
                 ·                    

Adaptive Object-Modeling
Patterns, Tools and Applications

�

    

December 

Scientific Supervision by

Ademar Aguiar, Assistant Professor
Department of Informatics Engineering

In partial fulfillment of requirements for the degree of
Doctor of Philosophy in Computer Science

by the
MAPi Joint Doctoral Programme

http://www.up.pt
http://www.up.pt

Contact Information:

Hugo Sereno Ferreira
Faculdade de Engenharia da Universidade do Porto
Departamento de Engenharia Informática

Rua Dr. Roberto Frias, s/n
- Porto
Portugal

Tel.: +   
Fax.: +   
Email: hugo.sereno@fe.up.pt
URL: http://www.fe.up.pt/ hugosf

is thesis was typeset on an Apple® MacBook® Pro running Mac OS® X . using the free LATEX typesetting system, originally developed by
Leslie Lamport based on TEX created by Donald Knuth. e body text is set in Minion Pro, a late Renaissance-era type originally designed
by Robert Slimbach. Other fonts include Sans and Typewriter from the Computer Modern family, and Courier, a monospaced font originally
designed by Howard Kettler at IBM and later redrawn by Adrian Frutiger. Typographical decisions were based on the recommendations given
in e Elements of Typographic Style by Robert Bringhurst (), and graphical guidelines were inspired in e Visual Display of Quantitative
Information by Edward Tue (). is colophon has exactly one hundred and twenty-two () words, excluding all numbers and symbols.

ISBN 978-989-96899-0-9

9 789899 689909

“Adaptive Object-Modeling: Patterns, Tools and Applications”
Copyright © –  by Hugo Sereno Ferreira.
All rights are reserved.

is work was partially funded by  and , .. as a doctoral scholarship, ref. ///.

…to Helena

is page was intentionally le mostly blank.

Abstract

efield of Soware Engineering () could be regarded as in crisis since the early days of its birth.
Project overruns and failures have hitherto characterized the norm, blamed upon the unreason-
able expectations set by the stakeholders and the constant change of the requirements. While
some development processes struggle to systematically eradicate these barriers from soware
development, other methodologies, specially those coined agile, promote a continuous embrace
of change as a first-class property of this activity. Even so, it is a yet to be disputed contingency
that there is no silver bullet; no single, unifying methodology capable of consistently improving
the efficiency of soware development by even an order of magnitude.

Nonetheless, the agglomeration of empirical evidence is now starting to suggest that change,
more than a mere cause, may be a symptom of a deeper nature, directly related to inherent prop-
erties of some of the domains soware tries to address— sowaremay need to be under constant
change because any modeling of those domains is incomplete since the day it starts.

erefore, if such solutions need to be constantly evolving and adapted to new realities, hence
regarded as incomplete by design, shouldn’t they be actively designed for incompleteness? If agile
methodologies shied the way teams and individuals plan development to embrace change, how
should one deliberately design to cope with continuous change?

Even if the answer to this question could be promptly given, the goal of pragmatically con-
tributing to the body of knowledge in the  field rises a problem of its own. As knowledge
grows in a specific area, solutions are captured and documented by experts in books, research pa-
pers, concrete implementations, webpages, etc. While one may intuitively think that this growth
implies better design, it has been shown that the way (and the amount) this knowledge is cap-
tured raises an important issue per-se. Design, as an intentional act of choice, is constantly over-
whelmed by the sheer quantity of available information.

In this dissertation, the author starts by presenting arguments pointing to how these incom-
plete by design systems are a common issue in nowadays practice of soware engineering. During
that overview, one must inevitably delve into the forces that lead architects, designers and devel-
opers to recognize these kind of systems. e target thus become readers who have recognized
(or are interested) in the set of systems that show a high degree of variability and incomplete-
ness, andwhich goal is to reduce the overall effort —monetary cost, available time and resources,
required skills, resulting complexity, etc. — of coping with continuous change made to the do-

ii 

main model. Mainly, this dissertation aims to answer what form should this type of systems take,
and which kind of tools and infrastructures should be available to support the development of such
soware?

e way this problem is here coped, with a permanent focus on the development of prescrip-
tive contributions to the  body of knowledge, is as follows. First, it is presented as a formal-
ization of a unified conceptual pattern language, following the theories first laid by Alexander
et al., for systems which domain model is target of continuous change during runtime. e un-
derlyingmeta-architecture of these systems is known asAdaptive Object-models, and this pattern
language aims to answers questions such aswhen do these type of systems occur, their advantages
and disadvantages, their underlying requirements, the set of available techniques and solutions
and their main benefits and liabilities.

e author then proceeds to specify a reference architecture of an object-oriented frame-
work capable of dealing with such systems. Questions here addressed include the type and form
of needed infrastructures, what abstractions should be made and supported, the generic func-
tionalities it should provide, its default behavior and points of extension. e author takes a
further step in providing and detailing an industrial-level implementation of such framework,
along with the specific design issues that arise only when pursuing such concrete artifacts.

Finally, the author’s main thesis is validated by providing empirical evidence of the
framework benefits through industrial use-case applications and controlled academic quasi-
experiments. Two commercial soware systems built on top of that framework are used as case
studies, reflecting their own specific context, their requirements, their particular problems, and
the way the framework — and the underlying theories here built — were used to address them,
the outcomes, and the lessons learned. Inherent threats to this type of validation are further
dismissed by presenting the results of a (quasi-)experiment within a controlled academic en-
vironment, where the results of studying groups of undergraduate students following different
treatments are shown to be consistent with those earlier presented.

Resumo

A Engenharia de Soware (), enquanto área de profissionalização, debate-se numa profunda
crise que remonta aos primeiros dias do seu nascimento, e se reflecte nos constantes atrasos e
insucessos dos seus projectos, ao ponto dessas situações definirem a norma na área. No topo
da “lista” das principais causas desta situação encontram-se as expectativas irrealistas dos inter-
venientes e a mudança contínua dos requisitos. Em resposta, têm surgido alguns processos de
desenvolvimento que defendem a erradicação sistemática destas barreiras do acto de criação de
soware; mas outros, especialmente aqueles auto-denominadas ágeis, sublinham a necessidade
de abraçar a mudança como uma propriedade essencial da própria actividade. Apesar de tudo,
permanece por refutar a hipótese de não existir uma bala de prata, uma únicametodologia unifi-
cadora capaz de melhorar consistentemente a eficiência do desenvolvimento de soware, pelo
menos, numa ordem de grandeza.

A observação empírica começa, no entanto, a sugerir que a mudança, mais do que uma sim-
ples causa, apresenta-se como um sintoma resultante da natureza das propriedades intrínsecas
a alguns domínios modelados pelo soware — a respectiva necessidade de ser continuamente
modificado existe porque qualquer tentativa de modelar de forma definitiva esses domínios está
condenada a ser incompleta à partida.

Mas se tais soluções são um alvo inevitável de evoluções e adaptações constantes a novas
realidades — incompletas por natureza — não deveriam então ser activamente desenhadas para
serem naturalmente incompletas? Se as metodologias ágeis modificam a forma como as equipas
e os indivíduos planeiam e executam o processo de desenvolvimento para abraçar a mudança,
como deveremos desenhar soware para deliberadamente suportar uma mudança contínua?

Mesmo que uma resposta estivesse facilmente ao nosso alcance, o objectivo de contribuir
pragmaticamente para o corpo de conhecimento na área da  levanta um novo problema. Por
norma, à medida que o conhecimento aumenta numa determinada área, as novas soluções são
capturadas e documentadas por especialistas em livros, artigos de investigação, implementações,
páginas de internet, etc. Embora pareça intuitivo que este aumento de conhecimento implique
umamelhoria nas escolhas de desenho, tem sido demonstrado que a forma como este é capturado
é problemática. O desenho, como um acto deliberado de escolha, é sistematicamente subjugado
pela quantidade de informação disponível.

Nesta dissertação começa-se por apresentar os argumentos que tornam os sistemas incom-

iv 

pletos por natureza uma contingência da . Para isso, será importante perceber as forças que
levam arquitectos, designers e programadores a identificarem este tipo de sistemas. O público
alvo é assim os leitores que se identificam com estas forças, ou que estão interessados no es-
tudo de sistemas caracterizados por um elevado grau de variabilidade e incompletude, e que
tenham como objectivo o de reduzir o esforço — em termos de custo monetário, tempo, recur-
sos, complexidade resultante, etc. — para lidar com a mudança, a evolução constante do modelo
de domínio. Principalmente, esta dissertação tem como objectivo responder à pergunta qual a
forma — no sentido de aparência, estrutura — que estes sistemas tomam, e que tipo de ferramentas
e infra-estruturas são necessárias para suportar o desenvolvimento desse tipo de soware?

Em seguida descreve-se a metodologia utilizada, com um foco permanente no desenvolvi-
mento de contribuições prescritivas para o corpo de conhecimento da área. Seguindo as teorias
seminalmente estabelecidas por Alexander, é apresentada a formalização conceptual de uma
linguagem de padrões de sistemas cujo modelo de domínio é objecto de evoluções contínuas.
A meta-arquitectura subjacente é conhecida como “Modelos de Objectos Adaptativos”, e a lin-
guagem de padrões tem como objectivo responder a questões relacionadas com a ocorrência
deste tipo de sistemas, as suas vantagens e desvantagens, os seus requisitos básicos, as técnicas e
as soluções disponíveis.

Segue-se a especificação de uma arquitectura de referência de uma framework orientada a
objectos, capaz de lidar com tais sistemas. Aqui são abordadas questões tais como o tipo e forma
de tais infra-estruturas, que abstracções se devem providenciar, que funcionalidades genéricas
devem ser incorporadas e quais os comportamentos base e pontos de extensão adequados. É
paralelamente desenvolvida e detalhada uma implementação de referência de nível industrial,
na qual se aprofundam as idiossincrasias do seu desenho e as peculiaridades dos problemas in-
trínsecos à tentativa de atingir artefactos para produção.

Por fim procede-se à validação da tese principal, demostrando-se a evidência dos benefícios
da framework e, consequentemente, das teorias subjacentes. Começa-se por considerar métodos
de “estudo de caso” sobre dois sistemas comerciais desenvolvidos, onde se apresentam tanto as
respectivas especificidades dos seus contextos, requisitos, e problemas relevantes, como a forma
em que as teorias aqui desenvolvidas foram neles utilizadas. Posteriormente são descartadas as
ameaças de validação inerentes a tal forma de estudo através da realização de quasi-experiências
conduzidas em ambiente controlado, através do estudo de grupos de alunos demestrado sujeitos
a diferentes tratamentos.

Résumé

Le domaine du Génie Logiciel () peut être vu comme en étant en crise depuis les premiers
jours de sa naissance. Les échecs et overruns de projets ont depuis été considérés comme la
norme, attribués aux attentes déraisonnables des acteurs concernés et au changement constant
des exigences. Alors que certains processus de développement luttent pour éradiquer systéma-
tiquement ces barrières au développement de logiciels, d’autres méthodologies, spécialement les
coined agile, continuellement embrassent le changement comme une propriété de première im-
portance de cette activité. Quandmême, il y toujours l’éventualité qu’il n’y ait pas de recettemira-
cle, pas d’unique méthodologie unificatrice capable d’améliorer d’une façon constante l’efficience
du développement de logiciels, même par seulement un ordre de grandeur.

De plus, si de telles solutions ont besoin d’évoluer et de s’adapter constamment à de nouvelles
réalités, et par conséquent regardées comme incomplètes dans leur modèle, ne devraient-elles
pas être activement modelées pour cette incomplétude? Si d’agiles méthodologies changent la
manière des équipes et des individus de planifier le développement pour embrasser le change-
ment, comment devrions-nous délibérément modeler pour s’ajuster au changement continuel?

Même si la réponse à cette question pourrait être donnée promptement, l’objectif de con-
tribuer d’une manière pragmatique au corps de connaissance dans le domaine du  soulève un
problème par lui-même. Comme les connaissances s’accroissent dans un certain domaine, les so-
lutions sont capturées et documentées par les experts dans les livres, publications scientifiques,
réalisations concrètes, sites Internet, etc. Alors que nous pouvons penser intuitivement que cet
accroissement implique de meilleurs choix de modélisation, il a été démontré que la manière (et
la quantité) que ces connaissances sont capturées soulève un problème important en soi. Mod-
élisation, comme un choix actif intentionnel, est constamment dépassé par la quantité absolue
d’information disponible.

Dans cette dissertation, l’auteur commence par présenter les arguments démontrant com-
ment les systèmes incomplets dans leur modélisation sont un problème commun dans la pra-
tique courante du Génie Logiciel. Pendant ce survol, il est inévitable de fouiller dans les forces
qui mènent les architectes, les modeleurs, et les développeurs à reconnaître ce genre de systèmes.
L’audience devient donc le public qui s’est reconnu (ou qui est intéressé) dans l’ensemble de sys-
tèmes qui démontrent un niveau élevé de variabilité et d’incomplétude, et donc l’objectif est de
réduire l’effort global (i.e. les coûts monétaires, la disponibilité du temps et des ressources, les

vi 

talents requis, la complexité résultante, etc.) de s’ajuster au changement continuel que subit le
domainmodel. Surtout, cette dissertation vise à répondre à quelle forme devrait prendre ce genre
de système, et quel genre d’outils et d’infrastructures devraient être disponible pour supporter le
développement de tels logiciels?

La manière dont ce problème est ici traité, avec un focus constant sur le développement des
contributions prescriptives au corps de connaissance du , va comme suit. Tout s’abord, une
formalisation d’un langage conceptuel de pattern unifié est présentée, suivie des théories initiale-
ment présentées par Alexander et coll., pour des systèmes dont le domain model est la cible de
changement continuel durant l’exécution. La méta-architecture sous-jacente à ces systèmes est
connue sousAdaptiveObject-models, et le langage de pattern vise à répondre aux questions telles
que quand ces genres de systèmes surviennent, leurs avantages et désavantages, leurs exigences
sous-jacentes, l’ensemble de techniques et de solutions disponibles et leur principaux bénéfices
et responsabilités.

L’auteur procède ensuite à spécifier les reference architecture d’un cadre de références orienté
sur l’objet capable de gérer de tels systèmes. Les questions telles que le genre et la forme des in-
frastructures requises, quelles abstractions devraient être faites et supportées, les fonctionnalités
génériques qu’ils devraient fournir, leur comportement par défaut et leurs points of extension,
devraient ici être adressées. L’auteur fait un pas de plus en fournissant et détaillant un cadre de
références pour implémentation en industrie, en même temps que les problèmes spécifiques de
modélisation qui surviennent uniquement en pourchassant de tels concrets artéfacts.

Finalement, la principale hypothèse de l’auteur est ensuite validée en fournissant les évidences
des bénéfices du cadre de références, tirés à la fois des applications en industrie et des quasi-
expériences contrôlées en milieu académique. Deux logiciels système commerciaux basés sur ce
cadre de références sont utilisés comme études de cas, reflétant leur contexte spécifique, leurs ex-
igences, leurs problèmes particuliers, and la manière dont le cadre de références (et les théories
sous-jacentes ici élaborées) a été utilisé pour les adresser, les résultats, et les leçons tirées. Les
menaces inhérentes de ce type de validation sont davantage éconduites en présentant les résul-
tats d’une quasi-expérience dans un environnement académique contrôlé, où l’étude de groupes
d’étudiants suivant différents traitements s’est avérée consistante avec les études précédemment
présentées.

Contents

Abstract i

Resumo iii

Résumé v

Foreword by Joseph Yoder xvii

Preface xix

 Introduction 
. Soware Crisis . 
. Motivational Example . 
. Incomplete by Design . 
. Accidental Complexity . 
. Designing for Incompleteness . 
. Soware Design . 
. Patterns . 
. Research Goals . 
. Epistemological Stance . 
. Research Methods . 
. Main Goals . 
. How to Read this Dissertation . 

 Background 
. Fundamentals . 

.. Variability and Commonality . 
.. Adaptability, Adaptivity and Self-Adaptation 
.. Reflection . 

. Key Abstractions . 
.. Metaprogramming . 

viii CONTENTS

.. Generative Programming . 
.. Metamodeling . 
.. Aspect-Oriented Programming . 
.. Domain Specific Languages . 
.. Meta-Architectures . 

. Approaches . 
.. Soware Product Lines . 
.. Naked Objects . 
.. Domain-Driven Design . 
.. Model-Driven Engineering . 
.. Model-Driven Architecture . 

. Application Frameworks . 
.. Building Frameworks . 
.. Documenting Frameworks . 

. Relevant Tools . 
.. Wikis . 
.. Smalltalk . 
.. Ruby on Rails . 

. Conclusion . 

 State of the Art in Adaptive Object-Models 
. e AOM Architectural Pattern . 

.. Why is it a Pattern? . 
.. Towards a Pattern Language . 

. Formalized Patterns for AOM . 
.. Type-Object Pattern . 
.. Property Pattern . 
.. Type-Square Pattern . 
.. Accountability Pattern . 
.. Composite Pattern . 
.. Strategy and Rule Object Patterns . 
.. Interpreter Pattern . 
.. Composing the Patterns . 

. Differences from other Approaches . 
. Conclusion . 

 Research Problem 
. Epistemological Stance . 
. Fundamental Challenges . 

CONTENTS ix

.. Viewpoints . 
. esis Statement . 
. Specific Research Topics . 

.. Specific Challenges . 
.. esis Decomposition . 
.. esis Goals . 

. Validation Methodology . 
. Conclusion . 

 Pattern Language 
. On Patterns and Pattern Languages . 

.. What is a Pattern Language? . 
.. Form . 

. General Context . 
. Technical Description . 
. General Forces . 
. Core Patterns . 

.. Everything is a ing Pattern . 
.. Closing the Roof Pattern . 
.. Bootstrapping Pattern . 
.. Lazy Semantics Pattern . 

. Evolution Patterns . 
.. History of Operations Pattern . 
.. System Memento Pattern . 
.. Migration Pattern . 
.. Resulting Context . 

. Composing the Patterns . 
. Conclusion . 

 Reference Architecture & Implementation 
. Overview . 

.. General Principles and Guidelines . 
.. High-level Architecture . 
.. Key Components . 
.. Component Composition . 

. read of Control . 
.. Bootstrapping . 
.. Main Process . 
.. Query Events . 

x CONTENTS

.. Commit Events . 
. Architectural Decomposition . 

.. Structural Core . 
.. Behavioral Core . 
.. Warehousing and Persistency . 
.. Communications . 

. Crosscutting Concerns . 
.. Serialization . 
.. Integrity . 
.. (Co-)Evolution . 

. User Interface . 
. Development Effort . 
. Conclusion . 

 Industrial Case-Studies 
. Research Design . 
. Complexity Analysis . 
. Baseline . 
. Locvs . 

.. Core Concepts . 
.. Time-Series Analysis . 
.. Conclusion . 

. Zephyr . 
.. Core Concepts . 
.. Time-Series Analysis . 
.. Conclusion . 

. Survey . 
.. Background . 
.. Overall Satisfaction . 
.. Development Style & Process . 
.. Future Expectations . 

. Lessons Learned . 
. Validation reats . 
. Conclusion . 

 Academic Quasi-Experiment 
. Research Design . 

.. Treatments . 
.. Pre-test Evaluation . 

CONTENTS xi

.. Process . 
.. Post-Test Questionnaire . 
.. Independent Validation . 

. Experiment Description . 
.. First Phase: Construction . 
.. Second Phase: Evolution . 

. Data Analysis . 
.. Background . 
.. External Factors . 
.. Overall Satisfaction . 
.. Development Process . 

. Objective Measurement . 
. Validation reats . 
. Conclusion . 

 Conclusions 
. Summary of Hypotheses . 
. Main Results . 
. Future Work . 

.. Evolving Oghma . 
.. Web-based Adaptive User Interfaces 
.. Improving Usability of Automatically Generated GUI 
.. Continuing the Pattern Language . 
.. Self-Hosting . 

. Epilogue . 

Appendices 

A Pre-Experiment Data 

B Post-Experiment Questionnaire 

C Post-Experiment Questionnaire Results 

D Experimental Group Documentation 

E Industrial Survey 

Nomenclature 

xii CONTENTS

References 

List of Figures

. Example diagram of a Medical Center IS . 
. Waterfall soware development lifecycle model 
. e Scrum soware development lifecycle model 
. Soware as the crystallization of an abstraction 
. Refactored solution of a Medical Center IS . 
. e four recognized forces of project management 

. Concept map on related tools, approaches and abstractions. 
. e four layers of abstraction in UML/MOF. 
. Patterns for Evolving Frameworks . 

. A pattern language for Adaptive-Object Models 
. e meta layers of an AOM . 
. A class diagram of the Type-Object pattern . 
. A class diagram of the Property pattern . 
. A class and objects diagram of the Type-Square pattern 
. A class and objects diagram of the Accountability pattern 
. A class and objects diagram of the Composite pattern 
. A class diagram of the Strategy and Rule Object patterns 
. A class diagram of the Interpreter pattern . 
. AOM core architecture and design . 

. e reflective tower of a video renting system 
. e relationship among forces of object-oriented meta-architectures. 
. Pattern map for core patterns of meta-architectures 
. Class diagram of the Everything is a ing pattern 
. Data and metadata evolution patterns. 
. Applying Everything is a ing for evolution patterns 
. History of Operations class diagram . 
. System Memento class diagram . 
. Literal instantiation of the System Memento pattern 

xiv LIST OF FIGURES

. Delta instantiation of the System Memento pattern 
. Class diagram of the Migration pattern . 
. A pattern language for Adaptive-Object Models 

. High-level architecture of the Oghma framework 
. Architecture of a client-server setup . 
. Architecture of a distributed setup . 
. Activity diagram of the framework initialization 
. Activity diagram of the main loop . 
. Activity diagram of query events . 
. Activity diagram of commit events . 
. Core design of the structural meta-model. 
. An extension of the T-S pattern. 
. Implementing the Everything is a ing pattern 
. An example of two different states of the same entity. 
. Implementation model of the structural meta-model 
. A class diagram of the Strategy and Rule Object patterns 
. Dynamic core of the Oghma framework . 
. Class diagram of the warehousing design . 
. Class diagram of the persistency design . 
. Data and meta-data are manipulated through operations 
. Merging mechanism used to validate and apply operations 
. Example of a simple model evolution . 
. Oghma code-base complexity . 

. GISA evolution . 
. SMQVU evolution . 
. Locvs model evolution . 
. Locvs model complexity . 
. Zephyr model complexity . 

. Experiment design . 
. Task  . 
. Task  . 
. Task  . 
. Changes for Task  . 
. Changes for Task  . 
. Changes for Task  . 

. Evolution of the Oghma implementation . 

List of Tables

. A pattern catalog for Adaptive Object Models 

. Wiki design principles . 
. Design principles for incomplete by design systems 
. Code metrics for the current implementation of Oghma 

. Locvs Chronogram . 
. Background results of industrial survey . 
. Overall satisfaction results of industrial survey 
. Development style results of industrial survey 
. Development process results of industrial survey 
. Future expectations results of industrial survey 

. Student grades group statistics . 
. Independent Samples Test . 
. Background Results . 
. External Factors . 
. Overall Satisfaction . 
. Development Process . 
. Implemented requirements . 

. New features results of industrial survey . 

A. Student grades for the Experimental group . 
A. Student grades for the Baseline group . 

C. Post-experiment questionnaire results . 

E. Industrial survey results . 

xvi LIST OF TABLES

Foreword by Joseph Yoder

Over the last decade it has become extremely important for systems to be able to adapt quickly to
changing business requirements. Because of this, there has been an evolution of the way we de-
velop and think about building systems. For example, Agile processes have evolved as a means
to build systems more quickly. But when working on Agile projects, developers can become
overwhelmed with the rate at which requirements change. e ease with which requirements
can change encourages users to overwhelm developers with feature requests. e result: Featu-
ritis, which promotes hasty construction of poorly designed soware to support those features.
e design of an expressive domain model might get lost in the rush to write working code.
Adaptive Object-Models () support changeable domain modules by casting business rules
as interpreted data and representing objects, properties and relationships in external declara-
tions. At first glance,  systems seem to contradict Agile values. Yet we find that under the
right conditions, an  architecture has made our users happier and has given them the ability
to control the pace of change. It can be the ultimate in agility!

is thesis has taken the next step in state of art research on best practices for building these
types of dynamic systems. is work illustrates the necessity of soware to adapt and change at
sometimes rapid speeds. Hugo’s addition of seven key patterns brings together years of study and
produces formalized patterns as an important contribution to the  community. e thesis
also brings real world problems to light and centers much of the discussion on the inherent flaws
of much of today’s soware design practices.

e work reveals much about the current state of Adaptive Object Model practices in indus-
try. I found the thesis to be a quality entry into the current  research and very enlightening
for those in the soware community building these types of architectures. e review of 
architectural style, the patterns catalogue, the outline of the reference architecture for  along
with an example implementationmakes the work very relevant and informative, as well as a plea-
sure to read. Additionally the case studies highlight the common issues and problems addressed
by  along with proving that  exist as a common solution for these types of systems.

I look forward to future collaboration with Hugo on this topic area and it is my pleasure
to strongly recommend this work to architects and developers that are building these types of
dynamic architectures.

xviii    

Preface

e journey of a thousand miles begins with one step.

L T

Myearliestmemories as an “engineer” date back to childhood andChristmas, to  and robots,
to dismantling things without quite knowing how to assemble them back. It was a fun hobby for
me, and a nuisance — if not dangerous activity — for my parents. I recall that once I had the
“brilliant” idea of connecting a portable playing device — a Game&Watch — to the AC mains
when I ran out of batteries. To my understanding, they both provided energy, so it should have
worked. I was five... About one year later, my neighbor got one thing called computer, which
when connected to a television allowed us to control what happened there: the Atari . Soon
my parents offered me a  as a Christmas gi. My father, not very fond of technology, bought
it second-handed believing it was an entertainment device, but missed the fact he had to actually
buy games separately. I usually tell this story about why I claim to have learned programming
at the age of six: a kid with a new toy, no games, and a book called Programmer’s Manual; the
outcome seems almost inevitable among those born in late ’s and early ’s.

I like to think that such an early background gave me time to ruminate over the nature of
soware, specifically what separates good and elegant from bad and sloppy programs, before one
starts facing programming as a professional need. Maybe the aesthetic influences from my art-
oriented friends played a key role on that. Programming, from my point of view, was no more
of a science than of an art. But it was aer finishing my degree, when I became acquainted with
design patterns andmeta-programming, that I’ve realized I wasn’t alone in this pursue for elegance
in a seemingly mechanical world:

What is the Chartres of programming? What task is at a high enough level to inspire people
writing programs, to reach for the stars? Can youwrite a computer programon the same level as
Fermat’s last theorem?…Can you write a program which overcomes the gulf between technical
culture of our civilization, and which inserts itself into our human life as deeply as Eliot’s poems
of the wasteland or Virginia Woolf ’s e Waves? [Gab]

Experiencing at first-hand the problems of bad design in the industrial world, by spending too
much nights with too little sleep, tight time constraints persuaded to make things as automatic

xx 

as possible — climbing the hill of abstraction becomes a necessary fun. Doing requirements en-
gineering also made us painfully aware of an important pattern: most customers hardly know
what they want, and very seldom what they need. Undoubtedly all this influenced the course of
my Ph.D. even before it started. But, I was still an engineer...

Gopalakrishnan, in his book   [Gop], differentiates “people
who seek an in-depth understanding of the phenomenon of computation to be computer scientists”
from “those people who seek to efficiently apply computer systems to solve real-world problems to be
computation engineers”. And alas, something inside me is deeply disturbed every time someone
disregards as “just a matter of implementation”. Just?... But implementation changes everything!
It is the act of craing, of making a theory materialize, the ultimate aspiration of creating some-
thing out of nothing — or from scarce resources — that shapes the motivational forces behind an
engineer.

Take the Church-Turing thesis; it is a deep, beautiful hypothesis that provides an insight on
themeaning of computability—and a bridge between symbols andmachines—,which is nothing
less than an amazing display of themotivation that drive scientists to pursuemathematical truth.
Personally, I am amazed by their efforts to find the underlying building blocks of construction;
an “herculean” task that establishes the boundaries and foundations of what can and cannot be
done. But engineers regard their art as something different: it is not the why so much as the
how. While a scientist may regard two programs that are proven to be functionally equivalent
to be one and the same, an engineer will rush to shout a torrent of quality attributes such as
usability, maintainability, performance, modularity, affordability, among others, that somehow
would render the two programs completely different.

And yet, here lies the nature of design, the Alexandrian “Quality Without A Name”, the forces
that shape up a pattern, that yield an optimal solution for a good problem. e scientific treat-
ment of the contributions in this dissertation may stand on the pillars of the scientific method,
but, ultimately, they are the outcome of an engineering necessity.

at said, from childhood up until now, willingly or not, many people had defined what I
am and the few things I was able to accomplish. Chronologically, my parents, who though not
technology-savvy, traced my future the moment they handed me a computer. My fiancée Helena,
who encouraged me to pursue my goals knowing their impact on both of our lives. My main
supervisor Ademar Aguiar, who played a tremendous role in my studies and always ensured my
research would be possible to pursue. My industrial co-supervisor Alexandre Sousa, who has
givenme the support and opportunity to enroll in the Ph.D.while still working for ParadigmaXis,
S.A. My scientific co-supervisor João Pascoal Faria, whose work preceded mine in a very similar
area. My external supervisor Joseph Yoder, one of the first (and current) researchers on Adaptive
Object-Models, whose work inspired and lead me to this point. My fellow researchers Filipe
Correia and Nuno Flores, currently pursuing their Ph.D in soware engineering, with whom I
shared hours of work and friendship. And to Ana Paiva, with whom I have had the pleasure of

xxi

lecturing formal methods in soware engineering for the past three editions.
My gratitude also goes to the Department of Informatics Engineering () where I have

been lecturing in the past two years, in the person of the head of department, Prof. Raul Vidal,
for the invaluable support over my academic and professional life. And to -, for partially
supporting my research.

Last, but not the least*, my acknowledgments to all my friends, colleagues, fellow researchers,
working partners, students, and overall good chums, in alphabetical order: Alexandre Silva,
Ana Mota, Andreia Teixeira, António Rito Silva, Aurélio Pires, Bruno Matos, David Pereira,
Diogo Lapa, Diogo Romero, Fátima Pires, Gabriela Soares, Henrique Dias, Hugo Silva, João
Ferreira, João Gradim, Joel Varanda, Jorge Pinheiro, José Pedro Oliveira, José Porto, José Vilaça,
León Welicki, Paulo Cunha, Pedro Abreu, Rosaldo Rossetti, Rui Maranhão, Sérgio Mesquita,
and Tiago Cunha. Finally, my gratitude to Cinthia Pagé and Paulo Romero, for helping in the
french translation of the abstract.

Porto,  December 

* It seems my gratitude wouldn’t be complete if I didn’t acknowledged C8H10N4O2 and C9H8O4, commonly
known as caffeine and aspirin, which are known to be avid supporters of this research.

xxii 

Chapter 

Introduction

. Soware Crisis . 
. Motivational Example . 
. Incomplete by Design . 
. Accidental Complexity . 
. Designing for Incompleteness . 
. Soware Design . 
. Patterns . 
. Research Goals . 
. Epistemological Stance . 
. Research Methods . 
. Main Goals . 
. How to Read this Dissertation . 

e practice of soware engineering is regarded as being in crisis since the early days of its
existence, constantly plagued by project overruns and failures. Once expectations and change
were identified as major contributing factors, most development processes urged their system-
atic eradication from soware development. Other methodologies, especially those coined agile,
took an opposite direction by rethinking the way soware is built in order to “embrace change”.
Either way — and since there is no “silver bullet” — evidence suggests that change may not be
just a cause, but a symptom of a deeper nature. In fact, it has been observed that some so-
ware needs to change because the domain it is modeling is incomplete even before it starts to be
developed. Such soware has to be constantly evolving and adapted to a new reality from the
moment it is conceived. Yet, if these systems are accepted and regarded as being incomplete by
design, shouldn’t they be actively designed for incompleteness? If there was the need to shi the
way soware is developed to embrace change, how should one deliberately design to cope with
continuous change? What extent should it consider?

 

.  

Soware — and the corresponding area of soware engineering — seems to be in crisis since
the early days of computing science. e rapid growth in both computer power and problem
complexity has been resulting in a corresponding increase in the difficulty of writing correct,
understandable and verifiable computer programs. is was the state of affairs presented in a
 sponsored conference on soware engineering circa , where unreasonable expectations
and changewere underlined asmajor contributing factors [BBH]. Edsger Dijkstra commented
this same issue few years later, during his  ACM Turing Award lecture [Dij]:

e major cause of the soware crisis is that the machines have become several orders of mag-
nitude more powerful! To put it quite bluntly: as long as there were no machines, program-
ming was no problem at all; when we had a few weak computers, programming became a mild
problem, and now we have gigantic computers, programming has become an equally gigantic
problem.

On the technology side, a similar concern was being shared by Alan Kay during the design of
Smalltalk and object-oriented programming in the dawn of personal computers [Kay]:

... there would be millions of personal machines and users, mostly outside of direct institutional
control. Where would the applications and training come from? Why should we expect an
applications programmer to anticipate the specific needs of a particular one of the millions of
potential users? An extensional system seemed to be called for in which the end-users would do
most of the tailoring (and even some of the direct constructions) of their tools [sic].

And yet, despite the natural reaction on creating better processes, tools, and methodologies
for soware development, a  gödelian exposure by Fred Brooks brings a general consen-
sus among the soware engineering community that there is no “silver bullet” — no single ap-
proach will prevent project overruns and failures in all possible cases [Bro]. A conjecture
somewhat disturbing in light of consecutive  reports [Sta], where the success rate of
soware projects was estimated to be only , with challenged projects accounting for , and
impaired (cancelled) for  . in , and a success of ,  challenged, and  failed
. in ¹.

.  

In order to exemplify and further illustrate some of the central ideas and concepts of this disser-
tation, let us consider a real-world information system for a medical healthcare center, partially

¹ Although the exact nature of these figures has been target of recent criticism in [EV], it seems that either their
results are heavily biased, or even a moderate change in the accuracy of the success ratio, e.g. from  to ,
would probably still render the field as in crisis.

  

Identifier {unique}
Name
Birthdate
/ Age
Sex: enum {male, female}
Observations

Patient

Expiration Date
Observations

Insurance

Name
Specialization

Doctor

Date
Symptoms
Observations
/ Total Cost

Appointment

Description
Treatment Group
Cost
Observations

Procedure

Description
Observations

Contact

Severity: enum
Observations

Pathology

Engineer
Architect
...

‹‹enumeration››
Profession

*

* doctors

*

0..1 {subsets
doctors}

/ procedures

*

/ doctor

1

*

Figure .: Example of a domain diagram of an information system for a medical center. e horizon-
tal dashed lines denote open (incomplete) inheritances. e dots inside the enumeration also
denotes incomplete knowledge which should be editable by the end-user.

depicted as a class diagram in Figure .. Shortly, the medical center has Patients and special-
ized Doctors. Information about a patient, such as her personal information, Contacts and
Insurances, are required to be stored. Patients go to the center to have Appointments with
several Doctors, though they are usually followed by a main one. During an appointment, sev-
eral Pathologies may be identified, which are oen addressed through the execution of medical
Procedures.

In this example, the reader should be able to observe a key property in this kind of infor-
mation systems: incompleteness. For example, procedures, insurances, pathologies and contacts
are specified as having open-hierarchies (where each specialization may require different fields).
Patients may not have all the relevant information recorded (e.g., critical health conditions) and
foreseeing those missed formalizations, either the designer or the customer make extensive us-
age of an observations field. e systemmay also bemissing some domain concepts, such that of
auxiliary personnel, which would require the introduction of a new class. e relevance of stor-
ing personal information about doctors may also have been overlooked; actually, in the presence
of these new requirements, a designer would likely make Patients, Doctors and Auxiliary Per-
sonnel inherit from a single abstraction, e.g., Persons. e healthcare center likely has policies
against doctors performing procedures for which they are not qualified, which would introduce
specific constraints based on their specialization in the model. In fact, it now seems evident that
a doctor may have multiple specializations.

 

ese are examples of requirements that could easily elude developers and stakeholders dur-
ing the analysis process. What may seem a reasonable, realistic and useful system at some point,
may quickly evolve beyond the original expectations, unfortunately aer analysis is considered
finished (see Figure .).

Requirements

Analysis

Design

Implementation

Testing

Maintenance

Figure .: Waterfall soware development lifecycle model as closely described in the work of Winston
Royce [Roy]. Some modified models introduce feedback loops (pictured as a dashed arrow),
either connecting the end-points or between different phases.

.   

e previous example represents a recurrent problem in soware development: the difficulty
of acquiring, inferring, capturing and formalizing requirements, particularly when designing
systems where the process is highly coupled with the stakeholders’ perspective and the require-
ments oen change faster than the implementation. is reality, well known in industrial en-
vironments, is mostly blamed upon issues related to the stakeholders’ ability to correctly elicit
their needs [PT], for the sole reason that maintaining and evolving soware is a knowledge
intensive task accounting for a significant amount of effort [AOSD]. Consequently, once the
analysis phase is finished and the implementation progresses, strong resistance to further change
emerges, due to the mismatch between specification and implementation artifacts. Notwith-
standing, from the stakeholder’s perspective, some domains do rely on constant adaptation of
their processes to an evolving reality, not to mention that new knowledge is continuously ac-
quired, which leads to new insights of their own business and what support they expect from
soware.

Confronted with the above issues, some development methodologies (particularly those
coined agile) have intensified their focus on a highly iterative and incremental approach [WC].
From the subtitle “embrace change” in Kent Beck’s   
book [BA], to the motto “responding to change over following a plan” from the Agile Mani-
festo, these methodologies accept that change is, in fact, an invariant of soware development.

   

is stance is in clear contrast with other practices that focus on a priori, time-consuming, rig-
orous design, considering continuous change as a luxurious (and somewhat dangerous) asset for
the productivity and quality of soware development (see Figure .).

Product
Backlog

Sprint
Backlog

Working
Increment

Sprint

Daily Tasks

Figure .: e Scrum soware development lifecycle model, where product requirements reside on the
backlog, and from where they are chosen at the beginning of every sprint. e sprint then
follows a / weeks cycle, with daily tasks taken from the sprint backlog. us, the product is
synthesized as a series of discrete increments. [TN, DS]

Although the benefits of an up-front, correct and validated specification are undeniable —
and have been praised by formal methods of development, particularly when coping with crit-
ical systems — their approach is oen recognized as impractical in a large majority of soware
projects [Hei], particularly in environments characterized by continuous change. Nonetheless,
the way most developers currently cope with change oen result in a B B  M² [FY]
where systems are permanently in the verge of needing a total reconstruction, but either way
with obvious impacts in the project’s cost. For that reason, soware that is target of continuous
change should be regarded as incomplete by design, i.e., it needs to be constantly evolving and
adapting itself to a new reality from the moment it is conceived, and most attempts to freeze its
requirements are out-of-sync with its own condition — see Figure ..

Reality

Domain

Software

Figure .: Sowaremay be regarded as the crystallization of an abstraction that models a specific domain.
Ideally, it shouldmatch the exact limits of that domain. But in practice (i) those limits are fuzzy,
(ii) soware oen imposes an artificial, unnaturally rigid structure, and (iii) reality itself keeps
changing.

² A soware architectural pattern described by its authors as “a haphazardly structured, sprawling, sloppy, duct-tape-
and-baling-wire, spaghetti-code jungle”.

 

Patient

Doctor

Appointment

Procedure Type

Pathology Type

*

*

0..*

Name

Profession

Name: string

Procedure

Name = "Surgery"

Surgery: Procedure

Name: string

Pathology

Name = "Flu"

Flu: Pathology

‹‹instanceOf››

‹‹instanceOf››

Name = "Architect"

Architect: Profession

‹‹instanceOf››

Insurance TypeContact Type

Name: string

Contact

Name: string

Insurance

Name = "Mobile Phone"

Mobile: Contact

Name = "SNS"

SNS: Insurance

‹‹instanceOf››‹‹instanceOf››

Figure .: A refactored solution for the diagram in Figure . (p. ), mainly depicting the elements that were
changed/added for providing a mechanism to cope with open inheritance and enumerations.
is example makes extensive use of the T-O pattern to solve open inheritances and
enumerations.

.  

Should the system be required to cope with the kind of incompleteness displayed in § . (p. ),
the designer would have to deliberately make it extensible in appropriate points. A potential
solution is depicted in Figure ., comprising only the refactored elements intended to address
the issues of open inheritances and enumerations.

Compared to the initial design seen in Figure . (p. ), this one reveals itself as a much larger
model. In fact, it is now more difficult to distinguish between elements that are essential to the
specification of the domain, from those whose role is instrumental — in this case, that provide
extensibility to the system. e result is an increase of what is defined as accidental complexity —
complexity that arises in computer artifacts, or their development process, which is non-essential
to the problem being solved. In contrast, the first model was much closer to that of essential
complexity — inherent and unavoidable. is increase in accidental complexity was only caused
by the specific approach chosen to solve the problem — in this case, recurrent usage of the T-
O pattern § .. (p. ), applied to solve open inheritances and enumerations.

While sometimes accidental complexity can be due to mistakes such as ineffective planning,
or low priority placed on a project, some accidental complexity always occurs as the side effect
of solving any problem. For example, mechanisms to deal with out-of-memory errors are part
of the accidental complexity of most implementations, although they occur just because one has

   

decided to use a computer to solve the problem.
Notwithstanding, and to a great extent, most accidental complexity is introduced by the in-

appropriate actions used to cope with the evolution of soware artifacts, hence resulting in a B
B  M. Because the minimization of accidental complexity is considered a good prac-
tice to any architecture, design, and implementation, excessive accidental complexity is a clear
example of a bad practice.

.   

While newer soware engineering methodologies struggle to increase the ability to adjust easily
to changes of both the process and the development team, generally they seem to maintain a
certain agnosticism regarding the form of the produced soware artifacts³. is doesn’t mean
they are not aware of this “need to change”. In fact, iterative means several cycles going from
analysis to development, and back again. Some are also aware of the B B  M pattern
(or anti-pattern, depending on the perspective); the practice of refactoring aer each iteration in
order to cope with design debt is specifically included to address that [NL]. But the problem
seems to remain in the sense that the outcome, w.r.t. form, of each iteration is mostly synthesized
as if it would be the last one, albeit deliberatively recognizing it is not.

Yet, if these systems are accepted and regarded as being incomplete by design, it seems reason-
able to assume they should be actively designed for incompleteness. If we shi the way we develop
soware to embrace change, it seems a natural decision to deliberately design that same soware
to best cope with continuous change. Citing the work of Garud et al. [GJT]:

e traditional scientific approach to design extols the virtues of completeness. However, in en-
vironments characterized by continual change [new solutions] highlight a pragmatic approach
to design in which incompleteness is harnessed in a generative manner. is suggests a change
in the meaning of the word design itself — from one that separates the process of design from
its outcome, to one that considers design as both the medium and outcome of action.

is is in particular dissonance with most of the current approaches to soware engineering,
where processes attempt to establish a clear line between designing and developing, specifying
and implementing. ough it seems that, should we wish to harness continual change, that dis-
tinction no longer suits our purposes: design should become both the medium and outcome of
action. Ergo, we are looking forward not just for a process to be effective and agile, but to what
form should agile soware take.

³ Probably an over-simplification since agile methodologies prescribe the simplest design that works, which some-
what addresses (without prescribing any specific) form.

 

.  

So far, the word design has been loosely used. But, what exactly is design? What makes the
difference between good and bad design? How do we measure it? Why is it becoming a key
factor in the development of sophisticated computer systems?

e Webster’s dictionary defines it as the act of (i) “working out the form of something”, (ii)
“sketching a plan for something”, (iii) “creating something in the mind”, or (iv) “doing something for
a specific role or purpose or effect” [Web]. Soware engineering has also been facedwith the task
of sketching, planning, and creating suitable products for specific purposes. For that purpose, any
specific solution draed during the design of a soware artifact typically considers forces such
as (i) the experience of the team, (ii) the available budget, (iii) the exact functional and non-
functional requirements, etc. More generally, soware projects are recognized as having four
major forces through which any particular balance (or imbalance) of them directly influences
the viability of a specific solution, as depicted in Figure ..

cost

quality

scope

time

–
–

–

– +

+

Figure .: e four recognized forces of project management w.r.t. soware engineering: time refers to
the amount of time available to complete a project; cost refers to the budgeted amount avail-
able; scope refers the project’s domain limit and detail. Each force mutually influences (either
positively or negatively) every other. Quality is thus a result function of how the other forces
are balanced.

But even taking into consideration these four major forces, the ever increasing complexity
(both inherent and accidental) of building andmanaging soware artifacts are pushing the limits
of creation beyond the ability of a single entity [Ale]. And similarly to every other areas of
engineering, it is not uncommon for a single problem to have multiple ways to be coped with.
So, in the end, how does an engineer choose the best design for a specific function?

As knowledge grows in a specific area, solutions are captured and documented by experts
in books, research papers, concrete implementations, web pages, and a myriad of other types of
communicationmedia. While wemay intuitively think that any growth in the body of knowledge
implies better design choices, it seems that the way (and the amount) this knowledge is being
captured raises an important issue per-se.

 

In    :    , Schwartz points that the overabundance of
choice that ourmodern society has poses a cause for psychological distress, where the information
overflow ultimately results on an over-simplification of criteria [Sch]. Preceding Schwartz in
four decades, Alexander claimed, in his Ph.D. thesis      , that
most information on any specific body of knowledge is “hard to handle, widespread, diffuse, un-
organized, and ever-changing”. Moreover, this “amount of information is increasingly growing be-
yond the reach of single designers”. He concluded that “although a specific solution should reflect
all the known facts relevant to a specific design (...) the average designer scans whatever informa-
tion he happens on and introduces it randomly” [Ale]. Design, as an intentional act of choice,
is constantly overwhelmed by the sheer quantity of available information.

