They can
roughly be separated into parafinic based oils, naftenic based oils and aro-
matic based oils, according to their base molecular structure. Because of their
low cost and reasonable performance, their use is very widespread.

synthetic oils The most recent addition to the panoply of available oils, these are
synthesized (by opposition to the distillation process used for mineral oils)
from the constituting molecules of either hydrocarbons or vegetal oils. This
is a fine-tuned process that produces oils of surpassingly good performance
but of correspondingly high costs. They may be classified in three major
groups: the PAO, polyglicols and ester oils. Of these the ester oils merit

25



2 Lubricant oils and lubrication

special mention as they have been the subject of intense research: the mount-
ing environmental concerns of the public have made one of their properties,
biodegradability, a very desirable characteristic.

In broad lines, those are the available classes of lubricant oils. But those are
only the base lubricants, the reader is not to suppose that the story ends here.
Indeed, from the 1920’s on, lubricant vendors have been mixing additives with the
base oils. In fact a base lubricant’s behaviour can be significantly altered by the
admixture of additives. There are additives to improve viscosity, to protect surfaces
from wear, to prevent oxidation etc. . . So much so that a lubricant oil can almost
be customized. Unfortunately there is no way to predict accurately the influence of
mixing several additives, since they mutually affect themselves as well as the base
lubricant. The desirable properties must be obtained by trial and error.

2.3 Lubricant oil rheology

In order to model numerically the behaviour of a lubricant oil, its constitutive
relations—the rheology—must be known. To achieve this, relevant properties must
be identified and introduced into a set of equations that relate shear stresses to
rates of shear deformation.

2.3.1 Viscosity

The viscosity is the property of a fluid to oppose internal sliding at low velocities.
The proviso of low velocities is an important one, as will be later shown.

Consider Figure 2.1, that represents the velocity field v of a fluid film between
two plates—whose ideally infinite dimensions in the zz axis ensures a plane strain
state—when the top plate is moving at the velocity V and the bottom plate is fixed.

When V is very small—nearly negligible—so that the flow is laminar, the shear
stress σxy and the shear strain rate γ̇xy—the derivative of the shear strain in time
are linearly related:

σxy = ηγ̇xy = η
dv

dy
(2.1)

and η is called the dynamic viscosity of the fluid.

Throughout this work, only one shear strain component and one shear stress
component need to be considered for the lubricant oil film, and thus, for simplicity’s
sake, their indices will be dropped and they will be called γ and τ from now on.
Thus, the Equation (2.2) becomes:

τ = ηγ̇ = η
dv

dy
(2.2)

26



2.3 Lubricant oil rheology

moving plate

V

yy

xx
fixed plate

v

Figure 2.1: Laminar flow of a fluid between two plates.

Equation (2.2) describes the Newtonian law of fluids. It is always true for very
small velocities but there exist fluids—called Newtonian fluids—for which the lim-
itation of small velocity does not apply. An example of such fluids is water.

Naturally the viscosity is only a constant as long as pressure and temperature
conditions remain unaltered. Under a variation of either or both, viscosity changes
dramatically.

Thermoviscosity

Thermoviscosity is the change of the viscosity under varying temperatures. It is
important to note that an increase in temperature always has a thinning effect: the
viscosity diminishes with temperature.

Several laws that model this dependence have been developed. As an aside, one
must bear in mind that these are valid only at constant pressure.

The simplest one, proposed by Cameron [14], is an exponential law:

η = η0 exp
Ä
−β (θ − θ0)

ä
(2.3)

with:

θ temperature of the fluid;

θ0 reference temperature of the fluid;

β thermoviscosity index of the fluid;

η0 dynamic viscosity of the fluid at reference temperature θ0;
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2 Lubricant oils and lubrication

η dynamic viscosity of the fluid at temperature θ.

This law is accurate only for a short range of temperatures around θ0. In fact, it
can be viewed as a Taylor expansion to the first degree of the logarithm of the true
viscosity function.

Another—more accurate—law is that proposed by Vogel [14]:

η = K exp
b

θ + c
(2.4)

with:

η dynamic viscosity of the fluid at temperature θ;

θ temperature of the fluid in [◦C];

K lubricant constant, in the same units as the viscosity η;

b, c lubricant constants, in [◦C].

One must be careful to note that this equation is not independent of the tempera-
ture unit used, so that all temperatures must be converted to [◦C] before introducing
them into the equation.

Another expression, and perhaps the most important one due to its widespread
use in industry, is that specified in the ASTM D341 standard:

ln ln (ν + a) = n−m lnT (2.5)

where:

ν is the kinematic viscosity of the lubricant defined as:

ν =
dynamic viscosity

density
(2.6)

T temperature of the lubricant oil in [K];

m,n, a lubricant constants.

Piezoviscosity

Piezoviscosity is the change in viscosity with varying pressure. Unlike the effect of
temperature, an increase in pressure is always followed by an increase in viscosity.

The simplest law that describes this, that proposed by Barus [14] is stated thus:

η = η0 exp (αp) (2.7)

with:

p pressure of the fluid,

α piezoviscosity coefficient of the fluid,

η0 dynamic viscosity of the fluid at atmospheric pressure,

η dynamic viscosity of the fluid at pressure p.
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2.3 Lubricant oil rheology

Thermo-piezo-viscosity

Naturally, in real applications, both temperature and pressure change at the same
time. This leads to the necessity of obtaining equations that integrate both thermal
and pressure effects.

This can be effected by combining Equations (2.3) and (2.7):

η = η0 exp
Ä
αp− β (θ − θ0)

ä
(2.8)

This equation has the virtue of simplicity, with its usual attendant defect, namely
a low accuracy in its prediction for realistic ranges of variation.

A more interesting law is that proposed by Roelands [14]:

η = η0 exp (α∗p)

α∗p = (ln η0 + 9.67)

{Ç
θ − 138

θ0 − 138

å−S0

·
Ä
1 + 5.1× 10−9p

äZ − 1

}
(2.9)

with:

θ temperature of the fluid in [K],

θ0 reference temperature of the fluid in [K],

p pressure of the fluid in [Pa],

η0 dynamic viscosity of the fluid at reference temperature θ0 and atmospheric pres-
sure,

η dynamic viscosity of the fluid at temperature θ in [Pa·s].

As an entertaining side note, the Roelands equation can be reworked into a more
aesthetically pleasing shape, with the following equation as an end result:

η = ηR · exp

(
R ·
Ç
p

pR
+ 1

åZ
·
Ç
θ

θR
− 1

å−S0
)

(2.10)

where ηR = 6.31 × 10−5 Pa · s, θR = 138 K, pR = 196 GPa are constants of
the Roelands viscosity law (independent of the fluid) and R is a non-dimensional
constant of the fluid, to be determined either from the constants of Equation (2.9) or
from viscosity measurements. All other parameters retain the same meaning. Note
that in this new form, the equation is dimensionally consistent and no reference
conditions are needed.
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2 Lubricant oils and lubrication

2.3.2 Non-Newtonian rheology

The majority of lubricant oils behave in a non-Newtonian fashion under normal
operating conditions. This is easily understood if one thinks that a typical lubricant,
at the rates of deformation and extremely high pressures present during the meshing
of gears, and even when taking into account the thinning effect of the temperature
rise caused by the dissipation of the shear forces, would need to sustain a friction
coefficient in the order of 5 in order to maintain a Newtonian behaviour. This is
clearly at odds with the observed evidence that points to a friction coefficient of, at
most, 0.1 in lubricated contacts. This leads to alternate descriptions of the rheology
of lubricant oils: non-Newtonian rheologies.

Non-linear viscous behaviour

The non-Newtonian rheology can result from an increasing non-linearity of the
relation between shear stress and shear strain rate. This model, presented by Ree-
Eyring [15] is expressed mathematically as:

γ̇ =
τr
η

sinh
τ

τr
(2.11)

where τr, the Ree-Eyring shear stress, is the shear stress that marks the limit
between a linear—i.e. Newtonian—relation between shear stress and rate of defor-
mation.

In this model, the shear stress increases without bounds with the shear strain
rate, albeit at a much slower pace than is the case with a Newtonian rheology.

Elastic behaviour

In order for a lubricant oil to manifest its viscosity, loads must be applied to it in
a sufficiently long and constant manner. In the event of a shock solicitation, the
loads rise so sharply and so fast that the molecular reorganization necessary for
the viscous response does not have time to take place, so that the only response
available to the fluid is to behave as if it were an elastic solid. In mathematical
terms:

τ = Gγ (2.12)

or, taking the derivatives in time:

τ̇ = Gγ̇ (2.13)

where G is the elastic shear modulus of the lubricant oil.
The higher the viscosity of the fluid, the more time is needed for the viscous

response to enfold, and the more it resembles a solid. In fact, in conditions of
extremely high pressure, the lubricant oil may even become an amorphous solid
(like glass).

This means that within high pressure contacts—like meshing gears—some mea-
sure of elastic behaviour must exist alongside the viscous one.
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2.3 Lubricant oil rheology

Plastic behaviour

This reasoning can be pursued further if one thinks that solids cannot sustain an
indefinitely growing elastic deformation: yielding occurs at some point. In the same
manner, any lubricating oil must have a limiting shear stress (τL) beyond which
shear deformation occurs without any increase in shear stress.

τ = min (ηγ̇, τL) (2.14)

Composite behaviour

Naturally, the behaviours previously listed may occur all at once with varying
degrees of severity, so that an equation must be found that integrates these various
behaviours. Unfortunately, at present no such equation is to be found. There has
been no success in unifying the non-linear viscosity of Ree-Eyring with the elastic
and plastic behaviour.

Bair and Winer have presented a model that integrates elasto-visco-plasticity:

γ̇ =
τ̇

G
− τL

η
ln

Ç
1− τ

τL

å
(2.15)

This was selected for use in this work because it seems intuitively more physi-
cally correct to assume that the shear stresses are bounded by an upper limit. A
simplification is introduced in this equation, as used in this work: in the absence
of sliding, the elastic part of Equation (2.15) is important and cannot be neglected
but, when sliding is important, as is the case with gear meshing, the visco-plastic
component becomes so preponderant that the elastic part can be neglected entirely.
This yields the following equation:

γ̇ = −τL
η

ln

Ç
1− τ

τL

å
(2.16)

An additional reason for this elimination is that while the visco-plastic portion
of the shear stress is bounded by the limiting shear stress, the elastic part is not,
which negates the principle of a limiting shear stress.

This introduces an additional rheological parameter, the limiting shear stress
(τL), that is dependent on pressure and temperature. This dependence may be
stated, according to Houpert [15], as:

τL = τL0 exp

ñ
ατLp+ βτL

Ç
1

T
− 1

T0

åô
(2.17)

where ατL and βτL are constants of the lubricant oil that are independent of pressure
and temperature.
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2 Lubricant oils and lubrication

2.4 Elastohydrodynamic lubrication of spur gears

Elastodydrodynamic lubrication (EHL) is characteristic of the contact between two
elastically deformable bodies more or less separated by a lubricant film. The proviso
of “more or less” is added because, frequently, the film thickness is insufficient to
ensure that a contact between opposing roughness features does not happen.

The behaviour of such a contact is modelled by a differential equation, the
Reynolds equation which, in its one-dimensional form, states:

∂

∂x

Ç
ρh3

η

∂p

∂x

å
= 12

U1 + U2

2

∂ (ρh)

∂x
(2.18)

given here, for simplicity’s sake, for a Newtonian fluid in steady state, and an
integral equation, the equation of the elastic deformations of the surfaces:

h (x) = h0 (x)− 2

πEeq

∫ +∞

−∞
ln

∣∣∣∣∣x− x′L

∣∣∣∣∣ p (x′) dx′ (2.19)

where h (x) is the separation of the surfaces, h0 (x) is the undeformed separation
of the surfaces and L is a constant of integration.

To Equation (2.19) must be added the limiting conditions to which the pressure
and separation must obey, the equality to the normal load:

fN =
∫ +∞

−∞
p (x) dx (2.20)

(where fN , introduce in the previous chapter, is the normal contact load per unit
face-width between one pair of teeth at a given instant) and the non penetration
rule:

∀x : h (x) ≥ 0 (2.21)

A thorough treatment of the Reynolds equation is given by Hamrock in [16]. A
detailed study of EHL is presented by Seabra et al. in [14].

To these must be added a thermal equation that accounts for the conservation
of energy [14]:

∂2Tf
∂z2

+
1

Kf

η

Ç
∂U

∂z

å2

=
ρfCpf
Kf

U
∂Tf
∂x

(2.22)

where, Tf is the temperature field in the lubricant, ρf its density, Cpf its specific
heat capacity, Kf its thermal conductivity and U its tangent velocity field.

Historically, much of the efforts of tribologists have been directed towards the
solution of the EHL problem of two smooth surfaces—surfaces with no roughness—
and only in recent years has the problem of EHL for rough surfaces—in which case
the lubricant film may not be sufficiently thick to prevent direct contact between
the surfaces—been more seriously studied.

The reader is referred to the works by Campos [17] and Sottomayor [18] for the
solution of the smooth EHL contact problem considering a non Newtonian rheology
and the thermal effects on the contact.
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2.4 Elastohydrodynamic lubrication of spur gears

The EHL contact is generally somewhere between two extreme cases: the ideally
smooth EHL contact, in which the roughness of the surfaces is negligible; and the
boundary lubrication regime, in which the roughness is such that there is no longer
a film that sustains any portion of the load between the surfaces. Somewhere in
the middle, a real contact partakes of the characteristics of both.

2.4.1 Ideally smooth elastohydrodynamic lubrication

In this work, no attempt is made to solve the equations that govern the EHL contact
between smooth surfaces. Instead, the solution of Grubin [19, chapter 6] is used.

Figure 2.2 shows the pressure distribution of an ideal full-film EHL contact com-
paring it with that of a Hertzian contact in the same geometric and kinematic
conditions.

The figure shows the different zones that can be distinguished: the inlet zone,
where the pressures are negligible, the contact—or high pressure—zone, where the
lion share of the load is borne and pressures and temperatures can attain values
in the order of 1 GPa and 200 ◦C, and the outlet zone, where the pressure and
temperature drop again to the values of the inlet zone.

It shows clearly that the differences in the pressure distribution of the two cases
are trifling and that the Hertzian pressure distribution is a very good approximation
to that of an EHL contact within the core contact zone. There is nevertheless one
striking difference between the two pressure distributions: immediately before the
start of the outlet zone, a pressure spike occurs in the EHL case that corresponds
to a constriction of the film thickness in the same place.

This is the basis of the Grubin solution, where it is advocated that the pressure
distribution is that of the Hertzian case and the film thickness is constant within
the contact zone, once more as in the Hertzian case.

Based on these hypotheses, the film thickness may be determined by:

h00 = 0.975 (αη0 (U1 + U2))
8
11 (req)

4
11

Ç
Eeq
fN

å 1
11

(2.23)

where:

h00 is the film thickness at the centre of the contact,

η0 is the viscosity of the lubricant oil in the inlet zone of the contact (inlet tem-
perature and atmospheric pressure),

α is the piezo-viscosity coeffictient of the lubricant oil in the inlet zone given by:

α =
∂

∂p

Ç
ln
η (p, T )

η0

å∣∣∣∣∣
p=patm,T=Tinlet

(2.24)

This is the same as Dawson and Higginson’s formula [19].
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Hertz EHL

inlet zone contact zone outlet zone

Figure 2.2: Comparison of the EHL pressure distribution with that of the Hertzian
solution.

Sottomayor [18, Section 2.2.3] advocates the correction of this formula to account
for the rise in temperature within the inlet zone due to the friction forces, by the
coefficient:

φT =

1 + 0.1

(
βη0 (U1 + U2)2

Kf

)0.64 (
1 + 14.8

∣∣∣∣∣U1 − U2

U1 + U2

∣∣∣∣∣
0.83)−1

(2.25)

where the thermoviscosity coefficient β is given by:

β =
∂

∂T

Ç
ln
η (p, T )

η0

å∣∣∣∣∣
p=patm,T=Tinlet

(2.26)

and Kf is the thermal conductivity of the lubricant oil and U1 and U2 are the
velocities of the surface of the driving and driven gear tooth respectively.

