
Luís Fernando Raínho Alves Torgo

INDUCTIVE LEARNING
OF

TREE-BASED REGRESSION MODELS

Departamento de Ciências de Computadores
Faculdade de Ciências da Universidade do Porto

Setembro/1999

Luís Fernando Raínho Alves Torgo

INDUCTIVE LEARNING
OF

TREE-BASED REGRESSION MODELS

Tese submetida para obtenção

do grau de Doutor em Ciência de Computadores

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

Setembro de 1999

Dedication

Para o meu avô.

3

Acknowledgements

I would like to thank my supervisor, Pavel Brazdil, for all his support since I started my

research on Machine Learning. He has managed to provide me with the ideal mixture of

research guidance and freedom to follow my own intuitions. Thanks also for all his useful

comments and suggestions that certainly improved this thesis. Finally, I would like also to

thank him for all his effort in management tasks that provided me and my colleagues with

such excellent working conditions.

Thanks to all my colleagues at LIACC for such pleasant working atmosphere. Thanks

in particular to all those in NIAAD (machine learning group) for useful comments and

discussions. A special word to my two colleagues with whom I share the office: Alipio

Jorge and João Gama. Finally, I would like to thank my colleague Joaquim Pinto da Costa

for his support with questions concerning statistics.

I would like to thank the Faculty of Economics of the University of Porto and the

Portuguese Government (Programa Ciência and PRAXIS XXI) for all financial support

that made this thesis possible. Thanks also are due to the European Community for its

financial support to several research projects and networks on which I was involved.

Thanks to all my good friends for all nice moments that allowed me to escape from my

research preoccupations. Their friendship made things much easier.

Special thanks to Catarina. Her love and joy are an unlimited source of happiness.

Finally, a very special thanks to my family and in particular my parents. Without their

love and unquestionable support nothing of this would ever be possible.

5

Abstract

This thesis explores different aspects of the induction of tree-based regression models from

data. The main goal of this study is to improve the predictive accuracy of regression trees,

while retaining as much as possible their comprehensibility and computational efficiency.

Our study is divided in three main parts.

In the first part we describe in detail two different methods of growing a regression

tree: minimising the mean squared error and minimising the mean absolute deviation. Our

study is particularly focussed on the computational efficiency of these tasks. We present

several new algorithms that lead to significant computational speed-ups. We also describe

an experimental comparison of both methods of growing a regression tree highlighting

their different application goals.

Pruning is a standard procedure within tree-based models whose goal is to provide a

good compromise for achieving simple and comprehensible models with good predictive

accuracy. In the second part of our study we describe a series of new techniques for

pruning by selection from a series of alternative pruned trees. We carry out an extensive set

of experiments comparing different methods of pruning, which show that our proposed

techniques are able to significantly outperform the predictive accuracy of current state of

the art pruning algorithms in a large set of regression domains.

In the final part of our study we present a new type of tree-based models that we refer

to as local regression trees. These hybrid models integrate tree-based regression with local

modelling techniques. We describe different types of local regression trees and show that

these models are able to significantly outperform standard regression trees in terms of

predictive accuracy. Through a large set of experiments we prove the competitiveness of

local regression trees when compared to existing regression techniques.

7

Contents

ACKNOWLEDGEMENTS 5

ABSTRACT 7

CONTENTS 9

LIST OF TABLES 13

LIST OF FIGURES 15

LIST OF SYMBOLS 19

CHAPTER 1 - INTRODUCTION 21

1.1 OBJECTIVES 24

1.2 MAIN CONTRIBUTIONS 24

1.3 ORGANISATION OF THE THESIS 26

CHAPTER 2 - INDUCTIVE LEARNING 29

2.1 INTRODUCTION 29

2.2 SUPERVISED LEARNING 32

2.3 REGRESSION PROBLEMS 38

2.3.1 A Formalisation of Regression Problems 40

2.3.2 Measuring the Accuracy of Regression Models 42

2.4 EXISTING REGRESSION METHODS 45

2.4.1 Statistical Methods 45

2.4.2 Artificial Neural Networks 50

2.4.3 Machine Learning Methods 52

CHAPTER 3 - TREE-BASED REGRESSION 57

3.1 TREE-BASED MODELS 58

3.2 LEAST SQUARES REGRESSION TREES 62

9

CONTENTS

3.2.1 Efficient Growth ofLS Regression Trees _ _ _ 66

3.2.2 Splits on Continuous Variables ___ 69

3.2.3 Splits on Discrete Variables 70

3.2.4 Some Practical Considerations 73

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 75

3.3.7 Splits on Continuous Variables 77

3.3.2 Splits on Discrete Variables 86

3.4 LAD vs. LS REGRESSION TREES 90

3.5 CONCLUSIONS _ _ _ 97

3.5.7 Open Research Issues 98

CHAPTER 4 - OVERFITTING AVOIDANCE IN REGRESSION TREES 105

4.1 INTRODUCTION 106

4.2 AN OVERVIEW OF EXISTING APPROACHES 108

4.2.7 Error-Complexity Pruning in CART 108

4.2.2 Pruning based on m estimates in RETIS 770

4.2.3 MDL-based pruning in CORE 7 73

4.2.4 Pruning in M5 114

4.3 PRUNING BY TREE SELECTION 115

4.3.7 Generating Alternative Pruned Trees 777

4.3.2 Methods for Comparing Alternative Pruned Trees _ 722

4.3.3 Choosing the Final Tree 740

4.3.4 An Experimental Comparison of Pruning by Tree Selection Methods 747

4.3.5 Summary 754

4.4 COMPARISONS WITH OTHER PRUNING METHODS 155

4.4.7 A Few Remarks Regarding Tree Size 759

4.4.2 Comments Regarding the Significance of the Experimental Results 767

4.5 CONCLUSIONS 162

4.5.7 Open Research issues 763

CHAPTER 5 - LOCAL REGRESSION TREES 167

5.1 INTRODUCTION 168

5.2 LOCAL MODELLING 171

5.2.7 Kernel Models 7 72

5.2.2 Local Polynomial Regression 775

5.2.3 Semi-parametric Models 777

10

CONTENTS

5.3 INTEGRATING LOCAL MODELLING WITH REGRESSION TREES .

5.3.1 Method of Integration

5.3.2 An illustrative example

5.3.3 Relations to Other Work .

5.4 AN EXPERIMENTAL EVALUATION OF LOCAL REGRESSION TREES.

5.4. J Local Regression Trees vs. Standard Regression Trees

5.4.2 Local Regression Trees vs. Local Models

5.4.3 Local Regression Trees vs. Linear Regression Trees .

5.4.4 Local Regression Trees versus Existing Regression Methods^

5.5 CONCLUSIONS

5.5.1 Open Research Issues.

.178

.181

.183

J 85

.186

.757

.759

.793

.794

.196

797

CHAPTER 6 - CONCLUSIONS

6.1 SUMMARY

6.7.7 Growing Regression Trees

6.1.2 Pruning Regression Trees _

6.1.3 Local Regression Trees _

6.2 FUTURE RESEARCH DIRECTIONS .

199

_199

.200

_201

.203

204

ANNEX A - MATERIAL AND METHODS

A.l. THE EXPERIMENTAL METHODOLOGY

A.2. THE USED BENCHMARK DATA SETS

A.3. THE LEARNING SYSTEMS USED IN THE COMPARISONS.

207

.207

.212

218

ANNEX B - EXPERIMENTAL RESULTS 221

B.4.

B.5.

B.6.

B.7.

B.8.

B.9.

EXPERIMENTS WITH TREE GENERATION METHODS

CART TREE-MATCHING VS. OUR PROPOSAL

COMPARISON OF METHODS FOR GENERATING PRUNED TREES

TUNING OF SELECTION METHODS

COMPARISON OF METHODS OF EVALUATING A TREE.

COMPARISONS WITH OTHER PRUNING ALGORITHMS .

.221

.224

.224

.227

.229

230

REFERENCES 235

11

CONTENTS

12

List of Tables

Table 3.1. Results of comparisons between LAD and LS trees. 96

Table 4.1. The basic characteristics of the used benchmark domains. 120

Table B.l. Estimated MSE difference between MEL and LSS using ChiEst(95%). 225

Table B.2. Estimated MSE difference between ErrCpx and LSS using ChiEst(95%). 225

Table B.3. Estimated MSE difference between MEL and MCV using ChiEst(95%). 225

Table B.4. Difference in error (MSE) between ErrCpx and MCV using ChiEst(95%). _ 226

Table B.5. Difference in Prediction error (MSE) between MEL and LSS using 5-fold CV.

226

Table B.6. Difference in error (MSE) between ErrCpx and LSS using 5-fold CV. 226

Table B.7. Difference in Prediction error (MSE) between MEL and MCV using 5-fold CV.

227

Table B.8. Difference in Prediction error (MSE) between ErrCpx and MCV using 5-fold

CV. 227

Table B.9. Difference in MSE between ChiEst(95%) and ChiEst tuned by 5-fold CV._ 228

Table B.10. Difference in MSE between m(2) and m tuned by 5-fold CV. 228

Table B.ll . Difference in MSE between MDL(0.1,0.5) and MDL tuned by 5-fold CV. 228

Table B.12. Difference in error (MSE) between 5-fold CV and m estimates tuned by 5-CV.

229

Table B.13. Difference in error (MSE) between 5-fold CV and %2 estimates (CL=95%).

229

Table B.14. Difference in error (MSE) between 5-fold CV and MDL tuned by 5-fold CV.

230

13

L/57 OF TABLES

Table B.15. Difference in error (MSE) between L55+5CV and CART pruning. 230

Table B.16. Difference in error (MSE) between LSS+5CY and RETIS pruning. 231

Table B.17. Difference in error (MSE) between LSS+5CV and CORE pruning. 231

Table B.18. Difference in error (MSE) between LSS+ChiEst(95%) and CART pruning.231

Table B.19. Difference in error (MSE) between LSS+ChiEst(95%) and RETIS pruning.

232

Table B.20. Difference in error (MSE) between LSS+ChiEst(95%) and CORE pruning.232

Table B.21. Difference in error between LSS+ChiEst(95%,0.5-SE) and CORE pruning.232

Table B.22. Difference in MSE between LSS+ChiEst(95%,l-SE) and CORE pruning. 233

14

List of Figures

Figure 2.1 - A perceptron unit. 50

Figure 2.2 - The sigmoid computing unit. 51

Figure 2.3 - A multilayer architecture for regression. 52

Figure 3.1- Computation time to generate a LS tree for different sample sizes. 74

Figure 3.2 - A split on Xj < 145. 78

Figure 3.3 - Computation time to grow a LAD tree for different sample sizes of the Fried

domain. 86

Figure 3.4 - Computation Time of LAD and LAD(fast) trees for different sample sizes._ 89

Figure 3.5 - A LS regression tree for the Alga 6 problem. (MSE = 162.286; MAD = 7.328)

93

Figure 3.6 - A LAD regression tree for the Alga 6 problem. (MSE = 179.244; MAD =

6.146) 94

Figure 3.7 - The absolute difference of the errors committed by the LAD and LS trees. _ 95

Figure 3.8 - The histogram of the errors of the LAD and LS trees. 95

Figure 4.1 - Comparison of the four methods for generating sequences of sub-Trees. 121

Figure 4.2 - Our tree-matching proposal vs. CART method. 128

Figure 4.3 - The Holdout Method. 129

Figure 4.4 -Different values of the "correcting factor" used in the ChiEst estimator. 138

Figure 4.5 - Comparison of LSS with other sequence generation methods using

ChiEst(95%) as selection method. 142

Figure 4.6 - The effect of the value of the confidence level on the pruned tree size. 144

Figure 4.7 - Significance of MSE difference between ChiEst(95%) and ChiEst(5-CV). 145

15

LIST OF FIGURES

Figure 4.8 - Tree size and Cpu time ratios between ChiEst(95%) and ChiEst(cv). 145

Figure 4.9 - Variation of tree size for different m values. 146

Figure 4.10 - Significance of MSE difference between m(2) and m(5-CV). 147

Figure 4.11 - Tree size and Cpu time Ratios for m=2 and m(cv) selection. 148

Figure 4.12 - The effect of varying the MDL coding parameters on tree size. 149

Figure 4.13 - Significance of MSE difference between MDL(0.1,0.5) and MDL(5-CV). 150

Figure 4.14 - Tree size and Cpu time ratios between MDL(0.1,0.5) and MDL(cv5). 151

Figure 4.15 - Significance of MSE difference between tree selection methods. 152

Figure 4.16 - Tree Size Ratio comparison among Selection Methods. 153

Figure 4.17 - Significance of MSE difference between LSS+5CV and other pruning

algorithms. 156

Figure 4.18 - Tree size ratios between LSS+CV5 and other pruning algorithms. 157

Figure 4.19 - Significance of the MSE difference between LSS+ChiEst(95%) and other

pruning algorithms. 158

Figure 4.20 - Tree size ratios between LSS+ChiEst(95%) and other pruning algorithms. 159

Figure 4.21 - Significance of MSE difference between ChiEst with the k-SE rule and

CORE. 160

Figure 4.22 - The effect on tree size of the k-SE rule when compared to CORE. 160

Figure 4.23 - Significance of MSE difference between CART and not pruning. 161

Figure 5.1. The ramping function (Hong, 1994). 173

Figure 5.2. The approximation provided by a LS regression tree to the function sin(X). 179

Figure 5.3. The approximation of an LS regression tree with kernel models in the leaves.

180

Figure 5.4. The curve and the training data. 184

Figure 5.5. Approximations provided by using averages, linear polynomials, kernels and

local linear polynomials. 184

Figure 5.6 - Comparison of standard regression trees (RT) with local regression trees

(RT+KR, RT+PL and RT+LL). 188

Figure 5.7 - Computation time ratio of standard and local regression trees. 189

16

LIST OF FIGURES

Figure 5.8 - Comparison of Local Trees and Local Models in terms of Significance of

MSE difference. 190

Figure 5.9 - Computation time ratio of Local Regression Trees and Local Models. 192

Figure 5.10 - Comparison between Local Regression Trees and M5 in terms of

Significance Level of the MSE difference. . 193

Figure 5.11 - Comparison between Partial Linear Trees and other regression techniques

with respect to the Significance Level of the MSE difference. 195

17

List of Symbols

Xj is an input (predictor) variable (or attribute).

A is the set of attributes of a problem.

a is the number of attributes (or predictor variables) of a problem, that is a = #A.

Xi is the domain of the variable X,.

Y is a goal variable.

Y is the domain of variable Y.

x, is a vector of attribute values having as domain X = % i X . . . x % a .

(x., y,) is a case or example with domain X x Y.

D = {(x,, y,) f is a data set or sample of cases.

n is the number of training cases of a problem.

D = X I Y is a matrix representation of a data set, where X is a nxa matrix containing the n

vectors of a attributes values, and Y is a column vector containing the n goal variable

values.

r(P, x) is a regression model with parameters p, which maps an attribute vector into a goal

variable value, i.e. r : X —> 1.

r(P, x,) is the predicted value of the model r(P, x) for a case (x., y;) .

19

LIST OF SYMBOLS

T is a tree-based model.

í i sa node of a tree T.

T, is a sub-tree of T rooted at node t.

tL is the left child node of node t.

tR is the right child node of node t.

I is a leaf node of a tree.

T is a set containing all leaf nodes of a tree T.

#f is the number of leaves of a tree, i.e. the cardinality of set T .

Pi is a path from the root node to to a node f,-. We represent this path by the conjunction of

logical tests of the nodes in the path.

D, is the sub-set of the training sample D falling in node t, that is

A = { (x , , v ,) e £ > : x^P,}.

20

Chapter 1

Introduction

This dissertation addresses a particular methodology to deal with a data analysis problem

usually known as multivariate regression. A multivariate regression problem can be

loosely defined as the study of the dependency relation between a goal (dependent,

response) variable and a set of independent (predictor, input) variables. The goal of

multivariate regression analysis is to obtain a model of this relationship. This model can be

used either for understanding the interactions between the variables of the domain under

study, or to predict the value of the goal variable of future instances of the same problem.

Regression models are usually obtained through an inductive process that uses examples

(the training sample) of an unknown regression relationship. Consider for instance a

collection of observations regarding some financial indicators of thousands of companies

and their respective stock values. We could be interested in obtaining a regression model

that relates the stock value with some of these indicators. This model could then be used to

predict the stock value of a new company for which we know the value of the indicators.

Moreover, if our model is somehow intelligible it could reveal some yet unknown

relationships in this domain.

The existence of a functional relationship between a target variable and a set of

predictor variables is common in real world data analysis (Drapper & Smith, 1981).

21

22 CHAPTER 1. INTRODUCTION

Finding a model of such relationship is very important because it allows us to predict and

comprehend the behaviour of our data. These and other arguments justify the existence of

so many research works carried out about this data analysis problem. Still, the majority of

studies about regression analysis concern methods of generating a multivariate linear

model between the response variable and the predictors. Although being one of the most

successful data analysis techniques, linear regression has obvious limitations due to the

linear structure that is imposed on the data. To deal with data with more complex structure

one needs more sophisticated tools. Non-parametric approaches to regression are able to

deal with a wide range of regression domains by not imposing any pre-defined global form

to the regression surface (Hardie, 1990). These methods assume some functional form only

at a local level, meaning that they do not try to fit one single model to all given sample.

This methodology leads to a regression surface that is globally non-parametric {i.e. an

approximation that does not have a fixed global functional form). This is an important

feature if one wishes to develop a tool that is applicable to a wide range of regression

problems. That is one of the goals of the work carried out in this dissertation.

The approach to regression analysis followed in this thesis is usually known as tree-

based regression. The regression models obtained with this methodology can be

represented in the form of a tree. This tree consists of a hierarchy of nodes, starting with a

top node known as the root node. Each node of the tree contains logical tests on the

predictor variables, with the exception of the bottom nodes of the hierarchy. These latter

are usually known as the leaves of the tree. The leaves contain the predictions of the tree-

based model. Each path from the root node to a leaf can be seen as a conjunction of logical

tests on the predictor variables. These conjunctions are logical representations of "sub-

areas" of the overall regression surface being approximated. For each of these local areas

different values of the goal variable can be predicted. Although the form of the logical tests

imposes some restrictions on the type of local areas that can be represented, the number of

local areas and their "size" is not pre-defined. Because of this regression trees are able to

represent a wide range of regression surfaces through a flexible composition of smaller

1.1 OBJECTIVES 23

surfaces. The main features of tree-based regression are its wide range of applicability, low

computation time and its comprehensibility due to the use of a symbolic representation of

the regression surface. These models are studied in several research fields like social

sciences, statistics, engineering and artificial intelligence.

Most existing methods of growing a regression tree try to minimise the mean squared

error of the resulting model. This method has important computational advantages

stemming from the mathematics behind this criterion. However, mean squared error is

known to be quite sensitive to outliers {i.e. data points that diverge a lot from the bulk of

data). These data items may distort the mean squared error statistic possibly leading to

wrong decisions in the process of growing a tree. We see this as an opportunity for

considering other growth criteria that do not suffer from this effect.

As we have mentioned, comprehensibility is one of the main advantages of regression

trees. However, as these models do not assume any fixed form of the regression surface,

they can easily overfit the given training sample, by generating too many local areas to

approximate the unknown surface. This leads to models that are unnecessarily large with

consequences in terms of comprehensibility. Moreover, overfitting may also cause lower

predictive accuracy, particularly with unreliable data (i.e. noisy data). Pruning is the usual

method of avoiding overfitting in regression trees. Pruning is usually regarded as a search

through the space of all possible pruned trees of an overly large tree that overfits the

training data. Current approaches to this search problem use methods relying either on

estimates of the true prediction error of the trees (e.g. Breiman et al, 1984) or other

criteria like minimising the binary description length of the tree model (Robnik-Sikonja &

Kononenko, 1998).

The non-parametric features of regression trees usually lead to competitive predictive

accuracy in a large set of domains. However, regression trees can be seen as fitting

constants in a set of partitions of the input space (the multidimensional space defined by

the predictor variables). As we have mentioned, a regression tree is a logic representation

of this set of partitions. In each of these regions of the input space regression trees assume

24 CHAPTER 1. INTRODUCTION

that the unknown regression function takes a constant value. This leads to a highly non-

smooth set of local regions, that all together form the regression surface approximation

provided by a regression tree. In this thesis we explore the possibility of introducing a

further level of detail within these partitions by using smother models within each leaf of

the trees.

1.1 Objectives

The main objective of this thesis is to study different aspects of tree-based regression with

the aim of improving the accuracy of these models, while trying to retain their main

features concerning applicability, processing time and comprehensibility of the models.

Our study is focused on deriving trees from large sets of data and thus we are particularly

concerned with methods that are sufficiently efficient. We start our study by exploring

computationally efficient methods of growing regression trees using two different error

criteria. We improve the computational efficiency of the method of growing least squares

regression trees, and we consider the alternative of growing trees that minimise the mean

absolute deviation. This latter methodology aims at overcoming difficulties with data

outliers. We then address the important question of avoiding overfitting of the training data

with the objective of providing a better compromise between accuracy and size of the

models. Finally, we describe a new type of models, called local regression trees, that

permit to attain higher accuracy than existing approaches to tree-based regression, through

the use of smoother models in their leaves. Throughout this thesis we have extensively

compared our proposals with existing methods. These comparisons were carried out using

several data sets and different training sample sizes.

1.2 Main Contributions

This dissertation presents a thorough study of tree-based regression models. The study is

divided in three main parts. The first addresses the generation of tree models. We review

1.2 MAIN CONTRIBUTIONS 25

several existing techniques of growing least squares (LS) and least absolute deviation

(LAD) regression trees. We describe new algorithms for inducing LAD trees that increase

the efficiency of this task. We present a theoretical study concerning the possibility of

extending a theorem described by Breiman et al. (1984), to LAD trees. This extension is

relevant because the results of the theorem significantly improve the computational

efficiency of finding the best discrete split for a tree node. We also describe an

experimental comparison between LS and LAD regression trees. This comparison shows

that these two methodologies have different application goals. While LS trees try to

minimise the square error of the tree resulting in a model with lower probability of

committing large prediction errors, LAD trees minimise the average absolute deviation,

which leads to models that on average tend to be more accurate but may occasionally

commit larger prediction errors.

The second part of this thesis addresses overfitting avoidance within regression trees.

We review the major existing pruning techniques and then focus our study on pruning by

tree selection. We describe two new methods of exploring the large space of pruned trees

that entail accuracy advantages when compared to existing approaches. We present a new

method of using Cross Validation estimates, which extends their applicability in the

context of pruning by tree selection. We extend the use of m estimators (Cestnik, 1990)

within regression trees. We describe an m estimator of the Mean Absolute Deviation that

allows using this method with LAD trees. We also derive an expression of the standard

error of m estimates, which allows using the 1-SE rule (Breiman et al, 1984) during

pruning, with large advantages in terms of tree size. Finally, we present a new error

estimator {ChiEst) for LS trees based on the sampling distribution properties of the mean

squared error, that provides very competitive accuracy with low computation costs.

We have carried out an extensive empirical comparison of different methods of

pruning by tree selection. We have concluded that selection based on error estimates

obtained either with Cross Validation or our ChiEst method are the best ways to achieve

higher accuracy in a large set of benchmark domains. However, we have also observed that

26 CHAPTER 1. INTRODUCTION

these methods entail some costs in terms of average tree size. With respect to computation

time our ChiEst method achieved significant advantages when compared to other existing

pruning algorithms.

We have also compared our pruning proposals with three state-of-the-art pruning

algorithms. We have observed significant accuracy advantages of our methods at the cost

of some tree size, particularly when compared to CART (Breiman et al, 1984) and CORE

(Robnik-Sikonja & Kononenko,1998) pruning algorithms.

Regarding local regression trees we describe three variants of these models: kernel

trees; partial linear trees; and local linear trees. We have confirmed our hypothesis

concerning the increased predictive accuracy of these models when compared to standard

regression trees. However, we have also observed that this advantage comes at the cost of

larger computational requirements and loss of some of comprehensibility of the models.

We also show that local regression trees can be seen as a means to overcome some of the

limitations of the local models we have integrated in their leaves. In effect, the focusing

effect provided by local regression trees is largely beneficial in terms of computation time

when compared to the use of local models per see. Finally, in an empirical comparison

with three of the most well-known existing regression methodologies, we have observed

that partial linear trees are among the most competitive in terms of predictive accuracy.

1.3 Organisation of the Thesis

This dissertation is organised as follows. Chapter 2 presents an overview of the existing

work on learning by examples within the propositional framework. This description is

particularly focused on regression methods. We provide an overview of the major

regression techniques used in the research fields of statistics, neural networks and machine

learning.

Chapter 3 presents two methods of growing regression trees. The first is the method of

growing a tree by minimising the mean squared error of the resulting model. We discuss

1.3 ORGANISATION OF THE THESIS 27

several computational issues of this methodology and present some algorithms that

improve its efficiency. We then address the question of growing regression trees by trying

to minimise the mean absolute deviation. We present several algorithms for growing this

type of trees and discuss its computational difficulties. We also provide several techniques

that allow a large computational speed-up of the task of growing these trees.

Chapter 4 addresses one of the most important aspects of tree-based regression:

overfitting avoidance. We follow the method of pruning by selecting from a set of

previously generated pruned trees. We describe two new algorithms for generating these

pruned trees. We study several alternative ways of evaluating tree models and apply them

in the context of pruning by tree selection. We show the results of an empirical comparison

between different methods of pruning by tree selection. Finally, we compare our pruning

proposals with three of the most successful existing pruning algorithms.

In chapter 5 we describe a new type of tree-based regression models, named local

regression trees. These models integrate regression trees with local modelling techniques.

The integration is carried out using local models in the leaves of regression trees. We

describe three variants of local regression trees: kernel trees; partial linear trees; and local

linear trees. We carry out a series of experiments designed with the goal of finding out the

advantages and disadvantages of local regression trees.

We also include a series of Annexes that provide further details on the work carried

out in the thesis. Annex A describes the material and methods used in the experimental

parts of the thesis. This annex also includes details concerning the form of presenting

experimental results used throughout the thesis. Annex B presents the full tables of results

of several experiments carried out in thesis that were not included in the main text for

clarity reasons.

Chapter 2

Inductive Learning

This chapter presents an overview of the research in inductive learning. We briefly

describe the various aspects of this scientific field and present some examples of

applications. We then focus on a particular learning task usually known as regression,

which is the main topic of this thesis. We present an overview of the existing approaches to

this problem within Machine Learning as well as other research fields.

2.1 Introduction

Various definitions of machine learning appear in the field literature. Simon (1983) defined

it as "changes in the system that are adaptive in the sense that they enable the system to do

the same task or tasks drawn from the same population more efficiently and more

effectively the next time". Langley (1996) defined learning as "the improvement of

performance in some environment through the acquisition of knowledge resulting from

experience in that environment". Finally, Mitchell (1997) presented a more operational

definition by saying that "a computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance at tasks in

T, as measured by P, improves with experience E\ There are several important notions

29

30 CHAPTER 2. INDUCTIVE LEARNING

common to these definitions. First of all, there is the notion of adaptation resulting from

new experience. Also relevant is the demand that this adaptation should lead to an

improvement of the system performance in other tasks of the same kind.

Michalski (1994) has presented a formal description of the learning task. This author

described the Inferential Theory of Learning (ITL) that looks at learning as a search

through a knowledge space. This search consists of a series of knowledge transmutations to

achieve a certain learning goal. According to this author, ITL "strives to characterise

logical capabilities of learning systems ...by addressing issues like what types of

knowledge transformations occur..., what is the validity of knowledge obtained..., how is

prior knowledge used..., what knowledge can be derived from the given input and the prior

knowledge...". These aims distinguish ITL from the Computational Learning Theory

(COLT), which focuses on the computational complexity and convergence of the learning

algorithms. The knowledge space is defined by the knowledge representation language

used to describe the inputs, the background knowledge and the outputs of the learning

system. The search carried out by the learner can be seen as a series of inferences from the

given knowledge. Michalski (1994) describes three different types of inference strategies -

deduction, induction and analogy. While most existing learning systems use only one type

of inference strategy, systems exist that are able to perform knowledge transmutations of

different type.

Let us consider the following logical entailment,

r u B |=C (2.1)

where,
r is a set of premises;
B is the learner's background knowledge;
and C is a set of consequences.

From the perspective of this inference equation, deduction is a knowledge transmutation

step that derives C from the premises T and the background knowledge B. This step is said

to be truth-preserving as C is a logical consequence of Y u B. Examples of systems that

2.1 INTRODUCTION 31

use this type of truth-preserving inferences can be found in Mitchell et al. (1983) and

DeJong & Mooney (1986).

Inductive inference, on the other hand, consists of hypothesising the premises T, given

C and B. This inductive step should ensure that T together with B entails C. Moreover, this

is a falsity-preserving knowledge transmutation because if C is false, then T should also be

false. Analogy or "similarity-based" inference can be seen as a combination of inductive

and deductive inference (see for instance, Winston,1980; Carbonell,1986). In this form of

inference, an inductive step is made by hypothesising that a new "term" is similar to an

existing "term". Then based on this similarity we may deduce new knowledge using

deductive steps that were "applicable" to the first term.

Another important distinction made by Michalski (1994) in his framework, is between

conclusive {sound, strong) and contingent (plausible, weak) inference. Conclusive

inferences assume the standard logical entailment used in Equation 2.1, while contingent

inferences use a weaker form of entailment that states that the consequent is only a

plausible or probabilistic consequence of the premises (i.e. T u B |= C). The work

presented in this thesis can be seen as a form of contingent inductive inference.

Inductive inferences are used in several learning tasks. For instance, in clustering one

uses inductive reasoning to try to form groups of observations that are somehow

interrelated. In conceptual clustering (Michalski & Stepp, 1983; Fisher, 1987), the learner

tries to discover concepts by grouping the observations in a "meaningful" way. Another

learning task using inductive inference is discovery, where the goal is to obtain "numeric

laws" that explain the given observations of some phenomenon (Lenat, 1970; Langley et.

al. , 1986). As the learner is not given any guidance regarding which concepts or laws are

valid in the domain, clustering is also known as unsupervised learning.

In supervised learning tasks the learner is given a set of examples (or training cases)

of some concept. The learning task consists of using inductive inference to obtain a

' In statistics this methodology is sometimes referred as classification, which leads to some confusion

because this word is used with another meaning within machine learning.

32 CHAPTER 2. INDUCTIVE LEARNING

hypothesis (a model of the concept) that entails these observations. Usually people

distinguish two different types of supervised learning tasks: classification and regression.

In the case of classification tasks2 the given examples have an attached label that indicates

their concept membership. For instance, we may be interested in learning the concept of

heart disease. A medical expert (the teacher) could provide our learning system with

examples of patients with no heart problems as well as examples of heart diseases. In this

example the learning goal is to obtain a model that is able to capture the main "features" of

each type of heart disease. In regression tasks the "labels" attached to each example are

numbers. The examples can be seen as instances of an unknown continuous function. The

goal of the inductive system is to learn a general description (or model) of this function.

For instance, in a banking institution there is usually a department responsible for

quantifying the risk of the loan requested by a customer based on a series of indicators.

The historical records of these experts' decisions can be used as a basis for inducing a

general model of loan risk assessment. The task of inducing regression models based on

examples is the main topic addressed in this thesis. In the remaining of this chapter we will

briefly describe the general task of supervised learning and then concentrate on the

particular case of regression.

2.2 Supervised Learning

In a supervised learning task the learner is given a set of observations (examples, training

cases) of some phenomenon that are pre-labelled by a domain expert (the teacher). The

learning goal consists of using these labelled observations together with some background

knowledge, to obtain a model of this phenomenon. In the particular case of learning

systems using inductive inference, this model can be seen as a generalisation of the

observations.

In statistics this task is usually known as discrimination.

2.2 SUPERVISED LEARNING 33

As it was mentioned before the representation language used to describe the cases, the

background knowledge and the obtained model is an important design decision, as it

determines the knowledge space of the learning task. The choice of this language is

another factor that further distinguishes the existing research in supervised learning. The

standard approach uses a propositional language where each case is described by a fixed

set of attributes3. An alternative is to use more powerful representation languages that

encompass a larger set of learnable problems. Inductive logic programming (ILP) is a

recent research field (Muggleton, 1992; Muggleton & De Raedt, 1994; Lavrac &

Dzeroski,1994) that uses a subset of first-order logic as representation language4.

The work presented in this thesis belongs to the area of propositional supervised

learning. In propositional learning each training case is described by a set of a attributes,

X\, X2, ..., Xa . Each attribute X, has an associated domain, X,. Boolean or binary attributes

have as domain the two logical constants (e.g. %payed = {TRUE, FALSE}). Nominal

attributes have as domain a finite set of labels (e.g. Xcohr = {red, white, blue}). Numeric

attributes can take real or integer values. Ordinal attributes take values from a finite set of

ordered labels (e.g. %size ={small, medium, large}). Some learning systems are also able to

use structured attributes (e.g. Almuallim et ai, 1995) were the domain is defined by a

hierarchical taxonomy.

In supervised learning each case has an associated label y e Y that represents the

concept membership of the case. We can see a training case as a pair (x, y) e % x Y ,

where % = % i X . . . x % 0 , and x is a vector of the values of the case related to the given

attributes X\, ..., Xa. It is the expert's responsibility to decide which attributes to include in

the description of a case. We can define a training set as,

Also known as features or input variables.

Although it may be said that many of the ideas within ILP trace back to earlier work as mentioned in an

historical account presented in Sammut (1993). Work on learning relational concept descriptions was

investigated by Banerji (1964) and Winston (1970), and most of the theoretical aspects of ILP are based on

the work of Plotkin (1970,1971).

34 CHAPTER 2. INDUCTIVE LEARNING

£ = {(x,^)};=1 (2-2)
where,

n is the number of examples given to the system;
x, is a vector containing the values of the case i, relative to the attributes X\,Xi, ...,
Xa ',
and y, is the label given by the expert to the case i.

As mentioned before there are two types of supervised learning tasks, classification and

regression. The main difference of these two tasks is on the domain of the labels of the

cases (i.e. y). In classification y consists of a finite set of labels (i.e. F is a nominal

variable), whereas in regression Y can take real or integer values (i.e. y = IR or y = N).

Learning systems using inductive inference proceed by performing a series of

knowledge transmutations to the given training set, in order to obtain a generalisation of

the cases (a model of the concept under study). Other supervised learners exist that either

use other inference mechanisms or even limit themselves to storing the cases (e.g.

instance-based learners; Aha et al, 1991). Depending on the type of knowledge

transmutations carried out by the learner we can obtain different types of concept

descriptions (or models). In the particular case of learners using inductive inference several

alternatives exist within the literature. Tree-based learners (e.g. Breiman et al, 1984;

Quinlan, 1986; Cestnik et al, 1987) induce concept descriptions that have the form of a

tree hierarchy where each inner node is a test on a attribute and the leaves the predictions

of the model. These models are also known as decision (or classification) trees in the case

of classification tasks, and regression trees for regression domains. Rule-based learners

(e.g. Michalski, 1983; Michalski et al, 1986; Clark & Nibblet, 1989) obtain a set of IF-

THEN rules, where the conditional is a conjunction of logical tests on the attributes and the

conclusion is the predicted label. Decision graphs (Oliver, 1993; Kohavi, 1995; Oliveira &

Sangiovanni-Vincentelli, 1996) were introduced as a kind of generalisation of decision

trees to overcome some of their problems like replication and fragmentation (Kohavi,

1995). Neural networks (e.g. McClelland & Rumelhart, 1981; Rumelhart et al, 1986)

obtain a series of weights for the connections in a network of computing units. Statistical

2.2 SUPERVISED LEARNING 35

approaches typically obtain models with a functional form, like linear discriminants

(Fisher, 1936), generalised additive models (Hastie & Tibshirani, 1990), or regression

splines (Friedman, 1991).

Example 2.1 illustrates a typical supervised learning task (in this case a classification

task), and presents two examples of models obtained with different inductive learners

using the same training data.

EXAMPLE 2.1

Suppose that a banking institution has 1000 records of past credit requests of its customers.

For each request information was stored about 20 different customer "characteristics":
Status of existing account : < 0 ; 0 and 200; 200 and 500; etc.
Duration (in months)
Credit history : no credits; all credits paid back duly; etc.
Purpose : new car; used car; furniture; etc.
Present employment: employed ; unemployed; since less than 1 year; etc.
Personal status and sex : divorced male; married male; etc.
Guarantors : none; co-applicant; guarantor
Age (in years)
Etc.

The institution classified each of these past cases as successful or unsuccessful, depending

on whether the client was able to attain his compromises with the banking institution. The

goal of this institution is to obtain a model using these past observations to help them in the

task of deciding whether or not to concede new credit requests. Giving this data set to a

typical decision tree learner we could obtain the following model:

36 CHAPTER 2. INDUCTIVE LEARNING

This tree-based model contains a series of conditions on certain input variables that lead to

the conclusions. This model can be used to make predictions for a new case by answering

the questions following the path from the root of the tree (the top node) to a leaf node

(squared boxes). This leaf node contains the prediction of the tree-based model.

Similarly, we could give this data set to a typical rule learner and obtain a set of rules like

for instance:
IF Status of existing Checking Account = no account

AND Employed since = between 4 and 7 years
AND Age > 22.5
AND Instalment plans = none

THEN No Credit

IF Duration > 8.5
AND Savings account >= 1000
AND Number of credits on this bank < 1.5

THEN No Credit

IF Credit Amount between 451 and 597
THEN No Credit

IF Credit Amount between 713 and 1118
AND Instalment plans = bank

THEN Give Credit

IF Status of existing Checking Account < 0
AND Duration > 11
AND Purpose = domestic appliances

THEN Give Credit

Etc.

♦

The type of target models is usually known as the hypothesis space bias within machine

learning. The hypothesis space consists of all possible models within the selected model

description language. Inducing a concept description based on the training data can be seen

as a search problem within this hypothesis space (Mitchell, 1982). This search is guided by

some preference bias that imposes an ordering among the hypothesis.

Underlying supervised learning is always the notion of prediction. The result of the

learning process should allow making predictions for future observations of the same

2.2 SUPERVISED LEARNING 37

concept. This means that we can look at the output of a supervised learner as a function (or

model) that is able to map an unlabelled case (or testing case) to a label, i.e.

Thus, it does not come as a surprise that most learning systems include predictive

performance as part of their search bias. This means that the inductive knowledge

transmutations are somehow biased towards models that ensure better predictive

performance on future test cases. However, in many domains it may be advantageous to

trade-off some predictive accuracy for simplicity (Bohanec & Bratko, 1994). Because of

this, many learning systems also include simplicity as part of their search bias. This means

that a key issue in any supervised learner is to select the search bias that better suits the

learning goals. This search bias will allow the learner to choose between the possible

models within the hypothesis space.

Finally, another important aspect of a supervised learner is the type of knowledge

transmutation operators used to "move" through the space of hypothesis. In effect, within

each type of inference strategy several alternative search operators exist (Michalski, 1994).

Decision trees, for instance, perform a general to specific search5, which is also the case of

some rule learners like AQ11 (Michalski & Chilausky, 1980) and CN2 (Clark & Niblett,

1989). These systems start with very general concept descriptions and proceed by

specialising them as a form of "motion" through the space of hypothesis. Other systems

perform a specific to general search like for instance Golem (Muggleton & Feng, 1990).

There are also cases of systems that use a bi-directional search procedure like RISE

(Domingos, 1994; Domingos, 1996) or YAILS (Torgo, 1992, 1993a). These systems have

generalisation and specialisation operators that allow them to move in both directions of

the search space.

In summary we can say that there are three main issues characterising each supervised

learning system:

5 That is the reason why some authors use the name Top-Down Induction of Decision Trees (TDIDT).

38 CHAPTER 2. INDUCTIVE LEARNING

• The knowledge representation language.

- For the training cases, the background knowledge and the target model.

• The inference strategy of the learner.

- The type(s) of strategy(ies), and the used search operators.

• The search bias used by the learner.

- The function that evaluates the different knowledge states within the search for the

target model.

2.3 Regression Problems

Multivariate regression analysis is an old problem that according to Draper and Smith

(1980) traces back to the work of Sir Francis Galton (1822-1911), a British anthropologist

and meteorologist. Regression analysis can be loosely defined as the application of

methods that investigate the relationship between a dependent (or response) variable and a

set of independent (or predictor) variables. This study is usually based on a sample of

measurements made on a set of objects. This description has a perfect matching with the

framework of supervised learning presented in Section 2.2.

In Example 2.2 we describe a simple regression task, together with a possible model

obtained with a regression tree learner.

EXAMPLE 2.2

Harrison and Rubinfeld (1978) described an interesting regression application where they

tried to predict the housing values in areas of Boston using other variables. Their goal was

to check if there was any effect of air pollution concentration (NOX) on these values. The

data they have collected consisted of 506 observations each described by the following

variables:
MV (target variable) : median value of homes in thousands of dollars.
CRIM : crime rate
ZN : percent of land zoned for lots
INDUS : percent of non-retail business
CHAS : 1 if on Charles River, 0 otherwise
NOX : nitrogen oxide concentration in pphm

2.3 REGRESSION PROBLEMS 39

RM : average number of rooms
AGE : percent built before 1940
DIS : weighed distance to employment centers
RAD : accessibility to radial highways
TAX : tax rate
P/T : pupil/teacher ratio
B : percent black
LSTAT : percent low-status population

Using the 506 cases we can obtain a regression model that tries to capture the dependence

of the housing values on the other variables. This model will not only serve as a prediction

tool for future cases, but will also enrich our knowledge about the relations between the

variables. If we decided to use a regression tree learner we could obtain the following tree-

based model:

MV=45.58 ± :
false

MV=21.90±0.2 MV=45.90±1.6

MV=45.65 ± 8.7 MV=32.75±1.1

This graphical representation of a regression tree has two types of nodes. Rounded nodes

represent tests on input variables, while the squared boxes are the leaves of the tree and

represent predictions of the target variable. A prediction using this model can be obtained

by "dropping" the test case down the tree, following the correct branches according to the

40 CHAPTER 2. INDUCTIVE LEARNING

outcome of the tests on the input variables. The leaf that is reached has the corresponding

prediction.

♦

This example illustrates a typical regression task. However, there are problems where there

is more than one target variable. For instance, a recent international competition6 proposed

a regression task where the competitors should predict for each test case the value of seven

different target variables. Some learning systems are also able to deal with these learning

tasks. Among these we can mention artificial neural networks that can easily handle

problems with more than one output variable. Within the ILP community there has also

been some attention to the issue of multiple concept learning (De Raedt et al, 1993).

Another interesting example of dealing with regression problems with multiple response

variables can also be found in Breiman and Friedman (1995). In this thesis we only focus

on problems with one response variable, which is often encountered in practice. Still, when

facing such type of problems one can always follow the strategy of taking them as several

different regression tasks. In effect, we have proceeded that way in the above-mentioned

competition, and the solution obtained with the tool implementing the ideas described in

this thesis (RT) was announced as one of the runner-up winners of the competition.

2.3.1 A Formalisation of Regression Problems

The task of a regression method is to obtain a model based on a sample of objects

belonging to an unknown regression function. This sample (the training set) consists of

pairs of the form (x(.,y,) where x,- is a vector of the values of the attributes (predictor

variables) andy, is the respective value of the response (output).

In the context of regression analysis, matrix notation is often used as it simplifies some

formulations. We will adopt this notation when presenting existing regression methods. Let

6 The 3rd International ERUDIT competition (http://www.erudit.de/erudit/activities/ic-99/).

http://www.erudit.de/erudit/activities/ic-99/

2.3 REGRESSION PROBLEMS 41

X be the input matrix whose i-th row is the input vector x,. If there are n vectors, X is a

matrix with dimension nxa, where a is the number of attributes. We will collect the target

values of the input vectors in a n x 1 matrix, Y. We can also represent a data set D as a n x

(a+1) matrix D.

We can look at a regression learning system as a function that maps a data set D into a

regression model that we will denote as /*D(.). A regression model is also a function that

maps an input vector x, e X into a real number y e Y. Regression analysis is mainly

concerned with estimating or predicting the mean value of the dependent variable Y based

on the values of the independent variable(s) X,,

E(Y\XI,...,X(1) (2.4)

where
E(.) denotes statistical expectation.

As the true underlying regression function is usually unknown the estimates are based on a

sample of this function (the training set).

The regression relationship between the attributes and the target variable that is

usually assumed is described by,

y, = /-(A *,) + £, (2.5)

where,
r(P, x) is a regression model on the input variables {X,}" with parameters fi ;
and C, are observation errors.

The main goal of a regression method is to search for the "best" model parameters /?

according to a selected preference criterion. As it was mentioned in section 2.2, this search

bias can include both the estimated prediction error {i.e. performance on future test cases),

and the simplicity of the model. However, it should be mentioned that most existing

regression tools only use prediction error to guide the search for the best model parameters.

The following section presents several measures of the error of regression models that can

be used to estimate their predictive power.

42 CHAPTER 2. INDUCTIVE LEARNING

2.3.2 Measuring the Accuracy of Regression Models

In order to obtain an estimate of the predictive performance of a model we can use it to

predict the label of a set of cases. In the case of regression models we can use them to

obtain numeric predictions of the target variable. This evaluation is possible if we know

the true value of the label of these cases. Using this true value we can compare it to the

model prediction and thus quantify its performance. As the target variable of regression

problems is numeric, the existing error measures revolve around the difference between the

predicted and true values of this variable.

Mean Absolute Deviation (MAD) is an error measure that quantifies the error of a

model by averaging the absolute deviations of its predictions, i.e.

MAZ)(r) = -Xb,-Ki8,x,.)| (2.6)

where,

{(x, ' > /)L is a data set;
and r(j3, x,) is the prediction of the regression model we want to evaluate for the
case (x,.,y,.).

For reasons having to do with ease of computations when trying to find a model with

minimum error, the measure that is classically used in regression analysis is the Mean

Squared Error (MSE), given by

MS£(r) = -£ (v , - r (/ ? ,x , .)) (2.7)

Using this error measure as the minimisation criterion for obtaining the parameters of our

model we have what traditionally is called Least Squares Regression methods.

Another common error measure is the Relative Mean Squared Error (RMSE) that is

given by,

2.3 REGRESSION PROBLEMS 43

fx « ^
Xto-K/U,.)) / -l(y-y)

n
V ' ' J

f x « M

V (2.8)
RMSE(r) =

_ MSff(r)
" MSE(y)

where,
y is the average Y value of the sample.

This measure gives a relative value of the fitting error. A value between zero and one

indicates that r is doing better than just predicting the average Y value.

2.3.2.1 Biased versus Unbiased Error Estimates

Most of existing regression methods assume some form of regression model and search for

the model parameters that minimise the chosen error criterion. The equations presented in

the previous section must be seen as statistical estimators of the true error of our regression

model. As statistics they are based on samples of a population. We would like to have

estimates that provide a precise value of the predictive performance of our model in future

samples of the same population. Estimates obtained with the same data used to induce the

model parameters are known to be unreliable (or biased). As an extreme example consider

the 1-nearest neighbour algorithm (Cover & Hart, 1967). This classifier predicts the class

label of a new case with the label of the most similar training case. If we use the same

training data to evaluate this classifier this leads to an error rate of zero, which most surely

is an over-optimistic measure of the true error of this classifier on unseen cases.

Obtaining reliable estimates of the true error of a model is important in many respects.

First of all, it enables to estimate its future accuracy on new data. Reliable estimates are

also important for model selection. Many learning systems try to generate several

alternative models and choose what appears to be the best among them. Decision trees, for

instance, may generate a set of pruned trees and use reliable error estimates to choose the

right size one (Breiman et ai, 1984). Reliable error estimates are also important when

44 CHAPTER 2. INDUCTIVE LEARNING

combining models (Brazdil & Torgo, 1990) or their predictions (e.g. Wolpert,1992;

Breiman,1996).

The prediction error is most of the times the "driving force" behind the construction of

a regression model. Estimating the prediction error of a regression model using the training

sample leads to what is usually named a resubstitution estimate of the error. Using this

type of estimates with a learning method with a reasonably rich hypothesis space will most

surely lead to a model capturing statistically irrelevant features of the data (i.e. a model

that overfits the training data). A model that overfits the training data will hardly generalise

over unseen data. These models although providing an almost perfect fit of the training

data will perform poorly when faced with new data.

There are several approaches to the problem of obtaining reliable error estimates of

models. Resampling methods proceed by obtaining the estimates with data not used for

inducing the models. Several techniques exist to achieve this, like the Holdout

(Highleyman, 19627), Cross Validation (Mosteller & Wallace, 1963; Stone, 1974),

Bootstrap (Efron,1979; Efron & Tibshirani, 1993), etc. These methods proceed by

obtaining multiple samples from the given training sample.

Bayesian estimation methods (Good, 1965) usually obtain the estimates using some

form of combination of the prior expectation of the parameter being estimated and the

observed value. An example of these techniques are the ra-probability estimates (Cestnik,

1990). These estimates can be seen as a generalisation of the Laplace's law of succession

(Good, 1965).

Finally, a different approach to the problem of estimating a population parameter

consists of studying the sampling distribution properties of our estimates. Suppose that we

are interested in obtaining estimates of the mean value of a variable. If we obtain several

samples of size n we can calculate for each sample the average value of the variable. Each

of these averages is an estimate of the true population mean value. We can look at these

7 According to Ripley (1996) one of the first references on this method.

2.4 EXISTING REGRESSION METHODS 45

averages as values of another variable and we can study the properties of the distribution of

this new variable (which is called the sampling distribution). In this particular case, it can

be proven that the sampling distribution of the average is normal in the limit (known as the

central limit theorem). Knowing the sampling distribution of our target parameter allows

us to draw important conclusions regarding the confidence on any particular estimate.

In Chapter 4 we address in detail the issue of estimating the true error of regression

trees as a means to avoid overfitting of tree-based models.

2.4 Existing Regression Methods

This section presents a brief overview of existing work on regression. We describe several

different approaches from different research fields, all concerned with the problem of

regression.

