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Resumo 

0 trabalho desenvolvido ao longo desta tese tem como ponto de partida uma família de 
equações diferenciais apresentada e estudada por Field (Ver M.J. Field, 1996, Lectures 
on Bifurcations. Dynamics and Symmetry, Pitman Research Notes in Mathematics 
Series 356, Longman). 

Field conjectura, com base no seu estudo analítico e numérico, a existência, para 
certos valores dos parâmetros, de uma rede heteroclínica envolvendo os equilíbrios e 
as trajectórias periódicas na dinâmica do sistema. No caso de as variedades invari­
antes de dimensão > 2 dos equilíbrios e das trajectórias periódicas se intersectarem 
transversalmente. Field conjectura também a existência de dinâmica da ferradura na 
vizinhança da rede heteroclínica. 

Nesta tese provamos as conjecturas de Field. O trabalho aqui desenvolvido indica a 
existência de uma rede heteroclínica de Shilnikov e prova a existência de dinâmica da 
ferradura na vizinhança de uma tal rede heteroclínica. 

Usamos a simetria do sistema para definir a rede heteroclínica quociente. Isto suge-
riu-nos uma abordagem para estudar a dinâmica na vizinhança da rede heteroclínica 
de Shilnikov. O estudo da dinâmica é efectuado com recurso a uma codificação da 
dinâmica ao longo da rede heteroclínica e a uma codificação da dinâmica local na 
vizinhança dos ciclos heteroclínicos na rede quociente. 

Construímos exemplos simples contendo ciclos heteroclínicos de Shilnikov que são 
topologicamente equivalentes a ciclos heteroclínicos quocientes no exemplo de Field. 
Um facto importante acerca destes exemplos é que, apesar de possuírem dinâmica 
complexa, pela forma como são construídos, são mais fáceis de manipular analitica­
mente. Por exemplo, provamos analiticamente a intersecção transversal das variedades 
invariantes de dimensão > 2. 

Os exemplos que construímos ajudam a compreender o comportamento complexo no 
exemplo de Field. Provamos a existência de dinâmica da ferradura na vizinhança de 
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ciclos heteroclínicos envolvendo duas selas com autovalores complexos. Isto prova 
a existência de dinâmica da ferradura no caso concreto de um dos exemplos que 
construímos. 

A codificação obtida dá uma ideia da complexidade da dinâmica no exemplo de Field. 
A conclusão final é que. sob certas condições, a dinâmica na vizinhança da rede 
heteroclínica de Shilnikov é dinâmica de ferradura de ferraduras. 
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Abstract 

The starting point for the work in this thesis is a family of differential equations with 
very complicated dynamics presented and studied by Field (See Field - M.J. Field, 
1996, Lectures on Bifurcations, Dynamics and Symmetry, Pitman Research Notes in 
Mathematics Series 356, Longman). 

Based on his analytical and numerical studies, Field conjectures, for certain para­
meter values, the existence of a heteroclinic network involving equilibria and periodic 
trajectories in the dynamics of the system. He also conjectures, provided the invari­
ant manifolds of dimension > 2 of the equilibria and periodic trajectories intersect 
transversely, that the existence of such a heteroclinic network would imply horseshoe 
dynamics in its neighbourhood. 

In this thesis we pursue Field's studies about the example. The work developed here 
indicates the existence of a Shilnikov heteroclinic network and proves the existence of 
horseshoe dynamics in the neighbourhood of such a Shilnikov heteroclinic network. 

We use the symmetry of the system to define the quotient heteroclinic network. This 
suggests an approach to study the dynamics in the neighbourhood of the Shilnikov 
heteroclinic network. We codify the dynamics along the heteroclinic network and 
the local dynamics in the neigbourhood of the cycles in the quotient heteroclinic 
network. We use both codifications to charaterize the local chaotic dynamics in the 
neighbourhood of the network. 

We construct simple examples with Shilnikov heteroclinic cycles topologically equi­
valent to quotient heteroclinic cycles in Field's example. These examples, although 
exhibiting complex dynamics, are by construction easy to study analytically. For 
example, we prove analytically the transverse intersection of the invariant manifolds 
with dimension > 2, essential for Field's conjecture. 

The examples we construct help understand the chaotic behaviour in Field's example. 
We prove the existence of horseshoe dynamics in the neighbourhood of heteroclinic 
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cycles involving two saddle-foci. This proves the existence of horseshoe dynamics in 
the specific case of one of the examples that we construct. 

Our codification gives an idea of the complexity of the dynamics in Field's example. 
The final conclusion is that, under certain conditions, the dynamics in the neighbour­
hood of the Shilnikov heteroclinic network is a horsehoe of horsehoe dynamics. 
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Résumé 

Le point de départ pour le travail présenté dans cette thèse est un exemple d'une 
famille d'équations différentielles avec une dynamique très complexe qui a été présentée 
par Field (Voir M.J. Field, 1996, Lectures on Bifurcations, Dynamics and Symmetry, 
Pitman Research Notes in Mathematics Series 356, Longman). 

Field qui a étudié analitique et numériquement cette famille, a conjecturé l'existence, 
pour quelques valeurs des paramètres, d'un réseau hétérocline avec équilibres et tra­
jectoires périodiques dans la dynamique de l'exemple. Dans le cas où les variétés 
invariantes de dimension > 2 des équilibres et des trajectoires périodiques se coupent 
transversalement, Field a conjecturé aussi l'existence de dynamique de fers à cheval 
au voisinage du réseau hétérocline. 

Dans cette thèse nous poursuivrons les études de Field. Le travail développé ici indique 
l'existence d"un réseau hétérocline de Shilnikov et prouve l'existence de dynamique de 
fers à cheval au voisinage d'une tel réseau hétérocline. 

Nous faisons usage de la symétrie du système pour définir le réseau hétérocline quo­
ciente. Cela nous a suggéré un abordage pour étudier la dynamique au voisinage 
du réseau hétérocline de Shilnikov. Nous codifions la dynamique au long du réseau 
hétérocline et la dynamique local au voisinage des cycles hétéroclines dans le réseau 
quocient. L'usage de ces deux codifications permet caractériser la dynamique local 
chaotique au voisinage du réseau. 

Nous construirons des exemples simples avec des cycles et des réseaus hétéroclines de 
Shilnikov topologiquement équivalents aux cycles hétéroclines quocients dans l'exemple 
de Field. Un fait important sur ces exemples c'est que, nonobstant leur dynamique 
être complexe, par la façon comme ils sont construit, ils sont plus faciles de manipuler 
analitiquement. Par exemple, nous sommes capables de prouver analitiquement le 
coupe transversal des variétés invariantes de dimension > 2. 

Les exemples construis par nous aide à comprendre le comportement chaotique de 
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l'exemple de Field. Nous prouvons l'existence de la dynamique de fers à cheval au 
voisinage de cycles hétéroclines avec deux selles à valeurs propres complexes. Cela 
prouve l'existence de dynamique de fers à cheval dans le cas concret de l'un des 
exemples que nous construisons. 

La codification obtenuée donne une idée de la complexité de la dynamique de l'exemple 
de Field. Pour conclusion finale, la dynamique au voisinage du réseau hétérocline de 
Shilnikov est la dynamique d'une fers à cheval de fers à cheval. 

12 



Contents 

Resumo 7 

Abstract 9 

Resume 11 

List of Figures 20 

1 Motivation and aims 21 

2 Heteroclinic cycles and networks 25 

2.1 Definitions 25 

2.2 Overview of existing definitions 27 

2.3 Networks and symmetry 29 

3 Field's Example 34 

3.1 Description, previous results and Field's conjecture 34 

3.2 Numerical study and definition of the heteroclinic network 39 

3.3 Structure and symmetry of the heteroclinic network 41 

3.4 Overview of the rest of the thesis 45 

4 Construction of examples 47 

13 



4.1 Example: heteroclinic cycle with two saddle-foci in R 47 

4.1.1 Construction of the unperturbed system 48 

4.1.1.1 Basic example in R3 49 

4.1.1.2 Example in R4 obtained by rotation 55 

4.1.2 Useful third-order perturbations 59 

4.1.3 Third-order perturbations that destroy the invariance of the two-
sphere D 60 

4.1.3.1 Dynamics after SO(2)-breaking perturbations 62 

4.1.3.2 Dynamics after S,0(2)-equivariant perturbations . . . . 76 

4.1.4 Third-order perturbations that preserve the invariance of the 
two-sphere D 87 

4.2 Example: heteroclinic network with equilibria and a periodic trajectory 88 

4.2.1 Construction of the unperturbed system 88 

4.2.1.1 Basic example in R3 89 

4.2.1.2 Example in R4 obtained by rotation 92 

4.2.2 50(2)-breaking perturbation 96 

5 Dynamics near Shilnikov heteroclinic cycles 113 

5.1 Connecting two saddle-foci 114 

5.1.1 Introduction 114 

5.1.2 Poincaré map 116 

5.1.3 Geometry of the Poincaré map 118 

5.1.4 Hyperbolicity of the Poincaré map 124 

5.1.5 Conclusion 126 

5.1.6 Resonance in Field's example 127 

5.2 Homoclinic connection to a periodic trajectory 133 

14 



6 Symbolic dynamics in Field's example 134 

6.1 Symbolic dynamics along the heteroclinic network 135 

6.2 Symbolic dynamics in the neighbourhood of the network 139 

7 Future work 146 

A Dstool programming and results 148 

A.l Dstool program 148 

References 155 

15 



List of Figures 

3.1 Dynamics of Field's example near the plane S (copy of figure 11 in [16]) 36 

3.2 Time series for X\ of a trajectory in Field's example when A = 1, /? = 1 
and 7 = -0.6 37 

3.3 Projection in the (x\, y^-plane of a trajectory in Field's example, when 
A = 1, p = 1 and 7 = -0.6 38 

3.4 Example of a representative subnetwork of the heteroclinic network E 
in Field's example 43 

3.5 Quotient heteroclinic network E/F of the heteroclinic network E in 
Field's example 44 

3.6 Quotient heteroclinic cycles of the quotient heteroclinic network E/T. . 44 

4.1 Dynamics of the three-dimensional system restricted to the two-sphere 
S2

r 49 

4.2 Flow of the unperturbed system (4.5,0 = 0) for a > 0 52 

4.3 The invariant fundamental domain for (4.5) restricted to r = A / è with 
v ' y i t 

a > 0. For a < 0, the arrows are reversed 53 

4.4 Flow of (4.5, 0 = 0) (dotted line) and (4.5, 0 > 0) (full line), for a > 0. 54 

4.5 Invariant two-sphere D on S;? that coincides with the two-dimensional 
heteroclinic connection from pw_ to pw+, when a > 0. (If a < 0 the 
arrows are reversed.) 57 

4.6 The one-dimensional connection from pw+ to pw_ on the invariant circle 
that is the intersection of of Fix (SO (2)) with S^ 58 

16 



4.7 Time series for v for the flow of the unperturbed system (4.16) when 
A = 1, R — 1, a — 1, 6 = —0.1, 7 = 1 and initial condition v > 0 (if 
u < 0 w e get the same picture but symmetric with symmetry axis v = 0. 64 

4.8 Time series for t> for the flow of the perturbed system (4.22) when 
A = 1, R = 1, a = 1, /3 = —0.1, 7 = 1,(5 = 0.3 and initial condition 
i> > 0 (For initial conditions v < 0 we also get time series with irregular 
and random transitions) 64 

4.9 Time series for w for the flow of the unperturbed system (4.16) when 
A = 1. R = 1, a = 1, 5 = - 0 . 1 . 7 = 1 65 

4.10 Time series for iu for the flow of the perturbed system (4.22) when 
A = l, R = l, a = l, ^ = —0.1, 7 = 1 , 5 = 0.3 65 

4.11 Projection in the (x, u)-plane of the trajectory with initial condition 
(x,y,v,w) = (0.001,0.001,0.001,1), for the flow of the unperturbed 
system (4.16) when A = 1, R = 1, a = 1, j3 = - 0 . 1 , 7 = 1. For the 
same initial condition, but with i> = —0.001 the projection is symmetric. 66 

4.12 Projection in the (x, v)-plane of the trajectory with initial condition 
{x,y,v,w) = (0.001,0.001,0.001,1), for the flow of the perturbed sys­
tem (4.22) when A = 1, R = 1, a = 1, /3 = - 0 . 1 , 7 = 1,5 = 0.3 66 

4.13 Projection in the (x, u;)-plane of the trajectory with initial condition 
(x,y,v,w) = (0.001,0.001,0.001,1), for the flow of the unperturbed 
system (4.16) when A = 1, R = 1, a = 1, 0 = - 0 . 1 , 7 = 1. For the 
same initial condition, but with v = —0.001 the projection is the same. 67 

4.14 Projection in the (x,w)-p\a.ne of the trajectory with initial condition 
(x,y,v,w) = (0.001,0.001,0.001,1), for the flow of the perturbed sys­
tem (4.22) when A = 1, R = 1, a = 1, 0 = - 0 . 1 , 7 = 1, 5 = 0.3 67 

4.15 Projection in the (v, w)-plane of the trajectory with initial condition 
{x,y,v,w) = (0.001,0.001,0.001,1), for the flow of the unperturbed 
system (4.16) when A = 1, R = 1, a = 1, /? = - 0 . 1 , 7 = 1. For the 
same initial condition, but with v = -0.001 the projection is symmetric. 68 

4.16 Projection in the (v, w)-plane of the trajectory with initial condition 
(x,y,v,w) = (0.001,0.001,0.001,1), for the flow of the perturbed sys­
tem (4.22) when A = 1, R = 1, a = 1, 8 = - 0 . 1 , 7 = 1 , 5 = 0.3 68 

17 



4.17 Sketch, when a > 0, of the restriction to the plane (v,w) of the 
unperturbed vector field (4.43, r = 0) restricted to the two-sphere Sj!. . 79 

4.18 Sketch, when a > 0 and r > 0, of the restriction to the plane (v,w) of 
the perturbed vector field (4.43, r ^ 0) restricted to the two-sphere Sj!. 
The attracting periodic trajectory is represented by the bold solid curve. 80 

4.19 Projection in the (x,y)-plane of a trajectory on the two-torus, when 
A = l, R = l, a - 1,0 = - 0 . 1 , 7 = 1, r = 0.5 81 

4.20 Projection in the (x, ti;)-plane of a trajectory on the two-torus, when 
A = l, R = l, a = 1, 0 = - 0 . 1 , 7 = 1, r = 0.5 82 

4.21 Projection in the (v, iy)-plane of a trajectory on the two-torus, when 
A = l, R = l, a = 1 , 0 = - 0 . 1 , 7 = 1 , r = 0.5 82 

4.22 Time series for x for a trajectory with initial condition near the origin, 
when A = 1, R = l , o = 1,0 = - 0 . 1 , 7 = 1, r = 0.5 83 

4.23 Time series for v for a trajectory with initial condition near the origin, 
when A = 1, R = 1, a = 1, 0 = - 0 . 1 , 7 = 1, r = 0.5 83 

4.24 Time series for w for a trajectory with initial condition near the origin, 
when A = 1, R = 1, a = 1,0 = - 0 . 1 , 7 = 1, r = 0.5 84 

4.25 Projection in the (5, *i;)-plane of the bifurcation diagram of the equilibria 
( y - J , y J i O ) w i t h ^ = í > 0, when A = 1, i? = - 1 , a = 1,0 = 
— 0.1, 7 = 1, r = 0.5. Dashed and solid curves represent, respectively, 
unstable and stable equilibria. Solid circles represent stable periodic 
trajectories. Label 2 identifies the subcritical Hopf bifurcation 86 

4.26 Dynamics of the three-dimensional system (4.53) restricted to the in­
variant two-sphere S^ 91 

4.27 The invariant manifolds Wu(pw_) and Wu(pw+) coincide with the in­
variant manifold Ws(c) on Di - {{pw_,pw+, c}, with Dx the invariant 
two-sphere that is the intersection of Fix(rv) with S;? 93 

4.28 The invariant manifolds Ws(pv_) and Ws(pv+) coincide with the in­
variant manifold Wu(c) on D2 - {{pV-,Pv+,c}, with D2 the invariant 
two-sphere that is the intersection of Fix(rw) with S^ 94 

18 



4.29 The one-dimensional connections from equilibria pv to equilibria pw on 
the invariant circle that is the intersection of of Fix(SO(2)) with S^. . 95 

4.30 Projection in the (t>, u>)-plane of the four trajectories with initial condi­
tions (0.001, 0.001, 0.001,1), (0.001,0.001, -0.001,1), (0.001, 0.001, 0.001, -1) 
and (0.001.0.001. -0.001, -1 ) , for the flow of the unperturbed system 
(4.62) when A = 0.33333333, a = -0.33333333, 0 = -0 .5 , 7 = 
-0.16666667 and S = 0 - 0.05 98 

4.31 Projection in the (u, u;)-plane of the trajectory with initial condition 
(0.001, 0.001,0.001,1), for the flow of the perturbed system (4.63) when 
A = 0.33333333, a = -0.33333333, 0 = -0 .5 , 7 = -0.16666667, 5 = 
0 - 0.05 and £ = - 1 98 

4.32 Time series for v for a trajectory with initial condition (0.001, 0.001, 0.001,1), 
for the flow of the unperturbed system (4.62) when A = 0.33333333. 
a = -0.33333333, 0 = -0.5, 7 = -0.16666667 and 5 = 0 - 0.05 99 

4.33 Time series for v for a trajectory with initial condition (0.001,0.001,0.001,1), 
for the flow of the perturbed system (4.63) when A = 0.33333333, 
a = -0.33333333. 0 = -0 .5, 7 = -0.16666667, 5 = 0- 0.05 and 
e = - i 99 

4.34 Time series for w for a trajectory initial condition (0.001, 0.001, 0.001.1), 
for the flow of the unperturbed system (4.62) when A = 0.33333333, 
a = -0.33333333, 0 = -0 .5, 7 = -0.16666667 and 0 = 0- 0.05 100 

4.35 Time series for w for a trajectory with initial condition (0.001,0.001,0.001,1), 
for the flow of the perturbed system (4.63) when A = 0.33333333, 
a = -0.33333333, 0 = -0.5, 7 = -0.16666667, S = 0 - 0.05 and 
£ = - 1 100 

4.36 Time series for x for a trajectory with initial condition (0.001, 0.001, 0.001,1), 
for the flow of the unperturbed system (4.62) when A = 0.33333333, 
Q = -0.33333333. 8 = -0.5, 7 = -0.16666667 and S = 0 - 0.05 101 

4.37 Time series for x for a trajectory with initial condition (0.001, 0.001, 0.001,1), 
for the flow of the perturbed system (4.63) when A = 0.33333333, 
a = -0.33333333, 0 = -0 .5, 7 = -0.16666667, 5 = 0- 0.05 and 
e = - i 101 

19 



5.1 Shilnikov heteroclinic cycle in a three-dimensional flow connecting two 
saddle-foci 115 

5.2 Image in E20 of ^ (Rei) , 119 

5.3 Rectangular neighbourhood Rei and its covering by the rectangles Reik. 120 

5.4 Image, in E2o, by ipe2 o <ptl&2 o ipei of a vertical segment s in E10 121 

5.5 Desired intersections of ^e.2 o éeie2 o çei(Reu) with Re,2k, respectively, 
when k is odd and even 123 

6.1 The Turing machine T that takes a sequence in XM, a sequence in X2 

and outputs a sequence in XN 142 

20 



Chapter 1 

Motivation and aims 

A fundamental aspect in setting a general theory of chaotic dynamical systems is the 
study of specific examples. In this work we construct and study examples with chaotic 
dynamics. 

The complicated dynamics of these examples are due to recurrent behaviour forced by 
the existence of dynamical objects called heteroclinic cycles and heteroclinic networks. 

Roughly speaking, a heteroclinic cycle is a closed path formed by an ordered set of 
flow invariant sets, called nodes, and trajectories connecting each node to the next. 
Each heteroclinic connection belongs to the intersection of the unstable manifold of 
one node with the stable manifold of the next node. 

A heteroclinic network is a collection of heteroclinic cycles. There are several defi­
nitions in the literature, each imposing certain conditions and properties. These are 
presented in chapter 2. 

In this thesis we deal with equivariant ordinary differential equations. These are 
ordinary differential equations which are equivariant by some symmetry group. The 
concepts and results on the dynamics of ordinary differential equations needed for 
the work in this thesis, can be found, for example, in Arnold [1], Guckenheimer and 
Holmes [20], Palis and Melo [38]. For equivariant dynamics we refer the reader to 
Field [15] and Golubitsky and Schaeffer [19]. 

Heteroclinic cycles and heteroclinic networks are a characteristic feature of equivariant 
dynamical systems. This is due to the existence of flow invariant subspaces, called fixed 
point spaces. Most examples of structurally stable heteroclinic cycles that appear 
in the literature are in the context of equivariant dynamics. A review of some of 
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CHAPTER 1. MOTIVATION AND AIMS 22 

these can be found in Field [15] and Krupa [33]. Heteroclinic connections inside 
fixed point spaces may be robust, or structurally stable, even if the stable and the 
unstable manifolds of the adjacent nodes do not intersect transversely (see [13]). These 
connections are preserved by perturbations that preserve the symmetry of the spaces 
containing them. We refer to the article by Krupa [33] for a review of the theoretical 
and applied research on robust heteroclinic cycles. 

In this work we analyse numerically an example of 'instant chaos' presented and studied 
by Field in [15] that has very complicated dynamics. In [15] Field conjectures that for 
certain parameter values this example has a Shilnikov heteroclinic network involving 
equilibria and periodic trajectories. He also conjectures the transverse intersection of 
the invariant manifolds with dimension > 2. We make numerical observations of this 
example that confirm Field's conjectures and use them to establish assumptions on 
the dynamical behaviour of the example. 

This serves as motivation for the construction of simple examples, having part of the 
complex behaviour conjectured for Field's example. 

In [36], Lauterbach and Roberts show that forced symmetry breaking, i.e., perturbing 
the equations slightly so that some of the symmetries are broken, can naturally 
lead to the existence of structurally stable heteroclinic cycles. They give examples 
for dynamical systems with broken spherical symmetry. In [35], Lauterbach et al 
undertake a systematic study of such a situation, obtaining necessary and sufficient 
conditions for the existence of heteroclinic cycles in dynamical systems with broken 
symmetries, for general Lie groups. 

In this work we use forced symmetry breaking to construct a class of examples having 
structurally stable heteroclinic cycles with some heteroclinic connections not contained 
in fixed point spaces. The heteroclinic connections that are not inside fixed point 
spaces are contained in the transverse intersection of invariant manifolds with dimen­
sion greater than or equal to 2, as is expected in Field's example. 

We prove analytically the transverse intersection of the invariant manifolds in the 
examples that we construct. The construction of the examples is an analytic proof 
that what we observe numerically in Field's example can really exist. 

The study of the simple examples helps to understand complex dynamics in general. 

The existence of recurrent behaviour in the neighbourhood of heteroclinic pheno­
mena implies periodic behaviour. Moreover, in the general situation of the examples 
we study, the existence of heteroclinic connections that result from the transverse 
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intersection of invariant manifolds with dimension > 2, implies more complicated 
dynamics. We prove that it implies local horseshoe dynamics in the neighbourhood of 
the heteroclinic cycles and networks, as conjectured by Field. 

The term Shilnikov heteroclinic network (this term was first used by Field in [15]) 
is used to refer to a heteroclinic network containing invariant saddles with complex 
eigenvalues with Shilnikov phenomena, i.e., a heteroclinic network with local horseshoe 
dynamics. The name of Shilnikov is associated to this phenomena since it was he who 
first studied, Shilnikov [41], the existence of local horseshoe dynamics in the neigh­
bourhood of homoclinic and heteroclinic phenomena involving saddles with complex 
eigenvalues. 

Although there is a lot of work on the existence, structural stability and asymptotic 
stability of heteroclinic cycles and networks, there seems to be little work on the study 
of the local dynamics in their neighbourhood. In [39], Reissner addresses this question 
in the context of spatio-temporal symmetric systems. 

The Shilnikov heteroclinic network in Field's example is a particularly complex hetero­
clinic network with heteroclinic connections between the different equilibria, that are 
saddle-foci, between equilibria and periodic trajectories, and between distinct periodic 
trajectories. We use the symmetry in Field's example to reduce the network to a 
quotient heteroclinic network. 

The characterization of the local dynamics in the neighbourhood of the quotient 
heteroclinic cycles relies on the study of the local dynamics in the neighbourhood 
of generic heteroclinic cycles topologically equivalent to them and to the examples 
that we construct. We define symbolic dynamics and conclude that, under certain 
conditions, the chaotic local dynamics in the neighbourhood of the heteroclinic cycles 
that we construct and the quotient heteroclinic cycles of Field's example is horseshoe 
dynamics. 

We characterize the chaotic local dynamics in the neighbourhood of the heteroclinic 
network in Field's example using symbolic dynamics that describe the dynamics along 
the heteroclinic network and symbolic dynamics that describe the local dynamics in 
the neighbourhood of the quotient heteroclinic cycles. We conclude that the chaotic 
local dynamics in the neighbourhood of the Shilnikov heteroclinic network of Field's 
example is a horseshoe of horseshoe dynamics. 

Our approach gives an idea of the complexity of the dynamics in Field's example and 
can be used to study the local dynamics in the neighbourhood of heteroclinic networks 
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of the same kind. 

In the next chapter we give the definition of heteroclinic cycle and heteroclinic network 
that we are going to consider in this thesis and then we review the existent definitions. 
In chapter 3, we describe Field's example and our numerical simulations. Then, we 
characterize the structure of the heteroclinic network in Field's example and give an 
outline of the rest of the thesis. 

I declare that, to the best of my knowledge and unless where otherwise stated, all the 
work presented in this thesis is original. 



Chapter 2 

Heteroclinic cycles and networks 

2.1 Definitions 

We adopt the definitions of heteroclinic cycle and heteroclinic complex in Field [15], 
but instead of using the term heteroclinic complex we use heteroclinic network as it is 
more commonly used. 

Let X be a vector field on R". 

Definition 1 ([15], 6.5) Suppose that A is a compact invariant set for the flow of 
X. We say that A is an invariant saddle if 

W'(A)\A, WU(A) \ A D A. 

Definition 2 ([15], 6.7) Suppose that 

A={AZ : i = 0 , . . . , n - l } 

is a finite (ordered) set of mutually disjoint invariant saddles. We say that there is a 
heteroclinic cycle associated to A, if 

Wu(Ai) n Ws(Ai+l) # 0, i > 0 (mod n). 

We refer to the set E c R ™ defined by 

S = u^Ai u (Wu(Ai) n Ws(A1+l))., 

as the (maximal) heteroclinic cycle determined by A. 

25 
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Let Au Aj G R" be two invariant saddles and Wu(Ai) D Ws(Aj) ^ 0. A trajectory in 
Wu(Al) n Ws(Aj) is called a heteroclinic trajectory or a heteroclinic connection from 
Ai to Aj. We use Ai —» Aj to denote that there is such a connection. 

Let X be a T-equivariant vector field on R". Suppose that E is a heteroclinic cycle 
with associated set of invariant saddles A. Let r s denote the isotropy group of £, 
that is, 

r s = { 7 e r : 7(£) = E}. 

F s acts on the set of invariant saddles A. If this action is transitive, i.e. given Ai, 
Aj G A. 3 7 G Tv such that 7(Ai) = A,. E is sometimes refered as a homoclinic cycle 
(Field [15]). 

