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...Thus, QSAR lives on, not only as a stand-alone technique, but even more so in disguised 
forms within the more popular drug design approaches of the modern era. Correlative 
thinking has pervaded humankind�’s existence for eons, evolving from the recognition of danger 
engendered by the hairy fellow with a rock in his hand to the present day molecular nuance of 
a well-placed methyl group and its predicted effect on activity. Rebirth gives rise to novel 
applications of the technique. To paraphrase, �‘�‘QSAR is dead, QSAR is dead, long live QSAR!�’�’ 

 
(Arthur M. Doweyko. J. Comput. Aided Mol. Des. (2008) 22:81�–89) 
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ABSTRACT 

The ability to improve the pharmaceutical profile of drugs on the sole basis of their 

activity has been often overestimated. The adjustment of multiple criteria in hit-to-lead 

identification and lead optimization is considered to be a major advance in the rational 

drug discovery process. Thus, the development of approaches able to handle 

additional criteria for the early simultaneous treatment of the most important 

properties, potency, safety, and bioavailability, determining the pharmaceutical 

profile of a drug candidate, is an emergent issue in drug discovery and 

development.In this Thesis, it is introduced a multi-objective optimization (MOOP) 

method based on Derringer�’s desirability functions that allows conducting global 

QSAR studies considering simultaneously the potency, bioavailability and/or safety of 

a set of drug candidates. The results of the desirability-based MOOP (the levels of 

the predictor variables producing concurrently the best possible compromise between 

the properties determining an optimal drug candidate) are used for the 

implementation of a ranking method, also based on the application of desirability 

functions. This method allows ranking drug candidates with unknown pharmaceutical 

properties from combinatorial libraries according to the degree of similarity with the 

optimal candidate previously determined. The whole process is condensed in a 

methodology that we decided to name as MOOP-DESIRE, acronym of Multi-

Objective OPtimization based on the Desirability Estimation of Several Interrelated 

REsponses. Their suitability for key tasks involving the use of chemoinformatics 

methods in drug discovery�– drug design, library ranking, and virtual screening �– is 

evaluated besides the use of Desirability Theory as a tool for the interpretation of 

multi-criteria prediction models. Each task was challenged through four different data 

sets enabling to evaluate the performance of the methodology in the corresponding 

task, each representing a current drug discovery problem. The overall results herein 

obtained suggest that the identification of hits with appropriate trade-offs between 

potency and safety, rather than fully optimized hits solely based on potency, can 

facilitate the hit to lead transition and increase the likelihood of the candidate to 

evolve into a successful drug. So, it is possible to assert that the desirability-based 

MOOP method proposed seems to be a valuable tool for rational drug discovery and 

development. 

Keywords: Computer-Aided Drug Design - Desirability Functions - Drug Discovery - 

Multi-Objective Optimization - Virtual Screening  
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RESUMO 

A capacidade de melhorar o perfil farmacêutico de um fármaco baseado 

exclusivamente na sua eficácia terapcêutica ha sido freqüentemente superestimada. 

O ajuste de critérios múltiplos na identificação de candidatos potenciais (hit-to-lead 

identification) e na otimização dos líderes (lead optimization) é considerado um 

progresso fundamental no processo de descobrimento racional de fármacos. Assim, 

o desenvolvimento de aproximações capazes de manejar critérios adicionais para o 

tratamento prematuro e simultâneo das propriedades mais importantes que 

determinam o perfil farmacêutico de um candidato de fármaco como a sua potência, 

segurança, e biodisponibilidade, é uma questão emergente no processo de 

descobrimento e desenvolvimento de fármacos.Nesta Tese, é introduzido um método 

de otimização multi-objetivos (OMO) baseado nas funções de conveniência de 

Derringer, que permite conduzir estudos QSAR globais considerando 

simultaneamente a potência, segurança e/ou a biodisponibilidade de um conjunto de 

candidatos de fármaco. Os resultados do processo de OMO (os níveis das variáveis 

explicativas que simultaneamente produzem o melhor equilibrio possível entre as 

propriedades que determinam um ótimo candidato de fármaco) é usado para a 

implementação de um método de ordenação, também baseado na aplicação de 

funções de conveniência. Este método permite ordenar grandes bibliotecas de 

compostos (reais ou virtuais) com propriedades farmacêuticas desconhecidas de 

acordo com o grau de semelhança com o candidato ótimo previamente 

determinado.O processo inteiro é condensado em uma metodologia que nós 

decidimos nomear como MOOP-DESIRE, acrônimo em idioma inglês para Multi-

Objective OPtimization based on the Desirability Estimation of Several Interrelated 

REsponses. A sua conveniência para as principais tarefas que envolvem o uso de 

métodos quimioinformáticos no descobrimento de fármacos - desenho de fármacos, 

ordenação de bibliotecas, e screening virtual - é avaliado além do uso da Teoria da 

Conveniência como uma ferramenta para a interpretação de modelos de predição 

multi-critérios. Cada tarefa foi avaliada mediante quatro conjuntos de dados 

diferentes permitindo a verificação do desempenho da metodologia na tarefa 

correspondente, representando cada uma de estas um problema atual na área de 

descobrimento de fármacos. Os resultados globais obtidos sugerem que a 

identificação de hits com um equilibrio apropriado entre potência e segurança, em 

lugar de hits completamente otimizados baseados unicamente na potência, pode 

facilitar a transição "hit-to-lead" e aumentar a probabilidade do candidato para evoluir 

num fármaco próspero. Assim, é possível afirmar que a metodologia de OMO 
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proposta pode ser considerada uma valiosa ferramenta para o processo de 

descobrimento e desenvolvimento racional de fármacos. 

Palavras Chave: Descobrimento de fármacos -Desenho de fármacos assistido por 

computador - Funções de conveniencia - Otimização multi-objetivos - Screening 

virtual 
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1 INTRODUCTION 

Development of a successful drug is a complex and lengthy process, and failure at 

the development stage is caused by multiple factors, such as lack of efficacy, poor 

bioavailability, and toxicity (1). Although �“Costs of Goods�” has been claimed as one of 

the major reasons for the end of a research & development (R&D) project (2) one 

cannot disregard the idea that toxicity and/or pharmacokinetics profiles of the clinical 

candidates are still decisive causes of failure in drug development process (3-6). 

Roughly 75% of the total costs during the development of a drug is attributed to poor 

pharmacokinetics or to toxicity (7). 

In the 1980's, the development of high throughput technologies was expected to 

solve the drug discovery problem by a massive parallelization of the process. In 

practice, it turned out that, if they were not carefully deployed, these new 

technologies could lead to such a tremendous increase of candidate molecules that 

the drug discovery process became like finding a needle in a haystack. As a result, 

the large-scale approach has been progressively abandoned over the recent years, 

for the profit of more rationalized process. In this regard, Professor Hugo Kubinyi 

nicely pointed out: �“If you search a needle in a haystack, the best strategy might not 

be to increase the haystack�” (8-10). 

The importance and possibility of jointly considering the multiple aspects of drug 

action was recognized and suggested since 1985 by Mayer and Van de Waterbeemd 

(11). As a possible way to achieve this goal, they suggest a stepwise multiple QSAR 

(MUQSAR) technique. In MUQSAR technique each step in drug action should be 

analyzed by using a quantitative method [i.e.: quantitative structure-

activity/property/biotransformation/toxicity relationships (QSAR/QSPR/QSBR/QSTR)], 

thus permitting to fully conceive an �“overall QSAR�”: 

 (11). 

Not without advising that some practical problems surely would have to be tackled, 

more than twenty years ago Mayer and Van de Waterbeemd were already confident 

about the feasibility of this approach and that the information finally obtained would 

worth the effort (11).   

Improvement of the profile of a drug candidate requires finding the best compromise 

between various, often competing objectives. In fact, the ideal drug should have the 

highest therapeutic efficacy, the highest bioavailability, and the lowest toxicity, which 

shows the multi-objective nature of the drug discovery and development process. But 

even when a potent candidate has been identified, the pharmaceutical industry 
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routinely tries to optimize the remaining objectives one at a time, which often results 

in expensive and time-consuming cycles of trial and error (12). 

In fact, the ability to improve the pharmaceutical profile of candidates in lead 

optimization process on the sole basis of their activity has been often overestimated 

(3, 6). The adjustment of the multiple criteria in hit-to-lead identification and lead 

optimization is considered to be a major advance in the rational drug discovery 

process. The aim of this paradigm shift is the prompt identification and elimination of 

candidate molecules that are unlikely to survive later stages of discovery and 

development. In turn, this new approach will reduce clinical attrition, and as a 

consequence, the overall cost of the process (3, 13). 

All these arguments put forward the need for approaches able to early integrate 

drug- or lead-likeness, toxicity and bioavailability criteria in the drug discovery 

phase as an emergent issue (3, 6). That is, methods that can handle additional 

criteria for the early simultaneous treatment of the most important properties, 

potency, safety, and bioavailability, determining the pharmaceutical profile of a 

drug candidate (14-22). 

At the same time, the virtual screening (VS) (23, 24) of combinatorial libraries has 

emerged as an adaptive response to the massive throughput synthesis and screening 

paradigm. In parallel to the development of methods that provide (more) accurate 

predictions for pharmacological, pharmacokinetic, and toxicological properties for low-

number series of compounds (tens, hundreds), necessity has forced the 

computational chemistry community to develop tools that screen against any given 

target or property, millions or perhaps billions of molecules, virtual or not (25). VS 

technologies have thus emerged as a response to the pressure from the 

combinatorial/high-throughput screening (HTS) community. 

In recent years, the drug discovery/development process has been gaining in 

efficiency and rationality because of the continuous progress and application of 

chemoinformatics methods (12). In particular, the QSAR paradigm has long been of 

interest in the drug design process (26), redirecting our thinking about structuring 

medicinal chemistry (27). 

Yet standard chemoinformatics approaches usually ignore multiple objectives and 

optimize each biological property sequentially (11, 28-38). Nevertheless, some efforts 

have been made recently toward unified approaches capable of modeling multiple 

pharmacological, pharmacokinetic, or toxicological properties onto a single QSAR 

equation (39-43). 
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Multi-objective optimization (MOOP) methods introduce a new philosophy to obtain 

optimality on the basis of compromises among the various objectives. These methods 

aim at hitting the global optimal solution by optimization of several dependent 

properties simultaneously. The major benefit of MOOP methods is that local optima, 

corresponding to one objective can be avoided by taking into account the whole 

spectra of objectives, thus leading to a more efficient overall process (44). 

Several applications of MOOP methods in the field of drug development have 

appeared lately, ranging from substructure mining to docking, including inverse 

QSPR and QSAR (44). Most of these MOOP applications have been based on the 

following approaches: weighted-sum-of-objective-functions (WSOF) (45) and pareto-

based methods(44). An excellent review on the subject has been recently published 

by Nicolaou et al (44). 

Concerning substructure mining, MOOP applications have focused on molecular 

alignment and pharmacophore identification. Examples of MOOPs tackling the 

substructure mining from a multi-objective perspective include the Genetic Algorithm 

Similarity Program method (GASP; a WSOF-based method) (46) and some pareto-

based methods, such as the Genetic Algorithm for Multiple Molecular Alignment 

method (GAMMA; probably the first application of a pareto-based approach in 

chemoinformatics) (47) and the Genetic Algorithm with Linear Assignment for the 

Hypermolecular Alignment of Datasets (GALAHAD) (48). 

As regards docking, several research groups are particularly active using pareto-

based MOOP methods. For instance, Janson et al. (49) described a docking 

optimization application termed ClustMPSO, based on the particle swarm optimization 

(PSO) algorithm that minimizes simultaneously the intermolecular energy between 

the protein and the ligand and the intramolecular energy of the ligand. A multi-

objective evolutionary algorithm (MOEA) has also been used by Zoete et al. (50) in 

their docking program EADock. 

Recently, the application of the concept of multiple objectives have been introduced 

to the optimization of new chemical entities (NCEs) via de novo molecular design and 

inverse QSPR, standing out applications such as the CoG approach introduced by 

Brown et al. (51) to solve the inverse QSPR problem and the Molecule Evaluator 

proposed by Lameijer et al. (52) where the user assume the role of the fitness 

function by selecting candidate molecules for further evolution after each iteration. 

Despite the availability of numerous optimization objectives, MOOP techniques have 

only recently been applied to the building of QSAR models. Nicolotti et al. (17) 

employed a variant of an evolutionary algorithm called multi-objective genetic 
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programming that used pareto ranking to optimize the QSAR models. A number of 

conflicting objectives including model accuracy, number of terms, internal complexity 

and interpretability of the descriptors used in the model were considered. On the 

other hand, Stockfisch (53) proposed a non-evolutionary multi-objective technique 

called the partially unified multiple property recursive partitioning (PUMP-RP) method 

for building QSAR models. This method was successfully used to construct models to 

analyze selectivity relationships between cyclooxygenase (COX) 1 and 2 inhibitors 

(54). More recently, a multi-objective optimization algorithm was proposed by 

Nicolottiet.al. for the automated integration of structure- and ligand-based molecular 

design (15). Actually, very few reports exist of the application of MOOP methods to 

QSAR, and even scarcer are the reports concerning the simultaneous optimization of 

competing objectives directly related with the definitive pharmaceutical profile of 

drugs, such as therapeutic efficacy, bioavailability, and/or toxicity. 

Classic QSAR approaches usually ignore the multi-objective nature of the problem 

focusing on the evaluation of each single property as they became available during 

the drug discovery process (44). So, an approach offering a simultaneous study of 

several biological properties determinants for a specific therapeutic activity is 

considered a very attractive option in computational medicinal chemistry. 

In this sense, desirability functions (DF) are well-known multi-criteria decision-making 

methods (55, 56). This approach has been extensively employed in several fields (57-

68). However, despite of perfectly fit with the drug development problem, reports of 

computational medicinal chemistry applications are at present very limited (16, 18).  

In the present work, we are proposing a MOOP methodology based on Derringer�’s 

desirability functions (56) that allows global QSAR studies to be run jointly, 

considering multiple properties of interest to the drug design process (16, 18). At the 

same time, ranking of cases is an increasingly important way to describe the result of 

many data mining and other science and engineering applications (69). Specifically, 

in rational drug development, the availability of accurate ranking methods is highly 

desirable for virtual screening and filtering of promising new drug candidates from 

combinatorial libraries (7). 

So, the results of the desirability-based MOOP will be used for the implementation of 

a ranking algorithm also based on the application of desirability functions. This 

desirability-based ranking algorithm it is proposed as multi-criteria virtual screening 

tool. 

Summarizing, the knowledge involved in the development of new drugs is necessarily 

multidisciplinary. Like drugs, optimal QSAR models are a trade-off between several 
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objectives. At the same time, the process of computational drug discovery is 

conducted in many different ways and through diverse approaches, each with their 

own advantages and limitations. All these facts expose the multidimensional nature of 

the drug discovery and development process as well as an urgent need of methods 

able to integrate the plethora of approaches (mostly used as separate and 

independent pieces) and knowledge accumulated up to date, for the final and 

common goal: to develop efficient and safe drugs in a rational and cost-effective way. 

MOOP methods offer the potential to do this and the efforts involved in the present 

work attempted to approach to one of the countless routes to the complex goal of 

finding "good needles" on the vastness of that haystack that is the chemical space. 

So, the specific objectives of this thesis can be summarized as follows: 

i) To establish a multi-objective optimization & ranking methodology based 

on Derringer�’s desirability functions (MOOP-DESIRE 

Methodology),enabling global QSAR studies to be run jointly, considering 

multiple properties of interest to the drug discovery and development 

process.  

ii) To evaluate the applicability of the MOOP-DESIRE methodology to the 

task of multi-criteria drug design by applying it to the design of novel 

NSAIDs quinazolinones with simultaneously improved analgesic, 

antiinflammatory, and ulcerogenic profiles. 

iii) To evaluate the usefulness of the MOOP-DESIRE methodology as multi-

criteria library ranking tool by applying it to the filtering of safe and potent 

antibacterial candidates from a heterogeneous library of antibacterial 

fluoroquinolones. 

iv) To assess the potential of the MOOP-DESIRE methodology as multi-

criteria virtual screening tool through the application of a MOOP-DESIRE-

based prioritization of hits with appropriate trade-offs between human 

immunodeficiency virus type-1 (HIV-1) reverse transcriptase (RT) inhibitor 

efficacy and MT4 blood cells toxicity. 

v) To evaluate the suitability of Desirability Theory as an interpretation tool 

for multi-criteria prediction models (PMs) by using it for the extraction of 

useful information on the desired trade-offs between binding and relative 

efficacy of N6-substituted-4´-thioadenosines A3 adenosine receptor (A3AR) 

agonists.  
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2 RESULTS AND DISCUSSION 

The results presented in this Thesis are reported by means of the author�’s original 

articles. First, the MOOP-DESIRE methodology is introduced and depicted in section 

2.1. Next, the potential of the methodology proposed in the field of drug discovery are 

described by means of four practical applications in sections 2.2 to 2.5. Section 2.2 

describes the potential of the methodology as a multi-criteria drug design tool. In 

section 2.3 is described their use as a multi-criteria library ranking algorithm. A multi-

criteria virtual screening strategy is depicted in section 2.4 and finally, in section 2.5 is 

illustrated the use of Desirability Theory for the interpretation of a multi-criteria 

prediction model. Although the methodology itself involves several steps, only details 

pertaining to the respective applications are presented in these sections. The reader 

is referred to the author�’s original articles for more information. 

The author�’s original articles (14, 16, 18, 22) have been attached under the heading 

�“ANNEXES�” of the present report. Pages containing explanatory sections follow the 

Thesis appropriate Arabic numeration system, whereas the pages belonging to the 

published works keep the actual journal numbering. 

 
2.1 MOOP-DESIRE METHODOLOGY: MULTI-OBJECTIVE OPTIMIZATION BASED 
ON THE DESIRABILITY ESTIMATION OF SEVERAL INTERRELATED 
RESPONSES 

Improvement of the profile of a molecule for the drug discovery and development 

process requires the simultaneous optimization of several different objectives. The 

ideal drug should have the highest therapeutic efficacy and bioavailability, as well as 

the lowest toxicity. Because of the conflicting relationship among the aforementioned 

properties, such a drug is almost unattainable, and if possible, it is an extremely 

difficult, expensive, and time-consuming task. However, finding the best compromise 

between such objectives is an accessible and more realistic target (see Figure 1). 

In this work, we are proposing a multi-objective optimization technique based on the 

desirability estimation of several interrelated responses (MOOP-DESIRE) as a tool to 

perform global QSAR studies, considering simultaneously the pharmacological, 

toxicological, and/or pharmacokinetic profiles of a set of drug candidates. The MOOP-

DESIRE methodology is intended to find the most desirable solution that optimizes a 

multi-objective problem by using the Derringer�’s desirability function (70, 71), 

specifically addressed to confer rationality to the drug development process.  
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Figure 1.Graphic representation of the compromise between therapeutic efficacy (potency), 
bioavailability (ADME properties) and toxicity (safety) required to reach a successful drug. 

 
Phase I: Desirability-based Multi-Objective Optimization 
The process of simultaneous optimization of multiple properties of a drug candidate 

can be described as follows. From now on, the terms �“response variable�” and 

�“independent variables�” should be understood as any property to be optimized and 

any set of molecular descriptors (MDs) used to model each property, respectively. 

1. Prediction Model Setup 

Each response variable (Yi) is related to the n independent variables (Xn) by an 

unknown functional relationship, often (but not necessarily) approximated by a linear 

function. Each predicted response ( i) is then estimated by a least-squares 

regression technique. In some cases, the developed prediction model for some 

responses may share the same independent variables of other responses�’ prediction 

models but with different coefficients. In this atypical case, attaining the best 

compromise among the responses turns out to be simpler. Actually, because of the 

multiplicity of factors involved in the �“drugability�” of a molecule, one should not expect 

that the same subset of independent variables can optimally explain different types of 

biological properties (especially conflicting properties like potency and toxicity). 

However, in the latter case, there is still a way to maximize the desirability of several 

biological properties, that is, to setup a global prediction model where the predicted 

values of each response are fitted to a linear function using the whole subset of 

independent variables employed in modeling the k original responses. Here, the 

independent variables used in computing the predicted values for the original 
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responses will remain the same. Independent variables not used in computing the 

predicted values for the original responses will be set to zero. 

2. Desirability Function Selection and Evaluation 

For each predicted response i, a desirability function di assigns values between 0 

and 1 to the possible values of i. This transformed response di, can have many 

different shapes. Regardless of the shape, di= 0 represents a completely undesirable 

value of i, and di= 1 represents a completely desirable or ideal response value. The 

individual desirabilities are then combined using the geometric mean, which gives the 

overall desirability D: 

k
kdddD

1

21 )...(                                                                                                (1) 

with k denoting the number of responses. 

This single value of D gives the overall assessment of the desirability of the combined 

response levels. Clearly, the range of D will fall in the interval [0, 1] and will increase 

as the balance of the properties becomes more favorable. Notice that if for any 

response di= 0, then the overall desirability is zero. Thus, the desirability maximum 

will be at the levels of the independent variables that simultaneously produce the 

maximum desirability, given the original models used for predicting each original 

response. 

Depending on whether a particular response is to be maximized, minimized, or 

assigned a target value, different desirability functions can be used. Here, we used 

the desirability functions proposed by Derringer and Suich (56). 

Let Li, Ui, and Ti be the lower, upper, and target values, respectively, that are desired 

for the response i, with Li  Ti  Ui. 

If a response is of the target best kind, then its individual desirability function is 

defined as: 
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If a response is to be maximized instead, its individual desirability function is defined 

as: 
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In this case, Ti is interpreted as a large enough value for the response, which can be 

Ui. 

Finally, if one wants to minimize a response, one might use: 
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Here, Ti denotes a small enough value for the response, which can be Li. Moreover, 

the exponents s and t determine how important is to hit the target value Ti. For s =t = 

1,the desirability function increases linearly toward Ti. Large values for s and t should 

be selected if it is very desirable that the value of i be close to Ti or increase rapidly 

above Li. On the other hand, small values of s and t should be chosen if almost any 

value of i above Li and below Ui are acceptable or if having values of i considerably 

above Li are not of critical importance(56). 

In this way, one may predict the overall desirability for each drug candidate 

determined by k responses, which in turn are at the same time determined by a 

specific set of independent variables. However, as the Derringer�’s desirability function 

is built using the estimated responses i, there is no way to know how reliable the 

predicted D value of each candidate is. 

To overcome this shortcoming, we propose a statistical parameter, the overall 

desirability�’s determination coefficient (R2
D), which measures the effect of the set of 

independent variables Xn in reduction of the uncertainty when predicting the D values. 

If the response variable is estimated as a continuous function of the independent 

variables Xn, the individual desirabilities di, are continuous functions of the estimated 

i values (eqs2-4), and the overall desirability D is a continuous function of the di 

values s (eq. 1), then D is also a continuous function of the Xn. Therefore, R2
D can be 

computed in analogy with the so-called determination coefficient R2.Specifically, R2
D 

is computed by using the observed DYi (calculated from Yi) and the predicted D i 

(calculated from i) overall desirability values instead of using directly the measured 

(Yi) and predicted ( i) response values. 
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where DYi and D i have been defined previously. iYD is the mean value of D for the Yi 

responses of each case included in the data set, SSTO is the total sum of squares, 

and SSEis the sum of squares due to error. 

Similar to R2, the adjusted overall desirability�’s determination coefficient (Adj.R2
D) can 

be computed as shown below. 
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Like this, both R2
D and Adj.R2

Dhave the same properties of R2 and Adj.R2. Thus, both 

will fall in the range [0, 1],and the larger R2
D/Adj.R2

D is, the lower is the uncertainty in 

predicting D by using a specific set of independent variables Xn (72). 

Since R2
Dand Adj.R2

D measure the goodness of fit rather than the predictive ability of 

a certain PM, it is advisable to use an analogue of the leave one out cross-validation 

(LOO-CV) determination coefficient (Q2
LOO) to establish the reliability of the method in 

predicting D. For this, the overall desirability�’s LOO-CV determination coefficient (Q2
D) 

can be defined in a manner analogous to that of R2
D. 
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where SSELOO-CV and D i (LOO-CV) are the leave one outcross validation square sum 

of residuals and the predicted overall desirability by LOO-CV, respectively. 

In this way, we can have a measure of how reliable will be the simultaneous 

optimization of the k responses over the independent variables domain. 

3. Multi-Objective Optimization 

As seen before, the desirability function condenses a multivariate optimization 

problem into a univariate one. Thus, the overall desirability D can be maximized over 

the independent variables domain. To accomplish this, one can use the 

�“Response/Desirability Profiler�” option of any of the modules of regression or 

discriminant analysis implemented in STATISTICA (73). The overall desirability D is 

optimized with the �“Use general function optimization�” option, which is, the simplex 

method of function optimization (74-76),or the �“Optimum desirability at exact grid 

points�” option, which performs exhaustive searches for the optimum desirability at 

exact grid points. The first option is usually faster, but the default option is the later 
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one, except when the number of predicted values that must be computed to perform 

the exhaustive grid search exceeds 200 000, in which case the �“Use general function 

optimization�” option becomes the default. 

The final result is to find the optimal levels (or an optimal range) of the independent 

variables that optimize simultaneously the k responses determining the final quality of 

the product. In this way, the best possible compromise between the k responses is 

found, and consequently, the highest overall desirability for the final compound is 

reached (i.e., the more enviable drug candidate). 

 
Phase II: Desirability-Based Ranking Algorithm 
Case-based reasoning (CBR) is mainly based on the assumption that problems 

(cases; compounds in this work) with similar descriptions (features; molecular 

descriptors determining the chemical structure in this work) should have similar 

solutions(the goal of the study; the biological properties involved in the final 

pharmaceutical profile of the drug candidate in this work) (77). Consequently, by 

adaptation of previously successful solutions to similar problems, it is possible (at 

least theoretically) to find the solution of a case only based on its description (that is, 

to infer the properties of a compound based on their chemical structure from a 

previous knowledge of the properties of a compound structurally similar). 

On the basis of this reasoning paradigm, we are proposing a ranking algorithm based 

on quantitative parameters estimated from the description of the cases. Specifically, 

by the application of this algorithm, it will be possible to rank drug candidates 

(included on the model�’s applicability domains) with unknown pharmaceutical profiles 

(like those coming from combinatorial libraries) according to their similarity with the 

optimal drug candidate determined by the simultaneous multi-objective optimization 

process previously described. 

1. Similarity Assessment 

i is the parameter used here to describe the similarity between a case i and the 

optimal case as a function of the subset of descriptive variables used for the multi-

objective optimization process, which is defined as: 
m

X
XXii w

1
,

                                                                                                        
(8) 

where i,X is the Euclidean distance between the case i and the optimal case, 

considering the parameters X, and wX represents the weight or influence of the 

variable X over the global desirability D of the case i. 
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The Euclidean distance of a case i to a case j considering several features or 

variables is defined as: 
2/12)( ji XXE                                                                                                 (9) 

Here, we decided to determine the degree of similarity between a case i and the 

optimal case by considering one by one every single variable X instead of considering 

simultaneously all the X variables describing a case. By doing this, it is possible to 

confer a higher degree of freedom to the process of finding the optimal set of weighs 

associated to the respective variables X. At the same time, this process allows us to 

infer the relative influence of every variable X over the global desirability D of a case i. 

In a case like this one, where only one feature or variable is considered at a time, the 

Euclidean distance between two cases coincide with the absolute value of the 

difference between their respective levels of that feature. Thus, i,X is defined as: 

OPTiXi XX,                                                                                                      (10) 

Where Xi and XOPT are the values of the parameter X for the case i and the optimal 

case, respectively. 

2. Desirability Scaling of Similarity Metrics and Minimization of Differences Between 

Case Description ( i) and Case Solution (Di) 

The i values are normalized by means of the application of the Derringer desirability 

functions(56) to bring them to the same scale as Di. In this manner, it is possible to 

minimize the difference between the values of i and Di for every case. Specifically, 

the respective values of i are minimized by means of eq.4 in such a way that the 

lower values(indicative of a higher similarity with respect to the optimal case) will take 

the values more close to 1 and vice versa. Here, Li correspond to the lowest value of 

i ( iMIN) and Ui = iMAX. 

Next, the optimal set of weighs wX minimizing the difference between the values of Di 

and the normalized values of i for every case is found by a least-squares nonlinear 

data-fitting process. The weights were obtained through a nonlinear curve-fitting 

using the large-scale optimization algorithm (78, 79), implemented in the �“lsqcurvefit�” 

function of MATLAB program, version 7.2 (80). 

After we minimized the differences between Di and the normalized values of i, we 

achieved the highest possible degree of concordance between the description 

(expressed through the normalized values of i which encode the information related 

to the molecular structure expressed as a function of the molecular descriptors 

employed) and the solution of the cases (determined by the respective values of Di, 

which represents the combination of the k properties involved on the final quality of 
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the drug candidate). Thus, according to the CBR paradigm, it will be possible to rank, 

according to i, new and pharmaceutically unknown drug candidates for which just 

their molecular structure is known (like those coming from combinatorial libraries). In 

this way, it will be possible to filter and identify the most promising drug candidates, 

which will logically be placed first on the ordered list (the candidates with the lowest 

values of i and consequently the most similar ones with the optimal drug candidate 

determined by the desirability-based MOOP process) and to discard the candidates 

ordered last. 

3. Ranking Algorithm Validation and Estimation of the Ranking Quality Index ( ) 

Even though the CBR suggests that the nonlinear data-fitting process employed to 

find the optimal set of weighs can lead to an adequate ranking of the cases, it is not 

possible to know the quality of the ranking achieved through this process. 

Considering the above-mentioned, we are proposing a method for the validation of 

the ranking obtained by the use of the optimal set of weighs. In addition, we propose 

a quantitative criterion of the quality of a ranking.  

We will use some simple notations to represent ordering throughout this work. 

Without loss of generality, for n cases to be ordered, we use the actual ordering 

position of each case as the label to represent this case in the ordered list. For 

example, suppose that the label of the actual highest ranked case is n, the label of 

the actual second highest ranked case is n - 1, etc. We assume the examples are 

ordered incrementally from left to right. Then the true-order list is OT = 1, 2, 3, ...,n. 

For any ordered list generated by a ranking algorithm, it is a permutation of OT. We 

use OR to denote the ordered list generated by the ranking algorithm R. OR can be 

written as a1, a2, ..., ai, where ai is the actual ordering position of the case that is 

ranked ith in OR (see Table 1). 

Table 1. An example of ordered lists.
OT 1 2 3 4 5 6 7 8 9 10 

OR 
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 
3 6 2 4 5 8 1 7 10 9 

OW 10 9 8 7 6 5 4 3 2 1 

The ranking validation includes the following steps: 

I. Order the cases in the library according to D in a decreasing fashion (starting 

with the case exhibiting the highest value of D) and label each case as described 

above (1, 2, 3, ...,n). This ordering corresponds to the true-order list (OT). 

II. Invert OT. This new ordering corresponds to the worst order list (OW). 



14 
 

III. Order incrementally the cases in the library according to i (starting with the 

case exhibiting the lowest value of i) and label each case as described above (a1, 

a2, ...,an). This ordering corresponds to the order generated by the ranking 

algorithm R (OR). 

IV. Normalize (through eq.4) the values (labels) assigned to each case in steps 1-3 

where Li = Ti = 1 and Ui = the number of cases included in the library (n). In this 

way, we obtained the respective normalized order values for the true (OTdi) and 

worst (OWdi) order lists, as well as the order generated by the ranking algorithm R 

(ORdi). 

V. Use the respective normalized order values to determine the difference between 

OR and OT (OT-OR
i) 

i
OR

i
OT

i
OROT dd

                                                                                           
(11) 

and between OW and OT (OT-OW
i) 

i
OW

i
OT

i
OWOT dd

                                                                                          
(12) 

The ideal difference is 0 for all the cases and corresponds to a perfect ranking. 

Figure 2 illustrates both worst and perfect rankings, respectively. 

 
Figure 2. Worst (top) and perfect (bottom) ranking. 



15 
 

VI. Estimate the quality of the order generated by the ranking algorithm R (OR) by 

means of the ranking quality index ( ), which can be defined as the absolute value 

of the mean of OT-OR
i, for the n cases included in the library to be ranked: 

n

n

i
i

OROT

1

                                                                                                   

(13) 

 is in the range [0, 0.5], being = 0 if a ranking is perfect and  = 0.5 for the 

worst ranking. The closer  is to 0 for a certain ranking, the higher the quality of 

this ranking. In contrast, values of  near 0.5 indicate a low ranking quality. 

Because the value of  associated with the worst ranking is dependent on the size 

of the library to be ranked, this value is not exactly, but is approximately, equal to 

0.5. At the same time, a range [0, 1] rather than [0, 0.5] is a more clear indicator of 

the quality of a ranking. Considering both of the previous questions, a correction 

factor (F) is applied to : 

OWF 2
                                                                                                            

(14) 

where OW is the quality index for the worst ranking. F is used here to obtain a 

more representative indicator of the quality of a ranking and at the same time to 

include  in the range [0, 1], where OW is exactly equal to 1. In this way, we 

obtain the corrected ranking quality index ( *): 

OW

n

i
i

OROT
n

i
i

OROT

n
F

n
211*

                                                           

(15) 

Finally, it is possible to express * as the percentage of ranking quality (R%). 

100)1( *
%R                                                                                                (16) 

Finally, the Figure 3 summarizes schematically the above detailed MOOP-DESIRE 

methodology as a computer-aided tool for multi-criteria drug discovery. 
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Figure 3.MOOP-DESIRE-based rational drug discovery and development. 
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2.1.1 Data Sets and QSAR Modeling Details 

The respective data sets used in this work as well as the general aspects of QSAR 

modeling are depicted below. Details can be accessed from the respective author´s 

original articles (14, 16, 18, 22) which have been attached under the heading 

�“ANNEXES�” of the present report. 

 
Data Sets 
Design of Novel NSAIDs quinazolinones with Simultaneously Improved Analgesic, 

Antiinflammatory, and Ulcerogenic Profiles. A library of fifteen 3-(3-methylphenyl)-2-

substituted amino-3H-quinazolin-4-one compounds published by Alagarsamy et al. 

(81) was used as starting point for the design of novel NSAIDS quinazolinones with 

simultaneously improved analgesic, antiinflammatory, and ulcerogenic profiles. See 

Annex I (16)for details. 

Filtering Safe and Potent Antibacterial Candidates from a heterogeneous library of 

Antibacterial Fluoroquinolones. The multi-objective strategy for the filtering of safe 

and potent antibacterial candidates was based on a library of 117 fluoroquinolones 

published by Suto et al. reporting the cytotoxicity on Chinese hamster V79 cells 

expressed as the IC50and the geometric mean of the minimal inhibitor concentration 

(MIC) for five Gram-negative bacteria (82). See Annex II (18)for details. 

Prioritizing Hits with Appropriate Trade-Offs Between HIV-1 Reverse Transcriptase 

Inhibitory Efficacy and MT4 Blood Cells Toxicity. The prediction models for inhibitory 

efficacy over the HIV-1 RT and toxicity over MT4 blood cells, as well as the 

desirability-based MOOP and ranking process were performed using a library of non 

nucleoside reverse transcriptase inhibitors (NNRTIs) collected from previous literature 

reports(83-86).See Annex III (22) for details. 

Extracting Useful Information on the Desired Trade-Offs Between Binding and 

Relative Efficacy of N6-Substituted-4´-Thioadenosines A3 Adenosine Receptor 

Agonists. The multiple linear regression (MLR) PMs developed were based on the 

binding affinities (KiA3) and relative maximal efficacy (REA3) in the activation of the 

A3AR reported by Jeong et al. (87) for a library of thirty two N6-substituted-4´-

thioadenosines A3AR agonists. See Annex IV (14) for details. 

 
Molecular Structure Representation and Geometry Optimization 

The structures of all compounds were first drawn with the aid of ChemDraw Ultra 9.0 

software package (88), and reasonable starting geometries obtained by resorting to 

the MM2 molecular mechanics force field (89, 90). Molecular structures were then 
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fully optimized with the PM3 semi-empirical Hamiltonian (88), implemented in the 

MOPAC 6.0 program (91). Here, it should be remarked that the final molecular 

structures selected as prototype of the ¨bioactive¨ conformation pertain only to the 

compounds�’ global minimum energy conformations. We perfectly understand the 

limits of our selection criteria, but we can consider this a reasonable compromise to 

standardize the conformational selection. 

 

Molecular Descriptors Calculation and Data Dimension Reduction 

The 1664 MDs included in 20 different families implemented on software DRAGON 

5.4 (92) were computed for each molecular structure previously optimized. The 

graphical user interface of DRAGON software is represented in Figure 4 allowing the 

inspection of the 20 families of MDs implemented. As a general rule, MDs having 

constant or near constant values as well as highly pair-correlated (|R| > 0.95) were 

automatically excluded in order to reduce the data dimension as well as noisy 

information that could lead to chance correlations. 

 
Figure 4. Graphical user interface of DRAGON software. 
 

Selection of Relevant Molecular Descriptors 
The task of selecting the descriptors that will be more suitable to model the activity of 

interest is complicated, as there are no absolute criteria for ruling such selection. 

Herein, an optimization technique  the Genetic Algorithm (GA)  was applied for 
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variable selection (93-96). GA evolves a group of random initial models with fitness 

scores and searches for chromosomes with better fitness functions through natural 

selection and Darwinian evolution (mutation and crossover). The GA search was 

conducted in this work by using the software BuildQSAR (97, 98) as well as the 

MobyDigs 1.1 software package (99).  The GA selection parameters to setup were: 

population size, maximum allowed variables in the model, and reproduction/mutation 

trade-off. The correlation coefficient (R), and the determination coefficient of the 

leave-one-out cross validation (Q2
LOO) are the respective fitness functions employed 

in BuildQSAR (97, 98) and MobyDigs (99) GA variable selection. 

 
Mapping the Molecular Descriptors to Activity 
As to the modeling technique, we opted for a regression-based approach; in this 

case, the regression coefficients and statistical parameters were obtained by multiple 

linear regression analysis by means of the STATISTICA software package (73). For 

each PM, the goodness of fit was assessed by examining the determination 

coefficient (R2), the adjusted determination coefficient (Adj.R2), the standard deviation 

(s), Fisher�’s statistics (F), as well as the ratio between the number of compounds (N) 

and the number of adjustable parameters (p´) in the model, known as the  statistics. 

 

Validation 
The stability and predictive ability of the models was approached by means of both 

internal cross-validation and external validation methods. The leave-one-out (LOO) 

(71)  and bootstrapping (100) techniques were the internal cross-validation methods 

employed. Basically, LOO consists of forming N subsets from the entire dataset, each 

missing one point, which in turn is used to validate a new model that is trained with 

the corresponding subset. The bootstrap validation procedure implemented on the 

software MobyDigs (99) was determined by 8000 re-substitutions. Additionally, a Y-

scrambling procedure (101) (based on 500 random permutations of the Y-response 

vector) implemented on MobyDigs (99) was also applied to check whether the 

correlations established by the respective PMs were due to chance correlations or 

not. For details on the specific validation procedures applied to each particular work 

see the respective author´s papers (ANNEXES I-IV) (14, 16, 18, 22). 

 

Parametrical Assumptions and Applicability Domain 
We have also checked the validity of the pre-adopted parametric assumptions, 

another important aspect in the application of linear multivariate statistical-based 
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approaches (102). These include the linearity of the modeled property, 

homoscedasticity (or homogeneity of variance) as well as the normal distribution of 

the residuals and non-multicollinearity between the descriptors (103).  

The applicability domain of the final PMs was identified by a leverage plot, that is to 

say, a plot of the standardized residuals .vs. leverages for each training compound 

(70, 71). The leverage (hi) of a compound in the original variable space measures its 

influence on the model, and is calculated as follows: 

),...,1()( 1 Nih T
i

T
ii tTTt                                                              (17) 

where it  is the descriptor vector of that compound and T is the model matrix derived 

from the training set descriptor values. In addition, the warning leverage h* is defined 

as: 

N´/ph* 3                                                                                              (18) 

Leverage values can be calculated for both training compounds and new compounds. 

A leverage higher than the warning leverage h* means that the compound predicted 

response can be extrapolated from the model, and thus, the predicted value must be 

used with great care. On the other hand, a standardized residual value greater than 

three indicates that the value of the dependent variable for the compound is 

significantly separated from the remainder training data, and hence, such predictions 

must be considered with much caution too. In this work, only predicted data for new 

compounds belonging to the applicability domain of the training set were considered 

reliable. 

 
Desirability Function Specifications 
The optimization of the overall desirability was carried on by the Use general function 

optimization option (56) of the general regression module of STATISTICA (73). 

Furthermore, the spline method (104, 105) was used for fitting the desirability function 

and surface/contours maps, and the current level of each independent variable was 

set equal to its optimum value. As to the s and t parameters, these were fixed at 1.00 

by assuming that the desirability functions increase linearly towards Ti on the three 

responses. For details on the desirability function specifications for each particular 

work see the respective author´s papers (ANNEXES I-IV). 
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2.2 DESIRABILITY-BASED MULTI-CRITERIA DRUG DESIGN 

The evaluation of the capabilities of MOOP-DESIRE methodology to theoretically 

design new drug candidates with several biological properties simultaneously 

optimized was the main goal of this section. That is, not only to be able to translate 

the chemical structure into numbers to find out which are significantly related with a 

specific property, but in addition, to go back from these numbers to structure, or at 

least to some clues suggesting the structural modifications required to improve that 

property, or even better, more than one property at once. In doing so, we used as 

starting point a library of fifteen 3-(3-methylphenyl)-2-substituted amino-3H-

quinazolin-4-one compounds reporting their respective analgesic (An) and anti-

inflammatory (Aa) activities among the ulcerogenic index (U) (81). 

 

2.2.1 Design of Novel NSAIDs quinazolinones with Simultaneously Improved 
Analgesic, Antiinflammatory, and Ulcerogenic Profiles 

Following the strategy outlined previously, we began by seeking the best linear 

models relating each property to the atom centred fragments (ACF) molecular 

descriptors (106). One MLR-based PM containing two ACF variables previously 

selected by genetic algorithms was developed for each property (see Table 2). 

Table 2. Regression coefficients and statistical parameters for the MLR models. 
Analgesic Activity (An) Model

037)534.1(929.6001)957.0(333.8)155.2(762.51 CCAn  
N R R2 R2 Adj. Q2 SPRESS  F P 
15 0.967 0.935 0.923 0.905 3.143 5.000 85.15699 0.000000 
Anti-Inflammatory Activity (Aa) Model

046)430.0(475.1001)232.1(527.5)789.1(708.36 HCAa  
N R R2 R2 Adj. Q2 SPRESS  F P 
15 0.942 0.887 0.869 0.827 3.526 5.000 47.46719 0.000002 
Ulcerogenic Index (U) Model

037)032.0(137.0001)020.0(056.0)044.0(718.0 CCU  
N R R2 R2 Adj. Q2 s  F P 
15 0.896 0.803 0.771 0.713 0.065 5.000 24.56766 0.000057 

As can be noticed, the models are good in both statistical significance and predictive 

ability. Good overall quality of the models is revealed by the large F and small p 

values, satisfactory  values (  = 5), along with R2 and Adj.R2 (goodness of fit) values 

ranging from 0.803 to 0.935 and 0.771 to 0.923, respectively; as well asQ2 

(predictivity) values between 0.713 and 0.905. In addition, the overall desirability 

function exhibits good statistical quality as indicated by the R2
D and Adj. R2

D values 

(~1). Moreover, the high Q2
D value (0.905) provides an adequate level of reliability on 

the method in predicting the overall desirability D. 
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By using these models as evaluation functions we may now thus proceed with an 

adequate level of confidence to the simultaneous optimization of the analgesic, anti-

inflammatory and ulcerogenic properties for the set of compounds. 

We intend to find a candidate with analgesic and anti-inflammatory activities as high 

as possible while keeping their ulcerogenic ability as low as possible. So, previous to 

the simplex optimization of the overall desirability D, the desirability function 

specifications were applied to each property accordingly (see Table 3). Here it is 

important to remark that, since D is maximized directly over the independent variables 

domain, and at the same time, the predicted D values depend on the initial set of 

PMs, one should consider the applicability domain of each PM to determine the 

optimum level of each independent variable as well as for the selection of the optimal 

solution(s). 

Table 3. Desirability functions specifications. 
Response OPT DES Li Ui Ti 

An(%) Max. eq. 3 25 100 100 

Aa(%) Max. eq. 3 25 100 100 

U Min. eq. 4 0 1.73[a] 0 
OPT: Type of optimization task; DES: Desirability function applied; Li: Lower bound; Ui: Upper bound; Ti: 
Target; [a] Ulcerogenic Index of aspirin used as ulcerogenic reference drug.

Finally, the optimization of the overall desirability was carried out to obtain the levels 

of the ACF descriptors that simultaneously produce the most desirable combination of 

all properties. Figure 5 shows the multiple response overall desirability, as well as the 

individual desirability functions determined by the respective pairs of predictor 

variables included on the three MLR models. 

By inspecting the form of each individual desirability function, it is possible to know 

the influence of a certain variable over each individual objective. In so doing, one can 

conclude that C-001 has a significant influence over the three properties, while H-046 

has only a remarkable influence on the Aa activity. Here, one should note that the 

form of the An individual desirability function is similar to that obtained for the Aa 

activity (for these non competing objectives, both curves show a positive slope). 

However, opposite individual desirability function forms were obtained for competing 

objectives like Aa and U (i.e. the curve related to the ulcerogenic index has a 

negative slope). 

Moreover, the data reveal that a 3-(3-methylphenyl)-2-substituted amino-3H-

quinazolin-4-one optimized candidate must have analgesic and anti-inflammatory 

activities of 93.43% and 82.04%, respectively, plus an ulcerogenic index of 0.44. This 

represents an overall desirability of 0.8; that can be attained if the candidate has C-

001, C-037 and H-046 values equal to 5, 0 and 12, respectively, being C-001 the 
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most influencing variable. The significant slope of the C-001 curve suggests that 

more attractive candidates could be designed if its values are greater than 5. 

However, due to the high influence of C-001 over the overall desirability, the optimal 

range for this variable should be close to 5. But one must also consider the 

applicability domain of the original PMs. In fact, the training set show C-001 values up 

to 3 and thus, if the new candidate has a C-001 value extremely far from 3, it might 

be out of the applicability domain of the original PMs. On the other hand, as the 

shape of the H-046 desirability function reveals no significant influence (slope near 

zero), the overall desirability could be increased by large departures from its optimum 

value (= 12). But again the applicability domain of the original PMs should be taken 

into account. 

 
Figure 5. Multiple response desirability function due to the analgesic activity, anti-
inflammatory activity and ulcerogenic index D(An-Aa-U) (last row), along with the individual 
desirability functions coming from the pairs of predictor variables included on the three MLR 
models(first three rows). 

According to the previous results, the most important variable was found to be 

descriptor C-001 and the second one descriptor C-037. These two ACF descriptors 

represent, respectively, the number of methyl groups and heteroatoms attached to a 

sp2 carbon atom linked to the aromatic side ring in the drug candidates. On the other 

hand, the less influencing ACF descriptor, H-046, represents the number of hydrogen 
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atoms attached to a sp3 carbon no heteroatom attached to another carbon. For a 

better understanding, this set of ACF molecular descriptors is depicted in Figure 6 for 

one on the training compounds (AS14). 

 
Figure 6.Atom-Centered Fragments (ACF) descriptors for compound AS14. 

This information allows one guessing the main chemical modifications needed to 

improve the overall desirability of the present compounds. Considering the 

positive/negative influence of C-001/C-037 a different number .vs. type of alkyl 

groups on the C-2 position of the quinazoline ring should be introduced. In fact, the 

introduction of branched alkyl substituents might lead to a positive role due to the 

bulkiness of the substituents. 

So, a new set of nine compounds was designed in which several different alkyl 

substituents were linked to the C-2 position of the quinazoline ring. The chemical 

modifications and the predicted values of the expected pharmaceutical properties are 

shown in Table 4. The leverage values obtained for each new designed candidate 

were also considered to check whether or not each new candidate falls within the 

applicability domain of the original PMs. 
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Table 4. Computed ACF descriptors (C-001, C-037 and H-046), predicted and leverage 
values for the analgesic (An) and anti-inflammatory (Aa) activities, plus the ulcerogenic index 
(U) of the nine new designed compounds. 

3-(3-methylphenyl)-2-substituted amino-3H-quinazoline-4-one 

N

N

NH
N R

O

Compound R C-
001 

C-
037 

H-
046 

Anpred
(%) 

Aapred
(%) 

Upred 
(%) h(An) h(Aa) h(U) 

ASNEW1 
 

3 0 11 77 70 0.55 0.216 0.361 0.216

ASNEW2 

 

3 0 13 77 72 0.55 0.216 0.496 0.216

ASNEW3 
 

4 0 12 85 77 0.49 0.403 0.453 0.403

ASNEW4* 

 

5 0 15 93 86 0.44 0.573 0.614 0.573

ASNEW5* 

 

6 0 18 102 96 0.38 0.695 0.724 0.695

ASNEW6* 

 

7 0 21 110 106 0.33 0.777 0.796 0.777

ASNEW7 
 

4 0 9 85 72 0.49 0.403 0.401 0.403

ASNEW8 5 0 12 93 82 0.44 0.573 0.562 0.573

ASNEW9* 
 

5 0 15 93 86 0.44 0.573 0.614 0.573

* Compounds out of the predictions model�’s applicability domain; leverage values greater than h* are 
marked in bold. 

After an overall data analysis, compound ASNEW8 can be claimed to be the most 

desirable and reliable candidate designed in this study, displaying predicted 

percentages of analgesic and anti-inflammatory activities of 93 and 82, respectively, 

plus a predicted ulcerogenic index of 0.44. Further, an excellent predicted overall 

desirability (0.8) is obtained.  

A noticeable profile improvement can be observed between the predicted properties 

displayed by compound ASNEW8 and the most promising compound reported by 

Alagarsamyet al. (AS3) (81). Explicitly, ASNEW8 displays analgesic and anti-
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inflammatory activities 15% and 13% higher, respectively. At the same time, 

ASNEW8 shows only the 78.6% of the ulcerogenic ability of AS3. On the other hand, 

if we compare the performance of ASNEW8 with diclofenac (a known NSAIDs used 

as reference compound (81)), one can easily notice its enhanced predicted 

pharmaceutical properties. In effect, ASNEW8 displays analgesic and anti-

inflammatory activities 31% and 22% higher than diclofenac, respectively. In addition, 

the ulcerogenic index is extensively reduced (ASNEW8 has almost a quarter (3.75 

times lower) of the ulcerogenic ability of diclofenac). 

In summary, a remarkable simultaneously improvement on the analgesic and anti-

inflammatory activities plus ulcerogenic profile of the new designed candidates was 

obtained throughout MOOP-DESIRE-based methods. The data suggest a positive 

role of the bulkiness of the alkyl substituents on the C-2 position of the quinazoline 

ring on the ulcerogenic properties. Anyhow, in the future, an experimental study of the 

analgesic, anti-inflammatory and ulcerogenic properties of the designed candidates 

should be carried out to validate the process. 

Though the limited size and homogeneity of our data set, this work offers the 

possibility of a deeper and case by case analysis of the results obtained by using the 

MOOP-DESIRE methodology. The use of small and homogeneous data set is more 

suitable for later stages of the drug development process once identified a lead rather 

than for early stages. Actually, specific structural modifications can be made over the 

lead according to the results of the optimization process. For this, the use of clearly 

defined structural or physicochemical descriptors can led to interpretable structure-

desirability relationships which can be used to design new candidates with an 

improved pharmaceutical profile. 

 

2.3 DESIRABILITY-BASED MULTI-CRITERIA LIBRARY RANKING 

The MOOP-DESIRE methodology can also be applied to handle larger and/or more 

diverse data sets, such as those frequently obtained in High-Throughput Screening 

processes, being there more appropriate for early stages of the drug development 

process. That is, molecules coming from large and heterogeneous data sets can be 

ranked and filtered according to a certain criterion rather than applying the results of 

the optimization process to design new candidates. To accomplish that, one can 

resort to the overall desirability of each molecule as a ranking criterion or to several 

distance measures between the optimal values of the descriptors determined by 

MOOP-DESIRE and the computed values of the descriptors. In this case, it is 

advisable to use descriptors leading to highly predictive structure-desirability 
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relationships rather than interpretable descriptors in order to ensure the accuracy of 

the predictions and therefore, an accurate assessment of the molecule�’s overall 

desirability. So, in order to test the utility of the MOOP-DESIRE methodology as a 

multi-criteria library ranking algorithm it was applied to a library of 95 fluoroquinolones 

reported by Suto et al. (82). It was done with the aim of optimize simultaneously their 

antibacterial activity over gram-negative microorganisms (MIC) and their cytotoxic 

effects over mammalian cells (IC50) and use these results as a pattern for a multi-

criteria ranking algorithm. 

 
2.3.1 Filtering Safe and Potent Antibacterial Candidates from a Heterogeneous 
Library of Antibacterial Fluoroquinolones 

The desirability-based multi-objective optimization process was conducted in a similar 

manner to previous work. The best linear models relating each property to the 

DRAGON molecular descriptors are shown in Table 5 together with the statistical 

regression parameters. As can be noticed, the models are good in both statistical 

significance and predictive ability. In addition, the overall desirability function exhibits 

good statistical quality as indicated by the R2
D and Adj. R2

D values (~0.7). Moreover, a 

Q2
D value of 0.63 provides an adequate level of reliability on the method in predicting 

D. So these models can be considered suitable as evaluation functions of the further 

simplex optimization process of the overall desirability D. 

Table 5. Regression coefficients and statistical parameters for the MLR models. 
Antibacterial Activity MLR Model (MIC = 1/1+MIC)

eRDFeHATS
vMorDrDmHATS
FFGmMoreRDF

BELpMHMIC

050)003.0(011.03)423.0(449.1
14)064.0(234.006/)000.0(002.03)097.1(670.5

)..()001.0(006.005)024.0(130.0020)012.0(071.0
1)969.1(13.5044)0.170(1.573)3.925(27.1271/1

 

N R R2 R2 Adj. S Q2 SPRESS  F p 
95 0.883 0.779 0.753 0.096 0.725 0.107 8.636 29.601 0.0000 
Cytotoxicity MLR Model (IC50 = 1/1+IC50)

6)397.0(152.14)086.0(329.0
3)045.0(183.06)039.0(162.024)019.0(114.0

)..()000.0(002.0)156.0(239.14)018.0(147.0
5)012.0(135.05)053.0(611.0)146.0(0.9661/1 50

JGIeR
eMATSvHvMor

FFGFDImH
pGATSpRIC

 

N R R2 R2 Adj. S Q2 s  F p 
95 0.867 0.750 0.721 0.014 0.686 0.016 8.636 25.313 0.0002 

Once the models has been set up and previous the optimization process of D, the 

desirability functions for each property (di�’s) might be specified. In order to obtain 

candidate(s) with high antibacterial potency (MIC = 1/1+MIC) and low cytotoxicity 

(IC50 = 1/1+IC50), 1/1+MIC should be maximized (eq. 3) and 1/1+IC50 minimized (eq. 
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4). In addition, the individual di values for the antibacterial and cytotoxicity properties 

were determined by setting the Li, Ui and Ti values as referred in Table 6. 

Table 6.Desirability functions specifications. 

Respons
e 

Transforme
d 

Response 
OPT DES (Response / Transformed Response) 

Li Ui Ti 
MIC 

(µg/mL) 1/(1+MIC) Max
. 

eq. 
3 25 µg/mL / 0.038 0.01 µg/mL / 

0.99 0.01 µg/mL / 0.99 

IC50 
(µg/mL) 1/(1+IC50) Min. eq. 

4 
380 µg/mL / 

0.002 8 µg/mL / 0.1 380 µg/mL / 
0.002 

OPT: Type of optimization task; DES: Desirability function applied; Li: Lower bound; Ui: Upper bound; Ti: 
Target. 

Finally, the optimization of the overall desirability was carried out to obtain the levels 

of the descriptors included in the PMs that simultaneously produce the most desirable 

combination of the properties. The results of the desirability-based MOOP process 

are detailed in Table 7. Here are shown the levels of the predictive variables required 

to reach a highly desirable (DMIC-IC50 = 1) fluoroquinolone-like candidate with the best 

possible compromise between antibacterial and cytotoxicity properties. 

Table 7.Results of the desirability-based MOOP process. 
Predictors Optimum Level 

JGI6 = 0.058539124 R4e+ = 0.215402953 RDF020e = 6.533512527 
MATS3e = 0.097921819 R5p = 0.560622 RDF050e = 21.75996 
GATS5p = 2.71639566 G(F..F) = -5.395274574 Mor05m = -6.618889553 
FDI = 0.996478400 H4m = 0.836178947 Mor14v = -0.049636561 
Mor24v = 0.095266 D/Dr06 = 202.3135 HATS3m = 0.049289 
H6v = 0.266748712 BELp1 = 2.022804936 HATS3e = 0.242572857 

Once found, the levels of the predictive variables required to reach a highly desirable 

fluoroquinolone-like candidate are used as a pattern to rank the library of 

flouroquinolones. Through a nonlinear curve-fitting process implemented in MATLAB 

is found the optimal set of weighs wi required to minimize the differences between 

descriptions ( i) and solutions (Di) in the library of compounds to rank. 

Table 8. Optimal set of weighs. 
Variable wi Relative Importance (%) Variable wi Relative Importance (%) 
JGI6 23.323 17.561 H4m 1.573 6.019 
MATS3e -1.259 4.517 D/Dr06 -0.001 5.184 
GATS5p 1.190 5.817 BELp1 11.365 11.215 
FDI -9.772 0.000 RDF020e 0.026 5.199 
Mor24v 3.710 7.153 RDF050e -0.019 5.175 
H6v 4.903 7.787 Mor05m 0.013 5.192 
R4e+ -1.053 4.626 Mor14v 0.560 5.482 
R5p -6.980 1.481 HATS3m -9.248 0.278 
G(F..F) 0.052 5.213 HATS3e -5.811 2.101 

Next, iis used as a ranking criterion in order to obtain an ordered list of the 

flouroquinolones. The list start with the compound most similar to the optimal 
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fluoroquinolone-like candidate previously determined by the process of simultaneous 

optimization of antibacterial and cytotoxicity properties. The computed values of Di, i 

and the normalized values of i (D
i) of the library of compounds used for ranking are 

detailed in Table 9. 

Table 9. i, D i and Di values of the library of compounds used for ranking. 
Compound 

ID i D
i 

Pred.
D(MIC-IC50) 

Compound
ID i D

i 
Pred.

D(MIC-IC50) 
004-4-Ciprofloxacin 0.305 0.993 0.956 064-30E 1.221 0.766 0.793 
006-6-Tosufloxacin 0.330 0.987 0.968 065-30F 0.718 0.891 0.885 
010-10 2.764 0.382 0.452 066-31A 0.359 0.980 0.882 
014-15 0.801 0.870 0.751 067-31B 1.241 0.761 0.717 
015-16 0.927 0.839 0.788 068-31C 0.871 0.853 0.733 
016-17 1.416 0.717 0.776 070-31E 0.947 0.834 0.769 
018-19 0.463 0.954 0.943 071-31F 0.765 0.879 0.780 
019-20 0.510 0.943 0.959 073-32B 1.130 0.788 0.796 
020-21 1.274 0.753 0.793 074-32C 1.123 0.790 0.709 
021-22 0.919 0.841 0.901 075-32D 0.970 0.828 0.826 
022-23A 0.528 0.938 0.806 077-32F 0.708 0.893 0.848 
023-23B 1.132 0.788 0.777 078-33B 1.205 0.770 0.820 
024-23C 0.411 0.967 0.904 079-34B 2.903 0.348 0.699 
025-23D 1.040 0.811 0.761 080-35B 0.988 0.824 0.894 
027-23F 0.680 0.900 0.856 081-36B 1.729 0.640 0.715 
028-24A 0.730 0.888 0.930 082-37B 1.703 0.646 0.695 
029-24C 0.576 0.926 0.879 083-38A 1.046 0.809 0.857 
030-24D 0.829 0.863 0.882 084-38B 1.589 0.674 0.803 
031-24E 1.060 0.806 0.823 085-39A 2.044 0.561 0.596 
032-24F 0.701 0.895 0.896 086-39B 4.303 0.000 0.358 
033-25A 1.004 0.820 0.790 088-41A 1.117 0.792 0.763 
034-25B 1.713 0.644 0.508 090-42A 1.214 0.768 0.729 
037-25E 1.425 0.715 0.699 092-48 0.745 0.884 0.770 
038-25F 0.859 0.856 0.713 093-49 0.486 0.949 0.920 
040-26D 1.658 0.657 0.737 094-50 1.120 0.791 0.771 
041-26E 1.904 0.596 0.756 095-51 0.672 0.902 0.929 
042-26F 0.631 0.912 0.811 096-52 1.279 0.751 0.664 
043-27A 1.723 0.641 0.707 098-54 0.444 0.959 0.957 
044-27B 2.595 0.424 0.000 100-56 0.746 0.884 0.895 
046-27D 1.405 0.720 0.647 102-58 1.183 0.775 0.738 
047-27E 1.572 0.679 0.667 103-59 0.656 0.906 0.838 
048-27F 1.359 0.731 0.685 104-60 0.680 0.900 0.890 
049-28A 1.912 0.594 0.753 105-61 0.825 0.864 0.641 
052-28D 1.509 0.694 0.707 106-62 2.219 0.518 0.446 
054-28F 1.784 0.626 0.789 107-63 1.159 0.781 0.840 
055-29B 1.132 0.788 0.835 110-70 1.630 0.664 0.637 
056-29C 1.012 0.818 0.791 111-71 1.050 0.808 0.712 
057-29D 1.061 0.806 0.822 112-72 1.142 0.785 0.753 
058-29E 0.279 1.000 0.811 113-73 1.205 0.770 0.655 
059-29F 0.711 0.893 0.905 114-74 1.631 0.664 0.754 
061-30B 1.191 0.773 0.872 115-75 1.495 0.698 0.675 
062-30C 1.278 0.752 0.800 118-78 0.739 0.886 0.775 
063-30D 0.945 0.834 0.860     
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Based on i is possible to reach a ranking of the flouroquinolones library with a 

corrected ranking quality index ( *) of 0.313 representing a percentage of ranking 

quality (R%) of 68.7. This ranking compared with the perfect ranking is shown in 

Figure 7. 