Thus, the corrected central film thickness is:

h00,T = h00φT (2.27)

To determine the friction forces within the contact, the thermal equations must
be considered. The thermal solution of the EHL contact presented is the one
developed by Tevaarvek in 1980 and described in [14].
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2.4 Elastohydrodynamic lubrication of spur gears

The results relevant to the present work are:

∆Tmax
s =

1√
2π

µfN
PT
√
a
|U1 − U2|

Ç
1√
U1

+
1√
U2

å
(2.28)

∆Tmax
f =

1

β
ln

(
β (U1 + U2)2 η

8Kf

+ 1

)
(2.29)

T avg
f = T0 +

4

π

Ä
∆Tmax

s + ∆Tmax
f

ä
(2.30)

where:

∆Tmax
s is the greatest rise of the temperature of the surfaces above that of the inlet,

∆Tmax
f is the greatest rise of the temperature of the lubricant above that of the

surfaces,

T avg
f is the average lubricant temperature in the contact,

µ is the average friction coefficient within the contact,

PT is the thermal coefficient of both surfaces (in the present work, they are always
made of the same material), defined as:

PT =
»
ρsCsKs (2.31)

where:

ρs is the volumic mass of the surfaces,

Cs is the specific heat of the surfaces,

Ks is the thermal conductivity of the surfaces.

a is the Hertzian half-width of the contact,

η is the viscosity of the lubricant at the average surface temperature and pressure
conditions within the contact,

β is the thermoviscosity coefficient of the lubricant at the average surface temper-
ature and pressure conditions within the contact.

It is thus seen that the average lubricant temperature T avg
f and the average

friction coefficient µ are dependent upon each other in the equation and are not
known a priori. This deadlock may be broken by the simultaneous consideration
of the rheological equation—in the case of the present work, Equation (2.16).

Consider first that the friction coefficient between the gear teeth is:

µ =
τ · 2ab
fnb

(2.32)

where τ is the average shear stress within the lubricant oil.
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2 Lubricant oils and lubrication

Thus, a manipulation of Equation (2.16) yields:

µ =
2aτL
fN

ñ
1− exp

Ç
−ηγ̇
τL

åô
(2.33)

where η is determined at the average lubricant temperature T avg
f and the average

Hertzian pressure (π/4) p0.
Conjointly with Equation (2.30), this is enough to determine the friction co-

efficient within the contact, albeit in an approximate manner, using an iterative
scheme of computation.

A more sophisticated scheme could be adopted where temperature and friction
coefficient would be computed not as averages but at each point in the contact, but
this was deemed an unnecessary complication that would yield doubtful improve-
ments on the scheme presented here.

2.4.2 Boundary film lubrication

As has already been pointed out, the other extreme in the possible behaviour of the
lubricated contact is one in which the lubricant does not play any part in bearing
the pressure between the surfaces.

This happens when the roughness of the surfaces in contact is so great, when
compared to the theoretical smooth EHL film thickness, or when the speed is so
small that the conditions for generating a lubricating film are not met. This is
the boundary film regime of lubrication, which will be referred to as boundary film
lubrication from now on.

The mathematical description of this contact problem is indistinguishable from
that of the dry contact problem as regards the determination of the pressure distri-
bution. It is obtained by discarding completely the Reynolds equation and retain-
ing only the equation of the elastic deformation of the surfaces in contact (Equa-
tion (2.19)) and its limiting conditions (Equations (2.20)–(2.21)), recalled here:

h (x) = h0 (x)− 2

πEeq

∫ +∞

−∞
ln

∣∣∣∣∣x− x′L

∣∣∣∣∣ p (x′) dx′ (2.34)

fN =
∫ +∞

−∞
p (x) dx (2.35)

∀x : h (x) ≥ 0 ∧ p (x) ≥ 0 (2.36)

Note that h0 (x) includes both the overall geometric shape of the surfaces and
their roughness in their initial, undeformed, state.

There is no analytical solution for this problem, only numerical ones. For this
reason the exposition of the solution of this problem is deferred until a later section
of this work.

This lubrication regime has until now been treated as if the lubricant had no
effect. While it is true in the case of the pressure distribution, it is very much
otherwise when it comes to determining the surface shear stress (the “pressure”
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2.4 Elastohydrodynamic lubrication of spur gears

tangent to the surface). It has been found that, in boundary lubrication, although
the lubricant film fails to form, the surfaces are nevertheless coated with lubricant
molecules that ease the mutual sliding of the surfaces. Furthermore, it has been
found that the resultant friction coefficient µBDR is constant over variations of
geometry, load and velocities. It is typically to be found in the range of values
0.08–0.15 [20].

Thus the boundary coefficient of friction is essentially a property of the lubricant
oil and of the roughness of the surfaces and must be determined experimentally.

2.4.3 Mixed film lubrication

Though no surface is ever perfectly smooth, in practice an identical response is
shown by pairs of surfaces whose combined roughness is sufficiently small when
compared to the lubricant film thickness. From this stems the notion of the specific
film thickness, Λ. This specific film thickness is given by the equation:

Λ =
film thickness of the ideal EHL contact

composite Rq of the surfaces
(2.37)

The specific film thickness is the parameter used to classify a contact as full-film
EHL or otherwise. Thus, and according to Vergne [21], the contacts are classified
as:

Λ > 3 full-film EHL lubrication,

3 > Λ > 2 nearly full-film EHL with occasional contact between asperities,

2 > Λ > 1 mixed lubrication in which the load is borne partly by direct naked
contact between the surfaces and partly by a lubricating film,

1 > Λ boundary lubrication in which the load is borne almost exclusively by direct
contact, although the friction coefficient is not so high as that found in the
case of dry contact because of the presence of lubricant molecules that cling
to the surfaces.

It is not to be supposed that these values are “set in stone”: they are merely
indicative and some slight variation in the position of the boundaries is found in
the literature.

It must also be noted that it is not entirely accurate to say that an EHL contact
whose Λ is 3 is the same as the ideally smooth EHL contact. The roughness will
cause fluctuations in the contact pressure field. Nevertheless, those fluctuations of
rarely more than 50% may be neglected when put alongside those of a contact in
the mixed film regime. In illustration of this, it is useful to compare typical values
of surface pressure for the various regimes of lubrication. Thus, the maximum
surface pressure in an ideal EHL contact is typically in the order of 1 GPa, that in
a full-film EHL contact with Λ = 3 can attain half as much and that in a mixed
regime is easily in the order of 5 GPa.
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Figure 2.3: Examples of load sharing function taken from [1].

In the case of the meshing of gear teeth, the specific film thickness will find itself
somewhere between 0.2 and 2, depending on the operating conditions and even
on the precise instant in the meshing. Thus and in order to be able to deal with
realistic cases of gear lubrication, it is necessary to develop a mixed film lubrication
model.

The model adopted here follows closely that presented by Castro [22] with some
modifications.

The contact load fN may be divided between that borne by the lubricant fEHL
N

and that borne by the direct contact between the surfaces fBDR
N , so that:

fN = fEHL
N + fBDR

N (2.38)

where:

fN =
∫ +∞

−∞
p dx (2.39)

fEHL
N =

∫ +∞

−∞
pEHL dx (2.40)

fBDR
N =

∫ +∞

−∞
pBDR dx (2.41)

Furthermore, the parameter fΛ defined as:

fΛ = fΛ (Λ) =
fEHL
N

fN
(2.42)

is assumed to be a function dependent only on the specific film thickness Λ of the
smooth EHL problem. This load sharing function is distinct for each combina-
tion of lubricant oil, gear material and roughness orientation (transversal, axial, or
isotropic). In Figure 2.3 two examples of load sharing function are shown [1].

Thus:

fEHL
N = fΛ · fN (2.43)

fBDR
N = (1− fΛ) · fN (2.44)
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Figure 2.4: Hertzian and EHD surface pressure distribution. The smooth EHD part
of the pressure is obtained from the Hertzian pressure distribution for
the full load:

∫
pHertz dx = fN .

Here the present model diverges from that proposed by Castro, for whom pEHL/fΛ

is taken to be the pressure distribution of the EHL contact when Λ = 3. That
pressure distribution was then obtained with the help of the method of Ai and
Cheng [23].

Instead, this pressure distribution is obtained as follows (see Figure 2.4). The
Hertzian pressure distribution pHertz and half-width a are obtained for the full load
fN . The pressure distribution borne by the lubricant is then taken as:

pEHL = fΛ · pHertz (2.45)

The determination of the friction coefficient of the lubricant borne part of the
contact µEHL is then calculated by substituting fEHL

N for fN in Equations (2.28)–
(2.33).

Similarly, the boundary lubrication contact problem is solved for the full load
fN , from which the pressure distribution pBDR,T is obtained (see Figure 2.5). Then:

pBDR = (1− fΛ) pBDR,T (2.46)

It is now a simple matter of recombining the partial pressure distributions to
obtain the mixed film distribution (see Figure 2.6 and 2.7):

p = pEHL + pBDR (2.47)

µ = fΛ · µEHL + (1− fΛ)µBDR (2.48)
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3 Stresses, fatigue and damage in
spur gears

3.1 Stresses in a spur gear

The stress state of a spur gear tooth flank may be decomposed thus:

[σ] = [σini] + [σela] + [ρ] (3.1)

This is the sum of initial stresses (σini), present before the application of any
load, of elastic stresses (σela) caused by the load and of re-centring stresses (ρ) that
account for the plastic yield and the stress variations at microscopic level.

3.1.1 Initial Stresses

During its production process, a typical spur gear undergoes cutting, a surface
treatment at high temperatures and grinding. All of these steps induce plastic
deformations that, upon unloading, translate into important residual stresses, easily
attaining orders of magnitude of several hundred MPa.

These initial stresses accumulate with those induced by the loads, and must be
taken into account.

In his thesis [24], Batista gives a detailed account of residual stresses, which
includes considerations on initial stresses: their definition, causes and the methods
employed to measure them—with a particular emphasis on the X-ray diffraction
technique.

3.1.2 Elastic stresses

In an elastic half-space in plane strain, it is well known [12] [25] that the elastic
stresses are obtained from the surface stresses (see Figure 3.1) thus:

σxx (x, z, t) = − 2

π

∫ +∞

−∞
p (ξ, t)

(x− ξ)2 zÄ
(x− ξ)2 + z2

ä2 + τ (ξ, t)
(x− ξ)3Ä

(x− ξ)2 + z2
ä2 dξ (3.2)

σzz (x, z, t) = − 2

π

∫ +∞

−∞
p (ξ, t)

z3Ä
(x− ξ)2 + z2

ä2 + τ (ξ, t)
(x− ξ) z2Ä

(x− ξ)2 + z2
ä2 dξ (3.3)

σxz (x, z, t) = − 2

π

∫ +∞

−∞
p (ξ, t)

(x− ξ) z2Ä
(x− ξ)2 + z2

ä2 + τ (ξ, t)
(x− ξ)2 zÄ

(x− ξ)2 + z2
ä2 dξ (3.4)
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τ

p

xx

zz
Figure 3.1: Elastic half-space coordinates and surface loads: p is the surface pres-

sure, τ is the surface shear stress.

σyy (x, z, t) = ν (σxx + σzz) (3.5)

σxy = σyz = 0 (3.6)

The principal stresses are:

σ1 =
σxx + σzz

2
+

√Åσxx − σzz
2

ã2

+ σ2
xz (3.7)

σ2 =
σxx + σzz

2
−
√Åσxx − σzz

2

ã2

+ σ2
xz (3.8)

σ3 = σyy (3.9)

The principal shear stresses are:

τ1 =
σ1 − σ3

2
(3.10)

τ2 =
σ1 − σ2

2
(3.11)

τ3 =
σ2 − σ3

2
(3.12)

The maximum shear stress is the largest of these.
The octahedral shear stress is:

τoct =
1

3

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2 (3.13)

Figures 3.2 and 3.3 show the octahedral shear stress in the case of a Hertzian
stress distribution and of a stress distribution resulting from a rough contact, both
applied on a spur gear tooth. It is striking to note that, while the τoct are very
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3.1 Stresses in a spur gear

different on the surface, they are virtually the same in the sub-surface. This shows
that the influence of the surface roughness is limited to the immediate depths
beneath the surface. This has important implications when discussing what type
of damage will appear on a gear, or indeed any lubricated mechanical part.

3.1.3 Plastic and mesoscopic stresses

Shakedown

During meshing, the individual gear teeth undergo what are essentially cyclic loads,
with each meshing of a particular tooth constituting a cycle. The surface pressures
are very high, so high as several GPa, well above the yield strength of the steel
from which the gears are made. Thus, plastic deformations are bound to occur.
Under these high cyclic loads, one of four things may happen [26] [27] [28]:

1. After a sufficient number of cycles, the stress state of the tooth may converge
to an elastic cyclic oscillation around a “central”, constant, stress field, and
this phenomenon is called elastic shakedown.

2. Another possibility, is that the stress state will converge to a plastic oscillation
around a central stress field: this is called plastic shakedown.

3. The strains may increase without bounds with each cycle, and this is called
ratcheting.

4. Finally, immediate plastic failure may occur when the loads are overwhelm-
ingly high.

In the case of both elastic and plastic shakedown, the central plastic stress field
associated with the central plastic strain field, is in fact a self-balancing residual
stress field that endures even after the loads are removed, and only oscillating
stresses balance the external load [29].

Note that the elastic shakedown is a global state of the body, because once plastic
shakedown sets in the equations of pure elasticity are no longer valid. Nevertheless,
considering that the areas affected are always extremely small when compared to the
typical dimensions of a tooth, it is legitimate to go on using the elasticity equations
even when the conditions for elastic shakedown have been violated at some material
points. Thus, in practice, every point in the body under consideration need not be
in the same regime of cyclic loading: one point may be undergoing elastic shakedown
while another undergoes plastic shakedown and yet another ratcheting [29].

The boundary between a long or infinite life to failure and a short one—the limit
between high cycle fatigue (HCF) and low cycle fatigue (LCF)—is located at the
transition from an elastic shakedown state to a plastic one [26]. In the case of a
gear that must undergo a large number of cycles—many millions—the component
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3.1 Stresses in a spur gear

must be targeted to HCF. So, supposing that a material point in a gear tooth will
converge to elastic shakedown, the stresses will be, in tensor notation:

σ̃ =
Ä
σ̃ini + σ̃ela

ä
+ ρ̃ (3.14)

where ρ̃ is the residual stabilized stress field tensor, σ̃ela the elastic one and σ̃ini the
initial one.

Considering an elastic-perfectly plastic material subjected to the Von Mises yield
criterion, Melan’s shakedown theorem states that, provided that an admissible
stress tensor ρ̃ exists such that, when added to the elastic stress tensor it is placed
on the yield surface, the body will shakedown elastically and the shakedown resid-
ual stress tensor will be ρ̃. For more complex material behaviour, such as plastic
strain and kinematic hardening, shakedown can still occur, but Melan’s theorem
must be altered to take this into account. In principle, this obviates the need to
follow the plastic deformation of the body cycle by cycle, and allows instead to
obtain directly the more important converged state.

The paper by Chinh [30] includes a thorough mathematical treatment of the
shakedown theorem and extends it. The paper by Constantinescu, Dang Van et
al. [26] discusses in detail the relation between shakedown and fatigue. Shakedown
analyses of a Hertzian rolling/sliding contact are presented in [29], [27] and [28].

Von Mises yield criterion

It is convenient at this point to recall the equations of the Von Mises plastic yield
criterion. A stress tensor σ̃, be it macroscopic or mesoscopic, elastic or plastic,
must obey the law of the balance of forces:

divσ̃ = 0 (3.15)

where it is supposed that both the body and inertial forces are negligible, a reason-
able simplification when dealing with the high contact stresses of the meshing.