Definition 3 ([15], 6.22) Let A = {Az : i £ 1} be a finite (unordered) set of in­
variant saddles. We say that a flow-invariant subset £ o/Rn 25 a heteroclinic network 
if there is a finite set of (ordered) nonempty subsets Aj of A such that 

(A) Each subset Aj determines a heteroclinic cycle £j. 

(B) £ = 1 ^ , 

(C) IfWu(Ak) n Ws{At) ^ 0 then, there exists j such that Wu{Ak) D Ws(Ai) C £,-. 

f£) U J ^ J = A 

If E is a heteroclinic network with associated invariant saddle set {Ai : 1 G / } , then, 
( see[15], 6.23 (2)), 

E = Ui,jeIWu(Ai)nWs(Aj). 

Suppose that E is a connected heteroclinic network with associated saddle set A. 
Given any pair Aj, Ak G A, we can find a chain of trajectories joining Aj to Ak; there 
is a sequence j = l0,...,lN = k such that Wu(Ak) D Ws(Ali+l) 7̂  0, 0 < i < N(see 
[15], 6.23 (3)). 

From now on we modify the existing definitions in order to adapt them to the problems 
studied in this thesis. 

Definition 4 Let A = {Ai : i G / } be a finite (unordered) set of invariant sad­
dles, and E the heteroclinic network with associated saddle set A. We say that a 
flow-invariant subset T C E is a heteroclinic subnetwork if there is a finite set of 
(ordered) nonempty subsets Aj of A such that 
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(A) Each subset Aj determines a heteroclinic cycle Tj. 

(B) T = U ; T r 

It follows that a subnetwork is not necessarily a network and that a heteroclinic cycle 
is a particular case of a subnetwork. 

It follows from (D) in definition 3 that a heteroclinic network with associated saddle 
set A cannot be written as a disjoint union of two networks with the same set of 
saddles A. Nevertheless it can be written as a disjoint union of two subnetworks. 

Sometimes it is useful to interpret a heteroclinic network as a (directed) graph. The 
invariant saddles are the nodes of the graph, and for each nonempty intersection 
Wu(Ai) Pi Ws(Aj) / 0 there is an edge from node Ai to node Aj. This means that 
there is an edge in the graph from node Ai to node Aj for each heteroclinic connection 
in the network from the invariant saddle A, to the invariant saddle Aj. It is usual to 
refer to the invariant saddles of the network as the nodes of the network. 

In what follows we study the asymptotic stability of heteroclinic cycles and networks. 
A flow-invariant set S is Lyapunov stable if for any neighbourhood U of S there exists 
a neighbourhood V Ç JJ of S such that all trajectories starting in V remain in U 
for all forward time. A flow-invariant set S is asymptotically stable if it is Lyapunov 
stable and there exists a neighbourhood V of S such that all trajectories with initial 
condition in V converge to S in forward time. 

2.2 Overview of existing definitions 

There are several definitions of the concept of heteroclinic cycle in the literature 
Ashwin [3], Ashwin and Field [4], Field [15], Kirk and Silber [30], Krupa and Mel­
bourne [34], Krupa [33], Melbourne et al [37]. Essentially, all of them consider a 
heteroclinic cycle as a cycle of connections between ordered compact flow invariant 
sets usually called nodes. A heteroclinic connection between two consecutive nodes is 
a trajectory contained in the intersection of the unstable manifold of one node with 
the stable manifold of the next node. 

Some definitions restrict the nodes to hyperbolic equilibria ([3], [30],[34], [33]), while 
others generalize to any flow invariant sets such as periodic trajectories or even chaotic 
sets ([4], [15], [37]). 
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In general, the definitions of heteroclinic cycle make no reference to the dimension 
of the set of heteroclinic connections between two nodes. However, the simplest and 
perhaps the most studied situation is that of heteroclinic cycles with one dimensional 
connections. In [3], Ashwin and Chossat study robust heteroclinic cycles with continua 
of connections. In [9] Chossat et al introduce the term generalized heteroclinic cycle to 
distinguish heteroclinic cycles having sets of connections with dimension greater than 
one. 

In the context of equivariant dynamics, Melbourne et al [37] define heteroclinic cycle 
as a cycle of trajectories that start at a node and end at a conjugate of that node. 

The context of equivariant dynamics has the particularity that, if there is a heteroclinic 
connection between two nodes, there is a conjugate heteroclinic connection between 
the conjugate of those nodes. Moreover, it is common to ask all trajectories along the 
unstable manifold of one node to be captured by the group orbit of the stable manifold 
of some node in the cycle (Dias et al [12],Krupa and Melbourne [34]). 

The situation where all the nodes in the heteroclinic cycle are conjugated by symmetry 
is called a homoclinic cycle in [3], [37]. 

In Field and Richardson [18] the orbit of a heteroclinic cycle by the symmetry group is 
refered to as a heteroclinic complex. This is, for example, the case of the heteroclinic 
cycles in Guckenheimer and Holmes [21]. 

The concept of heteroclinic complex, more commonly refered to as heteroclinic network, 
has several different definitions in the literature. Nevertheless, in all of them it is 
described as a collection of heteroclinic cycles. The definitions of Field [15] and Kirk & 
Silber [30] present a heteroclinic network as a connected finite collection of heteroclinic 
cycles; any two nodes in the network can be joined by a sequence of heteroclinic 
connections. The definition in [15] is more general in that it allows heteroclinic cycles 
in the network to have empty intersection. Nevertheless, it forces every connnection 
between any two nodes in the network to be contained in the network. 

In this sense the definition of heteroclinic web of Dias et al [12] goes further and forces 
the unstable manifold of any node in the network to be contained in the union of the 
stable manifolds of all nodes in the network. 

Several definitions of heteroclinic cycle and network emerged according to the particu­
lar examples under consideration. To establish a more general definition including all 
the previously studied cases, Field &, Ashwin present in [4] a definition of heteroclinic 
network that generalizes the definitions of heteroclinic network thus far, and introduce 
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the concept of depth in the network. They define a heteroclinic network as a 
flow-invariant set that is indecomposable but not recurrent. 

Their definition covers many previously discussed examples of heteroclinic behaviour. 
As mentioned in [4], it includes the examples of 'cycling chaos' in Ashwin [2], Dellnitz 
et al [10], Field [15] but not the Shilnikov network of Field's example in ([15], appendix 
A) that we study here. 

In Field's example, we establish the existence of an invariant set homeomorphic to a 
Cantor set in the neighbourhood of the Shilnikov network. This means that there is an 
infinite set of recurrent points in the neighbourhood of the network. This contradicts 
the existence of a finite nodal set as defined in [4] and thus does not satisfy the 
definition of heteroclinic network in [4]. 

2.3 Networks and symmetry 

Let V = R" and T a compact Lie group acting on V. Consider the system of differential 
equations 

HT 

^ + /(*,A) = 0, (2.1) 

where x G V and / : V x R -> V. 

We say that / commutes with the action of T, or that (2.1) is T-equivariant, if 

/ ( 7 - £ , A ) = 7 - / ( * , A ) (2.2) 

for all 7 G T. x G V. The maximal group T that commutes with / is referred to as 
the symmetry group of (2.1). 

For x G V, we define T(x), the orbit of x by the group T, and Tx, the isotropy subgroup 
of x respectively, as follows, 

T(x) = {-y.x : 7 € T} C V, Tx = {7 G T : j.x = x} C T. 

It is an easy but important consequence that if x is a solution of the equivariant system 
(2.1). so are the elements in its T-orbit. 

The isotropy subgroup of a solution is the subgroup of the symmetries of that solution. 

To each subgroup E of T we associate the fixed point subspace 

Fix{Z) = {y G V : a.y = y, Va G S}. 
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An important property of fixed point subspaces is that they are invariant by the flow 
of (2.1). 

Other concepts and results on equivariant dynamics not defined here can be found in 
[15], [19] (we draw the reader's attention to some notational differences). 

Equivariant systems have the property that if A" is a flow invariant set, then so are 
the sets jK, 7 G T in its group orbit. The sets K and jK are called conjugate. 

When dealing with heteroclinic cycles and heteroclinic networks in the context of 
equivariant dynamics, it may be useful to identify points in the same group orbit. 

We consider a compact manifold M, a compact Lie group T and a T-equivariant flow 
on M, (p. 

In the next paragraphs we discuss how, using the action of F on M we can reduce 
the phase space M to the orbit space M/T by identifying points in the same group 
orbit, and define a smooth flow on M/T corresponding to 0. Then we show that a 
heteroclinc cycle or network of é on M transforms by the reduction to a heteroclinic 
cycle or network of the reduced flow on M/T. These results will be used later, in 
section 3.4, in Field's example. 

Given x, y 6 M we define the equivalence relation: 

x ~ y 4=3- x and y are in the same group orbit. 

Define the set M/T of the equivalence classes, i.e., the set of the orbits of T on M. 
We denote by [x] = T(x) the equivalence class of x G M. 

The set M/T endowed with the quotient topology is called the orbit space of M (with 
respect to T). See Bredon [7], chapter I, section 3. Let TT : M -¥ M/T denote the 
continuous map that takes each element x of M into its equivalence class [x]. 

In general M/T is no longer a differentiable manifold. Nevertheless, the group orbits 
of differentiable group actions are differentiable manifolds ([7], chapter VI, section 1). 

A differentiable flow on M does not need to induce a differentiable flow on M/T. 
However, by the Smooth Lifting Theorem (theorem 0.2) in Schwarz [40], this is true 
when T is a compact Lie group. More precisely, the Smooth Lifting Theorem (theorem 
0.2 in [40]) states that for each smooth T-equivariant vector field on M, there is 
a corresponding smooth strata-preserving vector field on M/T. (For a definition of 
strata-preserving differentiable vector fields, see [40].) 
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Definition 5 Let {4>t : t G R} be a flow of a T-equivariant system of differential 
equations on M. Each map <j>t induces on the orbit space M/T the map, 

« = J - X'\ (,3) 
<p\ O 7T = 7T O (pt. 

The function ôq(t..) = à\ in M/T is called the quotient flow. 

Next we prove that, a heteroclinic network on M, invariant by a flow <j) on M, induces 
a heteroclinic network on M/T, invariant by the quotient flow 4>q on M/T. 

Lemma 6 Let £ be a heteroclinic cycle determined by a finite (ordered) set of invari­
ant saddles A = {Ai : i = 0, ...,n - 1}. Then T./T is a collection of heteroclinic cycles 
(with nonempty intersection) associated to the set A/T, and is given by 

E/r = u K M u (W*([Ai]) n Ws([Ai+l])), 

where k is the number of equivalence classes in A/T. 

Proof: The elements Bt of A/T are the equivalence classes, [Aj], of the elements in 
A. Each element of A/T is the subset of the elements in A that are in the same group 
orbit. 

Consider the order relation in A/T defined by 

Bx < Bj if 3Ak e BhAi 6 Bj such that Wu{Ak) n Ws{At) ± 0. (2.4) 

Let B\,...,Br be the maximal subsets of A/T where the order relation defined above 
is univocally determined, and DPBP = A/T. 

We show that each Bz determines a heteroclinic cycle £,. Let B% = {Bj : j = 0,..., m - 1}. 
We have 

Bj < Bj+i Vj = 0,..., m - 2 (mod m), 

which is equivalent, by (2.4), to 

Wu{Bj) n WS{BJ+1) ? 0 Vj = 0,..., m - 2 (mod m). 

It remains to show that Wu(Bm.1) n W"rs(£0) 7e 0- If ^ u ( B m _ ! ) n W(BX) = 0, then 
we would have 

VAk € £ m - i , A, G fio, ^u(-4fc) n Ws(At) = 0. 
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Since S is a heteroclinic cycle determined by A, there would be Bs and Ar G Bs such 
that Wu(Ak) n Ws(Ar) yí 0. Then, we would have 5m_i < Bs, and so, B{ would not 
be a maximal subset of A/T where the defined order relation is univocally determined. 

We must then conclude that Wu(Bm-i) f*l IVs(B0) ^ 0 and that each Bi determines a 
heteroclinic cycle Ej. Then 

E/r = u[E, = uf-o1^] u (w»([41) n t r (L4m])), 

where k is the number of equivalence classes in A/T. D 

Lemma 7 Let E C M be a heteroclinic network with a set of invariant saddles A. 
Then E/T is a heteroclinic network with set of invariant saddles A/T. 

Proof: Let Bi be the elements of A/T, that are the equivalence classes, [A,], of the 
elements in A. 

Since E is a heteroclinic network there is a finite set of ordered nonempty subsets Aj of 
A such that each Aj determines a heteroclinic cycle E r By the previous lemma there 
are subsets Bjk of A3/T such that UkBjk = Aj/T, each Bjk determines a heteroclinic 
cycle T,jk and U^S^ = Ej/T. 

Assume Wu(Bm) n Ws{Bn) ^ 0, then 3Ak G Bm,Ai G Bn such that 
Wu(Ak) H Ws(Ai) 7̂  0. Since E is a heteroclinic network 3j such that 
Wu(Ak) n 1TS(,4,) G E r Then 3k such that W t t(Bm) n Ws(Bn) G Ejfc. 

Since E is a heteroclinic network, we have LijAj = A. This implies UjAj/T = A/T, 
which is equivalent to Uj Lik Bjk = A/T. 

We conclude that there is a finite set of (ordered) nonempty sets Bjk of A/T such that 

(A) Each B3k determines a heteroclinic cycle T.jk. 

(B) E / r = U, Ufc Ejfc. 

(C) If Wu{bk) n U"s(6;) / 0 then, there exists j such that Wu(bk) n Ws(ò,) C EJ/t. 

(D) U, Ufc £jfc = A/T 

Thus, we conclude that E / r is a heteroclinic network with set of invariant saddles 
A/T. D 
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Definition 8 Given a heteroclinic network E we call E/T the quotient heteroclinic 
network o/E by T. 

Analogously to the case of heteroclinic networks, we can define quotient heteroclinic 
cycle and quotient heteroclinic subnetwork. 

Note that, in general, there is no way of getting a heteroclinic network E from its 
quotient network E / r : suppose there is a connection [Az] -> [Aj] in E / r . Then there 
is in E a connection Az —> jAj for some 7 G T. This connection does not necessarily 
exist for all 7 e T. Further, if we only know E/ r , there is no way of deciding for which 
7 the connection exists. 

Nevertheless, it is possible to define heteroclinic subnetworks T of E such that its 
group orbit by T is E. We call them representative heteroclinic subnetworks. 



Chapter 3 

Field's Example 

The starting point for the work in this thesis is an example with interesting dynamics, 
presented and studied in appendix A of Field [15]. We describe this example in the 
next two sections. 

In the first section we mention the results in [15] that are relevant for our study. We 
describe Field's conjecture on the existence of chaotic behaviour due to the possible 
existence of a Shilnikov heteroclinic network. 

Then in section 3.2 we describe our numerical simulations and show how they provide 
strong evidence of the existence of a Shilnikov heteroclinic network in the dynamics 
of the example. 

In section 3.3 we charaterize the heteroclinic network using the definitions in chapter 2 
and in section 3.4 we outline the rest of the thesis. 

3.1 Description, previous results and Field's con­
jecture 

For a more detailed explanation of the contents of this section see [15], appendix A. 

Consider the family of differential equations in R4, 

34 
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xi = Xxi - |\x\\2Xi + j3{x\x2 -y\x2 - 2xlyly2) + 7(^2 ~ 3^2 2/1) 
I ill = ^yi'\M2yi + 0(-x2

ly2 + y2
1y2-2x1y1x2)+-f(-yl + 3x2

2y2) 
x2 = \x2-\\x\\2x2 +B{xlx2

2-xlyl + 2ylx2y2) + ~j(x\-Zxly2) 
k Ù2 = ^y2-\\x\\2y2 +p{yix2

2-y1y2-2x1x2y2)+-f(yf-3x2y1) 

Identifying R4 « C2 we may rewrite the equations in complex coordinates (zx,z2) 
where Zj = x3 + iy3,j = 1,2. With this notation, the family (3.1) is equivariant by 
the compact Lie group T generated by, 

(uzi,u2z2), (3.2) 

(*2,*i)> (3-3) 
( -«1 , -22) , (3.4) 

Lemma 9 ([15], A.7) Representative proper fixed point spaces of (C2,T) are given 
by 

(A) A = {(rci.O.Xi.O) : xi G R} = Fix((t)) (axis of symmetry). 

(B) B = {(xi,0, -xuQ) : x1 G R} = Fix((-t)) (axis of symmetry). 

(S) S = {(x1,0,x2,0) : Xi,x2 € R} = Fix((t2)) (submaximal stratum). 

(P) P = {(0,î/i,0,y2) : 2/1,2/2 G R} = F2x((-i2)) (maximal orbit stratum) and we 
have N((-t2))/{-t2) * Z4. 

TTiere are exaci/î/ five axes of type (A), five axes of type (B), five planes of type (S) 
and five planes of type (P). There are no three dimensional fixed point subspaces. 

From now on we fix parameter values as follows: 

A > 0. 7 < 0, p > 0, 7 + 3/3 > 0 and \/3 + j\< 2. 

For these parameter values, by the result in lemma ,4.10 of [15] (taking a = -1) , the 
cubic term of (3.1) is contracting and we can apply the Invariant Sphere Theorem, 
Field [14], Field [15] to reduce the dynamics of (3.1) to an invariant three-dimensional 

s(zi,z2) 

t{zuz2) 

-h\zuz2) 

where to e 5 
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sphere that is globally attracting in the sense that every trajectory which does not 
contain the trivial equilibrium is forward asymptotic to it. Consequently, we restrict 
our attention to the flow on the topological sphere. 

The following results on the dynamics on the fixed-point spaces, for the chosen pa­
rameter values, are relevant for later chapters: 

• There is a pair of equilibria ±a(X) on the axis A and a pair of equilibria ±b(X) 
on the axis B. We have that ±a(A) and ±b(X) are the only nontrivial equilibria 
on S ([15]. lemma A.11). 

• For the flow restricted to S, the points ±6(A) are sinks, ±o(A) are saddles and 
there is a one-dimensional connection from ±a(A) to ±6(A) ([15], lemma A.14). 

• The connection from ±a(X) to ±b(X) is contained in the invariant sphere. In the 
restriction to the invariant sphere, dim(Wu(b(X))) = 2 and dim(Ws(a(X))) = 3 
and Wu(b(X)) and Ws(a(X)) are transverse to the plane S ([15], lemma A.14). 
See figure 3.1 (copy of figure 11 in Field [16]). 

Figure 3.1: Dynamics of Field's example near the plane S (copy of figure 11 in [16]) 

• There are no nontrivial equilibria on the plane P ([15], proposition A.15). There 
is a periodic trajectory c(A), obtained from the intersection of P and the invari­
ant three-sphere, that attracts all points in P — {0}. 
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• By lemma A.19 in [15] the equilibria in [a] — {±sna} n = 0,..., 4}, the equilibria 
in [b] = {±snb, n = 0,..., 4} and the origin are the only equilibria of (3.1), where 
s is the element of T defined in (3.2). 

Similar dynamics occur in the conjugates of fixed point spaces by the group T. 

For the parameter values we are considering we expect to find heteroclinic phenomena 
connecting the equilibria in [a] and [6], and even the periodic trajectories on the plane 
P , in the flow restricted to the invariant three-sphere. 

Figures 3.2 and 3.3, obtained using the dynamical systems package Dstool, Gucken-
heimer et al [22], [23], [24], [25], are an evidence of the complex dynamics in Field's 
example, for the parameter values considered. 

1 fV 1 
0 400 

Figure 3.2: Time series for X\ of a trajectory in Field's example when A = 1, /3 = 1 
and 7 = -0.6 

Field conjectures that, 

Conjecture 10 The T-orbit of Wu{b{\)) intersects the Y-orbit of Ws(a(\)) trans­
versely, and therefore the intersection is persistent. 

Conjecture 11 Assuming the hyperbolicity of the periodic trajectory, there are also 
transverse intersections of the invariant manifolds of the periodic trajectories and of 
the invariant manifolds of the equilibria and periodic trajectories. 
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Figure 3.3: Projection in the (xi,j/i)-plane of a trajectory in Field's example, when 
A = 1, p = 1 and 7 = -0.6 

Conjecture 10 is enough to produce a Shilnikov network of heteroclinic cycles. Both 
conjectures lead to complicated dynamics. 
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3.2 Numerical study and definition of the hetero-
clinic network 

For the rest of the thesis we assume A = 1 fixed and we omit references to A in the 
text. 

In this section we describe the numerical evidence supporting Field's conjecture. The 
search for the analytical proof of the conjecture produced the work in the remaining 
chapters. 

In our numerical study we used the dynamical systems package Dstool [22], [23], [24], 
[25]. Our procedure was based on the fact that asymptotically stable heteroclinic 
phenomena are related to nontransient intermittent behaviour: a trajectory in the 
neighbourhood of a heteroclinic cycle or network will move from one invariant saddle 
to the next ad infinitum spending a long time near each invariant saddle. 

In our Dstool specification of Field's example we incorporated a C-routine. For each 
Dstool computation of a trajectory, with given initial conditions, the C-routine gives 
as output a sequence that identifies the invariant saddles near the trajectory. 

Specifically, in the Dstool specification we consider a neighbourhood of each invariant 
equilibrium and periodic trajectory. At each Dstool iteration the C-routine inspects 
if the actual position in the phase space is within any of the neighbourhoods and 
in that case it prints the identification of the corresponding equilibrium or periodic 
trajectory and the distance in each coordinate between the actual position and that 
of the invariant saddle. 

Appendix A contains the Dstool specification of the example and a more careful 
explanation of how the C-routine, fielcLauxO, works. 

The sequences produced by the C-routine running Dstool, exhibit evidence of the 
existence of the following connections: 

• from ±ò to ±sn(a) with n ^ 0, 

• from ±6 to sn(c), 

• from c to ±sn(a). 

• from c to sn(c) with n ^ O , 
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with n G Z(mod 5) and s the element of T defined in (3.2). 

Note that we do not know the dimension of these connections. This seems to be 
impossible to determine numerically. 

Applying the symmetry to the connections found numerically, we obtain the following 
connections, 

• from sk(±b) to sk{±sn(a)) with n ^ 0, 

• from sk(±b) to sk(sn(c)), 

• from sk(c) to sk{±sn(a)), 

• from sk(c) to sk(sn(c)) with n ^ O , 

with k,n G Z(mod 5) and s the element of the symmetry group T defined in (3.2). 

In each fixed point subspace sk(S) conjugate to the plane S there are also the connec­
tions, found analitically by Field [15], 

• from sk(±a) to sk(±b), 

with k £ Z(mod 5) and s the element of the symmetry group T defined in (3.2). 

Since the symmetry group has finite order there exist sequences of connections begin­
ning and ending at the same equilibrium point or periodic trajectory. This supports 
the existence of a Shilnikov network of heteroclinic cycles involving equilibria and 
periodic trajectories and with the invariant manifolds with dimension > 2 intersecting 
transversely, as conjectured by Field. We denote this network by S. 

The periodic trajectory on plane P may be a hyperbolic saddle with either two- or 
three-dimensional unstable manifold. Numerical computations with GAIO, Dellnitz 
et al [11], Junge [29] indicate that the unstable manifold of the periodic trajectory is 
two-dimensional. 

Numerical computations with GAIO further support the existence of a transverse 
intersection of the invariant manifolds with dimension > 2 of the equilibria and 
periodic trajectories in E. With this transverse intersection as a hypothesis we prove 
the existence of horseshoe dynamics leading to the chaotic behaviour we observe 
numerically. 
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3.3 Structure and symmetry of the heteroclinic net­
work 

The network S has a lot of structure and symmetry and we characterize it using the 
concepts in chapter 2. At the same time we give a general overview of how we are 
going to study the local dynamics in the neighbourhood of the network based on its 
properties. 

As we have seen in the last chapter the invariant saddles in the network can be either 
equilibria or periodic trajectories. There are three equivalence classes of invariant 
saddles, [a], [b] and [c], which correspond, respectively, to the set of equilibria conjugate 
to equilibrium a. the set of equilibria conjugate to equilibrium b and the set of periodic 
trajectories conjugate to periodic trajectory c. 

There are heteroclinic connections from elements in [a] to elements in [b], from elements 
in [6] to elements in [a] U [c] and from elements in [c] to elements in [a] U [c]. 

Thus, there are heteroclinic cycles, and heteroclinic subnetworks, involving only ele­
ments in [a] U [b], in [a] U [b] U [c] or in [c]. Let us call the subnetwork involving all the 
equilibria in [a] U [b] and all the connections between them, the maximal subnetwork 
of equilibria. 

There are some interesting aspects about the subnetworks which we mention next. 

We define the order of a heteroclinic cycle or network as the number of invariant 
saddles that it contains. 

Proposi t ion 12 In a heteroclinic network with precisely the connections described in 
section 3.2, the heteroclinic cycles in a subnetwork of equilibria are of order k with k 
even and 4 < k < n, with n the number of equilibria in the subnetwork. 

Proof: The order of the heteroclinic cycles is even since the heteroclinic connections 
from equilibria in [a] are only to equilibria in [b] and vice-versa: there is no heteroclinic 
connection between the equilibria in [a] and no heteroclinic connection between the 
equilibria in [&]. 

The minimum order is 4 since there is no heteroclinic connection from snb to sna, 
n = 0,..., 4. The maximum order is obviously determined by the number of equilibria. 
a 
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Using combinatorics we can say that there are 160 heteroclinic cycles of order 4, 1280 
of order 6, 9680 of order 8, and so on. 

There are heteroclinic cycles in the subnetwork of equilibria with nonempty intersec­

tion due to a common equilibrium or to one or more common connections. 

Consider a heteroclinic cycle with maximum order, say e\ —> e2 —> e3 ­ » . . . ­ » e20 —> 
ex, with e; ^ ê  for all i, j G 1,..., 20. Assume ex G [a], then e2 G [6], e3 G [a] ... and 
e20 e [6]. 

We can assume e3 to be such that there is the connection e2o —> e3, and consider the 
heteroclinic cycle given by e3 —> e± —> e5 —>■ ... —» e20 —>■ e3. The two heteroclinic 
cycles have 17 heteroclinic connections in common. 

Theorem 13 In a heteroclinic network with precisely the connections described in 
section 3.2, two different heteroclinic cycles in the maximal subnetwork of equilibria 
coincide in, at most, 17 heteroclinic connections. 

Proof: This follows from the fact that the maximal subnetwork of equilibria is of 
order 20, and the heteroclinic connections from equilibria in [a] are only to equilibria 
in [b] and vice­versa. 

Suppose there were two such cycles, and that the common heteroclinic connections 
were ex —> e2 —» e3 —> ... —» ei9, with e* ^ ej for all i,j G 1,..., 19. Assume, without 
lost of generality, that e\ G [a]. Then eig G [a], and the remaining equilibrium, e20 is 
in [6]. So. the remaining heteroclinic connections in the heteroclinic cycles have to be 
6i9 ­> e2o —> ei. This is absurd because, by hypothesis, the two heteroclinic cycles are 
different. D 

To simplify our description we refer to trajectories close to the network as paths along 
the network. We use Ai ­>• Aj to denote that there is a path from the invariant saddle 
Ai to the invariant saddle Aj and in fact this means that there is a segment of a 
trajectory close to Au that later becomes close to Aj, and in the meanwhile does not 
become close to any other invariant saddle. We say that a segment of a trajectory is 
a closed path if it starts close to, and ends close to the same invariant saddle of the 
network but does not intersect the invariant saddle. 