. 

As Alexander struggled with this scenario, he came up with the concept of pattern: a recur-
rent solution for a specific problem, that is able to achieve an optimal balance among a set of
forces in a specific context. Further on his research, he extended this notion beyond the triplet
xproblem, forces, solutiony, to that of a pattern language, which also encompasses the relationship
between each pattern in a specific domain. is effort resulted in the first pattern language on
civil architecture⁴ to be compiled and released as a book [AIS].

Almost two decades later, both Gamma et al. [GHJV] and Buschman et al. [BMR+]
borrowed these concepts into the fields of computer science and soware engineering, publishing
the first books on soware design and architectural patterns. ese two types of patterns, along
with a third called idioms, can be defined as follows [BMR+]:

• Architectural patterns express fundamental structural organization schemes for soware
systems, decomposing them into subsystems, along with their responsibilities and interre-
lations.

• Design patterns are medium-scale tactical patterns, specified in terms of interactions be-
tween elements of object-oriented design, such as classes, relations and objects, providing
generic, prescriptive templates to be instantiated in concrete situations. ey do not in-
fluence overall system structure, but instead define micro-architectures of subsystems and
components.

• Idioms (sometimes also called coding patterns) are low-level patterns that describe how to
implement particular aspects of components or relationships using the features of a specific
programming language.

⁴ It should be noted that Alexander was a civil architect, and thus his theories emerged from the observation of
cities and buildings, although he had a M.Sc. in Mathematics.

 

Built on top of Alexander’s theories, these resulting pattern languages were synthesized by
systematic analysis and documentation of scattered empirical knowledge, and had hitherto a
profound impact in the way architects and designers build and manage soware artifacts today.

.  

Up until this point, the author has presented arguments pointing to how incomplete by design
systems are a common issue in nowadays practice of soware engineering. However, it is not
part of this study to prove where — nor why — these kind of systems emerge. Likewise, this dis-
sertation will just slightly delve into the forces that may lead an architect to recognize these kind
of systems. Instead, it is assumed the following set of premises, which upon this work is built: (i)
the system we are working with exhibits an high degree of variability, (ii) its specifications have
shown a high degree of incompleteness, and (iii) it is desirable to reduce the effort⁵ of coping
with changes made to the domain model. Should one agree with these premises, the author’s
fundamental research question may be stated as what form should this type of systems take, and
which kind of tools and infrastructures should be available to support the development of such
soware systems?

Consequently, the main goal is to research this form, here to be understood as the architec-
ture and design of such soware systems, along with the specification and construction of the
appropriate tools and infrastructure.

.  

To understand the way soware engineers build and maintain complex and evolving soware
systems, research needs to focus beyond the tools and methodologies. Researchers need to delve
into the social and their surrounding cognitive processes vis-a-vis individuals, teams, and organi-
zations. erefore, research in soware engineering may be regarded as inherently coupled with
human activity, where the value of generated knowledge is directly dependent on the methods
by which it was obtained.

Because the application of reductionism to assess the practice of soware engineering, partic-
ularly in field research, is a complex — perhaps unsuitable — activity, this dissertation is aligned
with a pragmatistic view of acquisition of knowledge, valuing acquired practical assets [Gou].
In other words, the author chooses to use whatever methods seem to be more appropriate to
prove — or at least improve knowledge about — the questions raised, provided their scientific
significance.

⁵ e intended meaning of effort should be loosely interpreted as monetary cost, available time and resources,
required skills, resulting complexity, etc.

  

Mostly, though, this perspective makes extended use of mixed methods, such as (i) system-
atization of widespread, diffuse, and unorganized empirical best practices through observational
and historical methods, (ii) laboratorial (quasi-)experiments, usually suitable for academic envi-
ronments, and (iii) industrial case-studies, as both a conduit to harvest practical requirements,
as to provide a tight feedback and application over the conducted investigation.

.  

A categorization proposed at Dagstuhl workshop [THP], groups research methods in four
general categories, quoted from Zelkowitz and Wallace [ZW]:

• Scientific method. “Scientists develop a theory to explain a phenomenon; they propose a
hypothesis and then test alternative variations of the hypothesis. As they do so, they collect
data to verify or refute the claims of the hypothesis.”

• Engineering method. “Engineers develop and test a solution to a hypothesis. Based upon
the results of the test, they improve the solution until it requires no further improvement.”

• Empirical method. “A statistical method is proposed as a means to validate a given hy-
pothesis. Unlike the scientificmethod, theremay not be a formal model or theory describ-
ing the hypothesis. Data is collected to verify the hypothesis.”

• Analytical method. “A formal theory is developed, and results derived from that theory
can be compared with empirical observations.”

ese categories apply to science in general. Effective experimentation in soware engi-
neering requires more specific approaches. As discussed in § . (p. ), soware engineering
research comprises computer science issues, human issues and organizational issues. It is thus
oen convenient to use combinations of research approaches both from computer science and
social sciences. e taxonomy described by Zelkowitz and Wallace [ZW] identifies twelve
different types of experimental approaches for soware engineering, grouped into three broad
categories:

• Observational methods. “An observational method collects relevant data as a project de-
velops. ere is relatively little control over the development process other than through
using the new technology that is being studied”. ere are four types: project monitoring,
case study, assertion, and field study.

• Historical methods. “A historical method collects data from projects that have already
been completed. e data already exist; it is only necessary to analyze what has already
been collected”. ere are four methods: literature search, legacy data, lessons learned,
and static analysis.

 

• Controlled methods. “A controlled method provides multiple instances of an observation
for statistical validity of the results. is method is the classical method of experimental
design in other scientific disciplines”. ere are four types of controlled methods: repli-
cated experiment, synthetic environment experiment, dynamic analysis, and simulation.

ere are, however, particular research approaches, methods and outcomes regarding the
study of soware architectures, which can be grouped into five types of products, quoted from
Shaw [Sha]:

• Qualitative or descriptive model. “Organize and report interesting observations about
the world. Create and defend generalizations from real examples. Structure a problem
area; formulate the right questions. Do a careful analysis of a system or its development”.
Examples: early architectural models, and architectural patterns.

• Technique. “Invent newways to do some tasks, including procedures and implementation
techniques. Develop a technique to choose among alternatives”. Examples: product line
and domain-specific soware architectures, and  to support object-oriented design.

• System. “Embody result in a system, using the system development as both source of
insight and carrier of results”. Examples: architecture description languages.

• Empirical predictive model. “Develop predictive models from observed data”.

• Analyticmodel. “Develop structural (quantitative or symbolic)models that permit formal
analysis”. Examples:  specification, and  inconsistency analysis.

e best combination of methods to use in a concrete research approach is strongly depen-
dent on the specific characteristics of the research study to perform, viz. its purpose, environ-
ment and resources. Hereaer, the research methods referred will use this terminology. Further
description of each method can be found in [ZW], and a detailed rational on the methods
chosen in Chapter  (p. ).

.  

e primary outcomes of this thesis encompasses the following aimed contributions to the body
of knowledge in soware engineering:

. e formalization of a pattern language for systems which domain model is target of
continuous change during runtime. When do these type of systems occur? What are the
advantages? What are their underlying requirements? How dowe cope with each of them?
What are the benefits and liabilities of each specific solution? is contribution expands

     

an unified conceptual pattern language, which allows architects and designers to recognize
and adequately use some of the best practices in soware engineering that cope with this
type of systems. Further details are presented in Chapter  (p. ).

. e specification of a reference architecture for adaptive object-model frameworks.
What kind of infrastructures are needed? What form should they take? What type of ab-
stractions should be made and supported? What are the generic functionalities it should
provide? What should be its default behavior? How can it be extended? is contribution
addresses several issues concerning framework design for Adaptive Object-Models, and
presents a solution through the composition of architectural and design elements. More
details can be found in Chapter  (p. ).

. A reference implementation of such framework. From theory to practice, Chapter 
(p. ) also details a concrete implementation of a framework based on the proposed refer-
ence architecture, codenamed Oghma. e goal of attaining an industrial-level implemen-
tation of such framework, along with the research of specific design issues that arise only
when pursuing such concrete implementations, allowed to further pursue the research us-
ing the chosen validation methodologies.

. Evidence of the framework benefits through industrial use-case applications. A frame-
work should emerge from reiterated design in real-world scenarios. As such, the imple-
mentation shown in Chapter  (p. ) is mainly the result of an incremental engineered
solution for specific industrial applications. is contribution presents soware systems
built on top of that framework, their context, their requirements, their particular problems,
the way the framework was used to address them, the outcomes, and the lessons learned
in Chapter  (p. ).

. Evidence of the framework properties through controlled academic quasi-experiments.
Although the industrial usage of the framework provides pragmatic evidence of its benefits,
there are some threats that are inherent to that type of validation. ese shortcomings are
addressed in Chapter  (p. ), by conducting a (quasi-)experiment within a controlled
academic experimental environment, where the study of groups of undergraduate students
interacting with the framework has shown the results to be consistent with those presented
in Chapter  (p. ).

.     

e remaining of this dissertation is logically organized into three parts, with the following
overall structure:

 

Part : Background & State of the Art. e first part reviews the most important concepts
and issues relevant to the thesis, namely:

• Chapter , “Background” (p. ), provides an extensive literature survey on soware engi-
neering techniques, tools, and practices able to cope with incomplete by design systems.

• Chapter , “State of the Art in Adaptive Object-Models” (p. ), provides a state-of-the-art
overview mostly focused on Adaptive Object-Models.

Part : Problem& Solution. esecond part states the problem researched and the proposed
solution:

• Chapter , “Research Problem” (p. ), lays both the fundamental and specific research
questions in scope for this thesis.

• Chapter , “Pattern Language” (p. ), presents an unified conceptual pattern language for
Adaptive Object-Models.

• Chapter , “Reference Architecture & Implementation” (p. ), composes several archi-
tectural and design elements into a framework based on the pattern language, codenamed
Oghma, and describes its current implementation.

Part : Validation & Conclusions. e third part presents case studies and one (quasi-
)experiment for the validation of the thesis, and presents the conclusions of the dissertation:

• Chapter , “Industrial Case-Studies” (p. ), presents a detailed analysis on using this
framework in industrial settings.

• Chapter , “Academic Quasi-Experiment” (p. ), addresses validation issues through
controlled experimental environments.

• Chapter , “Conclusions” (p. ), dras the main conclusions of this dissertation, and
points to further work.

For a comprehensive understanding of this dissertation, all the parts should be read in the
same order they are presented. ose already familiar with meta-architectures and adaptive
object-models, who only want to get a fast but detailed impression of the work, may skip the
first part, and go directly to Chapter  (p. ).

Some typographical conventions are used to improve the readability of this document. Pat-
tern names always appear in SC style. Whenever referring to programming or model-
ing elements, such as classes or property names, they are printed using fixed-width characters.
Relevant concepts are usually introduced in italics. Book titles and acronyms are type-faced in
. References and citations appear inside [square brackets] and in highlight color—when

     

viewing this document in a computer, these will also act as hyperlinks. If not otherwise specified,
the graphical notation used complies to the latest versions of  [OMGd] and [OMGc]
available at the date of publication (v..).

 

Chapter 

Background

. Fundamentals . 
. Key Abstractions . 
. Approaches . 
. Application Frameworks . 
. Relevant Tools . 
. Conclusion . 

e current demand for industrialization of soware development is having a profound im-
pact in the growth of soware complexity and time-to-market. Still, most effort in the devel-
opment of soware is repeatedly applied to the same tasks. Despite all the effort in research
for more effective reuse techniques and practices, which although remain a promising approach
to the efficient development of high quality soware, reuse has not yet fulfilled its true poten-
tial [HC, Szy, Gou]. As in other areas of scientific research, the reaction has been to hide
the inherent complexities of technological concerns by creating increasingly higher levels (and
layers) of abstractions with the goal of helping reasoning, albeit oen at the cost of widening the
already existing gap between specification and implementation artifacts [FR].

To make these abstractions useful beyond documentation, analytical and reasoning
purposes [AEQ, KOS], higher-level models must be made executable, by systematic
transformation (or interpretation) of problem-level abstractions into soware implementa-
tions [RFBLO, Völ]. e primary focus of model-driven engineering () is to find ways
of automatically animating such models, promoting them from auxiliary, document-level dia-
grams, to first-class soware artifacts able to drive complex systems at multiple levels of abstrac-
tion and perspectives [FR].

 

A
da

pt
ab

ili
ty

Va
ri

ab
ili

ty

A
d
a
p
ti
ve

O
b
je
ct
-M

o
d
e
l

So
ft

w
ar

e

D
om

ai
n

R
ea

lit
y

In
co

m
pl

et
en

es
s

Se
lf-

A
da

pt
iv

e
A

gi
le

Pr
oc

es
se

s

C
om

po
ne

nt
s

So
ft

w
ar

e
Pr

od
uc

t
Li

ne
s

M
et

am
od

el
in

g

M
D

A
M

D
E

D
om

ai
n

Sp
ec

ifi
c

La
ng

ua
ge

xU
M

L

M
et

ap
ro

gr
am

m
in

g

R
efl

ec
tio

n

Fr
am

ew
or

k
In

fr
as

tr
uc

tu
re

Pa
tt

er
n

co
pe

s-
w

ith
su

pp
or

ts

su
pp

or
ts

pr
ov

id
es

co

nfi
g

po
in

ts

co
pe

s

is-
ex

pr
es

siv
e-

in

ab
st

ra
ct

s

im
pl

em
en

ts is-
in

he
re

nt

re
qu

ire
s

is-
pr

op
er

ty
-o

f

is-
a

co
nt

ai
ns

is
is

is
re

qu
ire

s

is-
a-

pr
op

er
ty

-o
f

ha
s

is

pr
ov

id
es

ha
ve

C
ha

ng
e

em
br

ac
e

le
ad

s-
to

m
ay

-r
es

ul
t-

fr
om

re
la

te
s-

to

W
ik

i
em

br
ac

e

em
br

ac
e

m
ay

-b
e

m
ay

-u
se

m
ay

-p
ro

vi
de

G
en

er
at

iv
e

Pr
og

ra
m

m
in

g

is

ca
n-

us
e

m
ay

-p
ro

vi
de

Figure .: Conceptmap representing the relationship between several areas, concepts and techniques pre-
sented in this chapter.

 

. 

Oneway to design soware capable to cope with incompleteness and change is to encode the sys-
tem’s concepts into higher-level representations, which could then be systematically synthesized
(by interpretation or transformation) into executable artifacts, thus reducing the overall effort
(and complexity) of changing it. An overview of the several concepts that will be approached
in this section is shown in Figure . (p. ). In summary, variability and adaptability are two
key principles, usually related to self-adaptive soware and soware product lines. ese princi-
ples are highly related to the inherent incompleteness of some soware domains. Wikis and Agile
processes, for examples, are known to embrace change and thus coping with incompleteness.
On the technology side, one can find (i) metaprogramming, which is usually related to genera-
tive programming and reflection, but whose artifacts are close to programming languages, and
(ii) metamodeling, usually related to Model Driven Engineering, Model Driven Architectures and
Executable UML, whose artifacts are more close to the domain. Both, but especially the latter,
require the appropriate infrastructure to be used. Frameworks provide such infrastructures by as-
sembling components and patterns. A very close concept is the domain specific languages, which
is an abstraction especially tailored to be highly expressive in a particular domain.

.. Variability and Commonality

Soware variability represents the need of a soware system or artifact to be changed, customized
or configured for use in different contexts [JVBS]. High variability means that the soware
may be used in a broader range of contexts, i.e., the soware is more reusable. e degree of
variability of a particular system is given by its Variation Points, or roughly the parts that support
(re)configuration and consequently tailoring of the product for different contexts or for different
purposes. On the other hand, the identification of what is subject to change is intimately related
to that of what does not change, i.e., commonality. Variability and commonality are base concepts
in Soware Product Lines, which will be covered in § .. (p. ).

.. Adaptability, Adaptivity and Self-Adaptation

While variability is given by context, i.e. it is the target applicability of a soware system, the
property of such systems to be efficiently reconfigured due to changed circumstances is called
adaptability. Im other words, a piece of soware may be reconfigured by developers, to be de-
ployed and used in different contexts (e.g., by recompiling with an additional component or
through a component-based architecture), and this need is called variability as discussed in
§ ... Adaptability, on the other hand, is the property that allow soware to change its behavior
by end-users with limited, or non-existent, programming skills.

 

e literature alsomentions adaptivity, which is a broader property where a computer system
is able to adapt itself to changes in internal, user-related, or environmental characteristics. e
difference to adaptability¹ is that it may be more pro-active in the suggestion — or execution —
of a particular change, hence not strictly dependent on human intervention. A more specific
case of adaptivity is self-adaptation, when systems are empowered with the ability to adjust their
own behavior in response to their perceptions of self, or the environment, without further human
intervention [CLG+].

All these properties, or capabilities, usually rely on a certain degree of introspection and in-
tercession – two aspects of reflection — which will be further discussed in § ... e work by
Andresen et al. [AG] identifies some enabling criteria for adaptability in enterprise systems.
Further work by Meso et al. [MJ] provides an insight into how agile soware development
practices can be used to improve adaptability.

.. Reflection

Reflection is the property of a system that allows to observe and alter its own structure or behav-
ior during its own execution. is is normally achieved through the usage and manipulation of
(meta-)data representing the state of the program/system. ere are two aspects of such manip-
ulation: (i) introspection, i.e., to observe and reason about its own state, and (ii) intercession, i.e.,
to modify its own execution state (structure) or alter its own interpretation or meaning (seman-
tics) [Caz]. A simple example using both introspection (to find a class by name) and inter-
cession (by creating a new instance of a class) can be observed in Source .. ese capabilities
makes reflection a key property for metaprogramming, as further exposed in § .. (p. ).

1 Foo . new . h e l l o # without r e f l e c t i o n
2 Object . const_get (: Foo) . send (: new) . send (: h e l l o) # with r e f l e c t i o n

Source .: Two ways of invoking a method from a newly created instance in Ruby.

.  

Abstraction is a very broad concept, which definition depends on the concrete area of application.
Quoting several articles from [Wika]:

• Conceptually, “it is the process or result of generalization by reducing the information
content of a concept or an observable phenomenon, typically to retain only information
which is relevant for a particular purpose”.

¹ is difference is not always evident, due to a relaxed usage of both terms.

  

• In Mathematics, “it is the process of extracting the underlying essence of a mathematical
concept, removing any dependence on real world objects with which it might originally
have been connected, and generalizing it so that it has wider applications or matching
among other abstract descriptions of equivalent phenomena”.

• In Computer Science, “it is the mechanism and practice of reducing and factoring out
details so that one can focus on a few concepts at a time”.

• In Soware Engineering, “it is a principle that aims to reduce duplication of information
in a program (usually with emphasis on code duplication) whenever practical by making
use of abstractions provided by the programming language²”.

All these definitions share one factor in common — that abstraction involves relinquishing
some property, such as detail, to gain or increase another property, like simplicity. For example,
a common known use of the word abstraction is to classify the level of a programming language:
Assembly is oen regarded as low-level because it exposes the underlying mechanisms of the
machine with an high degree of fidelity; Haskell, on the other hand, is a high-level language,
struggling to hide as much as possible the underlying details of its execution. e latter trades
execution performance in favor of cross-platform and domain expressiveness, among others. And
yet, raising the level of abstraction seems to be the future of programming languages, as exposed
by C’s lead designer Anders Hejlsberg [BW]:

…the ongoing trend in language evolution has always been this constant increase of abstraction
level. If you go all the way back to plugboards and machine code and then symbolic assemblers
and then C and then C++ and now managed execution environments and so forth, each step
we moved a level of abstraction up. e key challenge always is to look for the next level of
abstraction.

However, abstractions should hardly be consideredwin-win solutions. Joel Spolsky observes a re-
current phenomena in technological abstractions called Leaky Abstractions, which occurs when
one technological abstraction tries to completely hide the concepts of another, lower-level tech-
nology, and sometimes the underlying concepts “leak through” those supposed invisible layers,
rendering them visible [Spo]. For example, an high-level languagemay try to hide the fact that
the program is being executed at all by a von-neumann machine. But, although two programs
may be functionally equivalent, memory consumption and processor cyclesmay eventually draw
a clear and pragmatic separation between them. e programmer may thus need to learn about
the middle and lower-level components (i.e., processor, memory, compiler, etc.) for the pur-
pose of designing a program that executes in a reasonable time, thus breaking the abstraction
layer. Spolsky goes as far as conjecturing that “all non-trivial abstractions, to some degree, are

² Also known as the “don’t repeat yourself ” principle, or eXtreme Programming’s “once and only once”.

 

leaky”. Hence, good abstractions are specifically designed to express the exactly intended details
in a specific context, while relinquishing what is considered unimportant, quoting [AS]:

We must constantly turn to new languages in order to express our ideas more effectively. Estab-
lishing new languages is a powerful strategy for controlling complexity in engineering design;
we can oen enhance our ability to deal with a complex problem by adopting a new language
that enables us to describe (and hence to think about) the problem in a different way, using
primitives, means of combination, and means of abstraction that are particularly well suited to
the problem at hand.

Despite one’s tendency to interpret “new languages” as programming languages, that is not nec-
essary the case. In fact, a pattern language “enables us to describe (and hence to think about) the
problem in a different way, using primitives, means of combination, and means of abstraction that
are particularly well suited to the problem at hand” § . (p. ).

.. Metaprogramming

Metaprogramming³ consists on writing programs that generate or manipulate either other pro-
grams, or themselves, by treating code as data. Quoting [CI]:

A metaprogramming system is a programming facility (subprogramming system or language)
whose basic data objects include the programs and program fragments of some particular pro-
gramming language, known as the target language of the system. Such systems are designed to
facilitate the writing of metaprograms, that is, programs about programs. Metaprograms take
as input programs and fragments in the target language, perform various operations on them,
and possibly, generate modified target-language programs as output.

Historically, metaprogramming systems were divided into two separate languages: (i) the meta-
language, in which the meta-program is written, and (ii) the object language which the metapro-
gram produces or manipulates. Nowadays, most programming languages use the same language
for the two functions [Caz], either (i) by being homoiconic such as , (ii) being dynamic
such as Ruby and Python, or (iii) by exposing the internals of the runtime engine through s,
such as Java and Microso .NET.

One of the most common applications of metaprogramming is in the translation of high-
level descriptions into low-level implementations by means of application generators, as further
discussed in § .. (p. ). Such techniques allows developers to focus on specifications based
on tested standards rather than in implementation details, making tasks like systemmaintenance
and evolution more easy and affordable [Bas, Cle]. Claims about the economic benefits in
terms of development and adaptability have been studied and published for more than twenty

³ Or meta-programming; the usage of the hyphen aer the prefix meta varies among authors. e same applies for
meta-modeling, meta-program, meta-data…

  

years [Lev]. However, the focus of these techniques is mostly directed to the code level rather
than high-level domain concepts.

A simple example of using metaprogramming to implement a factorial function whose value
is pre-calculated at compile-time can be found in Source .. is example makes usage of C++
techniques such as template metaprogramming and template specialization.

1 template <i n t N>
2 s t r u c t F a c t o r i a l { enum { value = N ˚ Facto r i a l <N - 1 >:: va lue } ; } ;
3

4 template <>
5 s t r u c t Fac to r i a l <0> { enum { value = 1 } ; } ;
6

7 void foo () {
8 i n t x = Facto r i a l <4>:: va lue ; // ” 24
9 i n t y = Facto r i a l <0>:: va lue ; // ” 1

10 }

Source .: Calculating a factorial function at compile-time by using C++ templates.

An amusing and somewhat mind-twisting example is that of a program which produces a
copy of its own source code as its only output; these metaprograms are known as quines⁴, and a
quine written by John McCarthy in  can be found in Source ..

1 ((lambda (x)
2 (l i s t x (l i s t (quote quote) x)))
3 (quote
4 (lambda (x)
5 (l i s t x (l i s t (quote quote) x)))))

Source .: An example of a LISP program which produces a copy of its own source code.

.. Generative Programming

One common approach to address variability and adaptability is the use of Generative Pro-
gramming () methods, which transform a description of a system (model) based in primi-
tive structures [RKS], into either executable code or code skeleton. is code can then be
further modified and/or refined and linked to other components [Cza]. Generative Program-
ming deals with a wide range of possibilities including those from Aspect Oriented Program-
ming [KH, DYBJ], § .. (p. ), and Intentional Programming [CE].

⁴ A term popularized by Douglas Hofstadter in his book , , :   
 [Hof], named aer philosopher Willard Van Orman Quine due to his paradox-producing expression:
“Yields falsehood when preceded by its quotation” yields falsehood when preceded by its quotation.

 

Because generative approaches focus on the automatic generation of systems from high-level
(or, at least, higher-level) descriptions, it is arguable whether those act like a meta-model of the
generated system. Still, the resulting functionality is not directly produced by programmers but
specified using domain-related artifacts. In summary,  works as an off-line code-producer and
not as a run-time adaptive system [YBJa].

is technique typically assumes that (i) changes are always introduced by developers
(change agents), (ii) within the development environment, and (iii) that a full transformation
(andmost likely, compilation) cycle is affordable (i.e., no run-time reconfiguration). When these
premises fail to hold, generative approaches are either unsuitable, or requires additional infras-
tructures such as incremental compilation [RFBLO].

Perhaps one of the biggest drawbacks in  is on round-trip engineering (): the synchro-
nization among multiple artifacts that represent the same information, e.g. a model and the
generated code. When the information present in multiple artifacts is open to change, then in-
consistencies may occur if those artifacts are not consistently updated to reflect any introduced
change, due to their causal connections⁵. A common example is in maintaining a piece of code
and its  representation synchronized.

.. Metamodeling

Metamodeling can be defined as the analysis, construction and development of the frames, rules,
constraints, models and theories applicable and useful for modeling a predefined class of prob-
lems [SV]; in other words, it is the practice of constructing models that specify other mod-
els. Metamodelling is closely related to, and to some extent overlapping, ontology analysis and
conceptual modeling, since both are oen used to describe and analyze relations between con-
cepts [SAJ+].

A model is said to conform to its metamodel in the way that a particular computer pro-
gram conforms to the grammar of the programming language in which it is written. Quot-
ing [GPHS]:

In epistemology and other branches of philosophy, the prefix “meta-” is oen used to mean
“about its own category”; in [metamodeling,] “meta-” means that the model that we are build-
ing represents other models i.e. a metamodel is a model of models. is relationship is oen
described as paralleling the Type–Instance relationship. In other words, the metamodel (Type)
and each of the models (Instances) are of “different stuff” and are described using different
languages (natural or soware engineering languages). Such type models therefore use classi-
fication abstraction — which leads to a metamodelling hierarchy.

⁵ Consider a common  system that transforms  into code; in total, there’s three potential issues to manage,
viz. (i) forward engineering, where themodel changes so the code needs to be re-generated, (ii) reverse engineering,
where the code was changed so the model needs to be re-fitted, and (iii) round-trip engineering, where both the
model and the code has been changed, so they need to be reconciled.

  

Common uses for metamodels include (i) schemas for semantic data that needs to be exchanged
or stored, (ii) languages that supports a particular method or process, (iii) languages that express
additional semantics of existing information [Wikc]. e usage of metamodeling techniques
during runtime provides an answer to high-variability systems, where the large semantic mis-
match between specification and implementation artifacts in traditional systems can be reduced
by the use of models, metamodels, and metadata in general [RFBLO].

.. Aspect-Oriented Programming

Aspect-Oriented Programming () is a programming paradigm that isolates secondary or
auxiliary behaviors from the implementation of the main business logic. It has been proposed
as a viable implementation of modular crosscutting concerns. Since crosscutting concerns can-
not be properly modularized within object-oriented programming, they are expressed as aspects
and are composed, or woven, with traditionally encapsulated functionality referred to as com-
ponents [KH, KM]. is paradigm has been gaining some momentum particularly because
even conceptually simple crosscutting concerns such as tracing during debugging and synchro-
nization, lead to tangling, in which code statements addressing the crosscutting concern become
interlaced with those addressing other concerns within the application [LC].

Many  implementations, such as those related to Python, work by automatically injecting
new code into existing classes (a process which is commonly called decorating a class), effectively
adding new functionalities that promote extensive code reuse [MS]. An example of such can
be found in Source ., using the Aspyct library [ddB].

1 c l a s s MyAspect (Aspect) :
2 de f a tCa l l (s e l f , cd) :
3 pr in t (” a tCa l l occurs now”)
4
5 @MyAspect ()
6 de f t e s t () :
7 pr in t (” He l l o World ! ”)

Source .: An example using Aspect Oriented Programming in Python for tracing purposes.

Despite the growing popularity of , much of its success seems to be based on the con-
ception that it improves both modularity and the structure of code, while in fact, it has been
observed to work against the primary purposes of the two, namely independent development
and understandability of programs, up to the point of rendering it as almost paradoxical [Ste].

 

.. Domain Specific Languages

A domain-specific language () is a programming or specification language specifically de-
signed to suit a particular problem domain, representation technique, and/or solution tech-
nique [Par]. ey can be either (i) visual diagramming languages, such as , (ii) progra-
matic abstractions, such as , or (iii) textual languages, such as .

e benefits of creating a  (along with the necessary infrastructure to support its inter-
pretation or execution) may reveal considerable whenever the language allows a more clear ex-
pression of a particular type of problems or solutions than pre-existing languages would, and the
type of problem in question reappears sufficiently oen (i.e., recurrent, either in a specific project,
like extensive usage of mathematical formulae, or global-wise, such as database querying). But
despite its benefits,  development is hard, requiring both domain knowledge and language
development expertise. Hence, the decision to develop a  is oen postponed indefinitely, if
considered at all, and most s never get beyond the application library stage [MHS].

Recently, the term  has also been used to coin a particular type of syntactic construction
within a general purpose language which tends to more naturally resemble a particular problem
domain, but without actually extending or creating a new grammar. e Ruby community, for
example, has been enthusiastic in applying this term to such syntactic sugar. is has divided
s into two different categories:

• External, are built more likely a generic-purpose language. ey have its own custom syn-
tax and are developed with the support of tools such as  [PQ] or  [Joh],
which take a formalized grammar (e.g., defined in a meta-syntax such as ), and gener-
ate parsers in a supported target language, such as C. More recent systems, like JetBrain’s
 [Jet], provide MetaIDEs that allows one to design new languages — and extend ex-
isting ones — along with modern instrumental tools such as an editor, code completion,
find usages, debugger, etc.

• Internal, also known as embedded , is a technique where one uses a host language by
strictly complying with its grammar, but in a way that it feels it is other language. As said,
this specific approach has been recently popularized by the Ruby community, although it
is possible to find earlier examples in  and Smalltalk [Sch].

Domain-specific languages share common design goals that contrast with those of general-
purpose languages, in the sense they are (i) less comprehensive, (ii) more expressive in their do-
main, and (iii) exhibit minimum redundancy. Language Oriented Programming [War] con-
siders the creation of special-purpose languages for expressing problems as a standard method-
ology of the problem solving process.

  

.. Meta-Architectures

We have already seen several techniques used to address systems with high-variability needs.
ere is, nonetheless, differences between them. For example, some do not parse or interpret
the system definition (meta-data) while it is running: Generative Programming and Metamod-
eling rely on code generation done at compile time. Reflection is more of a property than a
technique by itself, and the level at which it is typically available (i.e., programming language) is
inconvenient to deal with domain-level changes. Domain Specific Languages are programming
(or specification) languages created for a specific purpose. ey are not generally tailored to deal
with change (though they could), and they do require a specific infrastructure in order to be
executed.

Meta-architectures are one of those Humpty-Dumpty⁶ words. Yoder et al. [YBJb] defined
it as architectures that can dynamically adapt at runtime to new user requirement, also known
as “reflective architectures”. Ferreira et al. [FAF] defined it as an “architecture of architectures,
i.e., an abstraction over a class of systems which usually rely on reflective mechanisms”. is
seemingly disagreement is due to the meta⁷ prefix, which can be understood as being applied
to the word architecture (i.e., an architecture of architectures), or as a subset categorization (i.e.,
those architectures that rely on meta mechanisms).

For the sake of simplicity, we will always refer to the latter meaning henceforth. us, meta-
architectures are architectures that strongly rely on reflective properties, and usually have the
ability to dynamically adapt to new user requirements during runtime (through intercession).
Both pure object-oriented environments, and MOF-based systems are examples of such archi-
tectures, as they make use of meta-data to create different levels that sequentially comply to each
other. But, in these cases, the line that separates what is data and is a systems definition — i.e.,
loosely called it’s model — is blurred, so we need to establish further vocabulary conventions.
Whenever we talk about data (or instances) we are draing a parallel with M0 — bare infor-
mation that doesn’t provide structure. By model we are referring to M1 — its structure gives
meaning to data. By meta-model we are referring toM2 — a model to define models. e “top-
most” level doesn’t have a name, though; in MOF is called meta-meta-model, due to it being the
third model layer. is building up of levels (or layers), where each is directly accountable for
providing structure and meaning to the layer below, resembles a tower, and so it is also com-
monly called Reflective Tower, as depicted in Figure . (p. ).

Nonetheless, it should be noted that the property of being reflective may actually be regarded
as the key principle of meta-architectures, since systems that adapt their behavior do not neces-
sarily rely of meta mechanisms.

⁶ From the Lewis Carroll’s    , where Humpty-Dumpty says to Alice: “When I use a word, it
means just what I choose it to mean, neither more nor less”.

⁷ From Oxford’s Dictionary “(of a creative work) referring to itself or to the conventions of its genre; self-referential”.

 

. 

Several approaches and techniques exist to deal with systems with high-variability needs. e
following sections provides an overview of those most commonly found.

.. Soware Product Lines

A soware product line () is a set of soware systems which share a common, managed set
of features that satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way [CN]. Soware product line
development, encompasses soware engineering methods, tools and techniques for supporting
such approach. A characteristic that distinguishes  from previous efforts is predictive versus
opportunistic soware reuse. Rather than put general soware components into a library in the
hope that opportunities for reuse will arise, soware product lines only call for soware artifacts
to be created when reuse is predicted in one or more products in a well defined product line.

.. Naked Objects

Naked Objects takes the automatic generation of graphical user interfaces for domain models
to the extreme. is soware architectural pattern, first described in Richard Pawson’s Ph.D.
thesis [Paw] which work⁸ includes a thorough investigation on prior known uses and variants
of this pattern, is defined by three principles:

. All business logic should be encapsulated onto the domain objects, which directly reflect
the principle of encapsulation common to object-oriented design.

. e user interface should be a direct representation of the domain objects, where all user
actions are essentially creation, retrieval and message send (or method invocation) of do-
main objects. It has been argued that this principle is a particular interpretation of an
object-oriented user-interface ().

. e user interface should be completely generated solely from the definition of the domain
objects, by using several different technologies (e.g., source code generation or reflection).

.. Domain-Driven Design

Domain-driven design ()was coined by Eric Evans in his books of the same title [Eva]. It is
an approach⁹ to developing soware for complex needs by deeply connecting the implementation

⁸ Pawson’s thesis also contains a controversial foreword by Trygve Reenskaug, who first formulated themodel-view-
controller () pattern, suggesting that NakedObjects is closer to the original  intent thanmany subsequent
interpretations and implementations.

⁹ In the sense that it is neither a technology nor a methodology.

 

to an evolving model of the core business concepts.  encompasses a set of practices and
terminology formaking design decisions that focus and accelerate soware projects dealing with
complicated domains, based on the following premises:

. Placing the project’s primary focus on the core domain and domain logic;

. Basing complex designs on a model;

. Initiating a creative collaboration between technical and domain experts to iteratively cut
ever closer to the conceptual heart of the problem.

.. Model-Driven Engineering

e term Model-Driven Engineering () has roots that go back as  [MM] as an answer
to the growing complexity of system architectures. is growing complexity and the lack of an
integrated view “forced many developers to implement suboptimal solutions that unnecessarily
duplicate code, violate key architectural principles, and complicate system evolution and quality
assurance” [Sch].

To address these issues, Model-Driven engineering combines domain-specificmodeling lan-
guages (s) with transformation engines and generators in order to generate various types
of artifacts, such as source code or alternative model definitions. e usage of s ensures
that the domain model is perfectly captured in terms of syntax and semantics. is guarantees a
flatter learning curve as the concepts present in the language are already known by the domain
experts. is also helps a broader range of experts, such as system engineers and experienced
soware architects, ensure that soware systems meet user needs.

Object-oriented based  are typically metamodeling techniques that strives to close the
gap between specification artifacts which are based upon high-level models, and concrete im-
plementations. A conservative statement claims that  tries to reduce the effort of shortening
(not completely closing) that gap by generating code, producing artifacts or otherwise interpret-
ing models such that they become executable [FR]. Proponents of  claim several advan-
tages over traditional approaches [RFBLO]:

. Shorter time-to-market. Since users model the domain instead of implementing it, focus-
ing on analysis instead of implementation details;

. Increased reuse. Because the inner workings are hidden from the user, avoiding to deal
with the intricate details of frameworks or system components;

. Fewer bugs. Because once one is detected and corrected, it immediately affects all the
system leading to increased coherence;

 

. Easier-to-understand systems and up-to-date documentation. Since the design is the
implementation, not only they never fall out of sync, but they are both the medium and
outcome of design.

One can argue if these advantages are exclusive of  or just a consequence of “raising the
level of abstraction” § .. (p. ). Downsides in typical generative  approaches include the
delay between model change and model instance execution due to code generation, debugging
difficulties, compilation, system restart, installation and configuration of the new system, which
can take a substantial time andmust take placewithin the development environment [RFBLO].
Once again, it doesn’t seem a particular downside of , but a general property of normal
deployment and evolution of typical systems.

Further issues related to current  adoption will be addressed in Chapter  (p. ). It
seems worthwhile to note that the prefix Model-driven seems to be currently serving as a kind of
umbrella definition for several techniques.

.. Model-Driven Architecture

Model-driven architecture () in an approach to  proposed by the , for the develop-
ment of soware systems [MM, OMGb]. It provides a set of guidelines to the conception
and use of model-based specifications and may be regarded as a type of domain engineering. It
bases itself on theMetaObject Facility () [OMGa], whichmain purpose is to define a strict,
closed metamodeling architecture for -based systems and  itself. It provides four mod-
eling levels (M3, M2, M1 and M0), each conforming to the upper one (M3 is in conformance
to itself).

Like most of the  practices,  thrives within a complex ecosystem with specialized
tools for performing specific actions. Moreover,  is typically oriented for generative ap-
proaches, using systematic offline transformation of high-level models into executable artifacts.
For example, trying to answer ’s goal of covering the entire gap between specification and
implementation,  was developed [MB]. It is a  profile which allows the graphical
representation of a system, and takes an approach in which platform specific implementations
are created automatically from platform-independent models, with the use of model compilers.

While some complex parts of  allow runtime adaptivity, developers seldom acquire
enough knowledge and proficiency of the overall technologies to make them cost (and time) ef-
fective in medium-sized applications. Runtime adaptivity may be approached in different ways,
including the use of reflection, and the interpretation of models at runtime [RFBLO], covering
the concept of Adaptive Object-Model — see Chapter  (p. ).

  

M2

M1

M0

ClassAttribute

‹‹instanceOf››‹‹instanceOf››

M3 Class

Instance

‹‹instanceOf››‹‹instanceOf››‹‹instanceOf››

classifier

 +title: string

Video

title = "Matrix"

:aVideo‹‹snapshot››

‹‹instanceOf››

Matrix

‹‹instanceOf››

Figure .: e four layers of abstraction in UML/MOF.

.  

Object-oriented frameworks are both reusable designs and implementations, that orchestrate
the collaboration between core entities of a system [RJ]. While they establish part of the sys-
tem’s behavior, they are deliberately open to specialization by providing hooks and specializa-
tion points. A framework usually makes use of the Hollywood Principle¹⁰, which is known to
promote high cohesion and low coupling in object-oriented designs. e framework dictates the
architecture of the underlying system, defining its overall structure, key responsibilities of each
component (which together form a C L), and themain T  C.
It captures design decisions common to its application domain, thus emphasizing design reuse
over code reuse. Moreover, it is well known that mature frameworks can exhibit a reduction of
up to  of source code, when compared to soware written with the support of a conventional
function library [WGM, FSJa, FJ, FSJb].

Some authors though argue that the development effort required to produce a framework (as
thus its cost) is extraordinarily higher than the costs of developing a specific application [FPR].
And when similar applications already exist, they have to be studied carefully to come up with
an appropriate framework for that particular domain. Adaptations of the resulting framework
lead to an iterative redesign. So frameworks represent a long-term investment that pays off only
if similar applications are developed again and again in a given domain.

¹⁰A cliché response given to amateurs auditioning in Hollywood: “Don’t call us, we’ll call you”.

 

.. Building Frameworks

Despite the considerable number of successful frameworks developed during the last decades,
designing a high-quality framework is a difficult task. One of the most common observations
about successful framework development is that it requires iteration: “Good frameworks are
usually the result of many design iterations and a lot of hard work” [WBJ].

e precise need for iteration in framework development (though a common practice nowa-
days for the development of most soware artifacts) is mainly due to three reasons. e first
one is that finding the correct abstractions in immature domains is very hard. is difficulty
oen results in mistakes being discovered only when the framework is used, which then leads
to refinements and iteration. Another reason for iterating is that the flexibility provided by a
framework is difficult to fine-tune a priori, and its evaluation usually requires to experiment it
in concrete situations. A third reason is that frameworks are high-level abstractions, and thus
their generality and reusability is highly dependent on the original examples used during the
abstraction process.

Despite the importance of iteration in framework refinement, it would be beneficial to have
processes able to reduce the number of design iterations and the effort spent on framework re-
finement. e lack of mature processes for developing frameworks is an issue. While framework
development processes get more and more mature, framework development is considered (by
some) as an art, requiring both experience and experimentation [JF].

Several methods have been proposed in the literature to support framework development in
order to reduce the refinement effort and make it more predictable. Some examples of meth-
ods include (i) a pattern language for evolving frameworks [RJ], (ii) systematic framework
design by generalization [Sch], (iii) hot-spot-driven development [Pre], (iv) the catalysis
approach [DW], (v) role-modeling approach for framework design [RG], and (vi) the ap-
proach for deriving frameworks from domain knowledge [ATMB].

All these approaches define similar activities for developing frameworks but differ on the em-
phasis put on some activities and artifacts used as starting points. For example, [RJ] suggests
starting from concrete applications and abstract the framework using iterative refinements, thus
emphasizing a bottom-up approach; [ATMB], on the other hand, suggests starting not from
concrete applications, but from domain knowledge, thus emphasizing a top-down approach.

Roberts and Johnson proposes a pattern language to evolve a framework [RJ]. emethod
assumes that primary abstractions are very hard to find, and therefore considers that several
development efforts are required to achieve a successful framework. e method suggests to
start from concrete applications and iteratively abstract and refine the framework from those
applications. e patterns can be found in Figure . (p. ).

  

Three Examples

White-Box Framework

Component Library

Hot Spots

Pluggable Objects

Fine-Grained Objects

Visual Builder

Language Tools

Black-Box Framework

time

Figure .: Patterns for Evolving Frameworks [RJ].

.. Documenting Frameworks

Aguiar proposed a minimalist approach to framework documentation, which covered the over-
all documentation process, from the creation and integration of contents till the publishing and
presentation, by focusing on minimizing the obtrusiveness to the learner of training material,
offering the minimal amount of information that the learner needs to get the task done. It en-
compasses (i) a documentation model to organize the contents required to produce a minimal-
ist framework manual along a virtual layered documentation space, (ii) a process which defines
roles, techniques and activities involved in the production of minimalist framework manuals,
and (iii) a specific set of tools, convenient to be adopted in a wide range of soware development
environments [Agu].

In terms of notation, the  profile for framework architectures provides an enriched 
subset, with some -compliant extensions, to allow the annotation of such artifacts. is
profile is called - and is targeted to framework technology [FPR].

.  

From full programming languages, to approaches and frameworks, several tools to support them
already exist, which are somewhat capable to address incomplete by design systems. e list that
follows is not meant to be exhaustive, but rather representative of existing technology, either due
to relevant particularities or just by sheer popularity in this context.

 

.. Wikis

Earlier in , Cunningham wrote a set of scripts that allowed collaborative editing of webpages
inside the very same browser used to view them [Cun]. He named this system WikiWikiWeb,
due to the analogy between the meaning of the word wiki — quick — and the underlying phi-
losophy of its creation: a quick-web. Since then, wikis¹¹ have gradually become a popular tool on
several domains, including that of soware development, e.g., to assist the creation of lightweight
soware documentation [Agu]. ey ease collaboration, provide generalized availability of in-
formation, and allow the combination of different types of content, e.g., text, images, models, and
code, in a common substrate [AD].

Onemay similarly regardmodern development and usage of soware systems as increasingly
collaborative. e underlying design and the knowledge that lead to it (e.g., requirements, use-
cases, models) is mostly devised and shared between both developers and stakeholders. Data is
collaboratively viewed and edited among users. But usually these circles — developers and users
— seem to be regarded as disjoint, where the emergent knowledge from this collaboration begin
and end towards the synthesis of the artifacts themselves, despite the fact they have — and are —
built incrementally.