As a consequence, the tensor is symmetric and its invariants are:

I1 =trσ̃

=σxx + σyy + σzz

=σ1 + σ2 + σ3

(3.16)

I2 =
1

2

Å
(trσ̃)2 − tr

Ä
σ̃2
äã

= σxxσyy + σyyσzz + σxxσzz − σ2
xy − σ2

yz − σ2
xz

= σ1σ2 + σ2σ3 + σ1σ3

(3.17)

I3 = det σ̃

= σxxσyyσzz + 2σxyσyzσxz − σxxσ2
yz − σyyσ2

xz − σzzσ2
xy

= σ1σ2σ3

(3.18)
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The octahedral shear stress is:

τoct =

»
2I2

1 − 6I2

3

=
1

3

√
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6

Ä
σ2
xy + σ2

yz + σ2
xz

ä
=

1

3

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

(3.19)

The stress tensor can be split into its volumetric and deviatoric part:

σ̃ = s̃+ pH · Ĩ (3.20)

s̃ = devσ̃ (3.21)

pH =
1

3
I1 =

1

3
(σxx + σyy + σzz) =

1

3
(σ1 + σ2 + σ3) (3.22)

where pH is the hydrostatic stress and s̃ the deviatoric stress tensor.
The hydrostatic part is responsible for the volumetric change of the body and

the deviatoric part for its distortion. Because the first invariant of the deviatoric
stress tensor is always null, its second invariant is:

J2 = I2 −
1

3
I2

1

= −1

6

Å
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6

Ä
σ2
xy + σ2

yz + σ2
xz

äã
= −

(
s2
xx + s2

yy + s2
zz

2
+ s2

xy + s2
yz + s2

xz

)
(3.23)

On the other hand, and in the case of an isotropic elastic material, the volumetric
distortional strain energy is given by:

Us = − 1

2G

Ç
I2 −

1

3
I2

1

å
(3.24)

The Von Mises criterion states that the material yields when a limit to the
elastic distortional strain energy is reached. Comparing Equations (3.19), (3.23)
and (3.24), it follows that:

τoct =

 
−2

3
J2 (3.25)

Us = − J2

2G
=
τ 2

oct

3G
(3.26)

Thus imposing a limit to the distortional strain energy, to the second invariant
of the deviatoric stress tensor or to the octahedral shear stress are equivalent ap-
plications of the Von Mises yield criterion. For instance, for a material point not
to yield, its stress tensor must obey the equation:

− J2 −K2 ≤ 0 (3.27)
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where K is a material property. This can be rewritten as:(
s2
xx + s2

yy + s2
zz

2
+ s2

xy + s2
yz + s2

xz

)
−K2 ≤ 0 (3.28)

It is important to note that, if one maps sxx/
√

2, syy/
√

2, szz/
√

2, sxy, syz, sxz
to a six-dimensional space, the yield surface becomes a hypersphere.

Mesoscopic stresses

As outlined by Constantinescu, Dang Van et al. [26], three scales must be dis-
tinguished when discussing fatigue: the microscopic scale of dislocations within
crystals, the mesoscopic scale of crystal grains and the macroscopic scale of the
studied component as a whole, with typical distances of:

scale typical lengths
macroscopic 10−3 m nominal geometry
mesoscopic 10−6 m chrystal grain
microscopic 10−10 m interatomic distance

At the macroscopic scale, the material properties vary smoothly and the material
is continuous. At the mesoscopic scale, the material properties cannot be said to
vary smoothly because of the difference in orientation of the grains. Nevertheless,
the material may still be considered continuous because a grain contains a suffi-
ciently large number of atoms and it thus still makes sense to talk of stresses and
strains. At the microscopic scale, the material becomes a discrete aggregate of
atoms, an no continuity of any kind exists.

The stresses discussed in this chapter up to this point are all at the macroscopic
scale. On the other hand, the initiation of a fatigue crack is widely held to be a
consequence of the nucleation of dislocations within crystal grains (see the internet
website [31] for a succinct discussion of crystal defects and micro-plasticity; for a
complete mathematical treatment of macro and micro plasticity, see [32]). It is
therefore necessary to be able to evaluate the mesoscopic stresses. It must be said
that the macroscopic stresses may be though of, in some sense, as an average of the
mesoscopic stresses over a representative volume element (RVE) of the size of many
grains. Thus, the mesoscopic stresses are the sum of the mesoscopic stress and of a
perturbation due to the difference in elastic properties caused by the difference in
grain orientation.

Dang Van, in an article describing his fatigue criterion [33], proposed a method
of obtaining the mesoscopic stresses based on the elastic shakedown concept. While
this method was presented as an integral part of the criterion, determining meso-
scopic stresses is useful in itself. This is the reason why it is presented here inde-
pendently of the fatigue criterion.

In the previous section, it was said that the macroscopic stabilized stress tensor
could be obtained directly, without performing the computationally costly step
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3 Stresses, fatigue and damage

of following the intervening stages. While this is true in principle, it involves
“guessing” the actual stabilized residual stress tensor and verifying it in the light
of Melan’s theorem. In practice, the analyst of the system makes assumptions
about probable residual stress tensors and obtains upper and lower bounds of the
shakedown limit within which the loads induce elastic shakedown (see [34] for a
good explanation of this). Such an approach is detailed in [30] and [29]. Dang Van’s
method of determining the mesoscopic stabilized residual stress bypasses this step
by allowing one to directly get at the mesoscopic stresses.

In the general case, the mesoscopic stress tensor is related to the macroscopic
stress tensor thus:

Σ̃ = ˜̃A : σ̃ + ρ̃ (3.29)

where Σ̃ is the mesoscopic stress tensor, σ̃ the macroscopic one, ρ̃ is the stabilized

mesoscopic residual stress tensor, constant in time, and ˜̃A is the fourth order local-
ization elastic tensor, that accounts for the differences in the elastic properties of
the grains from the macroscopic ones due to their orientation.

As argued by Dang Van, it is possible to eliminate the localization tensor from
Equation (3.29) by making a few reasonable assumptions. Namely, it is supposed
that within the RVE centred on each material point considered, at least one grain is
so unfavourably oriented that it will slip under the stresses, and that the material
suffers isotropic and kinematic hardening at the mesoscopic level. Finally, it is
supposed a priori that at the local mesoscopic level the material around each point
will shakedown elastically, in a manner similar to the global elastic shakedown.
Thus Equation (3.29) reduces to:

Σ̃ = σ̃ + ρ̃ (3.30)

This happens because, as the cycle progresses, the yield surface grows and shifts
to encompass all the stress states through which the considered material point
has travelled (see Figure 3.4). Once more, this is valid because of the assumption
that elastic shakedown does occur locally—this is similar to conducting elastic
calculations to check for yield—and that the material, at the mesoscopic scale,
undergoes isotropic and kinematic hardening—a very general description of the
plastic behaviour of a material and therefore a very reasonable one.

The yield criterion used is the Dang Van criterion, and therefore the yield surface
is a hypersphere in the axes sxx/

√
2, syy/

√
2, szz/

√
2, sxy, syz, sxz, whose radius

expands—this is isotropic hardening—and whose centre moves— this is kinematic
hardening. The final position and radius of the yield hypersphere is then such that
the hypersphere is the smallest one that encompasses all the stress states in the
cycle for the point under consideration. The stabilized mesoscopic residual stress
associated with the local shakedown (ρ̃) is then the centre of the yield sphere. From
this process of obtaining ρ̃ it follows necessarily that it is a purely deviatoric stress
tensor. Mathematically, the yield limit is determined by solving the optimization
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problem:

K2 = min
ρ̃′

Å
max
t

Ä
−J2 (σ̃ (t) + ρ̃′)

äã
ρ̃ : K2 = max

t

Ä
−J2 (σ̃ (t) + ρ̃)

ä (3.31)

Performing the mapping of the stresses to a six-dimensional space, as mentioned
earlier, this becomes the well known geometric problem of the smallest enclosing
ball.

As an illustration of the principle, consider a body in which the external loads
only induce pure shear stress, with all the stress components null except σxz and
σyz, at a given point in the body. The macroscopic elastic stress history of the point
in the body may be conveniently represented in two dimensions, as in Figure 3.4.
Because of this the yield surface collapses into a circle.

At the start of the cycle, the stress is equal to an initial stress σ0 and the yield
radius is the initial one. The cycle progresses to instant t1, at which the elastic
stress tensor is σ1. Because in reaching this instant, the elastic stress tensor has
moved outside the initial yield surface, it has pulled it along so that the yield surface
centre has shifted to ρ1 and its radius has dilated to K1 in order to envelop both
σ0, σ1 and every intermediate stress state. The very same thing happens when the
cycle progresses to σ2. Finally, when the full cycle has been gone through, the yield
surface settles into its final shape and position and need no longer change with the
application of further cycles.

3.2 Dang Van multi-axial high-cycle fatigue criterion

The mesoscopic stresses evaluated by the method presented in the previous section
are those necessary to ensure the existence of elastic shakedown locally—in fact,
to ensure near infinite life to fatigue. Whether the material has the capacity to
sustain these stresses or not is another matter. The Dang Van criterion is the tool
used to check this possibility at each instant after the stabilization of the residual
stress.

A fatigue crack in its initial stage usually propagates along a plane of maximum
shear strain, which corresponds in the isotropic case to a plane of maximum shear
stress. Thus, the maximum shear stress is a relevant parameter of the initiation
of a fatigue crack. On the other hand, a negative hydrostatic stress—a hydro-
static pressure—has been observed to benefit the resistance to fatigue of materials.
From these considerations, Dang Van formulated [33] the simplest possible law that
relates these parameters:

τmax + αDV · pH ≤ βDV (3.32)

where τmax and pH are the maximum shear stress and the hydrostatic stress—not
pressure—of the mesoscopic stress and αDV and βDV are fatigue material properties.

The material properties βDV and αDV are obtained respectively by performing
reversed torsion and alternating bending tests, in order to obtain two points on the
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Figure 3.4: Stress cycle and hardening of a material point in pure shear stress.
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Figure 3.5: Position of the mesoscopic stress state of a material point during a load
cycle on the ph/τmax plane. DV = τmax+αDV·pH
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line described by Equation (3.32).

Because the maximum shear stress occurs in two mutually perpendicular planes,
the orientation of the crack as it initiates can be either one, or even both.

Another interpretation can be given to the criterion, derived from the manner of
obtaining βDV . One can think of the stress cycle at each point as equivalent to a
reversed torsion stress cycle such that its maximum shear stress is:

βeq = max
t

(τmax + αDV · pH) (3.33)

Thus, fatigue cracks do not initiate if this equivalent shear stress is less than the
value of βDV .

βeq ≤ βDV (3.34)

This equation must be verified at each instant in the cycle. Any point at which
this is not true must eventually be the origin of a fatigue crack: it passes into the
domain of low cycle fatigue or even ratcheting.

Figure 3.5 shows the position of the mesoscopic stress state of a material point
during a load cycle on the ph/τmax plane. It is seen that the path of the stress
crosses the straight line delimiting the safety zone. Interestingly, the most critical
instant occurs when pH is at its lowest absolute value, in other words, when the
external loads are null and the only hydrostatic stress comes from the initial stress.
This is due to the fact that under loading, contact pressure induces high hydrostatic
pressures that shift the graph to the left and under the limiting line. By the same
token, a compressive initial stress has the same beneficial effect, as can be observed
in Figure 3.5.

Numerous papers have been published that apply the Dang Van criterion to
rolling contact fatigue—spurred by applications in the railroad and roller bearing
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industries—such as [35], [36], [37] and [38]. Notably, in the last reference, Desimone
et al. proposed a refinement of the criterion that will be discussed in Chapter 5.

3.3 Types of tooth flank surface damage

Faure, in [9], presents a comprehensive review of the types of damage that appear
on gears. Thus he distinguishes several types of damage:

wear The progressive removal of matter from the surface of a tooth with use. This
term covers a multiplicity of phenomena:

running-in This is not strictly a damage. New gears, when used with light
loads will see their roughness decrease in the first few hours. This has a
beneficial effect on the duration of the gears.

current wear The unavoidable wear that comes from the mutual sliding of
surfaces. The exact mechanism is not known, but it is suspected that
a combination of brittle fracture, plastic failure and fatigue come into
play as roughness features collide.

scoring Salient roughness features of one tooth dig into the opposite contact-
ing tooth leaving a score mark. This is not relevant in the case of spur
gears because their roughness is markedly anisotropic and the direction
of greater roughness is perpendicular to that of sliding.

adhesive wear The tooth surfaces contact at high pressure and micro-welding
or adhesion occurs, after which material is torn form the surface. Faure
includes in this class of damage both hot and cold scuffing.

three bodies wear scratches and abrasion caused by the presence of particles
in the lubricant.

corrosion Chemical phenomenon that originates from the presence of water or
other corrosive agents in the lubricant.

overheating or burning An excessive temperature in operation can cause an acci-
dental heat treatment that lowers the hardness of the gear material.

erosion by cavitation In some cases, in particular under high alternating loads,
cavitation of the lubricant can occur. Both the implosion of the cavitated bub-
bles and the projection of high speed droplets cause shock-waves that produce
impact craters with circumferential cracks. Due to the near-instantaneous
duration of these events, the material response is very brittle so that no real
progressive fatigue is involved.

electric erosion Removal of matter through the application of electric arcs that
are produced by the high friction of the surfaces.

plastic deformation This covers the permanent deformations of the surfaces caused
by excessive contact pressure.
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3.3 Types of tooth flank surface damage

contact fatigue The damages caused by the cyclic nature of the loads on the
surface of a tooth. They are:

case crushing When the Hertzian maximum shear stress is located below
the cemented or nitrurated layer, a fatigue crack may develop that, upon
reaching the surface, causes the surface treated layer to be removed. The
roughness of the surfaces plays little or no part in its creation since the
stresses of a rough tooth at the initiation depth are nearly the same as
in the case of a smooth Hertzian contact, as was shown in Figures 3.2
and 3.3.

spalling A crack originates at the depth of Hertzian maximum shear and
propagates to the surface. In consequence, a flake is removed from the
tooth, living a large crater of several hundred microns in depth and
width. As in the case of case crushing, and for the same reason, the
roughness has no influence on this type of damage.

pitting A crack originates on the surface and propagates downwards to a
depth of over 100 µm before rejoining the surface, at which point a pit is
formed. Since the origin of the crack is on the surface, the complex stress
state near the surface caused by the roughness is of great importance in
its occurrence.

micropitting As in the case of pitting, a crack originates from the surface
and propagates downward but only to a depth of around 20 µm. Thus,
the only difference from a pit is one of scale. The mechanisms at play
must be those of pitting. Figure 3.6 shows a picture of a section of a
tooth that exemplifies well the size and shape of micropits.

Fatigue is relevant only to the phenomena of normal wear and contact fatigue.
By restraining the analysis of a tooth to the first 20 µm of depth, it is possible to
isolate the initiation of fatigue damage related to pitting and micropitting from the
other types of damage by contact fatigue. Because the phenomenon of pitting may
be seen as a more advanced stage of micropitting, there is no need to distinguish
between them when modelling the initiation of cracks. The precise separation of
wear and micropitting is not so easy: some of the wear may be caused by fatigue
cracks on the surface. The distinction must be made on the end results of the
analysis: it is expected that wear is relatively uniform on large patches of the
surface, while micropitting consists of small craters of a few microns of width on
the surface.

When performing a longitudinal cut of a gear tooth, the surface cracks always
intersect the plane of cut in well defined directions, as shown in Figure 3.7: they
progress downward in the direction opposite to sliding at a shallow angle (< 30◦).