2.4.1 Statistical Methods

Regression is one of the major topics studied in statistical data analysis. There is an

enormous amount of work on several approaches to this problem. We will present a brief

overview of the major paradigms without describing all the existing variants.

2.4.1.1 Global parametric approaches

Global parametric methods try to fit a single functional model to all the given training data.

This imposes a strong assumption on the form of the unknown regression function, which

may lead to lower accuracy if that is not the case. However, these approaches usually fit

simple functional models that are easily interpreted and have fast computational solutions.

A classical example of a global approach is the widely used linear regression model

that is usually obtained using a Least Squares Error Criterion that tries to find the vector

of parameters P that minimises the sum of squared errors,

46 CHAPTER 2. INDUCTIVE LEARNING

l(y,-(Po+P^]+...+ PaXa))2 (2.9)
1=1

The minimisation of this equation has an elegant and efficient solution given by,

P=(X'X)-1X'Y (2.10)

where,
X' denotes the transpose of X;
and X"1 the inverse matrix of X.

There are many variants of this general set-up that differ in the way they develop/tune

these models to the data (e.g. Draper & Smith, 1981).

2.4.1.2 Non-parametric approaches (Local Modelling)

Q

Non-parametric regression belongs to a data analytic methodology usually known as local

modelling (Fan, 1995). The basic idea behind local regression consists of obtaining the

prediction for a data point x by fitting a parametric function in the neighbourhood of x.

This means that these methods are "locally parametric" as opposed to the methods

described in the previous section.

According to Cleveland and Loader (1995) local regression traces back to the 19th

century. These authors provide a historical survey of the work done since then. The

modern work on local modelling starts in the 1950's with the kernel methods introduced

within the probability density estimation setting (Rosenblatt, 1956; Parzen,1962) and within

the regression setting (Nadaraya,1964; Watson, 1964). Local polynomial regression is a

generalisation of this early work on kernel regression. In effect, kernel regression amounts

to fitting a polynomial of degree zero (a constant) in a neighbourhood. Summarising, we

can state the general goal of local regression as trying to fit a polynomial of degree p

around a query point (or test case) xq using the training data in its neighbourhood. This

Also known as non-parametric smoothing and local regression.

2.4 EXISTING REGRESSION METHODS 47

includes the various available settings like kernel regression O=0), local linear regression

(p=l), etc9.

Local regression is strongly related to the work on instance-based learning (e.g. Aha et

al, 1991), within the machine learning community. Given a case x for which we want to

obtain a prediction, these methods use the training samples that are "most similar" to x to

obtain a local model that is used to obtain the prediction. This type of inductive

methodologies do not perform any kind of generalisation of the given data and "delay

learning" till prediction time .

Most studies on local modelling are carried out for the case of one unique input

attribute. Still, the framework is applicable to the multivariate case and has been used with

success in some domains (Atkeson et al, 1997; Moore et al, 1997). However, several

authors alert for the "danger" of applying these methods in higher input space dimensions

(Hardie, 1990; Hastie & Tibshirani,1990). The problem is that with high number of

attributes the training cases are so sparse that the notion of local neighbourhood can hardly

be seen as local. Another drawback of local modelling is the complete lack of

interpretability of the models. No comprehensible model of the training data is obtained.

With some simulation work one may obtain a graphical picture of the approximation

provided by local regression models, but this is only possible with low number of

attributes.

9 A further generalisation of this set-up consists of using polynomial mixing (Cleveland & Loader, 1995),

where/? can take non-integer values.
10 This is not completely true for some types of instance-based learners as we will see later. Nevertheless, it is

true in the case of local modelling.
11 That is the reason for also being known as lazy learners (Aha, 1997).
12 The so called "curse of dimensionality" (Bellman, 1961).

48 CHAPTER 2. INDUCTIVE LEARNING

2.4.1.3 Additive models

The basic idea of additive models is to take advantage of the fact that a complex regression

function may be decomposable in an additive form, where each constituent represents a

simple function. Additive models consist of sums of other lower dimensional functions.

These models were developed as an answer to the difficulties of local models with high

dimensions. Comprehensibility is another goal of these methods. They share the

interpretability of global linear regression. As each attribute has an additive effect on the

model prediction of the target variable Y, they are said to be additive in the attribute effects

(Hastie & Tibshirani,1990). This property is intuitively appealing from the user

perspective. An additive model can be defined by,

r(x) = a +$dfj(xj) (2.11)
7=1

where,
the f/s are univariate basis functions, one for each attribute.

These models may also be generalised to functions on more than one attribute as well as to

nominal attributes. Each basis function fj can have any arbitrary functional form, like for

instance the kernel models that were mentioned in the previous section. A common set-up

consists of fitting a one-dimensional kernel to each attribute.

To obtain an additive model we may use an iterative fitting procedure like the

backfitting algorithm (Friedman & Stuetzle, 1981).

The main drawback of this methodology is its computational complexity. One has a

potentially large set of candidate basis functions to choose from, and afterwards one has to

tune the parameters of each of these basis functions (Friedman, 1991). Still, there are some

simplifications that allow fast algorithms to be used. An example of an additive model is a

regression tree (Morgan & Sonquist,1963; Breiman et ai, 1984), which can be efficiently

obtained with a recursive partitioning algorithm. Work on tree-based models (either for

classification or regression) also exists in other research fields like pattern recognition

2.4 EXISTING REGRESSION METHODS 49

(Swain & Hauska,1977; Dattatreya & Kanal,1985) or machine learning13 (Hunt et al, 1966;

Quinlan, 1979; Kononenko et al, 1984). In Section 2.4.3.1 we briefly describe the existing

work in machine learning.

Another example of an additive model is projection pursuit regression (Friedman &

Stuetzle, 1981). Projection pursuit provides a model of the form,

F (j^ \
(2.12)

;=i
V

These models can be simply described as additive functions of linear combinations of the

attributes. In a way these models are related to the work on regression trees with linear

models in the leaves (Breiman & Meisel, 1976; Friedman, 1979; Karalic, 1992; Quinlan,

1992).

Adaptive regression splines (Friedman, 1991) are other additive models that can be

seen as a generalisation of regression trees introduced to overcome some of their

limitations. Friedman (1991) describes these limitations in detail and shows how adaptive

regression splines can overcome them. The resulting model is implemented in system

MARS which provides a regression model of the form,

r(x)=c0 +Xc,nk,(Xv (, ,)-r , , | (2.13)
i=l k=\

where,

the \sk, \Xvu,) - tk,)l are two-sided truncated power basis functions.

This model can be recast into the more intuitive form given by,

r(x)=c0+Jjfm(Xm)+JjfnJXm,Xn)+Jjfm^> (Xm,Xn,X0)+... (2.14)

In this equation the first sum is over all basis functions that involve only a single attribute.

The second sum uses the basis functions involving two variables, and so on.

13 An extensive survey on tree-based models in the context of classification can be found in Murthy (1996).

50 CHAPTER!. INDUCTIVE LEARNING

2.4.2 Artificial Neural Networks

The work on Artificial Neural Networks (ANN's) has a strong biological motivation.

McCulloch and Pitts (1943) proposed the first model of an artificial neuron. Since then

many new more complex models have been proposed. The McCulloch-Pitts neural

networks were generalised by Ronsenblatt (1958) that introduced the perceptron networks.

This work was then extended by Minsky and Papert (1969). A perceptron is a computing

unit with a threshold (or bias) 6 that takes a vector of a real-valued inputs with associated
a

weights, outputting 1 if 2uwiXi >0and 0 otherwise. This can be represented in a

graphical way by,

Kx)
r(x) = o{8 + v/x)
where,

Í1 if V > 0
(Xy)=i

0 otherwise

Figure 2.1 - A perceptron unit.

Learning with these units consists of finding the weights associated with each input

attribute. We start with a random weight vector, and then apply each training case to the

perceptron modifying the weights when the predictions are wrong. Weights are modified

using the following update rule,

w. = wi +Aw; (2.15)

where,
Aw,. =Ji(yi-r{x))xi;
T] is called the learning rate;
and r(x) is the prediction of the network for the training case x.

If the training cases are linearly separable and t] is sufficiently small this training algorithm

is proved to converge (Minsky & Papert, 1969). Other learning algorithms exist, like for

2.4 EXISTING REGRESSION METHODS 51

instance linear programming techniques (Mansfield, 1991) or the Karmarkar's algorithm

(Karmakar,1984).

In order to relax the requirement of linear separability we can use other training rule.

The delta rule (or gradient descendent) can be described by the following,

wi — wi + A\Vj (2.16)

where,
n

Aw,. =7?X()\ -r(x.)k
i=i

The delta rule with the gradient descent method for searching the weights that minimise the

error of a neuron, are usually applied to unthresholded units. These units do not output a 0

or 1 like the perceptron. Instead their result is given by the linear product of the weights

times the attribute values. This means that while for the perceptron r(x) is given by the

formula presented in Figure 2.1, for the unthresholded units r(x) is equal to the dot product

w.x.

Generally, a single computing unit strongly limits the kind of functions we can

approximate. Multilayer networks are much more powerful representations. In general

these consist of an input layer related to the input attributes, one (or more) hidden layers,

and an output layer. Notice that ANN's are not restricted to a unique output variable,

which is one of their advantages. The sigmoid unit is the most common choice as basic unit

of multilayer networks. Its behaviour is described by Figure 2.2:

x2-
iix)

r(x) = o(6 + wx)
where,

l + e'y

Figure 2.2 - The sigmoid computing unit.

The algorithm generally used to learn multilayer networks of sigmoid units is

backpropagation. This is probably the most well known neural network learning

52 CHAPTER 2. INDUCTIVE LEARNING

algorithm. Although usually attributed to Rumelhart and colleagues (1986), this algorithm

was, according to Rojas (1996), invented by Werbos (1974, 1994).

A common set-up for applying ANN's in regression consists of using a 3-layered

network with one hidden layer (Figure 2.3). Both the input units and the hidden layer units

are sigmoids while the output unit is an untresholded unit.

Figure 2.3 - A multilayer architecture for regression.

Usually there are two main criticisms made to artificial neural networks. The first has to do

with the slow convergence to a solution. There are many "tricks" that have been proposed

to overcome this problem, but still it is a slow method. This is sometimes greatly improved

with parallel computer architectures (or even specialised architectures). The other frequent

criticism has to do with the fact that the solutions found by the methods are very difficult

to interpret by the users. In problems were interpretability is a key factor ANN's are clearly

inadequate. However, there are many problems were that is not the case, and successful

applications of ANN's abound (e.g. Rumelhart et ai, 1994).

2.4.3 Machine Learning Methods

Machine learning research on supervised induction has traditionally concentrated efforts on

classification problems. Work on regression does not abound. In this section we provide a

brief overview of some exceptions.

2.4 EXISTING REGRESSION METHODS 53

2.4.3.1 Propositional Learning Methods

Regression Trees

Tree-based regression models were also studied within the machine learning community.

One of the contributions of the work carried out within this community is the possibility of

using different models in the leaves of the trees {e.g. Karalic,1992; Quinlan 1992; Torgo,

1997). Other contributions include different pruning methods like the work conducted in

systems RETIS (Karalic & Cestnik,1991) and CORE (Robnik-Sikonja & Kononenko,

1998). M5 (Quinlan, 1992, 1993) explores the possibility of combining the predictions of a

regression tree with a fc-nearest neighbour model. Finally, Robnik-Sikonja and Kononenko

(1997) describe a new method for guiding the selection of the best attribute during the

growth of regression trees.

Regression Rules

Weiss and Indurkhya (1993) have developed a system (SWAP1R) that learns regression

rules in a propositional language. The conditional part of the rules consists of a conjunction

of tests on the input attributes while the conclusion part contains the associated prediction

of the target variable value. Originally these predictions consisted of the average Y value of

the cases satisfying the conditional part, but later the possibility of using ^-nearest

neighbours was added (Weiss & Indurkhya, 1995). This system has the particularity of

dealing with regression by transforming it into a classification problem. In effect, the target

values of the training cases are pre-processed by grouping them into a set of user-defined

bins. These bins act as class labels in the subsequent learning phase. This means that the

learning algorithm induces a classification model of the data, where the classes are

numbers representing the obtained bins14. These numbers can then be used to make

numeric predictions for unseen cases. This idea of transforming a regression problem into a

14 The authors use the median as the representative of each bin to avoid outliers effects.

54 CHAPTER 2. INDUCTIVE LEARNING

classification task was taken further in the work of Torgo and Gama (1997), where a

system called RECLA acts as a generic pre-processing tool that allows virtually any

classification system to be used in a regression task.

Torgo (1995) has developed a propositional regression rule learner (R") that also uses

an IF-THEN rule format. This algorithm can use several different functional models in the

conclusion of the rules15. R2 uses a covering algorithm that builds new models while there

are uncovered cases to fit. The model is chosen from the model lattice that includes all

possible regression models for the conclusion part of the rules. The result of this first step

is a rule with empty conditional part and the built model as conclusion. This rule is then

specialised by adding conditions to restrict the model domain of applicability with the goal

of improving its fit. This restriction is guided by an evaluation function that weighs both

the fitting as well as the degree of coverage of the rule. This means that the system is

looking for rules with good fit but covering as many cases as possible.

CUBIST16 is a recent commercial system developed by Ross Quinlan. It learns a set of

unordered IF-THEN rules with linear models in the conclusion part. Up to now there is no

published work on CUBIST but from our experience with the system it looks like it is a

rule-based version of M5 (Quinlan, 1992,1993)17. It seems to be a kind of C4.5rules

(Quinlan, 1993) for M5. The system is able to deal with both continuous and nominal

variables, and obtains a piecewise linear model of the data. CUBIST can also combine the

predictions of this model with ^-nearest neighbour predictions (as M5 does).

15 The actual implementation only used averages and linear models, but the system is easily extendible to

handle other models due to its algorithm.
16 More information on this system can be found at the URL, http://www.rulequest.com.
17 Prof. Ross Quinlan has recently personally confirmed that although he also mentioned that there was more

of it behind CUBIST than just a simple transformation form trees to rules.

http://www.rulequest.com

2.4 EXISTING REGRESSION METHODS 55

Instance-based Learners

Instance-based learners are similar to the local modelling approaches described earlier. In

effect, the basic philosophy behind these systems is also that of making predictions based

on the most similar training instances. Most of the existing work simply stores all training

instances without performing any kind of generalisation and then uses a distance metric to

find the neighbours of each test case. These systems are in effect variants of the ^-nearest

neighbour method (Fix & Hodges, 1951; Cover & Hart, 1967). However, other authors have

described systems that perform some generalisations of the cases, like for instance NGE

(Salzberg, 1988,1991), or RISE (Domingos, 1994, 1996). Still, all these works deal with

classification problems. Among the few exceptions is the work of Kibler et al. (1989), and

of Connel and Utgoff (1987), which deal with regression. The former uses basically a

kernel model with the neighbourhood defined by the distance to the kth nearest neighbour.

This means that the k most similar instances are used to obtain the predictions of a new

case. Each of these neighbours enters in the prediction calculation with a weight

proportional to its distance to the case in question. The work of Connel and Utgoff uses a

similar strategy with the difference that all training instances contribute to the prediction.

2.4.3.2 First-order Logic Approaches

Within the field of Inductive Logic Programming (ILP) some recent work has also

focussed on the problem of regression. FORS (Karalic, 1995, Karalic & Bratko, 1997)

induces a model that has the form of a Prolog program. This program consists of clauses of

the formf(YJCi,---J(a) that represent the obtained regression model. The system is able to

receive, as input, samples of the unknown regression function and background knowledge,

which constitutes a major advantage. FORS uses a covering algorithm at the top level that

keeps generating new clauses followed by the removal of the cases covered until a

termination criterion is met. The clause generation step follows a general to specific search

that keeps adding new literals to the clause. FORS uses several pre-pruning mechanisms

56 CHAPTER 2. INDUCTIVE LEARNING

for controlling clause generation. Among them is the use of Minimum Description Length

(MDL)(Rissanen,1982).

FFOIL (Quinlan, 1996) is another example of an ILP system able to deal with

regression. FFOIL is a derivation of the FOIL system (Quinlan, 1990). FFOIL follows a

similar covering algorithm as FOEL's. It starts with an empty program and keeps adding

clauses until all cases are covered. Each added clause starts with an empty body and literals

are appended as a form of specialising the clause. A function with k arguments (the input

variables) is represented by a fc+l-ary relation where one argument holds the function

outcome. The result obtained by FFOIL consists of a Prolog program with clauses of this

relation.

First order approaches to regression have a much larger search space than their

propositional counterparts. This fact has two contradictory effects. While being able to find

solutions not available to propositional systems, this increased expressiveness has a strong

impact in the computational complexity of these systems. This makes them hardly

applicable to extremely large domains that are found in some applications (like in a typical

Data Mining situation). However, computation power grows at a very fast rate and ILP

may well become the major trend in Machine Learning approaches to regression18.

Although a sceptical could say that data size is increasing even faster.

Chapter 3

Tree-based Regression

This chapter describes two different approaches to induce regression trees. We first present

the standard methodology based on the minimisation of the squared error. Least squares

(LS) regression trees had already been described in detail in the book by Breiman et. al.

(1984). Compared to this work we present some simplifications of the splitting criterion

that lead to gains in computational efficiency. We then address the alternative method of

using a least absolute deviation (LAD) error criterion to obtain regression trees. Although

mentioned in the book of Breiman and colleagues (1984), this methodology was never

described in sufficient detail. In this chapter we present such a description. The LAD

criterion is known to be more robust to skewed distributions and outliers than the LS

criterion used in standard regression trees. However, the use of the LAD criterion brings

additional computational difficulties to the task of growing a tree. In this chapter we

present algorithms based on a theoretical study of the LAD criterion that overcome these

difficulties for numeric variables. With respect to nominal variables we show that the

theorem proved by Breiman et. al. (1984) for subset splits in LS trees does not hold for the

LAD error criterion. Still, we have experimentally observed that the use of the results of

this theorem as a heuristic method of obtaining the best split does not degrade predictive

accuracy. Moreover, using this heuristic brings significant gains in computation efficiency.

57

58 CHAPTER 3. TREE-BASED REGRESSION

3.1 Tree-based Models

Work on tree-based regression models traces back to Morgan and Sonquist (1963) and

their AID program. However, the major reference on this research line still continuous to

be the seminal book on classification and regression trees by Breiman and his colleagues

(1984). These authors provide a thorough description of both classification and regression

tree-based models. Within Machine Learning, most research efforts concentrate on

classification (or decision) trees (Hunt et al, 1966; Quinlan, 1979; Kononenko et al, 1984).

Work on regression trees started with RETIS (Karalic & Cestnik, 1991) and M5 (Quinlan,

1992). Compared to CART (Breiman et. al, 1984), RETIS uses a different pruning

methodology based on the Niblet and Bratko (1986) algorithm and m-estimates (Cestnik,

1990). With respect to M5 (Quinlan, 1992), its novelty results from the use of linear

regression models in the tree leaves19. A further extension of M5 was described in Quinlan

(1993). This extension consisted in combining the predictions of the trees with k nearest

neighbour models.

Tree-based regression models are known for their simplicity and efficiency when

dealing with domains with large number of variables and cases. Regression trees are

obtained using a fast divide and conquer greedy algorithm that recursively partitions the

given training data into smaller subsets. The use of this algorithm is the cause of the

efficiency of these methods. However, it can also lead to poor decisions in lower levels of

the tree due to the unreliability of estimates based on small samples of cases. Methods to

deal with this problem turn out to be nearly as important as growing the initial tree.

Chapter 4 addresses this issue in detail.

In spite of their advantages regression trees are also known for their instability

(Breiman, 1996). A small change in the training set may lead to a different choice when

building a node, which in turn may represent a dramatic change in the tree, particularly if

the change occurs in top level nodes. Moreover, the function approximation provided by

Which was also done in a subsequent version of RETIS (Karalic, 1992).

3.1 TREE-BASED MODELS 59

standard regression trees is highly non-smooth leading to very marked function

discontinuities. Although there are applications where this may be advantageous, most of

the times the unknown regression function is supposed to have a certain degree of

smoothness that is hardly captured by standard regression trees. In Chapter 5 we describe

hybrid tree models that improve the smoothness of tree-based approximations. In spite of

this drawback, regression trees do not assume any particular form for the function being

approximated thus being a very flexible regression method. Moreover, the obtained models

are usually considered easily comprehensible.

In Section 3.2 of this chapter we explore methods of inducing regression trees using

the least squares (LS) error criterion. The use of this criterion leads to several

improvements in terms of computational efficiency resulting from the mathematical base

behind it. Namely, thanks to the theorem presented by Breiman et al. (1984), we can

devise an efficient method for dealing with nominal attributes. Moreover, we present a fast

incremental updating method to evaluate all possible splits of continuous attributes with

significant computational gains. These splits are known to be the major bottleneck in terms

of computational efficiency of tree learning algorithms (Cattlet, 1991).

In the subsequent section we present a method of inducing regression trees using the

least absolute deviation (LAD) criterion. The main difference to LS trees lies in the use of

medians instead of averages in the leaves and the use of the mean absolute deviation as

error criterion. The main advantage of using this methodology is the robustness of the

obtained models. In effect, medians and absolute deviations are known to be more robust

with respect to the presence of outliers and skewed distributions. However, we will see that

this methodology poses several computational difficulties. We will present a theoretical

analysis of the LAD criterion, and as a result of this analysis we describe a series of fast

updating algorithms that improve the computational efficiency of LAD regression trees.

Another criterion that can be used when growing regression trees is RRelief (Robnik-

Sikonja & Kononenko, 1997). This criterion is particularly suitable for domains where the

input variables (or attributes) are known to be dependent. Still, this criterion entails much

60 CHAPTER 3. TREE-BASED REGRESSION

larger computational complexity than the LAD or LS criteria due to the necessity of

calculating distances between training cases.

A regression tree can be seen as a kind of additive model (Hastie & Tibshirani, 1990)

of the form,

m(x)=2>, .x / (xeZ) ,) (3.1)

where,
&, are constants;
/(.) is an indicator function returning 1 if its argument is true and 0 otherwise;

;
and D, are disjoint partitions of the training data D such that (Jz>; = D and

i=i

Models of this type are sometimes called piecewise constant regression models as they

partition the predictor space % in a set of regions and fit a constant value within each

region. An important aspect of tree-based regression models is that they provide a

propositional logic representation of these regions in the form of a tree. Each path from the

root of the tree to a leaf corresponds to a region. Each inner node20 of the tree is a logical

test on a predictor variable . In the particular case of binary trees there are two possible

outcomes of the test, true or false. This means that associated to each partition D, we have

a path Pi consisting of a conjunction of logical tests on the predictor variables. This

symbolic representation of the regression function is an important issue when one wants to

have a better understanding of the regression surface.

Example 3.1 provides a better illustration of this type of models through a small

example of a regression tree:

All nodes except the leaves.
1 Although work exists on multivariate tests {e.g. Breiman et. al. 1984; Murthy et. al, 1994; Broadley &

Utgoff, 1995; Gama, 1997).

3.1 TREE-BASED MODELS 61

EXAMPLE 3.1

Pj s X I < 3 A X 2 < 1.5 ,withA:y = 60

P2 = X, < 3 A X 2 > 1 . 5 ,withk2= 100

P3 = Xi > 3 A Xi < 4 , with fc = 30

F4 = Xi > 3 A Xi > 4 , with k4 = 45

As there are four distinct paths from the root node to the leaves, this tree divides the input

space in four different regions. The conjunction of the tests in each path can be regarded as

a logical description of such regions, as shown above.

This tree roughly corresponds to the following regression surface (assuming that there

were only the predictor variables Xi and Xi) :

100
90
80
70
60
50
40
30

0 T"
2

X,

Using the more concise representation of Equation 3.1 we obtain:

m(x) = 60x/(X, < 3 A X 2 < 1 . 5) + 1 0 0 X / (X , < 3 A X 2 >1.5) +

30x/(X, > 3 A X 2 < 4) + 4 5 X / (X , > 3 A X 2 > 4)

Regression trees are constructed using a recursive partitioning (RP) algorithm. This

algorithm builds a tree by recursively splitting the training sample into smaller subsets. We

give below a high level description of the algorithm. The RP algorithm receives as input a

62 CHAPTER 3. TREE-BASED REGRESSION

set of n data points, Dt = {(x(., y,)}"' , and if certain termination criteria are not met it

generates a test node t, whose branches are obtained by applying the same algorithm with

two subsets of the input data points. These subsets consist of the cases that logically entail

the split test s* in the node t, D, ={(x/,y |.^e Dt :x. —*s*\, and the remaining cases,

D = {(x., y.)e D, : x(. -/» s*}. At each node the best split test is chosen according to some

local criterion, which means that this is a greedy hill-climbing algorithm.

Algorithm 3.1 - Recursive Partitioning Algorithm.

Input : A set of n data points, { < X L , yi> }, i = 1,..., n
Output : A regression tree

IF termination criterion THEN
Create Leaf Node and assign it a Constant Value
Return Leaf Node

ELSE
Find Best Splitting Test s*
Create Node t with s*
Left_branch(t) = RecursivePartitioningAlgorithm({ <Xi , yi> : X; -> s* })
Right_branch(t) = RecursivePartitioningAlgorithm({ <Xi , y\> : Jtj. -h s* })
Return Node t

ENDIF

The algorithm has three main components:

• A way to select a split test (the splitting rule).
• A rule to determine when a tree node is terminal (termination criterion).
• A rule for assigning a value to each terminal node.

In the following sections we present two different approaches to solve these problems.

These alternatives try to minimise either the mean squared error or the mean absolute

deviation of the resulting tree.

3.2 Least Squares Regression Trees

The most common method for building a regression model based on a sample of an

unknown regression surface consists of trying to obtain the model parameters that

minimise the least squares error criterion,

3.2 LEAST SQUARES REGRESSION TREES 63

1 £(>>,-KM,)) (3-2)
n i

where,
n is the sample size;
<x,, yf > is a data point ;
and r(p\ x,-) is the prediction of the regression model r((3, x) for the case (x(, yi) .

As we have seen in Chapter 2 this criterion is used in many existing systems. RETIS

(Karalic & Cestnik, 1991), M5 (Quinlan, 1992) and CART (Breiman et. al, 1984), all use

the least squares (LS) criterion. To our knowledge the only tree induction system that is

also able to use the mean absolute deviation is CART.

The following theorem holds for the LS minimisation criterion:

THEOREM 3.1

The constant k that minimises the expected value of the squared error is the mean value of

the target variable.

♦

A proof of this theorem can be found in the appendix at the end of this chapter. Based on

this theorem the constant that should be assigned to the leaves of a regression tree obtained

using the least squares error criterion, is the average of the target values of the cases within

each leaf /,

* , = - £ y , (3.3)
" / D,

where,
n, is the cardinality of the set D/ containing the cases in leaf / (i.e. ni = #Di).

22 According to the RP algorithm, the cases within any node t of a tree, are the subset of the given training

sample that satisfies the conjunction consisting of all tests from the root to that node. We will denote those

cases as D,= { (x (, y ,) e r}.

64 CHAPTER 3. TREE-BASED REGRESSION

Some systems like RETIS (Karalic, 1992) and M5 (Quinlan,1992) use other non-constant

models in the tree leaves. They use linear polynomials instead of averages. We go back to

this issue in Chapter 5, where we address hybrid tree models.

With respect to the splitting rule we restrict our description to the case of binary trees.

Each inner node of these trees has two descendent nodes. These inner nodes split the

training instances in two subsets depending on the result of a test on one of the input

variables. Cases satisfying the test follow to the left branch while the others go to the right

branch. The split test is chosen with the objective of improving the fitting error of the

resulting tree. Any path from the root node to a node t corresponds to a partition D, of the

input cases. Assuming the constant obtained with Equation 3.3, resulting from the

application of the least squares error criterion, we define the fitting error of a node t as the

average of the squared differences between the Y values of the instances in the node and

the node constant k,,

Err{t) = -y£(yi-klf (3.4)
ni D,

where, k, is defined by Equation 3.3.

Furthermore, we define the error of a tree T as a weighed average of the error in its leaves:

Mr)=Xp(/)xM0=X^x-I(yi-*/)2 =~X 5>,-*,)2 (3.5)
lef lef n ni D, n lef D,

where,
P(l) is the probability of a case falling into leaf /;
n is the total number of training cases;
n\ is the number of cases in leaf /;
and T is the set of leaves of the tree T.

A binary split divides a set of cases in two. The goal of the splitting rule is to choose the

split that maximises the decrease in the error of the tree resulting from this division. We

define the error of a split s as the weighed average of the errors of the resulting sub-nodes,

Err(s,i) = — X Err(tL) + ^ - x Err(tR) (3.6)
n, n,

3.2 LEAST SQUARES REGRESSION TREES 65

where,
tL is the left child node of t defining a partition AL that contains the set of cases {<

x, j , > e D , : x, —» s } and n, the cardinal of this set;
and tR is the right child node of t defining a partition Z),R that contains the set of
cases {< x,, yt > e D, : x,-h s } and n,R the cardinal of this set.

We are now ready to present the definition of best split for a node t given a set S of

candidate splits,

DEFINITION 3.1

The best split s* is the split belonging to S that maximises

AErr(s,t) = Err(t) - Err(sj)

♦

This greedy criterion guides the choice of a split for all inner nodes of an LS regression

tree. On each iteration of the RP algorithm all possible splits of each of the predictor

variables are evaluated and the one with best AErr is chosen.

With respect to the last issue of the tree growing method, that is the stopping rule, the

key problem is the reliability of error estimates used for selecting the splits. All the error

measures described above are estimates in the statistical sense, as they are functions of the

training sample (usually called resubstitution estimates). The accuracy of these estimates is

strongly dependent on the quality of the sample. As the algorithm recursively divides the

original training set, the splits are being evaluated using increasingly smaller samples. This

means that the estimates are getting potentially more unreliable as we grow the tree . It

can be easily proven that the value of AErr (Definition 3.1) is always greater or equal to

zero during tree growth. Apparently we are always obtaining a more precise regression tree

model. Taking this argument to extremes, an overly large tree with just one training case in

each leaf would have an error of zero. The problem with this reasoning is exactly the

Because the standard error of statistical estimators is inversely proportional to the sample size.

66 CHAPTER 3. TREE-BASED REGRESSION

reliability of our estimates due to the amount of training cases upon which they are being

obtained. Estimates based on small samples will hardly generalise to unseen cases thus

leading to models with poor predictive accuracy. This is usually known as overfitting the

training data as we have seen in Section 2.3.2.1.

There are two alternative procedures to minimise this problem. The first consists of

specifying a reliable criterion that tries to determine when one should stop growing the

tree. Within tree-based models this is usually called pre-pruning. The second, and most

frequently used procedure, is to grow a very large (and unreliable) tree and then post-prune

it. Pruning of regression trees is an essential step for obtaining accurate trees and it will be

the subject of Chapter 4. With a post-pruning approach the stopping criteria are usually

very "relaxed", as there will be a posterior pruning stage. The idea is not to "loose" any

potentially good post-pruned tree by stopping too soon at the initial growth stage. A

frequently used criterion is to impose a minimum number of cases that once reached forces

the termination of the RP algorithm. Another example of stopping criteria is to create a leaf

if the error in the current node is below a fraction of the error in the root node.

3.2.1 Efficient Growth of LS Regression Trees

The computational complexity of the recursive partitioning (RP) algorithm used for

growing regression trees is highly dependent on the choice of the best split for a given

node. This task resumes to trying all possible splits for each of the input variables. The

number of possible splits of a variable is strongly dependent on its type. We give below a

more detailed version of the RP algorithm used for growing a LS regression tree:

Algorithm 3.2 - Growing a LS Regression Tree.

Input : A set of n data points, { < aq , yi> }, i = 1, ... ,n
Output : A regression tree

IF termination criterion THEN
Create Leaf Node and assign it the average Y value of the n data points
Return Leaf Node

ELSE
S* = <arbitrary split>

3.2 LEAST SQUARES REGRESSION TREES

FOR all variables X, DO
IF X, is a nominal variable THEN

BestSplitXv = TryAllNamirialSplits ({< Xi.yi >}, X,)
ELSE IF X, is a numeric variable THEN

BestSplitXv = TryAllNumericSplits ({< Xi.yi >}, X,)
ENDIF
IF BestSplitXv is better than s* THEN

s* = BestSplitXv
ENDIF

ENDFOR
Create Node t with s*
Left_branch(t) = GrowLStree({< Xi.yi > : s^ -» s* })
Right_branch(t) = GrowLStree({< Jtí.yí > : x± -h s* })
Return Node t

ENDIF

The major computational burden of this algorithm lies in the part where we try all possible

splits of a variable. Each trial split has to be evaluated, which means that we need to obtain

the model of the resulting sub-nodes to calculate their error {cf. Equations 3.4 and 3.6).

Assuming the constant model defined in Equation 3.3, we need to calculate two averages

(for each branch of the split) to evaluate each split (Definition 3.1). Equation 3.4 is in

effect similar to the formula for calculating the variance of a variable24. This calculation

involves passing through the data twice, once to obtain the average and the second time to

calculate the squared differences. This cost can be reduced using the equivalent formula ,

Ix2

&r(r)=-a D,

2

n.
\

(3.7)

This calculation can be carried out using a single pass through the data. Even using this

formula the cost of evaluating each trial split would still be 0(n,). We propose to reduce

this cost using a simplification that enables and incremental evaluation of all splits of a

variable. According to the formula given in Definition 3.1 the best split s* is the one that

minimises the value given by Equation 3.6. Using the formula in Equation 3.7 we get,

24 The only difference is that for obtaining unbiased estimates of the variance based on a sample one usually

divides the sum of squares by n-\ and not by n.
25 We should note, however, that this formulation brings potential round-off errors (Press et. al. 1992).

68 CHAPTER 3. TREE-BASED REGRESSION

Err(s,t) = ^X
2>; 2 f 2>.

S
J

.2 "\

n.

2>; 2 Í E* <í\

To simplify notation let SSL and SSR be equal to V ;y2 and V y 2 , respectively,
A i A ,

and 5L and 5R be equal to j £ y. and V y (, respectively, leading to

n, nt nt nt nt nt

--(ssL+ssR)--
n, n,

(S2 S2

\ <L IR J

It is easy to see that the first term of this formula is constant whatever the split is that is

being evaluated. This is so because D, = D, u D, , so jT yf + ^ yf = V y] , which
D-L D'R D<

means that SSL + SSR is always constant and equal to]jT y(
2. This means that the only

difference among different candidate splits is in the last term.

This simplification we have derived has important consequences on the method used

to evaluate and select the best split of a node. Using these results we can present a new

definition for the best split s* of a variable, which has significant advantages in terms of

computation efficiency when compared to the previous one (Definition 3.1). Note,

however, that this is only valid assuming a constant model of the form given by Equation

3.3 (i.e. assuming a least squares error criterion). As our goal is to minimise the expression

derived above we get the following new definition for the best split of a node:

DEFINITION 3.2

The best split s* is the split belonging to S that maximises the expression

3.2 LEAST SQUARES REGRESSION TREES 69

s
2 s

2

n. n,

where, SL = £ y, and SR = £ y.

♦

This definition enables a fast incremental evaluation of all candidate splits 5 of any

predictor variable as we will see in the following two sections.

3.2.2 Splits on Continuous Variables

We will now present an algorithm that finds the best split for continuous variables using

the results of Definition 3.2. Assuming that we have a set of n, cases whose sum of the Y

values is S„ Algorithm 3.3 obtains the best split on a continuous predictor variable Xv.

Algorithm 3.3 - Finding the bes t s p l i t for a continuous v a r i a b l e .

Input : nt cases, sum of t h e i r Y values (St) , the var iable X„
Output : The bes t cut-point s p l i t on JÇ,

Sort the cases according to t h e i r value in Xy.
SR = St; SL = 0
ITR = nt ; r t = 0
BestTillNow = 0
FOR all instances i DO

SL = SL + Yi-, SR = SR - Yi
n ^ r t + l ;nR = nR-l
IF (Xi+i,v > XilV) THEN %Notrialifwluesareequal

NewSplitValue = (SL2 / n j + (S R 2 / ITR)
IF (NewSplitValue > BestTil lNow) THEN

BestTil lNow = NewSplitValue
Bes tCutPoin t = (Xi+i,v + XiiV) / 2

ENDIF
ENDIF

ENDF0R

This algorithm has two main parts. The first consists of sorting the instances by the values

of the variable being examined, which has an average complexity of 0(n, log n,) using

Quick Sort. This sorting operation is necessary for running through all trial cut-point

70 CHAPTER 3. TREE-BASED REGRESSION

values in an efficient manner. We only need to try these cut-point values as they are the

only ones that may change the value of the score given by Definition 3.2, because they

modify the set of cases that go to the left and right branches. The second relevant part of

the algorithm is the evaluation of all candidate splits. The number of trial splits is at most n,

- 1 (if all instances have different value of the variable Xv). Without the equation given in

Definition 3.2 we would have to calculate the "variance" of each of the partitions

originated by the candidate split. This would involve passing through all data points (using

the optimised formula of Equation 3.7) which is 0{n). This would lead to a worst case

complexity of 0(n,(n, -1)) for the second part of the algorithm. Our optimisation given by

the formula in Definition 3.2 leads to a worst case complexity of 0{n, - 1) as the "variance"

calculation is avoided. Notice that this is only valid for the least squares error criterion that

leads to the given simplification. If other criteria were used the complexity could be

different particularly if no similar incremental algorithm could be found. With the

existence of this fast and incremental method of computing the error gain of a split the

complexity of the algorithm is dominated by the sorting operation.

3.2.3 Splits on Discrete Variables

Splits on nominal (or discrete) variables usually involve trying all possible tests of the form

Xv = xv , where xv is one of the possible values of variable Xv. If there are many possible

values this usually leads to larger trees. An alternative is not to use binary trees and have

one branch for each possible value of the variable. This has the disadvantage of an

increased splitting of the training samples, which leads to potentially less reliable estimates

sooner than the alternative that involves binary splits. Yet another possible alternative is to

consider tests of the form Xv e {XV,...}. This solution has additional computational costs

although it can improve the comprehensibility of the resulting trees and it does not split too

much the training cases. Breiman et. al. (1984) proved an interesting result (see their

A cut-point value is the value tested in a continuous variable split {e.g. X < 10).

3.2 LEAST SQUARES REGRESSION TREES 71

Theorem 4.5, Proposition 8.16 and Section 9.4) that changes the complexity of obtaining

this type of splits from 0(2#Xv ~l) into 0(#XV - 1), where #%v is the cardinality of the

domain of variable Xv. The method suggested by Breiman et. al. (1984, p.247) involves an

initial stage where the instances of the node are sorted as follows. Assuming that B is the

set of values of Xv that occur in the current node t {i.e. B = { b : x, e í A X,,. = b }), and

defining y{bi) as the average Y value of the instances having value bi in variable Xv, we

sort the values such that,

Having the variable values sorted this way, Breiman and his colleagues have proven that,

DÉFINITION 3.3 (BREIMAN ET AL., 1984)27

The best split on discrete variable Xv in node t is one of the #5-1 splits

XVE {b,,b2,...,bh}, h = 1,..., #5-1

♦

This definition results from a theorem that was proved by Fisher (1958) for the case of the

least squares error criterion for regression and was extended by Breiman and his colleagues

(1984, Sec. 9.4) for a larger class of concave impurity (error) functions. Chou (1991)

furthers generalised these results to an arbitrary number of bins (i.e. not only binary splits)

and to other error functions.

With this method we only have to look for #5-1 subsets instead of 2#B'1. Notice that

we still need to "pass through" all data to obtain the values y{bt :), plus a sorting operation

with #5 elements. Before presenting the algorithm for discrete splits we provide a simple

example to illustrate this method.

27 The proof of this theorem is given in Section 9.4 (p.274) of Breiman et. al. (1984). A much simpler

demonstration based on Jensen's inequality can be found in Ripley (1996, p.218).

72 CHAPTER 3. TREE-BASED REGRESSION

EXAMPLE 3.2

Suppose that we have the following instances in a node t

green 24
red 56
green 29
green 13
blue 120
red 45
blue 100

leading to the averages
y {green) = (24 + 29 +13)/3 = 22
y(red) = (56+ 45)/2 = 50.5
and y(blue) = (120 +100)/2 = 110

If we sort the values according to their respective average Y values we obtain the ordering

<green, red, blue>. According to Breiman's theorem the best split would be one of the #5-

1 (in this case 2 = 3-1) splits, namely Xv e {green} andXv e {green, red}.

Having the instances sorted according to the method explained above, we use the following

incremental algorithm similar to the one presented for continuous variables.

Algorithm 3.4 - Finding the bes t subset s p l i t for a d i s c r e t e v a r i a b l e .

Input : n cases, sum of t he i r Y values (St) , the var iable Xv

Output : An ordered se t of values of Xv and a p a r t i t i o n of t h i s se t

Obtain the average Y value associated to each value of X?
Sort the values of Xv according to the average Y associated to each value
SR = St ; SL = 0
DR = n t ; riL = 0
BestTillNow = 0
FOR each value b of the obtained ordered set of values DO

YB = sum of the Y values of the cases with X^, = b
NB = number of the cases with X^ = b
SL = SL + Y B ; SR = S R - Y B
nL = nL + ISB , - n R ^ n R - N B
NewSplitValue = (SL2 / nj + (SR2 / rfc)
IF (NewSplitValue > BestTillNow) THEN

BestTillNow = NewSplitValue
BestPosition = position of jb in set of ordered values

ENDIF
ENDFOR

3.2 LEAST SQUARES REGRESSION TREES 73

The complexity of this algorithm is lower compared to the case of continuous variables. In

effect, it is dominated by the number of values of the attribute (#5). The exception is the

part of sorting the values according to their average Y value. The sorting in itself is 0(#B

log #B) but to obtain the average Y values associated to each value b we need to run

through all given instances (0(n,)), which is most probability more complex than the

sorting operation, unless there are almost as different values as there are instances.

3.2.4 Some Practical Considerations

The considerations on computational complexity described in the previous sections,

indicate that the key computational issue when building least squares regression trees is

sorting. We confirmed this in practice by looking at the execution profiles of our tree

induction system, RT. We observed that more than 50% of the CPU time was being spent

inside of the Quick Sort function. We have tried other sorting algorithms like Heap Sort

(e.g. Press et ai, 1992) but no significant differences were observed. The weight of this

sorting operation is so high that even the implementation of the Quick Sort algorithm is a

key issue. In an earlier version of our RT system we used a "standard" recursive

implementation of this algorithm. This standard implementation has difficulties when the

data is already almost sorted. When we finally used the implementation given by Press et

al. (1992) we have noticed dramatic improvements in the computation time for large data

sets. This means that when dealing with huge data sets the presence of continuous

variables can become overwhelming due to the necessary sorting of their values for finding

the best cut-point. This was already mentioned in Jason Cattlet's Ph.D. thesis (1991) in the

context of classification trees. The author described some techniques that try to overcome

this problem, like attribute discretisation, which is often explored within Machine Learning

(see Dougherty et. al. 1995 for a survey), and sub-sampling to avoid sorting all values

(called by the author peepholing).

74 CHAPTER 3. TREE-BASED REGRESSION

We have carried out a simulation study with two artificial data sets (Fried and Mv) to

observe the behaviour of our RT system with respect to computation time. In this

experiments we have generated training samples with sizes from 1000 to 150000 cases. For

each sample we have generated one LS regression tree, recording the respective CPU

time29 taken to carry out this task. The results for each of the data sets are shown in Figure

3.1:

Fried Data Set

CPU Time = 4.18E-9 + 0.00042 * Ncases (R! = 0.9918)

Mv Data Set

CPU Time = 1.87E-9 + 0.000187 * Ncases (R! = 0.9954)

Training Sample Size

<$r < r <\T q> c,-v

Training Sample Size

Figure 3.1 - Computation time to generate a LS tree for different sample sizes.

These graphs show a clear linear dependence of the CPU time on the number of training

cases. We also present two linear models obtained with the results of these experiments,

confirming that the proportion of variance explained by the respective linear relations is

very significant (R2 > 0.99). This simulation study confirms the validity of the speed-ups

we have proposed to the generation of least squares regression trees. They demonstrate that

our RT system can easily handle large data sets and, moreover, they show a desirable

linear dependence of the necessary computation time on the sample size.

28 Full details of these data sets can be found in Appendix A.2.
29 The experiments were carried out in a dual Pentium II 450MHz machine running Linux.

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 75

3.3 Least Absolute Deviation Regression Trees

In their book on classification and regression trees, Breiman and colleagues (1984)

mentioned the possibility of using a least absolute deviation (LAD) error criterion to obtain

the best split for a node of a regression tree. However, at the time the method was not yet

fully implemented (Breiman et a/., 1984, p.258), so no algorithms or results were given.

LAD regression trees use as selection criterion the minimisation of the absolute deviation

between the model predictions and the Y values of the cases. The use of this criterion leads

to trees that are more robust with respect to the presence of outliers and skewed

distributions. This is the main motivation for studying LAD regression trees. Least squares

(LS) regression trees do not have this nice property. In effect, the squared differences

amplify the effect of the error of an outlier. Moreover, the presence of outliers can strongly

influence the average, thus leading to values in the leaves that are not "representing"

correctly the corresponding training cases.

Building a regression model based on a sample {(XpV,)}^ using the least absolute

deviation error criterion consists of finding the model parameters that minimise the

estimated mean absolute deviation,

-X|y,.-r(/?,x,.)| (3.8)
n ,=i

where, r(/J,x() is the prediction of the model r(p\x) for the case (x^y,) .

The constant k that minimises the estimated mean absolute deviation of the observations

with respect to k, is the median Y value. Minimising the mean absolute deviation to a

constant k corresponds to minimising the statistical expectation of I y,■- k I.

THEOREM 3.2

The constant k that minimises the expected value of the absolute deviation to a continuous

random variable Y, with probability density function f(y), is the median of the variable Y,

Vy.

♦

76 CHAPTER 3. TREE-BASED REGRESSION

A formal proof of this theorem can be found in the appendix at the end of this chapter. As a

consequence of this theorem LAD trees should have medians at the leaves instead of

averages like LS regression trees. The median is a better statistic of centrality than the

average for skewed distributions. When the distribution is approximately normal the

median and the average are almost equivalent. This generality can be seen as an advantage

of LAD trees over LS trees. However, we will see that LAD trees bring additional

computational costs, which can make them less attractive for extremely large data sets.

Growing a LAD regression tree involves the same three major questions mentioned

before with respect to LS trees: a splitting rule; a stopping criterion; and a rule for

assigning a value to all terminal nodes. Moreover, the algorithm driving the induction

process is again the Recursive Partitioning algorithm. With respect to the stopping rule the

same considerations regarding overfitting can be made for LAD trees. In effect, the

overfitting avoidance strategy is independent of the error criterion selected for growing the

trees. We can stop earlier the growth of the tree, or we may post-prune an extremely large

tree. With respect to the value to assign to each leaf, we have seen that it is the median of

the Y values of the cases falling in the leaf. This leads to some differences in the splitting

rule. Using the definition presented in Equation 3.6 for the error of a split, we can define

the best split for a node t using the least absolute deviation criterion as,

DEFINITION 3.4

The best split s is the split belonging to the candidate set of splits S that maximises

AErr(s,t) = Err if)- Err{s,t)

which using Equations 3.6 and 3.8 turns out to be equivalent to minimising

n
>L 1 V I \ 1 V |

n, n,
v.

n, n, ' 'L
 U

'L ' 'R 'K

or equivalently minimising V \yi.-v, + /My,-_ v
t

where, vfi and v are the medians of the left and right sub-nodes, respectively.

♦

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 77

Thus the best split minimises the sum of the absolute deviations to the respective medians

of the left and right branches. Obtaining the median of a set of values involves sorting

them, the median being the "middle" value after the sorting. Without any computational

simplification this would mean that for each trial split we would need to sort the cases by Y

value in each sub-branch to obtain the medians and then "pass through" the data again to

obtain the two sums of absolute deviations. This would have an average complexity of

0(n log n) for each trial split. Furthermore, this would have to be done for all possible

splits of every variable. For instance, a continuous variable has potentially n-\ trial cut-
-a

points, which would lead to a average complexity proportional to 0(n log n). This

represents too much computation even for simple problems. We will present algorithms

that overcome this serious limitation of LAD trees.

3.3.1 Splits on Continuous Variables

As we have seen in Algorithm 3.3 the first step before trying all possible splits of a

continuous variable X, is to sort the instances by the values of this variable. According to

Definition 3.4, given a set of cases and a cut-point V, we need to obtain the sum of the

absolute deviations (SAD) of the left and right branches to evaluate the split. For this

purpose we need to know the Y medians of the cases in each branch of the test. As we have

seen the median of a random variable Y with probability density function/(v), is the value

v for which the probability of a value being greater or equal to it is 0.5 (i.e.

| y(v)tfy=f f(y)dy). If we have a sample of such a variable we approximate these

probabilities with frequencies. Thus the sample median of a set of n measurements of a

variable Y, is the middle value when the observations are arranged in ascending order. If n

is an odd number, there is a unique middle value, otherwise the median is taken as the

average between the two middle points. This means that we need to sort the set of

observations to obtain the median. Figure 3.2 shows an example split (Xt < 145) to help

clarifying this task:

78 CHAPTER 3. TREE-BASED REGRESSION

X,<145 X, > 145

r »
Xi 100 123 130 131 140 150 150 170 175 230
Y values 230 200 10 13 53 234 546 43 23 67
Sorted
y values 10 13 53 200 230 23 43 67 234 546

vL = 53

SADL = 407 SADR = 708

Figure 3.2 - A split on Xi < 145.

The key issue we face within LAD trees, is how to efficiently compute the sum of absolute

deviations for a new trial split X, < V (with V > V). Obtaining these SAD values for a new

cut point involves "moving" some cases from the right branch to the left branch. For

instance, in Figure 3.2 if the new trial cut-point is 160 this would mean that 234 and 546

would now belong to the left branch. We would like to avoid having to re-sort the Y values

for each new trial cut point to obtain the new medians. Moreover, we would also like to

avoid passing again through the data to calculate the new SAD values. Thus the key to

solve the efficiency problems of LAD trees resumes to the following two related problems:

• Given a set of points with median v and respective SAD, how to obtain the new median
v' and the new SAD , when we add a new set of data points to the initial set.

