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Abstract

The Vehicle Scheduling Problem is a well-known combinatorial optimization problem
that emerges in mobility and transportation sectors. The heterogeneous fleet with multiple
depots extension arises in major urban public transportation companies due to different
demands throughout the day and some restrictions in the use of different vehicle types.
This extension introduces complexity to the problem and makes the known deterministic
methods unable to solve it efficiently. This thesis describes a comprehensive model to
interpret the Multiple Depot Vehicle Scheduling Problem as an Asymmetric Traveling
Salesman Problem. An approach known for its application to the A-TSP, the Ant Colony
based meta-heuristic, was adapted to the problem through this interpretation. The results
achieved on solving problems from some of the Portuguese major public transportation
companies planning databases show the usefulness of the proposed approach.
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Resumo

O problema de afectação de veículos é um problema de optimização combinatória que
surge nos sectores de mobilidade e transportes. A extensão com frota heterogénea e
múltiplas estações de recolha surge nas maiores empresas de transportes públicos devido
a diferentes demandas ao longo do dia e a restrições ao uso de diferentes tipos de viaturas.
Esta extensão introduz mais complexidade ao problema tornando as abordagens determin-
istas conhecidas incapazes de o resolver eficazmente. Esta tese apresenta uma proposta
para interpretar o problema de afectação de veículos com frota heterogénea e múltiplas
estações de recolha como um problema do carteiro viajante assimétrico (A-TSP). Para
resolver o problema através desta interpretação foi adaptada uma meta-heurística baseada
no comportamento das colónias de formigas (Ant Colony System) conhecida por obter
bons resultados para o A-TSP. Os resultados conseguidos na solução de problemas de
algumas bases de dados das maiores companhias de transportes públicos em Portugal
mostram a utilidade da abordagem proposta.
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Chapter 1

Introduction

This chapter introduces the motivation and goals of this thesis and presents the context of
the problem willing to be solved.

1.1 Motivation and Goals

Public transportation systems play a major role in the lifestyle of most metropolis, and its
quality is directly related with a significant improvement in life quality. Big cities have an
intense flow of people specially in rush hour and with the common traffic jams an efficient
public transportation system is crucial and becomes more important every day because of
the continuous migration to metropolitan areas.

Optimal state search characterises the evolution in our world and every development
made intends to achieve a better state. Optimisation is present in many day-to-day ele-
ments and embraces different knowledge areas. In physics the atoms seek to bound with
each other in order to minimise its electrons energy, in biology species evolve to become
fitter to survive, man makes its own decisions following a state of happiness and in econ-
omy companies seek to increase its income and reduce its costs. [Wei09]

Operational Research and Artificial Intelligence have studied optimisation methods.
Operational Research developed deterministic mathematical methods to solve optimisa-
tion problems, while Artificial Intelligence is best known for nature inspired meta heuris-
tics that are applied to optimisation problems. Although these are two distinct areas, more
capable computer aided solutions have emerged and both fields work starts to converge,
specially in the field of planning and scheduling.

The Vehicle Scheduling Problem (VSP) is important to achieve efficiency in a trans-
port network in order to please the changes in demand throughout the day while minimis-
ing operational costs. Vehicle Scheduling is the assignment of vehicles to timetabled trips
in a feasible way where every trip is satisfied by one vehicle. Efficient solutions for the
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VSP intend to minimise the number of required vehicles, the empty trips and vehicle’s
idle time.

The Heterogeneous Fleet Multi Depot Vehicle Scheduling Problem (HFMDVSP) is an
extended problem of the original VSP. This extended problem adds depot constraints that
force that a vehicle starts and finishes its duty on the same garage; and it also considers
that a given timetabled trip can have restrictions to the vehicles able to perform it. The
heterogeneous fleet problem already without the multiple depots is considered NP-Hard
[LK81].

This problem arises in public transportation companies, which usually do this kind of
scheduling by human hand. When such an exhaustive task is preformed by human hand is
not possible to seek the optimal solution, instead, most of the times, any feasible solutions
is acceptable and some patterns intended as optimal are followed. This human scheduling
leads to suboptimal schedules that won’t satisfy the company goal of reducing operational
costs and reduces its efficiency, where computer aided systems could provide significant
improvement.

The efficiency in solving the Vehicle Scheduling Problem benefits the general popu-
lation by improving the public transportations service in terms of costs and higher avail-
ability obtained through better scheduling of vehicle duties. Several companies face this
problems where vehicle type constraints play a major role and the scheduling efficiency
depends highly on that subject. Vehicle type restrictions can emerge for several reasons,
such as difficulties in a certain vehicle to travel through a given road, different hallmarks
being used on vehicles, or even rules that forbid some vehicle type to serve in a given
area.

The goal is to find an approach that solves this problem, in its most complex extension,
as close as possible to the optimal solution in reasonable time.

1.2 Context

The project will be developed within a company, OPT, that seeks to fulfil the arising needs
in public transportation companies related to planning and scheduling. The company
works with several public transportation companies in Portugal, each of them with specific
needs in this task. The message that defines the company is:

“Towards excellent service in innovative and optimized systems for trans-
port planning, management and public information”

The company’s activities are therefore centered on the research, design and devel-
opment and marketing of software solutions for transport planning and consulting work
in these areas. In this subject it has developed two similar, still differentiated by target
customer, called GIST and GIST Light. This platforms offer the tools to represent the
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transport network and perform the planning tasks. GIST targets at the bigger public trans-
portation companies, and is currently used by the major companies in Portugal, while
GIST Light intends to offer most of this features to smaller companies with a lighter
platform that is more suitable to their reality.

Nowadays the company solutions provide an algorithm capable of solving efficiently
the VSP problem, but it is acknowledged that this is not enough for some of their clients.
Each trip has different requirements, some routes oblige a specific vehicle to be used, and
in different times of the day some trips require more capacity than others so constraints
to vehicle types are demanded as well. It is known that the some of the companies that
use the system to solve the vehicle scheduling problem, often have to reschedule it after
by hand, because the provided scheme does not consider this constraints.

1.3 Document Structure

Besides this introduction, this thesis contains six more chapters. In the Chapter 2 previous
related work is presented and analysed. In Chapter 3 a representation of the HFMDVSP
as an Asymmetric Traveling Salesman Problem is presented. A overview of the techno-
logical environment where the solution will be integrated is presented in Chapter 4 and
in Chapter 5 an approach to solve this problem based on ant colony meta heuristic is pro-
posed. In the late two Chapters, 6 and 7, the results from the developed work are presented
and then analysed to reach some conclusions.

3
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Chapter 2

Literature Review

In this chapter the current work on solving Extended Vehicle Scheduling Problems is
analysed. The first extended problem analysed is the Multiple Depot Vehicle Schedul-
ing Problem (MDVSP), which has been studied more thoroughly than its extension with
Heterogeneous Fleet (HFMDVSP) that usually appears as a special case of the MDVSP
problem. The few approaches for the Heterogeneous Fleet problem are analysed as well
as approaches for the Asymmetric Traveling Salesman Problem (A-TSP), that has served
as a testbed for many heuristics, which presents similar challenges to those from the
HFMDVSP. A review over the presented state-of-the-art approaches are then presented.

2.1 Vehicle Scheduling Problem Definition

The Vehicle Scheduling Problem consists of assigning timetabled trips, that must be sat-
isfied by one and only one vehicle, to the respective vehicle duty. To accomplish this it is
required to be aware of several restrictions that are implicit, such as the time it takes for a
vehicle to travel between locations and the available paths that may allow or not to travel
between them.

The Vehicle Scheduling Problem has been widely studied and it has been logically
modeled with different structures. Each logical representation of the problem translates
into a different Linear Programming model, and different approaches take advantage of
each, so slight changes in the problem representation can have significant changes in the
approach to solve it.

The Network Flow Network provides a comprehensive definition for the VSP and it is
presented as well as its Integer Linear Programming model proposed in [BGAB83].

Each trip t ∈ T is characterised by its start location sstart t , start time tstart t , end lo-
cation send t and end time tend t . The set of arcs AT between trips can be defined by

5
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combining the trips information and the paths available for vehicles. The arcs connect
nodes n ∈ N that can represent the start or end of a trip. To represent the depot, where
all bus duties must start and end, the special nodes n+1′ and n+1′′ are used. The node
n+1′ represents a depot exit and n+1′′ represents the depot arrival, additionally a special
arc is created from the end depot to the start depot in order to add the costs related to the
use of a vehicle.

Figure 2.1: Network Flow Model for three trips

To define which nodes are connected by the arcs in ai j ∈ A a compatibility operator
must be established and it represents whether or not after trip i the bus can also serve j if
the time to travel between the locations isn’t longer than the time between the end of i and
the start of j. Trips are compatible if one of two premises is true as presented in Eq. 2.1.
The links that connect the start and end of a trip are represented by AT ⊂ A.

compatiblei j =

{
tend i < tstart j send i = sstart j

tend i +di j < tstart j send i 6= sstart j
(2.1)

The problem is presented as a integer linear programming problem in Eq. 2.2 where
ci j are the costs of connecting between i and j and xi j is a boolean variable that defines
whether or not that connection belongs to the model.

min ∑(i, j)∈A ci jxi j

s.t. ∑i:(i, j)∈A xi j−∑i:( j,i)∈A xi j = 0 ∀n ∈ N

1≤ xi j ≤ 1 ∀(i, j) ∈ AT
xi j ≥ 0 xi j ∈ N

(2.2)
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2.2 Multi-Depot Vehicle Scheduling Problem

The Multi-Depot Vehicle Scheduling Problem is an extension of the VSP in which vehi-
cles are distributed in several depots. This problem has two strands one forces that the
vehicles start and end in the same vehicle and the other doesn’t, this causes significant
changes while solving the problem, even though in terms of logical representation they
remain very similar.

Throughout the extensive search made in the past decades on this topic, different
model approaches were proposed. In [BK09] Bunte and Kliewer make an overview
on this models that is presented next.

2.2.1 Modelling The Problem

The models are divided in three groups:

• Single-Commodity Models
• Multi-Commodity Models
• Set Partitioning Models

2.2.1.1 Single-Commodity Models

Single Commodity Models are graphs where a single node represents a trip or a depot.
Two Single-Commodity models have been presented.