It has been observed that micropitting is concentrated mainly on the flank of the
pinion below the primitive line. This is consistent with the widely held view that
the sliding ~U2 − ~U1 is most harmful when in the direction of rolling. Figure 3.8,
where the picture of the micropitted surface of a tooth is shown, is an example of
this.
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Figure 3.6: Photograph of a cut of a gear tooth where micropitting has occurred.

~U1 − ~U2

driven gear tooth

~U2 − ~U1
~U1 − ~U2

~U1 − ~U2
~U2 − ~U1

driving gear tooth~U1, ~U2

Figure 3.7: Orientation of surface fatigue cracks according to their position on the
teeth. The directions of the rolling and sliding velocities and of the
rotations are also shown.
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3.3 Types of tooth flank surface damage

Figure 3.8: Photograph of the surface of a gear tooth where micropitting has oc-
curred. The micropitted areas are surrounded by a red line. It is seen
that micropitting is mainly restricted to the part of the flank below the
pitch line.
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Figure 3.9: Shematic representation of micropitting initiation (a) and micropitting
popagation (b) (taken from [2, Figure 11]).
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3.3 Types of tooth flank surface damage

Table 3.1: Factors that influence micropitting and suggested remedies.

influencing factor range of influence suggested remedy

grear surface roughness 1→ 3 (from 6 µm to 3 µm) reduce to 0.3 µm
material, heat treatment 1→ 2.8 retained austenite
lubricant viscosity 1→ 2 use highest practical

vicosity
lubricant additive chemistry 1→ 2 (equal viscosity of base oil) use properly selective

additives
coefficient of friction 1→ 1.7 reduce the coefficient

of friction
speed 1→ 1.3 run at high speed
oil temperature 1→ 1.3 (∆T = 20 K) reduce oil tempera-

ture

In their articles [5] and [2], Oila and Bull made an extensive study of the phe-
nomenon of micropitting with particular emphasis on its crystallographic aspects.
In particular, in [2], they proposed a mechanism of initiation and propagation of mi-
cropitting cracks that is related with the formation of a phase produced by intense
plastic deformations on the immediate surface of a tooth, coined plastic deforma-
tion region (PDR) by Oila and Bull, as shown in Figure 3.9, that was borrowed
from [2].

The factors that influence micropitting, their range of influence and suggestions
for preventing it, according to Cardis and Webster [39], are listed in Table 3.1 in
descending order of importance. It is interesting to notice that the factors can be
grouped in three main categories with some overlap:

specific film thickness: the surface roughness, the lubricant viscosity, the speed
and oil temperature;

fatigue behaviour: the material, the heat treatment—or, in other words, the initial
stresses in the gear flank surface;

friction coefficient: overall friction coefficient, speed, oil temperature, additive
chemistry, which is known to be mainly felt at the level of boundary film
lubrication.

It can be verified that the mixed film lubrication model and the contact fatigue
initiation model address all of these issues.

The table shows that the roughness is of primordial importance. This is in
accordance with the work of Gonçalves [40], which is in many ways a precursor to
this one, who demonstated the influence of the roughness profiles in the results that
she obtained with her own micropitting model.
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3 Stresses, fatigue and damage

Is is interesting to note a conspicuous absence from Table 3.1: the maximum
Hertzian pressure. This is significant because in their paper [5] Oila and Bull
singled out the maximum Hertzian pressure as the most important factor in the
initiation of micropitting—their definition of initiation is different than that used
throughout this work: they take it to mean the instant when the flank surface area
where micropitting has occurred reaches 1.5% of the total flank surface area.
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4 Numerical model

4.1 Overview of the model

The numerical model developed is divided into two major parts: the mixed film
lubrication and the surface fatigue damage models. The general scheme is shown
in Figure 4.1.

The first part is a loop over time that goes through an entire meshing cycle in
order to obtain the elastic stresses at each instant. The box geometry, kinematics,
loads corresponds to Chapter 1, where the details of the determination of the ge-
ometry of the surfaces, the velocities, the contact loads and the Hertzian contact
are detailed.

The boxes load sharing function fΛ (Λ), smooth EHD lubrication, rough boundary
lubrication and mixed regime lubrication correspond to Section 2.3.2, where a pro-
posed approximate solution to the contact problem in the mixed film lubrication
regime is presented.

The box elastic stresses corresponds to Section 3.1.2, where the theory behind
the determination of the elastic stresses is laid down. Note that the stresses are
calculated only to a depth of 20 µm in order to isolate micropitting from other
types of fatigue failure. Furthermore, the stresses are only obtained for the driving
gear tooth, since it has been found that micropitting is more prevalent on these.

The second major part concerns itself with the application of the Dang Van
criterion. The calculations are no longer performed in a time loop. Thus knowing
the initial stresses and the elastic stresses, the mesoscopic residual stresses are
obtained by applying the method detailed in Section 3.1.3. The mesoscopic stresses
at every instant are then easily obtained by adding:

Σ (x, z, t) = σini (x, z) + σelas (x, z, t) + ρ (x, z) (4.1)

Finally, the Dang Van fatigue criterion is applied as explained in Section 3.2.
This calculation is performed only on the driving gear tooth, for reasons already
explained.

Note that a number of difficulties regarding numerical implementation have been
ignored until now. The most salient ones are discussed in what follows.

4.2 Numerical implementation

In order to perform the calculations listed in Figure 4.1, the driving gear tooth is
discretized in the xz plane, where x is the arc distance on the surface of the tooth
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Figure 4.1: Scheme of the model for the prediction of micropitting crack initiation.
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4.2 Numerical implementation

and z is the depth. Thus time is discretized as a succession of instants in which
the theoretical Hertzian initial contact travels from nodal point to nodal point on
the x axis.

Most of the steps in Figure 4.1 are trivial to implement numerically. Neverthe-
less some numerical difficulties were encountered during the implementation of the
model. They are now discussed.

4.2.1 The rough boundary lubrication contact problem

This section deals with the problem put in Section 2.4.2. More precisely, the prob-
lem is to compute the pressure and the final separation of the surfaces.

The equations are here recalled:

h (x) = h0 (x)− 2

πEeq

∫ +∞

−∞
ln

∣∣∣∣∣x− x′L

∣∣∣∣∣ p (x′) dx′ (4.2)

fN =
∫ +∞

−∞
p (x) dx (4.3)

∀x :
Ä
h (x) ≥ 0 ∧ p (x) = 0

ä
∨
Ä
h (x) = 0 ∧ p (x) ≥ 0

ä
(4.4)

The unknown are the vertical separation of the surfaces, h (x), the contact pres-
sure, p (x) and the integration constant L, which can be interpreted as the dis-
tance form an infinitesimal line load at which the vertical displacement vanishes
(L = |x− x′| ⇒ ln (|x− x′| /L) · p (x′) = 0).

By discretizing the x axis at equal intervals of ∆x and assuming a constant pres-
sure pj within each segment [xj −∆x/2;xj + ∆x/2] (see Figure 4.2), the equations
become:

hi = h0,i + L′ −
∑
j

pj ·K|i−j| (4.5)

fN = ∆x
∑
j

pj (4.6)

∀i :
Ä
hi ≥ 0 ∧ pi = 0

ä
∨
Ä
hi = 0 ∧ pi ≥ 0

ä
(see Figure 4.3) (4.7)

where:

Ki =
2

πEeq
∆x

ñÇ
1

2
+ i

å
ln
∣∣∣∣12 + i

∣∣∣∣+
Ç

1

2
− i
å

ln
∣∣∣∣12 − i

∣∣∣∣
ô

(4.8)

L′ =
2

πEeq
fN

Ç
1 + ln

L

∆x

å
(4.9)

Thus, the nodal pressures pi and separations hi and the constant L′ become the
unknowns.

Initially, the algorithm to solve this optimization problem was that detailed in the
work by Seabra and Berthe [41]. It was found that under certain circumstances, the
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xi−1 xi+1xi

pi−1

pi+1pi

Figure 4.2: Discretization of the xx axis and of the surface pressure for the rough
boundary film contact problem. The discretization is exaggerated for a
better illustration.

xi

pi

hj

xj

Figure 4.3: An example of valid deformed surfaces and surface pressures in a bound-
ary film lubrication problem. As an example see the two discretization
points i and j: hj > 0 and pj = 0; hi = 0 and pi > 0.
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4.2 Numerical implementation

algorithm failed to converge on a solution. This is inconvenient in this case because
thousands of contact problems must be solved in order to obtain a complete cycle
with a sufficiently tight discretization grid. Another possibility would be the use of
linear programming, but it was found to be excessively costly from a computational
point of view. Because of this, a fast alternative had to be found, suitable to run
automatically without any human intervention.

The algorithm presented by Polonsky and Keer in [42] was found to meet these
requirements: it is fast and unconditionally stable. The algorithm as presented
in [42] is described for a point contact, so that an adaptation had to be made to
make it suitable for the line contact case. The algorithm is described here with
a notation that is coherent with the previous equations and adapted to the two
dimensional case.

This method is based on the conjugate gradient method, an optimization method
usually used on unconstrained problems, modified to accommodate the constraints
of Equations (4.6) and (4.7).

The process is started by attributing an arbitrary value to the nodal pressures,
so long as it satisfies Equation (4.6). The parameter δ is initialized at 0 and Gold

at 1. Their meaning shall be discussed later. The process then enters an iterative
stage to be run until the error ε reaches a satisfactory value. The iterative stage is
described mathematically as:

1. The nodal points that belong to the contact set Ic, the gaps hi and the new
“penetration” L′ are determined. Notice that L′ is chosen so that the average
gap h within the contact set Ic is null. This is a weak form of enforcing the
non negativity of the gap that ensures that the final solution will be correct
within a tolerance.

Ic ← {i : pi > 0} (4.10)

Nc ← size of Ic (4.11)

∀i : hi ← h0,i −
∑
j

K|i−j| · pj (4.12)

L′ ← − 1

Nc

∑
i∈Ic

hi (4.13)

∀i : hi ← hi + L′ (4.14)

2. The new conjugate gradient ti is determined. It is seen now that G/Gold is
the proportion in which the previous gradient enters in the composition of the
new one and δ is 0 when the conjugate gradient becomes that of maximum
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descent and 1 otherwise.

G←
∑
i∈Ic

h2
i (4.15)

ti ←

hi + δ · G

Gold

ti ; i ∈ Ic

0 ; i /∈ Ic
(4.16)

Gold ← G (4.17)

(4.18)

3. The gradient is translated into the pressure domain and the non negativity
of the pressures is enforced. If no nodal points will need to be added to the
contact in the next iteration δ is set to 1. Otherwise it is set to 0.

∀i : ri ←
∑
j

−K|i−j|tj (4.19)

r̄ ← 1

Nc

∑
i∈Ic

ri (4.20)

∀i : ri ← ri − r̄ (4.21)

τ ←

Ñ∑
i∈Ic

hiti

éÑ∑
i∈Ic

riti

é−1

(4.22)

∀i : pold
i ← pi (4.23)

∀i ∈ Ic : pi ← pi − τti (4.24)

∀i : pi < 0⇒ pi ← 0 (4.25)

Iol ← {i : pi = 0 ∧ hi < 0} (4.26)

δ ←
{

1 ; Iol = ∅
0 ; Iol 6= ∅

(4.27)

∀i ∈ Iol : pi ← pi − τhi (4.28)

(4.29)

4. The new pressure vector is scaled to balance the overall load and the error is
computed.

P ← ∆x
∑
j

pi (4.30)

∀i : pi ←
fN
P
pi (4.31)

ε← ∆x

fN

∑
i

∣∣∣pi − pold
i

∣∣∣ (4.32)

When the solution has sufficiently converged, the nodal values hi and pi as well
as L′ have been obtained.
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Note that Polonsky and Keer advocate the use of a multi-level multi-summation
scheme for the computation of K|i−j| · pj in their paper. It was found that in the
two dimensional case treated here, this would introduce too much computational
overhead in the programme and a simple direct matrix multiplication is used in-
stead.

4.2.2 The computation of elastic stresses

In Section 3.1.2, the integral Equations (3.2), (3.3) and (3.4) for the calculation
of σxx, σzz and σxz were presented without reference to an actual computation
method, which is presented now.

No generally valid analytic formula exists for the computation of the aforemen-
tioned equations, so that numerical methods must be employed. Thus, the elastic
half-space, whose coordinate system is shown in Figure 3.1, must be discretized.
The xx axis maintains the same discretization as in the previous section. On the zz
axis, zi coordinates are positionned with a constant distance ∆z from one another.
This coordinate system is fixed on the tooth: it does not change as the contact
travels on the tooth surface. As before, the surface pressure and shear stress p and
τ are considered constant within each segment of the xx axis [xj−∆x/2;xj+∆x/2].

Thus, the equations for the determination of the elastic stresses become:

σijxx =
∑
k

pkK
21
i,j−k + τkK

30
i,j−k (4.33)

σijzz =
∑
k

pkK
03
i,j−k + τkK

12
i,j−k (4.34)

σijxz =
∑
k

pkK
12
i,j−k + τkK

21
i,j−k (4.35)

where:

σijxx = σxx (xj, zi) (4.36)

σijzz = σzz (xj, zi) (4.37)

σijxz = σxz (xj, zi) (4.38)

and:

K03
ij =− 1

π

Ç
arctan

(1/2− j) ∆x

zi
+ arctan

(1/2 + j) ∆x

zi

å
−

− 1

π

(
(1/2− j) ∆xzi

[(1/2− j) ∆x]2 + z2
i

+
(1/2 + j) ∆xzi

[(1/2 + j) ∆x]2 + z2
i

) (4.39)

K12
ij =− 1

π

(
z2
i

[(1/2− j) ∆x]2 + z2
i

− z2
i

[(1/2 + j) ∆x]2 + z2
i

)
(4.40)
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K21
ij =− 1

π

Ç
arctan

(1/2− j) ∆x

zi
+ arctan

(1/2 + j) ∆x

zi

å
+

+
1

π

(
(1/2− j) ∆xzi

[(1/2− j) ∆x]2 + z2
i

+
(1/2 + j) ∆xzi

[(1/2 + j) ∆x]2 + z2
i

) (4.41)

K30
ijk =

1

π

(
z2
i

[(1/2− j) ∆x]2 + z2
i

− z2
i

[(1/2 + j) ∆x]2 + z2
i

)
+

+
1

π
ln

[(1/2− j) ∆x]2 + z2
i

[(1/2 + j) ∆x]2 + z2
i

(4.42)

In view of this, the determination of the stresses could be performed as a series
of matrix multiplications. The reason this is not the method adopted in this work
is the staggering amount of data that needs to be treated. A surface discretization
of a tooth with an 8 mm surface length with ∆x = ∆z = 2µm yields a total of
3 · 4001 · 21 · 4001 ≈ 1012 elastic components σxx, σzz and σxz to be obtained in the
course of a complete cycle. This is by far the most computationally intensive part
of the model. For this reason, fast alternatives to direct matrix multiplication had
to be found.

One possibility is suggested by the convolution theorem that states that the
Fourier transform of a convolution of two function is equal to the product of the
Fourier transforms of each of these functions:

F
Ç∫ +∞

−∞
f (x− x′) g (x′) dx′

å
= F (f) · F (g) (4.43)

Thanks to the existence of very fast algorithms for obtaining the discretized
Fourier transforms—the FFT algorithm prominent among them—it is less costly
to obtain the Fourier transforms of the functions, multiply them and then perform
the inverse Fourier transformation on the result than it is to multiply the matrices.
Unfortunately, this is partly offset by the need to extend the domain of the functions
in order to avoid a distortion of the results caused by the periodic nature of the
discretized Fourier transform.

Another possibility, and the one used in this work, is that of a multi-level multi-
integration scheme, as described by Polonsky and Keer in [42] as well as Venner
in [43]. For a comprehensive theoretical overview of the method, the reader is
advised to consult the latter reference. The method is described as a mean of
obtaining the surface deflection under a surface pressure but it can equally well be
used for obtaining the stresses within the tooth.

