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Abstract

Breast Cancer Conservative Treatment (BCCT) is the most well-established method of
treatment used around the world for an attempted remission of breast cancer. These treat-
ments have evolved so as to provide the patient with similar life expectancy as that of
other, more radical methods. So, now the attention is turning towards the assessment of
the aesthetical results of this type of treatments, to identify key variables that could be
changed in order to achieve a better overall outcome.

This work tries to use state-of-the-art algorithms for stereo matching in an attempt to
recreate 3D models from patient’s breasts that were subject to breast cancer conservative
treatment. Those models will provide an increase in the accuracy of measurements that
influence the assessment of the Breast Cancer Conservative Treatment aesthetic result,
improving the Breast Cancer Conservative Treatment.cosmetic result software developed
in INESC Porto. A detailed description of the objectives is given, paired with mathemati-
cal basis that support the reconstruction.

Stereo reconstruction depends on a very specific and sequential workflow, whereas
failure in a previous step will render the reconstruction impossible. The main problems
are identified, such as good quality rectification and the uncertainness of stereo matching
in situations of low or repetitive texture and high image ambiguity.

It is shown that the state-of-the-art methods selected to take part of this test solved
all problems with some degree of success except the stereo matching problem, most cer-
tainly due to the high ambiguity of the images that this project deals with. As such, it is
concluded that it is necessary to search or develop a better suited algorithm for this type
of images.
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Resumo

O tratamento conservador do cancro da mama está mundialmente estabelecido como uma
das mais viáveis hipóteses no tratamento de episódios de cancro da mama. Este tipo de
tratamento evoluiu de maneira a providenciar ao paciente taxas de sobrevivência simi-
lares aos outros métodos mais radicais. Assim, tem-se em atenção agora a avaliação dos
resultados estéticos destes tratamentos, de forma a identificar variáveis que possam ser
manipuladas de forma a obter melhores resultados estéticos globais.

Neste trabalho tenta-se aplicar um conjunto de métodos reconhecidos do estado da
arte do campo da correspondência estereofotogramétrica numa tentativa de verificar se é
possivel recriar os modelos 3D do peito de pacientes que foram submetidos a tratamento
conservador do cancro da mama. Esse modelos poderão providenciar o aumento da fi-
abilidade das medidas que influenciam a avaliação do resultado estético do tratamento,
melhorando o software Breast Cancer Conservative Treatment.cosmetic result que está a
ser desenvolvido no INESC Porto. Todos os objectivos que se pretendem para esse soft-
ware no momento, bem como a matemática que dá suporte à reconstrução são descritas
no presente documento.

A reconstrução stereo depende de uma linha sequencial de algoritmos, sendo que uma
falha em um dos passos leva a que a reconstrução se torne impossível. Assim, identificam-
se também quais os maiores problemas que existem, como a dificuldade de se conseguir
uma correcta rectificação e a incerteza associada à correspondência de píxeis quando a
imagem é constituída por pouca textura ou esta é repetitiva e onde existe muita ambigu-
idade.

Demonstra-se que os algoritmos do estado da arte que foram escolhidos para fazer
parte do teste resolveram quase todos os subproblemas com algum nível de sucesso, ex-
cepto o problema de correspondência, devido à elevada ambiguidade associada às ima-
gens que este projecto usou. Assim, conclui-se que é preciso procurar ou desenvolver um
algoritmo mais adequado a este tipo de imagens.
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Chapter 1

Introduction

Computer vision is the area of computer science dedicated to study how can machines
can mimic the human perception and interpretation of light and colors around themselves.
Humans possess unique capabilities regarding vision, being able to recognize objects with
enormous accuracy, read, remember places, even full cities, reconstruct and even have
some tri-dimensional perception either inside one’s mind or by drawing, sculpting, or
others, and can go further and understand emotions or hidden meanings, patterns, clues.
Nowadays, some of these aspects can be imitated by computers, for example, Optical
Character Recognition (OCR), aerial 3D model building, motion capture, etc. Science
has even improved those capabilities, like adding readings outside the visible spectrum
and at many optical magnification levels. That permitted improvements like fingerprint
recognition or medical analysis [47].

This work intends to apply computer vision state-of-the-art methods to assess the re-
sults of Breast Cancer Conservative Treatment (BCCT). These treatments are widely es-
tablished as standard for they are as successful as more radical methods and result in
improved aesthetic outcome [17, 50]. Subjects that undergo this type of surgery live, in
80% of the cases, 10 years further, so the aesthetic aspect is a factor they must cope with
for a long time. For that reason, stable and robust evaluation is needed to identify and
adapt key variables that would ease an improvement of that outcome, and that search has
become a priority [13]. For now, this evaluation is almost always performed in a sub-
jective way, with a panel of experts [24]. Some groups have tried and proposed various
attempts to introduce objective measures, but those have continuously been found to be
insufficient and are, at the moment, used to complement and/or correlate the subjective
evaluation [1, 8, 10].
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1.1 Context

The work from [8, 10] present the software Breast Cancer Conservative Treatment.cosmetic
result (BCCT.core) that implements a set of measures for objective assessment. It is lo-
cated in the position explained in the previous section, where it tries to correlate previous
classifications performed by experts, in order to advance towards a semi-automated and
complete evaluation tool. Through the use of semi-automatic feature extraction and ma-
chine learning algorithms, the overall assessment is predicted in a scale commonly used
for the subjective evaluation, thus, directly related to the state of the art in the area [24].

For now, BCCT.core is capable of processing only the patient’s frontal photographs
based on a semi-automatic process (it requires the user to mark some feature points be-
fore attempting the final identification of all fiducial points and mammary contour). Lat-
eral pictures are being studied in parallel to this work and may be introduced in a later
development [41].

This project was undertaken for the group developing the software described. It aims
to search for early developments on new measures that, when proven to be robust, can be
added to the software.

1.2 Motivation

It is noted that BCCT.core can be improved by adding more measures. Particularly, it
is intended to add dimensionality to the measures in order to drop the limitation of only
measuring based on what can be seen in a frontal photograph. The capability of manip-
ulating and measuring over 3D readings from the breasts can improve the accuracy and
objectivity of the tool.

3D capabilities are recognised as having high clinical potential. However, the current
techniques face two major problems: the high cost of required equipment and the need
for specialized operators to work with them. Current techniques are based on specially
designed cameras and hardware, mainly resorting to many lenses on the same camera
or to laser scanners. Due to these special needs, 3D applications are considered pricey
and are not commonly implemented, thus, the benefit of 3D modelling is not availed.
Some of those methods are described in Chapter 4. As so, it is needed to search for new
methodologies that ought to be cheaper and easier to use. The practitioners themselves
must be able to use the tool without a hassle. It is the group’s desire to develop a prototype
of that methodology and compare it with those more expensive approaches commonly
used.

If this 3D modelling proves to be robust enough, the software can be further extended
to adopt surgical simulation. Those types of simulations are notable desired features, that
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would provide the means for anticipation of possible surgical options and outcomes, al-
lowing better education of patients towards a more informed choice and the improvement
of surgical techniques and skills.

1.3 Objectives

This project aims to research the state-of-the-art algorithms for stereo matching and recon-
struction based on uncalibrated views from free-moving cameras when applied to female
breasts, after breast cancer conservative treatments. The goal is to find out if the exist-
ing, most common and recent algorithms have some applicability to the type of scenes
that BCCT.core deals with, and if 3D reconstruction can be performed directly from this
methods.

This project’s global objectives are summarised as such:

• Develop a robust high-level workflow for stereophotogrammetry reconstruction that
ought to be based on current methods; it must possess enough parametrisation to
accommodate the necessary changes those methods must undergo because of the
type of images that are used.

• Test the highest number of possible methods, algorithms, and workflow changes,
with emphasis on those that, for their characteristics and proven results, have higher
probability of success.

• Verify what type of reconstruction is possible to get from these methods and possible
applications to those.

• Establish a set of contributions and guidelines for future development in this direc-
tion, highlighting the solutions that are considered to have higher probabilities of
improving the software.

1.4 Contributions

This work introduces a new approach to 3D body parts reconstruction that aims to be
easy to use and affordable for general medical staff to use. The sate-of-the-art methods
are glued together and the results are presented, so they can be used as orientation to
future upgrades aiming the development of this tool.

Later on, some future improvements and guidance, based on the obtained results and
on all the preliminary and regular study involved, are described, so it can help further
developments.

Apart from this, some articles are being planned and developed, one of which is almost
finished, to be submitted to ORBS 2011, with the working title 3D Model for Aesthetic

3
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Objective Evaluation after Breast Cancer Surgery using Infrared laser Projector. It’s
a new development, somehow apart from the approach being described here, based on
active lighting methods (this work is concerned only with passive lighting methods).

1.5 Structure

Along with this chapter, this document has the following structure: Chapter 2 gives the
fundamental knowledge about breast cancer and the software tool involved. Chapter 3
states the mathematical basis involved in this work and the general constraints involved.
Chapter 4 describes the some related works that were found, studied and used as part of
the proposed test solution. In Chapter 5 is shown the structure and steps of the proposed
solution and the algorithms that were involved and then the results of applying the tests
that were planned, followed by some evaluation. Chapter 6 wraps everything up along
with the final statement about our hypothesis. Last, Chapter 7 provides some orientation
as for the future of this project.