The Singe-Commodity with Sub-tour Breaking Constraints presented in [CDFT89]
uses a node to represent each vehicle per depot and arcs from these nodes to every trip,
modelled as a transportation problem with additional sub-tour breaking constraints which
forbid every path with more than one vehicle, as seen in Fig. 2.2.

Figure 2.2: Single-Commodity Model with Sub-tour Breaking Constraints

In [MP92] Mesquita and Paixão propose the Singe-Commodity Model with Assign-
ment Variables that provides a more comprehensive network structure that represents
each depot as a node as well as arcs connecting them to each trip, and an additional group
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of variables that assign each trip to a specific depot. This model reduces significantly
the number of constraints as well as the number of variables in comparison to the other
Single-Commodity Model, represented in Fig. 2.5.

Figure 2.3: Single-Commodity Model with Assignment Variables

2.2.1.2 Multi-Commodity Models

Multi-Commodity formulations generate an independent subnetwork for each depot. The
group of subnetworks model the problem as a whole. Each subnetwork is an extension
of the Network Flow Model presented in Fig. 2.1 even though a few changes have to
be made. The multiple networks concept is common in the further presented models,
the Connection-Based Network and the Time-Space Network, but they present different
subnetwork structure.

Connection-Based Network

Figure 2.4: Connection Based Network

The subnetworks are modelled as a Network Flow Model, and constraints must be
added in order to guarantee that each trip is served only in one of the subnetworks ( 2.3 ),
and a constraint to ensure that no more than the available vehicles from a depot are used
( 2.4 ). Consider T the timetabled trips and AT t ⊆ AT ⊂ A where t ∈ T as the set of arcs
related to trip t in all subnetworks; H is the set of all depots available and dh represents

8
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the number of vehicles in depot h ∈ H and Ah is the set of circulation flow arcs of depot
h.

∑(i, j)∈AT t xi j = 1 ∀t ∈ T (2.3)

∑(i, j)∈Ah xi j ≤ dh ∀h ∈ H (2.4)

Time-Space Network

Figure 2.5: Time-Space Network

Time-Space Network, presented by Kliewer, Mellouli and Suhl ( [KMS02] and [KMS06]),
uses a different subnetwork structure. The main idea is to group connections between one
trip and compatible trips based on Eq. 2.5. This is possible through a time oriented net-
work where each station is represented by a time line with several arcs to and from it,
representing the timetabled trips or connection trips.

(i ∝ j)∧ ( j ∝ k)→ (i ∝ k) (2.5)

2.2.1.3 Set Partitioning Models

In [HMS06] the Set Partitioning Model is presented as a Dantzig-Wolfe decomposition to
the multi-commodity model. A set of every possible path in the multi graph is represented
by Ω , which allows to model the problem without many constraints (Eq. 2.6) even though
it increases the number of variables. In this model a jp represents the dual variable related
to the use of trip j in the path p, while kd represents the number of available vehicles in
depot d.

min ∑d∈D ∑p∈Ωd
cpxp

s.t. ∑d∈D ∑p∈Ωd
a jpxp = 1 ∀ j ∈ T

∑p∈Ωd
xp ≤ kd ∀d ∈ D

xp ∈ {0,1} p ∈Ω

(2.6)
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2.2.2 Approaches

Several heuristic approaches have been studied since the 1970s to solve MDVSP in-
stances. These approaches can be divided in search heuristic solution approaches ( [BCG87],
[BGAB83], [BRK78], [DFT93] ) and deterministic heuristic approaches ( [CDFT89],
[HMS06], [KMS06], [L9̈7], [L9̈8] , [RS94] and [MP92] ).

An important comparison between heuristic and meta heuristic based methods is made
by Pepin et al. in [PDHH06] where both methods advantages and disadvantages are
presented . Five methods are presented and analysed :

• Heuristic MIP Approach
• Lagrangian heuristic
• Heuristic column Generation
• Large Neighbourhood Search
• Tabu Search

Heuristic MIP Approach

The heuristic MIP approach here presented relies on a Time-Space Network Model,
Fig. 2.2.1.2, using a branch-and-cut method, provided by the CPLEX MIP solver. The
algorithm stops as soon as it finds an integer feasible solution.

Lagrangian heuristic

The Lagrangian heuristic proposed, solves the simplified VSP associated problem, by
relaxing flow constraints on the connection based model and omitting availability con-
straints adding Lagrangian multipliers associated to each trip node. This provides fea-
sible paths for a solution lacking the association to a depot, which can be solved as a
transportation problem with an Hungarian algorithm. The solution for the (VSP) relaxed
subproblem provides a lower bound while the solution provided through the transporta-
tion problem provides an upper bound. After this the Lagrangian multipliers are updated
as well as parameters used to ensure the algorithm convergence.

Heuristic column Generation

Uses the Set Partitioning Model which implies a high number of variables, given the
amount of possible paths. To become feasible it is divided in a master problem, consider-
ing a smaller set of possible paths, and a subproblem for each depot. Iteratively the master
problem is solved and from its solution dual variables for the reduced cost subproblems
are calculated which are then solved in order to find better paths for the master problem.
The heuristic solves this problem iteratively until optimality is achieved.
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Large Neighbourhood Search

Large Neighbourhood Search uses a column generation heuristic for improving a set of
scheduled trips r in a given initial solution. The algorithm is an informed search heuristic
that at each step selects a few scheduled trips (r) and reassigns them in an optimal way by
solving the reduced cost problem associated.

Three different heuristics are used to choose which scheduled trips to optimise that
allow to explore thoroughly the initial solution. The heuristics are called Random Sched-
ules, Less Frequent Schedules and Closest Schedules. The first acts as the name suggests,
by selecting trips randomly, the second selects the trips that have not been selected in the
last iterations of the algorithm ensuring that the whole schedule is reconsidered, as of the
last attempts to select one trip and after that select the closest trips that could possibly be
connected to it.

Tabu Search

Tabu Search takes advantage of the neighbourhood definition of a given state. The neigh-
bourhood of a given solution are the states that can be achieved by using a search operator.
In this approach two search operators were defined, move and swap. Move switches the
vehicle that will perform one trip, while swap makes a switch between two trips i and i′

assigned to two bus duties j and j′ respectively the operation consists of assigning i to j′

and i′ to j. A tabu is something that is avoided, so in tabu search some operations shall
be avoided, this tabu list is created as search operations are preformed. With this tabu
list one avoids to make cyclic changes that will not produce an improvement, but after
several iterations, that operation may gain new meaning and significance, so it will be
removed from the tabu list, allowing exploitation operators to be preferred, but not losing
the capacity to reconsider operations.

Lagrangian relaxations and Column Generation

Löbel presents an approach in [L9̈9] capable of solving up to 25000 trips. The method
initially defines a lower bound using Lagrangian relaxations and an upper bound using
an opening heuristic. The LP relaxation is solved to optimality using column generation,
using Lagrangean pricing and standard reduced cost, and column elimination scheme. If
the new upper bound found is close enough to the lower bound, the algorithm stops. This
combination of heuristics is the result of a wide study made by Löbel and presents very
good results.
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2.2.3 Results

The comparison provided in [PDHH06] indicates that Heuristic Column Generation ex-
plained before provides the best solutions when there is enough computational time and
stability is required, while Large Neighbourhood Search presents the best trade-off be-
tween time required and solution quality. While the other heuristics have a worse be-
haviour. The Heuristic MIP Approach provides good quality solutions, but requires too
much time to find a solution; Tabu Search is able to improve the initial solution very fast
in the beginning but reaches a limit from where it takes too much time to improve and
the Lagrangian Heuristic performs closely to Large Neighbourhood Search with a slight
decrease in solutions quality.

2.3 Heterogeneous Fleet Multi-Depot Vehicle Scheduling Problem

In comparison to the MDVSP, the Heterogeneous Fleet extension introduces restrictions
to the vehicle types that can be used to satisfy a given trip.

The must used solution found to this restriction is to model depots as pairs of physical
depots / vehicle types. The subnetwork related to a given depot only considers the trips
that can be satisfied by that kind of vehicle.

2.3.1 Approaches

In [KMS06] Kliewer et al. propose a fix-and-optimize heuristic for solving MDVSP with
vehicle-type restrictions. This heuristic relaxes the main problem into sub problems for
each physical depot. Optimal solution for each sub problem is found and the paths that
appear more often in sub problem solutions are considered to be optimal and are fixed,
reducing the problem into solving the remaining trips.

In Löbel thesis work [L9̈7] he presents a solution for solving different extended VSP
instances, and first approaches the HFMDVSP using a Connection-Based Network Model
with a depot for each vehicle type in each garage. The approach used in this thesis is the
early work of Löbel into defining the previously presented approach.

The work developed in OPT by S. Neves in [NG09] presents two heuristic approaches,
Firsts and Clusters. Firsts separates the remaining trips to assign into two groups at each
step, one with every trip that can’t be preceded by any other and the other group with the
remaining. At each iteration the connection between the first and second group problem
is solved, and the process is repeated for the second group, until all trips are assigned
to a duty. Clusters solves a minimum weight matching problem transforming a pair of
nodes into a new node (cluster) iteratively until no matching is possible and all trips are
clustered. Each cluster represents a bus duty that will be serviced by the cheapest vehicle
that can satisfy every trip in that cluster. The two heuristics assign depot and vehicle
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type to each duty after the trip sequences are defined which doesn’t really consider the
optimisation problem in relation to vehicle types.

2.3.2 Results

The fix-and-optimize solution proposed by Kliewer et al. provided a solution for the
practical problems it intended to solve, even though it performed better than heuristic
MIP approaches, the time to achieve solution was high, but it was only tested to solve
problems with more than 2000 trips.

The heuristic tested by Löbel presents results similar to the ones of Kliewer, but the
cases considered are slightly different. This heuristic has been able to solve problems
with over 3000 trips, but the time spent is relatively high. A good term of comparison
between both methods computational time is impossible to be established.

The algorithms Firsts and Clusters were tested against a lower bound defined by the
optimal solution for the similar VSP calculated through the heuristic proposed in [PB87].
The results reveal that even for smaller cases considered (maximum 400 trips) it provided
a solution containing almost the double of the vehicles needed in the VSP solution, which
can not be considered a good result.

