
University of Porto
Faculty of Engineering

Introducing End-User Reconfiguration
on

Clinical Knowledge Information Systems
MSc Dissertation

André Tiago Magalhães do Carmo

July 2011

Scientific Supervision by

Hugo Ferreira, PhD, Assistant Lecturer
Ademar Aguiar, PhD, Assistant Professor
Department of Informatics Engineering

http://www.up.pt
http://www.fe.up.pt
mailto:andre.carmo@fe.up.pt

University of Porto
Faculty of Engineering

Introducing End-User Reconfiguration
on

Clinical Knowledge Information Systems
André Tiago Magalhães do Carmo

July 2011

Approved in oral examination by the committee

Chair: Ana Paiva, PhD
External Examiner: Feliz Ribeiro Gouveia, PhD
Supervisor: Hugo Sereno Ferreira, PhD

Supervisor: Ademar Aguiar, PhD

http://www.up.pt
http://www.fe.up.pt

Contact Information:

André Tiago Magalhães do Carmo
Faculdade de Engenharia da Universidade do Porto
Departamento de Engenharia Informática

Rua Dr. Roberto Frias, s/n
4200-465 Porto
Portugal
Tel.: +351 22 508 1400
Fax.: +351 22 508 1440

Email: andre.carmo@fe.up.pt
URL: http://andrecarmo.net

André Tiago Magalhães do Carmo
“Introducing End-User Reconfiguration on Clinical Knowledge Information Systems”

Areas (based on Association for Computing Machinery’s Computing
Classification System). D.1.7 Visual Programming, D.2.2 Design Tools and Techniques
(User Interfaces), D.2.6 Programming Environments, D.2.11 Software Architectures,
D.2.12 Interoperability.
Keywords. adaptive user interfaces, adaptability, architectures, clinical knowledge,
incompleteness in software design, health systems, human-computer interaction, metamod-
elling, openehr, personalization, usability, zk.

This dissertation, “Introducing End-User Reconfiguration on Clinical Knowledge Information Systems”, was proposed and

funded by iTGrow - Software e Sistemas, ACE, which is owned by both Critical Software, SA and Banco BPI.

Acknowledgements

I am thankful to Hugo Ferreira for the excellent supervision of my work. A dissertation in
an industrial environment is, sometimes, very difficult to be supervised. Thank you for
your availability whenever I needed.

I am also thankful to Nuno Monteiro, my facilitator from Critical Software, who supervised
me in my practical work, and who complied, as well as Catarina Fonseca, the General
Manager of iTGrow, with the scientific and academic purpose of this dissertation. To my
co-workers in iTGrow and in Critical Software, thank you for helping me whenever I needed.

My father Samuel, my mother Paula and my sister Ana, gave me strength in all situations,
and it was very important. Thank you for all the hard work which allowed me to study
and to reach this MSc dissertation.

Finally, a special thanks to my girlfriend, Sara, who has been there for me all the time,
not only during this dissertation, but also during the my entire Integrated Master in
Informatics and Computing Engineering program. Thank you for all you have done for
me, and I hope I can do at least the same for you.

“Listen to me now
I need to let you know

You don’t have to go it alone”
U2 - Sometimes You Can’t Make It On Your Own

This page was intentionally left mostly blank.

Abstract

Change in software requirements is often a problem, as the environment is not static.
Methodologies are evolving to support change, but engineers should also design to em-
brace change: in other words, besides the ability to respond to change given by these
methodologies, systems should also be designed to deal with change and incompleteness of
requirements.

In health area, incompleteness is, in fact, present. The domain is sufficiently complicated
to be modeled, as there are a great variety of specific needs. There are different health
professionals, pathologies and patients. Which content should be presented? How the
system should behave? And it is impossible to predict all the situations. Critical Software,
SA, which proposed this dissertation, had this problem in one of its health related projects.
In this dissertation the author studied how to solve this problem, adding some useful
functionalities to the current project. That project, and consequently the Template Builder,
uses two main technologies: openEHR, for clinical content, and ZK framework for the ui
development.

OpenEHR is a standard to represent and describe clinical concepts, particularly by
using two main artifacts: archetypes, which are computable descriptions of some clinical
knowledge, and templates, which are specialized definitions of clinical content related to
more specific situations, and they often correspond to Graphical User Interfaces. These
templates are composed by a group of archetypes, with some of its properties being
redefined.

The main goal of this dissertation is to address the incomplete by design property in
health care systems, particularly when using openEHR templates. It is, in fact, to create
a software component that allows the end-user to build templates, that correspond to
screens for specific purposes, based on openEHR archetypes, that can be performed by
end-users with clinical and openEHR knowledge.

Other main goals emerged from the implementation of this solution, like the necessity
to link ui elements with the model, or the need of having a set of rules to define some
system behavior.

ii abstract

Resumo

A mudança dos requisitos é um problema no desenvolvimento de software. Existe uma
dificuldade natural em elicitar os requisitos, o que muitas vezes acontece devido à difi-
culdade que os clientes têm em passar a mensagem. Devido a isso, as metodologias de
desenvolvimento estão a adaptar-se para responder à mudança. Contudo, é também preciso
que os engenheiros adaptem o desenhor do software para este ser lidar com a mudança.

Na área da saúde, o software é constantemente incompleto. O domínio que se quer
modelar é vasto, e imprevisível. Existem diferentes profissionais de saúde, patologias e
pacientes. Estas diferenças de necessidades causam dificuldades ao nível do desenho da
interface com o utilizador, e em relação à forma como o sistema deve reagir em determinadas
situações. Que conteúdo apresentar? Como o apresentar? Como deve o sistema reagir?

A Critical Software, SA, a empresa que propôs esta dissertação, teve este problema
num dos seus projectos relacionados com a área da saúde. Esta dissertação teve como
objective estudar este problema de ser incompleto, completando o actual projecto com
novas funcionalidades. O projecto da Critical Software, e consequentemente este Template
Builder, usa duas tecnologias importantes: o openEHR para descrever informação clínica,
e a framework ZK para o desenvolvimento da interface com o utilizador. O openEHR é um
standard para representar informação clínica, usando principalmente dois artefactos: os
arquétipos, que permitem descrever conceitos clínicos gerais, e os templates, que permitem
descrever conceitos clínicos mais específicos baseados noutros arquétipos. Geralmente estes
templates correspondem a interfaces com o utilizador.

O grande objectivo desta dissertação é resolver o problema do software na área da saúde
ser incompleto, especialmente quando se está a falar de software baseado no openEHR.
O que se quer é, de facto, um componente que permita que qualquer utilizador ligado à
área da saúde e/ou ao openEHR construa os seus próprios templates, que na realidade
correspondem a novas interfaces com o utilizador.

Outros objectivos surgiram durante a implementação da solução, tal como a necessidade
de arranjar uma forma de ligar os elementos da ui com o modelo de dados, ou a necessidade
da definição de um conjunto de regras para regular o comportamento do sistema em algumas
situações pontuais.

iv resumo

Contents

Abstract i

Resumo iii

1 Introduction 1
1.1 Incomplete by Design . 2
1.2 Design for Incompleteness . 3
1.3 Incompleteness in Health Care Systems . 4
1.4 Designing software . 4
1.5 Graphical User Interfaces in Health Systems 5
1.6 Research Challenges and Goals . 6
1.7 Research Stance . 8
1.8 How to read this Dissertation . 8

2 openEHR 11
2.1 Fundamentals . 11
2.2 Package Structure . 13
2.3 Archetypes . 14

2.3.1 Types of Archetypes . 15
2.3.2 Node Types . 18

2.4 Templates . 20
2.4.1 Template’s Structure . 20
2.4.2 How Templates specialize Archetypes 22

2.5 OpenEHR Java Implementation . 23
2.6 Conclusion . 24

3 ZK Framework 25
3.1 Fundamentals . 25
3.2 Architecture . 26
3.3 Example of usage . 26

vi CONTENTS

3.4 Conclusion . 28

4 Adaptive Systems 29
4.1 Overview . 29
4.2 Adaptive User Interfaces . 30
4.3 Adaptive Health Systems . 31
4.4 Examples of the Implementation of AUIs 32
4.5 Conclusion . 34

5 Research Problem and Methodology 37
5.1 Fundamental Challenges and Goals . 38

5.1.1 Content Presentation . 38
5.1.2 openEHR and ZK connection . 39
5.1.3 openEHR incompleteness . 39

5.2 Research Methodology . 39
5.3 Validation Methodology . 41
5.4 Conclusion . 42

6 Solution 43
6.1 Components . 44
6.2 Architecture Overview . 45
6.3 Architecture in Detail . 46

6.3.1 Model . 46
6.3.2 View and Controller . 48

6.4 Solution Achieved . 49
6.4.1 Overview . 50
6.4.2 Building a Template by Adding Archetypes 52
6.4.3 (Re)configuring a Template by Setting Rules 57
6.4.4 Other Operations . 62
6.4.5 Previewing the GUI that Corresponds to a Template 62

6.5 How are ZK and openEHR Linked? . 64
6.6 Reconfigure the system . 67
6.7 Conclusion . 72

7 Conclusions and Future Work 75
7.1 Main Results . 76
7.2 Problems occurred during research . 76
7.3 Lessons Learned . 77
7.4 Future Work . 78

CONTENTS vii

7.5 Epilogue . 79

Nomenclature 81

References 83

viii CONTENTS

List of Figures

1.1 Waterfall software development process . 2
1.2 Incremental-based software development process 3
1.3 Some clinical concepts, and two ways of combining them 6

2.1 The openEHR Specification Project . 12
2.2 OpenEHR deployed in a shared-care context 13
2.3 OpenEHR’s rm, am and sm package structure 14
2.4 Building Archetypes from Reference Model’s components 15
2.5 Entry types: this rm type define the semantics of the clinical knowledge . 16
2.6 Item_Structure rm type . 17
2.7 A representation of an example of a Item_Tree archetype 18
2.8 constrain_model with archetype nodes . 19
2.9 How templates are a group of archetypes, and how they apply to data . . . 21
2.10 Template structure represented as an uml class diagram 21
2.11 Relationships between different kinds of artifacts of openEHR 22

3.1 ZK client-server architecture . 26
3.2 Example of a gui developed using ZK . 27
3.3 The application triggers an event when the user clicks “OK” 27

4.1 How to choose Archetypes in Template Designer 33
4.2 Customized Health Record in Bento . 34
4.3 Optional fields that can be dragged into the main window in Bento 34

5.1 The Research Methodology followed . 40
5.2 Scrum process . 41

6.1 The mvc architecture . 45
6.2 mvc Architecture of Template Builder with components identified 46
6.3 Model layer detailed in a uml class diagram 47
6.4 View layer of Template Builder detailed 48

x LIST OF FIGURES

6.5 Controller of Template Builder detailed . 49
6.6 Main window of Template Builder with two work areas 50
6.7 How to search for archetypes . 51
6.8 Filtering archetypes for the selected archetype slot 51
6.9 The result of the filter for the selected archetype-slot 51
6.10 The template’s work area contains tabs for multiple template building . . . 52
6.11 Work area for the definition of template properties 53
6.12 The user tries to add a Section inside a Composition 54
6.13 The operation shown in the previous figure succeeds 54
6.14 The operation fails . 55
6.15 A virtual Archetype Slot is created after an add operation 56
6.16 The uml sequence diagram represents the add archetype operation 57
6.17 Some operations are made in a template 58
6.18 Some operations are made in a template 59
6.19 Some nodes allow the end-user to choose its data type within the template 59
6.20 Configurations that can be done in an archetype root node 60
6.21 How properties are get . 62
6.22 An archetype was deleted in Checkup Routine template 63
6.23 Preview (collapsed) . 63
6.24 Preview of the TemplateDissertation . 63
6.25 Each tab has a unique “ID”, which is the same as the correspondent template 64
6.26 Instance of the template . 64
6.27 Path of an element in zk . 65
6.28 Example of a template . 65
6.29 Example of a template after adding . 66
6.30 The problem of having two archetypes with the same name 67
6.31 How “pathSlotCounter” allows to distinguish from archetypes 67
6.32 Differences between the specification and the implementation of templates 68
6.33 Some differences between different XML rule’s files 69
6.34 Some differences between different XML rule’s files 70
6.35 Metamodel uml class diagram . 71
6.36 How the metamodel checks the template instance with rules instance . . . 73

List of Source Codes

2.1 Example of an OET Template, a Template with referenced archetypes.
It is possible to observe its structure, and the archetypes which make
that structure, according to what was explained in Archetype Types and
Template Structure sections. It is also possible to observe some Rules
created, to override and specialize the original archetype’s properties. . . . 23

3.1 Example of a simple zuml interface with some components. 27
3.2 Example of controller written in Java to trigger an event when clicking on

a button on source 3.1. 28
6.1 Example of the template properties in the oet file, according to what is

defined in the ui by the end-user. 53
6.2 openEHR-EHR-COMPOSITION.problem_list_csw.v1 archetype slot repre-

sentation in the archetype’s ADL file. 55
6.3 Template OET file after the last made operation. 56
6.4 Template OET file after the last made operation. 60
6.5 Template OET file after the last made operation. 61
6.6 Template OET file. In bold there is the path of the archetype added, which

is the same as the path of SECTION s archetype slot. 66
6.7 Portion of a xml file with rules related to template’s structure. 70
6.8 xml rules file general structure. It contains three main sections: (1) one

for the definition of terms; (2) other for the definition of terms that inherit
other terms previously defined; (3) and a section for the template structure
definition. 74

xii LIST OF SOURCE CODES

Chapter 1

Introduction

1.1 Incomplete by Design . 2
1.2 Design for Incompleteness . 3
1.3 Incompleteness in Health Care Systems 4
1.4 Designing software . 4
1.5 Graphical User Interfaces in Health Systems 5
1.6 Research Challenges and Goals 6
1.7 Research Stance . 8
1.8 How to read this Dissertation 8

Software engineers often have to solve puzzles in their day-by-day. One of the most
important factors for these puzzles is the continuous change in software requirements,
which is one major factor for project failures and overruns [EM03]. Software engineers
have to consider that the environment is not static, and that it can actually be so dynamic
that that there is no time to keep up with change. And besides change, there are even
more variables like, cost, schedule and risk [EM03, Fer10, Som04].

These variables have to be considered for the software development process, and that
changed the way software is built. It had to change in the past years or decades, and some
software development methodologies did not adapt themselves to the world of change.
Some have disappeared, others are less used nowadays. Some software development
processes, like agile methodologies, are intentionally designed to embrace change, instead
of following a strict plan until the end of the development [ea].

Software requirements, or stakeholders needs, change and evolve over time. In some
cases this is because of the nature of the business, which is what happens in health area,
where there are many specific needs that are very difficult to predict. There are several
subareas, each one with specific requirements. Different health professionals and different

2 introduction

pathologies have different and specific needs, and there are no two equal patients, which
increases the difficulty to plan and develop information systems to health area. Moreover,
all health processes need to be covered by the software [PS01]. And there is even the
possibility that the domain can change or evolve. What if we accept that software is
incomplete by nature? What if we accept that the software can’t cover all user needs,
either at a business logic and Graphical User Interface level?

1.1 Incomplete by Design
As said before, it is difficult for the software to cover the entire domain, in some situations.
But it is not only the changing environment that causes these difficulties: there is a natural
difficulty while gathering, understanding and formalizing requirements, in most cases
because the stakeholders don’t really know what they want, or because they can’t correctly
pass the message of what they really want. Sometimes, even different stakeholders have
conflicting requirements [Som04].

In classic development models, there are very defined phases, which must be completed
before the next one starts [Som04]. This is shown in Figure 1.1

Figure 1.1: Waterfall software development process, based on [Som04].

They are not very flexible, because there is a strict plan, defined at the beginning, which
must be strictly followed during the development (even though there is some feedback
during the process). Because of this lack of flexibility, a dynamic environment is difficult
to be modeled once the requirements elicitation phase is over. They can be effective for
stable environments and for stable stakeholders preferences [GJT07].

design for incompleteness 3

Nowadays, some software development methodologies have been developed to overcome
this difficulty, and to embrace change. These methodologies often use incremental and
iterative approach because it is an approach that makes it easier to evaluate what has
been done, and to change if it is necessary.