 
Figure 7. i-based ranking of the fluoroquinolone library. 

As can be noted, the quality of the ranking attained (R% = 68.7) is similar to the 

predictability values exhibited in the PMs as well as in the MOOP process (Q2(MIC) = 

0.693, Q2(IC50) = 0.686, Q2
D(MIC-IC50) = 0.629). This fact indicates that the quality of 

both process (desirability-based MOOP and ranking) are strongly dependent of the 

quality of the initial set of PMs. In addition, the similarity exhibited between these 

values suggests that the ranking algorithm reflects the quality of the PMs and the 

MOOP process in which it is based. 

 
Figure 8. Ranking attained for the 10% of the library of compounds. 
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On the other hand, the main goal of ranking a library of compounds according to a 

pharmaceutically optimal candidate is to filter the fragment containing the most 

promising candidates (the closest and consequently more similar to the optimal 

candidate) to propose these ones for synthesis and biological assessment. Thus, if 

the best 10% (the best 9 candidates) of the library of flouroquinolones is proposed to 

be included on the drug development process the probability of finding a promising 

candidate is increased. This fraction exhibit a percentage of quality ranking of 82.74 

( * = 0.173). The ranking of this fragment is shown in Figure 8. 
 

2.4 DESIRABILITY-BASED MULTI-CRITERIA VIRTUAL SCREENING 

Filtering the most promising candidates having the best compromise between several 

properties comprising the final pharmaceutical profile confers to the process of 

discovery and development of new drugs an elevated degree of rationality which is 

difficult to reach via traditional QSARs which optimize sequentially each property. The 

sequential optimization of the properties comprising the final pharmaceutical profile of 

a drug candidate implies to overlook at some stage properties equally decisive to 

reach a successful drug or, at least, to find only by chance a candidate with 

acceptable profiles of all properties simultaneously. That is, a potent candidate once 

identified via QSAR has a high probability of being discarded later as a drug because 

of an unacceptable toxicological profile with the useless expenses of time and 

resources in synthesis and pharmacological assays (107). Equally difficult is the 

choice of using a panel of models (i.e.: a parallel screening based on QSAR models 

to respectively map the therapeutic efficacy and toxicity) since it is not very probable 

to find a candidate with all the properties simultaneously optimized and if this 

happens the results are more by chance than fruit of a rational drug development 

strategy. 

In this regard, we describe in this section the application of the MOOP-DESSIRE 

methodology for simultaneously probe the inhibitory efficacy towards HIV-1 RT, 

and the toxic effects towards MT4 blood cells, of a diverse set of HIV-1 NNRTIs 

reported in the literature (83-86). This methodology is proposed as a rational 

strategy of multi-criteria virtual screening to prioritize HIV-1 NNRTIs hits with 

acceptable trade-offs between the above mentioned properties. Finally, a 

retrospective analysis of the training set, based on well-known enrichment 

measures (108-110), will be done allowing to compare the performance of 

several approaches (sequential, parallel and multi-objective) as VS strategies. 

The performance of this multi-criteria VS strategy to retrieve pharmaceutically 
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acceptable NNRTI candidates from a pool of NNRTI decoys is also tested. Since 

the capabilities of the methodology for multi-objective optimization and ranking has 

been well documented in the two previous sections, this section will be focused on 

the evaluation of the VS potential. The details regarding prediction models setup, 

multi-objective optimization and ranking can be assessed in the original 

publication(22) (ANNEX III). 

 

2.4.1 Prioritizing Hits with Appropriate Trade-Offs Between HIV-1 Reverse 
Transcriptase Inhibitory Efficacy and MT4 Blood Cells Toxicity 

The main goal in a VS effort is to select a subset from a large pool of compounds 

(typically a compound database or a virtual library) and try to maximize the number of 

known actives in this subset. That is, to select the most �“enriched�” subset as possible. 

Several enrichment metrics have been proposed in the literature to measure the 

enrichment ability of a VS protocol (108, 109). In this work, we use some of the most 

extended. 

Based on the analysis of the receiver operating characteristic (ROC) curve (109) it is 

possible to derive the area under the ROC curve (ROC Metric) (108), as well as the 

ratio of true positive (TP) cases and false positive (FP) cases found at the operating 

point of the ROC curve (TP/FPROC-OP) (111). 

From the accumulation curve we can deduce enrichment from the area under the 

curve (AUAC) (108), from the yield of actives (Ya) at certain filtered fractions 

(i.e.10%), as well as from the fraction of the database that has to be screened in 

order to retrieve a certain percentage (100%) of the TP cases (screening percentage, 

100%). 

On the other hand, the enrichment factor (EF) takes into account the improvement of 

the hit rate by a VS protocol compared to a random selection. 

N
N
n

TP
EF                                                                                       (19) 

where TP is the number of true positive cases retrieved, n the number of selected 

cases, N and N+ are the total number of cases, and the number of positive cases in 

the library, respectively (108). 

In a first experiment we are searching for the VS approach able to maximize the 

number of NNRTI candidates with a pharmaceutical profile equal or superior to 50% 

(DIC50-CC50  0.5) in a predefined fraction ( ) of the library (  = 0.1 = top 10%; first 12 

compounds). That is, to include in the top 10% fraction of the ordered library as much 
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candidates as possible exhibiting a favorable compromise between HIV-1 RT 

inhibitory efficacy and MT4 blood cells toxicity. The experiment is applied to the full 

set of 122 NNRTIs (83/21/18 from training/validation/test set) containing 41 

compounds with a pharmaceutical profile equal or superior to 50%. 

The sequential VS is conducted in this work by ranking independently the library of 

compounds according to the two objectives considered, HIV-1 RT inhibitory efficacy 

(IC50) and MT4 blood cells toxicity (CC50). The predicted values of IC50 and CC50 

derived from the initial QSAR PMs were the ranking criteria employed. After ranking, 

a fraction of the library is first filtered according to a predefined threshold value of 

inhibitory efficacy (inhibitory efficacy profile  50%; dIC50  0.5; logIC50  0.196; IC50  

0.64 µM). Next, those candidates not fulfilling a predefined threshold value of safety 

(safety profile  50%; dCC50  0.5; logCC50  1.794; CC50  62.23 µM) are eliminated 

in order to keep those with adequate inhibitory efficacy and safety profiles. In this 

approach; as well as in the multi-objective one, the true positive fraction ( +) can be 

equal or smaller than the filtered fraction  (i.e., 0  +  ). 

The parallel VS, as the name implies, is based on running in parallel the independent 

analysis of the two objectives involved on the pharmaceutical profile of the candidate 

(IC50 and CC50). The conditions in this case are identical to those defined for the 

sequential approach, but applied in a parallel fashion. In this case, those candidates 

included in each top 10% filtered fraction, and fulfilling the predefined threshold value 

for both criteria, are selected. In this case, if the retrieved compounds in both filtered 

fractions are the same, the retrieved fraction =  = 0.1 = 12 compounds, otherwise the 

retrieved fraction  2 . Consequently, 0  +  2 , depending of the efficacy and 

safety profiles of the candidates filtered in each top 10% filtered fraction. 

The multi-objective VS approach proposed in this work considers the pharmaceutical 

profile of the candidate, rather than separately consider each property related with it. 

As detailed previously, the overall desirability of the candidate is the criterion 

employed here to measure their pharmaceutical profile. The library of NNRTIs is 

ranked according to a structural similarity criterion ( i), top ranking those candidates 

structurally closer to the previously determined optimal candidate. Like in the 

sequential and parallel VS approaches, the top 10% of the ordered library is filtered, 

searching for those candidates with DIC50-CC50 values  0.5. 
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Figure 9.Graphical representation of the results for (A) a sequential screening [based on the 
inhibitory efficacy (Pred. logIC50) and safety (Pred. logCC50) profiles], and (B) a multi-
objective screening [based on the pharmaceutical profile (Pred.DIC50 CC50)], of the full set of 
122 NNRTI compounds. 

The suitability of a multi-objective VS approach can be checked if we compare the 

enrichment achieved in the screening of NNRTI candidates with a favorable 

pharmaceutical profile from the full set of 122 NNRTI compounds, sequentially 

considering the inhibitory efficacy (the predicted values of logIC50) and safety (the 

predicted values of logCC50) profiles in opposition to use the pharmaceutical profile 

information (Pred.DIC50-CC50). 
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So, if the screening is conducted in a sequential manner, starting with the selection of 

candidates fulfilling a previously established threshold for the inhibitory efficacy 

(Pred. logIC50  0.196; Pred.IC50  0.64 µM; Pred.dIC50  0.5) and further eliminating 

those candidates with an unfavorable safety profile (Pred. logCC50  -1.794; 

Pred.CC50  62.23 µM; Pred.dCC50  0.5), the area of selected candidates is reduced. 

As a consequence, 41% of the candidates (17 out of 41) with favorable 

pharmaceutical profiles (DIC50-CC50  0.5) are mistakenly discarded (see Figure 9A). 

However, by considering the compromise between inhibitory efficacy and safety of 

the candidates through a multi-objective virtual screening (Pred.DIC50-CC50  0.5) is 

possible to retrieve up to 88% of the candidates with acceptable pharmaceutical 

profiles included on the library (see Figure 9B). 

This reveals the importance of considering multiple properties simultaneously since 

the sequential application of property filters could have led to the elimination of the 

candidate, despite it having a good balance between most of the properties (112). 

The importance of achieving a balance across a range of criteria is also recognized 

by other groups (113). 

However, that can be settle on in a more detailed way by simulating a VS attempt 

over the same data set through three different VS approaches, and conducting a 

retrospective analysis of the performance of each approach by comparing the 

respective degree of enrichment achieved at the top 10% of the data set. As referred 

to above, the multi-objective VS approach proposed in this work is compared with two 

of the approaches  QSAR-based sequential and parallel VS  currently employed on 

drug discovery. 

The sequential selection guides retrieving 75% of the pharmaceutically acceptable 

compounds included on the top 10% fraction of the data set, which represents an 

EF10% = 2.232. Similar but inferior results were achieved through a parallel screening 

(Ya10% = 0.6; EF10% = 1.785). These results although very good are outperformed 

when the selection of compounds was made based on a multi-objective criterion (the 

structural similarity to an optimal candidate, i). In the latter case, it was possible to 

retrieve 100% included on the same fraction of the data, reaching the maximum 

possible EF value for this fraction (EF10% = 2.976). More significant is the fact that 

compounds, initially selected, were rejected by the sequential or the parallel VS 

approach, even when they actually exhibited a pharmaceutically acceptable profile 

(false negative compounds, FN). Specifically, one out of twelve, and three out of 

twenty compounds were mistakenly discarded through the sequential and the parallel 
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approach, respectively. All these results are detailed in the original publication (22) 

(See Tables 9-11 in ANNEX III). 

Finally, we decided to test the ability of the multi-objective VS strategy proposed to 

prioritize NNRTI candidates with favorable pharmaceutical profiles (DIC50-CC50  0.5) 

disperse in a data set of NNRTI decoys. NNRTI decoys are physically similar but 

chemically distinct from NNRTIs, so that they are unlikely to be binders of the HIV 

reverse transcriptase (RT). Specifically, we used as positive cases the 12 HIV RT 

known ligands with favorable pharmaceutical profiles included on the validation and 

test sets, and 36 decoys (negative cases) for each known ligand (432 decoys) were 

randomly selected from the database of HIV RT decoys included on the directory of 

useful decoys (DUD) (114). 

We only considered those decoys included on the applicability domain of our 

prediction models at a ratio of 36 decoys per ligand, as recommended by Huang et al. 

(114). The final set of 444 compounds is ranked according to their structural similarity 

( i) with the previously determined optimal candidate, and the enrichment ability of 

this strategy is finally tested according to the enrichment metrics previously detailed 

and now depicted in Table 10. 

Table 10. Enrichment metrics for i-based ranking of the data set collected form DUD. 
ENRICHMENT METRICS MOOP Rank 
ROC Curve Information 
ROC Metric 0.798 
TP/FPROC-OP 0.833/0.215 
Accumulation Curve Information 
AUAC 0.828 

100% 0.320 
Ya10% 0.333 
Enrichment Curve Information 
EF10% 3.364 
EFMax 3.592 

The respective values of AUAC and ROC Metric obtained suggest that the method is 

able to rank a NNRTI candidate with a favorable pharmaceutical profile earlier than a 

NNRTI decoy with a probability around 0.8. At the same time, TP/FPROC-OP informs 

that, to obtain the best performance is necessary to filter 23.2 % of the library, in turn 

leading to find 83.3% of the TP cases at a cost of only 21.5 % of FP cases, which 

represents a EFMAX = 3.592. Furthermore, all the positive cases can be found at the 

first 32% of the library. On the other hand, a third of the compounds retrieved, after 

filtering the top 10% of the library, were NNRTI candidates with a favorable 

pharmaceutical profile (Ya10% = 0.33), which represents an EF10% = 3.364, being 

10.09 the maximum possible value of EF for this data fraction. The respective ROC, 

accumulation, and enrichment curves can be checked in Figure 10.  
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Figure 10. ROC, accumulation, and enrichment curves for the i-based ranking of the data 
set collected form DUD. 

So, considering the previous results, one may well expect that larger (real or virtual) 

libraries of molecules (always inside the applicability domain of the PMs), like 

combinatorial libraries, could be correctly ranked; prioritizing in this way those 

candidates (top ranked) with more favorable compromise between inhibitory efficacy 

and safety. 

 

2.5 DESIRABILITY-BASED INTERPRETATION OF MULTI-CRITERIA 
PREDICTION MODELS 

Until now, have been exposed the multi-objective nature of the drug discovery 

process in which the modeling of decision preferences and constraints and the 

visualization and assessment of the trade-offs among objectives is yet a great 

challenge. As the desirability theory is a well-known multi-criteria decision-making 

approach it has decided to apply it, instead for multi-objective optimization, as a tool 

for the interpretation of multi-criteria prediction models. That is, instead of running a 

simultaneous optimization task over multiple properties of interest for drug discovery, 

such properties are directly combined into an overall desirability value (representing 

the compromise between the properties determining their pharmaceutical profile), 

predicted as a linear function of multiple molecular descriptors, and such a 

relationship is profiled in order to extract useful information on the desired trade-offs 

between such properties. 

Specifically, we propose in this section the use of the desirability theory as a tool to 

extract useful information on the desired trade-offs between binding and relative 

efficacy of N6-substituted-4´-thioadenosines A3AR agonists. In doing so, we used the 

binding affinities (KiA3) and relative maximal efficacy (REA3) in the activation of the 

A3AR reported by Jeong et al. (87) for a library of thirty two N6-substituted-4´-

thioadenosines A3AR agonists. 
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2.5.1 Extracting Useful Information on the Desired Trade-Offs Between Binding 
and Relative Efficacy of N6-Substituted-4´-Thioadenosines A3 Adenosine 
Receptor Agonists 

Once desirability scaled both KiA3 and REA3 responses for each compound, the 

corresponding overall desirability (DKiA3-REA3) values were derived. In order to identify 

the factors governing the trade-offs between binding affinity and efficacy of this family 

of A3AR agonists, the combined response DKiA3-REA3 was mapped as a function of four 

simple 1D MDs with a direct structural and/or physiochemical explanation. The 

resulting best-fit model together with the statistical regression parameters is given in 

Table 11. 

Table 11. Regression coefficients and statistical parameters for the overall desirability MLR 
model (DKiA3-REA3). 

nCsARR
nCIRALOGP2

)027.0(092.0)595.0(783.2
)033.0(203.0)013.0(107.0)292.0(557.133 REAKiAD

 

N R2 F p s Q2
LOO sLOO Q2

Boost sBoost a(R2) a(Q2) 
32 0.781 24.13 < 0.01 0.127 0.566 0.138 0.539 0.179 0.0063 -0.0039 

Based on the satisfactory accuracy, statistical significance, predictive ability and 

fulfilment of the pre-adopted MLR parametrical assumptions of the overall desirability 

PM (DKiA3-REA3 model) we can proceed, with an adequate level of confidence to the 

simultaneous analysis of the factors governing the balance between the binding 

affinity and relative efficacy profiles of A3AR agonists. 

Although the main variation of the subset of compounds employed is over the N6 

position of the adenine ring, the MDs employed in mapping DKiA3-REA3 are global and 

not fragment based. So, any inference made have to be only based on the influence 

of N6 substituents over the global molecular system. 

First, the information encoded in the MDs included on the model was analyzed. 

According to the model regression parameters, the most influencing MD is the 

aromatic ratio (ARR), followed by the Ghose-Crippen octanol water partition 

coefficient (ALOGP2), the number of circuits (nCIR) and the number of total 

secondary sp3 carbon atoms (nCs). All MDs were inversely related with the overall 

desirability DKiA3-REA3 of N6-substituted-4´-thioadenosine A3AR agonists, except nCIR. 

Specifically, ARR is the fraction of aromatic atoms in the hydrogen suppressed 

molecule graph and encodes the degree of aromaticity of the molecule. According to 

the model parameters, N6 substitutions increasing the aromaticity of the molecule do 

not favor DKiA3-REA3.ALOGP2 is simply the square of the Ghose-Crippen octanol water 

coefficient (ALOGP). Since these MD encodes the hydrophobic/hydrophilic character 

of the molecule, DKiA3-REA3 could be favored by the presence of N6 substituents 
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contributing to reduce the hydrofobicity of the molecule. The nCIR is a complexity 

descriptor, which is related to the molecular flexibility. Since nCIR serve as a measure 

of rigidity with higher numbers of circuits corresponding to reduced flexibility; cyclic 

and rigid or conformationally restricted N6 substituents could increase the overall 

desirability of the molecular system. Finally, the presence of secondary sp3 carbon 

atoms in the molecule appears to be detrimental for DKiA3-REA3. 

According to the model, a molecule with a low aromaticity degree, without secondary 

sp3 carbon atoms, and containing cyclic and rigid N6 substituents which contributes to 

reduce the hydrofobicity of the system could favor the balance of the binding affinity 

and relative efficacy profiles of N6-substituted-4´-thioadenosine A3AR agonists. 

To note that these conclusions, although derived from a simple 1D model, are very 

similar to that obtained by 3D-CoMFA/CoMSIA approaches (115). Kim and Jacobson 

have concluded that a bulky group, conformationally restricted, at the N6 position of 

the adenine ring will increases the A3AR binding affinity, and that a small bulky group, 

at this position, might be crucial for A3AR activation. Note the accordance of data 

obtained in the previous and present work: a �“conformationally restricted bulky group�” 

is suggested by Kim and Jacobson and herein a �“cyclic and rigid substituents�” on the 

N6 position. 

To note that although nCIR is not the MD more significantly related with DKiA3-REA3, it is 

very informative for the property. From nCIR we can infer that the bulkiness of the N6 

substituent suggested in (115) can be characterized by a cyclic rather than an alkyl 

substituent. 

Although useful, this information is found to be incomplete since it is well-known that 

steric factors are determinant for the design of A3AR agonists, especially for binding 

affinity (115). Consequently, it is found to be important to determine the optimal size 

of the conformationally restricted cyclic N6 substituent. Unfortunately, the simple 

inspection of the regression parameters of the PM do not offers this information. In 

consequence, a property/desirability profiling was carried out to identify the levels of 

the MDs included in the PM that simultaneously generate the most desirable 

combination of binding affinity and relative efficacy. 

As the main goal of this analysis is to extract information on the factors governing 

DKiA3-REA3 rather than optimize it, the behaviour of DKiA3-REA3 was profiled at the mean 

values of the four MDs rather than looking for their optimal values (see first row in 

Figure 11). Accordingly, it was possible to find the levels of the MDs simultaneously 

producing the best possible DKiA3-REA3 in the training set employed. 
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Figure 11. Property/desirability profiling of the levels of the MDs that simultaneously produce 
the most desirable combination of binding affinity and relative efficacy of N6-substituted-4´-
thioadenosine A3AR agonists. 

The analysis reveal that for the most favorable balance of binding affinity and agonist 

efficacy: the ARR should be not just low but near to 0.4; ALOGP2 should be as low 

as possible; the number of secondary sp3 carbon atoms should be kept around two; 

and nCIR should be not just high but close to six. 

Since the thioadenosine nucleus already contain three secondary sp3 carbon atoms, 

at least on the applicability domain of the present model, the minimum number of 

such atoms should be kept at three. So, this type of carbons must be excluded in the 

substituents located at N6 position. 

At the same time, considering that the nCIR value of the thioadenosine nucleus is 

four, one can deduce that the ideal nCIR value of the N6 substituent should be two. 

This information can be structurally translated into bicyclic N6 type of substituents. 

The inclusion in the PM of nCIR, instead of the number of rings in the chemical graph 

(nCIC) is also significant. Although the structural information of this pair of MDs is 

very similar (the number of cyclic structures in a chemical graph) their graph-

theoretical information is quite different. While nCIC encodes the number of rings, 

nCIR includes both rings and circuits (a circuit is a larger loop around two or more 

rings). So, additional information can be inferred: the bicyclic N6 substituent should 

not be fused. This assumption could be related to the binding interaction of this type 
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of fragments with the A3AR. In fact, the presence of a certain degree of rotational 

freedom between the two rings of the fragment could favor its docking into the 

receptor cavity. 

This result matches with previous experimental findings on the structure-activity 

relationship (SAR) of this family of thioadenosine derivatives (87). The SAR obtained 

for this family suggests that compounds with bulky N6 substituents lost their binding to 

the A3AR. Paradoxically, among compounds showing high binding affinity at the 

human A3AR, two compounds substituted with a N6-(trans-2-phenylcyclopropyl) 

amino group were found to be full agonists at the human A3AR. In addition, it was 

found that compounds with -naphthylmethyl N6 substituents lost their binding to the 

A3AR (87), which reinforce the present proposal. 

From the study it was also concluded that bulky N6 substituents only affects the 

binding affinity, however bulky (bicyclic) substituents such as a trans-2-

phenylcyclopropyl group, could be beneficial for agonist efficacy without lost their 

binding affinity. Although that experimental study does not deal with the simultaneous 

analysis of both properties, their experimental findings properly match with our 

theoretical results. 

The previous information can be employed for the theoretical design of new N6-

substituted-4´-thioadenosine analogues with adequate balances between binding 

affinity and agonist efficacy. Since ARR and ALOGP2 cannot be easily manipulated 

by structural modifications, the design efforts will be mainly focused on nCs and 

nCIR. Thus, a combinatorial library focused on the generation of N6-substituted-4´-

thioadenosine candidates was assembled with nCs  3 and nCIR  6. This approach 

was performed with the aid of the SmiLib software (116), for the rapid assembly of 

combinatorial Libraries in SMILES notation. The library was directed to produce 

candidates with conformationally restricted bicyclic N6 substituents while keeping at 

minimum the presence of secondary sp3 carbon atoms using the 4´-thioadenosine 

nucleus as scaffold and a set of 25 cyclic or heterocyclic structures as linkers and 

building blocks. The working combinatorial scheme is shown in Table 12. 

This combinatorial strategy produced a focused combinatorial library of more than 9 

000 candidates which according to previous results, can be employed in a 

subsequent virtual screening campaign using as ranking criterion the predicted value 

of DKiA3-REA3 of each candidate. As mentioned before, only candidates included on the 

applicability domain of the overall desirability PM (3395 candidate molecules) should 

be submitted to the ranking process. As a result, it is possible to propose for 
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biological screening a reduced set of candidates with a promissory balance between 

A3AR binding affinity and agonist efficacy. 

Table 12. Scaffolds, linkers and building blocks employed to assemble the combinatorial 
library 
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2.5.2 Multi-Criteria Virtual Screening based on the Combined Use of Desirability 
and Belief Theories 

Although the idea of desirability-transforming and combining a number of related 

properties is in accordance with the concept of pharmaceutical profile (16, 18), the 

usefulness of a parallel approach allowing obtaining a feedback on the reliability of 

the properties predicted as a unique overall desirability Di value, is also desirable. 

If two or more property values Yi (previously scaled to the respective di values with 

proper desirability functions) of a compound are combined into a unique Di value, in 

order to map it as a MLR function of n molecular descriptors Xi (denoted as approach 

A1), it is rational to expect that the resultant predicted Di value should be similar to the 

inverse approach. The inverse approach consist in the independent mapping of the k 

properties Yi as a MLR function of n molecular descriptors Xi, the subsequent 
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desirability-scaling of each predicted Yi value and the final combination of the 

corresponding di values into a unique predicted Di value (denoted as approach A2). 

)(.Pr.Pr.Pr.Pr)( 21 iiiiiiiiii XfYYeddedDedAADedXfDdY (20) 

Assuming true the previous analysis, one must anticipate that the higher is the 

degree of similarity between the predicted Di values of both approaches, the higher 

should be their reliability, and vice versa. Clearly, the results will depend of the 

goodness of fit and prediction of the set of PMs involved. In addition, the degree of 

uncertainty of PMs with different sets of MDs will be diverse. 

So, it is required a framework allowing the fusion of results from different approaches 

in order to access the reliability of predictions from several approaches with different 

degrees of uncertainty. In the present work we select Dempster-Shafer Theory (DST) 

(117-119) (also known as belief theory) to achieve that goal (120). DST is based on 

two ideas: the idea of obtaining degrees of belief for one question from subjective 

probabilities for a related question, and Dempster's rule for combining such degrees 

of belief when they are based on independent items of evidence (120). 

These two rules are quite simple. The rule for successive testimony says that if a 

report has been relayed to us through a chain of n reporters, each having a degree of 

credibility p, then the credibility of the report is pn. The rule for concurrent testimony 

says that if a report is concurrently attested to by n reporters, each with credibility p, 

then the credibility of the report is 1-(1-p)n; where 0  p  1. Thus, the credibility of a 

report is weakened by transmission through a chain of reporters but strengthened by 

the concurrence of reporters (118, 119). 

If we make a simple analogy of this situation with the situation previously exposed 

regarding two parallel overall desirability PMs, each approached inversely, is possible 

to note that DST theory, specifically, the Hospers�’s rule for combining concurrent 

evidence (118, 119), is fully applicable to our problem. There it is only needed to 

replace �“report�” with �“prediction�” and �“reporter�” with �“prediction model�”, and the 

previous paragraph will almost literally describe our problem. 

Developing a probability assignment is the basic function in DST, and is an 

expression of the level of confidence that can be ascribed to a particular 

measurement. However, in this work we are interested on the desirability of a 

compound. Consequently, rather than a probability assignment for each compound, 

we will use the desirability values coming from both overall desirability PMs 

approaches (D1 and D2) to derive the final joint belief values (BD): 

)1)(1(1 21 DDBD                                                                                           (21) 
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While desirability is not itself a probability, like probabilities their values also range 

from 0 to 1. Therefore it can be used to derive the values of BD for each compound. 

So, in this way it is possible to encode the reliability of the predicted desirability of a 

compound along with to two inverse but complementary prediction approaches. 

Given this information, BD can be used as ranking criterion in a virtual screening 

scheme, resulting particularly useful for ligand-based virtual screening (LBVS). 

A LBVS strategy based on BD can be described in the sequence of steps detailed 

bellow: 

1- Prediction Models setup. 

Here, the predicted Di values for each compound are derived from A1 and A2 as 

expressed in eq. 20. 

2- Desirability assignment. 

Due to limitations inherent to the MLR approach, the predicted desirability values not 

always will be included in the interval [0,1] and consequently is not possible to use it 

as is to derivate BD. So, in the case of the desirability values derived from the 

approach A1, it is necessary to re-scale using eq.3 considering that D have to be 

maximized. 

In the case of the approach A2, the derivation of the respective Di values is affected 

by the above mentioned limitations of MLR, but the process is complicated by the 

wider range of the mapped Yi properties. Consequently, di is scaled by using a two-

tale (eq.2) using the same target Ti values employed in A1 for each Yi. 

3- Derivation of Joint Belief BD by the application of Hospers�’s Rule for Combining 

Concurrent Evidence. 

4- BD-Based Ranking. 

The resultant ranking should render an ordered list, top-ranking the most reliable 

compounds with the highest desirability values. The compounds with a higher chance 

to exhibit a desirable combination of the k properties modeled. 

Two QSAR PMs (for KiA3 and REA3) focused on their predictive ability (prediction 
approach A2) were derived in order to use both in combination with the previously 
described overall desirability PM (DKiA3-REA3 model, identified as prediction approach 
A1) in a LBVS strategy based on the combination of their concurrent predictions 
through belief theory. 
The resulting best-fit models together with the statistical regression parameters are 

depicted in Table 13. According to their statistics, the models are good in terms of 

their statistical significance and predictive ability.  
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Table 13. Regression coefficients and statistical parameters for the MLR models involved on the 
prediction approach A2 (KiA3and REA3). 
KiA3 MLR  Model 

R7uMor23v

Mor09vMor13uBELe3

GATS3mD/Dr03A3

3542.089)26703.72(101.691)1258.23(

57.144)1110.88(45.869)453.64(188.103)5217.43(

99.263)502.99(1.019)10.36(331.482)8857.67(Ki

 

N R2 F p s Q2
LOO sLOO Q2

Boots sBoots a(R2) a(Q2) 
32 0.985 230.82 < 0.01 48.80 0.977 56.35 0.957 61.25 0.0017 -

0.0052 
REA3 MLR  Model 

ALOGPH8p

VEA1EEig10dATS5v

D/Dr06PW2A3

)32.2(68.51)18.02(91.98

)54.01(72.141)72.52(25.443)85.82(68.431

)038.00.44()4.0.733(3073)56.134(5592RE

 

N R2 F p s Q2
LOO sLOO Q2

Boots sBoots a(R2) a(Q2) 
32 0.966 96.79 < 0.01 5.52 0. 942 6.37 0.921 7.18 0.0017 -

0.0055 
 

 
Figure 12. Ranking of the training set compounds based on DKiA3-REA3  (A) and BD (B), 
respectively. 

Considering the structural similarity between both (the combinatorial library 

assembled and our training set), is possible to use the latter to infer the reliability of 
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the ranking attained for the combinatorial library. The predicted values of DKiA3-REA3 

(according to approach A1) was also tested as ranking criterion in order to compare a 

VS strategy based on predictions coming from a single approach with a VS strategy 

based on the combination of concurrent predictions. The quality of the respective 

ranking obtained was compared according to the corrected ranking quality index *, 

previously defined in section 2.1. 

Based on the analysis of our training set, the quality of the ranking attained using the 

predicted values of DKiA3-REA3 is around 80% which suggest an acceptable degree of 

confidence if the scheme is applied to our combinatorial library (R% = 80.08%; * = 

0.1992). As can be noted in Figure 12, the use of BD as ranking criterion (R% = 

82.81%; * = 0.1719) slightly overcomes the performance of the predicted values of 

DKiA3-REA3. Considering that BD encodes in addition to the desirability of the compound, 

the reliability of such a prediction, it is clear their suitability at the moment to screen 

higher and/or structurally diverse libraries with a wider range of the mapped 

properties. 
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3 CONCLUSIONS 

i) A new multi-objective optimization & ranking methodology based on 

Derringer�’s desirability functions (MOOP-DESIRE Methodology), enabling 

global QSAR studies to be run jointly, considering multiple properties of 

interest to the drug discovery and development process, was introduced in 

this Thesis. The necessary steps for applying the methodology were 

detailed in addition to statistical parameters accounting for the suitability of 

the QSAR prediction models developed as evaluation functions for the 

desirability-based multi-objective optimization process: the overall 

desirability determination coefficient (R2
D) and the overall desirability�’s 

LOO CV determination coefficient (Q2
D). A ranking procedure is also 

proposed to order libraries of compounds according to their structural 

similarity with an optimal theoretical candidate, as well as a measure of 

the quality of the ranking obtained: the ranking quality index ( ). 

ii) The application it of the MOOP-DESIRE methodology lead to the design of 

a set of novel NSAIDs quinazolinones with simultaneously improved 

analgesic, antiinflammatory, and ulcerogenic profiles. The best 

compromise between the mentioned properties was established and new 

drug candidates with the highest overall desirability then designed. In 

particular, one of the designed candidates (compound ASNEW8) reached 

93% of analgesic activity, 82% of inflammatory inhibition and an 

ulcerogenic index of 0.44, which represents an excellent overall 

desirability (= 0.8), being this accomplished by modifying the compounds�’ 

structure in such a way that pushed the values of the C-001, C-037 and H-

046 predictor variables to 5, 0 and 12, respectively. Furthermore, it was 

observed that the presence of bulky alkyl substituents at the C-2 position 

of the quinazoline ring displayed a positive role on the ulcerogenic ability 

without a negative influence in the other properties. These results support 

the applicability of the MOOP-DESIRE methodology to the task of multi-

criteria drug design. 

iii) The usefulness of the MOOP-DESIRE methodology as multi-criteria library 

ranking tool was challenged by using it as a rational strategy for filtering 

safe and potent antibacterial candidates from a heterogeneous library of 

antibacterial fluoroquinolones. Each compound in the library was ranked 

according to a criterion of structural similarity with a pharmaceutically 
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optimal candidate (with the best possible compromise between 

antibacterial efficacy and cytotoxicity) previously obtained. Based on this 

criterion ( i) is possible to reach a ranking of the flouroquinolones library 

with a corrected ranking quality index ( *) of 0.313 representing a 

percentage of ranking quality (R%) of 68.7. On the other hand, if the top 

10% (the best 9 candidates) of the library of flouroquinolones is proposed 

to be included on the drug development process, the probability of finding 

a promising candidate is increased since this fraction exhibit a percentage 

of quality ranking of 82.74 ( * = 0.173). 

iv) The MOOP-DESIRE methodology was applied to the prioritization of hits 

with appropriate trade-offs between HIV-1 RT inhibitor efficacy and MT4 

blood cells toxicity. In this work was determined the theoretical levels of a 

set of molecular descriptors leading to a pharmaceutically desirable HIV-1 

NNRTI candidate, using it as a pattern to rank libraries of new compounds 

according to the degree of structural similarity. The developed multi-

objective optimization strategy was efficiently employed as a virtual 

screening tool by the prioritization of 12 NNRTI candidates with favourable 

pharmaceutical profiles disperse in a library of 432 NNRTI decoys 

extracted from DUD. In such a difficult task was possible to retrieve in the 

top 10% of the ordered library up to a third of the NNRTI candidates with 

favourable pharmaceutical profiles. The comparative study between the 

sequential, parallel and multi-objective virtual screening approaches of the 

selected library of compounds revealed that the multi-objective approach 

can be superior to the other approaches. Moreover, it can rule out the 

exclusion of pharmaceutically acceptable candidates. The data obtained 

so far evidences the potential of the MOOP-DESIRE methodology as 

multi-criteria virtual screening tool. 

v) The development of a linear 1D prediction model of the A3ARagonists 

overall desirability based on four simple molecular descriptors with a direct 

physicochemical or structural explanation, as well as the desirability 

analysis of this model was described in this work. The results obtained 

provided significant clues on desired trade-offs between binding and 

relative efficacy of N6-substituted-4´-thioadenosines A3AR agonists. The 

desirability-based prediction model interpretation strategy proposed here 

suggest a favorable effect over binding affinity and agonist efficacy of 

conformationally restricted, but not fused bicyclic N6 substituents. The 
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overall data provide guides to the rational design of new A3AR agonist 

candidates by assembling a combinatorial library useful for the 

prioritization of candidates with a promissory balance between A3AR 

binding affinity and agonist efficacy through a virtual screening campaign. 

These results evidence the suitability of the Desirability Theory as 

interpretation tool for multi-criteria prediction models.  
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Abstract: Up to now, very few reports have been published concerning the application of multiobjective optimiza-
tion (MOOP) techniques to quantitative structure–activity relationship (QSAR) studies. However, none reports the
optimization of objectives related directly to the desired pharmaceutical profile of the drug. In this work, for the first
time, it is proposed a MOOP method based on Derringer’s desirability function that allows conducting global QSAR
studies considering simultaneously the pharmacological, pharmacokinetic and toxicological profile of a set of mole-
cule candidates. The usefulness of the method is demonstrated by applying it to the simultaneous optimization of the
analgesic, antiinflammatory, and ulcerogenic properties of a library of fifteen 3-(3-methylphenyl)-2-substituted
amino-3H-quinazolin-4-one compounds. The levels of the predictor variables producing concurrently the best possi-
ble compromise between these properties is found and used to design a set of new optimized drug candidates. Our
results also suggest the relevant role of the bulkiness of alkyl substituents on the C-2 position of the quinazoline
ring over the ulcerogenic properties for this family of compounds. Finally, and most importantly, the desirability-
based MOOP method proposed is a valuable tool and shall aid in the future rational design of novel successful
drugs.

q 2008 Wiley Periodicals, Inc. J Comput Chem 29: 2445–2459, 2008

Key words: chemoinformatics; drug discovery; global QSAR; multiobjective optimization; NSAIDs; overall desir-
ability function; ulcerogenic index

Introduction

Developing a successful drug is a complex and lengthy process
and failure at the development stage is due to multiple factors,
such as lack of efficacy, poor bioavailability, and toxicity.1

Improving the profile of a candidate drug requires finding the
best compromise between various, often competing objectives.
In fact, the ideal drug should have the highest therapeutic effi-
cacy, the highest bioavailability and the lowest toxicity, which
highlights the multiobjective nature of the drug discovery and
development process. But even when a potent candidate has
been identified, the pharmaceutical industry routinely tries to
optimize the remaining objectives one at a time, which often
results in expensive and time-consuming cycles of trial and

error.2 Roughly 75% of the total costs during the develop-
ment of a drug are attributed to poor pharmacokinetics and/or
toxicity.3

In the last years, the drug discovery/development process has
been gaining in efficiency and rationality because of the continu-
ous progress and application of chemoinformatics methods.2 In
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particular, the quantitative structure–activity relationship
(QSAR) paradigm has long been of interest in the drug-design
process,4 redirecting our thinking about structuring medicinal
chemistry.5 Yet, standard chemoinformatics approaches usually
ignore multiple objectives and optimize each biological property
sequentially.6–17 Nevertheless, some efforts have been made
recently toward unified approaches able of modeling multiple
pharmacological, pharmacokinetic, or toxicological properties
onto a single QSAR equation.18–21

Multiobjective optimization (MOOP) methods introduce a
new philosophy for reaching optimality based on compromises
among the various objectives. These methods aim at discovering
the global optimal solution by optimizing several dependent
properties simultaneously. The major benefit of MOOP methods
is that local optima corresponding to one objective can be
avoided by taking into account the whole spectra of objectives,
leading thus to a more efficient overall process.22

Several applications of MOOP methods have appeared
lately ranging from substructure mining to docking, including
inverse quantitative structure property relationship (QSPR) and
QSAR.22 Most of these MOOP applications have been based on
the following approaches: weighted-sum-of-objective-functions
(WSOF)23 and pareto-based methods.22 An excellent review on
the subject has been most recently published by Nicolaou
et al.22

Concerning substructure mining, MOOP applications have
focused on molecular alignment and pharmacophore identifica-
tion. Examples of MOOPs tackling the substructure mining from
a multiobjective perspective include the genetic algorithm simi-
larity program method (a WSOF-based method)24 and some par-
eto-based methods, such as the genetic algorithm for multiple
molecular alignment method (probably the first application of a
pareto-based approach in chemoinformatics),25 and the genetic
algorithm with linear assignment for the hypermolecular align-
ment of datasets.26

As regards docking, several research groups are particularly
active using pareto-based MOOP methods. For instance, Janson
et al.27 described a docking optimization application termed
ClustMPSO, based on the particle swarm optimization algorithm
that minimizes simultaneously the intermolecular energy
between the protein and the ligand and the intramolecular
energy of the ligand. A multiobjective evolutionary algorithm
has also been used by Zoete et al.28 in their docking program
EADock.

Recently, MOOP methods have been applied to the optimiza-
tion of new chemical entities via de novo molecular design and
inverse QSPR. In this area, there are notable applications such
as the CoG approach introduced by Brown et al.29 to solve the
inverse QSPR problem as well as the Molecule Evoluator pro-
posed by Lameijer et al.,30 where the user assumes the role of
the fitness function by selecting candidate molecules for further
evolution after each iteration.

Finally, despite the availability of numerous optimization
objectives, MOOP techniques have only recently been applied to
the building of QSAR models. Actually, very few reports exist
of the application of MOOP methods to QSAR. Nicolotti et al.31

employed a variant of an evolutionary algorithm called multiob-
jective genetic programming that used pareto ranking to opti-

mize the QSAR models. A number of conflicting objectives
including model accuracy, number of terms, internal complexity,
and interpretability of the descriptors used in the model were
considered. On the other hand, Stockfisch32 proposed a nonevo-
lutionary multiobjective technique called the partially unified
multiple property recursive partitioning method for building
QSAR models. This method was successfully used to construct
models to analyze selectivity relationships between cyclooxygen-
ase 1 and 2 inhibitors.33 Up to now, no QSAR study has never-
theless reported the simultaneous optimization of competing
objectives directly related with the definitive pharmaceutical pro-
file of drugs, such as therapeutic efficacy, bioavailability, and/or
toxicity.

In the present work, we are proposing for the first time a
MOOP method based on Derringer’s desirability function34 that
allows running global QSAR studies jointly considering multiple
properties of interest to the drug-design process. The method
proposed is applied to a small set of 2-substituted amino-3H-qui-
nazolin-4-one compounds with the aim of simultaneously opti-
mizing their analgesic, antiinflammatory and ulcerogenic proper-
ties, as well as suggesting new improved drug candidates of this
kind.

Materials and Methods

Data Set

Our prediction models (PMs) were developed using a library of
fifteen 3-(3-methylphenyl)-2-substituted amino-3H-quinazolin-4-
one compounds published by Alagarsamy et al.35 The analgesic
activity (An) reported for these compounds (in %) was measured
using the tail-flick method in Wistar albino mice,36 whereas the
antiinflammatory activity (Aa) reported (in %) was evaluated
using the carrageenan-induced paw oedema test in rats.36 The
ulcerogenic index (U) was determined by the method of
Ganguly and Bhatnagar,37 and the ulcers were induced in rats
using the method described by Goyal et al.38 All these assays35

were performed by administering a maximum dose of 20 mg
kg21.

Computational Methods

The structures of all compounds were first drawn with the aid of
ChemDraw software package,39 and reasonable starting geome-
tries obtained by resorting to the MM2 molcular mechanics
force field.40,41 Molecular structures were then fully optimized
with the PM3 semiempirical Hamiltonian,39 implemented in the
MOPAC 6.0 program.42 Here, it should be remarked that the
final molecular structures pertain only to the compounds’ global
minimum energy conformations, and indeed, further molecular
simulations and/or docking studies would be desirable to reach
reliable conclusions about conformational requirements and
ligand–receptor interactions. But the point of any QSAR model
is to have a set of readily calculated descriptors, and such an
approach would require much more extensive calculations.

Subsequently, the optimized structures were brought into the
DRAGON software package43 for computing a total of 120
atom-centered fragment (ACF) molecular descriptors.44 ACF
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descriptors were chosen because their simple nature offers easy
structural interpretation. To reduce noisy information that could
lead to chance correlations, descriptors having constant or near
constant values as well as highly pair-correlated (|R| [ 0.95)
were excluded. Thus, from an initial set of 120 ACF molecular
descriptors only 12 remained for further variable selection. Table
1 summarizes and describes the ACF molecular descriptors used
in this work.

The task of selecting the descriptors that will be more suita-
ble to model the activity of interest is complicated, as there are
no absolute criteria for ruling such selection. Approaches imple-
menting genetic algorithms (GA) for solving optimization prob-
lems in ANN45–47 and SVM48 based QSAR have been recently
reported. GA evolves a group of random initial models with fit-
ness scores and searches for chromosomes with better fitness
functions through natural selection and Darwinian evolution
(mutation and crossover). Herein, the GA optimization technique
was applied for variable selection49–52 by using the BuildQSAR
software package.53,54 The particular GA simulation conditions
applied here were 10,000 generations, 300 model populations
and 35% of mutation probabilities. Figure 1 depicts the ACF
molecular descriptors selected by the GA method, which were
finally applied to model the analgesic, antiinflammatory, and
ulcerogenic properties of the present compounds.

As to the modeling technique, we opted for a regression-
based approach; in this case, the regression coefficients and sta-
tistical parameters were obtained by multiple linear regression
(MLR) analysis by means of the STATISTICA software pack-
age.55 For each PM, the goodness of fit was assessed by examin-
ing the determination coefficient (R2), the adjusted determination
coefficient (Adj.R2), the standard deviation (s), Fisher’s statistics
(F), as well as the ratio between the number of compounds (N),
and the number of adjustable parameters (p0) in the model,
known as the q statistics. The predictive ability of the models
was evaluated by means of internal cross-validation (CV), spe-
cifically by the leave-one-out (LOO) technique.56 Basically,
LOO consists of forming N subsets from the entire dataset, each
missing one point, which in turn is used to validate a new model
that is trained with the corresponding subset. Quality of the new
models (CV R2: Q2

LOO) gives then an estimated measure of the
predictive ability of the full model.

We have also checked the validity of the preadopted para-
metric assumptions, another important aspect in the application

of linear multivariate statistical-based approaches.57 These
include the linearity of the modeled property, homoscedasticity
(or homogeneity of variance) as well as the normal distribution
of the residuals and nonmulticollinearity between the descrip-
tors.58

Finally, the applicability domain of the final PMs was identi-
fied by a leverage plot, that is to say, a plot of the standardized
residuals.vs. leverages for each training compound.56,59 The
leverage (hi) of a compound in the original variable space mea-
sures its influence on the model, and is calculated as follows:

hi ¼ tiðTTTÞ$1tTi ði ¼ 1; . . . ;NÞ (1)

where ti is the descriptor vector of that compound and T is the
model matrix derived from the training set descriptor values. In
addition, the warning leverage h* is defined as

h% ¼ 3 3 p0=N (2)

Leverage values can be calculated for both training compounds
and new compounds. A leverage higher than the warning lever-
age h* means that the compound predicted response can be ex-
trapolated from the model, and thus, the predicted value must be
used with great care. On the other hand, a standardized residual
value greater than two indicates that the value of the dependent
variable for the compound is significantly separated from the re-
mainder training data, and hence, such predictions must be con-
sidered with much caution too. In this work, only predicted data
for new compounds belonging to the applicability domain of the
training set were considered reliable.

MOOP Based on the Desirability Estimation of Several
Interrelated Responses

Improving the profile of a molecule for the drug discovery and
development process requires the simultaneous optimization of

Table 1. Symbols and Description for the 12 ACF Descriptors

Remaining After Variable Reduction.

Symbol Description Symbol Description

C-001 CH3R/CH4 C-038 Al$$C(¼¼X)$$Al

C-002 CH2R2 C-039 Ar$$C(¼¼X)$$R

C-024 R. . .CH. . .R H-046 H attached to C0(sp3)
no X attached to next C

C-025 R. . .CR. . .R H-052 H attached to C0(sp3) with

1X attached to next C
C-026 R. . .CX. . .R O-061 O. . .
C-037 Ar$$CH¼¼X Cl-089 Cl attached to C1(sp2)

Figure 1. Atom-centered fragments (ACF) descriptors for compound
AS14.
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several different objectives. The ideal drug should have the
highest therapeutic efficacy and bioavailability, as well as the
lowest toxicity. Because of the conflicting relationship among
the aforementioned properties, to discover such a drug is almost
a chimera and, if possible, an extremely difficult, expensive and
time-consuming task. However, finding the best compromise
between such objectives is an accessible and more realistic tar-
get (see Figure 2).

In this work, we are proposing a MOOP technique based on
the desirability estimation of several interrelated responses
(MOOP-DESIRE) as a tool for performing global QSAR studies,
taking into account both the pharmacological, pharmacokinetic
and toxicological profiles of a set of candidates. MOOP-DESIRE
methodology is intended to find the most desirable solution that
optimizes a multiobjective problem by using the Derringer’s
desirability function,56,59 specifically addressed to confer ration-
ality to the drug development process.

The process of simultaneous optimization of multiple proper-
ties of a drug candidate can be described as follows. From now
on, the terms ‘‘response variable’’ and ‘‘independent variables’’
should be understood as any property to be optimized, and any
set of molecular descriptors used to model each property,
respectively.

1. Prediction Models Set-Up

Each response variable (Yi) is related to the n independent varia-
bles (Xn) by an unknown functional relationship, often (but not
necessarily) approximated by a linear function. Each predicted
response (Ŷi) is then estimated by a least-squares regression
technique.

In some cases, the developed PM for some response may
share the same independent variables of the other responses’
PMs, but with different coefficients. In this atypical case, attain-
ing the best compromise among the responses turns out to be
simpler. Actually, due to the multiplicity of factors involved in
the ‘‘drugability’’ of a molecule, one should not expect that the
same subset of independent variables can optimally explain both
different types of biological properties (especially conflicting
properties like potency and toxicity). However, in the latter case,

there is still a way to maximize the desirability of both biologi-
cal properties, i.e. to set-up a global PM where the predicted
values of each response are fitted to a linear function using all
the independent variables employed in modeling the k original
responses. Here, the independent variables used in computing
the predicted values for the original responses will be used. In-
dependent variables not used in computing the predicted values
for the original responses will be zero.

2. Desirability Functions Selection and Evaluation

For each predicted response Ŷi, a desirability function di assigns
values between 0 and 1 to the possible values of Ŷi. This trans-
formed response, di, can have many different shapes. Regardless
of the shape, di 5 0 represents a completely undesirable value
of Ŷi, and di 5 1 represents a completely desirable or ideal
response value. The individual desirabilities are then combined
using the geometric mean, which gives the overall desirability D:

D ¼ ðd1 3 d2 3 . . . 3 dkÞ
1
k (3)

with k denoting the number of responses.
This single value of D gives the overall assessment of the

desirability of the combined response levels. Clearly, the range
of D will fall in the interval [0, l] and will increase as the bal-
ance of the properties becomes more favorable. Notice that if
for any response di 5 0, then the overall desirability is zero.
Thus, the desirability maximum will be at the levels of the inde-
pendent variables that simultaneously produce the maximum
desirability, given the original models used for predicting each
original response.

Depending on whether a particular response is to be maxi-
mized, minimized, or assigned a target value, different desirabil-
ity functions can be used. Here we used the desirability func-
tions proposed by Derringer and Suich.34

Let Li, Ui and Ti be the lower, upper, and target values, respec-
tively, that are desired for the response Ŷi, with Li & Ti & Ui.

If a response is of the target best kind, then its individual
desirability function is defined as

di ¼

Ŷi $ Li
Ti $ Li

! "s

Ŷi $ Ui

Ti $ Ui

! "t

0

if Li & Ŷi & Ti

if Ti < Ŷi & Ui

if Ŷi < Li or Ŷi > Ui

8
>>>>>>><

>>>>>>>:

(4)

If a response is to be maximized instead, its individual desirabil-
ity function is defined as:

di ¼

0

Ŷi $ Li
Ti $ Li

! "s

1

if Ŷi & Li

if Li < Ŷi & Ti

if Ŷi ' Ti ¼ Ui

8
>>>><

>>>>:

(5)

In this case, Ti is interpreted as a large enough value for the
response, which can be Ui.

Figure 2. Graphic representation of the compromise between thera-
peutic efficacy (potency), bioavailability (ADME properties), and
toxicity (safety) required to reach a successful drug.
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Finally, if one wants to minimize a response, one might use:

di ¼

1

Ŷi $ Ui

Ti $ Ui

! "s

0

if Ŷi & Ti ¼ Li

if Ui < Ŷi & Ti

if Ŷi ' Ui

8
>>>><

>>>>:

(6)

Here, Ti denotes a small enough value for the response, which
can be Li. Moreover, the exponents s and t determine how im-
portant is to hit the target value Ti. For s 5 t 5 1, the desirabil-
ity function increases linearly towards Ti. Large values for s and
t should be selected if it is very desirable that the value of Ŷi be
close to Ti or increase rapidly above Li. On the other hand, small
values of s and t should be chosen if almost any value of Ŷi
above Li, and below Ui are acceptable or if having values of Ŷi
considerably above Li are not of critical importance.34

In this way, one may predict the overall desirability for each
drug candidate determined by k responses, which in turn are at
the same time determined by a specific set of independent varia-
bles. However, as the Derringer’s desirability function is built
using the estimated responses Ŷi, there is no way to know how
reliable the predicted D value of each candidate is.

To overcome this shortcoming, we propose here a statistical
parameter, the overall desirability’s determination coefficient
(R2

D), which measures the effect of the set of independent varia-
bles Xn in reducing the uncertainty when predicting the D
values.

If the response variable is estimated as a continuous function
of the independent variables Xn, the individual desirabilities di
are continuous functions of the estimated Ŷi’s [eqs. (2–4)], and
the overall desirability D is a continuous function of the di’s
[eq. (1)], then D is also a continuous function of the Xn. There-
fore, R2

D can be computed in analogy with the so-called determi-
nation coefficient R2

. Specifically, R2
D is computed by using the

observed DYi
(calculated from Yi) and the predicted DŶi

(calcu-
lated from Ŷi) overall desirability values instead of using directly
the measured (Yi) and predicted (Ŷi) response values.

R2
D ¼ 1$ SSE

SSTO
¼ 1$

P
ðDYi $ DŶi

Þ2
P

ðDYi $ DYiÞ
2

(7)

where DYi
and DŶi

have been defined previously. DYi is the
mean value of D for the Yi responses of each case included in
the data set, SSTO is the total sum of squares, and SSE is the
sum of squares due to error.

Similar to R2, the adjusted overall desirability’s determination
coefficient (Adj. R2

D) can be computed as shown below.

Adj: R2
D ¼ 1$ SSE

SSTO
¼ 1$

P
ðDYi $ DŶi

Þ2

N $ 2P
ðDYi $ DYiÞ

2

N $ 1

(8)

Like this, both R2
D and Adj. R2

D have the same properties of R2

and Adj. R2. Thus, both will fall in the range [0, 1] and the
larger R2

D/Adj. R
2
D is, the lower is the uncertainty in predicting

D by using a specific set of independent variables Xn.
60

Since R2
D and Adj. R2

D measure the goodness of fit rather
than the predictive ability of a certain PM, it is advisable to use
an analogous of the leave one out CV determination coefficient
(Q2

LOO) to establish the reliability of the method in predicting D.
For this, the overall desirability’s LOO–CV determination coeffi-
cient (Q2

D) can be defined in an analogous way as R2
D:

Q2
D ¼ 1$ SSELOO$CV

SSTO
¼ 1$

P
ðDYi $ DŶi

ðLOO$CVÞÞ2
P

ðDYi $ DYiÞ
2

(9)

where SSELOO–CV and DŶi
(LOO–CV) are the leave one out CV

square sum of residuals and the predicted overall desirability by
LOO–CV, respectively.

In this way, we can have a measure of how reliable will be
the simultaneous optimization of the k responses over the inde-
pendent variables domain.

3. Multiobjective Optimization

As seen before, the desirability function condenses a multivari-
ate optimization problem into a univariate one. Thus, the overall
desirability D can be maximized over the independent variables
domain. To accomplish this, one can use the Response/Desirabil-
ity Profiler option of any of the modules of regression or dis-
criminant analysis implemented in STATISTICA.55 The overall
desirability D is optimized with the ‘‘Use general function opti-
mization’’ option, that is, the simplex method of function optimi-
zation,61–63 or the ‘‘Optimum desirability at exact grid points’’
option, which performs exhaustive searches for the optimum
desirability at exact grid points. The first option is usually faster,
but the default option is the latter one, except when the number
of predicted values that must be computed to perform the ex-
haustive grid search exceeds 200,000, in which case the Use
general function optimization option becomes the default.

An added benefit of the method is the ability to plot D as a
function of one or more independent variables. This allows the
user to find a tendency in the relationship between responses
and independent variables by considering the shape of the desir-
ability function related to each independent variable, which then
permits to establish an optimal range for each independent vari-
able over the optimum values determined in the optimization
process.

The final goal is to find the optimum levels (or an optimum
range) of the independent variables that optimize simultaneously
the k responses determining the final quality of the product. In
this way, the best possible compromise between the k responses
is found and consequently the highest overall desirability for the
final compound is reached (i.e. the more enviable drug candi-
date).

Desirability Functions Specifications

Response/desirability profiling allows one to trace the response
surface produced by fitting the observed response(s) using equa-
tion(s) based on the levels of the independent variables.34 That
is to say, one can inspect the predicted values for the response(s)
at different combinations of levels of the independent variables,

2449Desirability-Based Multiobjective Optimization for Global QSAR Studies

Journal of Computational Chemistry DOI 10.1002/jcc



specify desirability function(s) for the response(s), and search
for the levels of the independent variables that simultaneously
produce the most desirable response or the best possible com-
promise among responses leading to the most desirable solution
(candidate molecule).

In the present work, the optimization of the overall desirabil-
ity was carried on by the Optimum desirability at exact grid
points option of the general regression module of STATIS-
TICA.55 Three desirability functions, one for each response,
were fitted. Specifically, the analgesic and antiinflammatory
activities ought to be maximized [eq. (3)]. For estimating their
di’s, the lower value Li was set to 25%, and the upper value Ui,
made equal to the target value Ti, was set to 100% for both
responses. In contrast, the ulcerogenic index must be minimized
where Li 5 Ti 5 0 and Ui 5 1.73 [eq. (4)]. The value of Ui 5
1.73 corresponds to the ulcerogenic index of aspirin (measured
with the same protocol used for the training set35), a NSAID
with a recognized ulcerogenic ability. Furthermore, the spline
method64,65 was used for fitting the desirability function and sur-
face/contours maps, and the current level of each independent
variable was set equal to its optimum value. As to the s and t
parameters, these were fixed at 1.00 by assuming that the desir-
ability functions increase linearly towards Ti on the three
responses.

Results and Discussion

MOOP–DESIRE-Based Optimization

Following the strategy outlined previously, we began by seeking
the best linear models relating each property to the ACF molec-
ular descriptors. One should emphasize here that the reliability
of the final results of the optimization process strongly depends
on the quality of the initial set of PMs.

One MLR-based PM containing two ACF44 variables previ-
ously selected by GA was developed for each property. The
resulting best-fit models are given in Table 2 together with the
statistical regression parameters, whereas the computed ACF
molecular descriptors along with the measured and predicted
values of the analgesic activity, antiinflammatory activity, and
the ulcerogenic index for the 15 training compounds are shown
in Table 3.

As can be noticed, the models are good in both statistical sig-
nificance and predictive ability (see Table 2). Good overall
quality of the models is revealed by the large F and small p val-
ues, satisfactory q values (q 5 5), along with R2 and Adj.R2

(goodness of fit) values ranging from 0.803 to 0.935 and 0.771
to 0.923, respectively; as well as Q2

LOO (predictivity) values
between 0.713 and 0.905.

The next step is to find out if the basic assumptions of MLR
analysis are fulfilled. No violations of such assumptions were
found that could compromise the reliability of the resulting pre-
dictions. A deeper discussion about the fulfilling of the paramet-
ric assumptions for the MLR models is included in the support-
ing information (check Table SMI).

Another aspect deserving special attention is the applicability
domain of the several PMs. The leverage values (h) and standar-
dized residuals (Std. Res.) related to three PMs for the 15 train-
ing compounds are shown in Table 4, whereas Figure 3 shows
the corresponding leverage plots. From these plots, the applic-
ability domain is established inside a squared area within 6 2
standard deviations and a leverage threshold h* of 0.6 (Notice
that each model was fitted using 15 training compounds and
included 3 adjustable parameters: two ACF descriptors plus the
intercept.). As seen in Figure 3, only one compound of the train-
ing set has a leverage greater than h* for Aa, but shows standard
deviation values within the limits, which implies that it should
not be considered an outlier but instead as an influential com-
pound.