Reflecting on the overall success of wikis, it seems to be related to a set of design principles
draed by Cunningham [Cun]. Specifically, wikis share a common set of properties, viz.: (i)
open, (ii) incremental, (iii) organic, (iv) universal, (v) overt, (vi) tolerant, (vii) observable, and
(viii) convergent. e underlying rational behind these principles exhibit a constructionist atti-
tude towards change and incompleteness — instead of regarding the incompleteness of informa-
tion as a defect, they embrace it as the means through which the system evolves, in a continuous
fulfillment of its function. A transposition of this central notion to collaborative epistemology can
be found in Surowiecki’s “e Wisdom of Crowds” [Sur], and once the fundamental rational is
set, the same underlying principles can be applied to other computational systems as well. is
attitude towards incompleteness will be further explored in § .. (p. ).

.. Smalltalk

Smalltalk is a pure¹² object-oriented, dynamically typed, reflective programming language, de-
signed and created for “constructionist learning”, led by Alan Kay and Dan Ingalls at the Xerox
Palo Alto Research Center () [Kay].

¹¹Aer the creation of the WikiWikiWeb, several new sites and systems — or engines — emerged based on the same
underlying principles, and are generally called wikis. Among them is the well-known Wikipedia [Wikd], based
on the MediaWiki [Med] engine.

¹²Pure object-oriented languages differ from “hybrids”, like Java and C++, in the sense there is no fundamental
difference between objects and primitive types. Unlike Smalltalk, primitive types in Javawere either stored directly
in fields (for objects) or on the stack (for methods) rather than on the heap, prior to v... More recently, primitive
types are automatically boxed —a technique that allows primitives to be treated as instances of their wrapper class.

  

One key property to Smalltalk is being both structurally and computationally reflective, up
to the point that both the compiler and virtual machine () are accessible to the applica-
tion [GR]. For example, whenever the user enter textual source code, this is typically com-
piled into method objects that are instances of CompiledMethod, and subsequently added to
the target class’ method dictionary. New class hierarchies are created by sending a message to
the parent class. Even the Integrated Development Environment () is running from within
the Smalltalk , making extensive usage of introspection to find implemented methods, classes,
fields, etc. and assist the user with code-completion and unit-testing, among others. Unlike Java or
C, programmers usually don’t organize their code in textual files and proceed with a full com-
pilation. Instead, they incrementally modify and extend the system during run-time, storing the
entire  state in an image file [NDP].

1 doesNotUnderstand : aMessage
2 ^ t a r g e t
3 perform : aMessage s e l e c t o r
4 withArguments : aMessage arguments

Source .: Example of an implementation of the Proxy pattern in Smalltalk.

Another relevant property of Smalltalk w.r.t. incompleteness is the way methods are (not) in-
voked — rather a message is sent to the target object. If the target object doesn’t implement the
expected method, the full message is reified as an argument, and sent as a doesNotUnderstand:
message. In a Smalltalk , the default implementation is to open an error window, where
the user could inspect and redefine the offending code, and simply continue from that point
onward [NDP]. Alternatively, one can create an object redefining the doesNotUnderstand:
default behavior, effectively implementing the P pattern [GHJV], as seen in Source ..

.. Ruby on Rails

Ruby onRails () is a full-stackweb framework, initially developed byDavidHansson in ,
based on the  pattern. According to Hansson, ’s goal is “for programmers happiness and
sustainable productivity [letting] you write beautiful code by favoring convention over configura-
tion” [Han].  takes a lot of its properties from Ruby’s metaprogramming capabilities, exem-
plified in Source . (p. ), heavily inspired in LISP and Smalltalk [THB+]. Despite that, ’s
current version takes an approach much closer to generative programming than intercession —
see § .. (p. ) and § .. (p. ).

Regarding code generation, the  framework includes a series of mechanisms for system
artifacts generation, viz. models, controllers and views. It does so by analyzing the underlying
relational database model and deriving the object-oriented specifications from available meta-
information (e.g., column’s type, name, foreign keys, etc.). Instead of generating a static model

 

1 c l a s s Greet ing
2 de f i n i t i a l i z e (t ex t)
3 @text = text
4 end
5 de f welcome
6 @text
7 end
8 end
9

10 my_object = Greet ing . new(” He l lo ”)
11 my_object . c l a s s # ” Greet ing
12 my_object . c l a s s . instance_methods (f a l s e) # ” [: welcome]
13 my_object . i n s t anc e_var i ab l e s # ” [: @text]

Source .: Example of an implementation of the Proxy pattern in Ruby.

definition,  deduces the necessary information whenever the system is loaded, and generates
an adequate code skeleton for basic  operations in views¹³, greatly accelerating the devel-
opment process by providing the developers with a basic blueprint of a fully functional system
that can be subsequently refined and tailored for specific needs [THB+].

. 

is chapter has mainly focused on related work to this dissertation, summarizing the state-of-
the-art in the background themes. One way to design soware capable to cope with incomplete-
ness and change is to encode the system’s concepts into higher-level representations, which could
then be systematically synthesized into executable artifacts. To correctly capture and express
these high-level representations, one must correctly identify the commonalities and variability
of the system, and support the correct degree of adaptivity and/or adaptability. Techniques such
asmetaprogramming, metamodelling, generative programming, and domain specific languages,
among others, were described and their potential interest in this dissertation analyzed. Existing
tools and infrastructures, such as wikis and dynamic languages, also served as examples for the
study of the architecture and design of these kind of systems. e next chapter will now focus
specifically on the state-of-the-art of Adaptive Object-Models.

¹³A process known as scaffolding.

Chapter 

State of the Art in Adaptive Object-Models

. e AOM Architectural Pattern . 
. Formalized Patterns for AOM . 
. Differences from other Approaches . 
. Conclusion . 

In search for flexibility and run-time adaptability, many developers had systematically applied
code and design reuse of particular domains, effectively constructing higher-level representa-
tions (or abstractions). For example, some implementations have their data structure and do-
main rules extracted from the code and stored externally asmodifiable parameters ofwell-known
structures, or statements of a . is strategy gradually transforms some components of the
underlying system into an interpreter or virtual machine whose run-time behavior is defined by
the particular instantiation of the defined model. Changing this “model description” results on
the system following a different business domain model. Whenever we apply these techniques
to object-oriented design and principles, we usually converge to an architectural style known as
the Adaptive Object-Model () [YBJb].

.    

An Adaptive Object-Model may be defined as (i) a class of systems’ architectures, i.e., an ar-
chitectural style, (ii) based on metamodeling and object-oriented design, (iii) oen relying in
Domain Specific Languages (), (iv) typically having the property of being reflective, and (v)
specially tailored to expose its domain model to the end-user. Because it is an abstraction over
a set of systems and techniques, resulting into a common abstract architecture, it is called an
“architectural pattern”.

       -

Some literature also classifies the  as a meta-architecture, due to its core usage of meta-
programming and metamodeling [YBJb]. In fact, the evolution of the core aspects of a 
(and its associated vocabulary) can be observed by the broad nomenclature used in the literature
in the past, e.g., Type Instance [GHV], User Defined Product Architecture [JO], Active Object-
Models [YFRT] and Dynamic Object Models [RD]. As theories and technology crystallize,
the nomenclature begins to solidify, but it is an empirical observation of the current literature
that that phase has not yet been achieved.

.. Why is it a Pattern?

When building systems, there are recurrent problems that have proven, recurrent solutions, and
as such are known as patterns [AIS]. ese patterns are presented as a three-part rule, that
expresses a relation between a certain context, a problem, and a solution. A soware design
pattern addresses specific design problems specified in terms of interactions between elements
of object-oriented design, such as classes, relations and objects [GHJV]. ey aren’t meant to
be applied as-is; rather, they provide a generic template to be instantiated in a concrete situation,
as discussed in § . (p. ).

e concept of Adaptive Object-Model is inherently coupled with that of an architectural
pattern [BMR+], as it is an effective, documented, and prescriptive solution to the follow-
ing recurrent problem: how to allow the end-user to modify the domain model of the system
while it is running? It should therefore be noted that most  emerge from a bottom-up pro-
cess [YBJb], resulting in systems that will likely use a subset of its concepts and properties, only
when and where they are needed. is is in absolute contrast with top-down efforts of specific
meta-modeling techniques (e.g., Model-Driven Architecture) where the whole infrastructure is
specifically designed to be as generic as possible (if possible, to completely abstract the underly-
ing level).

.. Towards a Pattern Language

e growing collection of -related patterns [WYWB, FCW, WYWB] which is form-
ing a domain pattern language [WYWBJ], is currently divided into six categories, viz. (a)
Core, which defines the basis of a system, (b) Creational, used for creating runtime instances,
(c) Behavioral, (d) GUI, for providing human-machine interaction, (e) Process, to assist the cre-
ation of a , and (f) Instrumental, which helps the instrumentation. e first dra of this
pattern language was done by Welicki et al. [WYWBJ], and is summarized in Figure . (p. )
and Table . (p. ).

    

T
y
p

e
 S

q
u

a
re

D
yn

am
ic

H

oo
ks

St
ra

te
gy

Ty
pe

 C
ub

e
R

ul
e

O
bj

ec
t

R
ul

e
En

gi
ne

In
te

rp
re

te
r

Bu
ild

er

Ed
ito

r
/ V

is
ua

l
La

ng
ua

ge

A
O

M
 B

ui
ld

er

D
ep

en
de

nc
y

In
je

ct
io

n

D
yn

am
ic

Fa
ct

or
y

Ty
pe

 O
bj

ec
t

Pr
op

er
tie

s
A

cc
ou

nt
ab

ili
ty

N
ul

l O
bj

ec
t

Va
lu

e
O

bj
ec

t
Sm

ar
t

Va
ri

ab
le

s

En
tit

y V
ie

w
Pr

op
er

ty

R
en

de
re

r

D
yn

am
ic

V

ie
w

s
G

U
I

W
or

kfl
ow

m
an

ag
es

m
ay

-u
se

m
ay

-u
se

co
or

di
na

te
s

us
es

us
es

us
es

su
pp

or
ts

su
pp

or
ts

 re
nd

er
s

m
an

ag
es

pr
oc

es
s

ex
te

nd
s

m
an

ag
es

ex
te

nd
s

ex
te

nd
s

de
sc

rib
es

ex
te

nd
s

us
es

us
es

su
pp

or
ts

us
es

us
es

co
nt

ro
ls

ex
te

nd
s

C
ac

hi
ng

C
on

te
xt

O

bj
ec

t

Be
ha

vi
or

al
G

U
I

C
or

e

C
re

at
io

na
l

In
st

ru
m

en
ta

l

Ve
rs

io
ni

ng
H

is
to

ry
he

lp
s

Bo
ot

st
ra

pp
in

g

Figure .: Pattern map of design patterns and concepts related to Adaptive Object-Models. Adapted from
[WYWBJ].

       -

C P

Core T S, T O, P, A, V O,
N O, and S V

Creational B, AOM B, D F, B, D
I, and E / V L

Behavioral D H, S, R O, R E, T C, and
I

GUI P R, E V, D V, and GUI W
Process D S A, S S, T E, W

B F, B B F, C L, H
S, P O, F-G O, V B, and
L T

Instrumental C O, V, H, and C

Table .: A pattern catalog for Adaptive Object Models, adapted from [WYWBJ].

Core AOM Patterns

e following patterns define the structural and behavioral basis of any  system:

• Type Object. As described by Johnson et al. [JW] and Yoder et al. [YBJb], a T-
O decouples instances from their classes so that those classes can be implemented
as instances of a class. TO allows new “classes” to be created dynamically at run-
time, lets a system provide its own type-checking rules, and can lead to simpler, smaller
systems.

• Property. eP pattern gives a different solution to class attributes. Instead of be-
ing directly created as several class variables, attributes are kept in a collection, and stored
as a single class variable. is makes it possible for different instances, of the same class,
to have different attributes [Fow].

• Type Square. e combined application of the TO and P patterns result
in the TS pattern [Fow]. Its name comes from the resulting layout when rep-
resented in class diagram, with the classes Entity, EntityType, Attribute and Attribute-
Type.

• Accountability. Is used to represent different relations between parties using an A-
T to distinguish between different kinds of relation [Fow, Ars].

• Composite. is pattern consists of a way of representing part-hole hierarchies with the
Rule and CompositeRule classes [JW].

    

• Strategy. Strategies are a way to encapsulate behavior, so that it is independent of the
client that uses it. Rules are Strategies, as they define behavior that can be attached to a
given EntityType [JW].

• Rule Object. is pattern results from the application of the C and S
patterns, for the representation of business rules by combining simpler elementary con-
straints [WYWBJ].

• Interpreter. An  consists of a runtime interpretation of a model. e I
pattern is used to extract meaning from a previously defined user representation of the
model [JW].

• Builder. A model used to feed a -based system is interpreted from its user representa-
tion and a runtime representation of it is created. e B pattern is used to separate
a model’s interpretation from its runtime representation construction [JW].

Patterns of Graphical User Interface

epatterns in [WYWB] focus specifically onUser Interface () generation issues when deal-
ing with . In traditional systems, data presented in user interfaces is usually obtained from
business domain objects, which are thus mapped to  elements in some way. In a  business
objects exist under an additional level of indirection, which has to be considered. In fact, it can
be taken into our advantage, as the existing meta-information, used to achieve adaptivity, can be
used for the same purpose regarding user interfaces. User interfaces can this way be adaptive to
the domain model in use.

• Property Renderer. Describes the handling of user-interface rendering for different types
of properties.

• Entity View. Explains how to deal with the rendering of EntityTypes, and how P-
R can be coordinated for that purpose.

• Dynamic View. Approaches the rendering of a set of entities considering layout issues and
the possibility of coordinating EV and PR in that regard.

.    

ebasic architecture of a may be divided into three parts or levels that roughly correspond
to the levels presented by : M0 is the operational level, where system data is stored, M1 is
the knowledge level where information that defines the system (i.e., themodel) is stored, andM2

is the design of our supporting infrastructure. M0 and M1 are variants of our system. M2 is an

       -

invariant, i.e., the meta-model — should it need to change, we would have to transformM0 and
M1 to be compliant with the new definition. See Figure . (p. ) and Figure ..

M2

M1

M0 John Doe

Person

EntityEntityType

‹‹instanceOf››

‹‹instanceOf››

‹‹instanceOf››

0..*

Figure .: e meta layers of an , when compared to .

We may say that the key to good soware design is two-fold: (a) recognize what changes,
and (b) recognize what doesn’t change; it is the search for patterns and invariants. e following
patterns try to anticipate what will be the target of continuous change, and encapsulate it ac-
cordingly. e first patterns, viz. TO, P, TS, and A
capture the structural core of an AOM.

Additional, some structural rules such as (i) legal subtypes, (ii) legal types of relationships
between entities, (iii) cardinality of relationships and, and (iv) mandatory properties, can be
captured through simple extensions of these patterns, as will be discussed in Chapter  (p. )
and Chapter  (p. ). More complex rules will require the usage of other patterns, viz. C-
, RO, S and I.

.. Type-Object Pattern

In the context of object-oriented programming and analysis, the type of every object is defined
as a class, and its instance as an object which conforms to its class. A typical implementation of a
soware system would hardcode into the program structure, i.e., its source-code, every modeled
entity, such as the concept of a patient. Whenever the systemneeds to be changed, e.g., to support
a new entity, the source-code has to be modified.

However, if one anticipate this change, objects can be generalized and their variation de-
scribed as parameters, just like one can make a function that sums any two given numbers re-
gardless of their actual value. e TO pattern, depicted in Figure . (p. ), identifies
that solution, which involves splitting the class in two: a type named Entity Type, and its in-
stances, named Entity [JW].

    

Identifier {unique}

Entity

Identifier {unique}
Name: string
Abtract: bool

Entity Type

Identifier = 001
Name = "Patient"
Abstract = False

Patient

Identifier = 001

John Doe

‹‹instanceOf››

‹‹instanceOf››

model-level

data-level

parent

0..1

0..*

Figure .: A class diagram of the T-O pattern.

Using this pattern, patients now become instances of Entity Types — they become meta-
data. e actual system data, such as the patient John Doe, is now represented as instances of
Entity. Because both data and meta-data are defined and stored independently of the program
structure, they are allowed to change during run-time.

ere are some variations to this solution; for example, an optional relation between Entity-
Types can support the notion of inheritance, which will incidentally be a solution to the problem
of open-inheritance, as first discussed in Chapter  (p. ). Provided sufficient mechanisms ex-
ists to allow the end-user customization of the model, new specializations can be added without
modifying the source-code.

.. Property Pattern

We face a very similar problem to the TO, when dealing with the attributes of an object,
such as the name and age of a patient. Once again, these are usually classified as fields of a class,
and its values stored in the object. e anticipation of change leads to the P pattern; a
similar bi-section between the definition of a property and its corresponding value is depicted
in Figure ..

Identifier {unique}
Value

Property

Identifier {unique}
Name: string

Property Type

Identifier = 001
Name = 'Age'

: Property Type

Identifier = 001
Value = 23

: Property

‹‹instanceOf››

‹‹instanceOf››

model-level

data-level

Figure .: A class diagram of the P pattern.

Using this pattern, the several attributes of the domain’s entities become instances of Prop-
erty Types, and their particular values instances of Property. Again, this technique solves the

       -

problem of adding (or removing) more information to existing entities beyond those originally
designed, without touching the source-code.

.. Type-Square Pattern

e two previous patterns, TO and P, are usually used in conjunction, result-
ing in what is known as the T-S pattern — the very structural core of a , and de-
picted in Figure .. It is important to note that the diagram has instance elements representing
both the systems’ data and model, while the classes represent the static, abstract infrastructure.

Property

Property Type

Entity

Entity Type

Age

23

Patient

John Doe

Figure .: A class and objects diagram of the T-S pattern. e outer four elements are classes
representing the system’s infrastructure. e inner four elements are objects representing an
example instantiation of a particular domain.

.. Accountability Pattern

Attributes are properties that refer to primitive data types like numbers or strings. Other possible
type of properties are associations between two (or more) entities. For example, if Sue is the
mother of John, then Sue e John are related through the parenthood relationship. ere are
several ways to represent a relationship using the P pattern. One way is to inherit from
property and make the separation from attributes and relations. Another way is to duplicate the
P pattern, using it once for attributes and once for associations. Finally, the distinction
can be made by inspection of the value type: primitive data types will represent attributes, and
model types would represent relations [Yod].

e most common pattern in the context of  is the duplication of the P pattern,
by modifying it to become the A pattern [Fow, Ars]. is pattern is usually
implemented as two classes, the AccountabilityType, which represents the type of the relation
(e.g. “parenthood”) and is part of the EntityType, and the Accountability, which holds the
values pointing to the Entities that participate in the relation. Figure Figure . (p. ) depicts
the application of this pattern to , although there are slight variations, including the P
pattern [Fow].

    

Target

Accountability

Name: string

AccountabilityType

Identifier = 001

Sue :Entity

Identifier = 001

John :Entity

‹‹instanceOf››

‹‹instanceOf››

model-level data-level

Name = 'Parenthood'

:AccountabilityType

Role = 'Child'

:Accountability

Role = 'Mother'

:Accountability‹‹instanceOf››

Figure .: A class and objects diagram of the A pattern, forming the structure of the re-
lationship between two entities.

.. Composite Pattern

Evaluate()

Leaf

Evaluate()

Rule

Type = '&'

andOperator

Type = '<'

lessThanOperator

‹‹instanceOf››

model-level data-level

Evaluate()

Composite Rule

Name = Bound

Property :Leaf

Name = 'Age'

Property :Leaf

Value = '30'

Constant :Leaf

‹‹instanceOf››

Figure .: A class and objects diagram of the C pattern, forming the structure of the part-whole
hierarchy of a  for the expression Age ă 30 ^ Bound.

Consider the following rule: “the value of a specific property (i) of an object must be greater
than  and less than  (0 ă i ă 10)”. We may express this rule as a conjunction of two simpler
rules, namely that (0 ă i^ i ă 10). Usually, this type of expressions are parsed into an Abstract
Syntax Tree (), with operators as nodes, and effective values as leafs. Although each node
may be recursively evaluated, the precise semantics given to this evaluation belongs to the node
itself. From the client point-of-view (i.e., the user of the expression), mostly it wants to treat
individual objects and compositions of objects uniformly. Composite can thus be used to this
propose, as seen in Figure ., explicitly ignoring the differences between compositions of objects
and individual objects [GHJV]. is pattern is used to support the I pattern as
seen in § .. (p. ).

       -

.. Strategy and Rule Object Patterns

Consider the following rule: “the value of a specific property is mandatory”. ere are two com-
monways to support this rule in a , namely (i) to add a booleanfield to the Ppattern,
specifying if that particular property is mandatory, and (ii) to define a family of algorithms and
encapsulate each one as a rule (e.g., MandatoryProperty), and call them whenever an Entity is
validated. Because rules are encapsulated into objects, it makes them interchangeable. e latter
form the basis of the S [GHJV] a R O [Ars] when applying to , and
an example can be seen in Figure ..

Validate()

Mandatory

 Validate()

Rule

1 Validate()

PatternMatch

Validate()

EntityType

Name: string

PropertyType

0..*

Figure .: Aclass diagramof the S andRO patterns, forming the structure of the family
of algorithms for enforcing rules. e dashed line represents an invocation call.

.. Interpreter Pattern

As seen in § .. (p. ), the rule “the value of a specific property of an object (i) must be greater
than  and less than  (0 ă i ă 10)”, may be specified using an expression defined as a simple
language, which will then use (or be transformed into) R O as described in § ...
For that, a representation of the grammar’s language along with the interpreter that uses the rep-
resentation to interpret sentences in that same language, can be structured as a C of
objects, resulting in the I pattern [GHJV]. See both Figure . (p. ) and Fig-
ure .

Interpret(Context)

Leaf

 Interpret(Context)

AbstractExpression

Interpret(Context)

Composite Rule

ExecuteRules()

EntityType

Context

Figure .: A class diagram of the I pattern, forming the structure of an expression language.

    

.. Composing the Patterns

e usual architecture of an Adaptive Object-Model is usually the product of applying one or
more of the previously mentioned patterns in conjunction with other object-oriented design
patterns, such as the F M and B [GHJV, Yod]. One such typical ar-
chitecture can be seen in Figure ..

Nonetheless, mixing up patterns do not provide any concrete implementation of an , and
neither it points to what a framework for  would look like (in terms of its form). Yoder et
al. pointed to the fact that “every Adaptive Object-Model is a framework of a sort but there is
currently no generic framework for building them” [Yod]. In Chapter  (p. ), the architecture
and design of such framework will be proposed, and an implementation will be detailed.

CompositeRule

Accountability

Entity

Attribute

Accountability
Type

EntityType

AttributeType

Rule

Constraint

TableLookup BinaryOperation

*

*

Operational Level Knowledge Level

Behavioral Level

Figure .: AOM core architecture and design, adapted from [YBJb].

.    

e concepts of end-user programming and confined variability — the capability of allowing the
system’s users to introduce changes and thus control either part of, or the entire, system’s behavior
— are significant consequences of the  architecture which are not easily reconcilable with
other techniques such as Generative Programming.

In previous sections, both Generative Programming § .. (p. ) and Metamodel-
ing § .. (p. ) techniques were mentioned and briefly described as ways to address systems
with high-variability needs. In this context, wemay now begin to answer in what ways they differ
from Adaptive Object-Models.

       -

Perhaps the most important difference is when — i.e., at what time — they parse or inter-
pret the system definition. Both Generative Programming and Metamodeling typically rely on
code generated at compile time. On the other hand, the  interpret the underlying system
definition during runtime. is difference allows a  to adapt to new, or changed, user re-
quirements without having to turn down the system because of recompilation [YBJa]. is
difference may also distinguish the  architectural style from typical  tools. It also leads
to what is here defined as “confined variability”, or the ability of allowing the end-user, typically
referred as change agent, to introduce controlled changes in specific points of the application. Sys-
tems based on the  architecture elegantly support this type of requirements since the ability
to interpret changes is built into the system.

Another, though definitely more open to argumentation, is that the design of Adaptive
Object-Models is done from bottom-up [YBJb]. is bottom-up approach carries the promise
of being able to incrementally evolve a standard rigid design towards a more flexible one a step-
by-step fashion. As a result, the resulting system tends to only use such concepts and techniques
where (and when) it is most needed, thus slowly transforming rigid code into adaptable compo-
nents. When compared to the top-down approach of other metamodeling techniques where the
whole system is thought to be as generic as possible, this property can reduce the overall com-
plexity needed to achieve adaptability, and therefore increase its adoption in typical development
cycles.

. 

e Adaptive Object-Model meta-architectural style can be defined as a class of system’s archi-
tectures based on metamodeling, meta-programming and object-oriented design that, relying
on several techniques, have the property of being reflective and specially tailored to allow the
end-user to make changes to the domain model. e theories and techniques behind the 
style have been captured as patterns, and recently a pattern language started to be draed. In
that proposal, almost thirty patterns were identified and divided into six categories. So far, less
than a dozen of them were properly formalized in the context of .

In this chapter we have reviewed the current state-of-the-art regarding adaptive object-
models, and some of the patterns that have already been formalized. e typical architecture
of a  is the result of applying several of these patterns in conjunction with other object-
oriented design principles. Yet, at least two issues remain open, viz. (i) most of the patterns
regarding the  remain to be formalized, and perhaps not all of them were identified, (ii)
there is currently no generic framework for building -based systems and (iii) no rigorous
empirical study presenting evidence of any specific benefits of  exists in the literature. ese
issues will be addressed in Chapter  (p. ) and Chapter  (p. ).

Chapter 

Research Problem

. Epistemological Stance . 
. Fundamental Challenges . 
. esis Statement . 
. Specific Research Topics . 
. Validation Methodology . 
. Conclusion . 

e Adaptive Object-Model and its ecosystem is composed of architectural and design patterns
that provide domain adaptability to object-oriented based systems. As patterns, they have been
recurrently observed and systematically documented [Yod]. A pattern language has been
proposed, identifying almost thirty patterns, divided into six different categories [WYWBJ].
However, less than a dozen have yet been formalized, and there is strong evidence that not all
of them have been identified. Likewise, no generic framework¹ intended for the construction
of -based systems have been found in the literature so far [Yod]. Further, no rigorous
empirical study supporting claims about any kind of benefits or liabilities of  exists in the
literature, despite the fact that it is a pattern. In this chapter, we will raise several research ques-
tions about the benefits of  in general, and  in particular, argue what kind of validation
should be used to support common claims, point to what should be the baseline for pursuing em-
pirical studies, and underline the need to design controlled experiments as repeatable packages
for independent validation.

¹ is may sound as a contradiction, as frameworks are usually domain-specific. erefore, a -framework
used to implement a complete -oriented system would call for a top-down approach, which was pointed as a
disadvantage in the previous chapter. We will see ahead that such consideration will shape the framework design.

  

.  

In order to understand the way soware engineers build and maintain complex and evolving
soware systems, researchers need to focus beyond the tools and methodologies; they need to
delve into the social and their surrounding cognitive processes vis-a-vis individuals, teams, and
organizations. In this sense, research in soware engineering is regarded as inherently coupled
with human activity, where the value of generated knowledge is directly linked to the methods
by which it was obtained.

Because the application of reductionism to assess the practice of soware engineering, par-
ticularly in field research, is very complex (if not unsuitable), the author claims that the presented
research is to be aligned with a pragmatist view of truth, valuing acquired practical knowledge.
In other words, the author choose to use whatever methods seemed more appropriate to prove
— or at least improve our knowledge about — the questions here raised. Formally, a system-
atic scientific approach based on this epistemological stance requires the use of mixed methods,
among which are (a) (Quasi-)Experiments, used to primarily assess exploratory or very con-
fined questions, and are suitable for an academic environment and (b) industrial Case-Studies,
as both a conduit to harvest practical requirements, as to provide a tight feedback and real-world
application over the conducted investigation.

.  

e fundamental research questions directly inherited from the current research trends and
challenges in the area of Model-Driven Engineering (), can be found in a recent research
roadmap published by France et al. [FR], which states the following three driving issues:

. What forms should runtime models take? Specifically in the context of this dissertation,
what form should incomplete by design soware systems take? What type models do they
require? What are the forces that shape those models?

. How can the fidelity of the models be maintained? Particularly, how can the fidelity of
models be maintained during evolution? What models are adequate to observe the system?
What models are needed to modify the system?

. What role should themodels play in validationof the runtimebehavior? What validation
provides a domain model that is a first-class artifact of the soware system? What if the
outcome of design is the same model the system is running?

Another survey by Teppola et al. [TPT] synthesizes several obstacles related to wide adop-
tion of :

  

. Understanding and managing the interrelations among artifacts. Multiple artifacts such
as models, code and documentation, as well as multiple types of the same artifact (e.g.,
class, activity, state diagrams) are oen used to represent different views or different levels
of abstraction. Subsets of these overlap in the sense that they represent the same concepts.
Oen because they are manually created and maintained without any kind of causal con-
nection, evolution raises the problem of maintaining consistency.

. Evolving, comparing and merging different versions of models. e tools we currently
have to visualize differences among code artifacts are suitable because they essentially deal
with text. Models do not necessary have a textual representation, and when they do, it may
not be themost appropriate to understand its evolution and tomake decisions, particularly
if these are to be carried by the end-user.

. Model transformations and causal connections. Models are oen used to either (i) reflect
a particular system, or (ii) dictate the system’s behavior. e relationships between the
system and its model, or between different models that represent different views of the
same system, are called causal connections. Maintaining their consistency when artifacts
evolve is a complex issue, oen carried manually.

. Model-level debugging. If the model is being used to dictate a system’s behavior, enough
causal connections must be kept in order to understand and debug a running application
at the model-level.

. Combination of graphical and forms-based syntaxes with text views. Developers and
end-users have different preferences concerning textual syntaxes and graphical editors to
view and edit models. To this extent, a complete correspondence between each strategy is
currently not well supported.

. Moving complexity rather than reducing it. Model-Driven Engineering is not a “silver-
bullet” [Bro] and as such its benefits must be carefully weighted in context to assess
whether the approach will actually reduce complexity, or simply move it elsewhere in the
development process.

. Level of expertise required. It is not clear if the interrelationships amongmultiple artifacts
(which may have different formalisms), combined with the necessary (multiple) levels of
abstraction to express a system’s behavior actually eases the task of any given stakeholder
to understand the impact and carry out a particular change, and to which extent current
training in computer science and soware engineering courses is adequate.

  

.. Viewpoints

Systems based on Adaptive Object-Models, have two distinct viewpoints from where its benefits
can be measured: (i) the developer viewpoint, who is actively trying to build a system for a
specific domain, and (ii) the end-user, who, when provided, will be evolving the system once
delivered. e existence of an end-user as a change-agent, although always cited as a benefit of
the use of , represents a new amount of additional concerns. Any technique that may be
regarded as a good way to improve the application adaptability to a well-trained developer, may
be revealed as an encumbrance to the end-user, and a particular nuisance to the user-interface
design.

erefore, there are some questions regarding end-user development should be either specif-
ically researched in the area of , or borrowed from other fields of research, namely:

. End-user perception of the model. e way end-users see their systems is different from
the abstraction the developer are used to. Understanding the differences between these
two perspectives is essential to provide mechanisms in the user-interface that are suitable,
and avoids an higher-level B B  M [FY].

. Visual metaphors. We shouldn’t expect the common end-user to actually type in a textual
 to express some new rules they want to insert in the system. Other kinds of visual
metaphors should be considered as a proxy for the underlying rule engine. Amore detailed
discussion can be found in [Nar].

. Evolving the model. A tentative, failed, evolution may be disastrous regarding the mean-
ing of data. Mechanisms to recover from mistakes, though already useful to the developer,
are paramount to the end-user.

.  

It is the author belief that most current problems developers face when developing soware with
high-variability and runtime adaptability needs, could be efficiently coped with the Adaptive
Object-Model architectural style. Furthermore, the author believes that where several other
model-driven approaches have failed to be generally accepted, perhaps mostly because of dif-
ferences presented in § . (p. ), the , within its bottom-up approach, may reveal to have
the properties needed to successfully give answer to a set of architectural problems.

Notwithstanding the issues presented in Chapter  (p. ), the author does not consider part
of this study to prove where – and why – these kind of systems emerge, nor the specific reasons
that may lead an architect to recognize these kind of systems. Instead, the author assumes that:
(i) the systemwe are working with exhibit an high degree of variability, (ii) its specifications have

  

shown a high degree of incompleteness, and (iii) it is desirable to reduce the effort² of coping
with changes made to the domain model.

Should one agree with the aforementioned premises, the author’s fundamental research ques-
tion may be stated as:

What form should this type of systems take, and which kind of tools and infrastructures should
be available to support the development of such soware systems?

Consequently, themain goal is to research this form, here to be understood as the architecture
and design of such soware systems, along with the specification and construction of the appro-
priate tools and infrastructure. More specifically, the author claims the following hypothesis:

When developers are provided with a reusable and extensible infrastructure to build systems
based upon the Adaptive Object-Model as the main architectural style, either in the form of a
pattern language, or through concrete soware components, they will (i) significantly increase
their efficiency to construct and evolve systems with high-variability needs when compared to
traditional approaches, and (ii) will be able to empower end-users (as the domain experts) to
conduct their own (confined) evolution during run-time. Such an infrastructure would maxi-
mize architectural and design reuse, and leverage both developers and end-users’ capability to
efficiently adapt to frequent domain changes.

is statement uses terms whosemeaningmay not be consensual, and therefore lead to ques-
tions that deserve further discussion:

. What should be understood by a pattern language?

e concept of pattern language and its importance for the development of high-quality
systems has already been discussed in Chapter  (p. ) and Chapter  (p. ). e pat-
tern language here mentioned is based on the theories proposed by Christopher Alexan-
der [Ale], and later adopted to soware by Gamma et al. [GHJV] and Buschmann et
al. [BMR+].

. What should be understood by an infrastructure?

An infrastructure is here intended as a object-oriented framework, in the sense of both
reusable designs and implementations that orchestrate the collaboration between core en-
tities of a system [RJ], built upon the design and architectural patterns presented in the
pattern language for adaptive object-models.

. Who benefits from this infrastructure?

² e intended meaning of effort should be loosely interpreted as monetary cost, available time and resources,
required skills, resulting complexity, etc.

  

ere are three resulting outcomes from this work, where the target audience sometimes
overlap. Regarding the pattern language that will be presented in Chapter  (p. ), the
target audience are architects and framework developers building or trying to understand
the inner workings of meta-architectures, among which may be (i) those whose interest is
in the design of object-oriented programming or specification languages, and (ii) others
that aim to improve their systems’ adaptivity.

Concerning both the reference architecture and framework implementation proposed in
Chapter  (p. ), any team composed of framework developers, application developers,
and framework selectors, whomight be developing a productwith high-adaptability needs,
may directly benefit by either reusing or adapting the artifacts here presented.

. How is reusability and extensibility measured?

A framework’s reusability and extensibility is measured by the given H and extension
of the C L. However, because any measure is always relative to a given
purpose³, their existence will be primarily driven by the requirements established in the
case studies described in Chapter  (p. ), thus forming a feedback loop closely similar
to that of Action Research [Lew].

. How is efficiency to be measured?

Efficiency is to be measured by the quantity of work produced to achieve a desired effect.
For measuring efficiency in large timespan, such as in a use-case analysis, it will be con-
sidered both the velocity (i.e., the amount of work per person per unit of time), and the
amount of changes needed to achieve the necessary effect.

. Which are the traditional approaches?

When referring to traditional approaches, one is mentioning those that are capable of de-
livering adaptable systems, i.e., those where the end-user can introduce changes. is way,
most Rapid Application Development () tools should not be considered, and as such
it is to be chosen any particular setup suitable to provide such systems.

. Who are the end-users?

From the point of view of a framework, both application developers and domain experts are
to be considered end-users. erefore, end-users are defined as the group of persons who
will ultimately operate the domain application built on top of this infrastructure.

. What is confined evolution?

Confined evolution refers to a situation where an adaptable system provide the means to
restrict the possible changes conducted by the end-user in the underlying domain model,

³ For example, does it make sense to ask how many H should a good framework provide?

   

despite the infrastructure supporting the creation of a new domain model from scratch.
erefore, the system is deliberately limited to a certain (confined) scope which will be
open to end-user intervention.

. What is understood by frequent domain changes?

Frequent domain changes are to be viewed in perspective with the arguments presented
in § . (p. ) and § . (p. ), where the application domain we are dealing with is charac-
terized by continuous change.

.   

Despite the diversity of questions currently requiring research effort, this dissertation will focus
more on those capable of supporting a approach for the construction of -based systems.
In particular, the following concerns will be the main drive for the research:

. Patterns. While several (approximately thirty) -related patterns have been identified,
most of them remain unstudied, undocumented and scattered, thus in need to be brought
comprehensively into the literature [WYWBJ]. Moreover, as the research deepens, more
patterns and variations may be identified.

. Tools. Concerning tools to support  based systems, several questions arise: (i) what
kind of support these systems require from runtime infrastructures? (ii) Is it feasible to
build a generic  runtime infrastructure? [Yod] (iii) which tools are needed to en-
able application developers to build and maintain -based applications? Frameworks,
as reusable designs of soware systems compromising a set of interrelated and extensible
components, have been shown to reduce the cost of developing application by an order
of magnitude [RJ]. Hence, what form should a framework for developing  systems
take?

. Applications. e thesis statement assumes that systems which have highly-variable do-
mains and runtime adaptability needs are good candidates for using the Adaptive Object-
Model architectural style. is assertion will be addressed during the study of industrial
use-cases of systems that have used the theoretical results and implementation artifacts of
this dissertation.

.. Specific Challenges

Although the research in Adaptive Object-Models may be regarded as a subset of the research
in , we think the following questions, when carefully assessed, would pragmatically con-
tribute to the current body of knowledge, particularly when choosing to use (or not) this pattern.

  

ough the belief that  are able to efficiently cope with several of the stated issues in soware
development, and this belief has been substantiated both by research on the wider area of ,
as well as through the studies by the patterns community, carefully designed controlled exper-
iments should provide statistical evidence that an  is not an anti-pattern (i.e., an obvious,
apparently good solution, but with unforeseen and eventually disastrous consequences):

. Fitness for purpose. When is an  adequate to use? When should the use of an  be
considered over-engineering. What metrics should we base our judgment for applicability?

. Target audience. What type of developers are best suited for ? Are current developers
lacking in specific formation that hinders the usage and construction of ? What about
end-users? Are there specific profiles that could point to a more suitable audience?

. Development speed indicator(s). What is the impact on the usage of  during the
several phases of the process? Do developers increase their ability to produce systems?
How long is their start-up time?

. Extensibility indicator(s). How easy is to extend a -based system? Is it possible to
H a particular customization into the base architecture?

. Quality indicator(s). What is the impact on soware quality metrics when using ?
How does it affect performance? How does it ensure correctness? Is consistency a ma-
jor factor? What about the usability of automatically-generated interfaces? How can we
improve them?

.. esis Decomposition

From the original thesis statement, it follows the following hypothesis that are believed to hold
when comparing to traditional systems:

• H: e framework provides a more suitable infrastructure for developing incomplete by
design systems.

• H: Developers focus more on domain objects than implementation artifacts.

• H: It is easier to translate conceptual specifications into final artifacts.

• H: e effort of adding or changing existing requirements is considerably lower than the
alternatives.

• H: Prototyped applications could be immediately (or with little changes) used in
production-level environments.

   

• H: is style of development is more in line with the agile principles.

• H: is style of development could be used to develop face-to-face with the client.

.. esis Goals

e primary outcomes of this thesis encompasses the following aimed contributions to the body
of knowledge in soware engineering:

. e formalization of a pattern language for systems whose domain model is subject to
continuous change during runtime. When do this type of systems occur? What are the
advantages? What are their underlying requirements? How dowe cope with each of them?
What are the benefits and liabilities of each specific solution? is contribution expands
an unified conceptual pattern language, which allows architects and designers to recognize
and adequately use some of the best practices in soware engineering that cope with this
type of systems. Further details are presented in Chapter  (p. ).

. e specification of a reference architecture for adaptive object-model frameworks.
What kind of infrastructures are needed? What form should they take? What type of ab-
stractions should be made and supported? What are the generic functionalities it should
provide? What should be its default behavior? How can it be extended? is contribution
addresses several issues concerning framework design for Adaptive Object-Models, and
presents a solution through the composition of architectural and design elements. More
details can be found in Chapter  (p. ).

. A reference implementation of such framework. From theory to practice, Chapter 
(p. ) also details a concrete implementation of a framework based on the proposed refer-
ence architecture, codenamed Oghma. e goal of attaining an industrial-level implemen-
tation of such framework, along with the research of specific design issues that arise only
when pursuing such concrete implementations, allowed to further pursue the research us-
ing the chosen validation methodologies.

. Evidence of the framework benefits through industrial use-case applications. A frame-
work should emerge from reiterated design in real-world scenarios. As such, the imple-
mentation shown in Chapter  (p. ) is mainly the result of an incremental engineered
solution for specific industrial applications. is contribution presents soware systems
built on top of that framework, their context, their requirements, their particular problems,
the way the framework was used to address them, the outcomes, and the lessons learned
in Chapter  (p. ).

. Evidence of the framework properties through controlled academic quasi-experiments.
Although the industrial usage of the framework provides pragmatic evidence of its benefits,

  

there are some threats that are inherent to that type of validation. ese shortcomings are
addressed in Chapter  (p. ), by conducting a (quasi-)experiment within a controlled
academic experimental environment, where the study of groups of undergraduate students
interacting with the framework has shown the results to be consistent with those presented
in Chapter  (p. ).

.  

In order to pursue a scientific validation of the aforementioned thesis, it is necessary to adequately
define the experimental protocols which assess these claims in a rigorous and sound way. is
includes the precise definition of the processes followed in industrial case studies (see Chapter ,
p. ), as well as in the quasi-experiments (see Chapter , p. ) performed in academic contexts.
e design of experimental protocols for the industrial case studies attempt to cover the whole
experimental process, i.e, from the requirements definition for each experiment, planning, data
collection and analysis, to the results packaging. Discussion on guidelines for performing and
reporting empirical studies have been recently going by the works of Shull et al. [SSS] and
Kitchenham et al. [KAKB+]. e typical tasks and deliverables of a common experimental
soware engineering process can be found in [GA].

As such, in the author understanding, the best way of validating the thesis would be relying
on empirical studies and controlled (quasi-)experiments to compare with other approaches, as
defined in this dissertation. Due to the effort required, and the operational difficulties of con-
ducting such experiments in the field of soware engineering, it was decided to use a case study
based approach for evaluating the applicability and efficiency on the usage of  and 
frameworks, and to conduct a small experiment for discarding validation threats that should
persist. e research strategy for each of them is detailed in Chapter  (p. ) and Chapter 
(p. ).

e independent experimental validation of claims is not as common in Soware Engineer-
ing as in other, more mature sciences. Hence, the author stresses the need to build reusable
experimental packages that support the experimental validation of each claim by independent
groups. erefore, the (quasi-)experiment detailed in Chapter  (p. ) was designed as an ex-
perimental package, to be performed in different locations, and lead by different researchers, in
order to enhance the ability to integrate the results obtained and allow further meta-analysis on
them.

. 

ere are fundamental research questions directly related to the current research trends and
challenges in the area of Model-Driven Engineering, viz. (i) what forms should runtime models

 

take, (ii) how can the fidelity of the models be maintained, and (iii) what role should the mod-
els play in validation of the runtime behavior? Some properties of  systems are known to
be particularly suited to solve systems with high-variability needs — the so called incomplete by
design systems. In what concerns the current research on , three main goals/questions were
identified: (i) the study of undocumented and scattered patterns, and the identification of new
patterns for the construction of a pattern language for , (ii) the construction of a generic
framework for building -based systems, and (iii) the study on the benefits and liabilities of
using such technology. Aligned to a pragmatist view of truth, valuing acquired practical knowl-
edge, the author proposes to answer the above goals/questions, and validate them through the
usage ofmixedmethods, amongwhich are (i) observational and historicalmethods for the contri-
butions regarding the pattern language, (ii) industrial case-studies, and (iii) (quasi-)experiments
performed in academic contexts.

  

Chapter 

Pattern Language

. On Patterns and Pattern Languages . 
. General Context . 
. Technical Description . 
. General Forces . 
. Core Patterns . 
. Evolution Patterns . 
. Composing the Patterns . 
. Conclusion . 

is chapter focus on Goal  of this thesis, namely to formalize the underlying patterns of sys-
tems which domain model need to change frequently during runtime. We discuss when do
these type of systems occur, what are their advantages, and what are their underlying require-
ments. We further delve into the existing recurrent solutions that cope with each of them. Each
pattern also exposes the benefits and liabilities of each specific solution. is main outcome of
this goal is the establishment of an unified conceptual pattern language, which allows architects
and designers to recognize and adequately use some of the best practices in soware engineering
that cope with these type of systems.

.     

e opening of third book on Pattern Languages of Program Design [MRB] starts with the
following sentence: “What’s new here is that there’s nothing new here”. is single assertion char-
acterizes the epistemological nature of patterns, in what concerns its methodology and goals;
patterns result from the observation, analysis and formalization of empirical knowledge in search
for stronger invariants, allowing rational design choices and uncovering newer abstractions. A
pattern should not report on surface properties but rather capture hidden structure at a suitably

  

general level. A comprehensive discussion on the epistemology of patterns and pattern languages
can be found in a recent work by Kohls and Panke [KP]:

e argument that there is “nothing new” in a pattern must be rejected; otherwise there would
be nothing new to physics either, since physical objects and the laws of physics have been around
before, just as design objects or programming styles have been around before somebody sets up
a pattern language or collection. e discovery and description of a new species is without
question considered scientific progress. Of course, the animals are not new – they lived there
before – but they are newly discovered. In the same way, “the most important patterns capture
important structures, practices, and techniques that are key competencies in a given field, but
which are not yet widely known” [Cop].