Figure 1.2: Incremental-based software development process, based on [Som04].

Agile methodologies use an incremental delivery approach, as explained in Figure 1.2.
They are a good example on how meet customer satisfaction as they respond to change
instead of strictly following a plan, even though there is much discussion about this way of
developing software. One way to do this is to integrate the customer into the development
team so that it is easier and faster to respond to changing requirements [ea]. Actually
these methodologies accept that the domain can evolve, and that this is part a common
software development.

However, besides this flexibility, agile methodologies may not be suitable for all types
of systems [PA02]. Some people think that agile approaches should not be used in critical
or safety softwares. Because documentation is not important to agile methodologies [ea],
it could not be suitable for projects that require well defined documentation.

The majority of projects have a changing environment, and that must be accepted.
The software needs to be adapted to the evolved domain, and it is called incomplete by
design software.

1.2 Design for Incompleteness
Agile methodologies accept incompleteness, having the ability to adjust both the team
and the development process. However, they still seam to have difficulties regarding to
software artifacts and the way they are designed [Fer10]. Agile methods are based on
iterative and incremental approach, in which the process is run several times, integrating

4 introduction

new features or refactoring in each iteration [ea]. But this is done almost as if the iteration
would be the last one, which generally is not true.

If the domain is changing or evolving, and it is impossible to predict all the changes,
how can we deal with that? If the software is accepted as incomplete by design, it should
be designed for incompleteness. It is not only being able to respond to change, but also
to design to embrace change [GJT07]. Designing and developing should be take together,
and an agile methodology should also expedite software design. However, this designing
for incompleteness is not exclusive for agile methodologies: other methods should also
think about building adaptable software, which can be adapted to new situations.

1.3 Incompleteness in Health Care Systems
Specifically in health area, the domain is far more complicated to be met by the software,
because of all those specific needs. It is impossible to predict them. Each health professional
have specific needs, as there are experts in different health subareas. And even professionals
from the same subarea can have different needs, as they have their own methodology to
work and to treat their patients. Moreover, each patient can require specific requirements,
as each pathology is different and specific from patient to patient. Considering all these
different areas, health professionals, and even different patients, it is impossible to predict
all these needs, even though the requirements are well defined. And this is a major
problem while designing guis. Which information needs to be displayed? How it should
be displayed?

If we don’t know all the domain, or if we can’t predict these specific needs, the system
must be designed for incompleteness, as explained in § 1.2 (p. 3). And designing for
incompleteness, in health area, means designing the system to deal with this unknown
domain. This can include defining rules outside the system’s implementation, or even
designing the gui to be changed based on some specific needs.

1.4 Designing software
Software design is the act of solving and planning a solution for a software problem
(adapted from Webster’s dictionary [web]). It can also be seen as a deeper thing, like
planning software coding, anticipate bottlenecks, anticipate change and evolution, and so
on [iSeS]. But what is a good software design? How can we evaluate that?

Some authors propose some software design principles and guidelines, like modularity
and abstraction [RGI75], strong cohesion and loose coupling [iSeS], encapsulation, or
even the usage of design and architectural patterns [iSeS, BMR+96]. There are even

graphical user interfaces in health systems 5

some properties that allow to evaluate the quality of an architecture, like reusability,
maintainability, runtime qualities like availability, performance, and others.

However, as said in § 1.2 (p. 3), it seems that there is little attention to designing
software to be incomplete, and to deal with that incompleteness. In health area, but not
exclusively, some business rules may be difficult to predict, and hardcode them may not be
a good idea. So, how it is possible to design for incompleteness related to business logic?
One way to do so is to use a meta-architectural pattern, in which business logic is stored
outside the code. It is stored in a file or a database [RY02]. Instead of putting all the
business logic outside the application, we may want to define several rules to determine
some aspects of behavior of the application. For example, we may want the application to
allow a minimum of information from a patient, but we do not want to hardcode this rule.
Here is where design for incompleteness enter, with the use of xml and metamodels to
define rules [HV01].

Of course this is may be difficult to do in the day-by-day, as there are several forces
pushing and pulling in the software development process. These forces include, as said,
time, cost, quality, scope, and even risks and customer satisfaction[EM03, Fer10, Som04].
Another problem may be the team’s experience and ability to design such an architecture
or such a component to be prepared for incompleteness.

1.5 Graphical User Interfaces in Health Systems
The known domain, or the known needs, leads to incomplete software, as explained in
§ 1.1 (p. 2) and § 1.3 (p. 4). This incompleteness may be a problem for different layers of
the software: we can have incompleteness in the main architecture, but we can also have a
user interface incompleteness. And this dissertation is more focussed on user interfaces
incompleteness, and on how it is possible to deal with that: how we can design the system
for incompleteness, in terms of guis? Let’s see an example on how it is extremely difficult
to predict specific needs.

Critical Software, SA, has a problem, related to its existing related project, which can
be explained in Figure 1.3 (p. 6). As said before, in health area there are several different
areas, health professionals, and even patients, and they require different needs. Health
professionals and patients are, in fact, different stakeholders of the system, contributing to
requirements elicitation.

In the center of Figure 1.3 (p. 6) we can see seven clinical concepts, as openEHR
archetypes (see Chapter 2, p. 11). In the left side, they are grouped so that they are
suitable for a routine checkup, as a template. In the right side, they are group to fit for a
blood specialist.

6 introduction

Figure 1.3: Some clinical concepts, and two ways of combining them for different needs.

But there are not just these two ways of grouping these concepts. Actually, combining
one or more of these concepts, we get 127 possibilities. And if order matters, it is possible
to get 13699 permutations of one or more of these, with just only seven fields. Of course
not all of these 13699 possibilities may be used in real life, but we can see that it is
impossible to predict all the needs, and to make software to meet all the domain. The
domain is known, but it can be so big that it is impossible to cover it all. It is not possible
to design user interfaces for all these requirements, and it is not possible continuously with
the health professional to adapt the system.

1.6 Research Challenges and Goals
Given the motivation of this dissertation, related to incomplete by design and design
for incompleteness, particular related to health information systems, this section briefly
presents the main research goals. The dissertation aims to contribute to the knowledge of
a specific domain of software engineering, related to adaptable systems in health care, but

research challenges and goals 7

specifically with openEHR standard (see Chapter 2, p. 11). This incompleteness in health
care systems is related to both business logic and guis. The study was done by doing a
specific case study in an organizational context, with all the constraints and benefits that
it brings. The case study has the following properties:

• Critical Software SA is developing an information system for health care. This system
is based on openEHR standard to describe and represent clinical information [ope07c],
and zk for rich Graphical User Interfaces.

• They have identified that they had needed some research related to develop which
could allow to build openEHR templates (see Chapter 2, p. 11);

• The component developed should integrate with Critical’s system: it should use
some components and technologies (including openEHR and zk), and it should use
the same visual design.

These properties were studied, which raised some assumptions.

• Although health area is quite stable in terms of requirements, the system can be
widely used, having a high degree of variability - the need of usage of the same
software in different contexts [vGBS01];

• OpenEHR specification takes the enormous possibilities in health area in account.
This means that it is flexible enough for the creation of, for instance, new gui’s
(named templates), based on some more general artifacts (named archetypes);

• OpenEHR official Java implementation is yet to be completely implemented, even
though its specification is stable;

• zk framework version used is not the most recent. In this version some bugs have
not been resolved, and workarounds may be needed to overcome specific bugs that
were only resolved in future versions.

After the assumptions were studied, this dissertation’s fundamental goals were estab-
lished, and they are presented bellow.

• The main goal is to develop a Template Builder that allows to build
openEHR templates from archetypes, to cover health specific needs.
These templates must specify some archetype’s attributes.

• These templates must correspond to ui screen, so there is the necessity
of previewing the template.

8 introduction

• The Template Builder must use some ui patterns and design principles
so that every health professional can build his own templates/screens.

• In terms of openEHR and zk, there must be a way to link the ui elements
with the model.

• And finally, a minor goals is to develop a way to deal with business logic
instability, allowing the system’s behavior to be modified in some specific
situations.

1.7 Research Stance
Building software is not easy. In fact, it is complex. Classifying software development as
being an engineering is, sometimes, a difficult discussion. One argument for this discussion
is that in software engineering things evolve and change so fast [Kru04]. In fact, things
evolve, which forces us not be focused only on the practice or tools. It is necessary to go
beyond that. And this happens because the technology evolves so fast, but also because it
may not be sufficiently mature.

However, Software Engineering inherits some aspects from other areas, and the the value
of generated knowledge is directly dependent on the methods by which it was obtained [Fer10].
In fact, it is necessary to organize thoughts in theories, in order to obtain knowledge [Shu].
And that is a bit of what is science: thoughts organized into theories, providing an
explanation of relationships between entities or things.

This dissertation studies a specific case, for which the author studies and applies
knowledge. The methods chosen were those that seemed more appropriate to the situation
and according to some limitations found during this research, and according to the fact
that this dissertation was done in an organizational context. Those limitations and this
enterprise context aligned this dissertation to a more practical and pragmatic way. In
other words, the validation of what was done was pragmatic, based on industrial software
validation and satisfaction, instead of other research evaluation techniques.

However, this does not mean that the scope ended where practice ended. The author
went beyond practical assets, studying the concepts and the best ways to apply them,
even though not all of them could be implemented.

1.8 How to read this Dissertation
This dissertation represents an overview of what was studied and implemented by the
author. It is logically structured in a way that is easier to read, composed by three main

how to read this dissertation 9

parts, which are presented next.

Part 1: Motivation & Fundamental Background. The first part gives an
overview of the motivation, giving also a background of the fundamental problem behind
this dissertation. It is composed by Chapter 1 (p. 1), “Introduction" which gives an
overview about how change should be embraced, and how this is a key point to this
dissertation.

Part 2: State of the Art & Specific Problem. This part gives an overview of
the technologies used, allowing to go deeper inside the problem to a more concrete and
specific question:

• Chapter 2 (p. 11), “OpenEHR”, details openEHR, specially its main artifacts like
archetypes and templates, and how they are related. Understanding these concepts
is very important to understand the goals of this dissertation.

• Chapter 3 (p. 25), “ZK Framework”, explains this framework for rich graphical user
interfaces, and how it can be used.

• Chapter 4 (p. 29), “Adaptive Systems”, goes deeper inside the fundamental problem
that was presented. The concepts of Adaptive Systems and Adaptive User Interfaces
are presented, and it is explained how this types of systems can solve the incom-
pleteness problem, particularly in health information systems. Two examples are
also shown.

Part 3: Solution & Conclusions. The final part presents the research problem and
methodology, as well as the solution achieved and some conclusions about the work done:

• Chapter 5 (p. 37), “Research Problem and Methodology”, explains the main goals
of this project after all the background and problem were presented. It details the
methodology used to achieve those goals, as well as some difficulties experienced
during this research.

• Chapter 6 (p. 43), “Solution”, details the implementation of the solution. An overview
is first given about its architecture, and then the solution is detailed.

• Chapter 7 (p. 75), “Conclusions and Future Work”, represents a retrospective of
what was done, giving the conclusions of the work done, as well as future work that
can be done.

10 introduction

The document should be read in the order it is presented for better understanding.
However, those with knowledge about openEHR and/or ZK framework may skip those
chapters for a quick reading.

Some typographical conventions are used in order to improve the understanding of this
document. Acronyms appear in allcaps. Relevant concepts appear in italics. Sometimes,
to better point out some concepts, these are put in bold. References and citations are
typed inside [square brackets], using a highlighting color. They also act as hyperlinks
when viewing the document in a computer or a portable device. Source codes appear
inside blocks, with a number at the beginning of each line. uml diagrams follow the latest
standard [OMG11, Spa11] available at the time this dissertation was written, version 2.3.
The document’s typographical design was kindly provided by Hugo Sereno Ferreira, with
some adaptations.

Chapter 2

openEHR

2.1 Fundamentals . 11
2.2 Package Structure . 13
2.3 Archetypes . 14
2.4 Templates . 20
2.5 OpenEHR Java Implementation 23
2.6 Conclusion . 24

Having identified the fundamental problem of incomplete by design and design for incom-
pleteness, and identified the problem of a large number of possibilities to show clinical
concepts, it is now suitable to delve deeper. But before showing how to allow to adapt or
to build new guis, which is the concrete solution, there are some context that must be
explained. Like said in § 1.6 (p. 6), this dissertation, proposed by Critical Software, SA,
represents a research to a concrete problem that they have in a current project related to
health software. OpenEHR is currently used to represent clinical knowledge and concepts.
Because it is part of the context of the problem, and also of the solution, it is important
to understand it.

2.1 Fundamentals
Nowadays there is a problem in which Informations and Communications Technology
cannot effectively represent health semantics(the meaning of the information), which is very
complex [opea]. openEHR is a knowledge-oriented that supports ontology, terminology and
semantics, to represent complex and to share complex concepts. Its goal is to effectively
support health area at different levels, including medical and administration purposes.
Besides that, it allows to create adaptable health computing systems and patient-centric

12 openehr

electronic health records (EHRs) [ope07c]. The information in openEHR is computable,
but also shareable. This means that the information can be:

1. Interpreted and understood in the same way, by different parts of the system, like it
is by a human;

2. Used and shared by different systems.

The first characteristic, semantics support, is a key point of this standard, which tries
to resolve the difficulty of representing the meaning of information. The second means
that the system can be distributed, but at the same time that it supports patient-centric
ehr.

Figure 2.1 represent the openEHR Health Computing Platform, and the relationships
with the specifications.

Figure 2.1: The openEHR Specification Project, presented on [ope07b].

On the right side of Figure 2.1 we can see some deliverables, and to which parts of the
computing platform they are mapped. Reference Model (rm), Archetype Model (am) and
Service Model (sm) are described lately, in § 2.2 (p. 13).

OpenEHR has a generic architecture, meaning that it satisfies more than clinical ehr.
Its rm is for concepts related with service and administrative events relating to a subject of
care [ope07b]. Archetypes and Templates is what specifies what kind of subjects are defined.
This means that openEHR can met different requirements, determined by archetypes and
deployment. Based on [ope07b], they requirements of openEHR are:

package structure 13

1. Suitable for different care views;

2. Support for different clinical data structs, as lists, tables, and other;

3. Support for all aspects of pathology data;

4. Support for natural language

5. Support for privacy;

6. Support for sharing of ehr via interoperability of systems - patient-centric ehr

OpenEHR supports patient-centric ehr, for a shared patient knowledge between
systems. Figure 2.2 shows an example of a context on which openEHR can be deployed.

Figure 2.2: OpenEHR deployed in a shared-care context, presented on [ope07b].

It represents the deployment in a shared health community. The information can be
shared between different types of hospitals, as well as with specialists.

2.2 Package Structure
OpenEHR formal specifications’ package structure have three major packages: rm, am
and sm. Figure 2.3 shows rm, am and sm packages, and the relationships between them.

rm’s core provides knowledge access, identification, data types and data structures,
that can be re-used in other packages. This re-use provides archetyping support. The
Support Model describes basic concepts used by all other packages, like identification
and terminology. The semantics described here provides other packages the usage of

14 openehr

Figure 2.3: OpenEHR’s rm, am and sm package structure, presented on [ope07b].

identifiers and the access to knowledge like terminology. Data Types Model defines data
types that can be used by other models, providing specific types to cover all kinds of
health information. Data types include text, quantities, date and time, and basic types
like variables. Data Structures Model describes generic data structures to be used in
archetypes, for content structure organization. This includes single items, lists, tables, and
tree structures. In the pattern layer of rm there is access control and privacy settings to
information, as well as some concepts that are common to other-level packages. Domain
layer defines the domain and the semantics of some openEHR concepts [ope07b].

am provides models to describe the semantics of archetypes and templates, and it
includes adl, the Archetype Definition Language [ope07b]. Archetypes are descriptions
of valid Entries, Sections and Compositions. These are expressed in a formal manner
which enables them to be computable. shared between systems. An archetype represents
the description of all the information a clinician might want to report about something.
Templates are compositions of archetypes to meet some specific purposes, and they inherit
the way archetypes describe information [opea].

sm is a more technical and computer viewpoint of openEHR [opea], as it defines services
for ehr computing environment [ope07b].