• Given a set of points with median v and respective SAD, how to obtain the new median
v' and the new SAD, when we remove a set of data points from the initial set.

In the remaining of this section we will describe an efficient method for solving these two

problems. The algorithm we will present obtains the new medians and SADs based on the

values of the previous trial cut point, which largely improves the efficiency of finding the

best LAD split of a continuous variable.

Let P be a set containing the ordered Y values of a branch. Let us divide this set in two

ordered subsets, P~ and P+. The set P~ contains all observations less or equal to the median,

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 79

and P+ the remaining observations. For the left branch of the example in Figure 3.2, we

would have P = {10, 13, 53} and P+ = {200, 230}. Given the definition of the median it is

easy to see that the following holds:

P " - # P + = 0 if#Piseven
(3.9)

#P--#P+=1 if #P is odd

If the total number of observations in P is even, the median is the average between the

maximum value in F and the minimum value in P+, otherwise the median is the maximum

value of P~. Adding (or removing) a set of observations to P is equivalent to obtaining two

new ordered subsets subject to the restrictions given in 3.9. Ordered insertion (removal) in

sorted sets can be achieved with computational efficiency using balanced binary trees

(AVL trees) (Wirth, 1976). Using these data structures we can efficiently update P and P+

when given a new set of data points B that we wish to add to P. An insertion (removal) in

an AVL tree can be done in an average time of the order of 0(log SizeOjTree). This means

that the addition (removal) of a set of points B can be done in an average time of the order

of 0(#B log #P/2). The only problem we face is that when new points are added (removed)

the restrictions given in 3.9 may be violated. We thus may need some additional

bookkeeping to maintain these constraints. By updating the new subsets subject to the

restrictions given in 3.9, we can easily obtain the new median after the addition (removal)

of a set of observations.

We now address the issue of obtaining the new sum of absolute deviations, SAD'. Let

d(yi, y2) be defined as

d(vi,y2)=y2-yi

The sum of absolute deviations of a set of points P with median Vp is given by ,

P P P* (3 10)

P- P- p* />+ p* P-

Using again the example in Figure 3.2, we can confirm this expression observing that

80 CHAPTER 3. TREE-BASED REGRESSION

SADL = \d{l0,53) + |d (13,53)| + |d (53,53)| + |d(200,53) + |d (230,53) =
d{l0,53)+ d(l3,53)+ d(53,53)+ j(53,200)+ ^(53,230) = 407

or equivalently,

SADL =(200 + 230)- (10 +13 + 53)+ 53x(3 - 2)= 430- 76 + 53 = 407

We will now address the problem of what happens to this SAD value when we remove a

set of points from P. Let B be a set of points we want to remove from P, originating the set

R (i.e. R = P\B). According to 3.10, the sum of absolute deviations of the set R is given

by:

SAD«„ =Xy,-I>,+vfl(#tf--#/?+) (3.H)

We will present an alternative formulation for SADRIVR based on the value of SADPiVp and

B. This will reduce the computational complexity of obtaining SADR,VR from 0(#R) to

0(#B log #R/2). Furthermore our solution avoids the second pass through the data, and we

manage to obtain SADRyV as we update the median.

Let us assume that in the set B there are more values smaller than the median vP, than

values above this median. If we denote these two subsets of B as B~ and B+, respectively,

this corresponds to saying that #B~ > #B+. This implies that the new median after the

removal of B will be larger than the previous value, i.e. vR > vP. The following example

clarifies this reasoning.
vP

> . El
(• • • • > r

• •
• • •

10 15 21 25 28 35 36 42 45 56 70
V _J i—'4 \ 1

B+
^ B i—'4 \ 1

B+
J

R" R+

where,
F is the set of values smaller or equal to the median of the set P;

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 81

P+ is the set of value greater than this median;
B is the set of points we want to remove from P30;
B is the subset of B with values smaller or equal to the median of P;
B* is the subset of B containing the values greater than this median;
R is the new set resulting from removing B from P;
R is the subset of R containing the values smaller or equal to the median of R;
R+ is the subset of R with the values greater than this median;
and Q is the subset ofR containing values in the interval between the median of P
and the median of R.

The following set relations hold under the assumption that VR > V/> after removing B from

P:

R+ = P+-B+-Q

R =P -B +Q
where, Q is the set containing all points for which d(v, ,V/>) < d(V/t ,V/>).

Using these relations we can re-write Equation 3.11 as :

p* B* Q p- B~ Q

+ VR(#P--#B-+#Q-#P++#B++#Q)
= £}',-l3',+Zy,-Z>,-2Xy /+v,(#p--#p++#5+-#5- + 2#ô)

P
+ P~ B~ B* Q

Similarly, if we assume that VR < Vp (i.e. #B~ < #B+):

R+ = P+-B+ + Q

R=F-B-Q

This leads to,

SADR.VR
 s s S3 ' (-£y ,+£y i -Sy l +2y < +£y < +

P* B* Q P~ B~ Q

+ VR(#P~-#B--#Q-#P++#B+-#Q)

= Sy.■ - £ yt
 +y

Ly> - S ^
+ 2

S ^ +VR{#P--#P
+
+#B

+
-#B--2#Q)

P* P- B~ B* Q

Finally, if \R = vP (i.e. #B~ = #fi+), we have :

For instance as a result of a new trial cut-point split (cf. example of Figure 3.2)

82 CHAPTER 3. TREE-BASED REGRESSION

R+ = P+- B+

R' = F- B

leading to,

P* B* P~ B~

= 2>, -2>, +2>, -X>« +VR{#P--#P
+
+#B

+
-#B-)

P* P~ B~ B*

Integrating all three cases into one single formula we get,

w>». = 1 *-1 *
+

1 y » - 1 *
+

(- (
v

* *v
^))

(V s > V p) x 2
I y,

P* P~ B~ B* Q

+ vR(#p--#P++#B+-#B~+(-(vR *vP)fR<Vp)x2#Q)
(3.12)

This formula looks much more complex than Equation 3.11. However, from a

computational point of view, it is more suitable for the incremental evaluation of the trial

splits. In effect, we are defining the SAD of the new set of points (R) as a function of the

previous set (P) plus some additional calculations with B and Q. Moreover, as we have to

remove the observations in B from the two AVL trees in order to obtain the new median

Vft, we can obtain the summations over B at the same time, thus adding no additional

computational cost.
■J i

We will now present an algorithm that given a set P and a subset B, obtains the value

of the SAD in the set resulting from removing B from P. This is one of the steps for the

evaluation of a new trial split based on a previous one, as it was mentioned before. Going

back to the example in Figure 3.2 this algorithm solves the problem of obtaining the SAD

of the right branch of the test X, < 160 based on the SAD of the test X, < 145. In this

example the set B is {234, 546}. The algorithm we present below assumes that we have the

values in P stored in two AVL trees P and P+. Furthermore we must have the values of V/>,

V V; , V y, , #P~ and #/)+. The algorithm returns the values of VR, ^T yi, , ^ y. , #R~, #R+

P* P~ R* R-

plus the updated AVL trees. According to Equation 3.11 we can use these values to

An algorithm with similar objectives was presented in Lubinsky (1995).

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 83

calculate SADR,VR TO avoid over-cluttering of the algorithm we have omitted some special

cases like when the AVL trees turn empty after removing the cases in B.

Algorithm 3.5 - Updating the median and SAD after removing a set of
points B.

Input :
P+, P" % AVL's containing the elements in the current partition
SP+, SP" % The sum of the Y values of the cases in each AVL
NP+, NP" % Number of elements in each AVL
Med % lhe current median value
B % The data points to be removed

Output :
The upda ted v a l u e s c h a r a c t e r i s i n g t h e new p a r t i t i o n
(i . e . upda ted P+, upda ted P", SR+, SET, NR\ NR~, and NevdYED)

SB" = SB+ = NET = NB+ = SQ = 0
FOR each b i n B DO % removing the B cases

IF (b <= Med) THEN
SB" = SB" + b
NB" = NB" + 1
P" = AVLremove(b,P")

ELSE
SB+ = SB+ + b
NB+ = NB+ + 1
P+ = AVLreniDve(b,P+)

END IF
END FOR
NQ = (NB+ - NB") DIV 2 % DIV stands for integer division, e.g. 5 DIV 2 = 2
NR+ = NP+ - NB+ + NQ % Obtaining the number of cases in the two new AVL's
NR" = NP" - NB" - NQ
IF (NR+ > NR") THEN % Check consistency with 3 .9

NR+ = NR+ - 1
NR" = NR" + 1
NQ = NQ - 1

END IF
IF (NQ > 0) THEN % Now moving the cases belonging to Q

FOR i = l TO NQ DO
X = AVLnaximum(P")
P" = AVLdelete(X,P")
P+ = AVLinsert (X, P+)
SQ = SQ + X

END FOR
ELSE IF (NQ < 0) THEN

FOR i = l TO -NQ DO
X = AVLminimLim(P+)
P+ = AVLdelete(X,P+)
P" = AVLinsert (X, P")
SQ = SQ + X

END FOR
END IF
IF (NR" > NR*) THEN % Calculating the new Median

84 CHAPTER 3. TREE-BASED REGRESSION

NewMED = AVLmaximum(P~)
ELSE

NewMED = (AVLmaximum(P~) + AVIitiinimiim(P+)) / 2
END I F
SR+ = SP+ - SB* + (-(NewMED * MED)) A (NewMED > MED)* SQ % Calculating the SR's
SR"" = SP~ - SB" + (-(NewMED * MED))A(NewMED < MED)* SQ

Following a similar reasoning it would be possible to prove that the sum of absolute

deviations of a set A, resulting from adding a set of points B to our original set P can be

obtained by,
SAD^ =X* - I * +2>, - I * +(-(v, * vP))(—]xl^y,

p* p- fl+ B- Q (3.13)

+ vA(#P~-#P++#B--#B++(-(vA*vP)tA<Vp)x2#Q)

This equation leads to a very similar algorithm that updates the median and SAD when we

add a set of points. In the example mentioned before this algorithm would enable to obtain

the value of the SAD of the left branch of the test X, < 160 based on the SAD of the test X, <

145. Due to its similarity to Algorithm 3.5 we do not present it here.

The computational complexity of these algorithms is dominated by the operations in

the AVL trees with the cases in B. These operations can be done in time proportional to

0(#B log #P/2). If we consider all possible splits of a continuous variable we get to an

average complexity of 0(n log nil), where n is the number of observations in the node.

This number results from the fact that all observations need to be moved from the right

branch to the left branch when we try all possible splits. As we have seen the naive

approach has an average complexity of 0(n3 log n), which means that our algorithms

provide a significant computational complexity decrease for the task of finding the best

split of a continuous variable in LAD trees. However, we have seen in Section 3.2.2 that

the corresponding complexity in LS regression trees is 0(n), which means that even with

our optimisations LAD trees are more complex. Still, both type of trees need a previous

sorting operation on the values of the variable that is done on average in 0(n log n), which

turns out to be the major computational burden.

3.3 LEAST ABSOLUTE DEVIA TION REGRESSION TREES 85

Having solved the problem of incrementally obtaining the SAD of a new split based on

a previous one, we are now ready to present the algorithm for obtaining the optimal LAD

split for a continuous variable.

Algorithm 3.6- Best LAD split of a continuous variable.

Input : n cases; their median, SAD, and respective AVL's; the variable X^,
Output : The best cut-point split on X^

Sort the cases according to their value in Xv

Initialise Right with the Input median information (roed, sad and avl's)

Set B to the srpty set
BestTillNow = 0
FOR all instances i DO

Add y± to B
IF (Xi+I,v > Xi;V) THEN

Left = AddToSet(Left,B)
Right = RemoveFrcmSet(Right,B)
RightSAD = Right.R+ - Right.R" + Right.Median * (Right.KT - Right.N*)
LeftSAD = Left.R* - Left.R" + Left.Median * (Left.N" - Left.N*)
NewSplitValue = RightSAD + LeftSAD
IF (NewSplitValue > BestTillNow) THEN

BestTillNow = NewSplitValue
BestCutPoint = (Xi+1,v + XiiV) / 2

ENDIF
Set B to the empty set

ENDIF
ENDFOR

Algorithm 3.6 uses the algorithms we have described before (the call RemoveFromSet is

Algorithm 3.5, while AddToSet is the corresponding algorithm for adding a set). The

values returned by these two algorithms enable us to calculate the SADs of both branches

using Equation 3.11.

We have carried out an experiment with the Fried domain in order to confirm the

validity of our proposed algorithms as a means to allow growing LAD trees within

reasonable computation times. In this experiment we have varied the training sample size

from 1000 to 150000 cases. For each size, we have grown a LAD tree storing the

respective CPU time taken to carry out this task. The results are shown in Figure 3.3:

86 CHAPTER 3. TREE-BASED REGRESSION

Fried Data Set
450 -

4 0 0 - CPU Time = 2.53E-8 + 0.00254 * Ncases (R! = 0.9815)

350 -

à
3 0 0 -

250 -

a. U
200 -

150 -

100 -

5 0 -

0 - I I I I I I I IM IMI I IH I I I I I I I I I I I I IM I I IMI I I IHIMI I I I I I I

^ ^ . c ^ . c ^ . c s * tf . « * ^ « * _c# rf . # .c*0 .«# .«# ^ ^ <F # ^ & <f <f & <F ^f^r^r^jFj?
Training Sample Size

Figure 3.3 - Computation time to grow a IAD tree for different sample sizes

of the Fried domain.

This experiment shows that although LAD trees are computationally more demanding than

LS trees (cf. Figure 3.1), they still maintain an almost linear dependence of the CPU time

with respect to the training sample size. This behaviour clearly confirms that our

algorithms are able to evaluate all possible splits of continuous variables in a

computationally efficient way.

3.3.2 Splits on Discrete Variables

The best nominal split of the form Xv e {xv,..} can be efficiently obtained in LS trees due

to a theorem proved by Breiman et al. (1984). This theorem reduces the number of tried

splits from 2**v "' to #%v - 1. Even for a small number of values of the variable this

reduction is significant. This means that the question whether this theorem also applies to

the LAD error criterion is a key issue in terms of computational efficiency.

According to Definition 3.4 the value of a split is given by the sum of the SADs of the

left and right branches. A theorem equivalent to the one proved by Breiman et. al. (1984)

for the LAD criterion would mean that the following hypothesis is true :

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 87

HYPOTHESIS 3.1

If Pi, P2 form a partition resulting from the best split in a discrete variable (i.e. P\, P2 is an

optimal partition) and Vpl < V/>, then

V
8 ,cP„fi !cA ^ V f i , < V S :

♦

If this hypothesis is true, to obtain the best discrete split it would be sufficient to order the

values of the discrete variable by their median and the best split is guaranteed to be

between two of these ordered values. This is exactly the same procedure followed in

Example 3.2 presented in Section 3.2.3, but now with medians instead of averages.

To prove Hypothesis 3.1 it is sufficient to demonstrate that if we exchange any two

subsets of the optimal partition we get a worse value of the split. In particular if V|/p,,/>T is

the sum of the SADs of the optimal partition (i.e. ypvp2 = SADPi + SADPl), B\ = max v/;

and B2 = min v , then if we exchange B\ with B2, originating the partition N\, N2, we
PieP2

should be able to prove that ^P1,P2 ^ fjv,^,. Notice that,

N\=P\-B\+ B2 and N2 = P2-B2 + B\

For instance, let X\ e {a, b, c} be an optimal split for the variable X\, with the domain of

the variable being X\ = {a, b, c, d, e}. Let Pi and P2 be the sets containing the respective Y

values associated with the division entailed by the split. Furthermore, let us suppose" that

va > vc > Vb , and ve < Vd. If B\ is the subset of Pi containing the Y values of the cases for

which X\ = a, and B2 is the subset of P2 containing the Y values of the cases for which X\ =

e, we want to prove that SAD{b^e] + 5AD(a,d) ^ SAD{aM + SAD(d,e] (i-e. that V|í(b,c,e},{a,d) ^

V{a,b,c),{d,e))-

v, represents the median of the Y values of the cases for which the value of the variable is i.

88 CHAPTER 3. TREE-BASED REGRESSION

The derivation of equations for the SAD of the sets N\ and N2 follows a similar

reasoning used for deriving Equations 3.12 and 3.13. However, the expressions are a bit

more complex. Our goal is to find an expression for \\>NVN2
 a s a f u n c t i° n of V|//>,,/>2. Namely,

we want an expression of the form

yWiiA,2 = SADNi + SADN^ = SADPi + £, + SADP^ + K2 (3.14)

If we manage to obtain expressions for K\ and K% and to prove that their sum is greater or

equal to zero, we would be able to obtain a demonstration of Hypothesis 3.1. At the end of

this chapter we present a derivation of such an expression for i|fyjv2 • However, the

expressions we were able to derive for K\ and K2 are still too complex for a clear

understanding of the behaviour of \\>NVN2 • Still, we were able to prove the falsity of

Hypothesis 3.1 by finding a counter-example through a large-scale simulation study. This

means that its use may lead to the choice of sub-optimal discrete splits for LAD tree nodes.

The question that arises is whether the predictive accuracy of LAD trees is affected by

these potentially sub-optimal splits. In effect, although we were not able to formally

characterise the cases where sub-optimality occurs, we have experimentally observed that

these are rare events. In most of our simulation experiments using Hypothesis 3.1 leads to

the optimal split. Moreover, if the split is sub-optimal it does not means that the resulting

LAD tree will have lower performance in a separate independent test set. We have

implemented in our RT system both alternative ways of finding the best nominal split:

using Hypothesis 3.1; or trying all possible combinations. Regression data sets with lots of

nominal variables do not abound. In our benchmark data sets only Abalone and Mv include

nominal variables. In all experiments we have carried out with these two domains, we

never observed any difference in terms of accuracy or tree size , between the two

alternatives. On the contrary, in terms of computation time there is an overwhelming

advantage of using the heuristic method of finding best nominal variable splits outlined by

Hypothesis 3.1. We have carried out an experiment with the Mv artificial domain to

33 Actually the trees were always the same, meaning that the use of the Hypothesis in these data sets is not

leading to sub-optimal splits.

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 89

confirm this advantage. We have varied the training sample size from 1000 to 150000

cases, generating two LAD trees. The first (LAD) was obtained by exploring all possible

combinations of the discrete variable values, when addressing the task of finding the best

sub-set split of a tree node. The latter (LAD, fast) was generated through the use of the

results of Hypothesis 3.1 as a heuristic process of finding the best discrete split of a node.

The computation time taken to grow these two trees is shown in Figure 3.4:

600

500-

400 -

5, 300 -\

200

LAD vs. LAD(fast) / Mv Data Set

CPU Time(LAD,fast) = 2.62E-8 + 0.00263 * Ncases (R2 = 0.9727)
CPU Time(LAD) = 3.34E-8 + 0.00335 * Ncases (R2 = 0.9768)

N # s # N # N # N # N # N # N # N # N # N # N # N # N # N #

Training Sample Size

Figure 3.4 - Computation Time of LAD and LAD(fast) trees for different sample sizes.

This experiment confirms the clear computational advantage of using our proposed

heuristic process of finding the best discrete split for the nodes of LAD trees. Moreover,

we should remark that the three discrete variables of the Mv domain, have very few values

(two or three). This means that the cost of evaluating all possible discrete splits is not too

large when compared to our heuristic process. In domains containing discrete variables

with a large set of values (e.g. Costa, 1996) the advantage of our proposal would be even

more evident. Still, we should remark that both alternatives have a nearly linear behaviour

with respect to the relation between CPU time and number of training cases.

90 CHAPTER 3. TREE-BASED REGRESSION

3.4 LAD vs. LS Regression Trees

In the previous sections we have described two methods of growing regression trees. These

alternatives differ in the criteria used to select the best split for each tree node. While LAD

trees try to ensure that the resulting model has the smallest possible deviation from the true

goal variable values, LS trees try to minimise the squared differences between the

predicted and true values. In this section we address the question of which type of trees

should we prefer given a new regression task.

The answer to this question is related to the predictive performance measure that will

be used to evaluate the resulting regression models. There are two major groups of

prediction error statistics (cf. Section 2.3.2): one based on absolute differences between

the predicted values and the true Y values of the cases; and the other based on the squared

differences between these values. These two forms of quantifying the prediction error of a

model entail different preference biases. In effect, the squared differences are more

"influenced" by large prediction errors than the absolute differences. As such, any

regression model that tries to minimise the squared error will be strongly influenced by this

type of errors and will try to avoid them. This is the case of LS regression trees whose

splitting criterion revolves around the minimisation of the resulting mean squared error

(cf. Definition 3.1). On the contrary, the minimisation of the absolute differences will

result in a model whose predictions will on average be "nearer" the Y value of the training

cases. This model is not so influenced by large prediction errors as they are not so

"amplified" as when using squared differences. Models obtained by minimising the

absolute differences are expected to have lower average difference between the true and

predicted values. However, these models will probably commit extreme errors more often

than models built around the minimisation of the squared differences. This is the case of

LAD trees that use a splitting criterion that tries to minimise the absolute differences (cf.

Definition 3.4). From this theoretical perspective we should prefer LAD regression trees if

we will evaluate the predictions of the resulting model using the Mean Absolute Deviation

(MAD) statistic. On the contrary, if we are evaluating the prediction error using the Mean

3.4 LAD vs. LS REGRESSION TREES 91

Squared Error (MSE) statistic, we should prefer LS regression trees. So, given a new

regression problem, which statistic should we use? In applications where the ability to

avoid large errors is crucial (for instance due to economical reasons), achieving a lower

MSE is preferable as it penalises this type of errors, and thus LS trees are more adequate.

In applications where making a few of such extreme errors is not as crucial as being most

of the times near the true value, the MAD statistic is more representative, and thus we

should theoretically prefer LAD trees.

We should remark that both types of trees are built using estimates of both the MAD

and MSE prediction error statistics. Any statistical estimator is prone to error. Thus, if

either our estimators are unreliable or our training sample is not representative, the

expected theoretical behaviour described above can be misleading. In these cases, we could

see a LS tree outperforming a LAD tree in terms of MAD, or a LAD tree outperforming a

LS tree in terms of MSE. Still, as we will see by a series of example applications, this is

not the more frequent case.

The first application we describe concerns the environmental problem of determining

the state of rivers and streams by monitoring and analysing certain measurable chemical

concentrations with the goal of inferring the biological state of the river, namely the

density of algae communities34. This study is motivated by an increasing concern as to

what impact human activities have on the environment. Identifying the key chemical

control variables that influence the biological process associated with these algae has

become a crucial sub-task in the process of reducing the impact of man activities. The data

used in this application comes from such a study. Water quality samples were collected

from various European rivers during one year and an analysis was carried out to detect

This application was used in the 3 International Competition (http://www.erudit.de/erudit/activities/ic-99/)

organised by ERUDIT in conjunction with the new Computational Intelligence and Learning Cluster

(http://www.dcs.napier.ac.uk/coil/). This cluster is a cooperation between four EC-funded Networks of

Excellence : ERUDIT, EvoNet, MLnet and NEuroNet. The regression system implementing the ideas in this

thesis (RT) was declared one of the runner-up winners by the international jury of this competition.

http://www.erudit.de/erudit/activities/ic-99/
http://www.dcs.napier.ac.uk/coil/

92 CHAPTER 3. TREE-BASED REGRESSION

various chemical substances. At the same time, algae samples were collected to determine

the distributions of the algae populations. The dynamics of algae communities is strongly

influenced by the external chemical environment. Determining which chemical factors are

influencing this dynamics represents important knowledge that can be used to control these

populations. At the same time there is also an economical factor motivating this analysis.

In effect, the chemical analysis is cheap and can be easily automated. On the contrary, the

biological part involves microscopic examination, requires trained manpower and is

therefore both expensive and slow. The competition task consisted of predicting the

frequency distribution of seven different algae on the basis of eight measured

concentrations of chemical substances plus some additional information characterising the

environment from which the sample was taken (season, river size and flow velocity).

The first regression problem we analyse concerns the task of predicting the frequency

distribution of one of the algae (Alga 6). Using the 200 available training cases we have

grown a LS regression tree. The resulting model is shown in Figure 3.5. If we test this tree

on the available testing set consisting of 140 test cases we get a Mean Squared Error

(MSE) of 162.286. In alternative, if we evaluate the same model using the Mean Absolute

Deviation (MAD) of the model predictions we obtain a score of 7.328. This latter score is

more intuitive in the sense that it is measured using the same units as the goal variable.

This means that the induced tree (shown in Figure 3.5) makes on average an error of 7.328

in guessing the distribution frequency of the alga.

3.4 LAD vs. LS REGRESSION TREES 93

Y = 16.81

Y = 0.21

Y = 1.12 Y = 5.67 Y = 11.81

Y = 42.70 Y =10.45

Figure 3.5 - A LS regression tree for the Alga 6 problem

(MSE = 162.286; MAD = 7.328)

35

Using the same training data we have also grown a LAD regression tree. The resulting

model is shown in Figure 3.6. The MSE of this tree on the same testing set is 179.244,

which is worse than the MSE of the LS tree shown earlier (MSE = 162.286). However, if

we evaluate this LAD tree using the MAD statistic we obtain a score of 6.146, which is

better than the MAD of the LS tree (MAD = 7.328). With respect to the training times,

both trees are obtained with little computation time due to the small size of the training

35 Left branches correspond to cases were the node test is true, while right branches correspond to the

opposite.

94 CHAPTER 3. TREE-BASED REGRESSION

sample. Regarding comprehensibility, both models are acceptable although the LAD tree is

considerably smaller.

Y = 0.60

Y = 77.60

Y = 6.90

Figure 3.6 - A LAD regression tree for the Alga 6 problem.

(MSE = 179.244; MAD = 6.146)

This example clearly illustrates our previous position concerning which type of model is

better. This question depends on the goals of the application. In effect, if one is willing to

accept a few exceptionally large errors but give more weight to a model that on average

leads to predictions that are nearer the true frequency distribution of the alga, then we

should prefer the LAD tree. On the contrary, if we consider that extreme errors are

inadmissible because, for instance, they could lead to an environmental disaster, then we

should definitely use the LS model. To support these arguments we show in Figure 3.7 the

absolute difference between the predicted and true values for both trees on all 140 test

cases. As it can be confirmed, the LAD tree makes several very large errors.

3.4 LAD vs. LS REGRESSION TREES

LAD Errors -LS Errors

Figure 3.7 - The absolute difference of the errors committed by the LAD and LS trees.

A closer inspection of the distribution of the error size committed by the two models is

given in Figure 3.8. This histogram confirms that the LAD tree errors are more often

nearer the true value (in 108 of the 140 test cases the error is less than 10) than those of the

LS model. In effect, looking at the first two error bins that can be seen as the best scores of

both models, we observe that the frequency of errors is more balanced in the case of the LS

tree, while the LAD tree is clearly skewed into the bin of smallest errors. Moreover, this

histogram also confirms that the LAD tree makes more extreme errors than the LS tree.

Histogram of Errors

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 >80

Error

■ LAD ■ LS

Figure 3.8 - The histogram of the errors of the LAD and LS trees.

96 CHAPTER 3. TREE-BASED REGRESSION

We have repeated similar experiments with other data sets and we have observed a similar

behaviour. Table 3.1 summarises the results of these experiments in other domains: Alga 2

of the same competition data; the Abalone data set; and the Pole domain. Further details

concerning these problems can be found in Appendix A.2.

Table 3.1. Results of comparisons between LAD and LS trees.

Alga 2
200 train cases/140 test cases

Abalone
3133/1044

Pole
5000/4065

LAD LS LAD LS LAD LS
MSE 109.347 92.431 5.894 5.094 119.342 41.612
MAD 6.232 6.422 1.632 1.639 2.889 2.984
N. Leaves 13 5 51 39 119 97
Error Bins
Frequencies
1st bin
2nd bin

117
6

102
2

658
162

452
280

1782
38

1772
91

Last but one
Last bin

2
1

0
0

3
1

1
0

11
3

1
0

We observe that depending on the criteria used to evaluate the models (MSE or MAD),

either the LAD or LS trees achieve the best score. Moreover, the last lines of the table,

showing the frequency distribution of the first two error bins containing the smallest errors

and the last two error bins containing the largest errors, confirm a similar error distribution

exists as the one shown in Figure 3.8.

The experiments described in this section lead to the following conclusions regarding

the applicability of both LS and LAD regression trees. LAD trees are, on average, more

accurate than LS trees, although they also commit extreme errors more often. LS trees, on

the other hand, are less prone to large prediction errors, while achieving less accurate

predictions than LAD trees, on average. Both types of trees are comparable in terms of

comprehensibility of the models, but LAD trees are considerably more demanding in terms

of computation time. Still, this latter observation can only be regarded as relevant for

extremely large training samples.

3.5 CONCLUSIONS 97

3.5 Conclusions

In this chapter we have addressed the issue of growing regression trees. We have described

in detail two alternative methods of tree induction: one based on the least squares (LS)

criterion and the other on the least absolute deviation (LAD) criterion.

Least squares (LS) regression trees had already been described in detail in the book by

Breiman et. al. (1984). Compared to this work we have presented some simplifications of

the splitting criterion that lead to gains in computational efficiency. With these

simplifications the task of growing a tree is carried out in computation times that are

practically linear with respect to the training sample size.

With respect to LAD regression trees we have presented a detailed description of this

methodology. These trees can be considered more adequate to certain types of applications.

However, they bring additional computational difficulties to the task of finding the best

split of a node. We have presented algorithms that overcome these difficulties for numeric

variables, as confirmed by our experiments. With respect to nominal variables we have

shown that the theorem proved by Breiman et. al. (1984) for subset splits in LS trees does

not hold for the LAD error criterion. Still, we have experimentally observed that the use of

a heuristic based on the "theorem" does not entail any significant loss in predictive

accuracy. Moreover, using this heuristic to find the best discrete split brings very

significant gains in computation time as we have observed through a large experiment with

a domain containing discrete variables.

We have shown through a set of experiments that both types of trees can be useful

depending on the application goals. LAD trees were found to be more accurate on average,

while being more susceptible to make large errors. If a few of these errors do not present a

problem in the application under consideration then these trees are clearly preferable to LS

trees. On the contrary, if extreme errors are unacceptable then LS trees should be the

choice. Moreover, these latter trees are obtained in a considerably smaller computation

time.

98 CHAPTER 3. TREE-BASED REGRESSION

3.5.1 Open Research Issues

A simple formal proof of the falsity of Hypothesis 3.1 would also be useful. This could

provide safe indications of when we should or should not use the hypothesis to find the

best subset split of a nominal variable in LAD trees.

A further comparative study between LAD and LS trees would be desirable. As

Breiman et. al. (1984, p.262) mentioned, it is difficult to decide which tree is best. If we

use as measure of accuracy on unseen cases the mean squared error (MSE), LS trees will

usually have better score as they are grown to minimise this error. If we use instead the

mean absolute deviation (MAD) the opposite occurs because LAD trees minimise absolute

errors. Apart from extended experimental comparisons a theoretical study of the properties

of these two types of trees would certainly help to decide which type of model to use in a

new application.

APPENDIX 99

APPENDIX.

PROOF OF THEOREM 3.1.

If 7 is a continuous random variable with probability density function fly), the function that

we want to minimise with respect to k is,

^{k)=E[(Y-k)2]=r{y-kff{y)dy ,as E[Y]= Tyf(y)dy

= [Jy2-2yk + k2)f{y)dy

= r V / (v) ^ - 2kryf{y)dy + k2 ,as r°f(y)dy = l

Minimising with respect to k we have,

^U(fc)=0 <=> 0-2ryf(y)dy + 2k = 0 <=> *=(*"?/(?)«&

which by definition is E[Y], i.e. the mean value of the variable Y.

♦

PROOF OF THEOREM 3.2.

The function we want to minimise with respect to k is,

(l>(k)= E(\y-k\)= \2\y-k\f{y)dy

=\i(k-y)f(y)dy + f (y-k)f(y)dy

= kjlf(y)dy - jlyf{y)dy + [~yf{y)dy - k[~ f{y)dy

, as [°f{y)dy = l-jk_j{y)dy.

So, we have

100 CHAPTER 3. TREE-BASED REGRESSION

<b(k)=k[j(y)dy - k + kfj{y)dy - f_yf{y)dy + £°yf(y)dy
= 2kf f(y)dy - k - f yf(y)dy + f" yf(y)dy

= 2kF(k) - k - jlyf{y)dy + [~yf{y)dy

where, F(y) is the cumulative distribution function of the variable Y.

Now, obtaining the derivative of this function in order to k, and making it equal to zero we

get,

^-(j)(k)=2F{k)+2kf(k)-l-kf(k)-kf(k) = 2F(k)-i
ok

so, |-0(*)= 0 o F(*)=4
ok 2

As by definition the cumulative distribution function is equal to V2 for the median of any

distribution, the proof is complete.

♦

TENTATIVE PROOF OF HYPOTHESIS 3.1.

To prove Hypothesis 3.1 it is sufficient to demonstrate that if we exchange any two subsets

of the optimal partition we get a worse value of the split. In particular if Xfpvp2 is the sum

of the SADs of the optimal partition (i.e. ypvP2 = SADP{ + SADPl), B\ = max vp. and B2 =

min vp , then if we exchange B\ with B2, originating the partition Ni, N2, we should be
Pi

eP
2

able to prove that ^fpvP2 - Wi,% Notice that,

Ni=Pi-Bx+ B2 and N2 = P2-B2 + Bx

In this appendix we derive an expression for \\ÍNVN2 based on the SADs of Pi and P2. The

derived expression as the form

APPENDIX 101

\|/„iJVi = SADPi +K,+ SADPi + K2

Understanding the sign of K\ + K2, is a fundamental step for the proof of Hypothesis 3.1.

The SAD of the set N] consisting of removing a set B\ from a set Pi and adding to the

same set the set B2, is given by

p* p{ «r «r «J B Í , 0 1 5 x

+ (-K ^v,))(v-^)x2Xv,+v,i(#yvr-#K)
a

We omit the derivation of this equation, as it is similar to the derivation of Equations 3.12

and 3.13. As we need to obtain an expression for the sum of the two SADs (Equation 3.14),

it is necessary to introduce notation for differentiating numbers bigger (smaller) than vPl

from the ones bigger (smaller) than V/>2. The following figure illustrates this problem for

the set B\ and the adopted notation.

B\- 5, 1+

I \
• • •

v P] vB] V/>2

v y ^ J
Bf- Bf+

V ^

B;+

The same kind of notation can be used to describe the relation of set B2 with both medians.

Using Equation 3.15 and the notation presented above, we can derive an expression for our

target function yNvN2,

102 CHAPTER 3. TREE-BASED REGRESSION

¥ „ „ =SAD„„ +SAD N-, ,v„

X^ ­X?­
+
X>^ ­X^­

+
X?i ­X?.­

/>,,+ />,'* B,'~ B,1+ e i + B J "

+X^­X^
+
X>

7
<­X>'/

+
X>

;
.'­X)

;
i

P{+ P?~ BJ~ BJ* B?+ B,2_

e:

as it may be confirmed in the figure presented above the following holds,

X y 1 - X >i = ~X y 1and S y> - X y«-= ~X y<
Bl— D2— D—i" D - + D ! + B—*"

] "\ " 1 " I " 1 " l

X ?<■ - X ?<•= X y,-and X y 1 ~ X y< = X y.-
Bit Bl+

Br B\- Br

which leads to,

**,.*, = X y,- - X y,-+X ?«■ - X ?.- +

ft
2+ F,

2 -

+ 2x x ­̂x ­̂
s;+ B,~+

+

+ 2x (-(v., *vPi)h^x%yi+(-(vN2 ïv^f^x^y, +

+VJ#N;-#N:)+VJ#N;-#N;)

,36 We know that

^PvP2=
yZyi-^y,+vPixODD{#Pi)+^y,-^yl+vP2xODD(#P2)

/>/+ p?- p}* ft2-

» 5>,- - X ^ + 2>/ - S > i = %>,./>. ~v/>, x O D ^ P j - v ^ xODD{#P2)
pi* P!' P}+ p } -

where,

ODDii)--
11 if 1 is odd
10 otherwise

36
Notice that due to the restrictions presented in Equation 3.9, ODD(#P) = #F - #P+.

APPENDIX 103

So, finally we get

1 N, ,N, * P, ,ft

+ 2x S^i-Xy.-
er Br*

+

+ 2x ("(v., *vP>.^xJ>,+(-(v„2 *vj) (v^x£v,
ft

+

+ vNODD(#Nl)-\PODD(#Pl)+vNODD(#N2)-vPiODD(#P2)

This means that to prove Hypothesis 3.1 we need to prove that

2x 2>i-Xy.
B;+

B,"T
+

+ 2x ("(v., ÉvJh^xX^+í-ta, ^vj^x^y, +

+ VNODD{#N])-VPODD(#P1)+VNODD{#N2)-VPODD(#P2) > 0

(3.16)

(3.17)

The analytic proof of the falsity of 3.17 is rather complex as there are too many variants

depending on the relation between the medians and also the cardinalities of the sets

involved (Pi, ?2. #i and B2). Being so, we have decided to present a simple example that

falsifies Hypothesis 3.1.

Let X\ be a discrete variable with the following domain : %\ - {a, b, c, d, e}. Let us

further suppose that we have the following set of cases,

Xl Y X, r X. Y Xi Y X, Y X, Y
d -582 a -143 c -356 e -594 b -138 b 924
d -289 a 503 c -94 e -280 b 98
d -274 a -400 c 79 e 231 b 177
d -226 a -128 c 562 e 601 b 194
a 568 c -995 e -986 e 711 b 717

104 CHAPTER 3. TREE-BASED REGRESSION

This set of cases leads to the following ordering of the values, based on their respective

medians,

{d, a, c, e, b} as vd (-281.5) < va (-128) < vc (-94) < ve (-24.5) < vb (185.5)

Let us consider the split X\ € {d,a}. The value of this split is given by the sum of the

two respective SADs and is equal to i|/(d,a),{c,e,b) = 2345 + 7481 = 9826. According to

Hypothesis 3.1, if we exchange a and c we should get a value of the split at most equal to

this value, but never smaller. If we make the necessary calculations we obtain the value of

V(d,c),{a,e,b} = 2543 + 7020 = 9563, which proves that the hypothesis is false. This means

that using Hypothesis 3.1 may lead to a sub-optimal nominal split.

Chapter 4

Overfit t ing Avoidance in Regression

Trees

This chapter describes several approaches that try to avoid overfitting of the training data

with too complex trees. In the context of tree-based models these strategies are known as

pruning methods. Overfitting avoidance within tree-based models is usually achieved by

growing an overly large tree and then pruning its "unreliable" branches (also known as

post-pruning). Post-pruning can be regarded as a search problem, where one looks for the

"best" pruned tree. The pruning techniques we present in this chapter follow the same

general strategy as the one used in system CART (Breiman et al, 1984). These techniques

proceed in two separate stages, where initially a sequence of alternative pruned trees is

generated, and then a tree selection process is carried out to obtain the final model.

Compared to CART pruning we describe new methods of generating sequences of trees

that proved to be advantageous on our benchmark data sets. Moreover, we describe a new

tree-matching procedure that extends the applicability of the cross validation selection

method used in CART. We extend the use of m estimates (Karalic & Cestnik, 1991) by

deriving the m estimate of the mean absolute deviation, which allows the use of these

estimators with LAD trees. We also derive the standard errors of the m estimates of both

105

106 CHAPTER 4. OVERFITTING A VOIDANCE IN REGRESSION TREES

the mean squared error and the mean absolute deviation, which allows the use of the 1-SE

rule (Breiman et ai, 1984) with these estimators. We present a new error estimator for LS

regression trees based on the sampling distribution properties of the mean squared error.

During a systematic experimental comparison of different methods of pruning by tree

selection, this new method together with our new algorithms for generating sequences of

pruned trees, proved to be among the most competitive on our benchmark data sets.

Finally, we have compared our most promising pruning methods with current state-of-the-

art algorithms for pruning regression trees. This comparison revealed that our methods

usually lead to more accurate trees in most of our benchmark data sets. However, this

advantage is usually associated with larger trees compared to some of the other algorithms.

Apart from accuracy gains, one of our new pruning methods has significant advantage in

terms of computation efficiency, turning it into a good choice when dealing with large data

sets.

4.1 Introduction

The methods described in the previous chapter obtain a tree using an algorithm that

recursively divides the given training set. As a consequence of this, the selection of the

best splits is based on increasingly smaller samples as the tree grows. The split choices at

the lower levels of the tree do often become statistically unreliable although the

resubstitution error estimate37 keeps decreasing. It is usually considered unlikely that this

error estimate generalises to unseen cases and the tree is said to overfit the training data.

This means that the tree is capturing regularities of the training sample and not of the

domain from which the sample was obtained. This is usually taken as the motivation for

pruning tree models. However, as Schaffer (1993a) pointed out, pruning can not be

regarded as a statistical mean to improve the true prediction error. In effect, it is easy to

find real world domains where pruning is actually harmful with respect to predictive

37 The estimate obtained with the training data, which is used during tree growth.

4.1 INTRODUCTION 107

accuracy on independent and large test samples' . On the contrary, as suggested by

Schaffer (1993a), pruning should be regarded as a preference bias over simpler models.

Understanding the biases of the different pruning methods will provide useful indications

on the strategies that suit best the user's preferences.

Post-pruning is the process by which a large tree is grown and then reliable evaluation

methods are used to select the "right-sized" pruned tree of this initial model. Post-pruning

methods are computationally inefficient in the sense that it is not unusual to find domains

where an extremely large tree with thousands of nodes is post-pruned into few hundred

nodes. This clearly seems a waste of computation. An alternative consists of stopping the

tree growth procedure as soon as further splitting is considered unreliable. This is

sometimes known as pre-pruning a tree. Pre-pruning has obvious computational

advantages when compared to post-pruning. In effect, we may stop the tree growth sooner,

and moreover, we avoid the post-pruning process. However, this method incurs the danger

of selecting a sub-optimal tree (Breiman et al, 1984) by stopping too soon and because of

this the usual method of avoiding overfitting is post-pruning.

This chapter starts with an overview of existing techniques of pruning regression trees.

We then address a particular type of pruning methodology that works by tree selection

from a set of candidate alternative models. We claim that these techniques are more

advantageous from an application perspective. We describe several new techniques of

pruning by tree selection. Among these we remark two new methods of generating sets of

pruned trees based on heuristic estimates of error reliability that we conjecture as being

advantageous from a predictive accuracy perspective. We also describe a new error

estimation method that we hypothesise as being competitive with resampling estimators

with the advantage of being computationally less demanding.

Empirical evidence supporting this observation is given in Section 4.4 (Figure 4.23).

108 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

4.2 An Overview of Existing Approaches

Post-pruning is the most common strategy of overfitting avoidance within tree-based

models. This method consists of trying to obtain a sub-tree of the initial overly large tree,

excluding its lower level branches that are estimated to be unreliable. As it was mentioned

by Esposito et al. (1993) pruning can be seen as a search problem. From this perspective

two main issues arise when searching for the best pruned tree. The first is the method used

to explore the large space of all possible pruned trees, and the second is how to evaluate

the different alternatives considered during this process. In this section we briefly describe

the main existing methods of pruning regression trees.

4.2.1 Error-Complexity Pruning in CART

CART (Breiman et al, 1984) prunes a large regression tree TmàX using a two-stage

algorithm called Error-Complexity39 pruning (Breiman et al., 1984, p.233). This method is

based on a measure of a tree called error-complexity ECa(r), which is defined as,

ECa(T)=Err{T)+a x #f (4.1)

where,
Err(T) is the resubstitution error estimate of tree T;
#T is the cardinality of the set T containing the leaves of the tree T;
and a is called the complexity parameter and defines the cost of each leaf.

Depending on the cost of each additional leaf (i.e. the a value) different sub-trees of rmax

minimise the error-complexity measure. Breiman and his colleagues proved that although

a can run through a continuum of values there is a sequence of pruned trees such that each

element is optimal for a range of a, and so there is only a finite number of "interesting" a

values. Furthermore, they developed an algorithm that generates a parametric family of

pruned trees T(a) = <TQ, T\,...,Tn>, such that each T, in the sequence is characterised by a

different value a,. They proved that each tree T, in this sequence is optimal from the EC

For classification trees this algorithm is known as Minimal Cost-Complexity.

4.2 AN OVERVIEW OF EXISTING APPROACHES 109

perspective within the interval [a, ..a,+i). Using this algorithm, CART generates a

sequence of pruned trees by successively pruning the node t such that the following

function is minimised,

Err(,)-Err{T,)
#Tt - 1

where,
T, is the sub-tree of T rooted at node t;
and #f, is the number of leaves of this sub-tree.

The successive g function values form the sequence of "interesting" a values. For each of

these values a new tree results as the minimising error-complexity tree. We should note

that there is no theoretical justification for preferring this set of pruned trees to any other.

However, Breiman and his colleagues prove that if one wishes to characterise a tree by a

linear combination of its error and a cost for each of its leaves, then this sequence is

optimal. By optimal it is meant that for any hypothetical cost per leaf value (a), the sub­

tree of Tmax that would minimise the expression of Equation 4.1 is included in the sequence

generated by this algorithm. However, this does not mean that the sequence of trees T(a)

includes the best possible sub-trees of Tmax from the perspective of true prediction

accuracy, as pointed out by Gelfand et al. (1991) and Gelfand & Delp (1991).

The second stage of the Error Complexity pruning method consists of estimating the

predictive accuracy of each of the trees in the sequence T(a), and selecting one of the trees

based on these estimates. Breiman and his colleagues suggest using a resampling strategy

(either a holdout or a cross validation process) to estimate the error of each tree in the

sequence. When using fc-fold Cross Validation (CV), CART divides the given training data

into k disjoint folds, each containing approximately the same number of observations. For

each fold v an overly large tree 7 ^ is learned using the remaining k-\ folds. For each of

these k large trees CART generates a parametric family of pruned trees Tv(a), using the

method mentioned earlier. Reliable estimates of the error of the trees in each of the k

sequences are obtained using the fold that was left out of the respective training phase.

110 CHAPTER 4. O VERFITTING A VOIDANCE IN REGRESSION TREES

This means that for each tree in the k sequences we have an a value plus a reliable estimate

of its prediction error. The goal of this CV process is to estimate the prediction error of the

trees in the initial sequence T(a). CART obtains the error estimate of each tree Tí e 7 (a)

by a tree-matching procedure that finds its k "most similar" trees in the k sequences, and

defines the error estimate of 7, as the average of the error estimates of these k trees. CART

heuristically asserts similarity between trees using their a values. The main danger of this

tree-matching process results from the fact that these trees with similar a value are

different. Moreover, the tree 7max is obtained with a larger training set and this may lead to

a larger set of pruned trees, 7(a). Still, CART obtains the k most similar trees of 7] e T(OL)

as follows: let a ' = -N/a;a/+1 ; define the k most similar pruned trees in the k sequences

Tv (a) as the trees with a value most similar to a ' . There is no theoretical justification for

this heuristic tree-matching process as it was mentioned by Esposito et al. (1997).

The other alternative method of obtaining reliable error estimates in CART is using

the holdout method. Given a training set a proportion of cases is left aside and the tree Tmax

is obtained using the remaining cases. The separate set of cases (the holdout set) is then

used to obtain unbiased estimates of the prediction error of the trees in the respective

sequence 7(a).

Breiman and his colleagues describe two alternatives for the final tree selection based

on the obtained error estimates. Either to select the tree with lowest estimated error or to

choose the smallest tree in the sequence, whose error estimate is within the interval

Errh + S.E.[Êrrb j , where Errh is the lowest error estimate and S.E\Errh) is the standard

error of this estimate. This latter method is usually known as the 1-SE rule, and it is known

to favour simpler trees although possibly leading to lower predictive accuracy (e.g.

Esposito et al., 1997).

4.2.2 Pruning based on m estimates in RETIS

RETIS (Karalic & Cestnik,1991; Karalic, 1992) uses a pruning method based on the

Niblett & Bratko (1986) algorithm. Contrary to CART pruning algorithm, this method

4.2 AN OVERVIEW OF EXISTING APPROACHES 111

proceeds in a single-step by running in a bottom-up fashion through all nodes of rmax. At

each inner node t e rmax the Niblet & Bratko algorithm {N&B) compares the error of t and

the weighed error of the sub-tree rooted at t (T,). The weights are determined by the

proportion of cases that go to each branch of t. If the error of t is less than the error of T,

the tree rmax is pruned at t.

One of the crucial parts of this pruning algorithm is how to obtain the error estimates.

Bayesian methods can be used to obtain reliable estimates of population parameters (Good,

1965). An example of such techniques is the m-estimator (Cestnik, 1990). This bayesian

method estimates a population parameter using the following combination between our

prior and posterior knowledge,

mEst(e)«-2—ç(e)+-—71(e) (4.3)
n + m n + m

where,
Ç(G) is our posterior observation of the parameter (based on a size n sample);
K{6) is our prior estimate of the parameter;
and m is a parameter of this type of estimators.

Cestnik and Bratko (1991) used this method to estimate class probabilities in the context of

post-pruning classification trees using the N&B pruning algorithm. Karalic and Cestnik

(1991) extended this framework to the case of least squares (LS) regression trees. These

authors have used m-estimators to obtain reliable tree error estimates during the pruning

phase. Obtaining the error of an LS tree involves calculating the mean squared error at

each leaf node. The resubstitution estimates of the mean and mean squared error obtained

with a sample consisting of the cases in leaf / are given by,

y f o) = J - í > , and M S £ , (D > - f > , - y (D ,)) 2 (4.4)
n, ,=i n, ,=1

where,
Z), ={(x,.,y,)€/};
and ni = #Di.

