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Abstract

The aim of this MSc thesis was to develop a parallel program to predict radio signal

losses, in a given area.

The program used the Irregular Terrain with Obstructions Model (ITWOM ), in

order to obtain the loss prediction for each of the points around a fixed transmitter.

The ITWOM is a correction, published in 2010, of the most widely used algorithm

for radio signal prediction: the Longley-Rice Model.

The implementation encompassed the following stages: extraction of terrain el-

evation data, computation of the radio losses, and display of the graphical output.

A serial program was first created, and then adapted to be run in parallel, using

a multi-core processor with Hyper-Threading. With OpenMP, it was possible to

obtain performance improvements up to 500%.

Parallel possibilities were also exploited for CUDA, the technology provided by

Nvidia to support general purpose computation on their graphic cards. Memory

restrictions and other obstacles imposed by the GPU, which prevented a successful

adaptation, are documented in this report.
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Chapter 1

Introduction

Radio waves are highly dependent on the physical media in which they travel. Many

phenomena such as reflection, diffraction, scattering and absorption are originated

by the characteristics of the atmosphere and of the geosphere. The understanding

of these effects needs to be considered in the design and planning of radio commu-

nications systems. Such systems are found in military operations, television and

radio broadcasting, amateur radio, wireless networks and many other fields that use

communication links based on radio waves.

Prediction of radio propagation focuses on forecasting the signal strength of a

receiver within a communication link. This is used in order to allow the designer

to confirm in advance if his system will operate correctly. As the name indicates,

there is no guarantee of a predicted value to match the value in reality. In fact,

the exact result of the signal received can only be obtained by on-site experience

on the side of the receiver. However, the option of performing on-site experiences

is inconceivable for many cases as it would be too expensive in terms of time and

money. Therefore, a prediction model becomes absolutely necessary when, given

a certain area, the communications engineer wants to prognosticate the signal loss

between many combinations of two locations (transmitter and receiver). Based on
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1 Introduction

the results of these predictions, the engineer is able to infer how efficiently and

under which constraints his communications would work on that same area. In the

example of the military operations, the strategic locations to place the transmitters

and receivers are decided in advance, in order to achieve a good communication

system.

A propagation model returns the signal received as a function of the signal ra-

diated, the distance, and other variables between transmitter and receiver. These

models are often composed by deterministic functions based on electro-magnetic

theory as well as empirical formulations and, in some cases, statistical methods.

The empirical and statistical parts are very important in propagation modelling due

to the innumerable variables that affect the radio waves. These variables can be

the forestation and buildings in the area, water vapour in the troposphere, type of

soil, irregularity of terrain, and many other factors in the physical world. Because

of this high variability and complexity, in order to increase the reliability of results,

functions based on experiments and statistics are used to complement the physics

equations (Seybold [2005]).

There is a vast number of models used in different physical environments and

wave frequency bands. This thesis is focused in ground-based (near-earth) commu-

nications where the main propagation occurs near to the ground. The frequency

bands considered are VHF (very high frequencies) and UHF (ultra high frequen-

cies). The total range of these band designations goes from 30MHz to 3GHz and it

is widely used in the most common systems of radio communication. In this range,

when line of sight exists in the link, the signal strength is essentially calculated

through Free-space path loss. If obstacles like mountains or buildings are present

between the devices (transmitter and receiver), other electromagnetic propagation

modes such as diffraction, refraction and multipath reflections occur and influence

the final signal loss on the side of the receiver.

Hereafter, on a high-level, the term radio signal strength shall be used to mean

radio path loss and vice versa. Both terms represent the desired ouput of a prediction
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1.2 Thesis Goals

of radio propagation and they complement each other. The power radiated by the

transmitter is reduced (attenuated) until it reaches the receiver. To this reduction we

call it loss or attenuation, which, subtracted to the power radiated by the transmitter

gives the signal strength on the side of the receiver. Therefore, in spite of having

different values, both kinds of output are interpreted for the same purpose on the

radio propagation model.

1.1 Thesis Goals

The requirements for this project consisted in developing a parallel program to

calculate the radio loss from a fixed site into an area. The used radio propagation

model should be suitable for military operations. This context implies near-earth

communications with frequencies somewhere in the VHF or UHF bands. Moreover,

the calculated areas should be of rural type and with dimensions between 10*10 km

and 120*120 km. One additional requirement was that the program would have to

be run in ordinary desktop or laptop computers, instead of large supercomputers

and other distributed systems that would not fit for military operations.

The chosen model was the ITWOM (Irregular Terrain with Obstructions Model)

Shumate [2010]. This model is a recent update of the most popular radio propagation

model, the Longley-Rice Model Longley and Rice [1968], and is in entire compliance

with the given requirements.

A serial version of the program had to be developed and then modified to be

run in parallel in order to compare the performance of the execution time and

the accuracy of results. The parallel possibilities of the program were exploited for

multi-core processor architectures as well as general-purpose computing on Graphical

Processing Units (GPGPU ). One additional goal was to analyse the constraints of

modifying the source code of the used model, so it could work in both of these

technologies.
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1 Introduction

1.2 Literature Review

Summaries of the most commonly used models for radio propagation prediction

were compiled by Seybold [2005]. In his book, the near-earth models are divided in

Foliage, Terrain and Built-up Areas modelling. The former section refers to models

in which vegetation has a major influence in the loss of radio signal such as in the case

of forests. The Built-up Areas section is related with urbanized areas where buildings

have to be taken into account for predicting radio propagation. The Terrain section

contains three models that have the terrain heights as the main factor for the result

of the predictions: the Egli Model by Egli [1957]; the ITU Model, which is a result

from several studies on diffraction theory available from the Radiocommunication

Sector ITU (International Telecommunications Union) publications; and finally, the

Longley-Rice Model described in [Longley et al., 1967, Longley and Rice, 1968].