.. What is a Pattern Language?

As discussed in § . (p. ), a patternmay be regarded as a recurrent solution for a specific problem,
that is able to achieve an optimal balance among a set of forces in a specific context. We could
succinctly define each pattern as a tripletp = xproblem, forces, solutiony. A pattern catalogwould
thus be defined as a non-empty finite set of patterns on a specific domain PC = tp1,p2, ...,pnu.

A pattern language (PL) is an extension of a pattern catalogue in the sense that it has a set
of patterns; but it extends on the notion of catalogue by also incorporating the relationships be-
tween its elements. Each pattern may be related to other patterns by different relationships, so
r = xpa Ñ pb,descriptiony where (r P PL). e concept is close to that of an ontology,
since the language could be synthesized as a formal representation of knowledge (in a specific
domain), and the relationships between its concepts. Yet, while an ontology aims to be descrip-
tive, a pattern language is prescriptive — it provides normative instructions intended to have an
impact on shaping the act of design.

.. Form

epatterns community have been experimenting with several structures of the pattern descrip-
tion. ere is the original structure that has been defined by Alexander et al. in their book 
 : , ,  [AIS], and is commonly known as
the Alexander’s Pattern Language format (). en, there is the seminal work of Gamma et
al. [GHJV] where a different format was used specifically tailored for the area of soware en-
gineering, commonly known as theGang of Four format (). Both have benefits and liabilities:
the  is implicitly structured, and results in a fluid, narrative-like text, persuading the reader
to identify herself with the pattern; the  form poses a more methodological partitioning with
several explicit subsections.

is work will use elements of both the  and  forms, by explicitly structuring the
pattern into the following subsections when needed:

  

. Summary. An introductory paragraph, which sets the intent of the pattern, and possibly
links to other patterns.

. Context. Usually a scenario in which the problem occurs and where this pattern can be
applied.

. Problem. is section starts with an emphasized headline, which gives the essence of the
problem in one or two sentences. Aer the headline comes the body of the problem, de-
scribing the empirical background of the pattern, and the range of different ways the pat-
tern can be manifested.

. Solution. is section also starts with an emphasized headline, which describes the con-
crete action necessary to solve the stated problem.

. Example. A situation where the pattern has been applied, with a possible graphical repre-
sentation, listing the classes and objects used in the pattern and their roles in the design.

. Consequences. Applying a pattern generates a resulting context, where the resolution of
the forces now pose benefits and liabilities.

. Implementation notes. Some additional concerns on effectively applying the pattern and
dealing with lower-level issues, such as performance and memory consumption.

. Known Uses. A pattern is a pattern because there is empirical evidence for its validity.
is section points to systems where the pattern has been previously observed.

. Related Patterns. e relationship to other patterns of the same language, or more other
domains, thus forming the basis of a pattern language.

e rest of this chapter is organized as follows. A general context is established in § ., by
presenting a narrative of a real-world scenario. It is followed by an overview in § . (p. ) of
the technical background needed to apply these patterns. From the general context, § . (p. )
dras some common design forces shared by all the patterns here formalized. en, § . (p. )
and § . (p. ) will describe the seven patterns central to this chapter. Finally, all the patterns are
unified into a proposed evolution of the pattern language in § . (p. ), first draed by Welicki
et al. [WYWBJ].

.  

In  the authorwas leading a soware project consisting on the construction of a geographical
information system which would help a department of architectural and archaeological heritage

  

to manage both their inventory and business processes¹. Although our development method-
ology was a slight variant of eXtreme Programming [BA], we were considerably restricted in
applying some of the practices for this particular project: (i) it was bided, so the cost was fixed,
(ii) we could not reduce the scope, although it was systematically enlarged, (iii) we could not
have an on-site costumer, and (iv) somehow, the result should be considered a success at all cost.

Our problems begun in the very first official meeting we had. Because the bid was made
years before the official start of the project, the stakeholders’ understanding had evolved since
then. erefore, the initial requirements were no longer a reflection of their current manual
processes. Our contract enforced the deliver of a requirement analysis document which had to
undergo validation before starting the development. And so we begun the task of collecting
requirements... for two years.

At first, this seems a good example of how it should not be done; two years collecting require-
ments smells like a good old waterfall. However, our mere presence was directly contributing to
this status. We started to question things they had for granted, and in the process of formalizing
their practices, we uncovered inconsistencies which could not be solved promptly. is resulted
in a series of analysis iterations, where the stakeholders’ had to re-think their goals, their pro-
cesses, and their resulting artifacts, before we could synthesize a coherent domain model.

At the end of those two years, we were strongly convinced of one thing: no matter how many
time we invested in analysis, the resulting system would hardly be considered finished. As an
example, consider the following requirement: they needed to collect the physical properties of
archaeological artifacts found in excavations. At first, length, width and height seemed a good
measure. But some artifacts are highly irregular, like a three thousand year old jar. For these,
weight and material composition are greatly more useful. Other artifacts, like coins, are very reg-
ular and rely on different properties, like radius and thickness. en we have things in-between,
such as plates. e more we categorized, the more complex and longer the hierarchy become,
without any confidence we would be able to cover all the exceptions. Our model was being
haunted by accidental complexity, § . (p. ), and a simple solution urged objects to be charac-
terized by the end-user according to a pre-defined set of properties (which were not pre-defined
at all). Of course users are no programmers, so they needed to add new properties and cre-
ate new hierarchies on-the-fly from inside the application, without being explicitly aware of the
underlying model.

As previously discussed in Chapter  (p. ), this is a clear example of an incomplete by design
system [GJT]. e author will make usage of this story henceforth to illustrate parts and pieces
of the patterns.

¹ is concrete example was also used as a case-study for this dissertation, and a detailed description can be found
in Chapter  (p. ).

  

.  

e separating line between data and model is blurred when speaking about meta-data, in the
sense that everything is, ultimately, data; only its purpose is different. For example, the infor-
mation that some particular Video in our system is named e Matrix, and another one named
Lord of the Rings, is called data for the purpose of using it as an information system for video
renting. We could hypothetically draw a line encompassing all the objects that account for data
(normally called instances) and name it the meta-level-zero (M0) of our system.

ewaywewould typicallymodel such a simple system in an object-oriented languagewould
be to create a class named Video, along with an attribute named Title. But what may be consid-
ered the model in one context, may be seen as data in another, e.g., the compiler. As such, this
information is meta-data in the sense that it is data about data itself: in fact, it conveys a very
crucial information, which is the data’s structure (and meaning), for the purpose of specifying
an executable program. Once again, we could draw a line around these things that represent
information about other things — classes, properties, etc. — and call them meta-level-one (M1),
or simply model.

But, what exactly is a class, or a property? What is themeaning of calling amethod, or storing
a value? As the readermight have guessed, once again, there is structure behind structure itself—
an infrastructure—and the collection of such things is calledmeta-level-two (M2), ormeta-model
for short (i.e., a model that defines models), which is composed of meta-classes, class factories,
and other similar artifacts.

Hence, when we talk about data (or instances) we are referring to M0 — bare information
that doesn’t provide structure. Bymodel we are referring toM1 —its information gives structure
to data. By meta-model we are referring toM2 — information used to define the infrastructure.
And so on...

Ultimately, depending on the system’s purpose, wewill reach a level which has no layer above.
is “top-most” level doesn’t (yet) have a name; in MOF [OMGa] it is called a meta-meta-
model, due to being the third model layer². is building up of levels (or layers), where each one
is directly accountable for providing structure and meaning to the layer below is known as the
Reflective Tower, a visual metaphor that can be observed in Figure . (p. ).

All this would not be very useful if it did not had a purpose. We already mentioned the
compiler, whose task is to read a particular kind of information (known as source code) and
translate it into a set of structures and instructions (known as a program), which would later be
executed by a computer — a process known as compilation. e compiler acts as a processing
machine: the input goes into one side, and the outcome comes from the other. Once the compiler
has done its job, it is no longer required, and so it does not observe nor interact with the final
program. Should we wish to modify the final program, we would need to change the source

² Would it be the sixth, we seriously doubt anyone would apply the same prefix five times.

  

M2

M1

M0

ClassAttribute

‹‹instanceOf››‹‹instanceOf››

M3 Class

Instance

‹‹instanceOf››‹‹instanceOf››‹‹instanceOf››

classifier

 +title: string

Video

title = "Matrix"

:aVideo‹‹snapshot››

‹‹instanceOf››

Matrix

‹‹instanceOf››

Figure .: e Reflective Tower of a video renting system, showing four layers of data.

code and handle it again to the compiler.
Now let us suppose we wanted to add a new property to a Video, like the name of its Direc-

tor, or create new sub-types of videos as needed, like Documentary or TV Series, each one with
different properties and relations? In other words, what if we need to adapt the program as it is
running? For that, we would need both to observe and interact with our running application,
modifying its structure on-the-fly (the technical term is during run-time). e property of sys-
tems that allow such thing to be performed is called Reflection, i.e., the ability of a program to
manipulate as data something representing the state of the program during its own execution.
e two mentioned aspects of such manipulation, observation and interaction, are respectively
known as introspection, i.e., to observe and reason about its own state, and intercession, i.e., to
modify its own execution state (structure) or alter its own interpretation or meaning (semantics).

e technique of using programs to manipulate other programs, or the running program
itself, is known as meta-programming, and the high-level design of such system is called a meta-
architecture. e debate on the exact meaning of this word seemingly due to the meta prefix
which can be understood as being applied to the word architecture (i.e., an architecture of archi-
tectures), or as a subset categorization, was already mentioned in § .. (p. ). For the purpose
of this work, we will stand with the latter, i.e., a meta-architecture is a soware system architecture
that relies on reflective mechanisms.

.  

Eachpattern has a set of forces, things that should beweighted in order to achieve a good solution.
Because the patterns here formalized are deeply connected, most of them share a good amount of
forces in common. Figure . (p. ) shows a schematic relationship among some of the following

  

Homogeneity

Transparency

Usability

improves

Adaptability

Reuse

Separation of Concerns

Proliferation

Granularity Performance

Concurrency

improves

changes

helps helps

hinders

leads to

leads to hinders

hinders helps





∢

*↖▨

⑉

𐄟

☍

✂

⎌

Figure .: e relationship among forces of object-oriented meta-architectures.

forces:

. Transparency. How much of the underlying system is available through reflection? In
otherwords, towhich degree does the infrastructure expose its ownmechanisms for obser-
vation and manipulation? We may regard a system which is more transparent to improve
usability in the sense that adds more power to it (hence, the user is able to do more). On
the other side, a lot of transparency exposes details that can hinder its understandability,
and consequently, its usability.

. Usability. is is defined as “the extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context
of use” [ISO]. In this sense, meta-architectures, particularly Adaptive Object-Models,
have two type of target users: (i) those which develop and evolve the infrastructure, and
(ii) those who use the public facilities of the infrastructure to develop domain specific
systems. Design choices may have different influences on the usability of different target
users. is force is actually a product of several other forces.

. Separation of Concerns. is is a general design force the establishes the fact that a par-
ticular functionality of a systems should be the concern of a different component – in this
case, a different level of the reflective tower. For example, M1 should be reserved to only
express domain-level concerns, but most systems regard it as immutable during runtime.
us, accidental complexity arises when this level is tweaked by non-domain concerns
which should belong to M2.

. Concurrency. Is a general counter-force to reflectivemeta-architectures, mainly due to in-
tegration mismatch (i.e., tight interconnection among different level artifacts, causal con-
nection among entities to provide consistency in the meta-representation of the system,

  

information flux among levels, etc.). Concurrency is mainly relevant due to performance
and distributivity concerns, and has been a common issue in database design.

. Granularity. Represents the smallest aspect of the base-entities of a computation system
that are represented by different meta-entities, depending on the reflectivity scope – struc-
tural and/or behavioral. Typical granularity levels are classes, objects, properties, methods
and method calls. e particular choice of the level of granularity is driven by its trans-
parency, and has consequences on the resulting systems’ object proliferation and perfor-
mance.

. Proliferation. Increasing the reflectivity granularity, e.g., by representing method calls as
objects, leads to object proliferation, in the sense that more elements exist to represent
the system’s state. Likewise, more elements typically means more communication among
them, increasing information flux and likely hindering overall performance.

. Information Flux. Measures the amount of information that is exchanged between ele-
ments of a system to perform a desired computation. Depending on the meta-architecture
design, instances typically exchange information with its class, classes with their meta-
classes, and so on...

. Lifecycle. e period of the system execution in which a specific meta-entity has to exist.
For example, structuralmeta-entities that define an information systemmay be considered
as persistent (or having a long life-cycle). On the other hand, introspective aspects have
a shorter life-cycle (typically, only during the execution of the application). is has a
correlation with granularity.

. Performance. is is also a general engineering force that may mean short response time,
high throughput, low utilization of computing resources, etc.

. Adaptability. Characterizes a system that empowers end-users without or with limited
programming skills to customize or tailor it according to their individual or environment-
specific requirements.

. Reuse. Is the ability of using existing artifacts, or knowledge, to build or synthesize new
solutions, or to apply existing solutions to different artifacts. For example, one can reuse
the persistency engine, typically tailored to persist data, to also persist model and meta-
model elements. Reusing generally leads to a reduce of overall systems complexity and
improves usability.

  

.  

e relationship between the following patterns, and the way they extend the pattern language
for adaptive object-models by coupling to the TS pattern, is presented in Figure .:

. Everything is a ing. Which addresses the problem of having multiple representations
of the same underlying concept.

. Closing the Roof. A pattern that encloses the structure and meaning of a meta-
architecture by stopping the seemingly infinite escalation of meta-levels.

. Bootstrapping. Which solves the fact that any enclosed structure able to define itself relies
on a (small) set of basic definitions, upon which it can build more complex structures.

. Lazy Semantics. A pattern that defers the meaning of a definition until it is absolutely
needed, essential for bootstrapping to occur without the danger of infinite recursions.

Everything is a Thing

Closing the Roof

Bootstrapping

brings the need for requires

Type Square
is extended by also defines a

Lazy Semantics
helps

Figure .: Pattern map for core patterns of meta-architectures, extending the pattern language by linking
to TS.

.. Everything is a ing Pattern

e system, with its several types of composing parts, needs to be adapted. Meta-architectures
make use of elements available at runtime (i.e., models and meta-models) to specify the system’s
behavior. e system’s data is observed and manipulated according to such elements, addressing
concerns such as persistency, behavioral rules, graphical user-interfaces, and communications,
among others.

Context

Back to the story started in § . (p. ), our system began as a simple variant of the TS
pattern that included attributes, relations, compositions, etc. In fact, it was heavily inspired in
 class diagrams and we were trying to infer as most functionality as possible only based on
it. At first it was sufficient to store the model description (i.e., EntityTypes, AttributeTypes,

  

etc.) in a separate  file, and distribute it over client applications and load it at start-up. Truth
be told, to modify the domain model we had to modify the  file, so there was not that much
run-time “adaptivity”. ere was also a “mapper”, with the purpose of interpreting the  file
into runtime elements. en we had a  engine which followed a set of heuristic rules and
was able to automatically create a user interface by, like everything else, observing the system’s
definition.

e lack of homogeneity was a problem first spotted with the need to actually manipulate
the domain model at runtime. Although easy to deal with, the round-trip to  was ugly. Also,
changing the name of an AttributeType or of an EntityType required specialized operations,
such as ChangeAttributeTypeName or ChangeEntityTypeName, that established the degree
of transparency at themodel level, but what was really bugging us was the logic being duplicated
all around. e  engine inferred the user interface to manipulate the data level, but we were
implementing by hand most of the same rules to manipulate the model level. en we realized
that relying on  to persist the model would not work well in a concurrent environment.
We asked ourselves: two types of representation for the entities of our system? If we have the
infrastructure to manipulate data, why don’t we reuse it to manipulate meta-data?

Problem

How to represent all that needs to be reflected upon? Clearly, we were lacking a fundamental,
unifying principle. We have a system that observes and manipulates data, but it cannot do the
same for meta-data? Why may we use a certain operation to change the attribute value of any
instance, like setting the name of a person to John, but a different operation is required to change
the name of a model element? Why could the data be stored in a warehouse, but needed the
 to store the model? We had decoupled the system from the domain, but we were coupled
to what we believed to be a fixed structure; a false belief, since it soon needed to evolve. Our
implementation pointed to a system that would need a large number of specific operations and
components to manipulate the meta-level, and that number would increase in direct proportion
with the system’s transparency. What was so different between elements of M0 and elements of
M1? e solution was right in front of us: the system knew how to manipulate instances, so we
needed to make the elements of our model to be also instances.

Solution

Make all system’s elements specializations of a single concept, regardless of their model level. ese
highly generic concepts are ings (or Instances, or Objects...). ey are a single, unifying, prim-
itive structure, as seen in Figure . (p. ). To manipulate data or model elements, the system
always relies on the manipulation of ings, that have a common set of basic capabilities for
their own observation and manipulation. By homogenizing these concepts, the mechanisms

  

that deal with such generalizations don’t need to be specific to every kind of entity. For exam-
ple, setting the name of a type is performed as setting the attribute called name of that instance.
Consequently, this increases the degree of reflection transparency of the system.

Thing Entity Type

‹‹instanceOf››

Property Type

Figure .: Class diagram of the E   T pattern, which extends the TS bymak-
ing EntityType a specialization of Entity (here represented as Thing).

Lets suppose that the persistencymechanism focuses on loading/saving states of ings; then
the samemechanism can be reused for both levels (whether they are base-level objects, or types).
is is also valid for graphical user-interfaces () and other features relying on the system’s
reflective properties. A known use is the Oghma framework, Chapter  (p. ), which is able to
render a  for editing meta-levels. is  is dynamically generated using the same rules as
those used for the base-level. For example, every enumeration is rendered as either a combo-box
(if the property has an upper-bound cardinality of ), or a check-list (for more than ). Because
the concept of enumeration is equal both in the user defined model (e.g., the gender of a person)
and in the system’s meta-model (e.g., the rule of an association), both are rendered in the same
way.

Example

A snippet of a C unit-test, asserting several properties that hold aer implementing this pat-
tern, can be found in Source .. Line  creates a new container loaded with the system’s basic
infrastructure. Line  finds and strongly types the ing with an Identifier named Entity. Line
 and  are sanity checks. Line  states that everything that is defined inside the container de-
rives from ing. Line  checks that if the model says the meta of a ing is an Entity, then the
infrastructure ensures it is typed as one.

1 var m = new ThingContainer () ;
2 var e n t i t y = m. OfType<Entity >() . ByIdOrDefault (” e n t i t y ”) ;
3

4 Expect (ent i ty , I s . Not . Nul l) ;
5 Expect (m. ToList () , I s . A l l . AssignableFrom<Thing >()) ;
6 Expect (m. ToList () . A l l (t ⇝ t . Meta . I d e n t i t y ” e n t i t y . I d e n t i t y) , I s . Fa l se) ;
7 Expect (m. Where (t ⇝ t . I s (e n t i t y)) , I s . A l l . AssignableFrom<Entity >()) ;

Source .: Instantiating a self-compliant meta-model and asserting key properties.

  

Another snippet listed in Source . shows the usage of these features. Lines ,  creates a
new entity car and instantiates it. Line  verifies there are no violations for that instance. Lines
 –  creates a new entity vehicle, with a mandatory attribute. Line  changes the inheritance
of car, and  checks that there is now a reported violation due to the mandatory parent entity
attribute.

1 var car = e n t i t y .New<Entity >() ;
2 var a t t r = m1. Get<Entity >(” a t t r i b u t e t y p e ”) ;
3 var c1 = car .New<Thing >() ;
4 Expect (c1 . V io l a t i ons , I s . Empty) ;
5 var v e h i c l e = e n t i t y .New<Entity >() ;
6 var p = a t t r .New<AttributeType >(m1, ”name”) ;
7 p . Owner = v e h i c l e ; p . lowerBound = 1 ;
8 car . ParentEntity = v e h i c l e ;
9 Expect (c1 . V io l a t i ons , I s . Not . Empty) ;

Source .: Creating and modifying model definitions in runtime.

Consequences

ere are some liabilities to this pattern, which are direct consequence of the level of trans-
parency. e model can be changed in many more ways than if we don’t have specialized mech-
anisms to manipulate it. is results in a higher coupling between meta-levels, mainly due to an
increase of information flux. For example, instead of a type having a specialized field to hold
its name, it would have to rely on holding it in a separate object (attribute), which is defined by
its meta-type. e type would thus need to exchange information with the meta-type to access
its own name. Considering that the model may change anytime, the same thing is even more
evident with base-level objects. e fact that more objects are needed to hold basic properties
of a system leads to what is known as object proliferation. Both information flux and object
proliferation may contribute to a decrease in the overall performance of the system.

Known Uses

In set theory, everything is a set. In , everything is a list. In the object-oriented world, every-
thing is an object. Well, not quite everything – there are binary relations, function applications,
and message passing. But the principle still applies, in the sense that there is a single, unifying,
primitive aspect (set, list, object…) defining the fundamental underlying structure.

Known uses of this pattern include the Meta Object Facility () and pure object-oriented
languages like Smalltalk. Both theM andH O patterns can be used
for storing the states of Things, as seen in § .. (p. ) and § .. (p. ).

  

.. Closing the Roof Pattern

Also known as Self-Compliance, Rooop, Idempotence.

Context

By seeing the model as data, one can use Everything is a ing to manipulate the several model
levels using the same mechanisms. But, whenever we raise up a level, we find ourselves needing
another (probably more abstract) level to describe it.

Problem

How can we ensure there won’t be an infinite number of model levels? Every time we need to ob-
serve or change a particular level we would need an higher-level model that describes it. In other
words, we want to provide enough transparency between levels so that they are both observable
and changeable. But this points towards a potentially unbounded number of levels (since each
level requires an higher — more or equally abstract — level to describe it), thus resulting in a
seemingly infinite escalation. Otherwise, we would be dependent on an external interpretation
of our system (e.g., what is the name of a type? it’s the field of this particular implementation
class), thus reducing overall homogeneity.

Solution

Choose a top-most model level and make it compliant to itself. Make the top-most level as simple
as possible, with the bare information needed to specify more extensive (and eventually more
complex) models. e metamodel should be expressive enough to define its own structure (and
possibly its own semantics). Once you achieve it, youwould not need to go up another level. is
particular solution is also known as a meta-circular model (i.e., the primary representation of the
model is a primitive model element in themodel itself, a property known as homoiconicity). One
primary advantage is that we no longer require (or depend on) an external representation of our
system.

Consequences

One main liability of this pattern is the potential to be trapped into infinite loops, since inter-
preting the topmost level will require that same level to be introspected. is may pose threats
on the decidability of the meta-model, particularly when semantics-level reflection is provided.
B and L S may be used to solve such infinite dependencies.

  

Known Uses

ere are several known uses for this pattern, from model-driven (e.g. ) to grammar defini-
tions () and . For example,  is a meta-circular interpreter, since  programs are
written in , thus allowing  files to be written that manipulate other  files. Another
example of  being self-describing is on the usage of .

.. Bootstrapping Pattern

Context

Closing the Roof, requires your model to provide enough expressiveness to describe itself. How-
ever, a first instantiation of the model is still needed to allow its own instantiation, and the in-
stantiation of lower-levels.

Problem

How do we start defining a model whose definition depends on itself? is oen leads to a chicken-
and-the-egg problem, where youmay find yourself in need of definitions whichmay not yet have
been defined, and in turn those definitions need whatever you are now defining. is is similarly
to what happens when writing a dictionary, how do you write the meaning of a word if the words
you’ll use also require a meaning? Normally, you start with a small set of existing resources and
then proceed to create something more complex and effective.

Solution

Provide a minimalistic core of well-known elements from where you can build more complex con-
structions. e smaller and simpler it is, the less the system will be bound to specific model
elements, and the less likely the top-most level will need to change in the future. A thorough
formalization of the core will benefit the system, as it will serve as a foundation for all the other
levels. In order to help solving cyclic dependencies, Lazy Semantics may be used. Although
maintaining the core small and simple, boot-strapping a system also requires a substantial de-
gree of expressiveness, which will eventually result in a considerably powerful infrastructure.

e term bootstrap seems to have its roots on a metaphor derived from pull straps sewn onto
the backs of leather boots with which a person could pull on their own boots (without outside
help). e term was heavily to refer to the seemingly paradoxical fact that a computer cannot
run without first loading its basic soware, but to do so it needed to be running.

Example

e excerpt of code listed in Source . (p. ) shows a small part of the infrastructure bootstrap-
ping of Oghma, where one can observe the structural core being defined, namely the interface,

  

entity and the inheritance relationship.

1 <e n t i t y id=” i n t e r f a c e ” name=” I n t e r f a c e ” i n h e r i t s=” ob j ec t type ” i s i n s t a n c e o f=
”Oghma . Core . S t ru c t u r a l . I n t e r f a c e ”>

2 < l i s t columns=”{ _ident i ty } |{_name}” />
3 </ e n t i t y>
4
5 <e n t i t y id=” e n t i t y ” name=” Entity ” i n h e r i t s=” ob j ec t type ” i s i n s t a n c e o f=”Oghma

. Core . S t r u c t u r a l . Ent ity ”>
6 < l i s t columns=”{ _ident i ty } |{_name} |{ _isAbstract }” />
7 <a t t r id=” _strPattern ” name=” ToString ” domain=” s t r i n g ” c a r d i n a l i t y=” 0 . . 1 ”

/>
8 <a t t r id=”_rowPattern” name=”ToRow” domain=” s t r i n g ” c a r d i n a l i t y=” 0 . . 1 ”

/>
9 <a t t r id=” _isAbstract ” name=” Abstract ” domain=” boolean ” c a r d i n a l i t y=”1”

d e f a u l t=” f a l s e ” />
10 </ e n t i t y>
11
12 <r e l a t i o n s h i p id=” re l_ent i ty_parentent i ty ”>
13 <node e n t i t y=” e n t i t y ” id=”_parent ” name=” Parent ” c a r d i n a l i t y=” 0 . . ˚”

nav igab le=” true ” />
14 <node e n t i t y=” e n t i t y ” id=” _chi ld ” name=” Child ” c a r d i n a l i t y=” 0 . . 1 ”

nav igab le=” true ” />
15 </ r e l a t i o n s h i p>

Source .: A small excerpt from the Oghma infrastructure bootstrapping.

Known Uses

e most common known uses of this pattern are programming languages and their compilers
(e.g. Smalltalk and ). e advantages of starting with a small self-describing core to define
the whole system are very patent in the following war story from Alan Kay:

It was easy to stay motivated, because the virtual machine. running inside Apple Smalltalk,
was actually simulating the byte codes of the transformed image just five weeks into the project,
A week later, we could type  +  on the screen, compile it, and print the result, and the week
aer that the entire user interface was working, albeit in slow motion. We were writing the C
translator in parallel on a commercial Smalltalk, and by the eighth week, the first translated
interpreter displayed a window on the screen. Ten weeks into the project, we crossed the bridge
and were able to use Squeak to evolve itself, no longer needing to port images forward from
Apple Smalltalk. About six weeks later, Squeak’s performance had improved to the point that
it could simulate its own interpreter and run the C translator, and Squeak became entirely
self-supporting.”

Formodel languages, themost well-known use is probably , which was first defined from
a small subset of  structural diagrams, and eventually evolved to become the core meta-
metamodel of .

  

.. Lazy Semantics Pattern

epattern arrises when there is the need to copewith expressions ormodel constructionswhere
its meaning is initially undefined or subject to change.

Context

When developing systems based upon meta-architectures, developers may find themselves in
need of definitions which may not yet have been defined, and in turn those definitions need
whatever they are defining. Or the definitions may change in time. is may very easily happen
when B and when C  R [?].

Let us consider three different examples where this pattern may occur, viz. (i) in dynamic
language constructs, (ii) in meta-programming, and (iii) in meta-modeling.

Example A. Consider the following Smalltalk code:

1 Vehic l e wheels

What is the meaning of this code, i.e., its semantics? From a language point of view, we know
it is sending the message wheels to the object Vehicle. We would expect that such evaluation
would produce some behavior. But what if we cannot define the meaning of wheels until we
evaluate the running state of the system? Or what if the messages semantics depend on a specific
execution context?

Example B. Consider the following C code:

1 pub l i c c l a s s Customer {
2 pub l i c s t r i n g CustomerID ;
3 pub l i c s t r i n g City ;
4

5 pub l i c s t a t i c IEnumerable<Customer> GetCustomersInLondon () ;
6 }

How would we implement the GetCustomersInLondon() method? If all the objects were
stored in memory, we could do something like this:

1 f o raech (var c in Customers) i f (c . City ” ”London”) y i e l d re turn c ;

But, would Customer be mapped into a relational database, we would probably want to do
an SQL query like this:

  

1 s e l e c t ˚ from Customers where c i t y = ”London”

e problem is, how do we abstract GetCustomersInLondon() so that it could work with
both (or probably more) modes? How could we adapt its semantics to the executing context?

Example C. Consider we are bootstrapping a meta-modelling based system (for example, a self-
contained AOM, which is using the C  R and B patterns).

We may start be defining what is a Class, by saying that there’s a class named Class, with a
property Name that will hold the name of the class. But for that we first need to define what
a property is. We could backtrack and start by defining that first: a property is a Class named
Property. Wait!... We haven’t defined what a class is yet.

is situation is usually known as the chicken-and-the-egg problem. Which came first? e
class or the property? Sometimes we may need some definitions that have not yet been defined,
and in turn those definitions need whatever we are now defining.

Problem

How can we make the system able to handle different meanings depending on its current known
state? e system is expected to be consistent, that is, the semantics that each model-level estab-
lishes are expected to be enforced over its instances (i.e., the elements of the lower model-level).
Enforcing consistency at all timesmay be hard, if at all possible, as it requires to find a sequence of
actions that accounts for all dependencies. For example, there may be cyclic dependencies when
. If the system is made more tolerant to undefined constructions, consistency
may not be assessed at all times. e following forces are to be considered: (i) transparency,
in what concerns the degree of the system that is to be exposed by reflection; even if the sys-
tem doesn’t rely on C  R, the problem may occur in different circumstances, (ii)
granularity, since by defining a string as an thing, we are homogenizing the infrastructure and
thus we are lead to (iii) reuse, due to the preservation of existing mechanisms to deal with differ-
ent meta-levels, (iv) convergence, in the sense that we may consider the system to be eventually
consistent and (v) complexity, which is an overall concern to be reduced.

Solution

Enforce meaning only when absolutely required. Pertain your system doesn’t enforce any meaning
up until it is absolutely necessary (e.g., your cyclic dependencies are resolved, or you have enough
information to bind to a specific meaning). Change the execution from call-by-value or call-by-
reference to call-by-need.

Example A. Referring back to this example, let us imagine that the start message is not defined,

  

i.e., the message could not be dispatched to a specific method. When this happens in smalltalk
(or very similarly in Ruby), the interpreter reifies the wheels message into an object, and pass it
as an argument of the doesNotUnderstand: message. e later could inspect the message and
decide what to do with it. For example, it could decide that the method is a proxy to a relational
table, and thus appropriately generate and query an SQL engine. In fact, while it could simply
return the appropriate collection of wheels, it could also dispatch side-effects, like creating a new
method that will specifically answer the wheels message.

In other words, the exact meaning (the semantics) of the wheels message is determined when
it is needed. Moreover, since the precise meaning of the wheels message can change over time,
it should only be determined when it is absolutely necessary. is is one of the reasons why
dynamically typed languages are generally slower that strongly typed languages, since message
passing cannot be transformed into a pointer derreferentiation.

Example B. Consider the following C code, written in the  :

1 var q = from c in Customers
2 where c . City ” ”London”
3 s e l e c t c ;

e above expression is quite peculiar. Its type is IEnumerable<T>, and it will not be exe-
cuted until it is absolutely needed, such as in the following snippet:

1 f o r each (var c in q) Console . WriteLine (” id ={0} , City={1}” , c . Id , c . City) ;

Here, the system will have to enumerate q. is will trigger some evaluation routines which
will check the Customers collection. Let’s consider that it was defined as:

1 [Table (Name=” Customers ”)]
2 pub l i c c l a s s Customer {
3 [Column(IsPrimaryKey=true)] pub l i c s t r i n g CustomerID ;
4 [Column] pub l i c s t r i n g City ;
5 }
6

7 DataContext db = new DataContext (” database . mdf”) ;
8 Table<Customer> Customers = db . GetTable<Customer >() ;

In this case, the system will generate the appropriate  code by inspecting the  expres-
sion, and pass it through the DataContext. It would then convert each row into a Customer
instance, and yield it as items of the IEnumerable<Customer>. But, if the Customers was de-
fined as a simple List<Customer>:

  

1 var Customers = new List <Customer> {
2 new Customer () { Id = 1 , City = ” Par i s ” } ,
3 new Customer () { Id = 2 , City = ”London” }
4 }

en the DSL would be converted into a simple expression that would filter the collection of
objects based on the given criteria:

1 var q = Customers . Where (c ⇝ c . c i t y ” ”London”)

Once again, the precise meaning of the  expression cannot be known a priori. e sys-
tem’s state when the expression is executed will determine the exact semantics of that expression.

Example C. One solution to the scenario described in this example is to relax on the mandatory
definitions. Instead of requiring every class to have names, we would first create the class Class
without handing it any name. Next, we would create the class Property. We proceed to say that
a class has a property, and so on. Sometimes infinite cycles can be worked around by carefully
relaxing on the structure and choosing the appropriate sequence.

Another solution would be to relax on the meaning of properties. Instead of a class having a
property named Name, it could have a slot accessed through a string identifier, that would hold
its name. Aer defining what a property is, we could then resort to define that getting the values
of a property consists on searching the slots for the property name. Hence, we have two different
semantics for accessing a property: (i) a property is nothing but it is name looked up in the slots,
or (ii) a property is a known-object thatmaps to values. e precisemeaning of property changes
over time, and depends on the state of the system.

Related Patterns

One very similar pattern is L E, although it focus on a different aspect. L
E may be resumed as delaying any kind of computation to the point where it is abso-
lutely needed. For example, in the programming languageHaskell, everything is lazily evaluated,
allowing one to inductively define sets and only compute needed elements. For example, the fol-
lowing function defines an infinite list containing the Fibonacci series:

1 f i b s = 0 : 1 : zipWith (+) f i b s (t a i l f i b s)

In languages without lazy evaluation the computer would enter an infinite cycle trying to
produce all the values of the list. Lazy evaluation doesn’t require a flexible semantics. e above
expression never changes its meaning (in fact, Haskell is statically typed).

  

e framework described in Chapter  (p. ) alsomakes use of L S to solve the
cyclic dependencies that arise from the auto-compliance of the upper-mostmodel level, achieved
by C  R.

.  

One of the key aspects of Adaptive Object-Models is their ability to allow changes to the model
even at run-time. Model evolution is thus a recurrent problem that developers adopting this
architecture face, since it may introduce inconsistency in its structure. is problem can be split
into three complementary issues:

Track. How to keep track of the operations performed for evolving the system?

Time Travel. How to access specific key states of the system at any particular point of its evolu-
tion?

Evolution. How to introduce changes into the system while preserving its integrity?

We now present three domain specific design patterns that have risen from the experience
implementing Adaptive Object-Models, and researching how other systems, particularly Object-
Oriented Databases and Version Control Systems, deal with these problems [RL, WE,
BEK+]. ese patterns contributed to the on-going effort on defining a pattern language for
AOMs [WYWBJ, WYWB, WYWB] and are:

History of Operations. Addresses the problem of maintaining a history of operations that were
taken upon a set of objects.

System Memento. Deals with preserving the several states the system has achieved upon its evo-
lution.

Migration. Addresses the concern of performing evolution upon the system while maintaining
its structural integrity.

Migration

System
Memento

History of
Operations

uses uses

may help

Figure .: Data and metadata evolution patterns.

All patterns further presented are closely related, as depicted in Figure .). M de-
pends upon the concepts ofH O and SM (which in turnmay

  

be helped by H  O). M orchestrates the coordination between the
other two patterns, so that enough semantics is gathered to fulfill its intended purpose.

Patterns under the name of H and V have been foreseen as part of the orig-
inal pattern language for AOM proposed by Welicki et. al. [WYWBJ], though they are here
redefined as H  O and S M respectively. e M
pattern did not belong to the original pattern language.

While the traditional AOM architecture only considers theM0 andM1 levels, nothing keeps
system developers from defining higher-level models. Because the patterns that follow are in-
tended to be applied regardless of themodel level, the T-S pattern is extended by using
E   T § .. (p. ) as explained in Figure ..

Thing Entity Type

‹‹instanceOf››

Property Type

Figure .: Applying E   T for evolution patterns. Every model-level element inherits
from a data-level element, and every data-level element is an instance of a model-level element.
In closed meta-architectures, the top-most model-level element is an instance of itself.

e concept of Thing is here defined as representing both data (i.e. Entities and Proper-
ties), and metadata (i.e. EntityTypes and PropertyTypes). Any object of type Thing is actu-
ally an instantiation of an EntityType, thus allowing an unbounded definition of meta-levels.
Eventually, the upper-bound may be delimited when a defined Thing is regarded as an instan-
tiation of itself (or simply not defined), as discussed in § .. (p. ). Because every class in
the model and meta-model derives from Thing, this extension allows one to explicitly state the
I [Fow] of an object as will be described in § .. (p. ).

.. History of Operations Pattern

Addresses the problem of maintaining a history of operations that were taken upon a set of ob-
jects. An application based on the Adaptive Object-Model as themain architectural style is being
developed, and there is the need to track the system’s usage by end-users, including changes to
both the knowledge and operational levels.

Context

Imagine an insurance company who’s users keep changing the system’s information at a fast pace.
ere is the need to keep track ofwhat, how and probablywhen and bywhom it has been changed.
For this example system, meta-information is as important as the information itself.

  

Keeping track of the operations’ history can go beyond auditing purposes, like performing
statistical analysis (e.g. number of created instances per user), controlling user behavior (i.e.
without recurring to explicit user access control), automating activities (e.g. finding systematic
modifications to the information) or recovering past states of the system.

In an AOM based application, there are different levels at which Things can change (data,
model...). For example, consider an EntityType named Person and a particular Entity named
John. e kind of actions we may perform can be as simple as CRUD-like operations (e.g. delet-
ing the Entity, or changing its name), or model operations (e.g. adding the attribute Number of
Children, or moving it to the superclass).

e history of operations must be made available in the application, since it will be used by
end-users. However, simply storing messages in a file or database makes the mapping between
them and the operations over things, a complex (if at all possible) activity. Furthermore, as the
underlying AOM interpreter evolves, the type of operations that should be recorded may also
evolve. is can result in an set of messages to parse, with obsolete syntactic details that may no
longer be directly mappable.

Problem

Given a set of ings, how do we keep track of the history of operations that were performed upon
them, without knowing the specific details of each operation? We should take into consideration
the following set of forces: (i) Encapsulation, since we do not want to pollute the systemwith log-
ging structures wherever they are needed, (ii) Extendability, since wemay want to add additional
information to the history (e.g. previous state, modifying user, last modification time), (iv) Opera-
tions’ Semantics, i.e., each operations should have enough semantics to allow automatization, (v)
Simplicity, as occurred operations should be easy to store and retrieve, (vi)Modifiability, to allow
operations to be expanded and evolved, (vii) Performance, to reduce the impact of overheads on
the system, (viii) Reusability, to provide the same mechanism regardless of the model-level, (ix)
Consistency, since operations should comply to semantic constraints assuring system’s integrity,
(x) Reproducibility, since operations should be able to be re-executed and achieve the same result
(e.g. deterministic), and (xi) Resource Consumption, since additional manipulated and stored
information should be carefully minimized.

Solution

Encapsulate the allowed operations in a set of commands that operate over ings. A sequence of
invoked commands constitutes the History of Operations. Create Operations, using the C-
 pattern [GHJV], with the responsibility of defining and encapsulating the types of
modifications allowed (i.e. Evolution Primitives [RL]). ese may be elemental — Con-

  

crete Operations —, or grouped in a sequence — Macros – through the use of C
pattern [GHJV].

Every action taken by the application must occur by instantiating and executing a defined
Operation. Creating an History object is as simple as storing the sequence of the invoked Oper-
ations. Each Operation will retain enough information in order to be mappable to the Things it
operates over (see Figure .). However, note that if operations are not versioned, they should be
made either static or semantically equivalent upon evolution, otherwise the history may become
unusable.

By using the H  O pattern, developers can factor the responsibility of
creating and storing modifications in a semantically rich way. is will allow an easier evolution
of the underlying interpreter and other automatizations.

Example

Consider five employees from the automobile insurance department, working as a team. During a
week, they create and alter information on the system, either from external demands (e.g. clients)
or from the rest of the company. Namely, they subscribe clients to policies, answer to the events
of new occurrences, and redefine conditions for upcoming policies.

On this particular week, the same client record happened to be edited by three different users.
Yet, there was an incorrectly registered occurrence for that client, and it’s important to under-
stand why it happened in order to prevent future mistakes. e history of operations registered
throughout the week allows users to find out exactly what happened: the occurrence was reg-
istered by one particular employee on Tuesday, because the client was wrongly chosen to begin
with, since it was selected by searching his name, instead of his client-number. By Friday, the
department’s director wants to know how the week went, before the weekly meeting with his
staff. He uses the system’s functionality that collects several statistics from that week’s history of
operations, and realizes it was in fact a particularly busy week.

Consequences

is pattern results in the following benefits. Because every modification is abstracted into an
evolution primitive (as an Operation), the history is made simply by storing the sequence of per-
formed commands — encapsulation – which also simplifies the control of semantic/constraints

History ThingOperation
operates-over

0..*1
{ordered}

results-from

Figure .: Class diagram of the H  O pattern. A History results from a set of Oper-
ations done over Things.

  

checking, auditing and security issues. A side-effect of mapping the allowed operations to C-
 is the further promotion of reuse, easier maintenance and consistency. If enough infor-
mation is stored with each evolution primitive — semantics — it becomes possible to playback
the executed operations, although it requires that the behavior of all business objects is deter-
ministic. e use of the C pattern to create macros of operations also addresses the
issue of atomicity, when the fine-grained operations are not enough. Since an up-to-date data
set can be rebuilt by applying all the history of commands to it, this design improves Fault toler-
ance. Consistency is also assured as each command represents an atomic operation – no change
can be made to the data without using such a transaction, and transactions are applied sequen-
tially. Finally, persistence using a this pattern is transparent, as operations are applied directly
to the business objects with no need to use third-party mechanisms such as direct SQL access or
object-relational mappings.

Nonetheless, the usage of this pattern incurs the following liabilities. e quantity — space
consumption — of additionally stored meta-information may be considerable, as it will always
growwith time, despite the size of the current valid objects andmeta-objects. However, the use of
compression techniques and the external archiving of unnecessary historymay lessen the impact
of this liability. Hence, performancemaybe affected because of the quantity of instantiated objects
and the necessary pointer dereferencing/set joins associated with particular implementations.
Overall, the final implementation may result in a complex solution to maintain.

Implementation Notes

e semantic consistency of Things can be kept by enforcing constraints defined at an upper
abstraction level (i.e. operational-level constraints are defined at the knowledge-level). One way
to enforce these constraints is to use pre and post operation conditions. Keeping operations as
general as possible will leverage their reusability and maintainability, but leads to operations
of low granularity. e use of -like operations is a good example, as they focus on very
straightforward tasks, and cover a wide scope of use cases when combined.

However, some sequences of operations may be impossible to carry out while ensuring con-
sistency at the end of each of them, although information would be in a consistent state upon
completion of the entire sequence. Consider two classes, A and B, with a mandatory one to one
relation between them, and two particular instances of these classes, a0 and b0, thus connected
through that same relation. Suppose we replace b0 by a new instance b1, as the other end of the
relation. If we consider only -like operations, three different operations would be needed:
(i) the deletion of the relation between a0 and b0, (ii) the creation of a new relation between a0
and b1, and (iii) the deletion of b0. By the end of these operations, information would be in a
consistent state, but that would not be the case just aer each individual operation completes,
since mandatory relations would not yet exist. As described, through the use of the C-
 pattern, Operations can be grouped in sequences, or Macros. ese macros are a means to

  

the reuse of operations, but may also be used to establish consistency-checking frames. Instead
of checking the consistency of information aer each individual elemental operation, it may be
checked only at the end of the macro in which they are enclosed. is notion is akin to the
concept of T in database systems.

Known Uses

Operations are structured using the C pattern [GHJV]. e hierarchy of operations
are also related to the C pattern [GHJV]. e storage of information may be done
similarly to the AL pattern [Fowa], thoughwithmore semantics to increase traceability
and automation.

is pattern is common in Object-oriented Database Management Systems and Data Ware-
houses [RL, WE, BEK+]. e Prevayler framework [Ope] and the COPE tool [HBJ]
are also known to use this pattern, as well as the work presented in [AKK].

.. System Memento Pattern

Deals with preserving the several states the system has achieved upon its evolution. An applica-
tion based on the AOM architectural style is being developed, and there is the need to access the
state of the system at any point (present or past) of its evolution.

Context

Lets consider an heritage research center where its users keep collecting information as they
perform their regular activities. Due to the nature of the research, uncertainty of the information
is common, leading to several changes over time. While the pace of collected information may
not be high, any change in the system is critical since it should prevent lost of historical (i.e.,
previous) information; even if deleted at one point, it should be easily recoverable if the need
arrises.

For example, suppose we have an EntityType named Archeological Survey and a particular
Entity called Survey of the Coliseum. At a certain point in time, the Coliseum could have been
dated as AC, butmore recent research could cast doubt on that date, and thusmake it oscillate
between BC and AC.