So far, we have demonstrated the satisfactory accuracy and
the predictive ability of the developed PMs. We may now thus
proceed with an adequate level of confidence to the simultane-
ous optimization of the analgesic, antiinflammatory and ulcero-
genic properties for the set of compounds. Here it is important
to remark that, since D is maximized directly over the independ-
ent variables domain, and at the same time, the predicted D val-
ues depend on the initial set of PMs, one should consider the
applicability domain of each PM to determine the optimum level
of each independent variable as well as for the selection of the
optimal solution(s).

First, the predicted values for each property were used to fit
a model containing all the independent variables (C-001, C-037,
and H-046) applied in modeling the original properties (An, Aa
and U). So, for the An and U properties, the original values of

Table 2. Regression Coefficients and Statistical Parameters for the MLR Models.

Analgesic activity (An) model

An 5 51.762(62.155) 1 8.333(60.957) ( C 2 001 2 6.929(61.534) ( C 2037

N R R2 R2Adj. Q2 SPRESS q F p
15 0.967 0.935 0.923 0.905 3.143 5.000 85.15699 0.000000

Antiinflammatory activity (Aa) model

Aa 5 36.708(61.789) 1 5.527(61.232) ( C 2 001 1 1.475(60.430) ( H 2046

N R R2 R2Adj. Q2 SPRESS q F p
15 0.942 0.887 0.869 0.827 3.526 5.000 47.46719 0.000002

Ulcerogenic index (U) model

U 5 0.718(60.044) 2 0.056(60.020) ( C 2 001 1 0.137(60.032) ( C 2 037

N R R2 R2 Adj. Q2 SPRESS q F p
15 0.896 0.803 0.771 0.713 0.065 5.000 24.56766 0.000057
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Table 3. Computed ACF Descriptors (C-001, C-037, and H-046), Measured and Predicted Values for the Analgesic
(An) and Antiinflammatory (Aa) Activities, Plus the Ulcerogenic Index (U) of the Training Set Compounds.

3-(3-Methylphenyl)-2-substituted amino-3H-quinazoline-4-one

Compound R C-001 C-037 H-046 Anmeas (%) Aameas (%) Umeas (%) Anpred (%) Aapred (%) Upred (%)

AS1 3 0 6 76 59 0.53 77 62 0.55

AS2 3 0 9 79 68 0.59 77 67 0.55

AS3 3 0 8 78 69 0.56 77 65 0.55

AS4 1 0 9 59 56 0.60 60 56 0.66

AS5 2 0 3 68 55 0.63 68 52 0.61

AS6 1 0 3 60 45 0.65 60 47 0.66

AS7 1 1 3 58 50 0.69 53 47 0.80

AS8 1 1 3 50 43 0.89 53 47 0.80

AS9 1 1 3 53 47 0.83 53 47 0.80

AS10 1 1 3 58 46 0.85 53 47 0.80

AS11 1 1 3 52 48 0.82 53 47 0.80

AS12 1 1 3 53 47 0.80 53 47 0.80

AS13 2 1 6 58 53 0.69 62 57 0.74

AS14 2 1 6 60 53 0.71 62 57 0.74

AS15 1 0 3 59 49 0.68 60 47 0.66



C-001 and C-037 were used (H-046 values were set to zero),
and for Aa, the original values of C-001 and H-046 (C-037 val-
ues were set to zero). In so doing, one is able to discriminate
opposite objectives like efficacy (analgesic and antiinflammatory
activities) and toxicity (ulcerogenic ability) with total or partial
overlap of the descriptors set used to built the PMs (Notice that
the An and U models both contain the C-001 and C-037 descrip-
tors, and the An, Aa, and U models share a common descriptor,
i.e. C-001; see Table 2.). Once the model has been set up, the
desirability functions for each property (di’s) might be specified.
In order to obtain candidate(s) with high analgesic and antiin-
flammatory activities as well as low ulcerogenic index, An and
Aa should be maximized [eq. (3)] and U minimized [eq. (4)]. In
addition, the individual di values for the An, Aa, and U proper-
ties were determined by setting the Li, Ui and Ti values as

referred previously. Then, the three dis were combined into the
single overall desirability D by means of eq. (1).

The expected and predicted desirability values attributable to
each response plus the overall desirability for the training set are
depicted in Table 5. In addition, the LOO-CV predicted values
and the desirability values for each response, along with the
overall desirability values are shown in Table 6. As can be
seen, the overall desirability function exhibits good statistical
quality as indicated by the R2

D and Adj.R2
D values ()1). More-

over, the high Q2
D value (0.905) provides an adequate level of

reliability on the method in predicting D.
Finally, the optimization of the overall desirability was car-

ried out to obtain the levels of the ACF descriptors that simulta-
neously produce the most desirable combination of all proper-
ties. Figure 4 shows the multiple response overall desirability, as
well as the individual desirability functions determined by the
respective pairs of predictor variables included on the three
MLR models.

By inspecting the form of each individual desirability func-
tion, it is possible to know the influence of a certain variable
over each individual objective. In so doing, one can conclude
that C-001 has a significant influence over the three properties,
while H-046 has only a remarkable influence on the Aa activity.
Here, one should note that the form of the An individual
desirability function is similar to that obtained for the Aa activ-
ity (for these noncompeting objectives, both curves show a posi-
tive slope). However, opposite individual desirability function
forms were obtained for competing objectives like Aa and U
(i.e. the curve related to the ulcerogenic index has a negative
slope).

Moreover, the data reveal that a 3-(3-methylphenyl)-2-sub-
stituted amino-3H-quinazolin-4-one optimized candidate must
have analgesic and anti-inflammatory activities of 93.43% and
82.04%, respectively, plus an ulcerogenic index of 0.44. This
represents an overall desirability of 0.8; that can be attained if
the candidate has C-001, C-037 and H-046 values equal to 5, 0,
and 12, respectively (see Fig. 4), being C-001 the most influenc-
ing variable. The significant slope of the C-001 curve suggests

Table 4. Leverages (h) and Standardized Residuals (Std. Res.) for the

Analgesic (An) and Antiinflammatory (Aa) Activities, Plus the
Ulcerogenic Index (U) Prediction Models.

Compound h(An)
Std.

Res. (An) h(Aa)
Std.

Res. (Aa) h(U)
Std.

Res. (U)

AS1 0.276 20.29 0.317 21.11 0.276 20.36
AS2 0.276 0.85 0.328 0.51 0.276 0.75

AS3 0.276 0.47 0.279 1.38 0.276 0.19

AS4 0.276 20.42 0.776 0.17 0.276 21.14
AS5 0.143 20.16 0.226 0.99 0.143 0.45

AS6 0.276 20.04 0.112 20.58 0.276 20.22

AS7 0.133 1.84 0.112 1.18 0.133 22.02

AS8 0.133 21.21 0.112 21.29 0.133 1.68
AS9 0.133 20.06 0.112 0.12 0.133 0.57

AS10 0.133 1.84 0.112 20.23 0.133 0.94

AS11 0.133 20.45 0.112 0.47 0.133 0.39

AS12 0.133 20.06 0.112 0.12 0.133 0.02
AS13 0.200 21.34 0.089 21.27 0.200 20.98

AS14 0.200 20.57 0.089 21.27 0.200 20.61

AS15 0.276 20.42 0.112 0.82 0.276 0.34

Figure 3. Leverage plots based on the three MLR models; i.e. plots of the standardized residuals.vs.
leverage values for the training compounds, with a warning leverage of 0.6.
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that more attractive candidates could be designed if its values
are greater than 5. However, due to the high influence of C-001
over the overall desirability, the optimal range for this variable
should be close to 5. But one must also consider the applicabil-
ity domain of the original PMs. In fact, the training set show
C-001 values up to 3 and thus, if the new candidate has a C-001
value extremely far from 3, it might be out of the applicability
domain of the original PMs. On the other hand, as the shape of
the H-046 desirability function reveals no significant influence
(slope near zero), the overall desirability could be increased by
large departures from its optimum value (512). But again the

applicability domain of the original PMs should be taken into
account.

Figure 5 shows the contour plots of the overall desirability D
for two independent variables with the third one kept fixed at its
optimum value. An analysis of the plot pertaining to C-037 vs.
H-046, allow us to conclude that when C-001 is held at its opti-
mum value, the range of desirability is narrow (0.62 & D &
0.78). This confirms the high influence of the variable C-001
over the overall desirability. On the contrary, when C-037 or H-
046 are held at their optimum values, the resultant desirability
range is wider (0.40 & D & 0.80).

Table 5. Expected and Predicted Values for the Desirability Due to the Analgesic Activity [d(An)],
Antiinflammatory Activity [d(Aa)], Ulcerogenic Index [d(U)], and Overall Desirability [D(An-Aa-U)].

Compound d(An) d(An)pred d(Aa) d(Aa)pred d(U) d(U)pred D(An-Aa-U) D(An-Aa-U)pred

AS1 0.68 0.69 0.45 0.49 0.69 0.68 0.60 0.62

AS2 0.72 0.69 0.57 0.56 0.66 0.68 0.65 0.64

AS3 0.71 0.69 0.59 0.53 0.68 0.68 0.65 0.63
AS4 0.45 0.47 0.41 0.41 0.65 0.62 0.50 0.49

AS5 0.57 0.57 0.40 0.36 0.64 0.65 0.53 0.51

AS6 0.47 0.47 0.27 0.29 0.62 0.62 0.43 0.44
AS7 0.44 0.37 0.33 0.29 0.60 0.54 0.45 0.39

AS8 0.33 0.37 0.24 0.29 0.49 0.54 0.34 0.39

AS9 0.37 0.37 0.29 0.29 0.52 0.54 0.38 0.39

AS10 0.44 0.37 0.28 0.29 0.51 0.54 0.40 0.39
AS11 0.36 0.37 0.31 0.29 0.53 0.54 0.39 0.39

AS12 0.37 0.37 0.29 0.29 0.54 0.54 0.39 0.39

AS13 0.44 0.49 0.37 0.43 0.60 0.57 0.46 0.49

AS14 0.47 0.49 0.37 0.43 0.59 0.57 0.47 0.49
AS15 0.45 0.47 0.32 0.29 0.61 0.62 0.44 0.44

Overall desirability function [D(An-Aa-U)] statisticsa R2
DðAn-Aa-UÞ 5 0.934 Adj.R2

DðAn-Aa-UÞ 5 0.929

aStatistical quality of the overall desirability function estimated by the overall desirability determination coefficient

(R2
D) and the adjusted determination coefficient (Adj. R2

D).

Table 6. Leave-One-Out Cross-Validation (LOO-CV) Results.

Compound Anpred Aapred Upred d(An)pred d(Aa)pred d(U)pred D(An-Aa-U)pred

AS1 77 64 0.56 0.69 0.52 0.69 0.63

AS2 76 66 0.53 0.68 0.55 0.68 0.63

AS3 76 64 0.55 0.68 0.52 0.68 0.62

AS4 61 54 0.69 0.48 0.39 0.60 0.48
AS5 69 51 0.60 0.59 0.35 0.65 0.51

AS6 60 47 0.67 0.47 0.29 0.61 0.44

AS7 52 46 0.82 0.36 0.28 0.53 0.38

AS8 54 47 0.79 0.39 0.29 0.54 0.39
AS9 53 47 0.79 0.37 0.29 0.54 0.39

AS10 52 47 0.79 0.36 0.29 0.54 0.39

AS11 53 46 0.80 0.37 0.28 0.54 0.38

AS12 53 47 0.80 0.37 0.29 0.54 0.39
AS13 62 57 0.76 0.49 0.43 0.56 0.49

AS14 62 57 0.75 0.49 0.43 0.57 0.49

AS15 61 46 0.65 0.48 0.28 0.62 0.44
Overall desirability’s LOO-CV determination coefficient Q2

DðAn-Aa-UÞ 5 0.905
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Design of New Drug Candidates

According to the previous results, the most important variable was
found to be descriptor C-001 and the second one descriptor C-037.
These two ACF descriptors represent, respectively, the number of
methyl groups and heteroatoms attached to a sp2 carbon atom
linked to the aromatic side ring in the drug candidates (see Figure
1). On the other hand, the less influencing ACF descriptor, H-046,
represents the number of hydrogen atoms attached to a sp3 carbon
no heteroatom attached to another carbon (see Figure 1).

This information allows one to guess the most important chem-
ical modifications needed to improve the overall desirability of the
present compounds. Considering the positive/negative influence of
C-001/C-037 a different number vs. type of alkyl groups on the C-
2 position of the quinazoline ring should be introduced. In fact,
the introduction of branched alkyl substituents might lead to a pos-
itive role due to the bulkiness of the substituents.

So, a new set of nine compounds was designed in which sev-
eral different alkyl substituents were linked to the C-2 position
of the quinazoline ring. The chemical modifications and the
predicted values of the expected pharmaceutical properties are

shown in Table 7. The leverage values obtained for each new
designed candidate were also considered to check whether or
not each new candidate falls within the applicability domain of
the original PMs (see Table 7).

After a comprehensive data analysis, compound ASNEW8
can be claimed to be the most desirable and reliable candidate

designed in this study, displaying predicted percentages of anal-

gesic and antiinflammatory activities of 93 and 82, respectively,

plus a predicted ulcerogenic index of 0.44. Further, an excellent

predicted overall desirability (0.8) is obtained. The data acquired

allow us to propose also compounds ASNEW4, ASNEW5,
ASNEW6, and ASNEW9, though having leverage values higher

than h*, i.e. out of the applicability domain of the original PMs.

Interestingly, they possess the highest overall desirability and

predictor variables values, significantly separated from those of

the training compounds (see Table 8).
A noticeable profile improvement can be observed between

the predicted properties displayed by compound ASNEW8 and
the most promising compound reported by Alagarsamy et al.
(AS3).35 Explicitly, ASNEW8 displays analgesic and antiinflam-

Figure 4. Multiple response desirability function due to the analgesic activity, anti-inflammatory activity and
ulcerogenic index (D(An-Aa-U) (last row), along with the individual desirability functions coming from the
pairs of predictor variables included on the three MLR models (first three rows). [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]
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matory activities 15 and 13% higher, respectively. At the same
time, ASNEW8 shows only the 78.6% of the ulcerogenic ability
of AS3. On the other hand, if we compare the performance of
ASNEW8 with diclofenac (a known NSAIDs used as reference
compound35), one can easily notice its enhanced predicted phar-
maceutical properties. In effect, ASNEW8 displays analgesic
and antiinflammatory activities 31% and 22% higher than diclo-
fenac, respectively. In addition, the ulcerogenic index is exten-
sively reduced (ASNEW8 has almost a quarter (3.75 times
lower) of the ulcerogenic ability of diclofenac).

In summary, a remarkable simultaneous improvement on the
analgesic and antiinflammatory activities plus ulcerogenic profile

Figure 5. Contour plots of the overall desirability for the analgesic activity, antiinflammatory activity
and ulcerogenic index D(An-Aa-U). Red corresponds to high zones (near to 1) of D and green to
low zones (near to zero).

Figure 6. Pareto front of solutions directly optimized over the inde-
pendent variables domain showing the corresponding overall desir-
ability D(An-Aa-U) values for each compound. Training compounds
are depicted in red squares and new designed compounds in blue
dots.
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of the new designed candidates was obtained through MOOP-
DESIRE-based methods combined with human expert interpreta-
tion and use of the results. The data suggest a positive role of

the bulkiness of the alkyl substituents on the C-2 position of the
quinazoline ring on the ulcerogenic properties. Anyhow, in the
future, an experimental study of the analgesic, antiinflammatory

Table 7. Computed ACF Descriptors (C-001, C-037, and H-046), Predicted and Leverage Values for the Analgesic

(An) and Antiinflammatory (Aa) activities, Plus the Ulcerogenic Index (U) of the Nine New Designed Compounds.

Compound R C-001 C-037 H-046 Anpred (%) Aapred (%) Upred (%) h(An) h(Aa) h(U)

ASNEW1 3 0 11 77 70 0.55 0.216 0.361 0.216

ASNEW2 3 0 13 77 72 0.55 0.216 0.496 0.216

ASNEW3 4 0 12 85 77 0.49 0.403 0.453 0.403

ASNEW4a 5 0 15 93 86 0.44 0.573 0.614 0.573

ASNEW5a 6 0 18 102 96 0.38 0.695 0.724 0.695

ASNEW6a 7 0 21 110 106 0.33 0.777 0.796 0.777

ASNEW7 4 0 9 85 72 0.49 0.403 0.401 0.403

ASNEW8 5 0 12 93 82 0.44 0.573 0.562 0.573

ASNEW9a 5 0 15 93 86 0.44 0.573 0.614 0.573

aCompounds out of the predictions model’s applicability domain; leverage values greater than h* are marked in

bold.
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and ulcerogenic properties of the designed candidates should be
carried out to validate the process.

Despite the limited size and homogeneity of our data set, this
work offers the possibility of a deeper and case by case analysis
of the results obtained by using the MOOP-DESIRE methodol-
ogy. The use of small and homogeneous data set is more suitable
for later stages of the drug development process once identified a
lead rather than for early stages. Actually, the results of the opti-
mization process can be used to perform specific structural modi-
fications over the lead. For this, the use of clearly defined struc-
tural or physicochemical descriptors can lead to interpretable
structure–desirability relationships which can be used to design
new candidates with an improved pharmaceutical profile.

The MOOP-DESIRE methodology can also be applied to
handle larger and/or more diverse data sets, such as those fre-
quently obtained in High-Throughput Screening processes, being
there more appropriate for early stages of the drug development
process. That is, molecules coming from large and heterogene-
ous data sets can be filtered and ranked according to a certain
criterion rather than applying the results of the optimization pro-
cess to design new candidates. To accomplish that, one can
resort to the overall desirability of each molecule as a ranking
criterion or to several distance measures between the optimal
values of the descriptors determined by MOOP-DESIRE and the
computed values of the descriptors. In this case, it is advisable
to use descriptors leading to highly predictive structure–desir-
ability relationships rather than interpretable descriptors in order
to ensure the accuracy of the predictions and therefore, an accu-
rate assessment of the molecule’s overall desirability which will
then be the ranking criterion.

Comparison with Other MOOP Approaches

Finally, some considerations can be drawn about the desirabil-
ity-based MOOP method proposed here and the presently most
used MOOP methods. The desirability-based MOOP method,
like the WSOF-based MOOP methods, (re)formulates a multiob-
jective problem into a single one (the overall desirability). The
rationale is to find a single ‘‘best’’ solution overlooking however
the presence of the paretofront of the objectives, which repre-

sents the main drawback of both methods when compared with
pareto-based methods.

As the single ‘‘best’’ solution is directly found over the inde-
pendent variables domain, one can effectively generalize to other
solutions (candidates) with similar or improved compromise
between the k objectives. It is worth noting that the ‘‘best’’ solu-
tion depends on the independent variables used to fit the PMs
for each objective. So, in one run, the method will retrieve only
one ‘‘best’’ solution. To obtain more information and other solu-
tions, it must be run several times with different selections of
independent variables and/or different weightings on the overall
desirability formula. Thus, the desirability-based MOOP method
can be placed somewhere between the WSOF- and pareto-based
MOOP methods.

Actually, the major drawback of WSOF-based methods is the
selection of the most appropriate weightings because it is often
not clear how the different objectives should be ranked. In addi-
tion, the method is limited in its ability to find solutions to prob-
lems involving competing objectives.22 But the MOOP-DESIRE
method has the advantage of transforming the responses (objec-
tives) to desirability di values, which are then combined into the
single overall desirability D. So, competing objectives like po-
tency and toxicity can be successfully handled by this method
because the use of weights is avoided in the multi- to single
objective problem reformulation. Furthermore, by changing the s
and t parameters on the establishment of the individual di’s [see
eqs. (2–4)], one can nevertheless alter the objectives’ weight-
ings, if one has prior preferences or knowledge of the objectives
importance.34

As regards pareto-based methods, although they are impor-
tant for the simultaneous optimization of multiple objectives
they still have some limitations. Specifically, the pareto-front
may be vast, particularly in circumstances with large numbers of
objectives.22 One should remark here that in the presently pro-
posed desirability-based MOOP method, the single ‘‘best’’ solu-
tion is achieved directly over the independent variables domain,
making the solution independent from the number of objectives
to optimize. Moreover, by analyzing the profile and contour
plots of the overall desirability D (i.e. by looking at their shapes
and slopes), one is able to establish the best departures from the
X optimum values to further increase D. The optimum range of
independent variables, in an analogy with pareto-based methods,
can work as a pareto-front of independent variables leading to a
set of optimal (desirable) solutions (candidates) which are
ranked according to the overall desirability. Figure 6 shows such
kind of pareto-front of solutions directly optimized over the
independent variables domain. These solutions were obtained by
interrelating the 15 training molecules, which were used to fit
the desirability functions, and the nine new designed molecules.
The approximated region of the best pareto-front solutions can
be found at values ranging from 4 to 6, from 0 to 1, and from 8
to 14 for the predictor variables C-001, C-037, and C-046,
respectively.

An additional drawback of the pareto-based methods is that
the distribution of the pareto-front may lead solutions to drift to
more densely distributed regions of the surface and, in more
extreme circumstances, lead to dictatorship conditions where a
single objective dominates.22 The use of the overall desirability

Table 8. Predicted Values for the Desirability Due to the Analgesic

Activity [d(An)], Antiinflammatory Activity [d(Aa)], Ulcerogenic Index
[d(U)], and Overall Desirability [D(An-Aa-U)] of the Nine New

Designed Compounds.

Compound d(An)pred d(Aa)pred d(U)pred D(An-Aa-U)pred

ASNEW1 0.69 0.60 0.73 0.67
ASNEW2 0.69 0.63 0.73 0.68

ASNEW3 0.80 0.69 0.65 0.71

ASNEW4a 0.91 0.81 0.75 0.82
ASNEW5a 1.00 0.95 0.78 0.90

ASNEW6a 1.00 1.00 0.81 0.93

ASNEW7 0.80 0.63 0.72 0.71

ASNEW8 0.91 0.76 0.75 0.80
ASNEW9a 0.91 0.81 0.75 0.82

aCompounds out of the predictions model’s applicability domain.
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values in the present MOOP method avoids this problem since
they provide the overall assessment of the combined response
(objective) levels.

Finally, the main drawback of the proposed MOOP-DESIRE
method is related to the modeling technique used to fit the initial
set of PMs. Since the optimization process over the independent
variables domain is based on a MLR approach, neither the pre-
dicted responses nor the optimum levels of each independent
variable that determines the predicted overall desirability will be
reliable if the parametric assumptions inherent to regression
techniques are not fulfilled.56,57 Specifically, the effect of poten-
tial nonlinear relations between descriptors and objectives could
lead to very poor predictions and consequently to very unreliable
structure–desirability relationships. The combination of nonlinear
modeling techniques such as machine learning algorithms with
optimization methods can be a solution to this bottleneck on the
application of desirability based-MOOP methods.

Conclusions

In this work, a novel MOOP method sustained on the desirabil-
ity estimation of several interrelated responses is proposed. The
MOOP-DESIRE methodology based on Derringer’s desirability
function enables one to perform global QSAR studies, consider-
ing simultaneously the pharmacological, pharmacokinetic and
toxicological profiles of a set of molecule candidates. The use-
fulness of the methodology, placed between WSOF- and pareto-
based MOOP methods, was demonstrated by applying it to the
simultaneous optimization of the analgesic, antiinflammatory
and ulcerogenic properties of a library of fifteen 3-(3-methyl-
phenyl)-2-substituted amino-3H-quinazolin-4-one compounds.
The best compromise between the mentioned properties was
established and new drug candidates with the highest overall
desirability then designed. In particular, one of the designed can-
didates (compound ASNEW8) is predicted to have 93% of anal-
gesic activity, 82% of inflammatory inhibition and an ulcero-
genic index of 0.44, which represents an excellent overall desir-
ability (50.8), being this accomplished by modifying the
compounds’ structure in such a way that pushed the values of
the C-001, C-037, and H-046 predictor variables to 5, 0, and 12,
respectively. Furthermore, it was observed that the presence of
bulky alkyl substituents at the C-2 position of the quinazoline
ring displayed a positive role on the ulcerogenic ability without
a negative influence in the other properties. Yet, further experi-
mental corroboration is still needed to validate the model.

In conclusion, the desirability-based MOOP method herein
proposed is regarded as a valuable tool and shall aid in the
future rational design of novel successful drugs.
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CONTENTS 

 Checking the main parametric assumptions related to the three MLR models 

used to fit the desirability functions. 



This section provides details about the checking of the pre-adopted parametric 

assumptions, a very important aspect in the application of linear multivariate 

statistical-based approaches (MLR techniques) (1). In fact, once the linear regression 

model has been set up, it is very important to check the parametric assumptions to 

assure the validity of extrapolation from the sample to the population. These include 

the linearity of the modeled property, normal distribution as well as the 

homoscedasticity and non-multicollinearity descriptors. Notice that severe violations 

of one or various of these assumptions can markedly compromise the reliability of the 

predictions resulting from our MLR models (1). 

We first check the linearity hypothesis by looking at the distribution of the 

standardized residuals for all cases. Indeed the plots in Table SMI (1st row) do not 

show any specific pattern, reinforcing the idea that our models do not exhibit a non-

linear dependence (1). Next, we check the hypothesis of homoscedasticity (i.e.: 

homogeneity of variance of the variables), which can be confirmed by simply plotting 

the square of standardized residuals for each predictor variable (1) (2nd row of plots in 

Table SMI). These plots reveal significant scatter of points, without any systematic 

pattern, post-mortem validating the pre-adopted assumption of homoscedasticity for 

all the PMs. They also provide a check for the no auto-correlation of the residuals. 

Moving on to the hypothesis of normally distributed residuals, one can easily confirm 

that the residuals follow a normal distribution by applying the Kolmogorov-Smirnov 

statistical test (3rd row of Table SMI). In addition, as the term related to the error 

(represented by residuals) is not included in the MLR equations, the mean must be 

zero what actually occurs (check 4th row of Table SMI). The last aspect deserving 

special attention is the degree of multicollinearity among the variables. Highly 

collinear variables may be identified by examining their pair-correlations (R). As can 

be seen (5th row of Table SMI), the variables included in the models exhibit a low 

collinearity among them as the Rs are always lower than 0.7. One should emphasize 

here that the common interpretation of a regression coefficient as measuring the 

change in the expected value of the response variable, when the given predictor 

variable is increased by one unit while all other predictor variables are held constant, 

is not fully applicable when multicollinearity exists (R  0.7) (2). 



Table SM I. Checking the main parametric assumptions related to the three MLR models used 
to fit the desirability functions. 

 An MLR Model Aa MLR Model U MLR Model 

Linearity 
 

 

Homoscedasticity  

 

  

 
Normality 

of Residuals 
K-S d = 0.24899, 

p > 0.20 
K-S d = 0.15142, 

p > 0.20 
K-S d = 0.11477, 

p > 0.20 
Res. Mean = 0 -0.000000 0.000000 -0.000000 

Non 
Multi-Collinearity R (C-001/C-0037) = -0.47; R (C-001/H-046) = 0.67; R (C-037/H-046) = -0.46 
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Up to now, very few applications of multiobjective optimization (MOOP) techniques to quantitative
structure-activity relationship (QSAR) studies have been reported in the literature. However, none of them
report the optimization of objectives related directly to the final pharmaceutical profile of a drug. In this
paper, a MOOP method based on Derringer’s desirability function that allows conducting global QSAR
studies, simultaneously considering the potency, bioavailability, and safety of a set of drug candidates, is
introduced. The results of the desirability-based MOOP (the levels of the predictor variables concurrently
producing the best possible compromise between the properties determining an optimal drug candidate) are
used for the implementation of a ranking method that is also based on the application of desirability functions.
This method allows ranking drug candidates with unknown pharmaceutical properties from combinatorial
libraries according to the degree of similarity with the previously determined optimal candidate. Application
of this method will make it possible to filter the most promising drug candidates of a library (the best-
ranked candidates), which should have the best pharmaceutical profile (the best compromise between potency,
safety and bioavailability). In addition, a validation method of the ranking process, as well as a quantitative
measure of the quality of a ranking, the ranking quality index (Ψ), is proposed. The usefulness of the
desirability-based methods of MOOP and ranking is demonstrated by its application to a library of 95
fluoroquinolones, reporting their gram-negative antibacterial activity and mammalian cell cytotoxicity. Finally,
the combined use of the desirability-based methods of MOOP and ranking proposed here seems to be a
valuable tool for rational drug discovery and development.

1. Introduction

Development of a successful drug is a complex and
lengthy process, and failure at the development stage is
caused by multiple factors, such as lack of efficacy, poor
bioavailability, and toxicity.1 Roughly 75% of the total costs
during the development of a drug is attributed to poor
pharmacokinetics or to toxicity.2 Improvement of the profile
of a candidate drug requires finding the best compromise
between various, often competing, objectives. In fact, the
ideal drug should have the highest therapeutic efficacy, the

highest bioavailability, and the lowest toxicity, which shows
the multiobjective nature of the drug discovery and develop-
ment process. But even when a potent candidate has been
identified, the pharmaceutical industry routinely tries to
optimize the remaining objectives one at a time, which often
results in expensive and time-consuming cycles of trial and
error.3

In recent years, the drug discovery/development process
has been gaining in efficiency and rationality because of the
continuous progress and application of chemoinformatics
methods.3 In particular, the quantitative structure-activity
relationship (QSAR) paradigm has long been of interest in
the drug-design process,4 redirecting our thinking about
structuring medicinal chemistry.5

At the same time, the virtual screening (VS)6,7 of com-
binatorial libraries has emerged as an adaptive response to
the massive throughput synthesis and screening paradigm.
In parallel to the development of methods that provide (more)
accurate predictions for pharmacological, pharmacokinetic,
and toxicological properties for low-number series of com-
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pounds (tens, hundreds), necessity has forced the computa-
tional chemistry community to develop tools that screen
against any given target or property, millions or perhaps
billions of molecules, virtual or not.8 VS technologies have
thus emerged as a response to the pressure from the
combinatorial/high-throughput screening (HTS) community.

Yet standard chemoinformatics approaches usually ignore
multiple objectives and optimize each biological property
sequentially.9-20 Nevertheless, some efforts have been made
recently toward unified approaches capable of modeling
multiple pharmacological, pharmacokinetic, or toxicological
properties onto a single QSAR equation.21-25

Multiobjective optimization (MOOP) methods introduce
a new philosophy to obtain optimality on the basis of
compromises among the various objectives. These methods
aim at hitting the global optimal solution by optimization of
several dependent properties simultaneously. The major
benefit of MOOP methods is that local optima, corresponding
to one objective can be avoided by taking into account the
whole spectra of objectives, thus leading to a more efficient
overall process.26

Several applications of MOOP methods in the field of drug
development have appeared lately, ranging from substructure
mining to docking, including inverse quantitative structure
property relationship (QSPR) and QSAR.26 Most of these
MOOP applications have been based on the following
approaches: weighted-sum-of-objective-functions (WSOF)27

and pareto-based methods.26 An excellent review on the
subject has been recently published by Nicolaou et al.26

Despite the availability of numerous optimization objec-
tives, MOOP techniques have only recently been applied to
the building of QSAR models. Actually, very few reports
exist of the application of MOOP methods to QSAR,28-30

and no one reports the simultaneous optimization of compet-
ing objectives directly related with the definitive pharma-
ceutical profile of drugs, such as therapeutic efficacy,
bioavailability, and toxicity.

At the same time, ranking of cases is an increasingly
important way to describe the result of many data mining
and other science and engineering applications.31 Specifically,
in rational drug development, the availability of accurate
ranking methods is highly desirable for VS and filtering of
promising new drug candidates from combinatorial libraries.2

In the present work, we are proposing a MOOP method
based on Derringer’s desirability function32 that allows global
QSAR studies to be run jointly, considering multiple
properties of interest to the drug-design process.33 The results
of the desirability-based MOOP will be used for the
implementation of a ranking method also based on the
application of desirability functions. In addition, a validation
method of the ranking process, as well as a quantitative
measure of the quality of a ranking, is proposed. Finally,
the usefulness of the desirability-based methods of MOOP
and ranking is demonstrated by its application to a library
of 95 fluoroquinolones, reporting their gram-negative anti-
bacterial activity and mammalian cell cytotoxicity.

2. Materials and Methods

2.1. Data Set. Our prediction models (PMs), as well as
the desirability-based MOOP, were performed using a library
of 117 fluoroquinolones published by Suto et al.34

The cytotoxicity on Chinese hamster V79 cells expressed
as the IC50 (µg/mL) and defined as the concentration of
compound yielding 50% cell survival compared to untreated
control cells. The IC50 on Chinese hamster V79 cells is used
by Suto et al. as a genetic toxicity end point.34,35 Gracheck
et al.35 demonstrated that mammalian cell cytotoxicity in
Chinese hamster V79 cells was predictive of the in vitro
genetic toxicity for the fluoroquinolone class of compounds.
In this study, a small group of compounds was evaluated in
vitro for their ability to inhibit eukaryotic topoisomerase II
activity, their cytotoxicity toward mammalian cells, and their
induction of micronuclei, a genetic toxicity end point.36-40

A strong correlation was seen between the induction of
micronuclei in vitro and mammalian cell cytotoxicity (R2 )
0.94).

The compounds were evaluated against five Gram-negative
organisms using standard microdilution technique.41 The data
presented represent the geometric mean of the MIC’s (µg/
mL) for the Gram-negative (Enterobacter cloacae MA 2646,
Escherichia coli Vogel, Klebsiella pneumonia MGH-2,
ProVidencia rettgeri M 1771, and Pseudomonas aeruginosa)
bacteria.34

Twenty-two out of the 117 compounds reported in ref34
were removed from the data because these values were
inaccurately reported (less than, greater than, or greater than
or equal to values were reported). The use of inaccurate
values reduces significantly the goodness of fit of a multiple
linear regression (MLR) model. On the other hand, the values
of IC50 and MIC of the 95 compounds used as training were
transformed (1/1+ IC50 or MIC) to obtain the best fit with
the predictive variables. The chemical structure and the
values of IC50 and MIC of the 117 fluoroquinolones are
shown in the Supporting Information (see Table SI1).

2.2. Computational Methods. The structures of all
compounds were first drawn with the aid of ChemDraw
software package,42 and reasonable starting geometries were
obtained by resorting to the MM2 molecular mechanics force
field.43,44 Molecular structures were then fully optimized with
the PM3 semiempirical Hamiltonian,42 implemented in the
MOPAC 6.0 program.45 Here, it should be remarked that
the final molecular structures pertain only to the compounds’
global minimum energy conformations, and indeed, further
molecular simulations or docking studies would be desirable
to reach reliable conclusions about conformational require-
ments and ligand-receptor interactions. But the point of any
QSAR model is to have a set of readily calculated descriptors,
and such an approach would require much more extensive
calculations.

Subsequently, the optimized structures were brought into
the DRAGON software package46 for computation of a total
of 1481 molecular descriptors.47 As part of the necessary
variable reduction, descriptors having constant or near-
constant values, as well as highly pair-correlated (|R| > 0.95)
values, were excluded. Table 1 summarizes the DRAGON
molecular descriptors used in this work.
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The task of selecting the descriptors that will be more
suitable to model the activity of interest is complicated
because there are no absolute criteria for such selection.
Herein, an optimization technique, the genetic algorithm
(GA), was applied for variable selection48-51 by using the
BuildQSAR software package.52,53 GA evolves a group of
random initial models with fitness scores and searches for
chromosomes with better fitness functions through natural
selection and Darwinian evolution (mutation and crossover).
Table 2 depicts the DRAGON molecular descriptors selected
by the GA method, which were finally applied to model the
antibacterial and cytotoxic properties of the flouroquinolones
library used in this study.

For the modeling technique, we opted for a regression-
based approach; in this case, the regression coefficients and
statistical parameters were obtained by multiple linear
regression (MLR) analysis by means of the STATISTICA
software package.54 For each PM, the goodness of fit was
assessed by examining the determination coefficient (R2),
the adjusted determination coefficient (Adj.R2), the standard
deviation (s), Fisher’s statistics (F), as well as the ratio
between the number of compounds (N), and the number of
adjustable parameters (pʹ′) in the model, known as the F
statistics. The stability and predictive ability of the models
was approached by means of internal cross-validation (CV),
specifically by the leave-one-out (LOO) technique.55 Basi-
cally, LOO consists of forming N subsets from the entire
data set, each missing one point, which in turn is used to
validate a new model that is trained with the corresponding
subset. The quality of the new models (cross validation R2/
QLOO

2) gives an estimated measure of the predictive ability
of the full model.

We have also checked the validity of the preadopted
parametric assumptions, another important aspect in the
application of linear multivariate statistical-based ap-
proaches.56 These include the linearity of the modeled
property and the homoscedasticity (or homogeneity of
variance), as well as the normal distribution of the residuals
and nonmulticollinearity between the descriptors.57

Finally, the applicability domain of the final PMs was
identified by a leverage plot, that is, a plot of the standardized
residuals versus leverages for each training compound.55,58

The leverage (hi) of a compound in the original variable space
measures its influence on the model and is calculated as

hi ) ti(T
TT)-1ti

T (1)

where ti is the descriptor vector of that compound and T is
the model matrix derived from the training set descriptor
values. In addition, the warning leverage h* is defined as

h*) 3 × pʹ′ ⁄ N (2)

Leverage values can be calculated for both training
compounds and new compounds. A leverage higher than the
warning leverage h* means that the compound predicted
response can be extrapolated from the model, and thus, the
predicted value must be used with great care. On the other
hand, a standardized residual value greater than two indicates
that the value of the dependent variable for the compound
is significantly separated from the remainder training data,
and hence, such predictions must be considered with much
caution too. In this work, only predicted data for new
compounds belonging to the applicability domain of the
training set can be considered reliable.

2.3. Desirability Functions Specifications. In the present
work, the optimization of the overall desirability was carried
on by the “Use general function optimization” option62–64

of the general regression module of STATISTICA.54 This
process was carried out on a Windows platform in ap-
proximately 16 h. Two desirability functions, one for each
response, were fitted. Specifically, the cytotoxicity over
mammalian cells ought to be minimized (eq 6). This property
is expressed here through the IC50 value. According to the
meaning, this value should be maximized in such a way that
the compound with the highest IC50 value should be the most
desirable (di ) 1). Because of the transformation applied
(1/1+IC50), this value actually have to be minimized (the
same for the antibacterial activity). For estimation of di, the
lower value Li ) Ti was set to 1/1+IC50 ) 0.002 ) (IC50 )
380 µg/mL), coinciding with the least cytotoxic compound
used for training, and the upper value Ui was set to 0.1/8
µg/mL (the most cytotoxic compound). In contrast, the
antibacterial activity against gram-negative microorganisms
must be maximized where Li ) (1/1+MIC ) 0.038) ) (MIC
) 25 µg/mL) and Ui ) Ti ) (1/1+MIC ) 0.99/MIC ) 0.01
µg/mL) (eq 5). Furthermore, the spline method59,60 was used
for fitting the desirability function, and the current level of
each independent variable was set equal to its optimal value.
As to the s and t parameters, these were fixed at 1.00 by
assuming that the desirability functions increase linearly
toward Ti on the two responses.

2.4. Multiobjective Optimization Based on the Desir-
ability Estimation of Several Interrelated Responses.
Improvement of the profile of a molecule for the drug
discovery and development process requires the simultaneous
optimization of several different objectives. The ideal drug
should have the highest therapeutic efficacy and bioavail-
ability, as well as the lowest toxicity. Because of the
conflicting relationship among the aforementioned properties,
such a drug is almost unattainable, and if possible, it is an
extremely difficult, expensive, and time-consuming task.

Table 1. DRAGON Molecular Descriptors

0D descriptors 1D descriptors

class no. class no.

constitutional descriptors 47 functional groups 121
atom-centered fragments 120
empirical descriptors 3
properties 3

2D descriptors 3D descriptors

class no. class no.

topological descriptors 262 charge descriptors 14
molecular walk counts 21 aromaticity indices 4
BCUT descriptors 64 Randic molecular profiles 41
Galvez topological charge indices 21 geometrical descriptors 58
2D autocorrelations 96 RDF descriptors 150

3D-MoRSE descriptors 160
WHIM descriptors 99
GETAWAY descriptors 197
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However, finding the best compromise between such objec-
tives is an accessible and more realistic target (see Figure
1).

In this work, we are proposing a multiobjective optimiza-
tion technique based on the desirability estimation of several
interrelated responses (MOOP-DESIRE) as a tool to perform
global QSAR studies, considering simultaneously the phar-
macological, pharmacokinetic, and toxicological profiles of
a set of drug candidates. The MOOP-DESIRE methodology
is intended to find the most desirable solution that optimizes
a multiobjective problem by using the Derringer’s desirability
function,32 specifically addressed to confer rationality to the
drug development process. The MOOP method introduced
in this work is based on the compromise of potency, safety,
and bioavailability. Because other parameters would be also
comprised in their future application, the current MOOP is
named to identify the possible content. Therefore, this
specific application is named MOOP-DESIRE(PHARM-TOX) in
allusion to the pharmaceutical and toxicological properties
simultaneously optimized.

The process of simultaneous optimization of multiple
properties of a drug candidate can be described as follows.

From now on, the terms “response variable” and “indepen-
dent variables” should be understood as any property to be
optimized and any set of molecular descriptors used to model
each property, respectively.

2.4.1. Prediction Model Setup. Each response variable
(Yi) is related to the n independent variables (Xn) by an
unknown functional relationship, often (but not necessarily)
approximated by a linear function. Each predicted response
(Yi) is then estimated by a least-squares regression technique.

In some cases, the developed prediction model for some
responses may share the same independent variables of other
responses’ prediction models but with different coefficients.
In this atypical case, attaining the best compromise among
the responses turns out to be simpler. Actually, because of
the multiplicity of factors involved in the “drugability” of a
molecule, one should not expect that the same subset of
independent variables can optimally explain both different
types of biological properties (especially conflicting proper-
ties like potency and toxicity). However, in the latter case,
there is still a way to maximize the desirability of both
biological properties, that is, to setup a global prediction
model where the predicted values of each response are fitted
to a linear function using the whole subset of independent
variables employed in modeling the k original responses.
Here, the independent variables used in computing the
predicted values for the original responses will remain the
same. Independent variables not used in computing the
predicted values for the original responses will be set to zero.

2.4.2. Desirability Function Selection and Evaluation.
For each predicted response Yi, a desirability function di

assigns values between 0 and 1 to the possible values of Yi.
This transformed response di, can have many different
shapes. Regardless of the shape, di ) 0 represents a
completely undesirable value of Yi, and di ) 1 represents a
completely desirable or ideal response value. The individual
desirabilities are then combined using the geometric mean,
which gives the overall desirability D

Table 2. DRAGON Molecular Descriptors Selected by the GA Method That Were Used on the Desirability-Based MOOP Process

symbol definition class type property

MATS3e Moran autocorrelation lag 3/weighted by atomic Sanderson electronegativities 2D autocorrelations 2D IC50
GATS5p Geary autocorrelation lag 5/weighted by atomic polarizabilities 2D autocorrelations 2D IC50
JGI6 Mean topological charge index of order 6 Galvez topological charge indices 2D IC50
D/Dr06 distance/detour ring index of order 6 topological descriptors 2D MIC
BELp1 lowest eigenvalue n. One of Burden matrix/weighted by atomic polarizabilities BCUT descriptors 2D MIC
H4m H autocorrelation of lag 4/weighted by atomic masses GETAWAY descriptors 3D IC50 and MIC
HATS3m Leverage-weighted autocorrelation of lag 3/weighted by atomic masses GETAWAY descriptors 3D MIC
HATS3e Leverage-weighted autocorrelation of lag 3/weighted by atomic Sanderson

electronegativities
GETAWAY descriptors 3D MIC

H6v H autocorrelation of lag 6/weighted by atomic van der Waals volumes GETAWAY descriptors 3D IC50
R4e+ R maximal autocorrelation of lag 4/weighted by atomic Sanderson

electronegativities
GETAWAY descriptors 3D IC50

R5p R autocorrelation of lag 5/weighted by atomic polarizabilities GETAWAY descriptors 3D IC50
Mor24v 3D-MoRSE signal 24/weighted by atomic van der Waals volumes 3D-MoRSE descriptors 3D IC50
Mor05m 3D-MoRSE signal 05/weighted by atomic masses 3D-MoRSE descriptors 3D MIC
Mor14v 3D-MoRSE signal 14/weighted by atomic van der Waals volumes 3D-MoRSE descriptors 3D MIC
RDF020e radial distribution function 2.0 /weighted by atomic Sanderson

electronegativities
RDF descriptors 3D MIC

RDF050e radial distribution function 5.0/weighted by atomic Sanderson
electronegativities

RDF descriptors 3D MIC

FDI folding degree index geometrical descriptors 3D IC50
G(F · · · F) sum of geometrical distances between F · · · F geometrical descriptors 3D IC50 and MIC

Figure 1. Graphic representation of the compromise between
therapeutic efficacy (potency), bioavailability (ADME properties),
and toxicity (safety) required to reach a successful drug.
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D) (d1 × d2 × ... × dk)
1

k (3)

with k denoting the number of responses.
This single value of D gives the overall assessment of the

desirability of the combined response levels. Clearly, the
range of D will fall in the interval [0, l] and will increase as
the balance of the properties becomes more favorable. Notice
that if for any response di ) 0, then the overall desirability
is zero. Thus, the desirability maximum will be at the levels
of the independent variables that simultaneously produce the
maximum desirability, given the original models used for
predicting each original response.

Depending on whether a particular response is to be
maximized, minimized, or assigned a target value, different
desirability functions can be used. Here, we used the
desirability functions proposed by Derringer and Suich.32

Let Li, Ui, and Ti be the lower, upper, and target values,
respectively, that are desired for the response Yi, with Li e
Ti e Ui.

If a response is of the target best kind, then its individual
desirability function is defined as

di ) {[
Ŷi - Li

Ti - Li
]s

if Lie Ŷie Ti

[Ŷi -Ui

Ti -Ui
]t

if Ti < ŶieUi

0 if Ŷi < Li or Ŷi >Ui

(4)

If a response is to be maximized instead, its individual
desirability function is defined as

di ) { 0 if Ŷie Li

[Ŷi - Li

Ti - Li
]s

if Li < Ŷi < Ti

1 if Ŷig Ti )Ui

(5)

In this case, Ti is interpreted as a large enough value for the
response, which can be Ui.

Finally, if one wants to minimize a response, one might
use

di ) { 1 if Ŷie Ti ) Li

[Ŷi -Ui

Ti -Ui
]s

if Ui < Ŷi < Ti

0 if ŶigUi

(6)

Here, Ti denotes a small enough value for the response,
which can be Li. Moreover, the exponents s and t determine
how important is to hit the target value Ti. For s ) t ) 1,
the desirability function increases linearly toward Ti. Large
values for s and t should be selected if it is very desirable
that the value of Yi be close to Ti or increase rapidly above
Li. On the other hand, small values of s and t should be
chosen if almost any value of Yi above Li and below Ui are
acceptable or if having values of Yi considerably above Li

are not of critical importance.32

In this way, one may predict the overall desirability for
each drug candidate determined by k responses, which in
turn are at the same time determined by a specific set of

independent variables. However, as the Derringer’s desir-
ability function is built using the estimated responses Yi, there
is no way to know how reliable the predicted D value of
each candidate is.

To overcome this shortcoming, we propose a statistical
parameter, the oVerall desirability’s determination coefficient
(RD

2), which measures the effect of the set of independent
variables Xn in reduction of the uncertainty when predicting
the D values.

If the response variable is estimated as a continuous
function of the independent variables Xn, the individual
desirabilities di, are continuous functions of the estimated Yi

values (eqs 4-6), and the overall desirability D is a
continuous function of the di values s (eq. 3), then D is also
a continuous function of the Xn. Therefore, RD

2 can be
computed in analogy with the so-called determination
coefficient R2. Specifically, RD

2 is computed by using the
observed DYi (calculated from Yi) and the predicted DYi

(calculated from Yi) overall desirability values instead of
using directly the measured (Yi) and predicted (Yi) response
values.

RD
2 ) 1- SSE

SSTO
) 1-

∑ (DYi
-DŶi

)2

∑ (DYi
-Dj Yi

)2
(7)

where DYi and DYi have been defined previously Dj Yi is the
mean value of D for the Yi responses of each case included
in the data set, SSTO is the total sum of squares, and SSE
is the sum of squares due to error.

Similar to R2, the adjusted oVerall desirability’s determi-
nation coefficient (Adj.RD

2) can be computed as shown below.

Adj.RD
2 ) 1- SSE

SSTO
) 1-

∑ (DYi
-DŶi

)2

N- 2

∑ (DYi
-Dj Yi

)2

N- 1

(8)

Like this, both RD
2 and Adj.RD

2 have the same properties
of R2 and Adj.R2. Thus, both will fall in the range [0, 1],
and the larger RD

2 /Adj.RD
2 is, the lower is the uncertainty

in predicting D by using a specific set of independent
variables Xn.61

Since RD
2 and Adj.RD

2 measure the goodness of fit rather
than the predictive ability of a certain PM, it is advisable to
use an analogue of the leave one out cross-validation
determination coefficient (QLOO

2) to establish the reliability
of the method in predicting D. For this, the oVerall
desirability’s LOO-CV determination coefficient (QD

2) can
be defined in a manner analogous to that of RD

2

QD
2 ) 1-

SSELOO-CV

SSTO
) 1-

∑ (DYi
-DŶi

(LOO-CV))2

∑ (DYi
-Dj Yi

)2

(9)

where SSELOO-CV and DYi(LOO-CV) are the leave one out
cross validation square sum of residuals and the predicted
overall desirability by LOO-CV, respectively.
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In this way, we can have a measure of how reliable will
be the simultaneous optimization of the k responses over the
independent variables domain.

2.4.3. Multiobjective Optimization. As seen before, the
desirability function condenses a multivariate optimization
problem into a univariate one. Thus, the overall desirability
D can be maximized over the independent variables domain.
To accomplish this, one can use the “Response/Desirability
Profiler” option of any of the modules of regression or
discriminant analysis implemented in STATISTICA.54 The
overall desirability D is optimized with the “Use general
function optimization” option, which is, the simplex method
of function optimization,62-64 or the “Optimum desirability
at exact grid points” option, which performs exhaustive
searches for the optimum desirability at exact grid points.
The first option is usually faster, but the default option is
the later one, except when the number of predicted values
that must be computed to perform the exhaustive grid search
exceeds 200 000, in which case the “Use general function
optimization” option becomes the default.

The final result is to find the optimal levels (or an optimal
range) of the independent variables that optimize simulta-
neously the k responses determining the final quality of the
product. In this way, the best possible compromise between
the k responses is found, and consequently, the highest
overall desirability for the final compound is reached (i.e.,
the more enviable drug candidate).

2.5. Desirability-Based Ranking Algorithm. Case-based
reasoning (CBR) is mainly based on the assumption that
problems (cases; compounds in this work) with similar
descriptions (features; molecular descriptors determining the
chemical structure in this work) should have similar solutions
(the goal of the study; the biological properties involved in
the final pharmaceutical profile of the drug candidate in this
work).65 Consequently, by adaptation of previously success-
ful solutions to similar problems, it is possible (at least
theoretically) to find the solution of a case only based on its
description (that is, to infer the properties of a compound
based on their chemical structure from a previous knowledge
of the properties of a compound structurally similar).

On the basis of this reasoning paradigm, we are proposing
a ranking algorithm based on quantitative parameters esti-
mated from the description of the cases. Specifically, by the
application of this algorithm, it will be possible to rank drug
candidates (included on the model’s applicability domains)
with unknown pharmaceutical profiles (like those coming from
combinatorial libraries) according to their similarity with the
optimal drug candidate determined by the simultaneous mul-
tiobjective optimization process previously described.

∆i is the parameter used here to describe the similarity
between a case i and the optimal case as a function of the
subset of descriptive variables used for the multiobjective
optimization process, which is defined as

∆i )∑
X)1

m

δi,X ·wX (10)

where δi,X is the Euclidean distance between the case i and
the optimal case, considering the parameters X, and wX

represents the weight or influence of the variable X over the
global desirability D of the case i.

The Euclidean distance of a case i to a case j considering
several features or variables is defined as

E) [∑ (Xi -Xj)
2]1⁄2

(11)

Here, we decided to determine the degree of similarity
between a case i and the optimal case by considering one
by one every single variable X instead of considering
simultaneously all the X variables describing a case. By doing
this, it is possible to confer a higher degree of freedom to
the process of finding the optimal set of weighs associated
to the respective variables X. At the same time, this process
allows us to infer the relative influence of every variable X
over the global desirability D of a case i.

In a case like this one, where only one feature or variable is
considered at a time, the Euclidean distance between two cases
coincide with the absolute value of the difference between their
respective levels of that feature. Thus, δi,X is defined as

δi,X ) |Xi -XOPT| (12)

where Xi and XOPT are the values of the parameter X for the
case i and the optimal case, respectively.

The ∆i values are normalized by means of the application
of the Derringer desirability functions32 to bring them to the
same scale as Di. In this manner, it is possible to minimize
the difference between the values of ∆i and Di for every
case. Specifically, the respective values of ∆i are minimized
by means of eq 6 in such a way that the lower values
(indicative of a higher similarity with respect to the optimal
case) will take the values more close to 1 and vice versa.
Here, Li correspond to the lowest value of ∆i (∆iMIN) and Ui

) ∆iMAX.
Next, the optimal set of weighs wX minimizing the

difference between the values of Di and the normalized
values of ∆i for every case is found by a least-squares
nonlinear data-fitting process. The weights were obtained
through a nonlinear curve-fitting using the large-scale
optimization algorithm,66,67 implemented in the “lsqcurvefit”
function of MATLAB program, version 7.2.68 This process
was carried out over a windows platform at a very low
computational cost. A copy of the function employed is
available in the Supporting Information.

After we minimized the differences between Di and the
normalized values of ∆i, we achieved the highest possible
degree of concordance between the description (expressed
through the normalized values of ∆i which encode the
information related to the molecular structure expressed as
a function of the molecular descriptors employed) and the
solution of the cases (determined by the respective values
of Di, which represents the combination of the k properties
involved on the final quality of the drug candidate). Thus,
according to the CBR paradigm, it will be possible to rank,
according to ∆i, new and pharmaceutically unknown drug

Table 3. Example of Ordered Lists

OT 1 2 3 4 5 6 7 8 9 10

OR a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
3 6 2 4 5 8 1 7 10 9

OW 10 9 8 7 6 5 4 3 2 1
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candidates for which just their molecular structure is known
(like those coming from combinatorial libraries). In this way,
it will be possible to filter and identify the most promising
drug candidates, which will logically be placed first on the
order list (the candidates with the lowest values of ∆i and
consequently the most similar ones with the optimal drug
candidate determined by the desirability-based MOOP
process) and to discard the candidates ordered last.

2.6. Ranking Algorithm Validation and Estimation of
the Ranking Quality Index (Ψ). Even though the CBR
suggests that the nonlinear data-fitting process employed to
find the optimal set of weighs can lead to an adequate ranking
of the cases, it is not possible to know the quality of the

ranking achieved through this process. Considering the
above-mentioned, we are proposing a method for the
validation of the ranking obtained by the use of the optimal
set of weighs. In addition, we propose a quantitative criterion
of the quality of a ranking. Specifically, in this work we use
the same data set used for the desirability-based MOOP
process.

We will use some simple notations to represent ordering
throughout this paper. Without loss of generality, for n cases
to be ordered, we use the actual ordering position of each
case as the label to represent this case in the ordered list.
For example, suppose that the label of the actual highest
ranked case is n, the label of the actual second highest ranked
case is n - 1, etc. We assume the examples are ordered
incrementally from left to right. Then the true-order list is
OT ) 1, 2, 3, ..., n. For any ordered list generated by a
ranking algorithm, it is a permutation of OT. We use OR to
denote the ordered list generated by the ranking algorithm
R. OR can be written as a1, a2, ..., aI, where ai is the actual
ordering position of the case that is ranked ith in OR (see
Table 3).

The ranking validation includes the following steps:
1. Order the cases in the library according to D in a
decreasing fashion (starting with the case exhibiting the
highest value of D) and label each case as described above
((1, 2, 3, ..., n). This ordering corresponds to the true-order
list (OT).
2. Invert OT. This new ordering corresponds to the worst-
order list (OW).
3. Order incrementally the cases in the library according to
∆i (starting with the case exhibiting the lowest value of ∆i)
and label each case as described above (a1, a2, ..., an). This

Figure 2. Worst (top) and perfect (bottom) ranking.