In broad terms, the method is based on the Saint-Venant principle, which states
that, at a sufficient distance from the external loads, any statically equivalent load
produces the same stress state. This law is exploited to compute the stresses in a
discretization grid coarser than the targeted one and then transfer the values onto
ever finer grids, with corrections as needed, until the stresses are obtained for the
targeted grid.

The computed matrix multiplication is not exact, but it’s error can be made infe-
rior to that introduced by the discretization of the continuous integral expressions.
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The transfer of values from one grid to another is effected by Lagrangean poly-
nomial interpolations, whose coefficients are:

∀i : 1 ≤ i ≤ 2t : sti =
2t∏

k=1;k 6=i

2 (t− k) + 1

2 (i− k)
(4.44)

To ensure that the error never exceeds that of the discretization, a correction
region is defined whose width is:

mc = 0.7tN1/t
x − 1 (4.45)

where 2mc − 1 are the number of nodes in the correction region.
Thus, both the size of the correction region and the order of the Lagrange poly-

nomial derive from the definition of t. In this work, t has always been chosen in
order to minimize mc.

In order to allow the reader to implement the algorithm, the computation of the
part of σzz caused by p is detailed as an example. In all that follows, an index c
will denote a coarse grid and an index of f a fine one. Additionally, all indexes i,j,
etc. . . are numbered from 0. Thus, all grid nodes will have coordinates (xj, zi) such
that:

0 ≤ i ≤ Nz − 1 (4.46)

0 ≤ j ≤ Nx − 1 (4.47)

First of all, the surface pressure matrix pi is transfered to successively coarser
grids iteratively. A coarse grid is obtained from a finer one by doubling the node
spacing in xx:

∆xc = 2∆xf (4.48)

and the number of nodes in the coarser grid is:

N c
x = N f

x /2 + 2t− 1 (4.49)

The pressures of the fine grid are lumped on the nodes of the coarse grid:

pcm = pf2(m−t+1) +
2t∑
k=1

stk · p
f
2(m−t+1)+2(k−t)−1 (4.50)

Figure 4.4 shows the passage from a fine grid to a coarser one. Note that the
domain of discretization grows with the coarseness of the grid. This is to ensure that
the same Lagrangean function can be used at the limits of the discretization grids as
in the interior of the grid for the transfer. This effect is greatly exaggerated in the
figure due to the small number of nodes of the original grid. Nevertheless, a careful
reader might enquire if this doesn’t void the purported advantage of this method
over an FFT scheme. This is not so, because although the domain is enlarged, the
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Figure 4.4: An illustration of the transfer of surface pressure from a fine grid to a
coarser one when t = 2. The left column of nodes shows the position of
the nodes of the finest grid—the original one: q = 0—on the xx axis.
The middle column the position of the nodes of the second finer grid
(q = 1). The right column the position of the nodes of the next grid
(q = 2). As an example, the arrows show how the pressure on the nodes
i = 3 of the grids q = 1 and q = 2 are obtained from the pressures on
the next finer grids.
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number of nodes decreases as the grid coarsens. Figure 4.5 shows the grids and
pressures obtained from the application of the process shown in Figure 4.4. Only
the discretization in the xx axis varies. A similar scheme could have been applied to
the zz direction but the increase in complexity in the algorithm cannot be justified,
since the depth of tooth analysed in this work is typically two orders of magnitude
smaller than length. Note that the pressures from a fine grid are lumped in the
next coarser on, so that the segment of application of a constant pressure still has
a width of ∆x. This ensures that the kernel doesn’t need not be recalculated for
each level of discretization.

This procedure is repeated until a grid is arrived at that is sufficiently coarse to
allow for an inexpensive direct multiplication. The kernel matrix of the coarsest
grid is obtained from the original one as follows:Ä

K03
äc
i,j

= K03
i,2qj (4.51)

where q is the level of the coarsest grid—q = 0 corresponds to the original grid.
And the stress is thus:

(σzz)
c
ij =

∑
k

pk ·
Ä
K03
äc
i,j−k (4.52)

The computed stress must now be transferred sequentially to successively finer
grids. This is effected by an iterative process that “climbs back” from the coarsest
grid to the original one. Each iteration deals with two grids: a coarse grid and the
next finer one. The coarse grid of one iteration is the fine grid of the previous one.

The stress in the coarse grid is first corrected. The correction coefficients are
computed from the kernel of the next finer grid for every i and −mc ≤ j ≤ mc:

C
(1)
ij =


0 ; even j

−Kf
ij +

2t∑
k=1

stk ·K
f
i,j−2(k−t)+1 ; odd j

(4.53)

Then the correction is applied to the stresses in the coarse grid:

(σzz)
c
ij ← (σzz)

c
ij +

mc∑
k=−mc

C
(1)
ik · p

f
2(j−t+1)−k (4.54)

Next, the stress on the fine grid is computed by interpolation (see Figure 4.6):

(σzz)
f
ij =


(σzz)

c
i,(j+1)/2+t−1 ; even j

2t∑
k=1

stk · (σzz)
c
i,(j+1)/2+k−2 ; odd j

(4.55)

From this point on, the coarse grid is abandoned and all computation is done on
the fine grid. First, as was done for the coarse grid, a correction step is applied,
whose coefficients are computed for every i and −mc ≤ j ≤ mc:

C
(2)
ij =


0 ; even j

−Kf
ij +

2t∑
k=1

stk ·K
f
i,j+2(k−t)−1 ; odd j

(4.56)
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Figure 4.5: Transition from fine to coarse grids. The change in the node interval
and size of the discretization domain is shown, as well as the lumping of
the surface pressures. Note that the discretization of the zz axis doesn’t
change from one grid to another.
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Figure 4.6: An illustration of the transfer of stresses from a coarse grid to a fine
one when t = 2. The stresses in the even nodes of the fine grid are
transferred from the coarse grid as node 8 is. The stresses in the odd
nodes are transferred from the coarse grid as node 3 is.

73



4 Numerical model

Then the correction is applied to the fine stress:

(σzz)
f
ij ← (σzz)

f
ij +

mc∑
k=−mc

C
(2)
ik · p

f
j−k (4.57)

Operations (4.53) to (4.57) constitute an iteration. At the end of the iteration,
if the fine grid is not the original, targeted grid, then it is passed on to the next
iteration as its coarse grid. Thus, the iteration is applied until the fine grid is the
original one, at which point the stresses have been computed.

This example only describes how to obtain the portion of σzz caused by p, but
it is easy to generalize the method in order to obtain all three stress components
caused by both p and τ simultaneously. Indeed, by a judicious fusing and reshaping
of the stress and kernel matrices, it is possible to deal only with two kernels and
one stress matrix with a corresponding increase in the speed of the method.

4.2.3 The computation of the mesoscopic residual stress tensor

As discussed in Section 3.1.3, the calculation of the mesoscopic stresses hinges on
the computation of a mesoscopic residual stress tensor. This optimization problem
was stated in Equation (3.31) reproduced here:

K2 = min
ρ′

Å
max
t

Ä
−J2 (σ (t) + ρ′)

äã
ρ : K2 = max

t

Ä
−J2 (σ (t) + ρ)

ä (4.58)

Replacing J2 by its explicit expression and recalling that ρ′ must necessarily be
a purely deviatoric stress tensor:

− J2 (σ (t) + ρ′) =

Ç
sxx − ρ′xx√

2

å2

+

Ç
syy − ρ′yy√

2

å2

+

+

Ç
szz − ρ′zz√

2

å2

+
Ä
sxy − ρ′xy

ä2
+
Ä
s2
yz − ρ′yz

ä
+ (sxz − ρ′xz)

2
(4.59)

where, as before, sxx, syy, szz, sxy, syz and sxz are the components of the deviatoric
macroscopic stress tensor. Note that this macroscopic stress tensor is the sum of
the initial stresses with the elastic stresses.

In appendix 1 of his paper [33], Dang Van described an iterative scheme for the
approximate calculation of ρ. The same procedure is described by Ciavarella et al.
in [37].

This method, that will not be described in detail here, consists in applying numer-
ically the physical reasoning presented in Section 3.1.3, page 51, and in Figure 3.4
to the successive macroscopic stress tensors at discrete intervals in the cycle. From
a numerical point of view, the outstanding feature of this method is that the quality
of the provided solution is controlled by the definition of a parameter χ. Dang Van
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recommends a value of 0.05 for χ, although he also states that the error decreases
with lower χ at the expense of a higher computation time.

Dang Van’s algorithm was initially implemented in the course of this work but
was later abandoned because of difficulties with its accuracy and convergence. A
numerical experiment was run in which the stress state over time remained the
same for a tooth, but χ and the discretization of the tooth were varied—note that
a finer discretization of a tooth entails also a larger number of discrete instants in
the cycle.

It was found that the asymptotic rate of convergence of the method is very
low, so that the convergence tolerance TOL must be set very low when using a
fine discretization grid: otherwise, the algorithm could stop when detecting a false
convergence. Moreover, the rate of convergence decreases notably with an increase
in the fineness of the discretization and the value of χ must be lowered accordingly.
Even worse, it was found that at very small values of χ, the algorithm becomes
entirely erratic and the converged solution is composed wholly of random noise. A
case in point was a simulation attempted with a discretization step on the surface of
0.5 µm, in which no solution could be found. Even in the cases where a solution can
be obtained , the interplay between the discretization and the pair of parameters
(TOL, χ) is complex and proper values for these parameters must be found by trial
and error on a case by case basis. This is obviously undesirable when, as is the case
here, an automatic calculation method—one without user input—is needed.

It has already been stated that Equation (4.59) amounts to the smallest enclosing
ball problem when mapping sxx/

√
2, syy/

√
2, szz/

√
2, sxy, syz and sxz to a six-

dimensional space. In the specialized literature on computational geometry, two
solution procedures were found for this problem.

The first, by Kumar et al., is presented in [44]. A Matlab implementation of the
method is available at the web-site [45]. While very reliable, the computation time
of the programme proved excessive for the needs of this work.

The second solution procedure, and that used in this work, is presented by
Gärtner in [46]. Conveniently, a C computer language implementation of the al-
gorithm is provided at the web-site [47]. The method will not be discussed here in
detail, as it falls somewhat far from the core concerns of this work and the author
only has a very superficial grasp of its inner workings. Suffice to say that it has
proved to be fast, robust and reliable. The solution is always exact relatively to
the data set provided to the programme: thus it is completely insensitive to the
discretization of the problem.
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5 Simulation of a gear micropitting
test

This chapter presents a simulation of a real gear micropitting test performed by
Cardoso [8] as part of his Master’s Thesis work.

5.1 Description of the test

In his work [8], Cardoso performed an extensive series of test in order to characterize
the mechanical performance of several gear oils. Of interest to the present work is
his micropitting test preformed with carburized gears lubricated with a mineral oil.
Note that this test was not designed with the simulation of micropitting in mind,
but was later co-opted for this purpose by the author of the present work, so that
many important measurements—important from the point of view of obtaining
data for the simulation, that is—were omitted from the tests. This is no criticism
of Cardoso’s excellent work, but serves instead to underline the need for dedicated
tests in the future.

5.1.1 FZG test rig and gears

The gear micropitting test was conducted on an FZG test rig, shown in Figure 5.1
Cardoso presents in his work a detailed explanation of the operation of the ma-

chine that will therefore be omitted here.
More immediately relevant for the present work are the geometric parameters of

the gears used in the test, FZG type C gears, listed in Table 5.1. A photograph of
the gears is shown in Figure 5.2.

5.1.2 Lubricant oil and gear material

The gear oil is an ISO VG 150 paraffinic mineral oil that contains additives to
increase its resistance to micropitting. Its properties are reproduced from [8, Ta-
ble 1.1] in Table 5.2. As can be seen, it gives no information about the parameters
to introduce into the Roelands viscosity equation, or about the limiting shear stress.
This issue will be addressed in a later section.

The material of which the gears were made is a DIN 20 MrCr 5 carburizing steel.
The gears were carburized, quenched and annealed before the final grinding opera-
tion. The heat treatment generated a curburized layer of a depth of approximately
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5 Simulation of a gear micropitting test

Figure 5.1: Photograph of an FZG test rig.

Table 5.1: Geometric and kinematic parameters of an FZG type C gear.

parameter driving gear driven gear

face width b = 14 mm
operating centre distance a′ = 91.5 mm
number of teeth Z1 = 16 Z2 = 24
rotational speed n1 = 2250 RPM n2 = 1500 RPM
base radius Rb1 = 33.829 mm Rb2 = 50.7435 mm
addendum radius Ra1 = 41.3175 mm Ra2 = 59.2715 mm
distances on contact path, T1A = 4.2946 mm
see Figure 1.9 T1B = 10.4374 mm

T1C = 13.9699 mm
T1D = 17.5792 mm
T1E = 23.7220 mm
T1T2 = 34.9248 mm
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5.1 Description of the test

Table 5.2: Gear oil properties.

Parameter Method Desig. Lubricating Oils

Lubricant maker EXXON MOBIL
Country USA
Oil type Industrial gear oil
Base oil DIN 51451 Paraffinic mineral oil

Chemical Content
Zinc ASTM D 4927 Zn -
Calcium ASTM D-4927 Ca 40 ppm
Phosphor ASTM D-4927 P 175 ppm
Sulphur ASTM D-4927 S 15040 ppm

Physical properties
Density at 15 ◦C DIN 51757 ρ15 0.894 g cm−3

Kinematic Viscosity at 40 ◦C DIN 51562 ν40 153.6 cSt
Kinematic Viscosity at 100 ◦C DIN 51562 ν100 14.4 cSt
Viscosity Index DIN ISO 2909 VI 96
Pour point DIN ISO 3106 −27 ◦C

Viscosity and density equations
Viscosity ASTM D341 n 3.5268
ln (ln (ν + a)) = m− nT m 9.1413

a 0.7 cSt
Thermoviscosity β40 0.0570 cSt/◦C

β = m
T

(ν+a) ln(ν+a)
ν

β100 0.0269 cSt/◦C
Piezoviscosity a1 367 bar

α = (a1 + a2T + (b1 + b2T ) p)−1 a2 2.96 bar/◦C
b1 9.98 · 10−3

b2 2.07 · 10−4 ◦C−1

Thermal expansion αν 8.26 · 10−4 g/cm3/◦C

Wear properties
KVA weld load DIN 51350-2 2200 N
KVA wear scar (1h/300N) DIN 51350-3 0.32 mm
Brugger DIN 51347-2 68 N/mm2

FZG rating DIN 51354 KFZG > 12
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Figure 5.2: Photograph of a pair of FZG type C gears.

Table 5.3: Physical properties of the gear steel.

property value

Young’s modulus of elasticity 210 GPa
Poisson ratio 0.3
Density 7850 kg m−3

Thermal conductivity 42 W m−1 K−1

Specific heat capacity 0.46 kJ kg−1 K−1

0.8 mm. The surfaces had a very high hardness, typically around 60 HRC, while
the core kept a very high strength and a considerably high elongation. The relevant
physical properties of the steel are listed in Table 5.3.

5.1.3 Gear micropitting test procedure

The test procedure based on an FZG specification (DGMK micropitting short test—
GFKT–C/8.3/90) is as follows:

Table 5.4: Operating conditions of the micropitting test.

load stage K3 K6 K8 K9

rotational speed n1 = 2250 RPM ; n2 = 1500 RPM
normal load FN 851.34 N 2923.5 N 5072.6 N 6373.2 N
oil temprerature 80 ◦C 90 ◦C
duration 1 h 16 h
number of cycles undergone by
the driving gear

135 · 103 2.16 · 106
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5.1 Description of the test

1. The test gears were cleaned in an utlrasonic bath, dried, weighed and their
roughness were measured.

2. They were mounted on the FZG test rig and submitted to the load stage K3
(a running-in stage), during 1 hour.

3. Without removing the gears from the test rig, a lubricant sample was taken.

4. They were immediately submitted to load cycle K6 during 16 hours.

5. At the end of the K6 stage, lubricant samples were collected, the gears were
dismounted, cleaned and weighed, the roughness of the driving gear was mea-
sured and the surfaces of the gears were photographed.