One can also consider a case in which this system has been running for some amount of
time, possibly accumulating considerable information, e.g., several thousand Archeological Sur-
veys could have been registered. In these types of systems there are several levels at which we
want to persist the state of the objects as they are evolved (data, model, meta-model...). For ex-
ample, through acquired experience, users may have found the need to additionally register the
leader of each archeological expedition. As such, an evolution would need to take place at the
model level, to accommodate a new property of the Archeological Survey’s EntityType.

  

Problem

How can we access the state of the whole system at any particular point of its evolution? We should
take into consideration the following set of forces: (i) Reusability, since we want to use the same
versioning mechanism regardless of model-level (i.e. data and metadata), (ii) Encapsulation,
to prevent polluting the system with versioning logic everywhere it is needed, (iii) Identity, to
be possible to reference either an object or one of its states, independently of each other, (iv)
System-Level Semantics, since versions should represent the evolution of the system, and not of
a particular object, (v) Time Independence, though evolution usually occurs with the passage of
time, the system should not need to be aware of it (the concern is the sequence of changes), (vi)
Accessibility, to be possible to access the system at any arbitrary point of its evolution, (vii) Space
Consumption, since the data-set at hand should be kept to amanageable size, (viii) Concurrency,
which can be addressed by allowing branching of information, but introduced the added com-
plexity of integrating merging mechanisms, and (ix) Consistency, where any particular state of
the system complies to integrity constraints (e.g. an M0 object must be compliant to its M1

definition).

Solution

Separate the identity of a ing from its properties such that, by aggregating a particular State
of ings, one can capture the global state of the system at any particular point of its evolution.
Applying this pattern usually starts by decoupling Things from their States [Fow]. While
Things represent the identity of an object, States represent its content, which will evolve over
the use of the system’s information, as depicted in Figure . (p. )). A Version thus captures
the global state of the system, by referencing all the valid States at some point of the system’s
lifetime. Each Version maintains references to those that gave origin to it (previous), and to
those that originated from it (subsequent). Usually, however, each Version is based on a single
previous Version, and will give origin to a single other Version, thus resulting in a linear time-
line. However, more than one previous and/or next Versions may be considered, specially in
concurrent usage environments, for purposes of data reconciliation.

Each individual Version may accommodate both instance and model-level Things. is
results in a particularly useful design, since a change at the model-level can oen lead to changes
at the instance-level. In order to aggregate a consistent group of States, every Version need to
be able to reference States from both levels. In fact, this is an essential issue for the M
pattern, since changes to the model usually require changes to the data.

Example

Consider the aforementioned Survey of the Coliseum. Over the last year new information about
the Coliseum was acquired, through the study of newly found manuscripts. Users updated the

  

Version State Thing
1..*

previous
0..*0..*

1..*1..*

inv: self.states->isUnique(s | s.thing)

consists-of has

Figure .: Class diagram of the S M pattern. A Version is a collection of States, one per
Thing (i.e. there cannot be multiple states of the same thing in the same version).

information on the system, such that it would reflect their best knowledge at each phase of the
research. erefore, the description of this monument evolved over time. As such, several Ver-
sions may have been created, each representing a consistent point on the evolution of the avail-
able information. us, it becomes possible to access, and even recover, previous states of the
system.

Eventually, themodelmay also need to evolve. As described in the example, a new Attribute-
Type may be added to accommodate the name of the leader of each archeological expedition.
Since an AttributeType is a Thing, a new Version will be created that references model-level
States and Things.

Consequences

is pattern results in the following benefits. It is now possible to use the same versioning mech-
anism regardless of the model-level — reusability. By decoupling the state from the object, we
are able to isolate the object’s identity. Because the concept of version is now at system level
— system-level semantics — instead of object-level, we are now able to address consistency. If
multiple evolution branches are used, concurrency may be coped with more easily.

is pattern has the following liabilities. e quantity of stored information may be larger
than affordable — space consumption. e choice of appropriate persistency strategies may
reduce this issue. e branching of versions will require additional merging mechanisms. Per-
formance may be affected by the overhead introduced while changing, storing and accessing
information. It may increase the systems’ complexity due to additional object dereferenciation.

Implementation Notes

It should be noted that a literal implementation of this approach may lead to an unnecessary
use of space as the system evolves. Versioning systems typically deal with this issue by partially
inferring, instead of explicitly storing, the complete set of states that define a particular version
(i.e. by just keeping the deltas). Because this issue can determine the feasibility of a system, we
present some notes overviewing one possible solution.

  

Consider the following sets of operations (i) create carA, (ii) create wheelA, wheelB and carB,
(iii) modify wheelA, and (iv) modify carA and delete wheelA. e resulting set of versions can be
observed as an object diagram in Figure ..

carA: Entity

carAState0: State carAState1: State

V2: VersionV1: VersionV0: Version V3: Version

wheelA: Entity

wheelAState0:
State

versions

states

things

Head: Version

wheelB: Entity

wheelAState1:
State

carB: Entity

carBState0: State
wheelBState0:

State

Figure .: Object diagram for an example instantiation of the S M pattern.

Any Thing that doesn’t change its State in any subsequent version, would have its State
replicated across those versions. Using a strategy where only changes to states are stored, thus
inferring (instead of storing) the complete set of states for any version, the stated example would
become as observed in Figure ..

In english, the inference rules can be summarized as: if a state belongs to a delta, then it also
belongs to the corresponding and subsequent versions, until a new state is defined or the null state
is reached (i.e. when an object is deleted).

carA :Entity

carAState0
:State

carAState1
:State

V2 : VersionV1 : VersionV0 : Version V3 : Version

wheelA :Entity

wheelAState0
:State

versions

states

things

Head : Version

wheelB :Entity

wheelAState1
:State

carB :Entity

carBState0
:State

wheelBState0
:State

wheelAState2
:NullState

Figure .: Object diagram for the delta strategy instantiation of the S M pattern.

Related Patterns

e patterns T P [Fowd], E [Fowb], M [GHJV],
T O [Fowc], S [CEF], and several others [And, ABBL], are di-

  

rectly related to the problem of storing the changing values of an object. However, none of them
explicitly addresses the concerns of system-level semantics (i.e. they focus on the change of a
single object instead of the whole system) and Meta-modeling (i.e. the change of an object’s
specification).

e M Pattern, described in this work, uses S M to allow arbitrary
evolution of the system between any two versions. e I pattern [Fow] is also used to
decouple a Thing from its State.

Known Uses

is pattern is common onWikis andVersionControl Systems. ework presented in [ABBL]
also details the implementation of several versioning techniques in object-oriented design.
Several Object-oriented Database Management Systems and Data Warehouses [RL, WE,
BEK+], as well as the Prevayler framework [Ope] and the AMOR system [AKK], are known
uses of this pattern.

.. Migration Pattern

Addresses the concern of performing evolution upon the system, while maintaing its structural
integrity.

Context

An application based on the AOM architectural style is being developed, and it will be necessary
to evolve model and data definition (assuring consistency) aer system’s deployment.

Example

Consider an insurance company where several domain rules and structure, due to the nature of
the business, keep changing to fulfill market needs. One example is the insurance payback for
any particular kind of incident, which is based on a complex formula that takes into account
several factors. Not only the formula changes as the system evolves, but also the factors taken
into account change, thus needing new information to be either collected or inferred (e.g. the
number of children of an individual while calculating his life insurance payment).

However, even simple evolutions of the structure or behavior, like removal of information,
can have a significant impact in the system. Valid objects may depend on the information being
changed, thus leading to inconsistency. ese issues need to be addressed upon each evolution
step, to guarantee that the integrity of the system holds to the specification.

Another typical concern is maintaining legacy interfaces. If the system must inter-operate
with third-party components, once the model definition evolves, the interface can become in-

  

valid. In this case, it may be necessary to provide a layer of data transformation, thusmaintaining
legacy interfaces over previous versions of the system. is approach may increase the complex-
ity of the underlying architecture.

Problem

How do we support the evolution of a system while maintaining its integrity? Since this pattern
uses the H  O and S M patterns, is is also subject to the same
forces. Additionally, we should consider: (i) Automation of the evolution, instead of relying
on monolithic, custom made scripts, (ii) Integrity, since applying a migration should result in a
consistent state of the system, (iii) Control, to restrict the kind of evolutions allowed upon the
system, and (iv) Interoperability with third-party systems not aware of the model evolution.

Solution

Use the History of Operations to support the Versioning of ings. Achieving a target Version is the
result of applying the sequence of Operations defined between two Versions.

As described in the H  O and S M patterns, first start by
decoupling theState of aThing from its identity (see the I pattern [Fow]). Also, every
Operation over a Thing should be structured as a C [GHJV]. Instead of operating
over Things, operations should occur over (or generate new) States. Considering there is a one-
to-one relationship between the History and Version classes (see H  O and
S M patterns), the later can fulfill both roles (see Figure .).

An Operation can be specialized into either Concrete Operations, or Macros that establish
a sequenced group of other Operations, through the use of the C pattern [GHJV].

Version State Thing
1..*

has-previous

0..*
1..*1..*

Operation
results-in-new

1..*

1

{ordered}

Migration

source target

may-spawn-other

0..*

1 1

Figure .: Class diagram of the M pattern. A Migration between any two Versions consists
on applying, in the correct order, all the histories of Operations that were executed between
those versions. A Version may not refer more than one State from the same Thing.

  

e ability of an Operation to spawn other Operations, allows changes on the knowledge-
level to be reflected upon the operational-level, whose purpose is to maintain the consistency
of the system. For example, a Move Attribute to Superclass at the knowledge-level may generate
several Operations at the operational-level, since data may also need to be moved.

e M acts as an interpreter, or patch engine, which, given a Version and a set of
Operations, achieves a target Version.

Example Resolved

One of the most complex examples this pattern support is the ability to evolve what is normally
called the schema (in this case, the word model is more appropriate) and to immediately affect
data at lower levels.

Let us consider the aforementioned example. e introduction of new laws will require the
creation of new fields in existing entities (e.g. number of dependent children). Others, previously
belonging to a particular sub-class, will now be moved into the super-class (e.g. number of days
overseas per year).

Consider this evolution will occur from version V1 to version V2. Two M1 (knowledge-
level) operations are issued: (a) Create Attribute and (b) Move Attribute to Superclass. While the
former doesn’t need to spawn anyM0 Operations, the later should be defined as aMacro, mixing
sequentialM0 andM1 operations (e.g. Create Attribute atM1,Duplicate Data to Attribute atM0,
Delete Attribute at M1 and Dispose Data at M0). Each Operation will act upon a specific given
State of a set of Things to generate new States. is sequence of commands, interweaving
different level operations, may be stored in the new Version (V2).

In summary, a migration between any two versions consist on applying, in the correct order, all
the histories of operations that were executed between those versions.

.. Resulting Context

e resulting context of applying this pattern is the combined resulting contexts of the H
 O and S M patterns. e following benefits are particular to this
pattern:

• We are now able to automatically evolve between any two versions of the system, provided
that we issue a semantically correct sequence of operations.

• Consistency of the system is dependent on the consistency of the operations. is func-
tional decomposition may help achieving higher confidence in the model integrity aer a
migration procedure.

is pattern has the following liabilities:

  

• If the system does not provide enough operations to perform complex tasks, it can be
difficult (or even impossible) to express the intended semantics of the evolution.

• e migration mechanism, along with all the additional information that it requires, adds
complexity to the system.

Implementation Notes

Refactorings as Evolution Primitives. In object-oriented programming, behavior-preserving
source-to-source transformations are known as refactorings [Fow]. e concept of refactor-
ing applied to models [CW, MFJ, HBJ] has already been pointed out as a way to cope
with system evolution. is notion may be applied when designing Operations, such that they
represent a set of refactorings specifically designed for evolving Things. Each refactoring should
assure system integrity upon its completion.

Related Patterns

All related patterns to H  O and S M apply.

Known Uses

Several Object-oriented Database Management Systems and Data Warehouses [RL, WE,
BEK+], as well as the Prevayler framework [Ope], the COPE tool [HBJ], and the AMOR
system [AKK], are known uses of this pattern.

e Ruby on Rails (RoR) framework uses a variation [Und, Usi] of M, but ex-
presses operations within relational models, since it’s based upon the A R Pattern
[Fow].

.   

ere is a growing collection of -related patterns currently contributing to the domain pat-
tern language proposed by Welicki et al. [WYWBJ], including those here presented. Orig-
inally, the pattern language was divided into six categories, viz. (i) Core, (ii) Creational, (iii)
Behavioral, (iv) GUI, (v) Process, and (vi) Instrumental. In this dissertation, aer formalizing
the seven patterns presented in this chapter, we now propose a new map and categorization de-
picted in Figure . (p. ), divided into eight categories, viz. (i) Structural, which provides the
basic object model, (ii) Behavioral, for rules and system dynamics, (iii) Architectural, which de-
fines the infrastructure, (iv) Interaction, focusing on user-computer interfaces, (v) Creational,
reporting to patterns that allow specific domains to be instantiated, (vi) Evolution, focusing on
supporting changes to the data andmeta-data, (vii) Construction, which exposes to the end-user

 

the (re-)configuration of the system, and (viii) Support, for miscellaneous patterns that address
cross-cutting concerns.

. 

In this chapter we have formalized seven new patterns related to systems which domain model
needs to be changed frequently during runtime. We have discussed some scenarios were they
occur, as well as their advantages and liabilities. ese patterns directly contribute to the on-
going effort of building a pattern language for Adaptive Object-Models, to which we have also
proposed a new categorization.

  

T
y
p

e
 S

q
u

a
re

D
yn

am
ic

H

oo
ks

St
ra

te
gy

Ty
pe

 C
ub

e
R

ul
e

O
bj

ec
t

R
ul

e
En

gi
ne

In
te

rp
re

te
r

Bu
ild

er

Ed
ito

r
/ V

is
ua

l
La

ng
ua

ge

A
O

M
 B

ui
ld

er

D
ep

en
de

nc
y

In
je

ct
io

n

D
yn

am
ic

Fa
ct

or
y

Bo
ot

st
ra

pp
in

g
Ty

pe
 O

bj
ec

t
Pr

op
er

tie
s

A
cc

ou
nt

ab
ili

ty

N
ul

l O
bj

ec
t

Va
lu

e
O

bj
ec

t
Sm

ar
t

Va
ri

ab
le

s

En
tit

y V
ie

w
Pr

op
er

ty

R
en

de
re

r

D
yn

am
ic

V

ie
w

s
G

U
I

W
or

kfl
ow

H
is

to
ry

 o
f

O
pe

ra
tio

ns

Sy
st

em

M
em

en
to

M
ig

ra
tio

ns

m
an

ag
es

m
ay

-u
se

m
ay

-u
se

co
or

di
na

te
s

us
es

us
es

us
es

su
pp

or
ts

su
pp

or
ts

 re
nd

er
s

m
an

ag
es

pr
oc

es
s

ex
te

nd
s

m
an

ag
es

ex
te

nd
s

ex
te

nd
s

D
om

ai
n

Sp
ec

ifi
c

La
ng

ua
ge

su
pp

or
ts

ex
te

nd
s

us
es

us
es

su
pp

or
ts

pr

oc
es

s

us
es

us
es

m
ay

-u
se

m
ay

-u
se

in
st

ru
m

en
t

us
es

co
nt

ro
ls

in
st

ru
m

en
t

Ev
er

yt
hi

ng
 is

 a
 T

hi
ng

C
lo

si
ng

 t
he

 R
oo

f

ex
te

nd
s

br
in

gs
 t

he
 n

ee
d

fo
r

re
qu

ire
s

ex
te

nd
s

W
or

kfl
ow

su
pp

or
ts

C
ac

he
La

zy

Se
m

an
tic

s

II.
 B

eh
av

io
ra

l
IV

. I
nt

er
ac

tio
n

I.
St

ru
ct

ur
al

III
. A

rc
hi

te
ct

ur
al

V
I.

Ev
ol

ut
io

n
V.

 C
re

at
io

na
l

V
II.

 C
on

st
ru

ct
io

n

V
III

. S
up

po
rt

Figure .: Proposed evolution of the pattern language for Adaptive Object-Models.

Chapter 

Reference Architecture & Implementation

. Overview . 
. read of Control . 
. Architectural Decomposition . 
. Crosscutting Concerns . 
. User Interface . 
. Development Effort . 
. Conclusion . 

is chapter focus on Goals  and  of this thesis, namely to specify a reference architecture for
adaptive object-model frameworks, and to provide an industrial-level implementation of such
framework, codenamed Oghma. We start by identifying the underlying design principles and
guidelines— i.e., the requirements— of incomplete by design systems. We then provide the high-
level architectural view of such framework, and decompose it into the key components involved.
In due course, each component is showed how it addresses the proposed guidelines, providing
implementation details where necessary.

. 

Oghma is an object-oriented framework [RJ, ATMB, FSJb], targeted to the development
of information systems whose structural requirements can be best described as incomplete by de-
sign [GJT]. Applications making usage of this framework can easily implement the A
O-M meta-architectural pattern [YBJb] to allow run-time domain evolution by the
end-user. It is structured as a collection of    [BMR+], allow-
ing their high-level composition to achieve different functional architectures, e.g. client-server
v.s. single-process. It makes extensive usage of meta-programming § .. (p. ) and meta-
modeling § .. (p. ) following the general guidelines of the N O architectural

    

pattern [Paw] to provide runtime adaptation of the domain model, and automatic genera-
tion of graphical user-interfaces and persistency. It extends the commonmeta-object/meta-class
model design [Caz] by raising object versioning to a first-class concept of the system. It also
adds the ability to specify a wide class of behavioral rules, such as derived properties, class in-
variants, and data views, by using the I pattern [GHJV], and presenting them to
the end-user as a domain specific language, either through a classic textual syntax or graphical
representation.

.. General Principles and Guidelines

Probably themost well known system specifically built to be incomplete by design is theWikiWiki-
Web, created by Ward Cunningham in  [Cun], and which is nowadays the base¹ for a class
of systems commonly called wikis. At the core of a wiki lies the set of principles and guidelines
shown in Table ..

P D

Simple Easier to use than abuse. A wiki that reinvents HTML markup ([b]bold[/b], for example) has
lost the path!

Open Should a page be found to be incomplete or poorly organized, any reader can edit it as they
see fit.

Incremental Pages can cite other pages, including pages that have not been written yet.
Organic e structure and text content of the site are open to editing and evolution.
Mundane A small number of (irregular) text conventions will provide access to the most useful page

markup.
Universal e mechanisms of editing and organizing are the same as those of writing, so that any writer

is automatically an editor and organizer.
Overt e formatted (and printed) output will suggest the input required to reproduce it.
Unified Page nameswill be drawn from a flat space so that no additional context is required to interpret

them.
Precise Pages will be titled with sufficient precision to avoid most name clashes, typically by forming

noun phrases.
Tolerant Interpretable (even if undesirable) behavior is preferred to error messages.
Observable Activity within the site can be watched and reviewed by any other visitor to the site.
Convergent Duplication can be discouraged or removed by finding and citing similar or related content.

Table .: Wiki design principles, quoted from [Cun].

Inspired by the above principles, we argue that any system² deliberately designed to copewith
incompleteness should provide similar guidelines as those present in Table . (p. ).

.. High-level Architecture

e high-level architecture of the Oghma framework is depicted in Figure . (p. ). It allows
the development of -based information systems by providing a C L and a

¹ Not strictly the code-base and neither the requirements, but instead the core functionalities.
² For the purposes of this dissertation, we will always consider information systems.

 

P D

Open Should a resource be found to be incomplete or poorly organized, the end-user can evolve it as
they see fit.

Incremental Resources can link to other resources, including those who have not yet been brought into exis-
tence.

Organic Structure and content are open to editing and evolution. Evolution may be made more difficult if
it is mandatory for information to strictly conform to a pre-established model.

Universal e same (or very similar) mechanisms for modifying data and model should be exposed by the
system with no apparent distinction.

Overt End-user evolution should be made by non-programmers. e introduction of linguistic con-
structions (such as textual syntax) is usually required in order to provide formalization. However,
such constructions may reveal unnatural, intrusive and complex to the end-user, thus model edi-
tion should be made as readily apparent (and transparent) as possible.

Tolerant Interpretable behavior is preferred to system halt.
Observable Activity should be exposed and reviewed by end-users, fomenting social collaboration.
Convergent Duplication is discouraged and removed by incremental restructuring and linking to similar or

related content.

Table .: Design principles for incomplete by design systems.

default T  C. e main components are highly modular, deliberately designed
to cope with a range of different needs and deployment scenarios, such as (i) client-server, where
several processes are orchestrated by a central service, (ii) single-process, when one can disregard
concurrency issues and choose a monolithic setup, (iii) web-based, whereas a single process is
running but receivingmultiple requests, and (iv) distributed, which takes advantage of automatic
data-replication mechanisms provided by underlying persistency engines to propagate changes
across multiple services. More details will be given in § .. (p. ).

Communications

Core

WarehousingControllerUser-interface

Structural Core Behavioral Core

Figure .: High-level architecture of the Oghma framework.

Oghma supports a custom object model closely resembling class and object diagrams from
 and , and it is aimed to cover the entire cycle of soware development, from design to
deployment § . (p. ). e introduction of changes to the model, either originating in the de-

    

velopment team or in the end-user, can be performed during runtime. Furthermore, the frame-
work leverages the infrastructure to raise the overall awareness of the system’s evolution, pro-
viding functionalities such as auditing and time-traveling, in accordance to principles draed
in § .. (p. ).

.. Key Components

e proposed architecture identifies the following components, partitioned according to the
best-practices of object-oriented design, namely low-coupling and high-cohesion:

• Core. is component provides the model object supported by the framework; it can be
further divided into the structural and behavioral cores.

• Structural Core. is component describes the basic structure of the object model, e.g.,
the concepts of an object, a class, and a primitive type, and the way they are related.

• Behavioral Core. is component addresses the dynamic concerns, e.g., class invariants
and derivation rules.

• Controller. is component orchestrates the other components in the system, by holding
the responsibility of the T  C

• Warehousing. is component provides mechanisms for storing data and metadata.

• Communications. When several applications are running (e.g., in a client-server archi-
tecture), a channel must be established between them.

• User-interface. Eventually, the end-user must interact with the application through non-
programmatic artifacts.

.. Component Composition

Each component may be specialized into different components, thus providing a modular com-
posable architecture. For example, the architecture of a client-server application, with a rich 
and persisting data into a relational database is depicted in Figure . (p. ). Here, the controller
was further specialized into a client and server controller, the former relying in the communica-
tions component. e warehousing relies on a persistency module that deals with the relational
database.

A different composition may be observed in Figure . (p. ), taking advantages of a dis-
tributed database to eliminate the communications component. We will call any particular com-
position of the components the application stack, and the way it is achieved will be described in
due course.

   

Communications

Core

Warehousing

PersistencyUser-interface

Client Controller

Server Controller

Database

Figure .: Architecture of a client-server setup of the Oghma framework.

Warehousing

Persistency

User-interfaceController

Distributed
Database

Warehousing

Persistency

User-interface Controller

Distributed
Database

data replication

Figure .: Architecture of a distributed setup of the Oghma framework.

.   

As seen in Figure . (p. ), the controller serves as an entry point for both the user-interface
and communications component, and its key responsibility is to orchestrate the several other
components in the framework by establishing a thread of control. is thread of control may be
divided into three stages, viz. (i) the initialization process, also known as bootstrapping, (ii) the
main process, which receives external events for data querying and manipulation, and interacts
with the warehousing, and (iii) the shutdown process.

e controller also holds the responsibility of providing Hooks to the framework through the
C  R and P patterns, for extensibility reasons (e.g. interoperability
with third-party systems by allowing subscribers to intercept requests).

.. Bootstrapping

At the application startup, the framework has to execute two types of bootstrapping, viz. (i)
infrastructure bootstrapping, where the description of the structural core is loaded, and (ii) ap-
plication bootstrapping, where the first version of the model is loaded. e latter only occurs
if it is the first time the application is started, since subsequent startups rely on the latest model
information stored in the warehouse. is activity can be observed in Figure . (p. ).

    

Stack initialization
Infrastructure

Bootstrap

Model Bootstrap
Initialize

Warehousing

[new warehouse]

[existing warehouse] Load Latest
Model

Main Loop

Figure .: Activity diagram of the framework initialization.

eexcerpt of code listed in Source . shows a small part of the infrastructure bootstrapping,
where one can observe the structural core being defined, namely the Thing, Named Element,
Owned Element and Enum Literal.

1 <e n t i t y id=” metathing ” name=”MetaThing” abs t r a c t=” true ” t o s t r i n g=”{
_ident i ty }”>

2 <a t t r id=” _ident i ty ” name=” I d e n t i f i e r ” domain=” i d e n t i t y ” c a r d i n a l i t y=”1”
readonly=” true ” />

3 <a t t r id=” _nativetype ” name=” Native Type” domain=” s t r i n g ” c a r d i n a l i t y=”
0 . . 1 ” />

4 </ e n t i t y>
5
6 <e n t i t y id=”namedelement” name=”Named Element” abs t r a c t=” true ” i n h e r i t s=”

metathing ” t o s t r i n g=”{_name}”>
7 < l i s t columns=”{ _ident i ty } |{_name}” />
8 <a t t r id=”_name” name=”Name” domain=” s t r i n g ” c a r d i n a l i t y=”1” />
9 <a t t r id=” _displayname ” name=” Display Name” domain=” s t r i n g ” c a r d i n a l i t y=”

1” />
10 </ e n t i t y>
11
12 <e n t i t y id=” ownedelement ” name=”Owned Element” abs t r a c t=” true ” i n h e r i t s=”

namedelement” />
13 <e n t i t y id=” enuml i t e r a l ” name=” L i t e r a l ” t o s t r i n g=”{_displayname}” i n h e r i t s=

”namedelement” i s i n s t a n c e o f=”Oghma . Core . S t r u c t u ra l . EnumLiteral ” />

Source .: A small excerpt from the infrastructure bootstrapping.

.. Main Process

Aer the bootstrapping, the framework enters the main loop waiting for events to occur. ere
are two main type of events, viz. (i) query events, which do not modify the current state, and
(ii) commit events, which may introduce new data or meta-data. is activity is depicted in Fig-
ure . (p. ).

Query and commit events may be received by different threads, but only query events can
be processed simultaneously. In order to ensure consistency, particularly due to modified causal
connections when model changes occur, commit events lock the application. is is a design de-
cision thatmay be subject to change, since itmay introduce performance issues inwrite-intensive,

   

Wait for Query

Wait for Commit Hold Lock

Wait on Lock

Release Lock

Trigger Hooks Execute Query

Execute CommitTrigger Hooks

Figure .: Activity diagram of the main loop.

highly concurrent systems. Both query and commit events trigger before, during, and aer
H for extension purposes.

.. Query Events

e majority of events during a normal session are queries, which include: (i) requesting a list of
instances based on the type, (ii) requesting a list of instances based on conditionals, (iii) request-
ing a particular instance based on its identifier. Due to the non-differentiation between data and
meta-data, some possible events such as (iv) requesting a list of types based on the meta-type,
are variants of requesting instances. Other query events may include versioning concerns, such
as (v) requesting the history of transactions, or (vi) requesting instances in a given (previous)
version. is activity can be observed in Figure ..

Create Reply
Transaction

Query
Warehouse

Create Query
[dependent objects]

Return Reply
Transaction

[query] Add to
Transaction

Figure .: Activity diagram of query events.

.. Commit Events

Commit events modify the current state of the application, by creating or updating its data and
metadata, as seen in Figure . (p. ). It includes (i) creating a new instance, (ii) updating
an attribute, (iii) establishing/deleting a link, (iv) deleting an instance. Again, due to the non-
differentiation between data andmeta-data, some possible events such as (v) creating a new type,
are variants of those over instances. is activity is slightlymore complex than the query activity;
first, there are two ways of performing a commit event: (i) state-based, where one provides the
final state of the object(s), and (ii) operation based, where it is sequence of operations performed
upon an object(s) that are provided. If the controller receives the former, then it infers a possible
sequence of operations, by using semantic heuristics. Second, before applying the operations, a
merged container is created that provides a safe view over the existing data; operations become

    

pure, i.e., they generate new objects. In the end, all validation rules (e.g., class invariants) are
verified, and side-effects due to triggered rules, e.g., auto-numbers, are replied in a new transac-
tion.

Create Reply
Transaction [operation based]

Apply Operations
in Order

[commit]

Build Operations
[state based]

Create Merged
Container

Verify
Consistency

Return Reply
Transaction

Figure .: Activity diagram of commit events.

.  

We now proceed to decompose the high-level architecture into components, and each compo-
nent into a conceptual structure (design).

.. Structural Core

e design of the structural core of Oghma, built on top of the TS § .. (p. ) pat-
tern, can be observed in Figure .. e ObjectType is refined into Entities (that represent
classes) and Interfaces. An Instance, which must comply to a given Entity, holds a collection
of Properties, which in turn complies to its PropertyType. PropertyTypes are refined into
RelationNodes and Attribute-Types. A Relation-Node specifies cardinality, navigability and
role, by connecting to another node. Two connected nodes establish a RelationType. For prop-
erties belonging to relations (similar to the Associative Class in UML), the RelationType may
refer another Entity. Object-oriented inheritance and polymorphism is established by linking
Entities with other Entities and/or multiple Interfaces.

meta-level

Instance

Entity

Property

PropertyType

AttributeType

RelationTypeInterface

ObjectType

assoc

0..1

implements

0..*

inherits

0..1

1

1
Navigability
Cardinality
Role

RelationNode

Figure .: Core design of the structural meta-model.

  

Extending the Property Pattern

e usual form to capture relationships between different objects is by using the A-
 pattern, as previously discussed in Chapter  (p. ). But we should ask what exactly is the
difference between a field and a relation? Object fields, in , are used to store either values
of native types (such as an int or a float in Java) or references to other objects. ey can also be
either scalars or collections. Some pure  languages (e.g., Smalltalk) treat everything as an ob-
ject, and as such do not make any difference from native types to references³. Some also discard
scalar values and instead use singleton sets. We may borrow these notions to extend the P-
 pattern in order to support associations between entities, as seen in Figure ., provided
we are able to state properties such as cardinality, navigability, role, etc. e actual difference
between what is a scalar property and a relation becomes a runtime detail resolution.

Entity Property

Lower-bound: int
Upper-bound: int

Cardinality

Association
Aggregation
Composition

‹‹enumeration››
Role

isNavigable: bool

Property Type

Native Type: Type [0..1]

Entity Type

target

value

Figure .: An extension of the T-S pattern.

OneH introduced between the framework and the host language is the use of the Native
Type property in Entity Type, to allow any custom Entity Type to be directly mapped into
a native type (such as integers and strings). ere are also several constraints not depicted in
the diagram. For example, the lower and upper bound in cardinality should restrain the number
of associations from a single Property to Entities. Likewise, Properties should only link to
Entities which are of the same Entity Type as that defined in Property Type. e complete
formalization of the semantics of the presentedmodels is outside of the scope of this dissertation,
but part of it may be found in the test suits of the framework.

Self-Compliance

e aforementioned description represents a very simplified⁴ view of the entire set of imple-
mentation concerns. e bootstrapping of the infrastructure requires that the meta-model be
defined in terms of itself, due to reasons previously discussed in § .. (p. ).  is an example
of self-compliance, by making the M3 layer self-describing. ere are several reasons to make
that design choice: (i) it makes a strict meta-modeling architecture, since every model element

³ Another blatant simplification, since the smalltalk virtual machine do treat primitive types differently; they are
just exposed as if they were another object.

⁴ Almost naïve.

    

on every level is strictly in correspondence with amodel element of above level; and (ii) the same
mechanisms used to view, modify and evolve data can be reused for meta-data.

‹‹serializable››
State

Entity Type Entity

Identifier {unique}

Thing 1..*

has

‹‹instanceOf››

Figure .: Implementing the E   T pattern, and decoupling the I of an object
from its state.

One way to accomplish self-compliance relies on using the E   T pattern
with C  R. Basically, it consists on abstracting the elements of every level into a
single, unifying concept; the Thing. A Thing is thus an instance of another Thing, including of
itself, such as depicted in Figure .. is implies that during bootstrapping, the system would
first need to load its own meta-model, as discussed in § .. (p. ). erefore, Entity Types
are actually M2 Entities, thus relying on context for proper semantics.

Versioning

As seen in Figure ., the identity of each instance is maintained as Things, while the respective
details are kept as States. erefore, all the previous States of a Thing become reachable to
the application, as seen in Figure ., where two distinct values exist for the same Property
Type, corresponding to two different changes to the same instance over time. is design choice
allows to leverage of theObservable guideline § .. (p. ), e.g., to provide auditability and time-
traveling mechanisms.

Name: Property Type

Value = "Michael Doe"

S1: State

Value = "John Doe"

S2: State

Patient: Entity Type

Figure .: An example of two different states of the same entity.

Implementation Model

By also taking into consideration versioning concerns, a designmore close to the implementation
may be observed in Figure . (p. ).

  

Abstract: bool
Readonly: bool

Entity

1..*

Identifier: Identity

ThingnativeType

Name: string
Display name: string

Named Element

Classifier

Object Type

Package

Lower bound: int
Upper bound: int
Unique: bool
Readonly: bool
/ Derived: bool

Property

Interface

owner

0..*

owner

redefined-by 0..1

parent 0..1

Primitive Type

opposite
0..1

0..* implements

meta

1

‹‹system››
Type 0..1

targetType1

State Version

Owned Element

1..* 1..*

base
0..*Literal

Enum

owned

1..*

owner

1

Figure .: Implementation model of the structural meta-model.

.. Behavioral Core

In addition to structure, such as entities, properties and associations, a system possesses dynam-
ics; its data and metadata evolves⁵ over time. It also relies on the ability to support rules and
automatic behavior. Some examples of these include, but are not limited to (i) constraints, such
as relationship cardinality, navigability, type redefinition, default values, pre-conditions, etc. (ii)
functional rules, which include reactive logic such as triggers, events and actions, and (iii) work-
flow logic.

Strategy and Rule Objects

Even during the bootstrapping of the infrastructure, aer all types of objects and their respective
attributes are created, there are some rules that must be considered. For example, the cardi-
nality of an association should be preserved; this is the same as saying that the target collec-
tion’s size should be between the lower and upper bounds defined by its type. To support such
common rules, relatively immutable or otherwise parameterized, one could resort to using the
S and R O pattern, as previously discussed in § .. (p. ) and seen in Fig-
ure . (p. ).

An extension of the R O is depicted in Figure . (p. ), which allows the defi-
nition of: (i) Entity Type invariants, which are predicates that must always hold, (b) derivation
rules for Property Types and Views, (c) the body of Methods, (d) guard-conditions of Op-

⁵ Adding data to the system should also be considered evolution.

    

Validate()

Mandatory

 Validate()

Rule

1 Validate()

PatternMatch

Validate()

EntityType

Name: string

PropertyType

0..*

Figure .: A class diagram of the S and R O patterns, forming the structure of the
family of algorithms for enforcing rules. e dashed line represents an invocation call.

erations, etc. e structural constraints above mentioned, such as the cardinality and unique-
ness of a Property Type, are specializations of conditions. Methods may be invoked manually
and/or triggered by events, thus providing enough expressivity to specify S M and
W. Patterns such as S V and T L also provide an example
of common rules implemented as strategies [YFRT].

Property Type

Entity Type

Method Rule

invariant

body

1..*

derived by

0..*
Operation

guard
Condition

0..1

Create
Update
Delete
User-Activated

‹‹enumeration››
Event

Figure .: Dynamic core of the Oghma framework.

Interpreter

When the desired behavior reaches a certain level of complexity and dynamism, then a domain
specific language should be considered to extend R O. Aer parsing, the language
can be converted into an  and further processed using an I [GHJV], where
primitive rules are defined and composed together with logical objects mimicking the tree struc-
ture to be interpreted during runtime, or by a V M. ey are widely used to de-
fine: (i) ObjectType invariants, (ii) derivation rules in PropertyTypes and Views, (iii) body
of Methods, (iv) guard-conditions of Operations, etc. As such, they also play an important
role in assuring semantic integrity during model evolution, as will be discussed in § .. (p. ).
Source . (p. ) shows a model excerpt stating a behavioral rule ensuring that a person cannot
be its own parent, using the custom-developed .

A common problem that arises with the abstraction of rules, is that the developer may fall
in the trap of creating (and then maintaining) a general-purpose programming language, which
may result in increased complexity regarding the implementation and maintenance of the target
application, far beyond what would be expected if those rules were hardcoded [YBJa].

  

1 <e n t i t y id=’ person ’ name=’ Person ’>
2 <inv name=’ notmyancestor ’>not s e l f . In (Walk(pa i))</ inv>
3 <a t t r id=’ parent ’ name=’ Parent ’ domain=’ person ’ c a r d i n a l i t y=’ 0 . . 1 ’ />
4 </ e n t i t y>

Source .: Example of a model defining behavioral rules.

Views

Consider the following requirement: “list all doctors in a particularmedical center, alongwith the
number of high-risk procedures they have performed and its total cost.” In the design presented
so far, there would be nomechanism to support such query. We thusmust define the concept of a
view, as an Entity Type having a derivation rule that returns a collection, and whose properties
also depend on derivation rules (oen manipulating each item of that collection). is allows
the existence of “virtual” entities, whose information is not stored, but automatically derived⁶.

e requirement could then be fulfilled by a new type of entity, e.g. “High-Risk Treatments
Income by Doctor”, that iterates over doctors and their procedures, aggregating the income and
so on.

.. Warehousing and Persistency

Because of the evolutive nature of the model, it is very complex and inefficient to map and main-
tain data and meta-data in a classic relational database, even with the help of common tech-
nologies such as Object-RelationalMapping (), or other techniques such asmodel-to-model
transformations. An alternative would be to make use of object-oriented database management
systems ().

Still, persistency based on static-scheming, such as automatic generation of  code for
specifying relational databases schema and subsequent  code for manipulating data, which
attempts a semantic correspondence between both models, significantly increases the imple-
mentation complexity, particularly when dealing with model co-evolution. is has been long
referred to as object-relational impedance mismatch [Amb], and evidence of such issues may
be observed in the way  frameworks attempt to deal with them, oen requiring knowledge
of both representations and manual specification of their correspondence (e.g., the migration
mechanism in RoR). erefore, using the filesystem for storing serialized objects, or maintain-
ing objects  in key-valued or even relational databases, without trying to achieve a semantic
correspondence, has revealed to be a better choice.

⁶ Akin to the querying mechanisms () present in relational databases.

    

Warehouse Design

Despite all the above concerns, warehousing encapsulates the details of maintaining objects and
persisting its information, from the rest of the system, by exposing and consuming data and
meta-data (i.e., Things) and managing versioning (i.e., through Versions and States). Its most
abstract concept is that of a Container, a collection of possibly interrelated objects, as depicted
in Figure ..

‹‹interface››
IEnumerable

Get<T>()
New<T>()
GetInstances<T>()
Add<T>()
Remove<T>()

‹‹interface››
IContainer

T: Thing

Thing
0..*

0..1
decoratee

0..*

0..1

OnNew()
OnSet()
OnRelate()
OnUnrelate()
OnDelete()

Container
StrategyMemory

Container
Transaction

Changeset
Mutable

Changeset
Merged Container

base overlay

Figure .: Class diagram of the warehousing design.

Its behavior can be extended and modified through inheritance and composition by using
the D, C  R and S patterns [GHJV], with Things
regarded as opaque, key-valued objects. Transient memory-only, direct data-base access, lazy
and journaling strategies (e.g., using C) are just a few examples of existing (and sometimes
simultaneous) configurations.

Persistency Design

Storing and fetching information from an external datasource, such as a database, is accom-
plished by specializing a container (typically MemoryContainer) and interfacing with the per-
sistency components mainly through the IProvider interface, as sketched in Figure . (p. ).
By further specialization, GreedyProvider and LazyProvider implement different access strate-
gies, respectively: (i) by fetching all objects to memory, and doing a deep-write⁷ whenever a
commit occurs; (ii) by keeping a C of latest requested/modified objects. Further details are
given in § .. (p. ).

e Datasource Provider requires an implementation of IDatasource and IFTSSource.
e first one will ultimately be responsible for connecting to a third-party system. Currently,
Oghma provides four different datasources, viz. (i) SQLite, (ii) Oracle, and (iii) MongoDB. Ex-
tending it to other technologies is just amatter of appropriately reimplementing the IDatasource
interface. e second requirement is a full text-search provider (). Currently Oghma only has

⁷ A deep-write is a process that ensures information is immediately stored, disregarding caching mechanisms.

  

‹‹interface››
IEnumerable

Query<T>()
Commit<T>()
Search<T>()
History<T>()

‹‹interface››
IProvider

T: Thing

Memory
Container

Datasource Provider

GreedyProvider

‹‹interface››
IDatasource

‹‹interface››
IFTSSource

LazyProvider

1 1

Figure .: Class diagram of the persistency design.

an implementation over  provided by SQLite (since it can be used independently), but some
preliminary tests have been made with Apache Lucene.

.. Communications

When components are concurrently running, a channel must be established between them
to exchange all the necessary information. Due to the modularity of the presented architec-
ture, it is possible to achieve different configurations. ose involving concurrent requests are
(i) client-server, where several processes are orchestrated by a central service, (ii) web-based,
whereas a single process is running but receiving multiple requests, and (iii) distributed, where
data-replication mechanisms provided by underlying persistency engines are used to propagate
changes across multiple services. For more information see § .. (p. ) and § .. (p. ).

Main Concerns

Establishing a channel of communication across different services or components, raises a num-
ber of practical concerns that may affect the architecture and design of our system. Mainly,
we should be worried with (i) minimization bandwidth, so that we only communicate what is
needed, (ii) maximization of performance, (iii) maintenance of consistency, so that the system
does not suddenly become incorrect, and (iv) supporting concurrency, so that multiple services
or components can interact simultaneously.

HTTP-based Communications

Configuring Oghma for client-server or web-based architectures will trigger a -based strat-
egy of communication, where the current implementation provides a   for communi-
cation between the Server Controller and Client Controller through a pair of HTTP Bridge

    

and Server Dispatcher acting as P [GHJV]. Every Thing is addressable by its unique
identifier as a resource. e contents of States and Changesets are serialized in . Simple
queries can be expressed directly in the ; those more elaborate require  methods.

By specialization of the communication layer, other types of technology can be used for
bridging the controllers (e.g .NET Remoting). For example, in the case of a single-user stack,
the Client Controller would interact directly with the Server Controller. A different approach
from the client-server architecture is to use distributed key-value databases (e.g. CouchDB), to
handle both persistency and communication. Here, every application would assume direct ac-
cess to the controller, delegating the responsibility of disseminating contents to the underlying
data warehouse.

.  

e following sections refer to concerns that are not particular to any component, but instead
are pervasive in the overall solution.

.. Serialization

To support the exchange of information, objects (i.e., data and meta-data) need to be “demate-
rialized”, propagated, and again “materialized” across different environments. e same applies
for requests and replies. is means that they must be serializable, i.e., the information must be
convertible into an encapsulated format that can be stored (or transmitted) and later recovered
in the same or another computer environment. is is also required for persistency, as discussed
in §  (p. ).

e proposed architecture deals with two different ways of achieving this, viz. (i) state-based,
and (ii) operation-based serialization. Using state-based, the object is serialized declaratively, i.e.,
the value of each property is described as is. An example of a possible serialization in  using
this strategy is shown in Source . (p. ).

In operation-based serialization, objects are described constructively, i.e., it is given the nec-
essary steps to reconstruct the intended state, based upon primitive operations. e equivalent
of Source . (p. ) can be seen in Source . (p. )

is strategy requires a set of primitive operators to be known and precisely defined by all
involved parties. Figure . (p. ) shows the most basic operations here considered, viz. (i)
create instance, (ii) update attribute, (iii) create relation, (iv) remove relation and (v) delete in-
stance. Higher-level operations (i.e., those that manipulate meta-data) are variants of these, and
will be discussed in § .. (p. ).

Object serialization is also used for bootstrapping the system, since it is easier to maintain

  

1 <oghma ve r s i on=’ 127 ’>
2 <data>
3 <house h r e f=’ 5b6d2926 -4 c86 -47 c8 - b1ec - a9db737b94e3 ’>
4 <name>Home sweet home</name>
5 <s t r e e t>
6 <s t r e e t h r e f=’ 46 a49183 -50 aa -4 f 4 f -9437 - c3d1b66b4afb ’ a s soc=’ 45 f32dce

-5438 -4 b75 -8 dce - aabfb03da19b ’ />
7 </ s t r e e t>
8 </house>
9 <s t r e e t h r e f=’ 46 a49183 -50 aa -4 f 4 f -9437 - c3d1b66b4afb ’>

10 <name>Piccade ly Avenue</name>
11 </ s t r e e t>
12 <streetnumber h r e f=’ 45 f32dce -5438 -4 b75 -8 dce - aabfb03da19b ’>
13 <number>35</number>
14 </ streetnumber>
15 </data>
16 </oghma>

Source .: Example of a serialized state-based commit.

Operation State

Create Delete Update Relate Unrelate

1..*
Batch

* {ordered}

Merge

produces

Figure .: Data and meta-data are manipulated through operations, similarly to the C pattern.
Each operations applies (or creates) Things to produce new States.

both the infrastructure description and the first version of the model in a  file. For more
information, see § .. (p. ).

.. Integrity

e tolerant guideline states that interpretable behavior is preferred to system halt § .. (p. ).
However, due to causal connections between themeta-data and data, the systemmust ensure that
a correct interpretation is possible, and if not, to allow corrections to be provided. Integrity can
thus be divided into two separate concerns, viz. (i) structural integrity, discussed in §  (p. ),
and (ii) semantic integrity, detailed in §  (p. ).