4



Chapter 2

Breast Cancer

Breast cancer is a worryingly common disease affecting mostly women, reaching such an
enormous scale as to be considered a public health problem. It is known that one out of
ten women will develop breast cancer at some point in her life.

“Every day thirteen new breast cancer cases are detected and, in Portugal,
four to five women die every day” - Mário Bernardo, Liga Portuguesa Contra
o Cancro1, in O Público 21st February, 2006. Free translation.

Many of the recognized risk factors are linked with oestrogens. Risk of contraction
rises in early menarche (first menstrual cycle), late menopause and by obesity in post
menopausal women [28] (see Figure 2.1). The cancer’s incidence rises rapidly with age
during the woman’s reproductive phase and then increases slowly after 50 years of age.
Childbearing, breastfeeding, oral contraceptives and hormonal therapy are some factors
that might change the probability of contracting cancer. The exposure to radiation that
occurs in mammographies has little, if any, effect on cancer incidence risk. Any possible
effect is proven to be overcome by the demonstrated benefits of earlier detection of breast
cancer [32].

Even though, 90% of breast cancer cases might be curable if detected in a relatively
early stage and treated accordingly. Due to its incidence, prevalence, exposure and fre-
quency, and also because of the enormous impact the disease inflicts in the feminine body,
breast cancer is one of the most publicized diseases, fact that influenced the widespread
of preventing and monitoring actions. For example, one may reckon that were deployed
nation-wide screening programs in developed countries; also, family health care practice
is now sensitive to the problem, taking into account adequate risk factors, undertaking

1The Portuguese Cancer League (Liga Portuguesa Contra o Cancro - LPCC) is a private non-profit non-
governmental organization, declared by law of public utility (relevant social aim), founded in April 1941. http:
//www.ligacontracancro.pt/
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Breast Cancer

Figure 2.1: Age-incidence curve of breast cancer; log-log plot (from data for England and Wales
1983–87). Taken from [28].

the necessary actions or forwarding the patient to appropriate locations to ease a rela-
tively in-time early diagnosis. All these factors combined may contribute to a successful
treatment.

2.1 Beast Cancer Fundamentals

The origin of breast cancer, as well as all the other cancers, is yet unknown. Nevertheless,
Kumar and Cotran [32] reckon three sets of influences that might be relevant:

• Genetic changes, as some genes have been proved to influence abnormal cell func-
tion and reproduction; this might come from family heritage or from sporadic ge-
netic changes.

• Hormonal influences, as hormonal imbalance has a very important and recognised
role, namely, risk of cancer rises with the exposure to high levels of oestrogen.

• Environmental variables, suggested by different cancer incidence depending on ge-
ographical location; also, high exposure to radiation or exogenous oestrogen may
induce this and other types of cancer.

General risk factors are summarised in Table 2.1.

6



Breast Cancer

Factor Relative Risk
Well-Established Influences
Geographic factors Varies in different areas
Age Increases after age 30yr
Family history

First-degree relative with breast cancer 1.2-3.0
Premenopausal 3.1
Premenopausal and bilateral 8.5-9.0
Postmenopausal 1.5
Postmenopausal and bilateral 4.0-5.4

Menstrual history
Age at menarche <12yr 1.3
Age at menopause >55yr 1.5-2.0

Pregnancy
First live birth from ages 25 to 29yr 1.5
First live birth after age 30yr 1.9
First live birth after age 35yr 2.0-3.0
Nulliparous 3.0

Benign breast disease
Proliferative disease without atypia 1.6
Proliferative disease with atypical hyperplasia >2.0
Lobular carcinoma in situ 6.9-12.0

Less Well-Established Influences
Exogenous estrogens
Oral contraceptives
Obesity
High-fat diet
Alcohol consumption
Cigarette smoking

Table 2.1: Breast cancer risk factors [32]
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(a) Mammogram without any mass or abnormality (b) Mammogram showing an abnormal mass

Figure 2.2: Typical mammogram screening images, with different diagnostics [40].

Commonly, breast cancer originates in the inner lining of milk ducts or near lobules
that are linked and provide milk for those ducts. A cancer that has its origin in mam-
mary ducts is known as ductal carcinoma, while one originating from lobules is known as
lobular carcinoma. The treatment is dependent on size, rate of growth and other tumour
characteristics and may include drugs, radiation, surgery and immunotherapy, but also of
patient characteristics and personal opinion about possible surgical options [18]. Early
detection is normally performed through mammographic screening, an X-Ray to both of
the breasts, in order to try and observe any abnormal mass (see Figure 2.2). If such mass
is observed, it is biopsied to verify if it is cancer, as it can be some simpler thing such as
a cyst.

Male carcinoma is, on the other hand, very rare. It occurs with a frequency ratio of 1
to 125 female cases, normally in advanced age. It has a relatively fast infiltration rate, due
to scarce amount of breast substance in the male. Unfortunately, nearly half of the cases
spread beyond the initial location, to regional nodes or even beyond, before the cancer is
detected [32].
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2.2 Tumour removal

For many years, the accepted tumour removal treatment was a radical mastectomy, which
consisted on the complete removal of the breast tissue and necessary surrounding lymph
nodes. Then, the techniques evolved so as to reduce the amount of tissue needed to be
removed.

The quadrantectomy was the first milestone, and was proven successful in the late
1970s. A median follow-up of 20 years survival rate found that the conservative approach
and the more evasive and radical one were, in fact, equivalent [35]. Later studies found
that Breast Cancer Conservative Treatment (BCCT) through the employment of the tech-
nique called lumpectomy, together with proper irradiation, has the same survival rates
than those obtained by mastectomy alone. In the conservative treatment, a small portion
of the breast containing the tumour and some additional tissue is extracted, along with
a few lymph nodes. After that surgery, the patient may require additional radiotherapy.
This technique has been verified to provide similar survival rates than those obtained with
the radical mastectomy, although with a better cosmetic result [17, 50]. Comparison of
the expected result from a mastectomy and a lumpectomy plus irradiation can be found in
Figure 2.3.

(a) Result from a mastectomy. (b) Result from a lumpectomy plus irradiation.

Figure 2.3: Two examples of possible results after the very different surgeries.

2.3 Cosmetic Assessment

The cosmetic assessment in conservative treatment is, as one can imagine, of utter impor-
tance for both the patient and the practitioner. As for the patient, the quality of life is at
stake, sideways with the psychological effect this kind of surgical procedure inflicts on
the subject itself, companion, family or friends. The patient may incur into distress due to
a degraded effect the surgery might have in self-image and, consequently, self-esteem. As
such, the practitioner should take into serious consideration the evaluation of the surgical
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aesthetic outcomes. This assessment should provide the means for the identification of
variables that interfere with the cosmetic outcome so as to refine the surgical techniques.

The absence of a standard method for measuring the aesthetic outcome has been con-
sidered an obstacle in the assessment and evaluation of the techniques applied. Until
recently most used methods were based on a subjective evaluation, made by one or more
observers by visual inspection [24]. This type of evaluation presents the following prob-
lems:

• Exemption is not always possible, as the evaluating professionals were often in-
volved in the treatment;

• The evaluation reproducibility is not usually high, as the same case can be evaluated
differently and even the agreement between observers is only low or moderate;

• The potential invasion of the patients’ privacy.

This precipitated the introduction of objective methods.
Many methods were attempted, based on measurements taken directly from the patient

or from patient photographs, that are essentially based on asymmetries between treated
and non-treated breasts [1, 13]. As of today, those objective methods are not yet well de-
veloped and accepted, and are often complemented with the established subjective eval-
uation, as on a search for correlation between both measures. In INESC Porto, Institute
for Systems and Computer Engineering of Porto, a software is being developed, presented
in [10] and [8], that attempts to create an independent and objective assessment tool, the
Breast Cancer Conservative Treatment.cosmetic result.

BCCT.core classifies the aesthetic outcome of BCCT into excellent, good, fair, and
poor classes. To achieve the classification, first, a concise representation of a BCCT im-
age is obtained based on the aspects mentioned before. These measurements are preceded
by the semi-automatic localization of fiducial points (nipple complex, breast contour and
jugular notch of sternum) on the digital photographs [9, 11]; measures are then supported
on these fiducial points. After this, all the measures are automatically converted onto
an overall objective classification of the aesthetical outcome, using the SVM classifier,
trained to predict the overall aesthetical classification on the aforementioned scale of four
classes. The software was created based on a database of 120 patients, with frontal 4M
pixel images, with or without auxiliary reconstructive surgery and, at least, one year over
all treatments. Twenty-four practitioners were selected, located in 13 different countries,
and asked to classify the pictures. From this point on, a Support Vector Machine classifi-
cator was used to try and correlate some asymmetric measures with the panel result.

10



Chapter 3

Background

This chapter aims to describe briefly the basic math evolved in the recovery of depth
information from images. The reader is conveniently directed to appropriate sources for
thorough information and formal proof.