The Longley-Rice Model is by far the most widely used of the above-mentioned

Terrain models. Officially called Irregular Terrain Model, it was described in the

late 60’s by the U.S. agency NTIA (National Telecommunications and Information

Administration) from the ITS (Institute for Telecommunication Sciences). The

model has undergone several changes over time, and the latest version of the al-

gorithm (1.2.2) described by Hufford G. is freely available on the NTIA website

(of Commerce NTIA/ITS). A useful guide of this version can be found in a re-

port by Hufford et al. [1982]. Another helpful publication concerning the use of

the algorithm was made by Weiner [1986] who discusses its modes of propagation

and input parameters. Chamberlin and Luebbers [1982] provides useful description

of the Longley-Rice model and some clarifications when comparing it with GTD

(geometrical theory of diffraction) propagation models.

A considerable amount of literature in parallel radio propagation prediction has

been published for urban areas and indoor spaces, using supercomputers to support

the calculations. The motivation for such studies was driven by the high compu-

tational requirements of the cellular phone networks. Very recently, several publi-

cations were made regarding exploiting the GPU capabilities for radio propagation
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1.3 Existing Software

calculations. In the specific area of radio propagation prediction, Bai and Nicol

[2010] used GPGPU to accelerate an indoor model for wireless networks.

In the University of Arizona, Song et al. [2009] published data and function

partitioning possibilities for the ITM and achieved successful performance results

using the IBM Cell Broadband Engine Processor. Very recently, Song and Akoglu

[2011] published a comparison between the CELL BE Processor and the GPGPU

for the parallel version of the Longley-Rice model. Parallelisation strategies were

defined, and experiments were carried around the global and shared memory of

the device. The performance tests lead to the conclusion that the GPGPU device

is the best platform to support the computation of the algorithm. These studies

were focused in the point-to-point mode of the ITM and their tests were made in

order to calculate the reference attenuation, excluding the statistical part of the

algorithm. This last part returns the probabilistic confidence on the output of the

algorithm, adding more calculations and variables to the program. However, this

leads to performance decreasing and it is not always required by the users. For this

reason, Song Y. et al. only considered the reference attenuation, which represents

the main output of the model.

Shumate [2010] concluded that the diffraction calculations in the ITM are in-

accurate for ranges in the line-of-sight. In this work, incorrect functions as well

as the incompleteness of the model are reported. Combining the best of the ITM

with ITU recommendations and other radio propagation laws, Shumate released the

source code of his new model ITWOM, considering it, in his article, the “first truly

point-to-point, terrain-specific international radio reception signal strength predic-

tion model”.

1.3 Existing Software

As part of the research stage of this project, some software packages having similar

functionalities with the program required by this project, were tested. From these
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1 Introduction

solutions, the Probe 4 [V-Soft Communications, Version 4.2] was found to have the

same feature of the program to be developed: it uses the Longley-Rice implementa-

tion provided by NTIA to predict radio loss over an area. The user enters the inputs

required by the ITM, chooses a location to put the transmitter and finally calls the

program to calculate the losses. The program then plots coloured zones (each with

different intervals of loss values) on the map around the transmitter (figure 1.1 shows

an example of this output). However, this program is not open-source and thus, it

only contributed with a user perspective for the development stage of this thesis.

Nevertheless, another program with similar features was found to be very helpful:

SPLAT! [Magliacane, Version 1.4.0 (2011)]. This program was released under the

GPL (General Public License) and its importance for this project is described in

chapter 3.

Figure 1.1: Example of a Longley-Rice coverage map on Probe 4, for an area in the
state of Michigan, U.S. (retrieved from V-Soft’s website)

1.4 Thesis Organisation

The high-level description of the Irregular Terrain Model can be found in chapter 2,

as well as the modifications introduced by the Irregular Terrain with Obstructions
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1.4 Thesis Organisation

Model.

The design and discussion of the serial program, that applies the above-mentioned

models in a given area, are documented in chapter 3.

Chapter 4 presents the design strategies and performance results of the Multi-

Core parallel approach (4.1). The ideas behind the GPGPU adaptation to our pro-

gram are also described in 4.2, as well as the limitations that prevented a successful

implementation.

The conclusions drawn from both serial and parallel implementations are sum-

marised in chapter 5. In this chapter, it can also be found a set of ideas for future

work.

Finally, the appendix, with the averaged computational times of the implemen-

tations is presented at the end of this report, followed by the references used for this

project.
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Chapter 2

Irregular Terrain Model

This section describes the relevant aspects of the Longley-Rice Model (ITM ), for

better understanding of the program developed in this project. This model can be

used in two modes: the area prediction mode and the point-to-point mode. The

former, rather than using specific values of the elevations of the terrain, uses es-

timations in order to predict the signal strengths for the whole area. The latter,

receives as an input the exact elevation points (terrain heights) between the trans-

mitter and the receiver, returning a more accurate result. The area prediction mode

takes much less computation and execution time that the point-to-point. However,

the reliability of its results is not sufficient for many users, when comparing it with

the latter. For this reason, this project only made use of the point-to-point mode.

The corrections and limitations that came with the recent Shumate’s ITWOM

Shumate [2010] are also summarized below.

2.1 Longley-Rice

The Longley-Rice model is a general purpose radio propagation model and it is

widely used for ground-based predictions, based on the terrain characteristics of
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2 Irregular Terrain Model

an area. It is based on electromagnetic theory as well as on statistics determined

from experiments (on-site radio measurements) carried out by the American agency

NTIA/ITS in the 60’s. This same agency provides in their website the implemen-

tation of the model (algorithm) in the C++ programming language.

2.1.1 Inputs

The model (in the point-to-point mode) receives inputs related with the antennas,

the characteristics of the surface, the climate and the heights between the source

and the destination. It also receives two values associated with the statistical part of

the model: reliability and confidence. Although the explanation of each parameter

being considered to be out of the scope of this document, the subsequent list can

provide one idea of the dimension of the algorithm:

1. Elevation points between transmitter and receiver.

2. Distance between transmitter and receiver.

3. Antenna’s heights and polarisation.

4. Frequency of the wave.

5. Surface Refractivity of the atmosphere

6. Relative permittivity of ground

7. Conductivity of the ground

8. Climate type (Climate codes categorised in the model, including Equatorial,

Continental Temperate, Maritime Temperate, etc.)