2.3 Archetypes
Archetypes, as well as templates § 2.4 (p. 20), are domain-level definitions, and they
specify which requirements the openEHR implementation satisfies. They are computable
expressions of a domain content model, typically health-related concepts. These archetypes
are based on the rm, and they are expressed using formalisms [ope07a, ope07b]. We can

archetypes 15

think that an archetype is like a LEGO® object, as different objects can be built using the
same bricks. They use rm’s components, and like LEGO® bricks, different archetypes can
be built with the same components of the rm [Bea07]. Figure 2.4 shows a representation
of this.

Figure 2.4: Building Archetypes from Reference Model’s components. Presented on [Bea07].

Concepts defined by archetypes and templates include clinical knowledge and concepts
like “Blood Pressure”, “HbA1c Result” [MS07]. However, its representation is not ad hoc.
They are from different types, with different purposes, and they have a concrete structure
and concrete content.

2.3.1 Types of Archetypes

Archetype’s represent clinical information of various types, with different purposes. For
example, there are archetypes related to clinical domain definition, like the definition for
procedures, which may be of type Instruction. Other clinical domain definition could be
related to observational processes, being of Observation rm type [ope08c]. Also, there are
archetypes concerned with information structuring. Next in this dissertation several rm
types of archetypes are listed and explained.

Domain Level

Domain level archetypes are contained in the ehr package, inside rm package of openEHR.
They are top level containers for clinical information, defining its context semantics, giving
meaning to data [ope07b]. These domain level archetypes could be of the following types:

• Composition. This type of archetypes represent the root point of clinical content.
It is used as a primary container for data aggregation [ope08c]. Inside a composition,
data is put inside content. Other key information can be found inside context, which
gives a context of the information recorded inside, and as well in composer, which
gives a even more context by giving the information of the person who is responsible

16 openehr

for the content inside the Composition. Content inside Composition archetypes are
Sections, either directly introduced inside the composition, or as another archetype
(see template section § 2.4 (p. 20)). It can also have Entrys, even without Sections.

• Section. This act as a navigation package, defining an hierarchical navigation
structure. They provide a logical structure to arrange Entries. Although they are
not mandatory in an archetype or a template structure, they can be used to provide
a domain hierarchical arrangement of clinical information [ope08c].

• Entry. This kind of archetypes represent a clinical statement [ope08c]. In order
words, they define clinical information, defining semantics of the information content,
based on their type [ope07b].

Figure 2.5: Entry types. This rm type define the semantics of the clinical knowledge. Based
on [ope08c].

As it is possible to see in Figure 2.5, Entry archetype’s rm type define clearly
the semantics of the information the archetype represents. Admin_Entry is the
only one that is not health care-related. As the name shows, it is used to record
administrative information, for instance by non-clinical staff [ope08c]. The other sub
types are related to health-care. Observation is related to observational processes,
including test results, while Evaluation is related to pathology diagnostics, includ-
ing the diagnostics itself, the context for the diagnostics, or general recommendations
for overcome the problem. Moreover, Action and Instruction archetypes specify

archetypes 17

the general actions and procedures to be taken to overcome the patient problem.
These procedures can be directed to health professionals, and may or may not be
passed to the patient [ope08c].

Item Structure

These types of archetypes represent ways to structure clinical information, such as tables,
lists or tree representations [ope08b].

Figure 2.6: Item_Structure rm type. Based on [ope08c].

From the rm types shown in Figure 2.6, only Item_Tree archetypes exists. These
archetypes are used to represent information which is best represented as a tree, like
“biochemistry results” [ope08b]. The other types, Item_Single, Item_List and
Item_Table, are represented as elements from the Representation package, as Clusters
and Elements (see § 13).

Representation

Representation archetypes are simple hierarchical representation of any clinical
data [ope08b]. They are the most basic and meaningless data structure to represent
information in openEHR. Representation archetypes can be of two types [ope08b]:

• Cluster. These archetypes are groups of Element. In order words, they contain
a list of ordered information.

• Element. These are the leaf of all archetype structure. They contain the clinical
information itself inside it, by the form of data types, as explained in § 2.2 (p. 13).

Other types

There are other rm types that can be mapped to archetypes. These archetypes are:

18 openehr

• History. This rm type represent the concept of time, giving a timeline for clinical
information [ope08b].

• Demographics. This rm type can be mapped or not to archetypes. They represent
personal information related to an ehr [ope07b].

It is important to understand that these are Reference Model types, which can be,
or not, mapped into archetypes. Moreover, an archetype can contain other archetype’s
type without the concept of being another archetype. For instance, a Instruction
archetype can contain Item_Structure rm type inside it, without having actually
another archetype inside. When there is actually an archetype inside another, we may be
talking about templates, as it is shown lately.

2.3.2 Node Types

An archetype can contain other archetype’s type data, which means that it contains
additional clinical information inside. Figure 2.7 represents an example of an Item_Tree
archetype.

Figure 2.7: A representation of an example of a Item_Tree archetype [ope08c] with other rm
types included inside.

Each rm type present in the archetype shown in Figure 2.7 is internally represented as
a node. Each node has a unique path, and other attributes depending on the node type.
Figure 2.8 (p. 19) represents the archetype nodes available.

archetypes 19

Figure 2.8: Constrain_model with archetype nodes [ope08a].

According to what is seen on Figure 2.8, and based on the Archetype Object
Model [ope08a], lets take a look at the the most used nodes while parsing archetypes for
building templates.

• CComplexObject. When navigation through archetype’s structure, this kind of
node appear many times. They represent a node which contains other nodes inside
(they can actually contain other CObject objects inside). They can refer to rm types
shown in § 2.3.1 (p. 15).

• CAttribute. This type of node is an abstraction of other attribute types, either
single or multiple attributes. They define constraints on the objects, and they appear
right inside attributes are of CObject type. They can constraint data itself, or
CComplexObject for aggregating more nodes inside, or even Archetype Slots.

• Archetype Slot. Archetypes have the possibility of incorporating more clinical
information, either by having it inside the archetype, or by adding other archetypes.
This is particular useful when building templates (see § 2.4 (p. 20)). These new
archetypes are put in these archetype slots, which may allow only certain rm types

20 openehr

of archetypes, or either include or exclude specific archetypes. They contain also
cardinality: in other words, the number of maximum and minimum archetypes that
can be inserted in an archetype slot.

As said, these types of nodes contain a path relative to archetype root, which is unique.
They also contain an internal code (atcode), used for internal references and for terminology
(for example, a textual representation of a node). Some nodes also contain cardinality, as
said [ope08a].

2.4 Templates
Templates are specialized and usable definitions, being composed by archetypes, and
are built and used for specific purposes [ope07a, ope07b]. While building templates,
archetypes are specialized by overriding some of its properties, hiding nodes, or by adding
new archetypes inside them. It is a process of using a more general description of clinical
knowledge (archetypes - see § 2.3 (p. 14)), and specializing it towards some specific
necessities. These templates often correspond to graphical user interfaces, reports or
messages, for health care usage.

This dissertation aims to study the best way to allow health professional to build
these templates, by choosing archetypes that composes them, and by making the necessary
specializations. So, we can think of a template as a composition of LEGO’s® objects
(see Figure 2.4 (p. 15)). Figure 1.3 (p. 6) shows how archetypes can be grouped forming
templates for specific purposes. For instance, it is possible to have a template for a “Routine
Checkup”, being composed by archetypes like “Blood Pressure” or “Haemoglobin A1c
Result”.

2.4.1 Template’s Structure

An archetype contains data inside it, but is can also contains additional data by having
archetypes inside it. So, archetypes are composed by structures, some of them being
root points when connecting to some other archetypes [ope07b]. Figure 2.9 shows how a
archetypes and templates are related.

These archetypes are linked through the archetype root point, and the other archetype’s
archetype slot (§ 2.3.2 (p. 18)). However, they follow a specified structure. For instance,
it is not possible to have a template in which its root point is an Element archetype.
Adding to this, it is not also possible to add a Composition inside an Entry archetype.
The correct template structure is represented in Figure 2.10 (p. 21) as an uml class
diagram.

templates 21

Figure 2.9: How templates are a group of archetypes, and how they apply to data. Presented
on [ope07b].

Figure 2.10: Template structure represented as an uml class diagram. It is possible to see a
structure, and the cardinality of each relation.

It is possible to see in Figure 2.10 that a Template starts with a Definition, which is a
Composition archetype. Inside this Definition, it is possible to have either a Content
with a list of Item inside, or a list of Item without having a Content. It is also possible to
have a Content with other Content inside. Moreover, inside each Item, it is possible to have
Items. These new terms correspond to the types of archetypes explained in § 2.3.1 (p. 15),

• Definition. Corresponds to Composition archetypes.

• Content. Corresponds to Section archetypes.

• Item. This point of an archetype corresponds to Entry archetypes.

22 openehr

• Items. Finally, Items corresponds to data structure archetypes, like Cluster,
Element, Item_Tree or History.

A more complete relationship between archetypes and templates, and other different
artifacts of openEHR is shown in Figure 2.11. It is possible to see that a template are
more specific that archetypes, and that it can take the form of guis.

Figure 2.11: Relationships and dependency between different kinds of artifacts - information
architecture. Presented on [ope07b]

2.4.2 How Templates specialize Archetypes

Templates are more specific than archetypes: they fit more specific purposes, as it is possible
to see in Figure 2.11. Templates are a group of archetypes, with some properties being
overwritten. Each archetype is composed by nodes, as it was explained in § 2.3.2 (p. 18),
which has its own properties. Moreover, archetype node objects even have attributes,
defining its cardinality, its path, its allowed values, and so on.

While adding an archetype into a template, we are actually adding a reference to it. It
makes it possible to redefine some of these attributes. For instance, it is possible to define
a new minimum of occurrences, changing what was defined in the original archetype. This
is done by two ways: (1) Defining attributes and properties in archetype’s root node (see
§ 2.4.1 (p. 20)); (2) By creating rules to override other node’s attributes. Source 2.1 shown
an example of a template file definition.

openehr java implementation 23

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <template xmlns="openEHR/v1/Template" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance" xsi:type="Template">
3 <id>...</id>
4 <template_id>...</template_id>
5 <name>...</name>
6 <original_language>en</original_language>
7 <description>
8 ...
9 </description>
10 <definition xsi:type="COMPOSITION" archetype_id="openEHR-EHR-

COMPOSITION.encounter.v1">
11 <Content xsi:type="SECTION" path="/content" archetype_id="openEHR-

EHR-SECTION.adhoc_csw.v1">
12 <Item xsi:type="OBSERVATION" path="/items" archetype_id="

openEHR-EHR-OBSERVATION.sample_blood_pressure.v1">
13 <Rule min="1" path="/data[at0001]/events[at0006]/data[

at0003]/items[at1007]"/>
14 <Rule hide_on_form="true" path="/data[at0001]/events[at0031

]/math_function"/>
15 <Items xsi:type="CLUSTER" path="/data[at0001]/events[at0006

]/state[at0007]/items[at1030]" archetype_id="openEHR-EHR
-CLUSTER.symptom-pain.v1">

16 <Rule max="0" min="0" path="/items[at0034]/items[at0058
]/items[at0090]/items[at0143]"/>

17 <Items xsi:type="CLUSTER" hide_on_form="true" path="/
items[at0034]/items[at0058]/items[at0090]/items[
at0146]" archetype_id="openEHR-DEMOGRAPHIC-CLUSTER.
person_birth_data_iso.v1"/>

18 </Items>
19 </Item>
20 <Item xsi:type="EVALUATION" hide_on_form="true" path="/items"

archetype_id="openEHR-EHR-EVALUATION.problem-csw.v1"/>
21 </Content>
22 </definition>
23 </template>

Source 2.1: Example of an OET Template, a Template with referenced archetypes. It is possible
to observe its structure, and the archetypes which make that structure, according
to what was explained in Archetype Types and Template Structure sections. It is
also possible to observe some Rules created, to override and specialize the original
archetype’s properties.

2.5 OpenEHR Java Implementation
The openEHR Java implementation is particularly important, as the Template Builder
uses it. It is open-source, and allows to implement either client-server or web based
systems [CK07]. OpenEHR concepts are mapped into Java types, including data types
of the standard. This implementation is aligned with the openEHR specification [opeb].
However, not all concepts are implemented. The Reference Model is implemented, as well

24 openehr

as archetypes and archetype utils [CK07], but it lacks of the template implementation.
This dissertation does not aim to implement templates: it uses an existing implemen-

tation to build templates, using for that a gui developed using ZK. However, template
operations were implemented, particularly when related to the linkage between the gui
and the model. The template’s implementation in Java was done by Critical Software, SA.
See Chapter 6 (p. 43) for further details.

2.6 Conclusion
OpenEHR is a knowledge-oriented framework that allows to represent and share complex
concepts. Although it meets generic requirements, its goal is to represent clinical knowledge,
supporting health semantics, which is very difficult to represent. This information, in
openEHR, is computable and shareable, which means that it is understood by the system,
as it is understood by humans, and that it is shared between different systems. OpenEHR
also enables patient-centric ehr, making it possible to share the information between
several different systems.

The Reference Model (rm) describes basic concepts used by all other packages. In fact,
rm’s components are the basics of archetypes, that describe the domain the be modeled. In
this particular context, they can describe clinical concepts in a computable way. Templates
are compositions of archetypes, and in this context they are mostly important and used in
gui, for specific purposes.

This dissertation studied the best way to build those templates from the composition
of different archetypes, allowing the health professional or any end-user with openEHR
knowledge to build them by choosing archetypes and overriding their attributes. The way
this is done is explained in Chapter 6 (p. 43). But first, other key background is given,
starting by zk framework, which is used for the gui.

Chapter 3

ZK Framework

3.1 Fundamentals . 25
3.2 Architecture . 26
3.3 Example of usage . 26
3.4 Conclusion . 28

Having explained how clinical concepts are going to be represented, this chapter presents
the technology on which they are represented and manipulated. ZK is an ajax Web
application framework for rich gui for Web applications. It was suggested by Critical
Software, SA, and it is part of the problem of how to enable design for incompleteness on
health systems guis.

3.1 Fundamentals
ZK is an ajax event-driven, component-based framework for Web, enabling the creation
of rich Web applications. Typically ajax means working with JavaScript and xml
technologies, but not with zk. This frameworks makes it easier to work with ajax, as
the JavaScript code is automatically generated by it. The programmer only has to think
about building the gui business logic [Mah10, CC07]. This creates an abstraction so that
the developer does not have to deal with ajax’s complexity, allowing him to focus on
business logic and gui development [Ins08].

zk uses a xml-based approach to define the user interface [Mah10]. It has a specific
markup language named zuml, based on zul and xhtml. Also, it is possible to design the
gui using Java [ZK], as well as implementing business logic. The fact that it uses zuml
allows for enriched web applications based on xul and xtml components, making the

26 zk framework

design as simples as designing html pages. The event-driven engine makes it intuitive to
develop, allowing to manipulate xuml components triggered by the user activities [CC07].

3.2 Architecture
ZK has a client-server architecture. In the client side, the user fires events, active like a
view [Mah10]. In the server side, it updates the UI and accesses to backend resources, like
a database [ZK, CC07, Mah10].

ZK has three major components: ZK Loader, ZK Asynchronous Update Engine, and
ZK Client Engine. Figure 3.1 shows the architecture of ZK.

Figure 3.1: ZK client-server architecture, presented in [ZK].

ZK Client Engine is the client side of ZK [Mah10], and it is composed by JavaScript
code [CC07]. It sends requests to the server, and interpret the correspondent responses
to update the dom. When there are JavaScript events, it will send ajax requests to the
server side, and will wait for its response [CC07]. ZK Loader is part of the server, and it
interprets url requests, generating complete html pages. These html pages are sent to
the client side, to be interpreted by ZK Client Engine. The other component of the server
side of ZK is the Asynchronous Update Engine. It is responsible for receiving and respond
to ajax requests, so that the browser can be updated [CC07, Mah10].