An important property of the network S is that paths that are in the same group orbit 
induce local dynamics that are essentially the same up to symmetry. To exemplify, 
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consider the closed paths a—»ò—»,sa—>sò—»a and sa —» sb —» s2a —> s2b —> sa. 
The essential difference is in the identification of the nodes of the network that are 
"visited" by the path. 

It is possible to find subnetworks of E whose orbit by the symmetry group is the 
network E. We call such a network a representative subnetwork. See Figure 3.4 for an 
example of a representative subnetwork of E. 

J 

Figure 3.4: Example of a representative subnetwork of the heteroclinic network E in 
Field's example. 

We can go further and say that the local dynamics induced by a visit to the closed 
path a —» b —> 5a —> sb —y a is essentially the same as the local dynamics induced by 
two visits to the closed path a —>■ b —> a, modulus the record of the identification of 
the nodes visited during the path. Nevertheless, the closed path a —» b —> a is not 
a path along the heteroclinic network E, nor in a representative subnetwork. It is a 
path on the quotient heteroclinic network E/T. 

The observations above motivated our approach to the study of the local dynamics in 
the neighbourhood of the network E. We use a codification of the dynamics along the 
heteroclinic network E and a codification of the local dynamics in the neighbourhood 
of the quotient network E / r to characterize the local dynamics in the neighbourhood 
of the heteroclinic network E. 

Let us define the quotient heteroclinic network E/r . The invariant saddles are the 
equivalence classes [a], [b] and [c]. The heteroclinic connections from the equilibria in 
[a] to the equilibria in [b] are conjugated, that is, are in the same group orbit. Thus, 
their quotient by the symmetry group T is a heteroclinic connection by the quotient 
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flow from [a] to [b]. The same does not happen, for example, with the heteroclinic 
connections from the equilibria in [b] to the equilibria in [a]. We know, for example, 
that there is at least one heteroclinic connection from ±b to ±sna with n / 0 . Then 
in the quotient flow there is a heteroclinic connection from [6] to [a] for each one of 
these connections. In fact, we have at least eight connections from [b] to [o]. 

In our study we consider that there is only one heteroclinic connection from [b] to 
[a]. This seems to be no problem since this information is recovered later using the 
dynamics along the network E. Moreover, as we have already mentioned, we were not 
able to detect numerically the number of heteroclinic connections from ±b to ±sna 
with n ^ O . 

Figure 3.5 is a representation of the quotient heteroclinic network E/I \ Looking 
at figure 3.5 we can easily see that E/T is the union of three heteroclinic cycles, 
represented in figure 3.6, namely a heteroclinic cycle involving only the equivalence 
classes of the equilibria, a heteroclinic cycle involving all the equivalence classes, and 
a homoclinic cycle to the equivalence class of the periodic trajectories. We call these 
heteroclinic cycles the quotient heteroclinic cycles. 

la] • • lb] 

Figure 3.5: Quotient heteroclinic network E/T of the heteroclinic network E in Field's 
example. 

Mf • lb] 

[a] m • lb] lei 

Figure 3.6: Quotient heteroclinic cycles of the quotient heteroclinic network E/T. 

Instead of studying the local dynamics in the neighbourhood of the quotient network 
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we study the local dynamics in the neighbourhood of each of the quotient heteroclinic 
cycles. The heteroclinic cycles are the minimum paths in the network that can give 
rise to complex dynamics. 

Our approach to characterize the local dynamics in the neighbourhood of the hete­
roclinic network E is to study the local dynamics in the neigbourhood of each of the 
quotient heteroclinic cycles and then compose those dynamics using a codification of 
the dynamics along the network E. 

3.4 Overview of the rest of the thesis 

In the next chapter, we start by constructing examples, each containing part of 
the complex behaviour that we observe in Field's example. We construct two four-
-dimensional systems with heteroclinic cycles topologically equivalent to quotient he­
teroclinic cycles in E/T. In both examples there is a flow invariant globally attracting 
three-sphere. In the flow restricted to the sphere there is a structurally stable hetero­
clinic cycle, with two saddle-foci in the example of section 4.1, and with four saddle-foci 
and a periodic trajectory in the example of section 4.2. In both examples we prove 
that, on the sphere, the two-dimensional invariant manifolds of the invariant saddles 
intersect transversely. 

These examples are important for several reasons. They are simple examples with 
complex dynamics and easy to study analitically. They are a proof that what was 
conjectured in the case of Field's example can really exist. They are of great help in 
the study of the dynamics of more complex examples, as is the case of Field's example 
that we study here. 

In section 5.1 we study the local dynamics in the neighbourhood of a generic hetero­
clinic cycle topologically equivalent to the quotient heteroclinic cycle in E/T involving 
the equivalence classes of equilibria and we find conditions for horseshoe dynamics. 
This establishes the existence of local horseshoe dynamics in one of the examples 
we construct. In section 5.2 we establish the existence of horseshoe dynamics in 
the neighbourhood of a generic homoclinic orbit topologically equivalent to the orbit 
homoclinic to the equivalence class of periodic trajectories in E/T. 

In section 6.1 we define symbolic dynamics that codifies the dynamics along the 
network E, and finally in section 6.2 we define symbolic dynamics that codifies the 
dynamics in the neighbouhood of the network. 
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The approach of structuring the study of the local dynamics in the neighbourhood of 
the heteroclinic network E, not only makes it easier, but also has the advantage of 
allowing to say more than just that there is horseshoe dynamics in the neighbourhood 
of the network. We conclude that there is also horseshoe dynamics in the neighbour­
hood of the heteroclinic cycles in the network and so the final conclusion in section 6.2 
is that in the neighbourhood of the network E there is a horseshoe of horseshoes. 

We conclude that there is an infinity of periodic trajectories and a dense trajectory 
not only in the neighbourhood of the network E but also in the neighbourhood of the 
heteroclinic cycles in E. 



Chapter 4 

Construction of examples 

The examples we construct in this chapter have each of them a feature of the complex 
dynamics of Field's example discussed in chapter 3, but are simpler. They are helpful in 
the study of the complex dynamics, of that and other examples, and are also interesting 
for their own sake, because 

• they are simple examples with complicated dynamics, 

• we can prove transverse intersection of two-dimensional complex invariant ma­
nifolds in many cases, 

• they are constructive, 

• the techniques used for putting them together can be used generally. 

The goal is to define systems that are simple and easy to study, such that we can make 
a good geometrical and analytical description of their flow. 

4.1 Example: heteroclinic cycle with two saddle-
foci in R4 

In this section we construct a family of systems in R4 with a structurally stable 
heteroclinic cycle involving two saddle-foci with a pair of complex eigenvalues and 
with the invariant manifolds of dimension > 2 intersecting transversely. 

We define saddle-focus as a saddle having at least one pair of complex eigenvalues. 

47 
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We look for systems with a globally attracting invariant compact manifold where we 
can capture the dynamics. A good choice for that manifold is an invariant sphere. 

As we want to have a heteroclinic cycle connecting two saddle-foci, the invariant 
sphere must be at least three-dimensional. So, we construct the examples in R4 with 
an invariant three-dimensional sphere. 

The construction of the final system comprizes two essential steps. We start with 
a system whose flow restricted to the three-dimensional sphere has an asymptoti­
cally stable heteroclinic cycle between two saddle-foci connected by an invariant two-
-dimensional sphere. We then find symmetry-breaking terms that preserve the three-
-dimensional sphere while destroying the connecting two-dimensional sphere into a 
transverse intersection of the two-dimensional invariant manifolds. The final system, 
perturbed by the symmetry-breaking terms, possesses the desired dynamics. 

We also analize the different dynamics for some symmetry-breaking terms that preserve 
the three-sphere. 

4.1.1 Construction of the unperturbed system 

We want to define a system in R4 satisfying: 

(CI) There is a three-dimensional sphere, S^, that is invariant by the flow and globally 
attracting, in the sense that every trajectory with nonzero initial condition is 
asymptotic to the sphere in forward time. 

(C2) On the invariant three-sphere, the system has an asymptotically stable he­
teroclinic cycle involving two saddle-foci, pw_, pw+. The invariant manifolds 
of the equilibria satisfy, on the invariant sphere, Ws(pw_) = Wu(pw+) and 
Ws{Pw+) = Wu(pw_). One of the connections is one-dimensional, the other two-
-dimensional. The two-dimensional connection coincides with D - {pw_,pw+], 
with D a two-dimensional sphere. 

(C3) The system has no equilibria other than the origin, pw_ and pw . 

(C4) The system has two hyperbolic periodic trajectories, each in one connected 
component of S^\D. On the invariant sphere the periodic trajectories are 
repelling. 



CHAPTER 4. CONSTRUCTION OF EXAMPLES 49 

The construction consists in defining a vector field in R3 that lifts to R4 by an 50(2)-
-action. Thus the final system has SO(2)-symmetry in addition to properties (Cl)-
(C4). 

We construct a three-dimensional system with a two-dimensional invariant globally 
attracting sphere, S^, which lifts to the three-sphere S3 by the SO(2)-action, and a 
heteroclinic cycle between two saddles with a one-dimensional connection that lifts by 
the 50(2)-action to a two-dimensional connection. We further require the existence 
of unstable foci that lift to the two repelling periodic trajectories. See figure 4.1. 

Figure 4.1: Dynamics of the three-dimensional system restricted to the two-sphere S^. 

4.1.1.1 Basic example in R3 

In this section we construct an example in R3 with the desired properties. The 
properties are easily satisfied in flow invariant spaces. Hence, the example will have 
some symmetry, since symmetric systems possess natural flow invariant sets, the fixed 
point spaces. Moreover, the symmetry makes the lifting to R4 easier. 

We consider the compact Lie group G generated by the action of the following elements, 

{p,v,w) H-> (p,-v,w), 
(p,v,w) A (-v,p, -it;). 

The action of this symmetry group in R3 has symmetry planes, 

Fix(d) = {{p,v,w):v = 0}, 
Fix{dq2) = {(p,v,w):p = 0}:

 [ ' } 
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and symmetry axes, 

Fix{q2) = {(p,v,w) 
Fix(dq3) = {(p, v,w) 
Fix(dq) = {(p, v,w) 

p = 0, v = 0}, 
p = v,w = 0}, (4.3) 
p = —v, w = 0}. 

Theorem 14 Consider the G-equivariant family of vector fields in R3 with equations 
given by 

p = p(A — Rr2) — apw + dpw2, 
i) = t'(A - i?r2) + au-u; + fivw2, (4.4) 
tú = w(X — Rr2) - a(v2 - p2) — f5w{p2 + v2), 

with r2 = p2 + v2 + ui2. 

i^or A > 0; R > 0, /3 < 0, A/32 < 8a2i?, |A/3| < |aVAi2|, and a ^ 0 we have: 

(a) The two-sphere of radius r — W^, denoted by S2
; is invariant by the flow of 

(4-4) and globally attracting, in the sense that every trajectory with nonzero 
initial condition is asymptotic to the sphere in forward time. 

(b) On the invariant sphere, the system has an asymptotically stable heteroclinic 
cycle involving two saddles, pw_ andpw+. On the invariant sphere, the invariant 
manifolds ofpw_ andpw+ satisfy Ws(pw_) = Wu(pw+) andWs{pw+) = Wu(pw_). 

(c) Besides pw_, pw+ and the origin, system (4-4) has four unstable foci. 

(d) System (4-4) has no compact limit sets other than the ones mentioned above. 

Moreover, any G-equivariant polynomial vector field of degree 3 in R3 with the pro­
perties above can be obtained from (4-4) by a linear change of coordinates. 

Proof: It is trivial to see that system (4.4) is equivariant by the symmetry group G. 

Sometimes it is easier to work with system (4.4) in spherical polar coordinates, 

f = r(X — Rr2), 
9 = a r sin #cos(20) + fr2sin(2#), (4.5) 
0 = — arcos dsm(2(p), 

and thus we use both coordinate systems. 

We get (a) easily from the radial equation in (4.5). If R > 0 then the sphere of radius 
r = J^ is invariant under the flow and, since A > 0, it is globally attracting. 
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The intersection of the invariant sphere with the symmetry axes Fix(dqs) and Fix(dq) 
gives the equilibrium points pp+v+ = (75,75,0), PP-v- = (~72'~7f>0)> 
PP+v- = (75, - 7 5 , 0) and pp_v+ = ( -75 , 75, 0). We use ppv to refer to these equilibria. 

The intersection of the invariant sphere with the symmetry axis Fix(q2) gives the 
equilibrium points pw+ = (0,0, r) and pw_ — (0,0, —r). We use pw to refer to these 
equilibria. 

To see that, for the parameter values that we are considering, there are no equilibria 
other than the aforementioned and the origin we simply evaluate the zeros of the 
equations for 6 and 0. We obtain either sine? = 0 = sin(2^) or cos(2(f>) — 0 = cos#, 
which correspond to the equilibria pw and ppv, respectively. 

The non-radial eigenvalues of the linearization of (4.4) at ppv are 

(-XP ± ^X232 - 8Xa2R) /2R. 

Since A > 0. R > 0, 3 < 0 and X32 < 8a2R, equilibria ppv are unstable foci. This 
proves (c). 

The non-radial eigenvalues, in the (1,0,0) and (0,1,0) directions, of the linearization 
of (4.4), at pw+ are, respectively, 

(x8 - aVXR) jR and (x8 + QV\R\ /R, 

and, at pw_ are, respectively, 

(X0 + aVXR) /R and (x8 - a\fXR\ JR. 

Since A > 0 , R > 0, / 3 < 0 and \X/3\ < \ayXR\, equilibria pw are hyperbolic saddle 
points. 

The heteroclinic cycle involving the equilibria pw is the intersection of the invariant 
sphere with the symmetry planes. Thus, the heteroclinic cycle coincides with the 
union of the invariant circles given by the equations p2 + w2 = 4 and v2 + w2 — ^. 

We know by the Poincaré-Bendixson theorem [20] that in the flow restricted to the 
invariant sphere, the cj-limit set of the unstable îocippv can be either a closed trajectory 
or a heteroclinic loop in the heteroclinic cycle. 

We will prove that there are no closed trajectories. We consider system (4.4) as a 
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perturbation with parameter 0 of the G-equivariant system 

p = p(X — Rr2) — apw, 
v = v(X - Rr2) + avw, (4.6) 
w — w(X — Rr2) — a(v2 — p2), 

with r2 = p2 + v2 + w2. In spherical polar coordinates, we do 3 = 0 in (4.5). 

In the dynamics of system (4.6) restricted to the invariant sphere there is the hete-
roclinic cycle between the saddle points pw. The equilibria ppv are centres and the 
regions limited by the heteroclinic loops, as we are going to see, are filled with closed 
trajectories. 

The heteroclinic cycle is, as we have already seen, a consequence of the G-symmetry. 

Consider 
f(p,v,w) = ( p - v)2 + w2. (4.7) 

The Lie derivative of / with respect to the vector field v in (4.6), Lvf, is zero when 
A — Rr2 = 0. This means that trajectories of the flow of (4.6) on the invariant sphere 
move along the closed trajectories that are the intersection of the invariant sphere and 
the level surfaces of (4.7). 

71/21 <• 

0 it/2 it 

e 

Figure 4.2: Flow of the unperturbed system (4.5,/? = 0) for a > 0. 

Consider the invariant fundamental domain (see [15], chapter 6, section 2) in spherical 
polar coordinates (9, <f>) e [0,7r] X [O, | ] . For the unperturbed system (4.5, B = 0), 
the fundamental domain is filled with closed trajectories, see figure 4.2. We will show 
that for the perturbed system (4.5, 0 ^ 0) there is no closed trajectory in this region, 
and thus, that the unstable foci ppv are forward asymptotic to the heteroclinic loop 
on the boundary of the fundamental domain. 
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Let s be the segment 9 — | , 0 G (0, | ) . For 0 7̂  f the segment is transverse to the 
flow of (4.5) (see figure 4.3). 

71/2 1 <— 

*+ *+ 

$ 71/4 
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-+■ 

0 Jl/2 71 

Figure 4.3: The invariant fundamental domain for (4.5) restricted to r = 
a > 0. For a < 0, the arrows are reversed. 

with 

Let s_ be the segment defined by 0 = | , 0 G (0, | ) and s+ the segment defined by 
0 = | , 0 G ( | , | ) . We consider an initial condition p0 = ( | , 0O) on the segment s_ 
and study the return of its trajectory by the flow of system (4.5) to s_. If this has no 
fixed-points then there are no closed trajectories. 

Note that, in the invariant fundamental domain, we have for the unperturbed system 
(4.5, d = 0) with a > 0, 

• ^ > 0 and 0 < O , for (0,0) G (0, f ) x (0,f); 

• 9>0 and (p> 0, for (0,0) G (f ,TT) X (0, f) ; 

• 0 < O a n d 0 > O , for (9,</>) G (§,vr) x ( f , | ) ; 

• 0 < 0 and <p < 0, for (0, 0) G (0, f) x (f, | ) . 

When j3 ^ 0 the perturbation of 0 is zero and the perturbation of 0 is negative for 
9 G (0, | ) (on the left of s) and positive for 0 G (f, 7r) (on the right of s). 

Let 7o be the closed orbit that is the trajectory of p0 by the flow of the unperturbed 
system, and 7,3 the trajectory of p0 by the flow of the perturbed system (4.5,/3 ^ 0). 
Let pi = ( | , 0i) be the first hit of 70 with s+, see figure 4.4. By the above observations 
we conclude that the trajectory 73 first hits the segment line s+ in a point p2 = (f, 02) 
such that 02 > 0i, see figure 4.4. 
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Figure 4.4: Flow of (4.5, (3 = 0) (dotted line) and (4.5, p > 0) (full line), for a > 0. 

By symmetry, we conclude that the value of the ç coordinate for the next hit with 
5_ of the trajectory of p0 by the flow of the perturbed system (4.5, /3 ^ 0) is less 
than <p0. This conclusion is independent of the initial condition p0 we consider in s_. 
Therefore there are no fixed points for the return map defined on s_, and thus there 
are no closed orbits in the fundamental domain. By symmetry we obtain the same for 
the rest of the phase space. 

This, besides proving that the heteroclinic cycle is the iu-limit set of the unstable 
foci ppv, proves that there are no other limit sets for the flow of (4.4) other than 
the heteroclinic cycle. This also proves the asymptotic stability of the heteroclinic 
cycle, that has also been confirmed by the stability criterion presented by Krupa and 
Melbourne in [34]. 

This completes the proof of assertions (b) and (d). 

Figure 4.1 above represents a phase portrait for the flow of system (4.4) restricted to 
the invariant sphere when a > 0. For a < 0, the arrows on the heteroclinic connections 
are reversed. 

Finally, we prove that, up to a linear change of coordinates, system (4.4) is the only 
G-equivariant vector field of degree 3 in R3 satisfying (a) — (d). 

It is an easy computation to see that a basis for the space of G-equivariant vector 
fields of degree 3 in R3 is given by 

(p,v,0), (0,0, w), {pw,-vw,0), (0,0, p2 

(p3 , i ;3 ,0), (pv2,p2v,0), (0,0,w(p2 + v2). (4.8) 
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One of the properties that we want to have is the flow invariance of the two-sphere 
of radius r = J ^. To force the flow of a vector field have such an invariant sphere 
we must demand that at each point of the sphere the scalar product of the vector 
field with a vector ortogonal to the sphere at that point is zero. By imposing this 
restriction we obtain a system that is linearly equivalent to system (4.4). D 

4.1.1.2 Example in R4 obtained by rotation 

Before stating the next theorem, we expand on the properties of (4.4) and the cor­
responding system in R4 we are looking for. 

System (4.4) has the form 
P = pF{p2,v,w), 
v = G1(p2,v,w), (4.9) 
w - G2{p2,v,w), 

with F,G1,G2 : R 3 - > R . 

If we add the auxiliary equation 0 = 7, with constant 7 6 R and interpret the 
coordinates (p, ip) as polar coordinates, then, in rectangular coordinates, 

H v' (4.10) 
y = psm<p, 

with p2 = x2 + y2, system (4.4) lifts to a system in R4 (system (4.16) in the next 
theorem). The rotation lifting the equations is well defined due to the action of dq2. 

The symmetries of system (4.16) come from the symmetries of system (4.4) and from 
the rotation used to perform the lift. 

The action of d gives rise to the action 

(x, y, v, w) A (x,y, -v,w). (4.11) 

From the interpretation of ip as an angle, and the equation p — 1 we get the following 
action of 50(2), 

lb 

(x,y,v,w) H-> (rccos-^ — y sin-0, xsin-0 + ycosy,v,w), (4-12) 

given by a phase shift 9 '->• p + W in the angular coordinate <p. 
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This is easily seen if we interpret a Z2-equivariant equation in p as the radial coordinate 
in a polar coordinate system. 

Let K be the following element of 50(2) 

(x,y,v,w) A (~x,-y,v,w). (4.13) 

The symmetry group of system (4.16) below is isomorphic to Z2(cr) x 50(2) = 0(2). 

The action of Z2(cr) x 50(2) in R4 has the following spaces of symmetry, 

Fix(Z2(a)) = {{x,y,v,w):v = 0}, (4.14) 

Fix(S0{2)) = {(x,y,v,w):x = 0, y = 0}, (4.15) 

and 
Fix(0(2)) = {(x,y,v,w) : x = 0, y = 0, v = 0}. 

Theorem 15 Consider the family of Z2(a) x SO(2)-equivariant vector fields in R4 

luii/i equations given by 

x = x(X — Rr2) — axw + /3xi«2 — jy, 
y = y(X- Rr2) - ayw + f3yw2 + yx, 

/^ n ?\ o ? (4-16) 
v = v{A — Rrz) + avw + pvw , 
w = w(X - Rr2) - a(v2 - x2 - y2) - j3w(x2 + y2 + v2), 

with r2 = x2 + y2 + v2 + w2. 

For X > 0, R > 0, P < 0, A/32 < 8a2R, \X/3\ < \aV\R\, a ^ 0 and 7 € R system 
(4-16) satisfies conditions (Cl)-(C4)in section 4.. 1.1. 

Proof: To prove the result we look at how system (4.4) lifts to system (4.16). 

The two-sphere of radius r = J±, denoted by S2, lifts to the three-sphere of radius 

r = Jj-, denoted by S^ which is invariant by the flow of (4.16) and globally attracting. 

Restricted to the sphere, the only compact flow invariant limit sets are a heteroclinic 
cycle and two hyperbolic periodic trajectories. The periodic trajectories arise from 
the rotation of the equilibria ppv of system(4.4) and are given by 

file:///aV/R/
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As the equilibria pp„ of (4.4) are repelling in the non-radial directions, on the invariant 
three-sphere S^ the periodic trajectories of (4.16) are repelling. 

The heteroclinic cycle of (4.4) in S2 lifts to a heteroclinic cycle of (4.16) in S^ involving 
the equilibria pw+ = (0,0,0, w | ) and pw_ = (0,0,0, — y ^) which correspond to the 
intersection of the invariant three-sphere Sf with the axis Fix(0(2)). 

By construction, in Sf the stable manifold of pw_ and the unstable manifold of pw+ 

coincide as do the unstable manifold of pw_ and the stable manifold of pw+. 

The circle p2 + w2 = ^, invariant under the flow of (4.4), gives rise to a two-sphere 

of radius r = w-| , invariant under the flow of (4.16), that we denote by D. The 
two-sphere D corresponds to the intersection of the hyperplane Fix(Z2(u)) with Sf. 

We note that, the rotation that we perform to lift the three-dimensional system (4.4) 
to system (4.16) does not alter the real part of the eigenvalues. 

If a > 0, we have that D \ {pw_,pw+} coincides with the invariant manifolds 
Wu(pw_) H S3

r and Ws(pw+) n S;!, see figure 4.5. If a < 0, we have that D \ {pw_,pw+} 
coincides with the invariant manifolds Wu(pw+) n S^ and Ws(pw_) D Sf. 

Figure 4.5: Invariant two-sphere D on S^ that coincides with the two-dimensional 
heteroclinic connection from pw_ to pw+, when a > 0. (If a < 0 the arrows are 
reversed.) 

The one-dimensional connection in the invariant circle v2 + w2 = 4 in the flow of 
(4.4) remains invariant and corresponds to the intersection of Fix (SO (2)) with Sf, 
see figure 4.6. 



CHAPTER 4. CONSTRUCTION OF EXAMPLES 58 

Figure 4.6: The one-dimensional connection from pw+ to pw_ on the invariant circle 
that is the intersection of of Fix (SO (2)) with Sf. 

The heteroclinic cycle is asymptotically stable since the heteroclinic cycle in the three-
-dimensional system is asymptotically stable and asymptotic stability is preserved by 
the rotation. Since the lift by the rotation does not alter the real part of the eigenvalues 
of the equilibria, the stability criterion of Krupa and Melbourne in [34] still applies. 

This ends the proof of (Cl)-(C4). D 
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4.1.2 Useful third-order perturbations 

Our aim is to perturb (4.16) in such a way that the two-dimensional manifolds of the 
equilibria pw_, pw+ intersect transversely instead of coinciding in D — {pw_, pw+ }. This 
can be achieved by perturbing the system in such a way that the invariance of D is 
broken. 

We are interested in the symmetry-breaking perturbations of system (4.16) that pre­
serve the invariance of the three-sphere S3.. These are of two types: those that preserve 
the invariance of the two-sphere D and those that do not. We distinguish them in 
different subsections. 

Lemma 16 Consider a family of vector fields in R4 whose flow leaves the three-sphere 
invariant and globally attracting. The third-order perturbing terms that maintain the 
invariance and global attraction of the sphere are a linear combination of the following, 

x2y,-x3,0,0), [x2v,0,-x3,0). [x2w,0,0, -x3), [xyv, —x2v, 0, 0), 
xyv,0,-x2y,0), [0,x2v,-x2y,0), [xyw, —x2w, 0, 0), [xyw, 0,0, -x2y), 
0,x2w,0, —x2y), [xvw, 0, —x2w, 0), [xvw, 0, 0, — x2v), [0,0, x2w, —x2v), 
y3,-xy2, 0,0), [y2v, -xyv, 0,0), [y2v,0,-xy2,0), [0,xyv,-xy2,0), 
y2w, -xyw, 0,0), [y2w,0,0,-xy2), [0,xyw,0,-xy2), [yv2,-xv2,0,0), 
yv2', 0, —xyv, 0), [0,xv2, —xyv,0), [yw2, —xw2,0,0), [yw2, 0,0, -xyw), 
0, xw2, 0. —xyw), [yvw, —xvw, 0,0), [yvw,0, —xyw, 0), [yvw,0, 0, —xyv), 
0, xvw, —xyw, 0), [0, xvw, 0, —xyv), [0,0, xyw,-xyv), [v3,0,-xv2,0), 
v2w, 0, —xvw, 0), [v2w,0, 0, —xv2), [0, 0,xvw, —xv2), [vw2,0, —xw2,0), 
vw2, 0, 0, — xvw), [0, 0,xw2, —xvw), [w3,0, 0, -xw2), [0,y2v,-y3,0), 
0,y2w,0,-y3), [0,yvw,-y2w,0), [0,yvw,0,-y2v), [0,0,y2w,-y2v), 
0,v3,-yv2,0), [0,v2w, —yvw, 0), [0,v2w,0, —yv2), [0,0, yvw,-yv2), 
0,vw2, —yw2, 0), [0,vw2, 0, —yvw), [0,0,yw2,-yvw), [0,w3,0,-yw2), 
0,0,v2w,-v3), [0,0,w3,-vw2), [xy2,-x2y,0,0), [xv2, 0, — x2v,0), 
xw2, 0, 0, —x2w), [0,yv2,-y2v,0), [0,yw2,0,-y2w), [0, 0,vw2, —v2w). 