9. Reliability of the variability (see 2.1.4)

10. Confidence of the variability (see 2.1.4)

10



2.1 Longley-Rice

From these inputs, the model calculates many other variables to be used on the

computation of the final output. There is a total of 32 variables of type double

initialised in the algorithm. Additionally we have the elevation points (array of dou-

bles) that, for large areas, can represent a big issue in terms of memory management

in the program.

2.1.2 Prediction Methods

With the input variables mentioned before, the algorithm creates the terrain profile,

which consists in the elevations of the transmitter and receiver (including antennas

heights) and also of the points in between.

Based on the profile of the terrain, the algorithm initially calculates two types of

distances: the line-of-sight distance (dL) and the scatter distance (dx). Depending

on the distance between the receiver and the transmitter, the Longley-Rice model

uses one of three prediction methods. Each of these methods are represented in the

source code by a sequential function that returns the final output of the program.

Therefore, for each execution, only one of these functions is called by the program.

The value of the distance on the receiver (dr) is in one of the following intervals:

• Line of Sight zone (dr < dL) - If the receiver is on the line-of-sight of the

transmitter, i.e., the former is on the radio horizon of the latter and there are

no obstacles in between, the model calculates the reference attenuation using

two-ray multipath (a set of optics formulas).

• Diffraction zone (dL < dr < dx) - After the line-of-sight distance and before the

scatter distance, electromagnetic theories related with diffraction phenomena

are used to calculate the attenuation.

• Forward Scatter zone (dr < dx) - If the receiver is located in this region, the ref-

erence attenuation is calculated according to empirical algorithms determined

by Longley et al. [1967].

11



2 Irregular Terrain Model

2.1.3 Main Output

The main output of the model is the reference attenuation on the receiver, which

represents the median loss relative to free space. This free space loss is the reduc-

tion in signal strength of any electromagnetic wave, when the propagation medium

between the source and the destination is the air. It it is calculated as a function

of frequency and distance from the transmitter. On the other hand, the reference

attenuation encompasses all the losses related with factors other than the free space

loss, such as climate conditions and obstacles between transmitter and receiver.

If we add the reference attenuation to the free space loss, we obtain the total

transmission loss on the side of the receiver, which is often the value required by the

designer of the communication system. For this reason, the ITM algorithm provides

the option to add the free space loss to the calculated reference attenuation.

2.1.4 Variability

Since the output described before represents a median value, the Longley-Rice Model

provides the possibility of categorise the variations based on two variables introduced

by the user: confidence and reliability (values between 1% and 99%). The expla-

nation of this two terms in this context, can be found on Hufford et al. [1982, page

36]. These values are related with the variance of the calculated median loss that

the radio system would notice during its use (over a period of time). If the given

percentages of reliability and confidence are high, the system would likely observe

loss values close to the one returned by the algorithm.

This part of the algorithm was discarded in the experiments made by Song

et al. [2009], Song and Akoglu [2011], who only considered the main ouput of the

model. The function that adds this variability factor to the main output contains

67 variables of type double, which requires a much higher demand of memory from

the program using the algorithm. In addition, this function adds more execution

time, leading to general performance decreasing.
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2.2 ITWOM

2.2 ITWOM

The model used by this thesis in both serial and parallel programs was the ITWOM,

which consists in a significant update to the Longley-Rice Model made by Shumate

[2010]. This model was implemented in C++ and replaces several subroutines of

the ITM, without changing the input-ouput structure of the old model. This was

made in order to permit the existing software solutions that use the ITM, to easily

test with minimum refactoring, the new ITWOM.

According to Shumate, the ITM decreases its accuracy for terrain databases with

less than a 30 arc-second scale. Moreover, its source code does not fully implement

the features in Longley and Rice [1968] and has many deficiencies in the calculations

for the diffraction zone. Finally, his work describes that many math errors and

outdated approximations are found in the ITM. Apart from having these issues

corrected, the ITWOM contains more accurate calculations for the line-of-sight

zone, due to the including of several electromagnetic laws and theories.
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Chapter 3

Serial Program

The program developed for this thesis returns the predicted radio losses in a given

area. It receives as inputs the elevation files of that indended area, the necessary

parameters for the propagation model, and the location of the transmitter. Having

the transmitter always located in the same site, the program repeatedly uses the

point-to-point algorithm (ITWOM ) to return the radio loss of each point around

the transmitter.

The design, as well as some implementation parts, were essentially based on the

open-source program SPLAT! [Magliacane, Version 1.4.0 (2011)] which is imple-

mented in C language. Like SPLAT!, the computational part of this program was

also implemented in C, having C++ been used for reading the elevation files. It was

decided to use object oriented programming to read the elevation files because it

was considered as source code that could be “re-used” for other kinds of programs.

Regarding the computational part, as it follows a procedural structure without the

need for objects, it was implemented in C. In fact, to change it to C++, we would

only have to replace the functions memalloc and printf from the C standard library,

with new and cout. One additonal reason for using C functions in this part, was

related with a prospect of adapting the code to be run on the GPU (using CUDA).

15



3 Serial Program

As this project aimed to study the possibilities of parallelising a program of this

kind, other issues such as robustness and scalability were considered out of scope.

Although the tests presented in this document have been carried out in Windows,

the serial program also works in Linux, due to the use of standard C/C++ equally

compiled by Visual Studio 2008 and gcc. The CPU used was the Intel Core i7-860S

Processor.

The subsequent sections explain the functioning of the program and present a

discussion around the results obtained.

3.1 Design

The design of this program was based on the “Plot Longley-Rice Map” feature

present in SPLAT!.

On the first stage, the program reads the elevation files of the area and allocates

them on memory. It then computes the losses for the whole area and writes the

output into a file. Finally, the program plots the results displaying a coloured map.