3.3 Example of usage
ZK makes it easier to design gui because of the usage of a simple markup language. It is
possible to use either xuml markup language, or Java, or even to use them together, for
the business logic development and even triggering.

example of usage 27

The zuml markup language, with xml and xhtml components, is declared in a .zul
file. This file is interpreted by the server, and the server can respond to ajax requests if
they are specified.

To illustrate how simple is to design the application gui, a simple example was
developed. This example contains a window with two labels and a button. Figure
3.2 represents the gui for this application.

Figure 3.2: Example of a gui developed using ZK.

Source code 3.1 represents Figure 3.2

1 <?page title="Greetings App"?>
2 <window title="Greetings App" border="normal" width="200px">
3 <label value="Hello! What is your name?" />
4 <textbox id="name" />
5 <button label=‘‘OK’’ id="buttonok" apply="greetings.Controller" />
6 <label id="lbl" value="" />
7 </window>

Source 3.1: Example of a simple zuml interface with some components.

Designing the gui is as simple as defining some components. All these components
have a window as its parents. The objective of this simple application, shown in Figure
3.2, was to enter a name and click “OK”. Then, the application greets the user. This is
shown by Figure 3.3.

Figure 3.3: The application triggers an event when the user clicks “OK”.

As ZK support a Model View Controller architecture, it is possible to separate the View
from the Controller. For instance, whenever the user clicks “OK”, an event is triggered,

28 zk framework

and handled by the Controller: the second label with id="lbl" is updated with a
greeting. This is done using ajax, as the client send a request, and the server respond
with instructions to for the client to update the gui. In line 5 of source 3.1 there is a
apply attribute, which enables an event to be triggered by what it is defined in that class.
The definition of the behavior can be put inside the .zul file. However, in this example
it is inside a Java class, as a Controller class, as shown in source code 3.2.

1 package greetings;
2

3 import org.zkoss.zk.ui.util.GenericForwardComposer;
4 import org.zkoss.zul.Label;
5 import org.zkoss.zul.Textbox;
6

7 public class Controller extends GenericForwardComposer {
8

9 Textbox name;
10 Label lbl;
11

12 public void onClick$buttonok(){
13 lbl.setValue("Hello " + name.getValue());
14 }
15 }

Source 3.2: Example of controller written in Java to trigger an event when clicking on a button
on source 3.1.

onclick$buttnok method defines the behavior for onClick action on button “OK”,
setting the value of the lbl. As it is possible to see, the developer do not have to deal
with JavaScript part of ajax. He only has to deal with gui design, event triggering and
business logic.

3.4 Conclusion
zk is an ajax framework based on Java, for Web applications. It abstracts the developer
from the JavaScript’s ajax side, allowing him to focus on gui and business logic. zk is a
very good candidate for aui, since it allows design and implement an editor to create guis
for health professionals’ specific needs. And because it allows rich web applications, it was
a good technology to build an intuitive and rich Template Builder to manipulate clinical
concepts, in order to create specific guis.

Chapter 4

Adaptive Systems

4.1 Overview . 29
4.2 Adaptive User Interfaces . 30
4.3 Adaptive Health Systems . 31
4.4 Examples of the Implementation of AUIs 32
4.5 Conclusion . 34

As said before, requirements can change or evolve over time, or they can be difficult to
predict, especially in health systems. Additionally, there is a need of complete traceability
of all health care activities [PS01]. It is clear that it is not possible to have a developer
continuously working on the software to cover all health needs as they are identified.
Designing to deal with this incompleteness is a solution to overcome this problem. But
how is possible to do that? What concepts need to be applied?

This dissertation’s main goal is to study and build a tool to allow to deal with this
incompleteness. As said in Chapter 2 (p. 11), openEHR’s templates can take the form of
gui’s, fitting specific purposes. These templates are built typically by editing a xml-like
file, or they can be built using specific tools. These tools exist, but are they a real solution
for the problem? This research aims not only to develop a software component, but also
to study how to make it a good solution to build templates, which may correspond to gui.

4.1 Overview
Adaptable Systems, often mentioned as Adaptive Systems, are systems which can be
adapted or reconfigured to different purposes [Fer10]. It is different from being the
developer to change or deploy the system using a different configuration or with a different
implementation, to respond of what is called Software variability: the need of usage of

30 adaptive systems

the same software in different contexts [vGBS01]. Instead, adaptability means allowing
a non-technological user, with limited skills, to adapt the system to different situations,
without breaking the system.

Adaptive Object-Model (aom) it a way of allowing this, giving the user the possibility
to adapt the system in runtime, without recompiling the source [Fer10]. With aom,
business rules are described and stored externally to the program, using xml or databases,
and these are interpreted in runtime. This allows the user to change the system in
runtime, with immediate effect, in a controlled way to not compromise the system. aom
can be called an architectural pattern. It is based on metamodelling, as the system
is represented by metadata instead of classes [TUI05]. It can be also defined as based
on object-oriented design, and as having the property of being reflective [Fer10]. aom
architecture is composed by different design patterns. Design patterns are proven solutions
for recurrent patterns [BMR+96]. These solutions, studied and experienced by skilled
software engineers, promote good design practice, in this case for specific questions and
problems of the overall architecture.

Some authors also refer adaptivity, which is the ability for the system to modify its
behavior based on the environment [CLG+09]. These type of systems adapt themselves,
in a pro-active way [Fer10]. One example is the creation of user models, which represents
how a specific user usually interacts with the system, making it possible to adapt itself to
him. However, this adaptivity is outside the scope of this dissertation.

4.2 Adaptive User Interfaces
Human-computer interaction is having great attention, and more and more researching in
done in this area. This happens because of the increasing attention given to user interfaces,
and to the interaction with the end user. There are interactive products everywhere, from
cellphones to computers, or even remote controls, coffee machines, and so on [PSR07].

There is lot of researching on how to present contents to the user, and on the usability
of the products. How are they usable? Are they enjoyable to use? Or do they present badly
the contents? Besides that, it is important to think about, not only how the content is
present, but also which content is shown to the user. This issue has received less attention,
but it is important [Lan] because different users have different computer interactions,
and different needs. The variety of needs have to be considered while defining usability
criteria [Ben], to satisfy all users. And that is what this dissertation is about: cover all
users needs, allowing the end user to change the gui towards his own needs.

An Adaptive User Interface is an User Interface which can be adapted in runtime,
without compromising the system. They comply with changing rules, and provide more

adaptive health systems 31

flexility to deal with changes [Ram09]. auis have an advantage over static guis, as they
can reach a large number of possible interactions without having to be deployed using
different configurations or a different source code [Ben]. Some authors also include the
ability to create a user model to automatically present suggestions to the end user into its
definition [Lan, Ram09]. But the research presented in this dissertation is focussed mostly
on the possibility for the end-user to create its own guis, based on openEHR templates.

Due to more complex and sophisticated systems it is becoming more and more difficult
to achieve satisfaction for all end users. A goal of Adaptive User Interfaces is to present
the end user with an interface that is easy, effective and efficient to use, according to his
requirements and needs [GG]. Actually, auis are a serious solution to different usability
preferences [Ben]: with an interface that can have different kinds of interactions, it can be
adapted to the user, allowing him to be more productive, and efficient on what he is doing.
And to reach this, it is necessary to provide the end user a way to adapt the user interface
in terms of the way content is shown, but also which content is going to be presented.

4.3 Adaptive Health Systems
In health area, as said earlier in this dissertation, there is a large number of different
requirements. Accepting that health-related softwares are mostly incomplete by design,
because it is very difficult to predict and to design software to meet specific needs, we
can design it to deal with incompleteness. Adaptive User Interface and Adaptive Object
Models allow to deal with incompleteness, as the system can be changed according to the
user needs. And it is not only about allowing the end user to change how the content is
present, but also what is shown, and how the system should behave in some situations
according to health professionals and/or patient needs. So, the following problems exist:

• Different health professionals have different needs;

• Different patients have different needs

• Each End-user has its human-computer interaction preferences;

The first two are related to health area, as said earlier. These problems lead to a
large variety of needs and combinations of clinical concepts. And because it is impossible
to cover all requirements with a single or with pre-compiled user interfaces, allowing
the health professional to change it is a good way of overcome this problem. The third
problem is a common human-computer interaction problem: as in every thing, each user
is a different users. Not all users like the content to be displayed in a single way: different

32 adaptive systems

individuals might prefer different ways of seeing content, and they can prefer one way to
another depending on the context of use.

To overcome these problems, the system must be designed in a way to allow change.
In fact, in this particular case, openEHR (see Chapter 2, p. 11) allows this change with
its templates. Also, the user can give specific meanings to the information. But this has
to be completed with an aui and an aom approach that deals with software variability,
by allowing adaptability in a way that it can be possible to manipulate clinical concepts,
based on openEHR archetypes, to build new guis, represented by templates. Also, in
terms of business logic, an aom approach would be a good idea to deal with some non-gui
system properties that could be manipulated and changed without having to hard code.

4.4 Examples of the Implementation of AUIs
Some real examples of the implementation of Adaptive Systems and Adaptive User
Interfaces exist. In this section two commercial software solutions are presented to better
understand the concept of being adaptable.

Template Designer

Template Designer is a software developed by Ocean Informatics company, and it is an
editor to create openEHR templates, from the aggregation of archetypes. Actually, this
commercial software represents a solution to the main goal of this dissertation, which is to
develop a component to build templates. However, the fact that it is a commercial software,
which is impossible to integrate into Critical Software’s project, made it impossible to
consider it the solution. Moreover, as explained, this dissertation aims also to study the
concepts explained in this chapter, in order to apply them in the best way possible.

Figure 4.1 (p. 33) shows the gui of the application. It is possible to see three main
windows: the template view, and the repository of archetypes, on the right side, and the
template properties. To select some Archetypes from the repository, it is necessary to
expand elements of the tree view. Expanding these nodes of the tree, it is possible to
drag-and-drop some Archetypes to the main window, and put them inside the nodes as
shown in Figure 4.1 (p. 33), like it is claimed by Ocean Informatics [Inf08].

The chosen Archetype (in this case a Template composed by a single Archetype) can be
dragged into a green node. It is also possible to choose the possible Archetypes by right
clicking on a node of the Template tree representation.

examples of the implementation of auis 33

Figure 4.1: How to choose Archetypes in Template Designer.

Bento

Bento is a software developed by FileMaker, for Apple Mac OS X operating systems, with
the objective of being a personal database software [Fil]. It is an excellent example of an
aui, being very intuitive and fitting for different purposes. It uses the concept of Templates,
which is generically the same as openEHR Templates. There are a several of predefined
Templates, to manage people, events, photos, or even health records. The problem of
Bento is being so generic that it has a lack of focus on any particular subject [CNE].

Selecting the Health Record Template, it is possible to customize it, adding, creating
or deleting fields. Figure 4.2 (p. 34) shows a customized Health Record. It is possible to
customize the gui, while the way data is stored is completely managed by Bento. However,
it seams like it is impossible to customize it differently for different records in the same
Library. In order to customize its gui, Bento allows the user to drag-and-drop items from
a menu into the form. This field menu is shown on Figure 4.3 (p. 34).

The gui gives feedback, helping the user to place fields in the right place. Thus, this
feedback is very a important design principle, for better interaction with the user [PSR07].
If the user wants a custom field, Bento allows this to be created, which makes it possible
to customize the gui as the user wants.

34 adaptive systems

Figure 4.2: Customized Health Record in Bento.

Figure 4.3: Optional fields that can be dragged into the main window in Bento.

4.5 Conclusion
In software change is part of the development process, and software development method-
ologies are becoming aware of this problem. These methodologies have to design for
incompleteness, particularly in health systems. Users have different needs and ways of
interaction, related to guis, and it is very difficult to define a usability criteria that covers
all types of users. Adaptive systems are a good way of solving this problem, as they allow
adaptability to respond to allow the software to be used in different contexts. aom is a
good way of allowing this, with the business logic being stored externally to the program
code. It has a kind of an interpreter, which processes new business logic rules to adapt
the system. In gui, the concept of aom can also be used, implementing what is called
aui. This provides the end user a way to change the gui towards his needs. And this is
very important to health systems, where there are some problems that cause an explosion

conclusion 35

of different possibilities of interacting with the health professional, depending on his needs.
aui are, in fact, a serious solution to this problem, as they allow change to happen in an
efficient way.

Two existing solutions were presented to better understand this concept of being
adaptable. Template Designer is, in fact, very close to the solution that it is wanted, but
it has some problems which made this need to create another software component, which
was the starting point to this dissertation. The Template Builder, which is presented in
Chapter 6 (p. 43), implements some of these concepts, like metamodel and even aui at
some point, but not so deeply as studied in theory - neither Template Designer does it.
However, the author decided to study further than what was in fact implemented. It is
important to notice that the time variable did not allow to implement these concepts more
deeply.

Since the problem theoretical problem is presented, the next chapter talks the method-
ology followed to solve this problem.

36 adaptive systems

Chapter 5

Research Problem and Methodology

5.1 Fundamental Challenges and Goals 38
5.2 Research Methodology . 39
5.3 Validation Methodology . 41
5.4 Conclusion . 42

OpenEHR is gaining attention through developers and through health care professionals
[LMT]. However, its usage with technologies like zk has not been studied or documented.
Its Java implementation implements some stable specifications [CK07], but lacks of the
implementation of some key parts like templates. This obligates developers to make the
necessary adaptations and even some implementations from scratch.

Adaptive User Interfaces are gui’s that can be adapted in runtime. And this can be
applied to openEHR, using zk framework. This chapter’s goal is to give an overview of
the main research questions, as well as the methodology followed on this research. The
approach taken is presented with a certain level of abstraction.

The, Template Builder, which is the main goal of this dissertation, should integrate
with Critical’s project, which is being developed using openEHR, zk for gui, and Java for
business logic. It is, at the same time, an industrial component, and a theoretical research
about the best ways to present the information to the end user, and make him create and
reconfigure gui’s content. This need of creation and reconfiguration of screen for clinical
usage lead to the Adaptive User Interface concept, which uis can be dynamically changed
in runtime. In limit, this was the ideal way of allowing an health professional to change
the screen’s content towards his needs.

Besides this gui question, other goals emerged. OpenEHR’s lack of complete imple-
mentation obligates developers to implement what’s left in a not so standard way. In
fact, company’s implement towards what they want and need, which lead to different

38 research problem and methodology

implementation, as opposite to the specification. An easy way to handle this was to define
a set of rules to control the system behavior in some situations. A metamodel was needed
to provide runtime system status verification and validation according to the rules defined.

5.1 Fundamental Challenges and Goals
This dissertations starts from the idea that change is present all over the software devel-
opment process. It was seen that some systems are incomplete by design and should be
designed for incompleteness. Some key concepts were explained, and the idea of having a
component to build openEHR templates was explained.

As explained in early chapters of this dissertation, openEHR templates can take
the form of Graphical User Interfaces. They are representation of clinical concepts and
knowledge for specific purposes, by grouping different archetypes and redefining properties.
In fact, with these two concepts of openEHR it is possible to allow the end-user to
create a screen or change an existing one based on these openEHR artifacts. So, the
main goal of this dissertation is to build a component to allow end-users, even
health professionals without technical knowledge, to build screens based on
openEHR templates.

Having the main goal of this dissertation, let’s see other achievements raised by this
main goal. They are strongly related to each other, as all of them are raised by the
necessity of embrace change.

5.1.1 Content Presentation

As said before, aui allows the end-user to adapt the gui in runtime. In this specific
case, it is wanted to create and (re)configure templates, which may correspond to screens,
based on openEHR standard and ZK framework. The goal of creating and reconfiguring
templates leads to other sub-goals including:

• Choose the best gui patterns to allow the creation of templates, including the best
ways to display either archetypes and templates, and the ways to add archetypes
into templates;

• The usage of the aui concept to provide a way to see the (re)configured gui that is
being created, based on openEHR templates.

research methodology 39

5.1.2 openEHR and ZK connection

OpenEHR is highly supported by models [opeon], as ZK treats of the View part of the
system. This makes it necessary to find a way to link these two technologies: the model
must be mapped to the ui elements. It gains more importance as there are no known
implementation of these two technologies together.