2.4 Asymmetric Traveling Salesman Problem Approaches

The Asymmetric Traveling Salesman Problem is a NP-Hard combinatorial problem that
has been studied for several years as a special case of the original Traveling Salesman
Problem. The main difference between the original Traveling Salesman Problem and
it’s asymmetric version is that the distance between two cities is different in different
directions (i.e. A to B 10Km and B to A 12Km).

This problem approaches can provide a good starting point to apply to the problem
being solved, the Extended Vehicle Scheduling Problem. Some methodologies are pre-
sented and analysed in terms of quality and possibility to be adapted to this matter.

2.4.1 Approaches

2.4.1.1 Genetic Algorithm

In the First International Contest on Evolutionary Optimisation [BDL+97] several meth-
ods were presented in a contest for solving several instances of the A-TSP, this instances
are available in [Rei08].

The winner of this contest was an approach based on a genetic algorithm proposed by
Freisleben and Merz [FM96] that starts its search from a population of individuals gen-
erated using a nearest neighbour heuristic. The individuals represent feasible solutions,
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and at each step two of them are selected for crossover. The crossover procedure starts by
deleting all edges from the first parent that are not contained in the second and then recon-
nects the segments. The reconnection is performed using a greedy heuristic based on a
nearest neighbour choice. The new individuals are brought to the local optimum through
a 3-opt heuristic, and a new population is generated after the application of a mutation
operation that randomly removes and reconnects some edges in the tour.

2.4.1.2 Ant Colony System

The Ant Colony System was initially proposed by Dorigo [Dor92] and later proposed by
him and Gambardella [DL97] to solve the A-TSP. It is a nature inspired meta heuristic
that emulates the behaviour of ants in the pursuit for the shortest path to reach food. It can
be interpreted as a GRASP heuristic that at each iteration creates a given number of paths,
by means of artificial ants that follow preferentially connections with high concentrations
of pheromones. The pheromone concentration on a given connection is updated with
consideration for the final evaluation of paths containing it, this is done in two phases
local update that favours exploration and global update that favours exploitation. This
method is capable of identifying the key connections to find a good solution.

2.4.2 Results

In the paper that presented the Ant Colony System as a solution for the Asymmetric
Traveling Salesman Problem, a comparison between the two presented methods using the
data instances from the International Contest on Evolutionary Optimisation is presented.
The results, which are presented in Tab. 2.1 suggest that both methods could find solutions
very close to the known optimum, although the Ant Colony System did better in some
cases.

Optimum ACS avg ACS Error% GA avg GA Error %
p43 43 cities 2810 2810 0,00% 2810 0,00%
ry48p 48 cities 14422 14422 0,00% 14440 0,12%
ft70 70 cities 38673 38679,8 0,02% 38683,8 0,03%
kro124p 100 cities 36230 36230 0,00% 36253,3 0,01%
ftv170 170 cities 2755 2755 0,00% 2766,1 0,40%

Table 2.1: Comparison between the Ant Colony System and ICEO winner Genetic Algorithm

2.5 Conclusions

Real world instances of the Multi-Depot Vehicle Scheduling Problem with up to 7000
tasks have been solved to an optimal state, and some solutions for bigger problems with
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25000 tasks have been solved with acceptable solutions for this environment [L9̈9]. Even
though this such problem instances have only been solved because of their special struc-
ture that eases the solution, while there are some less structured cases that are harder to
solve. Carpaneto et al. [CDFT89] proposed some randomly generated instances of the
problem, that have been used by many researchers, and instances from this set with only
up to 800 tasks have been solved to optimality [HMS06].

The solution found in [NG09] doesn’t consider the costs associated to using a specific
vehicle in the process of creating bus duties, which can lead to a situation where a more
expensive vehicles are used in order to satisfy the least expensive path set. This conclu-
sion represents that the distance between HFMDVSP and VSP is not as linear as solving
multiple VSP problems, but creates a more complex network.

Combining mathematical programming with meta heuristic has proven to be a valu-
able approach in order to achieve a trade-off between solution quality and computational
time [PDHH06]. This trade-off can be observed as well in approaches for the A-TSP
problem, for which approaches such as Ant Colony System or Genetic Algorithms present
good solutions in reduced time.

The approaches used for the A-TSP represent a good starting point for new applica-
tions to the HFMDVSP since this can be interpreted as a special A-TSP, this analogy is
better presented in Section 3.4.
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Chapter 3

Problem Representation

Before introducing approaches to solve the problem it is important to thoroughly intro-
duce all the concepts of the problem, in a manner that allows to understand fully how the
information is related and its role in solving the problem. The basic input data as well as
the optimization goals and the restrictions of problem are presented and finally the output
format is shown allowing to understand the process between identifying the problem and
presenting a solution to it. A Linear Programming Model is also presented to formally
define the problem.

The comparison between the Vehicle Scheduling Problem and the Asymmetric Trav-
eling Salesman problem was proposed in [RRP]. This comparison is hereafter explained
further to introduce how approaches known for its application to the A-TSP can be applied
to Vehicle Schedule Problem extension.

The decision support system supports more functionalities than full instance schedul-
ing, enabling the users to explore the algorithm with partial solutions defined.

3.1 Problem Definition

The Heterogeneous Fleet Multi Depot Vehicle Scheduling Problem is defined by the
timetabled trips, the empty paths available, their duration , the stations, depots, its restric-
tions, and the objective function. This concepts will be presented thoroughly to provide a
better understanding.

3.1.1 Timetabled Trips

The timetabled trips T (i.e. Tab. 3.1) must be covered exactly once, each trip ti is defined
by the start and end station si,ei ∈ St, and start sti and end time eti.
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i ∈ T sti si ∈ S eti ei ∈ S
Trip 1 08:10 A 08:20 B
Trip 2 08:25 B 08:35 C
Trip 3 08:45 C 08:55 A

Table 3.1: Scheduled Trips

3.1.2 Empty Paths

The empty paths P (i.e. Tab. 3.2) define which stations a,b ∈ St may be connected by an
empty trip et ∈ P and the time that it takes ta,b. The stations St are the locations where
trips can start and end, and some of them are depots D ⊂ St which are special stations
where vehicles can stay for longer periods such as stay overnight.

ep ∈ P a ∈ St b ∈ St ta,b
A to Dep A Depot 5
Dep to A Depot A 5
Dep to C Depot C 5

Table 3.2: Empty Paths

3.1.3 Problem Restrictions

The objective in solving this problem is to find an assignment such that:

• every trip is satisfied by exactly one vehicle
• every vehicle duty starts and ends in a depot
• each vehicle performs a feasible sequence of trips
• the overall costs are minimised

The first topic is clear, no predetermined trip can be left out of the assignment, so it
must have a vehicle to perform it.

The second topic implies that every vehicle has a depot where it starts the day and
must end in the same depot, this must be the station where the first trip starts and the last
trip ends for the respective duty.

The third topic introduces the term feasible into the assignment. A feasible assignment
implies feasible sequences of trips for every vehicle, and a feasible sequence of trips
is nothing more than one that a vehicle can actually perform. To clearly define what
sequences a vehicle can perform the trip compatibility (Section 3.1.3.2) must be defined,
so that a feasible trip sequence is one where every pair of consequent trips are compatible.
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The fourth topic is related with the costs of a given assignment that are intended to
minimise. The cost structure is composed by tangible and intangible costs that are pre-
sented further (Section 3.1.4).

3.1.3.1 Vehicle Type Restrictions

Each trip i ∈ T can have denied vehicle types Dei ⊂ V T and/or mandatory vehicle types
Mani ⊂ V T \Dei , meaning that the feasible vehicle types for the trip are defined by
V Ti = (V T \Dei)∩Mani . An example of this restrictions is presented in Tab. 3.3.

i ∈ T Dei Mani V Ti

Trip 1 Mini-Bus,Articulated /0 Bus
Trip 2 Mini-Bus Bus Bus
Trip 3 /0 Bus Bus

Table 3.3: Vehicle Type Restrictions Definition Sample

3.1.3.2 Trip Compatibility

Trip compatibility between two consequent trips means that they can be satisfied by the
same vehicle in sequence. The compatibility αi, j between two trips i, j ∈ T can be for-
mally defined as in Eq. 3.1.

αi, j =

{
eti <= st j i f ei = s j & V Ti∩V Tj! = /0
eti +disti, j < st j i f ei 6= s j & V Ti∩V Tj! = /0

(3.1)

3.1.3.3 Time between trips

The time required disti, j to connect two consequent trips i, j,eti < sti may not be equal to
the time between the two stations ei and s j, because there are restrictions for the time a
vehicle can remain idled at a given station. A given station has a maximum stop time, that
determines how long can a vehicle stay idled in it.

In cases which time between the trips is too long, it is possible to make an interruption
to the vehicle duty in a given depot if its maximum stop time allows it and then return
to work. This is called a rest link and it also has a minimum stop time so that it can be
considered.

disti, j =


ti, j i f st j− eti− ti, j < maxStop j +maxStopi

disti,d +distd, j i f minSd < st j− eti−disti,d +distd, j < maxSd & d ∈ D
∞ otherwise

(3.2)
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3.1.3.4 Depot Restriction

Since every vehicle duty must start and end in the same depot, additional constraints are
required in terms of trip compatibility.

Two consequent trips can be compatible, but they may not be reachable and reach to
the same depots. To understand this further assume that there are only two trips to assign
which are consequent, the first trip goes from A to B and the second trip from B to C and
all stations are depots. According to the definition of compatibility this two trips would
be compatible, the catch is that there is no empty path between C and A, and this would
imply that if this two trips are assigned to the same vehicle it will start in A and end in
C, which does not meet the restriction that every vehicle must start and end in the same
vehicle. Although if there was a third trip that went from C to A after the second trip, it
would become feasible.

This example explains the complexity introduced by multiple depots which demands
that trip compatibility takes this in consideration. So a trip is available for a given depot,
only if it has a connection from that depot or a compatible precedent trip does and if it
has a connection to the depot or a compatible consequent trip that does. This brings even
another problem, if trip i has a compatible precedent trip j that has a connection from
depot d and a compatible consequent trip k that has a connection to the depot d, but all
other precedent and consequent trips are not available for that depot, it cannot have the
trip i as precedent trip assigned if the consequent trip is not k.