112 CHAPTER 4. OVERFITTING A VOIDANCE IN REGRESSION TREES

Karalic and Cestnik (1991) have derived m-estimates of these two statistics. Priors are

usually difficult to obtain in real-world domains. The standard procedure to overcome this

difficulty consists of using all training set as the source for obtaining the priors. This means

that the priors for the mean and the MSE are obtained by estimating their values using all

training data. Using equation 4.3 we can obtain the m estimate of the mean in a leaf / by,

m mEst(y)= — Ç(y)+ n(y) =
nt +m n, +m

n, 1 v-1 m l
—f 2 > < -

+
— ; —

n, +m n, D 11,+m n D

n, +m i=]
I». + m

n(n, + m)

2>,-
n

2>.

(4.5)

and for the mean squared error,

mEst(MSE-) = n, 1

n, +m n, D

X(v, -mEst(y))2 + - Í L . I X (y i -mMy)f
n, +m n

1
n, + m ,=1

Erf + m
n\nl +m) * Erf +

+ •
n{ + m

+ ■ m
n, +m

n, +m

(mEst(y))2-2xmEst(>0 — £ y,
n, ,=1

1 "
(mEst(y))2 -2xmEst(y)-^ yj

+

n ~ i=\

Erf + m
Í=I

+ (mEst(y))

-2xmEst(y)

n(n; +m) ,=l

n

Erf-

•7
■ + ■ m

nl +m nt+m

n, +m n, jl — X j ,
, i=1 n,+m n M

1 A 2
+ m f—\\2

n, +m n(nt +m) /=1

1 " <

" -I>,2 + m
n, +m i(n, +m)

X y,2 +(mEst(y))2 -2(mEst(y))2

£ v , 2 - (mEst(y))2

1=1

(4.6)

♦

4.2 AN OVERVIEW OF EXISTING APPROACHES 113

From a computational point of view, obtaining the m estimate for the MSE in any leaf
n n

demands calculating V y(and Y yf for the cases at the leaf and for the whole training set,
1=1 ;=i

besides determining n\ , n and m. These values can be easily obtained during tree growth

without significant increase in the computation. Thus the computational cost of obtaining

m-estimates for LS trees reduces to simple arithmetic calculations.

A crucial aspect of m-estimates is the value of the parameter m. Karalic & Cestnik

(1991) mention that the best value of this parameter is domain dependent. However,

resampling strategies can be used to automatically tune m by evaluating a set of

alternatives and choosing the one that obtained best estimated predictive accuracy.

4.2.3 MDL-based pruning in CORE

CORE (Robnik-Sikonja,1997; Robnik-Sikonja and Kononenko, 1998) also uses the N&B

pruning algorithm mentioned in the previous section. However, instead of comparing the

error estimates of each node t and its sub-tree T„ CORE uses the Minimum Description

Length principle to guide the decision regarding whether or not to prune any node of a tree.

Classical coding theory (Shannon and Weaver, 1949; Rissanen and Langdon, 1981)

tells us that any theory T about a set of data D can be used to encode the data as a binary

string. The main idea behind the use of the Minimum Description Length (MDL) principle

(Rissanen, 1982) is that "the simplest explanation of an observed phenomena is most likely

to be the correct one" (Natarajan, 1991). Mitchell (1997) describes the MDL principle as a

preference for the theory Th such that,

Th = arg min L(Th)+ L(D|77I) (4.7)
TheTH

where,
Th is a theory belonging to the space of theories TH;
D is a data set;
and L(.) represents the binary description length.

114 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

This formalisation shows how this theoretical framework provides a way of trading off

model complexity for accuracy. In effect, according to this principle we may prefer a

shorter theory that makes few errors on the training data to a large theory that perfectly fits

the data. Thus this principle can be regarded as a method for guiding overfitting avoidance

within inductive learning.

Robnik-Sikonja & Kononenko (1998) describe a coding schema for regression trees40

that allows using this principle to prune the trees. This coding determines the binary code

length of a tree-based model. The binary code of a regression tree consists of the code of

the model and of its errors. The pruning algorithm used in CORE runs through the tree

nodes using the N&B algorithm and at each node t compares its binary code length with the

code length of its sub-tree T,. If the latter is larger the tree Tmax is pruned at t.

4.2.4 Pruning in M5

M5 (Quinlan, 1992; Quinlan, 1993) uses a bottom-up method similar to the N&B

algorithm. M5 can use multivariate linear models in the tree leaves. Because of this, the

pruning decision is guided by a criterion different from the ones used in either RETIS or

CORE. For each node t, M5 builds a multivariate linear model using the cases in the node

and including only the attributes tested in the sub-tree T,. M5 calculates the Mean Absolute

Deviation of this linear model using the cases in t. This value is then multiplied by a

heuristic penalisation factor, (n, + v)/(rc, - v), where n, is the number of cases in t, and v is

the number of attributes included in the linear model. The resulting error estimate is then

compared with the error estimate for the sub-tree Th and if the latter is larger the sub-tree is

pruned.

Full details on this schema can be found in an appendix at the end of this chapter.

4.3 PRUNING BY TREE SELECTION 115

4.3 Pruning by Tree Selection

Given an overly large tree rmax , the set of all sub-trees of this model is usually too large

for exhaustive search even for moderate size of 7max- We have seen in the previous section

examples of two different approaches to this search problem. The first one considers

pruning as a two-stage process. In the first stage a set of pruned trees of Tmax is generated

according to some criterion, while in the second stage one of such trees is selected as the

final model. This is the approach followed in CART (Breiman et ai, 1984). The second

type of pruning methods uses a single-step procedure and is more frequent. These latter

algorithms run through the tree nodes either in a bottom-up or top-down fashion, deciding

at each node whether to prune it according to some evaluation criterion. These two distinct

forms of pruning a tree influence the evaluation methods used in the pruning process.

When considering two-stage methods, the evaluation of the trees can be seen as a model

selection problem, due to the fact that we want to compare alternative pruned trees with the

aim of selecting the best one. On the contrary, single-step methods use evaluation at a local

level, i.e. they need to decide at each node whether to prune it or not. Moreover, two-stage

methods have an additional degree of flexibility that we claim to be relevant from the

perspective of the practical use of tree-based regression. In effect, they can output the

sequence41 of alternative tree models generated in the first stage together with their

evaluation (either an estimate of their prediction error or other criterion like their binary

description length). These trees can be regarded as alternative models with different trade­

off between model complexity and evaluation score. The system selects one of these trees

according to some bias (e.g. the lowest estimated error), but without any additional

computation cost we can allow the user to inspect and select any other tree that better suits

his application needs. We think that this is a very important advantage from an application

point of view and because of this the new pruning methods presented in this chapter all

follow this two-stage framework.

41 Or part of it as suggested by Breiman et al. (1984, p. 310).

116 CHAPTER 4. O VERFITTING A VOID AN CE IN REGRESSION TREES

Within pruning methods based on tree selection we can make a further distinction,

depending on the methods used to generate the set of pruned trees. Optimal pruning

algorithms (Breiman et a/., 1984) produce a set of trees decreasing in size by one node,

ensuring that each tree in the sequence is the tree with highest accuracy of all possible

pruned trees with the same size. Breiman and his colleagues mentioned that an efficient

backward dynamic programming algorithm existed but they have not provided it. Bohanec

and Bratko (1994) independently developed an algorithm (OPT) also based on dynamic

programming that is able to produce a sequence of optimal pruned trees. This algorithm is

based on the approach suggested by Breiman et al. (1984, p.65). Almuallim (1996)

recently presented an improvement of Bohanec and Bratko's algorithm, called OPT-2 that

improves the computational efficiency of OPT. Both algorithms were designed for

classification trees and domains without noise (Bohanec & Bratko, 1994). According to

Bohanec & Bratko (1994) the expected gains in accuracy of optimal algorithms in noisy

domains are not high when compared to non-optimal algorithms. We have re-implemented

OPT-2 and confirmed this observation. For this reason we do not consider this algorithm in

further comparative studies reported in this chapter.

Nested pruning algorithms generate a sequence of trees where each tree is obtained by

pruning the previous element in the sequence at some node. These algorithms are

obviously more efficient as their search space is smaller, which means that they may miss

some good trees found by an optimal algorithm. The main difference between nested

pruning algorithms is in the methods used for choosing the next node to prune.

In the following sections we describe in detail the main components of pruning by tree

selection algorithms: the generation of a sequence of candidate trees; the evaluation of

these candidate models; and the final selection of the tree resulting from the pruning

process. Moreover, we will present our novel proposals to both tree generation and

evaluation, and describe the results of an extensive experimental comparison of different

alternative methods of pruning by tree selection.

4.3 PRUNING BY TREE SELECTION 117

4.3.1 Generating Alternative Pruned Trees

In this section we address methods for generating a sequence <7o, Tu ..., Tn> of nested

pruned trees of an overly large tree Tmix. We describe two existing methods (Error-

Complexity and MEL) and present our two proposals for this task (MCV and LSS).

The generation of a sequence of trees is the first step of pruning by tree selection. We

have already seen in Section 4.2.1 that CART (Breiman et al, 1984) uses an algorithm

called Error-Complexity (ErrCpx) to generate a sequence of nested pruned trees. Error

Complexity is an iterative algorithm that starts with the tree Tmax, which is taken as the first

element in the sequence (7o), and generates the first pruned tree by finding the node

t e r ^ that minimises,

(Err(t)- Err(T,y
min

V
#T - 1

(4.8)

where,
T, is the sub-tree of T rooted at node t;
and #Tt is the number of leaves of this sub-tree.

The following pruned trees are obtained using the same method applied to the previous

pruned tree in the sequence until a tree consisting only of the root node is reached. Finding

the node t at each step involves running through all tree nodes of the current tree, which

can be computationally heavy depending on the size of the trees. However, Breiman et al.

(1984, p.293) have developed an efficient algorithm that avoids running through all tree

nodes to find the node to prune at each step. This turns the Error Complexity into an

efficient algorithm having an average complexity of 0[#ïlog#f), and a worst case

complexity of 0 (# r 2) according to Bohanec & Bratko (1994).

A simpler method to generate a sequence of nested pruned trees was used in a series of

comparisons carried out by Bohanec and Bratko (1994). This method consists of selecting

the node t that will lead to the lowest increase of resubstitution error. This notion can be

formally stated as finding the node t minimising,

min (Err(t)-Err{Tf)) (4.9)

118 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

We will refer to this method as the Minimal Error Loss (MEL) algorithm. This method is

quite similar to the Error-Complexity algorithm, the single difference being that MEL uses

a slightly different function to select the next node to prune. Due to this similarity the

efficient algorithm described by Breiman and his colleagues can also be used with this

method.

As we have mentioned before, one of the motivations for pruning trees is the

observation that estimates based on small samples are potentially unreliable. By

unreliability we mean that the true error of a tree node can be quite far from the value

estimated with such small samples. The precision of an estimate is measured by the

standard error of the estimate, as we will see in Section 4.3.2.1. This statistic measures the

expected variability if more estimates were obtained using other samples of the same

population. According to statistical estimation theory, a consistent estimator should get

move precise (i.e. have lower standard error) as the sample size grows. Motivated by these

considerations we propose the following method for generating a sequence of nested

pruned trees. Given a tree T generate a pruned tree by eliminating the node whose error

estimate is potentially least reliable. This will lead to a pruned tree of T that is optimal

from the perspective of the variability of its estimated error. Now the question is how to

determine the potential unreliability of the error in a node. We propose two alternative

methods for quantifying the unreliability of the error estimate in a node. The first is

motivated by the fact that the standard error of estimators is inversely proportional to the

sample size from which the estimates were obtained. It consists of pruning, at each

iteration of the algorithm that generates pruned trees, the node t minimising,

min (n.) (4.10)

where, n, is the training sample size in node t.

This can be seen as a naive form of estimating the unreliability of estimates. We will call

this the Lowest Statistical Support (LSS) algorithm. Apart from its simplicity this method

has some computational advantages when compared to other sequence-based methods

4.3 PRUNING BY TREE SELECTION 119

described here. In effect, the order in which the nodes will be pruned can be obtained with

a single pass through the tree42. Pruning a particular node does not change this ordering, as

the number of cases in the remaining nodes stays the same. This means that to generate a

sequence of pruned trees with the LSS algorithm we only need to obtain a list of the nodes

arranged in ascending order of sample size, and then prune each node in this ordered list to

obtain the next pruned tree.

We have analysed another method of estimating the unreliability of the error estimates

at each node. The standard procedure in statistics for estimating variability is to use a

measure of the spread of the sample. An example of such type of measures is the

Coefficient of Variation (e.g. Chatfield, 1983), which is given by,

CV=^r (4.11)
Y

where,
sy is the sample standard deviation of Y;
and Y is the average Y value.

Using this statistic we can compare the expected variability in the error estimates of

different nodes. Having these values we can generate a sequence of nested pruned trees, by

pruning at each step of the generation process, the node t with largest coefficient of

variation of the mean squared error, that is,

(S.E.{MSE{t))^
max MSE(t)

(4.12)

where,
MSE can be obtained by any of the estimators that will be described in Section
4.3.2.1.

We will refer to this method as the Maximal Coefficient of Variation (MCV) algorithm.

Are the four methods of generating sequences of trees (ErrCpx, MEL, LSS and MCV)

significantly different from each other, i.e. do they entail different preference biases that

Actually, it can even be obtained during the tree growth phase.

120 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

can be considered useful for different applications? In order to try to answer this question

we have carried out the following experiment. For different training samples we have

generated a large tree Tmax and four different sequences of pruned trees with each method.

The goal of this experiment is to compare these sequences. For each sequence we have

calculated the average true prediction error over all trees in the sequence, and the lowest

true prediction error achieved by one of the trees in the sequence. As we do not know the

true regression function for our benchmark domains, we have estimated the true prediction

error using large independent test sets. The larger the sets, the more reliable the results of

our experiment.

In this experiment we have used the following benchmark domains43:

Table 4.1. The basic characteristics of the used benchmark domains.

Data Set Basic Characteristics
Ailerons 1 3750 cases; 40 continuous variables
Elevators 16559 cases; 18 cont. vars.
2Dplanes 40768 cases; 10 cont. vars.
Mv 40768 cases; 3 nominal vars.; 7 cont. vars.
Kinematics 8192 cases; 8 cont. vars.
CompAct 8192 cases; 22 cont. vars.
CompAct(s) 8192 cases; 8 cont. vars.
Census(16H) 22784 cases; 16 cont. vars.
Census(8L) 22784 cases; 8 cont. vars.
Fried 40768 cases; 10 cont. vars.
Pole 9065 cases; 48 cont. vars.

Ailerons and Elevators are two domains with data collected from a control problem,

namely flying a F16 aircraft. 2Dplan.es is an artificial domain described in Breiman et al.

(1984, p.238). Mv is an artificial domain containing several variables that are highly

correlated. Kinematics is concerned with the forward kinematics of an 8 link robot arm.

The CompAct domains deal with predicting CPU times from records of computer activity

in a multi-user university department. The two domains differ in the attributes used to

describe the cases. The Census domains were designed on the basis of data provided by US

Full details of the benchmark domains used throughout the thesis can be found in Appendix A.2.

http://2Dplan.es

4.3 PRUNING BY TREE SELECTION 121

Census Bureau (1990 US census). The data sets are concerned with predicting the median

price of houses in a region based on demographic composition and a state of housing

market in the region. They differ in the kind of indicators (variables) used to described the

cases. The Fried domain is an artificial data set used in Friedman (1990). Finally, the Pole

domain contains data from a telecommunications problem and was used in a work by

Weiss & Indurkhya (1995).

For each of the domains we have repeated the experiment 50 times for different

training sample sizes. The results presented are averages of these 50 random samples for

each size. Figure 4.1 shows the results of the four methods in terms of lowest "true" error

achieved by one of the trees in each sequence, for different training sample sizes.

256

/ / / j * y ^ j* j? s * «* *

j

yVt*

512

* &' A*" <<T ^ ,<8> r J? * 4?

2048 4096
1.04

1.02

1

0.98

0.96

0.94

0.92

1.04

1.02

1

0.98

0.96 •

0.94

0.92
".

• w w <vw** <* / / / / / <vw * cP $ J?* <? r<F J? v Cf f oe ^
<*» <#

|LSSQMCV0ErrCpxiMEL

Figure 4.1 - Comparison of the four methods for generating sequences of sub-Trees.

122 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

For space reasons the results regarding the average error in each sequence are presented in

the Appendix B.4. To be able to present the results for all data sets together, we have

normalised each result by dividing it by the average score of the four methods. The results

can thus be seen as a kind of ratios with respect to the average score of the four methods.

These experiments show that with the exception of the Elevators domain, the LSS

method generates the more accurate pruned trees from the four methods. Moreover, with

the exception of Elevators, Mv and Kinematics, the methods we have proposed generate

better pruned trees than the ErrCpx and MEL methods. With respect to the average error of

all trees within each sequence, our experiments show that few differences exist between

the four methods (cf. Appendix B.4).Given these results, we can be reasonably confident

on the "quality" of the sequences of pruned trees produced by our two methods (LSS and

MCV). Still, generating sequences of trees that include better models does not mean that in

the second phase of pruning the existing tree selection methods will be able to choose

them. This experiment was carried out under the "ideal" conditions of having access to the

"true" prediction error. In Section 4.3.4.1 we will again compare these methods of

generating sequences of trees, but now in conjunction with "real" selection methods. Still,

based on the results of the experiments presented above, we can say that if we have a

reliable method of selecting trees from a sequence it can be advantageous (or certainly not

detrimental) to use the sequences generated by both the LSS and the MCV algorithms,

when compared to existing methods.

4.3.2 Methods for Comparing Alternative Pruned Trees

In this section we address the second stage of pruning by tree selection: comparing the

generated pruned trees. We will discuss two main methodologies for comparing tree-based

models. The first is based on reliable estimates of the error of the models, while the second

is based on the minimum description length principle. With respect to error-based selection

we described three main strategies for obtaining reliable estimates of the error: methods

4.3 PRUNING BY TREE SELECTION 123

based on resampling; bayesian estimation; and estimates based on the sampling properties

of the error estimates.

4.3.2.1 Comparing Trees using Prediction Error Estimates

An estimator is a function that takes a sample of observations and uses it to estimate an

unknown value of a statistical parameter 6. The estimator 0 is a random variable with a

probability distribution function usually known as the sampling distribution of the

estimator. An estimator is said to be unbiased if its expected value is equal to the true value

of the parameter being estimated (i.e. E\p)= G). This means that with repeated sampling

we should obtain the true value of the population parameter by averaging over the different

sample estimates. Although being unbiased is an important property of an estimator it does

not indicate how precise a particular estimate is. In effect, we can have two different

unbiased estimators of a parameter 0, one being preferable to the other because its

sampling distribution is more tightly spread around the true value of 0. This notion can be

captured by a statistic of spread applied to the estimates. The resulting statistic is usually

known as the standard error of an estimator, S.E. (0j. Another important property of an

estimator is consistency. This property states that with increasing size of the samples our

estimates should improve. In summary, we are interested in consistent, minimum variance

(i.e. precise) and unbiased estimators of the prediction error. In the following sections we

describe several estimators of the prediction error of regression trees.

Resampling Methods

The main idea behind resampling methods is to use a separate set of data to obtain the

reliable estimates. We have already seen a possible way of using these estimators within

pruning when we have discussed CART pruning algorithm (Section 4.2.1). Resampling

methods can also be used to tune parameters of a learning system. An example of such

application consists of finding the "optimal" values of learning parameters to better tune a

system to a particular domain (e.g. John, 1997). This is particularly useful whenever the

124 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

"optimal" values of these parameters depend on the domain under consideration. In a way

the estimation phase of CART pruning can be seen as tuning the cost per leaf node (the a

value) parameter, to ensure the highest estimated predictive accuracy. These techniques

can also be used within the pruning method used in RETIS for obtaining the "best" value

of m, and within CORE pruning method to find the "optimal" precision coefficients used in

the MDL coding schema.

Our study will be centred on two particular resampling techniques, the Holdout and

the Cross-Validation. Another frequently used resampling technique is the bootstrap

(Efron,1979; Efron & Tibshirani, 1993) and its variants like the .632 bootstrap or the eO

bootstrap (see for instance Weiss & Kulikowski, 1991 or Kohavi, 1995). The bootstrap

method is known to be particular suitable for small samples. With the rapid growth of

computational power and the widespread of information technology, the size of data sets is

growing at a very fast rate. Research fields like Knowledge Discovery in DataBases

(KDD) put a particular emphasis on large data sets, which we share. This was the main

motivation for not including the bootstrap method in our study.

Cross Validation Error Estimates

A fc-fold cross validation (CV) estimate is obtained by randomly dividing the given

training sample in k disjoint folds D„...,Dk, each containing approximately the same

number of observations. For each fold Df a regression model is constructed using as

learning sample DXDf, obtaining the model r0, x). This model is then tested on the fold

Df. The same process is repeated for all folds. Finally, the CV error estimate is obtained by

averaging the errors of these k models, i.e.

Hcv=- Ê S Err (4.13)

where,
Erri = | y,■ ~ r(P»x,) | o r Erri - (v, - r(P>x,)) ' depending on the type of
error measure we are using to evaluate our model.

4.3 PRUNING BY TREE SELECTION 125

A particular case of this formula occurs when k is set to n. This leads to what is usually

known as Leave-One-Out Cross Validation (LOOCV) where n models are constructed

using n-1 training cases. This method is computationally expensive so it is used only with

very small data sets. The most common set-up in current research within ML is 10-fold

CV.

As mentioned by Breiman et al. (1984, p.307) it is not clear how to obtain standard

error (SE) estimates for the CV estimator since the errors are not independent due to the

overlap of the k training sets. If we ignore this dependence we reach a heuristic formulation

for the SE of this estimator,

S J ? . (§ 0 - - J Ï X (Err, -ÊrrkCV] (4.14)

The use of CV estimators with tree-based models presents some difficulties. For instance,

we have to repeat the learning process k times, which brings additional computation costs.

Another problem is how to use the CV estimate to select the best pruned tree. We have

seen in Section 4.2.1 that Breiman et al. (1984) use the cost per leaf node (the a values) to

perform a tree-matching process that allows the use of CV estimates in the pruning

process. This method is strongly tied to the error-complexity sequence generation

algorithm. It does not make sense to use the a values to perform tree matching with other

sequences of trees, because Breiman and his colleagues proved that the optimal sequence is

the one provided by the Error-Complexity algorithm. Motivated by the fact that we have

studied other algorithms for obtaining sets of pruned trees we have devised an alternative

tree-matching method.

The Error-Complexity algorithm produces a parametric sequence of nested trees T(a)

= < T0, ..., Tn>. Associated with each tree in the sequence there is a a value. Let us denote

a tree belonging to this sequence as r(cc,) to reinforce this association between the trees and

the respective a values. As we have mentioned in Section 4.2.1, when using fc-fold cross

validation error estimates, CART also produces k parametric sequences Tl(a),...,Tk(a).

126 CHAPTER 4. OVERFITTING A VOIDANCE IN REGRESSION TREES

For each tree in these sequences we have a reliable estimate of its error obtained with the

respective fold. The tree matching procedure of CART estimates the error of the tree r(a,)

of the main sequence as the average of the error estimates of the trees

T1 \fJoLjOLl+1 l—,Tk (^/cc,ai+1 j , where T(ar) is the tree belonging to the sequence T(a) with a

value most similar to ar. The assumption behind this procedure is that the trees

r'tyO^o:,^ \...,Tk\Ja.aM) have the same true prediction error as !T(a,-). In other words,

trees with a similar cost per leaf will have similar true prediction error. As mentioned by

Esposito et al. (1997) there is no theoretical justification to support this.

We now describe an alternative tree-matching method that allows using cross

validation error estimates for any sequence of nested pruned trees. Let us assume that trees

obtained with samples with approximately the same size will have similar predictive

accuracy. Under this assumption it seems reasonable to consider that the error estimate of

overly large tree Tmax obtained with all training data, should be calculated with the error

estimates of the trees T âx ,.-.,7^ax (i.e. the overly large trees of the k folds). Moreover, as

the training sets in the k folds are samples of the same population it is reasonable to assume

that they will have the same variance. Based on this argument we can estimate the error of

the tree consisting of a single leaf, using the similar trees in the sequences Tv (a)44.

Linear polynomials obtained through the least squares method are usually evaluated

by the proportion of variance they explain. This statistic is obtained by,

P

where,

2{r)^s1
Y-Err{r) = x_RE{r) ^ ^

Sy

r is a regression model;
Err(r) is the mean squared error of the model;
sj is the sample variance of Y;
and RE(r) is usually known as the relative error of r.

AA 1

Because the error of a tree consisting of a single leaf is given by the variance (SY) of the training sample

(i.e.Err(Tn)=s2
Y).

4.3 PRUNING BY TREE SELECTION 127

We can calculate similar p2 values for any tree in a sequence. These values range from a

maximum value for the tree rmax (which is the first element in the sequence, 7b), until the

value zero, relative to the tree consisting of a single leaf. These values decrease as the trees

get smaller because the trees are nested and have increasing value of resubstitution error

(i.e. they explain less variance of the training sample). This means that we can look at our

sequence of trees as a parametric family T\p2)=(T\pl),T\p2\...,T{p2„]), where

Po > P? > — >pl an<^ P« = 0 • Without loss of generality we may re-scale these values to

cover the interval [1..0], using a simple linear transformation consisting of dividing the p;

values by Po (i.e. by the maximum value of p2) . This leads to the following statistic,

Po Err(Tn)-Err{T0)

where, $2
0 = 1,$2

n = 0, tf >#,2+1 and 0<-&2 < 1 , i = l . . .n- l .

The starting point of our proposed tree matching procedure is a sequence of nested pruned

trees, T(ft2)={r(u2
0\T(u2\...,T(u2

n}}, and the k cross validation sequences

Tl(û2\...,Tk(ft2). Our tree-matching method consists of using the Û2 values to assert

similarity between trees in these sequences. Namely, the error estimate of tree T\p2) is

obtained as an average of the error estimates of the k trees Tl\p2),...,Tk\õ-2). The

underlying assumption behind this tree matching procedure is that trees explaining the

same proportion of variance of the given training sample, are likely to have similar true

prediction error on future samples of the same population.

We have compared our tree-matching proposal with the method used in CART. Using

the same sequence of trees (the one produced by CART Error-Complexity algorithm) and

the same error estimation technique (5-fold CV), we have compared the selected trees in

the main sequence for each of the two tree-matching methods. Figure 4.2 shows the sign

128 CHAPTER 4. OVER FITTING AVOIDANCE IN REGRESSION TREES

and the statistical significance of the difference in MSE between the two alternatives,

estimated using the DELVE experimental methodology45.

E
H
OS

<

100%

80%

60%

40%

20%

0%

-20%

-40% -\

-60%

-80%

■100%

0 a

1256 0512 ■ 1024 Q2048 E4096

.m -

- i ­ i ■ ­ i­ ­1 ­ 1 ­ ­
­1 < .1 S M

J ^ L Li: \ L,

H \ i î
ï ­ 1 ­
!
1 u y

^ ^

>̂ # ^ V
V

■ c ^
» ^ . ^ ,♦> « /

V c° c?
^

Figure 4.2 - Our tree-matching proposal vs. CART method.

As Figure 4.2 shows there are no statistically significant46 differences between the choices

entailed by the use of the two alternative tree-matching methods. In spite of a tendency for

the differences being favourable to our method, we cannot discard with high confidence

the hypothesis that both alternatives achieve the same accuracy. Still, we should recall that

the single motivation for the introduction of our method was to allow the use of CV

estimates with other methods of generating sequences of pruned trees apart from the

method used in CART. This is a relevant issue because we have shown in Section 4.3.1

45 Details concerning the experimental methodology and the information described in the figures can be

found in Annex A. The complete tables of results of this experiment can be found in Annex B.5.

We consider an observed difference statistically significant if there is at least 95% confidence that the two

methods will not achieve similar accuracy on other samples of the same population. Furthermore, if the

confidence reaches the 99% level we consider the difference highly significant.

4.3 PRUNING BY TREE SELECTION 129

that it is possible to obtain better results with other sequence generation methods that do

not produce the same sequence as the Error-Complexity algorithm.

Another relevant issue when applying CV estimators is the number of folds to use.

Smaller numbers make the size of the folds larger leading to more reliable estimates.

However, as fewer cases are left for training, this also affects adversely the "quality" of the

model and thus its error, and hence there is a trade-off between the two factors. Moreover,

for large data sets the value of k strongly influences the computation time. We have not

carried out any systematic experiment to determine the optimal number of folds. In our

experiments we have used the value 5 on the basis of empirical observations and also

because it is commonly used within ML.

The Holdout Method

With the Holdout method the given training cases are randomly divided into two separate

samples. One of the samples is used for training and the other (the holdout sample) to

obtain unbiased estimates of the models learned. The usual way data is used by this method

in the context of regression trees {e.g. system CART by Breiman et al, 1984) is described

by the Figure 4.3:

Figure 4.3 - The Holdout Method.

A Holdout estimate is the average prediction error of the model on the cases in the holdout,

130 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

Err
HU =

''Hid

(4.17)
'■Hid i=l

where,
nmd is the number of cases in the Holdout sample;
and Erri is the prediction error of the model r(p\x) for case (x,., y,.).

We are trying to estimate the "true" mean error of a regression model. Assuming that the

holdout sample is drawn from the same population as the learning sample, we can say that

the Holdout is an unbiased estimator of the mean error of the model. In effect, it is well

known that the average is an unbiased estimator of a population mean, and the holdout

estimates are obtained by averaging the errors of the model in the holdout sample. With

respect to the standard error of the holdout estimates statistical theory tells us that if X\, ...,

Xn is a random sample of a distribution with mean p. and variance a~ the variance of the

average estimator of the mean is given by,

VarX = a~ (4.18)

This means that the standard error of the holdout estimates is given by,

S.E.(ÊrrHld)= p ^
V n

where,
ol is the variance of the error Err,
and n is the size of our sample (in this case the size of the holdout).

(4.19)

Using the sample variance estimate we get the following operational formula,

S.E\ÊrrHld)= -
n

(4.20)

47 s2 =
n(n — l)

4.3 PRUNING BY TREE SELECTION 131

The two alternative ways of defining the Err Is, mentioned before (squared or absolute

differences) tell us that less credit should be given to the standard error estimates when

using the MSE criterion, as we will have powers of four , which can be extremely

variable. This can be seen as another advantage of LAD regression trees. Equation 4.20 is

slightly different from the formula derived by Breiman et al. (1984, p.226). The difference

results from the fact that the authors have used the biased estimate of the variance, where

the denominator is n instead of n-1. This approximation is known to underestimate the true

population variance (Chatfield,1983), which means that the values obtained by their

formula should be over-optimistic compared to ours.

An important issue when using these estimates is the size of the holdout. This method

requires the two samples to be independent which means that we will decrease the number

of cases available for training. While one wants a sufficiently large pruning set (holdout),

one does not want to remove too many cases from the training set, so as not to harm the

quality of the learned trees. The first obvious observation that one can make about this

method is that it is clearly inadequate for small samples. In effect, as Weiss and

Kulikowski (1991) pointed out, for moderately sized samples this method usually leaves

one with insufficient number of cases either for training or pruning. The authors have

suggested that a holdout sample with around 1000 observations should be sufficient for

most cases. We have experimentally confirmed on our benchmark data sets that this is a

reasonable assumption. Using larger holdouts brings little increased precision and, in

effect, ends up harming the accuracy of the tree model, because too many cases have been

"removed" from the learning sample. In our experiments with the holdout method we have

used a similar heuristic, by setting the size of the holdout as follows,

nm =min(30%xn,1000) (4.21)

where n is the training sample size.

Because for the MSE criterion Err = (y, - r((3, X;)) .

132 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

This means that for instance, if the sample size is 500 cases, then we have that

min(30%x500,1000) = 150, and thus 150 cases will be left out as holdout while the

remaining 350 will be used as training set. On the contrary, if the sample size is 50000, we

have that min(30%x50000,1000) = 1000, thus only 1000 cases will be left out as holdout.

m-Estimates

As we have mentioned in Section 4.2.2, Karalic and Cestnik (1991) have presented m

estimators for the mean and variance of a variable, which can be used to obtain reliable

estimates of the error of LS regression trees. Although the authors have used m-estimates

with the Niblett & Bratko (N&B) pruning algorithm, these estimates can also be used to

compare alternative regression trees. For instance, given a sequence of trees such as the

one produced by the Error-Complexity algorithm used in CART, m-estimates could be

used to select the final model instead of the resampling techniques used in CART. We will

use this method in our experimental comparisons. Moreover, we have extended the work

of Karalic and Cestnik (1991) by deriving the standard error associated with these

estimators. This allows the use of the 1-SE selection rule (Breiman et al, 1984) with m-

estimates leading to large benefits in terms of tree size of the selected model.

According to Kendall and Stuart (1969, vol. 1) the standard error of the sample mean

squared error is given by,

S.E.(MSE-):
/ i n \ 1

n
V

i = i

1 ^ l(yi-y)4--l(yi-yf (4.22)

The standard error is a statistic of the sampling distribution of a population parameter.

Using Equation 4.3, we have developed the m-estimate of the standard error associated

with the sample MSE, which is given by the following equation,

4.3 PRUNING BY TREE SELECTION 133

mEst(S.E.(MSE-)) =

n,
n, +m\\nl

! £ (y , -mEst(y)r -U±(y> -mEst(y)f '
n l i=i »/ w

(4.23)

m
n, +m\\n

1 " (1 " ^
- S to " m E s t (y))4 — S Cy.- - mEst(5'))2

2 ^

The expressions inside the squared roots can be expanded using the following equality

(4.24)

—Ji4 -4s3mEst(j)+4.s2(mEst(;y))2 — s \ +-s2slmEst(y)—sf(mEst(y))2

n\ n n n

where,
n n n n

= X ^ ' i2=S> ; .2 ' 5 3 = Z ^ ' ,4=X> ;.4-
i=l 1=1 1=1 1=1

Calculating these 5 factors brings no significant computational cost as this can be carried

out during tree growth. Using the expression given in Equation 4.24 the m-estimate of the

standard error of the sample MSE can be calculated in an efficient manner.

We have also extended the use of m-estimates to least absolute deviation (LAD)

regression trees. To grow LAD trees we need estimates of the median and of the mean

absolute deviation to the median. We have derived m-estimates for these two statistics.

Regarding the priors we have followed the same procedure of estimating them at the root

of the tree (i.e. using all training data). Using Equation 4.3 we can obtain the m estimate of

the median in a leaf / as,

m E s t (v) = _ ^ i _ V(D /)+_ZL_ v (D n)
n[+m n, +m

(4.25)

where,
v(D,) and v(Dn) are the resubstitution estimates of the medians obtained with the
cases in the leaf and root nodes, respectively;
and ni is the size of training sample in leaf /.

134 CHAPTER 4. O VERFITTING A VOIDANCE IN REGRESSION TREES

With respect to the mean absolute deviation to this median we have,

mEst{MADv) = —^ Y I y. - mEst(v)| + — — - Y I y, - mEst(v)|
n}+m n, ^ n,+m n^n

= X \y> ~ m E s t (v) | + — r ^ — \ X I y\ ~ w E s t (v) |

n,+m D) n{n,+m)~^

using the equation derived in Section 3.3.1 for the SAD of a set of observations we get,

1 n{ +m

m
n (n, + m)

f \
S y, - S yi + ^Est(v)x OZ)D(#D,)

2 > , - X y, + mEst(v)x ODD(#£>„)
v K D-

+
(4.26)

\

The formula derived above needs a pass trough all training data for each estimate of the

MAD, as we need to obtain the sums of the Y values greater and smaller than the m

estimate of the median. As this estimate is different for each leaf, this needs to be done for

all leaves. Thus m estimates for LAD trees have a cost proportional to 0(#T x n), where

T is the set of leaves of the tree T. We can reduce this cost by obtaining the two

summations in an incremental fashion. In effect, during the tree growth these sums get

calculated for the resubstitution estimate of the median. Moreover, we already have the

observations in two AVL trees D+ and D (see Section 3.3.1). The m-estimate of the

median is either bigger or smaller than the resubstitution estimate. Thus we only need to

update the two sums with the cases in the interval between these two values. This will lead

to a complexity proportional to 0(#T x k), where k is much smaller than n.

We now address the issue of obtaining the m estimate of the standard error associated

with the estimate of the mean absolute deviation given above. Kendall and Stuart (1969,

vol. 1) refer that the standard error associated with the sample mean deviation about a

value v is given by,

S.E.(MADV) = J - (a 2 + (v - | i) 2 - (ô v) 2) (4.27)
V n

4.3 PRUNING BY TREE SELECTION 135

where,
ôv = £uy. - V|), i.e. the expected value of the mean absolute deviation.

Using the sample estimates of the a2 and ôv statistics we get,

S.E.{MADV) = -t(yi-y)2^-yf--t\yi-A
s2\

n M
(4.28)

We have developed the m estimate of this standard error which is given by the following

equation,

mEst(S.E.{MADv)) =

m 1
n, +m\\n

1 " Í 1 "
- Z f o - m E s t (y)) 2 + (mEst(v)-mEst(y))2]T|y, -mEst(v) n , i'=i n

Once again we can try to obtain a computationally more efficient formula for the

expressions inside the squared roots leading to,

n

where,

1 2 1 !

« n

1 . - 2 1_
n

the s factors are defined as before;
and &, = mEst(y), k2 = mEst(v\ k3 = £ y, , &4 = J y, , fc5 = 0DD{#D).

ir

Although this formula increases the efficiency of the calculation of the standard error, there

are still some factors (kj and k4) that need two passes through the data to be obtained. This

is the same efficiency problem mentioned when presenting the m estimates of the MAD.

However, as these factors are already calculated to obtain the m estimates of the MAD, the

calculation of the standard error of these estimates brings no additional computation effort.

136 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

Estimates based on Sampling Distribution Properties

Statistical estimation theory is concerned with obtaining unbiased estimates of population

parameters. Point estimates provide a unique number for the parameter value. Together

with this number we are interested in obtaining a standard error of the estimate. Equations

4.22 and 4.27 calculate the standard error associated with both the mean squared error and

the mean absolute deviation to the median. Interval estimates, on the other hand, provide

an interval were we can be sure that in x% of the cases the true population parameter lies

in. Interval estimates can be obtained if we know the sampling distribution of the

parameter being estimated. For instance, the central limit theorem tells us that

irrespectively of the distribution of a random variable, the sampling distribution of its mean

is normal. This allows us to obtain confidence intervals for the location of the true

population mean based on the mean estimated with a single random sample. In the case of

regression trees we are interested in obtaining estimates of the true error in each leaf. In

our study we have used as error measures either the MSE or the MAD.

For the MSE criterion, the error associated with a leaf can be seen as an estimate of the

variance of the cases within it. Statistical estimation theory tells us that the sampling

distribution of the variance is the y2 distribution (e.g. Bhattacharyya & Johnson, 1977), if

the original variable follows a normal distribution. According to the properties of the y?

distribution, a 100x(l-a)% confidence interval for the true population variance based on a

sample of size n is given by,

(* z M OlZîW I (4.29)

where,
si is the sample variance (obtained in a particular tree leaf);
and %a.» is the tabulated value of the % distribution for a given confidence level a
and n degrees of freedom.

This formulation is based on an assumption of normality of the distribution of the variable

Y. In most real-world domains we cannot guarantee a priori that this assumption holds. If

4.3 PRUNING BY TREE SÉLECTION 1 3 7

that is not the case we may obtain too narrow intervals for the location of the true

population variance. This means that the true error in the leaf can be outside of the interval

boundaries. However, in the context of pruning by tree selection, we are not particularly

interested in the precision of the estimates, but in guaranteeing that they perform a correct

ranking of the candidate pruned trees.

The %2 distribution is not symmetric, meaning that the middle point of the interval

defined by Equation 4.29 does not correspond to the sample point estimate of the variance

(Bhattacharyya & Johnson, 1977). In effect, the middle point of this interval is larger than

the point estimate. The difference between these two values decreases as the number of

degrees of freedom grows, because it is known that the %2 distribution approximates the

normal distribution49 when the number of degrees of freedom is sufficiently large. This

means that as the sample size (which corresponds to the number of degrees of freedom)

grows, the middle point of the interval given in Equation 4.29 will tend to approach the

point estimate obtained with the sample. This is exactly the kind of bias most pruning

methods rely on. They "penalise" estimates obtained in the leaves of large trees (with few

data points) when compared to estimates at higher levels of the trees. Being so, we propose

using the middle point of the interval in Equation 4.29 as a more reliable estimate of the

variance of any node, which leads to the following estimator of the MSE in a node t,

ChiEst(MSE(t)) = MSE(t)x ^ x
(\

1 1
— +—i

(4.30)

where,

iri,
2

node t.

■+-

^■yTn,-\ H-y2\n,-\ J

can be seen as a correcting factor of the MSE in a

Which is symmetric.

13 8 CHAPTER 4. O VER FITTING A voi DANCE IN REGRESSION TREES

This is a heuristic method of obtaining an estimate of the true mean squared error in a tree

node, obtained through the use of a "correcting" factor on the resubstitution estimate of the

MSE. This factor is a function of the number of cases from which the resubstitution error

was obtained and of the sampling distribution properties of the mean squared error. A

similar strategy is followed in C4.5 (Quinlan, 1993a) for classification trees, which applies

a "correcting" factor to the resubstitution error rate, based on the binomial distribution.

Figure 4.4 shows the value of the correcting factor for different sample sizes and

confidence levels of the % distribution.

F(.95) F(.975) F(.999)

Sample size

Figure 4.4 -Different values of the "correcting factor" used in the ChiEst estimator.

As it can be seen the larger the confidence level the higher the value of the correcting

factor penalising small samples. This means that the higher the confidence level the

stronger the preference bias for smaller trees.

Regarding the use of the 1-SE rule we can calculate the standard error of these

estimates using Equation 4.22.

4.3 PRUNING BY TREE SELECTION 139

We were not able to find the sampling distribution of the Mean Absolute Deviation to

the median. Being so, we decided not to use this type of estimators with our LAD

regression trees.

4.3.2.2 Comparing Trees using their Binary Description Length

Most existing work on pruning is solely guided by reliable estimates of the prediction

error. Still, pruning inevitably leads to smaller and thus less complex trees. Pruning has an

important effect on model complexity and interpretability as it was pointed out by several

authors (e.g. Bohanec and Bratko, 1994; Kononenko, 1989). In effect, there is a strong

resistance to "black box" models by many human experts. As a result of this some authors

have tried to incorporate both the notions of simplicity and prediction accuracy in the

preference bias guiding the overfitting avoidance process. Breiman et al. (1984) have

added a complexity cost to the error estimates leading to the error-complexity pruning

method used in their CART system. Still, this measure is only used for generating the set

of alternative trees considered during the pruning process, while the final selection is solely

guided by the minimisation of the estimated error. Both m-estimates and ChiEst indirectly

incorporate a bias for smaller trees by penalising estimates obtained with small samples.

The Minimum Description Length (Rissanen, 1978) principle is based on a sound

theoretical framework that can incorporate the notions of model complexity and accuracy.

This work gave rise to studies of binary coding of tree-based models which is now a well-

studied subject. Coding of classification trees was explored for instance by Quinlan &

Rivest (1989) and Wallace & Patrick (1993). The work of Kramer (1996) seems to be the

first attempt which involves using MDL for selecting a good candidate from a set of

different regression trees. This author described the SRT system that learns a particular

type of regression trees using a least squares error criterion. The particularity of SRT

resides on the use of a relational language for the tests in the nodes of the trees. In effect,

the final tree can be translated into a set of relational clauses. SRT builds several trees

using different stopping criteria and uses MDL to select the best one. Kramer (1996)

140 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

describes somewhat vaguely the coding used in SRT. He refers that the length of a tree

encoding consists of the sum of the encoding of the tree model plus the encoding of its

errors on the training data. The errors are real numbers and are encoded using the method

proposed by Rissanen (1982). As for the tree model the author just mentions that he

encodes the choices made in each node from all possible literals. As we have seen in

Section 4.2.3, Robnik-Sikonja and Kononenko (1998) also use MDL for pruning LS

regression trees in the CORE system. The coding schema50 provided by these authors can

be used to obtain the binary description length of any regression tree. We use this code

length to compare different pruned trees in the context of pruning by tree selection.

4.3.3 Choosing the Final Tree

This section addresses the final step of pruning by tree selection. After an initial stage

consisting of generating a set of alternative pruned trees, we evaluate these alternatives by

means of any of the methods described in Section 4.3.1. The goal of these evaluation

methods is to provide information that allows choosing one of such models as the final tree

obtained by the learning algorithm. Different strategies can be used in this final step of

pruning by tree selection.

If we compare the alternative pruned trees using estimates of their true prediction

error, the "natural" method of selecting a tree is to choose the model with lowest estimated

error. However, Breiman et al. (1984) suggested an alternative method biased toward

simpler models. This alternative consists of selecting the smallest tree within the interval

Err, + S.E.yErr, j , where Err, is the lowest error estimate and S.E\Err, J is the standard

error of this estimate. This method, usually known as the 1-SE rule, can be generalised to a

k-SE rule with fc>051.

' Full details regarding this coding schema can be found in the appendix at the end of this chapter.
51 Notice that with k = 0 this rule resumes to selecting the tree with lowest error.

4.3 PRUNING BY TREE SELECTION 141

If the trees in the sequence are compared in terms of their binary description length,

the application of the Minimum Description Length principle leads to the selection of the

model with shortest binary code.

4.3.4 An Experimental Comparison of Pruning by Tree Selection Methods

In this section we describe a set of experiments that compare different approaches to

pruning by tree selection. These experiments provide a better understanding of the

different biases of the alternative pruning methods we have considered in the previous

sections. The conclusions of these experiments allow us to claim that depending on the

preference criteria of the user, some methods will be preferable to others in domains with

similar characteristics.

4.3.4.1 Comparing Methods of Generating Sets of Pruned Trees

In Section 4.3.1 we have described two new methods of generating sequences of nested

pruned trees (LSS and MCV). In this section we compare these methods with existing

alternatives using different ways of selecting the best pruned tree.

Figure 4.5 shows the sign and statistical significance of the estimated MSE difference

between our two proposals {MCV and LSS) and other existing sequence generation

methods {MEL and ErrCpx). In this experiment we have used ChiEst with a confidence

level of 95%, as the method of selecting one tree from the sequence. All sequence

generation algorithms use as "starting point" the same tree rmax.

142 CHAPTER 4. OVERFITT/NG AVOIDANCE IN REGRESSION TREES

■ 256 0 512 ■ 1024 H 2048 S 4096 1256 □ 512 ■ 1024 a 204S Q 40%

<r. 60%

~ 40%

20%

0%

•20%

à 40%

-60%

-80%

-100%

\ f
fi

y y * y y * y y y f y *
■ 256 a 512 ■ 1024 B 2048 B4096

100%

80%

60%

40*

20%

0%

-20*

•40%

-un

Í

y y * y y * y y / / y *

100%

80%

v. 60%

~ 40%.

20%

0%

-20% -
g.
y 40%
È -60%

-80%
-100%

i h
y y * y y * / / / / y ^

60»

40% ■

20% ■

1256 O 512 ■ 1024 O 2048 B 4096

0%

_ -20%
S.
y 40% -

È -60% -

-80% ■

í.. i t J
1 in i rr ""
H"

y • .̂»°* / ** y y y # # ^
^ ^

/ ■ < * ^

<^ *•* 4? cf / Ci> 0» ^

Figure 4.5 - Comparison ofLSS with other sequence generation methods using

ChiEst(95%) as selection method.

These graphs show a clear advantage of both MCV and LSS over existing sequence

generation methods. In effect, we can observe several statistically significant advantages of

our proposals and only with the LSS strategy we have observed a significant loss in the

CompAct(s) domain. These results show that the better potential that we have observed in

the experiments reported in Section 4.3.1 (Figure 4.1), can be capitalised by the ChiEst

selection method.

We have also carried out similar experiments with other tree selection methods. The

results are comparable so we do not include them here for space reasons. They can be

found in the Appendix B.6.

4.3 PRUNING BY TREE SELECTION 143

4.3.4.2 Comparing Methods of Evaluating Trees

Pruning by tree selection includes a stage where a tree is chosen according to some

evaluation criteria. In Section 4.3.1 we have reviewed several possible ways of performing

this evaluation. In this section we show the results of an experimental comparison of these

methods. Here we use as candidate pruned trees the sequence generated with the LSS

algorithm, which as we have seen in the previous section, is a quite good method overall.

Before presenting the results of the comparison we make a few remarks regarding

tuning of the parameters of some tree evaluation strategies. Both m-estimates, ChiEst and

MDL selection require that some parameters are set. All of these parameters reflect certain

preference bias over the accuracy / tree size trade-off. Ideally, one would like to have a

default setting that would "work well" across all domains. Alternatively we can use

resampling-based tuning to find out the parameter setting that maximises the expected

accuracy on our target domain. Obviously, this tuning strategy only makes sense in case

our goal is to maximise predictive accuracy. Still, this is the most common way of

proceeding. We have already seen that CART uses such tuning method to find out which

cost per leaf (a value) leads to higher estimate of predictive accuracy. We have carried out

a set of experiments to obtain a better understanding of the effect of changing the value of

the parameters of the different tree evaluation methods.

Tuning of the ChiEst evaluation method

We start our analysis with the ChiEst tree evaluation method. The parameter of this error

estimator is the confidence level used to obtain the %2 distribution values. As Figure 4.4

(p. 138) shows, different values of the confidence level lead to different penalisation of the

resubstitution estimates. We have carried out a simple experiment to evaluate the effect of

the value of the confidence level on the size of the selected tree. This experiment was

carried out with the Abalone, Pole, CompAct and Elevators data sets. For each domain we

have grown a LS regression tree, generated a set of pruned trees using the LSS algorithm,

and then selected the "best" tree according to a ChiEst evaluation carried out using

144 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

different confidence level values. The result of varying the value of the confidence level

from 0.5 to 1 on the relative size of the selected tree when compared to the initially learned

tree, is shown in Figure 4.6, for the four domains mentioned above.