3.1 Camera model

We start by defining our camera model and by defining some of the basic math related
to image acquisition. The information of this section is based on Bradski and Kaehler
[6] and Szeliski [47]. It is common in the literature to use the pinhole camera model, as
it simplifies the math evolved and provides an intuitive view of how the image plane is
formed. Imagine, for this model, that the projection is based on light being projected in a
plane, entering from a small hole, so small only a ray can enter for each point of the scene
(Figure 3.1). This model can be rearranged so that the math comes out easier and so that
the image plane is not inverted in relation to the scene (Figure 3.2).

The projection that occurs on a camera when transforming 3D coordinates to 2D plane
coordinates is a true 3D perspective, as can be found in [47]. So, any point Q will be
transformed into an image point q (in inhomogeneous coordinates) as follows:

q = P(Q) =

X/Z
Y/Z
Z/Z

 (3.1)

However, this transformation is based on an ideal pinhole camera, which is extremely
difficult, if not impossible, to create. Once the 3D points are transformed through the
pinhole, it is still needed to transform those coordinates into sensor space coordinates
(camera coordinates). A camera can be simplified as a sensor and a lens, where the lens
gather the maximum amount of light it can and redirects that light into the sensor. An
example of that process can be found in Figure 3.3. So, a point qs = [xs,ys]

T is formed
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Figure 3.1: Pinhole camera model, the Z axis shall be considered the optical axis, f stands for the
focal length, O is the origin of coordinates, Q is a point in space and q is the projection of that
point in the image plane. Please note the change in coordinates from Q to q.

Figure 3.2: Pinhole camera model with front facing panel, for simplification.
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from a scene point Q = [X ,Y,Z]T by some simple relations:

xs = f
X
Z
+ cx ys = f

Y
Z
+ cy (3.2)

Here, xs and ys are image coordinates, f is the focal length and cx and cy are the coordi-
nates for the center of the image plane . These two additional parameters result from the
possible displacement there might exist between the sensor and the optical axis. Perfect
aligning the sensor and the optical center of the lens would require a level of precision
difficult to acquire, especially in low-end cameras. There is also the possibility that the
sensor is not perpendicular enough to the optical axis as to create a skew, s, between the
sensor axis. So, as for now, we can build a the camera calibration matrix as such:

K =

 f s cx

0 a f cy

0 0 1

 (3.3)

where a is the aspect ratio of the image. In practice, for many applications, it can be
assumed that a = 1 and s = 0, resulting in the final calibration matrix:

K =

 f 0 cx

0 f cy

0 0 1

 (3.4)

This equation allows for correcting the ray coordinates for each point in space in the
image plane, through the following relation:

x̂ = K−1x (3.5)

Now that the form of the calibration matrix is agreed, it can be put together with
the camera extrinsics, the camera orientation in space (the camera position regarding the
space coordinates). That position can be parametrized by a rotation matrix and a transla-
tion vector, respectively, R and t. As such, one can define the camera matrix:

P = K
[
R|t
]

(3.6)

It is preferable to use an invertible 4x4 matrix, defined as such:

P̃ =

[
K 0
0T 1

][
R t
0T 1

]
(3.7)

With this matrix, a point in space can directly be transformed into screen coordinates
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through the equation
q̄∼ P̃Q̄ (3.8)

where Q̄= (x,y,z,1) and q̄= (xs,ys,1,d), d is the point’s disparity and∼ denotes equality
up to a scale.

Figure 3.3: Simplified camera and lens example; note the possible similarities between this exam-
ple and the pinhole model in Figure 3.1. Taken from [47].

3.2 Binocular disparity and stereo vision

Part of the problem that is addressed in this project is that of binocular disparity, namely
the different displacement objects undergo when seen through different viewpoints. The
human brain uses this process to identify distances to objects. The same process is used
in computer vision, where similar features are matched and their disparity is calculated.
Then, with some computation and provided that there exist some knowledge between the
cameras (or that knowledge is inferred, as it will be seen in Section 3.3.2) it is possible
to reconstruct the scene up to a metric reconstruction, where the lengths and distances of
that reconstruction have a direct relation to real world measures. If such knowledge is
unknown, every reconstruction is relative to a trivial projective transformation, thus the
measures of that projection might have no direct relation to real world measures.

Based on Hartley and Zisserman [25], Pollefeys [43], Szeliski [47], it is possible to
build a mathematical model in order to relate two views (see Figure 3.4). Although we do
not know the exact position of point p, we know that it must be located somewhere in the
ray cast between the camera centres and that point, that pass through the image plane in
each one of the points x and x1. After some geometrical relations and based on the camera
matrix discussed in the previous section, it is possible to define that there is a matrix E,
3x3 of rank-2, that relates every corresponding point as such:

x̂T
1 Ex̂ = 0 (3.9)

where E is defined as:
E = [t]×R (3.10)
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Figure 3.4: Geometric model for two-view geometry based on the pinhole camera model. The
projection of point p is, respectively, x and x1 in the left and right view, c0 and c1 are the camera
centers, and e0 and e1 the epipoles, finally l0 and l1 are the epipolar lines that pass through x and
x1, respectively, and are contained in the epipolar plane for point p. Note that all epipolar lines and
planes go through the epipoles. Also note that, between the two cameras, it is assumed to exist a
rotation and translation associated, (R, t). Taken from [47].

This is, of course, if both R and t are known. In this project’s case of study, those are
not known, as it deals with free-moving hand-held cameras. Also, as it is an uncalibrated
environment, there is no easy access to camera parameters and the cameras’ calibration
matrix. In such situation, it is possible to define a new matrix F, the fundamental matrix,
that still respects the epipolar constraint, as follows:

x̂T
1 Ex̂ = xT

1 K−T
r EK−1

l x = xT
1 Fx = 0 (3.11)

The matrix defined in (3.11) [25, 43] has many applications, and it is of utter importance,
as we will see through this chapter. F is normally found using, at least, 8 matches in
both images, solving a system of equations using Singular Value Decomposition1. It
can, anyway, be estimated using only 7 correspondences solving for a system of non-
linear equations, as this matrix has only seven degrees of freedom. If more than eight
points are available, then it is possible to minimise the effect the noise can introduce
while estimating F. If using automatic established correspondences, then there might
exist some outliers (wrongly-matched points) that must be addressed. Those techniques
will be discussed later.

The process of stereo matching consists on finding correspondences for the maximum
number of pixels in each image. Assuming a low baseline (the displacement, or disparity,
between the two views is much smaller than the distance to the objects on the scene), it is
possible to assume that most of the pixels from either images will match, in other words,

1Simple and intuitive explanation in http://www.cs.unc.edu/~marc/tutorial/node54.html
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almost all scene points are visible in both views. It is possible to ease the correspondence
problem and the computation of correspondent distances by pre-aligning the views, a
process called rectification, so that corresponding epipolar lines are horizontally aligned.
That way, the stereo matching problem is reduced to a one-dimension search and the math
is reduced to what is summarised in Figure 3.5. From there it is possible to note that the

Figure 3.5: Disparity search summary assuming a low baseline (T << Z). The search space for
correspondences is limited to the x-dimension and the disparity value is very simple to compute.
Taken from [6].

problem, as it is posed here, assumes that the focal length f is the same for both views.
That is common, as even with autofocus, in low baseline problems that value tends to be
the same [6], even though the state-of-the-art methods do try to transform that (and other)
intrinsic parameter, assuming it is not shared by both the views, so that our model holds.
By simple triangle similarity, it is possible to verify that:

T − (xl− xr)

Z− f
=

T
Z
⇒ Z =

f T
xl− xr

⇒ Z =
f T
d

(3.12)

3.3 Rectification

From the previous section it is noted that rectification is a very important and necessary
step in the reconstruction process. This step is highly based on the epipolar geometry al-
ready discussed, where the main goal is to find a way to alight horizontally corresponding
epipolar lines.
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3.3.1 Based on known objects

If a known object is placed on the scene, visible to both views, and with identifiable
and matchable features, then it is possible to recover the pose of the two cameras from
those measures. In this special case, it is possible to find both the translation vector and
the rotation matrix for the cameras concerning that object, and (3.10) is applicable. In
this case, the rotation necessary to align the epipolar lines is known, and by Bouguet’s
algorithm, the rotation is split between the right and left cameras. That way, it is possible
to minimize the reprojection distortion and maximize the common viewing area [6].

3.3.2 Uncalibrated rectification

The relation between the fundamental matrix F and the rectification process is that of
finding a pair of homografies that will transform the images so that they become recti-
fied [6, 43, 47]. In the rectified case, the fundamental matrix has the form [21]:

F = [u1]× = [(1,0,0)]× =

0 0 0
0 0 −1
0 1 0

 (3.13)

where [x]× means the cross-product of the vector x. In order to rectify a pair of images it
is necessary to search for a pair of homographies so that the epipolar constraint 3.10 of a
rectified pair is verified. If Hr and Hl are such homographies, then it is defined as such:

(Hrxr)
T [u1]× (Hlxl) = 0 (3.14)

The way those homographies are searched is algorithm-dependant, and will be discussed
later in the appropriate section.