5.1.3 openEHR incompleteness

The Java implementation does not completely implements the openEHR specification,
which makes the necessity for the developers to implement what is left. This is a potential
problem as developers and companies may make necessary adaptation based on their
specific needs, and that was what happened with Critical Software’s implementation: the
template’s implementation was a bit different from the specification of openEHR. This led
to the necessity of dealing with those differences. To overcome that, a metamodel was
developed to allow the system to behave as it is defined in some rules. So, related to this
incompleteness, the main goals are:

• Develop a way to adapt some system behavior according to what is defined somewere.
To do so, a metamodel approach was thought to be the best way.

• Develop a way to store rules so that the metamodel can validate the system state.

5.2 Research Methodology
This research followed a general approach, a methodology proposed by Quivy [Qui08],
adapted to a bottom-up approach. And even if it is presented as for Social Sciences, it
can be applied to much more areas, even to software engineering.

However, the research process was not so straight. There was not a fixed and stable
direction, as in software engineering requirements change or evolve [Som04, EM03, DL99].
And because of this, it is difficult to follow a strict top-down approach. Some problems
that made not practical are documented in § 7.2 (p. 76). Figure 5.1 (p. 40) represents a
methodology followed during this dissertation, based on the more general methodology
presented by [Qui08]. As it is possible to see, it seems like an agile software development
process, in which there is a constant solution redefinition.

The Rupture phase is to think beyond pre-assumptions. It is to study, starting from
an initial question, with an open mind. Pre-assumptions are good, as they guide the
researcher to investigate and validate his theories [dMA10]. However, an open mind is

40 research problem and methodology

Figure 5.1: The Research Methodology followed, adapted from [Qui08].

necessary, as unexamined pre assumptions can be problematic [Bar04] if they don’t allow
the researcher to view more than what was initially thought.

This dissertation started with a propose made by Critical Software, SA. They wanted
to study the best way to implement a Template Builder, to build openEHR templates.
This was the starting point to choose documentation, and to obtain research questions,
which was done also through conversations and through knowledge transfer, which tend to
be a efficient way of understanding specific requirements [MMRG04]. That was a continuos
process, which concluded with a Technical Report of what was studied.

The building and exploratory phase started with a revision of what was done, and

validation methodology 41

with some more documentation reading. Prototypes were done to better understand what
was wanted to be implemented. As said before, this research process is not so top-down
as it should be, at least in theory. When the exploratory phase started, it was seen that
it could be necessary to go back and rethink the problem. It is possible to think of this
as a bottom-up approach: as the implementation/design was in progress, new problems
raised, and old problems were left behind. Actually, the development phase followed an
agile approach, with the usage of Scrum. Figure 5.2 represents the 7 days Sprint (each
iteration is called a Sprint in Scrum) cycle applied in this particular case.

Figure 5.2: Scrum process, adapted from [Wik].

As seen in Figure 5.2, in each Sprint some functionalities of the Product Backlog were
taken, and decomposed into small features to be implemented. In the end of each sprint,
the work was analyzed and sometimes new problems were raised. This made the approach
to be bottom-up-like, even though there were some initial thoughts and an initial global
objective. The goal was specified and reworked as the project was implemented.

The last phase of this research was to validate what was done and to write conclusions.
This validation was done through acceptance tests, following Critical’s internal quality
assurance process, which could guarantee the quality of the solution, and that it fits the
requirements. This validation was also done qualitatively by people who had contact with
some other software alternatives. The last part was the dissertation writing, which is a
retrospective of what was done [dMA10].

5.3 Validation Methodology
The dissertation results have to be validated in some way, and the validation methodology
should be the one that best fits the research problem. This particular dissertation was an
industrial case study, with a concrete solution for a concrete problem, and the validation
was as pragmatic as possible. It followed an engineering method, as the solution was

42 research problem and methodology

developed and evolved based on the regular results made [ZW98]. And this results and
evaluation of the solution was done in a programatic way, using software testing methods
and based on Critical Software satisfaction.

Critical Software internal quality assurance program includes, besides other testing
phases, a rigorous accepting test phase, in which tests are planned and run to verify the
software quality. Because they have knowledge about all the technologies used, this can
guarantee that the software produced with quality, solving the problem and going towards
the dissertation goals that were presented in § 5.1 (p. 38).

5.4 Conclusion
This particular dissertation joins the design for incompleteness with openEHR, and ZK
framework. Its main goal is to study and develop a software component to deal with
incompleteness in health systems based on openEHR, in which new templates can be built
from archetypes.

To achieve this goal, a methodology was taken. The bottom-up approach, in which
the problem and solution, as long with software testing, were redefined as the system
was built, was a good idea mainly because of the short time-frame of this dissertation.
This allowed to be more agile while understanding the problem and developing a solution.
The validation for the solution was as pragmatic as possible, based on Critical Software
satisfaction, and based on its internal quality assurance. The fact that this is an industrial
problem obligated to take a specific approach both to the development and the validation.

After these methodologies were presented, it is time to shown some existing solutions,
explaining why they are not really a solution to the existing problem. Next, in Chapter 6
(p. 43), the developed solution is presented and explained in detail.

Chapter 6

Solution

6.1 Components . 44
6.2 Architecture Overview . 45
6.3 Architecture in Detail . 46
6.4 Solution Achieved . 49
6.5 How are ZK and openEHR Linked? 64
6.6 Reconfigure the system . 67
6.7 Conclusion . 72

In this chapter the solution is detailed and explained. The objective of developing a
component to create reusable openEHR templates, mainly for gui purposes, was studied
and accomplished. This Template Builder handles openEHR, and uses a gui in zk to
present the information to the end-user. It builds these guis based on openEHR archetypes,
grouping them and overriding attributes to produce templates (which mainly correspond
to guis) for specific needs. This chapter explains how this is done, showing:

• Which components are used to build this solution;

• Which architecture is used, and how these components fit in it. It is also explained
how these components are related;

• A running example to explain the most important aspects of the solution. Mainly, it
is explains how to build and configure a specific template corresponding to a gui;

• How there is a match between the system model status and what is shown to the
end-user;

• How it is possible to (re)configure some system behavior, which is a consequence of
this need to adapt health-care systems.

44 solution

6.1 Components
Template Builder is not only a component itself, but it also takes advantage of other
components through interoperability. It can be seen as a union of some different components
and two different technologies. Firstly, two technologies are joined: zk, the gui framework,
and openEHR, the framework to represent health-related information. zk is based on
Java, as said in Chapter 3 (p. 25). OpenEHR’s implementation was written in Java
too, as explained in § 2.5 (p. 23), with some little adaptations by Critical Software,
SA from openEHR Specification 1.0.2. (see [opeb]). Another component presented is a
portion of a Critical’s project, which implements some missing features in the official Java
implementation.

• ZK. It is the framework for developing the gui, and it allows to create rich user
interface, with great usability. zk typically act as the view, in a Model View
Controller architecture, as it is going to be explained in 6.2. However, in this
particular case, controllers also contains zk api’s calls to create the view elements.

• Preview. The preview component is used to render templates as long as they
are built. This means that the end-user can see the gui that he is creating and
configuring. This Preview is a component from Critical Software’s current project,
and it was also developed using zk framework.

• openEHR. This component represents the implementation of openEHR specification
in Java. It contains the implementation of Archetypes and Reference Model, and
methods to handle them. Archetypes are built from rm’s parts, to represent clinical
information. They are used, typically grouped, to build Templates. It is important
to notice that templates are not implemented in the current version (1.0.2) of the
openEHR Java Implementation (see [opeb]).

• CSW-Component. This component is a portion of a Critical Software’s project.
From now on, this is going to be named CSW-Component. The portion used
contains utilities to handle Archetypes, like input and output streams, and the
implementation for openEHR Templates, as well as its structure.

• Template Builder. Template Builder is the central component of the application,
and it is what was developed by the author. It uses zk to build the user interface, and
CSW-Component and openEHR to manipulate and build templates from archetypes.
It also uses the Preview to show the corresponding gui of the template. It can be
seen as a component that joins all other components, providing the ability to create
templates in real time by any end-user.

architecture overview 45

6.2 Architecture Overview
Template Builder’s architecture follows a kind of Model View Controller (mvc) architecture.
mvc is a pattern that separates the application in three different layers [ZK], as explained
in 6.1.

Figure 6.1: The mvc architecture, as shown in [mic].

These three layers are explained next.

• Model. It represents the data and the application domain [mic], and provides access
to get and change information.

• View. The View manages the appearance of the information [mic].

• Controller. It links Model and View. For example, if there is an event or an action
in the view, it updates the model and gets the information back to update the view
according to the model [mic].

With mvc explained, it is possible to talk more specifically about Template Builder’s
architecture, and how its components are placed within the mvc architecture. Fig-
ure 6.2 (p. 46) represents this architecture and how components fit in it.

zk and Preview components represent the view, and render what is happening in the
system. Actually, they are linked, as Preview was developed using zk. However, zk here
refers to the Template Builder ’s gui to create and configure templates. OpenEHR and
CSW-Component represent the model, with their respective actions.

Template Builder fits in the three layers. It uses View components to build the gui:
zk for the main gui of the application, and Preview for to shown the template current
status and representation in as a gui. It also uses Model components, and even extends
some of them, to complete the application model. This model represents archetypes and
templates, having methods to manipulate them.

Then, there is the controller, which is taken care only by Template Builder’s core. This
controller handles gui events and actions, updating the model, and reflecting it back to
the ui.

46 solution

Figure 6.2: MVC Architecture of Template Builder with components identified.

The next section explains in even more detail each layer of the architecture. Moreover,
it is explained why this mvc architecture is a kind of, as there is no clear separation
between some views and some components.

6.3 Architecture in Detail

6.3.1 Model

The model uses some components that already exists, but also new classes to persist and
access information that is present in memory. Figure 6.3 (p. 47) shows model components
in detail and how they are linked.

Template Builder uses the other components, and it is the core of the system. It
contains core data, and stores Templates and Archetypes. These Archetypes, from the
openEHR component are read and parsed, in order to build the structure in memory,
using methods from theCSW-Component. These archetypes are then used by Templates,
being referenced and not actually copied to the template.

architecture in detail 47

Figure 6.3: Model detailed in a uml class diagram, with classes clearly separated by components.
Some classes may correspond to multiple classes in the actual implementation.

Template class inherit Template from CSW-Component (named CSW-Template).
ThisTemplate class contains the implementation of openEHR templates (as said, inherited
from CSW-Template), as well as some specific attributes and methods to operate in it
because of the linkage between them and zk component. These methods include ways to
easily define template’s properties, or operations to be made in templates that have match
the ui element with the model element. These operations are actually contained inside
TemplateOperations, and include:

• Adding operations, in which an archetype is added inside a template in a specific
location according to the information passed from zk view. It is important to
understand that these archetypes are actually references to archetypes present in
Template Builder. In fact, and as explained in Source 2.1, an oet template only
contains a reference to an archetype that exists in a repository.

• Removing operations, in which an archetype is removed from the template in a
specific location also passed from the view.

• Rules operations, in which Rules that override original archetype’s node attributes,
as explained in § 2.4.2 (p. 22). This is also done according to the information passed
from the view.

48 solution

That information passed from the view is interpreted and these operations are made in
the correct template nodes. Further details on this information is shown in the chapter
that explains the way zk and openEHR are linked (see § 6.5 (p. 64)).

6.3.2 View and Controller

Typically View and Controller are separated, even if they are strongly related. In this
particular case, some Views and Controllers are actually merged, giving less complexity
to the project. In zk, gui elements (xul or xhtml elements) can be developed either
using a zul file, in a markup language similar to xml, or either in Java files, using the
Java’s zk api. As this is a dynamic application, only the basics of the layout are in zul
files, which correspond to a typical View layer. Elements present in these zul files are
then controlled in Java files, that act as the Controller layer. As these Java files can, in
fact, update the ui, it becomes less complex to mix the View and Controller layers within
these files, making it easier to reflect what is happening in the ui (user actions), which the
model current status, and vice-versa. However, there is a separation in some situations.

View

The View layer of the architecture is composed by zk and Preview components, as said
before. Preview is the component that takes care of rendering the templates, as a gui,
being built in the Template Builder. zk is used to build both the main gui, and the
template’s corresponding gui, and to reflect the state of the model. Figure 6.4 represents
the View layer, with each component.

Figure 6.4: View layer of Template Builder detailed.

zul files contain the zk markup language to build simple user interfaces. Then, Java
controller files contain some aspects related to View, as they build the gui based on the

solution achieved 49

system status. With zk, it is possible to build uis either using zul and Java files, or also
by combining them.

Controller

The controller takes care of users thrown events by their interaction with the system. For
example, when a user adds an archetype to a template, the controller must handle it and
must call the appropriate methods to update the model. Then, that will reflect on the
view.

Figure 6.5: Controller of Template Builder detailed.

As seen in Figure 6.5, there are two main controllers: WestController and CenterCon-
troller. They handle the archetype and template work areas, from where and to where the
user can drag and drop archetypes onto templates. uis are built either using zul or Java
files. These Java files may be Controllers, as they handle events that occur on xhtml and
xul elements defined in the zul file. For the author, this specific property of zk makes it
simpler to merge the View and the Controller in most cases.

6.4 Solution Achieved
After explaining the several components that are part of the final system, and after explain-
ing the architecture and how these components fit it in, this section presents the solution
in a pragmatic way. This solution was achieved after the studying of this incompleteness
with Adaptive User Interfaces: or at least a system that allows to (re)configure guis for
specific purposes. In terms of technologies, the study of openEHR allowed to understand
it better, in order to handle this complex health standard.

The solution, named Template Builder, consists in a component that allows to create
openEHR template for specific purposes. This is achieved (re)using archetypes, group
them, and override or define some proprieties in order to build those templates. These

50 solution

templates, as explained in § 2.4.2 (p. 22), can take the form of guis. So, it is possible
to say that this Template Builder allows the end-user to create or reconfigure reusable
screens, as long as the health professional needs.

6.4.1 Overview

The Template Builder is a component for building templates, in a form of a gui. To do
so, it was identified that it was necessary to have two main work areas with different
content: (1) the first one should be a source for building and add new features to the gui;
(2) as the second should consist in the actual working area when the gui is being built.
Passing this to openEHR’s reality, the Template Builder consists on two main work areas:
one for archetypes, and one for templates. This allows to have two different contents on
each panel. The objective is to have archetype’s panel as a source, and to drag them into
template’s work area to build these templates.

Figure 6.6: Main window of Template Builder with two work areas.

Figure 6.6 shows the main window of Template Builder, with these two work areas.
It uses the Many Workspaces gui pattern, in which multiple panels are used to display
context-related but different content [Tid10]. It is also possible to adjust the width,
and to even hide archetype’s work area (Collapsible Panels pattern [Tid10]). Another
implemented pattern was the Center Stage, in which the template’s work area is given the
most space and the most visibility on the screen [Tid10]. Note that this might not be the
final ui in terms of style.

Next, these two work areas are better explained and detailed.

solution achieved 51

Archetype’s Work Area

The archetype’s work area, being controlled by the WestController, contains all archetypes
grouped by they rm type. They are found on the file system, through a configuration
string that corresponds to a system directory. This work area can be filtered, or in other
words, it is possible to search for archetypes (see Figure 6.7). It is also possible to filter
archetypes that are suitable for a certain archetype slot in a template, right-clicking on it
and choosing to filter in the archetype’s work panel (see Figure 6.8 and Figure 6.9).

Figure 6.7: How to search for archetypes.

Figure 6.8: Filtering archetypes for the selected archetype slot. This will take action in the
archetype’s work area.

Figure 6.9: The result of the filter for the selected archetype-slot.