Abalone -«—Pole Elevators CompAct

1 ' ' ' ' I \] 1
0.9-
0.8 -

0.7 -

Confidence Level

Figure 4.6 - The effect of the value of the confidence level on the pruned tree size.

As we can see the larger the confidence level the smaller the selected pruned tree.

However, we can observe that for a wide range of confidence level values the selected tree

is the same. This means that the ChiEst evaluation method is quite robust to variations on

this value. Moreover, we also observe that depending on the domain different levels of

pruning are carried out for the same confidence level value.

As we have mentioned we would like to have a fixed setting of the confidence level

that was adequate over a wide range of data sets, to avoid the computational burden of

having to use resampling-based tuning. We have tried several fixed settings and our

experiments lead us to select the value of 0.95. We have carried out a paired accuracy

comparison between using resampling-based tuning through 5-fold CV and the fixed

setting of 0.95. For CV-based tuning, 16 trial values were used to select the "best" setting.

These values range exponentially from 0.5 to 0.994303 using the generating function

CLt - 1.5xe /22 , i = 0..15 . The results of this experiment are shown in Figure 4.7.

S
CO

S

4.3 PRUNING BY TREE SELECTION 145

1256 □ 512 ■ 1024 D 2048 S 4096

100%

60%

20%

­40%

­60%

-100%

r
­

y y * / y * / // ff *
? & # $ y cry y y

Figure 4.7 - Significance of MSEdifference between ChiEst(95%) and ChiEst(5-CV).

This comparison shows that there is no particular advantage in adopting a resampling-

based tuning of the confidence level when compared to the fixed set-up of 0.95, at least on

these domains. In effect, we have not observed any data set where we could reject with

high confidence the hypothesis that both alternatives achieve similar accuracy. Moreover,

in several data sets there is a tendency for the fixed setting to perform better. Even more

important is the fact that resampling-based tuning is a computationally intensive process,

which can be confirmed in Figure 4.8 that shows the tree size and Cpu time ratios between

ChiEst(CL=95%) and ChiEst with the confidence level tuned by a 5-fold CV process.

■ 256 0512 X 1024 • 2048 44096 ■ 256 0512 X 1024 • 2048 44006
2.0

1.8-

1.6

1.4

3 12
a

N

Û3 0.8

0.6

0.4

0.2­­

0.0

1 1 T "I r 2.0­

1.8 ­

1.6­

1.4­

CD

p 0.8­

0 6 ­

0 4 ­

0.2­

0.0­

] '] 2.0­

1.8 ­

1.6­

1.4­

CD

p 0.8­

0 6 ­

0 4 ­

0.2­

0.0­

A

J *
•
­*­
,o_
■

Y
A

­ ­ r ­ , ô , ­

* ■ ■ ? ■ « ■

X

­r
A

­ | r ­

2.0­

1.8 ­

1.6­

1.4­

CD

p 0.8­

0 6 ­

0 4 ­

0.2­

0.0­

.

A

J *
•
­*­
,o_
■

Y
A

­ ­ r ­ , ô , ­

* ■ ■ ? ■ « ■

X

­r
A

­ | r ­

2.0­

1.8 ­

1.6­

1.4­

CD

p 0.8­

0 6 ­

0 4 ­

0.2­

0.0­

f 9 '
x ­ ■ ­

• ' 0
4 X

•
i 4

.5.
•
A

9.
X

•
- A -

­ O­
X

•
- A-

­ 5 : * .' ­x .
*

. * . A ­ ­a ­
A

Ô
" X "

•
A

­••
X

•
_ A "

5 : • :
A , * ,

x
í

­ ­ ' ­

2.0­

1.8 ­

1.6­

1.4­

CD

p 0.8­

0 6 ­

0 4 ­

0.2­

0.0­

f 9 '
x ­ ■ ­

• ' 0
4 X

•
i 4

.5.
•
A

9.
X

•
- A -

­ O­
X

•
- A-

­ 5 : * .' ­x .
*

. * . A ­ ­a ­
A

Ô
" X "

•
A

­••
X

•
_ A "

. _ u 4 j

i 4 <

2.0­

1.8 ­

1.6­

1.4­

CD

p 0.8­

0 6 ­

0 4 ­

0.2­

0.0­

1

^ # „*" *"
^ / ^ /■" X y y SA / s / ? / * *

Figure 4.8 - Tree size and Cpu time ratios between ChiEst(95%) and ChiEst(cv).

146 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

These results reinforce the argument that for these data sets the fixed value of 95% for the

confidence level is the best setting. In effect, not only it has comparable accuracy, but also

leads to smaller trees, taking much less computation time. This experimental result is

consistent with the graph of Figure 4.6, where we observed that few differences in tree size

could be expected for a large range of confidence level values. This may explain why

tuning by CV does not produce significantly different results in terms of accuracy from the

fixed setting.

Tuning of evaluation based on m-estimates

We now focus on tree evaluation using m estimates. With this evaluation mechanism we

need to provide the value of the parameter m. Setting this value strongly influences the

evaluation of candidate trees, thus possibly leading to a different choice of final tree model.

We have carried out the same experiment described above for the ChiEst method, to

observe the behaviour of m estimates in the same four domains, when different values of m

are used. We have varied m from 0.05 to 50 in increments of 0.05. Figure 4.9 shows the

relative sizes of the selected trees compared with the tree Tmax for the different m values.

Abalone -*—Pole Elevators CompAct

Figure 4.9 - Variation of tree size for different m values.

4.3 PRUNING BY TREE SELECTION 147

Figure 4.9 shows that quite different tree sizes can be obtained with slight variations of the

m parameter value (particularly for small m values). Still, the size decreases monotonically

with the increase of m. This type of monotonous relation was already observed with the

coefficient level of ChiEst and it is desirable as it can help the user to find the more

adequate set-up for his application.

We have also carried out a series of experiments with our benchmark data sets to

observe the behaviour of our RT system when using fixed m values. We have tried several

values for m (0.5, 0.75, 1, 2, 3 and 5). Based on the results of these experiments we have

observed that while the accuracy results are somehow comparable, there are obvious

disadvantages in using small m values due to the resulting tree size. Either m = 2 or 3

provide the best compromise between size and accuracy on our benchmark data sets. We

have compared the results of using the value of 2 for m and using 5-fold CV to tune this

value for each domain. Figure 4.10 shows the results of this paired comparison. We use 31

trial values of m from which the "best" value is selected using 5-fold CV. These values

range exponentially from 0.1 to 40.3429 using the generating function

m,. =0.1xé?^ ,i = 0..30.

■ 256 D512 ■ 1024 D 2048 a 40%

100% ­i 1 1 1 1 1 1 i 1 1 1 1

80» 1

S 60%
E

40%

20%

0%

— -20%

£ -40%

-60%

-80%

-100%

Figure 4.10 - Significance ofMSE difference between m(2) and m(5-CV).

148 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

As it can be seen in Figure 4.10, tuning m by CV leads to significantly more accurate trees

on several domains. The results of this experiment show that we can expect with

reasonable confidence that tuning m by CV is the best strategy for obtaining accurate

regression trees post-pruned with m estimators.

Figure 4.11 shows the results of this comparison in terms of tree size and computation

time ratios. The results in terms of tree size confirm that a fixed value of m can be

completely inadequate for some domains. Some of the ratios even fall outside of the graph

scale (e.g. in the Kinematics domain using the value of 2 leads to a tree 4 times larger than

setting m by CV). On other occasions using the value of 2 originates in too simple trees

that hardly capture the structure of the domain, leading to poor predictive performance (cf.

with the accuracy results on 2Dplanes, Mv, CompAct, CompAct(s) and Fried in Figure

4.10).

1256 0512 x 1024 • 2048 4 4 0 %
2.0

1.8

16

1.4

S 1.2

CO

N

en 0.8
0.6­

0.4

0.2

X •
o

' ■ ' ■
"■"

, ,

i : . . A

•
"■" E f

X

. 1 S-' - -
X

. A . '_ • .' •
X ■ A <

- » ,- "

2.0-

1.8-

1.6-

1.4-

° 1 2 -

. - , - - ■ 156 0512 X1024 «204S A4096
- - r - -, 2.0-

1.8-

1.6-

1.4-

° 1 2 -

2.0-

1.8-

1.6-

1.4-

° 1 2 -

• " ' - '
CC

Ï '»-
i l 0.8 -

0.6-

0.4 -

0 2 -

0.0-

- f -. " -

• , O

■
X
•

i
X

X

- ; -• ■ »
X X X

* ■ « ■ ■ ■ ■

•

■
. X .

•
■
0-
X

- J- - X <

CC

Ï '»-
i l 0.8 -

0.6-

0.4 -

0 2 -

0.0-

A ' X
A

• A ' A •

CC

Ï '»-
i l 0.8 -

0.6-

0.4 -

0 2 -

0.0-

A
A

- - - - '

- /y */// * <? s <f S / f / <? f f / *

Figure 4.11 - Tree size and Cpu time Ratios for m=2 and m(cv) selection.

With respect to computation times the strategy of tuning m by CV has large disadvantage

as the sample size grows, which was expected and already happened with the ChiEst

method.

Tuning of evaluation based on the MDL principle

Finally, we have studied the behaviour of MDL evaluation to identify how it is affected by

certain parameters. Here we have considered the parameters that specify the precision of

4.3 PRUNING BY TREE SELECTION 149

real numbers used for coding the cut-point splits and the errors in the leaves, in accordance

with the coding proposed by Robnik-Sikonja & Kononenko (1998). Again using the same

four data sets we have post-pruned a large tree using different combinations of values of

these two parameters. The size of resulting tree for the different combinations is shown in

Figure 4.12.

abalone pole

elevators CompAct

Figure 4.12 - The effect of varying the MDL coding parameters on tree size.

Robnik-Sikonja and Kononenko (1998) claim that the user can easily set the two

parameters, as their meaning is intuitive. Although we agree with their position concerning

the meaning, the graphs presented show that the effect of varying these values on the size

of the resulting selected tree is not always predictable. This is caused by the lack of a clear

150 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

monotonous relation like the one observed with the parameters of m and ChiEst estimators,

and also by the existence of two parameters instead of a single value to tune.

We have compared a single fixed setting of the two parameters with 5-fold CV tuning.

With respect to the fixed setting, after some experimentation, we have selected the value of

0.1 for the precision of the cut-points, and 0.5 for the precision of the errors. This setting

seemed to provide the better overall results on our benchmark data sets. Regarding the

resampling-based tuning we tried 144 alternatives. These alternatives were generated by

exponentially varying the value of the two precision parameters from 0.005 to 7.65 using
i/

the function pt =0.005xe / 1 5 ,i = 0..11. This leads to 12 different precision values per

parameter, which after combining originated in the 144 variants (12x12). Figure 4.13

presents the results of this paired comparison using the trees generated by the LSS

algorithm as source.

I 256 D 512 ■ 1024 □ 2048 M 4096
100% -i

60% ­

40% ■■

20%

£ ­20%
U
>n ­40%
-

§ -60%

-80%

-100%

J
5

i

i

<? • • ** / f ^' %<r f «* ■> s? ,J> .& J>

Figure 4.13 - Significance of MSE difference between MDL(0.1,0.5) and MDL(5-CV).

These results lead to the conclusion that CV-based tuning provides a clear advantage in

terms of accuracy over this fixed setting on several data sets. The results with respect to

tree size and computation time ratios, between MDL with CV-based tuning and the fixed

setting are shown in Figure 4.14.

4.3 PRUNING BY TREE SELECTION 151

2 0 -

1.8-

1.6-

1.4-

■2 1 2 -
(0
Œ 1.0-
8
in Q8-

Q6-

Û4-

0 2 -

0 0 -

- - ' " -
1 I256C 512 X 1024» 2048 i 4096

2 0 -

1.8-

1.6-

1.4-

S 12-
CD

| 1.0-

p Q8-

0 6 -

Q4-

0 2 -

0 0 -

■ 25SO512X10M • 204S A 4086
2 0 -

1.8-

1.6-

1.4-

■2 1 2 -
(0
Œ 1.0-
8
in Q8-

Q6-

Û4-

0 2 -

0 0 -

2 0 -

1.8-

1.6-

1.4-

S 12-
CD

| 1.0-

p Q8-

0 6 -

Q4-

0 2 -

0 0 -

2 0 -

1.8-

1.6-

1.4-

■2 1 2 -
(0
Œ 1.0-
8
in Q8-

Q6-

Û4-

0 2 -

0 0 -

■ ■ ' B . . . _ , . . , . .

-X -
A _• .

2 0 -

1.8-

1.6-

1.4-

S 12-
CD

| 1.0-

p Q8-

0 6 -

Q4-

0 2 -

0 0 -

.

2 0 -

1.8-

1.6-

1.4-

■2 1 2 -
(0
Œ 1.0-
8
in Q8-

Q6-

Û4-

0 2 -

0 0 -

i 0
- * PC -

1 A
• 1 •

B
o

X

-A-

•

. ■
:

* ; : ;
:

; *
:

-X -
A _• .

2 0 -

1.8-

1.6-

1.4-

S 12-
CD

| 1.0-

p Q8-

0 6 -

Q4-

0 2 -

0 0 -

. „ . , . , - .

2 0 -

1.8-

1.6-

1.4-

■2 1 2 -
(0
Œ 1.0-
8
in Q8-

Q6-

Û4-

0 2 -

0 0 -

i 0
- * PC -

1 A
• 1 •

B
o

X

-A-

•

. ■
:

* ; : ;
:

; *
:

-X -
A _• .

2 0 -

1.8-

1.6-

1.4-

S 12-
CD

| 1.0-

p Q8-

0 6 -

Q4-

0 2 -

0 0 -

2 0 -

1.8-

1.6-

1.4-

■2 1 2 -
(0
Œ 1.0-
8
in Q8-

Q6-

Û4-

0 2 -

0 0 -

• ■ ■ '

2 0 -

1.8-

1.6-

1.4-

S 12-
CD

| 1.0-

p Q8-

0 6 -

Q4-

0 2 -

0 0 -

B '

X ; - -, O -

1 , 1 , *
B

if
-B-

Î

B
-O-

B

O
" X"

Î

- B - - ' - - ' ■ -
. ■ O

if : î : t : ï
B~

- 0 -

if

2 0 -

1.8-

1.6-

1.4-

■2 1 2 -
(0
Œ 1.0-
8
in Q8-

Q6-

Û4-

0 2 -

0 0 -

, » ,

2 0 -

1.8-

1.6-

1.4-

S 12-
CD

| 1.0-

p Q8-

0 6 -

Q4-

0 2 -

0 0 -

B '

X ; - -, O -

1 , 1 , *
B

if
-B-

Î

B
-O-

B

O
" X"

Î

- B - - ' - - ' ■ -
. ■ O

if : î : t : ï
B~

- 0 -

if

2 0 -

1.8-

1.6-

1.4-

■2 1 2 -
(0
Œ 1.0-
8
in Q8-

Q6-

Û4-

0 2 -

0 0 -

2 0 -

1.8-

1.6-

1.4-

S 12-
CD

| 1.0-

p Q8-

0 6 -

Q4-

0 2 -

0 0 -

B '

X ; - -, O -

1 , 1 , *
B

if
-B-

Î

B
-O-

B

O
" X"

Î

- B - - ' - - ' ■ -
. ■ O

if : î : t : ï
B~

- 0 -

if

^ ' v / / </̂ ^ ̂ <r
CP

/ / y>V ^ • • y "J ^

Figure 4.14 - Tree size and Cpu time ratios between MDL(0.1,0.5) and MDL(cv5).

The results in terms of tree size are somehow balanced with a slight advantage of the fixed

setting. Regarding computation time we observe that the cost of evaluating the 144

alternatives through 5-fold CV is very high. Still, our experiments indicate that if

computation efficiency is not a major concern the best way of using MDL to post prune

regression trees is by tuning the precision values using cross validation.

Conclusions regarding tuning of tree evaluation methods

The results of this empirical study of different methods of evaluating trees provide the

following indications regarding its use in the context of pruning by tree selection. With

respect to m estimates and MDL, tuning through resampling is essential to obtain good

predictive accuracy in domains with different characteristics. Regarding our ChiEst

evaluation method, the empirical evidence collected indicates that the method is quite

robust to variations on its pruning parameter, and contrary to the other methods we were

able to achieve competitive predictive accuracy over all our benchmark data sets using a

fixed setting. Although we can not guarantee that this will hold for any data set, this

presents an important advantage in terms of computation time as it avoids a costly iterative

evaluation process of different alternatives.

152 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

Comparing the best settings

We will now present the results of an experimental study whose goal is to determine

whether any of the tree evaluation methods is superior to the others. For this purpose we

have compared the most promising variants of the different tree evaluation techniques we

have considered. Namely, we have compared 5-fold Cross Validation error estimates, with

m estimates tuned by 5-fold CV, ChiEst with 95% as confidence level, and MDL tuned by

5-fold CV. The comparison was carried out using the sequence generated by the LSS

algorithm as the source for tree selection. Figure 4.15 shows the estimated difference in

MSE between 5-fold CV and the other evaluation methods.

256 E3512 ■ 1024 ES 2048 S4096 1256 O512 ■ 1024 a 2048 B4096

I 2 » □ 512 ■ 1024 G 2048 G 4096

um
80»

■o 60*

£ 40*

20*

0*

ç - 2 0 *

i -40*'

| -60*

-80*

-100*

¥ Î r
* .s y * / / j? é #■ f

Figure 4.15 - Significance of MSE difference between tree selection methods.

With the exception of MDL selection the differences are most of the times statistically

insignificant. Compared to m estimates, 5-fold CV has a slight advantage but there are few

statistically significant differences. With respect to the comparison with ChiEst evaluation,

most of the differences are insignificant, but the ChiEst method is computationally more

4.3 PRUNING BY TREE SELECTION 153

efficient as it is the only strategy that grows only one tree. The other methods take more

time as they generate and prune several trees, particularly MDL selection tuned by 5-fold

CV that needs to evaluate 144 trials (cf. Section 4.3.2.2). Regarding tree size Figure 4.16

shows the ratios between 5-fold CV and the other methods.

2.0 -r . , . . Cv 5 vs. m(cv5)
2 .0-

1.8-

1.6-

1.4-

3 12-

Œ 1.0-

s
55 0.8 -

0 . 6 -

0 . 4 -

0.2 -

0 . 0 -

A

■
0
X
A

•

i

Cv5vs. ChiEst(95%)
T A

' 0 '
- - , - ■ ■ - - , - -

- . ' ■ - ' ■ Í : - -

•
O ' ' « ' •

. « (. . 1 * -1 ■ '
- - . - - , - - ; ■ •

X

<>
■ A

•
•

- «V

X

■
- O

2 .0-

1.8-

1.6-

1.4-

3 12-

Œ 1.0-

s
55 0.8 -

0 . 6 -

0 . 4 -

0.2 -

0 . 0 -

A

■
0
X
A

•

i

Cv5vs. ChiEst(95%)
T A

' 0 '
- - , - ■ ■ - - , - -

- . ' ■ - ' ■ Í : - -

•
O ' ' « ' •

. « (. . 1 * -1 ■ '
- - . - - , - - ; ■ •

X

<>
■ A

•
•

- «V

X

■
- O

2 .0-

1.8-

1.6-

1.4-

3 12-

Œ 1.0-

s
55 0.8 -

0 . 6 -

0 . 4 -

0.2 -

0 . 0 -

A

■
0
X
A

•

i

Cv5vs. ChiEst(95%)
T A

' 0 '
- - , - ■ ■ - - , - -

- . ' ■ - ' ■ Í : - -

•
O ' ' « ' •

. « (. . 1 * -1 ■ '
- - . - - , - - ; ■ •

X

<>
■ A

•
•

- «V

X

■
- O ■S L 2 "

re
<= 1.0 -

«
OT 0.8 -

0.6 -

0.4 -

s
: - -

i . i -t-
t . K . J .

I , X , ■

" " ; à ; ' "

I .9. t

2 .0-

1.8-

1.6-

1.4-

3 12-

Œ 1.0-

s
55 0.8 -

0 . 6 -

0 . 4 -

0.2 -

0 . 0 -

A

■
0
X
A

•

i

Cv5vs. ChiEst(95%)
T A

' 0 '
- - , - ■ ■ - - , - -

- . ' ■ - ' ■ Í : - -

•
O ' ' « ' •

. « (. . 1 * -1 ■ '
- - . - - , - - ; ■ •

X

<>
■ A

•
•

- «V

X

■
- O ■S L 2 "

re
<= 1.0 -

«
OT 0.8 -

0.6 -

0.4 -

2 .0-

1.8-

1.6-

1.4-

3 12-

Œ 1.0-

s
55 0.8 -

0 . 6 -

0 . 4 -

0.2 -

0 . 0 -

É

0.0 ■

2 .0-

1.8-

1.6-

1.4-

3 12-

Œ 1.0-

s
55 0.8 -

0 . 6 -

0 . 4 -

0.2 -

0 . 0 -

É

. , f / y ^ /
c° ./vv !^ & »* *<> J Í (í? vif* ^ .«ix

1 ;•? 4^

Cv5 vs. Mdl(cv5)

cn

7.0 T

6.0

5.0

4.0

.8 3.0

2.0

1.0

0.0

§256 0512 xl024 «2048 A4096

Figure 4.16 - Tree Size Ratio comparison among Selection Methods.

• - ■ ! - -

- * r - -, - -

X '

0

■ '

.1 ■ i .
*

#­
s

1 ■ x ,

•
­* ­

i r ft

The graphs of this figure show that the preference biases of selection by 5-fold CV

estimates and by m estimates tuned with CV are very similar. In effect, Figure 4.15 shows

that both methods achieve similar accuracy, and Figure 4.16 indicates that the size of the

selected trees is also similar. As the computation time of both methods is also comparable

there seems to be no particular advantage of one method over the other, at least for the

domains considered here. When compared to the ChiEst method, 5-fold CV achieves

similar accuracy (Figure 4.15), but with trees that are frequently larger as we can observe

154 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

in Figure 4.16. Moreover, ChiEst is much more efficient in terms of computation time as

we have already mentioned. This means that for these data sets, both 5-fold CV and ChiEst

selection have comparable accuracy, but the latter is biased towards smaller trees and it is

computationally more efficient. Finally, when compared to MDL selection, 5-fold CV

leads to trees that are significantly more accurate in several domains. However, the trees

selected by MDL are much smaller as shown in Figure 4.16 (notice the different scale).

With respect to computation time CV is preferable, as MDL selection needs to evaluate

many trial parameter settings.

4.3.5 Summary

The experimental comparisons carried out in this section have shown that our proposed

sequence generation methods (LSS and MCV) produce more accurate pruned trees (cf.

Figure 4.1). Moreover, the tree selection methods we have considered are able to capitalise

on this advantage. Thus the use of our tree generation methods proved to be the best form

of achieving higher accuracy in pruning by tree selection.

With respect to the evaluation methods we have observed that m estimators, ChiEst

and 5-fold CV have quite similar biases regarding predictive accuracy. However, our

ChiEst method achieves similar accuracy with smaller trees and much less computation

time, which represents an important advantage for large training samples. Regarding

selection by MDL we have observed significant losses in predictive accuracy in several

domains. Moreover, the method requires a costly tuning process which results in much

longer computation times than those of the other methods. However, trees selected by the

MDL principle do tend to be significantly smaller, although we can not consider this an

advantage in cases where it leads to significant accuracy losses. In effect, looking at these

two factors together, we can only consider very interesting the results of MDL selection in

both the Census(16H) and Elevators domains.

Summarising, we can conclude that with the exception of LSS+m(cv5) and LSS+CV5

that behave in a very similar way in all aspects, most of the methods we have evaluated

4.4 COMPARISONS WITH OTHER PRUNING METHODS 155

have shown some particular advantage that can be considered an useful bias for some

application scenario. Still, when taking the three factors we have considered into account

(accuracy, tree size and computation time), we conclude that any of our tree generation

methods together with ChiEst(95%) evaluation provide the best compromise overall for

pruning by tree selection.

4.4 Comparisons with Other Pruning Methods

In the previous section we have conducted a thorough study of pruning by selecting from a

set of alternative pruned trees. However, as we pointed out in Section 4.2 other pruning

methodologies exist. In this section we compare two of the most promising pruning

methods we have presented with existing methods of avoiding overfitting in regression

trees. Namely, we will compare pruning by tree selection using the LSS algorithm together

with 5-fold CV and ChiEst(95%) evaluation, with CART, RETIS and CORE pruning

methods. To ensure a fair comparison of the pruning methodologies all algorithms were

applied on the same overly large tree Tmax. This was made possible because our RT system

implements all these pruning variants. With respect to CART pruning we have used as tree

selection a 5-fold CV process. For RETIS pruning we have tuned the value of the m

parameter using a 5-fold CV process to select from 31 alternatives ranging exponentially
i/

from 0.1 to 40.3429 using the generating function m, =0.1x<?/5 , / = 0..30. Finally, the

precision values used in CORE pruning were tuned using 5-fold CV to select from 144

variants obtained using all combinations of 12 values defined by

p, =0.005 x ^ 5 , j = 0..11.

We start by the comparison between our LSS+5CY and the other 3 pruning algorithms.

Figure 4.17 shows the sign and significance of the observed differences in MSE between

our proposal and the others.

156 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

Figure 4.17 - Significance ofMSE difference between LSS+5CV and other pruning
algorithms.

With the exception of the Elevators domain, these graphs show that our pruning method

achieves excellent predictive accuracy results when compared to the other pruning

strategies. In effect, when considering only the differences that can be regarded as

statistically significant, all favour our method. Compared to CART pruning, our method

achieves clearly better results in the 2Dplanes, Census (16H and 8L) and Fried domains.

The conclusions of the comparison with RETIS pruning are similar although the advantage
c'y

of our method is more marked and is extended to other domains. In effect, in 39 of the 47

experimental set-ups the estimated accuracy difference is favourable to our strategy. With

respect to CORE pruning, our method has advantage in 37 of the 47 set-ups, with high

statistical significance in several domains. On the contrary, CORE pruning was never

found statistically significantly superior to our method, although it achieved better results

in both the Abalone and Elevators domains.

52 Only 47 because from the 12 domains used in our experiments, some of them do not have enough data to

carry out the experiments for all sizes we have considered.

4.4 COMPARISONS WITH OTHER PRUNING METHODS 157

Regarding tree sizes the results of the comparison are shown in Figure 4.18.

5.0-

4.5 -

4.0 -

3.5 -

S 3.0-

tr 1 5 .
(D
N

55 2.0-

1.5 -

1.0-

05 ■

. . j A .

•
• *
i ■

•x
i -É.

LS' ;+Cv5 vs CA

A '

X .

- o .- -
■

■ * . * •

RT

•

X .

o
m

t

0

m
6

i -m- 1

5.0-

4.5 -

4 .0-

3.5 -

.2 3.0-

î 2-5-
N

S5 2.0-

1.5 -

1.0-

0.5 -

0.0-

■ 1
! : _A ,

•r

LSS+Cv5 vs RETIS

• >
• " " s

1 X '
1 m '

i *
- ■ -

-■- f

1

5.0-

4.5 -

4 .0-

3.5 -

.2 3.0-

î 2-5-
N

S5 2.0-

1.5 -

1.0-

0.5 -

0.0-

/_«/ y / y ^#/ * .< / * <o
*

­ ^' c ^ c / ­ <f • ^ • ^ ̂ yy y /yy
cPv

LSS+CV5 vs CORE
5.0 T

4.5

4.0

3.5 ­■

.2 3.0
as Œ 2.5
jP
m 2.0

1.5

1.0

0.5

0.0

A , , i
X ,

A . .
­•­

*
U

­ • . ­ ­ ; ­ ­ . ■ ­
. . r ­ . . , * .

8 ; • ­
9
•

: : ; » : » ; : : ­ ­
f

A

i
i

Y/S/4 </ & &
é

*■

J256 0512 xl024 »2048 A 4096

Figure 4.18 - Tree size ratios between LSS+CV5 and other pruning algorithms.

The results of the comparison on tree size indicate that both CORE and CART pruning are

clearly biased towards smaller trees. However, we have seen that this benefit comes with a

loss of predictive accuracy in several domains, particularly in the case of CORE pruning.

With respect to RETIS pruning, our LSS+5CV method has quite similar bias regarding tree

size with the exception of the Elevators domain. The comparison of computation times

revealed similar costs of LSS+5CV, CART and RETIS pruning methods. CORE pruning,

however, has significantly larger computation time due to the amount of pruning set-up

trials.

With respect to our LSS+ChiEst(95%) pruning method, the accuracy comparison with

the other three pruning algorithms is shown in Figure 4.19.

158 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

1256 E512 ■1024 D204S 5 4 0 % ■ 256 9 512 «1024 D2048 B4096
1005

£ 80%

SÍ 60%

+ 40%

15 20%

0%

­20%

BS ­409

° ­60%

-80%

-100%

Í

« mo*
E 80»
| 60%
U

+ 40%

2 20%

0%

­20%

o "
m

u
-60%

-80*

­100%

n
= 60%
u
+ 40%

2 20%

0%

-20%

40%

604

80%

00'i

/ <f ,•* / / *4 / / „# cT ,*v </

1256 GM2 ■ 1024 D 2048 G 4096

I
> .0» ­J­

I l l
1
1 i j j j

TT { \ \ \

Figure 4.19 - Significance of the MSE difference between LSS+ChiEst(95%) and
other pruning algorithms.

Our LSS+ChiEst(95%) method also compares quite favourably with the other existing

pruning techniques in terms of predictive accuracy on our benchmark domains. Compared

to CART pruning, LSS+ChiEst(95%) has some difficulties in the CompAct(s) domain,

although the difference is not statistically significant. It shows advantage in 2Dplanes,

Census(16H and 8L), Ailerons, Elevators and Fried domains, often with high significance.

Compared to REUS pruning, the results of our method are even more favourable as it is

also significantly better on the Mv domain. Finally, compared to CORE pruning, our

method has an overall advantage in terms of predictive accuracy with the exception of the

Abalone data set.

With respect to tree sizes the results of the comparison are shown in Figure 4.20.

4.4 COMPARISONS WITH OTHER PRUNING METHODS 159

Chi(95°/<»vsCART Chi(95%) vs RETIS
5.0 T

4.5

4.0

3.5

5 3.0-

N

55 2.0
1.5
1.0­

0.5 ­

0.0

5.0
4.5
4.0
3.5­

3.0­

2.5
Í 2 .0 ­

1.5­

1.0­

0.5
0.0

in

s .j- y > j- s ^ j? s * ^
<P cP

cP
v

cf cf #
/ / / / / V ««VW

 # '
cF cf j? cf #

5.0
4.5
4.0
3.5

■2 3.0

Î 2-5
I 2.0

1.5
1.0
0.5
0.0

Chi(95°/<)vsCORE

9
• m

" A

*
A

T ­ *
É

"X

A

■
X

•
A

1
É

? ■£ cP . ^ O
CP cf f* cT #

B2Î6 0512 xl024 #2048 A4096

Figure 4.20 - Tree size ratios between LSS+ChiEst(95%) and other pruning algorithms.

Our LSS+ChiEst(95%) method is more competitive in terms of tree size than LSS+5CV.

Still, we continue to observe some disadvantage over CART and CORE pruning in this

aspect. Compared to RETIS pruning, LSS+ChiEst(95%) has a clear advantage in terms of

tree size. Regarding computation time, LSS+ChiEst(95%) has an overwhelming advantage

as it does not need to learn and prune several trees to tune pruning parameters.

4.4.1 A Few Remarks Regarding Tree Size

In the experiments reported in the previous section our methods clearly did not match the

performance of either CART or CORE with respect to tree size. The pruning algorithms of

these two systems have a preference bias that favours smaller trees. However, a similar

preference bias can be obtained with our methods with the help of the k-SE selection rule.

160 CHAPTER 4. OVERFITTING A VOID AN CE IN REGRESSION TREES

For all the selection methods described in Section 4.3.1 we have given standard error

estimates. These allow the use of the k-SE rule (Section 4.3.3). The use of this rule will

make our methods competitive with CORE and CART pruning in terms of tree size.

However, such preference for smaller trees will entail some accuracy loss, as it was the

case of CORE and CART pruning. To illustrate this point we present an accuracy

comparison of ChiEst{95%) using the 0.5-SE and 1-SE rules with CORE pruning.
■ 256 E512 ■ 1024 Q 2048 B4096

L
\

a
Vi

J 100»
S 80»
S 60» - -
Ç 40»
en
2 20» - ■

0»
­20»

g ­40»

I 256 Q 512 ■ 1024 □ 2048 D 40%

I "l
.^ ^ <f Ï­ ^c/cf •

jfj* *

Figure 4.21 - Significance ofMSE difference between ChiEst with the k-SE rule and

CORE.

Comparing the results to those in Figure 4.19, we confirm the loss of some of the accuracy

advantage of our method over CORE pruning. However, the use of this rule can overcome

some of the limitations in terms of tree size, as shown in Figure 4.22.
Chi(95%0.5­SE) vs CORE

2.0­

1.8 ­ ■ » , , . a
m

1.6 ­ • *
1.4­

.2 1.2 ­
to

Œ 1.0­

c7> 0.8­

_ É
X

• P ■
0

X

*­

A

. x .
­ ­ '­ g - - ­ ­

o

­x ­ -Î-

1
0.6 ­ A ­ " . & . . . 4 . . . _• .
0.4­ - - - - u - . - - - - ­A ­

0.2 ­0.2 ­

4
(? , f

Chi(95°/,1SE)vsCORE
2.0
1.8
1.6
1.4

e 1.2 «
s

 10
a o.8

0.6­

0.4
0.2
0.0

1 1- T "I

- - - a - - - -■- '9 ' m - -
• X

-■ f -, - -

• x -
A

A

-• -

A •
- A-

. i . * . * , ,
A

■

O
- X -

_• _
A

■

9

<^^>W« ^ ^ i? ^
r r f <f/ 4 cP

Figure 4.22 - The effect on tree size of the k-SE rule when compared to CORE.

4.4 COMPARISONS WITH OTHER PRUNING METHODS 161

Comparing to the results of Figure 4.20 (notice the different scale) we can see that our

method achieves much more competitive results in terms of tree size when employing the

SE rule.

4.4.2 Comments Regarding the Significance of the Experimental Results

In this section we have compared two of the most promising pruning by tree selection

methods we have presented, with the three most well known methods of pruning regression

trees. With respect to predictive accuracy the experiments have shown that our pruning

methods achieve better performance on a large set of experimental scenarios. In the light of

the arguments of Schaffer (1993a), one may question if it is not the case that the used data

sets are just more suited to the preference biases of our methods (i.e. are the used domains

somehow representative?). In order to answer this reasonable doubt we have carried out a

simple experiment in which we obtained a large unpruned tree and compared its accuracy

with the accuracy of the tree resulting from pruning it with the CART method. The goal of

this experiment is to observe the kind of effect pruning has on all our benchmark domains.

The results of this experiment are shown in Figure 4.23.

1256 B312 11024 132048 B4096
100*

Figure 4.23 - Significance of MSE difference between CART and not pruning.

162 CHAPTER 4. O VER FITTING AVOIDANCE IN REGRESSION TREES

This graph shows that the "pruning challenges" of our benchmark data sets are quite

diverse. In effect, while there are data sets where pruning is clearly beneficial, there are

others where that is not so evident (e.g. with the Pole domain we would do better by not

pruning at all!). These results are in agreement with the claims of Schaffer (1993a) on

considering pruning as a mere preference bias and not as a statistical mean of achieving

higher accuracy. Moreover, the issue whether pruning is beneficial changes with the size of

the training samples for several domains. These results indicate that there is a large variety

of pruning requirements on our benchmark domains, which increases the confidence on the

significance of the accuracy advantages we have observed with our pruning methods. Still,

there will obviously exist domains were our methods will perform worse than other

pruning algorithms.

4.5 Conclusions

In this chapter we have carried a thorough study of overfitting avoidance within regression

trees. We have described the major existing pruning algorithms and presented our

approaches to pruning based on tree selection.

We have described several approaches to the generation of sequences of pruned trees

and presented two novel methods (LSS and MCV). Our methods are based on the idea of

progressively eliminating nodes where the available sample size does not insure reliable

error estimates. The use of this strategy has proven advantageous in our experimental

comparisons with existing methods using other strategies, like for instance Error-

Complexity sequence generation. We have also studied several techniques for choosing

one of such pruned trees. Regarding resampling-based tree selection we have presented a

new method of tree-matching, which extends the use of Cross Validation estimates. With

respect to selection using m estimates we have obtained the standard error of the MSE

estimates, which allows the use of the &-SE selection rule. Moreover, we have extended the

applicability of m estimates to LAD regression trees. Finally, we have introduced a new

4.5 CONCLUSIONS 163

method of estimating the error of a LS tree (ChiEst) by using the properties of the sampling

distribution of the mean squared error.

We have carried out a systematic experimental evaluation of different ways of

generating alternative pruned trees and of selecting the most appropriate one. We have

observed that both our two new methods of generating pruned trees and our two new

methods of evaluating trees achieved quite competitive results on our benchmark domains.

These results are caused by a conjunction of two important factors. Namely, the

observation that our generation methods produce more accurate sub-trees and the fact that

our tree evaluation methods are able to capitalise on this advantage by correctly ranking

the trees according to their estimated prediction error.

We have also compared our most promising pruning algorithms with the three most

well known pruning methods. These experiments revealed a marked advantage of our

methods in terms of predictive accuracy on several domains. Moreover, we seldom

observed the opposite. These advantages need to be weighed with the cost of larger trees.

However, through the use of the k-SE rule we can minimise this drawback. We have also

observed a clear superiority of our method based on the ChiEst evaluation in terms of

computation time.

4.5.1 Open Research Issues

According to Schaffer (1993a) one of the key research issues within pruning methods is to

understand under which conditions are all these techniques beneficial. In particular we

would like to know which are the domain characteristics that determine the success of

pruning in terms of improving predictive accuracy. In effect, this argument could be

extended to learning algorithms in general and not only to pruning methods. One possible

path to the solution of this dilemma is to use some kind of meta-learning based on

empirical experience with pruning on domains with different characteristics in a similar

way as it was done by Brazdil et al. (1994). With the obtained meta-knowledge, a pruning

algorithm could determine, on the basis of the characteristics of a new domain, which

164 CHAPTER 4. OVERFITTING A VOIDANCE IN REGRESSION TREES

pruning bias would be more adequate. Another possible way is to carry out a theoretical

study of the properties of the different pruning methods that would provide better

understanding of their applicability. Still, we think that without strong restrictions on the

distribution properties of the data sets it will probably be difficult to carry out such study

with such highly non-parametric methods as regression trees. Nevertheless, this is clearly

an open research question.

APPENDIX 165

APPENDIX.

In this appendix we describe the coding schema proposed by Robnik-Sikonja and

Kononenko (1998). These authors code a tree as a sequence of bits encoding each of the

tree nodes. For each node they code its type (either a leaf or a split node) and the contents

of the node (either the split or the model in the leaf). The code length of a regression tree is

the number of bits of this sequence. To code the type of node we only need a single bit

indicating if the node is a split node or a leaf. The coding of the node contents depends on

the type of node. The binary code of a leaf node consists of the coding of the model {e.g.

the average Y value) followed by the coding of the errors committed by that model. Both

the model and its errors are real numbers. For instance, suppose that in a leaf of a LS

regression tree we have a set of training cases with the following Y values: { 25, 30, 60, 70

}, corresponding to an average of 46.25. The number of bits necessary to code this leaf is

equivalent to the length of the encoding of the following real numbers,

CodeLen(46.25)+ CodeLen{46.25 - 25)+ CodeLen(46.25 - 30)+...

The coding of real numbers is done following Rissanen (1982). The real number is divided

by the required precision £, and the resulting integer is then coded as a binary string. The

code length of the bit string corresponding to a given integer is determined according to the

following formulae,

CodeLen(0) = 1

CodeLen(n) = 1 + log2(«) + log2(log2(n)) + ... + log2(2.865064)

where the summation includes only the positive terms.

The computational complexity of calculating the binary description length of a leaf appears

large as we need to run through all cases in the leaf to calculate their prediction error and

the corresponding code length. However, this can be done with almost no computation

cost, during the learning phase. In effect, during this stage we need to run through all cases

when creating the nodes and calculating the resubstitution errors, so we can use these

cycles to calculate the binary code lengths.

166 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES

With respect to split nodes their coding depends on the type of split. The first part of

the code makes this distinction, while the following bits correspond to the coding of the

split. Robnik-Sikonja and Kononenko (1998) describe the coding for several types of split

nodes. For instance, to code nominal splits with the form X e 5, where 5 is a set of values

belonging to %,, we have to code information regarding which attribute is being tested and

of the set of values in the split. This set of values can easily be represented by a bit string

with length corresponding to the possible number of values of the attribute. This leads to

the following code length for a nominal split,

CodeLen(Xi e S)= log2(#A)+ #%, (4.31)

where A is the set of attributes.

For continuous variable splits the reasoning is similar but instead of the subset of values it

is necessary to code a cut-point within the range of values of the attribute being tested.

This leads to the following code length,

CodeLen(Xi < V)= l og 2 (#A)+ log 2 i r a " g ^ X 'M (4.32)
{ £ J

where,
range(Xj) is the range of values of the variable X ;
and e is the wanted precision for the cut-points.

Robnik-Sikonja and Kononenko (1998) also describe the coding of splits consisting of

conjunctions of conditions and of linear formulae.

The coding schema described above has two parameters, namely the precision used to

code the errors at the leaves and the cut-points of continuous splits. The authors suggest

using different precision values for these numbers. Robnik-Sikonja and Kononenko (1998)

claim that setting these parameters is intuitive for the user depending on his application.

Still, CORE is able to use a cross validation process to automatically tune the parameters

from a large set of alternative values, selecting the values that ensure better estimated

predictive accuracy.

Chapter 5

Local Regression Trees

In this chapter we explore the hypothesis of improving the accuracy of regression trees by

using smoother models at the tree leaves. Our proposal consists of using local regression

models to improve this smoothness. We call the resulting hybrid models, local regression

trees. Local regression is a non-parametric statistical methodology that provides smooth

modelling by not assuming any particular global form of the unknown regression function.

On the contrary these models fit a functional form within the neighbourhood of the query

points. These models are known to provide highly accurate predictions over a wide range

of problems due to the absence of a "pre-defined" functional form. However, local

regression techniques are also known by their computational cost, low comprehensibility

and storage requirements. By integrating these techniques with regression trees, not only

we improve the accuracy of the trees, but also increase the computational efficiency and

comprehensibility of local models. In this chapter we describe the use of several alternative

models for the leaves of regression trees. We study their behaviour in several domains an

present their advantages and disadvantages. We show that local regression trees improve

significantly the accuracy of "standard" trees at the cost of some additional computational

requirements and some loss of comprehensibility. Moreover, local regression trees are also

more accurate than trees that use linear models in the leaves. We have also observed that

167

168 CHAPTER 5. LOCAL REGRESSION TREES

local regression trees are able to improve the accuracy of local modelling techniques in

some domains. Compared to these latter models our local regression trees improve the

level of computational efficiency allowing the application of local modelling techniques to

large data sets. Finally, we have compared local regression trees with three state-of-the-art

commercial regression systems, and observed that our models are quite competitive over a

wide range of domains.

5.1 Introduction

In this chapter we propose to improve the accuracy of regression trees by using local

models in their leaves, which leads to smoother approximations. The motivation for the

integration of these two different regression methodologies lies in existing work on model

selection and combination. In effect, extensive experimental (e.g. Michie et. al. 1994) and

theoretical (e.g. Schaffer, 1994) results have demonstrated that it is difficult to identify a

single best inductive method when considering a diverse set of problems. This has been

termed the selective superiority problem by Broadley (1995) and results from the fact that

different algorithms use different preference bias in the search for a model of the data. As

proved by Schaffer (no free lunch theorem) it is always possible to find a data set for

which any preference bias is inadquate. The same kind of difficulty arises when searching

for the best parameter setting for a particular data set within a single learning method.

Different parameter settings lead to different models and we need to select one of these.

Moreover, there is no clear best setting over all possible domains. There have been two

main distinct pathways for dealing with the selective superiority problem: model selection

and model combination. Before presenting local regression trees that integrate ideas from

local modelling and regression trees, we briefly describe the existing work on these two

main strategies for addressing the selective superiority problem.

5.1 INTRODUCTION 169

Model Selection through Resampling

One way of trying to address the selective superiority problem is to use resampling to

perform a data-oriented model selection. Using resampling we can obtain estimates of the

performance on unseen data of the different models and use these estimates to carry out a

selection of the more adequate model (Schaffer, 1993b). However, this can be tedious, if

the number of different algorithms is large. Moreover, resampling methods are always

limited by the amount of "information" present in the given training data, which may lead

to wrong decisions (Schaffer, 1993a). We have confirmed this by observing that pruning

guided by resampling estimates may lead to worst trees than not pruning at all (cf. Figure

4.23), meaning that the estimates were misleading.

Model Selection through Meta-learning

Another alternative for addressing the problem of selecting the most adequate algorithm

for a given problem consists of trying to obtain meta-knowledge that somehow

characterises the applicability of different systems (Aha, 1992; Brazdil et. al. 1994; Gama

& Brazdil, 1995). Gama and Brazdil (1995) obtained this meta-knowledge with the help of

an inductive algorithm. The data used in this meta-learning task contained information of

previous experiments carried out with the alternative systems together with a set of

attributes characterising each individual data set" ".

Combining Predictions of different Models

One way of dealing with the fact that different algorithms use different preference bias that

can be useful in any domain, is to combine the predictions of the resulting models. Earlier

work related to the combination of different predictions exploited the notion of

redundancy. These notions are related because when we have redundant knowledge we

need to solve conflicts and combine evidence (Torgo, 1993b). Cestnik and Bratko (1988)

induced a set of redundant rules each characterised by a credibility score, which were then

53 A recently approved European Community research project called METAL (http://www.ncc.up.pt/iiacc/ML/METAiv)

is expected to give a major boost to this research line.

http://www.ncc.up.pt/iiacc/ML/METAiv

170 CHAPTER 5. LOCAL REGRESSION TREES

used to classify new objects. This idea of redundancy was taken further in the work by

Gams (1989), Buntine (1990), Kononenko (1991) and Torgo (1993a), among others.

Following this initial thread, a series of works with stronger theoretical foundations has

emerged. Among these we can mention Stacked Generalization (Wolpert, 1992), Boosting

(Freund,1995) and Bagging (Breiman, 1996). All these approaches proved to be successful

in terms of leading to a significant accuracy increase. However, all of them have

drawbacks in terms of model comprehensibility. In effect, we no longer obtain a single

model that can be used to "explain" the predictions.

Combining Models instead of Predictions

Brazdil & Torgo (1990) combined individual models producing a single integrated theory,

instead of combining their predictions. Their INTEG system used randomly obtained sub-

samples of the training set to generate several alternative models using different learning

algorithms. In a subsequent phase the individual models were translated into a common

rule-based representation language. Each rule was evaluated using an independent set of

data and this evaluation was used to build a single integrated model. The authors reported

significant accuracy gains using this method on some benchmark data sets, although this

approach requires that certain assumptions have been met. The first is the necessity of a

common model representation language to which all individual models must be

translatable. The second is the requirement of a separate evaluation sample. While the

latter can be considered more or less irrelevant in the light of the current trend in data set

sizes, the former could be a problem for some kind of systems (e.g. a neural network).

Still, this approach has the key advantage of producing a single comprehensible and

accurate model of the given training set. Domingos (1997) presented a somewhat related

approach that also generates a single final model. His CMM system starts by generating

multiple models using variations of the training set. In a second step CMN creates a new

training set consisting of all original cases plus a new set of cases appended at the end.

This new data consists of randomly generated cases with the goal variable value given by

5.2 LOCAL MODELLING 171

the combined classification of the former individual models. This new training set is then

used in a kind of second-level learning step that produces the final model.

Another alternative form of combining models consists of performing a tighter

integration of the methodologies. Instead of integrating the models generated by different

algorithms, we somehow integrate the methodology behind the algorithms aiming at being

able to take advantage of their different preference biases. For instance, the RISE system

(Domingos, 1996) integrates instance-based learning with rule-based induction. The

integration is achieved by using a single algorithm that does not distinguish between rules

and cases and uses the same representation language for both models. Another example of

tight integration occurs when multiple models are used to extend the representation

language of the learning systems. Gama (1998) describes a methodology that performs a

kind of constructive induction that extends the number of attributes describing each case

using other models to generate probability class distributions. In the more general

framework of Cascade Generalisation (Gama, 1998), several learning systems are applied

one after the other using increasingly more complex descriptions of the cases.

In summary, all these systems using tighter integration schémas try to take advantage

of the different biases of several basic learning systems. This is the same motivation

guiding the work described in this chapter, where we integrate local modelling with

regression trees. Section 5.3 describes how we perform such integration. Before presenting

such description we analyse in detail local modelling techniques.

5.2 Local Modelling

In Section 2.4.1.2 we have briefly described a set of regression methods usually known as

local models that belong to a class of so called 'lazy learning' algorithms. These

techniques have as main distinctive feature the fact that they do not obtain any

comprehensible model of the given training data that could be stored for future use. In

effect, the training phase of such methods consists basically of storing the training

172 CHAPTER 5. LOCAL REGRESSION TREES

instances. Given a query case, local modelling methods search for the training cases in the

local neighbourhood of the query case and use them to obtain the prediction. The fact that

no rigid global functional form is assumed makes these techniques highly flexible as they

can theoretically fit any regression curve.

5.2.1 Kernel Models

Kernel regression (Watson, 1964; Nadaraya, 1964) is a well-known local modelling

method. Predictions for query cases are obtained by averaging over the Y values of the

most similar training cases. The central issue of these models is thus the notion of

similarity, which is determined using a particular metric over the input space. Given such

metric we can calculate the distance between any two cases. Different distance functions

exist like the Euclidean distance, Lp norms, etc. (see for instance Atkeson et al, 1997 for

an overview). In our work here we use an Euclidean function defined as,

d(X«'X;)=Jl^Xô(X,v,X.v)2 (5.1)

where,
x, is an instance vector; X,,,, is the value of variable v on instance i;
w, is the weight of variable /;
and <5(v,,v2) is the distance between two variable values.