Figure 3.1 represents a high level sequencial structure:

Figure 3.1: General structure of the serial program

Hereafter, both the terms site and point will be used to represent a location,

which is a pair of cartesian coordinates (longitude and latitude).

16



3.1 Design

After having the elevation values on memory, the program receives the location

of the transmitter, which can be located anywhere inside the limits of the given

area. For each point in the 4 edges (North, East, South and West), a structure ray

is created to store all the relevant information between these points and the source

(site where the transmitter is located). This structure contains the coordinates and

the elevation values of all the points found between the source and the point in

the edge. The way these points are obtained is explained in 3.1.2. Figure 3.2 is

presented to help the understanding of the functioning of the program, on a high-

level: This figure shows black lines connecting the source point to several points in

Figure 3.2: Illustration of the functioning of the program

the North Edge. These lines represent the rays of points that will be processed, in

order to calculate the radio losses in each of them. In spite of figure 3.2 being only

illustrating lines connecting part of the North points to the source, the program

calculates the rays for all the points in the 4 edges (in order to cover all the area).
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3 Serial Program

3.1.1 Read Terrain Data

The terrain data used was SRTM (Shuttle Radar Topography Mission) files with

resolution of 3 arcseconds. The Shuttle Radar Topography Mission [National Aero-

nautics and Space Administration, and National Geospatial-Intelligence Agency,

Version 2.1] was created from an international cooperation between the American,

German and Italian Space Agencies and resulted in the most complete and accurate

topographic database of planet Earth. Figure 3.3 shows the World Map with the

regions that have available SRTM elevation data. It can be seen that the values of

Figure 3.3: World Map with SRTM tiles - available on SRTM Website

the Latitude are negative in the South and positive in the North parts of the World.

In the case of the Longitude, the values are positive for the East and negative to

the West parts. This methodology is used in this program, as opposed to the one

that identifies the coordinates by a positive value and the direction. For example,

(40; -50) is used instead of (40N; 50W).

Figure 3.4 is a result of zooming in the previous map for the areas of Ireland and

Great Britain.

Each SRTM file stores the elevation values for a tile of 1 by 1 degrees. these

tiles are represented by the squares in both figures. The 3 arcseconds scale indicates

that each file is composed by 1200 * 1200 points with approximately 3 ∗ 1/(60 ∗ 60)
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Figure 3.4: SRTM tiles in the areas of Ireland and Great Britain

degrees between each of them, which is equivalent to 90 meters in the UK (due to

the Earth not being a perfect sphere, the distance in function of the angle is not

constant).

The function that reads the elevations receives as input the coordinates from

the southwest and northeast corners of the intended area. Subsequently, it searches

for the required SRTM files, stores them temporarily on memory and returns a

bi-dimensional array with the needed elevation values. This array of points will be

further used in the computation section, which will then return the loss value for

each of these points. Figure 3.5 helps the understanding of this part. The squares

Figure 3.5: Illustration of Read Terrain Data section of the program

in half-tone gray represent the SRTM files that are read and temporarily stored in
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memory. From all these points, only the ones in the darker gray area are returned

for the computation (thus being the only structure remaining on memory).

3.1.2 Computation

As stated before, one ray is a structure containing the points between the source

and one point of the edge. Figure 3.6 illustrates one example for a representative

area of 8 per 8 points, in which the source is located in the centre and the last point

is in the northeast corner.

Figure 3.6: Illustration of a ray structure

From each pair of source and destination (point in the edge), it is necessary to

find the best fit for each of the intermediary points. For this purpose, the function

ReadPath was taken from SPLAT!. It represents the only portion of source code

of this open-source software that was used in our program. This function uses

geographical calculations based on the longitude and latitude values of the points.

Due to its complexity, the explanation of its functioning was considered outside the

scope of this thesis. As shown in figure 3.7, if we draw a straight line between source

and destination, it will not match with many points. This is the inevitable constraint

of simulating 360◦ propagation around a point in a grid. Due to not being possible

to model the reality in a perfect way (one needs approximations), this “best-fitting”
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techniques are often used by all kinds of coverage problems.

Figure 3.7: Illustration of the overlaping with multiple rays

One of the consequences of this geometric approach is the overlaping of points

in the rays, that is, each ray will store points that will also be stored by its “neigh-

bours”. These overlaps are naturally more accentuated in the points near to the

source. As it is further explained in this section, the program uses the propaga-

tion algorithm to calculate the radio losses for the points of each ray, often leading

to different results for each location (due to the previously mentioned overlaps).

Therefore, the order in which the rays are processed will influence the final result.

However, this does not influence the final purpose of our program, because there

is no such thing as a 100% correct result in prediction problems. Moreover, if this

order is changed, the variation in results is never significant for the final user.

Another consequence is that a lot of points near the edges (specially in the

corners) will not be processed and, therefore, a radio loss can not be obtained for

those locations. This does not become a problem if the user requests the program

to process a slightly larger area than the one intended in reality. The understanding

of these two consequences can be helped by the graphical output of our program,

shown in Section 3.1.3.

In the case of figure 3.6, our program will iterate over the 4 points (does not

consider the source) calling the ITWOM to obtain the radio loss for each of them.

Each time the propagation algorithm is called, it receives the source (always con-
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stant), the destination (point in which the loss is returned) and the elevation points

between. In the example of figure 3.8, considering the 3rd iteration, the source is

the point 0 and the destination is the point 3. Therefore, based on the terrain in-

formation provided by the elevation values in the points 1 and 2, the algorithm will

return the radio loss for the point 3. Using big-O notation, we can conclude that

Figure 3.8: Illustration of iterations in a ray

the program will call the radio propagation algorithm O(n-1) times for each ray.

If the area corresponds to an entire SRTM tile (1200 * 1200 points), having the

transmitter on the centre, we trivially notice that the ray with greater length corre-

sponds to an approximation of
2
√

6002 ∗ 6002, which gives 849 points, and therefore,

848 calls to the algorithm. The number of rays is given by the sum of all the points

in the 4 edges (the corners are not repeated): 1200 + 1199 + 1199 + 1198 = 4796. It

can be seen that, for an area of this dimension, the computations are quite demand-

ing, both in terms of execution time and memory, since a complex algorithm needs

to be called more than 3 million times. More details regarding this subject can be

found below in the Results and Discussion section (3.2).