(4.17) 

Proof: The proof consists in a sequence of calculations which we merely describe 
here. We compute the generic third-order perturbing term by considering all linear 
combinations of monomials of degree three on the variables x, y, v and w. From these, 
we select those that are tangent to the three-sphere by finding the coefficients of 
the generic linear combinations which are orthogonal to a basis of the vector space 
orthogonal to the three-sphere. D 
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As we have already mentioned our main aim is to perturb (4.16) keeping S^ invariant 
and breaking the invariance of D to obtain the transverse intersection of the two-
-dimensional manifolds of the equilibria pw_, pw+. 

We also analize, in section 4.1.3.2, the only 5(9(2)-equivanant perturbation and, in 
section 4.1.4, perturbations that break the symmetry to Z2(cr) or the trivial symmetry. 
We note that the behaviour we obtain in sections 4.1.3.2 and 4.1.4 is the same as that 
for an 0(2)-equivariant system with a homoclinic cycle when perturbed with the same 
type of symmetry breaking perturbations (see theorem 1.1 in Chossat and Field [8]). 

In [8], Chossat and Field present a new technique for the geometric analysis of the effect 
of symmetry-breaking perturbations on 0(2)-equivariant systems with a homoclinic 
cycle between equilibria on the same 0(2)-orbit. The technique in [8] seems to be 
generalizable to 0(2)-equivariant systems with a heteroclinic cycle as that of the 
example we construct in section 4.1.1.2. 

4.1.3 Third-order perturbations that destroy the invariance 
of the two-sphere D 

The sphere D is the two-dimensional manifold arising from the intersection of 
Fix(Z2(a)) with the three-sphere S;?. Thus, a necessary condition for a perturbation 
that leaves the three-sphere invariant, to break the invariance of D is to break the 
invariance of the hyperplane of symmetry Fix(Z2(o~)). 

The perturbations that break the invariance of the hyperplane of symmetry Fix(Z2(o~)), 
break the Z2(a)-equivariance. 

It is clear that breaking the invariance of the two-sphere is necessary for the existence 
of a transverse intersection of the manifolds in the perturbed system. It is not sufficient 
as the manifolds could intersect non-transversely in an invariant manifold other than 
the two-sphere. We claim this does not happen generically. This could happen, for 
instance, if the invariant hyperplane Fix(Z2(a)) perturbed into another invariant 
three-manifold whose intersection with the three-sphere would be the image of the 
two-sphere under the perturbation. 

Lemma 17 A third-order perturbation of (4-16) that breaks the invariance of the 
hyperplane Fix(Z2(a)) while preserving the invariance of the three-sphere consists of 
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a linear combination of the S0(2)-equivariant term, 

{0,0,w3,-vw2), (4.18) 

the Z2(hi)-equivariant terms, 

(xvw,0,—x2w,0), (yvw,0,—xyw,0), (0,xvw,—xyw,0), (0,yvw,—y2w,0), 
(0,0,x2w,-x2v), (0,0,xyw,-xyv), (0, 0, y2w, -y2v), 

(4.19) 
the Z2{oK)-equivariant terms, 

{0,0,xw2,-xvw), (0.0,yw2,-yvw), (4.20) 

and the terms with trivial isotropy subgroup, 

(x2v,0,-x3,0), {y2v,0,-xy2,0), (vw2,0,-xw2,0), {xyv,0,-x2y,0), 
{0,x2v,-x2y,0), {0,y2v,-y3,0), (0, vw2, -yw2, 0), (0,xyv, -xy2,0). 

Proof: A necessary condition to break the invariance of the hyperplane Fix(Z2{a)) 
is to break the equivariance of the vector field by the Z2(cr)­action. 

Hence, we determine the perturbing terms that break the invariance of the hyperplane 
Fix{Z2{a)) and preserve the invariance of the three­sphere among the perturbing 
terms that break the Z2(cr)­equivariance and satisfy lemma 16 by direct computation. 
□ 

Note that almost all the perturbations in lemma 17 preserve the invariance of the 
hyperplane Fix(SO(2)), and thus the one­dimensional connection in that plane, even 
when the S0(2)­symmetry is broken. 

Among the perturbations in lemma 17 we distinguish between 50(2)­ and non­50(2)­

­equivariant perturbations. 

The fundamental difference between these two types of perturbations is the following: 
consider a codimension one section, A that contains the plane Fix(SO(2)) and is trans­

verse to the direction of rotation. The intersection of A with the three­dimensional 
sphere is the two­dimensional sphere S^. Define a first return map R on that two­

­sphere for the flow of the unperturbed system (4.16) defined in section 4.1.1.2. This 
first return map R is a discretization of the flow of the three­dimensional system 
(4.4) defined in section 4.1.1.1, that lifts to system (4.16) by the rotation. Make a 
perturbation that breaks the invariance of the plane Fix(Z2(a)). The first return map 
of the perturbation on S^ breaks the one­dimensional connection between the fixed 
points pw on the plane Fix(Z2{(j)). There can be the two following different situations: 
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(1) the invariant manifolds of the fixed points pw no longer intersect, and we obtain 
two attracting periodic orbits on the two-sphere, 

(2) the manifolds keep intersecting transversely at infinitely many points and we 
have what is called a homoclinic tangle. 

In the first case the perturbed first return map can be immersed in a three-dimensional 
flow, but in the second case it cannot. 

The perturbed first return map R for the 50(2)-equivariant perturbation, can be 
seen as immersed in the flow of the corresponding "unrotated" perturbed system in 
R3. A first return map for a SO(2)-equivariant perturbation must be in the situation 
where the invariant manifolds do not intersect and there are two attracting periodic 
trajectories. In this case we have an attracting 2-torus invariant by the flow of the 
perturbed system in R4, as we prove in section 4.1.3.2. 

On the other hand, in the situation where the rotational symmetry is broken we cannot 
have an invariant 2-torus, and this is the situation where the invariant manifolds may 
intersect transversely along one-dimensional orbits. 

4.1.3.1 Dynamics after 50(2)-breaking perturbations 

Among the perturbations that break the 50(2)-equivariance most preserve the invari­
ance of the plane Fix (SO (2)). This implies the persistence of the one-dimensional 
connection between the equilibria pw since the connection takes place in the intersec­
tion of the plane Fix(SO(2)) with the invariant three-sphere. 

Among the S0(2)-breaking perturbations that preserve the invariance of the plane 
Fix (SO (2)), we choose the following Z2(a/i)-equivariant perturbation, 

x = x(X — Rr2) — axw + Bxw2 — yy, 
y = y(X - Rr2) - ayw + (3yw2 + yx, 
v = v(X- Rr2) + avw + fivw2 + ôxw2, 
w = W(X - Rr2) - a(v2 - x2 - y2) - {3w(x2 + y2 + v2) - ôxvw, 

with r2 = x2 + y2 + v2 + w2. 

Note that there are no perturbing terms in the x and y components of the vector field 
and that the perturbing terms in the v and w components are zero when w = 0; this 
simplifies the computations. 
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Figure 4.7 represents the time series for the variable v for the flow of the unperturbed 
system (4.16), for trajectories with initial condition v > 0. Note that the trajectories 
remain in the region v > 0. For initial conditions v < 0 we get the same type of 
behaviour but the trajectories stay at v < 0. This means that the trajectories in the 
flow of system (4.16) with initial conditions on the invariant three-sphere, lying on 
a side of the two-sphere, remain on that same side of the two-sphere, as was to be 
expected since the two-sphere is invariant by the flow of (4.16). 

Figure 4.8 represents the time series for the variable v for the flow of the perturbed 
system (4.22), for trajectories with initial condition v > 0. For initial conditions 
v < 0 we also get a time series with irregular transitions and irregular transition times 
between v > 0 and v < 0. This means that for trajectories in the flow of system (4.22) 
there are irregular transitions between one side and the other side of the two-sphere. 

Figures 4.9 and 4.10 are the time series for the variable w for the flow of systems (4.16) 
and (4.22), respectively. 

In figure 4.9 we observe the flow jumping from one equilibrium to the other, each time 
staying longer near each equilibrium, that is, the return times increase monotonically 
and very fast. Comparing the two time series we observe, for the same values of the 
common parameters, that the perturbed flow keeps jumping from one equilibrium to 
the other, but seems to do it at irregular time intervals and the return times no longer 
grow. 

These time series provide numerical evidence to the fact that the invariant manifolds 
of the equilibria pw with dimension > 2 intersect transversely. 

The projections in some coordinate planes of trajectories in the unperturbed and 
perturbed systems are also elucidatory (see figures 4.11, 4.13, 4.15, 4.12, 4.14 and 
4.16). 
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Figure 4.7: Time series for v for the flow of the unperturbed system (4.16) when 
A = 1, R — 1, a = 1, /5 = —0.1, 7 = 1 and initial condition u > 0 (if v < 0 we get 
the same picture but symmetric with symmetry axis v = 0. 

Figure 4.8: Time series for v for the flow of the perturbed system (4.22) when A = 
1, R — 1, a = 1, ,5 = - 0 . 1 , 7 = 1,5 = 0.3 and initial condition z; > 0 (For initial 
conditions v < 0 we also get time series with irregular and random transitions). 
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U L _ , I 

Figure 4.9: Time series for w for the flow of the unperturbed system (4.16) when 
A = 1, R = 1, a = 1, /5 = - 0 . 1 , 7 = 1. 

u 

400 

Figure 4.10: Time series for w for the flow of the perturbed system (4.22) when 
A = 1, R = 1, a = 1, /3 = -0 .1 , 7 = 1, Í = 0.3. 
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Figure 4.11: Projection in the (x, u)-plane of the trajectory with initial condition 
{x,y,v,w) = (0.001,0.001,0.001,1), for the flow of the unperturbed system (4.16) 
when A = 1, R — 1, a = 1, ,/? = —0.1, 7 = 1. For the same initial condition, but 
with v = —0.001 the projection is symmetric. 

Figure 4.12: Projection in the (x, u)-plane of the trajectory with initial condition 
(z. y. v. ii') = (0.001. 0.001. 0.001.1), for the flow of the perturbed system (4.22) when 
A = l, R = l, a = 1, /? = - 0 . 1 , 7 = 1,5 = 0.3. 
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Figure 4.13: Projection in the [x, w)-plane of the trajectory with initial condition 
(x,y,v,w) = (0.001,0.001,0.001,1), for the flow of the unperturbed system (4.16) 
when A = 1, R = 1, a = 1, 8 = - 0 . 1 , 7 = 1. For the same initial condition, but 
with v = —0.001 the projection is the same. 

Figure 4.14: Projection in the (x, tu)-plane of the trajectory with initial condition 
(x. y, v, w) = (0.001, 0.001. 0.001.1), for the flow of the perturbed system (4.22) when 
A = 1, R= 1, a = 1, P = - 0 .1 , 7 = 1,5 = 0.3. 
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Figure 4.15: Projection in the (v,w)-p\ane of the trajectory with initial condition 
(x,y,v,w) = (0.001,0.001,0.001,1), for the flow of the unperturbed system (4.16) 
when A = 1, R = 1, a = 1, f5 = - 0 . 1 , 7 = 1. For the same initial condition, but 
with v = -0.001 the projection is symmetric. 

Figure 4.16: Projection in the (v, w)-plane of the trajectory with initial condition 
(x. y. v. w) = (0.001, 0.001. 0.001,1), for the flow of the perturbed system (4.22) when 
A = 1. R = l, a = 1, 3 = - 0 . 1 , 7 = 1 , 5 = 0.3. 
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Theorem 18 For X > 0, R > 0, /3 < 0, A/?2 < 8a2R, \\0\ < \ay/\R\, a / 0 , 7 6 R 
and I 5 G R , system (4-22) is such that 

(CI) There is a three-dimensional sphere, Sz
r, that is invariant by the flow and globally 

attracting, in the sense that every trajectory with nonzero initial condition is 
asymptotic to the sphere in forward time. 

(C3J The system has no equilibria other than the origin and the saddle-foci pw_, pw+. 

(C5) In the restriction to the invariant sphere, system (4.22) has a stable heteroclinic 
cycle involving the saddle-foci pw+ andpw_, and the two-dimensional manifolds 
of the equilibria intersect transversely along one-dimensional orbits. 

(C6) On the invariant sphere, the system has two hyperbolic periodic trajectories, each 
m one connected component of Sf\D. If \S\ < -2/3, on the invariant sphere, the 
periodic trajectories are repelling. 

Proof: System (4.22) is a perturbation of system (4.16) with third-order linear terms 
as in lemma 16, thus the three-sphere remains invariant and globally attracting, and 
(Cl) is verified. 

We write the equations of system (4.22) in spherical polar coordinates, 

r = r(X — Rr2), 
6 = arsinflcos(20) + §r2sin(20) + psin(2fl)sin(20)cos<A 
4> = - a r cos (9 sin(2</>) - £r2(cos#)2(sin<?!>)2 cos<£>, 
0 = 7-

From the equation for tp we get <p(t) = jt, t € R. We replace LÇ by yt in the other 
equations, ignore the equation for ip and consider the reduced system, 

r = r{X-Rr2). 
9 = arsin^cos(20) + fr2sin(2^) + fr2sin(2^)sin(20)cos(7i), (4.24) 
(j) = -arcos6'sin(20) - 5r2(cos6')2(sin0)2cos(7i). 

The equations for 6 and <\> of system (4.24) are time dependent, nevertheless they are 
time periodic with period 271-/7. So, we can see system (4.23) as a lift of system (4.24) 
by a rotation. System (4.24) is a nonautonomous perturbation of system (4.5). 

The zeros of the perturbed system (4.24, S ^ 0) are given by either sin (9 = 0 = sin(20), 
or cos(2o) = 0 = cos 9. which correspond, respectively, to the equilibria pw and ppv of 
the unperturbed system (4.24, 6 = 0). 
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The non-radial eigenvalues at ppv are 

(-2A3 - 5\cos{~/t) ± yj{2\3 + SXcos(yt)} - 32Aa2iî) /4R. 

For the parameter values we are considering and \5\ < —2/3, equilibria ppv are unstable 
foci. 

The equilibria ppv lift to two periodic trajectories in the flow of system (4.22) and are 
given by the same equations of the periodic trajectories in the unperturbed system 
(4.16). In fact, since the perturbing terms are zero when w = 0, the dynamics in the 
hyperplane {(x,y,v,w) : w = 0} remains unchanged in the perturbed system (4.22). 

This proves (C3) and (C6). 

The linearization of the perturbed system (4.24, 5 ^ 0) at pw has the same eigenvalues 
as the linearization of the unperturbed system (4.24, 6 = 0). 

In the next proposition we prove that in the restriction to the three-sphere the two-
-dimensional invariant manifolds of the equilibria pw intersect transversely. This ends 
the proof of (C5). D 

Proposition 19 In the conditions of theorem 18, consider the restriction of the per­
turbed system (4-22) to the invariant three-sphere S% of radius r = J-. Then the 
two-dimensional invariant manifolds of pw_ and pw+ intersect transversely. 

Proof: 

We will prove that in the flow of system (4.22) restricted to the invariant three-sphere 
Si the two-dimensional manifolds intersect transversely, by proving that in the flow 
of system (4.24) restricted to the invariant two-sphere S^ of radius r = J | the 
correspondent invariant manifolds intersect transversely. 

We use Melnikov's method, which is a tool for finding the transverse intersection of 
stable and unstable manifolds given a time-periodic perturbation. It decides whether 
the invariant manifolds intersect by calculating the distance between them. The mea­
sure of that distance is given by the Melnikov function. The existence of simple zeros 
of the Melnikov function implies that the invariant manifolds intersect transversely. 
See [20], section 4.5. 
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We compute the Melnikov function for the perturbed heteroclinic connections in (4.24) 
by considering its restriction to the invariant two-sphere S2: 

9 = ar sin 9 cos(20) + § r2 sin(2#) + f r2 sin(2#) sin(2</>) COS(TÍ), 

<p = — arcos #sin(2</>) — 5r2 cos2 9 sin2 4>cos(^t). 

Until the end of this section, we fix r = J i 
' v i t 

(4.25) 

System (4.25) has the form, 

9 = f1(9,ó) + 5g1(9^,t), 
è = f2(9,(t>) + ôg2(9,(t>,t), 

(4.26) 

(4.27) 

with 
/ i ( M ) = arsin#cos(20) + §r2sin(20), 
/2(#, </>) — —arcos 0sin(20), 

gx(0,<f>,t) = Jr2sin(2^)sin(20)cos(7i), 
g2(9,(j))t) — —r2cos29sm24>cos(/yt), 

where g\ and g2 are periodic in í with period —. 

We consider (4.25) as a time-periodic perturbation of 9 = fi(9.(f)), 4> = Í2(6,<t>)- As 
the unperturbed system is non-Hamiltonian the Melnikov function is given by, 

M (to) = / f(qo(t))Ag(q0(t),t + t0) exp (- traceDf(q0(s))ds) dt, 

with q0(t) a parametrization of the unperturbed heteroclinic orbit, / = (fi,fï), g = 
(9u92), ([20], section 4.5). 

The unperturbed heteroclinic connection in the flow of (4.22, 5 = 0) which when 
perturbed produces a transverse intersection is in x2 + y2 + w2 = -| and v = 0. Thus, 
in spherical polar coordinates, it corresponds to the heteroclinic connections given by 
0 = I and 0 = f in (4.25). Let q0(t) = (9(t), f ) or q0(t) = (9(t), f ). 

We have, 
fi(qo(t)) = -arsm9(t) + lr2sm(29(t)), 
Í2(qo(t)) = 0, 

9i(qo(t),t + t0) = 0, 
9i(qo(t),t + to) = -r2cos29(t)cos(jt + 'jt0), 

(4.28) 

then, 

f(qo(t)) A g(q0(t),t + t0) - h(qo(t))92(qo(t),t + t0) - Mqo(t))gi(qQ(t),t + io) = 
-ar sin0(i) + f r2 sin(20(t))) (~r2 cos2 9(t) cos(jt + jt0)) 
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and 
traceDf(qQ(t)) = arcos(9(t)) + 0r2 cos(20(t)). 

For 0 = | or 0 = y we have the following equation for (?, 

0 = r s in0( í ) ( -a + /3rcos0(í)). (4.29) 

We obtain the Melnikov function, 

M(t0) = / ^ cos(7i + ytQ)E(t)dt, (4.30) 

with 

E{t) = r2 cos2 9{t) (arsin9(t) - -r2sin{20{t))) e t - ^ ^ W l + ^ M W H , 

The convergence of M(i0) is proved in lemma 20 below. In order to prove the transverse 
intersection of the invariant manifolds it only remains to prove that M (to) has simple 
zeros. Rewrite M(t0) as: 

/

OO /»00 

cos(7i) cos(yt0)E(t)dt - / sin(7í) sin(7í0)^(í)(ií. 
•OO ./ —OO 

Let C = / ^ cos(yt)E{t)dt, and 5 = f_°^sin(7í)£(í)dí, then 

M(i„) = cos(7t0)C - sin(7t0)S (4.31) 

From (4.31), the Melnikov function has infinitely many zeros provided 

tan(7i0) = f, h e R. (4.32) 

Note that from the proof of lemma 20 below, we can also conclude that C and S 
converge. 

The zeros t'0 of the Melnikov function are simple if ^ ( t 0 ) # 0. We have from (4.31), 

gf(í0) = -7SÍn(7Í0)C7-7cos(7Ío)S (4.33) 

Thus the zeros of the Melnikov function are simple provided 

tan(Tio) ^ -§, t0 e R, (4.34) 

which is trivially verified, since the zeros of the Melnikov function satisfy (4.32). D 
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Lemma 20 The Melnikov integral 

/

oo 
f(t)e-^dt, 

-00 

with 

and 

fit) = i-ar sin 9{t) + ^r2 sin (26 (t)) ) ( - r 2 cos2 0(f) cos (7t + 7f0)) 

s(f) = / arcos(0(s)) + /3r2cos(2#(s))cis, 
JO 

converges. 

Proof: In order to prove that M(t0) converges, and since /(f) is bounded, it is 
sufficient to prove that /_° e~9^dt converges. 

We take a > 0. Recall that, 

9 = r sin 9 {-a + fir cos 9). (4.35) 

We are studying the perturbation of the heteroclinic connection in the plane 
{(p.v.w) : v = 0}. Remember from the study of the eigenvalues of the equilibria pw, 
in the proof of theorem 14 that, when a > 0, the heteroclinic connection is from pw_ 
to pw+. 

Thus, we have limt^+00fl(f) = 0, \imt^_009(t) = vr and 9(t) G [0,7r],Ví G R. For the 
parameter values we are considering, we have a > |/3r|, and thus -a + (3rcos9 < 0, 
and 9 < 0 for 9 e]0, TT[. 

We do the variable change u = 9(s) and get 

fm du 
g(t) = / a?-cos(u) + ^r2cos(2u) —. 

J 6(0) 9 

Computations with Maple give 

9(t) 

g(t) = -A\nJ(u) 
9(0) 

with .4 = ;—T-T7—3-r, a n d 

J ( u ) = (l + t a n ^ p j ^ - ^ ^ t a n d ) ) ^ ^ 2 

{(a - /5r) + (Q + Í3r) tan2(f ))(3a2-/32r2) ' 
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Since a > \/3r\, we have A > 0. We have 

e-oW = J {9{0))'A J {9{t))A . (4.36) 

To prove that f^e'^dt converges, it is thus sufficient to prove the convergence of 
s^jmydt. 
For the parameter values we are considering we have by lemma 21 below, 

°-Jm)<(a + Pr)W-w{—2 — ) 
Thus, we conclude 

m»* < {(^L>-,*r*y {^y, (4­37) 
with 0 < B = s±|n < l. 

Thus, to prove that / ^ J(9(t))Adt converges we only need to prove that 

I^{^)Bdt (4.38) 

converges. 

By arguments above. (4.38) is equal to 

fsin£\B 

fn _ J x i _ _ / i f l (A 39s) 
JO r sin 0(a­ /3r cos 0 ) U t 7 ­ V ' ; 

For 9 €]0, n[, we have, 

(*¥)* 1 
r sin 0 (a ­ /?r cos 9) " 2Br (sin 9)l~B (a ­ /3r cos 0) ' 

with 0 < 1 ­ B < 1. 

Since a > 0. 3 < 0 and a > |/3r|. we have cv ­ Br cos 0 > 0. It remains to prove that, 

1 
o (s in0) 1 _ B (a­ /3rcos0) 

rf0 

converges, which is easily seen since a_^TCO&B is bounded, and 

1 
d9 'o (sin0)1_B 

converges, by comparison with f* jrs-d9. □ 
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Lemma 21 Let 
, u , x 2 ( a 2 - / ? V ) / . /„N\(a+j8r)» 

J(u) = 
( l + t a n 2 ( | ) ) ^ " p r j ( t a n ( | ) ) ' 

{(a - 0r) + {a + (3r) tan2(f ))<3o?-'2ra> 

For the parameter values we are considering we have 

1 /s iní i í 
0 < J(u) < (a + pr)^2-^2) 

(a+0r)'2 

Proof: Since 0<a + (3r<a — (3r and 3a2 — j32r2 > 0, we have 

: i W m ) 2 ( Q 2 - 8 V 2 ) ( t a n ( ! ) ) ( a W 
o < j f u ) < ^ — ^ v ,:j:^ 

( (a+/Jr ) ( l+un»(f) ) ) (3a 2 - /34 

, tan M \ ( a + ^ r (!)) 
( û + i r ) ( 3 - a - ^ ) ( 1 + t a n 3 ( t ) ) ( « a + ^ ) -

Since (a + /3r)2 < a2 + 52r2 and 1 + tan2( | ) > 1, we have 

rf \ 1 ( tan(|) \ ( Q + ^ ) 2 

(4.40) 

(a+/3r)(3a2-<i2''2) V H-tan2(f ) 

t ^ ± ^ I 7 ( s m ( | ) c o s ( i ) ) " ' + ' " ) ! (4.41) 
1 / sin(u) \ 

(a+dr)^2~<32r2) \ 2 ) 

a 
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4.1.3.2 Dynamics after SO(2)-equivariant perturbations 

Among the perturbations that preserve the globally attracting three-sphere and break 
the invariance of the two-sphere there is only one that preserves the S'0(2)-equivariance, 
namely, 

x = x(X — Rr2) - axw + j3xw2 - yy, 
y = y(X —Rr2) - ayw + Byw2+ yx, 
v = v(X - Rr2) + avw + 3vw2 + TW3, 
w = w(X- Rr2) - a(v2 - x2 - y2) - /3w(x2 + y2 + v2) - TVW2, 

with r2 = x2 4- y2 + v2 + w2. 

System (4.42) can be seen as the lift by the rotation around Fix(dq2) of the following 
perturbation with parameter r of system (4.4), 

p = p(X - Rr2) - apw + 3pw2, 
v = v(X-Rr2)+ avw +pvw2+ TW3, (4.43) 
w = w(X - Rr2) - a(v2 - p2) - 3w(p2+ v2) - TVW2, 

with r2 = p2 + v2 + w2. 

Thus, the dynamics of the perturbation (4.42) can be understand by studying the 
dynamics of the three-dimensional perturbed system (4.43). 

Theorem 22 For X > 0, R > 0, 3 < 0, X$2 < 8a2R, \X8\ < \ay/XR\, a / 0 , and 
for T > - T ^ T ^ - j2: system (4-43) satisfies 

(CI) There is a three-dimensional sphere, S3., that is invariant by the flow and globally 
attracting, in the sense that every trajectory with nonzero initial condition is 
asymptotic to the sphere in forward time. 

(C3) The only equilibria are the origin, and two saddles pw_ and pw+. 

(C4) The system has two hyperbolic periodic trajectories, each m one connected com­
ponent ofS'f\D. On the invariant sphere the periodic trajectories are repelling. 

(CI) Restricted to the invariant sphere the flow of system (442) has an attracting 
invariant two-torus close to the heteroclimc cycle in the flow of system (4-16). 
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Proof: The flow of the perturbed system (4.42) leaves the three-sphere Sji invariant 
and globally attracting as it is a perturbation tangent to the sphere, by lemma 16. 

The persistence of the two hyperbolic repelling periodic trajectories, with equations 

x2 + y2 = ~2R} V = ±\l2R' a n d ™ = 0 ' 

is a result of the persistence of equilibria ppv, and their stability, in the flow of the 
three-dimensional perturbed system (4.43). If r2 > ~r^ - 4 , the only equilibria 
of system (4.43) besides ppv and the origin, are two saddle points pT

w_ and pT
w on 

the two-sphere of radius r = J^ with, respectively, w < 0 and w > 0, that are 
perturbations of the equilibria pw_ and pw+ of the unperturbed system and are given 
bv (O.-^Ç-.w). 

This proves (Cl), (C3) and (C4). 

To prove (C7) we show that the flow of system (4.43) has two hyperbolic attracting 
periodic trajectories on the two-sphere S2. that lift to an attracting two-torus on the 
three-sphere S^. 