This implies that trip compatibility is different for each depot, which makes a switch
to the α operator defined in Eq. 3.2, becoming αd where d ∈ D. From this definition it is
concluded that to create an assignment it must be defined previously for each vehicle what
is the depot in which it will start and end so that trip compatibility can be determined.

3.1.4 Costs Structure

Solving the Vehicle Scheduling Problem implies not only finding one feasible solution
for the problem but finding the best solution. The quality of a solution is measured by the
costs that it has for the company applying it. The objective function is to minimize the
sum of the costs of connections belonging to the solution.

The major factor in the costs structure must be the number of vehicles necessary to
fulfil it specially because of this assets intrinsic value and the additional crew necessities.
Although this is a major factor there are others that must considered as well, such as the
time the vehicles spend idled and performing additional trips without passengers.
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3.1.4.1 Vehicle Duty Costs

The most important factor of an assignment is the number of vehicle duties required to
perform the trips, so it is important to define how important it is in terms of global opti-
mality. To achieve this a parameter that represents the costs of using an extra vehicle is
defined and is let to the final user to determine how important it is for the solution quality.
This parameter is then multiplied by the previously defined Vehicle Type Factor to deter-
mine the cost of using a specific vehicle type for a new vehicle duty, this favours the use
of the least expensive vehicle when it is possible.

3.1.4.2 Connections Costs

The compatibility operator between two trips αd
i, j = 1 has a related cost cd

i, j, that represents
how much assigning i and j consequently costs to the final evaluation of the solution.
Different factors change the value of this cost, this factors are:

• Empty Trip Penalty The empty trip penalty ePen is a factor that is multiplied by
the time that the vehicle spends performing trips without passengers.
• Idled Time Penalty The idled time penalty idPen is a factor that penalises the time

the vehicle has to remain still in a given terminus.
• Idled Time at Depot Penalty idDepPen The same penalisation as the previous one,

but applied to depot stations only.
• Vehicle Type Factor V T Facvt Is a factor that translates the difference between the

operational costs of different vehicles.

A connection between two trips is defined by the empty trips required to perform the
connection and the time it has to remain idled in any given station during the connection
period. Determining the costs of a given connection is only possible after calculating
three variables: the idled time in a depot station iDepTimed

i, j, the time idled in a non-
depot station iTimed

i, j and the time on empty trips eTimed
i, j, after doing so the cd

i, j can be
obtained by Equation 3.3.

cd
i, j = ePen∗ eTimed

i, j ∗V T Facvt + idPen∗ iTimed
i, j + idDepPen∗ iDepTimed

i, j (3.3)

3.2 Solution Representation

An assignment for the HFMDVSP is a set of vehicle duties each representing a different
vehicle and the trips it will preform. This trips include the timetabled trips and auxiliary
empty trips to connect between stations so that the vehicle can satisfy the next trip, making
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Figure 3.1: A graphic representation of a sample problem

the vehicle duty feasible. Each vehicle duty has its respective vehicle type and starts and
ends in a depot station.

In this graphic representation the three predetermined timetabled trips presented in
Table ?? are represented by the continuous lines, and the dashed lines represent empty
trips that are created to allow the vehicle duty to be feasible. In this case the empty trips
link the Depot to the first trip, and the last trip back to the Depot.

3.3 Linear Programming Model

The problem representation was based on a Connection-Based Model (Section 2.2.1.2)
using pairs depot/vehicle type to represent each layer. To build each layer’s network
the previously presented restrictions and compatibility operators are used and each node
represents either the start or end of a trip, or the exit or arrival of a given depot. This model
can be represented by the mathematical method in Eq. 3.4. In this model N is the set of
all nodes and ci j represents the costs of an arc between node i, j that belong to the set
of arcs A where all possible connections between nodes are present and xi j is a boolean
variable that defines whether or not a given arc belongs to the solution. The subsets
AT ⊂ A contains all arcs that connect with a node of any trip, while AT t ⊆ AT represents
the connections that are related to trip t ∈ T . In the same logic Ah ⊂ A represents all the
connections related to a depot node h ∈ H.

min ∑(i, j)∈A ci jxi j

s.t. ∑i:(i, j)∈A xi j − ∑i:(i, j)∈A xi j = 0 ∀ j ∈ N

∑(i, j)∈AT t xi j = 1 ∀t ∈ T

∑(i, j)∈Ah xi j ≤ dh ∀h ∈ H

xi j ∈ {0,1} ∀(i, j) ∈ A\
⋃

h∈H Ah

xi j ≥ 0 and integer ∀(i, j) ∈
⋃

h∈H Ah

(3.4)
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The first equation constraints the problem so that the number of incoming arcs on a
node is the same as the outgoing arcs, the second ensures that in the nodes related to trips
the number of incoming and outgoing arcs is equal to one, while the third guarantees the
vehicle availability where the number of outgoing arcs from a given depot is less than or
equal to the number of vehicles available. The last two equations guarantee that the arcs
related to any trip node are used only once, if used, while arcs from depot nodes can be
used one or more times.

3.4 Traveling Salesman Problem Comparison

The Traveling Salesman Problem is a widely studied subject, it is a well-known combina-
torial optimisation problem. It is the problem of assigning a route of a traveling salesman
that must go through a number of cities with different distances between each other. An
instance of the problem with n cities is defined by a distance matrix M[n][n], as the one de-
fined in Tab. 3.4 and the solution consists of an optimal Hamiltonian tour with the shortest
possible length.

A B
A ∞ 300
B 300 ∞

Table 3.4: Traveling Salesman Problem Distance Matrix

The symmetry of a Traveling Salesman Problem exists if the distance from and to a
city C is the same in every case, and otherwise it is considered an Asymmetric Traveling
Salesman Problem.

3.4.1 A-TSP Approach

With the Connection Based Network model, the problem of finding the optimal solution
for the assignment can be interpreted as a special case of the Asymmetric Traveling Sales-
man Problem. The main difference is that in the original A-TSP the traveling salesman
only visits each city once, returning to the original city and in this problem the depot is a
special node that can be visited more than once, and the links in the model have an infinite
cost in the opposite direction.

The problem defined by the empty trips in Tab. 3.1 and the empty paths in Tab. 3.2
can be represented as an A-TSP graph in Fig. 5.2 or as a cost matrix as seen in Tab. 3.5.
The links between nodes have a special structure due to the time restrictions that does not
allow all nodes to be connected between each other. The connections that are not feasible
appear represented with the ∞ symbol in the cost matrix.
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Figure 3.2: An A-TSP Graph sample

From/To Depot E. Depot A. Trip 1’ Trip 1” Trip 2’ Trip 2” Trip 3’ Trip 3”
Depot E. ∞ ∞ 200 ∞ ∞ ∞ 200 ∞

Depot A. 1000 ∞ ∞ ∞ ∞ ∞ ∞ ∞

Trip 1’ ∞ ∞ ∞ 10 ∞ ∞ ∞ ∞

Trip 1” ∞ 200 ∞ ∞ 600 ∞ ∞ ∞

Trip 2’ ∞ ∞ ∞ ∞ ∞ 10 ∞ ∞

Trip 2” ∞ ∞ ∞ ∞ ∞ ∞ 800 ∞

Trip 3’ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 10
Trip 3” ∞ 300 ∞ ∞ ∞ ∞ ∞ ∞

Table 3.5: One layer cost matrix

Another peculiarity about this case is that the cost of the connections between trips is
different whether the vehicle type being used, and given the depot restrictions (defined in
Section 3.1.3.4) the connection may not exist for a given depot. The Connection Based
Network Model uses a multi layer network to represent the different depots connections
that in the case of heterogeneous fleet can be used to represent pairs depot/vehicle type.
By doing so every layer can be represented as a costs matrix.

Multiple depots and heterogeneous fleet extension was not considered in the cost ma-
trix of Tab. 3.5, but it changes this scheme into a more complex cost matrix as in Tab. 3.6.
In the cost matrix each connection has a cost for each pair depot/vehicle type that is repre-
sented in a small matrix as well, this matrix relation is presented in Tab. 3.7. Connections
between the start and end of trips are not represented in this matrix for ease of compre-
hension. Interpreting this model as an A-TSP there are two major draw backs that must
be overcome : the multiple visits to depots, and the multi layered costs matrix.

This special version of the A-TSP brings more complexity to the problem because it is
not only about improving the path distance, but also to reduce the depot visits, which can
be overcome by using a special connection from the depot arrival to the depot departure,
which will be the only connection available from the depot arrival. With this tweak a
depot visit will represent a significant increase in the path cost, which still allows the
A-TSP approaches to work in this case.
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From/To Depot A. Trip 1’ Trip 2’ Trip 3’

Depot E. ∞ ∞ 200 ∞ ∞ ∞ 200 ∞

1000 ∞ ∞ ∞ ∞ ∞ ∞ ∞

Trip 1” ∞ ∞ ∞ 10 ∞ ∞ ∞ ∞

∞ 200 ∞ ∞ 600 ∞ ∞ ∞

Trip 2” ∞ ∞ ∞ ∞ ∞ 10 ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ 800 ∞

Trip 3” ∞ ∞ ∞ ∞ ∞ ∞ ∞ 10
∞ 300 ∞ ∞ ∞ ∞ ∞ ∞

Table 3.6: Multi layer cost matrix

Depot A Vehicle 1 Depot B Vehicle 1
Depot A Vehicle 2 Depot B Vehicle 2

Table 3.7: Depot / Vehicle Type Pairs

3.5 Partial Solutions

Public Transportation companies are constantly subject to changing rules in terms of op-
erational limitations, and so it is important that they can interact with the decision support
system as much as possible, not only establishing the parameters, but also by being able
to use it partially. This can be done in three different ways meeting different requirements
which will be presented further.

3.5.1 Completing Partial Solutions

Completing partial solutions allows the user to define a small sequence of trips that shall
be performed in that given way, and still use the system to assign the remaining trips,
making the partial solutions become feasible ones, as can be observed in Fig. 3.3. This
may be necessary when there is a sporadic restriction for a given driver, or a specific path
that may not be available for some time, and this can be overcome without the necessity
of creating new schedules to overcome that constraint.