In order to avoid overweighing of discrete variables with respect to continuous variables

we use a ramping function (Hong, 1994) for the latter. This leads to the following

definition of distance between two variable values:

<5(v,,v2) =

0 if nominal variable and v, = v2

1 if nominal variable and v, ^ v2

0 if numeric variable and |v, - v21 < Teq

if numeric variable and |v, - v2| > Tdiff

(5.2)

(|vi-v2|-rj
Vdiff *eq)

if numeric variable and T <|v, - v2| < Tdiff

5.2 LOCAL MODELLING 173

where,
Teq is a threshold for considering two numeric values equal;
and 7^,,/is a similar threshold for difference.

The distance between two numeric values can be better illustrated by Figure 5.1:
S(vi,v2)i

v, - v ,
Figure 5.1. The ramping function (Hong, 1994).

Another important issue in the design of a distance function is feature weighing. Distance-

based learners like kernel models can be quite sensitive to the presence of irrelevant

features. These irrelevant variables can distort the distance between two cases. Feature

weighing can help to reduce the influence of irrelevant features by better "tuning" the

distance function. Several different approaches exist in the literature (see Wettscherek et.

ai, 1997, for a review in the context of ^-Nearest Neighbours). Recently, Robnik-Sikonja

& Kononenko (1996) presented a method for estimating variable relevance in the context

of regression, based on a previous work on Relief (Kira & Rendell, 1992; Kononenko,

1994). They described an algorithm called RReliefF and successfully applied it in the

context of regression trees. We use this method for estimating the weights of the variables

that are used in distance calculations.

The distance function defined above can be used to calculate the distance between a

query point and any case belonging to the training data. Kernel models obtain the

prediction for a query case using a weighed average of the Y values of the training cases

within a certain neighbourhood. The size of this neighbourhood is another key issue of

kernel regression and local modelling in general. This size is determined by what is usually

known as the bandwidth parameter, h. Many alternatives exist in the vast literature of

174 CHAPTER 5. LOCAL REGRESSION TREES

kernel modelling (e.g. Cleveland & Loader, 1995) that describe how this parameter should

be set. The simplest strategy consists of using a maximum distance to the test case xq as the

bandwidth value (Fan & Marron, 1993). Nearest neighbour bandwidths (Stone,1977;

Cleveland, 1979), choose the distance to the k"1 nearest training case as the bandwidth size.

This was the method we have adopted. Other hypothesis include the use of optimisation

processes that find the best value of the bandwidth either for each test point or globally

(e.g. Atkeson et ai, 1997).

All the training points within the specified bandwidth are used to calculate the

prediction for a given query case. However, they enter with different weights. Training

points that are nearer to the test case are given more importance. This weighing schema is

accomplished through the use of what is usually known as the kernel (or weighing)

function. We use a gaussian kernel function with the form,

K(d) = e-d2 (5.3)

where, d is the distance between the query point and the training cases under consideration.

Atkeson et. al. (1997) claim that the choice of the kernel function is not a critical design

issue as long as the function is reasonably smooth. Still, other alternatives include tricube

functions (Cleveland, 1979), quadratic functions, etc. Notice that when the bandwidth

parameter is set to the distance of the kx nearest training case and we use a uniform

kernel54, kernel regression is in effect a k Nearest Neighbour model (Fix & Hodges, 1951;

Cover & Hart, 1967).

Having defined the major design issues of kernel regression we can obtain the

prediction for query point x̂ using the following expression,

" SKs

where,

K " "' xv,. (5.4)
h

J

d(.) is the distance function between two instances (Equation 5.1);
K(.) is a kernel function;

54 A uniform kernel function gives the same weight to all cases within the bandwidth.

5.2 LOCAL MODELLING 175

h is a bandwidth value;
<x„ y,> is a training instance;

and SKs is the sum of the weights of all training cases, i.e

5.2.2 Local Polynomial Regression

Local polynomial regression is a generalisation of kernel regression. In effect, kernel

regression can be regarded as fitting a polynomial of degree zero (a constant) in the

neighbourhood of a given query point. Kernel regression is known to suffer from the lack

of symmetry near the input space boundaries (Hastie & Loader, 1993). These difficulties

lead to the development of local polynomial regression where a polynomial of degree p is

fitted in the neighbourhood of the query point (Stone, 1977; Cleveland, 1979; Katkovnik,

1979). This includes kernel regression (p=0), local linear polynomials (p=l), and other

settings. Within our work on local regression trees we use polynomials of degree 1, that is

local linear polynomials.

Fitting a global linear polynomial using a least squares error criterion consists of

finding the vector of parameters p that minimises the sum of the squared error, i.e.

(Y-Xp) (Y-X(3), where X'denotes the transpose of matrix X. After some matrix

algebra the minimisation of this expression with respect to P leads to the following set of

equations, usually referred to as the normal equations (e.g. Draper & Smith, 1981),

(X'X)p = X'Y (5.5)

The parameter values can be obtained solving the equation,

P = (X'X)-'X'Y (5.6)

where Z"1 denotes the inverse of matrix Z.

As the inverse matrix does not always exist this process suffers from numerical instability.

A better alternative (Press et al., 1992) is to use a set of techniques known as Singular

. SKs = ^K 4*„xJ

176 CHAPTER 5. LOCAL REGRESSION TREES

Value Decomposition (SVD), that can be used to find solutions of systems of equations

with the form Xp = Y.

Regarding local linear polynomials the main difference with respect to global linear

regression, is that each training point has an associated weight that is a function of its

distance to the query point. In order to fit a local linear polynomial given a query point xq,

we need to find the model parameters that minimise,

£fc-J9*,)*
1=1

'À*, >*oÏ
h

(5.7)

where,

K
'd(x„x)

V
h

is the weight associated to each training case;
;

d(.) is a distance function;
K(.) a kernel function;
and h the bandwidth.

According to Draper & Smith (1981, p. 109) in the case of weighed least squares the

normal equations are,

(X'WX)p = X'WY (5.8)

where, W is a diagonal matrix of weights, i.e., W = diag(wi, W2, ..., wn).

Let us define the following auxiliary value for each training case,

v.. = IK
h

)

(5.9)

Using matrix notation the following relation holds,

vv = w
where,

V = diag(vi, v2, ..., v„);
and W = diag(wi, w2, • ■., wn).

(5.10)

Using this relation and Equation 5.8 we have,

(X'V'VX)p = X'V'VY (5.11)

5.2 LOCAL MODELLING 177

or by a change of variables,

(Z'Z)p = Z'Q (5.12)

where,
Z = VX;
andQ = VY.

This latter equation is in the same format as Equation 5.5, which means that it can be

solved using the same numerical procedures (i.e. inversion of Z or through the SVD

method). This means that to obtain the solution for a local linear polynomial given a query

point, we just need to calculate the auxiliary weights, v, (Equation 5.9), and multiply these

weights by the matrices X and Y, obtaining matrices Z and Q that can be feed in the SVD

routine55.

We also use a backward elimination technique (e.g. Drapper & Smith, 1981) to

simplify the models obtained through the SVD procedure. This is an iterative technique for

progressively eliminating terms of a linear polynomial on the basis of pre-defined

thresholds of a i-Student test.

5.2.3 Semi-parametric Models

The main idea behind semi-parametric models (e.g. Hardie, 1990) is to incorporate in a

single model both local (non-parametric) and parametric components. For instance, partial

linear models (Spiegelman, 1976; Hardie, 1990) integrate a linear component with a kernel

model. A partial linear model can be described by,

y = pX + m(x) (5.13)

where,
PX is a least squares linear model with parameters P;
and m(.) is a kernel regression model.

55 Notice that if we include all training cases in the matrix X, and use a uniform weight for all cases, we have

in effect a global least squares linear regression model.

178 CHAPTER 5. LOCAL REGRESSION TREES

One way of using these models is to first generate the parametric component of the model

(i.e. generate the global linear polynomial) and then apply kernel regression on the

residuals (errors) of this model. Here we follow this approach. We start by calculating the

linear model using the standard SVD technique. Given a query point we identify the

training points within the specified bandwidth. For each of these training cases we

calculate the residuals of the linear model,

r. = px(- y. , for each (x., y,} e bandwidth of xq (5.14)

A kernel prediction for the residual of the query point is then obtained with these

"training" residuals. Finally, the predicted residual is added to the linear model prediction

for the query point, giving the partial linear model prediction. Formally, this corresponds

to,

r (* «) = p x ' - i k ? f ^)) x (p x , " " ,) <5'15>
where, SKs is the sum of the kernel weights.

These models can be seen as performing a local "correction" on the global linear model

predictions represented by $xq.

5.3 Integrating Local Modelling with Regression Trees

The methods described in Chapter 3 for inducing a regression tree assume constant values

in the tree leaves. In the case of LS regression trees this constant is the average Y value of

the training cases, while in the case of LAD trees it is the median. We have seen that these

constants minimise the respective error criteria (Theorem 3.1 and Theorem 3.2).

Regression functions usually have a certain degree of smoothness. Moreover, they tend to

be continuous. The approximation provided by regression trees is a kind of histogram-type

surface. As an example suppose we want to model the function Y = sin(X). Let us assume

that the only information we give a regression tree learner is a set of 100 cases randomly

5.3 INTEGRATING LOCAL MODELLING WITH REGRESSION TREES 179

generated using the function Y = sin(X) + N(0,1), where N(0,l) is a gaussian noise function

with average 0 and variance 1. The approximation provided by a LS regression tree is

shown in Figure 5.2:

1.5

1

0.5

0

-0.5

-1

-1.5

Figure 5.2. The approximation provided by a LS regression tree to the function sin(X).

The approximation of the true function provided by the tree is highly discontinuous and

non-smooth curve. These two factors are usually considered the main disadvantages of

tree-based regression (Friedman, 1991). In this chapter we describe approaches that

integrate trees with certain smoother models so as to minimise these effects. This achieved

by using different models in the tree leaves. As a motivating example, Figure 5.3 shows the

approximation provided by a regression tree with kernel models in the leaves instead of

averages, using exactly the same training data of the example presented above:

-

" - t - \

sin(x)
tree+avg -*-

■t , train +

J 3̂ '
+

\ 1 f h
" \ + l /

\l / -

+

+■

+

180 CHAPTER 5. LOCAL REGRESSION TREES

Figure 5.3. The approximation of an LS regression tree with kernel models in the leaves.

Local models by themselves provide highly smooth function approximations. However,

they have several drawbacks. Firstly, these techniques do not generate any comprehensible

model of the data. Secondly, they demand storing all given training data. Thirdly, they

have difficulties in domains where there are strong discontinuities because they assume

that nearby data points have similar target variable values. Finally, the computational

complexity of local modelling methods is high when the number of training cases is large

{e.g. Deng & Moore, 1995). This latter problem is particularly serious when using local

polynomials. Several techniques exist that try to overcome these limitations. Sampling

techniques, indexing schemes like M-trees (Bentley, 1975; Deng & Moore, 1995) or

ADtrees (Moore & Lee, 1998), and instance prototypes56 (Aha, 1990) are some of the

methods used with large samples to decrease the computation time.

We propose to integrate local modelling with regression trees with the objective of

overcoming some of the limitations mentioned earlier. On one hand, by using local models

in the tree leaves we aim at achieving smoother function approximation, limiting thus the

Which also have the advantage of decreasing the storage requirements.

5.3 INTEGRATING LOCAL MODELLING WITH REGRESSION TREES 181

effects of using constant value approximations. On the other hand, the use of local models

in the tree leaves provides a focusing effect that allows calculating the predictions of local

models more efficiently. This is achieved by avoiding going through all training points to

find the appropriate nearest neighbours, limiting this search to the cases in the leaf reached

by the query point. Moreover, the tree structure is a more comprehensible model of the

regression surface, which is not the case when using the local models alone. Finally, the

use of a tree-structured model allows us to better deal with domains with strong

discontinuities. Thus the main goals of our integration proposal are the following:

• Improve standard regression trees smoothness, leading to superior predictive accuracy.
• Improve local modelling in the following aspects:

• Computational efficiency.
• Generation of models that are more comprehensible to human users.
• Capability to deal with domains with strong discontinuities.

5.3.1 Method of Integration

The main decisions concerning the integration of local models with regression trees are

how, and when to perform it. Three main alternatives exist:

• Assume the use of local models in the leaves during all tree induction (i.e. growth and
pruning phases).

• Grow a standard regression tree and use local models only during the pruning stage.
• Grow and prune a standard regression tree. Use local models only in prediction tasks.

The first of these alternatives is more consistent from a theoretical point of view as the

choice of the best split depends on the models at the leaves. This is the approach followed

in RETIS (Karalic, 1992), which integrates global least squares linear polynomials in the

tree leaves. However, obtaining such models is a computationally demanding task. For

each trial split the left and right child models need to be obtained and their error calculated.

We have seen that even with a simple model like the average, without an efficient

incremental algorithm the evaluation of all candidate splits is too heavy. This means that if

more complex models are to be used, like linear polynomials, this task is practically

182 CHAPTER 5. LOCAL REGRESSION TREES

unfeasible for large domains" . Even with such incremental algorithms we have seen that

there is a heavy penalty to pay with a simple model like the median. The experiments

described by Karalic (1992) used data sets with few hundred cases. The author does not

provide any results concerning the computation penalty of using linear models instead of

averages. Still, we claim that when using more complex models like kernel regression this

approach is not feasible if we want to achieve a reasonable computation time.

The second alternative is to introduce the more complex models only during the

pruning stage. The tree is grown (i.e. the splits are chosen) assuming averages in the

leaves. Only during the pruning stage we consider that the leaves will contain more

complex models, which entails obtaining them for each node of the grown tree. Notice that

this is much more efficient than the alternative mentioned above, which involved obtaining

the models for each trial split considered during the tree growth. This latter method is the

approach followed in M5 (Quinlan, 1992). This system uses global least squares linear

polynomials in the tree leaves but these models are only added during the pruning stage.

We have access to a version of M558 and we have confirmed that this is a computationally

feasible solution even for large problems.

In our integration task we have followed the third alternative. In this approach the

learning process is separated from prediction tasks. We generate the regression trees using

any of the two "standard" methodologies described in Chapter 3. If we want to use the

learned tree to make predictions for a set of unseen test cases, we can choose which model

should be used in the tree leaves. These can include complex models like kernels or local

linear polynomials. Using this approach we only have to fit as many models as there are

leaves in the final pruned tree. The main advantage of this approach is its computational

efficiency. Moreover, it also allows trying several alternative models without having to re-

learn the tree. Using this approach the initial tree can be regarded as a kind of rough

approximation of the regression surface which is comprehensible to the human user. On

57 Particularly with large number of continuous variables.
58 Version 5.1

5.3 INTEGRATING LOCAL MODELLING WITH REGRESSION TREES 183

top of this rough surface we may fit smoother models for each data partition generated in
59

the leaves of the regression tree so as to increase the predictive accuracy .

In our study of integrating smoother models with regression trees we consider the use

of the following alternative models in the leaves:

• Kernel models.
• Local linear polynomials.
• Semi-parametric models (partial linear models).

We will refer to the resulting models as local regression trees.

All the alternative models mentioned above are added during the prediction phase. In

this aspect our system behaves like a 'lazy learner'. Given a query case we drop it down

the tree until a leaf has been reached. Then we use the selected model type to obtain the

prediction for the case. As we are using local models this involves obtaining the nearest

training cases of the query case. This task is carried out using only the training cases in the

leaf reached. This has large computational advantages when compared to approaches that

need to consider all training cases when searching for the neighbours, as local modelling

techniques do. In the case of partial linear models the computation of the parametric

component needs to be done only once for each leaf (not for each query case).

5.3.2 An illustrative example

In this section we present a small example that illustrates the approximations provided by

different models in the leaves of a regression tree. The example is simple so as to allow the

graphical presentation of the obtained regression surfaces. The goal in this example is to

approximate the function f(X,Y) = sin(XxY) + cos(X+Y). We have randomly generated a

training set with 1000 cases using this function plus some gaussian noise. Figure 5.4 shows

the function and the training data:

59 This strategy somehow resembles the two-tiered concept representation described in Michalski (1990) for

classification problems.

184 CHAPTER 5. LOCAL REGRESSION TREES

Figure 5.4. The curve and the training data.

We can use the training data to grow a regression tree and then plot the approximations

provided when using the different models in the leaves. In Figure 5.5 we show the results

when using averages, global linear polynomials (top part), kernel models and local linear

polynomials (bottom part) in the leaves of the tree.

tree+avg tree+lr

Figure 5.5. Approximations provided by using averages, linear polynomials, kernels and

local linear polynomials.

5.3 INTEGRATING LOCAL MODELLING WITH REGRESSION TREES 185

Figure 5.5 shows that when using local models (kernels and local linear polynomials) the

approximation is clearly much smoother.

5.3.3 Relations to Other Work

Integrating partition-based methods with other models is not an entirely new idea. Several

authors have followed a similar integration schema for classification tasks. Assistant

Professional (a commercial version of Assistance 86, by Cestnik et al, 1987) allows the

use of a naive Bayesian classifier in the leaves of classification trees. Smyth et. al (1995)

integrate classification trees with kernel density estimators {e.g. Silverman, 1986) to obtain

non-parametric estimates of class probabilities. The authors report significant

improvements over decision trees and kernel density alone for certain class of problems.

However, their approach deals with discrete goal variables {i.e. classification) and not

regression as in our case. Other approaches within the classification scenario are EACH

(Salzberg, 1991) and RISE (Domingos, 1996) that generalise instances into exemplars.

Deng & Moore (1995) describe a similar approach but for regression tasks. Their

multires system integrates fcd-trees with kernel regression producing what they call kernel

regression trees, /fd-trees (Bentley, 1975) are a method of structuring a set of records each

containing a set of measured variables. They are binary trees built in a similar fashion as

regression trees. However, while regression trees are built with the goal of grouping data

with similar Y values, fcd-trees try to optimise the storage of these data points in order to

achieve faster access time. The consequence is that the splitting criterion of the two

approaches is completely different. Moreover, while we use a single leaf of the regression

tree to obtain the prediction for a test case, multires obtains the prediction by a

combination of contributions of several nodes (not necessarily leaves). In multires the main

issue is obtaining an efficient way of structuring all the training cases to make kernel

regression computationally more efficient.

Quinlan (1992) and Karalic (1992) have used global least squares linear models in

regression tree leaves. These authors follow a different integration method from ours as we

186 CHAPTER 5. LOCAL REGRESSION TREES

have mentioned before. The M5 system (Quinlan, 1993) is also able to use regression trees

and k-NN models. However, this system performs prediction combination instead of

integrating the two methodologies like in our proposal. This means that two models are

independently obtained and their predictions combined.

The work of Weiss & Indurkhya (1995) integrates a rule-based partitioning method

with ^-nearest neighbours. However, these authors deal with regression by mapping it into

a classification problem. The original Y values are mapped into a set of i intervals. One

problem of this approach is that the number of intervals needs to be determined, which can

be computationally demanding if one wants to ensure "optimal" accuracy of the resulting

models (Torgo & Gama, 1997). Moreover, the search space explored by rule learners is

larger than the one of trees. This means that rule learning systems may find solutions that

tree learners cannot, but at the cost of computational complexity (Indurkhya & Weiss,

1995). These two latter observations indicate that our hybrid tree learner should be able to

cope with larger problems than Weiss & Indurkhya's system. Another important difference

when compared to our work involves the type of local models. Weiss & Indurkhya's

system uses fc-NN while our system includes other more sophisticated local modelling

techniques.

5.4 An Experimental Evaluation of Local Regression
Trees

In this section we describe a series of experiments that have been designed to check the

validity of our hypotheses concerning the advantages of local regression trees. Namely, our

aim was to verify whether the variants of our system were able to overcome some of the

limitations of both standard regression trees and local models. With respect to standard

regression trees, we conjecture that the use of local trees brings a significant increase in

accuracy due to the use of smoother models in the tree leaves. Regarding local modelling

we hypothesise that local trees have three advantages: providing a comprehensible model

5.4 AN EXPERIMENTAL EVALUATION OF LOCAL REGRESSION TREES 187

of the regression surface; significant advantages in terms of computation time; predictive

accuracy advantages in domains with strong discontinuities in the regression surface.

5.4.1 Local Regression Trees vs. Standard Regression Trees

In this section we describe a series of experiments whose objective was to check the

validity of the following hypothesis:

The use of smoother models in the tree leaves improves the predictive accuracy of tree-

based regression models.

We have also evaluated the costs in terms of computation time of local regression trees

when compared to standard trees.

Regarding local regression trees we have considered the use of three different models

in the tree leaves: kernel models, local linear polynomials and partial linear models. All

these three local modelling variants were described in Section 5.2. Local modelling

techniques have many parameters that can be tuned. In the experiments reported below we

have not used feature weighing. The bandwidth value was set to the distance of the 10l

nearest neighbour60. The method of growing and pruning a tree (using LSS+ChiEst(95%))

was exactly the same for all compared methods (i.e. standard and local regression trees).

The results of comparing the accuracy of standard regression trees with local trees are

shown in Figure 5.6.

60 For local linear polynomials we have used a larger bandwidth (30% of all nearest neighbors) because these

local models can lead to wild extrapolations if they are built on the basis of small amounts of training cases.

188 CHAPTER 5. LOCAL REGRESSION TREES

I 256 Q 512 ■ 1024 n 204» B 40% 1256 Q 512 ■ 1024 D 2048 B 40%

iaw
80%

+ 6 0 *
B 4 0 * j

2 0 *

0 *

­40*

­60* ­■

-80*

-100*

* <? s y ** y y J* sf j? s
«f ^ ^ < / > ^ <* y S * / / / f f f

<f C° CP^ cf <f

1256 Q 512 ■ 1024 □ 2048 S 40%

100*

80*

7 60* -■

« 40*

20* j

0*

f. -20*
B -40*

­60*

' ^ ^ / / ^ / / / / / " ^

Figure 5.6- Comparison of standard regression trees (RT) with local regression trees

(RT+KR, RT+PL and RT+LL).

As these graphs show there is an overwhelming accuracy advantage of local trees,

particularly with kernel (RT+KR) and partial linear models (RT+PL). However, even local

trees with local linear polynomials (RT+LL) achieve a significant accuracy advantage in

most domains. This experimental comparison shows that local regression trees are able to

significantly outperform standard regression trees in terms of predictive accuracy. Standard

regression trees (RT) provide a non-smooth approximation. The only difference between

RT and the three variants of local trees is that the latter use local models in the leaves.

Thus we can claim that these experiments confirm with high statistical confidence our

hypothesis concerning the advantages of using smoother models in the leaves.

The accuracy gains reported above have a cost in terms of computation time. Figure

5.7 shows the computation time ratio between a standard LSS+ChiEst(95%) regression tree

and the three local tree variants we have proposed. As the local trees were grown and

5.4 AN EXPERIMENTAL EVALUATION OF LOCAL REGRESSION TREES 189

pruned using the same procedure, the observed differences are only due to the use of local

models in the leaves.

RT v« RT*KR RTv« RT.PL

2.0­ ­ , . ­ , ­ ­

■l'­
If

a
"8" ­1­

- - r - r - -, - -

a .
o
"X -

•
a"
î

1.8 ­

1.6­

1.4­

1
 12

'
ï <■»•
| 1 0.8­

0.6­

0.4­

0.2­

0.0­

1.8 1

B
o
Ï

*

X
Í

■l'­
If

a
"8" ­1­

­ >
Î

­ O
m

. ■ .
Ï

B

î . a .
o
"X -

•
a"
î

1.8 ­

1.6­

1.4­

1
 12

'
ï <■»•
| 1 0.8­

0.6­

0.4­

0.2­

0.0­

.
1.6­

1.4­

B
o
Ï

*

X
Í

■l'­
If

a
"8" ­1­

­ >
Î

­ O
m

. ■ .
Ï

B

î . a .
o
"X -

•
a"
î

1.8 ­

1.6­

1.4­

1
 12

'
ï <■»•
| 1 0.8­

0.6­

0.4­

0.2­

0.0­

. . „ ­ , . .

i "­
B
o
Ï

*

X
Í

■l'­
If

a
"8" ­1­

­ >
Î

­ O
m

. ■ .
Ï

B

î . a .
o
"X -

•
a"
î

1.8 ­

1.6­

1.4­

1
 12

'
ï <■»•
| 1 0.8­

0.6­

0.4­

0.2­

0.0­

,
5 i­o­

Ë 0.8­

0.6­

0.4 ­

0.2 ­

B
o
Ï

*

X
Í

■l'­
If

a
"8" ­1­

­ >
Î

­ O
m

. ■ .
Ï

B

î . a .
o
"X -

•
a"
î

1.8 ­

1.6­

1.4­

1
 12

'
ï <■»•
| 1 0.8­

0.6­

0.4­

0.2­

0.0­

t ■ '

o ■ ■ ­

* 1 ?
1 ■ f t ■

1

B

.ï.
i

B
o . . : o ­' a .

' B '

1 » 1 « i »

*­
8

B
0
X

V r
y y * / y / ^

b y y y ** « * y y 1 f <f ? /
y y y S S S

f ^ #

2.0

1.8

1.6

1.4

1 «I
ï 1.0
p 0.8-

0.6
0.4-

0.
0.0 JU-L 1 ­ 4 I * I f

y y * y y • ^
& / y y *

^ ? / / «y / y y

(236 0512 x1024 «2048 A 4096

Figure 5.7 - Computation time ratio of standard and local regression trees.

These ratios show that we can expect a considerable increase of computation time due to

the use of local models in the leaves. The increase is more marked for large data sets. Still,

as we will see in the next section, local regression trees are much faster than the local

modelling techniques alone.

5.4.2 Local Regression Trees vs. Local Models

In this section we compare local regression trees with the local models. We compare the

accuracy and computation time of our three variants of local regression trees, with the local

modelling techniques used alone {i.e. applied using all training data instead of with the data

190 CHAPTER 5. LOCAL REGRESSION TREES

in the leaves of a tree). The local modelling techniques are the same used in the

experiments reported in the previous section: kernel models, partial linear models and local

linear polynomials. The models are applied with the same parameter settings as those used

earlier.

The first experiment carried out was designed with the aim of checking the empirical

validity of the following hypothesis:

The use of local models in the context of the leaves of a regression tree does not entail an

accuracy loss and may even provide useful bias in domains with strong discontinuities.

Figure 5.8 shows the significance of the estimated accuracy difference between the local

tree variants and the respective local models alone.

1256 O 512 ■ 1024 □ 2048 S 4096 I 256 ■ 512 ■ 1024 □ 2048 B 4096
HXKÍ

g 80%

5
 m

40%

20»

0%

•20»

-60%

-80%

-100%

1 I
100%

. 80%

+ 60%
B 40% -t

20%

0%

-20%

_■ -10% -

-60% -

-80% -

-100%

- * / / ' / / / / / ' * ' * * / S * / /■/ / / J
& T"v

■ 256 □ 512 ■ 1024 Q 2048 B 40%

7 60%

* 40%

20%

0*

j ­20%
J ­40%

­60%

-80%

-100%

/ * * / / * / / / / / ' <?

Figure 5.8- Comparison of Local Trees and Local Models in terms of Significance ofMSE

difference.

5.4 AN EXPERIMENTAL EVALUATION OF LOCAL REGRESSION TREES 191

The results of this comparison confirm our hypothesis. In effect, we observe that the two

types of models entail quite different biases and both prove to be useful depending on the

domain. For instance, we know that the regression surface of the Mv artificial domain has

strong discontinuities {cf. its definition on Appendix A.2). Our experiments confirm that

local regression trees achieve better results in this domain due to the type of approximation

provided. The reason for this performance is the following. A strong discontinuity occurs

when nearby points of the unknown regression surface have quite different values of the

goal variable. A local model is based on the notion of neighbourhood that is measured by a

metric in the space of input variables. As such, these models are not able to use the

information concerning the fact that two nearby points may have a very different value of

the goal variable (as when facing a strong discontinuity). Thus local models will perform

the usual smoothing of the goal variable values of the nearby points, which will contribute

to a higher prediction error in the vicinity of the discontinuity. Regression trees, on the

contrary, are based on the principle of separating points with different goal variable values

because this will decrease the variance of the resulting partitions. Being so, when facing a

discontinuity, a tree-based model will search for a split in the input variables that ensures a

larger variance reduction, which most probably is achieved by separating the points on

each "side" of the discontinuity. By separating these points in different partitions, the local

models used within each one do not suffer the "bad influence" of the points on the "other

side" of the discontinuity.

The other conjecture we have made regarding the comparison of local regression trees

with local models was that the former are able to overcome the computation time

limitations of local modelling. Figure 5.9 shows the results of comparing the computation

time of local trees and the respective local models.

192 CHAPTER 5. LOCAL REGRESSION TREES

2.0-

1.8-

Rt+I CRvs KR

1.4
g 1.2-
to
01 in

. - , - - - - , - , - -

a. '•»-

| l 0.8-

• A

0.4 -

02-

0.0 ? : * "
■
î- t -5-

*
■

1- 1 r

RT+PL vs. PL

p 0.8

1 r

■ - ■ • - -

. ­ J H .

•
o ­' ­ ­

■ ■ ­ ­ ­ ­s­ 5­

A

•
X

.1

­ « ­ ­ ­' x ­

x ' . ' *

" ." r ■ "'
. . L . J ■ ­

A , X ,
_ . . 0 ­ ­ ­

m.

I"
■ 1

/ * / f s * / /> / * ̂ ■ /­ #
ff * / / y ^ / /* / * ^

2.0­

1.8­

1.6 ­

14 ­

i
 12

­
Î .0­
j l 0 .8 ­

0.6­

0.4­

0.2­

—»­

■

O

»

■
o
X

•
í

RI

­»­
if

+LL\

■

/S. LL

" " ': ■ "i " "
. . ', . .' ■.

0
­ ­

 L * ' x ­

i : » : * f ­■­
i

y v/y */// * *
cf cf 4̂

r ^ x*

>256 05
12 xl°24 » 2 0 4 8 A 4 0 9 6

Figure 5.9 - Computation time ratio of Local Regression Trees and Local Models.

As it can be seen local regression trees successfully overcome the computational time

limitations of local modelling. In effect, their advantage in terms of computation time is

overwhelming in the domains we have examined.

Finally, we remark that local regression trees have another advantage over local

models. In effect, local regression trees provide a symbolic representation of the regression

surface, while local models do not obtain any compact model of the data. This is an

important advantage despite the fact that this representation can only be regarded as a

"rough" description of the true surface as it does not include a compact description of the

local models used in the leaves.

5.4 AN EXPERIMENTAL EVALUATION OF LOCAL REGRESSION TREES 193

5.4.3 Local Regression Trees vs. Linear Regression Trees

Other authors have tried to improve the accuracy of standard regression trees by using

more complex models in their leaves. Namely, Quinlan (1992) and Karalic (1992) have

used least squares linear polynomials in the leaves of regression trees. In this section we

compare our local regression trees with system M561 (Quinlan, 1992) that obtains

regression trees with linear polynomials in the leaves.

Figure 5.10 shows the accuracy comparison between our three alternative local

regression trees and M5.
1256 0 512 ■ 1024 □ 2048 B 40% ■ 256 □ 512 ■ 1024 □ 2048 n 40%

100»

g 80»

Í 60*
at

40»

20»

0»

­20»

1 40»
■40*

-80»

-100»

r i I i
<r * J * / f . / # # <? J <y * / y , • * ^ • y * / y y y y ̂ <* r <? <f ^ Cf (f &

1256 B 512 ■ 1024 G 2048 □ 40%

100» -

80» -

•i 60» ­

« 40» ­

20» ­

0 » ■

­ 2 0 * ­

S 4 0 » ­

■60» -

-SO» -

­100» ■

: |i| :::
iL JUL:

1 IH II
J- & df .<.<" y y ^ y y / y y y

Figure 5.10 - Comparison between Local Regression Trees and M5 in terms of

Significance Level of the MSE difference.

61 M5 is also able to combine the predictions of the generated trees with fcNN models. This feature was not

used in this comparison, as the goal was to compare the use of local models in the leaves with other

alternatives (in this case linear polynomials).

194 CHAPTER 5. LOCAL REGRESSION TREES

Figure 5.10 shows that partial linear trees (RT+PL) clearly outperform M5 in most

domains. Partial linear trees are similar to the models generated by M5. Both use linear

polynomials in the leaves of a tree. The only difference is that partial linear models add a

correction factor to the linear polynomial predictions based on a local estimation of its

error (cf. Section 5.2.3). These results show the importance of such smoothed correction.

Both kernel regression trees63 (RT+KR) and local linear trees64 (RT+LL) show advantage

with respect to M5 in Elevators, Kinematics, CompAct, CompAct(s), and Census(8L and

16H) domains. However, they achieve worst results in the Mv, Ailerons and Fried

domains.

5.4.4 Local Regression Trees versus Existing Regression Methods

In this section we describe a series of experiments that could determine how the best of our

local regression tree variants compares with several state-of-the-art regression methods.

We have selected for this comparison the following regression methods: CART (Breiman

et al, 1984) as a classical representative of regression trees; MARS (Friedman, 1991) as a

sophisticated statistical regression tool; and CUBIST (http://www.rulequest.com) as a

representative of a recent rule-based regression system. All these systems were briefly

described in Chapter 2. As for local regression trees, we have selected local trees with

partial linear models in the leaves (RT+PL), as the most successful variant of this type of

models.

Figure 5.11 shows the results of an accuracy comparison of partial linear regression

trees with CART, MARS and CUBIST.

Regression trees with partial linear models in the leaves.

Regression trees with kernel models in the leaves.

Regression trees with local linear polynomials in the leaves.

http://www.rulequest.com

5.4 AN EXPERIMENTAL EVALUATION OF LOCAL REGRESSION TREES 195

• 256 B 512 ■ 1024 D 2048 B 40% 1256 a 512 ■ 1024 □ 20*8 B 40%

% 6 0 * -

X 4 0 * -

2 0 *

0%

-20*

* -40*
U -60*

-80* -

-100*

/ ** Jf-

</SJ
j ? <á> A > >*

-° j>b * * #

(f c/ °
* ^ f ^ / f f <^

■ 256 S 512 ■ 1024 B 2048 S 40%

100%
80*

Ç 60*
« 40*

20*
0*

j _ -20*
| -40*
5 ­60*

-80%
-100*

1 ,
I ;

.. . . ! I

"■ ; ILJ ; HJl
1

? * <* / / ** / y / / ^ <*b

Figure 5.11 - Comparison between Partial Linear Trees and other regression techniques

with respect to the Significance Level of the MSE difference.

Our system that generates partial linear trees clearly outperforms CART. In most domains

the difference is statistically significant. With respect to MARS, our local trees proved to

be superior in some data sets, particularly in Pole, D2, Kinematics, and the two Census

domains. However, our local regression trees had difficulties in some domains like Mv and

Fried65.

Compared to CUBIST, partial linear models in the leaves of a tree proved particularly

advantageous in the D2, Elevators, Mv and Kinematics domains. Less relevant advantages

were achieved in the Pole, CompAct and CompAct(s) domains. CUBIST achieved some

advantages in the Abalone, Ailerons and Census(16H) domains. Finally, there are two

curious results in the Census(8L) and Fried domains. In both these two domains CUBIST

65 We should remark that this artificial domain was obtained from the paper describing MARS (Friedman,

1991), so it is only natural that MARS behaves well on this data set.

196 CHAPTER 5. LOCAL REGRESSION TREES

shows advantage with small training sets, which is lost as more data becomes available.

Still, the lack of statistical significance of most of these results does not allow any

supported interpretation.

5.5 Conclusions

In this chapter we have presented a new type of tree-based regression models, referred to

as local regression trees. We have described three variants of local trees that differ in the

models used in their leaves: kernel models, partial linear models and local linear

polynomials. Local regression trees are based on the assumption that using smoother

models in the tree leaves can bring about gains in accuracy. We have confirmed this

hypothesis by carrying out an extensive experimental comparison with "standard"

regression trees. Among the three proposed variants, we have observed that the use of

partial linear models in the leaves (RT+PL) led to the best overall accuracy. A comparison

with the alternative of using linear models in the leaves (as in M5, for instance) revealed

that local regression trees achieve better results in several domains. As partial linear

models integrate both a parametric and a non-parametric component, this is a plausible

explanation for the fact that partial linear trees proved to be the most competitive variant

when compared to other variants of local regression trees.

Other motivations for considering the use of local models in the leaves of regression

trees are the well-known drawbacks of local modelling. In effect, not only these modelling

techniques are computationally demanding but they also do not provide a comprehensible

model of the data. By integrating these models with regression trees we were able to

overcome these two difficulties, as our experiments have shown. Moreover, we have also

observed that the use of smoother models within the context of a partition-based

representation can be advantageous in terms of accuracy, in domains where there are

strong discontinuities on the regression surface.

5.5 CONCLUSIONS 197

Finally, accuracy comparisons with state-of-the-art regression techniques demonstrate

that our partial linear trees achieve quite competitive overall results.

5.5.1 Open Research Issues

One of the drawbacks of local modelling techniques (or instance-based learning in general)

is their requirement regarding the storage of all training data. This is also a drawback of

our system based on local regression trees. It remains an open question whether we can

adapt some of the existing techniques to improve this aspect in our system, without

compromising too much its accuracy advantages.

Local modelling has many tuneable parameters. In our experiments we did not try out

too many variants. It would be desirable to have some form of automatic tuning of these

parameters to facilitate the task of the user.

In our study we have considered three kinds of local regression trees. All of them have

shown some advantages in some domains. It is an open question whether it is useful and

practical to have different local models in different leaves of the same regression tree. This

could prove advantageous in domains where the regression surface is rather heterogeneous.

Chapter 6

Conclusions

In this dissertation we have explored different aspects of tree-based regression. We have

studied two methods of growing regression trees using different error criteria. We then

addressed the question of avoiding overfitting of the training data. Finally, we have

described an enhancement of standard regression trees through the integration of local

models in their leaves. The following section presents a brief summary of the main

conclusions of the work carried out in this thesis. Finally, in Section 6.2 we present some

possible directions for future research on these topics.

6.1 Summary

In this thesis we have focused our attention on regression, which is an important data

analysis task. We have briefly described the main approaches to this task in the fields of

machine learning, statistics and neural networks. Our contributions are within one

particular type of techniques usually known as regression trees. We have described and

improved several aspects related to the use of this type of regression models. Namely, we

have studied the following main issues of tree-based regression:

199

200 CHAPTER 6. CONCLUSIONS

• Generation of regression trees.
• Pruning of regression trees.
• Local regression trees that combine different regression methodologies.

6.1.1 Growing Regression Trees

As for generating regression trees we have considered the two alternatives of obtaining

trees that minimise either the mean squared error or the mean absolute deviation.

Regarding the former, we have analysed the main computational bottlenecks and derived a

simplification of the criterion used to select the best split. Least squares (LS) regression

trees generated with this simplification are very efficient in computational terms. These

techniques can easily handle data sets with hundreds of thousands of cases, in few seconds.

In effect, our simulation studies confirmed a clearly linear dependence of the computation

time on the number of cases. This can be regarded as a crucial property when facing large

regression problems, which was the main motivation behind our study of LS trees. With

respect to least absolute deviation (LAD) trees we have presented a theoretical analysis of

this methodology, leading to a series of algorithms that ensure high computational

efficiency in the task of finding the best split for each tree node. We have also attempted to

prove that a theorem by Breiman et al. (1984) concerning the issue of finding the best split

for discrete variables was also applicable to LAD trees. Although we were not able to

obtain a proof of its validity we have encountered a counter-example proving its falsity.

However, we have experimentally observed that the use of a heuristic process of finding

the best discrete split based on the results of that "theorem" does not bring any significant

accuracy loss, while largely improving the efficiency of this task, as confirmed by our

simulation studies.

We have also carried out a comparative study of LS and LAD regression trees. This

study revealed that both models have different preference biases that can be considered

useful depending on the application. LAD trees tend to make predictions that, on average,

are more accurate. However, these trees do commit large errors more often than LS trees.

6.1 SUMMARY 201

These latter models are less prone to extreme prediction errors, which can be crucial in

some applications.

6.1.2 Pruning Regression Trees

This thesis addresses the problem of avoiding overfitting of the training data by pruning

the initially grown trees. Pruning can be regarded as a preference bias for smaller trees that

has advantages in terms of comprehensibility of the models and also may improve their

predictive accuracy in many domains. In this dissertation we have followed a particular

type of pruning methodology consisting of a two-stage process that begins with the

generation of a set of alternative pruned trees and is followed by the selection of one of

such trees.

We have described two new algorithms (LSS and MCV) for the pruned tree generation

phase. These algorithms are based on the idea of progressively eliminating the nodes for

which we predict that the error estimates are least reliable. This feature distinguishes them

from existing methods. We have experimentally observed that our two algorithms generate

sequences of pruned trees that include more accurate trees than other existing approaches

{e.g. Error-Complexity of Breiman et al, 1984). In effect, our experiments have shown that

the more accurate tree in the sequence generated by our methods is usually more accurate

than the corresponding tree obtained using other algorithms. This empirical observation

indicates that the method based on progressively eliminating the nodes that are potentially

unreliable is preferable to existing heuristics to generate sequences of nested pruned trees.

We have also described a series of additions to existing tree evaluation methods, and

presented a new strategy for evaluating candidate pruned trees. Regarding the additions

we have extended the method based on error estimates obtained through cross validation,

by presenting a new tree-matching procedure. Our method of tree-matching extends the

use of this evaluation method to other than the Error-Complexity sequence of pruned trees,

as opposed to the existing cc-based tree matching method used in CART (Breiman et

al, 1984). This is a relevant issue because we have empirically confirmed that cross

202 CHAPTER 6. CONCLUSIONS

validation is a good method of selecting a tree from a set of alternatives. This lead us to

combine cross validation error estimates with one of our two new methods of generating

sequences of trees, which appeared advantageous when compared to other alternatives.

Our LSS generation algorithm together with cross validation selection achieved one of the

best results in terms of predictive accuracy in the experimental comparisons carried out

with existing pruning algorithms.

We have extended evaluation using m estimates by deriving an expression for the

standard error of these estimates, which allows the use of the 1-SE rule (Breiman et

al, 1984) that is known to provide useful bias towards simpler models. Moreover, we have

extended m estimates to LAD trees by deriving the m estimate of the mean absolute

deviation and its respective standard error.

We have also described a new method of evaluating the candidate pruned trees

(ChiEst) based on a heuristic formulation of the estimated mean squared error. This

heuristic relies on the sampling distribution properties of the mean squared error. Our

experiments showed that pruning using our ChiEst method, is very competitive with other

existing alternatives (resampling-based estimates, m estimates and MDL selection). The

ChiEst method provides not only top predictive accuracy but also trees that are usually

smaller than those selected on the basis of cross validation estimates, which was among the

most accurate selection methods. Moreover, this evaluation method proved to be quite

robust with respect to the best setting of its pruning parameter in a large set of domains.

This feature avoids the need for resampling-based tuning contrary to other methods like m

estimates or MDL selection. Because of this ChiEst was the fastest method of pruning by

tree selection from the methods we have considered, which makes it a good choice for

pruning regression trees obtained with large data sets.

The main conclusions from the large set of comparisons carried out with methods of

pruning by tree selection are as follows. The best way to proceed to obtain better predictive

accuracy is to use either our LSS or MCV algorithms together with selection based on

ChiEst or Cross Validation error estimates. However, if we require low computational time

6.1 SUMMARY 203

we definitely would recommend ChiEst estimates, which also lead to smaller trees and

hence more comprehensible than those generated by Cross Validation selection. However,

if our aim is to obtain small trees the best way to proceed is to use selection based on the

MDL principle following to the coding proposed by Robnik-Sikonja & Kononenko (1998).

Unfortunately, we have observed that this strategy entails significant accuracy losses in

several domains when compared to the above mentioned ChiEst method.

On another large set of experiments we have compared our most promising pruning by

tree selection proposals (LSS+ChiEst(95%) and LSS+5-fold CV) with three state-of-the-art

pruning algorithms used respectively in CART (Breiman et al, 1984), RETIS (Karalic &

Cestnik, 1991) and CORE (Robnik-Sikonja ,1997). On several of the data sets that were

considered we have observed a clear superiority of our pruning algorithms in terms of

predictive accuracy. Moreover, this superiority is, in the case of LSS+ChiEst(95%),

accompanied by lower computation time. However, we have also observed that our

proposals usually generate somewhat larger trees than CART, and particularly, CORE.

6.1.3 Local Regression Trees

Local regression trees result from the integration of local modelling with regression trees.

This new type of trees is motivated by the hypothesis that it is possible to improve the

accuracy of regression trees through the use of smoother models in their leaves. We have

presented three variants of local regression trees: kernel trees; partial linear trees; and local

linear trees. Through a large set of experimental comparisons we have concluded that our

hypothesis holds, i.e. local regression trees are significantly more accurate than the

"standard" regression trees. However, we have also observed that our new regression

models are computationally more demanding and less comprehensible than standard

regression trees.

We have also conjectured that local regression trees could overcome some of the

limitations of local modelling techniques, particularly their lack of comprehensibility and

rather high processing time. We have carried out a large set of experiments to provide

204 CHAPTER 6. CONCLUSIONS

empirical evidence regarding these conjectures. We have concluded that local regression

trees are significantly faster than local modelling techniques. Moreover, through the

integration within a tree-based structure we obtain a comprehensible insight of the

approximation of these models. We have also observed that the modelling bias resulting

from combining local models and partition-based approaches improves accuracy in

domains where there are strong discontinuities in the regression surface.

Finally, we have concluded that one of our local regression tree variants (partial linear

trees) is among the most competitive regression methods in terms of predictive accuracy,

as demonstrated by an empirical comparison with three state-of-the-art regression methods:

C A R T (Breiman etal, 1984); M A R S (Friedman, 1991); and CUBIST (http://www.ruiequest.com).

6.2 Future Research Directions

Regarding LAD regression trees it would be beneficial to study in detail the situations

under which the theorem proved by Breiman et al. (1984) for LS trees does not hold. This

could provide useful guidance regarding the usage of the heuristic we have proposed that is

based on the "theorem".

We think it would be desirable to analyse the reasons why the LSS and MCV methods

generate more accurate trees. Moreover, we would like to explore alternative ways of

estimating the unreliability of node estimates. Another future topic of research is to extend

the ideas behind the ChiEst method to LAD regression trees.

Regarding local trees there is plenty of space for further studies. In effect, it would be

useful to examine what are the computational requirements of a system that integrates local

models with regression trees during the pruning stage. We also think that the performance

of local regression trees could be largely improved through further tuning of local models.

Finally, we would like to find some solution for the memory requirements of local

regression trees {e.g. by eliminating some of the cases) that would not imply costs in terms

of predictive accuracy.

http://www.ruiequest.com

Annexes

205

Annex A

Materials and Methods

This annex provides a detailed description of the materials and methods used throughout

this thesis. We describe the experimental methodology followed in the experiments carried

out and the benchmark data sets used in these empirical tests. We also provide details

regarding the learning systems that are used in our comparative studies.

A.l. The Experimental Methodology

Within current Machine Learning research the most used experimental methodology for

comparing learning methods is A:-fold Cross Validation (e.g. Michie et al, 1994). This

methodology can be used to estimate the predictive accuracy of learning methods.

Moreover, paired t tests can be used to get an assessment of the significance of the

observed differences. A /c-fold cross validation (CV) experiment starts with a random

division of the given training sample in k disjoint subsets D„ ..., Dk, each containing

approximately the same number of observations. For each fold £), a model is constructed

using as learning sample D\D,, obtaining the model r,(j3, x,). This model is then tested in

the fold Dj. The same process is repeated for all k folds. The average test set performance

over the k folds is obtained for each algorithm and usually a paired t test is carried out to

assert the significance of the observed differences on performance between any two

207

208 ANNEXA

alternative methods (e.g. Salzberg, 1997). As pointed out by Dietterich (1997) and

Rasmussen (1996) this latter procedure violates the assumptions of this statistical test. In

effect, the strong overlap of the training sets on the k iterations does not allow one to

assume that the scores obtained on each iteration are independent. Now, this is one of the

assumptions of the paired t tests, which makes this procedure unsafe to use as pointed out

by the authors above cited. This does not means that we should not use the Cross

Validation method to carry out comparative experiments. It only means that performing

paired t tests with the resulting fold scores may underestimate the variance resulting from

the use of different training samples. This is particularly serious for the type of regression

models being studied in this thesis, as tree-based models are known to be quite sensible to

variations on the training data (Breiman, 1996).

Rasmussen (1996) proposes an experimental methodology based on non-overlapping

train and test sets that does not have the problems mentioned above. This methodology was

implemented on a general-purpose environment for performance assessment called

DELVE66 (Rasmussen et al, 1996). In this thesis we have used these tools to assert the

statistical significance of observed accuracy differences between different methods for

different training set sizes. The main drawback of DELVE is the large amount of data

necessary to allow multiple non-overlapping train and test samples. This fact has limited

the number of data sets used in the experiments we have carried out. Still, DELVE allows

fair comparisons of different learning methods for different data sets and different training

sample sizes. In this thesis we have asserted the performance of the learning methods on

samples with 256, 512, 1024, 2048 and 4096 cases.

For the sake of completeness we present a brief description of the analysis

methodology used in DELVE. Further details can be found in Rasmussen (1996). DELVE

provides two alternative experimental designs. In the Hierarchical ANOVA design each

learning algorithm is trained on / disjoint training sets. Associated to each of these training

Publicly available at http://www.cs.utoronto.ca/~delve/.

http://www.cs.utoronto.ca/~delve/

A. 1. THE EXPERIMENTAL METHODOLOGY 209

sets there is a test set with J cases. The test sets are disjoint one from one another and from

the training sets. DELVE assumes that the losses of the learner can be modelled by,

yij=\L + ai+£iJ (A.l)

where,
yij is the loss on the test case j from the test set i when the method is trained with the
training set i;
/I is the expected loss of the method;
a, are called the effects due to the training set, and model the variability in the
losses due to changes in the training set;
and the £//'s model the residuals that include the effects of the test cases,
interactions between train and test cases and stochastic elements in the prediction
procedure.