52 solution

Template’s Work Area

The other main panel is the template’s work area, which is controlled by the CenterCon-
troller (and associated classes). In here it is possible to find, one more time, the Many
Workareas pattern [Tid10], as it is composed by tabs, making it is possible to have more
than one template being built using the same session. This pattern that allows some kind
of multitasking can be seen in Figure 6.10.

Figure 6.10: The template’s work area contains tabs for multiple template building.

Each template work area displays the current template status in a tree form, which
represents the internal structure, and each node is represented as a zk Treeitem. Archetype
Slots are places where new archetypes can be dropped. The system only allows to drop
some types of archetypes, depending on what is defined in the Archetype definition. It
was not possible to integrate the Preview component within this work area. Later in this
chapter it is seen how the Preview represents the current template as a gui.

In this work area there is also a possibility of defining template’s specific properties,
like “name”, “ID”, and many others, as shown in Figure 6.11 (p. 53). These properties are
then updated on the model, and are reflected on the template output file when the user
saves it. Source 6.1 shows an example of the oet representation of a template after its
properties were defined. More features of these two work areas are explained in the next
sections of this chapter.

6.4.2 Building a Template by Adding Archetypes

Templates are built from archetypes, as they are grouped and its properties may be
overwritten for specific purposes. This makes the adding archetypes to templates one of
the key features of the Template Builder. Archetype Slots represent archetype’s nodes in
which new archetype’s can be placed within a template. In these slots, sometimes only
some archetypes can be placed, depending on the archetype definition.

The previously presented Figure 6.6 (p. 50) shows the Template Builder main interface.
When the user wants to add an archetype, he must choose one and drag it into an available
archetype slot in the template. This drag-and-drop process may have two consequences:

• The operation succeeds. If the operation is allowed (Figure 6.12 (p. 54)), the
Controller updates the model, and the view is consequently updated with the new
archetype (Figure 6.13 (p. 54)).

solution achieved 53

Figure 6.11: Work area for the definition of template properties.

1 ...
2 <id>733f787d-970d-44e4-9861-a34a94bd2426</id>
3 <template_id>openEHR-EHR-COMPOSITION.template1.v1</template_id>
4 <name>openEHR-EHR-COMPOSITION.template1.v1</name>
5 <original_language>en</original_language>
6 <description>
7 <original_author>
8 <item>
9 <key>name</key> <value>Andre Carmo</value>
10 </item>
11 <item>
12 <key>organisation</key> <value>csw</value>
13 </item>
14 <item>
15 <key>site</key> <value>www.criticalsoftware.com</value>
16 </item>
17 </original_author> <lifecycle_state>lifecycle</lifecycle_state>
18 <details>
19 <purpose>Template for testing purposes</purpose>
20 <use>Use this template for a running example within Andre Carmo

’s disseration</use>
21 <misuse>This template is not for professional use</misuse>
22 </details>
23 ...

Source 6.1: Example of the template properties in the oet file, according to what is defined in
the ui by the end-user.

54 solution

Figure 6.12: The user tries to add a Section inside a Composition. This operation is allowed
by the Archetype Slot attributes.

Figure 6.13: The operation shown in the previous figure succeeds, and the View is updated.

• The operation is unsuccessful. An unsuccessful operation can happen in two
different case: (1) by disabling the possibility of making an operation, when it is
detected as not possible (Figure 6.14 (p. 55)); (2) or by an error while updating
the model, even if the application allows the operation (see Figure 6.12). When an
operation is not allowed by one of these two ways, the View is not updated by the
Controller, and a message is shown to the end-user.

The allowed archetypes in a given Archetype Slot follow the structure presented in
§ 2.4.1 (p. 20). However, it could be said the specific archetypes are the only allowed,
or even that some are excluded and consequently not allowed there. The operation in
Figure 6.12 succeeds because the Archetype Slot allows that specific archetype, based on a

solution achieved 55

Figure 6.14: The operation fails because the rm type is not allowed there.

regular-expression match, as shown in Source 6.2. Other archetypes cannot be added to
that archetype slot. That path in that Source represents the path of this archetype slot,
and it is used to link zk and the model, as it going to be lately explained.

1 ...
2 allow_archetype SECTION[at0001] occurrences matches {0..∗} matches {

-- path: /content[at0001]
3 include
4 archetype_id/value matches {/openEHR-EHR-SECTION\.problem(_[a-zA-Z0-9

_]+)∗\.v1/}
5 }
6 ...

Source 6.2: openEHR-EHR-COMPOSITION.problem_list_csw.v1 archetype slot representation
in the archetype’s ADL file.

In some cases, it is possible to have more than one archetype in an Archetype Slot.
When this happens, another virtual Archetype Slot is created in the ui for the end-user to
understand that it is possible. Figure 6.15 (p. 56) shows a new one after an add operation.

After these sequences of operations, that ended in Figure 6.15 (p. 56), lets take a look
at the template oet file. After the save operation, the file looks as shown in Source 6.5. It
is possible to see that the xml-like structure matches what is shown in Figure 6.15 (p. 56):
the template is in fact being built.

56 solution

Figure 6.15: A virtual Archetype Slot is created after an add operation for the end-user to
understand that new archetypes can be added here.

1 ...
2 <definition xsi:type="COMPOSITION" archetype_id="openEHR-EHR-

COMPOSITION.problem_list_csw.v1">
3 <Content xsi:type="SECTION" path="/content[at0001]" archetype_id=

"openEHR-EHR-SECTION.problem_list.v1">
4 <Item xsi:type="EVALUATION" path="/items[at0001]"

archetype_id="openEHR-EHR-EVALUATION.problem-csw.v1"/>
5 </Content>
6 </definition>
7 ...

Source 6.3: Template OET file after the last made operation.

After showing how these operations are done, it is important to understand the process
behind this add archetype, and the sequence of operations that take place between some
components or entities described in the architecture § 6.2 (p. 45). Figure 6.16 (p. 57)
shows this add operation, showing the sequence of information passed between different
entities of the system. When an onDrop event is detected by the Controller, the process
described in Figure 6.16 (p. 57) begins.

When the user drops an archetype, the Controller detects that onDrop event. Both the
treeitem that corresponds to the archetype and the treeitem (which is a zk element) that
corresponds to the template node are detected. This allows the Controller to get either the
corresponding template and archetype being dropped, which are get as a reference from
the TemplateBuilder class. After having them, TemplateOperations methods for adding
the archetype to the template are called, to make changes on the model. Based on what it
returns, the Controller decides to update the View to reflect the change that happened, or
to warn the user that an error occurred. As it is possible to see, there is a flow between
View and Controller, and the model. It starts by an event detection by the Controller, and
getting back to the View and Controller, ending in a View change based on the change on
the model.

solution achieved 57

Figure 6.16: The uml sequence diagram represents the flow of information when the user adds
an archetype.

6.4.3 (Re)configuring a Template by Setting Rules

Besides this add operation, there are other operations that can be done inside templates.
As explained, a template can override archetype’s attributes of specific nodes to cover
specific needs by the health professional. This is done by two ways:

• Rules. In this case, a rule is added inside in the template’s oet file, which means
that a node’s attributes of an archetype is being overwritten in the template.

• Archetype reference attributes. In case that we are talking about overriding
attributes of the actual archetype root, this is done using attributes in the archetype
reference in the oet file, and not by Rules.

These Rules are added via a context menu, which is built dynamically based on the
archetype node that is right-clicked. However, some nodes have no possibility of having
rules, like Archetype Slots and the template root node. So, it is important to understand
which nodes support these Rules Figure 6.17 (p. 58). Number 1 represents a template root
node, which contains all other nodes. Number 2 represents an archetype root node, or in
other words, the root of a referenced archetype. 3 represents a node from an archetype, but

58 solution

that is not a root node. Numbers 2 and 3 are internally represented as CComplexObjects
and CAttributes, as explained in § 2.3.2 (p. 18). Finally, number 4 is an Archetype Slot
node. Only numbers 2 and 3 have can have attributes redefined by rules.

Figure 6.17: A template example with numbers to understand which support rules. Only 2 and
3 nodes support them, representing archetype root nodes and archetype general
nodes. 1 represents a template node, and 4 represents archetype slots.

Rules

One way to (re)configure a template by overriding archetype node’s attributes is to create
new Rules. These rules override archetype node’s (represented by number 3 in Figure 6.17)
properties, by only for nodes that aren’t the archetype root node itself. This happens
because the end-user may want add an archetype, but it may be necessary to override
some attributes to match his specific needs. Remember that archetypes are generic and
reusable clinical knowledge with the ability of being specified and reconfigured while inside
templates. Figure 6.18 (p. 59) shows some possible operations that can be done via context
menu.

Figure 6.18 (p. 59) shows cardinality-related operations, or a Hide On Form property.
This Hide On Form means that the end-user wants to hide the archetype’s node while the
template is rendered in a gui form. In this case, cardinality related operations (1, 2, 4)
means that the end-user wants to set the number of time a node will appear in the gui.
This figure also shows some numbers, that represent the operations that were made to the
corresponding nodes. Source 6.4 shows these operations within an oet files.

Besides these operations, there are some nodes that can have different data types,
allowing the user to specify it while building the template. The operation presented in
Figure 6.19 (p. 59) is also is also reflected in the oet file presented in Source 6.4.

Source 6.4 represents the corresponding oet file after Figure 6.18 (p. 59) and Fig-
ure 6.19 (p. 59) were done. It is possible to see that these Rules where added inside the
openEHR-EHR-EVALUATION.problem-csw.v1. They override this archetype’s nodes that
have the same path as shown in this oet file.

solution achieved 59

Figure 6.18: Numbers represent the operations made in the corresponding nodes in the template.

Figure 6.19: Some nodes allow the end-user to choose its data type within the template.

Archetype Reference Attributes

Source 6.5 showed a template oet file. In that source it is possible to see that there is a
reference for three templates, which represent the archetypes shown in Figure 6.15 (p. 56).

60 solution

1 ...
2 <Item xsi:type="EVALUATION" path="/items[at0001]" archetype_id="openEHR-EHR

-EVALUATION.problem-csw.v1">
3 <Rule min="1"

path="/data[at0001]/items[at0009]"/> <!-- Clinical Descritpion -->
4 <Rule max="1" min="0"

path="/data[at0001]/items[at0014]"/> <!-- Aetiology -->
5 <Rule max="0" min="0"

path="/protocol[at0032]/items[at0033]"/> <!-- References -->
6 <Rule hide_on_form="true"

path="/data[at0001]/items[at0038]"/> <!-- Clinical Significance -->
7 <Rule path="/data[at0001]/items[at0014]/items[at0016]">
8 <constraint xsi:type="multipleConstraint">
9 <includedTypes>DV_TEXT</includedTypes>
10 </constraint>
11 </Rule> <!-- TYPE -->
12 </Item>
13 ...

Source 6.4: Template OET file after the last made operation.

When the end-user wants to (re)configure some properties of these archetype’s root nodes
(represented by number 2 in Figure 6.17 (p. 58)), these new attributes are put within the
archetype’s reference, like shown in the referred source. Figure 6.20 shows the possible
configurations for these root nodes.

Figure 6.20: Configurations that can be done in an archetype root node. Those numbers
indicates the operations made, and to which archetype they were applied to.

These operations can include cardinality-related operations, or a Hide On Form property.
Cardinality operations are related to Archetype Slots maximum and minimum “slots”.
This possibility of configuration allows the end-user to say that he wants the archetype
to appear between a minimum and a maximum number of times, allowing him to decide

solution achieved 61

when using the gui. It is also possible to give a name to an archetype, so that it is possible
to better understand why it was placed there, inside that template. This is done via
Properties.

In Figure 6.20 (p. 60) there are some numbers, which means that the operation Single
Occurrence was applied to archetype with the same number (1), and that Hide On Form
was applied to the second archetype in that slot.

1 ...
2 <definition xsi:type="COMPOSITION" archetype_id="openEHR-EHR-

COMPOSITION.problem_list_csw.v1">
3 <Content xsi:type="SECTION" path="/content[at0001]" archetype_id=

"openEHR-EHR-SECTION.problem_list.v1">
4 <Item xsi:type="EVALUATION" max="1"

min="0" path="/items[at0001]" archetype_id="openEHR-EHR-
EVALUATION.problem-csw.v1"/>

5 <Item xsi:type="EVALUATION" hide_on_form="true" path="/items[
at0001]" archetype_id="openEHR-EHR-EVALUATION.exclusion-
problem_diagnosis.v1"/>

6 </Content>
7 </definition>
8 ...

Source 6.5: Template OET file after the last made operation.

These new attributes (in bold) were added within the archetype reference inside the
template.

To generate the context menu for these rules (shown in Figure 6.18 (p. 59) and
Figure 6.20 (p. 60)), the node from the original template is get, and this informations is
combined with existing rules or attributes for template nodes. This process is explained
in Figure 6.21 (p. 62), where we can see that a node of a template has two types of
properties, as said before:

• Rules and root node attributes in archetype references, depending if the
path represents a root of an archetype or not.

• Properties from the node of the original archetype. Remember that when
an archetype is added to a template, only a reference or a copy of it is added.

What happens is that when the context menu is built, it analyses the type of node
and the builds the data using these two properties explained. Rules have priority over
the original node attributes, because rules represent the template (re)configuration over
a more general archetype used to build the current template. Also, when the end-user
creates a new Rule, or reconfigures an archetype, it is not the archetype that is changed:

62 solution

a new Rule or attributes are created or changed. These Rules have a path that links them
to the original node in the archetype. This process is explained in Figure 6.21.

Figure 6.21: How properties are get.

6.4.4 Other Operations

Template Builder contains other operations. These operations include:

• Delete Archetypes. It is also possible to delete an archetype from the template,
like shown in Figure 6.20 (p. 60). When an archetype is deleted, the view is updated
according to the state of the model. This means that new virtual (and visual)
archetype slots may be created, as shown in Figure 6.22 (p. 63).

• Clear template. It is possible to clear a template by selecting its root node.

• Save and import templates. The Template Builder allows to save and event
import existing templates for reconfiguration.

6.4.5 Previewing the GUI that Corresponds to a Template

openEHR templates can take the form of guis. In fact, it was initially thought to include
the Preview within the Template Builder in order to have a wysiwyg editor. It was not
possible due to time frame problems, but it was possible to integrate an asynchronous
preview. This preview is a component that is currently being developed by Critical

solution achieved 63

Figure 6.22: An archetype was deleted in Checkup Routine template, and a new archetype slot
was created in the ui.

Software, SA, so it is expected that not all features are implemented. Figure 6.23 and
Figure 6.24 represent the general Preview based on the operations made until Source 6.4.

Figure 6.23: Preview (collapsed) of the TemplateDissertation until Source 6.4.

Figure 6.24: Preview of the TemplateDissertation until Source 6.4. It is possible to see the
effect of mandatory in Clinical Description.

64 solution

6.5 How are ZK and openEHR Linked?
It is now necessary to understand how exactly zk and openEHR were linked. This is
important because in mvc there is a clear separation between the Model and the View,
which makes imperative to establish a way of coordination. They way the Model and
the View were linked was thought and implemented based on zk and openEHR specific
constraints and properties. When the end-user adds an archetype to a template, and when
the user edits template’s properties, or in any other operation, it is necessary to know
which Model object correspond to the View element. And this is done, generally, with
identifiers or paths.

When building a template, the first thing to do this is to know which template is the
end-user dealing with, as there are more than one tab, and consequently more than one
template being built. As zk elements contain a unique identifier, each template instance
from Template (see Figure 6.3 (p. 47)) contains the same unique identifier as the tab that
is currently selected, allowing to link the template in zk with the model. Figure 6.25
shows the uuid for the templates presented during this running example, and Figure 6.26
shows the templates instantiated.

Figure 6.25: Each tab has a unique “ID”, which is the same as the correspondent template.