3.5.2 Merging Partial Solutions

Defining partial solutions may imply creating more than a partial vehicle duty and in some
cases it may desirable to merge some of them if possible, and in other cases it may not be
so desirable.
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Figure 3.3: Partial Solutions: on the left a partial solution created through the GIST interface and
on the right the solution provided by the algorithm using the partial solution

This allows the user to create restrictions of small blocks of trips that must be per-
formed in a given way, not considering whether or not some of them will connect some
how by merging vehicle duties and completing them, as seen on Fig. 3.4.

When it is not desirable to merge partial vehicle duties, the user may define that the
partial solutions may not be connected, and can create disjunction restrictions, such as
ensuring that two trips (or trip blocks) are not performed by the same vehicle.

Figure 3.4: Merging Partial Solutions: on the left two partial solutions created through the GIST
interface and on the right the solution provided by the algorithm using the merged partial solutions
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3.5.3 Locked Partial Solutions

Another requirement may be to let a given vehicle duty as it is, and not changing it, which
introduces the concept of locked partial solutions. The algorithm can still perform an
optimal solution for the remaining trips but not considering the already defined duties.

This use can be observed in Fig. 3.5 where the duties Locked 1 and 1 could be a single
duty, but it was defined by the user that Locked 1 was locked.

Figure 3.5: Locked Partial Solutions: on the left a partial solution created through the GIST
interface and on the right the solution provided by the algorithm without changing the locked
partial

3.6 Conlcusions

Modeling the Extended Vehicle Scheduling Problem plays a significant role in efficiently
solving it. Selecting the Connection Based Model with multiple layers provides a good
way to handle the multiple depot and heterogeneous fleet extension.

The comparison with the Asymmetric Traveling Salesman Problem enables known
approaches to this problem to be adapted to the HFMDVSP. Despite the differences that
exist in pratical terms, new light can be shed into solving this efficiently and being this
a NP-Hard combinatorial problem even solutions that are more time efficient with slight
loss in solution quality.

The public transportation business is always changing. New regulations emerge con-
stantly and some flexibility is mandatory in this kind of decision support system. Partial
solutions allow the user to interact more with the algorithm behind it, by using it taking
in consideration some manually defined constraints that the system doesn’t, by definition,
support.
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Chapter 4

Implementation Details

The solution was created to incorporate the systems OPT offers its customers, that aim
to ease the planning operation of public transportation systems networks and schedules.
This systems are further presented as well as architectural issues that had to be overcome
in order to create a transversal solution for this matter.

4.1 Context

The company that serves as environment for the development of this thesis has been serv-
ing transportation companies for more than 20 years now and since the beginning has
provided decision support systems that are transverse to the needs of their clients. The
first management system, GIST 1, was developed more than 20 years ago, and since then
has kept its name but has suffered a drastic evolution. Their systems is currently used in
near 60% of the total public transportation sector in Portugal.

“ GIST’s roots can be traced back to several independent research and devel-
opment efforts, starting about 15 years ago both in the universities and in the
main Portuguese transport companies.” [eCdS00]

Smaller companies have different networks and challenges in this task and, recently,
the need arose to create a new branch of GIST that would overcome this needs. This
version is called GIST Light and is still in its embryonic form.

4.1.1 GIST 3.0

GIST 3.0 is the latest evolution from the original GIST, and is still in development. It
consists, at the moment, of two different models: Network 3.0 and Planning 3.0. This
platform is the result of years of experience in developing public transportation integrated
systems for organising and planning tasks. This experience is the result of a close relation
with R & D departments, in universities and public transportation companies themselves,
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and a constant feedback on the quality of the provided solutions. This allowed this evo-
lution to be aware of the needs of their costumers and to provide excelence in the func-
tionalities that are offered. GIST platform is currently being used in the major Portuguese
public transportation companies.

4.1.1.1 Network 3.0

Representing the network where the transportation system operates is the initial step of
the planning process which starts by defining all points that play significant roles in the
system operation. In GIST this process takes place in the Network environment, seen on
Fig. 4.1.

Figure 4.1: Network 3.0 Overview

The most basic entity of the network are the nodes, which represent, for instance,
terminus, relief points (i.e. points where the drivers can be replaced) and important cross-
roads or depots. Once this locations are identified, segments that link them need to be
defined.

Once the network has been settled, one can define paths that are ordered sets of seg-
ments along which trips are going to take place. A set of paths can form a route - the trips
of a route are grouped together, forming a timetable that is viewed by the public as a unit.
In this module, we also define the gist-lines, i.e., sets of routes and paths, probably with
common segments, for which schedules are defined simultaneously.
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4.1.1.2 Planning 3.0

Once the network is defined and demand is analysed it is possible to establish the trips
to offer and define the public timetables. This is not possible without considering at the
same time the operational tasks of scheduling vehicles and crew.

The Planning module, seen on Fig. 4.2,allows the schedule creation either for trips,
vehicles and crew. It facilitates the production of public timetables and the assignment of
vehicles to the trips that is supported by optimisation algorithms and by intuitive graphical
representations of solutions.

The basic units of the Planning module are the gist-lines, which can be used in differ-
ent contexts of demand, such as day periods, day types, and year season.

Figure 4.2: Planning 3.0 Overview

4.1.2 GIST Light

GIST Light as the name suggests is a lightweight platform similar to GIST, that aims
to satisfy the smaller public transportation companies needs. This platform gathers the
main characteristics of Network and Planning modules from GIST into a single platform
that allows to perform planning operations with the same intuitive interface and basic
concepts (Fig. 4.3). It offers great flexibility on the operational planning functionalities,
such as defining the transport network the trips to offer and the scheduling to support that
offer.

The lightweight version uses a lightweight data base, using XML files to store the
network and scheduling information. The network consists of the same basic concepts,
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Figure 4.3: GIST Light Overview

such as Nodes, Segments, Paths and Lines. Since smaller companies usually perform the
whole network planning tasks as a single problem, the gist-line concept is not applicable,
so instead of having several gist-lines, gist light supports a single gist-line per file. The
planning domain has simplifications since the requirements are slightly simpler, i.e. the
year season concept is not applicable to this platform.

4.2 Addin Framework

Both systems have core modules, such as the ones that support the creation of networks
and schedules, but also have several addins that allow to perform additional tasks. This
addins are connected with the core module through the addin framework that supports
different kinds of addins, i.e. report addins, algorithm addins, data exportation. This
architecture allows the platforms to evolve with time without changing their heart and to
be adaptable to future requirements without changing main functionalities.

The layered approach that constitutes the decision support is schematically defined
in Fig. 4.4 which clearly separates different addins providing a sandbox environment for
creating new functionalities for the core platforms in a transparent manner, that can be
used by both systems.

The decision support algorithms are connected to the core through an adapter addin,
that creates a transparency layer between the domain used in the platform and the do-
main of the algorithm. This algorithm adapter consists of three main modules: algorithm
adapter, domain converter and user interface which role in the system is represented in
Fig. 4.5.
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Figure 4.4: System Layers Overview

The user interface enables the end user to establish the parameter settings and run
the algorithm. The Algorithm Adapter receives data from the User Interface and the
information system and calls the Domain Converter to transform the data into a language
that the algorithm understands and pass it to the algorithm. When the algorithm returns
a solution to the adapter, it once again calls the converter to transform the data into the
system data format completing the task.

Figure 4.5: Algorithm Adapter Flow Chart

This Addin Framework intends to open this sort of tasks to be further explored in Aca-
demic enviroment, opening the GIST platform to exploration without losing the privacy
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of the proprietary software. This can enable more sinergies between the company and
universities and R&D departments with a simple sandbox environment that allows hands
on approaches to be tested and developed.

4.3 Multiple Vehicle Type Scheduling Domain

This domain defines the information recognized by the algorithm, this plays a major role
in implementation because it supports in a transparent manner the domains from both
GIST Light and GIST 3.0, that have slight differences. The domain model is represented
in Fig. 4.6

Figure 4.6: Domain Data Model

The most significant difference between GIST Light and GIST 3.0 is that in GIST
Light a path always has the same duration and does not consider traffic constraints, while
in GIST 3.0 a Period structure that considers different traffic conditions throughout a day
is provided and varies with day type and year season.

A Period is a time interval and how the traffic conditions affect the speed on a given
network which is represented as a speed percentile that when multiplied by the average
duration of a given segment gives the time it takes to perform the segment at that time pe-
riod. Periods must be defined for the whole day, which is set to thirty two hours enabling
that trips ending at 23h59 can connect with trips starting at 00h01, so that durations can
be calculated at any given starting time.

To create a transparency layer in this subject, every path has an average duration, that
in case there are no periods, it is used as default duration. In case there are day periods
defined, the value must be calculated considering the time the trip is set to start or end.
This is specially important when creating empty trips required to link trips or depots.
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This domain model serves as the unit of communication between the algorithms layer
and the core module, the VDAData object is the input and output of the algorithm, that is
interpreted in the Algorithm Adapter that changes the core module data with the solution.

4.4 Conclusions

The company where the system will be developed has a significant experience with the
public transportation sector, and provides management solutions for the operational tasks
they perform. Currently they offer two different systems with different targets, GIST
aims major companies with big infrastructures and vast networks, while GISTLight is
more compliant with smaller companies that operate in smaller transportation networks.

Both systems have an architecture that allows addins to extend the core functionalities,
and a specific addin for vehicle scheduling algorithms that allow transparency in devel-
oping algorithms. This structure allows a single algorithm to be created for both systems.
The transparency is created by the adapters that translate the core domain to the algorithm
domain, and the opposite as well.
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Chapter 5

Ant Colony Meta-Heuristic

Throughout the years several nature inspired heuristics have emerged. This heuristics are
specially applied in optimisation problems, where some natural abilities are exploited to
be simulated by algorithms capable of solving real life problems by analogy.

Presented by the work developed by Marc Dorigo [Dor92] Ant Colony Meta-Heuristics
have been used to solve different optimisation problems based on the unique ability of
ants to cooperate in the search for food by exploring the pheromone information. One
of the most known applications of this algorithm is to the A-TSP problem. Hereafter an
adaptation of this application to the HFMDVSP is presented.