In Fix(dq2), the one-dimensional connection between the equilibria pw_ and pw+ 

persists as a one-dimensional connection between the equilibria pT
w_ and pT

w in the 
flow of the three-dimensional perturbed system (4.43), since the perturbation remains 
equivariant by the action of dq2. 

However, as the perturbation breaks the invariance of the plane Fix(d), the most 
generic situation is for the one-dimensional connection between the equilibria pw_ and 
pw+ in this plane to be broken. 

We prove that the connection is really broken. We give a geometrical proof based on 
the value of the sign of the v and w components of the vector fields restricted to the 
two-sphere S2. 

The equations of system (4.43) restricted to the two-sphere S2 simplify to 

p = —apw + /3pw2, 
v = avw + fivw2 + Tw3, (4.44) 
w = -a(v2 - p2) - j3w(p2 + v2) - TVW2, 

with p2 + v2 + w2 = ~. 

We first note that we can, in this study of the sign of v and w, ignore the p component 
of the vector fields: the equation for v does not depend on the variable p, and the 
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equation for w can be equivalently written independently of p, 

w = a(^ -2v2 -w2) + j3w(w2 - | ) -TW2V. (4.45) 

Thus we reduce our study to a vector field in the (v, ̂ )-plane with equations, 

ii = avw + Bvw2 + rwz, 
(4 46) 

w = a ( | - 2v2 - w2) + /3w(w2 - | ) - TW2V. 

with v2 + w2 < ^. 

We consider a > 0 (the case a; < 0 is analogous). 

In the unperturbed case, that is when r = 0, we have, in the restriction of the vector 
field to Fix(dq2), that pw+ is a source and pw_ is a sink. We have that v is zero 
when either v = 0 or w = 0, and v assumes negative values in the second and 
fourth quadrants of the (v, u;)-plane and assumes positive values in the first and third 
quadrants. 

Let vs = J^, and vw=0 = y - a^ ~^ . The equation of w is zero for ±uw=0 , takes 
negative values in 

[-vs,-vw=o) U {vw-o,va], 

and takes positive values in 
[ — Vw=o, Vw-o) . 

We have then a vector field as the one in figure 4.17. Observing figure 4.17 we can 
understand the reason why in the unperturbed case the unstable manifold of pw_ 
coincides with the invariant axis Fix(d) = {(p, v, w) : v = 0}: the unstable manifold 
of Pw- when infinitesimaly close to pw_ must be in the region of the (v, iu)-plane where 
w > 0. In this region we have v > 0 when v < 0, v = 0 when v = 0, and v < 0 when 
v > 0. We conclude that if we consider an initial condition in the unstable manifold 
of pw_ and infinitesimally close to pw_, iterating forward, the trajectory will intersect 
v — 0 after some time. As v = 0 is an invariant axis, we conclude that the unstable 
manifold of pw_ must be within that axis and coincide in it with the stable manifold 
of pw+. 

We now consider the perturbed situation when r > 0. The case r < 0 is analogous. 

The dynamics restricted to Fix(dq2) is topologically equivalent to the nonperturbed 
situation, that is pT

w+ is a source and pT
w_ is a sink. 

2 

Let i'l!=0 = ~s+^;- T n e equation of v is zero for ±vv=0 or w = 0. The sign of v, is 
negative in [-vs,vv=0) when w > 0 and in (vv=o,t>s] when to < 0. 
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\ \ L J n 
- " ^ w =0 

Figure 4.17: Sketch, when a > 0, of the restriction to the plane (v,w) of the 
unperturbed vector field (4.43, r = 0) restricted to the two-sphere S^. 

The sign of v is positive in (vv=Q, vs] when w > 0 and in [-vs, vv=0) when w < 0. 

Let 
TW2± Jr2wi + 8a(,8w - a)(w2 - | ) 

The equation of u> is zero in uw=o- In [-vs,vw=0_) U ( ^ = 0 + , ^ ] , iw takes negative 
values, and in (vw-Q_,vw=Q+), takes positive values. We thus have a vector field as in 
figure 4.18. 

Figure 4.18 helps understand the unstable manifold of pT
w_. As in the unperturbed 

case the unstable manifold of pT
w_ when infinitesimaly close to pT

w_ must be in the 
region of the (v, w)-plane where w > 0. Observing the figure we conclude it must be 
the region where w > 0 and v > 0, region E in figure 4.18. 

If we consider an initial condition in the unstable manifold of pT
w_ and infinitesimaly 

close to pT
w_, then, when we iterate it forward, the trajectory will stay in region E and 

infinitesimaly close to the curve v = 0 until it intersects v = 0 in (0,0). In (0,0) we 
have v — 0 and w > 0, thus the manifold will be in region A, see figure 4.18. 

In region .4. v is positive, so the trajectory will go far away from the equilibrium pT
w 

and enter region B. In region B, v > 0 and w < 0, so the trajectory will enter region 
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Figure 4.18: Sketch, when a > 0 and r > 0, of the restriction to the plane (v,w) of the 
perturbed vector field (4.43, r / 0) restricted to the two-sphere S^. The attracting 
periodic trajectory is represented by the bold solid curve. 

C, after that region D, until it enters again in region A. 

The trajectory will sucessively pass through the last four mentioned regions in the 
given order. We can thus conclude that the one-dimensional connection in Fix(d) 
between the equilibria pw_, pw+ is broken. Since the unstable manifold of pT

w_ cannot 
accumulate in the equilibria ppv, as ppv is repelling, by Poincaré-Bendixon's Theorem 
(Theorem 1.8.1 in [20]), there must be an attracting hyperbolic periodic trajectory 
where the unstable manifolds of pT

w_ and of ppv accumulate, see figure 4.18. 

In the restriction to the two-sphere S^, that is when we consider the variable p, there 
are two (symmetric) connections that are broken, and thus we get two symmetric 
attracting hyperbolic periodic trajectories. 

In the case r < 0, the dynamics is equivalent but the connection is broken in a 
symmetric way. i.e.. the flow is the image in a mirror of that in figure 4.18. 

In the case a < 0, we get the same kind of behaviour, with the difference that in the 
restriction to Fix(dq2), pT

w+ is a sink and pT
w_ is a source. 

The periodic trajectories in the three-dimensional system lift by the 5'0(2)-symmetry 
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to a two-torus in the four-dimensional system. The two-torus is normally hyperbolic 
and attracting. D 

The numerical evidence that the dynamics restricted to the torus is quasi-periodic is 
given by the projections in figures 4.19, 4.20, 4.21, and the time series in figures 4.22, 
4.23, 4.24. 



CHAPTER 4. CONSTRUCTION OF EXAMPLES 82 

y 

.3 

Figure 4.19: Projection in the (x, y)-plane of a trajectory on the two-torus, when 
A = 1, R= 1, a = 1,0 = - 0 . 1 , 7 = 1, T = 0.5. 

Figure 4.20: Projection in the (x,w)-plane of a trajectory on the two-torus, when 
A = 1, R = 1, a = 1,0 = - 0 . 1 , 7 = 1, r = 0.5. 
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Figure 4.21: Projection in the (v, w)-plane of a trajectory on the two-torus, when 
A = 1, R = l, a = l,/3 = - 0 . 1 , 7 = 1, r = 0.5. 

Figure 4.22: Time series for x for a trajectory with initial condition near the origin, 
when A = 1, R = 1, a = 1,0 = - 0 . 1 , 7 = 1, r = 0.5. 
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Figure 4.23: Time series for v for a trajectory with initial condition near the origin, 
when A = 1, R = l,a = l,0= - 0 . 1 , 7 = 1, r = 0.5. 

1.5 

-1.5 I , 

0 400 
time 

Figure 4.24: Time series for w for a trajectory with initial condition near the origin, 
when A = 1. R = l , a = l,/3 = —0.1, 7 = 1, r = 0.5. 
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Now consider the following perturbation of system (4.42) 

x — x(X — Rr2) — axw + Bxw2 — 72/ + Sxv2, 
y = y(X - Rr2) - ayw + Byw2 + ~/x + vyv2, 
v — v{\ — Rr2) + avw + Bvw2 — Sx2v — vy2v + TW^, 
w = w(X — Rr2) — a(v2 — x2 — y2) — 6w(x2 + y2 + v2) — TVW2, 

with r2 = x2 + y2 + v2 + w2. 

We observe numerically, using Dstool and AUTO, that as the absolute value of the 
parameters 5 and v increases the invariant 2-torus approaches one of the repelling 
periodic trajectories and then collapses into it. 

When v — Õ, system (4.47) can be seen as the lift by the rotation around the plane 
Fix(dq2) of the three-dimensional system, 

p = p(X — Rr2) — apw + Qpw2 + Spv2, 
v = v(X — Rr2) + avw + Bvw2 + TW3 — 6p2v, (4.48) 
w = w(X — Rr2) — a(v2 — p2) — 0w(p2 + v2) — TVW2, 

with r2 = p2 + v2 + w2. 

System (4.48) is a perturbation of system (4.43). 

If system (4.48) has a Hopf bifurcation, then system (4.47) has a bifurcation from a 
periodic trajectory to a 2-torus. 

For v = 5, numerical simulations with AUTO revealead that for positive values of r the 
equilibrium with negative v-coordinate has a subcritical Hopf bifurcation for negative 
values of õ and the equilibrium with positive v-coordinate has a Hopf bifurcation for 
positive values of ó", see figure 4.25. For negative values of r the same happens but 
with opposite signs. 



l . O Q . 

Figure 4.25: Projection in the (ô, w)-plane of the bifurcation diagram of the equilibria 

( \ / - á : \ / S , ( ) ) w i t h u = 6>0, when A = 1, R=-l, a = 1,0 = - 0 . 1 , 7 = 1, r = 
0.5. Dashed and solid curves represent, respectively, unstable and stable equilibria. 
Solid circles represent stable periodic trajectories. Label 2 identifies the subcritical 
Hopf bifurcation. 
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4.1.4 Third-order perturbations that preserve the invariance 
of the two-sphere D 

Among the perturbations of system (4.16) that do not break the invariance of the 
hyperplane Fzx(Z2(a)) and thus that do not break the invariance of the two-sphere 
we can distinguish two different situations, one where the plane Fix(SO(2)) remains 
invariant and the case where it does not. In both cases the perturbations can either 
have Z2(cr)-symmetry or trivial symmetry. 

The dynamics when Fix(SO(2)) is preserved is topologically equivalent to that of the 
unperturbed case. In the situation where Fix(SO(2)) is no longer invariant there will 
be, generically, two attracting periodic trajectories close to the heteroclinic cycle of 
system (4.16). 

Note that, when the invariance of Fix(SO(2)) is broken, generically the one-dimensional 
connection between the equilibria pw_, pw+ in that plane will be broken. 

As the two-sphere in the hyperplane Fix(Z2(cr)) remains invariant, we still have 
the two-dimensional connection between the equilibria pw_, pw+. Thus we have two 
periodic trajectories on the three-sphere, one for v < 0 that attracts all the trajectories 
on the three-sphere with initial condition with v < 0 , and one for v > 0 that attracts 
all the trajectories on the three-sphere with initial condition with v > 0. 

Lemma 23 A third-order perturbation of system (4-16) that preserves the invariance 
of the two-sphere D and breaks the invariance of Fix(SO(2)) is a linear combination 
of the following terms, 

(v3,0,-xv2.0), (v2w,0,0,-xv2), (v2w,0,-xvw,0), (w3,0,Q,-xw2), 
(vw2,0,0,-xvw), (0,v3,-yv2,0), (0, v2w, 0, -yv2), (0, w3,0, -yw2), (4.49) 
(0, v2w, —yvw, 0), (0, vw2, 0, —yvw). 

Proof: Direct calculation, as in lemma 17. D 
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4.2 Example: heteroclinic network with equilibria 
and a periodic trajectory 

In this section we construct a family of systems in R4 with a globally attracting 
invariant three-sphere, where there is a structurally stable heteroclinic network of a 
group orbit of heteroclinic cycles involving four saddle-foci and a periodic trajectory. 
In the restriction to the three-sphere, the two-dimensional invariant manifold of the 
periodic trajectory intersects transversely the two-dimensional invariant manifolds of 
the equilibria. 

As in the last section, the goal is to define systems that are simple and easy to study. 
The construction process is similar to that of the previous section in that we start by 
defining a family of systems such that, in the restriction to the invariant three-sphere 
the two-dimensional invariant manifold of the periodic trajectory coincides with the 
two-dimensional invariant manifolds of the equilibria, and then we perturb so as to 
get transverse intersection of those manifolds. 

4.2.1 Construction of the unperturbed system 

We use the designation of type m, n to specify that an equilibrium has m-dimensional 
stable manifold and n-dimensional unstable manifold. 

In this section we define a system in R4 satisfying: 

(Dl) There is a three-dimensional sphere, S;!, that is invariant by the flow and globally 
attracting, in the sense that every trajectory with nonzero initial condition is 
asymptotic to the sphere in forward time. 

(D2) On the invariant sphere, the system has an asymptotically stable heteroclinic net­
work involving two saddle-foci of type 2,1, denoted by pv_, pv+ ; two saddle-foci of 
type 1, 2, denoted by pw_, pw+ ; and a hyperbolic periodic trajectory, denoted by 
c. The invariant manifolds of the equilibria and of the periodic trajectory satisfy, 
on the invariant sphere, Wu(pw_) U Wu(pw+) = Ws(c), Wu(c) = Ws(pv_) U 
Ws(pv+), and Wu(pv_)UWu{pv+) = Ws{pw_) U Ws(pw+). The connections from 
pv_ and pv+ to pw_ and pw+ are one-dimensional. The connections from pw_ and 
pw+ to c coincide with Dj - {pw_,pw+, c}, with D1 a two-dimensional sphere. 
The connections from c to pv_ and pv+ coincide with D2 - {pv_, pv+, c}, with D2 

a two-dimensional sphere. 
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(D3) The system has no equilibria other than the origin and the four saddle-foci pv_, 
Pv+, Pw- and pw+. 

(D4) In addition to the periodic trajectory c there are four hyperbolic periodic tra­
jectories, each in one connected component of S 3 \ (Dx U D2). On the invariant 
sphere, the four periodic trajectories are repelling. 

As in the previous section we start by defining a vector field in R3 that lifts into R4 by 
an S0(2)-action. Thus, in addition to satisfying properties (D1-D4), the final system 
is 50(2)-equivariant. 

4.2.1.1 Basic example in R3 

As in the construction of the example in section 4.1.1.1, we require the three-dimensional 
system to have properties and symmetry adequate to be lifted to a system in R4 

satisfying (D1-D4). Here we consider a compact Lie group G that is a finite subgroup 
of 0(3) generated by 

P 

and 

" 0 1 0 " 
0 0 1 
1 0 0 _ 

-1 0 0 " 
0 1 0 
0 0 1 _ 

The subgroup G consists of cyclic permutations of the coordinate axes and reflections 
in the coordinate planes. 

The fixed-point subspaces are the coordinate axes, 

the axes, 

Fix(prpp2rpp2) 
Fix{rpprpp2) 
Fix(rpp2rpp) 

= {(p,v,w) 
= {(p,v,u>) 
= {{p,v,w) 

Fix(p) = {{p,v,w) 
Fix(rpp2rpp2) = {(p,v,w) 
Fix(rpprpp) = {(p,v,w) 
Fix{rpprp) = {(p,v,w) 

v = 0, w = 0} , 
p = 0,u> = 0} , 
p = 0,v = 0}, 

w — v = p] , 
w = — v = p} , 
—w = v — p] , 
—w = — v = p] , 

(4.50) 

(4.51) 
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and the coordinate planes, 

Fix(rp) = {(p,v,w) :p = 0} , 
Fix(p2rpp) = {(p, v.w) : v — 0} , (4-52) 
Fix(prpp2) = {(p, v, w) : w = 0} . 

In [21], Guckenheimer and Holmes show that there is an open set U of topologicals 
equivalent vector fields in the space of Cr vector fields on R3 that are G-equivariant 
such that each vector field in U has a heteroclinic cycle that is an attractor. The result 
is proved by analysing the dynamics of the third-order G-equivariant normal form and 
proving that it is structurally stable. 

Inspired by the results in [21] we study in the next theorem a fifth-order perturbation 
of the normal form studied in [21]. 

Theorem 24 Consider the family of G-equivariant vector fields in R3 with equations 
given by 

p = p(X + ap2 + 3v2 + jw2 + 5(v4 - p2w2)), 
v = v(\ + av2 + Bw2+ ~jp2+ 5{wA - p2v2)), (4.53) 
w — w (A + aw2 + 3p2 + 7t'2 + (5(p4 - v2w2)). 

For A > 0, 3 + 7 = 2a, 6 < a < 7 < 0 and 5 < 0 we have: 

(a) The two-sphere of radius J-^, denoted by S2, is invariant by the flow of (4.53) 
and globally attracting, in the sense that every trajectory with nonzero initial 
condition is asymptotic to the sphere in forward time. 

(b) On the invariant sphere, the system has an asymptotically stable heteroclinic 
network connecting the equilibria, pp = ( ± w - £ , 0 , 0 ) , pv = ( 0 , ± J - £ , 0 ) , and 

pw = (0,0,±v^|). 

(c) Besides the equilibria in (b) and the origin, system (4.53) has eight unstable foci. 

Proof: It is trivial to see that system (4.53) is G-equivariant. 

The existence of the invariant globally attracting sphere S2 is easily derived from the 
equation of the radial component in spherical polar coordinates, 

f = r(\ + ar2 + (-2a + 3 + 7 ) r 2 sin2(9)(sin2(6) sin2(0) cos2(0) + cos2(#))) . 
(4.54) 
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Since - 2 a + /3 + 7 = 0, (4.54) reduces to, 

r = r(\ + ar2). (4.55) 

Since A > 0 and a < 0, we have that S2 is invariant and globally atractting. This 
proves (a). 

The intersection of the invariant sphere with the coordinate axes gives the equilibria 

Pp = ( ± y i l 0,0), Pv = ( 0 , ± y 4 " , 0 ) , and p„ = (0,0, ±yf^). 

The intersection of the invariant sphere with the remaining symmetry axes produce 
the eight equilibria pp™ = (±y/^,±yJ^,±yf-£)-

It is an immediate computation to show that, for the parameter values we are consi­
dering, there are no other equilibria. 

To complete the proof of (c) we show that the equilibria ppvw are unstable foci: the 
non-radial eigenvalues of the linearization of (4.53) at these points are two complex 
conjugate eigenvalues with real part given by (-5A2/3a2). This is positive since we 
are considering 6 < 0. 

There are three invariant circles which correspond to the intersection of the invariant 
sphere with the invariant coordinate planes. The union of these circles is a heteroclinic 
network connecting the equilibria pp, pv and pw, see figure 4.26. 

Figure 4.26: Dynamics of the three-dimensional system (4.53) restricted to the 
invariant two-sphere S2. 

The eigenvalues of the equilibria in the heteroclinic network are -2A in the radial 
direction, ^ ^ > 0 in the direction of (0,1, 0) for pp, of (0, 0,1) for pv, and of (1, 0, 0) 
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for pw, and A(Q2 J*+xs) < 0 in the direction of (0, 0,1) for pp, of (1,0,0) for pv, and of 
(0,1,0) îovpw. 

The stability criterion in Krupa and Melbourne [34] applies to the heteroclinic network 
as it is the G-orbit of the heteroclinic cycles in it. Applying the criterion in [34] we 
conclude that the heteroclinic network is asymptotically stable. D 

4.2.1.2 Example in R4 obtained by rotation 

System (4.53) has the form 

p = pF(p2,v2,w2), 
v = vG(p2,v2,w2), (4.56) 
w = wH{p2,v2,w2), 

with F,G,H : R3 -* R. 

As in the example in section 4.1.1.2, adding the auxiliary equation (p - r], r] £ R and 
interpreting the coordinates (p, tp) as polar coordinates, system (4.53) lifts to a system 
in R4 ((4.62) in the next theorem). 

The symmetries of system (4.62) come from the symmetries of system (4.53) and from 
the rotation used to perform the lift. These are generated by the actions of 

(x,y,v,w) t4 (x,y,-v,w), 
{x,y,v,w) & (x,y,v,-w), 

and the 50(2)-action 

(4.57) 

(x,y,v,w) i-> (xcosíp ~ ysinip,xsinip+ ycos(p.v,w). (4.58) 

There are the symmetry axes, 

Fix{Z2(rv) x 50(2)) = {(x,y, v,w) : x = y = v = 0}, 
Fix{Z2(rw) x 50(2)) = {(x, y, v, w) : x = y = w = 0}, 

the symmetry planes, 

Fix(rvrw) = {(x,y,v,w) : v = w = 0}, 
Fix(SO(2)) = {(x,y,v,w):x = y = 0}, 

and the symmetry hyperplanes, 

Fix(rv) = {(x,y,v,w) : v = 0}, 
Fix(rw) = {(x, y, v, w) : w = 0}. 

(4.59) 

(4.60) 

(4.61) 
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Theorem 25 Consider the family of vector fields in R4 with equations given by 

x = x (A + a (x2 + y2) + pv2 + yw2 + ô {v4 - (x2 + y2)w2)) - ny, 
y = y(\ + a(x2 + y2) + 3v2 + ^w2 + 5{y4 - (x2 + y2)w2)) +rjx, 
v = v (A + av2 + Pw2 + 7(x2 + y2) + S {w4 - (x2 + y2)v2)), ^'62> 
w = w(X + aw2 + 0{x2 + y2) + jv2 + 6 ((x2 + y2)2 - v2w2)). 

For A > 0, (3 + 7 = 2a, /3 < a < 7 < 0, 6 < 0 and 77 G R, sysiem ^.ftgj satisfies 
(D1)-(D4). 

Proof: To prove the theorem we look at how system (4.53) lifts to system (4.62), 
using the SO(2)-symmetry. 

The two-sphere of radius r = J-£ lifts to a three-sphere with the same radius, 
denoted by S', that is invariant by the flow of (4.62) and globally attracting. 

In the flow restricted to the sphere the invariant sets are a heteroclinic network and 
four repelling periodic trajectories. The periodic trajectories arise from the rotation 
of the unstable foci ppvw in the flow of system (4.53) and have equations 

x2+y2=-^ v=±\f~f> w=±\F^f-
òa V 3a V 3a 

Figure 4.27: The invariant manifolds Wu{pw_) and Wu(pw+) coincide with the 
invariant manifold Ws(c) on Dx - {{pw_,pw+, c}, with Dr the invariant two-sphere 
that is the intersection of Fix(rv) with Sj?. 

As the equilibria ppvw are repelling in the non-radial directions, the periodic trajectories 
are repelling in the restriction to the invariant three-sphere Sf. 
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The saddles pp give rise to a hyperbolic periodic trajectory, denoted by c, with 
equations 

x2 + y2 = - - , v = 0, u; = 0. 
a 

The heteroclinic network in S^ lifts to a heteroclinic network in Sf involving the 
periodic trajectory c and the saddles pv = (0, 0, ± W - £ , 0), p„, = (0, 0, 0, ± w - £ ) . 

By construction, in the restriction to Sj! we have, W™ (;?„,_) U Wu(pw+) = Ws(c), 
Wu(c) = Ws(Pv_) U W's(p„+), and Wu(Pv_) U Wu(p„+) = ^ s ( P u ; _) U Ws(pw+). See 
figures 4.27, 4.28 and 4.29, respectively. 

Figure 4.28: The invariant manifolds Ws(pv_) and Ws(pv+) coincide with the invariant 
manifold Wu(c) on D2 - {{pV-,Pv+,c}, with D2 the invariant two-sphere that is the 
intersection of Fix(rw) with Sj!. 

The rotation of the invariant circle p2 + w2 = - ^ in the flow of (4.53) gives rise to an 
invariant two-sphere of radius r = W - ^ in the hyperplane Fix(rv), that we denote 
by Di. The equilibria pw, the periodic trajectory c and the intersection of their two-
-dimensional manifolds restricted to Sf coincide with the sphere D1 ; see figure 4.27. 

The rotation of the invariant circle p2 + v2 = - M n the flow of (4.53) gives rise to an 
invariant two-sphere of radius r = J-^ in the hyperplane Fix(rw), that we denote 
by D2 . The equilibria pv, the periodic trajectory c and the intersection of their two-
-dimensional manifolds restricted to Sj? coincide with the sphere D2 , see figure 4.28. 

The invariant two-spheres Di and D2 intersect each other on the periodic trajectory 
c, and S^\ (Di U D2) has four connected components. 
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The one­dimensional connections from equilibria pv to equilibria pw on the invariant 
circle v2 + w2 = ^ remain and correspond to the intersection of Fix(SO(2)) with S^, 
see figure 4.29. 

Figure 4.29: The one­dimensional connections from equilibria pv to equilibria pw on 
the invariant circle that is the intersection of of Fix(SO(2)) with S;?. 

The periodic trajectory c is, as we have already noticed, the group orbit of the saddles 
pp by the 50(2)­action, i.e., it is a relative equilibrium. Relative equilibria are group 
orbits that are invariant under the flow of an equivariant vector field (see Krupa [32]). 

In [32]. Krupa shows that near a relative equilibrium the vector field can be decom­

posed as the sum of two equivariant vector fields: one tangent and the other normal 
to the group orbit. He shows that the asymptotic dynamics of the vector field can be 
determined by the asymptotic dynamics of the normal vector field modulo drifts along 
the group orbit. 

In our particular case this means that the asymptotic stability of the periodic trajec­

tory c is given by the asymptotic stability of the equilibria pp. Then, the asymptotic 
stability of the heteroclinic network in S^ follows from the asymptotic stability of 
the heteroclinic network in S^, since the same stability criterion applies (see [34] and 
theorem 2.10 in [37]). 

This ends the proof. □ 
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4.2.2 S0(2)-breaking perturbation 

We want to perturb system (4.62) preserving properties (D1)-(D4) but with the two-
-dimensional invariant manifolds intersecting transversely instead of coinciding in the 
restriction to the three-sphere. That is, we want to look for a perturbation that keeps 
the invariance of the globally attracting three-sphere, destroys the invariance of the two 
invariant two-spheres Di and D2 in the hyperplanes Fix(rv) and Fix(rw), respectively, 
preserving the equilibria, the hyperbolic periodic trajectory and the repelling periodic 
trajectories. 

Necessary conditions for this are that the perturbation be zero in the x and y com­
ponents; the perturbing term in v contain the variable w and be nonzero when 
v = 0; the perturbing term in w contain the variable v and be nonzero when w — 0. 
Taking into account lemma 16 in section 4.1.2, the third order perturbing terms that 
satisfy these conditions are (0, 0,x2w, -x2v), (0,0,xyw, -xyv) and (0, 0,y2w, -y2v). 
Note that these are not sufficient conditions since no linear combination of these 
terms preserves the invariance of the repelling periodic trajectories. This problem is 
overcome by multiplying the third-order perturbations by the norm of (x, y), obtaining 
a perturbation of order five: 

x = x(\ + a(x2 + y2) + j3v2 + jw2 + Õ (v4 - (x2 + y2)w2)) -r\y, 
y = y(X + a(x2 + y2)+/3v2+jw2 + S(v4-(x2 + y2)w2))+r]x, 
v = v (A + av2 + fiw2 + 7(x2 + y2) + 6 (w4 - (x2 + y2)v2))+ (xyw (A + 3a(x2 + y2)) , 
w = w(X + aw2 + j3{x2 + y2) + -yv2 + S ({x2 + y2)2 - v2w2)) - (xyv (A + 3a(x2 + y2)) . 