3.4 Stereo matching

The stereo matching process is almost always difficult and prone to errors, mainly be-
cause it is ill-posed [51]: due to the possible colour repeatability, its solution might not be
unique. There will be multiple situations where it won’t be possible to define, with con-
fidence, the correct correspondence between pixels. The colour values in some regions
might be equal or very similar in some areas, thus preventing a confident matching. The
classical algorithm for finding pixel correspondences is based on simple correlation, also
called “brute force” algorithm. It can be simply described as such: for each pixel in a
“base” image, calculate a weight function in a window around that pixel; then, for each
pixel in the same row of the “target” view, calculate the weight of the window around
it. The “target” pixel that has a value closer to that of the “base” pixel is, potentially,
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the best match. It is not difficult to see that this algorithm can greatly suffer from prob-
lems in low or repeated textured scenes, where there would be similar valued pixels and
where an unique match is not possible [47]. Common window evaluation functions are,
for example:

Normalized correlation: ∑x ∑y L(x,y)R(x,y)√
(∑x ∑y L(x,y))

2
(∑x ∑y R(x,y))

2

Sum of squared differences: ∑x ∑y (L(x,y)−R(x,y))2

Sum of absolute differences: ∑x ∑y |L(x,y)−R(x,y)|

(3.15)

where L and R are, respectively, the left and right images.

(a) Original image. (b) Estimated depth map (blue is
closer).

(c) Estimated confidence (red is
higher).

Figure 3.6: Uncertainty in stereo matching, as can be seen from the last image. Taken from [47].

3.5 General uncalibrated reconstruction workflow

So, wrapping everything up, the basic workflow can be seen as the following steps se-
quence:

1. Search for feature points;

2. Try and match the highest number of those feature points in a robust way;

3. Use the matched features to find the fundamental matrix F with the lowest possible
error (with the lowest inconsistency within the largest possible set of inliers);

4. Use that matrix and the inlier matches to compute rectification homographies, and
then rectify both views;

5. Perform the largest stereo matching possible, with the highest confidence available
for each match;
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6. If camera parameters were found somewhere in the fundamental matrix estimation
or rectification algorithm, use them to try and return a quasi-euclidean reconstruc-
tion, else return the projective reconstruction.

Failure in any previous step (either due to lack of features, or to failure in matching enough
of them) will invalidate the remainder of the reconstruction, so each step is critical in the
process. This workflow is visually drawn in Figure 3.7.

Figure 3.7: Stereo reconstruction generic workflow.
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Chapter 4

Literature Review

The 3D reconstruction problem has been studied for several decades [57]. There is thor-
ough work developed in the literature about this problem, with wide applications, ranging
from world comprehension for robotics, aerial building reconstruction, to virtual tours for
on-line tourism.

This section aims to present a brief summary of the most interesting contributions
found in the literature for solving the workflow presented in Section 3.5: feature detec-
tion and matching, rectification and stereo matching. Because of the large amount of
algorithms and applications available, it is necessary to select, a priori, the candidate
applications that might prove to be success. For that reason, it is convenient to present
Figure 4.1 to enhance the reading of this chapter with better understanding of what prop-
erties and structure this project’s scene deals with.

4.1 Feature detection

One of the best contributions which can be found in the literature as far as explanation
and comparison of feature detection and matching algorithms are concerned is that of
Tuytelaars and Mikolajczyk [48]. There are also detailed explanations in the previously
referred books, namely Bradski and Kaehler [6], Szeliski [47]. A feature can be defined
as an image point or pattern that is relevant, different from its neighbour, and for the
purpose of this project, especially interesting if visible in both views and mathematically
matchable. Those features can be isolated points (pixels), but might also be edges or even
other portions (e.g. blobs). Matching normally occurs either through measures around a
window or through the computation of specially designed descriptors. Window matching
is normally not invariant to transformations, so descriptors are created trying to create that
invariance.
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Figure 4.1: Part of the test images used in this project. Note the texture repeatability, the commonly
unreasonable background and the lack of common distinctive features, like corners.

Notice that this project is dealing with free-moving cameras. As such, it is not known,
a priori, what type of transformations the scene might incur from one view to another.
Thus, the ideal type of features must be invariant to the highest number of transformations
possible. Good features have associated a set of commonly desired properties [48]. For
this project, all but one property is necessary: Efficiency, for it is not desired to create a
time-critical application, detection can take some time to be performed. So, the features
to be looked for must have these properties:

• Repeatability, once most of the features detected in one view should be visible and
detected in the other;

• Distinctiveness, as features should be informative enough to allow an accurate and
robust matching between all features present in an image;

• Locality and Accuracy, in Section 3.1 it was learned that the geometrical model
would require local points to be matched, and so the detected features should have
an accurate location in the image plane;

• Quantity, even though a small minimum number of correspondences are necessary,
a larger number of features would reduce noise-induced errors.
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4.1.1 Corner detectors

Corners, in a planar imaging sense, are points of high curvature. They might not corre-
spond to actual corners in 3D objects. The most classical algorithm for corner detection is
that of Harris and Stephens [23], commonly called Harris corner detector. It is based on
finding large changes in the derivatives signal of the image plane. A large change in both
directions is a strong indication there might be a corner in that location. This algorithm
was then updated to a scale-invariant version and then to an affine-invariant version [48].

SUSAN [46] (Smallest Univalue Segment Assimilating Nucleus) is another commonly
used algorithm. The principle is simple: to define a circular patch around each pixel of the
image, being the center called the nucleus; each pixel in that radius is assigned as having
similar or different intensity values to that of the nucleus. So, a corner is defined as a
nucleus where the circular neighbour has less than a defined threshold of similar pixels.
Commonly, that value is somewhat near 25%.

Observing the images presented at the beginning of this chapter, a good performance
from the corner detectors is not expected. There are, visually, not many points of high
curvature salient in the scenes that this project deals with.

4.1.2 Blob detectors

Although not so well defined as corners, blobs constitute a feature where corners are not
available. A blob might be imagined as a pixel or region of pixels that are “darker” or
“brighter” than the surrounding neighbours.

One possible algorithm to find blobs that are invariant to some transformations (namely,
affine) is the Hessian-Laplace detector. This algorithm is based on a matrix of second or-
der derivatives of the image intensities, created around points detected by the determinant
of Hessian [48, 55]. Features are detected when the trace of such matrix attains a local
maxima.

Another possibility is through the use the Difference of Gaussian detector type. This
algorithm requires only a convolution on the images in a constant matter, depending on a
Gaussian smoothing parameter. The image scale-space is developed with Gaussian filters
at different scales. The features are detected searching for extremal values by comparison
with the neighbours of the pixels at the various scales and octaves [34] (Figure 4.2).

Regions might also be searched through Maximum Stable Extremal Regions [36]. The
objective is to search for regions of distinguishable stable and invariant shape. To detect
those regions, the image is threshold at all possible gray levels. While that threshold is
changing, the area of connected components (pixels) is monitored. Regions where that
area changes below a defined threshold are defined as maximally stable.
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Figure 4.2: Difference of Gaussian space-scale pyramid visual description (left) with extremal
pixel finding by comparison to the neighbours in each level (right). Taken from [34].

4.1.3 Edge detectors

Edges are expected to greatly vary from one view to another, as a rotation and trans-
lation almost certainly would hide and/or transform the detected edges, invalidating the
matching tasks. For that reason, the edge detectors were, concerning the time span of this
project, left behind.

4.2 Feature Descriptors

After finding all features, the next task is to try and match them with features in the other
view. The most robust way to do that is to define and compute a descriptor for each
feature found, and then search for correspondences on those descriptors. It is common
for the features and the image to, at least, suffer some translation and rotation. It is also
possible that there is some type of affine transformation involved. As such, it is of great
importance to use robust feature descriptors in this project.

Brown et al. [7] defined the Multi-Scale Oriented Patches, a descriptor based on nor-
malized intensity patches. It defines a 5x5 patch around the feature location, and the nor-
malization process transforms the intensities so that their average is zero and the variance
is one. It performs well whereas small image transforms occur.

Lowe [34] developed a robust descriptor along with the SIFT algorithm. Consider
a window of 16x16 around the feature location, using the level of the Gaussian filter in
witch the feature was detected. The descriptor is then based on computing the gradient in
each of the pixels contained in that window, downgraded by a Gaussian fall-off function
(to reduce the effect of those pixels far from the feature center). Then, in each quadrant
of that window, it develops a orientation histogram by adding the value of each pixel to
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one of the eight orientation beans using trilinear interpolation in a 2×2×2 histogram (4
eight-bean histogram for each quadrant). That forms a 128-Dimension vector that is then
normalized to unit-size, clipped to 0.2 and then re-normalized.

Ke and Sukthankar [27], inspired by the SIFT descriptors, proposed a more simple
approach. Around each feature, compute the x and y derivatives around a patch of 39×
39 pixels. That amounts for a 3042-dimensional vector that is then downsampled to a
36-dimensional one by Principal Component Analysis (PCA) [47, Section 14.2.1 and
Appendix A.1.2].

Last, Mikolajczyk and Schmid [37], again by considering the SIFT descriptors, pro-
posed to change those a little. So, instead of using the usual square-defined descriptor,
their algorithm uses log-polar coordinates (still, centred in the feature point) to define the
histogram structure. As such, the bin space are of radius 6, 11 and 15, with eight bins
per coordinate, except for the center coordinate, for a grand total of 17 bin-coordinates,
each with 16 orientation bins. The 272-dimension resulting vector is then mapped to a
128-dimension one by PCA trained on a large database.