6. They were then remounted on the test rig and subjected to load stage K8
during 16 hours.

7. The same steps were performed as at the end of load stage K6.

8. Once more, the gears were mounted and subjected to load stage K9 during
16 hours.

9. A last round of measurements were performed as at the end of load stages
K6 and K8.

Table 5.4 lists the operating conditions for each load cycle. Note that the gears
were dip lubricated and the bath temperature of the oil was maintained constant.

Figure 5.3 shows the approximate positions where the roughness measurements
were made. Each series of measurements was performed on two distinct teeth. The
left image shows the measurements performed before load stage K3. Each of the
two teeth was submitted to three separate measurements for a total of six. The
right image shows the measurements between successive load cycles (K6–K8 and
K8–K9). Each tooth was measured thrice below the pitch line and thrice above it,
for a total of twelve distinct measurements.

5.1.4 Test results

Some results of the test are shown in Figures 5.4 to 5.6, which were taken from [8].
Figure 5.4 clearly demonstrates that micropits became visible at the end of load

stage K8. This is confirmed by the roughness measurements in Figure 5.6. It is
interesting to note that the axial measurements demonstrate much more clearly
the presence of micropitting than the radial ones. This is due to the fact that the
roughness is much smaller in the axial direction and the micropits thus stand out
vividly. Unfortunately, the model does not deal with the axial direction, since it is
two-dimensional.

At the end of load stage K9, the topography of a 2 mm by 2 mm square portion of
the driving tooth flank surface was measured by Cardoso. The results are illustrated
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Figure 5.3: Positions of roughness measurement. a) the roughness measurements
before stage K3. b) roughness measurements between load stages: each
position includes one measurement below the pitch line and one above
it.

(a) After load stage K3+K6 (b) After load stage K8 (c) After load stage K9

Figure 5.4: Photographs of a teeth taken after each load stage of the micropitting
test. The areas were micropitting has occurred are delimited with red
lines.

in Figure 5.5, where the dark “stains” are the outlines of the micropits whith depths
more profound than 5 µm. It is significant that the micropits are longer in the
horizontal direction than in the vertical one. The vertical direction corresponds to
the zz axis in the model. This is due to the fact that the roughness is much less
pronounced in the horizontal—or axial— direction.

5.2 Description of the simulation process

For each combination of a boundary friction coefficient µBDR ∈ (0.07, 0.08, . . . , 0.15)
with a fatigue property βDV ∈ (400, 420, . . . , 900) and with a position of roughness
mesurement (see Figure 5.3) a simulation was performed as follows:

1. Introduce the initial roughness into the model

82



5.3 Input data values and remarks concerning the realism of the simulation

Figure 5.5: Micropits deeper than 5 µm on a 2 mm by 2 mm square portion of the
gear flank surface at the end of load stage K9.

2. Run the simulation of load stage K6 as shown in Figure 4.1.

3. Introduce the roughness measured at the end of stage K6 into the model.

4. Run the simulation of load stage K8.

5. Introduce the roughness measured at the end of stage K8 into the model.

6. Run the simulation of load stage K9.

The properties that were considered are given explicitly in the next section.

5.3 Input data values and remarks concerning the
realism of the simulation

5.3.1 Physical simplifications

Several simplifications in the representation of the physical phenomena involved in
gear meshing were made. Their enumeration belongs perhaps more properly in the
previous chapter, as most of them are features of the model. Nevertheless, it is
convenient to place here this enumeration to enable an easy comparison with the
testing conditions.

The simplifications may be divided into two categories: the first concerning in-
trinsic properties of the model, the second reflecting the particular conditions of
the test.

The simplifications inherent to the model are:
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(a) (b)

(c) (d)

Figure 5.6: Evolution of the roughness during the micropitting test. a) and b) were
measured in the axial direction—the direction perpendicular to those
shown in Figure 5.3. c) and d) were measured in the directions shown
in Figure 5.3.
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• Because the roughness of a spur gear tooth is orthotropic and is so much more
pronounced in the transversal direction than in the longitudinal one—about
one order of magnitude—it was deemed acceptable to eliminate altogether
the consideration of longitudinal roughness from the model. This allows for
the treatment of the meshing of the teeth as a bi-dimensional one in plane
strain.

• At the start of each cycle, the corresponding new roughness measurements are
introduced into the model. Apart from that, no transfer of surface damage—
for instance, invisible micro cracks—is effected from one load cycle to the
next.

• The roughness change in the course of a load cycle is disregarded in the
calculations of each load cycle. Thus wear and fatigue cracks occurring during
a load cycle are only taken into account at the start of the next load cycle,
when new roughness measurements are introduced into the model as input
data.

The simplifications caused by the conditions of the test are:

• Any pair of driving gear teeth meshes with three driven gear teeth in the
course of gearing. Thus, to study one driving gear tooth a full cycle should
include the meshing with each of the three driven gear teeth with which it
contacts. Because no measurement of driven gear tooth was performed at the
end of the load cycles, it has been assumed here that the roughness of the
driven gear teeth must be roughly the same as that of the driving gear teeth.
This contradicts the established fact that driving gears suffer more wear and
fatigue than driven ones. Nevertheless, the equality of the roughness had to
be accepted as a work basis to enable the continuation of this work. There
are twelve measurements of driving gear teeth roughness, thus at the start of
each cycle, one of these measurements was affected to all driving gear teeth
and another to all driven gear teeth. As a consequence, a load cycle contains
only one distinct meshing of gear teeth.

• A roughness measurement does not cover the whole length of a tooth, so that
distinct measurements where performed by Cardoso to cover the tooth flank
below and above the pitch line. Because there is no way to position a mea-
surement in relation to another precisely, the merging of these measurements
in order to form a roughness image of the entire length of a tooth is unreliable
at best.

• Because residual stresses were not measured in the tests performed by Car-
doso, initial residual stresses were taken from the literature [48]. No alteration
in the macroscopic residual stresses between successive load cycles were taken
into account. Instead, the same initial residual stressses were applied at the
start of each load cycle. There is a good argument in favour of this stance.
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Table 5.5: Initial residual stresses due to the manufacturing processes (cutting, heat
treatment, grinding).

depth σxx σyy pH
[µm] [MPa] [MPa] [MPa]

0 −287 −287 −191
10 −366 −366 −244
30 −463 −463 −309
50 −164 −164 −109

Supposing that the actual residual stresses produced during a load cycle are
closely approximated by the mesoscopic residual stress, then they can have
no influence on the Dang Van criterion, since they are purely deviatoric. This
leaves only the initial residual stresses produced by the manufacturing pro-
cess as an influence on Dang Van fatigue. Thus, and provided that thermal
loads are kept sufficiently small that they do not influence yield, as is the case
here, this approach should be sufficiently accurate for practical purposes. The
initial stresses used are listed in Table 5.5.

• No roughness measurement was made between load stages K3 and K6. Be-
cause of this it was decided that a simulation of load stage K6 would be run
with the initial roughness, while disregarding completely the running-in load
stage K3. This is problematic, as it is well known that roughness reduces
considerably during running-in, with a considerable beneficial effect on the
fatigue behaviour of the gears. Nevertheless, this was the lesser evil, as the
alternative would be not to simulate the K6 load stage at all.

5.3.2 Properties related to mixed lubrication

It has already been said that the properties listed in Table 5.2 do not give sufficient
information to determine the non-linear rheology of the lubricant oil. In fact, the
data needed to model the gear oil is listed now:

• The oil parameters to be used in the Roelands viscosity Equation (2.9): η0,
S0 and Z.

• The parameters to be used in the limiting shear stress Equation (2.17): τL0,
ατL and βτL in order to use the Bair and Winer visco-plastic non-linear rhe-
ology Equation (2.16).

Additional data needed by the model are:

• The boundary lubrication regime friction coefficient µBDR.

• The load sharing function fΛ (Λ). A valid function must satisfy the conditions:
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– with very high specific film thickness, there is only smooth EHL:

lim
Λ→+∞

fΛ = 1

– when Λ is negligible, there is only boundary lubrication:

lim
Λ→0

fΛ = 0

The family of functions of the form tanh
Ä
aΛ · ΛbΛ

ä
automatically satisfies

these requirements while retaining a wide descriptive range.

The viscosity parameters were obtained by fitting the parameters of the Roelands
equation to the equations proposed in Table 5.2 under the heading of “Viscosity
and density equations”. An important point should be made at this stage: as
discussed by Bair [49] and Bair et al. [50], the classic pressure-viscosity relations—
and among them the Roelands equation—tend to grossly overestimate the viscosity
at high pressure (in the range of > 1 GPa). This puts a bound on the precision of
any calculations based on such rheological laws.

The remaining parameters were not so easy to determine, in the absence of the
needed experimental data. An indirect course had to be taken to determine the
parameters. In Chapter 5 of [8] is presented a power loss model for gearboxes,
in which, among other things, a method for evaluating the friction coefficient is
proposed. Thus, based on power loss tests, conducted on gears similar to those
of the micropitting tests, and on the corresponding average friction coefficients, a
series of simulations of the contact were run. The simulations, performed according
to the principles described in Section 2.4.3 of this work, enabled the calculation of
the average friction coefficient over a meshing cycle while varying parameters τL0,
ατL , βτL , µBDR, aΛ and bΛ. For each value of µBDR in a range that spans the
values 0.7–0.14 the remaining parameters that best fitted the power loss tests in
the least square sense were determined.

It was found that the parameters related to the limiting shear stress vary within
a narrow range and can be adequately taken as independent of µBDR, within the
framework of these calculations.

Note that for every distinct µBDR, the correlation with the power loss test data
was very high—over 98%. Therefore, it is impossible to decide which combination
of boundary friction coefficient and load sharing function is the correct one. Thus,
simulations must be repeated for each possible value of µBDR. It is not to be
expected that the parameters thus determined are very exact but, in the absence
of dedicated tests, this is the best that can be done at the moment. Figure 5.7
shows a few of the load sharing functions that were used and Table 5.6 the several
combinations of parameters that were considered in the simulations.

5.3.3 Properties related to fatigue

Because the teeth have a carburized surface layer, and micropitting fatigue cracks
originate on the surface, the Dang Van fatigue properties αDV and βDV should
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Table 5.6: Parameters for the mixed film lubrication regime.

µBDR 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

Load sharing function f (Λ) = tanh
Ä
aΛ · ΛbΛ

ä
aΛ 1.110 1.318 1.484 1.614 1.718 1.800 1.868 1.925 1.975
bΛ 0.277 0.270 0.258 0.243 0.228 0.213 0.199 0.187 0.177
Roelands viscosity
T0 363 K
η0 1.56 · 10−2 Pa · s
S0 1.28
Z 0.608
Limiting shear stress
τL0 25 MPa
ατL 588−1 MPa−1

βτL 0 K
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Figure 5.7: Plot of load sharing functions against the specific film thickness. The
functions that combine with µBDR ∈ {0.08, 0.1, 0.12, 0.14} are shown.
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ideally be obtained from fatigue tests on samples made wholly of carburized steel.
This presents severe practical difficulties, both in obtaining such test samples—
carburized layers are difficult to obtain at depths higher than 1 mm—and in test-
ing such a brittle material. In practice, these data are not available on the open
literature.

To bypass this difficulty, it was assumed that αDV is the same in the carburized
layer as in the substrate steel. On the other hand, the simulation was run for a
range of βDV spanning the values from 400 MPa to 900 MPa. This would allow
patterns of gear behaviour to emerge from the simulation results that would go
a long way to verify the model. In physical terms, this is equivalent to assuming
that the relation between alternate torsion fatigue and pure bending fatigue is
the same for the carburized steel layer and the substrate steel, while the actual
alternate torsion fatigue stress may be altogether different. Although there is no
actual physical evidence that such is the case, this seems a reasonable assumption
that helps remove a barrier that, in the absence of the proper fatigue data, would
prevent any simulation from being performed.

The value of αDV of 0.987 used here was taken from [51]. Note that this value
is far from being canonical for steel, as can be attested by the fact that, in their
work [38], Desimone et al. reported a value of 0.52 for a quenched and tempered
high strength steel.

5.4 Simulation results

It is not practical to show the results of all the simulations that were made since
they total 26 (possible values of βDV ) × 9 (possible combinations of µBDR with fΛ)
× 3 (possible combination of tooth and roughness measurement position) = 702
cases, each with 3 load stages. Instead, this section will show in detail the result
obtained for a simulation case that will be referred to as case 1 from now on. This
simulation was performed using the central roughness measurements on the second
measured tooth of the driving gear with the properties listed in Table 5.7.

In Figure 5.8, the values of βeq = max (τmax + αDV · pH) that violate the Dang Van
fatigue criterion (βeq > βDV ) at the end of load stage K8 are shown for the whole
tooth. The figure was obtained by “stretching” the nominal profile of the tooth
until it became a straight line while conserving the roughness variations. Thus,
the xx coordinates measure the position on the surface of the tooth and the zz
coordinates the depth within the tooth. Notable points in the meshing are marked
on the abscissa as A, B, “pitch”, D (see Figures 1.9 and 1.10): the point where
the tooth nominally initiates contact with the opposite tooth on the driven gear is
marked as A in the abscissa; the point where the tooth becomes the only one of
the driving gear teeth in the meshing is marked as B etc. . .

It is interesting to note that the points where the fatigue criterion is violated
come in patches. It is immediately apparent in the figure that the part of the tooth
under the pitch line (from A to “pitch”) suffers the most from contact fatigue,

89



5 Simulation of a gear micropitting test

-5
-4

-3
-2

D
-1

C
1

B
2

A
3

-4 -2

0 2 4 6 8

 

β
e
q

[M
P

a
]

x
[m

m
]

 

z[µm]

60
0

80
0

10
00

12
00

14
00

Figure 5.8: Simulation case 1, load stage K8: values of βeq > βDV in the xz plane.

90



5.4 Simulation results

Table 5.7: Parameters of simulation case 1

Roelands viscosity
T0 [K] η0 [Pa · s] S0 Z

363 1.56× 10−2 1.28 0.608

limiting shear stress
τL0 [MPa] ατL [MPa−1] βτL [K]

25 588−1 0

µBDR fΛ

aΛ bΛ

0.14 1.925 0.187

fatigue properties
αDV βDV [MPa]
0.987 440

according to the Dang Van criterion: it has a greater concentration of violation
patches and these tend to have higher values of βeq.

Figure 5.9 show the same information but only for the part of the tooth below the
pitch line. It is puzzling at first to remark that not all salient roughness peaks give
rise to severe contact fatigue initiation, as well as that some valleys do give rise to
contact fatigue initiation. To explain this, one has to remember that the opposing
driven gear tooth also has a roughness. This means that the film thickness above a
driving gear tooth roughness peak is only shallow when a sufficiently salient driven
gear tooth roughness feature opposes the driving gear tooth roughness peak. This
is essentially a matter of chance, although the probability of fatigue initiation under
a roughness peak is much higher than anywhere else, as can be seen in Figure 5.9.

Figure 5.10 shows with greater detail the patch around the point with higher
βeq. This patch is rather atypical in that it is very wide (around 0, 1 mm). It is
composed of a number of patches that coalesced into one, as can be deduced from
the fact that a number of local maxima are present on the surface.

In Figure 5.11 is shown another patch were the Dang Van criterion is violated.
This is a simpler one, were a single maximum is present. This type of patch is
far more frequent than the one shown in Figure 5.10. In fact, from the perusal of
Figure 5.9, one can conclude that the more complex patches are an agglomeration of
several simple patches such as this one caused by the proximity of several roughness
peaks. Therefore, the patch shown in Figure 5.11, can legitimately be considered
typical. It is interesting to note its dimensions: roughly 10 µm wide by 5 µm deep.
This is very similar to the size of a micropit. The points Q and Q′ are singled out
for later use.