(4.63) 
Figures 4.30 and 4.31 represent the projection in the (v, u>)-plane of trajectories in the 
flow of the unperturbed system (4.62) and perturbed system (4.63), respectively. 

The origin corresponds to the projection of the periodic trajectory c, the intersections 
of the axes it; = 0 and v - 0 with the circle are, respectively, the equilibria pv± and 
Pw± • 

In Figure 4.30, the line segments on the axes w = 0 and v = 0, inside the circle, 
correspond to the projection of the two-spheres Dx and D2-

Figure 4.30 represents the projection of four trajectories in the flow of the unperturbed 
system (4.62), each with initial conditions on the invariant three-sphere lying on one 
of the four connected components of S^\ (Di UD2). We observe that trajectories 
with initial conditions on the invariant three-sphere lying on one of the connected 
components of S^\ (D1 U D2) remain on that same component. 
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Figure 4.31 represents just one trajectory in the flow of the perturbed system (4.63). 
We observe that the trajectory goes through each of the four connected components 
ofS3

r\(DlUD2). 

Looking at the time series in figures 4.33 and 4.35 we can see that the transitions 
between the connected components of S^\ (Dx U D2) are irregular and at irregular 
transition times. 

The comparison of the time series in figures 4.32 and 4.33, and 4.34 and 4.35 is also 
elucidatory. 

Figures 4.36 and 4.37 are the time series for the variable x for the flow of systems 
(4.62) and (4.63), respectively. 

In figure 4.36, we observe the flow jumping sucessively from one equilibrium to the 
periodic trajectory, and form the periodic trajectory to another equilibrium, each time 
staying longer near each equilibrium and the periodic trajectory. The return times 
increase monotonically and very fast. 

For the same values of the commom parameters, the perturbed flow keeps jumping 
sucessively from one equilibrium to the periodic trajectory, and form the periodic 
trajectory to another equilibrium, but seems to do it at irregular time intervals and 
the return times no longer grow. 
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Figure 4.30: Projection in the (v, u>)-plane of the four trajectories with initial con­
ditions (0.001.0.001,0.001.1). (0.001. 0.001.-0.001.1), (0.001,0.001,0.001,-1) and 
(0.001.0.001.-0.001,-1), for the flow of the unperturbed system (4.62) when A = 
0.33333333, a = -0.33333333, 3 = -0 .5 , 7 = -0.16666667 and 5 = 0 - 0.05. 

Figure 4.31: Projection in the (v, u;)-plane of the trajectory with initial condition 
(0.001,0.001,0.001,1), for the flow of the perturbed system (4.63) when A = 
0.33333333. a = -0.33333333, 8 = -0 .5 , 7 = -0.16666667, 5 = 0 - 0.05 and Ç = - 1 . 
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Figure 4.32: Time series for v for a trajectory with initial condition 
(0.001,0.001,0.001,1), for the flow of the unperturbed system (4.62) when A = 
0.33333333, a = -0.33333333, 8 = -0 .5 , 7 = -0.16666667 and 5 = 0 - 0.05. 

Figure 4.33: Time series for v for a trajectory with initial condition 
(0.001.0.001.0.001,1). for the flow of the perturbed system (4.63) when A = 
0.33333333, a = -0.33333333, 3 = -0 .5, 7 = -0.16666667, 6 = 0- 0.05 and £ = - 1 . 
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Figure 4.34: Time series for w for a trajectory initial condition (0.001, 0.001, 0.001,1), 
for the flow of the unperturbed system (4.62) when A = 0.33333333, a = -0.33333333, 
3 = -0 .5 , 7 = -0.16666667 and 0 = 0 - 0.05. 

Figure 4.35: Time series for w for a trajectory with initial condition 
(0.001,0.001,0.001,1), for the flow of the perturbed system (4.63) when A = 
0.33333333, a = -0.33333333, 3 = -0 .5 . 7 = -0.16666667, 0 = 0- 0.05 and £ = - 1 . 
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Figure 4.36: Time series for x for a trajectory with initial condition 
(0.001,0.001,0.001,1), for the flow of the unperturbed system (4.62) when A = 
0.33333333. a = -0.33333333, /3 = -0.5, 7 = -0.16666667 and 5 = 0 - 0.05. 

Figure 4.37: Time series for x for a trajectory with initial condition 
(0.001,0.001,0.001,1), for the flow of the perturbed system (4.63) when A = 
0.33333333, a = -0.33333333, /5 = -0 .5 , 7 = -0.16666667, 0 = 0- 0.05 and £ = - 1 . 
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Theorem 26 For A > 0,/3 + 7 = 2a, ,9 < a < 7 < 0, á < 0, Î; £ R and for values 
o/e sufficiently small and such that |£| < ~aB+^+sx and £2 < (7-fl(2gA-a/?+a7) system 

(4-63) satisfies 

(Dl) There is a three-dimensional sphere, S^, that is invariant by the flow and globally 
attracting, in the sense that every trajectory with nonzero initial condition is 
asymptotic to the sphere in forward time. 

(D3) The only equilibria are the origin and the four saddle-foci p±v andp±w. On the 
invariant sphere, p±v are of type 2,1 and p±w are of type 1,2. 

(D5) In the restriction to the invariant sphere, system (4-63) has a structurally stable 
heteroclinic network involving the four saddle-foci p±v and p±w, and the periodic 
trajectory c. When a(/3 — a) + SX > 0 the two dimensional manifolds of the 
periodic trajectory intersect transversely the two-dimensional manifolds of the 
saddle-foci p±v andp±w. 

(D) In addition to the periodic trajectory c, the system has four hyperbolic periodic 
trajectories each in one connected component ofS^\ (D\ U D2). On the invariant 
sphere, the four periodic trajectories are repelling. 

Proof: System (4.63) is a fifth-order perturbation of system (4.62) that is tangent 
to the three-sphere, thus the three-sphere remains invariant and globally attracting, 
and (Dl) is verified. 

We consider the equations of system (4.63) in spherical polar coordinates, 

r = r(X + ar2) , 
9 = f sin(2fl) [{a - 0)(1 - 2cos2((A)) + 5r2(cos2(0) cos2(0) - sin2(fl) sin4(</>))] + 

+ f r2 sin2(fl) sin(0) sin(20) sin(2<p)(A + 3ar2 sm2(9) sin2(0)), 
0 = £sin(20) [ ( / 3 - a ) ( l - 3 c o s 2 ( # ) ) + ò > 2 ( - l + s i n 2 ( # ) ( l + cos2(0)))] -

- f r2 sin(20) sin3(</>) sin(2<p)(A + 3ar2 sin2(fl) sin2(0)), 
<i> = V-

(4.64) 

From the equation for ip we get ip(t) = nt, t G R. Following the proof of theorem 18 
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in section 4.1.3.1, we replace ip by rjt and consider the reduced system, 

r = r(X + ar2), 
9 = £sin(20) [{a - 5)(1 - 2cos2(0)) + ò>2(cos2(#) cos2(0) - sin2(0) sin4(0))] + 

+ | r 2 sin2(0) sin(0) sin(20) sin(2r?i)(A + 3ar2 sin2(0) sin2(0)), 
0 = TY sin(2<p) [ ( / 3 - a ) ( l - 3cos 2 ( e ) ) + 5 r 2 ( - l + sin2(^)(l + cos2(0)))]-

-fr2sin(2#) sin3(0) sin(2rçt)(A + 3ar2 sin2(0) sin2(</>)). 
(4.65) 

Note that although the equations for 0 and 0 in (4.65) are time dependent, they are 
time-periodic with period y . Thus system (4.64) can be seen as the lift by the rotation 
of system (4.65). 

System (4.65) with f = 0 represents the equations of the three-dimensional unper­
turbed system (4.53) in spherical polar coordinates. System (4.65) with £ ^ 0 is a 
nonautonomous perturbation. 

The equilibria of the unperturbed system, pp, pv, pw, and ppvw, persist for £ # 0. We 
show that, for £ sufficiently small, there are no other equilibria. 

System (4.65) has the same number of zeros for £ = 0 and £ ^ 0 if and only if, for 
r2 = - - , the two curves 9 = 0 and <p = 0 intersect at the same number of points for 
£ = 0 and £ ^ 0. Since the Jacobian matrix of (9, 4>) for £ = 0 at the intersection points 
is nondegenerate, we have that the curves intersect transversely at those points. We 
can thus conclude that, for Ç ^ 0 and sufficiently small, there are no other intersection 
points and thus there are no other equilibria of (4.65). 

The non-radial eigenvalues of the linearization of (4.65) at pp are 

(SX ± y/{6\ -aP + a 7 ) 2 - 4£2 sin2(2(^)a2A2) A 
2^2 • 

For the parameter values we are considering, equilibria pp are saddles in the restriction 
of the flow of (4.65) to the invariant two-sphere, and lift by the rotation to the 
hyperbolic periodic trajectory c in the flow of system (4.63). 

The equilibria ppvw lift to four periodic trajectories in the flow of system (4.63) and 
are given by the same equations as the periodic trajectories in the four-dimensional 
unperturbed system (4.62). 

The non-radial eigenvalues of the linearization of (4.65) at ppvw are 

(-6X ± ^{-a/3 + aj + SX){-3(-a0 + aj + ÔX) + 2A£asin(2<^))) A 
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For the parameter values we are considering, equilibria ppvw are unstable foci. 

This proves (D3) and (D6). 

Finally, we prove that in the flow of system (4.63) restricted to the invariant three-
-sphere, the two-dimensional invariant manifolds of the periodic trajectory and of 
the equilibria intersect transversely. This implies that the two-dimensional manifold 
connecting the periodic trajectory to the equilibria breaks to a transverse intersection, 
that is, into heteroclinic connections that arise in the transverse intersection of the 
invariant manifolds. Specifically, we prove that the two-dimensional heteroclinic con­
nection from pw_ to c and the two-dimensional heteroclinic connection from pw+ to c in 
the two-dimensional sphere x2 + y2 + w2 = =£, v = 0 break into transverse heteroclinic 
connections. Analogously, the two-dimensional heteroclinic connection from c to pv_ 
and the two-dimensional heteroclinic connection from c to pv+ in the two-dimensional 
sphere x2 + y2 + v2 = —, w = 0 break into transverse heteroclinic connections. 

Using the same approach as in section 4.1.3.1, we prove this by equivalently proving the 
tranversal intersection of the corresponding invariant manifolds in the flow of system 
(4.65), and to do this we apply Melnikov's method ([20], section 4.5). Melnikov's 
method was initially defined for a system with a homoclinic saddle connection. But 
it naturally generalizes to the case of more than one saddle connection, that is, to the 
heteroclinic case (see Bertozzi 

Instead of working with system (4.65), we consider its restriction to the invariant 
two-sphere S2 of radius r = J — ~, 

9 = r~sin(29) [(a - 3){1 - 2 cos2{<p)) +or2(cos2{9) cos2{4>)-sin2(9) sin4((/)))} + 
+ | r 2 sin2{9) sm{4>) sin(20) sin(27?i)(A + 3ar2 sin2{9) sin2(0)), 

0 = ^sin(20) [ ( /3-Q)( l -3cos 2 (^) ) + 5 r 2 ( - l + sin2(^)(l + cos2((/.)))]-
- f r2 sin(2^) sin3(0) sin(2^)(A + 3ar2 sin2(0) sin2(0)), 

(4.66) 
with r = 

From now on and until the end of this section we fix r = J-^. System (4.66) has 
the form. 

f = A(M) + &i(M,i), 
f = /2(M) + ^2(M,í), (4.67) 
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with 

fi{6, <f>) = £ sin(20) [(a - /9)(1 - 2cos2(<£)) + ôr2{œs2{9) cos2(</>) - sm2{9) sin4(</>))] , 
/2(<?,0) = ^s in (2^ ) [{0 - a ) ( l - 3cos2{9)) + Sr2(-1 + sin2(0)(1 + cos2(<^)))] , 

£?i((9, 0, i) = x sin2(6>) sin(0) sin(20) sin(2rçi)(A + 3ar 2 sin2(0) sin2(0)), 
g2(9,(f>,t) = - rfsin(2^)sin3(^)sin(2r/i)(A + 3ar2sin2(^)sin2( (/ ))), 

(4.68) 
where g\ and #2 are periodic in t with period —. 

The unper turbed system is non-Hamiltonian. so the Melnikov function is given by, 

M{t0) = J f(qo{t)) A g{q0(t),t + t0)exp (- Í traceDf(q0{s))ds) dt, 

with qQ(t) a parametrizat ion of the unper turbed heteroclinic connection, / = ( / i , / 2 ) , 
9 = Í9u92), ([20], section 4.5). 

First , we prove that the two unperturbed two-dimensional heteroclinic connections 
in Fix(rv) n Si, tha t is, in x2 + y2 + w2 = - £ with D = 0, per turb to transverse 
heteroclinic connections. In spherical polar coordinates the corresponding heteroclinic 
connections in the flow of system (4.66) are given by q0(t) = (9(t), (f>) with 9(t) €]0, §[ 
or 9{t) 6]f,7r[ and with <? = | or 0 = & 

For 0 = I we have, 

/1 (<?<>(*)) = Çsm(20( í ) ) ( a - /3 -<5r 2 sm 2 ( í ^ ) ) ) , 
/2(9o(í)) = 0, 

Pi(9o(í),í + ío) = 0, 
g2{qo(t),t + t0) = -r{ sin(20(t)) sm(2r](t + t0)){\ + 3ar2 sin2(0(í))), 

then. 

(4.69) 

f(qo(t))Ag(q0(t),t + t0) = fi{qo(t))g2{qo(t),t + t0) - f2{qo{t))9i(qo(t),t + t0) = 
= -£sm2(26(t))sm(2T)(t + t0)) (4.70) 

{a-i3- ôr2 sin2((9(í)))(A + 3ar2 sin2((9(í))), 

and 
írace [D/(9o(í))] = r2 ((/3 - a) cos2(#(í)) + i r 2 cos2(20(í))) . 

For 0 = | we have the following equation for 9, 

9 = £sin(20(i)) ( a - / ? - <5r2 sin2(#(i))) . (4.71) 

For (j) = I , we obtain the Melnikov function, 

M(*o) = / * sin(277(i + t0))E(t)dt, (4.72) 
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with 

E(t) = -r- sm2(28(t))(a-{3-ôr2 sin2(9(i)))(A+3ar2 sm2(6{t)))e{- tí ' ' (W-aJcoa^iMRir 'co.^ii .)))^ 
8 

In the case </> = y we obtain the same Melnikov function up to a minus sign, so the 
conclusions below also apply. 

Since the integral in (4.72) converges both for 9(t) €]0, §[ and for 9(t) 6]§,7r[, see 
lemma 27 below, in both cases M (to) can be written as: 

/

oo />00 

sin(2r7i) cos(2r]t0)E(t)dt + / cos(2r]t)sm{2r]tQ)E(t)dt. 
oo J — oo 

Let 5 = f^sin(2r/í)£(í)dí and C = / ^ cos(2r]t)E(t)dt, then 

M(i0) = COS(2T7Í0)S + sin(27/i0)C (4.73) 

From (4.73), the Melnikov function has infinitely many zeros given by 

tan(2ryi0) = - § , i 0 G R . (4.74) 

The zeros i'0 of the Melnikov function are simple if ^f(t'0) ^ 0. We have from (4.73), 

g ( f 0 ) = -2risin(2r](to))S + 27]Cos(2r}(to))C (4.75) 

Thus the zeros t'0 of the Melnikov function are simple provided 

tem(2T]t'0) ^ §, ío e R, (4.76) 

which is trivially verified, since the zeros t'0 of M(i0) satisfy (4.74). 

This proves that the heteroclinic connections given by q0(t) = (9(t),(f>) with 9(t) e]0, §[ 
or 0(t) €]f, 7r[ and with 0 = | or 0 = y break into transverse heteroclinic connections 
and thus that the two heteroclinic connections in Fix(rv)C\Sf, from pw_ to c and from 
pw+ to c, break into transverse heteroclinic connections. 

Finally, we prove that the two unperturbed two-dimensional heteroclinic connections 
in Fix{rw) n Sj!, that is, in x2 + y2 + v2 = -A with u> = 0, perturb to transverse 
heteroclinic connections. In spherical polar coordinates the corresponding heteroclinic 
connections in the flow of system (4.66) are given by q0(t) = (9,<f>(t)) with <p(t) e]0, -[ 
or <p(t) €]f, 7r[ and with 61 = | or 9 = y \ 
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We have, for 9 = § or 9 = f, 

fMt)) = 0, 
/2(9o(í)) = Çsin(2(/)(í))(/3­ a + 5r2cos2(0(t))) 

2 
. 2 

9i{qo{t),t + t0) = L. sin(0(í)) sin(20(i)) sm{2r]{t + i0))(A + 3ar2 sin2(0(i))), 
g2{qo(t),t + t0) = 0, 

(4.77) 
then, 

/(go(t)) A <?(<?o(t), t + to) = fi{qo{t))92{qo{t), t + t0) - /2(?o(í))si(9o(í) , t + to) = 
= ­ ^ sin(0(t)) sin2(20(i)) sin(2r?(t + i0))(/3 ­ a + <5r2 cos2(<?i(i)))(A + 3ar 2 sin2(0(t))), 

(4.78) 
and 

trace [Df{q0{t))] = or4 ((sin2(0) ­ cos2(^>))2 ­ sin2(</>) cos2(0)) . 

For 9 = | or 9 = y we have the following equation for 0, 

</> = y sin(20(í))( /3­a + 5r2cos2((/>(í))). (4.79) 

We obtain the Melnikov function, 

/

oo 
sin(2r7(i + tQ))E(t)dt, 

■oo 

with 
£ ( £ ) =y^^e[­/o

t5r4((sin2(0(S))­cos2(0(s)))2­sin2(0(S))cos2(<?»(S)))dS]_ 

and 

r4 

/( í) = ­­sin(</)(í))sin2(20(í))(,/3­a + 5r2cos2(0(í)))(A + 3ar2sin2(^(í))). 
o 

Since the Melnikov integral converges both for (j>(t) €]0, | [ and for <f>(t) €]§,7r[, by 
lemma 28 below, in both cases it can be written as, 

/

OO /.OO 

sin(2r]t) cos{2rjt0)E{t)dt + / cos(2rjt)sm(2r]tQ)E{t)dt, 
■oo </—oo 

and the proof follows as in the previous case. We conclude that the heteroclinic 
connections given by q0(t) = (9,<p{t)) with 0(i) e]0, f[ or 0(t) €]f,7r[ and with 
9 = | or 9 = y break into transverse heteroclinic connections and thus that the 
two heteroclinic connections in Fix{rw) n S;?, from c to p^_ and from c to p„+, break 
into transverse heteroclinic connections. D 
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Lemma 27 The Melnikov integral 

/

oo 
sm(2V(t + t0))f(t)e-^dt, 

-oo 

with 
r4 

f{t) = --sin2(29{t))(a - í3-ôr2 sin2{9{t)))(X + 3ar2 sin2(6»(i))), 
8 

and 

g(t) = I r2 ((/5 - a) cos2{6(s)) + 5r2 cos2(29(s))) ds, 
Jo 

converges both for 9(t) €]0, | [ and for 9(t) €]§, IT[. 

Proof: In order to prove that M(t0) converges, and since sm(2n(t + i0)) is bounded, 
it is sufficient to prove that 

f 00 
f(t)e-9{t)dt 

converges. 

We first compute e~^ = e-/o ^(/3-a)cos2
Ws))+árW(20(s)))^ 

Recall that, 
6 = TY sin(20(i)) (a - (3 - 6r2 sin2{9(t))) . (4.80) 

We do the variable change u = 9{s) and get 

fm dv 
g(t) = / r2 ((/3 - a) cos2(u) + or2 cos2{2u)) ™. 

761(0) 9 

Computations with Maple give 

s(t) = In J(u) 

with 

J(U) 

0(0) 

- { r 2 _ 
(tan2(§) - 1) < = - i » - ^ 2 (a - /3 + 2(a - 0 - 2õr2) t an 2 ( | ) + (a - 0) tan4(f )) ' 2 ( O ' - / 3 ) ^ - 2 ^ ( Q : ^ ) 

( q - 3 ) 2 - i i . 2 ( 2 ( a - < 3 ) - i , . 2 ) 4 ( a - g ) - 4 J r 
(tan(f)) i«-s)»-ír2(«-í) ( l + t a n 2 ( | ) ) <«-0>- " ; 2~ 

and we have 

e-9(t) = J(^(O))J(0(i))- 1 . (4.81) 

To prove that J^° f(t)e~9^dt converges, it is sufficient to prove that 

f(t)J(9(t)r1dt (4.82) 
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converges. 

One of the heteroclinic connections that we are considering corresponds to 
9(t) G]0,7r/2[, Vi G R and the other to 9(t) G]TT/2, ir[, Vi G R. Since we are considering 
parameter values such that a - 8 > 0 and 5 < 0, we have 6 > 0 for (9 G]0,7r/2[, and 
(9 < 0 for 9 é\ir/2, ir[. For the connection in 6(t) G [0, n/2], we have l i m ^ . ^ 9(t) = 0, 
lim i^+oc6 l(i) = 7T/2. For the connection in 9(t) G [7r/2,7r], we have lim^-oo 9(t) = IT, 
limt_>+00 0(i) = 7T/2. 

By the arguments above, for the heteroclinic connection in 9(t) G [0,7r/2],Vi G R, 
(4.82) is equal to 

/•§ - ^ s in2(20)(a-/3-i?r2 sin2(g))(A+3ar2 sin2(g)) , „ _ 

^ ° ^ sin(20)(a-/?-<5r2 sin2(0)) J(0) ~~ 

( o - f l ) 2 - i i - 2 ( 2 ( o - f l ) - i r 2 ) 4 ( a - 8 ) - 4 i r 2 

r § - ^ s i n 2 ( 2 f l ) ( 0 - , i 3 - ^ r
2 s i n 2 ( f l ) ) ( A + 3 a l - 2 s i n 2 ( g ) ) ( t a n ( | ) ) ( ° - f l ) 2 - ^ ( a - 0 ) ( l + t a n 2 ( f ) ) ( » - g ) - ^ 2 

J ° ~ ~ ^ 2 5 ( o - < 3 ) 2
+ 6 :

2 ( 5 ( ? - a ) + ^ 2 ) " f l ! 

V s i n ( 2 0 ) ( a - f l - á r 2
s i n 2 ( 9 ) ) ( t a n 2 l f ) - l ) ( < » - £ | > - í ' - 2 ( a - / 3 + 2 (a - i ? -2ò> 2 ) tan2( § ) + ( Q - / 3 ) tan"( f ) ) 2 ( a - 0 ) 2 - 2 i r 2 ( a - < 3 ) 

2 ( a - i3 ) 2 - i>r 2 (2 (a - /? ) -<$r 2 ) 4(q-/3)-4i5r 2 

„ | - Ç s i n ( 2 0 ) ( A + 3 a r 2 s i n 2 ( 0 ) ) ( t a n ( § ) ) ( a - ^ - i r ^ a - t f ) ( 1 + t a n 2 ( | ) ) (a-/3)-S^ 
~ JO -Sri 5 (a -3 )2+Jr^ (5( /? - Q )+ j7^7^ 

( t a n 2 ( | ) - l ) (°-0)-6r> ( a _ / 3 + 2 ( Q - ) 3 - 2 á r 2 ) t an 2 ( f ) + ( Q - / 3 ) t a n 4 ( f ) ) 2(c-/3)^-2i r
2(Q-/}) 

We prove that J0
2 7(0)d0 converges by proving that 1(9) is bounded in [0, §]. For 

the parameter values we are working with, the exponents in 1(9) are all positive, the 
numerator in 1(9) is bounded in [0, | ] and 

5(a-/3)2+(Sr2(5(/3-a)+ir2) 

(a - 8 + 2(a - 3 - 2*r2) tan2(^) + (a - /?) tan4(*)) ^ ^ ^ ^ > 0. 

It only remains to see that 1(9) is bounded when 9 — f, that is, when 
- S r 2 

(tan2(f) - i)(°-3)-4r* is z e r 0 

We have that 
sin(2fl) _ 

nme. 2 - ó r * 
(tan 2(f)- l ) (^W^ ^ ^ ( 4 8 3 ) 

l i m ^ f -4s in ( f ) (cos ( f ) ) ( 2 ( - "^ 2 + 1 ) ( l - c o s 2 ( f ) ) ( 1 " ^ & î ) , 

which is zero, since 0 < -,—~ir ; , < 1. 

This completes the proof for the heteroclinic connection in 9(t) G [0,7r/2], Vi G R. For 
the heteroclinic connection in 9(t) G [IT/2, 7r], Vi G R the proof is analogous. D 
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Lemma 28 The Melnikov integral 

/

OO 

sm(2rj{t + t0))f{t)e-^dt, 
■00 

with 

f(t) = ­­sin(<p(í))sin2(20(í))( /3­a + (5r2cos2(0(t)))(A + 3ar2sin2(^(í))), 
8 

and 

g(t)= í òr4((sm2(0(S))­cos2(^(S)))2­sin2(0(S))cos2(0(S)))C íS , 
Jo 

converges both for <j>(t) €.]0, | [ and for <p(t) G]|,TT[. 

Proof: In order to prove that M(t0) converges, and since s'm(2rj(t + t0)) is bounded, 
it is sufficient to prove that 

/>0O 

f(t)e-
9{t)

dt 

converges. 

We first compute e~9{t) = e~ & Sr4{(siD2Ws))-cos2(<t>(sm2sm2(<i>(s))cosH4>(s)))ds_ 

Recall that, 
4> = rY sin(20(t))( /3­a + òr2cos2(0(í))). (4.84) 

We do the variable change u = 0(s) and get 

r0(i) dv 
g(t) = / or4 ((sin2(u) ­ COS2(ÍÍ))2 ­ sin2(u) cos2(u)) ^ . 

J<p(o) 4> 

Computations with Maple give 

­ 0(i) 

g(t) = \nJ(u) 
- <P(0) 

with 

({0 ­ Q ­ <5r2) + 2(/3 ­ Q ­ <5r2) t an 2 ( | ) + (/3 ­ a + or2) t an 4 ( | ) ) 2(fl­ = )(/3­»+J^) (tan(|)) 3­«+J^ 
J (u) ­ ; j g ^ r ^ j g r . 

(l + t an 2 ( f ) ) 5 ( l ­ tan 2 ( f ) ) ( i | ­°)(3­°+^ i l ) 

and we have 
e­̂ W = J(0(O))J((p(i))­1 . (4.85) 
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To prove that f^ f(t)e 9{t)dt converges, it is sufficient to prove that 

/

oo 

f{t)J{<j>{t))-ldt (4.86) 
­00 

' - o o 

converges. 

One of the heteroclinic connections that we are considering corresponds to 
<f){t) G]0,7r/2[, Vi G R and the other to <j>(t) G]TT/2, TT[, Vt € R. Since we are considering 
parameter values such that /3 - a < 0 and 6 < 0, we have <j) < 0 for <f> G]0, TT/2[, 

and 0 > 0 for 0 €]7r/2,7r[. For 0(i) G [0,TT/2], we have l i m ^ ^ cf>(t) = TT/2, 

l im w + 0 0 0(i) = 0. For <j>(t) G [TT/2, TT], we have l i m ^ , » <f>(t) = TT/2, limt^+0O 0(i) = TT. 