Table 4. Regression Coefficients and Statistical Parameters for
the MLR Models

antibacterial activity MLR model (MIC ) 1/(1 + MIC))

1/1 + MIC ) 27.127((3.925) - 1.573((0.170) · H4M -
13.504((1.969) · BELp1 +0.071((0.012) · RDF020e -
0.130((0.024) · Mor05m - 0.006((0.001) · G(F · · · F)
+5.670((1.097) · HATS3m + 0.002((0.000) · D/Dr06 -
0.234((0.064) · Mor14v +1.449((0.423) · HATS3e +
0.011((0.003) · RDF050e

N R R2 Adj.R2 S Q2 SPRESS F F p

95 0.883 0.779 0.753 0.096 0.725 0.107 8.636 29.601 0.0000

cytotoxicity MLR model (IC50) 1/(1 + IC50)

1/1 + IC50 ) -0.966((0.146) + 0.611((0.053) · R5p -
0.135((0.012) · GATS5p -0.147((0.018) · H4m + 1.239((0.156) ·
FDI + 0.002((0.000) · G(F · · · F) + 0.114((0.019) · Mor24v -
0.162((0.039) · H6v + 0.183((0.045) · MATS3e -
0.329((0.086) · R4e+ - 1.152((0.397) · JGI6

N R R2 Adj.R2 S Q2 SPRESS F F p

95 0.867 0.750 0.721 0.014 0.686 0.016 8.636 25.313 0.0002
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Table 5. Observed and Predicted Values of the Optimized Properties and Their Respective Individual and Overall Desirability Values
for the Compounds Used on the Desirability-Based MOOP Process

compound ID 1/1 + MIC
predicted

1/1 + MIC d(MIC)
predicted
d(MIC) 1/1 + IC50

predicted
1/1 + IC50 d(IC50)

predicted
d(IC50) DMIC-IC50

predicted
DMIC-IC50

004-4-ciprofloxacin 0.909 0.908 0.915 0.914 0.003 -0.010 0.994 1.000 0.954 0.956
006-6-tosufloxacin 0.917 0.931 0.924 0.938 0.008 -0.006 0.941 1.000 0.932 0.968
007-7-PD117558 0.917 0.693 0.924 0.688 0.083 0.052 0.170 0.489 0.396 0.580
008-8 0.833 0.607 0.835 0.598 0.006 0.017 0.957 0.848 0.894 0.712
010-10 0.355 0.281 0.333 0.255 0.017 0.021 0.847 0.801 0.531 0.452
012-13 0.193 0.555 0.163 0.543 0.004 -0.002 0.978 1.000 0.400 0.737
014-15 0.641 0.576 0.633 0.565 0.003 -0.011 0.988 1.000 0.791 0.751
015-16 0.685 0.764 0.680 0.763 0.006 0.020 0.957 0.814 0.806 0.788
016-17 0.556 0.644 0.544 0.636 0.005 0.007 0.967 0.945 0.725 0.776
018-19 0.893 0.891 0.898 0.896 0.003 0.003 0.987 0.993 0.941 0.943
019-20 0.885 0.947 0.890 0.955 0.003 0.006 0.988 0.962 0.937 0.959
020-21 0.962 0.891 0.970 0.896 0.032 0.031 0.691 0.701 0.819 0.793
021-22 0.769 0.872 0.768 0.876 0.006 0.009 0.957 0.926 0.857 0.901
022-23A 0.833 0.807 0.835 0.808 0.026 0.021 0.759 0.805 0.796 0.806
023-23B 0.909 0.795 0.915 0.796 0.008 0.026 0.936 0.759 0.925 0.777
024-23C 0.909 0.936 0.915 0.944 0.007 0.015 0.953 0.865 0.934 0.904
025-23D 0.769 0.780 0.768 0.780 0.007 0.027 0.953 0.743 0.855 0.761
026-23E 0.074 0.304 0.038 0.279 0.004 -0.007 0.984 1.000 0.193 0.529
027-23F 0.794 0.905 0.794 0.911 0.017 0.021 0.847 0.805 0.820 0.856
028-24A 0.917 0.973 0.924 0.982 0.014 0.014 0.881 0.882 0.902 0.930
029-24C 0.971 0.865 0.980 0.869 0.037 0.013 0.642 0.889 0.793 0.879
030-24D 0.935 0.893 0.942 0.898 0.022 0.015 0.799 0.866 0.867 0.882
031-24E 0.833 0.683 0.835 0.677 0.003 0.001 0.987 1.000 0.908 0.823
032-24F 0.971 0.944 0.980 0.951 0.010 0.017 0.917 0.844 0.948 0.896
033-25A 0.833 0.827 0.835 0.829 0.012 0.026 0.896 0.753 0.865 0.790
034-25B 0.952 1.016 0.960 1.000 0.083 0.075 0.170 0.258 0.404 0.508
036-25D 0.901 0.879 0.906 0.884 0.091 0.045 0.093 0.558 0.290 0.702
037-25E 0.658 0.618 0.651 0.609 0.026 0.021 0.759 0.802 0.703 0.699
038-25F 0.877 0.848 0.882 0.851 0.019 0.041 0.824 0.598 0.852 0.713
040-26D 0.794 0.745 0.794 0.743 0.043 0.028 0.577 0.731 0.677 0.737
041-26E 0.625 0.600 0.617 0.590 0.008 0.005 0.936 0.969 0.760 0.756
042-26F 0.826 0.795 0.828 0.796 0.006 0.019 0.957 0.828 0.890 0.811
043-27A 0.658 0.773 0.651 0.772 0.042 0.037 0.595 0.647 0.623 0.707
044-27B 0.885 0.843 0.890 0.845 0.111 0.112 0.000 0.000 0.000 0.000
045-27C 0.935 0.989 0.942 0.999 0.111 0.088 0.000 0.122 0.000 0.349
046-27D 0.794 0.855 0.794 0.858 0.026 0.052 0.759 0.487 0.776 0.647
047-27E 0.500 0.598 0.485 0.588 0.009 0.026 0.928 0.756 0.671 0.667
048-27F 0.741 0.717 0.738 0.714 0.038 0.036 0.628 0.658 0.681 0.685
049-28A 0.714 0.687 0.710 0.681 0.005 0.018 0.971 0.832 0.830 0.753
050-28B 0.813 0.823 0.814 0.824 0.111 0.085 0.000 0.156 0.000 0.359
051-28C 0.794 0.659 0.794 0.652 0.042 0.064 0.595 0.367 0.687 0.489
052-28D 0.658 0.729 0.651 0.726 0.008 0.032 0.936 0.689 0.781 0.707
054-28F 0.625 0.702 0.617 0.698 0.017 0.013 0.847 0.891 0.723 0.789
055-29B 0.935 1.009 0.942 1.000 0.021 0.032 0.808 0.698 0.872 0.835
056-29C 0.935 1.016 0.942 1.000 0.023 0.039 0.788 0.626 0.862 0.791
057-29D 0.935 0.883 0.942 0.888 0.012 0.025 0.897 0.761 0.919 0.822
058-29E 0.870 0.664 0.873 0.658 0.006 -0.002 0.957 1.000 0.914 0.811
059-29F 0.917 0.919 0.924 0.925 0.008 0.013 0.936 0.886 0.930 0.905
061-30B 0.952 0.938 0.960 0.946 0.007 0.021 0.953 0.804 0.957 0.872
062-30C 0.813 0.824 0.814 0.826 0.007 0.024 0.948 0.776 0.879 0.800
063-30D 0.746 0.744 0.744 0.742 0.002 0.002 1.000 0.996 0.863 0.860
064-30E 0.524 0.637 0.510 0.629 0.002 -0.007 1.000 1.000 0.714 0.793
065-30F 0.855 0.784 0.858 0.783 0.004 -0.019 0.980 1.000 0.917 0.885
066-31A 0.794 0.808 0.794 0.809 0.004 0.006 0.976 0.962 0.880 0.882
067-31B 0.833 0.888 0.835 0.893 0.042 0.044 0.595 0.576 0.705 0.717
068-31C 0.926 0.898 0.933 0.904 0.053 0.042 0.483 0.595 0.671 0.733
070-31E 0.794 0.674 0.794 0.668 0.048 0.013 0.534 0.885 0.651 0.769
071-31F 0.813 0.771 0.814 0.770 0.010 0.023 0.919 0.790 0.865 0.780
073-32B 0.885 0.951 0.890 0.959 0.019 0.035 0.831 0.660 0.860 0.796
074-32C 0.935 0.869 0.942 0.873 0.040 0.044 0.612 0.576 0.759 0.709
075-32D 0.813 0.834 0.814 0.836 0.014 0.020 0.875 0.815 0.844 0.826
077-32F 0.714 0.787 0.710 0.787 0.010 0.010 0.919 0.914 0.808 0.848
078-33B 0.813 0.739 0.814 0.736 0.011 0.010 0.907 0.914 0.859 0.820
079-34B 0.658 0.628 0.651 0.620 0.010 0.023 0.918 0.789 0.773 0.699
080-35B 0.741 0.799 0.738 0.799 0.003 -0.002 0.985 1.000 0.853 0.894
081-36B 0.556 0.525 0.544 0.511 0.005 0.002 0.967 1.000 0.725 0.715
082-37B 0.488 0.562 0.472 0.550 0.008 0.014 0.943 0.879 0.667 0.695
083-38A 0.794 0.826 0.794 0.827 0.026 0.013 0.759 0.889 0.776 0.857
084-38B 0.685 0.723 0.680 0.720 0.004 0.012 0.980 0.896 0.816 0.803
085-39A 0.500 0.376 0.485 0.355 0.009 0.002 0.928 1.000 0.671 0.596
086-39B 0.326 0.296 0.302 0.271 0.053 0.054 0.483 0.472 0.382 0.358
088-41A 0.926 0.934 0.933 0.941 0.022 0.039 0.799 0.619 0.863 0.763
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ordering corresponds to the order generated by the ranking
algorithm R (OR).
4. Normalize (through eq 6) the values (labels) assigned to
each case in steps 1-3 where Li ) Ti ) 1 and Ui ) the
number of cases included in the library (n). In this way, we
obtained the respective normalized order values for the true
(OTdi) and worst (OWdi) order lists, as well as the order
generated by the ranking algorithm R (ORdi).
5. Use the respective normalized order values to determine
the difference between OR and OT (OT-ORδi)

OT-ORδi ) |OTdi -
ORdi| (13)

and between OW and OT (OT-OWδi)

OT-OWδi ) |OTdi -
OWdi| (14)

The ideal difference is 0 for all the cases and corresponds
to a perfect ranking. Figure 2 illustrates both worst and
perfect rankings, respectively.
6. Estimate the quality of the order generated by the
ranking algorithm R (OR) by means of the ranking quality
index (Ψ), which can be defined as the absolute value of
the mean of OT-ORδi, for the n cases included in the library
to be ranked

Ψ)
|∑i)1

n
OT-ORδi

n
|

(15)

Ψ is in the range [0, 0.5], being Ψ ) 0 if a ranking is perfect
and Ψ = 0.5 for the worst ranking. The closer Ψ is to 0 for
a certain ranking, the higher the quality of this ranking. In
contrast, values of Ψ near 0.5 indicate a low ranking quality.
Because the value of Ψ associated with the worst ranking is
dependent on the size of the library to be ranked, this value
is not exactly, but is approximately, equal to 0.5. At the same
time, a range [0, 1] rather than [0, 0.5] is a more clear
indicator of the quality of a ranking. Considering both of

the previous questions, a correction factor (F) is applied to
Ψ

F) 2
ΨOW

(16)

where ΨOW is the quality index for the worst ranking. F is
used here to obtain a more representative indicator Ψ of the
quality of a ranking and at the same time to include Ψ in
the range [0, 1], where ΨOW is exactly equal to 1. In this
way, we obtain the corrected ranking quality index (Ψ*)

Ψ* )
|∑i)1

n
OT-ORδi

n
|
·F)

|∑i)1

n
OT-ORδi

n
|
· 2
ΨWR

(17)

Finally, it is possible to express Ψ* as the percentage of
ranking quality (R%)

R% ) (1-Ψ * ) · 100 (18)

3. Results and Discussion

3.1. MOOP-DESIRE(PHARM-TOX)-Based Optimization.
To test the utility of the MOOP-DESIRE methodology for
the simultaneous optimization of multiple properties, it was
applied to a library of 95 fluoroquinolones reported by Suto
et al. with the aim of simultaneously optimizing their
antibacterial activity over gram-negative microorganisms
(MIC) and their cytotoxic effects over mammalian cells
(IC50).

Following the strategy outlined previously, we began by
seeking the best linear models relating each property to the
DRAGON molecular descriptors. One should emphasize here
that the reliability of the final results of the optimization
process strongly depends on the quality of the initial set of
PMs.

One MLR-based PM containing 10 variables previously
selected by GA was developed for both properties. The

Table 5. Continued

compound ID 1/1 + MIC
predicted

1/1 + MIC d(MIC)
predicted
d(MIC) 1/1 + IC50

predicted
1/1 + IC50 d(IC50)

predicted
d(IC50) DMIC-IC50

predicted
DMIC-IC50

090-42A 0.685 0.634 0.680 0.626 0.005 0.017 0.974 0.849 0.814 0.729
092-48 0.685 0.673 0.680 0.667 0.014 0.013 0.875 0.890 0.771 0.770
093-49 0.654 0.844 0.647 0.847 0.004 0.001 0.981 1.000 0.797 0.920
094-50 0.833 0.873 0.835 0.877 0.031 0.034 0.702 0.678 0.766 0.771
095-51 0.962 0.936 0.970 0.943 0.018 0.010 0.835 0.914 0.900 0.929
096-52 0.917 0.910 0.924 0.916 0.067 0.053 0.340 0.482 0.561 0.664
098-54 0.962 0.913 0.970 0.920 0.014 0.002 0.881 0.995 0.924 0.957
100-56 0.926 0.807 0.933 0.808 0.010 0.003 0.919 0.991 0.926 0.895
101-57 0.038 0.294 0.000 0.269 0.005 0.004 0.967 0.982 0.022 0.514
102-58 0.990 0.926 1.000 0.933 0.063 0.043 0.383 0.584 0.619 0.738
103-59 0.926 0.960 0.933 0.968 0.017 0.029 0.850 0.725 0.891 0.838
104-60 0.901 0.917 0.906 0.923 0.010 0.016 0.919 0.858 0.913 0.890
105-61 0.524 0.498 0.510 0.483 0.003 0.017 0.985 0.850 0.709 0.641
106-62 0.980 0.877 0.990 0.881 0.083 0.078 0.170 0.226 0.410 0.446
107-63 0.971 0.973 0.980 0.982 0.023 0.030 0.788 0.718 0.879 0.840
110-70 0.488 0.460 0.472 0.443 0.015 0.010 0.870 0.916 0.641 0.637
111-71 0.524 0.593 0.510 0.583 0.003 0.015 0.985 0.869 0.709 0.712
112-72 0.741 0.619 0.738 0.610 0.016 0.009 0.856 0.929 0.795 0.753
113-73 0.625 0.570 0.617 0.559 0.023 0.025 0.783 0.769 0.695 0.655
114-74 0.641 0.661 0.633 0.655 0.021 0.015 0.803 0.868 0.713 0.754
115-75 0.592 0.619 0.582 0.611 0.019 0.027 0.831 0.745 0.695 0.675
117-77 0.781 0.820 0.781 0.821 0.100 0.082 0.000 0.188 0.000 0.393
118-78 0.625 0.623 0.617 0.615 0.004 0.004 0.983 0.977 0.778 0.775

RD(MIC-IC50)
2 ) 0.702 Adj.RD(MIC-IC50)

2 ) 0.698
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Table 6. Predicted Values of the Optimized Properties and Their Respective Individual and Overall Desirability Values Obtained after
the LOO-CV Experiment for the Compounds Used on the Desirability-Based MOOP Process

compound ID
LOO-CV predicted

1/1 + MIC
LOO-CV predicted

d(MIC)
LOO-CV predicted

1/1 + IC50

LOO-CV predicted
d(IC50)

LOO-CV predicted
DMIC-IC50

004-4-ciprofloxacin 0.908 0.914 -0.011 1.000 0.956
006-6-tosufloxacin 0.935 0.943 -0.008 1.000 0.971
007-7-PD117558 0.683 0.678 0.051 0.505 0.585
008-8 0.600 0.590 0.018 0.837 0.703
010-10 0.261 0.234 0.022 0.793 0.431
012-13 0.578 0.568 -0.002 1.000 0.753
014-15 0.568 0.557 -0.014 1.000 0.746
015-16 0.772 0.771 0.022 0.800 0.786
016-17 0.651 0.644 0.008 0.942 0.779
018-19 0.891 0.896 0.003 0.994 0.944
019-20 0.952 0.960 0.006 0.959 0.960
020-21 0.887 0.892 0.031 0.702 0.791
021-22 0.877 0.882 0.009 0.925 0.903
022-23A 0.800 0.801 0.021 0.809 0.805
023-23B 0.780 0.779 0.027 0.747 0.763
024-23C 0.939 0.947 0.016 0.857 0.901
025-23D 0.781 0.780 0.029 0.726 0.753
026-23E 0.363 0.342 -0.008 1.000 0.585
027-23F 0.920 0.927 0.021 0.803 0.863
028-24A 0.977 0.987 0.014 0.882 0.933
029-24C 0.858 0.861 0.011 0.909 0.884
030-24D 0.891 0.896 0.015 0.870 0.883
031-24E 0.674 0.668 0.000 1.000 0.817
032-24F 0.942 0.949 0.018 0.841 0.893
033-25A 0.827 0.829 0.027 0.742 0.784
034-25B 1.024 1.000 0.074 0.265 0.515
036-25D 0.878 0.882 0.040 0.616 0.737
037-25E 0.616 0.607 0.021 0.806 0.699
038-25F 0.846 0.849 0.042 0.588 0.706
040-26D 0.740 0.737 0.026 0.750 0.743
041-26E 0.596 0.587 0.004 0.975 0.756
042-26F 0.792 0.792 0.020 0.817 0.804
043-27A 0.782 0.782 0.035 0.668 0.722
044-27B 0.840 0.842 0.112 0.000 0.000
045-27C 0.996 1.000 0.084 0.162 0.402
046-27D 0.861 0.865 0.057 0.434 0.613
047-27E 0.606 0.596 0.028 0.733 0.661
048-27F 0.716 0.712 0.035 0.662 0.686
049-28A 0.685 0.679 0.021 0.808 0.741
050-28B 0.823 0.825 0.080 0.205 0.412
051-28C 0.643 0.636 0.067 0.334 0.461
052-28D 0.735 0.733 0.035 0.665 0.698
054-28F 0.708 0.703 0.012 0.899 0.795
055-29B 1.013 1.000 0.032 0.692 0.832
056-29C 1.023 1.000 0.040 0.616 0.785
057-29D 0.877 0.881 0.026 0.755 0.816
058-29E 0.630 0.622 -0.004 1.000 0.789
059-29F 0.919 0.925 0.013 0.883 0.904
061-30B 0.936 0.943 0.022 0.794 0.865
062-30C 0.826 0.827 0.026 0.760 0.793
063-30D 0.744 0.741 0.002 0.996 0.859
064-30E 0.655 0.648 -0.008 1.000 0.805
065-30F 0.775 0.775 -0.021 1.000 0.880
066-31A 0.810 0.811 0.006 0.960 0.882
067-31B 0.891 0.896 0.044 0.574 0.717
068-31C 0.895 0.900 0.040 0.607 0.739
070-31E 0.663 0.656 0.009 0.929 0.781
071-31F 0.767 0.766 0.024 0.779 0.772
073-32B 0.957 0.965 0.036 0.654 0.794
074-32C 0.857 0.861 0.044 0.573 0.702
075-32D 0.836 0.839 0.021 0.810 0.824
077-32F 0.793 0.793 0.010 0.914 0.851
078-33B 0.723 0.720 0.010 0.915 0.812
079-34B 0.607 0.598 0.030 0.715 0.654
080-35B 0.815 0.816 -0.002 1.000 0.904
081-36B 0.520 0.506 0.001 1.000 0.711
082-37B 0.577 0.566 0.015 0.867 0.701
083-38A 0.827 0.829 0.011 0.904 0.865
084-38B 0.730 0.726 0.014 0.877 0.798
085-39A 0.362 0.340 0.000 1.000 0.583
086-39B 0.280 0.254 0.054 0.466 0.344
088-41A 0.935 0.942 0.041 0.606 0.755
090-42A 0.630 0.622 0.018 0.839 0.723

906 Journal of Combinatorial Chemistry, 2008 Vol. 10, No. 6 Cruz-Monteagudo et al.



resulting best-fit models are given in Table 4, together
with the statistical regression parameters. The computed
DRAGON molecular descriptors (GA selected and in-

cluded on the respective MLR models) for the 95 training
compounds are shown in the Supporting Information (see
Table SI2).

Table 6. Contiuned

compound ID
LOO-CV predicted

1/1 + MIC
LOO-CV predicted

d(MIC)
LOO-CV predicted

1/1 + IC50

LOO-CV predicted
d(IC50)

LOO-CV predicted
DMIC-IC50

092-48 0.669 0.662 0.013 0.891 0.768
093-49 0.861 0.865 0.001 1.000 0.930
094-50 0.894 0.899 0.034 0.673 0.778
095-51 0.933 0.940 0.010 0.918 0.929
096-52 0.909 0.915 0.051 0.497 0.674
098-54 0.911 0.917 0.002 1.000 0.957
100-56 0.799 0.799 0.001 1.000 0.894
101-57 0.349 0.327 0.003 0.986 0.568
102-58 0.922 0.928 0.041 0.602 0.748
103-59 0.964 0.973 0.030 0.713 0.833
104-60 0.920 0.927 0.017 0.848 0.886
105-61 0.492 0.477 0.019 0.830 0.629
106-62 0.865 0.868 0.077 0.232 0.449
107-63 0.973 0.983 0.031 0.707 0.833
110-70 0.447 0.430 0.010 0.922 0.629
111-71 0.601 0.591 0.016 0.861 0.713
112-72 0.606 0.597 0.008 0.936 0.747
113-73 0.566 0.555 0.025 0.767 0.653
114-74 0.664 0.657 0.014 0.881 0.761
115-75 0.622 0.613 0.029 0.724 0.666
117-77 0.824 0.826 0.077 0.235 0.440
118-78 0.621 0.613 0.005 0.972 0.772

QD(MIC-IC50)
2 ) 0.629

Table 7. Results of the Desirability-Based MOOP Process

predictors optimum level

JGI6 ) 0.058539124 R4e+ )0.215402953 RDF020e ) 6.533512527
MATS3e ) 0.097921819 R5p ) 0.560622 RDF050e ) 21.75996
GATS5p ) 2.71639566 G(F · · · F) ) -5.395274574 Mor05m ) -6.618889553
FDI ) 0.996478400 H4m ) 0.836178947 Mor14v ) -0.049636561
Mor24v ) 0.095266 D/Dr06 ) 202.3135 HATS3m ) 0.049289
H6v ) 0.266748712 BELp1 ) 2.022804936 HATS3e ) 0.242572857

Table 8. Optimal Set of Weights

variable wi relative importance (%) variable wi relative importance (%)

JGI6 23.323 17.561 H4m 1.573 6.019
MATS3e -1.259 4.517 D/Dr06 -0.001 5.184
GATS5p 1.190 5.817 BELp1 11.365 11.215
FDI -9.772 0.000 RDF020e 0.026 5.199
Mor24v 3.710 7.153 RDF050e -0.019 5.175
H6v 4.903 7.787 Mor05m 0.013 5.192
R4e+ -1.053 4.626 Mor14v 0.560 5.482
R5p -6.980 1.481 HATS3m -9.248 0.278
G(F..F) 0.052 5.213 HATS3e -5.811 2.101

Figure 3. ∆i-Based ranking of the fluoroquinolone library.
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As can be noticed, the models are good in both statistical
significance and predictive ability (see Table 4). Good overall
quality of the models is revealed by the large F and small p
values, satisfactory F values (F ) 5), and R2 and Adj.R2

(goodness of fit) values ranging from 0.75 to 0.779 and 0.721
to 0.753, respectively; as well as QLOO

2 (predictivity) values
between 0.686 and 0.725.

The next step is to find out if the basic assumptions of
MLR analysis are fulfilled. No violations of such assumptions
were found that could compromise the reliability of the
resulting predictions. A deeper discussion about the
fulfilling of the parametric assumptions for the MLR
models is included in the Supporting Information (check
Table SI4).

Table 9. ∆i, D∆i, and Di Values of the Library of Compounds Used for Ranking

compound ID ∆i
D∆i predicted DMIC-IC50 compound ID ∆i

D∆i predicted DMIC-IC50

004-4-ciprofloxacin 0.305 0.993 0.956 064-30E 1.221 0.766 0.793
006-6-tosufloxacin 0.330 0.987 0.968 065-30F 0.718 0.891 0.885
010-10 2.764 0.382 0.452 066-31A 0.359 0.980 0.882
014-15 0.801 0.870 0.751 067-31B 1.241 0.761 0.717
015-16 0.927 0.839 0.788 068-31C 0.871 0.853 0.733
016-17 1.416 0.717 0.776 070-31E 0.947 0.834 0.769
018-19 0.463 0.954 0.943 071-31F 0.765 0.879 0.780
019-20 0.510 0.943 0.959 073-32B 1.130 0.788 0.796
020-21 1.274 0.753 0.793 074-32C 1.123 0.790 0.709
021-22 0.919 0.841 0.901 075-32D 0.970 0.828 0.826
022-23A 0.528 0.938 0.806 077-32F 0.708 0.893 0.848
023-23B 1.132 0.788 0.777 078-33B 1.205 0.770 0.820
024-23C 0.411 0.967 0.904 079-34B 2.903 0.348 0.699
025-23D 1.040 0.811 0.761 080-35B 0.988 0.824 0.894
027-23F 0.680 0.900 0.856 081-36B 1.729 0.640 0.715
028-24A 0.730 0.888 0.930 082-37B 1.703 0.646 0.695
029-24C 0.576 0.926 0.879 083-38A 1.046 0.809 0.857
030-24D 0.829 0.863 0.882 084-38B 1.589 0.674 0.803
031-24E 1.060 0.806 0.823 085-39A 2.044 0.561 0.596
032-24F 0.701 0.895 0.896 086-39B 4.303 0.000 0.358
033-25A 1.004 0.820 0.790 088-41A 1.117 0.792 0.763
034-25B 1.713 0.644 0.508 090-42A 1.214 0.768 0.729
037-25E 1.425 0.715 0.699 092-48 0.745 0.884 0.770
038-25F 0.859 0.856 0.713 093-49 0.486 0.949 0.920
040-26D 1.658 0.657 0.737 094-50 1.120 0.791 0.771
041-26E 1.904 0.596 0.756 095-51 0.672 0.902 0.929
042-26F 0.631 0.912 0.811 096-52 1.279 0.751 0.664
043-27A 1.723 0.641 0.707 098-54 0.444 0.959 0.957
044-27B 2.595 0.424 0.000 100-56 0.746 0.884 0.895
046-27D 1.405 0.720 0.647 102-58 1.183 0.775 0.738
047-27E 1.572 0.679 0.667 103-59 0.656 0.906 0.838
048-27F 1.359 0.731 0.685 104-60 0.680 0.900 0.890
049-28A 1.912 0.594 0.753 105-61 0.825 0.864 0.641
052-28D 1.509 0.694 0.707 106-62 2.219 0.518 0.446
054-28F 1.784 0.626 0.789 107-63 1.159 0.781 0.840
055-29B 1.132 0.788 0.835 110-70 1.630 0.664 0.637
056-29C 1.012 0.818 0.791 111-71 1.050 0.808 0.712
057-29D 1.061 0.806 0.822 112-72 1.142 0.785 0.753
058-29E 0.279 1.000 0.811 113-73 1.205 0.770 0.655
059-29F 0.711 0.893 0.905 114-74 1.631 0.664 0.754
061-30B 1.191 0.773 0.872 115-75 1.495 0.698 0.675
062-30C 1.278 0.752 0.800 118-78 0.739 0.886 0.775
063-30D 0.945 0.834 0.860

Figure 4. Ranking attained for the 10% of the library of compounds.
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Another aspect to consider in PMs development is to
establish their applicability domain. The leverage values
(h) and standardized residuals (Std. Res.) related to three
PMs for the 95 training compounds are shown in Table
SI3 (Supporting Information), whereas Figure SI1 (Sup-
porting Information) shows the corresponding leverage
plots. From these plots, the applicability domain is
established inside a squared area within ( 2 standard

deviations and a leverage threshold h* of 0.347. (Notice
that each model was fitted using 95 training compounds
and included 11 adjustable parameters: 10 DRAGON
descriptors plus the intercept.)

So far, we have demonstrated the satisfactory accuracy
and the acceptable predictive ability of the developed PMs.
We may now thus proceed with an adequate level of

Figure 5. MOOP-DESIRE-based rational drug discovery and development.

Desirability-Based Multiobjective Optimization and Ranking Journal of Combinatorial Chemistry, 2008 Vol. 10, No. 6 909



Table 10. Residual Analysis of the Original and Desirability-Transformed Responses Employed for the MLR Modeling, MOOP, and
Estimation of Weights Used for Ranking Based on a Nonlinear Curve-Fitting Algorithm

residuals

MLR modeling MOOP ranking

FIT LOO-CV FIT LOO-CV

compound ID 1/1 + MIC 1/1 + IC50 1/1 + MIC 1/1 + IC50 dMIC dIC50 DMIC-IC50 dMIC dIC50 DMIC-IC50 (D - D∆i)

004-4 0.001 0.013 0.001 0.014 0.001 -0.006 -0.002 0.001 -0.006 -0.002 -0.037
006-6 -0.014 0.014 -0.018 0.016 -0.014 -0.059 -0.036 -0.019 -0.059 -0.039 -0.019
007-7 0.224 0.031 0.234 0.032 0.236 -0.319 -0.184 0.246 -0.335 -0.189
008-8 0.226 -0.011 0.233 -0.012 0.237 0.109 0.182 0.245 0.120 0.191
010-10 0.074 -0.004 0.094 -0.005 0.078 0.046 0.079 0.099 0.054 0.100 0.07
012-13 -0.362 0.006 -0.385 0.006 -0.380 -0.022 -0.337 -0.405 -0.022 -0.353
014-15 0.065 0.014 0.073 0.017 0.068 -0.012 0.040 0.076 -0.012 0.045 -0.119
015-16 -0.079 -0.014 -0.087 -0.016 -0.083 0.143 0.018 -0.091 0.157 0.020 -0.051
016-17 -0.088 -0.002 -0.095 -0.003 -0.092 0.022 -0.051 -0.100 0.025 -0.054 0.059
018-19 0.002 0.000 0.002 0.000 0.002 -0.006 -0.002 0.002 -0.007 -0.003 -0.011
019-20 -0.062 -0.003 -0.067 -0.003 -0.065 0.026 -0.022 -0.070 0.029 -0.023 0.016
020-21 0.071 0.001 0.075 0.001 0.074 -0.010 0.026 0.078 -0.011 0.028 0.04
021-22 -0.103 -0.003 -0.108 -0.003 -0.108 0.031 -0.044 -0.114 0.032 -0.046 0.06
022-23A 0.026 0.005 0.033 0.005 0.027 -0.046 -0.010 0.034 -0.050 -0.009 -0.132
023-23B 0.114 -0.018 0.129 -0.019 0.119 0.177 0.148 0.136 0.189 0.162 -0.011
024-23C -0.027 -0.008 -0.030 -0.009 -0.029 0.088 0.030 -0.032 0.096 0.033 -0.063
025-23D -0.011 -0.020 -0.012 -0.022 -0.012 0.210 0.094 -0.012 0.227 0.102 -0.05
026-23E -0.230 0.011 -0.289 0.012 -0.241 -0.016 -0.336 -0.304 -0.016 -0.392
027-23F -0.111 -0.004 -0.126 -0.004 -0.117 0.042 -0.036 -0.133 0.044 -0.043 -0.044
028-24A -0.056 0.000 -0.060 0.000 -0.058 -0.001 -0.028 -0.063 -0.001 -0.031 0.042
029-24C 0.106 0.024 0.113 0.026 0.111 -0.247 -0.086 0.119 -0.267 -0.091 -0.047
030-24D 0.042 0.007 0.044 0.007 0.044 -0.067 -0.015 0.046 -0.071 -0.016 0.019
031-24E 0.150 0.002 0.159 0.003 0.158 -0.013 0.085 0.167 -0.013 0.091 0.017
032-24F 0.027 -0.007 0.029 -0.008 0.029 0.073 0.052 0.031 0.076 0.055 0.001
033-25A 0.006 -0.014 0.006 -0.015 0.006 0.143 0.075 0.006 0.154 0.081 -0.03
034-25B -0.064 0.008 -0.072 0.009 -0.040 -0.088 -0.104 -0.040 -0.095 -0.111 -0.136
036-25D 0.022 0.046 0.023 0.051 0.022 -0.465 -0.412 0.024 -0.523 -0.447
037-25E 0.040 0.005 0.042 0.005 0.042 -0.043 0.004 0.044 -0.047 0.004 -0.016
038-25F 0.029 -0.022 0.031 -0.023 0.031 0.226 0.139 0.033 0.236 0.146 -0.143
040-26D 0.049 0.015 0.054 0.017 0.051 -0.154 -0.060 0.057 -0.173 -0.066 0.08
041-26E 0.025 0.003 0.029 0.004 0.027 -0.033 0.004 0.030 -0.039 0.004 0.16
042-26F 0.031 -0.013 0.034 -0.014 0.032 0.129 0.079 0.036 0.140 0.086 -0.101
043-27A -0.115 0.005 -0.124 0.007 -0.121 -0.052 -0.084 -0.131 -0.073 -0.099 0.066
044-27B 0.042 -0.001 0.045 -0.001 0.045 0.000 0.000 0.048 0.000 0.000 -0.424
045-27C -0.054 0.023 -0.061 0.027 -0.057 -0.122 -0.349 -0.058 -0.162 -0.402
046-27D -0.061 -0.026 -0.067 -0.031 -0.064 0.272 0.129 -0.071 0.325 0.163 -0.073
047-27E -0.098 -0.017 -0.106 -0.019 -0.103 0.172 0.004 -0.111 0.195 0.010 -0.012
048-27F 0.024 0.002 0.025 0.003 0.024 -0.030 -0.004 0.026 -0.034 -0.005 -0.046
049-28A 0.027 -0.013 0.029 -0.016 0.029 0.139 0.077 0.031 0.163 0.089 0.159
050-28B -0.010 0.026 -0.010 0.031 -0.010 -0.156 -0.359 -0.011 -0.205 -0.412
051-28C 0.135 -0.022 0.151 -0.025 0.142 0.228 0.198 0.158 0.261 0.226
052-28D -0.071 -0.024 -0.077 -0.027 -0.075 0.247 0.074 -0.082 0.271 0.083 0.013
054-28F -0.077 0.004 -0.083 0.005 -0.081 -0.044 -0.066 -0.086 -0.052 -0.072 0.163
055-29B -0.074 -0.011 -0.078 -0.011 -0.058 0.110 0.037 -0.058 0.116 0.040 0.047
056-29C -0.081 -0.016 -0.088 -0.017 -0.058 0.162 0.071 -0.058 0.172 0.077 -0.027
057-29D 0.052 -0.013 0.058 -0.014 0.054 0.136 0.097 0.061 0.142 0.103 0.016
058-29E 0.206 0.008 0.240 0.010 0.215 -0.043 0.103 0.251 -0.043 0.125 -0.189
059-29F -0.002 -0.005 -0.002 -0.005 -0.001 0.050 0.025 -0.001 0.053 0.026 0.012
061-30B 0.014 -0.014 0.016 -0.015 0.014 0.149 0.085 0.017 0.159 0.092 0.099
062-30C -0.011 -0.017 -0.013 -0.019 -0.012 0.172 0.079 -0.013 0.188 0.086 0.048
063-30D 0.002 0.000 0.002 0.000 0.002 0.004 0.003 0.003 0.004 0.004 0.026
064-30E -0.113 0.009 -0.131 0.010 -0.119 0.000 -0.079 -0.138 0.000 -0.091 0.027
065-30F 0.071 0.023 0.080 0.025 0.075 -0.020 0.032 0.083 -0.020 0.037 -0.006
066-31A -0.014 -0.002 -0.016 -0.002 -0.015 0.014 -0.002 -0.017 0.016 -0.002 -0.098
067-31B -0.055 -0.002 -0.058 -0.002 -0.058 0.019 -0.012 -0.061 0.021 -0.012 -0.044
068-31C 0.028 0.011 0.031 0.013 0.029 -0.112 -0.062 0.033 -0.124 -0.068 -0.12
070-31E 0.120 0.035 0.131 0.039 0.126 -0.351 -0.118 0.138 -0.395 -0.130 -0.065
071-31F 0.042 -0.013 0.046 -0.014 0.044 0.129 0.085 0.048 0.140 0.093 -0.099
073-32B -0.066 -0.016 -0.072 -0.017 -0.069 0.171 0.064 -0.075 0.177 0.066 0.008
074-32C 0.066 -0.004 0.078 -0.004 0.069 0.036 0.050 0.081 0.039 0.057 -0.081
075-32D -0.021 -0.006 -0.023 -0.007 -0.022 0.060 0.018 -0.025 0.065 0.020 -0.002
077-32F -0.073 0.000 -0.079 0.000 -0.077 0.005 -0.040 -0.083 0.005 -0.043 -0.045
078-33B 0.074 0.001 0.090 0.001 0.078 -0.007 0.039 0.094 -0.008 0.047 0.05
079-34B 0.030 -0.013 0.051 -0.020 0.031 0.129 0.074 0.053 0.203 0.119 0.351
080-35B -0.058 0.005 -0.074 0.005 -0.061 -0.015 -0.041 -0.078 -0.015 -0.051 0.07
081-36B 0.031 0.003 0.036 0.004 0.033 -0.033 0.010 0.038 -0.033 0.014 0.075
082-37B -0.074 -0.006 -0.089 -0.007 -0.078 0.064 -0.028 -0.094 0.076 -0.034 0.049
083-38A -0.032 0.013 -0.033 0.015 -0.033 -0.130 -0.081 -0.035 -0.145 -0.089 0.048
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confidence to the simultaneous optimization of the antibacte-
rial and cytotoxic properties for the set of compounds.

First, the predicted values for each property were used to
fit a model containing all the independent variables applied
in modeling the original properties. In so doing, one is able
to discriminate opposite objectives like efficacy (antibacterial
activity) and toxicity (cytotoxicity) with partial overlap of
the descriptors set used to built the PMs. (Notice that both
PMs share H4m and G(F · · · F); see Table 4.)

Once the models have been set up, the desirability
functions for each property (di) might be specified. To obtain
candidate(s) with high antibacterial potency (MIC ) 1/1 +
MIC) and low cytotoxicity (IC50 ) 1/1 + IC50), 1/1 + MIC
should be maximized (eq 5), and 1/1 + IC50 should be
minimized (eq 6). In addition, the individual di values for
the antibacterial and cytotoxicity properties were determined
by setting the Li, Ui, and Ti values, as described previously.
Then, the two di values were combined into the single overall
desirability D by means of eq 3.

The expected and predicted desirability values attribut-
able to each response plus the overall desirability for the
training set are depicted in Table 5. In addition, the LOO-
CV predicted values and the desirability values for each
response, along with the overall desirability values are
shown in Table 6. As can be seen, the overall desirability
function exhibits good statistical quality as indicated by
the RD

2 and Adj.RD
2 values (∼0.7). Moreover, a QD

2 value
of 0.63 provides an adequate level of reliability on the
method in predicting D.

Finally, the optimization of the overall desirability was
carried out to obtain the levels of the descriptors included
in the PMs that simultaneously produce the most desirable
combination of the properties. The results of the desirability-
based MOOP process are detailed in Table 7. Here are shown
the levels of the predictive variables required to reach a
highly desirable (DMIC-IC50 ) 1) fluoroquinolone-like can-
didate with the best possible compromise between antibacte-
rial and cytotoxicity properties.

3.2. MOOP-DESIRE(PHARM-TOX)-Based Ranking and
Filtering. Once found, the levels of the predictive variables
required to reach a highly desirable fluoroquinolone-like
candidate are used as a pattern to rank the library of
flouroquinolones. Previously, 10 compounds were removed
from the initial library because of their outlier nature to avoid
their negative influence in the ulterior data-fitting process.

Through a nonlinear curve-fitting process implemented in
MATLAB, we found the optimal set of weighs wi required
to minimize the differences between descriptions (∆i) and
solutions (Di) in the library of compounds to rank.

Next, ∆i is used as a ranking criterion to obtain an ordered
list of the flouroquinolones. The list start with the compound
most similar to the optimal fluoroquinolone-like candidate
previously determined by the process of simultaneous
optimization of antibacterial and cytotoxicity properties (see
the levels of the predictive variables found for the optimal
candidate in Table 7). The computed values of Di, ∆i, and
the normalized values of ∆i (D∆i) of the library of compounds
used for ranking are detailed in Table 9.

Table 10. Continued

residuals

MLR modeling MOOP ranking

FIT LOO-CV FIT LOO-CV

compound ID 1/1 + MIC 1/1 + IC50 1/1 + MIC 1/1 + IC50 dMIC dIC50 DMIC-IC50 dMIC dIC50 DMIC-IC50 (D - D∆i)

084-38B -0.038 -0.008 -0.045 -0.010 -0.040 0.084 0.013 -0.046 0.103 0.018 0.129
085-39A 0.124 0.007 0.138 0.009 0.130 -0.072 0.075 0.145 -0.072 0.088 0.035
086-39B 0.030 -0.001 0.046 -0.001 0.031 0.011 0.024 0.048 0.017 0.038 0.358
088-41A -0.008 -0.017 -0.009 -0.019 -0.008 0.180 0.100 -0.009 0.193 0.108 -0.029
090-42A 0.051 -0.012 0.055 -0.013 0.054 0.125 0.085 0.058 0.135 0.091 -0.039
092-48 0.012 0.001 0.016 0.001 0.013 -0.015 0.001 0.018 -0.016 0.003 -0.114
093-49 -0.190 0.003 -0.207 0.003 -0.200 -0.019 -0.123 -0.218 -0.019 -0.133 -0.029
094-50 -0.040 -0.003 -0.061 -0.003 -0.042 0.024 -0.005 -0.064 0.029 -0.012 -0.02
095-51 0.026 0.008 0.029 0.008 0.027 -0.079 -0.029 0.030 -0.083 -0.029 0.027
096-52 0.007 0.014 0.008 0.016 0.008 -0.142 -0.103 0.009 -0.157 -0.113 -0.087
098-54 0.049 0.012 0.051 0.012 0.050 -0.114 -0.033 0.053 -0.119 -0.033 -0.002
100-56 0.119 0.007 0.127 0.009 0.125 -0.072 0.031 0.134 -0.081 0.032 0.011
101-57 -0.256 0.001 -0.311 0.002 -0.269 -0.015 -0.492 -0.327 -0.019 -0.546
102-58 0.064 0.020 0.068 0.022 0.067 -0.201 -0.119 0.072 -0.219 -0.129 -0.037
103-59 -0.034 -0.012 -0.038 -0.013 -0.035 0.125 0.053 -0.040 0.137 0.058 -0.068
104-60 -0.016 -0.006 -0.019 -0.007 -0.017 0.061 0.023 -0.021 0.071 0.027 -0.01
105-61 0.026 -0.014 0.032 -0.016 0.027 0.135 0.068 0.033 0.155 0.080 -0.223
106-62 0.103 0.005 0.115 0.006 0.109 -0.056 -0.036 0.122 -0.062 -0.039 -0.072
107-63 -0.002 -0.007 -0.002 -0.008 -0.002 0.070 0.039 -0.003 0.081 0.046 0.059
110-70 0.028 0.005 0.041 0.005 0.029 -0.046 0.004 0.042 -0.052 0.012 -0.027
111-71 -0.069 -0.012 -0.077 -0.013 -0.073 0.116 -0.003 -0.081 0.124 -0.004 -0.096
112-72 0.122 0.007 0.135 0.008 0.128 -0.073 0.042 0.141 -0.080 0.048 -0.032
113-73 0.055 -0.002 0.059 -0.002 0.058 0.014 0.040 0.062 0.016 0.042 -0.115
114-74 -0.020 0.006 -0.023 0.007 -0.022 -0.065 -0.041 -0.024 -0.078 -0.048 0.09
115-75 -0.027 -0.008 -0.030 -0.010 -0.029 0.086 0.020 -0.031 0.107 0.029 -0.023
117-77 -0.039 0.018 -0.043 0.023 -0.040 -0.188 -0.393 -0.045 -0.235 -0.440
118-78 0.002 0.000 0.004 -0.001 0.002 0.006 0.003 0.004 0.011 0.006 -0.111

residual mean 0.00006 0.00001 -0.0003 0.00006 0.00080 0.01150 -0.01513 0.00070 0.01260 -0.01579 -0.00921
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On the basis of ∆i, it is possible to reach a ranking of the
flouroquinolones library with a corrected ranking quality
index (Ψ*) of 0.313, representing a percentage of ranking
quality (R%) of 68.7. This ranking compared with the perfect
ranking is shown in Figure 3.

As can be noted, the quality of the ranking attained (R%

) 68.7) is similar to the predictability values exhibited in
the PMs as well as in the MOOP process (QMIC

2 ) 0.693,
QIC50

2 ) 0.686, Q2
DMIC-IC50 ) 0.629). This fact indicates that

the quality of both process (desirability-based MOOP and
ranking) are strongly dependent on the quality of the initial
set of PMs. In addition, the similarity exhibited between these
values suggests that the ranking algorithm reflects the quality
of the PMs and the MOOP process on which it is based.
The correspondence between the correlation results (low and
similar residuals for each case) of the nonlinear curve-fitting
process and the MLR modeling and the MOOP process
support this choice. This can be verified in Table 10 (see
also Tables 5, 6, and 9).

On the other hand, the main goal of ranking a library of
compounds according to a pharmaceutically optimal candi-
date is to filter the fragment containing the most promising
candidates (the closest and consequently more similar to the
optimal candidate) to propose these for synthesis and
biological assessment. Thus, if the best 10% (the best 9
candidates) of the library of flouroquinolones is proposed to
be included on the drug development process, the probability
of finding a promising candidate is increased. This fraction
exhibits a percentage of quality ranking of 82.74 (Ψ* )
0.173). The ranking of this fragment is shown in Figure 4.

Filtering the most promising candidates having the best
compromise between pharmacological, toxicological, and
pharmacokinetic properties confers to the process of discov-
ery and development of new drugs an elevated degree of
rationality which is not possible to reach via traditional
QSAR which optimize sequentially each pharmaceutical
property. The sequential optimization of the properties
involved in the final pharmaceutical profile of a drug implies
to overlook the rest of the properties equally determining
on the success of the candidate as a drug or at least to leave
to the serendipity to found a candidate with acceptable
profiles of these properties simultaneously. That is, a potent
candidate once identified via QSAR has a high probability
of being discarded later as a drug because of unacceptable
toxicological or pharmacokinetic profiles with the useless
expenses of time and resources in synthesis and pharmaco-
logical assays.69 Equally improvable is the choice of using
a jury of models (pharmacological (QSAR), toxicological
(QSTR) and pharmacokinetics (QPkR) prediction models)
since that is not very probable to find a candidate with all
the properties simultaneously optimized (in this way each
property is optimized separately), and if this happens, the
results is more by chance than the fruit of a rational drug
development strategy.

As have been illustrated above, the MOOP-DESIRE
methodology can be used as rational strategy of filtering new
drug candidates from combinatorial libraries, always con-
sidering those candidates included on the applicability
domain of the PMs on which are based the process of MOOP

and ranking. In situations like this, where the main goal is
the ranking and filtering, it is advisable to use descriptors
leading to highly predictive structure-desirability relation-
ships rather than interpretable descriptors to ensure the
accuracy of the predictions and therefore, an accurate
assessment of the molecule’s overall desirability. This type
of analysis is more appropriate for early stages of the drug
development process. In contrast, the use of small and
homogeneous data sets is more suitable for later stages of
the drug development process, once a lead has been
identified, rather than for early stages. Actually, specific
structural modifications can be made over the lead according
to the results of the optimization process. For this, the use
of clearly defined structural or physicochemical descriptors
can led to interpretable structure-desirability relationships
which can be used to design new candidates with an
improved pharmaceutical profile (see ref33). Figure 5
schematically summarizes the use of the MOOP-DESIRE
methodology to aid the rational discovery and development
of new drugs.
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Table SI1. Compound ID, values of IC50 and MIC of the 117 fluoroquinolones used in this 
work. 
Compound ID IC50 (µg/ml) MICGram-neg. ( µg/ml) Inaccurate Values (<, > o ) 
001-1-Norfloxacin 500 0.06 > 
002-2-Pefloxacin 500 0.07 > 
003-3-Ofloxacin 500 0.2 > 
004-4-Ciprofloxacin 380 0.1  
005-5-Fleroxacin 500 0.35 > 
006-6-Tosufloxacin 128 0.09  
007-7-PD117558 11 0.09  
008-8 160 0.2  
009-9 500 0.4 > 
010-10 58 1.82  
011-11 500 50 > 
012-13 240 4.17  
013-14 500 0.26 > 
014-15 310 0.56  
015-16 160 0.46  
016-17 190 0.8  
017-18 500 12.5 > 
018-19 300 0.12  
019-20 310 0.13  
020-21 30 0.04  
021-22 160 0.3  
022-23A 38 0.2  
023-23B 120 0.1  
024-23C 150 0.1  
025-23D 150 0.3  
026-23E 280 12.5  
027-23F 58 0.26  
028-24A 72 0.09  
029-24C 26 0.03  
030-24D 45 0.07  
031-24E 300 0.2  
032-24F 98 0.03  
033-25A 81 0.2  
034-25B 11 0.05  
035-25C 8 0.06  
036-25D 10 0.11  
037-25E 38 0.52  
038-25F 51 0.14  
039-26C 11 0.14 < 
040-26D 22 0.26  
041-26E 120 0.6  
042-26F 160 0.21  
043-27A 23 0.52  
044-27B 8 0.13  
045-27C 8 0.07  
046-27D 38 0.26  
047-27E 110 1  
048-27F 25 0.35  
049-28A 205 0.4  
050-28B 8 0.23  
051-28C 23 0.26  
052-28D 120 0.52  
053-28E 230 30 > 
054-28F 58 0.6  
055-29B 47 0.07  
056-29C 43 0.07  
057-29D 82 0.07  
058-29E 160 0.15  
059-29F 120 0.09  
060-30A 500 0.08 > 
061-30B 150 0.05  
062-30C 140 0.23  
063-30D 500 0.34  
064-30E 500 0.91  
065-30F 250 0.17  
066-31A 230 0.26  
067-31B 23 0.2  
068-31C 18 0.08  



 

Table SI1. (Continued…) 
Compound ID IC50 (µg/ml) MICGram-neg. ( µg/ml) Inaccurate Values (<, > o ) 
070-31E 20 0.26  
071-31F 100 0.23  
072-32A 500 0.91 > 
073-32B 53 0.13  
074-32C 24 0.07  
075-32D 69 0.23  
076-32E 500 0.52 > 
077-32F 100 0.4  
078-33B 89 0.23  
079-34B 99 0.52  
080-35B 290 0.35  
081-36B 190 0.8  
082-37B 130 1.05  
083-38A 38 0.26  
084-38B 250 0.46  
085-39A 110 1  
086-39B 18 2.07  
087-40B 500 0.11 > 
088-41A 45 0.08  
089-41B 500 2.07 > 
090-42A 220 0.46  
091-42B 500 4.14 > 
092-48 69 0.46  
093-49 260 0.53  
094-50 31 0.2  
095-51 54 0.04  
096-52 14 0.09  
097-53 46 1.81 > 
098-54 72 0.04  
099-55 92 1.58 > 
100-56 100 0.08  
101-57 190 25  
102-58 15 0.01  
103-59 59 0.08  
104-60 100 0.11  
105-61 290 0.91  
106-62 11 0.02  
107-63 43 0.03  
108-64 500 2.08 > 
109-65 500 0.13 > 
110-70 67 1.05  
111-71 290 0.91  
112-72 61 0.35  
113-73 42 0.6  
114-74 46 0.56  
115-75 53 0.69  
116-76 500 25 > 
117-77 9 0.28  
118-78 270 0.6  

 



Results, fitting algorithm and functions employed in the MATLAB data-fitting 
process for the library of fluoroquinolones: 
 

Fitting Algorithm 
------------- 
diary resultados.txt 
 
XYZ=load('datos.d') 
 
W=load('Param.d'); 
x0(:,1)=W(:,1); 
 
 
RT(:,1)=XYZ(:,1); 
RT(:,2)=XYZ(:,2); 
RT(:,3)=XYZ(:,3); 
RT(:,4)=XYZ(:,4); 
RT(:,5)=XYZ(:,5); 
RT(:,6)=XYZ(:,6); 
RT(:,7)=XYZ(:,7); 
RT(:,8)=XYZ(:,8); 
RT(:,9)=XYZ(:,9); 
RT(:,10)=XYZ(:,10); 
RT(:,11)=XYZ(:,11); 
RT(:,12)=XYZ(:,12); 
RT(:,13)=XYZ(:,13); 
RT(:,14)=XYZ(:,14); 
RT(:,15)=XYZ(:,15); 
RT(:,16)=XYZ(:,16); 
RT(:,17)=XYZ(:,17); 
RT(:,18)=XYZ(:,18); 
ee=XYZ(:,19); 
 
q=85; 
 
t=sort(ee); 
 
ll=t(q,1) 
lll=t(1,1) 
llll=t(q,1)-t(1,1) 
 
 
for i=1:q 
 S(i,1)=((ee(i,1)-lll)/llll); 
end 
 
 
lb=[]' 
ub=[]' 
 
 
options=optimset('Jacobian','off','DiffMaxChange',5e30,'DiffMinChange',5e-
30,'LargeScale','on','LevenbergMarquardt','off','TolFun',1e-9,'TolX',1e-
9,'MaxIter',3000000,'MaxFunEvals',996000000); 
[u,resnorm,residual,exitflag,output]=lsqcurvefit(@funcion,x0,RT,S,lb,ub,options) 
 
 
Param(:,1)=x0; 
Param(:,2)=u; 
 
%save Param_finales.txt Param -ASCII 
 
Param 
resnorm 
Residual_absolute=max(abs(residual)) 
 
diary off 
------------- 



Functions 
------------- 
function [V] = funcion(u,RT,V) 
q=85; 
 
Par=u; 
h1=Par(1); 
h2=Par(2); 
h3=Par(3); 
h4=Par(4); 
h5=Par(5); 
h6=Par(6); 
h7=Par(7); 
h8=Par(8); 
h9=Par(9); 
h10=Par(10); 
h11=Par(11); 
h12=Par(12); 
h13=Par(13); 
h14=Par(14); 
h15=Par(15); 
h16=Par(16); 
h17=Par(17); 
h18=Par(18); 
 
for n=1:q; 
opt(n,1)=0.058539d0; 
opt(n,2)=0.097922d0; 
opt(n,3)=2.716396d0; 
opt(n,4)=0.996478d0; 
opt(n,5)=0.095266d0; 
opt(n,6)=0.266749d0; 
opt(n,7)=0.215403d0; 
opt(n,8)=0.560622d0; 
opt(n,9)=-5.39527d0; 
opt(n,10)=0.836179d0; 
opt(n,11)=202.3135d0; 
opt(n,12)=2.022805d0; 
opt(n,13)=6.533513d0; 
opt(n,14)=21.75996d0; 
opt(n,15)=-6.61889d0; 
opt(n,16)=-0.049637d0; 
opt(n,17)=0.049289d0; 
opt(n,18)=0.242573d0; 
end 
 
q1=sqrt([RT(:,1)-opt(:,1)].^2); 
q2=sqrt([RT(:,2)-opt(:,2)].^2); 
q3=sqrt([RT(:,3)-opt(:,3)].^2); 
q4=sqrt([RT(:,4)-opt(:,4)].^2); 
q5=sqrt([RT(:,5)-opt(:,5)].^2); 
q6=sqrt([RT(:,6)-opt(:,6)].^2); 
q7=sqrt([RT(:,7)-opt(:,7)].^2); 
q8=sqrt([RT(:,8)-opt(:,8)].^2); 
q9=sqrt([RT(:,9)-opt(:,9)].^2); 
q10=sqrt([RT(:,10)-opt(:,10)].^2); 
q11=sqrt([RT(:,11)-opt(:,11)].^2); 
q12=sqrt([RT(:,12)-opt(:,12)].^2); 
q13=sqrt([RT(:,13)-opt(:,13)].^2); 
q14=sqrt([RT(:,14)-opt(:,14)].^2); 
q15=sqrt([RT(:,15)-opt(:,15)].^2); 
q16=sqrt([RT(:,16)-opt(:,16)].^2); 
q17=sqrt([RT(:,17)-opt(:,17)].^2); 
q18=sqrt([RT(:,18)-opt(:,18)].^2); 
 
r1=h1*q1; 
r2=h2*q2; 
r3=h3*q3; 
r4=h4*q4; 
r5=h5*q5; 
r6=h6*q6; 
r7=h7*q7; 
r8=h8*q8; 
r9=h9*q9; 
r10=h10*q10; 
r11=h11*q11; 



r12=h12*q12; 
r13=h13*q13; 
r14=h14*q14; 
r15=h15*q15; 
r16=h16*q16; 
r17=h17*q17; 
r18=h18*q18; 
 
s=r1+r2+r3+r4+r5+r6+r7+r8+r9+r10+r11+r12+r13+r14+r15+r16+r17+r18; 
 
 
t=sort(s); 
 
ll=t(q,1); 
lll=t(1,1); 
llll=t(q,1)-t(1,1); 
 
 
for i=1:q 
 z(i,1)=1-((s(i,1)-lll)/llll); 
end 
 
V=z; 
------------- 



Results 
------------------------------------------------------------------------------ 

XYZ = 
 
   1.0e+02 * 
 
  Columns 1 through 5  
 
   0.00037000000000  -0.00027000000000   0.02289000000000   0.00995000000000   
0.00137000000000 
   0.00045000000000  -0.00040000000000   0.02002000000000   0.00978000000000   
0.00227000000000 
   0.00048000000000   0.00037000000000   0.02321000000000   0.00981000000000   
0.00271000000000 
   0.00027000000000  -0.00004000000000   0.02304000000000   0.00967000000000   
0.00228000000000 
   0.00034000000000  -0.00005000000000   0.02216000000000   0.00984000000000   
0.00225000000000 
   0.00044000000000  -0.00026000000000   0.01985000000000   0.00955000000000   
0.00285000000000 
   0.00028000000000   0.00039000000000   0.02486000000000   0.00996000000000   
0.00131000000000 
   0.00028000000000   0.00028000000000   0.02377000000000   0.01000000000000   
0.00182000000000 
   0.00036000000000   0.00039000000000   0.02377000000000   0.01000000000000   
0.00333000000000 
   0.00041000000000   0.00016000000000   0.02362000000000   0.00980000000000   
0.00203000000000 
   0.00034000000000  -0.00012000000000   0.02394000000000   0.01000000000000   
0.00222000000000 
   0.00036000000000   0.00054000000000   0.02417000000000   0.01000000000000   
0.00332000000000 
   0.00036000000000   0.00037000000000   0.02665000000000   0.00997000000000   
0.00196000000000 
   0.00041000000000   0.00046000000000   0.02297000000000   0.00966000000000   
0.00196000000000 
   0.00034000000000   0.00034000000000   0.02267000000000   0.00998000000000   
0.00255000000000 
   0.00034000000000  -0.00025000000000   0.02355000000000   0.00989000000000   
0.00304000000000 
   0.00036000000000   0.00021000000000   0.02610000000000   0.01000000000000   
0.00270000000000 
   0.00043000000000   0.00031000000000   0.02273000000000   0.00966000000000   
0.00162000000000 
   0.00055000000000  -0.00015000000000   0.02723000000000   0.00990000000000   
0.00189000000000 
   0.00034000000000   0.00017000000000   0.02242000000000   0.00994000000000   
0.00273000000000 
   0.00035000000000  -0.00003000000000   0.02144000000000   0.00980000000000   
0.00260000000000 
   0.00038000000000   0.00061000000000   0.02165000000000   0.00997000000000   
0.00316000000000 
   0.00055000000000   0.00006000000000   0.02509000000000   0.00979000000000   
0.00233000000000 
   0.00035000000000   0.00041000000000   0.02051000000000   0.00988000000000   
0.00216000000000 
   0.00041000000000   0.00052000000000   0.02170000000000   0.00959000000000   
0.00268000000000 
   0.00053000000000   0.00004000000000   0.02532000000000   0.00976000000000   
0.00180000000000 
   0.00034000000000   0.00041000000000   0.02147000000000   0.00980000000000   
0.00261000000000 
   0.00036000000000  -0.00004000000000   0.01940000000000   0.00962000000000   
0.00362000000000 
   0.00040000000000   0.00059000000000   0.01960000000000   0.00985000000000   
0.00400000000000 
   0.00045000000000   0.00051000000000   0.01925000000000   0.00949000000000   
0.00182000000000 
   0.00060000000000   0.00003000000000   0.02302000000000   0.00967000000000   
0.00268000000000 
   0.00036000000000   0.00040000000000   0.01879000000000   0.00973000000000   
0.00253000000000 
   0.00035000000000  -0.00001000000000   0.02273000000000   0.00958000000000   
0.00425000000000 



   0.00044000000000   0.00056000000000   0.02225000000000   0.00951000000000   
0.00306000000000 
   0.00035000000000   0.00045000000000   0.02259000000000   0.00966000000000   
0.00400000000000 
   0.00040000000000   0.00037000000000   0.02310000000000   0.01000000000000   
0.00282000000000 
   0.00040000000000   0.00019000000000   0.02530000000000   0.01000000000000   
0.00251000000000 
   0.00043000000000   0.00029000000000   0.02219000000000   0.00969000000000   
0.00204000000000 
   0.00052000000000  -0.00017000000000   0.02653000000000   0.00955000000000   
0.00255000000000 
   0.00037000000000   0.00015000000000   0.02136000000000   0.00991000000000   
0.00222000000000 
   0.00039000000000   0.00020000000000   0.02473000000000   0.00996000000000   
0.00334000000000 
   0.00039000000000                  0   0.02631000000000   0.00999000000000   
0.00237000000000 
   0.00045000000000   0.00012000000000   0.02384000000000   0.00967000000000   
0.00249000000000 
   0.00058000000000  -0.00032000000000   0.02742000000000   0.00980000000000   
0.00273000000000 
   0.00035000000000  -0.00005000000000   0.02452000000000   0.00984000000000   
0.00263000000000 
   0.00040000000000  -0.00030000000000   0.02080000000000   0.00990000000000   
0.00158000000000 
   0.00045000000000   0.00036000000000   0.02101000000000   0.00997000000000   
0.00265000000000 
   0.00045000000000   0.00017000000000   0.02305000000000   0.01000000000000   
0.00186000000000 
   0.00054000000000  -0.00013000000000   0.02453000000000   0.00982000000000   
0.00072000000000 
   0.00040000000000   0.00012000000000   0.01945000000000   0.00986000000000   
0.00209000000000 
   0.00039000000000   0.00052000000000   0.02256000000000   0.00994000000000   
0.00262000000000 
   0.00039000000000   0.00036000000000   0.02457000000000   0.01000000000000   
0.00223000000000 
   0.00044000000000   0.00045000000000   0.02179000000000   0.00963000000000   
0.00147000000000 
   0.00036000000000   0.00033000000000   0.02140000000000   0.00983000000000   
0.00201000000000 
   0.00047000000000  -0.00033000000000   0.02276000000000   0.00998000000000   
0.00333000000000 
   0.00066000000000  -0.00049000000000   0.02417000000000   0.00987000000000   
0.00053000000000 
   0.00051000000000  -0.00025000000000   0.02013000000000   0.00973000000000   
0.00166000000000 
   0.00044000000000  -0.00026000000000   0.01985000000000   0.00950000000000   
0.00306000000000 
   0.00047000000000   0.00002000000000   0.02134000000000   0.00986000000000   
0.00302000000000 
   0.00045000000000   0.00008000000000   0.02152000000000   0.00956000000000   
0.00224000000000 
   0.00053000000000  -0.00040000000000   0.01913000000000   0.00962000000000   
0.00354000000000 
   0.00060000000000  -0.00034000000000   0.02580000000000   0.00987000000000   
0.00392000000000 
   0.00070000000000  -0.00063000000000   0.02297000000000   0.00970000000000   
0.00378000000000 
   0.00039000000000   0.00009000000000   0.02486000000000   0.01000000000000   
0.00240000000000 
   0.00055000000000  -0.00025000000000   0.02613000000000   0.00976000000000   
0.00287000000000 
   0.00048000000000                  0   0.02458000000000   0.00984000000000   
0.00251000000000 
   0.00036000000000   0.00011000000000   0.02511000000000   0.00995000000000   
0.00243000000000 
   0.00043000000000  -0.00002000000000   0.02804000000000   0.00980000000000   
0.00390000000000 
   0.00039000000000   0.00028000000000   0.02277000000000   0.00988000000000   
0.00288000000000 
   0.00039000000000  -0.00008000000000   0.02170000000000   0.00989000000000   
0.00233000000000 
   0.00039000000000   0.00057000000000   0.02328000000000   0.00991000000000   
0.00255000000000 