DELVE assumes that both the a, 's and the %'s are normally distributed. According to

Rasmussen (1996) these assumptions may not be appropriate for some loss functions like

the 0/1 loss function used in classification problems. However, for the squared loss

function used throughout this thesis, extensive simulation experiments conducted by this

author revealed no serious effects on the conclusions of the paired comparisons to assert

significant differences in accuracy. DELVE provides a set of tools to obtain the estimated

expected loss (i.e. jl = y) and the respective standard error of the estimate. Moreover, the

same model can be applied to estimate differences between losses of any two methods.

DELVE includes an alternative experimental method called the 2-way ANOVA design.

This method is more efficient in terms of the use of the available data, thus making it more

adequate for smaller data sets. However, its analysis is much more complicated than the

one of the hierarchical model. In this thesis we only had necessity of using this design for

the Abalone data set. All other results are obtained with the hierarchical ANOVA model.

In this thesis we show the predictive accuracy results in the form of graphs of paired

comparisons. These graphs show the statistical significance level of the observed

differences in terms of predictive accuracy between any two methods. The following figure

shows an example of such graph:

210 ANNEXA

1256 m 512 ■ 1024 O 2048 S 4096

<

ca

100%

80%

60%

40%

20%

0%

-20%

-40%

-60%

-80%

-100%

I HlHI I
i I 1 I

Ma I I | _ ^ L i 11 H i _ l l _ iApr-"
- - - - - - - - i - ... - J 1- - l!'

u | 1 i

. | . . .

Figure A.l -An example of a paired accuracy comparison.

This graph shows values that are the levels of significance of the accuracy differences

between methods A and B. Positive values indicate that the observed difference is

favourable to method A. Negative values indicate the opposite. The results are collected for

12 different data sets and for the different training sample sizes we have considered. A

value of 80%, for instance, means that there is 80% probability that method A outperforms

method B in other samples of the same size from the same domain. Throughout the thesis

we consider values higher than 95% (or lower than -95%) statistically significant. Values

above 99% (or below -99%) are considered highly significant.

In Annex C we present tables that include the full results of the paired accuracy

comparisons mentioned before. These tables show the estimated difference in prediction

error (we use the Squared Error loss function) between any two learning methods. For each

of the combinations of data set and sample size, we show three results. The estimated
fil

difference in error, the statistical confidence level on this difference (the p value) , and

some signs stressing highly significant differences. As an example let us suppose we want

The values pictured in the graphs mentioned before are \-p.

A.l. THE EXPERIMENTAL METHODOLOGY 211

to compare method A with method B. The following table shows an example of the type of

results we provide for this kind of comparisons:

Table A.l. Difference in error (MSE) between method A and method B.

256 512 1024 2048 4096
Ab alone 0.126 Î0.500I -0.280 0.543 j 1 1 j
2Dplanes 0.429 10.0431 + -0.078 0.194 -0.042 0.216 -0.240 0.000 ̂ r^TÕ99lÕ.000 -

Pole -47.9Ï3 I0.272Í -17.195 0.143 -14.882 0.171 | {

Elevators -1.459 10.489 -0.232 0.891 3.686 0.478 1.079 0.564 !
Ailerons 0.013 10.101 0.012 0.152 0.010 0.770 -0.022 0.328

Mv 0.750 10.098 0.154 0.077 -0.166 0.004 - -0.094 0.001 - -0.084 10.002 —
Kinematics 1 -0.013 10.623 0.014 0.435 0.003 0.564: i

—

CompAct 5.709 0.012 + 1.282 0.103 1.845 0.201
CompAct(s) 4.810 0.009 ++ 2.940 0.011 + 2.955 0.134
Census(16H) -1.45E+7 0.824 -3.55E+7 0.446 -2.48E+7 0.239 2.17E+7 0.641 -9.28E+6 0.820
Census(8L) I-1.53E+8 0.461 8.46E+7 0.168 -2.74E+7 0.659 -1.81E+7 0.419 9.05E+6 0.518

Fried | 0.099 0.354 0.400 [0.212 0.373 10.122 -0.001 0.915 -0.069 0.480

The first column for each sample size indicates the estimated difference in MSE between

the two methods. Negative numbers indicate that method A is expected to have less MSE

than method B. The second column shown the confidence level of this estimated

difference. Finally, the third column can have one sign if the difference is significant with

at least 95% confidence, and two signs for more than 99% confidence. Minus signs

indicate advantages of the first method (in this case the method A), while plus sings

indicate the opposite. In some experimental set-ups we do not present results because there

was not enough data to carry out the experiment according to DELVE requirements.

Apart from predictive accuracy this thesis emphasises model interpretability and

computation efficiency. We have asserted model interpretability by the size of the trees,

namely the number of leaves. With respect to computation efficiency we have collected

information on the CPU seconds taken to carry out a full learn and test cycle. As we have

mentioned DELVE needs large amounts of data to allow non-overlapping train and test

sizes. Because of this, DELVE does not run many iterations for each data set. Thus

averaging tree sizes and CPU seconds over these few iterations does not make much sense.

Being so, whenever we wanted to compare the expected tree size or computation efficiency

212 ANNEXA

of several alternative systems we have used a different experimental method. Instead of

using DELVE, we have obtained a set of 50 random samples for each of the sample sizes

we have studied and obtained the average scores on these two issues. When presenting

results for these two factors we show graphs of the ratios between the methods being

compared. For instance if we wish to compare the method A with the method B, we ran the

two methods on the same 50 random samples and calculate the average number of leaves

and CPU time over the 50 runs. We repeat this process for each of the sample sizes being

studied and show graphs with the ratios between these averages. The following figure

shows an example of such graphs:

2.0-

1.8 -

. . , . . ■ 256 0512 X1024 » 2 MS A4 W>
- - r - , - , 2.0-

1.8 -

14 -

1.2 -

1.0 -

0 .8 -

0.6-

0.4-

0 .2-

0 0 -

- - - - - - - -
X

-Î -

■
-«' - - - - - - -14 -

1.2 -

1.0 -

0 .8 -

0.6-

0.4-

0 .2-

0 0 -

. . ' . . : 1 j

14 -

1.2 -

1.0 -

0 .8 -

0.6-

0.4-

0 .2-

0 0 -

■
5 " - - A

- - - - - - - - - - -
i x .

. . *, A : A j

14 -

1.2 -

1.0 -

0 .8 -

0.6-

0.4-

0 .2-

0 0 -

» ? -k ' - - - ' - -
i X ■

14 -

1.2 -

1.0 -

0 .8 -

0.6-

0.4-

0 .2-

0 0 -

■ 256 0512 X 1024 • 2048 A4096

■

■ - - - -

■
© i

■
0

■
O

: : ; : ; • :
■
-o -

■
o" _ ■. _ « : x ■

- x - ■ -

.
 J o -

A ; ï

X X
X A • - x - ■ -

.
 J o -

A ; ï

X
A

- *■ r jj -, x - • • 0 ' ' A '
- x - ■ -

.
 J o -

A ; ï •
A

A • •
1 A ' A

A
A X

J* J> ^
.<# <f

■J> <£• &> > j? y ^ # >* • ^
cf <?

Ratios above 1 indicate that the first method has larger average value on the item being

evaluated, while scores below 1 indicate the opposite. As there is possible overlap between

these 50 random samples we avoid any statements regarding the statistical significance of

the differences. Thus these results should be taken as merely indicative of the expected

score of the methods being compared. However, as we have also calculated the standard

deviations, these numbers can provide further indications on the expected variability of

these scores.

A.2. The Used Benchmark Data Sets

The choice of the data sets used in this thesis was mainly conditioned by both the available

domains in the community repositories and the necessity of large amounts of cases to allow

A.2. THE USED BENCHMARK DATA SETS 213

the use of DELVE. We now describe the main characteristics of these data sets as well as

a brief description of the task involved.

• Abalone
This data set can be used to obtain a model to predict the age of abalone from
physical measurements. The age of abalone is determined by cutting the shell
through the cone, staining it, and counting the number of rings through a
microscope — a boring and time-consuming task. Other measurements, which
are easier to obtain, are used to predict the number of rings which determines
the age.

Source: UCI machine learning repository.

Characteristics: 4177 cases, 8 attributes (1 nominal, 7 continuous).

• Ailerons
This data set addresses a control problem, namely flying a F16 aircraft. The
attributes describe the status of the aeroplane, while the goal is to predict the
control action on the ailerons of the aircraft.

Source: Experiments of Rui Camacho (rcamacho@garfield.fe.up.pt).

Characteristics: 13750 cases, 40 attributes (0 nominal, 40 continuous).

• Elevators
This data set is also obtained from the task of controlling a F16 aircraft,
although the target variable and attributes are different. In this case the goal
variable is related to an action taken on the elevators of the aircraft.

Source: Experiments of Rui Camacho (rcamacho@garfield.fe.up.pt).

Characteristics: 16559 cases, 18 attributes (0 nominal, 18 continuous).

• 2Dplanes
This is an artificial data set described in Breiman et al. (1984, p.238). The
cases are generated using the following method:

Generate the values of the 10 attributes independently using the following
probabilities:
p(xl=-\)=p(x1=\)=y2

p{Xm=-l)=P{Xm=0)=P{Xm=l)=y3 , m = 2,...,10.

Obtain the value of the target variable Y using the rule:
if X, = 1 set 7 = 3 + 3X 2 +2X 3 +X 4 +o(0 ,2)
if X, = -1 set r = -3 + 3X5+2X6 + Z7+a(0,2)

mailto:rcamacho@garfield.fe.up.pt
mailto:rcamacho@garfield.fe.up.pt

Source: Breiman et al. (1984, p.238). The actual cases used in our experiments
Can be Obtained at http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html.

Characteristics: 40768 cases, 10 attributes (0 nominal, 10 continuous).

Pole
This is a commercial application described in Weiss & Indurkhya (1995). The
data describes a telecommunication problem. No further information is
available.

Source: The data can be obtained in http://www.cs.su.oz.au/~nitin.

Characteristics: 9065 cases, 48 attributes (0 nominal, 48 continuous).

Fried
This is an artificial data set used in Friedman (1991) and also described in
Breiman (1996,p.l39). The cases are generated using the following method:

Generate the values of 10 attributes, X\,..., Xï0 independently each of which
uniformly distributed over [0,1]. Obtain the value of the target variable y using
the equation:
Y = 10sin(7tX,X2)+ 20(X3 -0.5)2 + 10X4 + 5X5 + a(0,l)

Source: Breiman (1996, p. 139). The actual cases used in our experiments can
be Obtained at http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html.

Characteristics: 40768 cases, 10 attributes (0 nominal, 10 continuous).

D2
This is a highly non-linear artificial data set with a strong discontinuity.

The values of the two attributes Xi and X2 are uniformly distributed reals over
the interval [0..15]. The value of the target variable is obtained using the
following generating function :

if X, >7.5thenF = 5xe /3 - lOxsin

else Y = sin(X,)
, Á Á J + 5x"}/x

Source: The actual cases used in our experiments can be obtained at
http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html.

Characteristics: 40768 cases, 2 attributes (0 nominal, 2 continuous).

Mv
This is an artificial data set with dependencies between the attribute values.
The cases are generated using the following method:

X\ : uniformly distributed over [-5,5]
X2 : uniformly distributed over [-15,-10]

http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html
http://www.cs.su.oz.au/~nitin
http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html
http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html

A.2. THE USED BENCHMARK DATA SETS 215

X3 : IF (Xi > 0) THEN X3 = green
ELSE X3 = red with probability 0.4 and X4=brown with prob. 0.6

X4 : IF (X3=green) THEN X4=X{+2X2
ELSE X4=X{/2 with prob. 0.3, and X4=X2I2 with prob. 0.7

X5 : uniformly distributed over [-1,1]
X6 : X(,=X4xz, where e is uniformly distribute over [0,5]
X-j : X7=yes with prob. 0.3 and X/=no with prob. 0.7
X8 : IF (X5 < 0.5) THEN X8 = normal ELSE X& = large
Xg : uniformly distributed over [100,500]
X\ o : uniformly distributed integer over the interval [1000,1200]

Obtain the value of the target variable Fusing the rules:
IF (X2 > 2) THEN Y= 35 - 0.5 X4

ELSE IF (-2 < X4 < 2) THEN Y = 10 - 2 X\
ELSE IF (X7 = yes) THEN Y = 3 -X1/X4
ELSE IF (X8 = normal) THEN Y = X6 + X\
ELSEy = X!/2

Source: http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html.

Characteristics: 40768 cases, 10 attributes (3 nominal, 7 continuous).

• Kinematics
This data set is concerned with the forward kinematics of an 8 link robot arm.
Among the existing variants of this data set we have used the variant 8nm,
which is known to be highly non-linear and medium noisy.

Source: DELVE repository of data.

Characteristics: 8192 cases, 8 attributes (0 nominal, 8 continuous).

• CompAct and CompAct(s)
The Computer Activity databases are a collection of computer systems activity
measures. The data was collected from a Sun Sparcstation 20/712 with 128
Mbytes of memory running in a multi-user university department. Users would
typically be doing a large variety of tasks ranging from accessing the internet,
editing files or running very cpu-bound programs. The data was collected
continuously on two separate occasions. On both occasions, system activity
was gathered every 5 seconds. The final dataset is taken from both occasions
with equal numbers of observations coming from each collection epoch.

System measures used:

1. head - Reads (transfers per second) between system memory and user
memory.

2.1 write - writes (transfers per second) between system memory and user
memory.

http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html

3. scall - Number of system calls of all types per second.
4. sread - Number of system read calls per second.
5. swrite - Number of system write calls per second .
6. fork - Number of system fork calls per second.
7. exec - Number of system exec calls per second.
8. rchar - Number of characters transferred per second by system read calls.
9. wchar - Number of characters transfreed per second by system write calls.
10. pgout - Number of page out requests per second.
11. ppgout - Number of pages, paged out per second.
12. pgfree - Number of pages per second placed on the free list.
13. pgscan - Number of pages checked if they can be freed per second.
14. atch - Number of page attaches (satisfying a page fault by reclaiming a

page in memory) per second.
15. pgin - Number of page-in requests per second.
16. ppgin - Number of pages paged in per second.
17. pflt - Number of page faults caused by protection errors (copy-on-writes).
18. vflt - Number of page faults caused by address translation.
19. runqsz - Process run queue size.
20. freemem - Number of memory pages available to user processes.
21. freeswap - Number of disk blocks available for page swapping.
22. usr - Portion of time (%) that cpus run in user mode.
23. sys - Portion of time (%) that cpus run in system mode.
24. wio - Portion of time (%) that cpus are idle waiting for block 10.
25. idle - Portion of time (%) that cpus are otherwise idle.

The two different regression tasks obtained from these databases are:
CompAct
Predict usr, the portion of time that cpus run in user mode from all attributes 1-
21.

CompAct(s)
Predict usr using a restricted number of attributes (excluding the paging
information (10-18)).

Source: DELVE repository of data.

Characteristics: Both data sets contain 8192 cases. For ComptAct we have 22
continuous attributes, while for CompAct(s) the cases are described by 8
continuous variables.

Census(16H) and Census(8L)
This database was designed on the basis of data provided by US Census
Bureau [http://www.census.gov] (under Lookup Access
[http://www.census.gov/cdrom/lookup]: Summary Tape File 1). The data were
collected as part of the 1990 US census. These are mostly counts cumulated at
different survey levels. For the purpose of this data set a level State-Place was

http://www.census.gov
http://www.census.gov/cdrom/lookup

A.2. THE USED BENCHMARK DATA SETS 217

used. Data from all states was obtained. Most of the counts were changed into
appropriate proportions.

There are 4 different data sets obtained from this database:
House(8H)
House(8L)
House(16H)
House(16L)

These are all concerned with predicting the median price of the house in the
region based on demographic composition and a state of housing market in the
region. The number in the name of the data sets signifies the number of
attributes of the problem. The following letter denotes a very rough
approximation of the difficulty of the task. For Low task difficulty, more
correlated attributes were chosen as signified by univariate smooth fit of that
input on the target. Tasks with High difficulty have had their attributes chosen
to make the modelling more difficult due to higher variance or lower
correlation of the inputs to the target.

Source: DELVE repository of data.

Characteristics: Both data sets contain 22784 cases. For House(16H) we have
16 continuous attributes, while for House(8L) the cases are described by 8
continuous variables.

• Algae
This is a group of small data sets that are used in some examples throughout
the thesis. This data comes from a real world problem that was used in the 3r

International Competition organised by ERUTDIT
(http:/ /www.erudit .de/erudit /activit ies/ ic-99/) . The data actually can be
regarded as 7 different regression problems as each case (described by 11
variables) as seven associated target values. As such we have divided the
original data into seven problems: Alga 1, Alga 2, ..., Alga 7. All have exactly
the same descriptive attributes the single difference being the goal variable
value of each case.

The data analysis task concerns the environmental problem of determining the
state of rivers and streams by monitoring and analysing certain measurable
chemical concentrations with the goal of inferring the biological state of the
river, namely the density of algae communities. This study is motivated by the
increasing concern with the impact human activities are having on the
environment. Identifying the key chemical control variables that influence the
biological process associated with these algae has become a crucial task in
order to reduce the impact of man activities. Water quality samples were
collected from various European rivers during one year. These samples were
analysed for various chemical substances. At the same time, algae samples
were collected to determine the distributions of the algae populations. The

http://www.erudit.de/erudit/activities/ic-99/

218 ANNEXA

dynamics of algae communities is strongly influenced by the external chemical
environment. Determining which chemical factors are influencing more this
dynamics is important knowledge that can be used to control these populations.
At the same time there is an economical factor motivating even more this
analysis. In effect, the chemical analysis is cheap and easily automated. On the
contrary, the biological part involves microscopic examination, requires trained
manpower and is therefore both expensive and slow. The competition task
consisted of predicting the frequency distribution of seven different algae on
the basis of eight measured concentrations of chemical substances plus some
additional information characterising the environment from which the sample
was taken (season, river size and flow velocity).

The used input attributes for all seven problems were:

season - The season when the sample was taken (winter, spring, autumn,
summer).
riversz - The size of the river (small, medium, large).
flowvl - The flow velocity of the river (low, medium, high).
maxPH - Maximum Ph during the periods of 3 month different measurements
where taken (continuous).
min02 - Minimum of oxygen (continuous).
MeanCL - Mean of CL (continuous).
meanN03N - Mean of N03N (continuous).
meanNH4N - Mean of NH4N (continuous).
MeanOrthophosphat - Mean of Orthophosphate (continuous).
meanTotalP04 - Mean of total P04 (continuous).
MeanCHLORO - Mean of Chlorophyll (continuous).

Source: 3rd International Competition organised by ERUDIT; can obtained at
http://www.erudit.de/erudit/activities/ic-99/.

Characteristics: 200 train cases + 140 test cases, 11 attributes (3 nominal, 8
continuous).

A.3. The Learning Systems Used in the Comparisons

In this thesis we have compared our RT system with other regression analysis algorithms.

In this section we describe very briefly these systems particularly the used versions and

where to obtain them.

• RT
This is the system that implements the ideas described in this thesis. The
version used in the experiments described in the thesis is version 4.0. RT is

http://www.erudit.de/erudit/activities/ic-99/

A3. THE LEARNING SYSTEMS USED IN THE COMPARISONS 219

written in C and we have binaries for Ultrix 4.2, SUN OS and Linux. We
intend to make RT available for research purposes. More information can be
obtained in the Web page http://www.ncc.up.pt/~ltorgo/RT or by contacting
the author, ltorgo@ncc.up.pt.

• CART
CART is a system that learns regression trees. We have access to Unix version
1.309 of CART. CART is a commercial product distributed by Salford Systems
(http://www.salford-systems.com).

• M5
M5 is able to induce model trees. Model trees consist basically of regression
trees with linear least squares polynomials in the leaves. We have access to a
Unix version of M5 gently provided by Prof. Ross Quinlan. The version used
in the experiments of this thesis is M5.1 [release 1].

• MARS
MARS is able to obtain adaptive regression splines. We have used in our
experiments Mars version 3.6 with bagging. We have obtained the source from
the DELVE repository.

• CUBIST
CUBIST is able to learn regression rules with linear least squares polynomials
in the consequent. In our experiments we have used release 1.01. CUBIST is a
commercial system distributed by RuleQuest (http://www.rulequest.com).

http://www.ncc.up.pt/~ltorgo/RT
mailto:ltorgo@ncc.up.pt
http://www.salford-systems.com
http://www.rulequest.com

Annex B

Experimental Results

This annex provides the full tables of results and further graphs of the experiments carried

out throughout the thesis.

B.4. Experiments with Tree Generation Methods

In this section we present further details concerning the experiments that compare methods

of generating sequences of pruned trees in the context of pruning by tree selection.

The following figure shows the average "true" error of the sub-trees obtained by each

method considered in our experiments. This experiment is described in Section 4.3.1.

221

222 ANNEX B

1.4
1.3­

1.2 ­
1.1 ■

1 ­
0.9 ■
0.8 ■
0.7 ­
0.6 ­
0.5 ­

0.4 ­

éTjr <&"

256 512

t ^ J? J? * ^
e

J ^

1.3 ­

1.2 ­

1.1

/vx/y ' • • • # ^
V #■ rf CT <*"

2048 4096

1.3 4
1.2 4
1.1 \

1 m
0.9 j l
0.8 ­ j l
0.7 4 1
0.6 4 1
0.5 H i
0.4 4 *

^ / <*» #
4 *

1.1
1

0.9
0.8
0.7
0.6
0.5
0.4

///// v ^ ^ & f * ^
e

0 ^" o*v #

The following tables show the complete results (average and best error) of all methods, for

each training set size.

256 cases LSS MCV ErrCpx MEL
Average Best Average Best Average Best Average Best

Ailerons 0.080 0.070 0.082 0.070 0.081 0.072 0.081 0.072
CompAct 50.324 18.205 72.996 18.343 49.373 18.309 49.125 18.304
2DPlanes 3.215 1.716 3.401 1.731 3.265 1.733 3.228 1.732

CompAct(s) 47.597 20.831 64.386 20.796 46.857 20.984 46.432 20.980
Elevators 33.963 30.153 33.241 29.617 34.553 29.556 34.488 29.323

Fried 11.780 10.332 12.015 10.283 11.965 10.470 11.920 10.463
Census(J6H) 2.67E4-9 2.37E+9 2.76E4-9 2.46E4-9 2.95E4-9 2.52E+9 2.94E4-9 2.50E4-9
Census(8L) 2.00E4-9 1.79E+9 2.06E4-9 1.84E+9 2.11E+9 1.90E4-9 2.10E+9 1.89E+9
Kinematics 0.057 0.050 0.057 0.050 0.058 0.050 0.058 0.050

Mv 20.132 4.271 20.914 4.262 17.026 4.261 17.163 4.261
Pole 559.222 299.807 523.845 303.654 496.340 309.796 539.218 307.199

B.4. EXPERIMENTS WITH TREE GENERATION METHODS 223

512 cases LSS
Average Best

MCV
Average Best

ErrCpx
Average Best

MEL
Average Best

Ailerons
CompAct
2DPlanes

CompAct(s)
Elevators

Fried
Census(I6H)
Census(8L)
Kinematics

Mv
Pole

0.067 0.059
37.161 14.759
2.237 1.318
35.521 17.521
29.896 27.218
9.852 8.837

2.38E+9 2.13E+9
1.83E+9 1.63E+9
0.051 0.047
15.709 3.224

411.722 220.457

0.068 0.060
40.686 14.722
2.360 1.379
37.401 17.525
29.126 26.225
10.048 8.845

2.46E+9 2.19E+9
1.88E+9 1.68E+9
0.051 0.047
15.456 3.222

398.819 214.135

0.068 0.061
36.286 14.782
2.313 1.339
35.121 17.723
30.161 26.761
9.991 8.986

2.65E+9 2.35E+9
1.95E+9 1.76E+9
0.052 0.047
13.486 3.226

371.378 222.494

0.068 0.061
35.805 14.781
2.261 1.341
34.582 17.701
30.091 26.554
9.953 8.980

2.64E+9 2.33E+9
1.94E+9 1.76E+9

0.052 0.047
13.612 3.226

396.033 221.853

2048 cases LSS
Average Best

MCV
Average Best

ErrCpx
Average Best

MEL
Average Best

Ailerons
CompAct
2DPlanes

CompAct(s)
Elevators

Fried
Census(16H)
Census(8L)
Kinematics

Mv
Pole

0.053 0.047
21.961 10.313

1.42 1.037
20.043 11.344
22.555 20.886
6.687 6.067

2.00E+9 1.81E+9
1.43E+9 1.31E+9
0.033 0.03
12.305 2.171
194.617 85.68

0.053 0.047
20.674 10.296
1.448 1.065
19.086 11.361
21.831 20.116
6.797 6.056

2.02E+9 1.85E+9
1.44E+9 1.32E+9
0.034 0.03
11.661 2.171
190.025 85.113

0.055 0.048
21.404 10.297
1.528 1.055

19.811 11.355
22.074 20.032
6.724 6.125

2.16E+9 1.98E+9
1.50E+9 1.39E+9
0.032 0.03
10.867 2.171
168.457 86.006

0.054 0.048
21.02 10.295
1.454 1.059

19.283 11.353
22.045 20.062
6.704 6.122

2.15E+9 1.98E+9
1.49E+9 1.39E+9
0.033 0.03
10.867 2.171
181.14 86.027

4096 cases LSS
Average Best

MCV
Average Best

ErrCpx
Average Best

MEL
Average Best

Ailerons
CompAct
2Dplanes

CompAct(s)
Elevators

Fried
Census(I6H)
Census(8L)
Kinematics

Mv
Pole

0.048 0.042
17.096 7.727
1.252 1.015
14.716 7.759
19.767 18.323
5.416 4.906

1.71E+9 1.60E+9
1.27E+9 1.18E+9
0.019 0.01
11.651 1.99

128.619 44.118

0.048 0.043
15.79 7.729
1.263 1.02
13.971 7.764
19.258 17.857
5.493 4.882

1.72E+9 1.63E+9
1.27E+9 1.20E+9

0.02 0.01
11.066 1.99
126.741 44.071

0.05 0.044
16.505 7.726
1.347 1.016
14.515 7.763
19.52 17.833
5.394 4.917

1.78E+9 1.72E+9
1.31E+9 1.24E+9
0.017 0.01
10.318 1.99

107.312 44.131

0.05 0.044
16.264 7.726
1.281 1.016
14.023 7.763
19.498 17.874
5.382 4.916

1.78E+9 1.72E+9
1.31E+9 1.25E+9
0.017 0.01
10.318 1.99
116.94 44.131

224 ANNEX B

B.5. CART tree-matching vs. Our proposal

This section presents the full results of the comparison of our tree-matching method with

the strategy used in CART {cf. Section 4.3.2.1). The table presents the estimated

difference in MSE between the tree selected using CART matching and the tree selected

using our method. Positive values indicate that the MSE associated with the choice of

CART method is larger than ours. Details concerning the information in these type of

tables can be found in Appendix A. 1.

! 256 512 1024 2048 4096
Abalone \ 0.042 0938| 0.038 0.958] 1 ! j |
2Dplanes | 0.035 0.198| 0.000 0.829 1 0.029 0.075! ! 0.000 10.727 0.000 0.338

Pole 1 0.240 09221 -4.026 0.495 1 5.306 0.3771 j
Elevators 0.034 0.971 -4.263 0.425 "T-5.272 0.33 lj 2.831 0.377J 1 !

| i
Ailerons -0.027 0.3Î3i 0.000 0.952 | 0.017 0.054) 0.007 0.328J | \

Mv 0.000 [0.351! 0.021 0.351 | 0.000 1.0001 0.000 11.000 ; 0.000 1.000
Kinematics j 0.012 J0.27Ï] 0.006 0.576 i 0.007 0.323! 1 1 j
CompAct | -0.501 0.3871 0.159 0.285 | 0.095 0.327 \

CompAct(s) j 0.464 0.330J 0.326 |0.265 I 0.410 0.121 !
\ \

Census(16H) 4.57E+4 0 9 9 7 ^37E+5]0.995 (9.78E+7 0.256 -4.00E+7J0.129 J5.00E+710.124
Census(8L) 1.50E+8I0.1Î9Î 5.33Ê+7ÎOTÏ93 ÇÏT2E+T 0.673 -5.82E+7|0.553 |-3.00E+6)0.243|

tried | 0.012 [0.9511 0.000 [0.746 1 0.000 |0.905 0.000 10.828 0.000 Í0.813

B.6. Comparison of Methods for Generating Pruned

Trees

In this section we present the tables with the full results concerning the comparison of

different methods of generating sequences of sub-trees {cf. Section 4.3.4.1).

B. 6. COMPARISON OF METHODS FOR GENERATING PRUNED TREES

Table B.l. Estimated MSE difference between MEL and LSS using ChiEst{95%).

256 512 1024 2048 4096
Abalone j 0.139 Í0.684Í ' -0.069 10.803 1 i
IDplanes ! 0.117 10.087; 1 0.025 0.234 0.064 0.002 ++! -o.oii 0.386 0.008 0.102J

Pole ~J~7~914 jo.841 j -2.256 0.746 -2.477 0.786 1
Elevators ^JJ^IOJETT' -0.760 0.539 -0.300 0.877 -0.961 0.278
Ailerons ! Õ.ÕÓ1 J0.48l| 0.002 0.323 0.002 10.573 0.001 0.610

Mv 1 0.146 10.6231 0.063 0.200 0.000 jo.ooo ++ 0.006 0.351 \ 0.000 0.000]++
Kinematics 0.000 0.785 0.000 0.871 0.000 0.772
CompActf -0.635 0.336 0.027 0.886 0.112 0.642 Í

CompAct(s) | -1.254 0.258 -0.150 0.820 -1.053 0.013 -
Census(16H)\l.l4E+S 0.068 2.82E+8 0.030 + 2.52E+8 0.054 1.40E+8 0.067 1.72E+8 0.2051
CensusWTr 1.06E+7ÍÕ.874 1.35E+8 0.113 2.48E+8 0.138 9.38E+7 0.094 3.72E+7 0.807!

, — i — _
Fried \ 0.186 Í0.Õ95 0.083 10.656 -0.039 0.723 0.016 0.891 0.106 0.333!

Table B.2. Estimated MSE difference between ErrCpx and LSS using ChiEst(95%).

256 512 1024 2048 4096
Abalone ! 0.077 ÍÕ.960! 1 -0.033 0.981 1
IDplanes j 0.129 (0.074 1 0.025 0.234 0.059 0.003 ++ -0.008 0.530) 0.016 °-03ii±.

Pole 1.941 10.839 -3.883 0.596 0.834 0.942 f |
Elevators ! 2.903 10.359 -0.539 0.627 -0.271 0.890 -1.269 0.220
Ailerons j 0.002 10.255 0.002 0.337 0.001 0.588 0.001 0.610 î

Mv 0.146 10.623 0.063 0.200 0.000 0.000 ++ 0.006 0.351 0.000 0.000!++
Kinematics \ 0.000 0.977 0.000 0.833 0.000 0.514 1
CompÃct 1 -0.635 0.336 -0.029 0.870 0.112 0.642 _ i

CompAct(s) ! -1.263 0.253 -0.216 0.735 -1.044 0.013 - Í

Census(16H)\l.\4E+8 0.068 2.82E+8 0.030 + 2.49E+8 0.057 1.85E+8 0.021 + S 1.77E+8 0.211
Census(8L) |-1.51E+7|0.820 1.45E+8 0.091 2.45E+8 0.145 8.73E+7 0.136 (8.14E+6 0.948

Fried | 0.172 0.104 0.083 0.656| -0.039 0.725 0.032 0.766 j 0.104 0.327

Table B.3. Estimated MSE difference between MEL and MCV using ChiEst(95%).

256 512 1024 2048 4096
Abalone 0.320 10.116 0.137 10.748
IDplanes -0.022 10.648 -0.034 0.095 0.005 0.730 0.012 0.015 + 0.002 0.675

Pole -37.508 0.271 -0.955 0.894 6.538 0.420
Elevators 3.950 0.321 0.160 0.865 -0.985 0.524 -0.442 0.474
Ailerons 0.002 0.259 0.002 0.213 0.002 0.403 0.000 0.898

Mv 0.043 0.844 -0.263 0.327 0.000 0.000 ++ 0.006 0.351 0.000 0.000 ++
Kinematics -0.001 0.397 0.001 0.295 0.000 0.767
CompAct -0.696 0.285 0.195 0.101 0.330 0.407

CompAct(s) 0.309 0.386 To . 109 0.817 0.079 |0.721
Census(I6H) 1.92E+7 0.702 |l.l8E+8 0.002 ++ 1.05E+8 0.186 1.89E+8 0.005 ++ 9.01E+7 0.292
Census(8L) -3.00E+7 0.576 1.46E+8 0.084 4.33E+7 0.601 1.35E+8 0.169) 9.30E+7 0.161

Fried 0.271 10.055! -0-012 0.945 i -0.047 0.495! | 0.124 0.312! 0.159 0.126

226 ANNEXB

Table B.4. Difference in error (MSE) between ErrCpx and MCV using ChiEst(95%).

256 512 1024 2048 4096
Abalone j 0.258 0.3131 0.173 0.626! j
ÏDplanes j -0.010

Pole 1 -37.481
0.844J -0.034 0.095!] 0.000 10.993 Í 0.016 0.020 + ! 0.010 (0.130 ÏDplanes j -0.010

Pole 1 -37.481 0.2711 -2.581 |0.743| | 9.848 0.164! ! I !
Elevators j 3.944 [0.322| j 0.381 J0.727| j -0.956 0.538; i -0.750 10.198
"Ailerons | 0.003 Í0.Õ7ÍJ j 0.002 Î0.223] "~J"0.ÕÕ2 0.415! j 0.000 10.898 |

Mv S 0.043 I0.844J | -0.263 [0.327] j 0.000 0.000!++! 0.006~]0.351 I 0.000 10.000!++
Kinematics j -0.001 |0.315j 1 0.001 0.2991 j 0.000 0.829! \ \
CompAct | -0.696 |0.285J 0.138 0.246 1 0.330 0.407 \ \

CompÃct(s) ! 0.301 fo.390| 0.042 0.928 j 0.088 0.685
'•■

Ceniuif 76WJ j 1.92E+7|0.702| 1.19E+8 J0.0021++11.02E+8 0.200 2.35E+8 0.000 ++! 9.58E+7 0.259
Census(8L) -3.45E+7 0.517 Ï.56E+8 J0.059J (4.08E+7 0.625 1.29E+8 0.194 16.40E+7 0.223

hied j Õ.257 10.078) -0.012 10.945; -0.048 0.508! ! 0.141 0.237 | 0.157 0.118

Table B.5. Difference in Prediction error (MSE) between MEL and LSS using 5-fold CV.

256 512 1024 2048 4096
Aèa/õnTi-b.099 0.689) 0.251 0.280! I I i 1
ÏDplanes j 0.047 0.276Î 0.023 0.167! 1 0.041 !0.023 + 0.025 0.013 + ! 0.005 Í0.080

Pole | -3.353 0.388 3.117 0.792! 1 26.696 0.365
Elevators 1 -3.680 0.496 0.411 0.694 ! -0.650 0.867 j -1.806 0.175 _ i
Ailerons j -Ò.0Õ2 S0.729 0.004 0.255! | 0.000 10.902 ! 0.000 0.968 i

Mv TTÕ.088 jO.351 -0.009 0.673] j 0.000 1.000 | 0.000 1.000 0.000 1.000
Kinematics \ 0.001 10.133 0.000 0.541! | 0.000 0.849 j
CompAct \ -0.317 Í0.517J -0.268 0.234]" | 0.217 0.298 \

CompAct(s) | 0.221 Í0.78T) 0.181 Õ588! f~4X5T4~ 0.398
Census(16H) 12.16E+810.073 \ 3.43E+8 0.036! + J1.12E+8!0.142! 1.64E+8 0.143 |7.61E+7 0.4931
Census(8L) 11.29E+8 !0.43ll 4.34E+7 0.380! |2.85E+8!0.088; 1.73E+8 0.083 I2.17E+8 UÏÏ06Î

Fried \ 0.008 !Õ.968| 0.164 0.176! ! -0.018 !0.904! ; 0.004 0.951 1 0.093 0.261

Table B.6. Difference in error (MSE) between ErrCpx and LSS using 5-fold CV.

256 512 1024 2048 4096
Abalone | -0.099 |0.689j | 0.251 |0.280] | j |

ÏDplanes 0.047 !0.276 | 0.023 |0.167| | 0.041 (0.023 + | 0.025 0.013 + 0.005 !0.080
Pole " p 5 3 ^ 0.388 | 3.117 10.792! ! 26.696 |0.365| Í

Elevators j -3.680 0.496 | 0.411 0.694) | -0.650 10.867 j -1.806 0.175 |
Ailerons 1 -0.002 0.729 ! 0.004 0.255! j 0.000 ÍÕ.9Ò2] 0.000 0.968 {

Mv 1 -0.088 (0.351 | -0.009 0.673 0.000 ! 1.000! 0.000 1.000 0.000 1.000
Kinematics j 0.001 0.133 I 0.000 0.541! ! 0.000 0.849
CompAct \ -0.317 0.517! j -0.268 0.234! ! 0.217 0.298 [

CompAct(s)l 0.221]0.78l| | 0.181 0.588] T a 5 1 4 0.398
Census(16H)\ 2.16E+8 [0.073! 13.43E+810.036 + J1.12E+8 0.142 (1.64E+8 0.143 7.61E+7 0.493
Census(8L) 1.29E+8 0.4311 ! 4.34E+710.380 " |2 .85E+8 0.088 I1.73E+8 0.083 2.17E+8 0.106

Fried | 0.008 0.968! ! 0.164 iO.176 ! -0.018 !0.904! ! 0.004 0.951 0.093 0.261

B.7. TUNING OF SELECTION METHODS 227

Table B.7. Difference in Prediction error (MSE) between MEL and MCV using 5-fold CV.

256 512 1024 2048 4096
Abalone 0.179 10.410; 0.017 0.999

■ ' ! i i
IDplanes 0.060 ÍÕ.174J -0.041 JO.278 -0.025 |0.153| | 0.007 0.4261 j Õ.Ò01 (0.803 j

Pole 1 12.210 Í0.0821 S 6.010 |0.564 24.916 10.372! j ! ! j
Elevators \ 1.059 [0.1781 j -0.924 jO.229 1.600 10.608! 1.340 J0.627J
Ailerons \ 0.008 !Õ.0Ò4|++j 0.003 10.403 ! 0.002 tO.lSVi 0.ÒÕ0 iÕ.892!

Mv j -0.042 |0.109| Î -0.321 [0.306 \ -0.004 10.351) 0.001 0.351! : 0.000 11.000
Kinematics 1 0.000 [0.923! 0.000 10.950 ; 0.002 0.118 I ! '
CompAct 1 0.235 j0.748| 0.227 jO.345 | 0.378 0.469 I I i 1

CompAct(s) \ 0.970 |0.286| 0.082 10.888 -0.658 0.373 | Ï j 1 j

Census(16H)\ 6.82E+7 0.492 1.67E+810.138 1.47E+8 0.045 + 2.53E+8 !0.004j++[1.37E+8 [0.162]
Census(8L)\ 1.95E+8 0.2961 2.15E+810.329 7.45E+7 0.322J 8.09E+710.42ÒJ] 1.75E+8 0.128J

Fried | 0.275 10.134 0.367 10.022 + -0.008 0.952| -0.042 10.588! | 0.022 0.821!

Table B.8. Difference in Prediction error (MSE) between ErrCpx and MCV using 5-fold

CV.

256 512 1024 2048 4096
Abalone I 0.211 0.288: -0.078 0.8681 : t i ;
IDplanes | 0.058 10.181 1 -0.037 (0.1801 ! -0.023 0.215! 0.002 0.755; ! -0.001 0.712!

Pole 1 11.836 10.097! j 2.745 0.679! ! 9.179 0.389 |
Elevators ! 4.708 !0.300[-0.729 0.368 | 2.331 0.479 1.097 0.478 !
Ailerons 1 0.005 10.019 + 0.002 0.510| ! 0.002 0.438 -0.001 0.549 i !

Mv \ -0.042 10.109 -0.321 0.306! i -0.004 0.351 0.001 0.351 I 0.000 1.000̂
Kinematics 0.000 10.558 0.000 0.932 1 0.000 0.956 i

CompAct 0.603 10.377 0.056 0.854 | 0.386 0.439 |
CompAct(s) | 0.221 iO.743 -0.053 0.933 ! -0.669 0.362 |

Census(16H)\7.20E+7 0.443 1.83E+8 0.087 11.46E+8 0.055! 2.54E+8 0.002 ++ 1.55E+8 0.085
Census(8L) 1.85E+8 0.312 2.18E+8 0.322 15.49E+7 [0.402! 1.05E+8 0.315 J1.60E+8 0.128T

Fried 0.427 0.015 + 0.444 0.009 ++! 0.001 10.996) -0.009 0.910 1 0.002 0.980!

B.7. Tuning of Selection Methods

This section present the tables of results concerning the comparisons of different

approaches to tuning the pruning parameters of the selection methods we have considered

in Section 4.3.4.2.

228 ANNEX B

Table B.9. Difference in MSE between ChiEst(95%) and ChiEst tuned by 5-fold CV.

! 256 512 1024 2048 4096
Abalone \ 0.000 1.0001 1 0.333 (0.392 I 1 i l l ! 1
2Dplanes j 0.031 0.367 1 0.005 Í0.Í3Õ (-0.009 0.390 j -0.008 0.289J ! -0.001 10.351

Pole j 15.421 10.088) | 14.748|07Ï28 5.123 0.364 j ! 1 1
Elevators | -4.528 |0.305 j -0.774 0.325 1 -2.905 0.339 j 0.518 0.201 1 . i J .
Weroni j 0.001 0.675 j | -0.003Ho.334 1 -0.001 0.747 0.000 1.000 !

Mv -^y~Qro55^ 0.181! 1 -0.00YlO936 l o õ o o j 1.000 0.002 0.351 Q - ^ Q Q T J J ^

Kinematics | 0.001 0.194J ! 0.000 i 1.000! 1 0.000 1.000 J. _ J_ J _
CompAct J -0.501 0.175) | -0.284j0.324 0.026 0.391 i . i i

CompAct(s) \ 0.603 0.151 | -0.187 (0.127 0.631 0.472 i 1 1
Cenrasf 76//j|-2.94E+7 0.195[!-6.51E+7|0.192 -4.40E+7 0.351 -2.06E+6|0.435 1-1.70E+7 0.391]
Census(8L) J6.09E+7 0. i 741"" Í-1.79E~+8la265 -9.25E+7 0.544 3.84E+6 [0.206 (1.18E+6 0.391

/r«eJ j -0.179 0.347; | -0.052 10.687 -0.043 0.514] ! 0.008 jO.859 | -0.002 0.7571

Table B.10. Difference in MSE between m(2) and m tuned by 5-fold CV.

256 512 1024 2048 4096
Abalone ! -0.029 [l.OOOj \ -0.176 [0.6111 | ! ! i !
IDplanes \ 1.224 |0.000j++f 0.874 JO.OOO ++I 0.715 0.000J++I 0.450 JO.OOO ++ 0.166 0.000 ++

Pole \ -9.573 |0.Î98| -14.776l0.537 | 0 0 0 5 Õ997TT~
Elevators | -4.426 [Õ.316J 0.181 [0.791 -0.180 0.8301 ! -0.988 0.216
Ailerons | -0.024 |0.557 0.021 10.321 -0.001 0.743! j 0.007 (0.716

Mv j 5.414 JO.OOO ++ 4.273 jo.000 ++ 2.333 0.003}++; 1.271 0.000 ++ 1.096 0.000 ++
Kinematics I 0.006 jo.000 ++ 0.065 S0.007++ 0.055 0.063J i
CompAct j 5.328 10.004 ++ 1.373 (0.034 + 3.699 ^°ib±L i

CompAct(s) \ 6.70610.007 ++ 2.174 (0.022 + 3.907 0.0051++| '
Census(16H)\ 2.07E+810.047 + 1.79E+8J0.100Í 3.12E+8 0.080| 11.61E+8 0.060 1.56E+8J0.336
Census(8L) |-1.42E+7|0.127 -5.Õ5E+7 0.2701 2.68E+8 0.042| + [2.11E+8 0.190 2.4ÍE+8JÕ.Í93

Fried | -0.220 |0.202 -0.142 0.4181 0.470 0.0011++! 0.432 lO.OOO ++ 0.500 10.002 ++

Table B.ll . Difference in MSE between MDL(0.1,0.5) and MDL tuned by 5-fold CV.

256 512 | 1024 2048 4096
Abalone^, 0.ÕÕ6 |0.910J 0.154 0.198| j 1

IDplanes j 1.375 (0.010 + 0.621 (0.0041++ 0.153 0.0181 + | 0.116 |0.005 ++ 0.000 0.004 ++
I'ole j -1.483 0.790 -7.520 [0.2971 16.409 0.210, t

Elevators 1 -0.085 0.809 -0.161 0.8411 -2.544 0.408 I 4.793 (0.084
Ailerons -0.026 0.315 0.020 10.1491 0.053 0.131 j j o . ' b ^ 7 j a ^

Mv j 5.811 0.001 ++ 1.407 0.05 lj 0.731 0.003I++I 0.226^|Õl84 0.000 0.153
Kinematics ! -0.006 0.572 -0.004 10.810 0.000 0.765! j T ~
CompAct | 10.139 0.006 ++ 4.963 0.023 + 1.502 Õ.3Õ2J | j

^ ^ . ^ . . ^ ^ ^ 0.044 + 2.228 0.139 2.256 0.299! 1
Census(16H)\7.05E+7 0.052 7.18E+6 0.923! 3.72E+7 0.1471 2.44E+5 (0.988 1.85E+710.653
Census(8L) (4.51E+7 0.067; \ 3.60E+7 0.258! 8.58E+7 0.256! 8.62E+7J0.158 9.51E+7 (0.070

Fried ! 1.937 i0.066| 1.165 0.004;++! 1.470 10.001++! 1.558 (0.000++: 0.988 10.000!++

http://-0.003Ho.334
http://-0.284j0.324
http://-14.776l0.537

B.8. COMPARISON OF METHODS OF EVALUATING A TREE 229

B.8. Comparison of Methods of Evaluating a Tree

Table B.12. Difference in error (MSE) between 5-fold CV and m estimates tuned by 5-CV.

256 512 1024 2048 4096
Abalone \ 0.174 10.084 -0.361 10.209 1 f | ! !
2Dplanes 1 -0.045 10.407 0.008 10.844 0.005 10.667; 0.011 0.074 j 0.005 0.168

Pole 1-0.485 0.897 -13.641 0.414 -0.942 0.819
Elevators j -0.729 0.173 2.133 0.648 ! 4.230 0.051. 2.370 0.511
Ailerons | 0.006 0.498 -0.002 0.795 j -0.001 0.436! 0.000 10.884

Mv -0.208 0.144! -0.179 0.043 - -0.054 0.036! - -0.025 0.017 - ! -0.006 0.236
Kinematics | -0.010 0.6081 0.005 0.725 j 0.000 0.363 1 i
CompAci]_ 0.782 0.108 [0.136 0.209 I 0.045 0.626

CompAct(s) \ 0.005 0.991 -0.153 0.396 ! -0.129 0.764 j
Cenmy(76W;!-4.99E+7 0.2341 -9.80E+7 0.218 19.34E+7 0.417) -4.97E+7 0.631 I-5.71E+7 0.624
Census(8L) [-1.24E+8 0.466! -7.23E+6 0.971 \ 2.58E+7 0.577 -4.14E+7!0.453 S-3.29E+6

— i — .-
0.778

Fr/eJ -0.279 Î0.243: -0.153 0.394 ! 0.122 0.133 0.044 0.106 | 0.036 0.341

Table B.13. Difference in error (MSE) between 5-fold CV and %2 estimates (CL=95%).

256 512 1024 2048 4096
Abalone 1 0.124 |0.562 j -0.320 0.518 ! 1 !
ÏDplanes \ -0.006 10.755 | 0.023 0.424 0.012 0.160| -0.055 o.oooj - 0.008 0.075

Pole 1 -5.129 J0.689| j -3.137 0.785 -10.243 0.121! 1 I
Elevators j 3.624 10.417] | 3.014 0.518 7.164 0.023 j + 2.858 0.430 [
Ailerons j 0.013 0.198] Õ.0ÕÍ 0.577 -0.001 0.782 -0.002 0.198 I

Mv j -0.071 iÕ.098; [_ 0.000 1.000 0.000 0351! 0.000 0.974 ! 0.000 1.000
Kinematics j -0.001 |o.597| j 0.000 0.933 0.000 0.8241 j

CompAct j 0.393 0.513| | 0.449 0.167 -0.123 0.5461
CompAct'(s) j -0.782 B.574; 1 -0.410 0.498 -0.876 0.3491

Census(16H) -9.11E+7 0.216]Tl4E+8 0.381 1.20E+8 0.257 5.29E+7 0.322 -1.77E+5 0.998
Census(8L) j-1.68E+8Í0.349| [2.24E+8 0.172 3.16E+7 0.763 -7.65E+7 0.301 -1.16E+8 0.333

Fried \ 0.195 10.228^ ! 0.Î48 0.281 0.013 0.8Õ9! -0.110 0.177 -0.051 0.174

230 ANNEX B

Table B.14. Difference in error (MSE) between 5-fold CV and M D L tuned by 5-fold CV.