After detecting the features and obtaining the descriptors, it is still needed to define
a matching strategy. The most commonly used is simple Euclidean distance between all
“target” descriptors, provided that a certain distance threshold is attained [47]. However,
nearest-neighbour methods, for example, are suitable if efficiency is crucial.

4.3 Rectification

There is extensive work presented in the literature about uncalibrated rectification. The
possibility of reconstructing scenes from sets of frames or pictures is much appreciated
and is extensively studied. Here only recent and recognised algorithms will be presented,
among many others that can be found in the literature.

As it can be seen in Section 3.3.2, the process of planar rectification is to find a pair
of homografies that will align the epipolar lines. So, it is possible to establish these
assumptions:

1. All epipolar lines are parallel to the x axis;

2. All image features and points have the same corresponding y coordinate.

The algorithm from Loop and Zhang [33] is based on finding a pair of homographies
that will maintain the epipolar constraint. The goal is to find those homographies by estab-
lishing a set of simpler transforms, computing each component to achieve a desired effect
and satisfy some conditions. So, the homography H is decomposed in two homographies,
so that:

HHH = HHHaaaHHH ppp (4.1)
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being Ha an affine transformation and Hp a projective one. Then, Ha is decomposed as

HHHaaa = HHHsssHHHrrr (4.2)

where HHHsss is a shearing transformation and HHHrrr a similarity. All these transformations are
computed through minimization with criteria specific for each objective. This algorithm’s
result can be found on Figure 4.3.

(a) Original unrectified pair with some epipolar lines (b) Result of the rectification process, with epipolar lines
aligned

Figure 4.3: Results from Loop and Zhang [33] rectification algorithm.

Hartley and Zisserman [25] created a method that is based on the process of relocating
the epipoles in both images. So, the algorithm attempts to transform the epipoles so that
their location is set at infinity (with the last coordinate as 0, in homogeneous coordinates).
Starting from a set of matches xi↔ x′i, which can never be less than seven (though more
than that is preferred). Compute the fundamental matrix F from those matches and find the
epipoles e and e′ so that e′F = 0 and Fe = 0. Then, compute the projective transformation
H’ that maps the epipole e′ to infinity, (1,0,0)T . With that, find the matching projective
transformation H that minimizes the least-squares distance

∑
i

d(Hxi,H’x′i). (4.3)

An example of the result from this algorithm can be found in Figure 4.4.
Fusiello and Irsara [21] developed recently a new rectification algorithm that attempts

to get close to that of the euclidean rectification. This method attempts to use some notions
of autocalibration for trying and estimating the camera parameters (that are assumed to
be equal for both views, as it is the case for the images used – based on the EXIF tags).
From a set of correspondences m j

l ↔ m j
r it defines a Sampson error function for each
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where (•)i is the ith component of the normalized vector. The homographies are then
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Figure 4.4: Result from Hartley and Zisserman [25] for a generic real image. Taken from [56].

obtained by creating a system of non-linear equations to every j correspondence (E j = 0).
The solution is obtained through least-squares using the Levenberg-Marquardt algorighm,
and through parametrisation so that

HHH iii = KKKniRRRiiiKKK−1
oi (4.5)

where i is l or r, for each one of the views. It is shown that the rotation of one of the views
around the x-axis is irrelevant, and thus, discarded. Some rectification examples can be
found in Figure 4.5. This algorithm was then improved by Monasse and Salgado [39] and

Figure 4.5: Examples from Fusiello and Irsara [21]. The original views can be seen on the left,
while the rectified ones stand on the right.

is showing better results. The biggest changes are:

• Improved Jacobian matrix calculations;
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• Some changes on the terms and geometric interpretations;

• Actual use of the Levenberg-Marquardt minimization;

• Use of the ORSA algorithm[38] instead of the common RANSAC to find and elim-
inate outliers from the matched points.

4.4 Stereo Matching

When faced with a pair of stereo images, it could be difficult to establish a dense corre-
spondence for each pixel in both images. This section aims to present some interesting
algorithms that are considered top-notch to solve that problem in a correct and efficient
way. Nevertheless, the reader should note that efficiency it is not a concern, at this stage,
and so there will be no performance analysis in spatio-temporal or complexity terms.

Kolmogorov and Zabih [30, 31] present a well known and recognised algorithm for
stereo matching. Their approach is based on energy minimisation via graph cuts, and it is
presented as a fast and accurate matching method. They give some degree of interest to
the problem of occlusion detection. Their work treats both images symmetrically, handle
visibility properly, and imposes spatial smoothness while preserving discontinuities. The
problem of energy minimisation is proven to be NP-hard, so graph cuts are necessary
to be possible to compute a local minimum of the energy function. Their experimental
results are very promising and testify the performance of the algorithm. Those results can
be viewed in Figure 4.6.

(a) Result for the Tsukuba dataset (b) Results on the Dayton sequence

Figure 4.6: Results from Kolmogorov and Zabih taken from [31]. A lighter color means that the
points are closer to the camera.

Radim Šára contributed with various algorithms for efficient stereo matching. His
work was based in trying to solve the problems of ambiguity and occlusion. Believing
that studying the ambiguity related to the reconstruction would extensively help the re-
construction problem, he presented a paper [51] describing an algorithm that is intended
to find the largest unambiguous portion of matched points, identifying some variables
that can be manipulated to identify what is or is not ambiguous. As a result, he defined
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a new stability property that is a condition a set of matches must satisfy to be consid-
ered unambiguous at a given confidence level. The experimental results can be seen in
Figure 4.7.

Figure 4.7: Results from the algorithms presented in [51].

This author presented later, in [52], a new set of algorithms, based on his previous
work. It aim was to build a robust framework for correspondence matching in computer
vision. This framework is featured with the ability of adding some well-structured prior
knowledge. In this work some considerations and definitions about visibility, occlusions
and ambiguity are presented, also pointing the most common tasks attributed to solve the
stereo problems. The paper also shows a large degree of interest in detailing that the prior
knowledge or model severely affects the solution found, thus explaining that a contradict-
ing prior model will result in artefacts and wrong disparity calculations. The framework
is based on the notion of digraph kernels, that are considered excellent classification tools
and have widespread applications and uses [5].

Concerned with computational time while producing accurate results, Čech and Šára
[49] present a two-step stereo matching method. This algorithm visits only a small frac-
tion of the disparity space, finding a semi-dense disparity map. From a set of seeds pre-
viously selected (using helper algorithms like [23]) the matching is performed growing
the correspondence from those seeds on, dropping, under a theoretically well-grounded
rule, the uniqueness constraint until the result can no longer be improved. Then, a robust
global optimality task is performed, selecting from the competing patters those that are
unambiguous. It is shown that the algorithm is very resistant to repetitive patterns and
other ambiguities. The most interesting result is that, contrary to initial belief, there is no
need for high quality seeds, as the algorithm seems to be able to perform matching in very
complex scenes from a set of pseudo-random initial points. Their experimental results are
very promising and can be viewed in the Figure 4.8.

Hirschmuller presented some work [26] on a stereo matching algorithm with a semi-
global approach. Through the use of a specially designed cost function, the color varia-
tions that pixels from the same 3D point may exhibit in the two images are compensated.
The matching is performed through a global cost function, that propagates the matching
for a determined pixel in all directions trying to reach a global optimisation value. Some
post-processing steps are also considered, that try to improve the solution found. Tests
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Figure 4.8: Experimental results from the algorithm presented in [49] for some combinations of
parameters and different images. Notice that, by “proposed” it is meant the proposed algorithm,
“Harris” is the feature detector presented in [23] and “exhaustive” is the application of a classical
exhaustive search algorithm (as presented in Chapter 3.4).

and comparisons found that this algorithm is well ranked among the commonly existing
algorithms, and the author claims that it can perform better if some subpixel accuracy is
computed in the resulting disparity map. This algorithm is implemented with optimization
in the OpenCV1 computer graphics library.

Alagoz [2] created two stereo matching algorithms based on classical global energy
minimisation functions. The approach was, however, to try and add a smoothing function
so as to eliminate unreliable disparity estimations. In the first algorithm, it is attempted
to smooth the energy function by applying an averaging filter a large number of times,
assigning, for each pixel, a new minimum disparity value, if found in each iteration. In
the second algorithm, the approach is based on region growing along image rows, defining
root points where regions begin. A root point is defined as a point that does not belong
to any other region, and its disparity is computed through the energy function previously
defined by the author. The region is then grown from that point on while the energy
function stays equal or less the value for the root point. Otherwise, a new root point is

1The OpenCV library can be found in http://opencv.willowgarage.com/
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selected and the region starts growing from there.

Bhatti and Nahavandi [4] published another approach to the stereo matching problem.
Their claim is that few work in the area was attempted using wavelets/multiwavelets mul-
tiresolution analysis. As such, their work tries to develop a stable algorithm that uses
translation invariant multiwavelet transforms to establish correspondences on the stereo
pair. In the paper, they also studied some base changes and the effects it could make on
the performance of the correspondence estimation. Their experimental results on some of
the classical datasets can be found in Figure 4.9.