   0.00041000000000   0.00100000000000   0.02395000000000   0.01000000000000   
0.00209000000000 
   0.00041000000000   0.00077000000000   0.02301000000000   0.00998000000000   
0.00274000000000 
   0.00041000000000   0.00067000000000   0.02469000000000   0.01000000000000   
0.00190000000000 
   0.00047000000000   0.00076000000000   0.02213000000000   0.00968000000000   
0.00111000000000 
   0.00059000000000  -0.00007000000000   0.02471000000000   0.00981000000000   
0.00083000000000 
   0.00041000000000   0.00053000000000   0.02198000000000   0.00996000000000   
0.00345000000000 
   0.00041000000000   0.00094000000000   0.02351000000000   0.00998000000000   
0.00359000000000 
   0.00047000000000   0.00022000000000   0.02309000000000   0.00972000000000   
0.00328000000000 
   0.00037000000000   0.00031000000000   0.02353000000000   0.00986000000000   
0.00235000000000 
   0.00038000000000   0.00047000000000   0.02167000000000   0.00966000000000   
0.00341000000000 
   0.00038000000000   0.00010000000000   0.02085000000000   0.00967000000000   
0.00279000000000 
   0.00041000000000   0.00123000000000   0.02247000000000   0.00979000000000   
0.00334000000000 
   0.00044000000000   0.00105000000000   0.02248000000000   0.00975000000000   
0.00298000000000 
   0.00041000000000   0.00103000000000   0.02109000000000   0.00979000000000   
0.00213000000000 
 
  Columns 6 through 10  
 
   0.00128000000000   0.00194000000000   0.00409000000000                  0   
0.00691000000000 
   0.00116000000000   0.00204000000000   0.00396000000000   0.20920000000000   
0.00974000000000 
   0.00174000000000   0.00177000000000   0.00439000000000   0.39050000000000   
0.01032000000000 
   0.00200000000000   0.00178000000000   0.00472000000000                  0   
0.00846000000000 
   0.00241000000000   0.00182000000000   0.00490000000000                  0   
0.00817000000000 
   0.00256000000000   0.00160000000000   0.00481000000000   0.22080000000000   
0.01088000000000 
   0.00096000000000   0.00204000000000   0.00425000000000   0.04780000000000   
0.00720000000000 
   0.00093000000000   0.00212000000000   0.00401000000000   0.04760000000000   
0.00744000000000 
   0.00101000000000   0.00201000000000   0.00420000000000   0.04760000000000   
0.00733000000000 
   0.00118000000000   0.00194000000000   0.00460000000000   0.04780000000000   
0.00723000000000 
   0.00071000000000   0.00229000000000   0.00442000000000                  0   
0.00654000000000 
   0.00090000000000   0.00211000000000   0.00416000000000   0.04760000000000   
0.00726000000000 
   0.00125000000000   0.00221000000000   0.00525000000000                  0   
0.00749000000000 
   0.00179000000000   0.00206000000000   0.00536000000000                  0   
0.00735000000000 
   0.00083000000000   0.00208000000000   0.00392000000000                  0   
0.00663000000000 
   0.00113000000000   0.00217000000000   0.00453000000000                  0   
0.00722000000000 
   0.00180000000000   0.00215000000000   0.00533000000000                  0   
0.00864000000000 
   0.00177000000000   0.00192000000000   0.00523000000000                  0   
0.00758000000000 
   0.00290000000000   0.00193000000000   0.00566000000000   0.16420000000000   
0.00776000000000 
   0.00101000000000   0.00199000000000   0.00397000000000                  0   
0.00692000000000 
   0.00131000000000   0.00230000000000   0.00476000000000                  0   
0.00786000000000 
   0.00117000000000   0.00200000000000   0.00455000000000   0.04760000000000   
0.00735000000000 
   0.00321000000000   0.00187000000000   0.00582000000000   0.16430000000000   
0.00844000000000 



   0.00133000000000   0.00189000000000   0.00432000000000                  0   
0.00763000000000 
   0.00333000000000   0.00177000000000   0.00569000000000                  0   
0.00880000000000 
   0.00405000000000   0.00173000000000   0.00605000000000   0.16420000000000   
0.00915000000000 
   0.00247000000000   0.00170000000000   0.00459000000000                  0   
0.00832000000000 
   0.00153000000000   0.00268000000000   0.00514000000000                  0   
0.00869000000000 
   0.00123000000000   0.00195000000000   0.00500000000000   0.04760000000000   
0.00806000000000 
   0.00177000000000   0.00188000000000   0.00555000000000                  0   
0.00848000000000 
   0.00315000000000   0.00203000000000   0.00583000000000   0.16520000000000   
0.00862000000000 
   0.00157000000000   0.00226000000000   0.00450000000000                  0   
0.00819000000000 
   0.00209000000000   0.00219000000000   0.00551000000000                  0   
0.00915000000000 
   0.00266000000000   0.00179000000000   0.00584000000000                  0   
0.00877000000000 
   0.00204000000000   0.00233000000000   0.00505000000000                  0   
0.00856000000000 
   0.00119000000000   0.00215000000000   0.00429000000000   0.04780000000000   
0.00705000000000 
   0.00157000000000   0.00217000000000   0.00539000000000                  0   
0.00759000000000 
   0.00189000000000   0.00189000000000   0.00512000000000                  0   
0.00741000000000 
   0.00209000000000   0.00200000000000   0.00646000000000   0.16600000000000   
0.01040000000000 
   0.00118000000000   0.00193000000000   0.00391000000000                  0   
0.00696000000000 
   0.00204000000000   0.00195000000000   0.00464000000000   0.04780000000000   
0.00716000000000 
   0.00202000000000   0.00198000000000   0.00563000000000                  0   
0.00824000000000 
   0.00258000000000   0.00175000000000   0.00533000000000                  0   
0.00770000000000 
   0.00305000000000   0.00196000000000   0.00591000000000   0.16660000000000   
0.00827000000000 
   0.00188000000000   0.00180000000000   0.00436000000000                  0   
0.00726000000000 
   0.00170000000000   0.00192000000000   0.00422000000000                  0   
0.00734000000000 
   0.00136000000000   0.00206000000000   0.00429000000000   0.04780000000000   
0.00738000000000 
   0.00171000000000   0.00207000000000   0.00536000000000                  0   
0.00847000000000 
   0.00259000000000   0.00212000000000   0.00570000000000   0.16640000000000   
0.00800000000000 
   0.00139000000000   0.00188000000000   0.00399000000000                  0   
0.00749000000000 
   0.00148000000000   0.00203000000000   0.00436000000000   0.04780000000000   
0.00714000000000 
   0.00196000000000   0.00210000000000   0.00543000000000                  0   
0.00789000000000 
   0.00205000000000   0.00182000000000   0.00520000000000                  0   
0.00762000000000 
   0.00135000000000   0.00180000000000   0.00405000000000                  0   
0.00726000000000 
   0.00162000000000   0.00180000000000   0.00439000000000   0.20730000000000   
0.01035000000000 
   0.00292000000000   0.00184000000000   0.00516000000000   0.66290000000000   
0.01088000000000 
   0.00228000000000   0.00192000000000   0.00479000000000   0.20120000000000   
0.01057000000000 
   0.00284000000000   0.00166000000000   0.00495000000000   0.21580000000000   
0.01109000000000 
   0.00280000000000   0.00165000000000   0.00494000000000   0.20730000000000   
0.01192000000000 
   0.00163000000000   0.00189000000000   0.00518000000000                  0   
0.00805000000000 
   0.00214000000000   0.00173000000000   0.00470000000000   0.20340000000000   
0.01095000000000 



   0.00300000000000   0.00205000000000   0.00554000000000   0.16690000000000   
0.00883000000000 
   0.00296000000000   0.00173000000000   0.00519000000000   0.69030000000000   
0.01114000000000 
   0.00181000000000   0.00192000000000   0.00532000000000                  0   
0.00782000000000 
   0.00298000000000   0.00190000000000   0.00608000000000   0.16490000000000   
0.00885000000000 
   0.00253000000000   0.00202000000000   0.00563000000000                  0   
0.00807000000000 
   0.00222000000000   0.00206000000000   0.00473000000000                  0   
0.00685000000000 
   0.00191000000000   0.00192000000000   0.00611000000000                  0   
0.00750000000000 
   0.00155000000000   0.00215000000000   0.00438000000000                  0   
0.00717000000000 
   0.00138000000000   0.00175000000000   0.00442000000000                  0   
0.00573000000000 
   0.00110000000000   0.00217000000000   0.00430000000000                  0   
0.00772000000000 
   0.00106000000000   0.00234000000000   0.00432000000000   0.12870000000000   
0.00923000000000 
   0.00132000000000   0.00174000000000   0.00423000000000   0.04770000000000   
0.00709000000000 
   0.00162000000000   0.00180000000000   0.00501000000000                  0   
0.00805000000000 
   0.00228000000000   0.00171000000000   0.00501000000000                  0   
0.00709000000000 
   0.00280000000000   0.00169000000000   0.00593000000000   0.16280000000000   
0.00893000000000 
   0.00110000000000   0.00188000000000   0.00433000000000   0.04750000000000   
0.00607000000000 
   0.00108000000000   0.00223000000000   0.00425000000000   0.04760000000000   
0.00764000000000 
   0.00337000000000   0.00199000000000   0.00603000000000                  0   
0.01035000000000 
   0.00258000000000   0.00204000000000   0.00525000000000                  0   
0.00851000000000 
   0.00259000000000   0.00165000000000   0.00483000000000                  0   
0.00899000000000 
   0.00277000000000   0.00164000000000   0.00497000000000                  0   
0.00822000000000 
   0.00231000000000   0.00211000000000   0.00485000000000   0.12890000000000   
0.01059000000000 
   0.00238000000000   0.00130000000000   0.00458000000000   0.04760000000000   
0.00828000000000 
   0.00297000000000   0.00224000000000   0.00637000000000                  0   
0.01506000000000 
 
  Columns 11 through 15  
 
   1.82617000000000   0.02048000000000   0.04730000000000   0.32161000000000  -
0.04719000000000 
   2.20699000000000   0.02059000000000   0.03874000000000   0.28138000000000  -
0.05259000000000 
   1.56391000000000   0.02044000000000   0.06272000000000   0.33234000000000  -
0.05141000000000 
   1.32242000000000   0.02043000000000   0.05807000000000   0.36196000000000  -
0.04530000000000 
   1.36448000000000   0.02035000000000   0.06964000000000   0.32073000000000  -
0.04825000000000 
   2.54343000000000   0.02062000000000   0.05472000000000   0.37253000000000  -
0.06206000000000 
   1.14921000000000   0.02044000000000   0.04608000000000   0.28955000000000  -
0.04754000000000 
   1.14921000000000   0.02042000000000   0.04526000000000   0.26332000000000  -
0.05070000000000 
   1.19127000000000   0.02036000000000   0.04190000000000   0.25320000000000  -
0.05217000000000 
   1.24911000000000   0.02038000000000   0.04374000000000   0.29643000000000  -
0.05191000000000 
   1.07306000000000   0.02035000000000   0.02495000000000   0.21298000000000  -
0.03203000000000 
   1.12386000000000   0.02036000000000   0.02580000000000   0.26162000000000  -
0.05086000000000 
   1.12386000000000   0.02025000000000   0.02706000000000   0.25300000000000  -
0.04462000000000 



   1.18169000000000   0.02043000000000   0.05121000000000   0.31500000000000  -
0.04819000000000 
   1.07306000000000   0.02030000000000   0.02115000000000   0.26728000000000  -
0.04550000000000 
   1.14048000000000   0.02035000000000   0.04177000000000   0.28364000000000  -
0.04586000000000 
   1.19127000000000   0.02025000000000   0.04163000000000   0.24311000000000  -
0.04906000000000 
   1.24911000000000   0.02043000000000   0.06977000000000   0.34572000000000  -
0.05034000000000 
   1.36479000000000   0.02049000000000   0.05074000000000   0.35073000000000  -
0.05781000000000 
   1.14048000000000   0.02031000000000   0.03724000000000   0.26583000000000  -
0.04504000000000 
   1.21189000000000   0.02035000000000   0.04599000000000   0.29257000000000  -
0.04736000000000 
   1.26269000000000   0.02036000000000   0.06110000000000   0.33345000000000  -
0.05166000000000 
   1.43620000000000   0.02049000000000   0.05610000000000   0.36310000000000  -
0.05991000000000 
   1.21189000000000   0.02031000000000   0.04472000000000   0.28013000000000  -
0.04630000000000 
   1.47312000000000   0.02044000000000   0.08087000000000   0.43557000000000  -
0.05079000000000 
   1.58879000000000   0.02049000000000   0.08018000000000   0.39534000000000  -
0.06002000000000 
   1.36448000000000   0.02031000000000   0.05370000000000   0.35911000000000  -
0.05037000000000 
   1.27931000000000   0.02035000000000   0.05324000000000   0.31793000000000  -
0.05040000000000 
   1.33010000000000   0.02036000000000   0.04987000000000   0.31548000000000  -
0.05716000000000 
   1.38794000000000   0.02044000000000   0.07645000000000   0.43187000000000  -
0.05360000000000 
   1.50362000000000   0.02049000000000   0.06183000000000   0.40217000000000  -
0.05132000000000 
   1.27931000000000   0.02031000000000   0.04823000000000   0.26637000000000  -
0.04866000000000 
   1.35413000000000   0.02035000000000   0.05623000000000   0.38917000000000  -
0.05125000000000 
   1.46276000000000   0.02044000000000   0.08216000000000   0.41155000000000  -
0.05779000000000 
   1.35413000000000   0.02031000000000   0.05206000000000   0.35823000000000  -
0.05152000000000 
   1.89565000000000   0.02049000000000   0.04676000000000   0.33442000000000  -
0.05389000000000 
   1.89565000000000   0.02040000000000   0.04580000000000   0.25428000000000  -
0.05467000000000 
   1.97487000000000   0.02056000000000   0.06911000000000   0.40126000000000  -
0.04825000000000 
   2.13331000000000   0.02061000000000   0.06230000000000   0.45272000000000  -
0.05408000000000 
   1.82617000000000   0.02045000000000   0.04608000000000   0.28411000000000  -
0.04773000000000 
   2.09628000000000   0.02054000000000   0.04008000000000   0.43856000000000  -
0.05687000000000 
   2.09628000000000   0.02045000000000   0.04234000000000   0.34783000000000  -
0.06320000000000 
   2.17550000000000   0.02061000000000   0.06284000000000   0.46849000000000  -
0.05038000000000 
   2.33394000000000   0.02065000000000   0.05631000000000   0.48951000000000  -
0.05630000000000 
   2.02680000000000   0.02050000000000   0.03903000000000   0.39993000000000  -
0.04984000000000 
   1.94300000000000   0.02051000000000   0.04223000000000   0.29342000000000  -
0.05033000000000 
   2.01248000000000   0.02052000000000   0.04278000000000   0.33244000000000  -
0.05551000000000 
   2.01248000000000   0.02042000000000   0.04325000000000   0.27359000000000  -
0.06145000000000 
   2.25014000000000   0.02063000000000   0.05595000000000   0.37893000000000  -
0.05451000000000 
   1.94300000000000   0.02047000000000   0.04034000000000   0.28410000000000  -
0.04913000000000 
   1.99596000000000   0.02052000000000   0.04191000000000   0.36580000000000  -
0.05517000000000 



   1.99596000000000   0.02043000000000   0.04008000000000   0.26713000000000  -
0.05745000000000 
   2.07518000000000   0.02059000000000   0.06652000000000   0.44928000000000  -
0.05331000000000 
   1.92649000000000   0.02047000000000   0.03998000000000   0.31684000000000  -
0.04750000000000 
   2.28241000000000   0.02055000000000   0.04126000000000   0.21551000000000  -
0.05751000000000 
   2.53720000000000   0.02072000000000   0.05412000000000   0.43502000000000  -
0.07324000000000 
   2.36734000000000   0.02068000000000   0.06985000000000   0.31577000000000  -
0.06383000000000 
   2.54343000000000   0.02062000000000   0.05652000000000   0.32319000000000  -
0.06013000000000 
   2.61884000000000   0.02055000000000   0.05692000000000   0.31796000000000  -
0.05988000000000 
   1.31652000000000   0.02044000000000   0.06670000000000   0.35691000000000  -
0.05324000000000 
   2.46955000000000   0.02068000000000   0.05989000000000   0.42901000000000  -
0.06381000000000 
   1.43220000000000   0.02049000000000   0.05016000000000   0.37750000000000  -
0.04892000000000 
   2.63941000000000   0.02072000000000   0.05267000000000   0.42242000000000  -
0.06619000000000 
   1.99596000000000   0.02042000000000   0.04319000000000   0.29217000000000  -
0.05956000000000 
   2.23362000000000   0.02063000000000   0.05788000000000   0.43829000000000  -
0.06136000000000 
   1.30695000000000   0.02061000000000   0.04191000000000   0.36259000000000  -
0.06211000000000 
   1.19127000000000   0.02046000000000   0.05613000000000   0.28141000000000  -
0.04321000000000 
   1.24911000000000   0.02026000000000   0.04092000000000   0.31555000000000  -
0.04600000000000 
   1.19127000000000   0.02046000000000   0.05838000000000   0.29409000000000  -
0.04888000000000 
   1.19127000000000   0.02047000000000   0.04192000000000   0.31748000000000  -
0.04788000000000 
   1.19127000000000   0.02040000000000   0.04255000000000   0.27626000000000  -
0.04817000000000 
   1.24206000000000   0.02037000000000   0.04038000000000   0.28204000000000  -
0.05414000000000 
   1.24206000000000   0.02047000000000   0.05893000000000   0.30322000000000  -
0.05447000000000 
   1.24206000000000   0.02037000000000   0.05893000000000   0.27406000000000  -
0.05975000000000 
   1.29990000000000   0.02054000000000   0.08739000000000   0.37244000000000  -
0.05087000000000 
   1.41558000000000   0.02060000000000   0.05284000000000   0.42772000000000  -
0.06601000000000 
   1.24206000000000   0.02048000000000   0.04561000000000   0.31088000000000  -
0.05478000000000 
   1.24206000000000   0.02041000000000   0.04357000000000   0.29974000000000  -
0.05475000000000 
   1.53096000000000   0.02061000000000   0.05461000000000   0.44661000000000  -
0.06821000000000 
   1.41528000000000   0.02046000000000   0.06752000000000   0.38115000000000  -
0.04354000000000 
   1.41528000000000   0.02046000000000   0.06961000000000   0.37863000000000  -
0.05084000000000 
   1.41528000000000   0.02047000000000   0.05774000000000   0.39596000000000  -
0.05054000000000 
   1.46607000000000   0.02037000000000   0.05118000000000   0.38075000000000  -
0.05986000000000 
   1.52391000000000   0.02051000000000   0.07321000000000   0.41061000000000  -
0.05920000000000 
   1.46607000000000   0.02017000000000   0.04969000000000   0.33240000000000  -
0.05725000000000 
 
  Columns 16 through 19  
 
   0.00234000000000   0.00075000000000   0.00390000000000   0.00956023808000 
   0.00012000000000   0.00170000000000   0.00486000000000   0.00968283778000 
   0.00454000000000   0.00100000000000   0.00308000000000   0.00452294036000 
   0.00803000000000   0.00079000000000   0.00344000000000   0.00751452373000 
   0.00790000000000   0.00073000000000   0.00334000000000   0.00788136585000 
   0.00198000000000   0.00128000000000   0.00370000000000   0.00775569801000 



   0.00411000000000   0.00101000000000   0.00419000000000   0.00943365736000 
   0.00128000000000   0.00106000000000   0.00396000000000   0.00958561395000 
   0.00297000000000   0.00091000000000   0.00382000000000   0.00792695871000 
   0.00577000000000   0.00094000000000   0.00364000000000   0.00900967265000 
   0.00165000000000   0.00102000000000   0.00451000000000   0.00806225385000 
   0.00212000000000   0.00083000000000   0.00417000000000   0.00777236997000 
   0.00380000000000   0.00102000000000   0.00425000000000   0.00903740194000 
   0.00362000000000   0.00087000000000   0.00321000000000   0.00760931503000 
   0.00238000000000   0.00082000000000   0.00427000000000   0.00856381036000 
   0.00395000000000   0.00096000000000   0.00431000000000   0.00930338659000 
   0.00403000000000   0.00102000000000   0.00394000000000   0.00879139843000 
   0.00444000000000   0.00085000000000   0.00304000000000   0.00881999744000 
   0.00447000000000   0.00086000000000   0.00314000000000   0.00822975967000 
   0.00323000000000   0.00085000000000   0.00416000000000   0.00896161976000 
   0.00591000000000   0.00092000000000   0.00399000000000   0.00790285479000 
   0.00668000000000   0.00091000000000   0.00371000000000   0.00507807136000 
   0.00589000000000   0.00085000000000   0.00308000000000   0.00699329227000 
   0.00396000000000   0.00083000000000   0.00380000000000   0.00713444679000 
   0.00699000000000   0.00073000000000   0.00280000000000   0.00736875703000 
   0.00868000000000   0.00079000000000   0.00281000000000   0.00756194221000 
   0.00651000000000   0.00071000000000   0.00349000000000   0.00811468910000 
   0.00831000000000   0.00103000000000   0.00358000000000   0.00707031450000 
   0.00647000000000   0.00096000000000   0.00318000000000                  0 
   0.00696000000000   0.00086000000000   0.00278000000000   0.00646828925000 
   0.00649000000000   0.00094000000000   0.00300000000000   0.00666718845000 
   0.00645000000000   0.00090000000000   0.00329000000000   0.00685292049000 
   0.00797000000000   0.00090000000000   0.00308000000000   0.00752817139000 
   0.00884000000000   0.00074000000000   0.00242000000000   0.00707227161000 
   0.00749000000000   0.00082000000000   0.00283000000000   0.00788583802000 
   0.00196000000000   0.00084000000000   0.00389000000000   0.00835182296000 
   0.00458000000000   0.00098000000000   0.00395000000000   0.00791052257000 
   0.00154000000000   0.00074000000000   0.00299000000000   0.00822231384000 
   0.00080000000000   0.00115000000000   0.00345000000000   0.00811035259000 
   0.00196000000000   0.00076000000000   0.00395000000000   0.00905308255000 
   0.00282000000000   0.00076000000000   0.00348000000000   0.00871746279000 
   0.00636000000000   0.00086000000000   0.00302000000000   0.00800375590000 
   0.00225000000000   0.00067000000000   0.00258000000000   0.00859591919000 
   0.00400000000000   0.00081000000000   0.00277000000000   0.00793202579000 
   0.00364000000000   0.00070000000000   0.00336000000000   0.00885000372000 
   0.00392000000000   0.00079000000000   0.00412000000000   0.00882246586000 
   0.00327000000000   0.00084000000000   0.00385000000000   0.00717045017000 
   0.00592000000000   0.00095000000000   0.00386000000000   0.00733222073000 
   0.00361000000000   0.00091000000000   0.00322000000000   0.00768894411000 
   0.00388000000000   0.00078000000000   0.00396000000000   0.00780156495000 
   0.00330000000000   0.00083000000000   0.00390000000000   0.00795764632000 
   0.00689000000000   0.00099000000000   0.00370000000000   0.00708640834000 
   0.00352000000000   0.00072000000000   0.00275000000000   0.00825623026000 
   0.00417000000000   0.00076000000000   0.00387000000000   0.00847957399000 
  -0.00099000000000   0.00149000000000   0.00433000000000   0.00820259960000 
  -0.00277000000000   0.00137000000000   0.00392000000000   0.00699294631000 
  -0.00184000000000   0.00135000000000   0.00374000000000   0.00893926673000 
   0.00361000000000   0.00130000000000   0.00374000000000   0.00715116772000 
   0.00111000000000   0.00132000000000   0.00369000000000   0.00695488358000 
   0.00561000000000   0.00088000000000   0.00298000000000   0.00857483935000 
  -0.00072000000000   0.00131000000000   0.00348000000000   0.00803047145000 
   0.00622000000000   0.00086000000000   0.00303000000000   0.00596073411000 
   0.00256000000000   0.00137000000000   0.00359000000000   0.00357578369000 
   0.00474000000000   0.00088000000000   0.00353000000000   0.00763287888000 
   0.00450000000000   0.00087000000000   0.00300000000000   0.00728741459000 
   0.00411000000000   0.00101000000000   0.00316000000000   0.00770094438000 
   0.00308000000000   0.00087000000000   0.00376000000000   0.00920308796000 
   0.00041000000000   0.00083000000000   0.00269000000000   0.00771323324000 
   0.00264000000000   0.00086000000000   0.00399000000000   0.00928644627000 
   0.00431000000000   0.00081000000000   0.00352000000000   0.00664475750000 
   0.00210000000000   0.00107000000000   0.00394000000000   0.00956693446000 
   0.00327000000000   0.00128000000000   0.00398000000000   0.00894731645000 
   0.00301000000000   0.00087000000000   0.00351000000000   0.00738327846000 
   0.00386000000000   0.00090000000000   0.00341000000000   0.00837675126000 
   0.00505000000000   0.00080000000000   0.00282000000000   0.00889883834000 
   0.00376000000000   0.00081000000000   0.00274000000000   0.00640697800000 
   0.00512000000000   0.00080000000000   0.00333000000000   0.00445779858000 
   0.00397000000000   0.00111000000000   0.00384000000000   0.00839600914000 
   0.00834000000000   0.00097000000000   0.00295000000000   0.00637166182000 
   0.00649000000000   0.00083000000000   0.00294000000000   0.00711946204000 
   0.00556000000000   0.00074000000000   0.00310000000000   0.00752853064000 
   0.00712000000000   0.00068000000000   0.00298000000000   0.00655293070000 
   0.00676000000000   0.00116000000000   0.00344000000000   0.00753751036000 



   0.00809000000000   0.00062000000000   0.00260000000000   0.00674681071000 
   0.00657000000000   0.00191000000000   0.00331000000000   0.00775209090000 
 
 
ll = 
 
   0.96828377800000 
 
 
lll = 
 
     0 
 
 
llll = 
 
   0.96828377800000 
 
 
lb = 
 
     [] 
 
 
ub = 
 
     [] 
 
Optimization terminated: relative function value 
 changing by less than OPTIONS.TolFun. 
 
u = 
 
  23.32337655232970 
  -1.25936503981221 
   1.19031263618303 
  -9.77159165278830 
   3.70980543978095 
   4.90340625220429 
  -1.05301468060386 
  -6.97975645980404 
   0.05225717396115 
   1.57264571873312 
  -0.00117462388857 
  11.36454165681105 
   0.02628214348797 
  -0.01900506111183 
   0.01252267186125 
   0.56028855564767 
  -9.24808297862453 
  -5.81129581562833 
 
 
resnorm = 
 
   0.94055734963692 
 
 
residual = 
 
   0.00609387375019 
  -0.01268473213479 
  -0.08465463557102 
   0.09415527339313 
   0.02496705552289 
  -0.08358845160060 
  -0.02016293223171 
  -0.04737579153633 
  -0.06600938625237 
  -0.08966309248955 
   0.10537179416280 
  -0.01478718809042 
   0.03374491100404 
   0.02501303764194 
   0.01589998179080 
  -0.07309767870972 
   0.01822284164544 



  -0.04775026029695 
  -0.04411652904139 
  -0.03051923358595 
   0.00357284458239 
   0.11908337059162 
  -0.00718109336928 
   0.11893519972093 
  -0.10374750044163 
  -0.18482692753230 
   0.07438656499821 
  -0.08903765307501 
   0.42437855911845 
   0.05196253426788 
  -0.00989189131866 
   0.02365478469217 
  -0.18333350320319 
  -0.03623494152043 
  -0.18853273217238 
  -0.07454391536612 
   0.00086237172915 
  -0.04354373216678 
   0.16239920834448 
  -0.04238573052003 
  -0.12702571813465 
  -0.07506563910853 
  -0.05340187594706 
  -0.05332204597203 
  -0.02309882687308 
   0.06896556993335 
   0.02035859409890 
   0.09549555064642 
   0.03970889360856 
   0.07348600829793 
  -0.03340358638977 
   0.05821064705870 
  -0.02455307212971 
   0.01744360586450 
  -0.07743578926800 
  -0.37427473189553 
  -0.09945942738271 
  -0.09891392735489 
  -0.07233503882054 
  -0.07620228527653 
  -0.15498371786568 
  -0.05422179392841 
  -0.36929088055010 
   0.00334854279089 
   0.01494115844809 
   0.08887554934827 
  -0.00193609100698 
  -0.00567903126387 
  -0.05669874025119 
   0.06509591849070 
  -0.02914429947808 
  -0.04020831041030 
   0.01280490368444 
   0.04121152587341 
  -0.01875684277602 
   0.20258803656317 
   0.05729862864947 
  -0.08580994850542 
   0.00623483773136 
   0.07293101951889 
   0.00790014416087 
   0.09290840614391 
  -0.11451813827132 
   0.00095762228734 
   0.08491135159753 
 
 
exitflag = 
 
     3 
 
 
output =  
 



    firstorderopt: 3.253484379572846e-06 
       iterations: 29 
        funcCount: 570 
     cgiterations: 243 
        algorithm: 'large-scale: trust-region reflective Newton' 
          message: [1x87 char] 
 
 
Param = 
 
  18.54647095176016  23.32337655232970 
  -0.67312758845460  -1.25936503981221 
   1.48491721689638   1.19031263618303 
 -15.46732577325159  -9.77159165278830 
   3.57843783810543   3.70980543978095 
   4.55125379009545   4.90340625220429 
  -0.99036067733401  -1.05301468060386 
  -8.20131095208484  -6.97975645980404 
   0.05712802821842   0.05225717396115 
   1.68563900562438   1.57264571873312 
  -0.00096502914294  -0.00117462388857 
  -0.00576779400417  11.36454165681105 
   0.03416326819399   0.02628214348797 
  -0.00882706773381  -0.01900506111183 
  -0.03675360885525   0.01252267186125 
   0.30148575065305   0.56028855564767 
 -10.65765272071565  -9.24808297862453 
  -6.11294707198806  -5.81129581562833 
 
 
resnorm = 
 
   0.94055734963692 
 
 
Residual_absolute = 
 
   0.42437855911845 
-------------------------------------------------------------------------------------- 

 



 

Table SI2. DRAGON Molecular descriptors included on the MLR PMs and used in the MOOP 
process. 

Compound ID Molecular Descriptors 
JGI6 MATS3e GATS5p FDI Mor24v H6v R4e+ R5p G(F..F) 

004-4-Ciprofloxacin 0.037 -0.027 2.289 0.995 0.137 0.128 0.194 0.409 0.000 
006-6-Tosufloxacin 0.045 -0.040 2.002 0.978 0.227 0.116 0.204 0.396 20.920 
007-7-PD117558 0.037 0.060 2.233 0.987 0.315 0.172 0.184 0.491 4.760 
008-8 0.030 0.061 2.316 0.981 0.230 0.168 0.185 0.466 4.760 
010-10 0.048 0.037 2.321 0.981 0.271 0.174 0.177 0.439 39.050 
012-13 0.036 0.080 2.287 0.968 0.280 0.190 0.171 0.464 4.760 
014-15 0.027 -0.004 2.304 0.967 0.228 0.200 0.178 0.472 0.000 
015-16 0.034 -0.005 2.216 0.984 0.225 0.241 0.182 0.490 0.000 
016-17 0.044 -0.026 1.985 0.955 0.285 0.256 0.160 0.481 22.080 
018-19 0.028 0.039 2.486 0.996 0.131 0.096 0.204 0.425 4.780 
019-20 0.028 0.028 2.377 1.000 0.182 0.093 0.212 0.401 4.760 
020-21 0.036 0.039 2.377 1.000 0.333 0.101 0.201 0.420 4.760 
021-22 0.041 0.016 2.362 0.980 0.203 0.118 0.194 0.460 4.780 
022-23A 0.034 -0.012 2.394 1.000 0.222 0.071 0.229 0.442 0.000 
023-23B 0.036 0.054 2.417 1.000 0.332 0.090 0.211 0.416 4.760 
024-23C 0.036 0.037 2.665 0.997 0.196 0.125 0.221 0.525 0.000 
025-23D 0.041 0.046 2.297 0.966 0.196 0.179 0.206 0.536 0.000 
026-23E 0.051 -0.002 2.753 0.994 0.096 0.227 0.207 0.586 16.720 
027-23F 0.034 0.034 2.267 0.998 0.255 0.083 0.208 0.392 0.000 
028-24A 0.034 -0.025 2.355 0.989 0.304 0.113 0.217 0.453 0.000 
029-24C 0.036 0.021 2.610 1.000 0.270 0.180 0.215 0.533 0.000 
030-24D 0.043 0.031 2.273 0.966 0.162 0.177 0.192 0.523 0.000 
031-24E 0.055 -0.015 2.723 0.990 0.189 0.290 0.193 0.566 16.420 
032-24F 0.034 0.017 2.242 0.994 0.273 0.101 0.199 0.397 0.000 
033-25A 0.035 -0.003 2.144 0.980 0.260 0.131 0.230 0.476 0.000 
034-25B 0.038 0.061 2.165 0.997 0.316 0.117 0.200 0.455 4.760 
036-25D 0.042 0.052 2.100 0.960 0.158 0.176 0.178 0.537 0.000 
037-25E 0.055 0.006 2.509 0.979 0.233 0.321 0.187 0.582 16.430 
038-25F 0.035 0.041 2.051 0.988 0.216 0.133 0.189 0.432 0.000 
040-26D 0.041 0.052 2.170 0.959 0.268 0.333 0.177 0.569 0.000 
041-26E 0.053 0.004 2.532 0.976 0.180 0.405 0.173 0.605 16.420 
042-26F 0.034 0.041 2.147 0.980 0.261 0.247 0.170 0.459 0.000 
043-27A 0.036 -0.004 1.940 0.962 0.362 0.153 0.268 0.514 0.000 
044-27B 0.040 0.059 1.960 0.985 0.400 0.123 0.195 0.500 4.760 
045-27C 0.040 0.043 2.143 0.989 0.268 0.170 0.199 0.563 0.000 
046-27D 0.045 0.051 1.925 0.949 0.182 0.177 0.188 0.555 0.000 
047-27E 0.060 0.003 2.302 0.967 0.268 0.315 0.203 0.583 16.520 
048-27F 0.036 0.040 1.879 0.973 0.253 0.157 0.226 0.450 0.000 
049-28A 0.035 -0.001 2.273 0.958 0.425 0.209 0.219 0.551 0.000 
050-28B 0.038 0.063 2.289 0.982 0.485 0.182 0.175 0.527 4.760 
051-28C 0.038 0.047 2.441 0.986 0.402 0.222 0.173 0.575 0.000 
052-28D 0.044 0.056 2.225 0.951 0.306 0.266 0.179 0.584 0.000 
054-28F 0.035 0.045 2.259 0.966 0.400 0.204 0.233 0.505 0.000 
055-29B 0.040 0.037 2.310 1.000 0.282 0.119 0.215 0.429 4.780 
056-29C 0.040 0.019 2.530 1.000 0.251 0.157 0.217 0.539 0.000 
057-29D 0.043 0.029 2.219 0.969 0.204 0.189 0.189 0.512 0.000 
058-29E 0.052 -0.017 2.653 0.955 0.255 0.209 0.200 0.646 16.600 
059-29F 0.037 0.015 2.136 0.991 0.222 0.118 0.193 0.391 0.000 
061-30B 0.039 0.020 2.473 0.996 0.334 0.204 0.195 0.464 4.780 
062-30C 0.039 0.000 2.631 0.999 0.237 0.202 0.198 0.563 0.000 
063-30D 0.045 0.012 2.384 0.967 0.249 0.258 0.175 0.533 0.000 
064-30E 0.058 -0.032 2.742 0.980 0.273 0.305 0.196 0.591 16.660 
065-30F 0.035 -0.005 2.452 0.984 0.263 0.188 0.180 0.436 0.000 
066-31A 0.040 -0.030 2.080 0.990 0.158 0.170 0.192 0.422 0.000 
067-31B 0.045 0.036 2.101 0.997 0.265 0.136 0.206 0.429 4.780 
068-31C 0.045 0.017 2.305 1.000 0.186 0.171 0.207 0.536 0.000 
070-31E 0.054 -0.013 2.453 0.982 0.072 0.259 0.212 0.570 16.640 
071-31F 0.040 0.012 1.945 0.986 0.209 0.139 0.188 0.399 0.000 
073-32B 0.039 0.052 2.256 0.994 0.262 0.148 0.203 0.436 4.780 
074-32C 0.039 0.036 2.457 1.000 0.223 0.196 0.210 0.543 0.000 
075-32D 0.044 0.045 2.179 0.963 0.147 0.205 0.182 0.520 0.000 
077-32F 0.036 0.033 2.140 0.983 0.201 0.135 0.180 0.405 0.000 
078-33B 0.047 -0.033 2.276 0.998 0.333 0.162 0.180 0.439 20.730 
079-34B 0.066 -0.049 2.417 0.987 0.053 0.292 0.184 0.516 66.290 
080-35B 0.051 -0.025 2.013 0.973 0.166 0.228 0.192 0.479 20.120 
081-36B 0.044 -0.026 1.985 0.950 0.306 0.284 0.166 0.495 21.580 
082-37B 0.047 0.002 2.134 0.986 0.302 0.280 0.165 0.494 20.730 

 



Table SI2. (Continued…) 
Compound ID Molecular Descriptors 

JGI6 MATS3e GATS5p FDI Mor24v H6v R4e+ R5p G(F..F) 
083-38A 0.045 0.008 2.152 0.956 0.224 0.163 0.189 0.518 0.000 
084-38B 0.053 -0.040 1.913 0.962 0.354 0.214 0.173 0.470 20.340 
085-39A 0.060 -0.034 2.580 0.987 0.392 0.300 0.205 0.554 16.690 
086-39B 0.070 -0.063 2.297 0.970 0.378 0.296 0.173 0.519 69.030 
088-41A 0.039 0.009 2.486 1.000 0.240 0.181 0.192 0.532 0.000 
090-42A 0.055 -0.025 2.613 0.976 0.287 0.298 0.190 0.608 16.490 
092-48 0.048 0.000 2.458 0.984 0.251 0.253 0.202 0.563 0.000 
093-49 0.036 0.011 2.511 0.995 0.243 0.222 0.206 0.473 0.000 
094-50 0.043 -0.002 2.804 0.980 0.390 0.191 0.192 0.611 0.000 
095-51 0.039 0.028 2.277 0.988 0.288 0.155 0.215 0.438 0.000 
096-52 0.039 -0.008 2.170 0.989 0.233 0.138 0.175 0.442 0.000 
098-54 0.039 0.057 2.328 0.991 0.255 0.110 0.217 0.430 0.000 
100-56 0.041 0.100 2.395 1.000 0.209 0.106 0.234 0.432 12.870 
101-57 0.059 0.040 2.740 0.992 0.202 0.291 0.228 0.568 37.570 
102-58 0.041 0.077 2.301 0.998 0.274 0.132 0.174 0.423 4.770 
103-59 0.041 0.067 2.469 1.000 0.190 0.162 0.180 0.501 0.000 
104-60 0.047 0.076 2.213 0.968 0.111 0.228 0.171 0.501 0.000 
105-61 0.059 -0.007 2.471 0.981 0.083 0.280 0.169 0.593 16.280 
106-62 0.041 0.053 2.198 0.996 0.345 0.110 0.188 0.433 4.750 
107-63 0.041 0.094 2.351 0.998 0.359 0.108 0.223 0.425 4.760 
110-70 0.047 0.022 2.309 0.972 0.328 0.337 0.199 0.603 0.000 
111-71 0.037 0.031 2.353 0.986 0.235 0.258 0.204 0.525 0.000 
112-72 0.038 0.047 2.167 0.966 0.341 0.259 0.165 0.483 0.000 
113-73 0.038 0.010 2.085 0.967 0.279 0.277 0.164 0.497 0.000 
114-74 0.041 0.123 2.247 0.979 0.334 0.231 0.211 0.485 12.890 
115-75 0.044 0.105 2.248 0.975 0.298 0.238 0.130 0.458 4.760 
117-77 0.041 0.072 2.107 0.992 0.355 0.277 0.160 0.475 4.740 
118-78 0.041 0.103 2.109 0.979 0.213 0.297 0.224 0.637 0.000 

 



 

Table SI2. (Continued…) 
Compound ID Molecular Descriptors

H4m D/Dr06 BELp1 RDF020e RDF050e Mor05m Mor14v HATS3m HATS3e 
004-4-Ciprofloxacin 0.691 182.617 2.048 4.730 32.161 -4.719 0.234 0.075 0.390 
006-6-Tosufloxacin 0.974 220.699 2.059 3.874 28.138 -5.259 0.012 0.170 0.486 
007-7-PD117558 0.873 141.528 2.036 5.459 32.393 -5.570 0.653 0.083 0.314 
008-8 0.874 137.322 2.044 5.757 35.175 -5.278 0.599 0.085 0.308 
010-10 1.032 156.391 2.044 6.272 33.234 -5.141 0.454 0.100 0.308 
012-13 0.931 148.606 2.042 5.644 37.942 -5.536 0.661 0.078 0.302 
014-15 0.846 132.242 2.043 5.807 36.196 -4.530 0.803 0.079 0.344 
015-16 0.817 136.448 2.035 6.964 32.073 -4.825 0.790 0.073 0.334 
016-17 1.088 254.343 2.062 5.472 37.253 -6.206 0.198 0.128 0.370 
018-19 0.720 114.921 2.044 4.608 28.955 -4.754 0.411 0.101 0.419 
019-20 0.744 114.921 2.042 4.526 26.332 -5.070 0.128 0.106 0.396 
020-21 0.733 119.127 2.036 4.190 25.320 -5.217 0.297 0.091 0.382 
021-22 0.723 124.911 2.038 4.374 29.643 -5.191 0.577 0.094 0.364 
022-23A 0.654 107.306 2.035 2.495 21.298 -3.203 0.165 0.102 0.451 
023-23B 0.726 112.386 2.036 2.580 26.162 -5.086 0.212 0.083 0.417 
024-23C 0.749 112.386 2.025 2.706 25.300 -4.462 0.380 0.102 0.425 
025-23D 0.735 118.169 2.043 5.121 31.500 -4.819 0.362 0.087 0.321 
026-23E 0.934 129.737 2.049 3.662 33.347 -5.246 0.242 0.086 0.330 
027-23F 0.663 107.306 2.030 2.115 26.728 -4.550 0.238 0.082 0.427 
028-24A 0.722 114.048 2.035 4.177 28.364 -4.586 0.395 0.096 0.431 
029-24C 0.864 119.127 2.025 4.163 24.311 -4.906 0.403 0.102 0.394 
030-24D 0.758 124.911 2.043 6.977 34.572 -5.034 0.444 0.085 0.304 
031-24E 0.776 136.479 2.049 5.074 35.073 -5.781 0.447 0.086 0.314 
032-24F 0.692 114.048 2.031 3.724 26.583 -4.504 0.323 0.085 0.416 
033-25A 0.786 121.189 2.035 4.599 29.257 -4.736 0.591 0.092 0.399 
034-25B 0.735 126.269 2.036 6.110 33.345 -5.166 0.668 0.091 0.371 
036-25D 0.782 132.052 2.043 7.442 36.532 -5.172 0.480 0.080 0.288 
037-25E 0.844 143.620 2.049 5.610 36.310 -5.991 0.589 0.085 0.308 
038-25F 0.763 121.189 2.031 4.472 28.013 -4.630 0.396 0.083 0.380 
040-26D 0.880 147.312 2.044 8.087 43.557 -5.079 0.699 0.073 0.280 
041-26E 0.915 158.879 2.049 8.018 39.534 -6.002 0.868 0.079 0.281 
042-26F 0.832 136.448 2.031 5.370 35.911 -5.037 0.651 0.071 0.349 
043-27A 0.869 127.931 2.035 5.324 31.793 -5.040 0.831 0.103 0.358 
044-27B 0.806 133.010 2.036 4.987 31.548 -5.716 0.647 0.096 0.318 
045-27C 0.854 133.010 2.026 5.150 29.781 -5.948 0.604 0.100 0.319 
046-27D 0.848 138.794 2.044 7.645 43.187 -5.360 0.696 0.086 0.278 
047-27E 0.862 150.362 2.049 6.183 40.217 -5.132 0.649 0.094 0.300 
048-27F 0.819 127.931 2.031 4.823 26.637 -4.866 0.645 0.090 0.329 
049-28A 0.915 135.413 2.035 5.623 38.917 -5.125 0.797 0.090 0.308 
050-28B 0.844 140.493 2.036 5.651 38.251 -5.946 0.707 0.084 0.289 
051-28C 0.894 140.493 2.026 5.502 31.990 -4.735 0.741 0.082 0.294 
052-28D 0.877 146.276 2.044 8.216 41.155 -5.779 0.884 0.074 0.242 
054-28F 0.856 135.413 2.031 5.206 35.823 -5.152 0.749 0.082 0.283 
055-29B 0.705 189.565 2.049 4.676 33.442 -5.389 0.196 0.084 0.389 
056-29C 0.759 189.565 2.040 4.580 25.428 -5.467 0.458 0.098 0.395 
057-29D 0.741 197.487 2.056 6.911 40.126 -4.825 0.154 0.074 0.299 
058-29E 1.040 213.331 2.061 6.230 45.272 -5.408 0.080 0.115 0.345 
059-29F 0.696 182.617 2.045 4.608 28.411 -4.773 0.196 0.076 0.395 
061-30B 0.716 209.628 2.054 4.008 43.856 -5.687 0.282 0.076 0.348 
062-30C 0.824 209.628 2.045 4.234 34.783 -6.320 0.636 0.086 0.302 
063-30D 0.770 217.550 2.061 6.284 46.849 -5.038 0.225 0.067 0.258 
064-30E 0.827 233.394 2.065 5.631 48.951 -5.630 0.400 0.081 0.277 
065-30F 0.726 202.680 2.050 3.903 39.993 -4.984 0.364 0.070 0.336 
066-31A 0.734 194.300 2.051 4.223 29.342 -5.033 0.392 0.079 0.412 
067-31B 0.738 201.248 2.052 4.278 33.244 -5.551 0.327 0.084 0.385 
068-31C 0.847 201.248 2.042 4.325 27.359 -6.145 0.592 0.095 0.386 
070-31E 0.800 225.014 2.063 5.595 37.893 -5.451 0.361 0.091 0.322 
071-31F 0.749 194.300 2.047 4.034 28.410 -4.913 0.388 0.078 0.396 
073-32B 0.714 199.596 2.052 4.191 36.580 -5.517 0.330 0.083 0.390 
074-32C 0.789 199.596 2.043 4.008 26.713 -5.745 0.689 0.099 0.370 
075-32D 0.762 207.518 2.059 6.652 44.928 -5.331 0.352 0.072 0.275 
077-32F 0.726 192.649 2.047 3.998 31.684 -4.750 0.417 0.076 0.387 
078-33B 1.035 228.241 2.055 4.126 21.551 -5.751 -0.099 0.149 0.433 
079-34B 1.088 253.720 2.072 5.412 43.502 -7.324 -0.277 0.137 0.392 
080-35B 1.057 236.734 2.068 6.985 31.577 -6.383 -0.184 0.135 0.374 
081-36B 1.109 254.343 2.062 5.652 32.319 -6.013 0.361 0.130 0.374 
082-37B 1.192 261.884 2.055 5.692 31.796 -5.988 0.111 0.132 0.369 

 



 

Table SI2. (Continued…) 
Compound ID Molecular Descriptors

H4m D/Dr06 BELp1 RDF020e RDF050e Mor05m Mor14v HATS3m HATS3e 
083-38A 0.805 131.652 2.044 6.670 35.691 -5.324 0.561 0.088 0.298 
084-38B 1.095 246.955 2.068 5.989 42.901 -6.381 -0.072 0.131 0.348 
085-39A 0.883 143.220 2.049 5.016 37.750 -4.892 0.622 0.086 0.303 
086-39B 1.114 263.941 2.072 5.267 42.242 -6.619 0.256 0.137 0.359 
088-41A 0.782 199.596 2.042 4.319 29.217 -5.956 0.474 0.088 0.353 
090-42A 0.885 223.362 2.063 5.788 43.829 -6.136 0.450 0.087 0.300 
092-48 0.807 130.695 2.061 4.191 36.259 -6.211 0.411 0.101 0.316 
093-49 0.685 119.127 2.046 5.613 28.141 -4.321 0.308 0.087 0.376 
094-50 0.750 124.911 2.026 4.092 31.555 -4.600 0.041 0.083 0.269 
095-51 0.717 119.127 2.046 5.838 29.409 -4.888 0.264 0.086 0.399 
096-52 0.573 119.127 2.047 4.192 31.748 -4.788 0.431 0.081 0.352 
098-54 0.772 119.127 2.040 4.255 27.626 -4.817 0.210 0.107 0.394 
100-56 0.923 124.206 2.037 4.038 28.204 -5.414 0.327 0.128 0.398 
101-57 0.999 141.558 2.050 4.902 31.645 -5.750 0.346 0.110 0.314 
102-58 0.709 124.206 2.047 5.893 30.322 -5.447 0.301 0.087 0.351 
103-59 0.805 124.206 2.037 5.893 27.406 -5.975 0.386 0.090 0.341 
104-60 0.709 129.990 2.054 8.739 37.244 -5.087 0.505 0.080 0.282 
105-61 0.893 141.558 2.060 5.284 42.772 -6.601 0.376 0.081 0.274 
106-62 0.607 124.206 2.048 4.561 31.088 -5.478 0.512 0.080 0.333 
107-63 0.764 124.206 2.041 4.357 29.974 -5.475 0.397 0.111 0.384 
110-70 1.035 153.096 2.061 5.461 44.661 -6.821 0.834 0.097 0.295 
111-71 0.851 141.528 2.046 6.752 38.115 -4.354 0.649 0.083 0.294 
112-72 0.899 141.528 2.046 6.961 37.863 -5.084 0.556 0.074 0.310 
113-73 0.822 141.528 2.047 5.774 39.596 -5.054 0.712 0.068 0.298 
114-74 1.059 146.607 2.037 5.118 38.075 -5.986 0.676 0.116 0.344 
115-75 0.828 152.391 2.051 7.321 41.061 -5.920 0.809 0.062 0.260 
117-77 0.716 146.607 2.048 7.214 39.830 -5.712 0.909 0.067 0.285 
118-78 1.506 146.607 2.017 4.969 33.240 -5.725 0.657 0.191 0.331 
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Figure SI1. Applicability domain of the respective MLR PMs 



 
Table SI3. Observed and predicted values of 1/1+IC50 and 1/1+MIC, standardized residual 
and leverage values of the 95 fluoroquinolones used in this work. 

Compound ID 
Obs. and Pred. Properties Std. Residual and Leverage 

1/1+IC50 
Pred. 

1/1+IC50 
1/1+MIC Pred. 

1/1+MIC 
Std. Res. 
1/1+IC50 

Leverage 
1/1+IC50 

Std. Res. 
1/1+MIC 

Leverage 
1/1+MIC 

004-4-Ciprofloxacin 0.003 -0.010 0.909 0.908 0.899 0.095 0.010 0.060 
006-6-Tosufloxacin 0.008 -0.006 0.917 0.931 0.960 0.135 -0.136 0.268 
007-7-PD117558 0.083 0.052 0.917 0.693 2.212 0.046 2.330 0.043 
008-8 0.006 0.017 0.833 0.607 -0.756 0.090 2.352 0.030 
010-10 0.017 0.021 0.355 0.281 -0.320 0.156 0.764 0.217 
012-13 0.004 -0.002 0.193 0.555 0.407 0.113 -3.758 0.060 
014-15 0.003 -0.011 0.641 0.576 1.037 0.157 0.680 0.104 
015-16 0.006 0.020 0.685 0.764 -0.988 0.089 -0.822 0.095 
016-17 0.005 0.007 0.556 0.644 -0.150 0.122 -0.916 0.078 
018-19 0.003 0.003 0.893 0.891 0.047 0.138 0.020 0.081 
019-20 0.003 0.006 0.885 0.947 -0.178 0.101 -0.648 0.071 
020-21 0.032 0.031 0.962 0.891 0.070 0.052 0.732 0.052 
021-22 0.006 0.009 0.769 0.872 -0.212 0.055 -1.069 0.049 
022-23A 0.026 0.021 0.833 0.807 0.317 0.082 0.272 0.203 
023-23B 0.008 0.026 0.909 0.795 -1.226 0.067 1.180 0.120 
024-23C 0.007 0.015 0.909 0.936 -0.606 0.084 -0.285 0.088 
025-23D 0.007 0.027 0.769 0.780 -1.457 0.072 -0.115 0.058 
026-23E 0.004 -0.007 0.074 0.304 0.747 0.116 -2.388 0.205 
027-23F 0.017 0.021 0.794 0.905 -0.293 0.048 -1.157 0.120 
028-24A 0.014 0.014 0.917 0.973 0.007 0.073 -0.573 0.080 
029-24C 0.037 0.013 0.971 0.865 1.711 0.072 1.096 0.069 
030-24D 0.022 0.015 0.935 0.893 0.466 0.064 0.429 0.063 
031-24E 0.003 0.001 0.833 0.683 0.196 0.087 1.564 0.056 
032-24F 0.010 0.017 0.971 0.944 -0.507 0.044 0.282 0.065 
033-25A 0.012 0.026 0.833 0.827 -0.989 0.073 0.063 0.053 
034-25B 0.083 0.075 0.952 1.016 0.609 0.074 -0.659 0.108 
036-25D 0.091 0.045 0.901 0.879 3.222 0.112 0.223 0.069 
037-25E 0.026 0.021 0.658 0.618 0.303 0.065 0.412 0.049 
038-25F 0.019 0.041 0.877 0.848 -1.565 0.045 0.306 0.049 
040-26D 0.043 0.028 0.794 0.745 1.069 0.110 0.504 0.102 
041-26E 0.008 0.005 0.625 0.600 0.230 0.142 0.264 0.111 
042-26F 0.006 0.019 0.826 0.795 -0.896 0.077 0.323 0.106 
043-27A 0.042 0.037 0.658 0.773 0.361 0.281 -1.198 0.072 
044-27B 0.111 0.112 0.885 0.843 -0.070 0.183 0.440 0.061 
045-27C 0.111 0.088 0.935 0.989 1.632 0.144 -0.564 0.122 
046-27D 0.026 0.052 0.794 0.855 -1.881 0.164 -0.640 0.088 
047-27E 0.009 0.026 0.500 0.598 -1.195 0.117 -1.015 0.074 
048-27F 0.038 0.036 0.741 0.717 0.209 0.109 0.243 0.069 
049-28A 0.005 0.018 0.714 0.687 -0.964 0.145 0.287 0.061 
050-28B 0.111 0.085 0.813 0.823 1.870 0.154 -0.100 0.070 
051-28C 0.042 0.064 0.794 0.659 -1.581 0.127 1.401 0.102 
052-28D 0.008 0.032 0.658 0.729 -1.710 0.089 -0.736 0.086 
054-28F 0.017 0.013 0.625 0.702 0.304 0.142 -0.802 0.066 
055-29B 0.021 0.032 0.935 1.009 -0.764 0.047 -0.768 0.060 
056-29C 0.023 0.039 0.935 1.016 -1.128 0.059 -0.842 0.086 
057-29D 0.012 0.025 0.935 0.883 -0.944 0.042 0.532 0.117 
058-29E 0.006 -0.002 0.870 0.664 0.552 0.238 2.133 0.141 
059-29F 0.008 0.013 0.917 0.919 -0.347 0.054 -0.013 0.072 
061-30B 0.007 0.021 0.952 0.938 -1.034 0.059 0.148 0.152 
062-30C 0.007 0.024 0.813 0.824 -1.193 0.087 -0.113 0.144 
063-30D 0.002 0.002 0.746 0.744 -0.026 0.061 0.023 0.161 
064-30E 0.002 -0.007 0.524 0.637 0.608 0.117 -1.178 0.135 
065-30F 0.004 -0.019 0.855 0.784 1.610 0.094 0.738 0.104 
066-31A 0.004 0.006 0.794 0.808 -0.099 0.105 -0.152 0.093 
067-31B 0.042 0.044 0.833 0.888 -0.134 0.082 -0.567 0.050 
068-31C 0.053 0.042 0.926 0.898 0.772 0.101 0.285 0.124 
070-31E 0.048 0.013 0.794 0.674 2.426 0.113 1.240 0.087 
071-31F 0.010 0.023 0.813 0.771 -0.895 0.083 0.433 0.086 
073-32B 0.019 0.035 0.885 0.951 -1.187 0.037 -0.688 0.076 
074-32C 0.040 0.044 0.935 0.869 -0.254 0.065 0.685 0.147 
075-32D 0.014 0.020 0.813 0.834 -0.413 0.076 -0.221 0.095 
077-32F 0.010 0.010 0.714 0.787 -0.038 0.050 -0.755 0.072 
078-33B 0.011 0.010 0.813 0.739 0.047 0.166 0.769 0.174 
079-34B 0.010 0.023 0.658 0.628 -0.895 0.366 0.312 0.404 
080-35B 0.003 -0.002 0.741 0.799 0.374 0.102 -0.603 0.221 
081-36B 0.005 0.002 0.556 0.525 0.259 0.132 0.319 0.138 
082-37B 0.008 0.014 0.488 0.562 -0.442 0.151 -0.771 0.168 

 



 

Table SI3. (Continued…) 

Compound ID 
Obs. and Pred. Properties Std. Residual and Leverage

1/1+IC50 
Pred. 

1/1+IC50 
1/1+MIC Pred. 

1/1+MIC 
Std. Res. 
1/1+IC50 

Leverage 
1/1+IC50 

Std. Res. 
1/1+MIC 

Leverage 
1/1+MIC 

083-38A 0.026 0.013 0.794 0.826 0.901 0.103 -0.332 0.041 
084-38B 0.004 0.012 0.685 0.723 -0.582 0.185 -0.399 0.140 
085-39A 0.009 0.002 0.500 0.376 0.505 0.200 1.285 0.106 
086-39B 0.053 0.054 0.326 0.296 -0.075 0.357 0.313 0.348 
088-41A 0.022 0.039 0.926 0.934 -1.246 0.068 -0.087 0.095 
090-42A 0.005 0.017 0.685 0.634 -0.868 0.071 0.534 0.057 
092-48 0.014 0.013 0.685 0.673 0.104 0.058 0.128 0.248 
093-49 0.004 0.001 0.654 0.844 0.204 0.087 -1.981 0.081 
094-50 0.031 0.034 0.833 0.873 -0.160 0.192 -0.409 0.346 
095-51 0.018 0.010 0.962 0.936 0.550 0.052 0.265 0.098 
096-52 0.067 0.053 0.917 0.910 0.983 0.093 0.075 0.104 
098-54 0.014 0.002 0.962 0.913 0.795 0.075 0.499 0.054 
100-56 0.010 0.003 0.926 0.807 0.495 0.168 1.233 0.066 
101-57 0.005 0.004 0.038 0.294 0.105 0.201 -2.655 0.177 
102-58 0.063 0.043 0.990 0.926 1.397 0.081 0.661 0.067 
103-59 0.017 0.029 0.926 0.960 -0.871 0.084 -0.352 0.122 
104-60 0.010 0.016 0.901 0.917 -0.428 0.138 -0.167 0.167 
105-61 0.003 0.017 0.524 0.498 -0.937 0.130 0.269 0.175 
106-62 0.083 0.078 0.980 0.877 0.385 0.101 1.078 0.104 
107-63 0.023 0.030 0.971 0.973 -0.492 0.134 -0.025 0.071 
110-70 0.015 0.010 0.488 0.460 0.316 0.114 0.289 0.315 
111-71 0.003 0.015 0.524 0.593 -0.806 0.064 -0.724 0.098 
112-72 0.016 0.009 0.741 0.619 0.508 0.081 1.267 0.093 
113-73 0.023 0.025 0.625 0.570 -0.101 0.082 0.572 0.060 
114-74 0.021 0.015 0.641 0.661 0.446 0.175 -0.211 0.100 
115-75 0.019 0.027 0.592 0.619 -0.596 0.203 -0.286 0.077 
117-77 0.100 0.082 0.781 0.820 1.305 0.197 -0.402 0.100 
118-78 0.004 0.004 0.625 0.623 -0.037 0.504 0.017 0.533 

 



This section provides details about the checking of the pre-adopted parametric 

assumptions, a very important aspect in the application of linear multivariate 

statistical-based approaches (MLR techniques) (1). In fact, once the linear regression 

model has been set up, it is very important to check the parametric assumptions to 

assure the validity of extrapolation from the sample to the population. These include 

the linearity of the modeled property, normal distribution as well as the 

homoscedasticity and non-multicollinearity descriptors. Notice that severe violations 

of one or various of these assumptions can markedly compromise the reliability of the 

predictions resulting from our MLR models (1). 