3.1.3 Plot Results

After computing each ray, a global bi-dimensional array (global losses) is updated

with the correspondent results (radio losses). When there are repeated points in

the “neighbouring” rays, we have different results overwriting the same positions in
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global losses (as stated before, this is not a concern for our program). Subsequently,

when the program finishes the processing of all the rays, the global losses is entirely

written into a file (.txt). The program then calls Gnuplot [Kelley and Williams,

Version 4.4.3] which produces the graphical output. Figures 3.9 and 3.10 are ex-

amples of the output of our program for an arbitrarily chosen area with dimensions

of 1200 per 1200 points, located near Vyatka, Russia (transmitter is located in the

centre point). In the left and bottom we have the dimension (number of points)

of the area, and on the right, the radio loss values (in decibel, as returned by the

propagation algorithm) which determines the colour value.

Figure 3.9: Example of graphical output with multiple colours. Transmitter located
in (58N, 48E). Area (1200*1200 points) located near Vyatka, Russia.

The previous figure is composed by multiple RGB (Red Green and Blue model)

values that gradually vary around the main colours: Green, Yellow, and Red. How-

ever, this figure is here presented only to better show the characteristics of the loss

results. What the users often require for an output is a graphical model composed
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of 3 colours as shown in figure 3.10.

Figure 3.10: Example of graphical output with 3 colours. Transmitter located in
(58N, 48E). Area (1200*1200 points) located near Vyatka, Russia.

The green colour indicates the zone where the receiver would work with a maxi-

mum level of confidence. The zone in yellow, as an intermediary between green and

red, usually means that the radio system would work but with less confidence. If

the receiver is located in the red zone, most likely the communication link would

not work. All of this is decided by the user, who determines the intervals of radio

losses that should correspond to each colour. In the case of figure 3.10 the intervals

were the following:

loss < 120 Green

140 < loss < 150 Yellow

loss > 150 Red
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3.2 Results and Discussion

3.2 Results and Discussion

After the completion of the serial program, performance tests were carried out for

the example shown by figures 3.9 and 3.10. The antenna’s heights and frequency

were arbitrarily chosen, while the other parameters were taken from an example in

the documentation of the Terrain Analysis Package software [SoftWright, Version

6.0]. It was prefered to rely on the documentation of a commercial software in order

to get a normal behaviour from the algorithm, since it is very sensible to the entered

parameters. This sensibility exists due to the fact that great part of the model was

based on experiments, which means that any combination of unrealistic input values

will result in unexpected behaviour and possibly errors. The parameters used for

the ITWOM were the following:

Variable Meaning Value

eps Relative permittivity of ground 15.0

sgm Ground conductivity 0.005

en0 Surface refractivity 301.0

pol Polarisation 0 (horizontal)

klim Climate Code 5 (Continental Temperate)

rel Reliability 0.99

conf Confidence 0.99

hg1 Height of transmitter antenna (m) 10.0

hg2 Height of receiver antenna (m) 10.0

frq Frequency (MHz) 50.0

The validation of the results is not straightforward since it is not possible to

obtain exactly correct values for the predicted losses and, the domain of output

values is very large. Moreover, the existing software packages do not provide the

output values, except by graphical plots of the coverage zones. Using the same

parameters, area and location of transmitter, the output verified with SPLAT! is

shown by figure 3.11.
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Figure 3.11: Example of graphical output in SPLAT! with 3 colours. Transmitter
located in (58N, 48E). Area located near Vyatka, Russia.

However, it was only possible to run a previous version which does not contain

the ITWOM (as all the current commercial software packages), and therefore, the

figure corresponds to results returned by the old ITM. Moreover, because of the

several differences on the way our program plots the data and the one found in

SPLAT!, it was not possible to compare the validity of the returned radio losses

with this or any other existing software solutions. Nevertheless, the arrangement of

the green, yellow and red zones (figures 3.9 and 3.10) gives a good indication for the

successful functioning of the ITWOM algorithm.

It can be noticed that the graphical output differs greatly between the two models

due to the ITWOM arguing that the diffraction losses (found in areas behind terrain

obstacles) were not being correctly calculated by the ITM (they should have greater

values). Consequently, in the latter we find a monotone decrease of loss from the

centre to the edges, whereas in the former we have red before the yellow zones, which

corresponds to the areas near the obstructions (hills or mountains), in the opposite

side of the transmitter.

For the area and parameters described before, the following computation times

were obtained in Windows with the above-mentioned Intel Core i7-860S :

The first column indicates the number of total elevation points processed, whereas

the second corresponds to an aproximation of the area dimensions for that part of
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Number of points Area Dimension(km) Computation time

1200*1200=1440000 108*108 54.76525 s
1000*1000=1000000 90*90 35.93775 s

800*800=640000 72*72 20.285 s
600*600=360000 54*54 10.1565 s
400*400=160000 36*36 4.207 s
200*200=40000 18*18 0.98075 s

Table 3.1: Serial Implementation - Average Computation Times.

the Earth (distance between each point is roughly 90 meters). These computation

times are averaged values obtained from 4 executions each. It can be seen that per-

formance is not a concern for 200*200 km areas. On the other hand, from 4 seconds

on (400*400 km), the overall execution time starts to be a negative issue for the

user, specially in the larger areas.

Figure 3.12 presents a chart with the time divided by total processed points. This

chart shows that the computation time per point increases (almost linearly) with

the number of data processed, that is, for larger areas the performance degrades.

The memory management, i.e, storing and overwriting very large arrays, is the most

likely reason for this.

Figure 3.12: Chart with Times per Point of serial implementation
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Figure 3.13 shows that the distribution of execution time is not the same for

small and larger areas.

Figure 3.13: Execution time distribution for 108*108 km and 36*36 km areas.