By the arguments above, for the heteroclinic connection in <f>(t) G [0, TT/2], Vi G R, 
(4.86) is equal to 

fO ­ysin(0)sin2(20)(/3­Q+ar2cos2(0))(A+3ar2sin2(,/>)) 
A . 

r s i r 

2 y­sin(2(?i>)(/3­Q+(5r2cos2(0))J(0) 

j r 2 ( g ­ a ­ f j r 2 ) 
,0 ~ V » i " W s ' " 2 ( 2 ' » ) ( < 3 ­ ° + * > ­ 2 ■:°32(0))(A + 3 e . r 2

s i n 2 ( 0 ) ) ( l + t a n 2 ( | ­ ) ) 5 ( l ­ t a n 2 ( f )) ( g ­ o ) ( | 3 ­ a + i r 2 ) 
? 5 ( c ­ 3 ) 2

+ ^ 2 ( 5 ( g ­ c » ) + ^ 2 ) ~ ^ 

4. ­ s i n ( 2 * ) ( i ­ £ > + 4 r 2 c o s
2 ( * ) ) ( ( / 3 ­ Q ­ 4 r 2 ) + 2 ( / 3 ­ c . ­ i r 2 ) t a „ 2 ( | ) + ( / 3 ­ a + J r 2 ) t a n 4 ( f )) 2 ( ) 3 ­ a ) ( ( 3 ­ o + i r ^ ) ( t , „ ( 4 )) i l ­ a + i r 2 

2 , « <5r2(,3­a+<S,­2) 
_ rO ­í

rsin(</>)sin(2</>)(A+3Qr2sin2(^))(l+tan2(f)) (l­tan2(f))(/3­«)(/3­"+í'­2) 
J f " " ~ 5(ç,­/?)2+^2(5(/3­a)+,5r2) ~ Z T ~ ^ = 

((/3­a­5r2)+2(/3­a­<5r2)tan2(f)+(/3­a+ár2)tan4(f)) 2(/3­a)(3­a+ír2) (tan(f)) /3­"+<»2 

= /í /(0)# 

We prove that / | / ( 0 ) d 0 converges by proving that 7(0) is bounded in [0, §]. For 
the parameter values we are working with, the factors appearing in the numerator are 
indeed in the numerator (and the same for the denominator). The numerator in I(<f>) 
is bounded in [0, f ] and, since a(/3 ­ a) + 6X > 0, 

5 ( a ­ / 3 ) 2 + á r
2 ( 5 ( 3 ­ a ) + S r 2 ) 

(/? ­ a ­ <5r2) + 2(5 ­ a ­ 5r2) tan2(^) + (/? ­ a + 5r>) t an 4 ( | ) ) " a " ­ » ' ­ + " a > # 0 

Thus, it only remains to see that I(<f>) is bounded when </> = 0, that is, when 
(tan(f)); ^̂  3-a+Sr 

is zero. 

We have that 
Km „ sin(0)sin(20) _ 
i i m ^ ^ o Til— — 

( t a n ( | ) ) / 3 ­ a + á r ^ 
á r 2 

= l im^08(sin(f))2 ^ ^ ( 2 c o s 2 ( f ) ­ l ) ( c o s ( f ) ) ^ W ' 
(4.87) 

which is zero, since 1 < 2 — „ 5r\ , < 2. 
/3 — Q + or­' 



CHAPTER 4. CONSTRUCTION OF EXAMPLES 112 

This completes the proof for the heteroclinic connection in <j>{t) G [0, TT/2], Vi G R. For 
the heteroclinic connection in <j>(t) G [ir/2, n],Vt G R the proof is analogous. D 



Chapter 5 

Dynamics near Shilnikov 
heteroclinic cycles 

In section 3.4 we analysed the structure and symmetry of the Shilnikov heteroclinic 
network S in Field's example. The quotient heteroclinic network E/T is the union 
of three heteroclinic cycles, see figures 3.5 and 3.6 in section 3.4. One of the cycles 
connects two saddle-foci, another the two saddle-foci with a periodic trajectory, and 
the remaining is a cycle homoclinic to the periodic trajectory. 

The aim of this chapter is to study the local dynamics in the neighbourhood of the 
quotient heteroclinic cycles. We generalize the study to any flow on a three-dimensional 
manifold having a Shilnikov heteroclinic cycle topologically equivalent to each of the 
quotient heteroclinic cycles. 

In section 5.1 we consider the case of a heteroclinic cycle involving two saddle-foci, 
and in section 5.2 that of a homoclinic connection to a periodic trajectory. We 
find conditions for the existence of chaotic dynamics in the neigbourhood of such 
heteroclinic and homoclinic cycles by finding conditions for horseshoe dynamics. 

The heteroclinic cycle involving two saddle-foci and a periodic trajectory leads to con­
siderably bigger technical difficulties, and we will not study it here. Nevertheless, we 
claim that it is possible to find conditions for horseshoe dynamics in the neighbourhood 
of such heteroclinic cycle and that techniques as in section 5.1 apply. 

The study of the local dynamics in the neighbourhood of homoclinic and heteroclinic 
cycles containing saddle-foci started with Shilnikov. Shilnikov proved the existence 
of horseshoe dynamics in the neighbourhood of an orbit homoclinic to a hyperbolic 

113 
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saddle-focus of a third-order differential equation in Shilnikov [41], and of a fourth-
-order differential equation in Shilnikov [42]. The local dynamics in the neighbourhood 
of a heteroclinic cycle containing a saddle-focus in R3, was first studied by Tresser [44]. 
The study of these, and other cases of homoclinic and heteroclinic motion, can be found 
in chapter 3 of [45]. 

We use standard techniques, we reduce our study to a Poincaré map that describes 
the underlying flow in a neighbourhood of the cycles. (For an explanation on Poincaré 
maps, see section 1.5 of Guckenheimer and Holmes [20] and section 1.6 of Wiggins [45].) 

In section 5.1, the local dynamics of the flow near the heteroclinic cycle is decomposed 
into linear dynamics within cylindrical neighbourhoods around the invariant saddles 
and regular dynamics within tubes around the heteroclinic connections. 

In section 5.2, the local flow near the homoclinic cycle is discretized by the derivation 
of a first return map around the cycle defined on a section transverse to the flow in a 
point of the periodic trajectory. 

We prove that those Poincaré maps are Smale horseshoe maps ([20], section 5.1 and 
[45], section 2.1). Thus, the local dynamics of the flows in the neighbourhood of the 
heteroclinic cycles is suspended horseshoe dynamics. 

Any Smale horseshoe map vf possesses an invariant Cantor set, (Simmons [43], sec­
tion 11), A such that the restriction of \I> to A is homeomorphic to the shift on two 
symbols ([20], theorem 5.2.7). 

This suffices to guarantee that the restriction of vj> to the invariant Cantor set has 
a countable set of periodic orbits of arbitrarily long periods, an uncountable set of 
bounded nonperiodic motions and a dense orbit ([20], theorem 5.1.2), leading to chaotic 
dynamics. 

5.1 Connecting two saddle-foci 

5.1.1 Introduction 

We consider a generic flow on a three-dimensional manifold satisfying the following 
hypothesis: 

(A) There is a Shilnikov heteroclinic cycle with two equilibria, ex and e2, that are 
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saddle-foci of type 2,1 and 1, 2, respectively. There are two invariant curves (see 
figure 5.1), 

Ws(e2) = Wu(e1), (5.1) 

and, 

Ws{e1)&Wu(e2). (5.2) 

Figure 5.1: Shilnikov heteroclinic cycle in a three-dimensional flow connecting two 
saddle-foci. 

We shall prove that under certain conditions, there is horseshoe dynamics in the 
neighbourhood of such heteroclinic cycle. The proof is inspired by section 6.5 of 
[20] and sections 3.2 and 3.3 of [45]. We define a Poincaré map, ,J>, composed of 
local transition maps defined in cylindrical neighbourhoods of the sadde-foci, given 
by the linearized flow near those points, and connecting diffeomorphisms between 
the cylindrical neighbourhood of one saddle and the cylindrical neighbourhood of the 
other saddle, given by the nonsingular dynamics in a tubular neighbourhood around 
the heteroclinic connections. Then, we show that the dynamics of the Poincaré map 
is of horseshoe type. 

To prove the existence of Smale horseshoes in the dynamics of the Poincaré map ^ we 
shall consider a rectangle, R, iterate it by \I/ and prove the validity of hypotheses HI 
and HZ of theorem 5.2.4 of [20], called here conditions B and C: 

(B) We can find two partitions, H and V, of R into strips, such that the strips in 
H are transverse to the strips in V, and two disjoint strips in H are mapped by 
^ into two disjoint strips in V. When this happens we say that the image of R 
by the Poincaré map ^ meets R in a horseshoe-like form. This means that $ 
has the qualitative behavior of a horseshoe map / in which / takes a rectangle 
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R, stretches it in the vertical direction, compresses it in the horizontal direction, 
turns it and places it over itself (see section 5.1 of [20] and section 2.1 of [45]). 

This geometrical behaviour is the reason for the Poincaré map ^ on its invariant set 
to be topologically conjugate to a full shift on two symbols. 

(C) We can find two complementary bundles of sectors, Su and Ss, such that D$ 
maps Su into Su while expanding each vector in Su, and D^'1 maps 5 s into Ss 

while expanding each vector in Ss. 

This hyperbolicity condition implies the invariant set of the Poincaré map # to be a 
Cantor set. 

By Theorem 5.2.4 in [20], conditions B and C guarantee that the Poincaré map $ 
possesses an invariant Cantor set of points A that is hyperbolic and # restricted to A 
is homeomorphic to the shift on two symbols. 

For a detailed and more formal explanation see sections 5.1 and 5.2 of [20], or sections2.1 
and 2.3 of [45]. 

In the next sections we define cylindrical neighbourhoods of each of the equilibria ex 

and e2 in the heteroclinic cycle. Then we define a Poincaré map on the wall of one of 
those cylindrical neigbourhoods. In Theorem 30 we give sufficient conditions for the 
existence of rectangles, on the wall of the cylinder, that satisfy condition B and then 
in Theorem 31 we find conditions under which the rectangles satisfy condition C. 

5.1.2 Poincaré map 

Let Xej and aej ± iBej be the eigenvalues of ej, j = 1, 2. We assume 

(HI) Aei > 0. aei < 0, 0ei > 0. Ae2 < 0 ae2 > 0, &, > 0, and ^ x < i 

and consider a neighbourhood of ev Nej, j = 1,2, where the flow is linearizable. 

The stable manifold theorem (see [20], theorem 1.3.2), allows us to introduce local 
coordinates (xei,yei,zei) in Nei such that the local unstable manifold of d , W^c{ex), 
is contained in the zei-axis and the local stable manifold, W?oc(ex), is contained in 
(Xei, Ha)-plane. Similarly, we introduce local coordinates (xe2, ye2, ze2) in Ne2 such 
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that the local stable manifold of e2, Wfoc(e2), is contained in the z£2-axis, and the local 
unstable manifold, W%c(e2), is contained in (xe2,ye2)-plane (see figureõ.l). 

For ease of computations we use polar coordinates (rej,6e.), j = 1,2, such that 

xt. = re. cos(0e.), 

yej = re>sin(0ej). 

In Ne., j = 1,2 we define the surfaces 

E j0 = {(x£], ye., 2e. ) : re. = r0 and 0 < zSj < zx}, 
S J I = {(a\y, yej, zej) •• ^ < r0 and 0 < ze] = zx}. 

Denote by pu the intersection of Wu(ex) with En, by p2\ the intersection of Wu(ex) 
with E2i. Let P20 be a point in Wu(e2) n PV's(ei) D E20 and p10 the point on the 
trajectory of p2o that intersects E10, see figure 5.1. We take pj0, j = 1,2 as the origin 
of the coordinates (0e.,ze.) in E,0-

In what follows we define a Poincaré map ^ in a rectangular neighbourhood Rei of 
Pio in E10, for points in Rei whose image by the flow return to Rei. Then we show the 
existence of Smale horseshoes in the dynamics of the Poincaré map. 

Linearizing the flow in Nej, j = 1, 2 we define two diffeomorphisms 

ipei : E10 -> En and ipe2 : E2i -> E20. 

By the Hartman-Grobman theorem, ipei and ^e2 are good approximations of the flow 
near the equilibria. 

The trajectory from plx to p2x and from p20 to p10 is nonsingular. Hence we shall 
define a diffeomorphism from a neighbourhood of pn in E n into a neighbourhood of 
p21 in E21 

06162 : En —> E21 

and a diffeomorphism from a neighbourhood of p2Q in E2o into a neighbourhood of pxo 

in Eio 

re2ei : E2o —> Eio-

These diffeomorphims are given by applying the flow box theorem around the hetero-
clinic connections. 
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The Poincaré map ^ is defined as the composition of the above diffeomorphisms 

* = 0 e 2 e i ° 9 e 2 °</>e1Ê2 ° </>ei ■ 

A direct computation yields. 
n e i 

,.,.̂ ,...-,.1 - M " F ^ei + | a . l n ( i L ] j .. u - , . ^ , . ^3.3, 

and 

&a , ( ro A , - ,r0 
Xe 

¥>ea(rea,0ei) = I ^ M n ( ̂  ) + 0 e 2 , p - ) - . a a r i ) = (9e2,ze2). (5.4) 

In a flow-box around the one-dimensional connection Wu(e{) = H^s(e2) the map (f>eie2 : 
En —► E­21 can be approximated by a perturbation, with e, 5 small, of the identity 
map given by the diagonal matrix, 

1 + e 0 
0 1 + 5 

We shall see in the next section that the geometry of the Poincaré map is the same 
if we take 0ei62 to be the identity, but this perturbation is essential in obtaining 
hyperbolicity, as we shall see in section 5.1.4. There is no loss of generality in choosing a 
diagonal perturbation ­ this may always be obtained by a suitable choice of coordinates 
and by incorporating any rotation in the map </?ea. 

Since the two­dimensional manifolds Wu(e2) and Ws(ei) are transverse, we consider 
the diffeomorphism çe2ei as a rotation of angle p, and we assume p is close to zero. 
The Poincaré map near pei is thus given by 

* ( 9 e i , 2 e i ) = 0 e 2 C l O ipC2 o 0 e i e 2 ° V>e, {6ei ,Ze , ) = 

' :<; ■-,■., [{'■ ~e)r0 I ji- I "e i , ( 1 + 5) I Btl + In ( — 

:> f , t l | i n ( : . l ­::i " ­ • ] . . l n ( ^ ­ J ' »*= + (1 + S)6ei , (1 + e ) ~ -»l f~ ) "l"'i Z; 

5.1.3 Geometry of the Poincaré map 

In this section we show that the Poincaré map # has the geometry of a horseshoe 
map. This implies that ^ has an invariant set and that the dynamics of ^ on the 
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invariant set is topologicals conjugate to the shift on a space of bi­infinite sequences 
of two symbols. 

We consider a rectangular neighbourhood, Rei, of p10 on the surface £10 of the 
cylindrical neighbourhood of ex and show that it intersects its image by the Poincaré 
map ^ in a horseshoe­like way. 

In fact, what we actually do is something that is equivalent but easier to compute: we 
consider the inverse image in £20 by the rotation 0e26l of the rectangular neighbour­

hood Rei in £10. Then we study how the image of Rei by ipe2 o <freie2 o (pei intersects 
its inverse image by the rotation çe2ei in E20 (see figure 5.2). 

Figure 5.2: Image in £20 of <j>~2\x{Rei). 

We consider the following rectangular neighbourhood in E10, 

Rei = [-WK,WK] x [0,zi], 

with 0 < v « 1 and the covering of Rei by rectangles 

Reik = {-un,v7r}x [Zle^k+X\zxe<k} , 
c \ 00 

w i t h 7 = Qeijeo­(l+
Q/)3eia.,­ k e K ^ d Rei = \J Reik. Note that 7 < 0, thus the 

Jfc=0 

height of the rectangles Reik ­» 0 as k ­> +DC (see figure 5.3). 

The reason for this particular choice of the rectangular partition of Rei will become 
clear in the proof of theorem 30. 

We want then to study the intersection of ^ o ^ o ^ ^ J with <j)~2\{Rexk)■ Note 
that the image of Rei by <j>~^ is a rectangular neighbourhood of p20 in £2o crossed by 
Wfoc(e2) n ­20 as in see figure 5.2. 
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Re,o 

z,/"™ 

0\ = 
-071 U7I 

e 

Figure 5.3: Rectangular neighbourhood Rei and its covering by the rectangles Reik. 

We first study the image of Rei by (pe2 o 4>eie2 o (pe 

Lemma 29 The rectangular neighbourhood Rei is mapped by ípe2 o (f)eie2 o ipei into a 
strip that winds around E20 and accumulates in W^c(e2) H E20. 

Proof: The image of Rei by ipe2 o <peie2 o ipei is determined by the image of its 
boundaries. In fact it is enough to study the image of the boundaries parallel to 
the 2-axis. Let s be one of those boundaries. 

Recall that g^ < 0 and ^ > 0 in (5.3). 

We have that \hntei-+Zl<pei(6ei,zei) = (ro,0e i). Moreover, limZei^0 ipei(9ei, zei) = 
(0,+oo). 

The image of s by ipei is a logarithmic spiral in E u that winds around the zei-a,xis, 
and has pu as an accumulation point, as shown in figure 5.4. 

Writing 0eie2(rei,6>ei) = (rei + erei,9ei + 60ei) = (r,9), we have \imrei^0r = 0 and 
lim re i^ ro r = r0 + õr0. Moreover, l im^^o 0 = 0. 

The logarithmic spiral in En is perturbed and mapped by (peie2 into another spiral in 
E2] that winds around the zei-axis and has p21 as a limit point (a small piece may not 
be mapped into E2i). 

Recall that ^ > 0 and ^ < 0 in (5.4). 

We have that limre2^ro^e2(re2,9e2) = {9e21zx). Moreover, limre2^o <pe2(re2,9e2) = 
(+oo,0). 

The logarithmic spiral in E2i is transformed by (pe2 into a curve that winds around 
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Figure 5.4: Image, in E20, by ipe2 o 0ei62 o ipei of a vertical segment s in E 
10­

E20 and accumulates on W^oc{e2) fl E20, as in figure 5.4. D 

Theorem 30 Consider the covering of Rei by the rectangles Reik. Under hypothesis 
(A) in section 5.1.1 and hypothesis {HI) in section 5.1.2, and for p, the angle of the 
rotation 0e.2ei, sufficiently close to zero, there are values of k such that the intersection 
of ipe2 o <peie2 o ipei(Reik) with (t>^2

l
ei{Reik) in E20 is a topological horseshoe. 

Proof: To compute the image of a rectangle Ren by (pe2 o <btlt2 o ipei we compute the 
image of its boundaries. The boundaries of Reik are given by 

U = [-un, VTX\ x [zielk] , 

D= [-VW,VK] x {Zle
l{k+l)} , 

L = {-VTT} x ke7( fe+1) ,z i e
7 fe] , 

R={uir} x [zxe
l(k+l\zxe<k 

Their images in E20 by <̂ e2 o éeie2 o ipei are given by 
Y?e2 ° 0 e i e 2 ° <Pei (U) = 

g«2 3 . 2 

(5k- (1 + S)v)-IT + ln(l + e) a'i , (5k + (1 + 6)v) rr + ln(l + e) a'i 

®'i 

ipe2 o <p e i e 2 o ipei (D) — 

(5(k + 1) ­ (1 +<5)^)7r + l n ( l + e) a<i , (5(fc + 1) + (1 + 6)u) IT + l n ( l + e)~ ^ 

^ e 2 o <p e , e 2 0 lfiCl (L) = 

{( (5 i ­ ( l + <5)t/)7r + ln ( l+f ) a
«2 , ( l+£ ) ^ z / J i K i a + l } , 

¥>e2 ° <Peie2 ° Vei 1­R) = 
_ £ l i x ' 2 

{((5/ + (l + <5)i/)7r + l n ( l + e ) a " 2 , ( l + e) a<2 Z l e " ' ) ; fc < / < k + 1}, 

x ■; 2 i ( 1 + e ) ° e2 e ^ \ , 

x J 2 l ( l + e)~ a<? e^*"1"1 ' 
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bixaex \e2 With 77 = - , ,, , ,. , 

To simplify computations we consider e — S = 0, i.e., we consider <f>eie2 as the identity 
map. We claim that, for e and 5 not equal zero and small the same kind of conclusions 
apply. For e — 5 = 0, 

I n ( ^ ) ^ ~ +eei){^)^^ zA =(6ea,zei), 

(5.5) 
and the above images simplify to 

v?e2 o0 e i e 2 ocpei(U) = [(5k - v) 7T, (5k + u) 7r] x {^e^} , 

^e2 o 0eie2 o ^ ( D ) = \(5(k + 1) - i/) 7T, (5(A: + 1) + T/) TT] X { z i e ^ + 1 ) } , 

^e2 o 0ei62 o <pei (L) = {((51 - u)ir, zxenl)\ k<l<k + l}, 

ipe2 o cj)eie2 o ipei(R) = {((5l + u)^,zleT,l)]k <l <k + l}, 

With 77 = 3 V ^  

We consider a rectangular neighbourhood of p20 in S20 homeomorphic to i?ei defined 
by, 

Re2 = [-un, un] x [0, zi], 

and a covering of i?e2 by rectangles homeomorphic to the covering of Rei 

Re2k = [-un,un]x [zle^k+l\zlelk}, 

oo 

with k E NQ~ and Re2 = (J Re2k. 

We find conditions for (pe2 o 0eie2 o ^ e i ( i? e i J to intersect R&2k in a horseshoe. 

In figure 5.5 we represent the kind of intersection of ipe2 o <f)eie2 o ipei(Reik) and Re2k 

that we want to find in E20 for a rectangle Reik in £10. The calculations differ if k is 
even or odd. 

We want to find conditions under which ipe2 o 0eie2 o tpei(Reik) intersects Re2k in 
two disjoint regions with a horseshoe-like form. We want the rectangle Reik to be 
contracted in one direction, expanded in another direction, and wound around E20 
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_.%,° %,ei° %,
iR

e,l 

Figure 5.5: Desired intersections of fe2 ocpeie2 opei(Reik) with Re2k, respectively, when 
k is odd and even. 

in such a way that we can find two disjoint regions of Reik that are mapped by 
çt2 o 0gie2 o tpei over their homeomorphic regions in Re2k-

Notice that the sign of aei(3e.2 — peiae2 determines whether 9e.2 increases or decreases 
as zei —> 0,that is, determines whether the image of Reik winds to the right or to the 
left. Since we consider 3e% > 0, i = ei, e2, we have that aev8e2 — j3eiae2 is negative and 
the strip winds to the right. 

As Y ^ < 1 we have zxé>k > zxe
lk. 

Notice also that the height of the rectangle Reik determines the number of times 
(pe2 o 0gie2 o ipei(Reu) winds around E20, and this depends on the choice of the scalar 
on the numerator of the exponent 7 = Qe j \[l°s\

2a ae in the definition of the covering. 
We have chosen the value 5 for the scalar, since, as can be seen in figure 5.5, this is 
the smallest value giving the desired intersections. 

Let now L and R denote, respectively, the left and right boundaries of Reik. In order 
to obtain the desired form for the intersection of <pe2 o <peie2 o (pei(Reik) and Re2k it is 
sufficient to impose that the first time ipe2 o 0eiÊ2 o cpei(R) goes through angle — VK it 
intersects L, and that the second time ípe2 o 4>eie2 o </?ei(L) goes through angle vi\ it 
intersects R (see figure 5.5). 

When k is even this is equivalent, respectively, to 

Z\t „(*+$(!-„)) < z\e 
■yk 

and 
2 i e ^ + f (2+ , ) ) > Z l C7(*+l) . 

!
r( i / - l )q e i Ae 2 

(5.6) 

(5.7) 

Condition (5.6) is equivalent to k > a A _\e £ : a n d condition (5.7) is trivially 
verified for all k, and for v sufficiently small. 
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When k is odd it is equivalent, respectively, to 

Zie„(*-4(i-2,)) < Ziei^ ( 5 . 8 ) 

and 
^ e ^ + l + f " ) > ,2ieT(*+i). (5.9) 

Condition (5.8) is equivalent to k > J A - A ' V 2 , and condition (5.9) is trivially 
verified for all k, and for v sufficiently small. 

We have shown that under certain conditions there are values of k such that the 
intersection of (pe.2 o èeie2 o ipei(Reik) with Re2k in E2o is a topological horseshoe. 

Since we are assuming that the angle p of the rotation (f)e2ex is small, we can con­
clude that, under the same conditions, the intersection of ipe2 o <f)eie2 o ipei(Reik) with 
cpJ2

l
ei(Reik) is a topological horseshoe. To see this imagine that you rotate sightly 

the underlying rectangle in the classical horseshoe picture; the intersection points will 
change but will nevertheless produce a horseshoe-type intersection. D 

5.1.4 Hyperbolicity of the Poincaré map 

From the results in the last section we can conclude the existence of infinitely many 
rectangles in Rei, where ^ is a topological horseshoe. We now prove the existence for 
$ of sector-bundles in Rei satisfying condition (C) in section 5.1.1. This and theorem 
30 above imply that \& possesses an hyperbolic invariant Cantor set A in Rei and that 
the restriction of ^ to the Cantor set A is homeomorphic to the shift on the space of 
bi-infinite sequences with elements in an alphabet with two symbols. 

Theorem 31 Assume hypotheses (A) in section 5.1.1 and (Hi) in section 5.1.2 hold. 

Let z2 = zx ( ^ Ç ) Q e i A e 2 " A e i a e 2 • If S > 0, e < 0 and zei > z2) or S < 0, e > 0 and 
zei < z2 then the Poincaré map "if is hyperbolic. 

Proof: We must prove we can find a sectorial structure satisfying condition (C) in 
section 5.1.1. 

We follow [20], section 6.5; we prove that at each point the derivative D^> has one 
eigenvalue of magnitude less than 1 and the other larger than 1, and that the angle 
between the eigenvectors is bounded awav from zero. 
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In these circumstances, the sectorial structure is obtained from the bounds of the 
eigenvectors, by choosing small sectors around the boundary values. Those sectors 
satisfy condition (C). 

The matrix of the derivative of 'I' at a point (9ei,zei) in Rex is given by 

D * 
(8ex , Z e i ) 

cos p — sin p 
sin p cos p 

a b 
0 d 

with 

a b 
0 d 

1 + Ó 

0 (îfc) 

ûe j Pe 

^ e j C*e2 

n^ e 2 [ zi ] A ci°< 
21 <^e2 \ Zel J 

The eigenvalues of D^ 

1 

are, 
( ^ i - Z e j ) 

} y (a + d) cos p + 6 sin p ± y [(a + of) cos p + 6 sin p]' 

with eigenvectors, 

4ad 

( (d - a) cosp + 6sinp ± W[(a + d) cosp + 6sinp]2 - 4ad ] 

V 
2(òcosp — dsinp) 

/ 

We start by analysing the magnitude of the eigenvalues when p = 0. In this case the 
eigenvalues are given by a and d. For S > 0 the absolute value of a is larger than 1, 
and for 6 < 0 it is less than 1. 

e l " e 2 

Let z2 = zx [^Q) " e i ^ - ^ ^ For 2ej = 22 we haye rf = (1 + £)-Qe2 ThuSi when 
£ > 0 the absolute value of d is larger than 1 at least for zei < z2. When e < 0 the 
absolute value of d is less than 1 at least for zei > z2. 