We first check the linearity hypothesis by looking at the distribution of the 

standardized residuals for all cases. Indeed the plots in Table SI4 (1st row) do not 

show any specific pattern, reinforcing the idea that our models do not exhibit a non-

linear dependence (1). Next, we check the hypothesis of homoscedasticity (i.e.: 

homogeneity of variance of the variables), which can be confirmed by simply plotting 

the square of standardized residuals related to each dependent variable (1) (2nd row 

of plots in Table SI4). These plots reveal significant scatter of points, without any 

systematic pattern, post-mortem validating the pre-adopted assumption of 

homoscedasticity for all the PMs. They also provide a check for the no auto-

correlation of the residuals. Moving on to the hypothesis of normally distributed 

residuals, one can easily confirm that the residuals follow a normal distribution by 

applying the Kolmogorov-Smirnov and Lilliefors statistical test (3rd row of Table SI4). 

In addition, as the term related to the error (represented by residuals) is not included 

in the MLR equations, the mean must be zero what actually occurs (check 4th row of 

Table SI4). The last aspect deserving special attention is the degree of 

multicollinearity among the variables. Highly collinear variables may be identified by 

examining their pair-correlations (Rij). Most of the predictors included in the models 

exhibit a value of Rij lower than 0.7. Only a few pair of variables (two in the IC50 PM 

and three in the MIC PM) have values of Rij over 0.7, but no one higher than 0.75 

suggesting that the problem of the collinearity is not serious. One should emphasize 

here that the common interpretation of a regression coefficient as measuring the 

change in the expected value of the response variable, when the given predictor 

variable is increased by one unit while all other predictor variables are held constant, 

is not fully applicable when multicollinearity exists (R  0.7) (2). 



 

Table SI4. Checking the main parametric assumptions related to the MLR models used to fit 
the desirability functions. 

 MIC MLR Model IC50 MLR Model 
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Prioritizing Hits with Appropriate Trade-Offs Between
HIV-1 Reverse Transcriptase Inhibitory Efficacy and MT4
Blood Cells Toxicity Through Desirability-Based
Multiobjective Optimization and Ranking
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1 Introduction

Reverse transcriptase (RT) is a key enzyme which plays an
essential role in the replication of the human immunodefi-
ciency virus type-1 (HIV-1). RT represents an attractive
target for the development of new drugs useful in acquired
immune deficiency syndrome (AIDS) therapy.[1] Toward that
goal, nonnucleoside RT inhibitors (NNRTIs) are at present a
promising option in HIV-1 drug discovery due to their low
toxicity profile when compared to the nucleoside ana-
logues.[2] Unlike nucleoside analogues, NNRTIs bind in a
noncompetitive manner to a specific ‘pocket’ of the HIV-1
RT altering its ability to function.[3] NNRTIs selectively inhibit
HIV-1 RT replication in cell culture at a concentration nota-
bly lower than the required concentration to affect normal
cell viability.[4]

Nowadays NNRTIs are considered a promising scaffold
for the discovery of a new medicine for the treatment of
HIV-1 infections. Even though a great number of the candi-
dates of drug discovery programs present a high selectivity
and potency towards HIV-1 replication only four NNRTIs
(nevirapine, delavirdine, efavirenz and etravirine) have at

Abstract : Nonnucleoside reverse transcriptase (RT) inhibi-
tors (NNRTIs) constitute a promising therapeutic option for
AIDS. However, the emergence of virus-NNRTIs resistance
was found to be a major problem in the field. Toward that
goal, a “knock-out” strategy stands out between the several
options to circumvent the problem. However the high drug
or drug-drug concentrations often used generate additional
safety concerns. The need for approaches able to early inte-
grate drug- or lead-likeness, toxicity and bioavailability cri-
teria in the drug discovery phase is an emergent issue.
Given that, we propose a combined strategy based on de-
sirability-based multiobjective optimization (MOOP) and
ranking for the prioritization of HIV-1 NNRTIs hits with ap-
propriate trade-offs between inhibitory efficacy over the
HIV-1 RT and toxic effects over MT4 blood cells. Through
the MOOP process, the theoretical levels of the predictive

variables required to reach a desirable RT inhibitor candi-
date with the best possible compromise between efficacy
and safety were found. This information is used as a pat-
tern to rank the library of compounds according to a simi-
larity-based structural criterion, providing a ranking quality
of 64%/71%/73% in training/validation/test set. A compa-
rative study between the sequential, parallel and multiob-
jective virtual screening revealed that the multiobjective
approach can outperform the other approaches. These re-
sults suggest that the identification of NNRTIs hits with ap-
propriate trade-offs between potency and safety, rather
than fully optimized hits solely based on potency, can facili-
tate the hit to lead transition and increase the likelihood of
the candidate to evolve into a successful antiretroviral
drug.
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present been approved for clinical use in the treatment of
AIDS.[5]

The virus-drug resistance is considered one of the major
drawbacks that compromise the therapeutic usefulness of
the NNRTIs.[6] In fact, HIV virus rapidly develops resistance
to NNRTIs due to mutagenic processes, mainly located at
positions that surround the binding region of NNRTIs to
the HIV-1 RT pocket.[6] So, the potential NNRTIs therapeutic
value may be assisted by the development of strategic ap-
proaches suitable to prevent, circumvent or overcome drug
resistance process. Among the different approaches point-
ed out in the literature the “knock-out” strategy stands out
as a very promising one.[4] However, as the strategy in-
volves the administration of high drug or drug-drug con-
centrations other problems related with their safety profile
must be considered in addition to drug selectivity and effi-
cacy requirements.
In fact, this is a particular case of one of the major prob-

lems found in drug discovery and development. Really, the
need for approaches able to early integrate drug- or lead-
likeness, toxicity and bioavailability criteria in the drug dis-
covery phase is an emergent issue.[7] That is, methods that
can handle additional criteria for the early simultaneous
treatment of the most important properties, potency,
safety, and bioavailability, determining the pharmaceutical
profile of a drug candidate.[8]

Although “Costs of Goods” has been claimed as one of
the major reasons for the end of a R&D project[9] one
cannot disregard the idea that toxicity and/or pharmacoki-
netics profiles of the clinical candidates are still decisive
causes of failure in drug development process.[7,10] In fact,
the ability to improve the pharmaceutical profile of candi-
dates in lead optimization process on the sole basis of their
activity has been often overestimated.[7] The adjustment of
the multiple criteria in hit-to-lead identification and lead
optimization is considered to be a major advance in the ra-
tional drug discovery process. The aim of this paradigm
shift is the prompt identification and elimination of candi-
date molecules that are unlikely to survive later stages of
discovery and development. In turn, this new approach will
reduce clinical attrition, and as a consequence, the overall
cost of the process.[7b, 11]

The virtual screening (VS) techniques currently employed
in early stages of drug discovery do not involve multiple
criteria assessment (one by one, starting with potency) of
the properties that can modulate the success of a drug
candidate (potency, safety and bioavailability). Accordingly,
numerous failures of the R&D projects have been described
and attributed to the reduced toxicological and/or pharma-
cokinetic outline of drug candidates. Thus, the employment
of multiobjective approaches allowing to obtain candidates
with acceptable trade-offs between potency, safety and/or
bioavailability is an emerging issue in drug discovery and
development.[8]

In this paper, we describe the application of multiobjec-
tive optimization (MOOP) and ranking methods[8b,d] for si-

multaneously probe the inhibitory efficacy towards HIV-1
RT, and the toxic effects towards MT4 blood cells, of a di-
verse set of HIV-1 NNRTIs reported in the literature.[12] This
methodology is proposed as a rational strategy of multiob-
jective VS to identify new HIV-1 NNRTIs hits with acceptable
trade-offs between the above mentioned properties. Finally,
a retrospective analysis of the training set, based on well-
known enrichment measures,[13] will be done allowing to
compare the performance of several approaches (sequen-
tial, parallel and multiobjective) as VS strategies. The perfor-
mance of the multiobjective VS strategy to retrieve phar-
maceutically acceptable NNRTI candidates from a pool of
NNRTI decoys is also tested.

2 Material and Methods

2.1 Data Set

The prediction models (PMs) for inhibitory efficacy over the
HIV-1 RT and toxicity over MT4 blood cells, as well as the
desirability-based MOOP and ranking process were per-
formed using a library of NNRTIs collected from previous lit-
erature reports.[12]

To collect a representative set of NNRTIs, we collect a
data base containing four of the most studied chemical
families of this class of HIV-1 RT inhibitors. Thus, in the ini-
tial pool we have included: 39 1-[(2-Hydroxyethoxy)meth-
yl]-6-(phenylthio) thymine (HEPT) analogues, 25 diaryltria-
zine (DATA) analogues, 62 acylthiocarbamate (ATC) ana-
logues, and 36 2-alkoxy-3,4-dihydro-6-benzyl-4(3H)-pyrimi-
din-4-ones (DABO) analogues. From the initial pool of 162
compounds, 53 were removed since their property values
were inaccurately reported (< , > or ! values). This was
done considering that the use of these values can reduce
significantly the goodness of fit of a multiple linear regres-
sion (MLR) model.
In Table 1, the chemical families included in the data set

here employed are depicted. The structural diversity of this
set can also be checked in this table.
The remaining set of 109 compounds was randomly split

up into training and validation subsets. Approximately 80%
of the compounds (88) were used for training whereas the
remaining 20% (21) were reserved for validation purposes.
Additionally, to test the predictive ability of the trained
models on a true test set, we select a subset of the 53 com-
pounds initially excluded from the training or validation
sets. Only 18 of such compounds, which were within the
applicability domain of both models, were selected for this
test set.
According to the literature,[12] the concentration of a

compound required to protect the cell against viral cytopa-
thogenicity by 50% (IC50 ; measured in mM), as well as its
concentration that reduces the normal uninfected cell via-
bility by 50% (CC50 ; measured in mM) were evaluated
against wild-type HIV-1 strain IIIB in MT-4 cells using the 3-
(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide
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MTT method.[14] To ensure proper error rates, the raw IC50

and CC50 values were log-transformed ("logIC50 and
"logCC50) instead. These values for the full set of NNRTIs
used for training, validation and test are plotted in
Figure 1.
The identification, names, chemical structures, as well as

the respective values of IC50 and CC50 of the full set of 127
compounds used in this work (88 for training, 21 for valida-
tion, and 18 for test) can be assessed in the supporting in-
formation (see Supporting Informations, Tables SI-1 to SI-5).

2.2 Desirability-Based Multiobjective Optimization and
Ranking

A desirability-based methodology was employed here to si-
multaneously optimize and rank a set of candidates accord-
ing to their inhibitory efficacy over the HIV-1 RT and, the
toxic effects over MT4 blood cells.[8b,d]

First, it is necessary to develop a prediction model for
each response. The predicted values of each response are
employed to set-up a global prediction model which is
fitted to a linear function using the whole subset of inde-

Table 1. Classes of NNRTIs included in the data set.

HEPT Analogues

1-Methoxymethyl-5-ethyl- 1-[(Benzyloxy)methyl]-5-ethyl-
6-(1-chloro-2-naphthylthio)uracil 6-(1-acetamino-2-naphthylthio)uracil

A B C
DATA Analogues

D E
ATC Analogues

F G
DABO Analogues

H I

A : [R1=Me, Et, i-Pr, i-Bu; R2=Me, Et, Benzyl, 3’-Methylbenzyl, 3’-Fluorobenzyl, 4’-Fluorobenzyl, CH2CH2OCH3, CH2CH2OH, CH2CH2OAc,
PhCH2CH2, c-Pr-CH2, c-Hexl-CH2]. B : [R1=Et, i-Pr; R2=Me, Et, Benzyl] . C : [R1=Me, Et, Benzyl; R2=NH2, NO2]. D : [R1=H, Cl; R2=NH2, NHMe,
NHEt, n-PrNH]. E : [R1=H, Cl, Br; R2=H, Br; R3=N3, NH2, NHMe, NHEt, n-PrNH, i-PrNH]. F : [R=H, CH3; Ar1=phenyl, benzyl, phenoxymethyl;
Ar2=C6H5, 4-F-C6H5, 4-NO2-C6H5; G-CO=benzoyl, phenoxyacetyl, trans-cinnamoyl, 2-furoyl, 2-thenoyl, 4-chlorobenzoyl, 4-chloro-3-nitroben-
zoyl, 2,4-dichlorobenzoyl, 3,5-dichlorobenzoyl] . G : [R=3-Br, 3-NO2, 4-Cl, 4-I, 4-NO2; Acyl=2-furoyl, 2-thenoyl] . H : [R1=H, Me, Et, i-Pr; R2=Et,
i-Pr, propynyl, benzoylmethyl, cyclopentyl, 4-methoxybenzyl, 4-nitrobenzyl, 4-chlorobenzoylmethyl; R3=Ph, 1-naphthyl, 2,6-Cl2-Ph]. I : [R1=
H, Me, Et, i-Pr; R2=Et , i-Pr, allyl, cyclopentyl; R3=Ph, 1-naphthyl] .
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pendent variables employed in modeling the k original re-
sponses.
Next, the predicted responses (Ŷi) are scaled to their re-

spective desirability (di) values by means of the Derringer
desirability functions.[15] Desirability functions are well-
known multicriteria decision-making methods, based on
the definition of a desirability function for each response in
order to transform values of the responses to the same
scale. Each attribute is independently transformed into a
desirability value by an arbitrary function. The original
value is range scaled between 0 and 1 by:

di ¼
Ŷi " Li
Ui " Li

0 ! d1 ! 1 ð1Þ

where Li and Ui are the selected minimum and maximum
values, respectively.
Specifically in this work, two desirability functions (one

for each response) were fitted. The toxicity over MT4 blood
cells ought to be minimized. This property is expressed
here through the CC50 value. According to the meaning,
this value should be maximized in such a way that the
compound with the highest CC50 value should be the most
desirable (di=1), but using as input "logCC50, these values
most in turn be minimized. For estimating di, the target (Ti)
lower value Li was set to "logCC50="2.723 (i.e. , CC50=
529 mM) coinciding with the less toxic compound used for
training, and the upper value Ui was set to "0.865 (CC50=
7.32 mM; i.e. , the most toxic compound). The desirability
function applied to "logCC50 was:

di ¼

1 if Yi ! Ti ¼ Li
Ŷi"Ui

Ti"Ui

h i
if Ui < Yi < Ti

0 if Yi & Ui

8
>><

>>:
ð2Þ

where Ti is interpreted as a small enough "logCC50 value,
which can be Li.
In contrast, the HIV-1 RT inhibitory activity must be maxi-

mized. Accordingly, the IC50 values should be minimized,

but using as input "logIC50, these values must in turn be
maximized. In this case, Ui=Ti="logIC50=2.155 (i.e. , IC50=
0.007 mM) coinciding with the most potent compound
used for training, and Li was set to "1.575 (IC50=37.58 mM,
i.e. , the less potent compound). The specific desirability
function applied was:

di ¼

0 if Ŷi ! Li
Ŷi"Li
Ti"Li

h i
if Li < Ŷi < Ti

1 if Ŷi & Ti ¼ Ui

8
>>><

>>>:
ð3Þ

In this case, Ti is interpreted as a large enough value for
the property, which can be Ui.
Once the kind of function for each response is defined,

the global desirability D of each i-th candidate can be eval-
uated as follows:

D ¼ ðd1 ' d2 ' :::' dkÞ1=k ð4Þ

This single value of D gives the overall assessment of the
desirability of the combined response levels. Clearly, the
range of D will fall in the interval [0, l] and will increase as
the balance of the properties becomes more favorable.

Figure 1. Plot of "logIC50 vs. "logCC50 for the full set of NNRTIs used on the training, validation and test sets.

306 www.molinf.com ! 2010 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim Mol. Inf. 2010, 29, 303 – 321

Full Paper M. Cruz-Monteagudo

www.molinf.com


Finally, the overall desirability D is optimized by using
the simplex method.[16] The final result is finding the opti-
mal levels (or an optimal range) of the independent varia-
bles that optimize simultaneously the k responses deter-
mining the final quality of the product. In this way, the best
possible compromise between the k responses is found
and consequently the highest overall desirability for the
final compound is reached.
In this work, the optimization of the overall desirability

was carried on by the Use general function optimization
option[15] of the general regression module of STATISTICA.[17]

Furthermore, the spline method[18] was used for fitting the
desirability function, and the current level of each inde-
pendent variable was set equal to its optimal value. As to
the s and t parameters, these were fixed at 1.00 by assum-
ing that the desirability functions increase linearly towards
Ti on the two responses.
The results reached by the MOOP process (levels of de-

scriptors for the optimal candidate) are employed as a tem-
plate for a ranking algorithm based on quantitative param-
eters estimated from the description of the cases in order
to rank candidates with unknown pharmaceutical profiles.
Di is the parameter used here to describe the dissimilari-

ty between a case i and the optimal case as a function of
the subset of descriptive variables used for the MOOP pro-
cess, which is defined as:

Di ¼
Xm

X¼1

Di;X ( wX ð5Þ

where Di,X is the Euclidean distance between the case i and
the optimal case considering the parameter(s) X and, wX

represents the weigh or influence of the variable X over the
global desirability D of the case i.
The Di values are normalized by means of the application

of the Derringer desirability functions[15] in order to bring it
to the same scale of Di. Like this, it is possible to minimize
the difference between the values of Di and Di for every
case.
The weights were obtained through a nonlinear curve-fit-

ting using the large-scale optimization algorithm[19] imple-
mented in the “lsqcurvefit” function of MATLAB program,
Version 7.2.[20]

Once minimized the differences between Di and the nor-
malized values of Di, we achieve a highest possible degree
of concordance between the description (normalized
values of Di) and the solution of the cases (Di). Thus, it is
possible to rank according to Di new (pharmaceutically un-
known) candidates only based on structural information. In
this way, it will be possible to filter and identify the most
promising candidates which logically will be placed first on
the order list (the candidates with the lowest values of Di

and consequently the most similar ones with the optimal
candidate determined by the desirability-based MOOP pro-
cess) and to discard the rest of the candidates ordered last.

The ranking quality index (Y) was used to test the reliabili-
ty of the ranking reached. Y encodes the degree of dissimi-
larity between the real (D-based) and model-based (Di-
based) ranking. Y takes values in the range of zero (identi-
cal real and model-based rankings) to one (totally dissimilar
rankings). Details on the validation of the ranking algorithm
employed as well as the definition and determination of Y
can be found in reference.[8d]

2.3 Enrichment Analysis

The main goal in a VS effort is to select a subset from a
large pool of compounds (typically a compound database
or a virtual library) and try to maximize the number of
known actives in this subset. That is, to select the most “en-
riched” subset as possible. So, in this experiment we are
searching for the VS approach able to maximize the
number of NNRTI candidates with a pharmaceutical profile
equal or superior to 50% (DIC50-CC50&0.5) in a predefined
fraction (c) of the library (c=0.1= top 10%; first 12 com-
pounds). That is, to include in the top 10% fraction of the
ordered library as much candidates as possible exhibiting a
favorable compromise between HIV-1 RT inhibitory efficacy
and MT4 blood cells toxicity. The experiment is applied to
the full set of 122 NNRTIs (83/21/18 from training/valida-
tion/test set) containing 41 compounds with a pharmaceut-
ical profile equal or superior to 50%.
The sequential VS is conducted in this work by ranking

independently the library of compounds according to the
two objectives considered, HIV-1 RT inhibitory efficacy (IC50)
and MT4 blood cells toxicity (CC50). The predicted values of
IC50 and CC50 derived from the initial QSAR PMs were the
ranking criteria employed. After ranking, a fraction of the li-
brary is first filtered according to a predefined threshold
value of inhibitory efficacy (inhibitory efficacy profile
&50%; dIC50&0.5; "logIC50&0.196; IC50!0.64 mM). Next,
those candidates not fulfilling a predefined threshold value
of safety (safety profile &50%; dCC50&0.5; "logCC50!
"1.794; CC50&62.23 mM) are eliminated in order to keep
those with adequate inhibitory efficacy and safety profiles.
In this approach; as well as in the multiobjective one, the
true positive fraction (c+) can be equal or smaller than the
filtered fraction c (i.e. , 0!c+ !c).
The parallel VS, as the name implies, is based on running

in parallel the independent analysis of the two objectives
involved on the pharmaceutical profile of the candidate
(IC50 and CC50). The conditions in this case are identical to
those defined for the sequential approach, but applied in a
parallel fashion. In this case, those candidates included in
each top 10% filtered fraction, and fulfilling the predefined
threshold value for both criteria, are selected. In this case, if
the retrieved compounds in both filtered fractions are the
same, the retrieved fraction=c=0.1=12 compounds, oth-
erwise the retrieved fraction !2c. Consequently, 0!c+!
2c, depending of the efficacy and safety profiles of the can-
didates filtered in each top 10% filtered fraction.
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The multiobjective VS approach proposed in this work
considers the pharmaceutical profile of the candidate,
rather than separately consider each property related with
it. As detailed previously, the overall desirability of the can-
didate is the criterion employed here to measure their
pharmaceutical profile. The library of NNRTIs is ranked ac-
cording to a structural similarity criterion (Di), top ranking
those candidates structurally closer to the previously deter-
mined optimal candidate. Like in the sequential and parallel
VS approaches, the top 10% of the ordered library is fil-
tered, searching for those candidates with DIC50-CC50 values
&0.5.
Several enrichment metrics have been proposed in the

literature to measure the enrichment ability of a VS proto-
col.[13a,b] In this work, we use some of the most extended.
Based on the analysis of the receiver operating character-

istic (ROC) curve it is possible to derive the area under the
ROC curve (ROC Metric), as well as the ratio of true positive
(TP) cases and false positive (FP) cases found at the operat-
ing point of the ROC curve (TP/FPROC-OP).
The ROC curve method describes the sensitivity or TP

rate for any possible change of the number of selected
cases as a function of (1-Specificity) or FP rate.[13b] So, it is
possible to identify the point in the curve with the best
possible ratio between TP and FP cases (i.e. , TP/FPROC-OP).

[21]

That is, the fraction of the library that must be filtered in
order to maximize the number of TP cases, minimizing as
much as possible the FP cost. On the other hand, the ROC
Metric can be interpreted as the probability that a positive
case will be ranked earlier than a negative one within a
rank-ordered list.[13a]

From the accumulation curve we can deduce enrichment
from the area under the curve (AUAC), from the yield of ac-
tives (Ya) at certain filtered fractions (5%, 10%, 20% and
50%), as well as from the fraction of the database that has
to be screened in order to retrieve a certain percentage
(100%) of the TP cases (screening percentage, c100%).
The accumulation curve is based on the empirical cumu-

lative distribution function (CDF) where on the abscissa is
the relative rank or data fraction, c, and on the ordinate is
the cumulative fractional count of actives retrieved up to c
when the compounds are examined from best to worst ac-
cording to a scoring or ranking method. So, AUAC can be
interpreted as the probability that a positive case, selected
from the empirical CDF defined by the rank-ordered list,
will be ranked before a case randomly selected from a uni-
form distribution.[13a]

The yield of actives (Ya) is one of the most popular de-
scriptors for evaluating VS methods. Defined as the ratio
between the number of TP cases and the number of select-
ed cases (n), it quantifies the probability that one of the n
selected cases is active. In other words, it represents the hit
rate that would be achieved if all cases selected by the VS
protocol would be tested for activity. However, it contains
no information about the increase of the ratio of TP cases

to decoys (FP cases) within a VS case selection compared
to a random selection.[13b]

Ya ¼ TP
n

¼ cþ
c

ð6Þ

On the other hand, the enrichment factor (EF) takes into
account the improvement of the hit rate by a VS protocol
compared to a random selection. This metric has the ad-
vantage of answering the question: how enriched in TP
cases, the set of k cases that I select for screening will be,
compared to the situation where I would just pick the k
cases randomly?

EF ¼
TP=n
Nþ=N

ð7Þ

where TP and n have been defined previously, and N and
N+ are the total number of cases, and the number of posi-
tive cases in the library, respectively. The maximum value
that EF can take is 1/c if c&N+/N, N/N+ if c<N+/N, and
the minimum value is zero.[13a]

2.4 Computational and Statistical Details

Reasonable optimized geometries for all compounds were
obtained by resorting to the MM2 molecular mechanics
force field [22] implemented in the MOPAC 6.0 program.[23]

The optimized structures were then uploaded to the
DRAGON software package[24] to compute a total of 1664
molecular descriptors. As part of the necessary variable re-
duction, descriptors with constant or near constant values
and those which were highly pair-correlated (jR j>0.95)
were excluded. The variable selection approach used in this
work to establish the quantitative structure-acivity relation-
ships (QSAR) models was the Genetic Algorithm (GA)[25] by
means of the BuildQSAR software package.[26] Table 2 de-
picts the DRAGON molecular descriptors selected by the
GA method, which were finally applied to model the HIV-1
RT inhibitory activity and toxicity over MT4 blood cells of
the library of compounds used in this study.
As for the modeling technique, we opted for a regres-

sion-based approach; in this case, the regression coeffi-
cients and statistical parameters were obtained by multiple
linear regression (MLR) analysis using the STATISTICA soft-
ware package.[17] The goodness of fit for each Predictive
Model (PM) was assessed by examining the determination
coefficient (R2

FIT), the standard deviation (sFIT), Fisher’s statis-
tics (F), and the ratio between the number of compounds
(N) and the number of adjustable parameters in the model
(p), known as the 1 statistics. The stability of the models
was addressed by means of a leave-one-out cross-valida-
tion technique over the training set of NNRTIs (R2

LOOCV and
sLOOCV).

[21, 27] The predictive ability was measured by examin-
ing the determination coefficient on validation (R2

VAL) and
test (R2

TEST) sets, respectively.
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The overall desirability determination coefficient for train-
ing (R2

FIT,D) and leave-one-out cross validation (R2
LOOCV,D)

were used to test uncertainty in predicting the overall de-
sirability function and the reliability of the simultaneous op-
timization of the k responses over the independent varia-
bles domain, respectively.[8b,d, 28] R2

FIT,D and R2
LOOCV,D are de-

fined as follows:

R2
FIT ;D ¼ 1" SSE

SSTO
¼ 1"

P
ðDYi " DŶiÞ

2

P
ðDYi " !DYiÞ

2 ð8Þ

where DYi and DŶi have been defined previously. !DYi is the
mean value of D for the Yi responses of each case included
in the data set, SSTO is the total sum of squares, and SSE is
the sum of squares due to error.

R2
LOOCV;D ¼ 1"

SSELOO"CV

SSTO
¼ 1"

P
ðDYi " DŶi ðLOO" CVÞÞ2

P
ðDYi " !DYi Þ

2

ð9Þ

where SSELOO-CV and DŶi (LOO-CV) are the leave one out
cross validation square sum of residuals and the predicted
overall desirability by LOO-CV, respectively.
The overall desirability determination coefficient was also

determined on the validation (R2
VAL,D) and test (R2

TEST,D) sets.

3 Results and Discussion

3.1 NNRTIs Multiobjective Virtual Screening via Desirability-
Based Multiobjective Optimization and Ranking

Following the strategy outlined previously, we began by
seeking the best MLR models relating each property to the

DRAGON molecular descriptors. Both properties, "logIC50

and "logCC50, were mapped as a linear function of respec-
tive subsets of ten and eight variables previously selected
by GA. The resulting best-fit models are given below (equa-
tions 10 and 11) together with the respective statistical re-
gression parameters.

" log IC50 ¼ "37:474ð*5:535Þ
"1:693ð*0:240ÞMAXDP

"0:911ð*0:168ÞX1sol
"18:385ð*4:756ÞSIC0
"3:748ð*0:999ÞGATS1p
þ2:809ð*0:384ÞESpm15r

þ0:035ð*0:005ÞEig1v
"3:637ð*0:874ÞKs
þ84:691ð*18:171ÞR8uþ
þ2:318ð*0:869ÞR8m
"0:440ð*0:229ÞN" 075

N ¼ 88; R2
FIT ¼ 0:72; sFIT ¼ 0:58; F ¼ 20:20;

p < 0:01; 1 ¼ 8:00; R2
LOOCV ¼ 0:66; sLOOCV ¼ 0:65

ð10Þ

Table 2. DRAGON molecular descriptors selected by the GA method.

Symbol Definition Class Type Property

N-075 R"N"R/R"N"X Atom-centred fragments 1D IC50

MAXDP Maximal electrotopological positive variation Topological descriptors 2D IC50

X1sol Solvation connectivity index chi-1 Conectivity indices 2D IC50

SIC0 Structural information content (neighborhood symmetry of 0-order) Information indices 2D IC50

GATS1p Geary autocorrelation – lag 1 weighted by atomic polarizabilities 2D Autocorrelations 2D IC50

Espm15r Spectral moment 15 from edge adj. matrix weighted by resonance integrals Edge adjacency indices 2D IC50

Eig1v Leading eigenvalue from van der Waals weighted distance matrix Eigenvalue-based indices 2D IC50

Ks K global shape index weighted by atomic electrotopological states WHIM descriptors 3D IC50

R8u+ R maximal autocorrelation of lag 8 unweighted GETAWAY descriptors 3D IC50

R8m R autocorrelation of lag 8 weighted by atomic masses GETAWAY descriptors 3D IC50

nROH Number of hydroxyl groups Functional group counts 1D CC50

C-003 CHR3 Atom-centred fragments 1D CC50

MATS3m Moran autocorrelation – lag 3 weighted by atomic masses 2D Autocorrelations 2D CC50

MATS5e Moran autocorrelation – lag 5 weighted by atomic Sanderson electronegativities 2D Autocorrelations 2D CC50

RDF070p Radial Distribution Function – 7.0 weighted by atomic polarizabilities RDF descriptors 3D CC50

Mor18e 3D-MoRSE - signal 18 weighted by atomic Sanderson electronegativities 3D-Morse descriptors 3D CC50

H7e H autocorrelation of lag 7 weighted by atomic Sanderson electronegativities GETAWAY descriptors 3D CC50

R8p R autocorrelation of lag 8 weighted by atomic polarizabilities GETAWAY descriptors 3D CC50

Mol. Inf. 2010, 29, 303 – 321 ! 2010 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.molinf.com 309

Trade-offs Between HIV-1 Reverse Transcriptase Inhibitory Efficacy and MT4 Blood Cells Toxicity

www.molinf.com


" logCC50 ¼ "2:336ð*0:175Þ
"1:149ð*0:399ÞMATS3m

"0:698ð*0:212Þ:MATS5e

þ0:021ð*0:009ÞRDF070p
þ0:268ð*0:076ÞMor18e

"0:556ð*0:208ÞH7e
þ1:731ð0:598Þ:R8p
"0:485ð*0:148ÞnROH
þ0:123ð*0:057ÞC " 003

N ¼ 88; R2
FIT ¼ 0:52; sFIT ¼ 0:27; F ¼ 10:59;

p < 0:01; 1 ¼ 9:78; R2
LOOCV ¼ 0:38; sLOOCV ¼ 0:31

ð11Þ

Although the "logIC50 model exhibits a satisfactory
goodness of fit in the initial training set of 88 NNRTIs, this
is not the case for the "logCC50 model, even when its varia-
bles are significantly related with the property. This is usual-
ly due to the presence of outliers in the training set.
In order to detect those training compounds that influ-

ence model parameters to a marked extent, we plotted the
leverage value for each compound versus their respective
standardized residual value. This type of plots, if applied to
test instead of training compounds, can also be used for
checking the applicability domain (AD) of the model, a the-
oretical region in chemical space, defined by the model de-
scriptors and modeled response.[29]

A prediction should be considered unreliable for com-
pounds with a high leverage value (i.e. , with h>h*, being
the critical value h*=3p/N). On the other hand, a standar-
dized residual value greater than two indicates that the
value of the dependent variable for the compound is signif-
icantly separated from the remaining data, and hence, such
predictions must be considered with great care.[29]

Here, it is very important to highlight that only predicted
data for chemicals belonging to the chemical domain of
the training set should be proposed for further screening
of new HIV-1 RT inhibitors.
The applicability domain of the PMs determined by plot-

ting the leverage values (h) versus standardized residuals
(Std. Res.) of the 88 training compounds is shown in
Figure 2. From this plot, the AD is established inside a
squared area within *2 standard deviations and a leverage
threshold h* of 0.307 and 0.375 for the "logCC50 and
"logIC50 models, respectively.
According to the analysis, five compounds exhibited an

outlier behavior. Specifically, two outliers (compounds 9
and 19) were found for the "logCC50 model, one outlier
(compound 44) for the "logIC50 model, and two common
outliers (compounds 46 and 73).
In order to keep a common training set for both models,

the five outlier compounds were removed from the initial

training set. The new models obtained (Equations 12 and
13) after refitting are shown below.

" log IC50 ¼ "36:893ð*4:425Þ
"1:650ð*0:192ÞMAXDP

"0:904ð*0:138ÞX1sol
"20:207ð*3:859ÞSIC0
"3:600ð*0:821ÞGATS1p
þ2:772ð*0:311ÞESpm15r

þ0:035ð*0:004ÞEig1v
"3:110ð*0:696ÞKs
þ78:791ð*14:967ÞR8uþ
þ2:832ð*0:692ÞR8m
"0:416ð*0:182ÞN" 075

N ¼ 83; R2
FIT ¼ 0:82; sFIT ¼ 0:46; F ¼ 32:12; p < 0:01; 1 ¼ 7:55;

R2
LOOCV ¼ 0:75; sLOOCV ¼ 0:53; R2

VAL ¼ 0:74; R2
TEST ¼ 0:72

ð12Þ

Figure 2. Applicability domain of the MLR PMs.
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" logCC50 ¼ "2:460ð*0:137Þ
"1:804ð*0:325ÞMATS3m

"0:669ð*0:163Þ:MATS5e

þ0:032ð*0:007ÞRDF070p
þ0:215ð*0:061ÞMor18e

"0:743ð*0:162ÞH7e
þ1:435ð0:470Þ:R8p
"0:495ð*0:114ÞnROH
þ0:154ð*0:047ÞC " 003

N ¼ 83; R2
FIT ¼ 0:70; sFIT ¼ 0:21; F ¼ 22:04; p < 0:01; 1 ¼ 9:22;

R2
LOOCV ¼ 0:61; sLOOCV ¼ 0:24; R2

VAL ¼ 0:57; R2
TEST ¼ 0:50

ð13Þ

As can be noticed, the goodness of fit of both models is
significantly improved, especially taking into account that
the values of R2

FIT and R2
LOOCV of the "logCC50 model are

now 0.70 and 0.61, respectively.
As detailed previously, the evaluation of the predictive

ability of the respective models was conducted by two in-
dependent sets of NNRTIs never used for training. The first
one – validation set – comprises 21 NNRTIs randomly se-
lected from an initial pool of 109 compounds. The second
evaluation set – test set – corresponds to a subset of 18
compounds, within the AD of both models, taken from the
set of 53 NNRTIs discarded due to reported inaccurate
values for one or both properties.
Specifically, the values of R2

VAL and R2
TEST for the "logCC50

model were 0.57 and 0.50, respectively; whereas for the
"logIC50 model they were 0.74 and 0.72, respectively. These
values can be improved if, after checking the respective
ADs, outlier compounds are removed. Actually, the predic-
tive ability of the "logCC50 model in validation and test
sets is higher if we do not consider outlier compounds
(R2

VAL=0.65, R2
TEST=0.81). The predictive ability of the

"logIC50 model in this case is also improved (R2
TEST=0.86).

The outliers can be identified by checking the ADs of both
models for the validation and test set compounds detailed
in Figures SI-1 and SI-2 of the supporting information.
Summarizing, the models are good both in terms of their

statistical significance and predictive ability. No violations
of the basic MLR assumptions were found that could com-
promise the reliability of the resulting predictions (see de-
tails in Table SI-6 of the supporting information).
The overall desirability function exhibits good statistical

quality as indicated by the R2
D,FIT (0.73). Moreover, a R2

D,LOOCV

value of 0.65 provides an adequate level of reliability re-
garding the method for predicting DIC50-CC50. This conclusion
is reinforced by the high values of R2

D obtained for valida-
tion and test set compounds (R2

D,VAL=0.86, R2
D,TEST=0.69).

Table 3 contains the expected and predicted desirability

values attributable to each response plus the individual
and overall desirability values for the training, validation
and test sets. The IC50 and CC50 values for the full data are
also provided in this table.
At the same time, the performance evaluation of the

overall desirability function in a classification task instead of
regression can be informative too about its reliability for
further tasks of MOOP and ranking. That is, to evaluate
their performance in the identification of NNRTI candidates
with favorable pharmaceutical profiles (DIC50-CC50&0.5). From
Table 4 we can note that in all the subsets, the accuracy,
sensitivity and specificity values are always higher than
80%. The excellent classification performance achieved by
using an overall desirability function of predictions derived
from our two MLR models supports the consistency of
these models as evaluation functions of the MOOP process.
This ensures the reliability of the optimal theoretical NNRTI
candidate obtained, and consequently the quality of the
subsequent ranking process using it as a template.
So, based on the satisfactory accuracy and predictive

ability of the developed PMs we can proceed with an ade-
quate level of confidence to the simultaneous optimization
of the HIV-1 RT inhibitory activity and the toxicity over MT4
blood cells of the library of compounds. The optimization
of the overall desirability was carried out to obtain the
levels of the descriptors included in the PMs that simulta-
neously produce the most desirable combination of the
properties.
The results of the desirability-based MOOP process are

detailed in Table 5. In particular, the theoretical levels of the
predictive variables required to reach a desirable (DIC50-

CC50=1.000) NNRTI candidate with the best possible com-
promise between HIV-1 RT inhibitory efficacy (IC50=
0.001 mM) and toxicity over MT4 blood cells (CC50=
563.638 mM) are shown. As can be noticed, although we
found the levels of the descriptors that simultaneously pro-
duce the most desirable combination of properties, none
of these could be substantially improved. This is a logic
result since the specific binding mechanism of this family
of RT inhibitors “a priori promise” a favorable pharmaceuti-
cal profile (compromise between inhibitory efficacy and
toxicity).[3–4] This is another reason why, in order to over-
come the virus-NNRTIs resistance, is more feasible to look
for new candidates with acceptable trade-offs between in-
hibitory efficacy and safety, rather than individually opti-
mize one or another property.
The levels of the predictive variables required to reach a

desirable NNRTI candidate are used as a pattern to rank the
library used for training. The optimal set of weights wi lead-
ing to the maximal concordance between descriptions (Di)
and solutions (Di) of compounds used for training is shown
in Table 6. The computed values of Di, Di and the normal-
ized values of Di (

DDi) for the library of compounds used for
ranking are detailed in Table SI-7 of the supporting informa-
tion material.
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Table 3. Observed and predicted values of the optimized properties and their respective individual and overall desirability values for the
training, validation and test set compounds used on the desirability-based MOOP process.

ID IC50 (mM) "logIC50 Pred."logIC50 dIC50 Pred.dIC50 CC50 (mM) "logCC50 Pred."logCC50 dCC50 Pred.dCC50 DIC50-CC50 Pred.DIC50-CC50

1 5.06 "0.704 "0.176 0.270 0.405 405 "2.607 "2.208 0.938 0.723 0.503 0.541
2 5.370 "0.730 "0.608 0.264 0.295 529 "2.723 "2.839 1.000 1.000 0.514 0.543
3 0.02 1.699 1.431 0.884 0.815 60 "1.778 "1.985 0.491 0.603 0.659 0.701
4 0.186 0.730 0.476 0.636 0.571 30.33 "1.482 "1.507 0.332 0.346 0.460 0.444
5 0.107 0.971 0.942 0.698 0.691 39.07 "1.592 "1.693 0.391 0.446 0.522 0.555
6 2.7 "0.431 0.721 0.340 0.634 29.46 "1.469 "1.508 0.325 0.346 0.333 0.468
7 0.093 1.032 0.547 0.713 0.590 196.9 "2.294 "2.053 0.769 0.640 0.741 0.614
8 0.062 1.208 1.030 0.758 0.713 237 "2.375 "2.210 0.812 0.724 0.785 0.718
9 0.26 0.585 – – – 250 "2.398 – – – – –

10 0.09 1.046 0.805 0.717 0.655 42.23 "1.626 "1.824 0.409 0.516 0.542 0.582
11 0.156 0.807 0.974 0.656 0.699 74.4 "1.872 "2.074 0.542 0.651 0.596 0.674
12 1.065 "0.027 0.386 0.443 0.549 41.54 "1.618 "1.937 0.406 0.577 0.424 0.563
13 0.284 0.547 0.966 0.590 0.697 193.9 "2.288 "2.118 0.766 0.674 0.672 0.685
14 0.009 2.032 1.686 0.969 0.880 143.2 "2.156 "2.150 0.695 0.692 0.820 0.780
15 0.009 2.027 2.292 0.967 1.035 133 "2.124 "2.317 0.677 0.781 0.810 0.899
16 0.114 0.943 0.450 0.691 0.565 187.93 "2.274 "2.269 0.758 0.755 0.724 0.653
17 0.018 1.735 1.566 0.893 0.850 92.83 "1.968 "2.074 0.593 0.651 0.728 0.744
18 0.012 1.928 1.056 0.942 0.719 170.6 "2.232 "2.281 0.736 0.762 0.832 0.740
19 0.028 1.553 – – – 32.15 "1.507 – – – – –
20 0.081 1.093 1.084 0.729 0.727 243 "2.386 "2.269 0.818 0.756 0.772 0.741
21 0.06 1.222 1.937 0.762 0.944 256.32 "2.409 "2.281 0.831 0.762 0.796 0.848
22 58 "1.763 "1.039 0.000 0.185 111 "2.045 "1.955 0.635 0.587 0.000 0.329
23 4.5 "0.653 "0.314 0.283 0.370 40.4 "1.606 "1.610 0.399 0.401 0.336 0.385
24 4.2 "0.623 "0.862 0.291 0.230 91 "1.959 "1.722 0.589 0.461 0.414 0.326
25 4 "0.602 "1.001 0.296 0.195 43 "1.633 "1.613 0.414 0.403 0.350 0.280
26 4.3 "0.633 "0.663 0.288 0.281 102 "2.009 "1.835 0.615 0.522 0.421 0.383
27 7.7 "0.886 "0.734 0.224 0.263 66.6 "1.823 "1.817 0.516 0.512 0.340 0.367
28 10.3 "1.013 "1.065 0.192 0.178 133 "2.124 "1.928 0.677 0.572 0.360 0.319
29 11.6 "1.064 "0.975 0.178 0.201 43 "1.633 "1.820 0.414 0.514 0.272 0.322
30 8.8 "0.944 "1.083 0.209 0.174 43 "1.633 "1.618 0.414 0.406 0.294 0.265
31 8.4 "0.924 "0.739 0.214 0.262 82 "1.914 "1.982 0.564 0.601 0.348 0.396
32 8.6 "0.934 "1.225 0.212 0.137 125.2 "2.098 "2.024 0.663 0.624 0.375 0.293
33 1.4 "0.146 "0.211 0.413 0.396 122.4 "2.088 "2.200 0.658 0.718 0.521 0.533
34 6 "0.778 "0.761 0.251 0.256 63 "1.799 "1.906 0.503 0.560 0.356 0.379
35 1.2 "0.079 0.553 0.430 0.591 53 "1.724 "2.013 0.463 0.618 0.446 0.604
36 0.38 0.420 0.933 0.557 0.688 100 "2.000 "1.824 0.611 0.516 0.583 0.596
37 0.007 2.155 1.455 1.000 0.821 41 "1.613 "1.721 0.403 0.461 0.634 0.615
38 0.01 2.000 2.257 0.960 1.026 18 "1.255 "1.415 0.210 0.296 0.449 0.551
39 0.008 2.097 1.972 0.985 0.953 18 "1.255 "1.547 0.210 0.367 0.455 0.591
40 0.01 2.000 1.937 0.960 0.944 168 "2.225 "2.032 0.732 0.628 0.839 0.770
41 0.66 0.180 0.242 0.496 0.512 53.19 "1.726 "1.870 0.463 0.541 0.479 0.526
42 0.8 0.097 0.151 0.475 0.489 49.39 "1.694 "1.530 0.446 0.358 0.460 0.418
43 2.7 "0.431 0.347 0.340 0.539 46.09 "1.664 "1.683 0.430 0.440 0.382 0.487
44 0.09 1.046 – – – 163.86 "2.214 – – – – –
45 4.71 "0.673 "0.245 0.278 0.387 148.32 "2.171 "1.974 0.703 0.597 0.442 0.481
46 0.002 2.699 – – – 10.81 "1.034 – – – – –
47 6.34 "0.802 "0.409 0.245 0.346 58.95 "1.770 "1.641 0.487 0.418 0.346 0.380
48 7.28 "0.862 "0.890 0.230 0.223 53.81 "1.731 "1.882 0.466 0.547 0.327 0.349
49 1.17 "0.068 "0.075 0.433 0.431 122.35 "2.088 "1.794 0.658 0.500 0.534 0.464
50 0.18 0.745 "0.357 0.640 0.359 51.88 "1.715 "1.528 0.458 0.357 0.541 0.358
51 4.85 "0.686 "0.184 0.275 0.403 47.99 "1.681 "1.620 0.439 0.406 0.348 0.405
52 1.25 "0.097 "0.450 0.425 0.335 24.52 "1.390 "1.242 0.282 0.203 0.347 0.261
53 0.64 0.194 "0.148 0.500 0.412 58.02 "1.764 "2.080 0.484 0.654 0.492 0.519
54 1.33 "0.124 "0.201 0.418 0.399 34.19 "1.534 "1.590 0.360 0.391 0.388 0.395
55 2.22 "0.346 "0.687 0.362 0.275 23.46 "1.370 "1.537 0.272 0.362 0.314 0.315
56 1.34 "0.127 0.039 0.418 0.460 7.32 "0.865 "1.269 0.000 0.218 0.000 0.316
57 3.53 "0.548 "0.691 0.310 0.274 26.79 "1.428 "1.293 0.303 0.230 0.307 0.251
58 37.58 "1.575 "1.796 0.048 0.000 241.61 "2.383 "2.522 0.817 0.892 0.198 0.000
59 2.05 "0.312 "0.285 0.370 0.377 263.19 "2.420 "2.323 0.837 0.784 0.557 0.544
60 27.84 "1.445 "1.285 0.081 0.122 196.54 "2.293 "2.111 0.769 0.671 0.250 0.286
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Table 3. (Continued)

ID IC50 (mM) "logIC50 Pred."logIC50 dIC50 Pred.dIC50 CC50 (mM) "logCC50 Pred."logCC50 dCC50 Pred.dCC50 DIC50-CC50 Pred.DIC50-CC50

61 6.79 "0.832 "1.029 0.238 0.187 178.92 "2.253 "2.119 0.747 0.675 0.421 0.356
62 0.46 0.337 0.167 0.536 0.493 39.6 "1.598 "1.642 0.394 0.418 0.460 0.454
63 0.5 0.301 "0.216 0.527 0.395 38.78 "1.589 "1.662 0.390 0.429 0.453 0.412
64 0.21 0.678 0.255 0.623 0.515 28.73 "1.458 "1.750 0.319 0.476 0.446 0.495
65 0.057 1.244 1.052 0.768 0.719 33.2 "1.521 "1.655 0.353 0.425 0.521 0.553
66 0.65 0.187 "0.085 0.498 0.428 35.58 "1.551 "1.831 0.369 0.520 0.429 0.472
67 0.38 0.420 0.670 0.557 0.621 32.75 "1.515 "1.332 0.350 0.252 0.442 0.395
68 0.063 1.201 0.359 0.756 0.542 35.3 "1.548 "1.632 0.368 0.413 0.527 0.473
69 1.86 "0.270 0.099 0.381 0.475 37.11 "1.569 "1.627 0.379 0.410 0.380 0.441
70 0.83 0.081 0.024 0.471 0.456 32.57 "1.513 "1.713 0.349 0.457 0.405 0.456
71 2.96 "0.471 0.020 0.330 0.455 32.57 "1.513 "1.359 0.349 0.266 0.339 0.348
72 0.092 1.036 0.535 0.714 0.586 30.96 "1.491 "1.652 0.337 0.424 0.491 0.499
73 12.53 "1.098 – – – 171.92 "2.235 – – – – –
74 0.11 0.959 0.657 0.695 0.618 32.82 "1.516 "1.696 0.351 0.447 0.493 0.526
75 0.067 1.174 0.666 0.750 0.620 30.23 "1.480 "1.610 0.331 0.401 0.498 0.499
76 2.77 "0.442 0.394 0.337 0.551 31.4 "1.497 "1.069 0.340 0.110 0.339 0.246
77 0.23 0.638 "0.049 0.613 0.438 77.07 "1.887 "1.934 0.550 0.576 0.581 0.502
78 22.02 "1.343 "1.246 0.107 0.132 210.09 "2.322 "1.844 0.784 0.527 0.290 0.264
79 3.37 "0.528 "0.812 0.315 0.243 42.19 "1.625 "1.758 0.409 0.481 0.359 0.342
80 0.65 0.187 "0.193 0.498 0.401 154.5 "2.189 "2.011 0.712 0.617 0.596 0.497
81 2.65 "0.423 "0.304 0.342 0.373 36.3 "1.560 "1.759 0.374 0.481 0.358 0.423
82 0.83 0.081 0.082 0.471 0.471 187.34 "2.273 "1.953 0.757 0.585 0.597 0.525
83 0.47 0.328 "0.001 0.534 0.450 50.13 "1.700 "1.880 0.449 0.546 0.490 0.496
84 0.065 1.187 1.063 0.753 0.721 34.19 "1.534 "1.918 0.360 0.567 0.521 0.639
85 25.99 "1.415 "0.846 0.089 0.234 180.48 "2.256 "2.005 0.749 0.613 0.258 0.379
86 7.06 "0.849 "0.158 0.233 0.410 195.23 "2.291 "2.022 0.767 0.623 0.423 0.505
87 8.78 "0.943 0.013 0.209 0.453 155.47 "2.192 "1.773 0.714 0.489 0.387 0.471
88 22.66 "1.355 "1.153 0.104 0.156 192.9 "2.285 "2.248 0.764 0.744 0.282 0.341

Validation Set (R2
D,VAL(IC50-CC50)=0.856)

89 0.733 0.135 0.607 0.484 0.605 207.7 "2.317 "2.071 0.782 0.649 0.615 0.627
90 1.63 "0.212 0.658 0.396 0.618 181.6 "2.259 "2.024 0.750 0.624 0.545 0.621
91 0.256 0.592 0.526 0.601 0.584 134.44 "2.129 "2.079 0.680 0.653 0.639 0.618
92 0.0195 1.710 1.414 0.886 0.811 244 "2.387 "2.230 0.819 0.735 0.852 0.772
93 6 "0.778 "0.024 0.251 0.444 103 "2.013 "1.940 0.618 0.579 0.394 0.507
94 8 "0.903 "0.859 0.220 0.231 122 "2.086 "1.955 0.657 0.586 0.380 0.368
95 7.6 "0.881 "0.402 0.225 0.348 80 "1.903 "1.701 0.559 0.450 0.355 0.396
96 4 "0.602 "0.335 0.296 0.365 70.7 "1.849 "1.887 0.530 0.550 0.396 0.448
97 1.3 "0.114 "0.683 0.421 0.276 51.5 "1.712 "1.827 0.456 0.518 0.438 0.378
98 16.94 "1.229 "1.056 0.136 0.180 210.37 "2.323 "1.963 0.785 0.591 0.327 0.327
99 4.69 "0.671 "0.935 0.279 0.211 60.37 "1.781 "1.963 0.493 0.591 0.371 0.353
100 10.87 "1.036 "0.899 0.186 0.221 24.69 "1.393 "1.727 0.284 0.464 0.230 0.320
101 0.18 0.745 0.446 0.640 0.564 52.5 "1.720 "1.755 0.460 0.479 0.543 0.520
102 0.15 0.824 0.652 0.660 0.617 38.4 "1.584 "1.797 0.387 0.502 0.506 0.556
103 0.48 0.319 0.245 0.531 0.513 34.28 "1.535 "1.694 0.361 0.446 0.438 0.478
104 0.51 0.292 0.172 0.525 0.494 38.4 "1.584 "1.550 0.387 0.369 0.451 0.427
105 0.25 0.602 0.420 0.604 0.557 29.6 "1.471 "1.673 0.326 0.435 0.444 0.492
106 7.37 "0.867 "0.027 0.229 0.443 36.12 "1.558 "1.120 0.373 0.137 0.292 0.247
107 0.21 0.678 0.535 0.623 0.586 31.47 "1.498 "1.652 0.341 0.424 0.461 0.499
108 4.69 "0.671 "0.933 0.279 0.212 59.58 "1.775 "1.873 0.490 0.542 0.370 0.339
109 0.099 1.004 0.649 0.706 0.616 43.89 "1.642 "1.729 0.418 0.465 0.544 0.535

Test Set (R2
D,TEST(IC50-CC50)=0.694)

110 3.65 "0.562 0.102 0.307 0.476 >37.88 "1.578 "2.031 0.384 0.627 0.343 0.547
111 0.693 0.159 0.718 0.491 0.633 &209 "2.320 "1.819 0.783 0.513 0.620 0.570
112 0.203 0.693 0.921 0.627 0.685 >263.2 "2.420 "2.139 0.837 0.685 0.724 0.685
113 0.187 0.728 0.382 0.636 0.547 >290 "2.462 "2.242 0.860 0.741 0.739 0.637
114 >38.3 "1.583 "1.066 0.046 0.178 38.3 "1.583 "2.080 0.387 0.654 0.133 0.341
115 >44 "1.643 "1.960 0.031 0.000 44 "1.643 "1.649 0.419 0.422 0.113 0.000
116 >22.80 "1.358 "0.111 0.103 0.422 22.8 "1.358 "1.535 0.265 0.361 0.166 0.390
117 0.24 0.620 0.039 0.608 0.460 >344.35 "2.537 "1.893 0.900 0.553 0.740 0.504
118 0.58 0.237 "0.310 0.510 0.371 >346.26 "2.539 "1.670 0.901 0.433 0.678 0.401
119 &35.73 "1.553 "1.376 0.054 0.099 116.66 "2.067 "1.755 0.647 0.479 0.186 0.218
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Based on Di, it is possible to arrive at a ranking of the
training set of NNRTIs with a corrected ranking quality
index (Y*) of 0.357 representing a percentage of ranking
quality (R%) of 64.34. On the other hand, better ranking
quality indices were obtained for the validation (R%=70.91)
and test sets (R%=72.84). In addition, if the full set of 122
NNRTI compounds is considered (including all subset of

compounds together), we obtain a percentage of ranking
quality over 60% (R%=62.14). These ranks, compared with
their respective perfect ranking, are shown in Figure 3.
Remarkably, the ranking attained (R%) in all subsets are

similar to the predictability values exhibited on the PMs (R2)
as well as on the MOOP process (R2

D). Specifically, in the
training set, for the "logIC50 model, a R%=64 is supported

Table 3. (Continued)

ID IC50 (mM) "logIC50 Pred."logIC50 dIC50 Pred.dIC50 CC50 (mM) "logCC50 Pred."logCC50 dCC50 Pred.dCC50 DIC50-CC50 Pred.DIC50-CC50

120 >2.09 "0.320 "0.506 0.368 0.321 2.09 "0.320 "1.049 0.000 0.099 0.000 0.178
121 >23.53 "1.372 "0.989 0.100 0.198 23.53 "1.372 "1.281 0.273 0.224 0.165 0.211
122 >21.03 "1.323 "1.291 0.112 0.121 21.03 "1.323 "1.651 0.247 0.423 0.167 0.226
123 >304.41 "2.483 "1.310 0.000 0.116 >304.41 "2.483 "2.143 0.871 0.688 0.000 0.282
124 >246.65 "2.392 "2.248 0.000 0.000 246.65 "2.392 "2.393 0.822 0.822 0.000 0.000
125 >123.56 "2.092 "2.337 0.000 0.000 123.56 "2.092 "2.158 0.660 0.696 0.000 0.000
126 >312.50 "2.495 "1.512 0.000 0.064 >312.50 "2.495 "1.872 0.877 0.542 0.000 0.187
127 &60.75 "1.784 "1.924 0.000 0.000 157.43 "2.197 "2.211 0.717 0.725 0.000 0.000

Table 4. Classification performance of the overall desirability function on training, validation and test sets.

TRINING SET EVALUATION SETS

Fit LOOCV Validation Test
Classification Matrix Classification Matrix

Obs. Obs. Obs. Obs.

+ " + " + " + "
Pred. + 25 8 Pred. + 25 11 Pred. + 7 1 Pred. + 4 1

" 4 46 " 4 43 " 0 13 " 1 12

% Statistic % % Statistic %

85.54 Accuracy 81.93 95.24 Accuracy 88.89
82.21 Sensitivity 82.21 100.00 Sensitivity 80.00
85.19 Specificity 79.63 92.86 Specificity 92.31
14.81 FP Rate 20.37 7.14 FP Rate 7.69
17.79 FN Rate 17.79 0.00 FN Rate 20.00

Table 5. Results of the desirability-based MOOP process.

Predictors Optimum Level

MAXDP=4.013 Ks=0.800 RDF070p=15.444
X1sol=16.882 R8u+ =0.038 Mor18e="2.794
SIC0=0.368 R8m=1.022 H8e=0.107
GATS1p=1.180 N-075=3.000 R8p=0.118
ESpm15r=22.385 MATS3m=0.035 nROH=0.000
Eig1v=260.585 MATS5e=0.321 C-003=0.000
Pharmaceutical Profile HIV-1 RT Inhibition Profile MT4 Blood Cells Toxicity Profile
DIC50-CC50 "log IC50 IC50 dIC50 "log CC50 CC50 dCC50

1.000 2.860 0.001 mM 1.000 "2.751 563.638’mM 1.000

Table 6. Optimal set of weights for ranking.

Variable MAXDP X1sol SIC0 GATS1p ESpm15r Eig1v Ks R8u+ R8m

wi 0.1135 "0.5515 4.9162 0.1876 1.1991 0.0197 "2.8436 56.1139 "0.0093
Variable N"075 MATS3m MATS5e RDF070p Mor18e H8e R8p nROH C"003
wi 0.6871 3.6896 "1.8542 0.0362 0.2277 "0.8664 "3.1562 "0.8067 "0.0728
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by a R2
LOOCV value of 0.75 and, for the "logCC50 model, a

R2
LOOCV value of 0.61 by a R2

D,LOOCV value of 0.65. The same
occurs with the validation and test sets (validation set: R%=
73, R2

"logIC50=0.74, R2
"logCC50=0.57, R2

D=0.86; test set: R%=
71, R2

"logIC50=0.72, R2
"logCC50=0.50, R2

D=0.69). This fact indi-
cates that the quality of both process (desirability-based
MOOP and ranking) are dependent on the quality of the in-
itial set of PMs suggesting that the ranking algorithm re-
flects the quality of the PMs and the MOOP process on
which it is based.

However, the main goal of ranking a library of com-
pounds according to a pharmaceutically optimal candidate
is to filter the fragment containing the most promising can-
didates (the closest and consequently more similar to the
optimal candidate) to propose these ones for synthesis and
biological assessment.
With this regard, we decided to test the ability of this

multiobjective VS strategy to prioritize NNRTI candidates
with favorable pharmaceutical profiles (DIC50-CC50&0.5) dis-
perse in a data set of NNRTI decoys. NNRTI decoys are

Figure 3. Di-based ranking attained for the (A) training, (B) validation, (C) test, and (D) full set of NNRTIs compounds.
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physically similar but chemically distinct from NNRTIs, so
that they are unlikely to be binders of the HIV RT. Specifi-
cally, we used as positive cases the 12 HIV RT known li-
gands with favorable pharmaceutical profiles included on
the validation and test sets, and 36 decoys (negative cases)
for each known ligand (432 decoys) were randomly select-
ed from the database of HIV RT decoys included on the di-
rectory of useful decoys (DUD).[30]

We only considered those decoys included on the AD of
our prediction models at a ratio of 36 decoys per ligand, as
recommended by Huang et al.[30] The final set of 444 com-
pounds is ranked according to their structural similarity (Di)
with the previously determined optimal candidate, and the
enrichment ability of this strategy is finally tested according
to the enrichment metrics previously detailed and now de-
picted in Table 7.
The respective values of AUAC and ROC Metric obtained

suggest that the method is able to rank a NNRTI candidate
with a favorable pharmaceutical profile earlier than a NNRTI
decoy with a probability around 0.8. At the same time, TP/
FPROC-OP informs that, to obtain the best performance is nec-
essary to filter 23.2% of the library, in turn leading to find
83.3% of the TP cases at a cost of only 21.5% of FP cases,
which represents a EFMAX=3.592. Furthermore, all the posi-
tive cases can be found at the first 32% of the library. On
the other hand, a third of the compounds retrieved, after
filtering the top 10% of the library, were NNRTI candidates
with a favorable pharmaceutical profile (Ya10%=0.33),
which represents an EF10%=3.364, being 10.09 the maxi-
mum possible value of EF for this data fraction.
The respective ROC, accumulation, and enrichment

curves can be checked in the Figure SI-3 of the supporting
information. The ranked list of 12 NNRTIs with favorable
pharmaceutical profile and 432 NNRTI decoys based on Di

can be consulted in Table SI-8 of the supporting informa-
tion material.
So, considering the previous results, one may well expect

that larger (real or virtual) libraries of molecules (always
inside the applicability domain of the PMs), like combinato-
rial libraries, could be correctly ranked; prioritizing in this
way those candidates (top ranked) with more favorable
compromise between inhibitory efficacy and safety.