Reading the terrain files is not an issue for larger areas as it is the writing and

plotting the output. In fact, writing values into a file and then use a software

(Gnuplot) to plot it, is not a good approach for presenting graphical output of

large data. SPLAT!, for example, writes directly the loss results into a portable

pixmap image file (.ppm), which is faster than as in our program (although the

user as to manually open the .ppm files). Apart from this, there are many other

ways to improve this part of the program. However, this thesis focuses only in the

computation which, as it can be seen on figure 3.13, represents the largest share of

the total execution time.
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Chapter 4

Parallel Program

The correct approach to improve the performance in the computation is to exploit

data partitioning. It is proved by the serial profiling found in chapter 3 that the

execution time increases exponentially with the increasing area dimensions and,

consequently, with the number of rays to be processed.

This chapter presents two solutions to parallelise the implemented serial program:

one using OpenMP (version 2.0) technology for multi-core processing and the other

using CUDA for GPGPU. This section discusses the results obtained in the first

solution and explains the nonachievement of the GPGPU implementation. A brief

introdution to Hyper-Threading can also be found in this chapter, as the tests were

carried on a machine with this technology.

4.1 Multi-Core Approach

4.1.1 OpenMP

OpenMP was the technology chosen for the multi-core solution due to its simplicity

and consistency in supporting multi-threading, as well as portability and recognition

by most of the “small-scale” shared memory systems.
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The OpenMP API is composed by compiler directives, environmental variables

and library routines that can easily be added to working software, only with minor

changes on the original source code [OpenMP Architecture Review Board, Version

3.0 (2008)]. With these preprocessed directives, new threads can be created in

runtime from the main thread (master) of the program, in order to process sections

of code independently. Using the fork/join design pattern, OpenMP also allows

to share an iterated data structure in order to divide the computation of its data.

However, it is the responsability of the developer to ensure the correctness of the

loop and used clauses, in order to avoid concurrency inconsistencies and other errors

originated by inconvenient shared variables.

In this implementation, Microsoft Visual Studio 2008 was used due to its built-

in support for version 2.0 OpenMP, which permits the processing of its clauses and

directives by Visual C++ compiler (thus avoiding time consuming setups).

4.1.2 Hyper-Threading

Hyper-Threading is a technology developed by Intel for their recent processor fam-

ilies. It was created to enhance the performance of multi-threaded applications by

presenting a single physical core as a pair of virtual processors to the operating

system (which must be specifically optimised for Hyper-Threading). This feature is

transparent to the operating system as well as to the programs running on it, that

is, the logical/virtual processors are treated as if they were physical cores.

The reason that aroused the creation of this technology is simple: in a middle

of a task, the processors very often become stalled due to memory access or data

dependency (waiting for used resources), wasting their execution resources in these

periods of waiting. With Hyper-Threading, the execution resources of one physical

processor are duplicated, creating the possibility of having 2 streams of instructions

for each core. These streams are still executed one at a time, but their switching

is made in a way that takes advantage of the latency periods that might occur in

each task [Pessach, 2005]. Therefore, the performance improvement provided by
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this technology highly depends on the characteristics of the software. In fact, the

best results are achieved for multi-threaded programs (using OpenMP for example)

where threads share very few resources [Tian et al., 2002].

4.1.3 Parallelisation Strategies

The execution time increases with the dimensions of the area, making it necessary

to distribute the data processing across the available threads.

It is not possible to partition each ray because, from the source to the edge, the

calculation of the loss in each point depends on the elevation of the previous points.

However, the calculations are independent from ray to ray. Therefore, the strategy

is to distribute all the rays of the area and write the results obtained into a single

global structure located in memory. As there are several results being overwritten

in the same location of this global structure, the order in which the threads return

will influence the final results. However, as it is explained in 3.1.2, this does not

represent a problem in our case.

In the serial program, 4 for loops are used to divide the computations by the 4

edges. This is because the iteration over the edges is different for each of them: for

the North and the South, the longitude is incremented and the latitude is constant,

while for the East and the West it happens the reverse. For the same purpose, a

single for loop could also be used, having 4 nested if statements, but it could not

exploit the OpenMP directives as well as the first form.

Two approaches using OpenMP, hereafter called of “parallel for” and “sections”,

take advantage of two different directives provided by this technology.

Figure 4.1 illustrates the first approach, that made use of the parallel for direc-

tive. The data processed in each of the 4 loops is partitioned across the available

threads. The number of threads is previously defined by the omp set num threads

routine.

The second approach (figure 4.2 uses the sections directive to assign a thread

to each of the loops. Therefore, this approach needs 4 threads to compute the rays
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that connect the source to each edge. As it is discussed in 4.1.4, this happened to

be the best solution due to the characteristics of the hardware used.

Figure 4.1: Illustration of OpenMP “parallel for” strategy

Figure 4.2: Illustration of OpenMP “sections” strategy

4.1.4 Results and Discussion

This multi-core approaches were executed in the same machine as the serial pro-

gram, using the Intel Core i7-860S Processor. This CPU is composed by 4 physical

cores, each with Hyper-Threading technology, therefore providing a total of 8 logical

processors.
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Figure 4.3 shows the speedup for the first parallel strategy. For large areas,

the program takes advantage of the logical processors up to 7 threads, despite of

the speed-up being a logarithmically increasing funcion. OpenMP is not able to

distinguish the virtual from the physical cores. Therefore, it is not possible to

assign the first 4 threads to the 4 physical separated cores and then use virtual

processors with the remainder (which could lead to increased performance if the

user chooses to use only 4 threads). Nevertheless, when computing large areas,

Hyper-Threading becomes a very positive influence for this program. The speed-

up decline when adding the 8th thread, is due to the operating system tasks and

Visual Studio 2008 being using the resources of one logical processor, during the

execution of our program. For small dimension areas, however, this approach only

improves the performance until 5 threads. Consequently, we infer that the overhead

of spawning more than this number of threads becomes an undesired effect when we

have less data to be computed.