Figure 6.26: Instance of the template. They inherit openEHR properties, like name, and have a
uuid property to link with zk. Note that uuid is the same as shown in Figure 6.25

After knowing which template are the user dealing with, it is necessary to make zk
operations to take effect in the model. When a user drags an archetype into an archetype
slot, within a template, or when an attribute is set to “mandatory”, it is necessary to
know to which template node this operation should take effect. This is also done with a

how are zk and openehr linked? 65

unique identifier, that has the structure shown in Figure 6.27. The path structure shown
is unique because of the last part, shown as ZK element uuid (remember that each zk
element has a unique identifier). This part is not considered to find the correct node. As
seen, archetypes are separated by a double slash, and each archetype path has a first
element, that is its name. When navigating inside a template, this is used to know what
archetype should the method deal with. Then, it is removed, and the rest is the real path
that is used to make the operation.

Figure 6.27: Path of an element in zk.

To better understand how this works, Figure 6.28 shows the same template shown
in Figure 6.13 (p. 54), with either the zk identifier, and relative node path (relative
to the archetype root).

Figure 6.28: Example of a template.

When a user adds an archetype, what happens is that the archetype slot zk’s identifier
is passed to the method to know the correct path to make changes in the model. After

66 solution

adding (see Figure 6.15 (p. 56)), zk’s identifiers stay like shown in Figure 6.29. The
archetype slot path, shown in Figure 6.28 (p. 65), is added as attribute in the archetype
reference within the template, as shown in Source 6.6 (in bold).

Figure 6.29: Example of a template after adding.

1 ...
2 <definition xsi:type="COMPOSITION" archetype_id="openEHR-EHR-

COMPOSITION.problem_list_csw.v1">
3 <Content xsi:type="SECTION" path="/content[at0001]" archetype_id=

"openEHR-EHR-SECTION.problem_list.v1">
4 <Item xsi:type="EVALUATION" max="1" min="0" path="/items[

at0001]" archetype_id="openEHR-EHR-EVALUATION.problem-csw.
v1"/>

5 <Item xsi:type="EVALUATION" extbf{hide_on_form="true"
path="/items[at0001]" archetype_id="openEHR-EHR-EVALUATION
.exclusion-problem_diagnosis.v1"/>

6 </Content>
7 </definition>
8 ...

Source 6.6: Template OET file. In bold there is the path of the archetype added, which is the
same as the path of SECTION s archetype slot.

However, there can be one problem with this, and Figure 6.30 (p. 67) explains why. If
there are two archetypes with the same name at the same archetype slot, the zk element
identifier is exactly the same. there must be something else that allows us to know which
archetype are we dealing with. Having the zk’s element uuid in each archetype class
was impossible, due to a large number of different archetypes (as shown in Chapter 2
(p. 11). To do so, each zk element has an attribute called pathSlotCounter , that act
as a counter. With this, it is possible to know the exact archetype in an archetype slot,
even if they have the same name and the same internal path. Figure 6.31 (p. 67) takes the

reconfigure the system 67

example shown in Figure 6.30 to demonstrate how it is possible to distinguish archetypes
with the same name within the same archetype slot.

Figure 6.30: Two archetypes with the same name within the same archetype slot will have the
same zk identifier (excepting the last part, as shown in Figure 6.27 (p. 65)).

Figure 6.31: How “pathSlotCounter” allows to distinguish from archetypes with the same name.

At the right side it is possible to see the pathSlotCounter , which allows to distinguish
between archetypes in the same archetype slot. Notice that this counter has levels so that
sons can have the correct counter of his parents.

6.6 Reconfigure the system
The openEHR specification can be implemented in different programming languages and
technologies. This Template Builder uses the oficial Java implementation [CK07], which
is not completely finished. This implementation lacks of the template’s implementation,
as well as other aspects of openEHR. This lack of completeness obligates developers and
companies to implement what is left. In this particular case, there was a clear need of

68 solution

having template’s implemented, as well as some utils to handle template’s and archetypes
from openEHR.

To overcome this incompleteness, Critical Software implemented many other features
that are included in the specification (see [opeb]), but that are not included in the
implementation. Besides many others that are not so important to this disseration,
template’s and its structure were implemented, as explained before, and they are included
in the component called CSW-Component.

This necessity to implement whats left lead to some differences between the specification
and Critical’s implementation, due to business constraints related to other projects. So, of
course, these differences were a constraint to the Template Builder and this dissertation.
This dissertation started form the incomplete by design and design for incompleteness
points, particulary related to health systems. So, instead of adapting the system in terms
of artifacts, why not designing it to handle this incompleteness, or in this case, these
implementation differences? Figure 6.32 shows the differences between the specification and
Critical’s implementation of templates. As it is possible to see there are many differences,
specially related to Definition and Content. Critical’s implementation only holds one
Content inside Definitions, and it is impossible to have one Item inside it without having
a Content in the middle.

Figure 6.32: Differences between openEHR specification and Critical Software’s implementation
of templates. It is possible to see that there are structural and multiplicity
differences.

It is not so difficult to handle these differences. But what if the implementation changes
and starts to allow more than one Content inside a Definition?

To overcome this, a way of changing the system behavior in these situations was
implemented, and this was done using an aom-based approach: a system with rules

reconfigure the system 69

specified in a xml, which are interpreted in runtime [HV01]. There is also a metamodel
to match the rules and the system state, allowing or not to make certain changes to the
template’s model based on the specified rules. The main goals of this metamodel are:

• Deal with different implementations. In most cases, if the implementation
changes, by changing the xml rules file the application still works. This allows to
rapidly change the behavior based on different rules, at least in the best case. In
the worst case, only minimal changes on the way the api is used needs to be done,
because the rest of the system is prepared to handle different behaviors, depending
on what is defined.

• Don’t allow operations which may take the system into impossible states.
With this metamodel we can make it impossible to make certain actions just with
this xml file.

These main goals are illustrated in Source 6.7. Bold attributes represent the main
differences shown the uml class diagrams in Figure 6.32 (p. 68). In Figure 6.33 it is
possible to understand the consequences of having numSons set to 1 or more. Moreover,
in Figure 6.34 (p. 70) it is possible to see what happens when the second term (which
is an Item) is there, which represents being or not compliant with the specification of
openEHR.

Figure 6.33: Differences between having numSons set to 1 and set to more than 1, as shown
in Source 6.7. At the top it is possible to see that only one Content is allowed
inside a Definition. At the bottom it is possible to see that having numSons set
to more than one allows the system to have more than one Contents inside. Please
note that in some cases some changes need to be done to handle with different
apis implementation, although this eliminates this need or at least diminishes that
need.

This Rule’s implementation is composed by three main parts, which are explained
bellow. These parts are named from M0 to m3, and the number represents the increase

70 solution

Figure 6.34: Differences between having Item term inside Definition, in Source 6.7. At the top
it is possible to see that there it is not possible to add an Item inside a Definition.
In the bottom image that is possible by adding the term in bold in that Source.

1 <structure>
2 ...
3 <term>
4 <id>1</id> <!-- Definition -->
5 <cardinality>1</cardinality>
6 <numSons>1</numSons>
7 <mandatory>true</mandatory>
8 <compositions>
9 <term> <!-- Content -->
10 ...
11 </term>
12 <term> <!-- Item -->
13 ...
14 </term>
15 </compositions>
16 </term>
17 </structure>

Source 6.7: Portion of a xml file with rules related to template’s structure.

of abstraction: M1 represents the data itself, as M3 is for an abstract representation of
the template’s structure without thinking about the implementation.

• Model M0. Represents the existing data, which are template instances.

• Model M1. Corresponds to the template’s structure that is implemented.

• Model M2. Rules specified in a xml file;

• Model M3. Represents Metamodel, that is hardcoded. It is though that the main
structure of rules and implementation never changes that much.

reconfigure the system 71

Rules XML file

The first three models are explained. M2, the rule’s file, follows a structure like shown
in Source 6.7. This Source shows how the template’s structure is defined, by indicating
the term, its attributes, and which terms compose them. The attributes include the
possibility of setting it to mandatory and to indicate the number of terms that compose it.
Source 6.8 shows the typical structure of this rules xml file. There are also to places to
define both the main terms, and the terms which inherit those main terms. In this source
it can be seen that a Composition inherits a Definition.

Metamodel

The metamodel, M3, represents the last model to be presented. It is an abstract rep-
resentation of the template’s structure, in this case. This metamodel is presented in
Figure 6.35, as an uml class diagram. As it is possible to see, terms have two different
kinds of associative retaliations with other terms:

• Composition. This relation indicates that a term is composed by other terms, or
in other words, it tells which terms as contained within a term.

• Inheritance. This means that a term is inherited by other terms. This is important
because, as shown in § 2.4.1 (p. 20), there are archetypes that inherit a group of
archetypes. For instance, all Entry archetypes inside templates inherit Item.

Figure 6.35: Metamodel uml class diagram.

This metamodel allows to prevent unwanted system states, based on the rules. When
there is some user action, or even before it happens, the template instance of the metamodel
is compared with the rule’s metamodel. With the result of this comparison, only allowed

72 solution

actions take effect. Figure 6.36 (p. 73) shows how this process works. M0 and M1
represents the template shown in Figure 6.34 (p. 70). In red, it is possible to see the
Evaluation archetype being added to the template. What happens in this specific case
is that it checks if the operation is possible agains the instance of rules, M2, which were
defined in the xml file. According to Critical Software’s rules, the operation fails. But
according to openEHR specification based rules it succeeds (see Figure 6.32 (p. 68) for both
rules instances). This is an easy way of changing the system behavior only by changing
xml rules.

6.7 Conclusion
This chapter presented the solution for the problem of incompleteness in health systems,
particularly related to openEHR. Since this standard has templates, which can be mapped
to screens, there was the necessity of allowing every end-user to change the gui towards
his needs. To allow that, the Template Builder was designed and developed, allowing to
create templates from the specialization one or more archetypes. This Template Builder
follows a Model View Controller architecture, and integrates other components like the
Preview, allowing the end-user to see the current state of the template being built, mapped
to a ui screen. To allow the (re)configuration of templates, some gui patterns were used
in order to give good usability.

The solution found to the problem of displaying to different contents, either archetypes
and templates, was found to be the best way to make this happen. There are two different
work areas (the Many Workspaces gui pattern [Tid10]), and the user can drag archetypes
into templates. This solution allows to keep an eye on the repository of archetypes without
loosing the key point: the current state of the template.

Some other problems needed to be solved, including the way zk and openEHR are
linked, and the differences between the openEHR specification and Critical Software’s
implementation. Regarding to the linkage between these two technologies, the use of
identifiers and counters allowed to link ui elements to the model. Since there was no
information about on how to link them, this is thought to be the best way to do it,
since standard attributes of zk elements provided by its api are used to store those
identifiers. Related to the different implementations, the lack of a complete official Java
implementation showed to be a problem, because developers and companies sometimes
make some adaptations to their world. It is natural. This differences lead to the necessity
of having a set of defined rules that could be interpreted by the system, making it behave
like the way it is defined. It was obvious interests regarding to predict impossible system
states, based on api constraints, but also to have less hardcoded business rules that could

conclusion 73

difficult openEHR’s api evolvement. The usage of a metamodel to validate the system
state according to rules proved to be a good way to make the system change easily, even
though not all changes are possible due to apis constraints.

Also, the problems found and presented in § 7.2 (p. 76) made hard to integrate both
the Preview and the template editor, essentially due to time-frame issues. However, the
Preview was, in fact, integrated, allowing the end-user to check the corresponding screen.
This Preview issue is better explained in the next chapter, which presents the conclusions
taken and the future work that can be done.

Figure 6.36: How the metamodel checks the template instance with rules instance. It returns
true or false if the operation is allowed.

74 solution

1 <?xml version="1.0" encoding="UTF-8"?>
2 <root>
3 <termsDef>
4 <term>
5 <id>1</id>
6 <name>definition</name>
7 </term>
8 ...
9 </termsDef>
10

11 <inheritanceTermAux>
12 <inheritanceTerm>
13 <id>1</id>
14 <name>composition</name>
15 <parent>1</parent> <!-- definition -->
16 </inheritanceTerm>
17 ...
18 </inheritanceTermAux>
19

20 <structure>
21 <numSons>1</numSons>
22 <term>
23 <id>1</id> <!-- definition -->
24 <cardinality>1</cardinality>
25 <numSons>1</numSons>
26 <mandatory>true</mandatory>
27 <compositions>
28 <term>
29 ...
30 </term>
31 ...
32 </compositions>
33 </term>
34 </structure>
35 </root>

Source 6.8: xml rules file general structure. It contains three main sections: (1) one for the
definition of terms; (2) other for the definition of terms that inherit other terms
previously defined; (3) and a section for the template structure definition.

Chapter 7

Conclusions and Future Work

7.1 Main Results . 76
7.2 Problems occurred during research 76
7.3 Lessons Learned . 77
7.4 Future Work . 78
7.5 Epilogue . 79

Change is, in fact, a major factor that influence software development, and sometimes this
change is complemented by the incompleteness: not only the environment or the domain
to be modeled can change, but it can also be difficult or even impossible to predict. And
that is what happens in the health area, where there are many different necessities that
are difficult to predict. This dissertation studied the best ways to cover all the necessities,
particularly, but not only, related to guis.

Critical Software had a running project in which they used some technologies presented
in this dissertation, like openEHR and zk. zk’s templates can take the form of guis,
but they have to be built somehow. Since they can be defined using a xml-like syntax,
every one with experience in xml and openEHR can build them. But what about the
end-user, typically a health professional? Or even an engineer that wants to build it fast?
A software component for this purpose would cover this incomplete by design property
of health systems, in particular when based on openEHR, as the end-user could build its
own screens whenever he needs.

Some software exists to that, but why it is not a solution for this problem? Critical
Software wanted this new component to completely integrate with its system. Also,
because the Java official implementation does not cover all the specification, there are
some differences that make it impossible to use the existing solution. And because this is

76 conclusions and future work

a Master dissertation it is also wanted to study the best way of implement this kind of
software components.

7.1 Main Results
According to the main problem, a solution was developed. As long as it was being
developed, the problem was redefined, ending up with some new minor problems. This
iterative methodology lead to the main results and contribution of this dissertation:

• Development of the Template Builder. The main contribution of this disser-
tation was, in fact, a Template Builder to deal with openEHR artifacts, especially
related to Critical Software needs. This Template Builder allows end-users to build
their own templates, corresponding to guis, according to their specific needs. And
they can actually do it just in time. Also, this gui creator implements the aui
concepts, having a Preview to show the current screen state.

• Contribution to openEHR. The Template Builder contributes to the openEHR
standard, as there is not much study on template builders.

• How to best integrate openEHR with zk. This achievement was important to
this dissertation as there are no records of integration between openEHR and zk.
These two technologies can fit together, and this dissertation showed how to link ui
elements with the model.

• How to define the system behavior by rules. This problem and achievement
was raised from the problem of having different implementations for some openEHR
artifacts, like template. A metamodel was developed to validate the system state,
allowing, at best, to change the system behavior by changing its rules, instead of
hardcoding.

7.2 Problems occurred during research
This research was highly influenced by the time variable. It was conducted between
February and June, in an industrial environment, which gave a significant overhead for
the author to adapt to company’s way of developing software, even though its internal
development process was not strictly followed. Instead, it was used a Scrum-like approach,
as specified in § 5.2 (p. 39).

lessons learned 77

This research could be divided into three parts: (1) a state-of-the-art study, which
started even in November, and ended at the end of this dissertation; (2) the imple-
mentation, which included some designing, coding and testing and validation; (3) and
dissertation writing. The implementation phase was what took longer, and that most
influenced the result of this dissertation.

While implementing some problems raised, as stated before. However, not all of them
could be overcame, and they influenced the research. Those problems are described here.

• Preview not completed in time. In software, time delay happens, even if software
engineers do all for this not to happen. There are even methodologies and principles
for this not to happen, but the truth is that is happens. The Preview component
was not ready in time, being a real problem in this dissertation direction. The idea
of taking aui concept to the next level, and implementing a wysiwyg editor, could
not be completed. This lead to less focus on aui, and lead to a direction change
later in this dissertation on how to implement the aui concept and the Preview.

• zk problems. zk’s version used was 5.0.0, which is not the latest version. This
version contains some unresolved bugs, that needed to be worked around. Those
problem took some overhead in some crucial phases of the development, and were
considered as a risk.