.. (Co-)Evolution

Allowing collaborative co-evolution of model and data by the end-user introduces a new set of
concerns not usually found in classic systems. ey are (a) how to preserve model and data in-

    

1 <oghma ve r s i on=’ 127 ’>
2 <ops>
3 <c r e a t e id=”5b6d2926 -4 c86 -47 c8 - b1ec - a9db737b94e3 ” type=” house ” />
4 <update id=”5b6d2926 -4 c86 -47 c8 - b1ec - a9db737b94e3 ” a t t r=” house: :name ”>

Home sweet home</update>
5 <c r e a t e id=”46 a49183 -50 aa -4 f 4 f -9437 - c3d1b66b4afb ” type=” s t r e e t ” />
6 <update id=”46 a49183 -50 aa -4 f 4 f -9437 - c3d1b66b4afb ” a t t r=” s t r e e t : : n a m e ”>

Piccade ly Avenue</update>
7 <c r e a t e id=”45 f32dce -5438 -4 b75 -8 dce - aabfb03da19b ” type=” s t r e e t ” />
8 <update id=”45 f32dce -5438 -4 b75 -8 dce - aabfb03da19b ” a t t r=” s t r e e t : : number ”>

35</update>
9 <r e l a t e id=”5b6d2926 -4 c86 -47 c8 - b1ec - a9db737b94e3 ” node=” h o u s e : : s t r e e t ”

t a r g e t=”46 a49183 -50 aa -4 f 4 f -9437 - c3d1b66b4afb ” as soc=”45 f32dce -5438 -4
b75 -8 dce - aabfb03da19b ” />

10 </ops>
11 </oghma>

Source .: Example of a serialized operation-based commit.

tegrity, (b) how to reproduce previously introduced changes, (c) how to access the state of the
system at any arbitrary point in the past, and (d) how to allow concurrent changes. ese con-
cerns can be found in soware quality attributes such as traceability, reproducibility, auditability,
disagreement and safety, and are commonly found on version-control systems.

Typically, evolution is understood as the introduction of changes to the model. Yet, the pre-
sented design does not establish a difference between changing data or meta-data; both are re-
garded as the evolution of Things, expressed as Operations over States, and performed by the
same underlying mechanisms as previously discussed in § .. (p. ). To provide enough
expressivity such that semantic integrity can be preserved during co-evolution, model-level
Batches operate simultaneously over data and meta-data.

Sequences of Operations are encapsulated as ChangeSets, following the H  O-
 pattern § .. (p. ), along with meta-information such as user, date and time, base
version, textual observations, and data hashes. Whenever the framework validates or commits
a ChangeSet, the controller uses the merge mechanism depicted in Figure . (p. ), inspired
by the S M pattern § .. (p. ). is dynamically overlays the modifications
onto the base version by orderly applying each Operation, allowing for behavioral rules to be
evaluated, and finally resulting in a new version.

Structural Integrity

e structural integrity of the system is asserted through rules stated in the meta-model. For
example, Instances should conform to their specified Entity (e.g. they should only hold Prop-
erties which PropertyType belong to its Entity). Nonetheless, evolving the model may corrupt
structural integrity, such as when moving a mandatory PropertyType to its superclass (e.g. if it

  

ChangeSet Operation

State

Version

base

provides

has

1..*

1..*

Merged
Container

‹‹interface››
IContainer

1..*

background

overlay

Merge
spawn

base

changes

1..*

Figure .: Merging mechanism used to validate and apply operations, which are stored in a Changeset.

doesn’t have a default value, it can render some Instances non-compliant). Some model evolu-
tions can be solved by foreseeing integrity violations and applying prior steps to avoid them (e.g.
one could first introduce a default value before moving the PropertyType to its superclass).

Another issue arrises when parts of a composite evolution violate model integrity, although
the global result would be valid. For example if a PropertyType is mandatory, one cannot delete
its Properties without deleting itself and vice-versa. is problem is solved by the use of T-
 or Changesets, and by suspending integrity check until the end.

Semantic Integrity

Semantic integrity, on the other hand, is much harder to ensure since it is not encoded as rules.
e system simply cannot look to the results of an arbitrary evolution and infer the steps that lead
to it. Consider the scenario depicted in Figure ., where an AttributeType age is renamed to
date-of-birth, recalculated according to the current date, and moved to its superclass Person.

Patient: Entity Type

before

after

Value = 32

Age: Property Type

Person: Entity Type
Value = 8/1/1978

Date of Birth: Property Type

Patient: Entity Type

Figure .: Example of a simple model evolution.

Would we rely on the direct comparison of the initial and final models, a possible solution
would be to delete the attribute age in Employee and create the attribute date-of-birth in Per-

    

son. However, the original meaning of the intended evolution (e.g. that we wanted to store
birth-dates instead of ages) would be missed. To solve this problem, Oghma makes use of M-
 § .. (p. ), providing and storing sequences of model-level operations that cascade
into instance-level changes.

End-user Evolution

If all changes to the data and model are preserved, one can easily recover past information. is
not only solves the aforementioned issues, but it also brings to information systems the same
notions of versioning inherent to collaboration in wikis and soware development. In order for
the end-user to perform arbitrary model evolutions, a sufficiently large library of (composable)
operations should be provided. is also opens way to solve concurrent changes to the model,
by allowing the existence of multiple branches of evolution, and provide disagreement and rec-
onciliation mechanisms.

.  

Adaptive object-models require the graphical user-interfaces to also automatically adapt,
through inspection and interpretation of the model, and by using a set of predefined heuris-
tics and patterns [WYWB]. A minimalistic workflow for an automated  can be used based
on: (i) a set of grouped entry-points declared in the model, and further presented to the user
grouped by packages, (ii) a list of the instances by Entity Type or View, which show several de-
tails in distinct columns, inferred from special annotations made in the model, (iii) pre-defined
automated views inferred by model inspection (edition and visualization) based on heuristics
that consider the cardinality, navigability and role of properties, (iv) generic search mechanisms,
(v) generic undo and redo mechanisms, (vi) support of custom panels for special types (e.g.,
dates) or model-chunks (e.g., user administration), through P, etc.

e reactive user interface provided by Oghma also resembles a type of offline mode, similar
to using version-control systems. User changes, instead of being immediately applied, are stored
into the user Changeset, and sent to the main controller to subsequently assert the resulting
integrity of applying changes, and provide feedback on behavioral rules. e user can commit
its work to the system when she wants to save it, review the list of operations she has made, and
additionally submit a descriptive text about her work.

Awareness of the system’s evolution is achieved through the usage of several feedback tech-
niques such as (i) charts showing the history of changes, (ii) alerts for simultaneous pendent
changes in the same subjects from other users, (iii) reconciliation wizards whenever conflicts are
detected due to concurrent changes, etc.

  

.  
en

tro
py

 (b
yt

es
)

31
51

10
00

00
23

04
35

2008 2009 201007−2007 07−2010

Figure .: Oghma code-base complexity. is chart shows the evolution of code complexity between July
 and July , measured in compressed bytes. e vertical lines shows the cumulative
size in bytes of the compressed differences per day.

Oghma has been under development since July  as seen in Figure ., and is being used
for production-level applications, which will be detailed in Chapter  (p. ). e figure shows
the evolution measured in entropy, of a codebase with an average of three contributors. Table .
shows some base metrics of the code-base, which allows to dra some learned lessons.

P C C R LOC

User Interface  
Core  

Core.Behavioral  
Core.Behavioral.Grammar  
Core.Structural  
Core.Views  
Core.Controller  
Core.Warehousing  
Core.Communications  

Web Server  
SQLite Datasource  
Oracle Datasource  

Tests  

Table .: Code metrics for the current implementation of Oghma.

Subjectively, the majority of the development effort was perceived as centered around the
structural and behavioral core, and main controller. But, objectively, it is the domain specific
language and user-interface that have the largest code-base measured in . is somewhat
explains the fact that most of the advanced features supported by the infrastructure, such as

    

divergence and reconciliation mechanisms by object-versioning, are not yet presented in the
user-interface.

. 

In this chapter we specified a reference architecture for adaptive object-model frameworks,
and provided some implementation details on Oghma, an industrial-level implementation of
a framework to build -based systems. We have identified the underlying design principles
of incomplete by design systems by taking inspiration from the guidelines of wikis. An high-level
architectural view of Oghma was followed, and further decomposed into its key components.
en, each component’s design was detailed, showing how its role in the whole system is or-
chestrated. Finally, a general overview of the development of Oghma was provided, leaving the
details of its usage for Chapter  (p. ).

Chapter 

Industrial Case-Studies

. Research Design . 
. Complexity Analysis . 
. Baseline . 
. Locvs . 
. Zephyr . 
. Survey . 
. Lessons Learned . 
. Validation reats . 
. Conclusion . 

e architecture and framework proposed in this dissertation was developed and validated with
the help of two case studies and one experiment that evaluated how the results work in practice.
is case studies were mainly used for validating the framework during its development phase,
and they provided a tight feedback mechanism for new requirements. e (quasi-)experiment
was subsequently performed to harness some validation threats inherent to the use of case-
studies in Chapter  (p. ). is chapter presents how the case studies were run to assess the
usefulness of the primary outcomes, and it ends with the analysis of a questionnaire handed to
participants to evaluate their professional opinion on the framework.

.  

e research conducted so far is as follows: (i) empirical observation is used to detect, acquire
and capture requirements and patterns, as described in Chapter  (p. ); (ii) the resulting re-
quirements and patterns help in deriving theoretical models to be incrementally refined into
specification and design artifacts, (iii) the combination of these artifacts drive the implementa-
tion of a framework, thus producing a set of reusable components, detailed in Chapter  (p. ),

  -

and further serving as basis to (iv) enterprise-level commercial use-cases, which in turn provide
feedback for tuning the framework regarding H S, the C L, and other
infrastructure capabilities. is chapter is then focused on those use-cases to assess the impact
in productivity, maintainability, developer customization and overall customer success of the
conducted research.

Two use-cases were studied, viz. (i) Locvs, a medium-sized information system for archi-
tectural and archeological heritage and (ii) Zephyr, a small information system for document
records management.

.  

e assessment of the impact on the use cases will be based on complexity analysis of the re-
sulting artifacts. In algorithmic information theory, the Kolmogorov complexity of an object,
such as a piece of text or code, is a measure of the computational resources needed to specify
that same object. More formally, the complexity of a string is the length of the string’s shortest
description in some fixed universal description language. It can be shown that the Kolmogorov
complexity of any string cannot bemore than a few bytes larger than the length of the string itself.
Strings whose Kolmogorov complexity is small relative to the string’s size are not considered to
be complex [Wikb, LV].

In order to approximate the upper bounds of the Kolmogorov complexity K(s), of a string s,
one can simply compress that string with some method, implement the corresponding decom-
pressor in the chosen language, concatenate the decompressor to the compressed string, and
measure the resulting string’s length. For this purpose, the author used the bzip2 [Ope] ap-
plication, setting its compression level to the supported maximum (-9). If one is only interested
in a time-series analysis of a sequence of strings, calculating the compressed deltas is enough to
present a relative measure of complexity (or entropy) between any two strings [CV]. For that,
the author used the diff [GNU] unix tool, with the –minimal parameter, again followed by a
bzip2 compression, with the aforementioned settings. e results are shown representing the
cumulative compressed size in bytes, and the vertical lines the cumulative size of the compressed
differences per day. Note that it is the relative, not the absolute number of bytes, that is relevant,
i.e., the shape of the curve and the overall growth.

Using an entropy measurement to assess the complexity evolution of a soware artifact has
some benefits over measuring the number of lines of code () or size in bytes. For example,
the impact of superfluous usage of blank space, long strings, or duplicated code is consider-
ably attenuated aer undergoing compression, as observed in Figure . (p. ) when compared
to Figure . (p. ). is technique also seems to be able to show fluctuations in entropy even
when the cumulative number of  does not change.

 

. 

2005 2006 2007 2008 2009 2010

0e
+0

0
4e

+0
5

8e
+0

5

en
tro

py
 (b

yt
es

)

Figure .: is chart shows the  evolution between  and  (»  years).

To establish the baseline for comparison, other projects that met the following criteria were
analyzed using the same techniques: (i) projects should be from the same company, and (ii)
developer’s expertise should be approximately the same¹. Two sample projects are shown in Fig-
ure . and Figure .. For purposes that will be explained later, one should observe that the
evolution in mostly sub-linear, approaching logarithmic best-fits at the end of iterations.

2010

0
50

00
0

10
00

00
15

00
00

en
tro

py
 (b

yt
es

)

05−2009 07−2010

Figure .: is chart shows the  evolution between May  and July  (»  year).

. 

e municipal city hall of Porto established the goal of developing an information system to
manage the collections, premises and places in the city, with relevant interest regarding architec-

¹ If possible, the same developers should have worked on all projects.

  -

tural, urbanism, landscaping and archeological traits. Due to the complexity and scope of this
topic, the fulfillment of this goal had a first phase consisting on the elicitation of sectorial infor-
mation based on the Inventory of Architectural Heritage of Porto (IPAP), and in the production
of archeological records regarding interventions and materials.

In a subsequent phase, the objective was to develop and deploy a soware solution called
Locvs - Management Architectural and Archeological Heritage of the City of Porto, compromising
twomain sub-goals (i) to allow the iterative and incremental structuring of available information,
and foster its exploration, and also (ii) to support the workflow of managing and evolving this
system of sectorial information [PFSP].

In this section, we briefly document the development of the soware system components of
Locvs, briefly describing its idiosyncratic traits, main occurrences, and pursued activities w.r.t.
its relevant phases for this dissertation, namely: (i) requirement analysis, (ii) application devel-
opment, and (iii) soware evolution.

.. Core Concepts

e conceptual structure of information regarding architectural heritage is based on a group of
analysis units, namely (i) public spaces, (ii) architectural collections, (iii) buildings and private
spaces, and (iv) construction and ornamental materials. Each unit of analysis aggregates a set
of forms which fundamentally contains the most relevant information for the characterization
and evaluation of the reality under analysis, and in some cases, complementary information of
photographic, cartographic, bibliographical and otherwise archival nature.

Architectonic heritage, either under protection (i.e., according to the law in vigor) or in the
process of becoming protected (and thus under internal regulations), is defined as those exis-
tences produced at an architectural scale, namely (i) constructions of monumental nature or rel-
evant interest, and (ii) collections of building, streets, constructions or spaces which recognition
as heritage may not be straightforward, and which evaluation require them to undergo a pro-
cess of rigorous analysis of all the known elements and their relationship with the surrounding
environment.

Archeological heritage refers to (i) all the archeological interventions that take place within
the city boundaries, (ii) all the records and estate directly resultant from them, and (iii) to singular
findings or donations. e system also encompasses the process of appreciation for urbanization
licensing, with respect to (i) the delimitation of areas with high archeological potential, (ii) the
establishment of areas of such potential, and (iii) the establishment of several other restrictions
resultant from the “PlanoDirectorMunicipal” [Min,Cam]. It also includes themanagement
of information, in diverse media supports (not always standard), directly related to the activity
of managing the archeological heritage of the city.

 

.. Time-Series Analysis

e development of Locvs started in the  July , simultaneously with the Oghma frame-
work, with the first beta deployment occurring two months later in the  of September. e
allocated teamhad amaximum size of threemembers during this period. As seen in Table ., the
first final deployment occurred in  March , and the initial implementation was consid-
ered finished one month later, in  April. e customer then initiated a ½ months revision,
until the official acceptance in  August . e project was then assigned a maintenance
period of one year.

200720072007200720072007200720072007 2008 20092009200920092009200920092009200920092009200920092009

8 99 1010 1111 1212 1 2 33 44 5 66 77 8 99 1010 1111 1212 11 22 33 44 55 6 77 8

Implementation

Deployment (Beta)

Deployment

Customer Revision

Implementation (Revision)

Deployment (Revision)

Table .: Chronogram of the development of Locvs.

Because themodel definition could be serialized as a  file, it was relatively easy tomeasure
its evolution. e chart presented in Figure . shows the cumulative number of lines of 
code, along with the number of changes.

2008 2009 2010

0
50

00
15

00
0

lin
es

 o
f m

od
el

Figure .: is chart shows theLocvsmodel evolution between July  and June  ( years), measured
in -serialized lines of code. e vertical lines are the number of changes. Dashed vertical
lines mark major milestones seen in § ...

.. Conclusion

From the observation of Figure ., it seems obvious that the project has undergone three different
levels of evolution. e first one, between the first beta deployment in September  and

  -

the last stable deployment in April , corresponds to – lines of model description.
Because of the closely resemblance between the two artifacts (i.e., the  used in Oghma and
), it was the analysts opinion that this first description of the model represented an accurate
translation of the analysis artifacts, namely  class diagrams and use-case stories. is phase
ended around model revision , aer  iterations (i.e., deployments) with an average time of
two-weeks per iteration.

en
tro

py
 (b

yt
es

)

99
1

25
00

0
53

04
8

2008 2009 201007−2007 06−2010

Figure .: Locvs model complexity. is chart shows the evolution of model complexity between July
 and June , measured in compressed bytes. e vertical lines display the cumulative
size in bytes of the compressed differences per day.

esecond leap in complexity occurred during the ½months length revision, with a drastic
change of information near the end of . e fact that Figure . (p. ) shows a two-fold
increase in  (to roughly ), supported by a more striking increase in entropy shown by
Figure ., provides evidence that the revision process introduced more structural elements (and
hence new requirements) than those elicited during analysis.

e final leap in complexity occurred near the official acceptance of the final application,
around August  (revisions –), which boosted the  to roughly  (a four-fold
increase when compared to the previous phase), but without an observable impact in the total
number of structural elements aer manual observation of the model. ese results are consis-
tent with the massive increase of non-structural elements (e.g., invariants, derived rules, views,
etc.), which definition became possible (and a priority) as soon as the core structure of the appli-
cation stabilized. Nonetheless, it is still notable that they alone account for an entropy increase
of more than .

In summary, from the first deployment to the official acceptance ( months), one can ob-
serve a ten-fold increase in the model description (measured in ), a five-fold increase in the
model complexity (measured in entropy), and a two-fold increase in basic structural elements
(measured in structural elements), supporting the claim that traditional development approaches
would not had efficiently coped with the nature of this project in the same time-span here ob-

 

served.

. 

With the advent of mass digitalization of documents, which until now required physical stor-
age, the need of ensuring its correct maintenance and long-term preservation is becoming
paramount. As such, the municipal city hall of Porto has the goal to implement a central unit of
digitalization in charge of this process.

.. Core Concepts

edematerialization of the physical processes in digital objects becomes indissociable of certain
premisses, such as (i) the correct identification of the digitized documents, and (ii) the mainte-
nance of all inherent structure to each of these documents. It is thus necessary to validate and
attach to each document every information that needs to be maintained about it, to ease subse-
quent access to the information and data preservation. e very act of storing this information
is a process that can involve a multitude of participants along the several phases a digital object
flows, mainly because during the lifespan of a document, its registration (andmetadata) may still
being altered while not yet associated with the digital object it represents.

e Zephyr application, presented as an extension module to  [CPP], is a tool that
allows to collect metadata about digital objects. Users rely on Zephyr to create records for (i)
digital compound objects, such as a “Processo de Obra”, and (ii) simple digital objects, such as
“Actas”, “Requerimentos”, etc. Aer capturing metadata for each of these units, Zephyr trans-
forms this information, creating ingestion packets in  [Fed], and ingesting them in a
FedoraCommons [Sta] repository.

.. Time-Series Analysis

e chart presented in Figure . (p. ) shows the model entropy, along with the differences
per day. Contrary to Locvs, this project revealed very stable, with an actual decrease of entropy
around September ².

.. Conclusion

Zephyr was a single-person project, with minimal changes to the model, and very quick appli-
cation deployment. Its primary usage as a use-case³ was to discard three concerns raised by the

² When the developer was asked for the reason of this decrease, it was shown that the initial model contained some
assumptions that revealed unnecessary aer the application was first deployed.

³ If one choses to ignore the commercial reasoning thatOghmawas used because developmentwas already expected
to be faster.

  -

Jul Set Nov Jan Mar Mai

0
20

00
40

00
60

00
80

00

en
tro

py
 (b

yt
es

)

Figure .: Zephyr model complexity. is chart shows the evolution of model complexity between June
 and May , measured in compressed bytes. e vertical lines display the cumulative
size in bytes of the compressed differences per day.

on-going experience with Locvs, viz. (i) was the framework sufficiently decoupled from its ini-
tial application to be used in other products, (ii) would a non-framework developer have time
to adapt to Oghma and still deliver in an acceptable timespan, and (iii) is the framework only
suitable for systems with unstable requirements?

Obviously, there is a strong interpretation to data presented in Figure .; the application was
not incomplete by design. is was known and expected, but the success in deploying Zephyr
shows that the framework’s, albeit not intentionally, can easily act as a Rapid Application Devel-
opment tool. Still, it helps to support hypothesis H, H, H-H — see Chapter  (p. ).

. 

A questionnaire was handed to professionals that had significant contact with the Oghma frame-
work. is questionnaire was designed as a set of five-point Likert-scale [Lik] items, or state-
ments, which the respondent is asked to evaluate according to any kind of subjective or objective
criteria, thus measuring either positive or negative response to the statement. e scale was set
as: () strongly disagree, () somewhat disagree, () neither agree nor disagree, () somewhat
agree, and () strongly agree. ese items where divided into the following groups: (i) Back-
ground, (ii) Overall satisfaction, (iii) Development style and process, (iv) Future expectations,
and (v) New features.

e subjective volatility is based on judgment of the subjects. All chosen subjects were di-
rectly involved in the host projects as developers, analysts, domain experts and/or internal users.
ey also had the task of reviewing requirements. erefore, we believe that they were capable
of accurately and reliably completing the survey. e raw data can be found in Table E. (p. )
for n = 7.

 

.. Background

e results from the background of each participant can be found in Table .. Participants of
the study formed a relatively heterogeneous group (as evidenced by some values of σ), but with
considerable experience with the object-oriented paradigm, , and the C programming lan-
guage. Most were used to develop industrial-level applications, by doing requirements engi-
neering and analysis and specification of information systems. Regarding development style,
participants were mainly used to classic and agile development methodologies.

I have considerable experience…  x̄ σ

…with object-oriented frameworks . . .
…with the Oghma framework . . .
…with the C programming language . . .
…doing requirements engineering . . .
…developing industrial-level applications . . .
…analyzing and specifying information systems . . .
…testing and ensuring product quality . . .
…with object-oriented architecture, design and implementation . . .
…with agile development methodologies . . .
…with classical development methodologies . . .
…with formal development methodologies . . .
…with UML . . .

Table .: Background results of industrial survey, each line representing the data of a single question, with
corresponding means and standard deviation values.

.. Overall Satisfaction

e results for the overall satisfaction can be found in Table . (p. ). Participants’ answers
supports the hypothesis that the framework provides a suitable infrastructure for developing in-
complete by design systems. e answers also provide evidence that the development focus more
on domain objects than implementation artifacts, easing the translation of conceptual specifica-
tions and the construction of user-interfaces. e effort of adding or changing existing require-
ments was strongly considered lower than any other conventional approach, and the usage of
resulting artifacts in production-level requirements was significantly supported.

.. Development Style & Process

e results for the development style can be found in Table . (p. ). As expected, the answers
support the hypothesis that using such framework, and generally  systems, would bemore in
line with the agile principles in what concerns embracing change, and having constant feedback
over the project (which would be very high when developing face-to-face with the client).

  -

Overall, I…  x̄ σ

…found Oghma suitable for solving most tasks I needed . . .
…thought more in terms of domain objects than implementation arti-
facts

. . .

…found it difficult to directly translate specifications into final artifacts . . .
…was able to create and evolve the object model at least as rapidly as I
could create a specification

. . .

…was able to create and evolve the user interface at least as rapidly as it
could normally have been prototyped

. . .

…felt that any additional requirements represented considerable added
effort compared to conventional approaches

. . .

…felt that any change of requirements represented considerable added
effort compared to conventional approaches

. . .

…would use the resulting application in production-level environments
with minimal or no change

. . .

Table .: Overall satisfaction results of industrial survey, each line representing the data of a single ques-
tion, with corresponding means and standard deviation values.

I found the development style of this setup suitable for…  x̄ σ

…using in the context of agile methodologies . . .
…using in the context of classic methodologies . . .
…using in the context of formal methodologies . . .
…developing face to face with the client . . .

Table .: Development style results of industrial survey, each line representing the data of a single ques-
tion, with corresponding means and standard deviation values.

e results for the development process can be found in Table . (p. ). As expected, most
of the difficulties where centered around understanding and extending the framework. Learning
to use the framework’s capabilities of persistency, user-interface and rules languages didn’t pose
a problem.

.. Future Expectations

e results for the development process can be found in Table . (p. ). ese results clearly
support the hypothesis that development would be faster, less expensive, and easily maintainable
than conventional approaches. Participants also agree that the final application would be more
comprehensively tested, although not as strongly. is may be due to the switch of focus in qual-
ity; deployed applications would be as thoroughly tested as the framework is, but still dependent
on the correct interpretation of the requirements. It is interesting to observe that there were no
negative answers in these items, and that the values of σ are relatively low.

  

Most of my difficulties during development where…  x̄ σ

…dealing with persistency . . .
…building the graphical user interface . . .
…implementing the core business logic . . .
…learning the domain specific language . . .
…understanding the infrastructure . . .
…extending the framework . . .

Table .: Development process results of industrial survey, each line representing the data of a single ques-
tion, with corresponding means and standard deviation values.

Given that the basic infrastructure now exists, and with suitable modifi-
cations to the development process, my expectations are that subsequent
systems developed with it, when compared to a more conventional ap-
proach, would be…  x̄ σ

…developed faster . . .
…less expensive . . .
…more comprehensively tested . . .
…easier to maintain . . .

Table .: Future expectations results of industrial survey, each line representing the data of a single ques-
tion, with corresponding means and standard deviation values.

.  

e development and usage of Oghma targeting adaptive applications allows us to elicit some
lessons:

• Skilled developers. e skills needed to develop and maintain this type of architecture (at
the infrastructure level) are not trivial to find, and developers are not necessarily at ease to
work at these levels of abstraction. On the other hand, the skills needed to work on top of
the developer are roughly at the same level as with traditional programming languages.

• Domain specific v.s. general purpose. From a framework standpoint, there is also a thin
balance between a framework that makes the creation of new systems a quick and easy
process, and one that is flexible enough to cover a wide scope of systems. Because it is
very tempting to make the framework address all use-cases using an adaptive and model-
driven approach, there is a risk of the final models becoming as elaborate and complex as
a full-blown programming language. In this sense, H are a key issue, as they are not
always easy to foresee, but they establish the border line between what should be regarded
as part of the framework and what is particular behavior of a specific instantiation.

• Quick prototyping and agile development. Applying -based systems in industry pre-

  -

sented evidence of how easy it is to quickly build a functional prototype that can be shown
to the customer, thus providing very early feedback before refining it into a production-
level application. Not only the customer involvement in this process will increase due to
the high number of iterations that becomepossible, reducing the burden of up-front design
by allowing an incremental approach to formalization of the underlying business model,
but end-user development capabilities offered by the framework could also ease the de-
pendency on the developers. It is now the team belief that, now that the infrastructure is
ready, the two-year analysis prior to the development could have been greatly reduced, by
early providing functional prototypes.

.  

One issue that could affect conclusion validity is the number of case-studies (two) and involved
soware architects, engineers, and analysts (eight), despite the sheer dimension of the Locvs case-
study, which collected data spawn throughout three whole years. In the context of soware en-
gineering research conducted in industrial settings, one should be aware that the company is
taking a high risk employing novel techniques, with unpredictable results, to their normal work-
flow. Nonetheless, the success of the Oghma framework, and the conclusions here presented,
were found sufficient to at least provide the basis for further usage in subsequent projects, which
will allow the harvest of more data for further analysis.

e participants of the study also formed an heterogeneous group. Mainly, we had four dif-
ferent roles dealing with theOghma framework: the analysts, the domain experts, the framework
users, and the framework developers. Although some roles were overlapped by the same people,
we believe that having chosen a homogeneous group would lead to the disadvantages of decreas-
ing the number of subjects and affecting external validity. As was also mentioned, the subjective
volatility is based on judgement of the subjects. Because all chosen subjects had direct contact
with the host projects as developers, analysts, domain experts or internal users, we believe that
they were capable of accurately and reliably completing the survey.

Finally, the most relevant threat to validation comes from the nature of use-case analysis;
there is simply too much variables out of control. A more solid validation would require more
than one teamallocated to the same project, using different technologies, aswell as tighter control
over the development lifecycle to allow a rigorousmeasurement of time and effort spent by teams.
Since this issue cannot be pursued within our industrial environment, it will be addressed in the
next chapter.

 

. 

is chapter presented two case studies built on top of the primary outcomes from this disserta-
tion, as well as a questionnaire intended to evaluate the professional opinion of the participants.
We based most of the time-series analysis on information theory, specifically by measuring Kol-
mogorov complexity and considering the project’s lifecycles, which allowed tomake comparisons
among projects using different technologies. Most hypothesis presented inChapter  (p. )were
supported by evidence, although some validation threats remain due to the nature of use-case
analysis. ose issues will be addressed in the next chapter as a quasi-experiment performed in
a controlled environment.

  -

Chapter 

Academic Quasi-Experiment

. Research Design . 
. Experiment Description . 
. Data Analysis . 
. Objective Measurement . 
. Validation reats . 
. Conclusion . 

is chapter details a quasi-experiment conducted within a controlled experimental environ-
ment using the Oghma framework. Although the industrial usage of the framework provides
pragmatic evidence of its benefits, as detailed in Chapter  (p. ), several of the threats inherent
to that type of validation are here discarded, by performing a study on groups of MSc students
building an information system from scratch, and applying two different treatments, viz. (i) the
baseline, using Java, MySQL and Eclipse, and (ii) the experimental, using Oghma and Microso
Visual Studio. Pre-test evaluation and post-test questionnaires are used to assess the outcomes
of each treatment, and the final results reveal consistent with those presented in the previous
chapter.

.  

(Quasi-)experiments conducted in an academic context should be randomized, multiple-
group, comparison designs, which may be implemented as part of graduate student teams lab
work [CJMS]. For this experiment,  MSc students from the Integrated Masters in Informat-
ics and Computing Engineering, lectured at the University of Porto, Faculty of Engineering, were
recruited. ey all were  year students which chose to take an optional course on “Architecture
of Soware Systems”, and hence were interested and motivated in the design and construction
of complex (medium to large-scale) systems.

  -

Treatment A

Treatment B

Group
Formation

Main Tasks
Evolution

Tasks
Questionnaire

⌛
2 hours

⌛
1 hour

Figure .: Experiment design. Each group received one of two possible treatments. All then proceeded
for the main tasks. Aer two hours, the evolution tasks were handed. At the end of the  hour,
the subjects fully stopped their tasks, and proceeded to answer the questionnaire.

.. Treatments

To perform the experiment, two different treatments were applied:

• Baseline treatment. e establishment of the baseline followed traditional development
methodologies and tools, assumed as familiar to the subjects, to construct and evolve the
given system. ese consisted in Java for programming, supported byMySQL as a database
backend, and Eclipse as an IDE.

• Experimental treatment. e system under test, Oghma, was handed to the subjects that
received the experimental treatment.

.. Pre-test Evaluation

It is important to ensure that the base skills for everymember does not pose any significant statis-
tical deviation. To ensure that, a selection of a subset of courses based on their academic trackwas
made, which could influence the experiment outcome, namely: (i) Programming Fundamentals,
(ii) Programming, (iii) Algorithms and Data Structures, (iv) Algorithm Design and Analysis, (v)
Soware Engineering, (vi) Soware Development Laboratory, and (vii) Information Systems.
e grades of each subject that participated in the experiment can be found in Table A. and
Table A. (p. ). An independent-samples t-test was conducted to compare the average stu-
dents’ grades for experimental and baseline groups. As shown in Table . and Table . (p. ),
there was no significant difference in the scores for the experimental (M = 14.20, SD = 1.27)
and baseline (M = 13.87, SD = 0.77) conditions; t(13) = 0.572, ρ = 0.577, within a 
confidence interval.

G N M S. D S. E M

  . . .
  . . .

Table .: Student grades group statistics.

  

F S.   S. (-)

E. V. A . . . . .
E. V. N A . . .

Table .: Independent Samples Test. e first two columns are the Levene’s Test for Equality of Variances,
showing a significance greater than .. e other three columns are the t-test for Equality of
Means. Since we can assume equal variances, the -tailed value of . allow us to conclude
that there is no statistically significant difference between the two conditions.

ere is also the need to ensure that all subjects share common skills with respect to meta-
modeling, architectural and design patterns, adaptive object-models and its ecosystem. Al-
though both GoF [GHJV] and POSA [BMR+] patterns are part of the curricula, it was
required to add two lectures about AOMs prior to performing the experiment. In these lectures,
both groups learned the core patterns of AOMs, and performed a simple exercise of implement-
ing the T-O [JW] pattern in Java.

Nevertheless, it should be noted that the subjects under the experimental treatment never
had any contact with the framework prior to the experiment. All the available information was
handed at the beginning of the experiment, as a small digital document, which is here reproduced
in Appendix D. is documentation was deliberately incomplete, containing slight omissions
and inconsistencies for the purpose of simulating a real-world documentation and avoid any
bias towards the tasks subjects were meant to perform.

.. Process

is (quasi-)experiment was intended to assess several distinct claims, which were matched into
two different phases: development and maintenance. e two treatment groups were further
split in groups of three subjects. Each group would enter a restrict laboratory environment, with
(i) a single computer available with internet access, and (ii) a whiteboard.

Data Collection

e experiment had two live video feeds being recorded: (i) a standard camera, pointing directly
at both the subjects and the whiteboard, and (ii) a screencast of the computer the subjects were
using. is was used to measure time, correctness and complexity of the produced artifacts non-
intrusively. e analysis of this data is made in § . (p. ).

First Phase: Construction

In the first phase, a small “Requirements Specification Report” where handed in a closed enve-
lope, which included brief user stories and  class diagrams semi-formalizing a small system

  -

for managing scientific conferences. eir objective would be to implement a full system using
their given technique and restrictions. While the time available for pursuing the implementation
could be based in effort estimations made by soware-engineer professionals, there was severe
time constraints from the availability of the subjects. As such, the overall time limit was set to 
hours, thus reserving  hours for this phase. e exact details of each task can be found in § ...

Second Phase: Evolution

e subjects were not aware of a second phase, which goal was to assess the efficiency in adapting
to changing requirements. As such,  hour before the time limit, the subjects were handed a
second envelope as detailed in § .. (p. ).

.. Post-Test Questionnaire

At the end of the experiment, i.e., aer the three hours time limit, the questionnaire in Appendix
B was handed to the subjects. is questionnaire was designed using a Likert scale [Lik]. is
psychometric bipolar scaling method contains a set of Likert items, or statements, which the
respondent is asked to evaluate according to any kind of subjective or objective criteria, thus
measuring either positive or negative response to the statement. In this experiment, we used 
five-point Likert items with the following format: () strongly disagree, () somewhat disagree,
() neither agree nor disagree, () somewhat agree, and () strongly agree. e answers from all
the participants are detailed in Appendix C, and further analyzed in § . (p. ).

.. Independent Validation

e independent experimental validation of claims is not as common in Soware Engineering as
in other, more mature sciences. erefore, the (quasi-)experiment here detailed was designed as
an experimental package, to be performed in different locations, and lead by different researchers,
in order to enhance the ability to integrate the results obtained and allow further meta-analysis
on them.

.  

e following sections describe every task given to the participants, quoting the presented text.

.. First Phase: Construction

During the construction phase the tasks were mainly focused on assessing how efficiently the
participants could incrementally build an information system, with three iterations (or releases):

  

You have been given the job of implementing an information system for managing scientific
conferences. Aer a careful requirements analysis, the engineers have concluded that the system
should be implemented in three distinct iterations. For each of these iterations – one for each
task – you’ll find a detailed  class diagram. Due to the fact that the client wants to validate
your system at the end of each iteration, you’ll have to produce three intermediate releases.
Each release should have a working Graphical User Interface and Persistency Engine. e user
should be able to create, read, update and delete the modeled concepts.

Description of Task 

* *

‹‹open-enum››
Scientific Area

Name: text
Website: url

‹‹entrypoint››
Conference

Number: nat
Year: nat
Theme: enum
Description: text
StartDate: date
EndDate: date

Edition

1..*

*

1..*

colocated-with

Class Diagram — Task 1

Figure .: Task 

e first task was designed to yield a very simple system, where only a single screen would
be needed to view and edit the information. ere was no polymorphism, shared aggregations
or any type of conditional rules, and the whole system could be roughly stored in two database
tables:

In this task, you’ll implement the basic concepts of a scientific conference. A conference is typi-
cally related to a specific Scientific Area (e.g., Computer Science or Soware Engineering), but
is it not uncommon to find conferences related to several areas. Each conference has several
editions, normally once per year (e.g., Pattern Languages Of Programs ). Due to several
factors, it is also common for conferences to be co-located with others. For example, the 
editions of “Pattern Languages of Programs” and “Object-Oriented Programming, Systems,
Languages & Applications” were co-located. In the end of this iteration, the user should be
able to manage Conferences and Editions. Model elements tagged with the stereotype entry-
point represent main entry points to the system (e.g., the user should be able to invoke a list of
Scientific Areas from the applications main menu or similar mechanism).

Description of Task 

e second task was designed to introduce the need for more screens (due to indexation), and
a “false” sense of polymorphism in the session type. e number of database tables could grew
from two to four, but with minimal modification to exiting artifacts:

  -

Name: text

‹‹entrypoint››
Index A

B
C

‹‹enum››
Ranking

* 0..*

1

Day: date
Start: time
End: time

Session

Presentation

Poster

0..*

* *

‹‹open-enum››
Scientific Area

Name: text
Website: url

‹‹entrypoint››
Conference

Number: nat
Year: nat
Theme: enum
Description: text
StartDate: date
EndDate: date

Edition

1..*

*

1..*

colocated-with

Class Diagram — Task 2

Figure .: Task 

In this task, you’ll extend your systemwith two extra features. e first one – Indexes – classifies
conferences according to a rating system per year. For example, the index “ISI Web of Knowl-
edge” rates thousands of conferences every year. e rating is given to a particular edition of a
conference, so ISI could rate “Pattern Languages of Programs” as an A in , and as a B in
. e second one - Sessions - allows the user to manage the program (contents) of a confer-
ence. ere are two types of sessions: (a) Presentations, and (b) Poster Sessions. For example,
the  edition of “Object-Oriented Programming, Systems, Languages & Applications” had
one () poster session, and twelve () presentations.

Description of Task 

e third task was deliberately designed to require more complex user-interaction and condi-
tional rules, involving shared many-to-many relations and relation properties:

In this task, you’ll provide your system by adding some remaining core concepts of scientific
conferences. People that participate in conferences as authors have to submit at least one pa-
per, either alone or with colleagues. In addition, they may be Chairs, Organizers or simple
Participants. Different editions normally have different chairs and organizers.

Description of Task 

e purpose of the fourth task was to break any “abstractions” that could have emerged during
the previous iterations:

In this final task, for reasons of practicability, the client has requested that whenever a paper
is submitted to a conference, an email should be sent for the Chairs with the Submission and
Authors relevant information.

  

*

*

* *
Title: text
Paper: file

Submission
Name: text
Affiliation: text
Email: url

‹‹entrypoint››
Person

Chair
Organizer
Participant

‹‹enum››
RoleType

Role

0..*

0..1

1..*

Name: text

‹‹entrypoint››
Index A

B
C

‹‹enum››
Ranking

* 0..*

1

Day: date
Start: time
End: time

Session

Presentation

Poster

0..*

* *

‹‹open-enum››
Scientific Area

Name: text
Website: url

‹‹entrypoint››
Conference

Number: nat
Year: nat
Theme: enum
Description: text
StartDate: date
EndDate: date

Edition

1..*

*

1..*

colocated-with

Class Diagram — Task 3

Figure .: Task 

.. Second Phase: Evolution

During the evolution phase the tasks were focused on assessing of efficiently the participants
could handle change in their artifacts:

During one of the validation sessions with the users, both of them realized that some core aspects
of the system were neglected, and, as such, there would be slight changes in the requirements in
order to improve the overall value of the application.

Description of Requirements Change 

is task was designed with the intention of changing some basic assumptions that would natu-
rally emerge in Task . e Scientific Area enumeration was promoted to an entrypoint. It also
introduced “true” polymorphism in Event, due to the relation between Conference and Work-
shop:

It is imprecise to say that every scientific meeting is a conference. In fact, it is quite common for
conferences and workshops to occur simultaneously. Usually, workshops take place as events
within a conference. is way, Conference should now be considered a specialization of Event.
the same applies to Workshop. In addition, a workshop can only occur in the context of a single
Conference. Additionally, it is now relevant to promote Scientific Area to an entry point in the
system.

Description of Requirements Change 

is task was very small, but it could easily disrupt previous assumptions. e “false” poly-
morphism in the type of Session (which could have been implemented using a simple type-

  -

Name: text

‹‹entrypoint››
Scientific Area

* *
Conference

Workshop

0..1
0..* Name: text

Website: url

‹‹entrypoint››
Event

Number: nat
Year: nat
Theme: enum
Description: text
StartDate: date
EndDate: date

Edition

1..*

*

1..*

colocated-with

Class Diagram — Evolution 1

Figure .: Changes for Task 

discriminator), now lead to the need of inheritance, by extending the allowed sub-types and
introducing a property that only makes sense in Keynote:

A new session type is added – the Keynote – for which is necessary to store its synopsis.

Name: text

‹‹entrypoint››
Index A

B
C

‹‹enum››
Ranking

* 0..*

1

Day: date
Start: time
End: time

Session

Presentation

Poster

Sinopse: text

Keynote

1..*

Name: text

‹‹entrypoint››
Scientific Area

* *
Conference

Workshop

0..1
0..* Name: text

Website: url

‹‹entrypoint››
Event

Number: nat
Year: nat
Theme: enum
Description: text
StartDate: date
EndDate: date

Edition

1..*

*

1..*

colocated-with

Class Diagram — Evolution 2

Figure .: Changes for Task 

Description of Requirements Change 

is final task bring several rules to the system: the new relations between Submission, Pre-
sentation and Poster override the previous relation between Submission and Session, specifying
different cardinalities in relation ends. Role now also carries an additional property:

e users realized that, although Presentation and Poster sessions are always related to Sub-
mission (via Session), a presentation is always about a single submission, while posters sessions

  

normally occur in parallel (i.e., all submitted posters presented at the same time). Keynotes,
on the other hand, have nothing to do with submissions, and are presented by a high-profile
invited researcher in a particular field. A subtle detail is that the relationship between Person
and any particular Conference should allow users to store some Notes over the registration (e.g.,
some guests don’t pay fee, other have special requests like vegetarian food, etc.)

*

*

* *
Title: text
Paper: file

Submission
Name: text
Affiliation: text
Email: url

‹‹entrypoint››
Person

Chair
Organizer
Participant

‹‹enum››
RoleType

0..*
0..1

0..1

1

1..*

1 0..*

Notes: text

Role

Name: text

‹‹entrypoint››
Index A

B
C

‹‹enum››
Ranking

* 0..*

1

Day: date
Start: time
End: time

Session

Presentation

Poster

Sinopse: text

Keynote

1..*

Name: text

‹‹entrypoint››
Scientific Area

* *
Conference

Workshop

0..1
0..* Name: text

Website: url

‹‹entrypoint››
Event

Number: nat
Year: nat
Theme: enum
Description: text
StartDate: date
EndDate: date

Edition

1..*

*

1..*

colocated-with

Class Diagram — Evolution 3

Figure .: Changes for Task 

.  

e post-test questionnaire handed to the subjects was designed using a Likert scale — see Ap-
pendixes B and C. is experimental design used a  five-point Likert items with the following
format: () strongly disagree, () somewhat disagree, () neither agree nor disagree, () somewhat
agree, and () strongly agree. e  items where divided into the following relevant groups:

. Background. Although an objective comparison between the background of each group
was already conducted using the subjects average grades in key courses § .. (p. ), it
is important to assert that there is no subjective difference among the participants with
respect to basic skills, with the exception of BG., since no group had any prior contact
with the Oghma framework.

. External Factors. Analysis of external factors allowed us to remove any validation threats
concerning the experimental conditions, particularly the fact that subjects were being
video-taped.

  -

. Overall Satisfaction. is was the main group that provided subjective validation to the
thesis, by questioning subjects about their performance, effectiveness, correctness, and
reaction to the introduced requirements change in Phase .

. Development Process. is group of questions intended to put the experiment in per-
spective with both previous subject experiences, and the main difficulties they had en-
countered.

We will now present a detailed analysis for the most relevant items in the questionnaire. Let
the null hypothesis be denoted as H0, the alternative hypothesis as H1, the baseline group as
Gb, the experimental group as Ge, and ρ the probability estimator of wrongly rejecting the null
hypothesis. en, the alternative hypothesis are either: (i) H1 : Ge ‰ Gb, the experimental
group differs from the baseline, (ii) H1 : Ge ă Gb, the measure in the experimental group
is lower than the baseline, or (iii) H1 : Ge ą Gb, the measure in the experimental group is
greater than the baseline. e outcomes of the two treatments were compared for every answer
using the non-parametric, two-sample, rank-sum Wilcoxon-Mann-Whitney [HW] test, with
n1 = n2 = 9. e significance level for all tests was set to . Probability values of ρ ď

0.05 are considered significant, and ρ ď 0.01 considered highly significant. e corresponding
alternative hypothesis are further detailed for each question, and the raw data can be found in
Table C. (p. ).