5.1 Ant Colony Behaviour

The ants search for food starts with an ant wandering and finding food, while laying down
a pheromone trail. Other ant also wandering eventually finds the pheromone trail and is
likely to follow it and reinforce the pheromone trail. This biological feature by itself and
the fact that pheromone trails evaporate with time help this task. The longer the path
to food, higher is the the probability of evaporation before another ant follow that entire
path, the opposite occurs with short paths, because ants will be more likely to follow the
trail and reinforce it.

The Fig. 5.1 above represents this behaviour, in image 1 the first ant finds randomly
a path to food and leaves the pheromone trail so the next ant can follow it with a higher
probability than any other path. Given the low concentration of pheromones on all paths
initially, the ants will eventually travel through the whole search space, as seen on 2,
leaving pheromone trails with a concentration related with the distance to food. In the
end as it is shown in 3, the ants converge to the shortest path,leaving the shortest path
with much more pheromones than any other path.

It can be seen as a GRASP cooperative method, since it uses a greedy random heuristic
by preferentially selecting connections with a higher pheromone concentration. Initially
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Figure 5.1: Ant’s search for food behaviour representation

the pheromone concentration is based only on the cost of that connection and a calculated
factor that balances the number of paths and the distance on each path, promoting explo-
ration. As artificial ants start to find feasible paths, it adapts the connections pheromones
based on the total cost of solutions that contain that link. The update process is done in
two phases: the first is the local update and the second is the global update.

The local update rule (Eq. 5.1) promotes the exploration of different paths, reducing
the probability of following the same path repeatedly. This update is done after every
artificial ant finds its path, and has a low impact in the pheromone concentration. In the
formulas presented pheromone concentration is represented as ph(e) and Lgb represents
the balanced weight of this link in the global best solution cost. The factor α is the local
update rule factor that defines how this rule affects the system, as the factor ρ is the factor
for global update rule.

ph(e) = (1−α)∗ ph(e)+α ∗∆Lo(e) (5.1)

∆Lo(e) = τ0 (5.2)
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The global update, Eq. 5.3, is done after a number of artificial ants find their path.
Those paths are then evaluated and the best path is selected, the links in the best solution
are updated with a high impact on pheromone concentration.

ph(e) = (1−ρ)∗ ph(e)+ρ ∗∆G(e) (5.3)

∆G(e) =

{
(Lgb)

−1 i f e ∈ globalBest
0 otherwise

(5.4)

The link selection, Algorithm 1, considers the pheromone density of each link and the
costs related to it to calculate the probability of selection of that link.

Algorithm 1 Link Selection Algorithm

prob⇐ RandomNumber(0,1)
if prob < ExploitationProbability then

max⇐ 0
for all linkinlist do

if link.Weight > max then
max = link.Weight
bestLink = link

end if
end for
return bestLink

else
totalCosts⇐ 0
for i = 0→ list.Size do

tempCosts⇐ link.Weight
totalCosts+= tempCosts
probGap[i] = totalCosts

end for
probPick⇐ RandomNumber(0,1)× totalCosts
for i = 0→ list.Size do

if pick ≤ probGap[i] then
return list[i]

end if
end for

end if

In order to promote exploitation over exploration, the best link is used with a given
probability ,Eq. 5.5, called the exploitation factor, and otherwise the previously presented
probabilities are used in order to select the used link ,Eq. 5.6. This selection is formally
presented bellow, where σ is a random value, σ0 is an exploitation factor and S is a random
variable selected according to the probability distribution given in the second equation.
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s =

{
max ph(e)∗η(e)β i f σ < σ0

S otherwise
(5.5)

p(e) =

{
ph(e)∗η(e)β

∑ ph(ei)∗η(ei)β
e,ei ∈CurrentEdges

0 otherwise
(5.6)

To define the initial pheromone concentration a static value is used, and then an arti-
ficial ant is set to determine a feasible path, and it’s solution cost is used to redefine the
pheromone concentration (Eq. 5.7). The definition of this initial value is specially impor-
tant because if there is a huge gap between the initial concentration and the first value
used to update the pheromone concentration it can make those links almost mandatory or
irrelevant, so the closer this initial solution is to an optimal solution higher is the causality
of that update. This causality improves the learning capacity of the algorithm.

p(e) =
1

f irstSolution.Costs
(5.7)

The cost of connecting the current node to the depot node only considers the trip
required to do so, and no waiting time, which makes this links very likely to be selected,
because other links usually have higher costs. In order to avoid the selection of links to
depot from any trip, it was considered the cost of using another vehicle in the cost of those
links.

5.2 Ant Colony Meta-Heuristic Approach

In this section an introduction to the Ant Colony Algorithm and its application to the
HFMDVSP is presented. This algorithm is inspired in the proposal from Dorigo and
Gambardella [DL97] on applying the Ant Colony System to the TSP and A-TSP and
considers the special situation of the A-TSP presented in Section 3.4. A solution for the
main problem found on this application of the algorithm, ensuring that the paths followed
by ants are feasible, is presented. Some considerations on the algorithm basic functions
such as the link selection algorithm are presented, and some specific situations that emerge
in this application are also analysed.

The Ant Colony Algorithm 2 presented is an iterative algorithm that simulates the
trajectory followed by a number of ants (colonySize) leaving pheromone trails that are
used to measure the value of the connections. At each iteration it is verified if the best
solution found is better than the previous best and when the algorithm ran for a given
number of iterations (maxIter) without finding an improvement stops. The pheromone
trails are updated with two previously mentioned rules, the local update and global update
rule.
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Algorithm 2 Ant Colony System Algorithm

bestEvaluation⇐ ∞

initPheromone⇐CalculateInitialPheromone()
for all nodeinNodes do

for all linkinnode.Links do
link.Pheromone⇐ initPheromone

end for
end for
while iterations < maxIterations do

while AntsNotFinished() do
for i = 1→ colonySize do

link⇐ ants[i].SolveNext()
LocalU pdate(link)

end for
end while
colonyBestAnt⇐ComputeBest(ants)
GlobalU pdate(colonyBestAnt)
if colonyBestAnt.Evaluation() < bestEvaluation then

bestAnt⇐ colonyBestAnt
bestEvaluation = bestAnt.Evaluation()

else
iterations++;

end if
end while
return bestAnt.Solution()
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5.2.1 Feasible Solutions

One of the main issues in this approach was to find feasible solutions for the problem. The
problem arises mainly due to the fact that, in some problems, nodes are not heavily con-
nected, and the decision tree of building a path may contain leaves that do not correspond
to feasible solutions (Fig. 5.2) .

Figure 5.2: Example of a path construction tree with two paths, one feasible and one unfeasible

This matter is really important because it avoids useless path creation of unfeasible
solutions, making the exploration of possible solutions more effective. some prelimi-
nary studies indicated that without an effort to avoid unfeasible solutions the heuristic of
searching for the least expensive connection would generate mostly unfeasible solutions.
The analysis of this studies concluded that this was mainly due to the fact that it would
hard for the algorithm to understand early that some connections would lead to unfeasible
solutions and would mostly lead to after diminish the value of pheromones for a several
connections it would find a small neighbourhood of feasible solutions that would rarely
end up to be the best solutions. This analysis lead to create a method that would eliminate
unfeasible paths but capable of exploring all feasible solutions.

5.2.1.1 Unlinked Trips Sub problem

If a trip can be connected to a depot, it will always have an available connection, because
depots can be visited more than once, except if the trip is set to another depot, and then
this link will no longer be available. Filtering the graph by assigning the nodes that are
not connected from or to all depots that they can be assigned is a relaxed problem that en-
sures that all trips can be connected. This relaxed sub problem allows to avoid unfeasible
solutions that can represent a high percentage of the reachable solutions, enhancing the
performance of any search heuristic. On the other hand this problem may become very
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complex, that is the case presented in Fig. 5.3 which has a ratio of 85% unlinked nodes
over the total nodes.

Figure 5.3: A CBN layer sample focusing on the unlinked trips sub problem

5.2.1.2 Formulation

The UTSP problem consists of finding sub tours S from linked nodes to linked nodes in a
way that all unlinked nodes are assigned to one of them and performed in a feasible way.
After defining the sub tours, the unlinked nodes connections are reduced to the ones from
its sub tour, so that every path becomes a feasible one.

Let U be the group of nodes that don’t have connection from or to all depot nodes,
considered the unlinked nodes and the group Cn1 be the available connections of node n1∈
N and Dn1 ⊆ Cn1 be the set of connections with depots. Some nodes from the unlinked
nodes Uc ∈U may not require to be associated to a sub tour if they have connections with
a depot, but not all of them, although it must be ensured that they can only be assigned to
a depot that they can connect to, removing all possible connections to other depots. For
ease of comprehension this will be treated as a special sub tour that only considers the
start and end node of a given trip. The sub tours may not have a defined vehicle type, but
they must have a group of vehicles that can perform it in order to remove from the main
model the connections that would connect this sub tour to any other depot.

The first constraint is that every unlinked node must be related to one and only one
sub tour that defines the mandatory links for that node.

∀ n ∈U ∃ s ∈ S→ n ∈ s (5.8)
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The second constraint is that the first node n1 of a sub tour must be connected from at
least one depot, and also the last node n2 must be connected to at least one depot that also
belongs to the connected depots of the first node.

Dn1 6= /0
Dn1 6= /0

Dn1∩Dn2 6= /0
(5.9)

The third constraint ensures that all the connections Cs1 of a sub tour s1 ∈ S have the
same feasible vehicle type group. Let FVc with c ∈ C be the group of feasible vehicle
types for any connection, that considers the group Vti and Vt j that define which vehicle
types can perform the connected trips i, j, this constraint can be represented as in Eq. 5.10.

∀ s ∈ S ∀ c1,c2 ∈Cs→ FVc1∩FVc2 6= /0 (5.10)

5.2.1.3 Approach

To solve the Unlinked Trips Sub Problem an algorithm for assignment was established
based on the ant colony behaviour as well. The main difference is that in this case the
algorithm needs to have the ability of return in a decision if it leads to an impossible
solution and the connections are not selected in sequence.