3.2 Multiobjective versus Sequential and Parallel NNRTIs
Virtual Screening

Filtering the most promising candidates having the best
compromise between inhibitory efficacy and toxicity con-
fers to the process of discovery and development of new
NNRTI drugs an elevated degree of rationality which is diffi-
cult to reach via traditional QSARs which optimize sequen-
tially each property. The sequential optimization of the
properties comprising the final pharmaceutical profile of a
drug candidate implies to overlook at some stage proper-
ties equally decisive to reach a successful drug or, at least,
to find only by chance a candidate with acceptable profiles
of all properties simultaneously. That is, a potent candidate
once identified via QSAR has a high probability of being
discarded later as a drug because of an unacceptable toxi-
cological profile with the useless expenses of time and re-
sources in synthesis and pharmacological assays.[31]

Equally difficult is the choice of using a panel of models
(i.e. , a parallel screening based on QSAR models to respec-
tively map the inhibitory efficacy and toxicity) since it is not
very probable to find a candidate with all the properties si-
multaneously optimized and if this happens the results are
more by chance than fruit of a rational drug development
strategy.
For instance, the suitability of a multiobjective VS ap-

proach can be checked if we compare the enrichment ach-
ieved in the screening of NNRTI candidates with a favorable
pharmaceutical profile from the full set of 122 NNRTI com-
pounds, just considering the inhibitory efficacy profile (the
predicted values of "logIC50 : Pred."logIC50) in opposition
to use the pharmaceutical profile information deduced
from Di.
In general, the overall enrichment performance of the Di-

based rank is comparable (just slightly superior) to the
Pred."logIC50-based rank. Inspecting the respective ROC
and accumulation curves depicted in Figure 4, we can note
that for both cases the probability to rank a positive case
earlier than a negative case is always around 0.7 (see ROC
Metric and AUAC values in Table 8). In addition, to retrieve
100% of the positive cases through the Di-based rank it is
necessary to screen almost 87% of the library contrasted
with only a 54% via the Pred-based rank (see the
c100%values). According to this information, there is no
reason to privilege one or another ranking criterion, and
consequently, neither a reason to substitute the current ap-
proach (i.e. , prioritization of drug candidates based on their
pharmacological efficacy). However, analyzing the enrich-
ment achieved by applying each ranking criterion at specif-
ic fractions, instead of using metrics based on the whole
data set, the previous conclusion is not supported.
Actually, the enrichment achieved by the Di-based rank

in the initial fraction (up to the top 10% of the dataset) is
superior to the obtained through the Pred."logIC50-based
rank (see the respective values of Ya5%, Ya10%, EF5%, and
EF10% in Table 8). In a lesser degree, the same behavior is

Table 7. Enrichment metrics for Di-based ranking of the data set
collected form DUD.

Enrichment Metrics MOOP Rank

ROC Curve Information
ROC Metric 0.798
TP/FPROC-OP 0.833/0.215
Accumulation Curve Information
AUAC 0.828
c100% 0.320
Ya10% 0.333
Enrichment Curve Information
EF10% 3.364
EFMax 3.592
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observed in later fractions of the data set (after the top
20%) as indicated by the respective values of Ya20%, Ya50%,
EF20%, and EF50%. Another metric supporting the use of Di

over the Pred."logIC50 values as ranking criterion in a VS
effort is TP/FPROC-OP. The operating point for both ranks is
found after screening approximately the same fraction of
the dataset (top 17% and 19% for the Pred."logIC50- and
Di-based ranks, respectively). Nevertheless, the TP/FP ratio
achieved by the Di-based rank is significantly better
(Di rank: TP/FPROC-OP=0.56/0.01; Pred."logIC50 rank: TP/
FPROC-OP=0.46/0.02).
The comparison of the enrichment curve of each ap-

proach with the ideal enrichment curve for the present
data set allows confirming the previous statement. Note in
Figure 4 that the enrichment curve obtained for the Di-
based rank resembles the ideal curve better than the
Pred."logIC50-based rank, especially on initial and final frac-
tions.
Anyhow, VS endeavors also consider safety criteria in

subsequent steps. So, if the screening is conducted in a se-
quential manner, starting with the selection of candidates
fulfilling a previously established threshold for the inhibito-
ry efficacy (Pred."logIC50&0.196; Pred.IC50!0.64 mM; Pred.-
dIC50&0.5) and further eliminating those candidates with an
unfavorable safety profile (Pred."logCC50!"1.794;
Pred.CC50&62.23 mM; Pred.dCC50&0.5), the area of selected
candidates is reduced. As a consequence, 41% of the can-
didates (17 out of 41) with favorable pharmaceutical pro-
files (DIC50-CC50&0.5) are mistakenly discarded (see Fig-
ure 5A). However, by considering the compromise between
inhibitory efficacy and safety of the candidates through a
multiobjective virtual screening (Pred.DIC50-CC50&0.5) is possi-
ble to retrieve up to 88% of the candidates with accepta-
ble pharmaceutical profiles included on the library (see Fig-
ure 5B).
This reveals the importance of considering multiple prop-

erties simultaneously since the sequential application of
property filters could have led to the elimination of the
candidate, despite it having a good balance between most
of the properties.[32] The importance of achieving a balance
across a range of criteria is also recognized by other
groups.[33]

However, that can be settle on in a more detailed way
by simulating a VS attempt over the same data set through
three different VS approaches, and conducting a retrospec-
tive analysis of the performance of each approach by com-
paring the respective degree of enrichment achieved at the
top 10% of the data set. As referred to above, the multiob-
jective VS approach proposed in this work is compared
with two of the approaches – QSAR-based sequential and
parallel VS – currently employed on drug discovery.
The sequential selection guides retrieving 75% of the

pharmaceutically acceptable compounds included on the
top 10% fraction of the data set, which represents an
EF10%=2.232. Similar but inferior results were achieved
through a parallel screening (Ya10%=0.6; EF10%=1.785).
These results although very good are outperformed when
the selection of compounds was made based on a multiob-
jective criterion (the structural similarity to an optimal can-

Figure 4. ROC, accumulation, and enrichment curves for the
"logIC50- and Di-based ranks of the full set of 122 NNRTI com-
pounds.
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didate, Di). In the latter case, it was possible to retrieve
100% included on the same fraction of the data, reaching
the maximum possible EF value for this fraction (EF10%=
2.976). More significant is the fact that compounds, initially
selected, were rejected by the sequential or the parallel VS
approach, even when they actually exhibited a pharma-

ceutically acceptable profile (false negative compounds,
FN). Specifically, one out of twelve, and three out of twenty
compounds were mistakenly discarded through the se-
quential and the parallel approach, respectively. All these
results are detailed in Tables 9–11.

4 Conclusions

The results obtained in this work allow highlighting the
benefits of exploiting a combined strategy of desirability-
based multiobjective optimization and ranking as valuable
tools in drug discovery and development process. The data
herein obtained allow to determine the theoretical levels of
a set of molecular descriptors leading to a pharmaceutically
desirable HIV-1 NNRTI candidate and use it as a pattern to
rank libraries of new compounds according to the degree
of structural similarity. The developed MOOP strategy can
be efficiently employed as a VS tool for the identification
and prioritization of new NNRTI hits with acceptable trade-
offs of the inhibitory efficacy towards the HIV-1 RT and the
toxic effects towards MT4 blood cells. The comparative
study between the sequential, parallel and multiobjective
VS approaches of the selected library of compounds re-
vealed that the multiobjective approach can be superior to
the other approaches. Moreover, it can rule out the exclu-
sion of pharmaceutically acceptable candidates.
The data obtained so far provide evidences that support

the beneficial application of the multiobjective VS strategy
in the identification of NNRTIs hits with appropriate trade-
offs between potency and safety. The adjustment of the
multiple criteria in hit-to-lead identification and lead opti-
mization is considered to increase the likelihood of the can-
didate to evolve into a successful antiretroviral drug.

Table 8. Enrichment metrics for predicted inhibitory (Pred."logIC50) and Di-based ranking of the full set of 122 NNRTI compounds.

Pred."logIC50 Rank Enrichment Metrics Di Rank

ROC Curve Information
0.654 ROC Metric 0.668
0.46/0.02 TP/FPROC-OP 0.56/0.01
Accumulation Curve Information
0.730 AUAC 0.740
0.543 c100% 0.864
0.667 Ya5% 1.000
0.833 Ya10% 1.000
0.833 Ya20% 0.958
0.780 Ya50% 0.829
Enrichment Curve Information
1.984 EF5% 2.976
2.480 EF10% 2.976
2.480 EF20% 2.852
1.561 EF50% 1.659
2.692 EFMax 2.976

Figure 5. Graphical representation of the results for (A) a sequen-
tial screening [based on the inhibitory efficacy (Pred."logIC50) and
safety (Pred."logCC50) profiles] , and (B) a multiobjective screening
[based on the pharmaceutical profile (Pred.DIC50-CC50)] , of the full set
of 122 NNRTI compounds.
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Table 9. Ordered list of NNRTI candidates, obtained through parallel filtering (according to the predicted values of "logIC50 and "logCC50)
of the top 10% of the full set of 122 NNRTIs.[a]

Parallel virtual screening

(HIV"1 RT Inhibitory Efficacy Profile (IC50) and MT4 Blood Cells Safety Profile (CC50)&50%)

ID NNRTI Analogue Pred. "logIC50 Pred. dIC50 Pred. IC50 Class Pred. "logCC50 Pred. dCC50 Pred. CC50 Class DIC50-CC50 Control Class (DIC50-CC50)
15 DATA 2.292 1.035 + "2.317 0.781 + 0.810 +
38 ATC 2.257 1.026 + "1.415 0.296 " 0.449 "
39 ATC 1.972 0.953 + "1.547 0.367 " 0.455 "
21 DATA 1.937 0.944 + "2.281 0.762 + 0.796 +
40 ATC 1.937 0.944 + "2.032 0.628 + 0.839 +
14 DATA 1.686 0.880 + "2.150 0.692 + 0.820 +
17 DATA 1.566 0.850 + "2.074 0.651 + 0.728 +
37 ATC 1.455 0.821 + "1.721 0.461 " 0.634 +
3 ATC 1.431 0.815 + "1.985 0.603 + 0.659 +
92 DATA 1.414 0.811 + "2.230 0.735 + 0.852 +
20 DATA 1.084 0.727 + "2.269 0.756 + 0.772 +
84 HEPT 1.063 0.721 + "1.918 0.567 + 0.521 +
2 HEPT "0.608 0.295 " "2.839 1.000 + 0.514 +
58 DABO "1.796 0.000 " "2.522 0.892 + 0.198 "
124 DABO "2.248 0.000 " "2.393 0.822 + 0.000 "
59 DABO "0.285 0.377 " "2.323 0.784 + 0.557 +
18 DATA 1.056 0.719 + "2.281 0.762 + 0.832 +
16 DATA 0.450 0.565 + "2.269 0.755 + 0.724 +
88 HEPT "1.153 0.156 " "2.248 0.744 + 0.282 "
113 DATA 0.382 0.547 + "2.242 0.741 + 0.739 +

Enrichment Metrics Ya10%=0.600 EF10%=1.785

[a] The corresponding overall desirability (DIC50-CC50) values are placed over each compound represented in the graph.
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Table 10. Ordered list of NNRTI candidates, obtained through sequential filtering (according to the predicted values of "logIC50 and
"logCC50) of the top 10% of the full set of 122 NNRTIs. The corresponding overall desirability (DIC50-CC50) values are placed over each com-
pound represented in the graph.

Sequential virtual screening

(HIV"1 RT Inhibitory Efficacy Profile (IC50) and MT4 Blood Cells Safety Profile (CC50)&50%)

ID NNRTI Analogue Pred. "logIC50 Pred. dIC50 Pred. IC50 Class Pred. "logCC50 Pred. dCC50 Pred. CC50 Class DIC50-CC50 Control class (DIC50-CC50)
15 DATA 2.292 1.035 + "2.317 0.781 + 0.810 +
38 ATC 2.257 1.026 + "1.415 0.296 " 0.449 "
39 ATC 1.972 0.953 + "1.547 0.367 " 0.455 "
21 DATA 1.937 0.944 + "2.281 0.762 + 0.796 +
40 ATC 1.937 0.944 + "2.032 0.628 + 0.839 +
14 DATA 1.686 0.880 + "2.150 0.692 + 0.820 +
17 DATA 1.566 0.850 + "2.074 0.651 + 0.728 +
37 ATC 1.455 0.821 + "1.721 0.461 " 0.634 +
3 ATC 1.431 0.815 + "1.985 0.603 + 0.659 +
92 DATA 1.414 0.811 + "2.230 0.735 + 0.852 +
20 DATA 1.084 0.727 + "2.269 0.756 + 0.772 +
84 HEPT 1.063 0.721 + "1.9+8 0.567 + 0.521 +

Enrichment Metrics Ya10%=0.750 EF10%=2.232

Table 11. Ordered list of NNRTI candidates, obtained through multiobjective filtering (according to Di) of the top 10% of the full set of 122
NNRTIs. The corresponding overall desirability (DIC50-CC50) values are placed over each compound represented in the graph.

MULTIOBJECTIVE VIRTUAL SCREENING (Pharmaceutical Profile (DIC50–CC50) &50%)

ID NNRTI Analogue Di Pred. DIC50 DIC50-CC50 Control Class (DIC50-CC50)

2 HEPT 0.097 0.543 0.514 +
15 DATA 0.790 0.899 0.810 +
18 DATA 1.045 0.740 0.832 +
13 DATA 1.148 0.685 0.672 +
14 DATA 1.163 0.780 0.820 +
21 DATA 1.202 0.848 0.796 +
20 DATA 1.246 0.741 0.772 +
17 DATA 1.336 0.744 0.728 +
40 ATC 1.517 0.770 0.839 +
92 DATA 1.535 0.772 0.852 +
7 DATA 1.555 0.614 0.741 +
8 DATA 1.557 0.718 0,785 +

Entrichment Metrics Ya10%=1.000 EF10%=2.976
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Table SI-1. Identification (ID), names and references relative to the data collected. 
ID Compound Name Ref.a 
1 1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio) thymine (HEPT) A, B 
2 2,3-dideoxyinosine (DDI) B,C 
3 Trovirdine D 
4 4-[4-Methylamino-6-(1-naphthoxy)-1,3,5-triazine-2-yl]aminobenzonitrile (8a) C 
5 4-[4-Amino-6-(1-naphthoxy)-1,3,5-triazine-2-yl] aminobenzonitrile (8b) C 
6 4-[4-n-Propylamino-6-(1-naphthoxy)-1,3,5-triazine-2-yl]aminobenzonitrile (8c) C 
7 4-[4-Methylamino-6-(4-chloro-1-naphthoxy)-1,3,5-triazine-2-yl] amino benzonitrile (8d) C 
8 4-[4-Amino-6-(4-chloro-1-naphthoxy)-1,3,5-triazine-2-yl]aminobenzonitrile (8e) C 
9 4-[4-Methylamino-6-(2-naphthoxy)-1,3,5-triazine-2-yl]aminobenzonitrile (9a) C 

10 4-[4-Amino-6-(2-naphthoxy)-1,3,5-triazine-2-yl]aminobenzonitrile (9b) C 
11 4-[4-Ethylamino-6-(1,6-dibromo-2-naphthoxy)-1,3,5-triazine-2-yl] amino benzonitrile (9c) C 
12 4-[4-i-Propylamino-6-(6-bromo-2-naphthoxy)-1,3,5-triazine-2-yl] amino benzonitrile (9f) C 
13 4-[4-Methylamino-6-(6-bromo-2-naphthoxy)-1,3,5-triazine-2-yl] amino benzonitrile (9g) C 
14 4-[4-Methylamino-6-(1-bromo-2-naphthoxy)-1,3,5-triazine-2-yl] amino benzonitrile (9h) C 
15 4-[4-Amino-6-(1-bromo-2-naphthoxy)-1,3,5-triazine-2-yl] amino benzonitrile (9i) C 
16 4-[4-Ethylamino-6-(1-chloro-2-naphthoxy)-1,3,5-triazine-2-yl] amino benzonitrile (9k) C 
17 4-[4-Methylamino-6-(1,6-dibromo-2-naphthoxy)-1,3,5-triazine-2-yl] amino benzonitrile (9m) C 
18 4-[4-Methylamino-6-(1-chloro-2- naphthoxy)-1,3,5-triazine-2-yl] amino benzonitrile (9o) C 
19 4-[4-Amino-6-(1-chloro-2-naphthoxy)-1,3,5-triazine-2-yl]aminobenzonitrile (9p) C 
20 4-[4-Amino-6-(6-bromo-2-naphthoxy)-1,3,5-triazine-2-yl]aminobenzonitrile (9q) C 
21 4-[4-Azido-6-(1-chloro-2-naphthoxy)-1,3,5-triazine-2-yl]aminobenzonitrile (9r) C 
22 O-(Benzyl) 2-furoyl (phenyl) thiocarbamate (13q) D 
23 O-(2-Phenethyl) (E)-cinnamoyl (phenyl) thiocarbamate (15b) D 
24 O-(2-Phenethyl) benzoyl (phenyl) thiocarbamate (15c) D 
25 O-(2-Phenethyl) 4-chlorobenzoyl (phenyl)thiocarbamate (15g) D 
26 O-(2-Phenethyl) 2-furoyl (phenyl) thiocarbamate (15q) D 
27 O-(2-Phenoxyethyl) (E)-Cinnamoyl (phenyl)thiocarbamate (17b) D 
28 O-(2-Phenoxyethyl) 4-chlorobenzoyl (phenyl)thiocarbamate (17g) D 
29 O-(2-Phenoxyethyl) 2,4-dichlorobenzoyl(phenyl)thiocarbamate (17k) D 
30 O-(2-Phenoxyethyl) 3,5-dichlorobenzoyl (phenyl)thiocarbamate (17m) D 
31 O-(2-Phenoxyethyl) 2-furoyl (phenyl) thiocarbamate (17q) D 
32 O-(2-Phenoxyethyl) phenyl(thien-2-yl carbonyl)thiocarbamate (17r) D 
33 (±) O-(1-Methyl-2-phenoxyethyl) phenoxyacetyl(phenyl)thiocarbamate (19a) D 
34 (±) O-(1-Methyl-2-phenoxyethyl) 4-nitrophenyl(thien-2-yl carbonyl) thiocarbamate (22r) D 
35 O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl]3-bromophenyl (thien-2-ylcarbonyl)thiocarbamate (35r) D 
36 O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3-nitrophenyl(thien-2-ylcarbonyl)thiocarbamate (36r) D 
37 O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl]4-chlorophenyl(2-furoyl)thiocarbamate (41q) D 
38 O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl]4-iodophenyl(thien-2-ylcarbonyl)thiocarbamate (43r) D 
39 O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl]2-furoyl(4-nitrophenyl)thiocarbamate (45q) D 
40 O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-nitrophenyl(thien-2-ylcarbonyl)thiocarbamate (45r) D 
41 6-[ -Cyano-(1-naphthylmethyl)]-3,4-dihydro-2-isopropylthiopyrimidin-4(3H)-one (3a) A 
42 6-[ -Cyano-(1-naphthylmethyl)]-2-cyclopentylthio-3,4-dihydro-5-methyl pyrimidin-4(3H)-one (3c) A 
43 6-[ -Cyano-(1-naphthylmethyl)]-3,4-dihydro-5-methyl-2-propynyl thiopyrimidin-4(3H)-one (3d) A 
44 2-Benzoylmethylthio-6-[ -cyano-(1-naphthylmethyl)]-3,4-dihydro-5-methyl pyrimidin-4(3H)-one (3e) A 
45 2-(4-Chlorobenzoylmethylthio)-6-[ -cyano-(1-naphthylmethyl)]-3,4-dihydro-5-methylpyrimidin-4(3H)-one (3f) A 
46 6-( -Cyanobenzyl)-3,4-dihydro-2-isopropylthio-5-methylpyrimidin-4(3H)-one (3g) A 
47 6-( -Cyanobenzyl)-2-cyclopentylthio-3,4-dihydro-5-methylpyrimidin-4(3H)-one (3h) A 
48 2-Benzoylmethylthio-6-( -cyanobenzyl)-3,4-dihydro-5-methylpyrimidin-4(3H)-one (3i) A 
49 6-[ -Cyano-(1-naphthylmethyl)]-3,4-dihydro-5-ethyl-2-ethylthiopyrimidin-4(3H)-one (3j) A 
50 6-[ -Cyano-(1-naphthylmethyl)]-2-cyclopentylthio-3,4-dihydro-5-ethyl pyrimidin-4(3H)-one (3l) A 
51 6-[ -Cyano-(1-naphthylmethyl)]-3,4-dihydro-5-ethyl-2-propynylthiopyrimidin-4(3H)-one (3n) A 
52 6-[ -Cyano-(1-naphthylmethyl)]-3,4-dihydro-5-ethyl-2-(4-nitrobenzylthio) pyrimidin-4(3H)-one (3o) A 
53 6-( -Cyanobenzyl)-3,4-dihydro-5-ethyl-2-isopropylthiopyrimidin-4(3H)-one (3q) A 
54 6-( -Cyanobenzyl)-3,4-dihydro-5-ethyl-2-(4-nitrobenzylthio)-pyrimidin-4(3H)-one (3r) A 
55 6-( -Cyano-2,6-dichlorobenzyl)-3,4-dihydro-5-ethyl-2-(4-nitrobenzylthio) pyrimidin-4(3H)-one (3s) A 
56 6-[ -Cyano-(1-naphthylmethyl)]-2-cyclopentylthio-3,4-dihydro-5-isopropyl pyrimidin-4(3H)-one (3t) A 
57 6-( -Cyanobenzyl)-3,4-dihydro-5-isopropyl-2-(4-methoxybenzylthio) pyrimidin-4(3H)-one (3v) A 
58 3,4-Dihydro-2-ethylthio-6-(1-naphthoyl) pyrimidin-4(3H)-one (4a) A 
59 6-Benzoyl-3,4-dihydro-2-isopropylthio-5-methylpyrimidin-4(3H)-one (4e) A 
60 3,4-Dihydro-5-ethyl-2-ethylthio-6-(1-naphthoyl)pyrimidin-4(3H)-one (4g) A 
61 3,4-Dihydro-5-ethyl-2-isopropylthio-6-(1-naphthoyl)pyrimidin-4(3H)-one (4h) A 
62 1-Ethoxymethyl-5-methyl-6-(1-naphthylthio)uracil  (7a) B 
63 1-Methoxymethyl-5-ethyl-6-(1-naphthylthio)uracil  (7c) B 
64 1-[3-Methyl(benzyloxy)methyl]-5-ethyl-6-(1-naphthylthio)uracil (7f) B 
65 1-Ethoxymethyl-5-isopropyl-6-(1-naphthylthio)uracil (7h) B 
66 1-[(2-Methoxyethyloxy)methyl]-5-isopropyl-6-(2-naphthylthio)uracil (7i) B 
67 1-[(Cyclopropylmethoxy)methyl]-5-isopropyl-6-(1-naphthylthio)uracil (7j) B 
68 1-[(Benzyloxy)methyl]-5-isopropyl-6-(1-naphthylthio)uracil (7k) B 
69 1-Ethoxymethyl-5-propyl-6-(1-naphthylthio)uracil (7m) B 
70 1-[(Benzyloxy)methyl]-5-propyl-6-(1-naphthylthio)uracil (7n) B 



 
Table SI-1. (Continued…) 
ID Compound Name Ref.a 
71 1-[(Benzyloxy)methyl]-5-isobutyl-6-(1-naphthylthio)uracil (7p) B 
72 1-[(4-Fluorobenzyloxy)methyl]-5-ethyl-6-(1-naphthylthio)uracil (7r) B 
73 1-[(Cyclohexylmethoxy)methyl]-5-isopropyl-6-(1-naphthylthio)uracil (7s) B 
74 1-[(3-Fluorobenzyloxy)methyl]-5-isopropyl-6-(1-naphthylthio)uracil (7t) B 
75 1-[(4-Fluorobenzyloxy)methyl]-5-isopropyl-6-(1-naphthylthio)uracil (7u) B 
76 1-[(2-Phenylethoxy)methyl]-5-isopropyl-6-(1-naphthylthio)uracil (7v) B 
77 1-(Hydroxyethoxymethyl)-6-( -naphthalenethio)-5-isopropyluracil (7w) B 
78 1-Methoxymethyl-5-ethyl-6-(2-naphthylthio)uracil (8a) B 
79 1-Ethoxymethyl-5-ethyl-6-(2-naphthylthio)uracil (8b) B 
80 1-[(Benzyloxy)methyl]-5-ethyl-6-(2-naphthylthio)uracil (8c) B 
81 1-Ethoxymethyl-5-isopropyl-6-(2-naphthylthio)uracil (8e) B 
82 1-[(Benzyloxy)methyl]-5-isopropyl-6-(2-naphthylthio)uracil (8f) B 
83 1-Methoxymethyl-5-ethyl-6-(1-nitro-2-naphthylthio)uracil (11a) B 
84 1-[(Benzyloxy)methyl]-5-ethyl-6-(1-nitro-2-naphthylthio)uracil (11c) B 
85 1-Methoxymethyl-5-ethyl-6-(1-amino-2-naphthylthio)uracil (12a) B 
86 1-Ethoxymethyl-5-ethyl-6-(1-amino-2-naphthylthio)uracil (12b) B 
87 1-[(Benzyloxy)methyl]-5-ethyl-6-(1-acetamino-2-naphthylthio)uracil (13) B 
88 1-Methoxymethyl-5-ethyl-6-(1-chloro-2-naphthylthio)uracil (15) B 
89 4-[4-Ethylamino-6-(4-chloro-1-naphthoxy)-1,3,5-triazine-2-yl] amino benzonitrile (8f) C 
90 4-[4-n-Propylamino-6-(4-chloro-1-naphthoxy)-1,3,5-triazine-2-yl] amino benzonitrile (8g) C 
91 4-[4-n-Propylamino-6-(1,6-dibromo-2-naphthoxy)-1,3,5-triazine-2-yl] amino benzonitrile (9d) C 
92 4-[4-Amino-6-(1,6-dibromo-2-naphthoxy)-1,3,5-triazine-2-yl] amino benzonitrile (9n) C 
93 O-(2-Phenoxyethyl) 2-phenoxyacetyl (phenyl)thiocarbamate (17a) D 
94 O-(2-Phenoxyethyl) benzoyl (phenyl) thiocarbamate (17c) D 
95 O-(2-Phenoxyethyl) 4-chloro-3-nitrobenzoyl(phenyl)thiocarbamate (17n) D 
96 O-(2-Phenoxyethyl) benzoyl(4-fluorophenyl)thiocarbamate (18c) D 
97 (±) O-(1-Methyl-2-phenoxyethyl) 2-furoyl(phenyl)thiocarbamate (19q) D 
98 2-Allylthio-3,4-dihydro-5-ethyl-6-(1-naphthoyl)pyrimidin-4(3H)-one (4i) A 
99 6-Benzoyl-2-cyclopentylthio-3,4-dihydro-5-ethylpyrimidin-4(3H)-one (4l) A 

100 2-Cyclopentylthio-3,4-dihydro-5-isopropyl-6-(1-naphthoyl)pyrimidin-4(3H)-one (4m) A 
101 1-[(Benzyloxy)methyl]-5-methyl-6-(1-naphthylthio)uracil (7b) B 
102 1-Ethoxymethyl-5-ethyl-6-(1-naphthylthio)uracil (7d) B 
103 1-[(Benzyloxy)methyl]-5-ethyl-6-(1-naphthylthio)uracil (7e) B 
104 1-Methoxymethyl-5-isopropyl-6-(1-naphthylthio)uracil (7g) B 
105 1-[(3-Methyl-phenylmethyloxy) methyl]-5-isopropyl-6-(1-naphthyl-thio)uracil (7l) B 
106 1-Ethoxymethyl-5-isobutyl-6-(1-naphthylthio)uracil (7o) B 
107 1-[(3-Fluorobenzyloxy)methyl]-5-ethyl-6-(1-naphthylthio)uracil (7q) B 
108 1-Methoxymethyl-5-isopropyl-6-(2-naphthylthio)uracil (8d) B 
109 1-Ethoxymethyl-5-ethyl-6-(1-nitro-2-naphthylthio)uracil (11b) B 
110 1-[(Benzyloxy)methyl]-5-ethyl-6-(1-amino-2-naphthylthio)uracil (12c) B 
111 4-[4-i-Propylamino-6-(1,6-dibromo-2-naphthoxy)-1,3,5-triazine-2-yl]aminobenzonitrile (9e) C 
112 4-[4-n-Propylamino-6-(1-bromo-2-naphthoxy)-1,3,5-triazine-2-yl]aminobenzonitrile (9j) C 
113 4-[4-n-Propylamino-6-(1-chloro-2-naphthoxy)-1,3,5-triazine-2-yl]aminobenzonitrile (9l) C 
114 O-(2-Furylmethyl) benzoyl(phenyl)thiocarbamate (14c) D 
115 O-(2-Phenylsulfanylethyl) benzoyl(phenyl)thiocarbamate (23c) D 
116 6-[ -Cyano-(1-naphthylmethyl)]-2-cyclopentylthio-3,4-dihydropyrimidin-4(3H)-one (3b) A 
117 6-[ -Cyano-(1-naphthylmethyl)]-3,4-dihydro-5-ethyl-2-isopropylthiopyrimidin-4(3H)-one (3k) A 
118 2-Allylthio-6-[ -cyano-(1-naphthylmethyl)]-3,4-dihydro-5-ethylpyrimidin-4(3H)-one (3m) A 
119 2-(4-Chlorobenzoylmethylthio)-6-[ -cyano-(1-naphthylmethyl)]-3,4-dihydro-5-ethylpyrimidin-4(3H)-one (3p) A 
120 6-[ -Cyano-(1-naphthylmethyl)]-3,4-dihydro-5-isopropyl-2-(4-methoxybenzylthio)pyrimidin-4(3H)-one (3u) A 
121 6-( -Cyano-2,6-dichlorobenzyl)-3,4-dihydro-5-isopropyl-2-(4-methoxybenzylthio)pyrimidin-4(3H)-one (3w) A 
122 2-Cyclopentylthio-3,4-dihydro-6-(1-naphthoyl)pyrimidin-4(3H)-one (4b) A 
123 2-Benzoylmethylthio-3,4-dihydro-6-(1-naphthoyl)pyrimidin-4(3H)-one (4c) A 
124 6-Benzoyl-3,4-dihydro-2-ethylthiopyrimidin-4(3H)-one (4d) A 
125 3,4-Dihydro-5-methyl-6-(1-naphthoyl)-2-propynylthiopyrimidin-4(3H)-one (4f) A 
126 2-Benzylthio-3,4-dihydro-5-ethyl-6-(1-naphthoyl)pyrimidin-4(3H)-one (4j) A 
127 2-Benzylthio-3,4-dihydro-5-ethyl-6-(2-naphthoyl)pyrimidin-4(3H)-one (4k) A 
aReferences used as source for data collection: A- L. Ji, F.E. Chen, E. De Clercq, J. Balzarini, and C. Pannecouque. 
Synthesis and anti-HIV-1 activity evaluation of 5-alkyl-2-alkylthio-6-(arylcarbonyl or alpha-cyanoarylmethyl)-3,4-
dihydropyrimidin-4(3H)-ones as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. J Med Chem. 50:1778-
1786 (2007). B- G.F. Sun, X.X. Chen, F.E. Chen, Y.P. Wang, E. De Clercq, J. Balzarini, and C. Pannecouque. 
Nonnucleoside HIV-1 reverse-transcriptase inhibitors, part 5. Synthesis and anti-HIV-1 activity of novel 6-naphthylthio 
HEPT analogues. Chem Pharm Bull (Tokyo). 53:886-892 (2005). C- Y.Z. Xiong, F.E. Chen, J. Balzarini, E. De Clercq, 
and C. Pannecouque. Non-nucleoside HIV-1 reverse transcriptase inhibitors. Part 11: structural modulations of 
diaryltriazines with potent anti-HIV activity. Eur J Med Chem. 43:1230-1236 (2008). D- A. Ranise, A. Spallarossa, S. 
Schenone, O. Bruno, F. Bondavalli, L. Vargiu, T. Marceddu, M. Mura, P. La Colla, and A. Pani. Design, synthesis, 
SAR, and molecular modeling studies of acylthiocarbamates: a novel series of potent non-nucleoside HIV-1 reverse 
transcriptase inhibitors structurally related to phenethylthiazolylthiourea derivatives. J Med Chem. 46:768-781 (2003). 



 

Table SI-2. Chemical structures, IC50 and CC50 values (expressed in µM) for HEPT analogues 
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88 
IC50=22.66; CC50=192.9 

ID R1 R2 IC50 CC50 ID R1 R2 IC50 CC50 

62 Me Et 0.46 39.6 80 Et Benzyl 0.65 154.5 
63 Et Me 0.5 38.78 81 i-Pr Et 2.65 36.3 
64 Et 3�’-Methylbenzyl 0.21 28.73 82 i-Pr Benzyl 0.83 187.34 
65 i-Pr Et 0.057 33.2 83 Me NO2 0.47 50.13 
66 i-Pr CH2CH2OCH3 0.65 35.58 84 Benzyl NO2 0.065 34.19 
67 i-Pr c-Pr-CH2 0.38 32.75 85 Me NH2 25.99 180.48 
68 i-Pr Benzyl 0.063 35.3 86 Et NH2 7.06 195.23 
69 Pr Et 1.86 37.11 101 Me Benzyl 0.18 52.5 
70 i-Bu Et 0.83 32.57 102 Et Et 0.15 38.4 
71 Et 3�’-Fluorobenzyl 2.96 32.57 103 Et Benzyl 0.48 34.28 
72 i-Bu c-Hexyl-CH2 0.092 30.96 104 i-Pr Me 0.51 38.4 
73 i-Bu 3�’-Fluorobenzyl 12.53 171.92 105 i-Pr 3�’-Methylbenzyl 0.25 29.6 
74 i-Bu 4�’-Fluorobenzyl 0.11 32.82 106 i-Bu Benzyl 7.37 36.12 
75 i-Bu PhCH2CH2 0.067 30.23 107 Et 4�’-Fluorobenzyl 0.21 31.47 
76 i-Bu CH2CH2OAc 2.77 31.4 108 i-Pr Me 4.69 59.58 
77 i-Bu CH2CH2OH 0.23 77.07 109 Et NO2 0.099 43.89 
78 Et Me 22.02 210.09 110 Benzyl NH2 3.65 >37.88 
79 Et Et 3.37 42.19      

* Compound used as reference drug on anti-HIV activity and cytotoxicity assays. 



 

Table SI-3. Chemical structures, IC50 and CC50 values (expressed in µM) for DATA analogues.
HO

O
N

N

OHN

N

 
DDI* 

IC50= 5.37; CC50=529 

N N

N
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NO

R1
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CN

 
4-8; 89-90 

N N

N
H
NO

R3

CNR1

R2

 
9-21, 91-92; 111-113 

ID R1 R2 IC50 CC50 ID R1 R2 R3 IC50 CC50

4 H NHMe 0.186 30.33 9 H H NHMe 0.26 250 
5 H NH2 0.107 39.07 10 H H NH2 0.09 42.23 
6 H n-PrNH 2.7 29.46 11 Br Br NHEt 0.156 74.4 
7 Cl NHMe 0.093 196.9 12 Br H i-PrNH 1.065 41.54 
8 Cl NH2 0.062 237 13 H Br NHMe 0.284 193.9 
89 Cl NHEt 0.733 207.7 14 Br H NHMe 0.0093 143.2 
90 Cl n-PrNH 1.63 181.6 15 Br H NH2 0.0094 133 
     16 Cl H NHEt 0.114 187.93 
     17 Br Br NHMe 0.0184 92.83 
     18 Cl H NHMe 0.0118 170.6 
     19 Cl H NH2 0.028 32.15 
     20 H Br NH2 0.0808 243 
     21 Cl H N3 0.06 256.32 
     91 Br Br n-PrNH 0.256 134.44 
     92 Br Br NH2 0.0195 244 
     111 Br Br i-PrNH 0.693 209 
     112 Br H n-PrNH 0.203 >263.2 
     113 Cl H n-PrNH 0.187 >290 
* Compound used as reference drug on anti-HIV activity and cytotoxicity assays.



 

Table SI-4. Chemical structures, IC50 and CC50 values (expressed in µM) for ATC analogues. 
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IC50= 0.02; CC50= 60 
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22-34; 93-97; 114-115 
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N
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R

 
35-40 

ID Ar1 R Ar2 G-CO IC50 CC50 

22 Phenyl H C6H5 2-furoyl 58 111 
23 Benzyl H C6H5 trans-cinnamoyl 4.5 40.4 
24 Benzyl H C6H5 Benzoyl 4.2 91 
25 Benzyl H C6H5 4-chlorobenzoyl 4 43 
26 Benzyl H C6H5 2-furoyl 4.3 102 
27 Phenoxymethyl H C6H5 trans-cinnamoyl 7.7 66.6 
28 Phenoxymethyl H C6H5 4-chlorobenzoyl 10.3 133 
29 Phenoxymethyl H C6H5 2,4-dichlorobenzoyl 11.6 43 
30 Phenoxymethyl H C6H5 3,5-dichlorobenzoyl 8.8 43 
31 Phenoxymethyl H C6H5 2-furoyl 8.4 82 
32 Phenoxymethyl H C6H5 2-thenoyl 8.6 125.2 
33 Phenoxymethyl CH3 C6H5 Phenoxyacetyl 1.4 122.4 
34 Phenoxymethyl CH3 4-NO2-C6H5 2-thenoyl 6 63 
93 Phenoxymethyl H C6H5 Phenoxyacetyl 6 103 
94 Phenoxymethyl H C6H5 Benzoyl 8 122 
95 Phenoxymethyl H C6H5 4-chloro-3-nitrobenzoyl 7.6 80 
96 Phenoxymethyl H 4-F-C6H5 Benzoyl 4 70.7 
97 Phenoxymethyl CH3 C6H5 2-furoyl 1.3 51.5 
114 2-furyl H C6H5 Benzoyl >38.3 38.3 
115 Phenoxythiomethyl H C6H5 Benzoyl >44 44 
 R Acyl  
35 3-Br 2-thenoyl 1.2 53 
36 3-NO2 2-thenoyl 0.38 100 
37 4-Cl 2-furoyl 0.007 41 
38 4-I 2-thenoyl 0.01 18 
39 4-NO2 2-furoyl 0.008 18 
40 4-NO2 2-thenoyl 0.01 168 
* Compound used as reference drug on anti-HIV activity and cytotoxicity assays. 



 

Table SI-5. Chemical structures, IC50 and CC50 values (expressed in µM) for DABO 
analogues. 
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1. HEPT* 
IC50= 5.06; CC50=405 
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41-57; 116-121 
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58-61; 98-100; 122-127 

ID R1 R2 R3 IC50 CC50 

41 H i-Pr 1-naphthyl 0.66 53.19 
42 Me Cyclopentyl 1-naphthyl 0.8 49.39 
43 Me Propynyl 1-naphthyl 2.7 46.09 
44 Me Benzoylmethyl 1-naphthyl 0.09 163.86 
45 Me 4-chlorobenzoylmethyl 1-naphthyl 4.71 148.32 
46 Me i-Pr Ph 0.002 10.81 
47 Me Cyclopentyl Ph 6.34 58.95 
48 Me Benzoylmethyl Ph 7.28 53.81 
49 Me Et 1-naphthyl 1.17 122.35 
50 Et Cyclopentyl 1-naphthyl 0.18 51.88 
51 Et Propynyl 1-naphthyl 4.85 47.99 
52 Et 4-nitrobenzyl 1-naphthyl 1.25 24.52 
53 Et i-Pr Ph 0.64 58.02 
54 Et 4-nitrobenzyl Ph 1.33 34.19 
55 Et 4-nitrobenzyl 2,6-Cl2-Ph 2.22 23.46 
56 i-Pr Cyclopentyl 1-naphthyl 1.34 7.32 
57 i-Pr 4-methoxybenzyl Ph 3.53 26.79 
116 H Cyclopentyl 1-naphthyl >22.80 22.8 
117 Et i-Pr 1-naphthyl 0.24 >344.35 
118 Et Allyl 1-naphthyl 0.58 >346.26 
119 Et 4-chlorobenzoylmethyl 1-naphthyl 35.73 116.66 
120 i-Pr 4-methoxybenzyl 1-naphthyl >2.09 2.09 
121 i-Pr 4-methoxybenzyl 2,6-Cl2-Ph >23.53 23.53 
58 H Et 1-naphthyl 37.58 241.61 
59 Me i-Pr Ph 2.05 263.19 
60 Et Et 1-naphthyl 27.84 196.54 
61 Et i-Pr 1-naphthyl 6.79 178.92 
98 Et Allyl 1-naphthyl 16.94 210.37 
99 Et Cyclopentyl Ph 4.69 60.37 
100 i-Pr Cyclopentyl 1-naphthyl 10.87 24.69 
122 H Cyclopentyl 1-naphthyl >21.03 21.03 
123 H Benzoylmethyl 1-naphthyl >304.41 >304.41 
124 H Et Ph >246.65 246.65 
125 Me Propynyl 1-naphthyl >123.56 123.56 
126 Et Benzyl 1-naphthyl >312.50 >312.50 
127 Et Benzyl 2-naphthyl 60.75 157.43 
* Compound used as reference drug on anti-HIV activity and cytotoxicity assays. 



 
Figure SI-1. Checking the compliance of the validation and external test set compounds 
within the applicability domain of the logCC50 model. 
 

 
Figure SI-2. Checking the compliance of the validation and external test set compounds 
within the applicability domain of the logIC50 model. 



MLR Parametrical Assumptions 
This section provides details about the checking of the pre-adopted parametric 

assumptions, a very important aspect in the application of linear multivariate 

statistical-based approaches (MLR techniques) (1). In fact, once the linear regression 

model has been set up, it is very important to check the parametric assumptions to 

assure the validity of extrapolation from the sample to the population. These include 

the linearity of the modeled property, normal distribution as well as the 

homoscedasticity and non-multicollinearity descriptors. Notice that severe violations 

of one or various of these assumptions can markedly compromise the reliability of the 

predictions resulting from our MLR models (1). 

We first check the linearity hypothesis by looking at the distribution of the 

standardized residuals for all cases. Indeed the plots in Tables SI-6 (1st row) do not 

show any specific pattern, reinforcing the idea that our models do not exhibit a non-

linear dependence (1). Next, we check the hypothesis of homoscedasticity (i.e.: 

homogeneity of variance of the variables), which can be confirmed by simply plotting 

the square of standardized residuals related to each dependent variable (1) (2nd row 

of plots in Tables SI-6). These plots reveal significant scatter of points, without any 

systematic pattern, post-mortem validating the pre-adopted assumption of 

homoscedasticity for all the PMs. The plots also provide a check for the no auto-

correlation of the residuals. Moving on to the hypothesis of normally distributed 

residuals, one can easily confirm that the residuals follow a normal distribution by 

applying the Kolmogorov-Smirnov and Lilliefors statistical test (3rd row of Tables SI-6). 

In addition, as the term related to the error (represented by residuals) is not included 

in the MLR equations, the mean must be zero what actually occurs (check 4th row of 

Tables SI-6). The last aspect deserving special attention is the degree of 

multicollinearity among the variables. Highly collinear variables may be identified by 

examining their pair-correlations (Rij). Only three pair of predictors included in the �–

logIC50 MLR model exhibit a value of Rij higher than 0.7 indicating that the 

multicollinearity is not a serious problem for our models. The common interpretation 

of a regression coefficient as measuring the change in the expected value of the 

response variable, when the given predictor variable is increased by one unit while all 

other predictor variables are held constant, is not fully applicable when 

multicollinearity exists (R  0.7). However, the predictive ability of the model is not 

affected at all in this situation (2). 



 

Table SI-6. Checking the main parametric assumptions related to the MLR models used to fit 
the desirability functions. 

 -logIC50 MLR Model -logCC50 MLR Model 

Linearity 
 

0
10

20
30

40
50

60
70

80
90

Case Number

-3

-2

-1

0

1

2

3

S
td

. R
es

id
ua

l

0
10

20
30

40
50

60
70

80
90

Case Number

-3

-2

-1

0

1

2

3

S
td

. R
es

id
ua

l

 

Homoscedasticity 

-2 -1 0 1 2 3

-logIC50

-1
0
1
2
3
4
5
6
7

S
td

. S
q.

 R
es

id
ua

l

 

 

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5

-logCC50

-1
0
1
2
3
4
5
6

S
td

. S
q.

 R
es

id
ua

l

 

Normality 
of Residuals 
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K-S d=.08101, p> .20; Lilliefors p<.20
Shapiro-Wilk W=.97891, p=.18980
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Res. Mean = 0 4.24x10-14 -5.55x10-16 

Non Collinearity See Correlation Matrix See Correlation Matrix 



 

Correlation matrix. �–logIC50 MLR Model. 
 MAXDP X1sol SIC0 GATS1p ESpm15r  Eig1v  Ks   R8u+   R8m N-075 

MAXDP 1.000          
X1sol 0.043 1.000         
SIC0 -0.310 -0.168 1.000        
GATS1p -0.431 -0.285 -0.192 1.000       
ESpm15r   0.539 0.3453 -0.098 -0.226 1.000      
Eig1v   -0.010 0.858 -0.032 -0.143 0.017 1.000     
Ks   -0.713 0.061 0.402 0.289 -0.379 0.209 1.000    
R8u+   -0.510 -0.320 0.426 0.064 -0.310 -0.290 0.519 1.000   
R8m 0.413 0.602 0.023 -0.438 0.464 0.518 -0.314 -0.307 1.000  
N-075 -0.951 0.098 0.273 0.434 -0.470 0.166 0.775 0.465 -0.349 1.000 
Correlation matrix. �–logCC50 MLR Model. 

 MATS3m MATS5e RDF070p Mor18e H8e R8p nROH C-003 
MATS3m 1.000        
MATS5e   0.296 1.000       
RDF070p   0.008 0.273 1.000      
Mor18e 0.249 0.268 -0.044 1.000     
H8e -0.576 -0.202 0.224 -0.297 1.000    
R8p -0.415 0.113 0.630 -0.310 0.565 1.000   
nROH -0.166 -0.025 -0.061 0.415 -0.014 -0.146 1.000  
C-003 -0.113 -0.071 0.254 0.049 0.261 0.371 0.031 1.000 



 
Table SI-7. i, D i and Di

 values of the library of compounds used for ranking. 
ID i D

i DIC50-CC50 ID i D
i DIC50-CC50 ID i D

i DIC50-CC50 
1 2.257 0.487 0.503 45 3.056 0.313 0.442 89 1.722 0.559 0.615 
2 -0.097 1.000 0.514 46 --- --- --- 90 1.660 0.575 0.545 
3 2.778 0.374 0.659 47 3.096 0.304 0.346 91 2.333 0.402 0.639 
4 2.294 0.479 0.460 48 3.416 0.235 0.327 92 1.535 0.607 0.852 
5 1.972 0.549 0.522 49 2.504 0.433 0.534 93 2.791 0.285 0.394 
6 2.241 0.491 0.333 50 2.890 0.349 0.541 94 3.128 0.199 0.380 
7 1.555 0.640 0.741 51 2.698 0.391 0.348 95 2.977 0.237 0.355 
8 1.557 0.640 0.785 52 3.507 0.215 0.347 96 2.952 0.244 0.396 
9 --- --- --- 53 2.100 0.521 0.492 97 2.962 0.241 0.438 
10 2.052 0.532 0.542 54 2.416 0.453 0.388 98 3.367 0.138 0.327 
11 1.887 0.568 0.596 55 2.919 0.343 0.314 99 3.904 0.000 0.371 
12 1.796 0.588 0.424 56 2.264 0.486 0.000 100 3.201 0.180 0.230 
13 1.148 0.729 0.672 57 2.296 0.479 0.307 101 2.383 0.390 0.543 
14 1.163 0.725 0.820 58 4.493 0.000 0.198 102 2.189 0.439 0.506 
15 0.790 0.807 0.810 59 3.576 0.200 0.557 103 2.363 0.395 0.438 
16 1.633 0.623 0.724 60 3.483 0.220 0.250 104 2.456 0.371 0.451 
17 1.336 0.688 0.728 61 3.372 0.244 0.421 105 2.082 0.467 0.444 
18 1.045 0.751 0.832 62 2.753 0.379 0.460 106 2.501 0.359 0.292 
19 --- --- --- 63 3.151 0.292 0.453 107 2.254 0.423 0.461 
20 1.246 0.707 0.772 64 2.265 0.485 0.446 108 3.584 0.082 0.370 
21 1.202 0.717 0.796 65 1.601 0.630 0.521 109 2.799 0.283 0.544 
22 3.104 0.303 0.000 66 3.002 0.325 0.429 110 2.160 0.567 0.343 
23 2.525 0.429 0.336 67 2.228 0.493 0.442 111 2.140 0.571 0.620 
24 2.942 0.338 0.414 68 2.294 0.479 0.527 112 1.856 0.628 0.724 
25 2.672 0.397 0.350 69 2.691 0.393 0.380 113 1.714 0.656 0.739 
26 2.923 0.342 0.421 70 2.535 0.427 0.405 114 2.747 0.449 0.133 
27 2.984 0.329 0.340 71 2.351 0.467 0.339 115 3.435 0.311 0.113 
28 2.993 0.327 0.360 72 2.254 0.488 0.491 116 3.268 0.345 0.166 
29 2.853 0.357 0.272 73 --- --- --- 117 2.340 0.531 0.740 
30 2.595 0.413 0.294 74 2.582 0.416 0.493 118 2.747 0.449 0.678 
31 3.269 0.267 0.348 75 2.157 0.509 0.498 119 3.465 0.305 0.186 
32 2.909 0.345 0.375 76 2.906 0.346 0.339 120 2.674 0.464 0.000 
33 2.632 0.405 0.521 77 2.179 0.504 0.581 121 2.411 0.517 0.165 
34 2.491 0.436 0.356 78 4.028 0.101 0.290 122 4.144 0.169 0.167 
35 2.124 0.516 0.446 79 3.713 0.170 0.359 123 3.937 0.211 0.000 
36 2.260 0.486 0.583 80 2.730 0.384 0.596 124 4.552 0.088 0.000 
37 1.948 0.554 0.634 81 3.132 0.297 0.358 125 4.989 0.000 0.000 
38 2.432 0.449 0.449 82 2.430 0.450 0.597 126 3.824 0.234 0.000 
39 2.580 0.417 0.455 83 2.456 0.444 0.490 127 4.461 0.106 0.000 
40 1.517 0.648 0.839 84 1.890 0.567 0.521     
41 2.750 0.380 0.479 85 3.370 0.245 0.258     
42 2.638 0.404 0.460 86 2.690 0.393 0.423     
43 2.499 0.434 0.382 87 2.435 0.448 0.387     
44 --- --- --- 88 2.568 0.419 0.282     



  

Table SI-8. i-based ranked list of 12 NNRTIs with favorable pharmaceutical 
profile and 432 DUD decoys.
Rank ID Classa i Rank ID Classa i Rank ID Classa i 

1 ZINC01545897 - 0.235 56 ZINC00478707 - 1.838 111 ZINC02868137 - 2.546 
2 ZINC02683840 - 0.355 57 ZINC00653432 - 1.842 112 ZINC03463934 - 2.560 
3 ZINC02334601 - 0.886 58 112 + 1.856 113 ZINC00374482 - 2.565 
4 ZINC01553345 - 0.929 59 ZINC00614305 - 1.866 114 ZINC03366422 - 2.580 
5 ZINC00464794 - 0.951 60 ZINC01405602 - 1.879 115 ZINC00052016 - 2.585 
6 ZINC02889052 - 0.987 61 ZINC00534216 - 1.884 116 ZINC00110010 - 2.594 
7 ZINC00041945 - 1.075 62 ZINC00573652 - 1.885 117 ZINC01281458 - 2.603 
8 ZINC00041945 - 1.084 63 ZINC00540184 - 1.887 118 ZINC01281458 - 2.603 
9 ZINC02889051 - 1.113 64 ZINC01002344 - 1.897 119 ZINC00502655 - 2.611 

10 ZINC01010351 - 1.129 65 ZINC02632868 - 1.897 120 ZINC02728470 - 2.615 
11 ZINC01340777 - 1.212 66 ZINC01856833 - 1.899 121 ZINC00856243 - 2.638 
12 ZINC00756911 - 1.280 67 ZINC00052260 - 1.919 122 ZINC00667522 - 2.646 
13 ZINC00009466 - 1.350 68 ZINC00161667 - 1.933 123 ZINC00272219 - 2.648 
14 ZINC02798358 - 1.373 69 ZINC02741855 - 1.976 124 ZINC02728470 - 2.660 
15 ZINC01856833 - 1.383 70 ZINC00794384 - 1.988 125 ZINC00550540 - 2.672 
16 ZINC00223283 - 1.395 71 ZINC01965571 - 1.989 126 ZINC00629315 - 2.693 
17 ZINC00114582 - 1.415 72 ZINC03231072 - 2.089 127 ZINC01424359 - 2.707 
18 ZINC00009466 - 1.452 73 ZINC01780133 - 2.089 128 ZINC00670303 - 2.712 
19 ZINC00185357 - 1.473 74 ZINC00290760 - 2.128 129 ZINC00590227 - 2.722 
20 92 + 1.535 75 111 + 2.140 130 ZINC00212739 - 2.740 
21 ZINC02552260 - 1.542 76 ZINC01780134 - 2.152 131 ZINC03404509 - 2.742 
22 ZINC00626314 - 1.550 77 ZINC02887392 - 2.167 132 118 + 2.747 
23 ZINC00125154 - 1.550 78 ZINC00649848 - 2.180 133 ZINC00332082 - 2.756 
24 ZINC01496341 - 1.570 79 102 + 2.189 134 ZINC00628111 - 2.757 
25 ZINC00125154 - 1.577 80 ZINC00013204 - 2.195 135 ZINC00367881 - 2.774 
26 ZINC00230762 - 1.578 81 ZINC00013204 - 2.206 136 ZINC00587144 - 2.777 
27 ZINC00627273 - 1.579 82 ZINC01091132 - 2.220 137 ZINC00678020 - 2.779 
28 ZINC00627273 - 1.582 83 ZINC02797879 - 2.224 138 ZINC00229279 - 2.780 
29 ZINC00626314 - 1.591 84 ZINC03271480 - 2.228 139 ZINC00628111 - 2.780 
30 ZINC00268377 - 1.610 85 ZINC00947566 - 2.231 140 ZINC00856243 - 2.795 
31 ZINC01959294 - 1.620 86 ZINC00444291 - 2.247 141 ZINC03401018 - 2.799 
32 ZINC00533154 - 1.632 87 ZINC00804958 - 2.259 142 109 + 2.799 
33 ZINC02784877 - 1.643 88 ZINC02740807 - 2.262 143 ZINC00678020 - 2.801 
34 ZINC02764981 - 1.653 89 ZINC02796351 - 2.276 144 ZINC00973466 - 2.802 
35 90 + 1.660 90 ZINC02265634 - 2.279 145 ZINC00212739 - 2.803 
36 ZINC00161385 - 1.684 91 ZINC02087110 - 2.284 146 ZINC00305200 - 2.820 
37 ZINC00533153 - 1.689 92 ZINC02570906 - 2.297 147 ZINC00549463 - 2.842 
38 ZINC00526392 - 1.697 93 ZINC03251649 - 2.317 148 ZINC00090974 - 2.847 
39 ZINC00526390 - 1.700 94 91 + 2.333 149 ZINC01065454 - 2.857 
40 ZINC02887396 - 1.705 95 ZINC02801176 - 2.336 150 ZINC00092980 - 2.858 
41 113 + 1.714 96 117 + 2.340 151 ZINC00367881 - 2.862 
42 ZINC00526394 - 1.719 97 ZINC01050386 - 2.345 152 ZINC00079509 - 2.865 
43 ZINC02798460 - 1.720 98 ZINC00377349 - 2.359 153 ZINC01599204 - 2.867 
44 89 + 1.722 99 ZINC00347899 - 2.376 154 ZINC00088513 - 2.874 
45 ZINC01124240 - 1.741 100 ZINC00477907 - 2.376 155 ZINC03242936 - 2.880 
46 ZINC00526388 - 1.751 101 ZINC00347897 - 2.377 156 ZINC00092980 - 2.886 
47 ZINC03268162 - 1.756 102 ZINC00477906 - 2.378 157 ZINC00124651 - 2.886 
48 ZINC01012054 - 1.787 103 101 + 2.383 158 ZINC00442591 - 2.891 
49 ZINC00005434 - 1.796 104 ZINC02353769 - 2.397 159 ZINC00079509 - 2.893 
50 ZINC01023177 - 1.797 105 ZINC00140556 - 2.402 160 ZINC02760792 - 2.904 
51 ZINC02795155 - 1.797 106 ZINC01801666 - 2.410 161 ZINC01006309 - 2.922 
52 ZINC03211805 - 1.799 107 ZINC00342537 - 2.442 162 ZINC00063382 - 2.929 
53 ZINC00138080 - 1.812 108 ZINC03153754 - 2.469 163 ZINC02796205 - 2.936 
54 ZINC00653432 - 1.812 109 ZINC00424537 - 2.477 164 ZINC02760339 - 2.949 
55 ZINC00587907 - 1.822 110 ZINC03464407 - 2.485 165 ZINC02394836 - 2.955 

a +: NNRTI candidate with favorable pharmaceutical profile; -: Decoy. 