Figure 4.9: Results for Bahatti et al. algorithm for the classical Sawfoot and Venus stereo datasets.

Wang and Road [54] built a stereo matching algorithm based on competitive and co-
operative region optimisation. It is an energy minimisation approach. So, first, through
segmentation, it defines a set of image regions, establishing initial correspondences with
simple window-based methods. Those disparities are then refined through a plane fit-
ting process that uses voting for the assignments. Finally, the disparities of all planes are
refined by an inter-regional cooperative optimization procedure based on global energy
minimisation. Up till this moment, it’s the 3rd best performing algorithm on the Middle-
bury Stereo Evaluation ranking (see next paragraph). Their experimental results can be
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seen in the Figure 4.10.

Figure 4.10: Experimental results from Wang and Road [54] for the Tsukuba, Venus, Teddy and
Cones databases.

Klaus, Sormann and Karner presented in [29] another matching algorithm. Their ap-
proach is based on color segmentation on the reference image followed by an adapting
matching score, developed for maximizing an unambiguous solution. After identifying
areas of similar color, the matching is performed on a local window of every point (in this
paper, a 3x3 window). The idea is that disparity is smooth in areas with the same color,
while large disparity variations should occur in discontinuities. After that, the disparity
attribution is based on deriving a set of planes that should be adequate to represent the
scene structure. Finally, each segment found in the first phase is assigned to a specific
plane, through an optimisation algorithm based on energy minimization. It is one of the
top ranked algorithms found in Middlebury Stereo Evaluation ranking2, right after a best
algorithm, submitted anonymously, and for that reason excluded from this work. The
experimental results can be found in Figure 4.11.

Geiger et al. [22] have very recently introduced the algorithm they named as Efficient
Large-scale Stereo (ELAS) focusing on the problem of creating one algorithm that would
be computationally less expensive while achieving comparable results. Their approach
is based on Bayesian probability computation. Having in mind that most pixels in a pair
of images might be ambiguous and repetitive, their method relies on a set of “support
points”, defined as points of strong, unambiguously matched features. Then, the assump-
tion is that, along that ambiguous portions, the disparities should vary smoothly. After

2The ranking can be found in http://vision.middlebury.edu/stereo/eval/
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Figure 4.11: Experimental results from Klaus et al. for the Tsukuba, Venus, Teddy and Cones
databases.

computing the disparity of that “support points’, they create a 2D mesh via Delaunay tri-
angulation. Then, it’s up to find a piecewise linear function that is able to approximate
that mesh to the real disparities. Results for the classical evaluation datasets are shown in
Figure 4.12.

Figure 4.12: Classical result set for the algorithm by Geiger et al. [22].
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Figure 4.13: Microsoft PhotosynthTMscreenshot showing the Piazza San Pietro, Vatican City 3D
cloud point and a picture used to created it.

4.5 Software Examples

There are some commercial examples that use stereo reconstruction. The simplicity in use
and low cost of data has motivated many commercial implementations and there exists a
plenitude of software available.

The first example is that of Microsoft R© PhotosynthTM (screenshot in Figure 4.13).
Through the use of pictures taken from any camera from any location, users are (freely)
invited to create their own reconstructions. The product’s website features many famous
places that were reconstructed through the use of multiple contributions from many users.
One famous and recent use of PhotosynthTM can be seen in the CNN special President
Inauguration ceremony3.

Another example is the DI3DcaptureTM 3D Capture Software from Dimensional
Imaging. According to their marketing description, their software is able to calculate a
dense range (disparity) map as well as creating 3D models from some uncalibrated views.
The software automatically produces 3D meshes that are rendered using modern GPU
units and is able to merge multiple consecutive meshes in order to create a larger and
more complete one. More details are available in http://www.di3d.com.

3http://edition.cnn.com/SPECIALS/2009/44.president/.inauguration/themoment/, ac-
cessed 9th February 2011.
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Chapter 5

Experimental Work

5.1 Methodology

This project is about studying the possible approaches and the state-of-the-art methods
about uncalibrated stereopsis and reconstruction. This section describes the steps which
took part of the solution attempt. The results and some discussion will take place in the
next section.

5.1.1 Test images

After some analysis on the state-of-the-art stereo matching descriptions, it is noticeable
that they are developed and tried on some, well known and somewhat featured images.
The testing datasets evolved too1 and it was decided that, before attempting any algo-
rithm, they should be tested against a “standard” image that had some similarity with
this project’s images: presence of zones of high ambiguity due to low texture or its re-
peatability . That would allow for some overview of how would the algorithms behave
on those smaller and almost perfectly rectified images, before introducing the bigger, not
so well rectified views. As such, the Aloe and Flowerpot images from the 2006 Mid-
dlebury datasets were chosen to verify if the algorithms performed well against texture
repeatability and large portions of ambiguity. The selected pairs are in Figure 5.1.

Later on, there was a brief test on two very ambiguous and virtual images. The nature
of those images would pose a very hard to solve test on all known algorithms and would
allow a strong starting point for this study. Those images can be seen in Figure 5.2.

The next set of images is based on a dummy (original: 5.3(a)) that was modified to
incorporate some volume change between the two breasts. Although poorly executed, it
was attempted to mimic the natural skin ambiguity by using almost always the same color,

1Some datasets can be found in http://vision.middlebury.edu/stereo/data/ and the more recent have
been used in the best “scoring” algorithm.
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(a) Aloe, left (b) Aloe, right

(c) Flowerpot, left (d) Flowerpot, right

Figure 5.1: Initial test images, from the 2006 dataset in Middlebury website.

although with some points of color change that would copy the effect of skin lesions,
moles, freckles or blemishes. That model and the selected views are in Figure 5.3.

5.1.2 Feature point detection

It is easily perceived that there are not many distinctive features in the images of this
project. The most common and known algorithms were tested for the number and quality
of features. The objective is to find the detector that is able to find the biggest number of
quality features that can then be matched. The tested algorithms were:

• Harris corner detector [23]

• SIFT [34]

• SURF [3]

• MSER [36]
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(a) Virtual color model, left (b) Virtual color model, right

(c) Virtual blank model, left (d) Virtual blank model, right

Figure 5.2: Virtual models for large ambiguity tests.

some others were proposed but either an implementation was not found, or the tests failed
to run in the used configuration. Some examples:

• Ferns [42]

• STAR [48]

• HoG lines and points [14]

• Dias et al. [16]

5.1.3 Image rectification

Hartley and Zisserman [25] method was computed and attempted using the tools present
in Matlab R©2. The Fusiello and Irsara [21] method is tested with its own Matlab R©toolbox,
and so is that method’s improvement by Monasse and Salgado [39].

2http://www.mathworks.com/products/computer-vision/demos.html?file=/products/
demos/shipping/vision/videorectification.html
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(a) Original dummy

(b) Modified dummy, left view (c) Modified dummy, right view

Figure 5.3: Dummy model for more real tests, with induced volume difference in the breasts.

5.1.4 Disparity map generation

The disparity tests were performed using the author’s code, either through executables
or through their Matlab R©wrappers. Not many implementations were found, whereas the
most common code available is that of very simple matching presented in Section 3.4.
Appart from those, the tested algorithms were:

• Shawn Lankton implementation of a selective mode filter algorithm3.

• Hirschmüller [26]

• Čech and Šára [49]

• Alagoz [2]

3It was not possible to find a publication on this code. It can, however, be found in http://www.shawnlankton.
com/2008/04/stereo-vision-update-with-new-code/
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• Klaus et al. [29]

• Geiger et al. [22]

All but the first one from this list are described in Section 4.4. About the first one, the
algorithm processes the images by first computing disparity values comparing shifted
versions of images; then a 2D mode filter tries and replaces low confidence calculations
with information from its neighbours.

5.2 Results

This chapter presents the results to the tests planned in Chapter 5. A figurative testbed was
developed and there are now conditions to make all tests for any image that is required.
The parameters used are those that were shown (by the authors) to have the best results.
Later, some parameter variation was attempted in some algorithms, to see what changes
those parameters would bring to the resulting map. It was not possible to test for all
parameters on all algorithms due to the time and resources each test consumes.

5.2.1 Feature point detection and matching

The testbed was run on all images and the results are present in Table 5.1. Please note that
the extra column about the SIFT algorithm is based on matching against SIFT descriptors
using squared Euclidean distance, and is present because, according to Lowe [34], some
matches should be rejected when considered too ambiguous.