The connections are selected using the same selection algorithm from the Ant Colony
System, but the next node to assign is selected through a first fail heuristic that considers
the number of connections available for each node as well as the number of connections to
depots it has, so that the first point of possible failure is considered first. Since a node can
be connected with a depot, but not all of them, the nodes without any connection to any
depot are considered in first place and when considering nodes with depot connections
the connections with other nodes are considered first, and only if none of them lead to
feasible solutions the hypothesis of that node being connected to the available depots is
considered.

To avoid stepping into sub tours that would lead to unfeasible solutions for the UTSP
a method was created to validate at each step of the algorithm, or every new connection
selection, if the remaining unlinked nodes can still be assigned in a feasible way. If this
method returns that it is not possible to assign the remaining nodes, it steps back until the
previous decision that offers unexplored alternatives.

5.2.2 Vehicle Selection

The selection of the next vehicle type in the solution construction occurs when a given
vehicle duty reaches any depot arrival, so there are special connections between depot ar-
rivals and depot exits that have a special cost structure that is considered by the algorithm
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to select the depot/vehicle type of the next vehicle duty to create. This connection can be
used more than once, so the update on pheromones happens more than once per solution,
so the dominant factor is actually the cost of the connection and there is a serious interest
in give a higher probability to select least expensive vehicles whenever it is possible, but
also to allow that the expensive ones to be selected even when they are not mandatory.
This equilibrium is not easy to achieve, and depends highly on the user and how he un-
derstands the real difference between using one vehicle type over another one which is
defined by the previously presented Vehicle Type Factor. A vehicle type may become
mandatory if any other vehicle type offers no connections, this can happen whether by the
fact that trips only have that determined vehicle as a feasible vehicle type, or by means
of the mandatory links defined in the UTSP problem that oblige to use only that vehicle
type. This can occur also during solution construction when all the pairs depot/vehicle of
a given vehicle type run out of connections with trips.

5.2.3 Connections with and from Depots

The construction of a vehicle duty starts by selecting the first trip to be performed after the
vehicle leave the depot, and this is a special case because the implicit cost of performing
a connection between the depot and a trip is only related with the empty trip, if required,
from the depot location to the start of the trip. The issue that this matter arises is that
this way the algorithm wouldn’t consider whether the trip it was selecting was the last
trip to start or the first, and in the case of being the last trip, it wouldn’t be possible to
connect it with any other trip, creating a vehicle that would only serve that last trip. The
same matter happens when we’re considering connecting to another trip or connecting to
a depot, because the connection cost to a depot can be inferior to connecting to another
trip, specially if trips are sparse in time, and the algorithm would be blind to the fact that
it is rather likely to find an expensive solution by selecting the depot over any trip.

To avoid this blindness of the algorithm in this cases special cost structures had to be
defined for links from a depot and to a depot.

In the case of selecting the first trip to perform, it is preferable to select trips that
start early enhancing the chances that it can connect with other trips that start later, so
to achieve a good balance in selecting the first trip the difference between the start of
the trip and the initial time (00h00) was considered as idled time of the vehicle for that
specific connection, which is only considered in the selection of connections and not on
the evaluation of the solution.

Avoiding the early end of a vehicle duty by connecting with the depot over selecting
another trip the cost of using another vehicle is considered in the connections to the depot,
even though for fitness evaluation of a solution this is only considered in the connections
between depot arrivals and depot exits. This way it becomes more likely to finish a vehicle
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duty only when there are not any other choice, or the available options are not really that
interesting, even though there is always a probability of doing so.

5.3 Parameterisation

The decision support system has several parameters that must be defined, some of them
are defined in code, and the user can not change them, while others can be adapted by the
end user given the problem instance being solved.

5.3.1 User Parametrisation

The parameters that can be defined by the user are divided in four groups: Costs and
Penalties , Create Empty Trips , Partial Solutions, Advanced Options

Figure 5.4: Ant Colony Parameterisation Interface

The Costs and Penalties parameters influence the objective function calculation. The
first parameter defines the cost of using a generic vehicle duty, that usually has an high
value in order to achieve a solution with the least possible vehicles, but can be adapted
to favour the trips sequence quality over vehicle number. The second and third parameter
were presented in Section 3.1.4 and represent the weight of the idle time and the time
performing empty trips have in the evaluation function.

The Create Empty Trips sub menu only has one parameter that defines how many paths
can be used in sequence to satisfy a single connection, the way the user interacts with the
system may change, and he can define paths for every possible path, or just some short
connections that he wants to be used in sequence by the algorithm. This parameter could
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not be required but it helps the user to adapt his way of using the system to the use of the
algorithm.

The Partial Solutions group includes the parameter that defines whether or not a partial
solution can be altered. This was further discussed in Section 3.5.

The Advanced Options are related with the termination criteria and the morphology
of the ant colony. The first parameter is the Maximum Iterations that defines how many
iterations can the algorithm run without finding a better solution before stopping. The
second parameter is the Colony Size that defines the number of artificial ants that search
for a path at each iteration. This advanced options group can become valuable specially
when the cases being treated are to small or too big and the default settings may not by
the most appropriate.

5.4 Conclusions

The Ant Colony Metaheuristic simulates the behaviour of ants when searching for food
and the pheromone trails and has been applied to several combinatorial problems.

One of the most known applications of this heuristic is to the Asymmetric Traveling
Salesman Problem. This heuristic promises to be a good approach to the Heterogeneous
Fleet Multiple Depot Vehicle Scheduling Problem ,from the comparison previously made
in Section 3.4.1 with the A-TSP.

This adaptation presents several problems that must be overcome. One of them is
the existance of unfeasible paths, that originally are not considered in the A-TSP, which
brings new complexity to the problem. This problem can be overcome by grouping the
trips that can not be linked with depots, since in the worst case scenario, after doing so,
all trips will be able to be linked from and to the depot, allowing the flow constraints to
be satisfied. The other problem to overcome comes with the fact that some nodes can
be visited more than once, the depots. This problem exists mostly because of the special
structure that it’s connections have, since vehicles they don’t have a time associated and
vehicles can come and go at any time with the same considered cost. To overcome this a
special costs structure must be used.

Some parameters of the algorithm must be handed to the user to define, this parame-
terisation interface must be easily understood by the user and flexible enough to explore
it.
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Chapter 6

Results

The testing platform was the environment used by many public transportation compa-
nies in Portugal to manage their network and planning data, GIST. The database used for
the performance tests, in Section 6.1 and 6.2, was a copy of the one that a major com-
pany operating in Porto uses in their daily planning operations. This platform already
provides a planning support system that allows the Vehicle Scheduling Problems to be
solved automatically, even though it does not support heterogeneous fleets and vehicle
type constraints. This method is based on a quasi-assignment algorithm, developed by
Paixão and Branco [PB87]. It was used as a benchmark for situations in which vehicle
type constraints are not defined. These tests allowed to verify the solutions quality, and
efficiency.

The number of trips and the amount of unlinked nodes in a given instance play a major
role in the algorithm performance. In order to understand how they affect the results the
dataset is divided into categories that characterise the number of trips and the percentage
of unlinked nodes overall. This dataset characterisation is presented in Table 6.1

Unlinked Nodes < 30 % Unlinked Nodes > 30 %
Trips Number Instances Average Trips Instances Average Trips
T > 150 4 180,6 0 0
100 < T < 150 9 129,33 2 103,5
50 < T < 100 20 78,35 2 71
20 < T < 50 7 17,54 4 34
T < 20 10 11,25 4 10

Table 6.1: Dataset characterisation on instance number and average trips per instance

The dataset used for the tests in Section 6.3 consider vehicle type restrictions with a
heterogeneous fleet and multiple depots, this data was a reproduction of the data from a
company operation in Lisbon, which is hereafter characterised.
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The tests were made in a computer equipped with 4GB DDR2 ram memory, and an
Intel i3-540 processor running Windows XP Professional Edition with Service Pack 3.

6.1 Time Performance

The time the algorithm takes to provide a solution plays an important role, since the
previous algorithm provided almost instant solutions, and the end users are used to that
level of performance. The time measured considers only the time spent by the algorithm
while searching for solutions, and was analysed by the previously defined categories of
trip number and unlinked nodes percentage.

Unlinked Nodes < 30 % Unlinked Nodes > 30 %
Trips Number Average Time Average Time
T > 150 72,01s —-
100 < T < 150 21,19s 4,00s
50 < T < 100 3,21s 0,90s
20 < T < 50 0,36s 0,41s
T < 20 0,09s 0,07s

Table 6.2: Time Performance for the Ant Colony Approach

Understanding how the algorithm behaves when the complexity grows is extremely
important and the time performance of the algorithm has a strict relation with the number
of trips in the scheduling task. This increase in complexity when the trip number increases
can be explained by the fact that with more trips in the schedule there will be more pos-
sible connections after any given trip which implicitly increases the number of links to
consider. The analysis of the results found for the dataset allowed to understand that time
increases exponentially when the number of trips increase as is shown in Figure 6.1.

6.2 Quasi-Assignment Algorithm Comparison

The Quasi-Assignment Algorithm that is present in the current solution provided to the
clients only allows one depot and one vehicle type, it has very basic capacity in compari-
son to the requirements of the companies using it, that mostly use it as a basis to readapt
manually.

Even though it is basic when considering the requirements it is a deterministic and
optimal solver that can be considered as a lower bound for the solution proposed. It was
tested against the proposed solution and analysed in terms of average deviation between
the basic approach and the solution presented for tests that consider a single depot and a
single vehicle type. It is expected that the solutions found by the Ant Colony approach
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Figure 6.1: Tendency Line for time when the number of trips increases

perform slightly worse than the basic approach in this cases, but the goal is to prove that
the deviation is very low, and so the methodology is useful. Results are presented in
Tab. 6.3 where the difference between the costs of the two tested approaches in presented
in percentage given by Eq. 6.1, where acs represents the total costs of the solution found
by ant colony and basic represents the costs of the solution by the basic approach.

di f f =
acs−basic

basic
∗100 (6.1)

Unlinked Nodes < 30 % Unlinked Nodes > 30 %
Trips Number Difference % Difference %
T > 150 0,59% —-
100 < T < 150 0,27% 0,02%
50 < T < 100 0,67% 0,54%
20 < T < 50 0,11% 0,00%
T < 20 0,00% 0,00%

Table 6.3: Difference Between the results from the Ant Colony System and Basic Algorithm

The results show that the algorithm performs very close to optimal solutions, with very
small differences. A qualitative analysis of the results also shows that for the schedules
in STCP there wasn’t a solution with more vehicles required than the one provided by the
basic algorithm, only slight differences in the vehicle sequences.
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6.3 HFMDVSP Qualitative Results Analysis

Select different cases and different weights for each vehicle type and show qualitative
results compared to hand made solutions.