 

Table SI-8. (continued…) 
Rank ID Classa i Rank ID Classa i Rank ID Classa i 
166 ZINC02394834 - 2.981 216 ZINC02620592 - 3.310 266 ZINC02131933 - 3.583 
167 ZINC01080693 - 2.990 217 ZINC00442700 - 3.317 267 ZINC00253706 - 3.584 
168 ZINC00476882 - 2.991 218 ZINC02930611 - 3.318 268 ZINC01453047 - 3.585 
169 ZINC00367887 - 2.993 219 ZINC02723816 - 3.322 269 ZINC00955089 - 3.596 
170 ZINC02431635 - 2.999 220 ZINC00418213 - 3.325 270 ZINC00362176 - 3.602 
171 ZINC00057774 - 3.001 221 ZINC01823161 - 3.340 271 ZINC01240239 - 3.620 
172 ZINC03117934 - 3.008 222 ZINC01051738 - 3.342 272 ZINC00446819 - 3.638 
173 ZINC00441722 - 3.043 223 ZINC03439950 - 3.346 273 ZINC00082028 - 3.645 
174 ZINC02717965 - 3.055 224 ZINC03378763 - 3.348 274 ZINC00619588 - 3.653 
175 ZINC00217414 - 3.056 225 ZINC00359364 - 3.357 275 ZINC00515566 - 3.660 
176 ZINC00124653 - 3.058 226 ZINC00060691 - 3.368 276 ZINC02217197 - 3.665 
177 ZINC00502653 - 3.059 227 ZINC00355692 - 3.375 277 ZINC03337427 - 3.673 
178 ZINC00918931 - 3.060 228 ZINC00425130 - 3.377 278 ZINC03337430 - 3.674 
179 ZINC00367887 - 3.070 229 ZINC00613650 - 3.381 279 ZINC00437873 - 3.680 
180 ZINC02717965 - 3.085 230 ZINC00060692 - 3.385 280 ZINC01284917 - 3.692 
181 ZINC00100218 - 3.087 231 ZINC00880795 - 3.389 281 ZINC00609495 - 3.696 
182 ZINC00175529 - 3.094 232 ZINC02313343 - 3.389 282 ZINC03397220 - 3.702 
183 ZINC00100217 - 3.110 233 ZINC00043485 - 3.401 283 ZINC00181957 - 3.719 
184 ZINC02554065 - 3.118 234 ZINC01240300 - 3.409 284 ZINC00830170 - 3.727 
185 ZINC00968562 - 3.119 235 ZINC00930756 - 3.412 285 ZINC00257428 - 3.732 
186 ZINC01066688 - 3.125 236 ZINC00132231 - 3.415 286 ZINC03455248 - 3.736 
187 ZINC02996697 - 3.133 237 ZINC00168555 - 3.418 287 ZINC00483964 - 3.741 
188 ZINC02751969 - 3.134 238 ZINC03370391 - 3.422 288 ZINC00146575 - 3.745 
189 ZINC01208576 - 3.135 239 ZINC02133800 - 3.422 289 ZINC00206253 - 3.746 
190 ZINC00126671 - 3.144 240 ZINC00536316 - 3.427 290 ZINC00512947 - 3.751 
191 ZINC02637323 - 3.180 241 ZINC03293975 - 3.429 291 ZINC03041286 - 3.764 
192 ZINC03347131 - 3.185 242 ZINC00206257 - 3.429 292 ZINC02795613 - 3.768 
193 ZINC03301981 - 3.186 243 ZINC03453581 - 3.433 293 ZINC01254638 - 3.773 
194 ZINC00295845 - 3.190 244 ZINC00425212 - 3.435 294 ZINC00362304 - 3.779 
195 ZINC00397739 - 3.190 245 ZINC00793931 - 3.440 295 ZINC01396436 - 3.783 
196 ZINC01363169 - 3.193 246 ZINC01017382 - 3.440 296 ZINC00383373 - 3.789 
197 ZINC02620593 - 3.199 247 ZINC00002820 - 3.444 297 ZINC00212477 - 3.805 
198 ZINC00203966 - 3.201 248 ZINC00611671 - 3.469 298 ZINC02762792 - 3.816 
199 ZINC01807569 - 3.202 249 ZINC03271480 - 3.476 299 ZINC02795457 - 3.824 
200 ZINC00295845 - 3.208 250 ZINC02787988 - 3.481 300 ZINC01148852 - 3.826 
201 ZINC00126675 - 3.216 251 ZINC02800427 - 3.483 301 ZINC02800075 - 3.852 
202 ZINC02795292 - 3.218 252 ZINC03439837 - 3.494 302 ZINC00427326 - 3.853 
203 ZINC00319875 - 3.228 253 ZINC00206254 - 3.508 303 ZINC03439911 - 3.867 
204 ZINC02796206 - 3.232 254 ZINC00181958 - 3.513 304 ZINC01134533 - 3.880 
205 ZINC03086123 - 3.246 255 ZINC00036045 - 3.522 305 ZINC03453578 - 3.882 
206 ZINC00261521 - 3.254 256 ZINC03439928 - 3.532 306 ZINC00725836 - 3.885 
207 ZINC02533264 - 3.262 257 ZINC03453781 - 3.534 307 ZINC03041273 - 3.889 
208 ZINC02861945 - 3.267 258 ZINC03217270 - 3.547 308 ZINC02402393 - 3.900 
209 ZINC00188300 - 3.270 259 ZINC02637498 - 3.547 309 ZINC03317791 - 3.913 
210 ZINC02795291 - 3.282 260 ZINC00080410 - 3.547 310 ZINC02199758 - 3.915 
211 ZINC00411264 - 3.290 261 ZINC00002820 - 3.574 311 ZINC03283331 - 3.915 
212 ZINC00213528 - 3.297 262 ZINC01121160 - 3.575 312 ZINC00450736 - 3.917 
213 ZINC00233029 - 3.298 263 ZINC03148025 - 3.576 313 ZINC00973242 - 3.918 
214 ZINC01051747 - 3.301 264 ZINC02787703 - 3.579 314 ZINC02199757 - 3.922 
215 ZINC03463939 - 3.303 265 ZINC02675831 - 3.582 315 ZINC00188740 - 3.926 

a +: NNRTI candidate with favorable pharmaceutical profile; -: Decoy. 
 



 

Table SI-8. (continued…) 
Rank ID Classa i Rank ID Classa i Rank ID Classa i 
316 ZINC00429167 - 3.926 359 ZINC01994281 - 4.169 402 ZINC01053768 - 4.474 
317 ZINC00212487 - 3.931 360 ZINC00052551 - 4.173 403 ZINC02794621 - 4.477 
318 ZINC01447889 - 3.932 361 ZINC03453777 - 4.177 404 ZINC00487273 - 4.478 
319 ZINC00429166 - 3.936 362 ZINC01399041 - 4.179 405 ZINC00237924 - 4.485 
320 ZINC01067033 - 3.950 363 ZINC00038067 - 4.187 406 ZINC00223980 - 4.517 
321 ZINC02309223 - 3.952 364 ZINC01066008 - 4.189 407 ZINC00629127 - 4.555 
322 ZINC00549464 - 3.952 365 ZINC02620382 - 4.213 408 ZINC01062726 - 4.566 
323 ZINC00413812 - 3.957 366 ZINC00450843 - 4.213 409 ZINC00260900 - 4.578 
324 ZINC00090765 - 3.962 367 ZINC01216594 - 4.219 410 ZINC03384857 - 4.583 
325 ZINC00433154 - 3.969 368 ZINC00307143 - 4.222 411 ZINC00397717 - 4.590 
326 ZINC02555597 - 3.988 369 ZINC01281458 - 4.237 412 ZINC03399461 - 4.591 
327 ZINC00265166 - 3.998 370 ZINC00918934 - 4.239 413 ZINC00616701 - 4.593 
328 ZINC00425133 - 4.004 371 ZINC03441346 - 4.249 414 ZINC03086127 - 4.612 
329 ZINC00359366 - 4.009 372 ZINC02213527 - 4.259 415 ZINC02294241 - 4.618 
330 ZINC03455235 - 4.024 373 ZINC00223347 - 4.267 416 ZINC00497871 - 4.620 
331 ZINC00469435 - 4.026 374 ZINC01476114 - 4.268 417 ZINC01218306 - 4.628 
332 ZINC00554737 - 4.037 375 ZINC03328237 - 4.287 418 ZINC03217249 - 4.631 
333 ZINC03250847 - 4.040 376 ZINC02746950 - 4.297 419 ZINC03453783 - 4.634 
334 ZINC03401021 - 4.044 377 ZINC01180224 - 4.313 420 ZINC01288087 - 4.637 
335 ZINC03322691 - 4.052 378 ZINC00487270 - 4.314 421 ZINC02635859 - 4.646 
336 ZINC00330856 - 4.054 379 ZINC00348146 - 4.324 422 ZINC01614679 - 4.657 
337 ZINC00462543 - 4.066 380 ZINC02610066 - 4.328 423 ZINC00298445 - 4.662 
338 ZINC00101922 - 4.068 381 ZINC00342159 - 4.329 424 ZINC00206451 - 4.664 
339 ZINC03173621 - 4.069 382 ZINC00257585 - 4.332 425 ZINC02879179 - 4.698 
340 ZINC01202925 - 4.077 383 ZINC00476728 - 4.341 426 ZINC01071697 - 4.723 
341 ZINC00880796 - 4.078 384 ZINC00568380 - 4.341 427 ZINC03077377 - 4.735 
342 ZINC02195911 - 4.080 385 ZINC00257585 - 4.350 428 ZINC00564557 - 4.746 
343 ZINC00055670 - 4.084 386 ZINC00470268 - 4.368 429 ZINC00049673 - 4.752 
344 ZINC01122413 - 4.090 387 ZINC00478808 - 4.386 430 ZINC00563878 - 4.755 
345 ZINC00903785 - 4.094 388 ZINC01004491 - 4.387 431 ZINC00457738 - 4.777 
346 ZINC00536317 - 4.097 389 ZINC00146513 - 4.387 432 ZINC00179800 - 4.792 
347 ZINC02620381 - 4.101 390 ZINC00365579 - 4.392 433 ZINC01091255 - 4.792 
348 ZINC01364053 - 4.112 391 ZINC00267905 - 4.395 434 ZINC00038372 - 4.810 
349 ZINC00031486 - 4.115 392 ZINC01741786 - 4.399 435 ZINC00179798 - 4.930 
350 ZINC01202928 - 4.120 393 ZINC00609573 - 4.410 436 ZINC03372459 - 4.989 
351 ZINC00412580 - 4.121 394 ZINC00263725 - 4.414 437 ZINC02521888 - 5.016 
352 ZINC00101926 - 4.122 395 ZINC00381496 - 4.427 438 ZINC01054638 - 5.052 
353 ZINC02718985 - 4.124 396 ZINC02796638 - 4.427 439 ZINC02319147 - 5.071 
354 ZINC00103251 - 4.141 397 ZINC01437599 - 4.428 440 ZINC01437610 - 5.072 
355 ZINC01091256 - 4.142 398 ZINC02889026 - 4.453 441 ZINC02639622 - 5.172 
356 ZINC03453775 - 4.152 399 ZINC01810037 - 4.459 442 ZINC03283331 - 5.334 
357 ZINC01994283 - 4.162 400 ZINC02868569 - 4.467 443 ZINC00067979 - 5.358 
358 ZINC02718985 - 4.164 401 ZINC01399040 - 4.471 444 ZINC01393190 - 5.542 

a +: NNRTI candidate with favorable pharmaceutical profile; -: Decoy. 
 



 
Figure SI-3. ROC, accumulation, and enrichment curves for the i-based ranking of the data 
set collected form DUD. 
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Desirability theory (DT) is a well-known multi-cri-
teria decision-making approach. In this work, DT
is employed as a prediction model (PM) interpreta-
tion tool to extract useful information on the
desired trade-offs between binding and relative
efficacy of N6-substituted-4¢-thioadenosines A3

adenosine receptor (A3AR) agonists. At the same
time, it was shown the usefulness of a parallel but
independent approach providing a feedback on
the reliability of the combination of properties
predicted as a unique desirability value. The appli-
ance of belief theory allowed the quantification of
the reliability of the predicted desirability of a
compound according to two inverse and indepen-
dent but complementary prediction approaches.
This information is proven to be useful as a rank-
ing criterion in a ligand-based virtual screening
study. The development of a linear PM of the
A3AR agonists overall desirability allows finding
significant clues based on simple molecular
descriptors. The model suggests a relevant role of
the type of substituent on the N6 position of the
adenine ring that in general contribute to reduce
the flexibility and hydrophobicity of the lead

compound. The mapping of the desirability func-
tion derived of the PM offers specific information
such as the shape and optimal size of the N6 sub-
stituent. The model herein developed allows a
simultaneous analysis of both binding and relative
efficacy profiles of A3AR agonists. The informa-
tion retrieved guides the theoretical design and
assembling of a combinatorial library suitable for
filtering new N6-substituted-4¢-thioadenosines
A3AR agonist candidates with simultaneously
improved binding and relative efficacy profiles.
The utility of the desirability ⁄belief-based pro-
posed virtual screening strategy was deduced
from our training set. Based on the overall results,
it is possible to assert that the combined use of
desirability and belief theories in computational
medicinal chemistry research can aid the discov-
ery of A3AR agonist candidates with favorable bal-
ance between binding and relative efficacy
profiles.

Key words: A3 adenosine receptor agonists, belief theory, Chemoin-
formatics, desirability theory, drug discovery, ligand-based virtual
screening, simultaneous analysis
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Adenosine receptors (ARs) are G-protein-coupled receptors, consist-
ing of A1, A2A, A2B, and A3 subtypes, that are activated by the
endogenous agonist adenosine and blocked by natural antagonists,
such as caffeine and theophylline (1). A1 and A3 subtypes are cou-
pled to GI ⁄O proteins, while A2A and A2B subtypes are GS protein-
coupled.

There is growing evidence that ARs could be promising therapeutic
targets in a wide range of pathologies (1–6). In particular, A3AR ag-
onists have shown to be useful to prevent ischemic damage in the
brain and heart and as anti-inflammatory, anticancer, and myelopro-
tective agents (7–11).

Although ARs are becoming important targets in drug design and
development, several problems complicate the development of new
AR agonists. Kim and Jacobson (12) point out several reasons for
the bottleneck in this area:
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(a) The ubiquitous expression of ARs in the body would result in
diverse side-effects.

(b) The low density of a given receptor subtype in a targeted tissue
may reduce its desired effect in the treatment of certain diseases
(8).

(c) In many cases, nucleoside derivatives have lowered maximal
efficacy at the A3AR and, consequently, behave as a partial agonist
or antagonist.

(d) A major bottleneck for structure-based drug design of AR agon-
ists or antagonists is the lack of three-dimensional (3D) structural
information about G-protein-coupled receptors through standard
structure determination techniques X-ray and nuclear magnetic reso-
nance studies because of the difficulties in receptor purification
and their insolubility in environments lacking phospholipids.

The problem of side-effects exposed in (a) obviously demands for
selective and specific agonists to overcome it. The simultaneous
study of the agonist efficacy, the binding affinity to the target AR
and the binding affinity of the rest of subtypes could offer practical
clues in this regard, motivating future researches in this area. In
the present work, the last three problems [(b), (c), and (d)] will be
tackled.

From (b) and (c), it is clear that both the binding affinity and the
agonist efficacy should be simultaneously studied to develop selec-
tive A3AR agonists. Even more, the study of the combination of
both properties could be very informative and useful. However, from
(d) we are aware of the little feasibility of a structure-based
approach. Therefore, in cases where the receptor structure is
unknown, a ligand-based approach, based only on an extensive
study of structure-activity relationships (SAR), could be an informa-
tive alternative. In particular, the quantitative structure-activity rela-
tionship (QSAR) paradigm has long been of interest in the drug-
design process (13, 14). Recently, an excellent review on QSAR
tools to find new A3AR agonists using 2D and 3D molecular de-
scriptors (MDs) has been published (15).

When a medicinal chemist faces the problem of using QSAR predic-
tion models (PM) to aid the search for new drug candidates, the
desired goal is to obtain an interpretable and predictive PM. How-
ever, the fact is that the 'dominant Boolean operator' in this situa-
tion is not precisely 'AND', and more often what is desired, results
to be 'OR' the dominant operator. So the interpretability of a PM is
a trade-off with predictive accuracy. For example, linear regression
models can be interpreted in a detailed fashion, but, generally, have
lower accuracy, especially for biological activities. On the other
hand, one can achieve high accuracy using a neural network model,
but extracting the encoded SAR can be very difficult. In the same
way, MDs with a direct physicochemical or structural meaning such
as physicochemical properties or constitutional descriptors can be
easily translated into structural modifications enhancing the biologi-
cal profile of a molecule, whereas highly informative MDs such as
the 3D ones tend to be more abstract and do not allow one easily
to understand the substructures that are important for activity (16).

Thus, a PM provides to the researcher with two aspects: a set of pre-
dicted values, and information regarding the SAR(s) that are present
in the dataset. Unfortunately, these two parameters are not usually
provided jointly. As a consequence, it is necessary to establish priori-
ties in an investigation weighting the importance of predictivity and
interpretability, prioritize that what is determinant for the problem,
and select the MDs and the modeling strategy accordingly.

At the same time, improving the profile of a molecule for the drug
discovery process requires the simultaneous optimization of numer-
ous, often competing objectives. Classic QSAR approaches usually
ignore the multi-objective nature of the problem focusing on the
evaluation of each single property as they became available during
the drug discovery process (17). So an approach offering a simulta-
neous study of several biological properties determinants for a spe-
cific therapeutic activity is considered a very attractive option in
computational medicinal chemistry. In this sense, desirability func-
tions (DF) are well-known multi-criteria decision-making methods
(18,19). This approach has been extensively employed in several
fields (20–31). However, despite of perfectly fit with the drug devel-
opment problem, reports of computational medicinal chemistry
applications are at present very scarce (32,33).

Recently, a three-dimensional QSAR study (3D-QSAR) on the A3AR
agonists binding affinity and relative efficacy profiles including oxo-
and thioadenosine analogs exposed the outlier nature of thioadeno-
sine derivatives (12). In a training set of 91 compounds, five of
eight outliers were 4¢-thioadenosine analogs, indicating the possibil-
ity of a subtle difference in the binding mode and activation mecha-
nisms of 4¢-thioadenosine analogs in comparison with the oxo
analogs. The nature of the substituents on the N6 position of the
adenine ring was found to play a significant role in the binding
affinity and relative efficacy of the compounds. These interesting
findings make N6-substituted-4¢-thioadenosine analogs an attractive
goal in A3AR agonists research.

Considering the medicinal and computational chemistry problems
above exposed, we propose in this work the use of the desirability
theory as a tool to extract useful information on the desired
trade-offs between binding and relative efficacy of N6-substituted-
4¢-thioadenosines A3AR agonists. Additionally, desirability and belief
theories are combined to integrate a ligand-based virtual screening
(LBVS) protocol allowing the fusion of results from independent
approaches to access the reliability of concurrent predictions.

Materials and Methods

Data set and computational methods
The multiple linear regression (MLR) PMs developed were based on
the binding affinities (KiA3) and relative maximal efficacy (REA3) in
the activation of the A3AR reported by Jeong et al. (34) for a library
of thirty-two N6-substituted-4¢-thioadenosines A3AR agonists. The
chemical structures and property values are depicted in the Sup-
porting Information related to this work.

The structures of all compounds were first drawn with the aid of
CHEMDRAW ULTRA 9.0a, and reasonable starting geometries by
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resorting to the MM2 molecular mechanics force field were
obtained (35,36). Molecular structures were then fully optimized
with the PM3 semi-empirical Hamiltonian (37), implemented in the
MOPAC 6.0 program (38). Subsequently, the optimized structures were
brought into the DRAGON software packageb for computing a total of
1664 MDs. Descriptors having constant or near constant values
were excluded. Thus, from the initial set 1320 MDs remained for
further variable selection and construction of the PMs (focused on
predictability) involved on LBVS approach.

On the other hand, for the overall desirability PM (focused in inter-
pretability) involved on the desirability-based interpretation
approach was computed only 351 MDs (48 constitutional, 154 func-
tional groups count, 120 atom-centered fragments and 29 molecular
properties). These four families of MDs were chosen because their
simple nature offers an easily structural or physicochemical inter-
pretation of the resultant PM. To reduce noisy information that
could lead to chance correlations, descriptors having constant or
near constant values as well as highly pair-correlated (|R| > 0.9)
were excluded. Consequently, from the initial set, only 32 MDs
remained for further variable selection. The set of four variables
finally included in the model is depicted in Table 1.

An optimization technique – the Genetic Algorithm (GA) – was
applied for variable selection (39–41) by using the MOBYDIGS 1.1
software packagec. The GA selection parameters setup was: popu-
lation size = 100, maximum allowed variables in the model = 7,
reproduction ⁄mutation trade-off = 0.5 and selection bias = 50%.
The determination coefficient of the leave-one-out cross-validation
(Q2

LOO) was employed as fitness function.

The predictive ability of the PMs was evaluated by means of inter-
nal cross-validation (CV). Specifically, the leave-one-out (LOO) tech-
nique (42) is already implicit on the GA feature selection process,
being characterized by the Q2

LOO and sLOO statistics in eqns 12–14.
Additionally, to ensure the predictive ability, the resultant PM was
subjected to a bootstrap validation procedure (43) determined by
8000 resubstitutions (characterized by Q2

Boost and sBoost statistics in
eqns 12–14). A Y-scrambling procedure (44) (based on 500 random
permutations of the Y-response vector) implemented on MOBYDIGSc

was also applied to check whether the correlations established by
the respective PMs were because of chance correlations or not.
See a (R2 ) and a (Q2 ) statistics in eqns 12–14, where unstable
models because of chance correlations are characterized by high

values and vice versa. In this way, the quality and predictive ability
of the PMs can be assessed.

We have also checked the validity of the preadopted parametric
assumptions, another important aspect in the application of linear
multivariate statistical-based approaches. These include the linearity
of the modeled property, normal distribution of residuals as well as
the homoscedasticity and non-multicollinearity of the independent
variables included in the MLR model (45,46).

Finally, the applicability domain of the final PMs was identified by
a leverage plot, that is to say, a plot of the standardized residuals
vs leverages for each training compound (42,47).

Scaling properties with desirability functions
The properties Yi were scaled to their respective desirability (di) val-
ues by means of the Derringer DF (19). Desirability functions are
well-known multi-criteria decision-making methods, based on the
definition of a DF for each property to transform their values to the
same scale. Each attribute (KiA3 and REA3) is independently trans-
formed into a desirability value (d(KiA3) and d(REA3)) by an arbitrary
function. The original value is range scaled between 0 and 1 by:

di ¼
Ŷi " Li
Ui " Li

0 # di # 1 ð1Þ

where Li and Ui are the selected minimum and maximum values,
respectively.

In this work, two specific DF (one for each property) were used.

If a property is to be maximized, its individual DF is defined as:

di ¼

0 if Yi # Li
Yi " Li
Ti " Li

! "s
if Li <Yi <Ti

1 if Yi & Ti ¼ Ui

8
><

>:
ð2Þ

In this case, Ti is interpreted as a large enough value for the prop-
erty, which can be Ui.

On the other hand, if one wants to minimize a property, one might
use:

di ¼

1 if Yi # Ti ¼ Li
Yi " Ui
Ti " Ui

! "s
if Ui<Yi <Ti

0 if Yi & Ui

8
><

>:
ð3Þ

Here, Ti denotes a small enough value for the property, which can
be Li.

Specifically, REA3 ought to be maximized (eqn 2) in such a way that
the compound with the highest ⁄ lowest value should be the most
desirable ⁄ undesirable (di = 1 ⁄ di = 0). Specifically, Li was set to 0%,
and the upper value Ui, made equal to the target value Ti, was set
to 114%. In contrast, to maximize the binding affinity to the human

Table 1: Molecular descriptors (MDs) included on the overall
desirability prediction model, identified through the Genetic Algo-
rithm selection process

MDs Definition Family

ARR Aromatic ratio Constitutional descriptors
nCIR Number of circuits Constitutional descriptors
nCs Number of total

secondary sp3 carbon atoms
Functional groups count

ALOGP2 Squared Ghose-Crippen
octanol–water partition
coefficient (logP^2)

Molecular properties
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A3AR, the KiA3 values most be minimized (eqn 3) where
Li = Ti = 0.8 nM and Ui = 1650 nM, coinciding with the lower and
higher values of KiA3 in the data set, respectively.

Anyhow, if a response is of the target best kind, then its individual
DF is defined as:

di ¼

Ŷi " Li
Ti " Li

" #s

if Li # Ŷi # Ti

Ŷi " Ui
Ti " Ui

" #t

if Ti < Ŷi # Ui

0 if Ŷi <Li or Ŷi >Ui

8
>>>>>>><

>>>>>>>:

ð4Þ

The exponents s and t in eqns (2–4) determine how important is to
hit the target value Ti. For s = t = 1, the DF increases linearly
towards Ti. Large values for s and t should be selected if it is very
desirable that the value of Ŷi be close to Ti or increase rapidly
above Li. On the other hand, small values of s and t should be cho-
sen if almost any value of Ŷi above Li, and below Ui are acceptable
or if having values of Ŷi considerably above Li are not of critical
importance (19).

The individual desirabilities are then combined using the geometric
mean, which gives the overall desirability Di:

Di ¼ ðd1 ' d2 ' :::' dk Þ
1
k ð5Þ

with k denoting the number of properties.

This single value of Di gives the overall assessment of the desir-
ability of the combined property levels. Clearly, the range of Di will
fall in the interval [0, l] and will increase as the balance of the
properties becomes more favorable.

Ranking quality
To measure the quality of the ranking obtained we employ a quanti-
tative measure also based on the application of DF.

We will use a simple notation to represent ordering throughout this
article. Without loss of generality, for n cases to be ordered, we
use the actual ordering position of each case as the label to repre-
sent this case in the ordered list. We assume the examples are
ordered incrementally from left to right. Then, the true-order list is
OT = 1(lowest), 2, 3, …, n (highest). For any ordered list generated
by a ranking algorithm, it is a permutation of OT. We use OR to
denote the ordered list generated by the ranking algorithm R. OR
can be written as a1, a2, …, an, where ai is the actual ordering
position of the case that is ranked ith in OR (see Table 2).

The ranking validation includes the following steps:

1. Order the cases in the library according to Di in a decreasing
fashion and label each case as described earlier (1, 2, 3, …, n).
This ordering corresponds to the true-order list (OT).

2. Invert OT. This new ordering corresponds to the worst-order list
(OW).

3. Order incrementally the cases in the library according to Di

(starting with the case exhibiting the lowest value of Di) and label
each case as described earlier (a1, a2, …, an). This ordering corre-
sponds to the order generated by the ranking algorithm R (OR).

4. Normalize [through eqn (3)] the values (labels) assigned to each
case on steps 1 to 3 where Li = Ti = 1 y Ui = number of cases
included in the library (n). In this way, we obtain the respective nor-
malized order values for the true (OTdi) and worst (OWdi)-order lists
as well as the order generated by the ranking algorithm R (ORdi).

5. Use the respective normalized order values to determine the dif-
ference between OR and OT (OT)ORdi):

OT"ORdi ¼ OT di "OR di
## ## ð6Þ

and between OW and OT (OT)OWdi):

OT"OW di ¼ OT di " OW di
## ## ð7Þ

The ideal difference is 0 for all the cases and corresponds to a per-
fect ranking.

6. Estimate the quality of the order generated by the ranking algo-
rithm R (OR) by means of the ranking quality index (W), which can
be defined as the absolute value of the mean of OT)ORdi, for the n
cases included in the library to be ranked:

W ¼

Pn

i¼1

OT"ORdi

n

########

########
ð8Þ

W is in the range [0, 0.5], being W = 0 if a ranking is perfect and
W @ 0.5 for the worst ranking. Like this, the closer to 0 is W for a
certain ranking the higher will be the quality of this ranking. In con-
trast, values of W near to 0.5 indicate a low-ranking quality.
Because the value of W associated to the worst ranking is depen-
dent of the size of the library to be ranked, this value is not
exactly, but approximately equal to 0.5. At the same time, a range
[0, 1] rather than [0, 0.5] is a more clear indicator of the quality of
a ranking. Considering the previous questions, a correction factor (F)
is applied to W:

F ¼ 2
WOW ð9Þ

where WOW is the quality index for the worst ranking. F is used
here to obtain a more representative indicator W of the quality of
a ranking and at the same time to include W in the range [0, 1]
where WOW is exactly equal to 1. In this way, we obtain the cor-
rected ranking quality index (W*):

Table 2: An example of ordered lists

OT 1 2 3 4 5 6 7 8 9 10
OR a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

3 6 2 4 5 8 1 7 10 9
OW 10 9 8 7 6 5 4 3 2 1
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W( ¼

Pn

i¼1

OT"ORdi

n

########

########
) F ¼

Pn

i¼1

OT"ORdi

n

########

########
) 2
WWR 0#W# 1 ð10Þ

Finally, is possible to express W* as the percentage of ranking
quality (R%):

R% ¼ ð1"W(Þ ) 100 0 # R% # 100 ð11Þ

Results and Discussion

Prediction models
Once desirability scaled both KiA3 and REA3 responses for each
compound, the corresponding overall desirability (DKiA3-REA3) values
were derived. To identify the factors governing the trade-offs
between binding affinity and efficacy of this family of A3AR agon-
ists, the combined response DKiA3-REA3 was mapped as a function
of four simple 1D MDs with a direct structural and ⁄ or physiochemi-
cal explanation. The resulting best-fit model together with the sta-
tistical regression parameters is given below:

DKiA3"REA3 ¼ 1:557ð*0:292Þ " 0:107ð*0:013Þ ' ALOGP 2
þ 0:203ð*0:033Þ ' nCIR " 2:783ð*0:595Þ
' ARR " 0:092ð*0:027Þ ' nCs

ð12Þ

N = 32 R2 = 0.781 R2Adj = 0.749 F = 24.13 s = 0.127

Q2LOO = 0.566 sLOO = 0.138 Q2Boost = 0.539 sBoost = 0.179
a(R2) = 0.0063 a(Q2) = )0.0039

The statistical significance and predictive ability exhibited by the
model show evidence of their suitability for subsequent analyses.

No violations of the preadopted parametric assumptions were found
for eqn (12).

At the same time, two QSAR PMs (for KiA3 and REA3) focused on
their predictive ability (identified further as prediction approach A2)
were derived to use both in combination with the previously
described overall desirability PM (eqn (12), identified further as pre-
diction approach A1) in a LBVS strategy based on the combination
of their concurrent predictions through belief theory.

The resulting best-fit models together with the statistical regression
parameters are given in eqns (13 and 14):

KiA3¼"8857:67ð*331:482Þþ10:36ð*1:019Þ)D=Dr03
þ502:99ð*99:263Þ)GATS3mþ5217:43ð*188:103Þ)BELe3
"453:64ð*45:869Þ)Mor13uþ1110:88ð*57:144Þ)Mor09v
"1258:23ð*101:691Þ)Mor23vþ26703:72ð*3542:089Þ)R7uþ

ð13Þ

N = 32 R2 = 0.985 R2Adj = 0.981 F = 230.82 s = 48.796

Q2
LOO = 0.977 sLOO = 56.345 Q2

Boost = 0.957 sBoost = 61.246
a (R2) = 0.0017 a (Q2) = )0.0052

REA3 ¼ 2559ð*413:56Þ " 3307ð*373:0:4Þ ) PW 2
" 0:44ð*0:038Þ ) D=Dr06" 143:68ð*28:85Þ ) ATS5v
þ 344:25ð*25:72Þ ) EEig10d þ 114:72ð*10:54Þ ) VEA1
þ 89:91ð*20:18Þ ) H8p " 15:68ð*2:32Þ ) ALOGP

ð14Þ
N = 32 R2 = 0.966 R2

Adj = 0.956 F = 96.79 s = 5.515

Q2
LOO = 0.942 sLOO = 6.369 Q2

Boost = 0.921 sBoost = 7.182
a (R2) = 0.0017 a(Q2) = )0.0055

According to their statistics, the models are good in terms of their
statistical significance and predictive ability. In opposition to
eqn (12), eqns (13 and 14) were derived from a pool of variables
significantly higher than the number of cases used for training. As
a consequence, the risk to find chance correlations in such a vast
variable space is always high. So checking the occurrence of this
event is of vital importance in this case. As can be deduced from
the significantly low values of a(R2) and a(Q2) obtained in the
respective Y-scrambling experiments, there is no reason to ascribe
to chance correlations the statistical significance and predictive
ability exhibited by each PM.

With the exception of the non-multicollinearity of the independent
variables included in the MLR model developed for REA3; no viola-
tions of the remaining MLR parametrical assumptions were found
(48). As above-mentioned, multi-collinearity affects the common
interpretation of a regression equation. However, the predictive
ability of the PM is not affected in this situation (46).

See Supporting Information for details of the inspection of the
parametrical assumptions as well as the establishment of the appli-
cability domain of eqns (12–14).

Consequently, according to the statistical parameters exhibited, the
goodness of fit of the PMs involved on both prediction approaches
A1 and A2 can be considered as statistically significant. At the
same time, considering their satisfactory predictive ability and the
validity of the preadopted parametrical assumptions, the resultant
predictions can be regarded as reliable in the domain of the
N6-substituted-4¢-thioadenosines A3AR agonists used for training
and structurally coded as a linear function of the respective subsets
of MDs. Therefore, all the PMs developed can be employed in a
LBVS scheme with an adequate degree of reliability.

Desirability-based prediction model
interpretation and theoretical design of
N6-substituted-4¢-thioadenosine A3AR agonist
candidates
Based on the satisfactory accuracy, statistical significance and
predictive ability of the overall desirability PM (eqn (12)) we can
proceed, with an adequate level of confidence to the simultaneous
analysis of the factors governing the balance between the binding
affinity and relative efficacy profiles of A3AR agonists.
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Although the main variation of the subset of compounds employed
is over the N6 position of the adenine ring, the MDs employed in
mapping DKiA3-REA3 are global and not fragment based. So any infer-
ence made have to be only based on the influence of N6 substitu-
ents over the global molecular system.

First, the information encoded in the MDs included on the model
was analyzed. According to the model regression parameters, the
most influencing MD is the aromatic ratio (ARR), followed by
the Ghose-Crippen octanol–water partition coefficient (ALOGP2), the
number of circuits (nCIR) and the number of total secondary sp3
carbon atoms (nCs). All MDs were inversely related with the overall
desirability DKiA3-REA3 of N6-substituted-4¢-thioadenosine A3AR ag-
onists, except nCIR.

Specifically, ARR is the fraction of aromatic atoms in the hydrogen
suppressed molecule graph and encodes the degree of aromaticity
of the molecule. According to the model parameters, N6 substitu-
tions increasing the aromaticity of the molecule do not favor
DKiA3-REA3.

ALOGP2 is simply the square of the Ghose-Crippen octanol–water
coefficient (ALOGP), which is a group contribution model for the
octanol–water partition coefficient. Because these MDs encode the
hydrophobic ⁄ hydrophilic character of the molecule, DKiA3-REA3 could
be favored by the presence of N6 substituents contributing to
reduce the hydrophobicity of the molecule.

The nCIR is a complexity descriptor, which is related to the
molecular flexibility. Because nCIR serve as a measure of rigidity
with higher numbers of circuits corresponding to reduced flexi-
bility; cyclic and rigid or conformationally restricted N6 substitu-
ents could increase the overall desirability of the molecular
system.

Finally, the presence of secondary sp3 carbon atoms in the molecule
appears to be detrimental for DKiA3-REA3.

According to the model, a molecule with a low aromaticity degree,
without secondary sp3 carbon atoms, and containing cyclic and rigid
N6 substituents, which contributes to reduce the hydrophobicity
of the system could favor the balance of the binding affinity and
relative efficacy profiles of N6-substituted-4¢-thioadenosine A3AR
agonists.

To note that these conclusions, although derived from a simple 1D
model, are very similar to that obtained by 3D-CoMFA ⁄ CoMSIA
approaches (12). Kim and Jacobson have concluded that a bulky
group, conformationally restricted, at the N6 position of the adenine
ring will increases the A3AR binding affinity, and that a small bulky
group, at this position, might be crucial for A3AR activation. Note
the accordance of data obtained in the previous and present work:
a 'conformationally restricted bulky group' is suggested by Kim and
Jacobson and herein a 'cyclic and rigid substituents' on the N6

position.

To note that although nCIR is not the MD more significantly related
with DKiA3-REA3, it is very informative for the property. From nCIR, we

can infer that the bulkiness of the N6 substituent suggested in (12)
can be characterized by a cyclic rather than an alkyl substituent.

Although useful, this information is found to be incomplete because
it is well known that steric factors are determinant for the design
of A3AR agonists, especially for binding affinity (12). Consequently,
it is found to be important to determine the optimal size of the
conformationally restricted cyclic N6 substituent. Unfortunately, the
simple inspection of the regression parameters of the PM does not
offer this information. In consequence, a property ⁄ desirability profil-
ing was carried out to identify the levels of the MDs included in
the PM that simultaneously generate the most desirable combina-
tion of binding affinity and relative efficacy.

As the main goal of this analysis is to extract information on the
factors governing DKiA3-REA3 rather than optimize it, the behavior of
DKiA3-REA3 was profiled at the mean values of the four MDs rather
than looking for their optimal values (see first row in Figure 1).
Accordingly, it was possible to find the levels of the MDs simulta-
neously producing the best possible DKiA3-REA3 in the training set
employed. As can be noted in Figure 1 (second row), a A3AR ago-
nist candidate should exhibit a value of DKiA3-REA3 near to 0.9 at
levels of ARR, nCs, ALOGP2, and nCIR around 0.4, 2, 0, and 6;
respectively.

The analysis reveal that the most favorable balance of binding
affinity and agonist efficacy: the ARR should be not just low but
near to 0.4; ALOGP2 should be as low as possible; the number of
secondary sp3 carbon atoms should be kept around two; and nCIR
should be not just high but close to six.

Because the thioadenosine nucleus already contain three secondary
sp3 carbon atoms, at least on the applicability domain of the pres-
ent model, the minimum number of such atoms should be kept at
three. So this type of carbons must be excluded in the substituents
located at N6 position.

At the same time, considering that the nCIR value of the thioadeno-
sine nucleus is four, one can deduce that the ideal nCIR value of
the N6 substituent should be two. This information can be structur-
ally translated into bicyclic N6 type of substituents.

The inclusion in the PM of nCIR, instead of the number of rings
in the chemical graph (nCIC) is also significant. Although the
structural information of this pair of MDs is very similar (the
number of cyclic structures in a chemical graph) their graph-theo-
retical information is quite different. While nCIC encodes the
number of rings, nCIR includes both rings and circuits (a circuit
is a larger loop around two or more rings). As an example,
naphthalene contains 3 circuits and 2 rings. This is illustrated in
Figure 2.

So additional information can be inferred: the bicyclic N6 substitu-
ent should not be fused. This assumption could be related to the
binding interaction of this type of fragments with the A3AR. In fact,
the presence of a certain degree of rotational freedom between the
two rings of the fragment could favor its docking into the receptor
cavity.
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This result matches with previous experimental findings on the SAR
of this family of thioadenosine derivatives (34). The SAR obtained
for this family suggests that compounds with bulky N6 substituents
lost their binding to the A3AR. Paradoxically, among compounds
showing high binding affinity at the human A3AR, two compounds
substituted with a N6-(trans-2-phenylcyclopropyl)amino group were
found to be full agonists at the human A3AR. In addition, it was
found that compounds with a-naphthylmethyl N6 substituents lost
their binding to the A3AR (34), which reinforce the present
proposal.

From the study it was also concluded that bulky N6 substituents
only affects the binding affinity; however bulky (bicyclic) substitu-
ents such as a trans-2-phenylcyclopropyl group could be beneficial
for agonist efficacy without lost their binding affinity. Although that
experimental study do not deal with the simultaneous analysis of
both properties, their experimental findings properly match with our
theoretical results.

Until now, it has been exposed the importance of bicyclic and rigid
N6 substituents contributing to reduce the hydrophobicity of the
system to obtain an adequate balance between binding affinity and
relative efficacy profiles of N6-substituted-4¢-thioadenosine A3AR
agonists.

At first sight, this information is pretty focused and we could
expect that the task of finding promising candidates is almost per-
formed. However, if we consider the number of attainable N6 sub-
stituents of this type, generated from a tiny portion of the possible
chemical space indicated by this information we can extrapolate
the huge number of possible candidates (Table 3). To mention that
this analysis has been only performed taking into account unsatu-
rated rings and the valence of the atoms. The number of options
can vary, rising or go down if we consider double bounds or chemi-
cal feasibility. Anyway, although focused, the 'haystack' is vast. So
it is determinant a focused screening strategy to efficiently find
some 'needle' on it.

Therefore, the previous information is employed for the theoretical
design of new N6-substituted-4¢-thioadenosine analogs with
adequate balances between binding affinity and agonist efficacy.
Because ARR and ALOGP2 cannot be easily manipulated by struc-
tural modifications, the design efforts will be mainly focused on
nCs and nCIR. Thus, a combinatorial library focused on the genera-
tion of N6-substituted-4¢-thioadenosine candidates was assembled
with nCs , 3 and nCIR , 6. This approach was performed with
the aid of the SMILIB software (48), for the rapid assembly of combi-
natorial Libraries in SMILES notation. The library was directed to
produce candidates with conformationally restricted bicyclic N6

substituents while keeping at minimum the presence of secondary
sp3 carbon atoms using the 4¢-thioadenosine nucleus as scaffold
and a set of 25 cyclic or heterocyclic structures as linkers and
building blocks. The working combinatorial scheme is shown in
Table 4.
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Figure 1: Property ⁄ desirability
profiling of the levels of the
molecular descriptors that
simultaneously produce the most
desirable combination of binding
affinity and relative efficacy of
N6-substituted-4¢-thioadenosine
A3AR agonists.

Figure 2: Graphical illustration of the definition of nCIC and
nCIR for two chemical graphs.
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This combinatorial strategy produced a set of more than 9000 can-
didates, which according to previous results can be employed in a
subsequent virtual screening campaign using as ranking criterion
the predicted value of DKiA3-REA3 of each candidate. As mentioned
before, only candidates included on the applicability domain of the
overall desirability PM (3395 candidate molecules) should be sub-
mitted to the ranking process. Figure 3 shows the plot of the pre-
dicted DKiA3-REA3 values of the 9782 candidate molecules versus
their respective leverage values. As can be noted, predictions range
from values of )0.31 to 1.70; however, candidates included on the
PM applicability domain are restricted to predicted values of DKiA3-
REA3 between 0.22 and 1.44. As a result, it is possible to propose
for biological screening a reduced set of candidates with a promis-
sory balance between A3AR binding affinity and agonist efficacy.
The values of the MDs included on the overall desirability PM as
well as the predicted value of DKiA3-REA3 for a fragment of the
ranked combinatorial library are shown in Table 5.

Library ranking based on the combination of
desirability and belief theories
Although the idea of desirability-transforming and combining a
number of related properties is in accordance with the concept of

pharmaceutical profile (32,33), the usefulness of a parallel approach
allowing obtaining a feedback on the reliability of the properties
predicted as a unique Di value is also desirable.

If two or more property values Yi (previously scaled to the respec-
tive di values with proper DF) of a compound are combined into a
unique Di value, to map it as a MLR function of n MDs Xi (denoted
as approach A1), it is rational to expect that the resultant predicted
Di value should be similar to the inverse approach. The inverse
approach consist in the independent mapping of the k properties Yi
as a MLR function of n MDs Xi, the subsequent desirability-scaling
of each predicted Yi value and the final combination of the corre-
sponding di values into a unique predicted Di value (denoted as
approach A2).

Yi ! di ! Di ¼ f ðXiÞ! Pr ed :Di ¼ A1 , A2
¼ Pr ed :Di  Pr ed :di  Pr ed :Yi  Yi ¼ f ðXiÞ

ð15Þ

Assuming true the previous analysis, one must anticipate that
the higher is the degree of similarity between the predicted Di
values of both approaches, the higher should be their reliability,
and vice versa. Clearly, the results will depend on the goodness
of fit and prediction of the set of PMs involved. In addition, the

Table 3: Fraction of the chemi-
cal space determined by the N6

substituents conformed by the pos-
sible combinations of two not
fused rings linked by a single
bound

Rings (R) = 2 

R-X = 35 

R-X-S = 107

X

X
X

, 

X

X X

X

Atom Type (X) = 4 
C, O, N, S

Substitution Places (S): Up to 4 per Ring 
(S = No. of Ring Members if X ≠ O,  

Otherwise S = No. of Ring Members – No. of O atoms) 
N 6-R-R` = 2 not fused Rings linked by a single bound = 11449

,

Table 4: Scaffolds, linkers, and
building blocks employed to assem-
ble the combinatorial library
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OH

OH

OH
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N

N
N

HN
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S

OH

OH

OH

N

N

N
N

HN

R

Linkers/Building Blocks 

R R
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N R

O
R

O R
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S R
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degree of uncertainty of PMs with different sets of MDs will be
diverse.

So it is required a framework allowing the fusion of results from dif-
ferent approaches to access the reliability of predictions from several
approaches with different degrees of uncertainty. In the present work,
we select Dempster–Shafer Theory (DST) (49–51) (also known as
belief theory) to achieve that goal. DST is a mathematical theory of

evidence that has been developed to combine separate pieces of
information that can arise from different sources (52). Dempster–Sha-
fer Theory is based on two ideas: the idea of obtaining degrees of
belief for one question from subjective probabilities for a related
question, and Dempster's rule for combining such degrees of belief
when they are based on independent items of evidence (52).

The foundations of DST can be traced to the work of George Hoo-
per, who published an article in the Philosophical Transaction of the
Royal Society entitled 'A calculation of the credibility of human tes-
timony' (50). In this article, Hooper formulated two rules relating
the credibility of reports to the credibility of the reporters who
make them (51).

These two rules are quite simple. The rule for successive testimony
says that if a report has been relayed to us through a chain of n
reporters, each having a degree of credibility p, then the credibility
of the report is pn. The rule for concurrent testimony says that if a
report is concurrently attested to by n reporters, each with credibil-
ity p, then the credibility of the report is 1)(1)p)n; where
0 £ p £ 1. Thus, the credibility of a report is weakened by trans-
mission through a chain of reporters but strengthened by the con-
currence of reporters (50,51).

If we make a simple analogy of this situation with the situation
previously exposed regarding two parallel overall desirability PMs,
each approached inversely, is possible to note that DST theory, spe-
cifically, the Hospers's rule for combining concurrent evidence
(50,51), is fully applicable to our problem. There, it is only needed
to replace 'report' with 'prediction' and 'reporter' with 'PM', and the
previous paragraph will almost literally describe our problem.

Developing a probability assignment is the basic function in DST
and is an expression of the level of confidence that can be ascribed
to a particular measurement. However, in this work, we are inter-
ested on the desirability of a compound. Consequently, rather than
a probability assignment for each compound, we will use the desir-
ability values coming from both overall desirability PMs approaches
(D1 and D2) to derive the final joint belief values (BD):

BD ¼ 1" ð1" D1Þð1" D2Þ ð16Þ

While desirability is not itself a probability, like probabilities their
values also range from 0 to 1. Therefore, it can be used to derive
the values of BD for each compound. So in this way, it is possible
to encode the reliability of the predicted desirability of a compound
along with two inverse but complementary prediction approaches.
Given this information, BD can be used as ranking criterion in a vir-
tual screening scheme, resulting particularly useful for LBVS.

A LBVS strategy based on BD can be described in the sequence of
steps detailed below:

1 Prediction Models setup.

Here, the predicted Di values for each compound are derived from
A1 and A2 as expressed in eqn (13).
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Figure 3: Predicted DKiA3-REA3 values of the candidate molecules
included on the combinatorial library plotted vs. their respective
leverage values.

Table 5: Fractions of the combinatorial library ranked according
to the predicted values of DKiA3-REA3

Rank Comb. Lib. ID* ARR nCIR nCs ALOGP2 Pred. DKiA3-REA3

1 1.36_2 0.294 6 5 0.532 1.439
2 1.36_3 0.294 6 5 0.532 1.439
3 2.4_54 0.294 6 5 0.567 1.436
4 2.5_3 0.294 6 5 0.633 1.429
5 2.5_2 0.294 6 5 0.633 1.429
2221 1.32_55 0.455 6 3 2.161 1.000
2222 1.54_17 0.455 6 3 2.163 1.000
2223 1.17_86 0.441 6 3 2.527 1.000
2224 1.55_11 0.471 6 3 1.752 0.999
2225 1.35_40 0.441 6 3 2.541 0.998
2914 2.52_108 0.441 6 3 4.388 0.800
2915 1.34_87 0.441 6 3 4.402 0.799
2916 2.10_106 0.457 6 3 3.992 0.798
2917 1.58_90 0.357 5 3 4.7 0.798
2918 1.38_109 0.441 6 3 4.418 0.797
3343 2.35_106 0.441 6 3 7.185 0.500
3344 2.48_55 0.429 6 4 6.647 0.500
3345 2.54_53 0.441 6 3 7.198 0.499
3346 2.56_106 0.441 6 3 7.242 0.494
3347 2.48_109 0.429 6 4 6.702 0.494
3391 1.48_55 0.441 6 4 8.071 0.314
3392 1.48_109 0.441 6 4 8.132 0.307
3393 1.48_110 0.441 6 4 8.256 0.294
3394 1.48_52 0.441 6 4 8.74 0.242
3395 1.48_108 0.441 6 4 8.932 0.221

ARR, Aromatic ratio.
*Combinatorial Library identification: 1.36_2 = Scaffold1.Linker36_Building
Block2.
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2 Desirability assignment.

Because of limitations inherent to the MLR approach, the predicted
desirability values not always will be included in the interval [0,1]
and consequently is not possible to use it as is to derivate BD. So
in the case of the desirability values derived from the approach A1,
it is necessary to rescale using eqn (2) considering that D have to
be maximized.

In the case of the approach A2, the derivation of the respective Di
values is affected by the above-mentioned limitations of MLR, but
the process is complicated by the wider range of the mapped Yi
properties. Consequently, di is scaled by using a two-tale (eqn (4))
using the same target Ti values employed in A1 for each Yi.

3 Derivation of Joint Belief BD by the application of Hospers's Rule
for Combining Concurrent Evidence.

4 BD-based ranking.

The resultant ranking should render an ordered list, top ranking the
most reliable compounds with the highest desirability values. The
compounds with a higher chance to exhibit a desirable combination
of the k properties modeled.

Subsequently, the BD-based virtual screening (VS) strategy
described earlier was applied to the already described training
set to test their performance as ranking criterion. Considering
the structural similarity between both (the combinatorial library
assembled and our training set) is possible to use the latter to
infer the reliability of the ranking attained for the combinatorial
library. The predicted values of DKiA3-REA3 (according to approach
A1) were also tested as ranking criterion to compare a VS strat-
egy based on predictions coming from a single approach with a
VS strategy based on the combination of concurrent predictions.
The quality of the respective ranking obtained was compared
according to W*, as described earlier.

Based on the analysis of our training set, the quality of the ranking
attained using the predicted values of DKiA3-REA3 is around 80%,
which suggest an acceptable degree of confidence if the scheme is
applied to our combinatorial library (R% = 80.08%; W* = 0.1992).
As can be noted in Figure 4, the use of BD as ranking criterion
(R% = 82.81%; W* = 0.1719) slightly overcomes the performance of
the predicted values of DKiA3-REA3. Considering that BD encodes in
addition to the desirability of the compound, the reliability of such
a prediction, it is clear their suitability at the moment to screen
higher and ⁄ or structurally diverse libraries with a wider range of
the mapped properties.

Conclusions

The development of a linear 1D PM of the A3AR agonists overall
desirability based on four simple MDs with a direct physicochemical
or structural explanation, as well as the desirability analysis of this
model, was described in this work. The results obtained provided
significant clues on desired trade-offs between binding and relative
efficacy of N6-substituted-4¢-thioadenosines A3AR agonists.

The desirability-based PM interpretation strategy proposed here
suggest a favorable effect over binding affinity and agonist efficacy
of conformationally restricted, but not fused bicyclic N6 substitu-
ents. The overall data provide guides to the rational design of new
A3AR agonist candidates by assembling a combinatorial library use-
ful for the prioritization of candidates with a promissory balance
between A3AR binding affinity and agonist efficacy through a virtual
screening campaign. The VS depicted protocol, based on the com-
bined use of desirability and belief theories, exhibited a slightly
superior performance compared with the single use of predicted
overall desirabilities.

Finally, the combined use of desirability and belief theories in com-
putational medicinal chemistry research was demonstrated to be a
valid approach. The model was able to simultaneously consider
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Figure 4: Ranking of the
training set compounds based on
BD (top) and DKiA3-REA3 (bottom),
respectively.
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several properties, in a simple an interpretable manner, and to exe-
cute a multi-target LBVS strategy.
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 Table SI-1. Chemical structures, molecular descriptors and property values of the library of 
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ID STRUCTURE PROPERTIES MOLECULAR DESCRIPTORS 

KiA3 REA3 DKIA3-REA3 ARR ALOGP2 nCIR nCs 
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HO
OH
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N

N
NH2

NN
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N N

N
N
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OHHO

HO
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N
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OHHO

HO

 

45.2 78 0.816 0.4 0.674 5 6 
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HO
OH
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N H
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N
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HO

 

65.3 99 0.913 0.385 0.073 4 4 
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OHHO

HO
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HO
OH
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N H
N

NN  

155 87 0.832 0.552 0.074 5 3 
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HO
OH
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N H
N

NN I
 

1.9 60 0.725 0.533 0.724 5 3 

18i 

HO

HO
OH

S
N

N H
N

NN Cl

6.7 62 0.736 0.533 0.878 5 3 

18j 

HO

HO
OH

S
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N H
N

NN

13.9 48 0.646 0.533 0.576 5 3 

18k 
N N

N
N

H
N
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OHHO

HO

F
 

57.6 63 0.730 0.552 0.405 5 3 

 



 

 Table SI-1. (Continued...)
ID STRUCTURE PROPERTIES MOLECULAR DESCRIPTORS 

KiA3 REA3 DKIA3-REA3 ARR ALOGP2 nCIR nCs 

18l 
N N

N
N

H
N

S

OHHO

HO

F
F

F

32.7 29 0.499 0.5 1.885 5 3 

18m 
HO

HO
OH

S
N

N H
N

NN
42.2 72 0.785 0.618 1.395 7 3 

18n S

OH
HO

HO

N
N

N N

N
H

5.6 86 0.867 0.533 0.546 5 4 

18o S

OH
HO

HO

N
N

N N

N
H

F
11.3 89 0.881 0.516 0.285 5 4 

18p 
S

OH
HO

HO

N
N

N N

N
H

6.6 114 0.998 0.5 0.019 6 5 

18q S

OH
HO

HO

N
N

N N

N
H

1080 54 0.405 0.595 0.762 6 5 

18r 
S

OH
HO

HO

N
N

N N

N
H

1650 0 0.000 0.579 5.448 6 4 

19a 
N N

N
N

NH2
S

OHHO

HO

Cl

4.9 64 0.748 0.455 1.021 4 3 

19b 
N N

N
N

H
N

S

OHHO

HO

Cl

0.8 96 0.918 0.435 0.207 4 3 

19c S

OH
HO

HO

N
N

N N

N
H

Cl

94.4 68 0.750 0.357 0.897 5 8 

 



 

 Table SI-1. (Continued...) 
ID STRUCTURE PROPERTIES MOLECULAR DESCRIPTORS 

KiA3 REA3 DKIA3-REA3 ARR ALOGP2 nCIR nCs 

19d 
N N

N
N

H
N

S

OHHO

HO

Cl  

18.2 63 0.739 0.552 1.654 5 3 

19e S

OH
HO

HO

N
N

N N

N
H

Cl

 

48.9 62 0.727 0.516 2.607 5 3 

19f S

OH
HO

HO

N
N

N N

N
H

Cl

O  

17.2 60 0.722 0.485 2.134 5 3 

19g 
S

OH
HO

HO

N
N

N N

N
H

Cl

I  

3.2 32 0.529 0.516 2.912 5 3 

19h 
HO

HO
OH

S
N

N H
N

NN

Cl  

268 45 0.575 0.6 4.148 7 3 

19i 

N N

N
N

H
N

S

OHHO Cl

HO

 

50.4 112 0.976 0.579 5.9 10 4 

19j 
HO

HO
OH

S
N

N H
N

NN

Cl  

4.4 81 0.842 0.516 0.014 5 4 

19k HO

HO
OH

S
N

N H
N

NN

Cl
F  

4.7 71 0.788 0.5 0.104 5 4 

19l S

OH
HO

HO

N
N

N N

N
H

Cl

 

1300 38 0.266 0.579 2.988 6 5 

19m S

OH
HO

HO

N
N

N N

HN

Cl

1.9 102 0.946 0.485 0.518 6 5 

 



 

 Table SI-1. (Continued...)
ID STRUCTURE PROPERTIES MOLECULAR DESCRIPTORS 

KiA3 REA3 DKIA3-REA3 ARR ALOGP2 nCIR nCs 

19n 

N N

N
N

H
N

S

OHHO Cl

HO 720 0 0.000 0.564 10.174 6 4 



Checking of the parametric assumptions of the MLR models (equations 12-14). 
Checking of the pre-adopted parametric assumptions is a very important aspect in the 

application of linear multivariate statistical-based approaches (2). These include the 

linearity of the modeled property, normal distribution of residuals as well as the 

homoscedasticity and non-multicollinearity of the independent variables included in 

the MLR model. Once the MLR model has been set up, it is very important to check 

the parametric assumptions to assure the validity of extrapolation from the sample to 

the population. Notice that severe violations of one or various of these assumptions 

can markedly compromise the reliability of the predictions and inferences resulting 

from the MLR model (2). 

We first check the linearity hypothesis by looking at the distribution of the 

standardized residuals for all cases. As the plots do not show any specific pattern, the 

idea that our PMs do not exhibit a non-linear dependence is reinforced (2). 

Next, we check the hypothesis of homoscedasticity (i.e.: homogeneity of variance of 

the variables), which can be confirmed by simply plotting the square of standardized 

residuals related to the dependent variable (2). The data obtained reveal a significant 

scatter of points, without any systematic pattern, post-mortem validating the pre-

adopted assumption of homoscedasticity for the PMs. 

Moving on to the hypothesis of normally distributed residuals, one can easily confirm 

that the residuals follow a normal distribution by applying the Kolmogorov-Smirnov 

and Lilliefors statistical test. As the term related to the error (represented by the 

residuals) is not included in the MLR equation, the mean must be zero what actually 

occurs. 

The last aspect deserving special attention is the degree of multicollinearity among 

the variables. Highly collinear variables may be identified by examining their pair-

correlations (Rij). The common interpretation of a regression coefficient as measuring 

the change in the expected value of the response variable, when the given predictor 

variable is increased by one unit while all other predictor variables are held constant, 

is not fully applicable when multicollinearity exists (R  0.7). Nevertheless, the 

predictive ability of the model is not affecte in this situation (3). As can be noted in the 

correlation matrix for equation (12), the highest value of Rij is 0.56, which confirms 

that the multicollinearity is not a problem in this PM and consequently the resultant 

inferences can be regarded as reliable. In the case of equation (13), the highest value 

of Rij is 0.696, suggesting that the multicollinearity is not a serious problem in this PM 

and consequently the resultant predictions can be regarded as reliable. On the other 

hand, the multicollinearity is a problem present in equation (14). However, as can be 

noted in the pareto chart of significance of coefficients, the coefficients associated to 



all the variables included in this model are statistically significant. Consequently, 

although multicollinearity is severe, actually it does not affect the statistical 

significance of each individual regression coefficient. 

 

Table SI-2: Checking the main parametric assumptions and the applicability domain of the 
overall desirability PM involved on the prediction approach A1. 

Linearity Homoscedasticity 

Normality of Residuals Non Collinearity 
K-S d = 0.19179, p < 0.15 ; Lilliefors p < 0.1 

 ARR nCs ALOGP2 nCIR 
ARR 1.00    
nCs -0.51 1.00   
ALOGP2 0.41 -0.15 1.00  
nCIR 0.56 0.10 0.47 1.00 

 

Res. Mean = 0 Applicability Domain 
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Table SI-3. Checking the main parametric assumptions related to the MLR models used in 
approach A2. 

 KiA3 MLR Model (Eq. 13) REA3 MLR Model (Eq. 14) 

Linearity 
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Normality 
of Residuals 

K-S d = 0.11479, p > 0.20 
Lilliefors p> 0.20 

-200 -150 -100 -50 0 50 100

X <= Category Boundary

0

2

4

6

8

10

12

14

16

N
o.

 o
f o

bs
.

K-S d = 0.13735, p > 0.20 
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Res. Mean = 0 2.6E-12 0.000000 

Non Collinearity See Correlation Matrix See Correlation Matrix 
 

 



 
 D/Dr03 GATS3m BELe3 Mor13u Mor09v Mor23v R7u+ 

D/Dr03 1.000 
  

GATS3m 0.072 1.000 
  

BELe3 -0.201 -0.156 1.000 
  

Mor13u 0.437 0.001 0.224 1.000 
  

Mor09v 0.008 0.083 -0.587 0.189 1.000 
 

Mor23v 0.321 0.030 -0.696 0.039 0.621 1.000 

R7u+ 0.113 0.101 -0.494 0.158 0.614 0.554 1.000 

Figure SI-1. Correlation Matrix for KiA3 Model (eq. 13) 
 

Pareto Chart of t-Values for Coefficients; df=24
Variable: KiA3

Sigma-restricted parameterization

5.067275
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t-Value (for Coefficient;Absolute Value)
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Figure SI-2. Pareto chart of t-values for coefficients in KiA3 Model (eq. 13) 

 



 
 PW2 D/Dr06 ATS5v EEig10d VEA1 H8p ALOGP 

PW2 1.000 
  

D/Dr06 -0.540 1.000 
 

ATS5v -0.499 0.916 1.000 
 

EEig10d -0.403 0.874 0.948 1.000 
 

VEA1 0.161 0.418 0.612 0.586 1.000 
 

H8p -0.251 0.644 0.716 0.670 0.420 1.000 
 

ALOGP -0.234 0.760 0.848 0.830 0.523 0.750 1.000 

Figure SI-3. Correlation Matrix for REA3 Model (eq. 14) 
 

Pareto Chart of t-Values for Coefficients; df=24
REA3

Sigma-restricted parameterization
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Figure SI-4. Pareto chart of t-values for coefficients in REA3 Model (eq. 14) 

 

 

 



Another aspect to consider in PMs development is the establishment of their 

applicability domain. The applicability domain of the PMs determined by plotting the 

leverage values (h) vs. standardized residuals (Std. Res.) of the 32 training 

compounds is shown in Table SI-2. From this plot, the applicability domain is 

established inside a squared area within ±3 standard deviations and a leverage 

threshold h* of 0.468. 

According to the analysis, two compounds can be regarded as structural outliers. 

However, no significant improvement on the goodness of fit as well as the statistical 

parameters was observed after their removal. So, it can be inferred that these 

compounds neither affect the predictive ability of the models nor the reliability of the 

resultant inferences, but rather enrich it with their structural information. 

The applicability domain of the two PMs (KiA3 and REA3) determined by plotting the 

leverage values (h) vs. standardized residuals (Std. Res.) of the 32 training 

compounds is shown in Figure 2. From this plot, the applicability domain is 

established inside a squared area within ±3 standard deviations and a leverage 

threshold h* of 0.75. According to this analysis, no compounds were found to be 

influential for any of these PMs. 

 
Figure SI-5: Applicability domain (for training set compounds) of the MLR models employed 
on prediction approach A2. 
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