.. Background

Although an objective comparison between the backgroundof each groupwas already conducted
using the subjects average grades in key courses § .. (p. ), this section rejects any subjective
difference among the participants with respect to their basic skills, despite a deliberate disadvan-
tage in the experimental group w.r.t. the programming language and environment, as observed
in the results of items BG. and BG..

BG. I have considerable experience using frameworks

Let H1 : Ge ‰ Gb, there was no significant difference (ρ = 1.000) in the scores for the ex-
perimental (x̄ = 3.44, σ = 0.53) and baseline (x̄ = 3.44, σ = 0.88) conditions, as seen in Ta-
ble . (p. ). Students revealed a verymodest knowledge on using frameworks, consistent with
their academic track.

BG. I have considerable experience with this particular framework

Let H1 : Ge ă Gb, there was highly significant difference (ρ = 0.001) in the scores for the
experimental (x̄ = 1.11, σ = 0.33) and baseline (x̄ = 3.11, σ = 1.27) conditions, as seen

  

  
 x̄ σ  x̄ σ H1 W ρ

BG. . . . . . . ‰ . .
BG. . . . . . . ă . .
BG. . . . . . . ‰ . .
BG. . . . . . . ‰ . .
BG. . . . . . . ‰ . .
BG. . . . . . . ‰ . .
BG. . . . . . . ‰ . .
BG. . . . . . . ‰ . .
BG. . . . . . . ‰ . .
BG. . . . . . . ‰ . .

Table .: Summary of Background results, including the values of the non-parametric significanceMann-
Whitney-Wilcoxon test. Items with significant statistical difference in their score have the value
of the probability estimator underlined.

in Table .. is result is in accordance to the fact that no subject had any prior contact with the
Oghma framework.

BG. I have considerable experience with this particular programming language

LetH1 : Ge ‰ Gb, therewas significantdifference (ρ = 0.045) in the scores for the experimental
(x̄ = 3.33, σ = 1.12) and baseline (x̄ = 4.33, σ = 0.50) conditions, as seen in Table .. is
result was also expected, since Java plays a significant role in the students curricula, with C only
being marginally mentioned, if at all.

BG. I have considerable experience developing industrial-level applications

Let H1 : Ge ‰ Gb, there was no significant difference (ρ = 0.731) in the scores for the experi-
mental (x̄ = 2.56, σ = 0.73) and baseline (x̄ = 2.78, σ = 0.97) conditions, as seen in Table ..
As expected from  year students, their subjective opinion shows that they were not very expe-
rienced in developing industrial-level applications.

BG. I have considerable experience analyzing and specifying information systems

Let H1 : Ge ‰ Gb, there was no significant difference (ρ = 0.962) in the scores for the experi-
mental (x̄ = 3.11, σ = 0.93) and baseline (x̄ = 3.00, σ = 1.00) conditions, as seen in Table ..
Similarly to item BG., their subjective opinion is that they possess moderate experience in
information system analysis and specification.

  -

BG. I have considerable experience with object-oriented architecture design and implemen-
tation

LetH1 : Ge ‰ Gb, therewas significantdifference (ρ = 0.036) in the scores for the experimental
(x̄ = 4.33, σ = 0.71) and baseline (x̄ = 3.44, σ = 0.88) conditions, as seen in Table . (p. ).
ese results are odd, since their academic backgroundwas the same, and the pre-test evaluation
§ .. (p. ) showed no statistical deviation on their grades. We assume this item was probably
influenced by the overall success using the Oghma framework, which changed their subjective
understanding on how they perceive object-oriented architectures.

BG. I have considerable experience with agile development methodologies

LetH1 : Ge ‰ Gb, therewas significantdifference (ρ = 0.043) in the scores for the experimental
(x̄ = 3.67, σ = 0.71) and baseline (x̄ = 2.89, σ = 0.93) conditions, as seen in Table . (p. ).
Similarly to item BG., we also assume some subjective understanding on their perception aer
the experiment was done. Nevertheless, the scores are lower than item BG., which is consistent
with their academic background.

BG. I have considerable experience with classical development methodologies

Let H1 : Ge ‰ Gb, there was no significant difference (ρ = 0.457) in the scores for the ex-
perimental (x̄ = 3.89, σ = 0.60) and baseline (x̄ = 3.67, σ = 0.71) conditions, as seen in Ta-
ble . (p. ). As expected, both scores are consistently higher than the two othermethodologies
in items BG. and BG., which is consistent with their academic background.

BG. I have considerable experience with formal development methodologies

Let H1 : Ge ‰ Gb, there was no significant difference (ρ = 0.848) in the scores for the ex-
perimental (x̄ = 2.78, σ = 0.83) and baseline (x̄ = 2.67, σ = 0.71) conditions, as seen
in Table . (p. ). Also as expected, both scores are consistently lower than the two other
methodologies in items BG. and BG., which is consistent with their academic background.

BG. I have considerable experience with UML class diagrams

Let H1 : Ge ‰ Gb, there was no significant difference (ρ = 0.102) in the scores for the ex-
perimental (x̄ = 4.11, σ = 1.05) and baseline (x̄ = 3.44, σ = 0.73) conditions, as seen in Ta-
ble . (p. ). Both groups exhibited positive responses to this item (which is also consistent
with their academic background), and thus not posing a validation threat to the usage of UML
class diagrams in their tasks.

  

.. External Factors

In the design of this experiment, data gathering was done using video-cameras, microphones,
and soware that captured screencasts. From the experimental point of view, it is important to
discard if these devices, and the fact that participants knew they were being observed, posed a
threat to validation. Additionally, each treatment were applied to groups of three participants,
so it is also important to analyze if they worked well together and didn’t reacted negatively to
the experiment. is is a two-fold analysis, both focusing on the participants as a whole, and in
group comparison.

  
 x̄ σ  x̄ σ H1 W ρ

EF . . . . . . ‰ . .
EF . . . . . . ‰ . .
EF . . . . . . ‰ . .

Table .: Summary of External Factors results, including the values of the non-parametric significance
Mann-Whitney-Wilcoxon test.

EF I felt disturbed and observed by the cameras

Let H1 : Ge ‰ Gb, there was no significant difference (ρ = 0.389) in the scores for the experi-
mental (x̄ = 1.89, σ = 0.78) and baseline (x̄ = 1.78, σ = 1.39) conditions, as seen in Table ..
Moreover, . of the total participants felt indifferent to the fact they were being observed by
the cameras, so this factor can be discarded as a threat.

EF I enjoyed programming in the experiment

LetH1 : Ge ‰ Gb, therewas significantdifference (ρ = 0.037) in the scores for the experimental
(x̄ = 4.44, σ = 0.73) and baseline (x̄ = 3.33, σ = 1.12) conditions, as seen in Table .. In other
words, this item was measuring the fun factor or the novel factor. Although both groups reacted
positively to the experience,  of the participants in the experimental group agreed with the
assertion, among which  strongly agreed with it. Despite the several interpretations to this
results, it is believed that the general success of the experimental group, as well as the feeling of
working with “something new”, contributed to the statistical difference observed. Nonetheless,
only two of the total participants had a mildly negative feeling towards the experiment, so this
factor can also be discarded as a threat to the whole experiment.

  -

EF I would work with my partners again

LetH1 : Ge ‰ Gb, therewas significantdifference (ρ = 0.035) in the scores for the experimental
(x̄ = 4.67, σ = 0.50) and baseline (x̄ = 3.89, σ = 0.78) conditions, as seen in Table . (p. ).
Similarly to item EF, the experimental group showed a slight evidence in working with the
same partners again. Nonetheless, the fact that there were no negative answers further allow us
to discard this factor as a threat to the whole experiment.

.. Overall Satisfaction

iswas themain group that provided subjective validation to the thesis, by questioning subjects
about their performance, effectiveness, correctness, and participant’s reaction to the introduced
requirements change in Phase .

  
 x̄ σ  x̄ σ H1 W ρ

OVS . . . . . . ą . .
OVS . . . . . . ą . .
OVS . . . . . . ă . .
OVS . . . . . . ă . .
OVS . . . . . . ą . .
OVS . . . . . . ą . .
OVS . . . . . . ă . .
OVS . . . . . . ă . .
OVS . . . . . . ą . .

Table .: Summary of Overall Satisfaction results, including the values of the non-parametric significance
Mann-Whitney-Wilcoxon test.

OVS Overall this particular setup was suitable for solving every task presented

Let H1 : Ge ą Gb, there was highly significant difference (ρ = 0.002) in the scores for the
experimental (x̄ = 3.67, σ = 0.50) and baseline (x̄ = 2.44, σ = 0.73) conditions, as seen
in Table .. e results of this answer support the hypothesis that the Oghma framework is
more suitable to develop and evolve the type of information system proposed in this experiment
than a traditional approach of using a general purpose language and a relational database.

OVS I found myself thinking more about the end system purely in terms of the structure of
domain objects

Let H1 : Ge ą Gb, there was no significant difference (ρ = 0.977) in the scores for the experi-
mental (x̄ = 3.00, σ = 0.87) and baseline (x̄ = 3.67, σ = 0.50) conditions, as seen in Table ..

  

e original hypothesis postulated that participants in the experimental group would be moti-
vated to abstract from implementation details and think more in terms of domain objects. Sur-
prisingly, it was the baseline group that showed an higher tendency to agree with this assertion,
although not statistically significantly.

OVS I found myself thinking more about the end system more in terms of the structure of
the database and user interaction

Let H1 : Ge ă Gb, there was no significant difference (ρ = 0.594) in the scores for the ex-
perimental (x̄ = 2.89, σ = 0.93) and baseline (x̄ = 2.89, σ = 0.78) conditions, as seen
in Table . (p. ). Similar to OVS, the original hypothesis postulated that participants in
the experimental group would be discouraged from considering details such as database struc-
ture and user-interaction. However, both groups displayed similar answers to this item and as
such we cannot reject the null hypothesis.

OVS I found very difficult to directly translate specifications into final artifacts

Let H1 : Ge ă Gb, there was no significant difference (ρ = 0.072) in the scores for the ex-
perimental (x̄ = 2.22, σ = 0.83) and baseline (x̄ = 2.89, σ = 0.78) conditions, as seen
in Table . (p. ). Despite no single participant in the experimental group agreed with this as-
sertion, there isn’t statistical significance to support the hypothesis of a difference in complexity
when translating conceptual specifications into final artifacts.

OVS I was able to create the underlying object model at least as rapidly as I could normally
have created a specification

Let H1 : Ge ą Gb, there was no significant difference (ρ = 0.233) in the scores for the ex-
perimental (x̄ = 3.44, σ = 0.73) and baseline (x̄ = 3.22, σ = 0.67) conditions, as seen
in Table . (p. ). e results for this item do not support the hypothesis that creating the
object model in the experimental group would be much quick that in the baseline group, when
subjectively comparing to the effort of creating a specification. As such, the subjective notion
that the effort of producing a specification would be as quick as declaring the object model using
the framework is not supported by the results. e inability to reject the null hypothesis may be
related to the fact that the experimental group was having its first contact with the framework,
and as such the timespan of the experiment wasn’t enough to reveal those benefits.

OVS I was able to create the user interface at least as rapidly as it could normally have been
prototyped

Let H1 : Ge ą Gb, there was highly significant difference (ρ = 0.001) in the scores for the
experimental (x̄ = 3.67, σ = 1.50) and baseline (x̄ = 1.33, σ = 0.50) conditions, as seen in Ta-

  -

ble . (p. ). As expected, the baseline group evidenced the complexity and time-consuming
activity inherent to building an maintaining a functional user-interface, compared to the gener-
ative approach in the experimental treatment.

OVS Additional requirements represented considerable added effort

LetH1 : Ge ă Gb, therewas significantdifference (ρ = 0.012) in the scores for the experimental
(x̄ = 1.67, σ = 1.12) and baseline (x̄ = 2.78, σ = 0.83) conditions, as seen in Table . (p. ).
ese results support the hypothesis that the effort of adding new requirements was lower in the
experimental group.

OVS Change of existing requirements represented considerable added effort

LetH1 : Ge ă Gb, therewas significantdifference (ρ = 0.016) in the scores for the experimental
(x̄ = 1.89, σ = 1.05) and baseline (x̄ = 3.00, σ = 0.87) conditions, as seen in Table . (p. ).
Similarly to OVS, these results support the hypothesis that the effort of changing and evolving
existing requirements is lower in the experimental group.

OVS I found that the resulting application could be used in production-level environments
with minimal or no change

LetH1 : Ge ą Gb, therewas significantdifference (ρ = 0.029) in the scores for the experimental
(x̄ = 2.44, σ = 0.88) and baseline (x̄ = 1.56, σ = 0.88) conditions, as seen in Table . (p. ).
Despite no group had time to finish all tasks presented, this item measures the confidence that
each group had to deliver the product as-is, or with minimal change.  of the participants
in the baseline group strongly rejected the idea of deploying their implementation, compared
to  in the experimental group. Still, even in the experimental group, no single participant
agreed with this assertion, which could be explained by the experimental timespan available and
overall experience with the framework.

.. Development Process

is group of questions intended to put the experiment in perspective with both previous subject
experiences, and the main difficulties they had encountered.

DVP. I found the development style of this setup suitable for using in the context of agile
methodologies

Let H1 : Ge ‰ Gb, there was significant difference (ρ = 0.022) in the scores for the exper-
imental (x̄ = 4.33, σ = 0.71) and baseline (x̄ = 3.33, σ = 0.87) conditions, as seen in Ta-
ble . (p. ). is item should be analyzed as potentially correlated with BG., where a sig-

  

  
 x̄ σ  x̄ σ H1 W ρ

DVP. . . . . . . ‰ . .
DVP. . . . . . . ‰ . .
DVP. . . . . . . ‰ . .
DVP. . . . . . . ą . .
DVP. . . . . . . ă . .
DVP. . . . . . . ă . .
DVP. . . . . . . ă . .

Table .: Summary of Development Process results, including the values of the non-parametric signifi-
cance Mann-Whitney-Wilcoxon test.

nificant statistical deviation among the two different treatments was observed. According to the
results, the experimental group had a stronger background in agile methodologies than the base-
line group. Similarly, in this item, the experimental group also had a stronger positive opinion
regarding the use of this technology in agile setups. Because of this correlation, a conservative
interpretation to the hypothesis that the experimental treatment is suitable for agile environ-
ments should be inconclusive, until further studies, and a possible meta-analysis, discard the
correlation.

DVP. I found the development style of this setup suitable for using in the context of classic
methodologies

Let H1 : Ge ‰ Gb, there was no significant difference (ρ = 1.000) in the scores for the experi-
mental (x̄ = 2.89, σ = 0.78) and baseline (x̄ = 2.89, σ = 0.60) conditions, as seen in Table ..
Since there was also no statistical differences observed in item BG., one cannot reject the null
hypothesis that the two treatments are indifferent to the context of classic methodologies.

DVP. I found the development style of this setup suitable for using in the context of formal
methodologies

Let H1 : Ge ‰ Gb, there was no significant difference (ρ = 0.924) in the scores for the experi-
mental (x̄ = 2.44, σ = 1.01) and baseline (x̄ = 2.44, σ = 0.53) conditions, as seen in Table ..
Since there was also no statistical differences observed in item BG., one cannot reject the null
hypothesis that the two treatments are indifferent to the context of formal methodologies. Still,
when compared to items DVP. and DVP., the scores are slightly lower, as expected.

  -

DVP. I found the development style of this setup suitable for developing face to face with
the client

LetH1 : Ge ą Gb, therewas significantdifference (ρ = 0.022) in the scores for the experimental
(x̄ = 4.11, σ = 1.27) and baseline (x̄ = 2.78, σ = 1.39) conditions, as seen in Table . (p. ).
e score of this item support the hypothesis that the experimental treatment is more suitable
for quick prototyping and addressing real-time requirements.

DVP. Concerning this particular setup most of my difficulties were dealing with the Persis-
tency Engine

LetH1 : Ge ă Gb, therewas significantdifference (ρ = 0.050) in the scores for the experimental
(x̄ = 2.33, σ = 1.66) and baseline (x̄ = 3.56, σ = 1.59) conditions, as seen in Table . (p. ).
e score of this item support the hypothesis that the effort to deal with data persistency when
requirements change would be significantly lower in the experimental setup.

DVP. Concerning this particular setup most of my difficulties were building a Graphical
User Interface

Let H1 : Ge ă Gb, there was highly significant difference (ρ = 0.001) in the scores for the
experimental (x̄ = 2.00, σ = 1.22) and baseline (x̄ = 4.22, σ = 0.67) conditions, as seen in Ta-
ble . (p. ). Similarly to item DVP., the score of this item support the hypothesis that the
effort to deal with the graphical user-interface when requirements change would be significantly
lower in the experimental setup.

DVP. Concerning this particular setup most of my difficulties were implementing the core
Business Logic

Let H1 : Ge ă Gb, there was no significant difference (ρ = 0.991) in the scores for the ex-
perimental (x̄ = 3.33, σ = 1.22) and baseline (x̄ = 1.89, σ = 0.93) conditions, as seen in Ta-
ble . (p. ). Contrary to expected, this scores do not display a significant statistic difference
between the two groups when considering that the experimental group should be lower than the
baseline group (it shows a statistical difference in the exact opposite direction). Probably this
is due to correlation with items DVP. and DVP., where participants answered “proportion-
ally” to those items (i.e., because the experimental group had low difficulties in the GUI and
persistency, then, by elimination of choices, any difficulties they had would fall into the Business
Logic). Hence, not only this score doesn’t allow the rejection of the null hypothesis, it also points
to a potential issue when designing Likert-scale questionnaires.

  

.  

e experiment had two live video feeds being recorded: (i) a standard camera pointing directly
to both the participants and the whiteboard, and (ii) a screencast of the computer the participants
were using. e initial intent was to measure time, correctness and complexity of the produced
artifact in a non-intrusive manner. However, due to a design mistake, the participants were
not properly informed they should strictly finalize each task independently, and as such they
paralleled the implementation. is prevented an objective measurement of time expended for
each task, since they tended to overlap.

Nevertheless, it is still possible to measure the final artifacts in terms of implemented re-
quirements. Each task may be partitioned into three major concerns: (i) domain structure, (ii)
persistency, and (iii) user-interface. A summary of the final artifacts is provided in Table .,
using the following grades: (A) perfect implementation, with user-interface, persistency and
rules, (B) mostly implemented, with minimal issues, (C) poorly implemented, with incomplete
user-interface, persistency andmissing rules, (D) hardly implemented, withminimal or no user-
interface and persistency, and (-) Not addressed.

C E
T T T T E E E

Baseline Group I C - - - - - -
Baseline Group II C - - - D C D
Baseline Group III C C D - D C D

Experimental Group I A B B - B A B
Experimental Group II A A - - B A B
Experimental Group III B B - - - - -

Table .: Implemented requirements.

No group in the baseline treatment was able to produce an usable (even if minimal) user-
interface, although they mostly tried to design it using the graphical tools provided by Eclipse.
e same applies for persistency. All groups in both the baseline and experimental treatments ig-
nored task . Most groups were also planning for the whole h to produce tasks  – , and thus the
development was in very early stages when the evolution tasks were handed. Most groups never
tried to re-address missing tasks once confronted with those related to the system’s evolution.

.  

e outcome of validation is to gather enough scientific evidence to provide a sound interpreta-
tion of the scores. Validation threats are issues and scenarios that may distort that evidence and

  -

thus incorrectly support (or discard) expected results. Each validation threat should be expected
and addressed a priori in order to yield unbiased results:

• Misunderstanding the given tasks. Because the tasks relied on specifications given in
textual form and supported by  diagrams, it is necessary to ensure that the participants
correctly interpret them. is threat is discarded by both the pre-test evaluation and the
results from item BG..

• Unsuitable base skills to perform the tasks. e tasks required participants to have the
necessary skills to build and evolve information systems, namely knowing how to work
with the given programming language, integrated development environment and database
engine. Once again, this threat is discarded by both the pre-test evaluation and the results
from items BG., BG., and BG..

• Overhead of necessary tools to perform the tasks. Because the experiment was timed, it
is necessary to ensure that participants focus on the tasks at hand. In order to discard this
threat, the necessary setup was conducted before the experiment by the researchers.

• Proficiency with the experimental treatment. Although it was required that the baseline
group had previous contact with the needed theory and tools, a conservative approach to
the experimental treatment where no participant had previous contact with the framework
(as seen in item BG.) allows to completely discard this threat.

• Disturbance due to observation procedures. Due to the nature of data gathering devices
(i.e., video-cameras, microphones, and screencast soware), participant’s performance
could be hindered by the feeling of being “judged” and observed. e results of item EF
allow this threat to be discarded.

• Disturbance due to social factors. e fact that groups were formed randomly could lead
to situations were some individuals would’t work well collaboratively. is threat is dis-
carded by the results of itemEF, although the experimental group exhibited higher scores.

• Disturbance due to lack of motivation. Due to the length of the tasks (h in total), and
the fact that there was no compensation to individuals participating in the experiment, the
lack of motivation could hinder the outcome. is threat is discarded by the results of item
EF, although the experimental group also exhibited higher scores, consistent with item
EF.

e following threats were not completely discarded, and should be the focus of future stud-
ies:

 

• Different skills regarding agile methodologies. e potential correlation between items
BG. and DVP., may suggest that because the experimental group had higher skills in
agile methodologies, somehow it influenced the experimental results. While it is hard to
see why such skills would make a significant difference in a setup were the specifications
were not formalized by the participants, but given at the beginning of the experiment, one
could argue that those with an agile background were skilled in the production of artifacts
more suitable to change. Would this premise be accepted, then a new study where the
tendency is changed (i.e., non-agile practitioners belonging to the experimental group),
would provide more data to correctly interpret the observations. However, because no
participant knew that the requirements would be the target of change, one can discard this
threat with moderate confidence.

• Biased responses in the background section due to post-test subjective perception. e
items measuring the background expertise were part of the post-test questionnaire. Al-
though pre-test evaluation discard this item as an experimental threat, it doesn’t eliminate
possible correlations between the background and other scores, due to a possible biased
subjective perception gained a posteriori w.r.t. the achieved results. In order to eliminate
this threat, a new study should move the background section to a pre-test questionnaire.

• Correlation among different items due to no alternate choice. When participants are
faced with a set of items that may be interpreted as a choice partition (e.g. items DVP.,
DVP., and DVP.), those items may become correlated or “relativized”. A stronger
issue can arise if the items, though disjoint, are not complete (i.e., there could be more
possible choices), and would force a participant to choose among one of the alternatives.
In future studies, adding an extra item that would “catch” all other unforeseen choices
could diminish this potential threat.

e power of this study could also be improved by (i) increasing the number of participants,
and (ii) switching the participant roles, where all individuals in the experimental group would
be observed under the baseline treatment, and vice-versa.

. 

is chapter detailed a quasi-experiment conducted within a controlled experimental environ-
ment using the framework developed in previous chapters. One of the goals was to provide evi-
dence in areas that are open to validation threats inherent to case-studies analysis, as performed
in chapter Chapter  (p. ). e pre-test evaluation guaranteed no statistical deviation among
the two treatments w.r.t. their background and basic skills.

e post-test questionnaire was used to assess the outcomes of each treatment. e final
results supports the hypothesis that developing using the Oghma framework is more efficient,

  -

both in terms of producing a system from scratch, as well as dealing with changing requirements,
when compared to a traditional approach of using a general purpose language, and a relational
database management system.

Some threats to this validation were identified and further discarded by analyzing the scores
in the post-test questionnaire and due to the nature of the experimental setup. Not all origi-
nal hypothesis were supported, though, and some borderline threats which emerged aer the
experiment can help to refine new studies.

Chapter 

Conclusions

. Summary of Hypotheses . 
. Main Results . 
. Future Work . 
. Epilogue . 

In this dissertation, we started by looking at the recurrent issues of the soware engineering field,
specifically on two contingent factors: (i) that the field is in crisis, in terms of the ratio between
successful and challenged/canceled projects, and (ii) that no “silver bullet” has yet been found.
Behind this status quo, unreasonable expectations from the stakeholders and constant change
of the requirements are to be blamed. And, as such, the mainstream focus has mainly been on
coping with these issues through new soware development methodologies. Yet, we decided to
tackle the problem from a different angle. Inspired by the way agile methodologies looked upon
the development process to embrace change, we hypothesized how soware specifically synthe-
sized to copewith continuous changewould look like. And in search for this form, the architecture
and design behind such systems, we have found the adaptive object-model architectural pattern.

.   

e author’s fundamental research question was stated as:

What form should this type of systems take, and which kind of tools and infrastructures should
be available to support the development of such soware systems?

And further decomposed into the following hypotheses, always in comparison with a traditional
approach of using a generic purpose language:

 

• H: A framework would provide amore suitable infrastructure for developing incom-
plete by design systems.

• H: Developers’ focus would shi from implementation artifacts to domain objects.

• H: Translation of conceptual specifications into final applicationswould bemore straight-
forward.

• H: e effort of adding or changing existing requirements would be lower.

• H: Prototyped applications could be immediately, or with little changes, used in
production-level environments.

• H: e style of development would promote agile principles.

• H: e style of development would be suitable to develop face-to-face with the client.

.  

e following items summarize the main results obtained:

• Contributions to the formalization of a pattern language for AOM. Seven new patterns
were formalized in Chapter  (p. ), viz. (i) E   T, which solves the
problemof finding a unified representation for observing andmanipulating data andmeta-
data, (ii) C  R, which addresses the issue of having a possible unbound
number of (meta-)meta-models, (iii) B, which is used to cope with defini-
tions that depend on themselves, (iv) L S, which is able to handle transiently
inconsistent/undefined system states, (v) H O, intended to keep track
of operations performed upon objects, without knowing their specific details, (vi) S
M, which preserves the notion of system-wide evolution, and allows access to any
arbitrary previous state of the system, and (vii) M, which supports the evolution
of a system while maintaining its integrity, through the composition of evolution rules.

• e specification of a reference architecture for AOM frameworks. A high-level archi-
tecture of a  framework was defined, identifying the main components and their rela-
tionships. rough the composition of patterns previously identified, it proposes solutions
for design concerns, namely: (i) the necessary abstractions, (ii) the generic functionalities
it should provide, (iii) a default, but modifiable, behavior, and (iv) the points of extension.

• A reference implementation of such framework. e implementation of an object-
oriented framework targeted to the development of information systems whose structural
requirements could be best described as incomplete by design, built upon the other contri-
butions made in this dissertation.

  

Additionally, the results of validation procedures also add to the body of knowledge:

• Study on the usage of AOM in industrial applications. e framework proposed in this
dissertation was validated using a time-series analysis performed during the  of two
case studies, viz. (i) Locvs, a medium-sized information system for architectural and ar-
chaeological heritage, and (ii) Zephyr, a small information system for document records
management. e experience gained in building and deploying industrial-level applica-
tions based on the  meta-architecture, as well as construction of a  framework, is
documented in Chapter  (p. ) and represents per-se a contribution not yet found in the
literature. is study provided evidence that all the above mentioned hypotheses hold.

• Study on key benefits of AOM through (quasi-)experiments. A quasi-experiment specif-
ically designed to discard some validation threats inherent to the use of case-studies, also
gathers empirical evidence of several claims on benefits and liabilities of using . is
experiment provided evidence that the hypothesis H-H and H hold.

.  

In the questionnaire handed to the professionals that had contact with the framework, we asked
about what would they value as new features. e summary of the answers is presented in Ta-
ble .. At the top of themost-wanted features is a graphicalmodel editor—understandable since
the auto-generated  currently only allows evolution to a certain extent, and the generated 
for editing the model based on the meta-model is not very friendly. e next two most-wanted
features is a -based interface, and support for workflows and business process modeling.

Concerning new framework features, I would value…  x̄ σ

…an web-powered (HTML) user-interface . . .
…workflows and business process management modeling . . .
…more hooks . . .
…graphical model editor . . .
…interoperability with third-party model tools . . .
…extensive support for model refactoring . . .

Table .: New features results of industrial survey, each line representing the data of a single question,
with corresponding means and standard deviation values, with n = 7.

e following items pose further research that could be pursued in line with this dissertation:

.. Evolving Oghma

Perhaps one of the greatest problems in pursuing empirical validation on soware engineer-
ing artifacts is that they must exist. In this case, as pointed by Yoder et al. [Yod], no known

 

framework for building -based systems was published up until this point. If the original
thesis statement in this dissertation was to prove an existential, i.e., Dx@y : IsFramework(x)^

Build(x,y) ^ IsAOM(y), then one could simply argue about the (im)possibility of existing
such framework. But merely pointing out to its possible existence, or even draing how it would
look like, wouldn’t allow empirical experimentation to be carried upon — one is required to
have it. As such, a considerable amount of time and effort was dedicated to actually build such
framework, up to a point where it could be used in industrial-level applications¹. Right now,
the framework slightly exceeds k , developed in a timespan of almost three years, as seen
in Figure ..

lin
es

 o
f c

od
e

39
7

25
00

0
50

55
4

2008 2009 201007−2007 07−2010

Figure .: Evolution of the Oghma implementation of, showing the project code-base between July 
and July , measured in lines of code. e vertical lines display the cumulative size of the
differences per day.

It shouldn’t be surprising that the architecture and design presented in Chapter  (p. ) al-
ready points to solutions that are not yet present in the current implementation of the framework,
e.g., branching and reconciliation of data and meta-data by the end-user. At the time of this dis-
sertation, the latest development builds of the framework have been used as a starting project for
 year students to learn, explore and develop on top of large code bases on the course Soware
Development Laboratory² [FCR].

.. Web-based Adaptive User Interfaces

Up until now, only a small amount of work regarding adaptive systems on the web can be found,
though several websites offer varying degrees of customization, such as repositioning content on
the webpage, adding new content³, or changing the overall look of the application⁴ [Goo, Pag].

¹ Which poses another problem per-se, since there is a plethora of concerns that must be addressed and imple-
mented, and which does not contribute to the state-of-the-art.

² Master in Informatics and Computing Engineering, from the University of Porto, Faculty of Engineering.
³ Usually small applications known as widgets.
⁴ Commonly known as skinning or theming.

  

ere are also some examples of adaptability to each individual user. is is accomplished by
mining information relative to where the user comes from and its past actions in order to cater
to the perceived results the user expected [GGGR]. As already mentioned in this dissertation,
the fundamental property of adaptive soware is to allow end-users to introduce changes in
its underlying structure and behavior. However, these websites do not allow their end-users to
modify the underlying model of the system; only the overall look&feel and, to some extent, what
information is displayed on the page — thus still relying on developers to deal with structural
and behavioral rules. As such, these systems are very different from those discussed in this work.

Nevertheless, such websites possess valuable information regarding the most common user-
interface mechanisms. Drag-and-drop is used extensively to reorganize information and per-
form basic tasks such as adding and removing basic container blocks. ese mechanisms and
interaction paradigms can be used to modify any kind of system from an end-user perspective,
be it a  system or not. is study is currently being pursued by João Gradim as his master’s
thesis [Gra].

.. Improving Usability of Automatically Generated GUI

While automatic run-time generated user-interfaces may not be on pair with custom-made ones
regarding usability, they seem to be consistent and based on a strict set ofmetaphors, supporting a
quick learning process by users. Nonetheless, which mechanisms should the framework provide
to improve usability and customization of , while retaining the capability of automatically
generating them? is study is currently being pursued by André Carmo as his master’s thesis.

.. Continuing the Pattern Language

e study on automatically generating , and allowing non-programmer end-users to effi-
ciently cope with domain changes may provide new patterns to add to the pattern language.
And despite the seven patterns here presented, the pattern language as a whole is not yet finished,
probably requiring a multi-year, multi-person effort, with constant feedback from the patterns
community.

.. Self-Hosting

Self-hosting is the capability of a programming language to be built on top of itself. Few pro-
gramming languages actually exploit this characteristic, with  probably being the most well
known [HL]. In object-oriented programming, since the creation of Smalltalk [Kay], most
modern languages are not designed with self-hosting in mind; instead, this feature is delegated
to non-mainstream projects, such as PyPy [Pyp] for Python and Rubinius [Rub] for Ruby.

 

Likewise, Oghma is currently not self-hosted (though it is self-compliant). It would be inter-
esting to see the advantages and disadvantages⁵ of attaining such goal.

. 

At the end of a period of three years, it is inevitable to take a look back and ponder. Whenwe start
a Ph.D., we are told that we must have novel ideas, that we must publish good results, and that
we must conduct science. Perhaps the biggest misunderstanding comes from what it is actually
meant for novel, results and science.

At the beginning, it is usual to try to imagine something that no-one has ever done before.
Something we believe could solve most of the problems in our area. en realize that most ideas
we have had already been thought of…probably years ago. is is why one is required to do an
extensive review of the literature: to learn about all those previous ideas⁶ and try focus on the
specific problems yet to be solved. But how exactly are we supposed to build on top of those
ideas? Perhaps in a branch such as mathematics⁷, one could point to other’s proofs and theories
and then move to our own. But in engineering, as the branch of science concerned with the
design, building, and usage of structures, one must have those previous structures. And when
they aren’t readily available, we are faced with a dilemma: either we restrict to build prototypes
— proof of concepts — and leave the burden of integration for someone else, or we must get our
hands “dirty” and start from scratch. Looking back, I cannot be absolutely sure if the former
was the right choice, given the available timespan, but it surely was the best way to make this
work usable in settings beyond the academy. Novel should thus be regarded as advancing the
state-of-the-art, taking care to stand on the shoulders of giants.

en comes the problem of publishing results. Much has been said about the reason and
importance of publishing, and from which I refrain to make comments (considering my short
experience as a researcher). But perhaps the intended message may be found by observing the
innovative revision process of the conferences on     ():
each paper has a shepherd — a non-anonymous reviewer — that leads the author in a series of
iterations to improve the paper’s content, before being accepted or rejected. Even if accepted,
the content is further discussed during the conference by a group of peers in a writer’s work-
shop. Only aer that unusually long cycle of revisions is the paper considered ready for digital
publication. Iterative and constant feedback are important keywords here, not surprisingly mim-
icking (or being mimicked by) the agile principles. Presenting results becomes the product of
an incremental process of research; snapshots in time. e same can be said about the artifacts

⁵ e turing tarpit [Per] being the most likely one.
⁶ Ideally, both good and bad ideas, though researchers are pressed to only publish the good ones, and thus making

everyone else recurrently fall into the bad ones.
⁷ Not to disregard mathematicians, to which I have the utmost respect.

 

here described; for a dissertation inspired on the idea of incompleteness, it is, by itself, a mere
photography of an ever-evolving structure.

And finally, there is science. It took me a short amount of time to realize that works relying
on mathematics were more inclined to be coined as scientific, but a long time to understand that
it is neither about the numbers nor the formulas. e key to make science is to understand what
epistemology is, and to make the same questions that epistemology does: what is knowledge?
how is knowledge acquired? howdoweknowwhatwe know? Onceweunderstand that by science
we mean the process of acquiring and testing new knowledge, then, in the words of Richard
Feynman, “the first principle is that you must not fool yourself, and you are the easiest person to
fool.” ‚

 

Appendices

Appendix A

Pre-Experiment Data

I II III IV V VI VII x̄ σ

S A        . .
S B        . .
S C       - . .
S D        . .
S E        . .
S F        . .
S G        . .
S H        . .
S I        . .

Table A.: Student grades for the Experimental group. Each column represents the following courses: (I)
Programming Fundamentals, (II) Programming, (III) Algorithms and Data Structures, (IV)
Algorithm Design and Analysis, (V) Soware Engineering, (VI) Soware Development Labo-
ratory, and (VII) Information Systems.

I II III IV V VI VII x̄ σ

S J        . .
S K        . .
S L        . .
S M        . .
S N        . .
S O        . .
S P - - - - - - - - -
S Q - - - - - - - - -
S R - - - - - - - - -

Table A.: Student grades for the Baseline group. Each column represents the same courses in Table A..
e last three subjects did not had this information publicly available at the time of the experi-
ment.

 - 

Appendix B

Post-Experiment Questionnaire

e following is a copy of the anonymous questionnaire handed to the subjects aer the end of
the experiment.

 - 

Empirical Studies in Software Engineering

TENFOGS01

May - June 2010

Post-test Questionnaire

Thank you for participating in this experiment. We now ask you to take a deep breath, have a coke, and try
to answer this brief questionary that won’t take you more than 5 minutes.

Each question relates to issues regarding your profile as a developer and your perception about the ex-
periment. The questionary is divided into sections with questions. Each question has an identifier (for easy
processing later on) and may have either a single answer, or a list of possible answers. Each answer should
be rated as follows: 1 (Strongly Disagree), 2 (Somewhat Disagree), 3 (Neither Agree nor
Disagree), 4 (Somewhat Agree), 5 (Strongly Agree). Your should rate with an ‘X’ every answer
as best it resembles your opinion as possible.

Questionnaire

Background

BG1. I have considerable experience...

1 2 3 4 5

...using frameworks.

...with this particular framework.

...with this particular programming language.

...developing industrial-level applications.

...analyzing and specifying information systems.

...with object-oriented architecture, design and implementation.

...with agile development methodologies.

...with classical development methodologies.

...with formal development methodologies.

...with UML class diagrams.

External Factors

1 2 3 4 5

EF1. I felt disturbed and observed by the cameras.

EF2. I enjoyed programming in the experiment.

EF3. I would work with my partners again.

1



Overall Satisfaction

1 2 3 4 5

OVS1. Overall, this particular setup was suitable for solving every task pre-
sented.

OVS2. I found myself thinking more about the end system purely in terms
of the structure of domain objects.

OVS3. I found myself thinking more about the end system more in terms
of the structure of the database and user interaction.

OVS4. I found very difficult to directly translate specifications into final
artifacts.

OVS5. I was able to create the underlying object model at least as rapidly
as we could normally have created a specification.

OVS6. I was able to create the user interface at least as rapidly as it could
normally have been prototyped.

OVS7. Additional requirements represented considerable added effort.

OVS8. Change of existing requirements represented considerable added
effort.

OVS9. I found that the resulting application could be used in production-
level environments with minimal or no change.!

Development Process

DVP1. I found the development style of this setup suitable for...

1 2 3 4 5

... using in the context of agile methodologies.

... using in the context of classic methodologies.

... using in the context of formal methodologies.

... developing face to face with the client.

DVP2. Concerning this particular setup, most of your difficulties where...

1 2 3 4 5

... dealing with the Persistency Engine.

... building a Graphical User Interface.

... implementing the core Business Logic.

2

 - 

The Future

FT1. Given that the basic infrastructure now exists, and with suitable modifications to the development
process, my expectations are that subsequent systems developed with it would be...

1 2 3 4 5

Developed faster when compared to a conventional approach.

Less expensive than using a more conventional approach.

More comprehensively tested than would using a more conventional ap-
proach.

More easy to maintain overall consistency.

Learning Support

LS1. Consider all the steps you took to solve a particular task. You have a couple of minutes to quickly
share your knowledge of how to solve that problem to other developers, or even to yourself if, later, you
need to come back to it. You would...

1 2 3 4 5

Point out the correct sequence of steps that lead to the solution.

Point out the superfluous and "dead-end" paths to warn of the hazard.

Tell them what you thought the solution could be.

Tell them only the classes they need to look at. The rest is up to them.

The starting point you took. They eventually will dig out the rest.

LS2. If you were asking for help on how to reach a solution to a particular problem, and the developer as-
sisting you only had 30 seconds to answer (very busy person), what would you like to hear from him/her...

1 2 3 4 5

The minimal steps he/she took to reach the solution.

All the steps (including the "dead-ends") he/she took to reach the solution.

The starting-point and a direction would be sufficient.

The fundamental step that makes you "click" (Ahá!! Got it!!).

What the previous developer thought of when trying to solve the problem.

The final class diagram.

3



LS3. During the process of solving the tasks, when do you think an expert's hint would benefit you the
most (imagine you only have one shot at the expert)?

1 2 3 4 5

Right at the start.

Figuring out how concepts (classes) relate.

When writing code.

Testing.

1 2 3 4 5

LS4. I would be more confident using solving tips coming from other de-
velopers than from the inline help system.

LS5. I would be more productive if the system pointed to potential errors
instead of having to rely on the documentation.

LS6. If you had to continue developing with this setup, you would value...

1 2 3 4 5

... having extensive reference documentation.

... having written walk-throughs and tutorials.

... having screencasts/videos.

... having more example implementations.

If you wish to leave any further comments, please use the following space:

Thank you for your time.

4

 - 

Appendix C

Post-Experiment Questionnaire Results

E x̄ σ B x̄ σ H1 - W ρ ‰ ρ ă ρ ą

BG.          . .          . . ‰ . . . . .
BG.          . .          . . ă . . . . .
BG.          . .          . . ‰ . . . . .
BG.          . .          . . ‰ . . . . .
BG.          . .          . . ‰ . . . . .
BG.          . .          . . ‰ . . . . .
BG.          . .          . . ‰ . . . . .
BG.          . .          . . ‰ . . . . .
BG.          . .          . . ‰ . . . . .
BG.          . .          . . ‰ . . . . .
EF          . .          . . ‰ . . . . .
EF          . .          . . ‰ . . . . .
EF          . .          . . ‰ . . . . .
OVS          . .          . . ą . . . . .
OVS          . .          . . ą . . . . .
OVS          . .          . . ă . . . . .
OVS          . .          . . ă . . . . .
OVS          . .          . . ą . . . . .
OVS          . .          . . ą . . . . .
OVS          . .          . . ă . . . . .
OVS          . .          . . ă . . . . .
OVS          . .          . . ą . . . . .
DVP.          . .          . . ‰ . . . . .
DVP.          . .          . . ‰ . . . . .
DVP.          . .          . . ‰ . . . . .
DVP.          . .          . . ą . . . . .
DVP.          . .          . . ă . . . . .
DVP.          . .          . . ă . . . . .
DVP.          . .          . . ă . . . . .
FT.          . .          . . ą . . . . .
FT.          . .          . . ą . . . . .
FT.          . .          . . ą . . . . .
FT.          . .          . . ą . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS          . .          . . ‰ . . . . .
LS          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .
LS.          . .          . . ‰ . . . . .

Table C.: Post-experiment questionnaire results with corresponding means, standard deviation, t-test
probability values and the non-parametric significance Mann-Whitney-Wilcoxon test; see
§ . (p. ).

 -  

Appendix D

Experimental Group Documentation

e following is a copy of the available documentation handled to the experimental group dur-
ing the course of the experiment. It should not be regarded as the complete documentation of
the framework, since it contains deliberate omissions and inconsistencies for the purpose of the
experiment. For a comprehensive description see Chapter  (p. ).

   

!"#$%&'()*$+,-%.(,

!"#$%&'()&

/,-0(1*).(,

This document provides the basic documentation for the Oghma framework.

2+3,"&-#+&40(5+)-&-(&)($467+

The following steps should get an empty Oghma project to compile with Visual Studio 2008:

- Download and unpack the source code;
- Open the main solution by double-clicking on oghma.sln inside your uncompressed folder;
- In the Solution Explorer, right-click on the project ‘Template’ and set as the ‘StartUp Project’;
- In the Build menu, select Rebuild Solution. Use F5 to run (with the debugger attached);
- You should now be able to see the application running, with a single package (Main) and an

Empty Class.

8947(06,"&-#+&:(1+7&(;&%&<*,,6,"&89%$47+

Inside the main solution, you’ll find MedSystem, a real-world use-case of Oghma. This project uses
the filename medsystem.xml for its initial system definition. These configurations can be found in
‘program.cs’. Due to a bug in Visual Studio, you’ve to right-click in ‘program.cs’ and choose ‘View
Code’

1



=#+&>,%-($?&(;&!"#$%:@

OghmaML is a XML vocabulary to define the initial system. Its concepts are close to those of a class
diagram. The basic structure of an OghmaML file is:

<?xml version="1.0" encoding="UTF-8"?>
<model>
 <data>
 <!-- Packages -->
 <!-- Enums -->
 <!-- Entities -->
 <!-- Relationships -->
 </data>
 <views>
 <!-- Views -->
 </views>
</model>

A%)B%"+C

A package represents an aggregation of concepts (namely, entities), and is also used to define
which entities are considered entry points. Example:

<package id="main" name="Clinic">
 <entity id="patient" entrypoint="true" />
 <entity id="appointment" entrypoint="true" />
</package>

Packages and entry points are shown on the left menu bar of the application:

8,..+C

An entity is one of the main objects in the system. Its definition is close to that of a Class. It has
properties – attributes and relationships. The following example shows the skeleton of an entity:

<entity id="" name="" inherits="" abstract="" tostring="">
 <list columns="" />
 <attr />
 ...
</entity>

2

   

The Entity tag has several attributes:

- id: Unique identifier for the entity. Mandatory, and should not contain numerals.
- name: String defining the label text (e.g. display name) for this object.
- inherits: indicates the ID of a class from which this class is derived.
- abstract: Flagged with true or false, it indicates if this entity is abstract (and hence not

able to be instantiated). Optional field, false by default.
- tostring: Expression that determines how this entity is shown textually. The attributes of

the entity and their ancestors can be part of the expression, and are identified by their id and
the use of brackets (e.g. ‘My name is {name} and I’m {age} yrs old’)

The contents of an Entity tag can only have one List declaration and may enclose several Attribute
tags (see Attributes).

Examples:

<entity id="car" name="Car" inherits="vehicle" tostring="{brand}">
 <list columns="{brand}|{name}" />
 <attr id="carbrand" name="Brand" domain="string" />
 <attr id="carmodel" name="Model" domain="string" cardinality="1"/>
</entity>

D%C+&'($%6,C

The following domains can be used in attributes:

- string: is a sequence of characters and is drawn as a text-field.
- text: is a (big) sequence of characters and is drawn as a text-area.
- float: is a numeral that accepts decimals and is drawn as a text-field.
- integer: is a natural number and is drawn as a text-field.
- boolean: is a boolean (true/false) and is drawn as a checkbox.