Figure 4.3: Chart with Speed-up in “parallel for” strategy

Figure 4.4 shows the speed-up obtained with the “sections” approach for different

area dimensions. It can be seen that the initialisation overhead of the 4 threads only

affects the speed-up in the smallest areas (18 * 18 km). Nevertheless, as it can easily
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be observed in figure 4.5, this solution is better than the previous for all dimensions,

having a constant speed-up of approximately 5.5.

Figure 4.4: Chart with Speed-up in “sections” strategy

The inconvenience found in the “parallel for” approach is the fact that this

directive uses fork/join for each loop. This overhead in spawning threads and joining

them in the end, only happens once in the “sections” strategy. Consequently, the

former has worse results than the latter for the hardware used. On the other hand,

it can easily be infered that, with a CPU equipped with more than a certain number

of physical cores, the “parallel for” would overcome the “sections” approach for large

areas.

It is important to note that this program used dynamic memory allocation for

the rays, unlike SPLAT!, which declares static arrays with a fixed size determined

by the user, during its installation. In fact, this software asks the user to choose

the memory he is willing to dedicate to the computations: 25MB for a maximum

dimension of 2400 * 2400 points, 52MB for 3600 * 3600 points, and so on.

Apart from the inconveniences found in using static allocation for large arrays, if

the radio losses are being calculated for a small area, SPLAT! wastes a lot of unused

memory. Moreover, during our implementation, it was possible to conclude that

using either one or the other way of allocating memory does not affect performance.
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Figure 4.5: Comparison between speed-up in both “parallel for” and “sections”
strategies

Finally, it is worth mentioning one problem that occurred during the imple-

mentation of this parallelization. The propagation algorithm was returning infinite

results for some locations, resulting in the graphical output presented on the left

side of figure 4.6. This unexpected behaviour, after some time consuming debug-

ging, was found to be due to some variables in the ITWOM being declared as static.

The address space of these variables were therefore being shared by the threads, and

the problem was solved by simply deleting their static declarations.

4.2 GPGPU Approach

The repeated use of the radio propagation algorithm for thousands and some times

millions of points, represented a likely opportunity to take advantage of general-

purpose GPU. The highly parallel structure of these devices is now being exploited

for intentions other than computer graphics, making it possible to run many dif-

ferent scientific applications with outstanding performance improvements. These
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Figure 4.6: Graphical output of parallel program before (left) and after (right)
removing static variables in the ITWOM

applications with SIMD (Single Instruction, Multiple Data) architectures, have the

very recent possibility to benefict from the hundreds of processors provided by the

GPU.

Nvidia, the greatest vendor and pioneer in GPGPU, created CUDA (Compute

Unified Device Architecture), a parallel computing architecture that simplified general-

purpose programming using their graphic cards. Its recent and widely strong recog-

nition, and the relatively short learning curve for a C/C++ developer (it is basi-

cally a C/C++ extension), made CUDA the elected technology for this GPGPU

approach. In order to adapt any application to CUDA, it is essential to understand

the memory hierarchy of the GPU. There are several types of memory, each with

different latency and access patterns, which have to be taken into account when

designing the programs:

• Registers - fast on-chip memory (small capacity) used to store automatic vari-

ables;

• Global memory - memory with higher storage capacity but also with the high-

est access latency (ideally to be used only in transfers between host and device);

• Per-thread local memory - have the same latency as the previous (should also

be avoided in internal computations), used for variables declared in each thread

that can not be stored in the registers;
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• Per-block shared memory - fast on-chip memory (small capacity), available

only to the threads of the same block.

• Constant memory - cached (read-only), form of the Global memory, that is,

its memory space resides in the device memory but its data can also be stored

on the on-chip cache of the GPU.

• Texture memory - as the previous, it is read-only and cached, but it can

store larger data structures and also optimise access patterns with 2D spatial

locality.

The desctiption of these types of memory can be found in any version of the

CUDA C Programming Guide.

The hardware used was a Quadro R©FX 1800, the graphic card of the same ma-

chine mentioned in the multi-core approach.

4.2.1 Parallelisation Strategy

With the possibility of processing thousands of threads simultaneously, the obvious

strategy is to have each ray being calculated by one thread. For example, with

the largest area, the number of threads would be 4800 (1200 * 4 edges). As figure

4.7 illustrates, the computations shall be carried out by the graphic card (device)

while the remainder sections are processed by the CPU (host). As an extension to

C/C++, CUDA uses its compiler and assembler (nvcc and PTX ISA) to compile the

source code that is to be run on the device, while the remainder parts are compiled

by the native compiler (Visual C++, gcc, etc.).

The function that the host calls to be run by each thread on the GPU is the

kernel. In this approach, the kernel will execute the computations corresponding to

one ray :

1. Determine the point of the edge based on the ID (identification number) of

the thread.

37



4 Parallel Program

Figure 4.7: Illustration of the GPGPU approach

2. Create the ray with the points between the source and the point of the edge.

3. Call the ITWOM algorithm for each point of the ray and write the loss into

a global structure of results (located on the device Global memory).

As the device needs to access the elevation data for the ITWOM, before calling

the kernel, it is necessary to allocate the elevations of the whole area on the device

memory. While attempting to implement the GPGPU approach, the Texture Mem-

ory was used to store these elevations, as they are only read by the computations.

However, the spatial locality optimisation provided by this memory would probably

not be exploited by the accesses to the elevation data. Therefore, the cache in Tex-

ture Memory would possibly not represent an advantage over the Global Memory.

The evaluation of the most suitable way of storing the elevations, needs still to be

performed in future works.

After all threads have completed their executions, the global structure with the

loss results should then be sent back to the host. This and the initial transfer of the

elevation data, were actually tested for the largest areas, both taking nearly 1 second

of time. Taking into account that the best multi-core approach (“sections”) took

approximatelly 10 seconds to finish the calculations, we conclude that a successful

CUDA implementation would most likely far surpass this result. However, there were
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many obstacles and constraints encountered in our program and in the ITWOM

algorithm, which prevented to have a successful GPGPU implementation. The

problems found are described in the section below.