256 512 1024 2048 4096
Abalone 0.025 1.000) -0.227 0.5291 1 ! 1 ! 1

2Dplanes -0.744 0.0011- -0.234 0.009! - -0.145 0.000; - ! -0.049 ^0.040 - I 0.004 10.455 j
Pole 9.924 0.159 2.745 0.757] -3.668 0.675Í | j 1 |

Elevators 5.247 0.415! 3.169 0.605! 1.862 0.700 | 0.212 0.920 ! 1 1
Ailerons -0.002 10.788) -0.032 0.152! -0.031 0.331 | -0.012 0.241 ! j |

Mv -1.192 JO.OIOJ — -0.495 0.001 - -0.044 0.173 | -0.011 0.233 | 0.000 [0.188
Kinematics 0.000 10.938 j -0.002 0.864 0.001 0.473 i I |
CompAct -5.562 10.009 - -1.196 0.056 -2.409 0.083 [

CompAct(s) -5.106 10.018 - -3.405 0.002 - -3.900 0.033 - |
Census(16H) -6.89E+7Í0.157 1.01E+8 0.413 1.04E+8 0.290 -3.00E+6 0.944 -2.36E+7I0.177]
Census(8L) -3.69E+7|0.819i 1.14E+8 0.488 -7.09E+7 0.488 -1.22E+8 0.129 -1.80E+8Í0.129

Fried -0.149 0.320! -0.354 0.319 ! -0.535 0.084 -0.399 0.015 - i -0.312 10.001 -

B.9. Comparisons with Other Pruning Algorithms

This section presents the results of comparing our pruning proposals with existing pruning

algorithms.

Table B.15. Difference in error (MSE) between LSS+5CV and C A R T pruning.

2f
0.025

56 512 1024 2048 4096
Abalone

2f
0.025 l.OOOl | -0.194 10.627 | i ; i

IDplanes j -0.080 0.149 j -0.029 |0.224 | -0.072 0.004 - | -0.024 0.072 ; 0.002 0.581
Pole I 3.486 0.352 4.175 0.736 I -16.266 0.369! ! !

Elevators \ -0.002 0.997 | 3.657 10.503 j 5.191 10.037 + ; -0.781 0.480)
Ailerons \ 0.009 0.374 -0.003 |0.130 T -0.003 0.306 0.000 10.982 j

Mv 0.079 0.351 -0.012 0.754 f 0.000 1.000 I 0.000 "j 1.000 I 0.000 1.000
Kinematics -0.002 0.121 0.000 0.966 | 0.001 0.331! I j
CompAct 0.449 0.265 0.281 0.423 ! -0.320 0.108! j I

CompAct(s) 0.064 0.885 -0.374 0.222 0.115 0.817 1

Census(]6H) -2.20E+8 0.064 -3.58E+8 0.015 - -2.09E+8 0.119 (-1.25E+8 0.285 -1.44E+8 0.159
Census(8L) -2.68E+8 0.163 -9.93E+7 0.246 I-2.48E+8 0.108 _J-L40E+8|0.008 - I-2.00E+8 0.103

Fried \ -0.172 0.187] -0.188 Í0.482 j 0.0ÒÕ 0.998 | -0.044 (0.571 | -0.082 0.250

B.9. COMPARISONS WITH OTHER PRUNING ALGORITHMS 231

Table B.16. Difference in error (MSE) between LSS+5CV and RETIS pruning.

256 512 1024 2048 4096
Abalone j -0.296 IO.I88Í -0.628 0.034} - ; 1 1 ! 1 _ L _
2Dplanes \ -0.Q0Î 0.975! -0.077 0.004 - -0.090 O.OO4"; - j -Õ.069 10.000] - ; -Õ.Õ40 JÕ.006Í -

Pole ! -0.513 IÕ.892Í ! -6.591 0.597 | -28.346 0.361 :
1 1 '■ i !

Elevators Í 0.467 J0.699! | 4.160 0.460 4.909 0.029 i + 1.507 10.705! 1
Ailerons j 0.011 0.319! | -0.001 0.749 -0.007 0.237! -0.001 10.557 j i

Mv | -0.Ò91 0.311| põTÍóT" 0.028 - -0.055 0.008 - -0.020 10.039 - | -0.006 0.2361
Kinematics 1 -0.003 Í0.095I 0.000 0.868 -0.003 10.082 ! { |

CompAct 1 0.446 Í0.334 J 0.229 0.415 -0.179 (0.192 i | !
j. !..

CompAct(s) i -0.319 0.645 j -0.080 0.754 -0.119 (0.876 1 j
j i

C«m/.s(76/i)|-3.54E+8 0.028 - J-2.98E+8 0.020 - -2.84E+8I0.088! -2.44E+810.061 -2.45E+8|0.239l
Census(8L) -1.66E+8 0.335 -1.68E+7 0.933 -2.84E+8Í0.059; -2.61E+8I0.085 -2.32E+810.110!

Fried -0.104 IÕ.640 -0.246 0.016 - -0.076 IO.555! -0.060 10.480 -0.111 [0.1571

Table B.17. Difference in error (MSE) between LSS+5CV and CORE pruning.

256 512 1024 2048 4096
Abalone \ 0.521 Í0.282; 0.182 0.479 i Í

IDplanes \ -0.468 0.000 - -0.206 0.003 — -0.110 10.004 - -0.056 0.001 - 1 -0.022 0.022 -

Pole | -4.364 (0.509! 1.775 0.841 ! -25.617 10.187
Elevators \ 0.558 0.505 2.600 0.613 4.039 (0.175 4.544 0.278
Ailerons -0.013 0.225 -0.003 0.259 -0.005 0.158 -0.002 0.264

Mv -1.056 0.014 - -0.677 0.066 -0.299 0.035 - -0.099 0.017 - -0.072 0.024 -

Kinematics 0.000 0.628 -0.003 0.336 0.000 0.570
CompAct -2.746 0.014 - -1.189 0.041 - -1.259 0.029 -

CompAct(s) | -2.362 0.152 -0.801 0.234 -0.598 0.349 j
Census(16H)\-5.27E+7 0.296: Í4.84E+7 0.695 2.85E+6 0.923! -9.61E+6!0.806 1-1.58E+6 0.975
Census(8L) (-1.85E+6 0.991! (1.79E+8 0.294 -7.08E+710.504 -8.80E+7 0.151 " T L 5 1 E + 8 0.191

Fried | -0.096 0.523! | -0.200 0.389 -0.239 (0.157! -0.203 0.060 -0.188 0.002 -

Table B.18. Difference in error (MSE) between LSS+ChiEst(95%) and CART pruning.

256 512 1024 2048 4096
Abalone 1 -0.098 0.9051 | 0.126 0.907
IDplanes \ -0.074 0.218 s -0.051 0.028 - -0.084 0.001 - -0.031 0.015 - -0.005 0.089

Pole 8.615 0.509! 7.311 0.495 -6.023 0.710
Elevators -3.626 0.423! j 0.643 0.644 -1.972 0.234 -3.639 10.365
Ailerons -0.004 0.154) j -0.004 0.046 - -0.002 0.539 0.002 0.540

Mv 0.151 0.155 j -0.012 0.754 0.000 0.351 0.000 0.974 0.000 1.000
Kinematics 0.000 0.969) j 0.000 0.961 0.001 0.494
CompAct] 0.056 0.938) j -0.168 0.572 -0.197 0.571 |

CompAct(s) i 0.846 0.608) j 0.036 0.956 0.991 0.223 J
C«isíts(76//)j-1.29E+8!0.268Í (-4.72E+8 0.067 -3.29E+8 0.016 - -1.78E+8 ÕXI78T -1.44E+8 0.007 -

Census(8L) -9.99E+7 0.2841 ~Î3T23É+8 0.056 -2.79E+8!0.104 -6.31E+7)0.326| -8.39E+7 0.569
Fried I -0.367 ^0.049; - ! -0.336 (0.196! | -0.013 |0.916| | 0.066 I0.344! -0.030 10.6641

232 ANNEX B

Table B.19. Difference in error (MSE) between LSS+ChiEst(95%) and RETIS pruning.

256 512 1024 2048 4096
Abalone j -0.419 0.181 | -0.308 0.6541 ! ! | I 1 I I
IDplanes Tom5 (0.890 j . 0 0 9 9 0.002Í-- -0.102 O.OOl! - i -0.014 (0.113! | -0.047 10.002; -

Pole j 4.615 |0.752 | -3.454 10.7961 (-18.103 0.525 (j ; | (
Elevators \ -3.157 (0.387 | 1.146 [0.480] | -2.255 0.353! rT3lo~1a4T3
Ailerons j -0.001 (0.732 | -0.002 J0.562J j -0.006 0.338> j 0.001 10.814 i

Mv j -0.019 |0.852[(-0.164 10.028] - | -0.055 (0.008j -- j -0.020 [0.018 - j -0.006 (0.236!
Kinematics j -0.002 (0.4651 0.000 J0.939J j -0.002 (0.205)
CompAct 0.053 |0.859i -0.221 0.145] j -0.056 (0.819)

CompAct(s) p 0 4 6 3 [Ò.784 0.330 J0.594Í | 0.757 [0.122]
Census(16H) -2.63E+8|0.06l| -4.12E+8J0.063] |-4.04E+8l0.042| - (-2.97E+8 0.020 - -2.45E+8 0.167
Census(8L) 12.36É+6(0.973 j -2.41E+8|0.027| - j-3.15E+8(0.078j -1.85E+8 0.272 -1.16E+8 0.524!

Fried (-0.299 !0.065(-0.394 Iò.058> | -0.089 (0.402! (0.050 0.463 i -0.060 0.488;

Table B.20. Difference in error (MSE) between LSS+ChiEst(95%) and CORE pruning.

256 512 1024 2048 4096
Abalone 0.397 10.5411 0.503 0.304! j

2Dplanes -0.462 10.000 - -0.229 0.003 j -- -0.122 0.002 (- -0.001 0.904 -0.030 0.005 -
Pole 0.765 [0.953 4.912 0.557) -15.374 0.302|

Elevators -3.066 Í0.409Í -0.414 0.753! -3.124 0.3261 1.686 0.061
Ailerons -0.026 0.059 -0.004 0.1181 -0.004 0.0421 - 0.000 0.847

Mv -0.984 I0.018) - -0.677 0.066 -0.299 0.0351 - -0.099 0.018 - I -0.072 0.024 -
Kinematics ÕMV'\ÕJÍ$~ -0.003 0.424 0.000 0.566) |
CompAct -3.139 [0.008 - -1.638 0.004 - -1.136 0.038] -

CompAct(s) -1.579 1071411" -0.391 0.679 0.278 0.522|
Census(16H) 3.84E+7 !0.599í -6.58E+7 0.313 J-1.17E+8Í0.262Í -6.25E+7 0.089 -1.41E+6 0.974
Census(8L) 1.67E+8 0.434! !-4.49E+7 0.196 [-1.02E+8I0.307] -1.15E+7 0.887 -3.53E+7 0.632 (

Fried -0.291 0.165] -0.348 0.188) | -0.251 [0.061] -0.093 0.403 ! -0.137 [0.019] -

Table B.21. Difference in error between LSS+ChiEst(95%,0.5-SE) and CORE pruning.

256 512 1024 2048 4096
Abalone \ 0.377 0.442| | 0.590 0.149! 1
2Dplanes j -0.223 0.036] - -0.038 0.5521 | -0.012 (0.720 ! 0.122 0.000 ++ 0.033 0.020 +

Pole 1 29.914 0.477) | 15.313 0.165 1 -7.067 (0.622
Elevators [-3.306 0.370! j -0.362 0.795) 1 -0.740 (0.865 ! 2.864 0.143
Ailerons j -0.023 0.0931 | -0.002 0.329] j -0.002 (0.382 t 0.004 0.286

Mv j -0.789 0.030j_- -0.566 0.1271 J -0.219 0.108 ! -0.057 0.159 -0.048 0.112
Kinematics ! 0.000 0.984! -0.003 0.4101 lO^OOO 0.323! j
CompAct 1 -3.039 (0.007]-- -1.203 0.018Í - j -1.401 0.024 - !

CompAct(s) ! -1.455 0.180 -0.405 0.686! | 0.270 0.805 (j
Census(16H)\ 4.62E+7 0.472) I-1.39E+7 0.814 j L9^Õ7E+7 0.380! (-5.14E+7|0.245 1.60E+7 0.648
Census(8L) (1.60E+8 0.4411 -1.98E+7 0.688 I-5.68E+7 0.431! (1.72E+7 [0.827 -6.79E+6 0.911

Fried | -0.121 (0.534Î j -0.270 Í0.214J -0.021 !0.888 | 0.087 10.621 0.300 0.027 +

B. 9. COMPARISONS WITH OTHER PRUNING ALGORITHMS 233

Table B.22. Difference in MSE between LSS+ChiEst(95%,l-SE) and CORE pruning.

256 512 1024 2048 4096
Abalone
2Dplanes

0.416 |0.281 0.792 0.0281 + 1 | | | | Abalone
2Dplanes -0.119 |0.288 0.121 0.028 i + 0.082 0.0891 0.251 0.000 +-H 0.073 |0.001j++

Pole 35.683 jO.400 28.502 0.0221 + 4.190 0.754! Í !
Elevators 1 -3.294 (0.373 -0.514 0.716] -1.390 0.756| 3.314 iO.118 \ \ 1

Ailerons 1 -0.021 J0.127; 0.001 0.776! -0.002 0.3911 0.006 10.274
Mv -0.547 iO.087! -0.330 0.336 | -0.090 0.369! 0.006 0.902 i 0.019 10.522!

Kinematics ! 0.001 0.7941 -0.004 0.300 -0.001 0.593! 1 I 1
CompAct | -1.481 o.iool -1.160 0.032 - -0.373 0.672T 1 ! 1

CompAct(7ps -0.591 0.564] 0.162 0.858 0.438 0.667j i i

Census(16H)\ 5.61E+7 0.377 i 1.48E+7 0.812 -6.55E+7 0.5371 -2.03E+7 0.587 3.13E+7]0.193|
Census(8L) J2.01E+8 0.339! -7.48E+6 0.872 7.44E+6 0.896Ï~ 7.57E+7 0.351 1.95E+7|0.574|

Fried -0.037 0.853) -0.284 0.149 0.258 0.247Í 0.409 0.105 i 0.595 10.002!++

References

Agresti,A: (1990) : Categorical data analysis. John Wiley & Sons.

Aha, D. (1990) : A study of instance-based learning algorithms for supervised learning tasks: Mathematical,

empirical, and psychological evaluations. PhD Thesis. Technical Report 90-42. University of California

at Irvine, Department of Information and Computer Science.

Aha, D. (1992) : Generalizing from case studies : A case study. In Proceedings of the 9th International

Conference on Machine Learning. Sleeman,D. & Edwards,P. (eds.). Morgan Kaufmann.

Aha, D. (1997) : Lazy Learning, edited by D. Aha. Kluwer Academic Publishers.

Aha,D., Kibler,D., Albert,M. (1991) : Instance-based learning algorithms. Machine Learning, 6(1), 37-66.

Almuallin,H. (1996) : An efficient algorithm for optimal pruning of decision trees. Artificial Intelligence, 83

(2), 347-362. Elsevier.
Almuallin,H., Akiba,Y., Kaneda.S. (1995) : On handling Tree-Structured Attributes in Decision Tree

Learning. In Proceedings of the International Conference on Machine Learning (ICLM-95). Morgan

Kaufmann.

Atkeson,C.G., Moore,A.W., Schaal.S. (1997) : Locally Weighted Learning. Artificial Intelligence Review,

11, 11-73. Special issue on lazy learning, Aha, D. (Ed.).

Banerji,R. (1964) : A language for the description of concepts. General Systems, 9, 135-141.

Bellman,R. (1961) : Adaptive Control Processes. Princeton University Press.

BentleyJ.L. (1975) : Multidimensional binary search trees used for associative searching. Communications of

the ACM, 18(9), 509-517.

Bhattacharyya,G., Johnson,R. (1977) : Statistical Concepts and Methods. John Wiley & Sons.

Bohanec, M., Bratko.I. (1994) : Trading Accuracy for Simplicity in Decision Trees. Machine Learning, 15-3,

223-250. Kluwer Academic Publishers.

Brazdil,P. , GamaJ., Henery.B. (1994) : Characterizing the applicability of classification algorithms using

meta-level learning. In Proceedings of the European Conference on Machine Learning (ECML-94).

Bergadano.F. & De Raedt,L. (eds.). Lecture Notes in Artificial Intelligence, 784. Springer-Verlag.

Brazdil,P. Torgo,L. (1990) : Knowledge Acquisition via Knowledge Integration. In Current Trends in

Knowledge Acquisition. Wielinga,B. et al. (eds.). IOS Press.

Breiman,L. (1996) : Bagging Predictors. Machine Learning, 24, (p. 123-140). Kluwer Academic Publishers.

235

236 REFERENCES

Breiman,L. Friedman,J. (1995) : Predicting Multivariate Responses in Multiple Linear Regression. Technical

Report. Available at ftpV/ftp.stat.berkley.edu/pub/users/breiman/curds-whey-all.ps.Z.

Breiman,L. , FriedmanJ.H., 01shen,R.A. & Stone,CJ. (1984): Classification and Regression Trees.

Wadsworth Int. Group, Belmont, California, USA, 1984.

Breiman,L., Meisel,W. (1976) : General estimates of the intrinsic variability of data in nonlinear regression

models. Journal of American Statistics Association, 71, 301-307.

Broadley, C. E. (1995) : Recursive automatic bias selection for classifier construction. Machine Learning, 20,

63-94. Kluwer Academic Publishers.

Broadley.C, Utgoff,P. (1995) : Multivariate decision trees. Machine Learning, 19, 45-77. Kluwer Academic

Publishers.

Buntine, W. (1990) : A theory of learning classification rules. Ph.D. Thesis. University of Technology,

School of Computing Science, Sydney.

CarbonellJ. (1986) : Derivational Analogy : A theory of reconstructive problem solving and expertise

acquisition. In Machine Learning, an artificial intelligence approach, vol. II, Michalski et al. (eds.).

Morgan Kaufmann Publishers.

CattletJ. (1991) : Megainduction : a test flight. In Proceedings of the 8th International Conference on

Machine Learning. Birnbaum,L. & Collins,G. (eds.). Morgan Kaufmann.

Chatfield, C. (1983) : Statistics for technology (third edition). Chapman and Hall, Ltd.

Chou, P.A. (1991) : Optimal partitioning for classification and regression trees. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 13 (4), 340-354.

Cestnik,B. (1990) : Estimating probabilities : a crucial task in machine learning. In Proceedings of the

European Conference on Artificial Intelligence (ECAI-90).

Cestnik,B., BratkoJ. (1988) : Learning redundant rules in noisy domains. In Proceedings of the European

Conference on Artificial Intelligence (ECAI-88).

Cestnik,B., KononenkoJ., BratkoJ. (1987) : ASSISTANT-86 : A knowledge elicitation tool for sophisticated

users. In Progress in machine learning, Bratko & Lavrac (eds.). Sigma Press.

Clark,P., Nibblet,T. (1989) : The CN2 induction algorithm. Machine Learning, 3, 261-283. Kluwer

Academic Publishers.

Cleveland, W. (1979) : Robust locally weighted regression and smoothing scatterplots. Journal of the

American Statistical Association, 74, 829-836.

Cleveland.W., Loader,C. (1995) : Smoothing by Local Regression: Principles and Methods (with discussion).

Computational Statistics.

Connel,M. UtgoffP. (1987) : Learning to control a dynamical physical system. In Proceedings of the 6th

National Conference on Artificial Intelligence. Morgan Kaufmann.

ftp://ftp.stat.berkley.edu/pub/users/breiman/curds-whey-all.ps.Z

REFERENCES 237

Costa, J.P. (1996) : Coefficients d'association et binarization par la classificiation hiérarchique dans les arbes

de decision. Application à l'indentification de la structure secondaire des protéines. Ph.D. Thesis,

Université de Rennes I, Rennes, France.

Cover,T., Hart,P. (1967) : Nearest Neighbor pattern classification. IEEE Transactions on Information

Theory, 13,21-7.

Dattatreya,G., Kanal,L. (1985) : Decision trees in pattern recognition. Progress in pattern recognition, vol. 2,

Kanal and Rosenfeld (eds.), 189-239. Elsevier Science.

DeJong,G„ Mooney,R. (1986) : Explanation-based learning: An alternative view. Machine Learning, 1 (2),

145-176. Kluwer Academic Publishers.

Deng,K., Moore,A.W. (1995) : Multiresolution Instance-based Learning. In Proceedings ofIJCAI'95.

De Raedt,L., Lavrac,N., Dzeroski,S. (1993) : Multiple Predicate Learning. In Proceedings of the

International Joint Conference on Artificial Intelligence, Bajcsy,R. (ed.). Morgan Kaufmann Publishers.

Dietterich,T. (1996) : Proper statistical tests for comparing supervised classification learning algorithms.

Technical Report. Dept. of Computer Science, Oregon State University.

Dietterich,T. (1998) : Approximate Statistical Tests for Comparing Supervised Classification Learning

Algorithms. Neural Computation, 10 (7) 1895-1924.

Domingos,P. (1994) : Design and evaluation of the RISE 1.0 learning system. Technical Report 94-34,

Department of Information and Computer Science, University of California, Irvine.

Domingos,P. (1996) : Unifying Instance-based and Rule-based Induction. Machine Learning, 24-2, 141-168.

Kluwer Academic Publishers.

Domingos,P. (1997) : Knowledge acquisition from examples via multiple models. In Proceedings of the 14'

International Conference on Machine Learning, Fisher,D. (ed.). Morgan Kaufmann.

Dougherty J., Kohavi,R., Sahami,M. (1995) : Supervised and unsupervised discretisation of continuous

features. In Proceedings of the 12'h International Conference on Machine Learning, Prieditis,A. &

Russel.S. (eds.). Morgan Kaufmann.

Drapper,N., Smith,H. (1981) : Applied Regression Analysis (2nd edition). Wiley Series in Probability and

Mathematical Statistics.

Efron,B. (1979) : Bootstrap methods : another look at the jacknife. Annals of Statistics, 7(1), 1-26.

Efron,B, Tibshirani,R. (1993) : An introduction to the bootstrap. Chapman & Hall.

Esposito,F., Malerba,D., Semeraro,G. (1993) : Decision Tree Pruning as a Search in the State Space. In

Proceedings of the European Conference on Machine Learning (ECML-93), Brazdil,P. (ed.). LNAI-

667, Springer Verlag.

Esposito,F„ Malerba.D., Semeraro,G. (1997) : A Comparative Analysis of Methods for Pruning Decision

Trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 - 5.

Fan,J. (1995) : Local Modelling. In Encyclopidea of Statistical Science.

FanJ., MarronJ. (1993) : Comment on Hastie & Loader (1993). Statistical Science, 8, 120-143.

238 REFERENCES

Fisher,D. (1987) : Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2, 139-

172. Kluwer Academic Publishers.

Fisher,D. (1992) : Pessimistic and Optimistic Induction. Tech. Report CS-92-12. Dept. of Computer Science,

Vanderbilt University.

Fisher, R.A. (1936) : The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1, 179-

188.

Fisher, W.D. (1958) : On grouping for maximum hogeneity. Journal of American Statistical Association, 53,

789-798.

Fix, E., Hodges, J.L. (1951) : Discriminatory analysis, nonparametric discrimination consistency properties.

Technical Report 4, Randolph Filed, TX: US Air Force, School of Aviation Medicine.

Freund.Y. (1995) : Boosting a weak learning algorithm by majority. Information and Computation, 121 (2),

256-285.

Freund,Y., Schapire,R.E. (1995) : A decision-theoretic generalization of on-line learning and an application

to boosting. Technical Report. AT & T Bell Laboratories.

FriedmanJ. (1979) : A tree-structured approach to nonparametric multiple regression. In Smoothing

Techniques for Curve Estimation, Gasser & Rosenblatt (eds.), 5-22. Springer. New York.

Friedman, J. (1991) : Multivariate Adaptative Regression Splines. Annals of Statistics, 19:1, 1-141.

FriedmanJ.H., Stuetzle,W. (1981) : Projection pursuit regression. Journal of the American Statistical

Association, 76 (376), 817-823.

GamaJ. (1997) : Probabilistic linear tree. In Proceedings of the 14th International Conference on Machine

Learning, Fisher,D. (ed.). Morgan Kaufmann.

Gama,J. (1998) : Combining classifiers using constructive induction. In Proceedings of the 10' European

Conference on Machine Learning, Nedellec,C. and Rouveirol,C. (eds.). LNAI - 1398, Springer Verlag.

GamaJ. (1998) : Local cascade generalization. In Proceedings of the 15th International Conference on

Machine Learning, ShavlikJ. (ed.). Morgan Kaufmann.

GamaJ., Brazdil,P. (1995) : Characterization of Classification Algorithms. In Proc. of the 7th Portuguese

Conference on Artificial Intelligence (EPIA-95). Lecture Notes in AI. Springer Verlag.

Gams,M. (1989) : New measurements that highlight the importance of redundant knowledge. In Proceedings

of the 4th European Working Session on Learning, Morik,K. (ed.). Pitman - Morgan Kaufmann.

Gelfand,S., Delp,E. (1991) : On tree structured classifiers. In Sethi & Jain (1991), p. 51-70.

Gelfand,S., Ravishankar,C, Delp,E. (1991) : An iterative growing and pruning algorithm for classification

tree design. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, p. 163-174.

Good, I.J. (1965) : The Estimation of Probabilities. MIT press.

Hardle,W. (1990) : Applied Nonparametric Regression. Cambridge University Press.

Harrison.D., Rubinfeld,D. (1978) : Hedonic prices and the demand for clean air. Journal of Environment

Econ. and Management, 5 , 81-102.

REFERENCES 239

Hastie,T., Loader,C. (1993) : Local Regression: Automatic Kernel Carpentry. Statistical Science, 8, 120-143.

Hastie.T., Tibshirani,R. (1990) : Generalized Additive Models. Chapman & Hall.

Highleyman,W.H. (1962) : The design and analysis of pattern recognition experiments. Bell Systems

Technical Journal, 41, 723-744.

Holte,R., Acker,L., Porter,B- (1989) : Concept Learning and the accuracy of small disjuncts. In Proceedings

of the 1Ith International Joint Conference on Artificial Intelligence, 813-818. Morgan Kaufmann.

Hong,S.J. (1994) : Use of contextual information for feature ranking and discretization. Technical Report

RC19664, IBM. To appear in IEEE Trans, on Knowledge and Data Engineering.

Hunt,E., MarinJ., Stone,P. (1966) : Experiments in Induction. Academic Press.

John,G. (1997) : Enhancements to the data mining process. Ph.D. Thesis. Department of Computer Science,

University of Stanford.

Karalic,A. (1992) : Employing Linear Regression in Regression Tree Leaves. In Proceedings of ECAl-92.

Wiley & Sons.

Karalic,A. (1995) : First Order Regression. Ph.D. Thesis. Faculty of Electrical Engineering and Computer

Science, University of Ljubljana.

Karalic.A., Cestnik,B. (1991) : The bayesian approach to tree-structured regression. In Proceedings oflTI-

91.

Karmarkar,N. (1984) : A new polynomial time algorithm for linear programming. Combinatorica, 4 (4), 373-

381.

Katkovnik,V. (1979) : Linear an nonlinear methods of nonparametric regression analysis. Soviet Automatic

Control, 5, 25-34.

Kendall,M., Stuart,A. (1969) : The Advanced Theory of Statistics (vol. 1-3). Charles Griffin & Company

Limited.

Kibler,D., Aha,D., Albert.M. (1989) : Instance-based prediction of real-valued attributes. Computational

Intelligence, 5, 51-57.

Kira,K, Rendell,L.A. (1992) : The feature selection problem : traditional methods and new algorithm. In

Proceedings ofAAAI'92.

Kohavi. R. (1985) : Wrappers for performance enhancement and oblivious decision graphs. Ph.D. thesis.

Stanford University.

KononenkoJ. (1989) : Interpretation of neural networks decisions. In Proceedings of the IASTED

International Conference on Expert Systems and Applications, Zurich.

KononenkoJ. (1991) : An experiment in machine learning of redundant knowledge. In Proceedings of the

International Conference MELECON1991, Ljubljana.

KononenkoJ. (1994) : Estimating attributes : analysis and extensions of Relief. In Proceedings of the

European Conference on Machine Learning (ECML-94). Bergadano,F. & De Raedt,L. (eds.). Lecture

Notes in Artificial Intelligence, 784. Springer-Verlag.

240 REFERENCES

KononenkoJ. Bratko,L, Roskar,E. (1984) : Experiments in automatic learning of medical diagnostic rules.

Technical Report. Jozef Stefan Institute, Slovenia.

Kramer,S. (1996) : Structural regression trees. In Proceedings of the 13th National Conference on Artificial

Intelligence (AAAI-96). MIT Press.

Kubat,M. (1996) : Second tier for decision trees. In Proceedings of the 13th International Conference on

Machine Learning. Saitta,L. (ed.). Morgan Kaufmann.

Langley,P. (1996) : Elements of Machine Learning. Morgan Kaufmann Publishers.

Langley,P., ZytkowJ., Simon,H. (1986) : The search for regularity : four aspects of scientific discovery. In

Machine Learning, an artificial intelligence approach, vol. II, Michalski et al. (eds.). Morgan

Kaufmann Publishers.

Lavrac,N., Dzeroski,S. (1994) : Inductive Logic Programming : Techniques and applications. Ellis Horwood.

Lenat, D.B. (1970) : The ubiquity of discovery. Artificial Intelligence, 9, 257-285. Elsevier Science.

Loader,C. (1995) : Old Faithful Erupts: Bandwidth Selection Reviewed. Technical Report 95.9. AT&T Bell

Laboratories, Statistics Department.

Lubinsky,D. (1995) : Tree Structured Interprétable Regression. In Proceedings of the 5th International

Workshop on AI and Statistics. Ft. Lauderdale, Florida.

MartinJ. (1997) : An exact probability metric for decision tree splitting and stopping. MachineLearning, 28

(2/3). Kluwer Academic Publishers.

Mansfield,A. (1991) : Comparison of perceptron training by linear programming and by the perceptron

convergence procedure. In IEEE International Joint Conference on Neural Networks.

McClellandJ.L., Rumelhart,D.E. (1981) : An interactive activation model of context effects in letter

perception : Part 1. An accoutn an basic findings. Psychological Review, 88, 375-407.

McCulloch,W. Pitts.W. (1943) : A logical calculus of the ideas immanent in nervous activity. Bulletin of

Mathematical Biophysics, 5, 115-133.

Michalski, R. (1983) : A theory and methodology of inductive learning. In Machine Learning, an artificial

intelligence approach, Michalski et al. (eds.). Tioga Publishing Company.

Michalski,R. (1990) : Learning Flexible Concepts : Fundamental ideas and a method based on two-tiered

representation. In Machine Learning : an artificial intelligence approach, vol. 3, KodratoffY. &

Michalski,R. (eds.). Morgan Kaufmann.

Michalski,R. (1994) : Inferential Theory of Learning : Developing Foundations for Multistrategy Learning.

In Machine Learning : a Multistrategy Approach, vol. 4, Michalski.R. & Tecuci,G. (eds.). Morgan

Kaufmann.

Michalski,R. Chilausky,R. (1980) : Learning by being told and learning from examples : An experimental

comparison of two methods of knowledge acquaisition in the context of developing an expert system for

soybean disease diagnosis. International Journal of Policy Analysis and Information Systems, 4.

REFERENCES 241

Michalski,R., MozeticJ., HongJ., Lavrac,N. (1986) : The multi-purpose incremental learning system AQ15

and its testing application to three medical domains. In Proceedings of the Fifth National Conference on

Artificial Intelligence, AAAI Press.

Michalski,R., Stepp,R. (1983) : Learning from observation : conceptual clustering. In Machine Learning, an

artificial intelligence approach, Michalski et al. (eds.). Tioga Publishing Company.

Michie,D., Spiegelhalter;DJ. & Taylor,C.C. (1994): Machine Learning, Neural and Statistical

Classification. Ellis Horwood Series in Artificial Intelligence.

MingersJ. (1989) : An Empirical Comparison of Pruning Methods for Decision Tree Induction. Machine

Learning, 4-2, p.227-243. Kluwer Academic Publishers.

Minsky,M., Papert,S. (1969) : Perceptrons : an introduction to computational geometry. MIT Press.

Mitchell, T. (1982) : Generalization as search. Artificial Intelligence, 18, 203-226. Elsevier Science.

Mitchell, T. (1997) : Machine Learning. McGraw-Hill.

Mitchell,T., Utgoff,P., Banerji,R. (1983) : Learning by experimentation: Acquiring and refining problem-

solving heuristics. In Machine Learning, an artificial intelligence approach, Michalski et al. (eds.).

Tioga Publishing Company.

Moore,A., Lee,M. (1998) : Cached sufficient statistics for efficient machine learning with large datasets.

Journal of Artificial Intelligence Research, 8, 67-91.

Moore,A. Schneider,J., Deng,K. (1997) : Efficient Locally Weighted Polynomial Regression Predictions. In

Proceedings of the 14'h International Conference on Machine Learning (ICML-97), Fisher,D. (ed.).

Morgan Kaufmann Publishers.

MorganJ., SonquistJ. (1963) : Problems in the analysis of survey data, and a proposal. Journal of American

Statistics Society, 58, 415-434.

Mosteller,F., Wallace,D.L. (1963) : Inference in an authorship problem. Journal of the American Statistical

Association, 58, 275-309.

Muggleton,S. (1992) : Inductive Logic Programming. Academic Press.

Muggleton,S., De Raedt,L. (1994) : Inductive Logic Programming : Theory and Methods. The Journal of

Logic Programming, vols. 19-20. Elsevier Science.

Muggleton,S., Feng,C. (1990) : Efficient induction of logic programs. In Proceedings of the first Conference

on Algorithmic Learning Theory.

Muller,W., Wysotzki,F. (1994) : A splitting algorithm, based on a statistical approach in the decision tree

algorithm CAL5. In Proceedings of the ECML-94 Workshop on Machine Learning and Statistics.

Nakhaeizadeh.G. & Taylor.C. (eds.).

Murthy,S. (1996) : On growing better decision trees from data. Ph.D. thesis. Johns Hopkins University.

Murthy,S., KasifS., Salzberg.S. (1994) : A system for induction of oblique decision trees. Journal of

Artificial Intelligence Research, 2, 1-33.

Nadaraya, E. A. (1964) : On estimating regression. Theory of Probability and its Applications, 9:141 -142.

242 REFERENCES

Natarajan,B. (1991) : Machine Learning - a theoretical approach. Morgan Kaufmann.

Niblett.T., BratkoJ. (1986) : Learning decision rules in noisy domain. Expert Systems, 86. Cambridge

University Press.

01iveira,A.L., Sangionvanni-Vincentelli.A. (1996) : Using the minimum description length principle to infer

reduced order decision graphs. Machine Learning, 26, 23-50, Kluwer Academic Publishers.

Oliver,!J. (1993) : Decision graphs - an extension of decision trees. In Proceedings of the fourth

International workshop on Artificial Intelligence and Statistics, 343-350.

Parzen,E. (1962) : On estimation of a probability density function and mode. Annals Mathematical Statistics,

33, 1065-1076.

Plotkin,G. (1970) : A note on Inductive Generalization. In Machine Intelligence 5, Meltzer & Michie (eds.).

Edinburgh University Press.

Plotkin,G. (1971) : A further note on inductive generalization. In Machine Intelligence 6, Meltzer & Michie

(eds.). Edinburgh University Press.

Press.W.H., Teukolsky,S.A., Vetterling,W.T., Flannery,B.P. (1992) : Numerical Recipes in C. Cambridge

University Press.

QuinlanJ. (1979) : Discovering rules by induction from large collections of examples. In Experts systems in

the micro electronic age, Michie,D. (ed.). Edinburgh University Press.

Quinlan, J. (1986) : Induction of Decision Trees. Machine Learning, 1, 81-106. Kluwer Academic

Publishers.

QuinlanJ. (1990) : Learning Logical Definitions from Relations. Machine Learning, 5, 239-266. Kluwer

Academic Publishers.

Quinlan, J. (1992): Learning with Continuous Classes. In Proceedings of the 5th Australian Joint

Conference on Artificial Intelligence. Singapore: World Scientific, 1992.

Quinlan, J. (1993a) : C4.5 : programs for machine learning. Morgan Kaufmann Publishers.

QuinlanJ. (1993b) : Combining Instance-based and Model-based Learning. In Proceedings of the 10th

ICML. Morgan Kaufmann.

QuinlanJ. (1996) : Learning First-Order Definitions of Functions. Journal of Artificial Intelligence Research,

5, 139-161. (http://www.jair.org/home.html).

QuinlanJ. Rivest.R. (1989) : Inferring decision trees using the minimum description length principle.

Information & Computation, 80, 227-248.

Rasmussen,C. (1996) : Evaluation of Gaussian Processes and other Methods for Non-linear Regression.

Ph.D. Thesis, Department of Computer Science, University of Toronto.

Ripley.B.D. (1996) : Pattern Recognition and Neural Networks. Cambridge University Press.

RissanenJ. (1982) : A universal prior for integers and estimation by the minimum description length. Annals

of Statistics, 11,416-431.

http://www.jair.org/home.html

REFERENCES 243

Robnik-Sikonja.M. (1997) : CORE - a system that predicts continuous variables. In Proceedings ofERK'97,

Portoroz, Slovenia.

Robnik-Sikonja,M., KononenkoJ. (1996) : Context-sensitive attribute estimation in regression. In

Proceedings of the ICML-96 Workshop on Learning in Context-Sensitive Domains.

Robnik-Sikonja,M., KononenkoJ. (1997) : An adaptation of Relief for attribute estimation in regression. In

Proceedings ofICML-97, Fisher,D.(ed.). Morgan Kaufmann Publishers.

Robnik-Sikonja,M., KononenkoJ. (1998) : Pruning Regression Trees with MDL. In Proceedings ofECAI-98.

Rojas,R. (1996) : Neural Networks. Springer-Verlag.

Rosenblatt^. (1958) : The perceptron : a probabilistic model for information storage and organization in the

brain. Psychological Review, 65, 386-408.

Rosenblatt,M. (1956) : Remarks on some nonparametric estimates of a density function. Annals

Mathematical Statistics, 27, 832-837.

Rumelhart,D., Hinton,G., Williams,R. (1986) : Learning internal representations by error propagation. In

Parallel distributed processing, vol.1, Rumelhart et a/.(eds.). MIT Press.

Rumelhart,D., Widrow,B., Lehr.M. (1994) : The basic ideas in neural networks. Communications of the

ACM, 37 (3), 87-92.

Salzberg.S. (1988) : Examplar-based learning : theory and implementation. Technical Report TR-10-88.

Cambridge.MA, Harvard University.

Salzberg,S. (1991) : A nearest hyperrectangle learning method. Machine Learning, 6-3, 251-276. Kluwer

Academic Publishers.

Salzberg.S. (1997) : On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach. Data

Mining and Knowledge Discovery, 1, 317-327. Kluwer Academic Publishers.

Sammut,C. (1993) : The origins of Inductive Logic Programming : A Prehistoric Tale. In Proceedings of the

Third International Workshop on Inductive Logic Programming, Muggleton,S. (ed.). Josef Stefan

Institute, Technical report IJS-DP-6707.

Schaffer,C. (1992) : Deconstructing the Digit Recognition Problem. In Proceedings of the 9'h International

Machine Learning Conference (ICML99), Sleeman,D. and Edwards.P. (eds.). Morgan Kaufmann.

Schaffer,C. (1993a) : Overfitting Avoidance as Bias. Machine Learning, 10 (2). Kluwer Academic

Publishers.

Schaffer.C. (1993b) : Selecting a Classification Method by Cross-validation. Machine Learning, 13 (1).

Kluwer Academic Publishers.

Schaffer,C. (1994) : A conservation law for generalization performance. In Proceedings of the 11'

International Conference on Machine Learning. Morgan Kaufmann.

Schlimmer ,J., Fisher,D. (1986) : A case study if incremental concept induction. In Proceedings of the 5'

AAAI Conference. Morgan Kaufmann.

244 REFERENCES

SethiJ., Jain,A. (eds) (1991) : Artificial Neural Networks and Statistical Pattern Recognition: Old and New

Connections. North Holland.

Silverman,!*- (1986) : Density Estimation for Statistics and Data Analysis. Chapman and Hall.

Simon,H. (1983) : Why Should Machines Learn ? In Machine Learning, an Artificial Intelligence approach,

Michalski et al. (eds.). Tioga Publishing Company.

Smyth,P., Gray,A., Fayyad,U.M. (1995) : Retrofitting Decision Tree Classifiers using Kernel Density

Estimation. In Proceedings of the 12th International Conference Machine Learning. Prieditis,A.,

Russel,S. (Eds.). Morgan Kaufmann.

Spiegelman,C. (1976) : Two techniques for estimating treatment effects in the presence of hidden variables:

adaptive regression and a solution to Reiersol's problem. Ph.D. Thesis. Dept. of Mathematics,

Northwestern University.

Stone, CJ. (1977) : Consistent nonparametric regression. The Annals of Statistics, 5, 595-645.

Stone.M. (1974) : Cross-validatory choice and assessment of statistical predictions. Journal of the Royal

Statistical Society, B 36, 111-147.

Swain,P., Hauska,H. (1977) : The decision tree classifier design and potential. IEEE Transactions on

Geoscience and Electronics, GE-15, 142-147.

Torgo,L. (1992) : Y AILS, an incremental learning program. Technical Report 92-1, LIACC, University of

Porto. Postscript and HTML available in http://www.ncc.up.pty~ltorgo/Papers/list_reports.html.

Torgo, L. (1993a) : Controlled Redundancy in Incremental Rule Learning. In Proceedings of the European

Conference on Machine Learning (ECML-93), Brazdil.P. (ed.). LNAI-667, Springer-Verlag. Also

available in http://www.ncc.up.pt/~ltorgo/Papers/list_pub.html.

Torgo,L. (1993b) : Rule combination in inductive learning. In Proceedings of the European Conference on

Machine Learning (ECML-93), Brazdil.P. (ed.). LNAI-667, Springer-Verlag. Also available in

http://www.ncc.up.pt/~ltorgo/Papers/list_pub.html.

Torgo, L. (1995) : Data Fitting with Rule-based Regression. In Proceedings of the 2nd international

workshop on Artificial Intelligence Techniques (AIT'95), ZizkaJ. and Brazdil.P. (eds.). Brno, Czech

Republic. Also available in http://www.ncc.up.pt/~ltorgo/Papers/list_pub.html.

Torgo,L. (1997) : Functional models for Regression Tree Leaves. In Proceedings of the International

Conference on Machine Learning (ICML-97), Fisher.D. (ed.). Morgan Kaufmann Publishers. Also

available in http://www.ncc.up.pt/~ltorgo/Papers/list_pub.html.

Torgo,L. (1998) : Sequence-based methods for Pruning Regression Trees. Technical Report 98-1, LIACC,

University of Porto. Postscript available in http://www.ncc.up.pt/~ltorgo/Papers/list_reports.html.

Torgo.L. GamaJ. (1996) : Regression by Classification. In Proceedings of SBIA'96, Borges et al. (eds.).

Springer-Verlag. Also available in http://www.ncc.up.pt/~ltorgo/Papers/list_pub.html.

Torgo,L., GamaJ. (1997) : Regression using classification algorithms. Intelligent Data Analysis, 1 (4).

Elsevier Science, http://www.elsevier.com/locate/ida.

http://www.ncc.up.pty~ltorgo/Papers/list_reports.html
http://www.ncc.up.pt/~ltorgo/Papers/list_pub.html
http://www.ncc.up.pt/~ltorgo/Papers/list_pub.html
http://www.ncc.up.pt/~ltorgo/Papers/list_pub.html
http://www.ncc.up.pt/~ltorgo/Papers/list_pub.html
http://www.ncc.up.pt/~ltorgo/Papers/list_reports.html
http://www.ncc.up.pt/~ltorgo/Papers/list_pub.html
http://www.elsevier.com/locate/ida

REFERENCES 245

Utgoff,P. (1989) : Incremental induction of decision trees. Machine Learning, 4 (2), 161-186. Kluwer

Academic Publishers.

Wallace,C, Patrick,! (1993) : Coding decision trees. Machine Learning, 11 (1), 7-22. Kluwer Academic

Publishers.

Watson, G.S. (1964) : Smooth Regression Analysis. Sankhya: The Indian Journal of Statistics, Series A, 26 :

359-372.

Weiss, S. and Indurkhya, N. (1993) : Rule-base Regression. In Proceedings of the 13th International Joint

Conference on Artificial Intelligence, pp. 1072-1078.

Weiss,S., Indurkhya,N. (1994) : Decision Tree Pruning: Biased or Optimal ? In Proceedings ofAAAI-94.

Weiss, S. and Indurkhya, N. (1995) : Rule-based Machine Learning Methods for Functional Prediction.

Journal of Artificial Intelligence Research (JAIR), 3, pp.383-403.

Werbos,P. (1974) : Beyond regression - New tools for prediction and analysis in the behavioral sciences.

Ph.D. thesis, Harvard University.

Werbos,P. (1996) : The roots of backpropagation -from observed derivatives to neural networks and

political forecasting. J. Wiley & Sons.

Wettschereck,D. (1994) : A study of distance-based machine learning algorithms. PhD thesis. Oregon State

University.

Wettschereck,D., Aha,D.W., Mohri,T. (1997) : A review and empirical evaluation of feature weighting

methods for a class of lazzy learning algorithms. Artificial Intelligence Review, 11, 11-73. Special issue

on lazy learning, Aha, D. (Ed.).

Winston,P. (1970) : Learning structural descriptons from examples. Ph.D. thesis. MIT Technical Report AI-

TR-231.

Winston, P. (1980) : Learning an reasoning by analogy. Communications of the ACM, 23, 689-703.

Wolpert,D.H. (1992) : Stacked Generalization. Neural Networks, 5, (p.241-259).

	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Symbols
	Chapter 1 - Introduction
	1.1 Objectives
	1.2 Main Contributions
	1.3 Organisation of the Thesis

	Chapter 2 - Inductive Learning
	2.1 Introduction
	2.2 Supervised Learning
	2.3 Regression Problems
	2.3.1 A Formalisation of Regression Problems
	2.3.2 Measuring the Accuracy of Regression Models
	2.3.2.1 Biased versus Unbiased Error Estimates

	2.4 Existing Regression Methods
	2.4.1 Statistical Methods
	2.4.1.1 Global parametric approaches
	2.4.1.2 Non-parametric approaches (Local Modelling)
	2.4.1.3 Additive models

	2.4.2 Artificial Neural Networks
	2.4.3 Machine Learning Methods
	2.4.3.1 Propositional Learning Methods
	2.4.3.2 First-order Logic Approaches

	Chapter 3 - Tree-based Regression
	3.1 Tree-based Models
	3.2 Least Squares Regression Trees
	3.2.1 Efficient Growth of LS Regression Trees
	3.2.2 Splits on Continuous Variables
	3.2.3 Splits on Discrete Variables
	3.2.4 Some Practical Considerations

	3.3 Least Absolute Deviation Regression Trees
	3.3.1 Splits on Continuous Variables
	3.3.2 Splits on Discrete Variables

	3.4 LAD vs. LS Regression Trees
	3.5 Conclusions
	3.5.1 Open Research Issues

	Chapter 4 - Overfitting Avoidance in Regression Trees
	4.1 Introduction
	4.2 An Overview of Existing Approaches
	4.2.1 Error-Complexity Pruning in CART
	4.2.2 Pruning based on m estimates in RETIS
	4.2.3 MDL-based pruning in CORE
	4.2.4 Pruning in M5

	4.3 Pruning by Tree Selection
	4.3.1 Generating Alternative Pruned Trees
	4.3.2 Methods for Comparing Alternative Pruned Trees
	4.3.2.1 Comparing Trees using Prediction Error Estimates
	4.3.2.2 Comparing Trees using their Binary Description Length

	4.3.3 Choosing the Final Tree
	4.3.4 An Experimental Comparison of Pruning by Tree Selection Methods
	4.3.4.1 Comparing Methods of Generating Sets of Pruned Trees
	4.3.4.2 Comparing Methods of Evaluating Trees

	4.3.5 Summary

	4.4 Comparisons with Other Pruning Methods
	4.4.1 A Few Remarks Regarding Tree Size
	4.4.2 Comments Regarding the Significance of the Experimental Results

	4.5 Conclusions
	4.5.1 Open Research Issues

	Chapter 5 - Local Regression Trees
	5.1 Introduction
	5.2 Local Modelling
	5.2.1 Kernel Models
	5.2.2 Local Polynomial Regression
	5.2.3 Semi-parametric Models

	5.3 Integrating Local Modelling with Regression Trees
	5.3.1 Method of Integration
	5.3.2 An illustrative example
	5.3.3 Relations to Other Work
	5.4 An Experimental Evaluation of Local Regression Trees
	5.4.1 Local Regression Trees vs. Standard Regression Trees
	5.4.2 Local Regression Trees vs. Local Models
	5.4.3 Local Regression Trees vs. Linear Regression Trees
	5.4.4 Local Regression Trees versus Existing Regression Methods

	5.5 Conclusions
	5.5.1 Open Research Issues

	Chapter 6 - Conclusions
	6.1 Summary
	6.1.1 Growing Regression Trees
	6.1.2 Pruning Regression Trees
	6.1.3 Local Regression Trees

	6.2 Future Research Directions

	Annexes
	Annex A - Materials and Methods
	A.1. The Experimental Methodology
	A.2. The Used Benchmark Data Sets
	A.3. The Learning Systems Used in the Comparisons

	Annex B - Experimental Results
	B.4. Experiments with Tree Generation Methods
	B.5. CART tree-matching vs. Our proposal
	B.6. Comparison of Methods for Generating Pruned Trees
	B.7. Tuning of Selection Methods
	B.8. Comparison of Methods of Evaluating a Tree
	B.9. Comparisons with Other Pruning Algorithms

	References