• openEHR lack of documentation. Considering the time frame that the author
had for this dissertation, the lack of documentation of openEHR-related API’s
introduced a big overhead, and costed precious time during the development.

• openEHR API specific properties. Some openEHR specific properties were a
big problem, either by lack of documentation, as said, or by unimplemented things.
This took difficulty to handle openEHR, and to later develop a way of connecting
the ui (zk) with it.

All these problems took time in a very tight time-frame for this dissertation. This lead
to less evolved system, as opposite to the theoretical study done and demonstrated in this
dissertation. In fact, the theoretical study went further than the implementation, for the
reasons explained.

7.3 Lessons Learned
During the dissertation period, which included the development of the Template Builder,
some lessons were learned. These lessons are:

78 conclusions and future work

• Technology problems. Technologies are always evolving, essentially to enhance
features, add new ones, or to correct some existing problems. The usage of non
standard and not the latest version of a software may bring issues to the development.
It was seen that the fact that zk’s version was not the latest took some problems
that needed some workarounds, which introduced some significant overhead in some
problematic situations. Also, the fact that the Java official implementation of
openEHR was not completed was a big problem, because some differences were not
predicted. Those problems need to be predicted and assumed as a risk to the project,
or to the dissertation in situation, partially when the there is little time to implement
the solution.

• Different time-frames. One of the key factor for this dissertation was the time
variable. In fact, there was a lot of ideas, but there was no time for that. Moreover,
there was a delay between the end of the development of the Preview component (see
Chapter 6 (p. 43)) and the time when the Template Builder development started.
This was a major problem, which made it impossible to have a wysiwyg editor.
However, an asynchronous way of previewing the screen was introduced within the
Template Builder. These time related problems have to be predicted and studied
before the project starts, especially when the dissertation occurs in an industrial
way.

• Industrial issues. Some industrial related issues were already shown. Dissertations
that take place in an industrial environment gain industrial attributes, and are highly
influenced by the culture of the organization. This includes the development process,
which may follow some properties that are a bit incompatible with the time-frame
for the dissertation. For instance, Critical Software develops critical systems, having
a very mature testing phase, which is difficult to balance with the academic and
dissertation interests. However, those interests were balanced as possible to provide
a robust solution.

7.4 Future Work
Although the most important goals were achieved and completed, some further work can
be done. This work include:

• WYSIWYG editor. The integration between the Preview component and the
editor itself is one of the major future working possibilities. The reasons why this
was not done during this dissertation were explained before.

epilogue 79

• UI for rules definition. Currently, rules for change the system behavior are defined
in a xml file, without having the possibility of changing them in runtime with an
editor. An editor for this would be a interesting future work, taking even further the
concept of embrace change.

• Deeply study AUI and GUI design patterns. With the presence of a wysiwyg
editor, it could be possible to study even deeply the aui concept, as well as gui
design patterns. Related to gui design patterns, new patterns could be proposed.

• Empirical Studies. Empirical Studies, particularly with health professionals with
knowledge with openEHR would be a good study in order to improve the quality of
this Template Builder.

These points are the main future work that can be done nearly, and that could be
particularly interesting to this particular industrial case. However, other work could be
also done, like improving visual capabilities using more gui principles.

Even though there is this future work, it is considered that the main goals were achieved,
and that the study made and the solution implemented fits the problem proposed.

7.5 Epilogue
This dissertation started from a proposal by Critical Software to implement a software
component to build templates. But even though the proposal was as much concrete as
possible, the problem was redefined during this dissertation that started by the middle of
November, 2010. The author tried not to become stuck in practical assets, but also the
research and study even further. Not all studied concepts could be applied, but they were
in fact studied.

The way to get to this point was hard: understanding openEHR, and its concepts,
was certainly the most difficult part of the dissertation. This standard is very powerful,
but it also is very complex. Even now, it is not a problem to say that many concepts
behind openEHR were not completely acquired, even though the key points were deeply
studied and understood. The implementation of the solution was not trivial, and took
the most of the time. And those problems that were referred did not allow to implement
things such as a wysiwyg. However, the main goals were accomplished, and that resulted
in a satisfactory work both for the author and the company. Like in Agile methods, an
iterative and constant feedback were a key point to accomplish those goals.

80 conclusions and future work

Nomenclature

ADL Acronym for Archetype Definition Language. It is also an the file extension
in which openEHR archetypes are defined.

AJAX Acronym for Assyncronous Javascript And XML.

AM Acronym for Archerype Model.

AOM Acronym for Adaptive Object-Model.

Archetype OpenEHR artifact that allows to describe clinical concepts.

AUI Acronym for Adaptive User Interface.

DOM Acronym for Document Object Model.

EHR Acronym for Electronic Health Record.

End-user In software engineering, it refers to the group of persons who will ultimately
operate a piece of software, i.e., the expected user or target-user. [Fer10].

Framework Frameworks are reusable software system components that provide a set of
generic functionalities.

GUI Acronym for Graphical User Interface.

HTML Acronym for HyperText Markup Language.

Metamodel In software engineering, it is a model that interprets a set of rules, checking
it against the current system state to verify if it is valid or not.

MVC Acronym for Model View Controller..

OET Template It is a template file extension in which archetypes are referenced inside a
template. These files follow a xml-like structure.

OpenEHR It is a computer standard for clinical knowledge representation [ope07c].

OPT Template An Operational Template is an expanded template, where archetypes are
actually expanded inside the template instead of being only referenced.

Requirement It is a statement that identifies a necessary attributes system in order for
it to have value and utility to a stakeholder [Fer10].

RM Acronym for Reference Model.

SM Acronym for Service Model.

Template OpenEHR artifact that allows to describe specific clinical knowledge, based
on the composition of archetypes, specifying their properties. Templates
often correspond to ui forms.

UML Acronym for Unified Modeling Language [OMG11].

82 nomenclature

URL Acronym for Uniform Resource Locator.

WYSIWYG Acronym for What You See Is What You Get editor. It is an editor
in which the end-user sees immediately, in the same window, what he is
editing.

XHTML Acronym for eXtensible HyperText Markup Language.

XML Acronym for eXtensible Markup Language.

XUL Acronym for XML User Interface Language.

ZK Framework for rich web based application that creates an abstraction over
the Javascript part of ajax. The user only has to focus on business logic
and gui.

ZUL Extension for ZK User Interface Markup Language (ZUML) files.

ZUML Acronym for ZK User Interface Markup Language.

References

[Bar04] David Baronov, Navigating the hidden assumptions of the introductory research methods text,
Radical Pedagogy (2004). Cited on p. 40.

[Bea07] Thomas Beale, openehr: a primer, Slides, 2007. Cited on p. 15.

[Ben] David Benyon, Adaptive systems: a solution to usability problems. Cited on pp. 30 and 31.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal,
Pattern-oriented software architecture, volume 1: A system of patterns, Wiley, Chichester,
UK, 1996. Cited on pp. 4 and 30.

[CC07] Henri Chen and Robbie Cheng, Zk™ - ajax withou javascript™ framework, firstPress, 2007.
Cited on pp. 25 and 26.

[CK07] Rong Chen and Gunnar Klein, The openehr java reference implementation project, 12th
International Health (Medical) Informatics Congress, Medinfo (Brisbane, Australia) (Klaus A.
Kuhn, James R. Warren, and Tze-Yun Leong, eds.), August 20 - 24, vol. 129, IOS, 2007,
pp. 58–62. Cited on pp. 23, 24, 37, and 67.

[CLG+09] Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper Andersson,
Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Marzo Serugendo, Schahram
Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai,
Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi A.
Müller, Sooyong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon
Whittle, Software engineering for self-adaptive systems, Springer-Verlag, Berlin, Heidelberg,
2009, pp. 1–26. Cited on p. 30.

[CNE] CNET, Bento for mac, http://download.cnet.com/Bento/3000-2065_4-175260.
html [Last checked 22 January 2010]. Cited on p. 33.

[DL99] Don Widrig Dean Leffingwell, Managin software requirements, 1st ed., Addison Wesley,
October 1999. Cited on p. 39.

[dMA10] Álvaro Jorge Loureiro de Melo Albuquerque, Estudo de viabilidade de redes sociais como
prática colaborativa interna no banco bpi, July 2010. Cited on pp. 39 and 41.

[ea] Kent Beck et al, Manifesto for agile software development, http:agilemanifesto.org/
[Last checked: 10 January 2011]. Cited on pp. 1, 3, and 4.

[EM03] Kweku Ewusi-Mensah, Software development failures: Anatomy of abandoned projects, MIT
Press, Cambridge, MA, USA, 2003. Cited on pp. 1, 5, and 39.

[Fer10] Hugo Sereno Ferreira, Adaptive object-modeling - pattherns, tools and applications, Ph.D.
thesis, Faculty of Enginnering - University of Porto, December 2010. Cited on pp. 1, 3, 5, 8,
29, 30, and 81.

[Fil] FileMaker, Bento 3, http://www.filemaker.com/products/bento/ [Last checked:
21 January 2011]. Cited on p. 33.

http://download.cnet.com/Bento/3000-2065_4-175260.html
http://download.cnet.com/Bento/3000-2065_4-175260.html
http:agilemanifesto.org/
http://www.filemaker.com/products/bento/

84 REFERENCES

[GG] Andrina Granic and Vlado Glavinic, Functionality specification for adaptive user interfaces.
Cited on p. 31.

[GJT07] Raghu Garud, Sanjay Jain, and Philipp Tuertscher, Incomplete by design and designing for
incompleteness. Cited on pp. 2 and 4.

[HV01] Zaijun Hu and Gerhard Vollmar, Towards xml metamodel patterns for xml data modeling,
Database and Expert Systems Applications, International Workshop on 0 (2001), 0071. Cited
on pp. 5 and 69.

[Inf08] Ocean Informatics, Template designer, 2008. Cited on p. 32.

[Ins08] SEIRAND Institute, An introduction to zk, 2008, http://www.zkoss.org/support/
training/webinar/zkintro.dsp [Last checked: 20 January 2011]. Cited on p. 25.

[iSeS] André Carvalho: iTGrow: Software e Sistemas, Software design, Internal Document. Cited
on p. 4.

[Kru04] Philippe Krunchten, The nature of software: What’s so special about software engineering?
Cited on p. 8.

[Lan] Pat Langley, User modeling in adaptive user interfaces. Cited on pp. 30 and 31.

[LMT] Ocean Informatics Lisa M Thurston, Flexible and extensible display of archetyped data: The
openehr presentation challenge. Cited on p. 37.

[Mah10] Sachin K. Mahajan, Rich internet applications using zk. Cited on pp. 25 and 26.

[mic] Cited on p. 45.

[MMRG04] Neil Maiden, Sharon Manning, Suzanne Robertson, and John Greenwood, Integrating creativity
workshops into structured requirements processes, Proceedings of the 5th conference on
Designing interactive systems: processes, practices, methods, and techniques (New York, NY,
USA), DIS ’04, ACM, 2004, pp. 113–122. Cited on p. 40.

[MS07] Kwak Mi-Sook, Openehr archetype, Presentation, October 2007. Cited on p. 15.

[OMG11] OMG, Unified Modelling Language (UML), 2011, http://www.uml.org/ [Online; accessed
13-July-2011]. Cited on pp. 10 and 81.

[opea] openEHR, The openehr health computing platform, http://www.openehr.org/201-OE.
html [Last checked 13 January 2011]. Cited on pp. 11 and 14.

[opeb] , The openehr health computing platform, http://www.openehr.org/releases/
1.0.2/roadmap.html [Last checked 13 January 2011]. Cited on pp. 23, 44, and 68.

[ope07a] , Archetype definitions and principles, The openEHR Foundation, 1.0 ed., March 2007.
Cited on pp. 14 and 20.

[ope07b] , Architecture overview, The openEHR FoundationopenEHR, 1.1 ed., April 2007. Cited
on pp. 12, 13, 14, 15, 16, 18, 20, 21, and 22.

[ope07c] , openEHR :: future proof and flexible EHR specifications, 2007, http://www.
openehr.org/ [Last checked 14 January 2011]. Cited on pp. 7, 12, and 81.

[ope08a] , The openehr archetype model: Archetype object model, November 2008. Cited on
pp. 19 and 20.

[ope08b] , The openehr reference model: Data structures information model, August 2008. Cited
on pp. 17 and 18.

http://www.zkoss.org/support/training/webinar/zkintro.dsp
http://www.zkoss.org/support/training/webinar/zkintro.dsp
http://www.uml.org/
http://www.openehr.org/201-OE.html
http://www.openehr.org/201-OE.html
http://www.openehr.org/releases/1.0.2/roadmap.html
http://www.openehr.org/releases/1.0.2/roadmap.html
http://www.openehr.org/
http://www.openehr.org/

REFERENCES 85

[ope08c] , The openehr reference model: Ehr information model, August 2008. Cited on pp. 15,
16, 17, and 18.

[opeon] Technology and architecture challenges in UI implementation. Cited on p. 39.

[PA02] Jussi Ronkainen Juhani Warsta Pekka Abrahamsson, Outi Salo, Agile software developement
methods: Review and analysis. Cited on p. 3.

[PS01] Jean-François Quaranta Dominique Fieschi Marius Fieschi Pascal Staccini, Michel Joubert,
Modelling health care processes for eliciting user requirements: a way to link a quality paradigm
and clinical information system design, International journal of medical informatics 64 (2001),
129–142. Cited on pp. 2 and 29.

[PSR07] Preece, Sharp, and Rogers, Interaction design, Wiley, 2007. Cited on pp. 30 and 33.

[Qui08] Raymond Quivy, Manual de investigação em ciências sociais, Gradiva, 2008. Cited on pp. 39
and 40.

[Ram09] Krish Ramachandran, Adaptive user interfaces for health care applications. Cited on p. 31.

[RGI75] D.T. Ross, J.B. Goodenough, and C.A. Irvine, Software engineering: Process, principles, and
goals, Computer 8 (1975), no. 5, 17 –27. Cited on p. 4.

[RY02] Nicolas Revault and Joseph Yoder, Adaptive object-models and metamodeling techniques,
Object-Oriented Technology (Ákos Frohner, ed.), Lecture Notes in Computer Science, vol.
2323, Springer Berlin / Heidelberg, 2002, pp. 149–175. Cited on p. 5.

[Shu] Gary Shute, The nature of software engineering. Cited on p. 8.

[Som04] Ian Sommerville, Software engineering (7th edition), Pearson Addison Wesley, 2004. Cited on
pp. 1, 2, 3, 5, and 39.

[Spa11] Sparx Systems, UML 2 Tutorial, 2011, http://www.sparxsystems.com.au/
resources/uml2_tutorial/ [Online; accessed 13-July-2011]. Cited on p. 10.

[Tid10] Jenifer Tidwell, Designing interfaces, patterns for effective interaction design, 2nd edition.pdf,
O’Reilly, 2010. Cited on pp. 50, 52, and 72.

[TUI05] Tetsuo Tamai, Naoyasu Ubayashi, and Ryoichi Ichiyama, An adaptive object model with
dynamic role binding, Proceedings of the 27th international conference on Software engineering
(New York, NY, USA), ICSE ’05, ACM, 2005, pp. 166–175. Cited on p. 30.

[vGBS01] Jilles van Gurp, Jan Bosch, and Mikael Svahnberg, On the notion of variability in software
product lines, WICSA ’01: Proceedings of the Working IEEE/IFIP Conference on Software
Architecture, IEEE Computer Society, 2001, pp. 45–54. Cited on pp. 7 and 30.

[web] Webster’s online dictionary. Cited on p. 4.

[Wik] Wikipedia, Scrum (development). Cited on p. 41.

[ZK] ZK, Zk essentials for zk 5. Cited on pp. 25, 26, and 45.

[ZW98] Marvin V. Zelkowitz and Dolores R. Wallace, Experimental models for validating technology,
Computer 31 (1998), 23–31. Cited on p. 42.

http://www.sparxsystems.com.au/resources/uml2_tutorial/
http://www.sparxsystems.com.au/resources/uml2_tutorial/