Harris SIFT SURF MSER Total
Corners Features Matched Features Regions

72648

Aloe
l 26 10383

5727
8606 11306

r 27 10447 8510 11024

Flowerpot
l 8 4605

2127
1055 591

r 10 4611 1093 597

Color model
l 75 3751

1748
202 9

r 92 3726 191 10

Artificial model
l 500 8810

4219
9803 2364

r 500 8759 9409 2352

Dummy
l 7 9832

1072
960 197

r 9 9663 971 205
Total (avg. unmatched) 627 37294 — 20400 14328

% of total 0.8 51.3 28.1 19.7
Table 5.1: Results for the testbed and some evaluation. Note that, because there is no defined
matching refusal criteria for the remainder algorithms, it was decided to compare the global num-
ber of features detected, as a larger number raises the probability of correct matches.
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The SIFT algorithm appears to be largely superior to the remainder, and therefore
it was selected for the rest of the tests. The feature representation (as close as possible
to that returned by the algorithm) is shown in Figures 5.4 and 5.5. It is possible that
a combination of all four algorithms would increase the accuracy, but that depends on
defining an algorithm that would:

1. Eliminate duplicate or too near features;

2. Scale those features according to some quality level, where only the high quality
features would be used.

5.2.2 Rectification

The rectification was performed on the colored artificial 3D model and on the marked
dummy, because those get close to human body representations. The other test images
were discarded for these tests. The pairs used for rectification were obtained through
SIFT both for detection and matching, in this configuration:

• Dummy: 1072 matched pairs;

• Artificial coloured model: 1748 matched pairs.

Hartley and Zisserman [25] rectification algorithm was parametrized to use different
fundamental matrix generation methods. Those that got tested were the RANASC, Least
Trimmed Squares and Least Median of Squares [25]. All methods considered the entire
set of 1072 pairs as inliers for every pair of images. The selected parameters were:

• Confidence: 99.99%

• Distance: 0.01 Sampson

• Number of trials: 10000

This method achieved good results, but more recent algorithms performed better.
Fusiello and Irsara [21] achieved the best results of the test, with the lowest possible

error. However, it is also the slower to run and sometimes it might not end successfully,
due to the random characteristics of the Non-linear Least Squares method, that initializes
the focal length with a random value and then iteratively tries to improve that value. The
initialization of this value, taken from the image’s metadata, would possibly improve
the result. It is not part of the initial algorithm to search and eliminate outlier matches,
so it was done by fitting an initial fundamental matrix through RANSAC at a required
minimum distance to the unrectified epipolar lines for each pair set to a very restrictive
0.00001 pixel.
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Figure 5.4: Feature detection performed in the Aloe and Flowerpot, algorithms in this order:
Harris, MSER, SIFT and SURF.
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Figure 5.5: Feature detection performed in the three artificial models used, algorithms in this
order: Harris, MSER, SIFT and SURF.
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Color Model Dummy
# Features 1755 1069

Hartley

RANSAC
Error 0.15292 1.75616
Inliers 1755 1069

LMedS
Error 0.180815 0.688782
Inliers 1755 1069

LTS
Error 0.173151 0.775647
Inliers 1755 1069

Fusiello
Error 0.019211 0.024518
Inliers 595 586

Focal length 1006.5 2872.5

Monasse
Error 0.581935 0.044068
Inliers 595 751

Focal length 2824.61 2691.91
Table 5.2: Rectification results and comparison. Error is established through Equation 5.1 and is
in pixel.

Monasse and Salgado [39] method achieved, in this scenario, highest rectification
errors though the author claims the algorithm performs best. It might be due to a very
restrictive set of inliers computed for the previous algorithm or it could be related to the
scene or the quality of features found.

The results are summarised inf Table 5.2. The rectified pairs are visually very similar,
so only the result with the minimum error is presented in Figure 5.6. The presented error
was obtained by applying the Sampson error suggested by [20] and defined as:
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FFFuuu3]×||2

(5.1)

and can be seen as the root mean squared distance of each feature point to its horizontal
epipolar line.

5.2.3 Stereo matching

The same images used for studying the rectification algorithms will now be used to try
and generate the most dense disparity maps possible. The rectification algorithm used
was that with the lowest error, according to Table 5.6. There is no ground truth available
and there is no clue about minimum or maximum disparity, so it is always assumed to
range between 0 and a large number, chosen to be 255.

The results for all the algorithms running over the coloured 3D model with the default
parameters can be viewed in Figure 5.7. It is evident that the large ambiguity the image
presents is terribly handled by all algorithms, and the resulting disparity maps are visually
wrong, sparse and unintelligible.
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Figure 5.6: Best results from rectification algorithms, both by Fusiello and Irsara [21].

Unfortunately, for the Dummy images the maps did not improve as much. The large
texture and color ambiguity in the surface of the Dummy can be attributed to these weak
results. In any case there is a disparity map good enough for 3D reconstruction and in
most of them there are no distinguishable differences between parts of the left and the
right breast, although originally they were at different depth levels. The disparity maps
can be viewed in Figure 5.8. Note that result 5.8(h) was rotated for unknown reasons by
Geiger et al. [22] own code.

5.2.4 Real scenario

A small dataset containing some photographs taken from medical personnel was available
for this project. One of the first immediately spotted difficulties was for the medic to
retain the “low baseline” constraint, which did not occur in most of the shots. Taking
into account that it was specifically requested and reasoned, it denotes that enforcing this
constraint within medical staff might be a concern.

In this section it was decided to present two cases, namely the best and the worse
for the available dataset. They were named Patient A and Patient B (see Figure 5.9).
The rectification results are summarised in Table 5.3 and can be seen in Figure 5.10.
Both patients were tested for all the disparity algorithms that were tested in the previous
section.
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Patient A Patient B
Features 1377 329
Inliers 755 168

Focal length 4505.1 5185.1
Error 0.025873 0.334152

Table 5.3: Rectification values for the Patient photographs using SIFT for features and Fusiello
and Irsara [21] for rectification.

For Patient A, (Figure 5.11) the results appear to be better than the testing ones, in
some cases. On the other hand, for the remainder, they are catastrophically bad. There
is still no disparity map dense and correct enough for a decent reconstruction and some
algorithms tend to continuously give close disparity values to both breasts and, in some
cases, even to the chest.

The images from Patient B (Figure 5.12) are more difficult to process than the rest, for
lack of features and because the images are a little blurred. The results are pretty terrible,
and there are no distinguishable depth differences between the chest and the breasts. No
disparity map is usable for an attempted reconstruction.

It is feasible to conclude that, for this kind of images, it is not possible to use the most
common state-of-the-art algorithms. It is needed to search for a more suitable algorithm,
one that does a wider, more globally oriented search that would better fit the ambiguity of
these images. Nonetheless, a global algorithm would escalate in terms of complexity, so
it might be a trouble accounting for the target of this software.

5.2.5 Parameter variation

Some parameter variation was attempted for some algorithms to verify what changes that
would bring to the generated map. Those variations were done on the two most common
parameters: window size and maximum disparity value. Other parameters were available
for Klaus et al. [29] and Alagoz [2] solutions, but those proved to have little if no effect on
the final result. This section presents some of the results obtained, found to be the most
relevant and consistent among various runs.

The first algorithm that was varied was Sum of Absolute Differences. For the coloured
3D dummy, the results are presented in Table 5.4 where the results for the dummy are
presented in Table 5.5. A larger window appears to have a detrimental effect on the
definition of edges and color changes, while increasing the maximum number of disparity
variation appears to introduce more noise to the final result. Similar interpretation is in
order for Patient A (Table 5.6) and Patient B (Table 5.7) images, added that the noise, in
those cases, is more evident.

For Shawn Lankton’s algorithm, the results for the 3D model and the Dummy were
unintelligible and, in some cases, the algorithm wouldn’t run on the computer framework
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available. For these reasons, no result will be presented for this algorithm. Somewhat
similar, Alagoz [2] was taking too much memory and time to run, and it became infeasible
to vary the parameters in a significant way.

Čech and Šára [49] solution had only the option to adapt a different window size to
the matching. The other parameters were already parameterised to optimality, i.e. the
disparity values were set to be possibly infinite (capped to the maximum and minimum
representable integer) and the maximum number of disparity candidates for each pixel.
The results (Table 5.8), however, are unintelligible from each other, forcing the conclusion
that varying the window size has no effect on this algorithm.

Geiger et al. [22] on the other hand had the option to vary the maximum disparity
value but no control over the matching window. Some other parameters were available,
but after some runs it was found that there was no significant variation in the final result.
The results for those variations are found in Table 5.9. Increasing the maximum disparity
value has a direct effect on the resulting map, increasing its definition and improving the
final result. However, the map is not intelligible enough.

5.2.6 Discussion

As early suggested and, somewhat, predicted, the state-of-the-art algorithms could not
successfully reason the correct correspondences for a too large portion of the pairs, both
virtual and real. From the literature, that can be attributed to the fact that it is very difficult
to attribute a confident matching in many of the areas of the images used in this project.
That difficulty can be verified with a simple zoom on similar areas in both images. The
difficulty of reasoning is notable, and even a human, with visual capabilities that overcome
the actual computer possibilities in many areas, is incapable of reasoning about the correct
correspondences.
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(a) Sum of Absolute Differences (b) Shawn Lankton’s algorithm

(c) Hirschmüller [26] (d) Čech and Šára [49]

(e) Alagoz [2], energy minimisation version (f) Alagoz [2], region grow version

(g) Klaus et al. [29] (h) Geiger et al. [22]

Figure 5.7: Results for stereo matching algorithms running over the 3D coloured model.
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(a) Sum of Absolute Differences (b) Shawn Lankton’s algorithm

(c) Hirschmüller [26] (d) Čech and Šára [49]

(e) Alagoz [2], energy minimisation version (f) Alagoz [2], region grow version

(g) Klaus et al. [29] (h) Geiger et al. [22]

Figure 5.8: Results for stereo matching algorithms running over the Dummy model.
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(a) Patient A - left (b) Patient A - right

(c) Patient B - left (d) Patient B - right

Figure 5.9: Original patient pairs, prior to processing.