4.2.2 Discussion

During the process of adapting the serial program to the GPGPU implementation,

the first obstacle to came up was the ITWOM itself. In this approach the ITWOM

had to be executed on the device, and therefore needed some modifications in order

to comply with the CUDA requirements:

• All the instructions related with the C++ library for complex numbers had to

be exchanged for CUDA functions (“cuComplex.h”);

• C++ assertion functions and “static” declarations had to be removed.

• All the double precision floating-point variables and functions were changed

to singe precision.

It is important to notice that, during this process, relevant bad programming prac-

tices were found in the ITWOM and also in the ITM : declared unused variables

and variables initialised in conditional statements.

Despite the above-mentioned corrections that should be made to both of these

radio propagation algorithms, there is one major issue that is worth to be concerned

about: the available memory. In the Quadro R©FX 1800, it is not possible to have

more than 16KB of local memory per thread. This restrictive limit imposed by

the hardware, represented the major obstacle to this approach. In fact, together

with the calculations used to find the points of the rays, the several calls to these

complex propagation algorithms demanded too much memory from the GPU. It is

then important to distinguish this project from the work made by Song and Akoglu

[2011], in the sense that this publication describes the use of the ITM on the GPU,

assuming that the points of the rays were already determined. In our case, the design
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of the ray computations would have to be reconsidered and many tests would have

to be carried out, in order to solve the memory constraints imposed by the GPU.

Consequently, the efforts required to adapt our program were too challenging to

succeed in this approach.
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Conclusions and Future Work

5.1 Conclusions

After the design and implementation of our serial program, consistent radio loss

predictions were returned for the tested areas between 18 by 18 km and 108 by

108km. Being influenced by the SPLAT! software, this program brings improve-

ments regarding memory management, mainly by introducing dynamic allocation

as opposed to the static used by SPLAT!. However, it is worth to mention that

these differences did not result in performance changes.

In spite of the ITWOM being the mainly used model, the ITM was also tested to

check if there were any variance in the performance, which turned out to be similar

for both algorithms.

From the tests carried out in the serial implementation, it was inferred that the

overall performance decreases exponentially with increasing dimensions. The long

execution times for the largest areas (approximately one minute) urge the need for

using data partitioning in this, as well as in other software with similar goals.

With the hardware used and for all area dimensions, the best multi-core (OpenMP)

approach was “sections”, with which there was a speed-up of approximately 5. How-
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ever, the tests were carried out on a CPU with 8 logical processors. Because of this,

we concluded that, if there were more processors available, the “parallel for” would

possibly overcome the “sections” approach.

The Hyper-Threading technology provided by the Intel Core i7, turned out to be

a positive influence, because it did not bring significant performance degradation,

as it was expected. Nevertheless, for future implementations, it would be better

to have a mechanism that differentiates the logical from the physically separated

processors, before proceeding with the parallel computations.

Due to memory limitations imposed by CUDA, it was not possible to successfully

adapt our program and take advantage of the high-parallelism capacities of GPGPU.

The ray calculations, together with the radio propagation model, demanded more

than the maximum memory provided by the GPU. This high memory usage is due

to the large number of variables in the ITWOM algorithm (similar to the ITM ),

added to the big arrays required by the ray calculations (worse for largest areas).

Therefore, in order to overcome the constraints imposed by the hardware and the

GPGPU programming model, the design of our program needs to be reconsidered.

Additionally, due to the complexity of the memory hierarchy in CUDA, many ex-

periments would have to be tried out to achieve a successful implementation.

5.2 Future work

Several improvements and features would have to be added to the current program

before being available to the end user:

• The section responsible to reproduce the graphical output should be replaced

by more recent and powerful geographical visualisation technologies (e.g. KML

data used by Google Earth or Matplotlib (library for python)). Additionally,

it could be combined with databases of cities and landmarks for better conve-

nience in the usability.

• Error checking conditions for the parameters entered by the user.
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5.2 Future work

• Low-level routines to automatically query the hardware, in order to obtain

the number of physical and logical processors available, and also to know if

Hyper-Threading is enabled or not. Based on these informations, the program

would decide in runtime, the best parallel approach for the host hardware.

There is a very high level of data partitioning when calculating radio losses for

a given area. Therefore, as stated in the previous section, further research shoud be

conducted on developing a CUDA implementation for this purpose.
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5 Conclusions and Future Work
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Appendix

Table 5.1: Computation Times and Times per Point of serial program

Area Dimension (km) Computation Times (ms) Time per Point (ms)

18*18 980.75 0.025
36*36 4207.00 0.026
54*54 10156.50 0.028
72*72 20285.00 0.032
90*90 35937.75 0.036

108*108 54765.25 0.038

Table 5.2: Computation Times of OpenMP “sections” approach

Number of Points Area Dimension (km) Computation Times (ms) Speed-Up

1440000 108*108 9879.00 5.543603
640000 72*72 3632.75 5.583924
160000 36*36 781.50 5.383237
40000 18*18 243.00 4.036008
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Appendix

Table 5.3: Computation Times of OpenMP “parallel for” approach

Threads Area Dimension (km) Computation Times (ms) Speed-Up

2 108*108 28410.50 1.93
2 72*72 10523.25 1.93
2 36*36 2152.75 1.95
2 18*18 523.75 1.87
3 108*108 22707.00 2.41
3 36*36 1695.50 2.48
4 108*108 18859.50 2.90
4 72*72 6765.50 3.00
4 36*36 1390.50 3.03
4 18*18 359.00 2.73
5 108*108 16980.50 3.23
5 36*36 1261.50 3.33
6 108*108 15449.25 3.54
6 72*72 5758.00 3.52
6 36*36 1269.25 3.31
6 18*18 387.00 2.53
7 108*108 14636.50 3.74
7 72*72 6043.00 3.36
7 36*36 1765.50 2.38
7 18*18 539.25 1.82
8 108*108 16539.00 1.72
8 72*72 8605.00 1.22
8 36*36 2215.00 0.97
8 18*18 597.75 0.88
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