It is most instructive to see what happens in the area of the tooth around this
typical patch of fatigue initiation, and the remainder of this section will be devoted
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Figure 5.9: Simulation case 1, after load stage K8: βeq > βDV in the part of the
driving gear tooth under the pitch line.
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Figure 5.12: Surface pressure field when the patch of Figure 5.11 undergoes its most
intense load.

to this.

The first step is to observe the pressure field when the patch of Figure 5.11
undergoes its most intense load. This is shown in Figure 5.12, where the outlines
of the patches within which βeq > βDV are represented along with the pressure
distribution on the surface. Note that the tooth surfaces represented in the figure
include both the nominal geometry of the teeth and the elastic deformations, unlike
those in Figures 5.8–5.11. It is striking that the pressure peak over the patch is
very intense (around 8 GPa) and very localized: no more than 10 µm in width.
The surface shear is not represented in the figure. It is proportional to the surface
pressure (the mixed film lubrication friction coefficient is around 4%) and has the
same direction as the sliding velocity U2 − U1 depicted in the figure.

As an aside, the figure illustrates well the reason why some valleys in the driving
gear tooth suffer from fatigue initiation: the roughness peaks of the opposite tooth
can be so salient as to compensate for the lack of a jutting peak on the driving gear
tooth.

It is interesting to turn ones attention to a single point and see what happens to
it during the meshing cycle. The point in question is marked as Q in Figure 5.11.
The point on the surface of the tooth on the vertical of Q is marked Q′ on the same
figure. The history of point Q is shown in Figures 5.13–5.18

In Figure 5.13 the loads on point Q′ are presented through time. Note that
the surface pressures and shear stresses shown are not a load distribution inside a
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Figure 5.13: Surface loads on point Q′ directly above the selected point Q inside
the tooth plotted against the position of the contact in the meshing
line at each instant.

contact: they are the surface pressure and shear stress applied on Q′ through time.
Because Q′ is in the contact for only a short time during the meshing, only the
relevant time interval is shown. Time is represented here as the non-dimensional
position of the nominal contact point on the meshing line, and flows from the right
of the figure to the left.

In Figure 5.14 the macroscopic elastic stress components at point Q are presented
through time, in manner similar to that in Figure 5.13. It is interesting to compare
this to Figure 5.15, where the mesoscopic stress components are plotted. This
demonstrates the fact that the history of each elastic stress component is shifted
as a whole vertically by the action of the initial stressses and of the mesoscopic
residual stresses.

The mesoscopic principal normal stresses and maximum shear stress are shown
in Figure 5.16. It is interesting to note that the maximum mesoscopic shear stress
remains fairly constant throughout the meshing, with a few peaks that coincide
with the pressure peaks of Figure 5.13.

In Figure 5.17, the history of the value of τmax + αDV · pH in point Q is shown,
as well as two horizontal lines corresponding to the values of βDV and βeq. It is,
at first, surprising to notice that the most severe values of τmax + αDV · pH do
not occur when point Q is in the contact, but rather when it is outside it. In
fact, τmax + αDV · pH = βeq for most of the meshing and only lowers when Q′

enters the contact: it is actually at its lowest when the loads on Q′ are at the
highest. Of course, this is due entirely to the beneficial action of the hydrostatic
pressure, that suffers a surge when Q′ enters the contact, while the maximum shear
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Figure 5.14: History of the macroscopic elastic stresses in point Q plotted against
the position of the contact in the meshing line.
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Figure 5.16: History of the mesoscopic principal normal stresses and maximum
shear stress in point Q plotted against the position of the contact
in the meshing line.

0.2650.270.2750.280.2850.290.295
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

T1P/T1T2

[G
P

a
]

 

 

βeq

βDV

τmax + αDV · pH

Figure 5.17: History of the value of τmax + αDV · pH in point Q plotted against
the position of the contact in the meshing line. Two horizontal lines
corresponding to the values of βDV and βeq are also shown.

97



5 Simulation of a gear micropitting test

-3500 -3000 -2500 -2000 -1500 -1000 -500 0
0

200

400

600

800

1000

1200

1400

pH [MPa]

τ
m

a
x

[M
P

a
]

τ
m

a
x
+

α
D

V
·
p

H
=

-2500
M

P
a

-2000
M

P
a

-1500
M

P
a

-1000
M

P
a

-500
M

P
a

0
M

P
a

τ
m

a
x
+

α
D

V
·
p

H
=

β
D

V
β

e
q

Figure 5.18: Map of the cycle undergone by point Q that plots the mesoscopic max-
imum shear stress against the hydrostatic stress for the whole meshing
cycle.

stress fluctuates around the value at which it is kept when outside of the contact.
Thus, one could evaluate βeq with a high degree of certainty using only the sum of
the mesoscopic residual stresses with the initial stresses, disregarding entirely the
transitory effects of the elastic stresses.

This leads to a further conclusion: the only really beneficial hydrostatic pressure
is that of the initial stresses (e.g. residual stresses due to heat treatment and/or
grinding operation), since the mesoscopic residual stress tensor is deviatoric and
therefore adds no hydrostatic pressure.

Dang Van points out in [33] that fatigue crack initiation occurs within grains that
underwent excessive plastic deformation. It is easy to see that this plastic defor-
mation is intimately related with the intensity of the mesoscopic residual stresses.
Thus the figures confirm quantitatively what was known qualitatively.

All this underlines the fact that the residual stresses are the crucial consideration
when dealing with fatigue initiation in gear teeth. It is interesting to mention that
Batista [24] studied surface damage by contact fatigue in gears with the extensive
use of the X-ray diffraction technique. His view that the residual stresses are a key
element in contact fatigue is reached here through other means.

Finally, Figure 5.18 plots the path taken by the stresses on point Q in the pH/τmax
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Figure 5.19: The cycle is shown as in figure5.18. The line of the Dang Van limit
is rotated until it corresponds to a value of αDV = α′DV = 0.242 such
that β′eq−β′DV = βeq−βDV. The construction lines and points marked
illustrate the geometric reasoning.

plane. In the figure are also shown some straight lines that correspond to iso-values
of τmax+αDV ·pH , most notably the line where τmax+αDV ·pH = βDV , which divides
the plane into a violation (on the right) and non violation (on the left) regions, in
regard to the Dang Van criterion.

In Figure 5.19, the cycle is shown as in Figure 5.18, but this time in true pro-
portion. The line of the Dang Van limit is the dashed line that goes through point
T . The line where τmax +αDV · pH = βeq is the dashed line that goes through point
M , the most unfavourable point of the cycle. Consequently, βeq − βDV = MT .
If the dashed line that goes through M is rotated until it touches another point
on the cycle, the dash-dotted line that goes through M and M ′ is obtained. If
another dash-dotted line is constructed parallel to the first but going through point
T , a virtual Dang Van limit, to which correspond values of β′DV = 578 MPa and
α′DV = 0.242, is arrived at that would yield exactly the same value of βeq−βDV . In-
deed, this is true of any line that goes through M and has values of α′DV ∈ [0.242, 1].

There is three reasons that make this seemingly pointless argument become sig-
nificant:

• The shape of the cycle path in the plane τmax–pH of a point that suffers,
according to the Dang Van criterion, from contact fatigue initiation is always
similar to that of Figure 5.19—particularly as regards “flatness”.

• The worst point in the path is always very close to the point of no contact
loads provided that αDV ' 0.25 . Consequently, its hydrostatic stress is nearly
the same as the initial hydrostatic stress.

• The initial hydrostatic stress is nearly constant in the first 10 µm of depth—
the depths at which initiation occurs, as can be seen in Figures 5.8–5.11. In
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this particular case, it ranges from −191 to −244 MPa (see Table 5.5), a very
small difference when considering the magnitudes that have been discussed.

As a consequence, in all the points in the first 10 µm below the surface of the
tooth flank, the maxima of τmax + αDV · pH will correspond to points gathered
closely about a vertical line of abcissa pH u −200 [MPa] in the plane τmax–pH .

From these considerations, the Dang Van criterion can be rewritten so:

τmax + αDV ·
Ä
piniH − piniH

ä
< βeq − αDV · piniH (5.1)

where piniH is an average value of the initial hydrostatic stress in the first 10 µm
below the surface of the flank and piniH the actual initial hydrostatic stress for the
point in consideration. Because, generally piniH − piniH is small, it can be disregarded
and thus the criterion becomes:

τmax < βeq − αDV · piniH (5.2)

The initiation is dependent on only one material parameter!
What this long-winded exposition leads to, is the fact that it is sufficient to vary

βDV while keeping αDV to get the complete range of possible fatigue responses.
That is, of course, provided that αDV ' 0.25.

It was mentioned in Section 3.2, page 54, that Desimone et al. have proposed
in [38] a refinement of the Dang Van criterion. They attempted to delineate the
locus of safe operation by conducting numerous simple tests. They concluded that
the beneficial effect of hydrostatic pressure makes itself felt only up to a limit
above which only the maximum shear stress influences fatigue initiation. This is
equivalent to impose a horizontal line on Figure 5.18 as an additional boundary
to the permitted stress states. In fact, for the region represented in Figure 5.18,
the slanting straight line would not appear at all and the limit would only be
represented as a horizontal line. In practice, this is equivalent to having αDV = 0.
While the reasoning above only applies when αDV ' 0.25, this is such a low value,
compared to the 0.987 used here or the 0.52 mentioned by Desimone et al., that it
is hard to imagine that setting αDV to null should make a very great difference.

5.5 Comparison of the simulation with the gear test
results

Essentially, two types of data can be—and were—obtained from Cardoso’s exper-
iments: gear mass loss data and roughness evolution data. The first kind is very
global in scope in that it does not distinguish damage mechanisms: everything,
from running-in to micropitting, is bundled into a few rotund numbers: mass loss
at the end of a stage and counting of material particles residue in the lubricant.
This is not very discriminating and needs to be complemented by the second kind of
data, the roughness evolution. The identification of micropitting is effected by the
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detection of pits at the surface of a tooth with depths in the order of 10 µm. As it
is not practical to study the surface pit by pit, roughness parameters must be used
to obtain meaningful information. A good choice would be the roughness param-
eters RZ.DIN (for overall amplitude of roughness features), Rvk (for reduced valley
depths) and Rpk (for reduced peak heights). The traditional Ra and Rq roughness
parameters convey very little information as to the existence of micropitting and
are therefore not used.

From what has been said, the conclusion that only the results of material removal
are observable is inescapable. This introduces a difficulty in the comparison of
experimental data with the results of a numerical simulation based on the model
presented here. Indeed, the present model is only intended as an initiation model:
it does not tell anything of what might happen in subsequent stages of the history
of cracks, namely their propagation and the consequent removal of material from
the gear tooth surface.

A second issue that forces itself to one’s attention is that the present model only
describes the initiation of high cycle fatigue cracks: at no point is there an inbuilt
bias toward the specific mechanism of micropitting formation, the idea being that
micropitting should emerge and be recognized as such from the analysis of the
results. In part, this is addressed by the fact that the analysis is restricted to a
maximum depth of 20 µm. Nevertheless, this means that other surface damage
mechanisms may become bundled in the results such as pitting and wear.

5.5.1 Mass loss

The simulation provides at each load stage the values of βeq = max (τmax + αDV · pH)
for each material point near the surface of the tooth. As has already been seen,
each of those points where βeq > βDV should be the origin of a crack. But be-
cause these points come in patches (see Figure 5.11), the initiation of a crack at
one of them should pre-empt the initiation of cracks at other points in the same
patch, since the ensuing tension fields inevitably changes a great deal. Which point
will actually originate a crack, what its trajectory will be and how much material
will be removed are impossible questions to answer within the framework of the
Dang Van Criterion. Strictly speaking, to go any further than this, a crack prop-
agation model should be used. This is of no help in the present circumstances,
since a fatigue crack propagation model is not forthcoming—indeed, it exceeds the
ambitions of the present work and is a natural continuation of it.

The problem of obtaining an estimate for the mass loss of the driving gear still
remains. An interesting clue is given by the experimental work by Oila and Bull [2],
already mentioned in Section 3.3, page 59, from which Figure 3.9 was taken. It
shows that the trajectory of a micropitting crack skirts around a nucleus of material
having undergone heavy plastic deformation and originates at the surface on the
downstream side from the sliding direction. Recall that, in effect, a point of fatigue
crack initiation, according to the Dang Van Criterion, is a point that undergoes
high plastic deformation counterbalanced by hydrostatic stress. The resemblance is
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striking and is further reinforced when considering that the shapes and dimensions
of the patch of crack initiation in Figure 5.11 and of the area of removed material
in Figure 3.9 are very similar.

In view of this, it is reasonable to suppose that there must be a rough corre-
spondence between the area affected by the Dang van Criterion and the mass of
material removed by micropitting. It must be understood that no physical model
is offered in support of this hypothesis and that, at most, a qualitative relation
should be expected.

In order to compare the mass loss from the tests with the model results, a pre-
dicted mass-loss value is defined as follows:

mDV = Z1 · ADV · b · ρsteel (5.3)

where mDV is the predicted mass loss for each stage, Z1 the number of teeth of
the driving gear, ADV the predicted micropitted area in the xz plane for one tooth
(obtained from the average of the three tooth profiles of roughness measurement
positions 1 and 2 on tooth 2 and position 1 on tooth 1) , b the face width of a tooth
and ρsteel the density of the steel.

Table 5.8 shows the comparison of the measured mass loss in the driving gear
at the end of each load stage with the predicted one. The predicted mass loss
values are separated into mass loss below the pitch line and above it, in addition
to the values for the whole teeth. Also listed are the specific values of mass loss
(mass loss per surface length on a tooth). Note that, in addition to the load stages
at which the test was actually performed, load stage K3 was simulated by itself
and its predicted mass loss values are listed in Table 5.8 as well. Two modelled
cases are shown: simulation case 1, with µBDR = 0.14 and βDV = 440 MPa (this is
the case that was discussed at length in Section 5.4), and simulation case 2, with
µBDR = 0.12 and βDV = 560 MPa.

As shown in the table, the test measurements are precise within 1 mg (0.5 mg
on either side of the recorded value).

The first striking fact is that the predicted mass loss during load stages K3+K6
is very different from the measured one in case 1. Nevertheless, and even though
there are no actual measurements against which to compare it, the value from
the simulation of load stage K3 by itself is plausible, since it falls well below the
value measured at the end of the consecutive run of load stages K3 and K6. This
shows that the bad results of the simulation of load stage K3+K6 are probably
attributable to the fact that it is incorrect to use the initial roughness with load
stage K6 in the simulation: it deviates far too much from the actual conditions of
the test. The same is observed in case 2.

Another interesting fact is that the specific predicted mass loss (mass loss per
unit length of tooth), while being sensibly the same in stage K9 above and below
the pitch line, is far higher below the pitch line than above it at stage K8. This is
interesting because Cardoso reports that micropits did appear at stage K8, as can
be seen in Figure 5.6, mostly below the pitch line (it is well known that micropitting
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Table 5.8: Comparison of the measured mass loss at the end of each load stage
with the predicted one. The predicted mass loss values are separated
into mass loss below the pitch line and above it. Also listed are the
specific values of mass loss (mass loss per length of tooth).

position
K3 K3+K6 K8 K9

abs specific abs specific abs specific abs specific
[mg] [mg/mm] [mg] [mg/mm] [mg] [mg/mm] [mg] [mg/mm]

model prediction, case 1, with µBDR = 0.14 and βDV = 440 MPa
below pitch
line

0.624 0.2387 3.946 1.511 2.463 0.9429 1.52 0.5821

above pitch
line

0.750 0.1381 5.571 1.026 3.309 0.609 3.403 0.6265

whole tooth 1.374 0.1707 9.517 1.183 5.771 0.7174 4.924 0.612

model prediction, case 2, with µBDR = 0.12 and βDV = 560 MPa
below pitch
line

0.227 0.0868 2.171 0.8312 0.9359 0.3583 0.3976 0.1522

above pitch
line

0.255 0.0469 3.024 0.5567 1.057 0.1946 1.137 0.2094

whole tooth 0.482 0.0599 5.195 0.6458 1.993 0.2477 1.535 0.1908

test measurements
whole tooth N/A N/A 3± 0.5 0.373 6± 0.5 0.746 5± 0.5 0.6214
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preferentially forms below the pitch line), with only a meagre increase in observed
micropits at the end of load stage K9. This is the first indication that the model
works as intended.