The data set used to test with real life multiple vehicle type and multiple depot in-
stances was based on data provided by a company that serves in Lisbon and currently
uses the GIST system to perform the planning tasks. Since the data was produced in pre-
vious versions of gist, it still didn’t provide information on vehicle types restrictions. The
approach to generate vehicle type restrictions was to cross information between vehicle
duties and each vehicle duty type allowed to establish scenarios. This scenarios allow to
have an overlook on how the algorithm behaves in different vehicle restrictions use cases.

Vehicle Type restrictions can be totally restrictive where every trip can only be per-
formed by a given vehicle type, partially restrictive where some trips can be performed
by only one vehicle type and the other have no restrictions, or can come in a completely
irregular manner where some trips can be performed by all vehicles, others have a restrict
group of vehicles and others have a single feasible vehicle type.

The problem instance used for this analysis has two vehicle types : Standard and Midi.
The standard vehicle cost factor was considered 4,0 and the midi vehicle cost factor was
considered 5,0 . In the original scheduling problem 584 trips are assigned to two vehicle
duties preformed by Midi vehicles and twenty Standard vehicles, while in the smaller one
there are 269 trips performed also by two Midi vehicles and only eight Standard.

6.3.1 Totally Restricted

Totally Restrictive instances can be seen as a different problem instance for each vehi-
cle type, since the trips that can be performed by one vehicle type can’t connect with
trips from other vehicle types and vice versa. The results are satisfying even though the
comparison with the result from the basic algorithm only can be seen as a lower bound be-
cause its scheduling doesn’t consider that some solutions are unfeasible in terms of vehicle
types. The most important comparison here performed is with the original scheduling that
was a manual improvement of the basic approach, since this solution already considers
vehicle type restrictions and is currently active. The two methods that were previously de-
veloped in OPT, Firsts and Clusters were also tested but the results were as disappointing
as it was expected, as seen on Tab. 6.4.

The result from the Ant Colony approach in this smaller case were very satisfying
since it was able to provide a solution with the same number of vehicles for each type and
the value for the total costs was very close to the ones from the original scheduling, even
in a case where 269 trips are considered.
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Midi Vehicles Standard Vehicles Total Costs
Original Solution 2 8 50628200
ACS Solution 2 8 51038220
Firsts Solution 2 10 Unfeasible Solution
Clusters Solution 5 14 Unfeasible Solution

Table 6.4: Results Analysis for the Totally Restricted Smaller Problem

This totally restricted case doesn’t represent the bigger problem in vehicle type re-
strictions since the trips that can be performed by one vehicle can’t be performed by the
other and so it is as hard as solving the problem for each vehicle separately.

6.3.2 Partially Restricted

Partially Restrictive instances are a more complex scenario because all trips can be con-
nected even though it is preferable to group trips from that are restricted to the most
expensive vehicle type in order to achieve a solution with fewer expensive vehicles.

In this specific case the vehicle type that must be considered as expensive is the Midi
vehicle type, because its cost factor is higher. In this test the smaller test case was used
with 122 trips being restricted to use the Standard Vehicle, 84 trips forced to use Midi
Vehicle, and 63 trips with no restriction. The ideal scheduling for this scenario requires
only two Midi Vehicles, being the remaining trips satisfied by the Standard vehicle type.
The results presented in Tab. 6.5 show that this restrictions structure makes the problem
more difficult to solve efficiently, since it increases the search space, by allowing some
trips to be connected with trips that should only be performed by a given vehicle type.

Midi Vehicles Standard Vehicles Total Costs
Original Solution 2 8 50628200
ACS Solution 3 8 57594860

Table 6.5: Results Analysis for the Partially Restricted Smaller Problem

This restrictions were also tested on the original scheduling problem, but with restric-
tions being applied only to the Midi vehicle type, where trips that should be performed
by the Standard vehicle type are allowed to be performed by any vehicle type. The results
for this test are shown in Tab. 6.6

6.4 Parameter Settings

The parameter settings was based on the conclusions from the original application of the
algorithm to the A-TSP problem [DL97].
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Midi Vehicles Standard Vehicles
Original Solution 2 20
ACS Solution 8 15

Table 6.6: Results Analysis for the Partially Restricted Original Problem

The exploration factor that defines the probability at each decision of using a greedy
heuristic that selects the currently understood as the best decision was set to σ0 = 0,8.

The update factors were subject of small thorough qualitative study that shown that
when the value of the local update factor was close to the global update factor, as was
proposed by Dorigo and Gambardella with local update factor ρ = 0,1 and global update
factor α = 0,1 the pheromone evaporation would occur to fast to take advantage of the
pheromone trail. The equilibrium that allows local update rule to be efficient in avoiding
that consequent ants find the same solution and global update rule can influence ants to
explore good characteristics of the search space was found with the values ρ = 0.1 and
α = 0.2.

The initial pheromone value was achieved by applying the Equation 5.7 with a first-
Solution found with pheromone value defined to a static value, this value was considered
τ0 = 0.001. Even though this value is not a good value to be considered as the initial
pheromone value it allows the algorithm to find a solution that is based only on the cost
of the connections and use this solutions costs to find a good initial pheromone value to
start the process.

Colony Size value used was 10, the number that was suggested as having the best
performance. This value was subject to tests that attempted to prove that this value was
really the best, but after running several tests results were rather inconclusive, and even
though it is known that in smaller instances smaller colonies can perform as well consum-
ing less time it was considered as a good value to make the testing bed homogeneous in
this matter.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The problem being solved is a NP-complex combinatorial problem, and few studies for
this specific extension of the Vehicle Scheduling Problem are found in literature, and it
represents a major improvement in public transportation systems. The algorithm created
will be available in the GIST systems, that is used by almost 60% of the total Portuguese
public transportations sector, and presents great value not only to the companies but to
all Portuguese that use public transports. The companies using this system operate more
than 6000 vehicles [eCdS00].

The results achieved indicate that the approach presented were very satisfying, the
main goal of creating a method that could give a good trade-off between closeness to
optimum and time to perform was achieved. The difference in terms of costs between
the algorithm and the lower bound of the basic algorithm was close enough to create
a valuable solution for real world problems. The time performance of the algorithm in
comparison with the basic algorithm already presented was not so close that allows to
make such a clear statement about how in day-to-day scheduling operations it can be
accepted. Even though the times are not prohibitive for daily use the accommodation of
the end users with almost instant solutions from the basic algorithm may become an issue
in terms of acceptance of use.

The value created with this system intended not only to be the capacity of solving
the extended problem with consideration for the vehicle type of the vehicle duties, but
also to create a decision support system that provides more ways to use than the previous
solutions. The ability to use partial solutions to achieve complete solutions becomes very
useful to the companies using the system, since the constant change in the requirements
for valid assignments can make any system obsolete and demand hand made changes to
the assignments obtained.

The statement that meta heuristic methods can perform well enough to be used in
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real world problems in the extended Vehicle Scheduling Problem was verified with an
approach that simulates the ant colony behaviour when searching for the closest path to
food. The Ant Colony System had good performances that show how this methodologies
when adapted can bring new alternatives for solving real life optimisation problems.

The problem of dealing with unfeasible solutions was found in preliminary studies of
possible search operators that could gather the best characteristics of a group of feasible
solutions and combine them into a better solution, but this proved to be really hard to
achieve since most of the best characteristics were not compatible. The hypothesis of
using column generation to introduce new connections not present in the solutions being
crossed in a way that best connections from both would become compatible may bring
new light to this problem.

During the development of the thesis a peculiar case was found in which a company
uses two different labels in their transportation system, and also uses three types of ve-
hicles. This problem has a special interest because the company doesn’t want their cos-
tumers to change their habits and so doesn’t want to change the image the vehicles that
serve some lines to change, and so they have to deal with six different types of vehicles
and a special case of restrictions. This in example that shows that this kind of planning
considering vehicle types is already being done in most companies and that the decision
support systems currently do not provide efficient help in this matter, so it is solved by
hand. This algorithm provided this company a simpler and significantly better way of
dealing with the problem.

7.2 Future Work

A more thorough study of the termination criteria and how it can be adapted to problem
instance characteristics could enhance the time performance.

Future work can come from adapting already known solutions for the Asymmetric
Traveling Salesman Problem even though they may not be applicable to the interpretation
of the HFMDVSP problem as an A-TSP. The main identified issue in doing this adaptation
is related with the unfeasible paths in this case that in the original problem A-TSP do not
exist and represent a serious barrier.

One methodology that could also be subject of future work is considering unfeasible
solutions during the search procedure that could allow a better exploration of the search
space and enhancing the causality of search operator. Although accepting unfeasible so-
lutions during the search procedure can improve the capacity of algorithms in finding
better neighbourhoods a good balance is required between the distance from feasibility of
solutions and the penalisation of this situations. Otherwise characteristics of unfeasible
solutions may never be translated into good feasible solutions.
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The problem of finding feasible solutions for the problem instances revealed as a core
problem to find optimal assignments in this approach. The approach presented does over-
come the problem, but in some specific instances it shows that it may not do it in the most
desirable way, since it seems not to explore all the possible solutions in this instances and
so it may not be able to find the optimal solution even when enough computational time
is given. Further work in this chapter can make the solution even better although this sub
problem itself is a complex combinatorial problem that presents a fair challenge.

Tests with vehicle type restrictions suggests that results for bigger problems are not
very satisfying, even though they are significantly better than the results from the previous
approaches, and further work must be done in order to understand how to avoid using
expensive vehicles when it is not necessary even in situations where trips are allowed to
be performed by any vehicle.
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