>E06F*-+C

An entity is typically composed by several attributes:

<attr id="" name="" domain="" cardinality="" role="" tostring="" isreadonly="" />

- id: Unique identifier for the attribute. Mandatory, and should not contain numerals.
- name: String defining the label text (e.g. display name) for this object.
- domain: Field defining a data type associated with this field. Different data types have differ-

ent visual representations in Oghma (see Data Types).

Vehicle

Brand: string
Model: string [1]

‹‹entrypoint››
Car

3



- cardinality: Defines the cardinality of this side of the relation. Cardinality is indicated by a
lower and upper bound (lower..upper). Examples: 0..*,1..*, 1 or 0..2.

- role: Optional field specifying if this attribute is either a composer or an agreggator.
- tostring: Expression that determines how this attribute is shown textually. The attribute

itself can be part of the expression, identified by its id and the use of brackets.
- isReadOnly: Optional field that specifies if this attribute should be read-only. Accepts true

or false. If an attribute is read-only, that means this attribute can only be one instance that
has already been created.

See Entity for examples.

NOTE: When the domain of an attribute is another entity (instead of a base-type), oghma auto-
matically transforms the attribute into a relationship. Example:

Wheels: wheel [0..*]

Car
Wheel

0..*

wheelsCar

@6C.,"

Listing refers to how several instances of an entity are presented on a table or list. It is an optional
element within the entity element:

<list columns="" />

- columns: Defines which columns should appear when representing an entity in a list or table.
The attributes to show can be identified by its unique id between brackets (e.g. {name}).
Columns should be separated by using a pipe character (e.g. {name}|{age}).

See Entity for examples.

<+7%.(,C#64C

Defines a relation between two entities. A relation contains two node elements (one for each end of
the relation) that aim to define its scope.

<relationship id="" entity="" >
 <node entity="" id="" name="" cardinality="" navigable="" role="" />
 <node entity="" id="" name="" cardinality="" navigable="" role="" />
</relationship>

4

   

- id: Unique identifier for the node. Mandatory, and should not contain numerals.
- entity: Optional field with the ID of the associative entity for this relationship.
- name: String defining the label text for this object.
- cardinality: Defines the cardinality of this side of the relation. Cardinality is indicated by a

lower and upper bound (lower..upper). Examples: 0..*,1..*, 1 or 0..2.
- navigable: Indicates navigability to this side of the relation. Accepted values are true,
false and unspecified. true means that the node can be navigated to; false means the
relation cannot be accessed thru this node. unspecified does not imply any type of restric-
tions to navigability and assumes the default value.

Examples:

<relationship id="car_wheel">
 <node entity="car" id="wheel" name="Wheels" cardinality="1" />
 <node entity="wheel" id="car" name="Car" cardinality="0..*" />
</relationship>

NOTE: Cardinality should be expressed in reverse!!! This is a known issue.

For associative entities, use the entity attribute in relationship:

<entity id="role_id" name="Role" ...>
 ...
</entity>

<relationship id="person_company" entity=”role_id”>
 <node entity="person" ... />
 <node entity="company" ... />
</relationship>

Wheel
0..*

wheelscar

1
Car

Person Company

Role

5



8,*$+0%.(,C

An enumeration is simply an entity that inherits from ‘enum’. Defining the initial values of that
enumeration is currently not supported, though they can be edited in runtime.

<entity id="sex" name="Sex" inherits="enum" />

An enumeration is displayed as a combo-box when the upper-bound of the attribute 1, and as a
check-list if the upper-bound greater than 1 (e.g. 0..*)

G6+HC

If an entity doesn’t have a view specified in the XML file, the system will automatically generate a
default one. For examples on usage of custom views, see ‘medsystem.xml’.

I#+,&+J+0?-#6,"&"(+C&H0(,"

Don’t panic... This is an alpha version, and as such it has some bugs. Probably, the most problem-
atic issue is that if the XML file is ill-defined, the debugger will stop in the thrown exception in-
stead of showing an error message. When this happens, double-check your initial model definition
for errors, like mismatching identifiers, redundant XML tags, etc.

If data becomes inconsistent, you can always delete both the database and the full-text search files.
These are normally stored as ‘database.db’ and ‘fts.db’ when using the SQLiteDataSource provider.
When running from Visual Studio, these are present in the debug folders ‘/bin/debug’ or ‘/x86/
bin/debug’ of the running project (e.g. ‘/examples/medsystem/medsystem’).

Male
Female

‹‹enum››
Sex

6

   

Appendix E

Industrial Survey

  

  x̄ σ

BG        . . .
BG        . . .
BG        . . .
BG        . . .
BG        . . .
BG        . . .
BG        . . .
BG        . . .
BG        . . .
BG        . . .
BG        . . .
BG        . . .
OVS        . . .
OVS        . . .
OVS        . . .
OVS        . . .
OVS        . . .
OVS        . . .
OVS        . . .
OVS        . . .
DVP.        . . .
DVP.        . . .
DVP.        . . .
DVP.        . . .
DVP.        . . .
DVP.        . . .
DVP.        . . .
DVP.        . . .
DVP.        . . .
DVP.        . . .
FT        . . .
FT        . . .
FT        . . .
FT        . . .
LS        . . .
LS        . . .
LS        . . .
LS        . . .
LS        . . .
W        . . .
W        . . .
W        . . .
W        . . .
W        . . .
W        . . .

Table E.: Industrial survey results, each line representing the data of a single question, with corresponding
means and standard deviation values.

Nomenclature

Abstraction e process or result of generalization by reducing the information content of a
concept or an observable phenomenon, typically to retain only informationwhich
is relevant for a particular purpose [Wika].

Accidental Complexity Complexity that arises in computer artifacts, or their development process, which
is non-essential to the problem to be solved.

Actor In UML, it specifies a role played by a user or any other system that interacts with
the subject [OMGd].

Adaptability Characteristic of a system that empowers end-users without or with limited
programming skills to customize or tailor it according to their individual or
environment-specific requirements.

Agile Agile soware development refers to a collection of development methodologies
based on iterative development, where requirements and solutions evolve through
collaboration between self-organizing cross-functional teams.

AOM Acronym for Adaptive Object-Model [YBJb].

API Acronym for Application Programming Interface.

BNF Acronym for Backus-Naur Form. A meta-syntax for context-free grammars such
as those defining programming languages.

Case Study Research methodology based on an in-depth investigation of a single individual,
group, or event to explore causation in order to find underlying principles.

Concurrency A property of systems in which several computations are executing simultane-
ously, and potentially interacting with each other.

CRUD Acronym for Create, Read, Update, and Delete.

DBMS Acronym for Database Management System.

DDD Acronym for Domain-Driven Design [Eva].

DDL Acronym for Data Definition Language.

DML Acronym for Data Manipulation Language.

DSL Acronym for Domain Specific Language.

DSML Acronym for Domain Specific Modeling Language.

EMF Acronym for Eclipse Modeling Framework.

Encapsulation e process of compartmentalizing the elements of an abstraction that constitute
its structure and behavior; encapsulation serves to separate the contractual inter-
face of an abstraction and its implementation [BME+].

End-user In soware engineering, it refers to an abstraction of the group of persons who
will ultimately operate a piece of soware, i.e., the expected user or target-user.

 

Epistemology e branch of philosophy concerned with the nature and scope (limitations) of
knowledge.

Essential Complexity In contrast to Accidental Complexity, it is that considered inherent and unavoid-
able to perform a desired computation or express a soware artifact.

Extensibility It is a systemic measure of the ability to extend a system and the level of effort
required to implement the extension.

FR Acronym forFunctionalRequirement. A function of a soware systemor its com-
ponent, described as a set of inputs, expected behavior, and consequent outputs.

Framework In Object-Oriented Programming, frameworks are reusable designs of all or part
of a soware system described by a set of abstract artifacts and the way they col-
laborate [RJ].

Generative Programming Systematic transformation of an (high) level description of a system (model) into
executable code or code skeleton [RKS].

Granularity In the context of reflective systems, represents the smallest aspect of the base-
entities of a computation system that are represented by different meta-entities.

GUI Acronym for Graphical User Interface.

Hollywood Principle A framework design principle based on the cliché response given to amateurs au-
ditioning in Hollywood, “Don’t call us, we’ll call you”.

IDE Acronym for Integrated Development Environment.

Information Flux Measures the amount of information that is exchanged between elements of a sys-
tem to perform a desired computation.

kLOC Acronym for kilo Lines Of Code — effectively thousands of LOC.

Lifecycle In the context of reflective systems, it is the period of the system execution in
which a specific meta-entity has to exist.

LOC Acronym for Lines Of Code.

MDA Acronym for Model-Driven Architecture [OMGb].

MDE Acronym for Model-Driven Engineering [Sch].

Meta-Architecture Architectures that can dynamically adapt at runtime to new user requirements.

Metamodelling In soware engineering, it is the analysis, construction and development of the
frames, rules, constraints, models and theories applicable and useful for modeling
a predefined class of problems.

Metaprogramming e process of writing programs that generate or manipulate either other pro-
grams, or themselves, by treating code as data [CI].

MOF Acronym for Meta-Object Facility [OMGa].

MVC Acronym for Model-View-Controller [BMR+].

Naked Objects A soware architectural pattern that heavily emphasizes the automatic genera-
tion of graphical user interfaces from a very straightforward interpretation of the
domain models [Paw].

NFR Acronym for Non-Functional Requirement. Specifies criteria that can be used
to judge the operation of a system, rather than specific behaviors, i.e., while FRs
define what a system is supposed to do (function), NFRs define how a system is
supposed to be (form).

 

OO Acronym for Object-Oriented.

OOP Acronym for Object-Oriented Programming.

OOUI Acronym for Object-Oriented User Interface.

ORM Acronym for Object-Relational Mapping.

Pattern In soware, it is a recurrent, recognized good solution for a recurrent architec-
tural, design or implementation problem [AIS, GHJV].

Performance General measure that may mean short response time, high throughput, low uti-
lization of computing resources, etc.

PIM Acronym for Platform-Independent Model.

Proliferation In the context of reflective systems, it is a measure of the quantity of objects nec-
essary to perform, or represent, a given meta-computation.

PSM Acronym for Platform-Specific Model.

Requirement It is a statement that identifies a necessary attribute, capability, characteristic, or
quality of a system in order for it to have value and utility to a user.

Reuse e ability of using existing artifacts, or knowledge, to build or synthesize new
solutions, or to apply existing solutions to different artifacts.

SDLC Acronym for Soware Development Lifecycle.

Separation of Concerns A concept that establishes the fact that a particular functionality of a systems
should be the concern of different, specialized, components.

Silver Bullet In soware engineering, it refers to the claim that there is no single development,
in either technology or management technique, which by itself promises even one
order of magnitude (tenfold) improvement within a decade in productivity, reli-
ability, and/or simplicity [Bro].

Soware Product Line A set of soware systems which share a common, managed set of features that
satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way [CN].

Transparency In reflective systems, it is a measure of how much of the underlying system is
available through reflection.

UI Acronym for User Interface.

UML Acronym for Unified Modeling Language [OMGd].

Usability e extent to which a product can be used by specified users to achieve speci-
fied goals with effectiveness, efficiency and satisfaction in a specified context of
use [ISO].

Use Case In soware engineering, it is a description of an intended system’s behavior as the
respond to an outside request or interaction.

Variability e need of a soware system or artifact to be changed, customized or configured
for use in different contexts [JVBS].

VM Acronym for Virtual Machine.

XML Acronym for eXtensible Markup Language. An open standard which specifies a
set of rules for encoding documents in both human and machine-readable form.

XP Acronym for eXtreme Programming. An agile soware development methodol-
ogy which is intended to improve soware quality and responsiveness to changing
customer requirements [BA].

 

XSLT Acronym for eXtensible Stylesheet Language Transformations. A declarative,
XML-based language used for the transformation of XML documents into other
XML (or textual) documents.

References

[ABBL] M Arnoldi, K Beck, M Bieri, and M Lange, Time travel: A pattern language for values that change.
Cited on pp.  and .

[AD] Ademar Aguiar and Gabriel David, Wikiwiki weaving heterogeneous soware artifacts, WikiSym ’:
Proceedings of the  international symposium on Wikis (New York, NY, USA), ACM, ,
pp. –. Cited on p. .

[AEQ] Jim Arlow, Wolfgang Emmerich, and John Quinn, Literate modelling — capturing business knowl-
edge with the uml, UML’: Selected papers from the First International Workshop on e Unified
Modeling Language (London, UK), Springer-Verlag, , pp. –. Cited on p. .

[AG] Katja Andresen andNorbert Gronau, An approach to increase adaptability in erp systems, Proceedings
of the  Information Recources Management Association International Conference, Idea Group
Publishing, May , pp. –. Cited on p. .

[Agu] Ademar Aguiar, A minimalist approach to framework documentation, Ph.D. thesis, Faculdade de En-
genharia da Universidade do Porto, September . Cited on pp.  and .

[AIS] Christopher Alexander, Sara Ishikawa, and Murray Silverstein, A pattern language: Towns, buildings,
construction, Oxford University Press, October . Cited on pp. , , , and .

[AKK] KAltmanninger, G Kappel, and AKusel, Amor–towards adaptable model versioning, info.fundp.ac.be.
Cited on pp. , , and .

[Ale] Christopher Alexander, Notes on the synthesis of form, Harvard University Press, October . Cited
on pp. , , and .

[Amb] Scott Ambler, Agile database techniques: Effective strategies for the agile soware developer, John Wiley
& Sons, Inc., New York, NY, USA, . Cited on p. .

[And] F Anderson, A collection of history patterns, Collected papers from the PLoP’ and EuroPLoP’
Conference. Cited on p. .

[AOSD] Nicolas Anquetil, Káthia M. Oliveira, Kleiber D. Sousa, and Márcio G. Batista Dias, Soware main-
tenance seen as a knowledge management issue, Inf. Sow. Technol.  (), no. , –. Cited
on p. .

[Ars] A Arsanjani, Rule object: A pattern language for adaptive and scalable business rule construction, Pro-
ceeding of PLoP (). Cited on pp. , , and .

[AS] Harold Abelson andGerald J. Sussman, Structure and interpretation of computer programs, MIT Press,
Cambridge, MA, USA, . Cited on p. .

[ATMB] Mehmet Aksit, Bedir Tekinerdogan, Francesco Marcelloni, and Lodewijk Bergmans, Deriving object-
oriented frameworks from domain knowledge, Building Application Frameworks: Object-Oriented
Foundations of Framework Design (Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson,
eds.), John Wiley & Sons Inc., New York, USA, , pp. –. Cited on pp.  and .

 REFERENCES

[BA] Kent Beck and Cynthia Andres, Extreme programming explained: Embrace change, nd ed., Addison-
Wesley Professional, . Cited on pp. , , and .

[Bas] P.G. Bassett, Frame-based soware engineering, IEEE Soware  (), –. Cited on p. .

[BBH] F. L. Bauer, L. Bolliet, and Dr. H. J. Helms, Soware engineering, Report on a conference sponsored by
the NATO SCIENCE COMMITTEE (Peter Naur and Brian Randell, eds.), Scientific Affairs Division,
NATO, , p. . Cited on p. .

[BEK+] Bartosz B�bel, Johann Eder, Christian Koncilia, Tadeusz Morzy, and Robert Wrembel, Creation and
management of versions in multiversion data warehouse, SAC ’: Proceedings of the  ACM sym-
posium on Applied computing (New York, NY, USA), ACM, , pp. –. Cited on pp. , ,
, and .

[BME+] Grady Booch, Robert A. Maksimchuk, Michael W. Engel, Bobbi J. Young, Jim Conallen, and Kelli A.
Houston, Object-oriented analysis and design with applications, Addison-Wesley Professional, .
Cited on p. .

[BMR+] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal, Pattern-
oriented soware architecture volume : A system of patterns, Wiley, August . Cited on pp. , ,
, , , and .

[Bro] Fred P. Brooks, No silver bullet — essence and accidents of soware engineering, IEEE Computer 
(), –. Cited on pp. , , and .

[BW] Federico Biancuzzi and Shane Warden, Masterminds of programming: Conversations with the creators
of major programming languages, O’Reilly Media, Inc., . Cited on p. .

[Cam] CamaraMunicipal do Porto,Revisão do PlanoDirectorMunicipal do Porto – Regulamento, Maio .
Cited on p. .

[Caz] Walter Cazzola, Evaluation of object-oriented reflective models, Proceedings of ECOOP Workshop on
Reflective Object-Oriented Programming and Systems (EWROOPS’), in th European Confer-
ence on Object-Oriented Programming (ECOOP’) (). Cited on pp. , , and .

[CE] Krysztof Czarnecki andUlrich Eisenecker, Generative programming: Methods, tools, and applications,
Addison-Wesley Professional, June . Cited on p. .

[CEF] Andy Carlson, Sharon Estepp, and Martin Fowler, Temporal patterns, PLoP ’: Proceedings of the
th Conference on Pattern Languages of Programs, August . Cited on p. .

[CI] Robert D. Cameron andM. Robert Ito, Grammar-based definition of metaprogramming systems, ACM
Transactions on Programming Languages and Systems  (), no. , –. Cited on pp.  and .

[CJMS] JeffreyC.Carver, Letizia Jaccheri, SandroMorasca, andForrest Shull,Achecklist for integrating student
empirical studies with research and teaching goals, Empirical Sow. Eng.  (), no. , –. Cited
on p. .

[Cle] J. Craig Cleaveland, Building application generators, IEEE Sow.  (), no. , –. Cited on p. .

[CLG+] Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, and Jeff Magee (eds.), Soware engi-
neering for self-adaptive systems, Springer-Verlag, Berlin, Heidelberg, . Cited on p. .

[CN] Paul Clements and Linda Northrop, Soware product lines: practices and patterns, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, . Cited on pp.  and .

[Cop] James O. Coplien, Soware patterns, . Cited on p. .

[CPP] Filipe Correia, Fátima Pires, and Aurélio Pires, Tech. report, ParadigmaXis, S.A., , http://gisa.
paradigmaxis.pt/. Cited on p. .

http://gisa.paradigmaxis.pt/
http://gisa.paradigmaxis.pt/

REFERENCES 

[Cun] Ward Cunningham, WikiWikiWeb, , http://c2.com/cgi/wiki. Cited on pp.  and .

[Cun] , Wiki design principles, , http://c2.com/cgi/wiki$?WikiDesignPrinciples. Cited on
pp.  and .

[CV] Rudi Cilibrasi and Paul Vitanyi, Clustering by compression, , pp. –. Cited on p. .

[CW] A Correa and C Werner, Applying refactoring techniques to uml/ocl models, UML (). Cited on
p. .

[Cza] Krzysztof Czarnecki, Overview of generative soware development, Unconventional Programming
Paradigms (UPP), Springer-Verlag, September , pp. –. Cited on p. .

[ddB] Antoine d’Otreppe de Bouvette, Aspyct, , [Online; Accessed -August-]. Cited on p. .

[Dij] Edsger Wybe Dijkstra, e Humble Programmer, Communications of the ACM  (), no. ,
–. Cited on p. .

[DS] Peter DeGrace and Leslie Hulet Stahl, Wicked problems, righteous solutions, Yourdon Press, Upper
Saddle River, NJ, USA, . Cited on p. .

[DW] Desmond F. D’Souza and Alan Cameron Wills, Objects, components, and frameworks with uml: the
catalysis approach, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, . Cited on
p. .

[DYBJ] Ayla Dantas, Joseph Yoder, Paulo Borba, and Ralph Johnson, Using aspects to make adaptive object-
models adaptable, Research Reports onMathematical and Computing Sciences (). Cited on p. .

[EV] J. Laurenz Eveleens and Chris Verhoef, e rise and fall of the chaos report figures, IEEE Soware 
(), –. Cited on p. .

[Eva] Eric Evans, Domain-driven design: Tackling complexity in the heart of soware, Addison-Wesley Pro-
fessional, August . Cited on pp.  and .

[FAF] Hugo Sereno Ferreira, Ademar Aguiar, and João Pascoal Faria, Adaptive object-modelling: Patterns,
tools and applications, International Conference on Soware Engineering Advances (Los Alamitos,
CA, USA), IEEE Computer Society, , pp. –. Cited on p. .

[FCR] Nuno Flores, Filipe Correia, and Rosaldo Rossetti, , https://www.fe.up.pt/si/disciplinas_
geral.FormView?P_CAD_CODIGO=EIC0086&P_ANO_LECTIVO=2010/2011&P_
PERIODO=1S [Online; accessed -December-]. Cited on p. .

[FCW] Hugo Sereno Ferreira, Filipe Figueiredo Correia, and León Welicki, Patterns for data and metadata
evolution in adaptive object-models, PLoP ’: Proceedings of the th Conference on Pattern Lan-
guages of Programs (New York, NY, USA), ACM, , pp. –. Cited on p. .

[Fed] Fedora Commons, Introduction to Fedora Object XML (FOXML), , http://www.fedora-
commons.org/download/2.0/userdocs/digitalobjects/introFOXML.html [Online; accessed -
July-]. Cited on p. .

[FJ] Mohamed E. Fayad and Ralph E. Johnson, Domain-specific application frameworks: framework expe-
rience by industry, John Wiley & Sons, Inc., New York, NY, USA, . Cited on p. .

[Fow] Martin Fowler,Analysis patterns: Reusable objectmodels, Addison-Wesley Professional, October .
Cited on pp.  and .

[Fow] , Analysis patterns: reusable objects models, Addison-Wesley Longman Publishing Co., Inc,
Boston, MA, USA, . Cited on p. .

[Fow] , Refactoring: Improving the design of existing code, Addison-Wesley, Boston, MA, USA, .
Cited on p. .

http://c2.com/cgi/wiki
http://c2.com/cgi/wiki$?WikiDesignPrinciples
https://www.fe.up.pt/si/disciplinas_geral.FormView?P_CAD_CODIGO=EIC0086&P_ANO_LECTIVO=2010/2011&P_PERIODO=1S
https://www.fe.up.pt/si/disciplinas_geral.FormView?P_CAD_CODIGO=EIC0086&P_ANO_LECTIVO=2010/2011&P_PERIODO=1S
https://www.fe.up.pt/si/disciplinas_geral.FormView?P_CAD_CODIGO=EIC0086&P_ANO_LECTIVO=2010/2011&P_PERIODO=1S
http://www.fedora-commons.org/download/2.0/userdocs/digitalobjects/introFOXML.html
http://www.fedora-commons.org/download/2.0/userdocs/digitalobjects/introFOXML.html

 REFERENCES

[Fow] , Patterns of enterprise application architecture, Addison-Wesley Professional, November
. Cited on pp. , , , , and .

[Fowa] , Analysis patterns: Audit log, , http://www.martinfowler.com/ap2/auditLog.html
[Online; accessed -July-]. Cited on p. .

[Fowb] , Analysis patterns: Effectivity, , http://www.martinfowler.com/ap2/effectivity.html
[Online; accessed -July-]. Cited on p. .

[Fowc] , Analysis patterns: Temporal object, , http://www.martinfowler.com/ap2/
temporalObject.html [Online; accessed -July-]. Cited on p. .

[Fowd] , Analysis patterns: Temporal property, , http://www.martinfowler.com/ap2/
temporalProperty.html [Online; accessed -July-]. Cited on p. .

[FPR] Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe, e UML Profile for Framework Architec-
tures, Addison-Wesley LongmanPublishingCo., Inc., Boston,MA,USA, . Cited on pp.  and .

[FR] Robert France and Bernhard Rumpe, Model-driven development of complex soware: A research
roadmap, FOSE ’:  Future of Soware Engineering (Washington, DC, USA), IEEE Computer
Society, , pp. –. Cited on pp. , , and .

[FSJa] Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson, Building application frameworks:
object-oriented foundations of framework design, John Wiley & Sons, Inc., New York, NY, USA, .
Cited on p. .

[FSJb] , Implementing application frameworks: object-oriented frameworks at work, John Wiley &
Sons, Inc., New York, NY, USA, . Cited on pp.  and .

[FY] Brian Foote and Joseph Yoder, Big ball of mud, Pattern Languages of Program Design, Addison-
Wesley, , pp. –. Cited on pp.  and .

[GA] Miguel Goulao and Fernando Brito Abreu, Modeling the experimental soware engineering process,
QUATIC ’: Proceedings of the th International Conference on Quality of Information and Com-
munications Technology (Washington, DC, USA), IEEE Computer Society, , pp. –. Cited
on p. .

[Gab] Richard P. Gabriel, Patterns of soware: tales from the soware community, Oxford University Press,
Inc. New York, NY, USA, . Cited on p. xix.

[GGGR] Poonam Goyal, Navneet Goyal, Ashish Gupta, and T. S. Rahul, Designing self-adaptive websites using
online hotlink assignment algorithm, Proceedings of the th International Conference on Advances in
Mobile Computing and Multimedia, , pp. –. Cited on p. .

[GHJV] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides, Design patterns: Elements of
reusable object-oriented soware, Addison-Wesley Professional, November . Cited on pp. , ,
, , , , , , , , , , , , , , , , and .

[GHV] E. Gamma, R. Helm, and J. Vlissides, Design patterns applied, . Cited on p. .

[GJT] Raghu Garud, Sanjay Jain, and Philipp Tuertscher, Incomplete by design and designing for incomplete-
ness, Organization studies as a science of design (Marianne and Georges Romme, eds.), . Cited
on pp. , , and .

[GNU] GNU, GNU Diffutils, , http://www.gnu.org/software/diffutils/ [Online; accessed -July-
]. Cited on p. .

[Goo] Google, iGoogle, http://google.com/ig [Online; accessed -July-]. Cited on p. .

[Gop] Ganesh Gopalakrishnan, Computation engineering: Applied automata theory and logic, Springer-
Verlag New York, Inc., Secaucus, NJ, USA, . Cited on p. xx.

http://www.martinfowler.com/ap2/auditLog.html
http://www.martinfowler.com/ap2/effectivity.html
http://www.martinfowler.com/ap2/temporalObject.html
http://www.martinfowler.com/ap2/temporalObject.html
http://www.martinfowler.com/ap2/temporalProperty.html
http://www.martinfowler.com/ap2/temporalProperty.html
http://www.gnu.org/software/diffutils/
http://google.com/ig

REFERENCES 

[Gou] Miguel Goulao, Component-based soware engineering: a quantitative approach, Ph.D. thesis, Facul-
dade de Ciências e Tecnologia, Universidade Nova de Lisboa, . Cited on pp.  and .

[GPHS] Cesar Gonzalez-Perez and Brian Henderson-Sellers, Metamodelling for soware engineering, Wiley
Publishing, . Cited on p. .

[GR] Adele Goldberg and David Robson, Smalltalk-: the language and its implementation, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, . Cited on p. .

[Gra] Joao Gradim, , http://paginas.fe.up.pt/ei05030/thesis/ [Online; accessed -December-
]. Cited on p. .

[Han] David Heinemeier Hansson, Ruby on rails, [Online; Accessed -August-]. Cited on p. .

[HBJ] MarkusHerrmannsdoerfer, Sebastian Benz, and Elmar Juergens, Cope - automating coupled evolution
of metamodels and models, Genoa: Proceedings of the rd European Conference on ECOOP 
— Object-Oriented Programming (Berlin, Heidelberg), Springer-Verlag, , pp. –. Cited on
pp.  and .

[HC] George T. Heineman and William T. Councill (eds.), Component-based soware engineering: putting
the pieces together, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, . Cited on
p. .

[Hei] Constance L.Heitmeyer,On the need for practical formalmethods, FTRTFT ’: Proceedings of the th
International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems (London,
UK), Springer-Verlag, , pp. –. Cited on p. .

[HL] Tim Hart and Mike Levin, Ai memo -the new compiler. Cited on p. .

[Hof] Douglas R. Hofstadter, Godel, escher, bach: An eternal golden braid, Basic Books, Inc., New York, NY,
USA, . Cited on p. .

[HW] Myles Hollander and Douglas A. Wolfe, Nonparametric statistical methods, nd ed., Wiley-
Interscience, January . Cited on p. .

[ISO] ISO -:, Ergonomic requirements for office work with visual display terminals (vdts) – part :
Guidance on usability, ISO, Geneva, Switzerland, . Cited on pp.  and .

[Jet] JetBrains, Meta Programming System, , [Online; Accessed -August-]. Cited on p. .

[JF] Ralph E. Johnson and Brian Foote, Designing reusable classes, Journal of Object-Oriented Program-
ming  (), no. , –. Cited on p. .

[JO] Ralph Johnson and Jeff Oakes, e user-defined product framework, . Cited on p. .

[Joh] Stephen C. Johnson, Yacc: Yet another compiler-compiler, Tech. report, Bell Laboratories, . Cited
on p. .

[JVBS] Gurp JillesVan, JanBosch, andMikael Svahnberg,On the notion of variability in soware product lines,
WICSA ’: Proceedings of the Working IEEE/IFIP Conference on Soware Architecture (Washing-
ton, DC, USA), IEEE Computer Society, , p. . Cited on pp.  and .

[JW] Ralph Johnson and Bobby Woolf, e type object pattern, Pattern Languages of Program Design ,
Addison-Wesley, , pp. –. Cited on pp. , , , and .

[KAKB+] Barbara Kitchenham, Hiyam Al-Khilidar, Muhammed Ali Babar, Mike Berry, Karl Cox, Jacky Ke-
ung, Felicia Kurniawati, Mark Staples, He Zhang, and Liming Zhu, Evaluating guidelines for reporting
empirical soware engineering studies, Empirical Sow. Eng.  (), no. , –. Cited on p. .

http://paginas.fe.up.pt/ei05030/thesis/

 REFERENCES

[Kay] Alan C. Kay, e early history of smalltalk, HOPL-II: e second ACM SIGPLAN conference on His-
tory of programming languages (New York, NY, USA), ACM, , pp. –. Cited on pp. , ,
and .

[KH] Gregor Kiczales and Erik Hilsdale, Aspect-oriented programming, ESEC/FSE-: Proceedings of the
th European soware engineering conference held jointly with th ACM SIGSOFT international
symposium on Foundations of soware engineering (New York, NY, USA), ACM, , p. . Cited
on pp.  and .

[KM] Gregor Kiczales and Mira Mezini, Aspect-oriented programming and modular reasoning, ICSE ’:
Proceedings of the th international conference on Soware engineering (New York, NY, USA),
ACM, , pp. –. Cited on p. .

[KOS] John Krogstie, Andreas L. Opdahl, and Guttorm Sindre (eds.), Advanced information systems en-
gineering, th international conference, caise , trondheim, norway, june -, , proceedings,
Lecture Notes in Computer Science, vol. , Springer, . Cited on p. .

[KP] Christian Kohls and Stefanie Panke, Is that true...? – thoughts on the epistemology of patterns, PLoP
’: Proceedings of the th Conference on Pattern Languages of Programs, . Cited on p. .

[LC] Donal Lafferty and Vinny Cahill, Language-independent aspect-oriented programming, OOPSLA ’:
Proceedings of the th annual ACM SIGPLAN conference on Object-oriented programing, systems,
languages, and applications (New York, NY, USA), ACM, , pp. –. Cited on p. .

[Lev] Leon S. Levy, A metaprogramming method and its economic justification, IEEE Trans. Sow. Eng. 
(), no. , –. Cited on p. .

[Lew] Action research and minority problems, Journal of Social Issues  (), no. , –. Cited on p. .

[Lik] Rensis Likert, A technique for the measurement of attitudes, Archives of Psychology  (), no. ,
–. Cited on pp.  and .

[LV] Ming Li and Paul M.B. Vitnyi, An introduction to kolmogorov complexity and its applications, Springer
Publishing Company, Incorporated, . Cited on p. .

[MB] Stephen J. Mellor and Marc Balcer, Executable uml: A foundation for model-driven architectures,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, . Cited on p. .

[Med] MediaWiki,MediaWiki—MediaWiki,eFreeWiki Engine, , [Online; accessed -August-].
Cited on p. .

[MFJ] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel, Weaving executability into object-
oriented meta-languages, Proceedings of the th International Conference on Model Driven Engi-
neering Languages and Systems, October . Cited on p. .

[MHS] Marjan Mernik, Jan Heering, and Anthony M. Sloane, When and how to develop domain-specific lan-
guages, ACM Comput. Surv.  (), no. , –. Cited on p. .

[Min] Ministério do Equipamento, do Planeamento e daAdministração do Território,Decreto-Lei n. /,
Setembro . Cited on p. .

[MJ] Peter Meso and Radhika Jain, Agile soware development: Adaptive systems principles and best prac-
tices, Information Systems Management  (), no. , –. Cited on p. .

[MM] J. Miller and J. Mukerji, Mda guide version .., Tech. report, Object Management Group (OMG),
. Cited on pp.  and .

[MRB] Robert Martin, Dirk Riehle, and Frank Buschmann (eds.), Pattern languages of program design ,
Addison-Wesley, . Cited on p. .

REFERENCES 

[MS] David Mertz and Michele Simionato, Metaclass programming in Python, , [Online; Accessed -
July-]. Cited on p. .

[Nar] Bonnie A. Nardi, A small matter of programming: Perspectives on end user computing, MIT Press,
Cambridge, MA, USA, . Cited on p. .

[NDP] Oscar Nierstrasz, Stéphane Ducasse, and Damien Pollet, Squeak by example, Square Bracket Asso-
ciates, October . Cited on p. .

[NL] Colin J. Neill and Philip A. Laplante, Paying down design debt with strategic refactoring, Computer 
(), –. Cited on p. .

[OMGa] OMG, MetaObject Facility (MOF), , http://www.omg.org/mof/ [Online; accessed -July-
]. Cited on pp. , , and .

[OMGb] , Model Driven Architecture (MDA), , http://www.omg.org/mda/ [Online; accessed
-July-]. Cited on pp.  and .

[OMGc] , Object Constraint Language (OCL), , http://www.omg.org/spec/OCL/ [Online; ac-
cessed -July-]. Cited on p. .

[OMGd] , Unified Modelling Language (UML), , http://www.uml.org/ [Online; accessed -July-
]. Cited on pp. , , and .

[Ope] Open Source, bzip, , http://www.bzip.org/ [Online; accessed -July-]. Cited on p. .

[Ope] , Prevayler — the open source prevalence layer, , http://www.prevayler.org [Online;
accessed -July-]. Cited on pp. , , and .

[Pag] Pageflakes, http://pageflakes.com/ [Online; accessed -July-]. Cited on p. .

[Par] Terence Parr, eDefinitive ANTLR Reference: Building Domain-Specific Languages, Pragmatic Book-
shelf, . Cited on p. .

[Paw] Richard Pawson, Naked objects, Ph.D. thesis, University of Dublin, Trinity College, June . Cited
on pp. , , and .

[Per] Alan J. Perlis, Special feature: Epigrams on programming, SIGPLAN Not.  (), –. Cited on
p. .

[PFSP] Aurélio Pires, Hugo Sereno Ferreira, Hugo Silva, and José Porto, Locvs – gestão do património ar-
quitectónico e arqueológico da cidade do porto, Tech. report, ParadigmaXis, S.A., , Produced for
Câmara Municipal do Porto. Cited on p. .

[PQ] Terence Parr and Russell Quong, ANTLR: A Predicated-LL(k) parser generator, Journal of Soware
Practice and Experience,  (), no. , –. Cited on p. .

[Pre] Hot-spot-driven development, John Wiley and Sons., . Cited on p. .

[PT] Carla Pacheco and Edmundo Tovar, Stakeholder identification as an issue in the improvement of so-
ware requirements quality, CAiSE’: Proceedings of the th international conference on Advanced
information systems engineering (Berlin, Heidelberg), Springer-Verlag, , pp. –. Cited on
p. .

[Pyp] Pypy, http://codespeak.net/pypy/dist/pypy/doc/ [Online; accessed -July-]. Cited on
p. .

[RD] D Riehle and E Dubach, Why a bank needs dynamic object models, OOPSLA Workshop on Metadata
and Active Object Models (). Cited on p. .

http://www.omg.org/mof/
http://www.omg.org/mda/
http://www.omg.org/spec/OCL/
http://www.uml.org/
http://www.bzip.org/
http://www.prevayler.org
http://pageflakes.com/
http://codespeak.net/pypy/dist/pypy/doc/

 REFERENCES

[RFBLO] Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, and Nosa Omorogbe, e architecture of a uml vir-
tual machine, OOPSLA ’: Proceedings of the th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (New York, NY, USA), ACM, , pp. –.
Cited on pp. , , , , and .

[RG] Dirk Riehle and omas Gross, Role model based framework design and integration, SIGPLAN Not.
 (), no. , –. Cited on p. .

[RJ] Don Roberts and Ralph Johnson, Evolving frameworks: A pattern language for developing object-
oriented frameworks, Proceedings of the ird Conference on Pattern Languages and Programming,
vol. , . Cited on pp. , , , , , , and .

[RKS] G Roy, J Kelso, and C Standing, Towards a visual programming environment for soware development,
Proceedings on Soware Engineering: Education & Practice (). Cited on pp.  and .

[RL] Awais Rashid and Nicholas Leidenfrost, Supporting flexible object database evolution with aspects,
Springer, , pp. –. Cited on pp. , , , , and .

[Roy] Winston W. Royce, Managing the development of large soware systems: concepts and techniques, Pro-
ceedings of the th international conference on Soware Engineering (Los Alamitos, CA, USA), ICSE
’, IEEE Computer Society Press, , pp. –. Cited on p. .

[Rub] Rubinus, http://rubini.us/ [Online; accessed -July-]. Cited on p. .

[SAJ+] Eva Söderström, Birger Andersson, Paul Johannesson, Erik Perjons, and Benkt Wangler, Towards a
framework for comparing process modelling languages, CAiSE ’: Proceedings of the th Interna-
tional Conference on Advanced Information Systems Engineering (London, UK), Springer-Verlag,
, pp. –. Cited on p. .

[Sch] Han Albrecht Schmid, Systematic framework design by generalization, Commun. ACM  (),
no. , –. Cited on p. .

[Sch] Barry Schwartz, e paradox of choice: Why more is less, Harper Perennial, January . Cited on
p. .

[Sch] D.C. Schmidt, Model-driven engineering, IEEE Computer (), no. . Cited on pp.  and .

[Sch] Werner Schuster, What’s a ruby dsl and what isn’t?, June , http://www.infoq.com/news/2007/
06/dsl-or-not. Cited on p. .

[Sha] Mary Shaw, e coming-of-age of soware architecture research, ICSE ’: Proceedings of the rd
International Conference on Soware Engineering (Washington, DC, USA), IEEEComputer Society,
, p. . Cited on p. .

[Spo] Joel Spolsky, e law of leaky abstractions, , http://www.joelonsoftware.com/articles/
LeakyAbstractions.html [Online; accessed -July-]. Cited on p. .

[SSS] Forrest Shull, Janice Singer, and Dag I.K. Sjøberg, Guide to advanced empirical soware engineering,
Springer-Verlag New York, Inc., Secaucus, NJ, USA, . Cited on p. .

[Sta] Standish Group International, e chaos report, Tech. report, . Cited on p. .

[Sta] ornton Staples, An open-source digital object repository management system, . Cited on p. .

[Ste] Friedrich Steimann, e paradoxical success of aspect-oriented programming, OOPSLA ’: Proceed-
ings of the st annual ACM SIGPLAN conference on Object-oriented programming systems, lan-
guages, and applications (New York, NY, USA), ACM, , pp. –. Cited on p. .

[Sur] James Surowiecki, e wisdom of crowds, Anchor, . Cited on p. .

http://rubini.us/
http://www.infoq.com/news/2007/06/dsl-or-not
http://www.infoq.com/news/2007/06/dsl-or-not
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.joelonsoftware.com/articles/LeakyAbstractions.html

REFERENCES 

[SV] omas Stahl and Markus Völter, Model-driven soware development: Technology, engineering, man-
agement, Wiley, May . Cited on p. .

[Szy] Clemens Szyperski, Component soware: Beyond object-oriented programming, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, . Cited on p. .

[THB+] Dave omas, David Hansson, Leon Breedt, Mike Clark, James Duncan Davidson, Justin Gehtland,
and Andreas Schwarz, Agile web development with rails, Pragmatic Bookshelf, . Cited on pp. 
and .

[THP] Walter F. Tichy, Nico Habermann, and Lutz Prechelt, Summary of the dagstuhl workshop on future
directions in soware engineering: February –, , schloßdagstuhl, SIGSOFT Sow. Eng. Notes
 (), no. , –. Cited on p. .

[TN] Hirotaka Takeuchi and Ikujiro Nonaka, e new new product development game, Harvard Business
Review (). Cited on p. .

[TPT] Susanna Teppola, Paivi Parviainen, and Juha Takalo, Challenges in deployment of model driven devel-
opment, International Conference on Soware Engineering Advances (), –. Cited on p. .

[Und] Understanding migrations in ruby on rails, , http://wiki.rubyonrails.org/rails/pages/
understandingmigrations [Online; accessed -August-]. Cited on p. .

[Usi] Using migrations in ruby on rails, , http://wiki.rubyonrails.org/rails/pages/
UsingMigrations [Online; accessed -August-]. Cited on p. .

[Völ] Markus Völter, A catalog of patterns for program generation, Proceedings of the Eighth European
Conference on Pattern Languages of Programs, June . Cited on p. .

[War] Martin P. Ward, Language-oriented programming, Soware — Concepts and Tools  (), no. ,
–. Cited on p. .

[WBJ] Rebecca J. Wirfs-Brock and Ralph E. Johnson, Surveying current research in object-oriented design,
Commun. ACM  (), no. , –. Cited on p. .

[WC] Laurie Williams and Alistair Cockburn, Guest editors’ introduction: Agile soware development: It’s
about feedback and change, Computer  (), –. Cited on p. .

[WE] Han-Chieh Wei and Ramez Elmasri, Schema versioning and database conversion techniques for bi-
temporal databases, Annals of Mathematics and Artificial Intelligence  (), no. -, –. Cited
on pp. , , , and .

[Web] Webster’s Online Dictionary, Design, , http://www.websters-online-dictionary.org/ [Online;
accessed -July-]. Cited on p. .

[WGM] André Weinand, Erich Gamma, and Rudolf Marty, Design and implementation of ET++, a seamless
object-oriented application framework, Structured Programming (), –. Cited on p. .

[Wika] Wikipedia, Abstraction — wikipedia, the free encyclopedia, , http://en.wikipedia.org/w/index.
php?title=Abstraction&oldid=373722967 [Online; accessed -July-]. Cited onpp.  and .

[Wikb] , Kolmogorov complexity — wikipedia, the free encyclopedia, , http://en.wikipedia.org/
w/index.php?title=Kolmogorov_complexity&oldid=375473546 [Online; accessed -August-
]. Cited on p. .

[Wikc] , Metamodeling — Wikipedia, e Free Encyclopedia, , [Online; accessed -September-
]. Cited on p. .

[Wikd] , Wikipedia, e Free Encyclopedia, , [Online; accessed -August-]. Cited on p. .

http://wiki.rubyonrails.org/rails/pages/understandingmigrations
http://wiki.rubyonrails.org/rails/pages/understandingmigrations
http://wiki.rubyonrails.org/rails/pages/UsingMigrations
http://wiki.rubyonrails.org/rails/pages/UsingMigrations
http://www.websters-online-dictionary.org/
http://en.wikipedia.org/w/index.php?title=Abstraction&oldid=373722967
http://en.wikipedia.org/w/index.php?title=Abstraction&oldid=373722967
http://en.wikipedia.org/w/index.php?title=Kolmogorov_complexity&oldid=375473546
http://en.wikipedia.org/w/index.php?title=Kolmogorov_complexity&oldid=375473546

 REFERENCES

[WYWB] León Welicki, Joseph Yoder, and Rebecca Wirfs-Brock, A pattern language for adaptive object models:
Part i-rendering patterns, PLoP ’: Proceedings of the th Conference on Pattern Languages of
Programs, . Cited on pp. , , , and .

[WYWB] León Welicki, Joseph Yoder, and Rebecca Wirfs-Brock, Adaptive object-model builder, PLoP ’: Pro-
ceedings of the th Conference on Pattern Languages of Programs, . Cited on pp.  and .

[WYWBJ] León Welicki, Joseph Yoder, Rebecca Wirfs-Brock, and Ralph E. Johnson, Towards a pattern language
for adaptive object models, OOPSLA ’: Companion to the nd ACM SIGPLAN conference on
Object-oriented programming systems and applications companion (New York, NY, USA), ACM,
, pp. –. Cited on pp. , , , , , , , , , and .

[YBJa] Joseph Yoder, Federico Balaguer, and Ralph Johnson, Adaptive object-models for implementing busi-
ness rules, Urbana (). Cited on pp. , , and .

[YBJb] ,Architecture and design of adaptive object-models, ACMSIG-PLANNotices  (), –.
Cited on pp. , , , , , , , and .

[YFRT] Joseph Yoder, Brian Foote, Dirk Riehle, andMichel Tilman, Metadata and active object-models, OOP-
SLA ’ Addendum: Addendum to the  proceedings of the conference on Object-oriented pro-
gramming, systems, languages, and applications (Addendum) (New York, NY, USA), ACM, .
Cited on pp.  and .

[Yod] Joseph Yoder, e adaptive object model architectural style, Soware Architecture: System Design
(). Cited on pp. , , , , and .

[ZW] Marvin V. Zelkowitz and Dolores R. Wallace, Experimental models for validating technology, Com-
puter  (), –. Cited on pp.  and .