Notice as well that the predicted specific mass loss above the pitch line in load
stages K8 and K9 is nearly constant in simulation case 1. One may wonder if
these values might not measure the amount of wear caused by contact fatigue.
Considering that the value of predicted specific mass loss above the pitch line is
sensibly 0.6 in both load stages K8 and K9, and supposing an approximately equal
degree of wear above and below the pitch line, the specific mass loss below the
pitch line attributable to micropit generation would then be equal to 0.94− 0.6 =
0.34 mg/mm in load stage K8 and none in load stage K9. The same reasoning
could be applied to simulation case 2. While this is a debatable conjecture, there
is ground for further studies in this direction.

Finally, the most dramatic fact to emerge from the data can be better observed
with the help of Figure 5.20, where the values of mass loss for the whole gear are
also shown. The fact that the prediction of case 1 are spot-on in load stages K8 and
K9 nearly jumps from the page. This should not be taken too literally as meaning
that the proper values of the boundary friction coefficient, distribution function and
Dang Van fatigue properties are those of case 1, too many uncertainties regarding
the input data remain for one to be able to make such an assertion. In this regard,
it is instructive to observe that the representation of the mass loss in simulation
case 2, and indeed all other simulation cases not shown here, is nearly parallel to
that in case 1, and therefore to the real mass loss in load stages K8 and K9. This
advocates strongly for a very direct correlation of the Dang Van fatigue initiation
area with the mass loss due to micropitting and mild wear.

As side note, it was found that in all simulation cases the predicted mass loss
curves were always nearly parallel to those shown in Figure 5.20 and that their
position was strongly affected by the value of βDV and very little by that of µBDR.
One should not read too much into this, because the insensitivity of the results to
µBDR can simply be a numerical artefact that comes from the particular way in
which each µBDR is linked with a different load sharing function—determined as
described in Section 5.3.2.

In conclusion, the mass loss comparison, in spite of all the uncertainties regarding
the input data and the chosen comparison method, seem to indicate that the model
is adequate for the modelling of micropitting. This is a qualitative evaluation of
the model. For a quantitative one to be made, a battery of experiments designed
for the exclusive study of micropitting must be performed, in order to remove all
the uncertainties that plagued these simulations.

5.5.2 Roughness evolution

We come now to the section of this chapter in which the results of the simulation are
compared with the tests with regard to the evolution of the teeth flanks roughness.
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Figure 5.20: Mass loss of the driving gear in each stage: measured values and pre-
dicted ones for simulation case 1 (µBDR = 0.14 and βDV = 440 MPa)
and case 2 (µBDR = 0.12 and βDV = 560 MPa).
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In the previous section a prediction of the mass loss was evaluated by subtract-
ing the patches of fatigue initiation, such as that shown in Figure 5.11, from the
surfaces. In the same way, an attempt is made here to predict, for each load stage,
the final roughness of the surface of the driving gear.

The results are shown for the same simulation cases used in Section 5.5.1. Each of
these simulations gives results for three tooth profiles, called tooth 1, tooth 2 position
1 and tooth 2 position 2, according to the position of the roughness measurement
by Cardoso that gave rise to it: tooth 1 is the measurement above and below the
pitch line on the first tooth in the central position shown in Figure 5.3; tooth 2
position 1 is the measurement above and below the pitch line on the second tooth
in the leftmost position shown in Figure 5.3; tooth 2 position 2 is the measurement
above and below the pitch line on the second tooth in the central position shown
in Figure 5.3.

Evolution of the roughness below the pitch line in simulation case 1

In Figures 5.21–5.23, the evolution of the roughness parameters RZ.DIN , Rpk and
Rvk below the pitch line for, respectively, tooth 1, tooth 2 position 1 and tooth 2
position 2, is shown.

The meaning of Figure 5.21 is explained as follows. The figure deals with the
evolution of the roughness parameters for tooth 1 below the pitch line. In the top
row, the evolution of the roughness parameter RZ.DIN is shown in two ways. On the
left column, the values of the predicted RZ.DIN are plotted against the load stages
as a full line with round markers, the values of the measured RZ.DIN are plotted
against the load stages as a full line with square markers. On the right column,
the values of the predicted RZ.DIN are plotted against the values of the measured
RZ.DIN . The same principle applies to the middle and bottom rows, which deal
with Rpk and Rvk.

Figures 5.22 and 5.23 follow the same nomenclature applied to, respectively,
tooth 2 position 1, and tooth 2 position 2.

Acceptable values of roughness parameters should fall within the range of mea-
sured roughness shown as boxes in the leftmost columns of the figures. Furthermore,
the graphs of the rightmost columns should fall more or less on the diagonal that
connects the bottom left corner to the upper-right corner of each picture.

Such is not the case.

Evolution of the roughness below the pitch line in simulation case 2

The evolution of the roughness parameters is represented in Figures 5.24–5.26 for
the simulation case 2 in exactly the same manner as for simulation case 1. It is
interesting to note that this simulation case, that performed poorly when comparing
the predicted mass loss with the measured one, shows almost acceptable values of
roughness parameters, if one discounts the results of load stage K3+K6, which
are here, as in the mass-loss comparison, thoroughly off the mark. This shows
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Figure 5.21: Evolution of the roughness parameters RZ.DIN , Rpk and Rvk below the
pitch line for simulation case 1, tooth 1 and comparison with Cardoso’s
measurements. The rectangles mark the extrema of the measurements.
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Figure 5.22: Evolution of the roughness parameters RZ.DIN , Rpk and Rvk below
the pitch line for the simulation case 1 on tooth 2, position 1, and
comparison with the measurements by Cardoso.
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Figure 5.23: Evolution of the roughness parameters RZ.DIN , Rpk and Rvk below
the pitch line for the simulation case 1 on tooth 2, position 2, and
comparison with the measurements by Cardoso.
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Figure 5.24: Evolution of the roughness parameters RZ.DIN , Rpk and Rvk below the
pitch line for the simulation case 2 on the first tooth and comparison
with the measurements by Cardoso.
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Figure 5.25: Evolution of the roughness parameters RZ.DIN , Rpk and Rvk below
the pitch line for the simulation case 2 on tooth 2, position 1, and
comparison with the measurements by Cardoso.
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Figure 5.26: Evolution of the roughness parameters RZ.DIN , Rpk and Rvk below
the pitch line for the simulation case 2 on tooth 2, position 2, and
comparison with the measurements by Cardoso.
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once more that this load stage must be excluded from the discussion of the results,
since it is manifestly inadequate to simulate load stage K6 with the initial teeth
roughness.

With this proviso, the roughness results of simulation case 2 are acceptable.

5.5.3 Discussion of the comparison results

An approximate method for the evaluation of the removal of material from the sur-
faces was proposed, whereby the patches of fatigue initiation would be removed at
the end of each stage. Based on this, a prediction of the mass loss by micropits and
of the roughness evolution was compared with the measurements. A comparison of
the results of simulation case 1 and simulation case 2 were presented.

It was shown that simulation case 1 agreed perfectly with the measured mass loss,
but very poorly with the measured roughness evolution. On the other hand, simu-
lation case 2 does not agree well with the mass loss results, but agrees reasonably
well with the roughness measurements.

This shows that the approximation used, where the fatigue initiation patches
would be removed, is not an accurate description of the way in which the pits form.
Nevertheless, the evolution of the predicted mass loss from load stages K8 to K9 is
in all cases parallel to the measured one. This shows that a very strong correlation
exists between the total surface material removed by micropitting and mild wear
and the total area of fatigue initiation patches.

In view of the results of case 1 one might legitimately build a case in favour
of the notion that the pits occur at the sites of the patches of initiation with a
similar volume—which would account for the agreement of the mass loss prediction
with the measurements—but with a different shape, from which fact the differences
in the predicted and measured roughness parameters would ensue. This is highly
speculative but worth looking into.

The results of simulation case 2 are a very strong argument in favour of the
validity of the simulation method presented here. The predicted mass loss evolution
is parallel to the measured one and the roughness evolution is fairly close to the
real one. This would not be possible if the model were very far from reality.
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6 Conclusion

6.1 Review of the more notable issues in each
chapter

In Chapter 1, a general formulation of the geometric, kinematic and Hertzian me-
chanic components of gear meshing were introduced for use in the model.

In Chapter 2, a modified elastohydrodynamic lubrication model in the mixed
film regime was presented that permits a fast solution of the contact problem of
the gears. The model is both approximate and exact in the sense that some rigour in
the mathematical formulation of the problem—it avoids entirely the direct solution
of the Reynolds equations—is sacrificed in return for including a more complex
set of physical conditions—non-Newtonian rheology, thermal variations, very low
specific film-thickness. This permits the solution of realistic gear meshing contact
problems in an acceptable time.

In Chapter 3, the stresses in a tooth were discussed both in the macroscopic
and in the mesoscopic sense. The Dang Van criterion was discussed, in particular
as to its relation with elastic shakedown as a limit to high-cycle—or near infinite
life—fatigue. From there, the discussion was shifted to surface damages and their
relation with fatigue initiation. In particular, it was shown that the Dang Van
criterion is a good candidate for the prediction of gear micropitting fatigue crack
initiation

In Chapter 4, fast and unconditionally convergent algorithms, obtained from the
open literature, were presented for the solution of the rough boundary lubrication
contact problem, of the elastic stress calculation problem and of the problem of
determining the mesoscopic stresses from the macroscopic ones. The last in partic-
ular is a marked improvement over the practice that is publicized in the literature
on the application of the Dang Van problem.

In Chapter 5, a comparison was made between an actual micropitting test and its
simulation using the present model. This simulation underlines the main difficulty
in using the model: it requires a wealth of detailed information about the materials,
such as the knowledge of the precise non-Newtonian rheological behaviour of the
lubricating oil, of the boundary friction coefficient, of the load sharing function for
the mixed film lubrication regime, of the elastic and fatigue properties of the outer
layer of a tooth—in this case a carburized layer, of the initial stresses in the tooth
and of the roughness profile for the whole length of several teeth, as many as must
be treated to form a complete cycle—in the present case, the roughness profiles for
two driving gear teeth and three driven gear teeth would be required. These data
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are extremely difficult to obtain in the literature, therefore, the needed information
must be obtained by running experiments before the simulation.

Because it was not possible to do so in the present case, a number of reasonable
assumptions had to be made, coupled with the repetition of the simulation varying
the material properties, in an attempt to force a pattern to emerge that would allow
the validation of the model.

Another difficulty, but in the evaluation of the results, not in the use of the
model, is that the initiation predicted by the model is an inherently microscopic
phenomenon, and is therefore not in a direct relation with the observed phenom-
ena of a micropitting test, in which the micropits are only observable when the
propagation of the fatigue cracks has fully developed. To permit a comparison of
the model results with those observed in the test, it was assumed that the fatigue
criterion violation patches correspond approximately to the micropits mass loss.
This was deemed reasonable, even though no canonical physical evidence can be
advanced in the defence of this hypothesis.

6.2 Concluding remarks

For technical reasons already discussed, it was not possible to isolate the running-
in loading stage from the subsequent one in the simulations. As a result, the
predictions of the model were uniformly bad as regards this bundled load stage
(K3+K6). Several explanations can be advanced. The first and more obvious one
is that the combination of a relatively high load with the high initial roughness
present before running-in is an unrealistic representation of the physical reality
of the two load stages. A second possible explanation is that running-in cannot
be adequately modelled by the fatigue model here presented because of the rapid
rate of change of the surface topography and because running-in is most probably
caused by a host of phenomena, beside fatigue. Nevertheless, the mass loss results
obtained from the simulation of the K3 load stage by itself do not seem to be very
wrong, at least qualitatively. Thus this second explanation may or may not be
valid.

More encouraging are the results of the load stages K8 and K9, whose predic-
tion showed a remarkable correlation with the measured mass loss of the driving
gear. The roughness evolution results were not so good, but they are more prone
to local error and this is compounded by the fact that the roughness measurements
could never be guaranteed to be made exactly on the same spot at the end of each
load stage. Therefore, the roughness evolution results are not altogether unsatisfac-
tory, since it was shown that in certain cases of material properties it was possible
to maintain a high correlation of the predicted mass loss while maintaining the
roughness parameters within acceptable bounds. When one reflects that this was
achieved without a proper propagation model, it becomes at once clear that these
are satisfactory results.

These considerations dealt with the comparison of the model with the test results
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and showed that, while not entirely conclusive, the comparison of the simulation
with the test goes a long way toward validating the model.

As to the events inside a tooth, the main conclusion to be drawn is that within
the framework of the Dang Van fatigue criterion, the most unfavourable mesoscopic
load state occurs outside of the contact. This shows that the high hidrostatic
compressive stresses inside the loading have no lasting beneficial effect. On the
contrary, they derive from a stress state that violently distorts the gear so that
the maximum shear strain is increased at the mesoscopic level, with the consequent
harmful effect to the fatigue behaviour of the gear. In fact, the only really beneficial
hydrostatic compressive stress is that provided by the initial residual stresses. The
fact that the most unfavourable mesoscopic stress occurs outside of the contact also
demonstrates the enormous importance of the residual stresses, both the initial ones
and those resulting from the load cycle, in determining the fatigue damage in the
tooth.

As a concluding remark, the author of the present work wishes to reiterate that
the results of the model are very encouraging, even if not entirely conclusive.

6.3 Proposals for further work

The most urgent task in furthering the development of the present model would be
to conduct a series of tests designed exclusively for the rigorous validation of this
model with all the input data exactly determined beforehand. This would involve
the realization of a number of experiments prior to the tests proper, in order to
determine all the needed parameters already mentioned. Having done this, it would
be possible to determine the areas where the model is deficient and thus refine it.

It was seen that micropitting and wear were difficult to isolate. Indeed, the model
seems to deal with mild wear as well as micropitting. While this work was mostly
concerned with micropitting, it would be interesting to ascertain to which degree
wear—and running-in—are modelled.

Less urgent is the combination of the initiation model with a propagation model
that would allow us to answer such questions as: which point in the violation patch
really does originate a crack? why do the fatigue cracks have always a very definite
orientation on the teeth (inwards toward the pitch line in the driving gear teeth,
inwards away from the pitch line in the driven gear tooth)?. These are impossible
to answer using merely the initiation model presented here.

Of course, these questions are more interesting from a scientific standpoint than
from an industrial one. From an industrial standpoint, an initiation model properly
validated and refined could lead to a security criterion based, for instance, on the
total predicted area of fatigue violation patches. This in itself would be a very
desirable outcome for this work.
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siderando um comportamento não Newtoniano do lubrificante e a dissipação
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de um lubrificante, Ph.D. thesis, Faculdade de Engenharia da Universidade do
Porto (2002).

[19] D. Dowson, G. R. Higginson, Elastohydrodinamic lubrication, S. I. Editon,
Pergamon Press Ltd., 1977.

[20] R. C. Castle, C. H. Bovington, The behaviour of friction modifiers under
boundary and mixed EHD conditions, Lubrication Science 15 (3) (2003) 253–
263.

[21] P. Vergne, Super low traction under EHD and mixed lubrication regimes, in:
A. Erdemir, J.-M. Martin (Eds.), Superlubricity, Elsevier BV, 2007, pp. 429–
445.

[22] J. Castro, Gripagem de engrenagens FZG lubrificadas com óleos base. Novos
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