49



Experimental Work

(a) Patient A

(b) Patient B

Figure 5.10: Rectification results for the patients’ pairs.
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(a) Sum of Absolute Differences (b) Shawn Lankton’s algorithm

(c) Hirschmüller [26] (d) Čech and Šára [49]

(e) Alagoz [2], energy minimisation version (f) Alagoz [2], region grow version

(g) Klaus et al. [29] (h) Geiger et al. [22]

Figure 5.11: Results for stereo matching algorithms running over Patient A photographs.
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(a) Sum of Absolute Differences (b) Shawn Lankton’s algorithm

(c) Hirschmüller [26] (d) Čech and Šára [49]

(e) Alagoz [2], energy minimisation version (f) Alagoz [2], region grow version

(g) Klaus et al. [29] (h) Geiger et al. [22]

Figure 5.12: Results for stereo matching algorithms running over Patient B photographs.
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Table 5.9: Maximum disparity value variation for the four pairs of images under test, for Geiger
et al. [22].
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Chapter 6

Conclusions

This work attempted to create a conclusive set of tests for the 3D reconstruction based
on stereo disparity search. After having defined the common mathematics associated, it
was possible to establish some basis for the validity of reconstruction and the general
problems were posed.

The literature related to this problem is thorough and wide, so a selection of the most
recognised, proven and broadly used methods was chosen to take part on this test. The
parameters used are those that were shown (by the authors) to have achieved the best
results. The results are summarised in the previous chapter.

It is therefore fair to conclude that the current state-of-the-art algorithms for stereo
matching are not capable of reliably attributing a dense estimation of the disparity map
from the type of images this project deals with. The estimated maps returned from these
algorithms are generally very sparse. Visual inspection is enough then to tell that the maps
are generally also wrong, whereas areas of the chest sometimes have close disparity from
those of the breast. This can be attributed mainly to the difficulties of reasoning to what
pixel on the “target” image does one pixel on the “base” pixel belong, or is correlated.
Where repetitive texture is present, the reasoning difficulty is very high, and too many
options are available for a correct match.

As such, it is required to search for more suitable algorithms that would make more
globally oriented decisions. Those algorithms could be helped by a parametric model
that would incorporate some restrictions to the possible shape of the breast, reducing the
complexity associated to the stereo matching process. Multi-view and/or video incorpo-
ration could allow for ambiguity reduction, using methods like optical flow. The biggest
adversary to global solution is the elevated complexity associated, and it can be a difficult
matter accounting for the possible deployment on normal PCs.
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For the evaluation alone it is not needed to have a very high quality disparity map.
Some measures can be introduced into the classificator and it might be sufficient for
achieving better results. So, a sparse disparity map with just the right features would
suffice. The right features would be those enough to add volume loss perception in some
mathematical model. A semi-automated solution could improve the rectification process.
By asking the user to enter some close-matched points, and then attempting to use the fea-
ture selection algorithms to search for features around those points, it could be possible
to obtain better quality features in a reasonable number.

There is much further work needed and some upgrades are necessary, like multi-view
adaptations, plane fitting algorithms that would allow for adapting a sparser disparity map,
and some attention is needed to the problem of difficulties in maintaining the low baseline
restriction. There is a large set of methods in these subjects that were not part of this work
because of time restrictions.
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Chapter 7

Future work

This chapter describes some possible improvements that, although planned and with
recognisable possibility, could not be part of the present work, for various reasons. They
are to be understood as simple suggestions, once the applicability has not yet been tested.

7.1 Better feature detection and matching

The process of rectification is extensively influential by the correct correspondences being
fed to those algorithms. As such, feature detection and matching is, inherently, the biggest
concern prior to rectification. There were some algorithms that were not tested, and some
more might be better suitable to the scenes that are being dealt with. Some suggestions are
present in Section 5.1.2, but there might be more, better suited, or that could be adapted.

Contrary to initial belief, the number of features is not important, as the fundamental
matrix needs only 8 points to be correctly formulated. It is much more important the
quality of those features. Of course, it is suggestible to have more than 8 points, but too
many of mixed quality could produce as bad results, as the good quality model could
be lost in so many possibilities. For example, if RANSAC is used, then the number of

possible solutions for N points is
(

N
8

)
. For one of the tests here presented, that would

amount to:
(

586
8

)
≈ 3.2872× 1017 possibilities, what is computationally impossible to

test.

7.2 POSIT with a cube

An idea came along while reading [6], of using the robotics-famous algorithm Pose from
Orthography and Scaling with Iteration to establish the camera’s full calibration (intrin-
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sics and extrinsics) and, thus, both allowing for a seamlessly rectification, but also to
cope with lens distortion and, the most desired feature, a metric reconstruction. The
idea is basically to place a small known, recognisable and detectable object with enough
distinguishable features. That could be, for example, a cube textured with the classical
chessboard images, or a calibration rig like those used by [25]. It should be small enough
to be placed beside the patient, and big enough to be usable. Higher definition images
would, in principle, reduce the minimum required size for the cube.

Figure 7.1: Calibration cube near a dummy, for POSIT algorithm. Kindly provided by Politecnico
di Milano

7.3 Dynamic Time warping

It is possible to use the extension to the original Dynamic time warping algorithm to be
held at two dimensions. And so, one existing suggestion was to try and use this algorithm
to create a very sparse but possibly useful disparity line (or plane) for cosmetic assess-
ment. The idea is to ask for the user to select some feature points manually. Then, using
Dynamic time warping, try and build a disparity calculation in a line formed by those
points, that would be assumed to cross the whole breast through the nipple, defining a
disparity measure for a “string” containing the breast. Those measures would be added
to those already used in Breast Cancer Conservative Treatment.cosmetic result and could
improve the cosmetic assessment. Later on, this algorithm could constitute a basis for a
new disparity algorithm, adapted to this type of images.
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7.4 3D Reconstruction from Multi-view and other techniques

Multiple contributions are present on the literature, both in the form of papers and books.
Not much attention was given to the 3D reconstruction from multi-view and other tech-
niques, but there was still some preliminary study on the existing possibilities. Multiple
material has been found, and it is depicted in the next paragraphs very briefly.

Ziegler et al. in [58] presents a method for 3D reconstruction based on color and volume
consistency using user feature points identified prior to the algorithms application.

Checchi et al describes in [12] a method based on Videogrammetry for reconstructing
volcanic surfaces. It deals with automatic camera calibration and 3D measurements from
multiple views. Their claim is that reconstruction accuracy is about 10−4 m for a distance
between the object and the camera of 0.5 m, it is potentially several orders of magnitude
higher for surfaces of finer texture and uses higher precision sensors.

Wang et al. published in [53] a reconstruction algorithm based on auto-calibration and
geometry reconstruction that is based and shared from Zisserman et al. and others. It
is based on feature identification and straight lines marking for homographic parameters
retrieval. Nevertheless, it requires some user input to identify lines in the images.

Sinha et al. presents in his paper [45] a novel approach for reconstruction that is based
on photo consistency (like stereo-matching) and silhouette consistency. Their algorithms
are based on global graph-cut optimisations.

Fraundorfer et al. depicts in [19] a method for homograph estimation from a set of
identified planes in the images. It grows the reconstruction from feature points that act
like seeds.

d’Angelo et al. presents in their paper [15] a combination of photometric methods to-
gether with real-aperture measures (real depth sensors) and some notions of Lambertian
models (surface illumination calculations).

Salzmann et al. published in [44] a method for coping with noisy video data that take
advantage of deploying deformable 3D surface models. The shape of a triangular mesh
can be parametrized, so as to create a representative set of potential shapes.
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Zhu et al. [57] describes a 3D reconstruction method from uncalibrated cameras without
prior knowledge from the structure of the scene. Both intrinsic parameters and feature
points can be recovered from the images through the use of a global cost function. The
reconstruction generally does not require any further non-linear optimization for general
applications.

7.5 Optical flow from video

Video can be considered as a collection of images. Nowadays, with the dissemination
of video compression and advanced video codecs, it is not exactly as so. However, it is
still possible to use optical flow algorithms based on video that would greatly add the
number of views used. For video, there are different algorithms for reconstruction, as can
be found in [6, 25, 47] and is a successfully area of studies. One notable implementation
is that of Insight3D1.

7.6 Point Cloud Library

When an enough dense mesh is found, this library2 will allow extensive manipulation and
visualisation of that mesh and the resulting reconstruction. It was, once again, created
for robotic applications, but it is believed to work in this project. It is computationally
improved for speed and reliability, because it is meant to run on limited devices installed
on robots. It allows useful operations like point cloud concatenations, filtering, down-
sampling, directly applying statistical analysis to detect outliers, estimation of surface
normals for surface smoothing, 3D feature points, easing object segmentation, and many
other capabilities3.

1As can be seen in http://insight3d.sourceforge.net/
2Point Cloud Library found in http://pointclouds.org/.
3Please refer to http://pointclouds.org/documentation/tutorials/
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