Thus, for Ô > 0, s < 0 and zei > z2 we have \a\ > 1 and \d\ < 1. For 5 < 0, e > 0 and 
2ei < £2 we have \a\ < 1 and |d| > 1. 

When p « 0 the eigenvalues are close to a and d. The product of the eigenvalues 
is det(D^) = ad. We conclude that, when p ss 0, as long as the discriminant 
A = [(a + d) cosp + òsinp] - Aad is greater than zero, there are two different eigen­
values, one with absolute value larger than 1 and one with absolute value less than 
1. 
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The angle between the eigenvectors is bounded away from zero as long as A is bounded 
away from zero. Since p « 0 we have A « (a — d)2. Thus, it is possible to choose 
values of 5 and e such that A is not close to zero. 

We conclude that there are values of 5, e and zex such that the derivative of ^ has one 
eigenvalue with absolute value less than 1 and the other with absolute value larger 
than 1 and the angle between the eigenvectors is bounded away from zero. D 

5.1.5 Conclusion 

We have proved that, under the conditions of theorem 30 in section 5.1.3 and theorem 
31 in the last section, the diffeomorphism $ satisfies hypotheses (B) and (C) in 
section 5.1.1. Thus, by Theorem 5.2.4 in [20], we can conclude that, under those 
conditions, the diffeomorphism # has a hyperbolic invariant Cantor set A, such that, 
$ restricted to A is topologically conjugate to a shift a on the set X of bi-infinite 
sequences of two symbols. That is, there is a homeomorphism h : X —ï A, such that 
# =hoaoh~l. 

A 

The invariant Cantor set A is structurally stable since small Cl perturbations of # 
still satisfy hypotheses (B) and (C). 

An analogous treatment shows the existence in Re2 of a Cantor set invariant by that 
Poincaré map and with the same properties of A. 

The case of the unperturbed example we constructed in section 4.1.1, where, in the 
restriction to the invariant three-sphere, the two-dimensional manifolds of the two 
saddles in the heteroclinic cycle coincide, is non-generic since p = 0. 

If we simplify the problem and consider the still more degenerate situation where 0eie2 

and <pe2ei are the identity map, then 

DV = 
1 (: ±L\ 1 

Q e 2 e l ze\ 
e1 e2 i 

0 " e l A e 2 ( Z e l )^1a, 
\eiae2 \ 21 I 

In this case we can still prove the existence of a topological horseshoe, but it is 
nonhyperbolic since one of the eigenvalues equals 1. 



CHAPTER 5. DYNAMICS NEAR SHILNIKOV HETEROCLINIC CYCLES 127 

Moreover, if the eigenvalues of the equilibria ex and e2 verify the relations, 

^ei _ 0^2 i Ot-ei &e2 , , and ^ 1 = ^ , (5.10) 

then $ is the identitv. 

5.1.6 Resonance in Field's example 

The resonance (5.10) appears in Field's example (described in section 3.1). 

Restricted to the invariant sphere, the equilibria in [a] have eigenvalues AQ, aa± i/3a 

with 

\ - 4A7 _ A(7+3/3) , o ._ A(37-,fl) 
/AQ ~~ /9+T-2' " a ~ Z3+7-2 d I 1 Q ^ a ~~ /3+7-2 ' 

and the equilibria in [b] have eigenvalues A(,, ab + i/3b with 

A, - 4 A 7 A», - A ^ + 3 / j ) a n d Hu - A ( 3 7 " ^ 

For the parameter values we are considering, 

A > 0 , 7 < 0 , 8>0, 7 + 3/?>0 and |/? + 7 | < 2 , (5.11) 

we have, 

Aa > 0, aa < 0, pa > 0, A6 < 0, a6 > 0 and 8b < 0. 

We identify the equilibria in [a] and in [b], respectively, with equilibria ex and e2 of 
the generic situation we have studied in the last sections. 

The eigenvalues of the equilibria in [a] and [b] are resonant since they verify the 
equalities in (5.10). Since we do not know the transition maps <peie2 and 0e2ei, one 
way around this problem is to perturb Field's example. We use as perturbation 
an equivariant polynomial of degree 5. Note that this is the next lowest degree for 
polynomials to be equivariant by the symmetry group T since it contains -Iv. Note 
also that we can conclude that the family of vector fields in Field's example is not 
3-determined. 
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Lemma 32 A basis for the space ofT-equivariant homogeneous polynomial maps from 
R4 to R4 of degree 5 is given by 

Pi(zi,z2) 
P2(Z1,Z2) 

Pz{zUZ2) 
Pi(zx,Z2) 

P5{Z1,Z2) 

Pe{zuz2) 
P7(Z1,Z2) 

Proof: The proof is a straightforward computation. D 

Notice that the family of perturbed vector fields will no longer be of the form 

x = Xx + Q(x), 

with Q(x) a homogeneous polynomial map with odd degree, so we can no longer apply 
the Invariant Sphere Theorem as it is stated in [14], [15]. 

However, in the case of normal hyperbolicity of the invariant sphere (see Hirsch, Pugh 
and Shub [26]), for small enough perturbations there still exists a globally attracting 
invariant sphere close to that of the unperturbed system. When X is a flow invariant 
normally hyperbolic manifold, theorem 4.1 in [26] guarantees that under perturbation 
there is a unique flow invariant manifold X£ near X, and XE is diffeomorphic to X. 
See also the equivariant version of this theorem in [36], proposition 1.1. 

Let V be a finite dimensional real vector space with inner product (.,.) and unit sphere 
S(V). 

Let P (V. V) be the space of homogeneous polynomial maps from V to V of degree 
d > l . 

Let Q G Pd{V, V). We define pQ : S{V) —> R by 

PQ{U) = (Q(u),u). 

For Q G P2p+1(V. V), we say that Q is contracting if 

pQ(u)<0, for all u € S(V). 

= ( N 2 + \z2\2){-z\-z2,z{zl), 
— (I-, |2 i | r | 2 U r 3 - 3 \ 
- {\Z\\ + \Z2\ ){z2,zl), i 4 — 4\ 
— \Z\Z2,ZiZ2), 

We have the following: 
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Conjecture 33 Let V be an n-dimensional vector space and Q2p+i : V —> V a 
homogeneous polynomial of degre 2p + 1, p > 1. Consider the vector field 

x'= \x + Q2p+l{x) + ELQL{x), (5.12) 

with QL homogeneous polynomials in V of degree L > 2p + 2. Let Q2p+i be contracting 
and M G R~ be the upper bound of PQ2P+1 in S(V). If 

for all c > 1, then for values of X > 0 near 0 there is a unique invariant sphere, 
5(A) C Vr\{0}, that is globally attracting in V\{0}. 

Note that (5.13) is naturally satisfied when the homogeneous polynomials QL are 
contracting. 

Although we were not able to prove the above conjecture extending the Invariant 
Sphere theorem, we confirmed numerically, for some parameter values, that the con­

jecture is valid. 

In the next lemma we state conditions for fifth degree T­equivariant polynomials, with 
T defined in section 3.1, to be contracting. 

Lemma 34 Let z = (21,22) and 

Q{z) = ^Li^Pz(z), 

where az € IR and the pl are as in lemma 32. Then Q is contracting if 

^ n A I I ^ I , I , W |«51 + 1̂ 61 + \0Ll\ 
cx\ < 0, and a J > a2 + ctz\ H + J—■ ■—! !—-. 

Proof: We follow the proof of lemma A.10 in [15]. 

We have 

{Q{z),z) = ax\\z\\%+ {a2 + ai)(z\-z2 + z\z2 + zlzl + zlzl) + 

+(yl^i | 2 + f \z2?){z\z2 + z\-z2) + (^|z2 |2 + ^ N 2 ) ^ + zxz\) 

+~
1
(t4 + 4z

2
2 + zin + ̂ 4)-
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Changing to polar coordinates, Z\ = rxéBl and z2 = r2el62, after some simplifications 
we obtain, 

(Q(z),z) = a1(r2
l+rlf + 

+2{a2 + a3)rir2{r2 cos{39l + 92) + r\ cos(91 - 392)) + 

+ {air\ + abrl)r\r2 cos(3#i + 92) + (a 4 r | + a57"i)rir2 cos(#i - 392) + 

+ {a6 + a7)r\rl{r\ cos(4^ - 2fl2) + r\ cos(20j + 402))-

So, 

l/~\l \ \ ^ I , 1 i l a 4 | I05I + lets i + \OLl\. , 9 o. o 
{Q{z),z) < ( a i + |a2 + a3 | + ^ + — — ^ — ) ( r ? + r2

2)\ 

D 

We consider a small perturbation of the family of vector fields in Field's example in the 
conditions of the above conjecture of extension of the Invariant Sphere Theorem. We 
must consider ax < 0 to verify the conditions in lemma 34 and at least one ax ± 0 for 
i = 2...., 7 to break the resonance relation between the eigenvalues of the equilibria. 
For ease of computations we choose a2 ^ 0 with |ai | > \a2\. As in [15], there is no 
loss of generality in assuming that ax = - 1 . We also assume a2 > 0 and thus we must 
have a2 < 1. 

Writing the equivariant perturbed system in real coordinates and renaming a2 as a, 
we have 

' i i = Azi - ||:c||2Xi + Í3{x\x2 - y\x2 - 2xly1y2) + ~f(x3
2 - 3x2y2) - ||x||4a;i + 

+a\\x\\2(xlx2 - y\x2 - 2x1y1y2) 
2/1 = Ai/i - \\x\\2

Vl + i3{-x2y2 + yjy2 - 2x1y1:r2) + 7(-y2
3 + 3x2y2) - ||x||4yi+ 

+a\\x\\2(-x2y2 + y\y2 - 2xxx2yY) 
x2 = Xx2-\\x\\2x2 + P(xix% -xiyl + 1yiX2y2) + l{x\ - Zxivl) - Ikl|4^2+ 

+a\\x\\2{xlx2
2 - xxy\ + 2y1x2y2) 

Ù2 = ^y2-\\x\\2y2 + P{y1x2-yly2-2x1x2y2)+~i(y3
1-3x2y1)-\\x\\4y2+ 

+a\\x\\2(y1x2,-y1y2-2xlx2y2) 
(5.14) 

Lemma 35 For the parameter values m (5.11) and (3 + 7 > 0 the dynamics of the 
perturbed system (5.14) in the restriction to the planes of symmetry is topologically 
equivalent to the nonperturbed dynamics, but without the resonance relation between 
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the eigenvalues, that is, we have 

t 1 and ^ 1. 
PaOib KOib 

Proof: In the restriction to the invariant plane S, equations (5.14) restrict to, 

±i = Axi - {x\ + x\)xx + Bx\x2 + jxl - {x\ + x2
2)2xx + a{x\ + x2

2)x\x2 

x2 = \x2 - (x\ + x\)x2 + $xxx\ + ~{x\ - {x\ + xj)2x2 + a(x2 + x2
2)xxx\ 

(5.15) 

On the axis A, we have the pair of equilibria ±a(X) - ±{xa, 0, xa, 0) , with 

x2 -(/? + 7 ~ 2) - y/(/3 + 7 - 2)2 - 8A(g - 2) 
4 ( a - 2 ) 

The eigenvalues of the linearization of (5.14) at ±a(X) are given by 

ra = -2A + 4 ( a - 2 ) x ^ , 

Aa = -4jx2
a, 

and 

aa ± i(3a = (-xl [6ax2
a + (7 + 33)}) ± 1 (-x2

a [(37 - /?) - 2 ^ ] ) . 

On the axis B. we have the pair of equilibria ±b(X) = ±{xb, 0, -xb, 0) , with 

xb 
2 __ -{3 + 7 + 2) + V(/3 + 7 + 2)2 + 8A(e* + 2) 

4(a + 2) 

The eigenvalues of the linearization of (5.14) at ±6(A) are given by 

rb = -2A - 4(a + 2)x}, 

A6 = 47x2
; 

and, 
afc ± z/3fc = ( -x 2 [-6œr2 - (7 + 3/3)]) ± t ( -x 2 [(37 - 0) - 2ax2]) . 

It is easy to verify that the eigenvalues of the perturbed equilibria maintain the same 
sign and are nonresonant. 

Following the proof of lemma A.11 in [15], we conclude that, for the parameter values 
we are working with, there are no other nonzero equilibria in the restriction to S. 
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In the restriction to the invariant plane P, equations (5.14) restrict to, 

2/i = Aî/i - {y\ + VDVY + By\y2 - 72/f ~ [vl + vlYvi + oc{y\ + y%)yjy2 
2/2 = Ay2- {y\ + yl)y2-8yiyl + iy\-{yl + yl)2y2-a{yl + yl)yiyl 

(5.16) 

We have that a nontrivial equilibrium of (5.16) satisfies 

mhl - l{y\ + yt) + 2a(yl + yl)y\y\ = 0. (5.17) 

Setting X = 2y\y\ > 0 and Y = y^ + y\ > 0, equation (5.17) transforms to 

3X - 7y'2 + 7 X + ftA'F = 0, 

that is, 

X = — - i ~ - . (5.18) 
0 + 7 + aY K J 

Since 7 < 0, a > 0 and j5 + 7 > 0, equation (5.18) has no solutions. D 

In the dynamics of system (5.14) we still observe numerical evidence of the existence 
of a Shilnikov heteroclinic network topologicals equivalent to that of the unperturbed 
system. 

This is what was expected since, as it is conjectured, the invariant manifolds with 
dimension > 2 of the invariant saddles in the Shilnikov heteroclinic network intersect 
transversely, and thus the network is structurallv stable. 
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5.2 Homoclinic connection to a periodic trajectory 

In this section we consider a generic flow on a three-dimensional manifold satisfying 
the following hypothesis: 

(A) There is a transverse homoclinic orbit to a hyperbolic periodic trajectory c. The 
term transverse meaning that the homoclinic orbit is given by 

Ws{c)fr\Wu{c). (5.19) 

We justify very shortly the existence of horseshoe dynamics in the neighbourhood 
of such homoclinic cycle. For a more detailed and technical explanation see [45], 
section 3.4. 

We consider a section S transverse to the vector field in a point p of the periodic 
trajectory c. Consider V C S à small neighbourhood of p where the vector field is 
linearizable and consider the associated Poincaré map i ' in V. 

We reduce the study of the local dynamics of the flow in the neighbourhood of the 
periodic trajectory c to the study of the local dynamics of the corresponding Poincaré 
map ^ in V near the fixed point p. 

Given the hypothesis of transverse intersection of the invariant manifolds of the pe­
riodic trajectory c, we have that the stable and unstable manifolds of the hyperbolic 
fixed point p of the Poincaré map # intersect transversely at a given point q in V. The 
point q is called a transverse homoclinic point. Due to the invariance of the stable and 
unstable manifolds of p by \&, the points in the ^-trajectory of q are also transverse 
homoclinic points. By the A-lemma ([38], §7), the stable and unstable manifolds of p 
accumulate on themselves. 

These are the fundamental aspects in the proof of the Smale-Birkhoff Homoclinic 
Theorem which guarantees the existence of a hyperbolic Cantor set invariant by the 
Poincaré map ^ and topologically conjugate to a subshift of finite type. 

Theorem 36 (The Smale-Birkhoff Homoclinic Theorem) ([20], theorem 5.3.5) 
Let f : Rn -» R" be a diffeomorphism such that p is a hyperbolic fixed point and there 
exists a point q -fi p of transverse intersection between Ws(p) and Wu(p). Then f has 
a hyperbolic invariant set A on which f is topologically conjugate to a subshift of finite 
type. 



Chapter 6 

Symbolic dynamics in Field's 
example 

Our numerical study (section 3.2) of Field's example sustains Field's conjecture on the 
existence of a Shilnikov heteroclinic network involving the equilibria in [a] U [b] and 
periodic trajectories in [c]. It allowed us to find evidence of the existence of heteroclinic 
connections from the equilibria in [b] to equilibria in [a] and to the periodic trajectories 
in [c], and from the periodic trajectories in [c] to the equilibria in [a] and to periodic 
trajectories in [c]. The invariant saddles in [a] U [b] U [c], the heteroclinic connections 
found analitically by Field [15] and the heteroclinic connections found numerically by 
us form a Shilnikov heteroclinic network E. 

In section 3.3 we studied the structuring properties of the network E. Those properties 
motivated our approach to the study of the local dynamics in the neighbourhood of 
E. In that section we defined the quotient heteroclinic network E / r and noted that it 
is the union of three quotient heteroclinic cycles, one connecting the two equivalence 
classes of equilibria, another connecting the equivalence classes of equilibria and the 
equivalence class of the periodic trajectories and one homoclinic to the equivalence 
class of the periodic trajectories. 

In chapter 4 we constructed two simple examples, each having a heteroclinic cycle 
topologically equivalent to a quotient heteroclinic cycle in E / r . 

In chapter 5 we studied the local dynamics in the neighbourhood of generic hetero­
clinic cycles involving two saddle-foci with their two-dimensional invariant manifolds 
intersecting transversely, and the local dynamics in the neighbourhood of a generic 
homoclinic cycle to a periodic trajectory. We concluded that, under certain conditions, 

134 
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there is horseshoe dynamics in the neighbourhood of those cycles and it can be 
modelled by the dynamics of a subshift in the space of sequences with elements in 
an alphabet with two symbols. We claim existence of horseshoe dynamics in the 
neighbourhood of generic heteroclinic cycles involving two saddle-foci and a periodic 
trajectory such that their two-dimensional invariant manifolds intersect transversely. 

This way, we can conclude that, under certain conditions, in the neighbourhood of the 
quotient heteroclinic cycles there is horseshoe dynamics and thus it can be modelled 
by the dynamics of a two-subshift. 

In the next section we characterize what we call the dynamics along the heteroclinic 
network. To simplify matters we see a trajectory close to the heteroclinic network 
qualitatively as a path along the network (section 3.3). A path along the network is 
characterized by the trail of the nodes in the network where it passes. The dynamics 
along the network is given by a characterization of the set of possible trails. We do 
this by defining a subshift dynamics on the space of sequences with elements in an 
alphabet with 25 symbols, where 25 is the number of invariant saddles in the network 
E. 

Finally, in section 6.2, we define symbolic dynamics that represents the chaotic dy­
namics in the neighbourhood of E. We characterize it by using the description of the 
dynamics in the neighbourhood of the quotient heteroclinic cycles and the codification 
of the dynamics along the heteroclinic network E. The final conclusion is that in the 
neighbourhood of the network E we have horseshoe of horseshoe dynamics. 

6.1 Symbolic dynamics along the heteroclinic net­
work 

In this section we define symbolic dynamics given by a subshift of finite type that 
codifies the dynamics along the heteroclinic network. Using this codification we 
conclude that the dynamics along the heteroclinic network is of horseshoe type. We 
introduce the concepts on subshifts of finite type as we need them; for a more detailed 
explanation on the subject see Kitchens [31], Wiggins ([45], section 2.2). Notice that 
we use a different notation for the spaces of two-sided sequences. 

We number the equilibria in [a] U [6] and the periodic trajectories in [c] in the following 
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way: 

a ­ > ■ 1 — a -> 6 b -> 11 -b -> 16 c -¥ 21 
sa -» 2 —sa — > 7 sb -4 12 -sb -> 17 sc - 4 22 
2 

sa — > 3 2 
— sa ­ > 8 s2b - » 13 -s2b -> 18 9 

S C - 4 23 
sza — > 4 -sza ­ 4 9 s3b - » 14 -s3b -> 19 S3C - 4 24 

4 

sa -» 5 4 
— sa —>• 10 s4b -> 15 -s4b ­ ) ■ 20 4 

S C - 4 25 

and define the alphabet LM = {a, sa, s2a,..., s4c}. 

With this alphabet we build the space of two­sided sequences X25 = Lfj, that contains 
points of the form, x = (...X-n...x^2^-i-Xox1X2...xn...), where each xx G LM,i G Z. 

We define a metric on X25 by 

Í d(x,y) = 0 if x = y, 
[ d(x, y) — l/2jV with N such that â  = yt for |i| < N and ZJV ^ yw or X-M ^ y_/v­

(6.1) 
The space X25 with the topology given by this metric is compact, totally disconnected, 
perfect and homeomorphic to the usual middle thirds Cantor set ([31]). 

The shift transformation a : X2$ ­4 X25 is defined by [a(x)]. = xl+1, that is, if 
x = {...x_n...x^2X-i.x0xiX2...xn...), then a(x) = (...X-n...X-2X-iX0.XiX2...xn...). 

The space X25 together with the map a is a dynamical system and is called the full 
shift on 25 symbols or the full 25-shift. 

The term "full" indicates that X25 contains all the sequences defined by the alphabet 
LM. We want to consider only those sequences where there exists a connection between 
two consecutive invariant saddles. 

To indicate the admissible sequences we define a 25 x 25 transition matrix, M, with 
rows and colums indexed by the elements of the alphabet. The entry in row i, column 
; is 1 if and only if there is a connection from invariant saddle i to invariant saddle j , 
otherwise it is zero. 

The matrix M has a block structure, and is defined as follows 

where 

-4! 
J 5 X O 

^5x5 II 5 x 5 
, -42 = 

0 Ai 0 
M = A2 0 A3 

.
A
* 0 A5 

45 -45 " 
45 -45 _ ,A3 = 15x5 

1­5x5 
,A4 = l 5 x 5 1­5x5 ,A5 = 1 5 x 5 
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where I5x5 denotes the identity matrix of order 5, and l 5 x 5 denotes the square matrix 
of order 5 with all entries equal to 1. This matrix M defines the subset XM C X25 of 
the allowed sequences, 

XM = {x : MXiXi+1 = 1 for alii € Z} , 

which is closed and invariant by the shift. 

The restriction of the shift transformation to XM defines a dynamical system called 
the two-sided shift of finite type defined by M. The symbolic dynamics of the shift 
transformation on the subset XM reproduces the dynamics along the heteroclinic 
network. The following theorem shows that, as X25, XM is homeomorphic to the usual 
middle thirds Cantor set. It guarantees the existence of dense periodic trajectories in 
the dynamics of the subshift defined by the matrix M and the existence of a point 
whose trajectory by the subshift is dense ([31]). 

Theorem 37 The space of the sequences defined by M is homeomorphic to the usual 
middle thirds Cantor set. 

Proof: The matrix M is irreducible since for I > 5, we have for all pair of indices i and 
j that (A/%- > 0. It is known that the space of sequences defined by an irreducible 
transition matrix is either a periodic trajectory or is homeomorphic to the usual middle 
thirds Cantor set [31]. 

In the case of the space sequences defined by M it is obvious that it is not a periodic 
trajectory since we can easily point out two different allowed sequences: (absasb) and 
(a - bs2as2b), where (w) denotes the sequence (...wwwwww...). We conclude that 
the space of the sequences defined by M is homeomorphic to the usual middle thirds 
Cantor set. □ 

We can measure the randomness of the dynamics of a subshift by computing its 
topological entropy. The topological entropy measures the rate of exponential growth 
of the number of allowed words, 

/i(X) =/zm^ooy log | W(X,Z) |, 

where W{X.l) = {[x0, ...,a;/_1] \x G A'} denotes the words in X of lenght / and | • | 
denotes the cardinality of the set. 
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By observation 1.4.2 of [31], we have that h(XM,o~) = log A, where A is the spectral 
radius of M. That is, 

A = max {||/i|| : /i is an eigenvalue for M} . 

For the matrix M, Maple provides the value A ~ 7.013293248, and we conclude that 
the subshift defined by M has topological entropy h(XM,cr) — log(7.013293248). 

Identifying the dynamics along the heteroclinic network S with the subshift defined 
by M the following corollary holds: 

Corollary 38 The dynamics along the heteroclinic network E 

(1) has dense periodic points, 

(2) has at least one point with dense trajectory, 

(3) is of horseshoe type. 

Proof: The dynamics along the heteroclinic network is described by the subshift of 
finite type defined by matrix M. Since the matrix M is irreducible we have proved in 
theorem 37 that the space of the sequences defined by M is topologically conjugate to 
the usual middle thirds Cantor set. Thus, the statements (1) and (2) are an immediate 
consequence of this conjugacy, since the dynamics on the Cantor set has dense periodic 
points and at least one point with dense trajectory. 

Statement (3) follows from the fact that the dynamics of the shift transformation is 
topologically conjugate to the dynamics of the Smale horseshoe; see [20], section 5.1 
and [45], section 2.1. D 

If we consider the alphabet LQ = {[a], [b], [c]}, numbering its elements by the given or­
der, the transition matrix that translates the dynamics along the quotient heteroclinic 
network is given by 

Q 
' 0 1 0 " 

1 0 1 
1 0 1 

Note that matrices M and Q have the same structure. The topological entropy of the 
subshift defined by Q is l o g ( ^ ) ~ log(l.618033989). 
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6.2 Symbolic dynamics in the neighbourhood of 
the network 

In this section we put together the information on the dynamics obtained in the 
previous section with the symbolic dynamics in chapter 5 to obtain the local dynamics 
in the neighbourhood of the heteroclinic network E. That is, we put together infor­
mation contained in sequences such as (... - sb.absa...), describing the dynamics along 
the heteroclinic network, with that contained in sequences of the type (...221.1221...), 
describing the dynamics on a Cantor set. 

Consider the invariant saddles [a], [b] and [c] in the quotient heteroclinic network E/r . 
Define neighbourhoods of these invariant saddles and Poincaré maps as in chapter 5. 
This is enough, by the study and claim in chapter 5, to assert the existence, under 
certain conditions, of horseshoe dynamics in the neigbourhood of each of the quotient 
heteroclinic cycles in the network E/T. 

Further, the symmetry allows us to use those neighbourhoods to define neighbourhoods 
of the invariant saddles in the heteroclinic network E. A neighbourhood of the whole 
heteroclinic network E can be obtained from the latter using the flow. Each closed 
path along a heteroclinic cycle in the network E, determines a Poincaré map with 
properties analogous to the Poincaré maps defined in chapter 5. 

Recall that each invariant saddle is part of more than one heteroclinic connection. 
There are several heteroclinic trajectories entering and leaving the neighbourhood 
of each invariant saddle, producing several Cantor sets in each neighbourhood. All 
Cantor sets in a given neighbourhood can be identified since they are topologically 
equivalent. They can be distinguished via the trails of the closed paths. 

Let e be an invariant saddle in [a]u[6]U[c]. Let Xe be the space of bi-infinite sequences 
of elements in the alphabet Le = { l e ,2 e }. The dynamics of the shift map in Xe is 
topologically equivalent to the dynamics on the Cantor set in the neighbourhood of 
the invariant saddle e. We define the symbolic dynamics in the neighbourhood of the 
network E using the shift dynamics (XM,<J) and (Xe,a), for each e in LM. 

Let x be a sequence in XM that defines the trail of a trajectory along the network E, 
and ye a sequence in Xe, for each e G LM. For example, x = (...s3bc.sa- sb- s2as2b...) 
and ya = (...la .lalalQ . . .), ..., ys'c = (...2S4C.1S4C1S4C2S4C...). 

Each closed trajectory in a sequence x, let us say (...2^...^...), corresponds to a closed 
path along the network that starts and ends at the same node a;». The closed path 
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determines one iteration of the Poincaré map defined in the neighbourhood of Xj, and 
this corresponds to a shift operation on a sequence yXi G XXi. 

In fact, each shift operation in x, with [cr(x)]i_1 = xu determines a shift operation in 
yx' € XXi. This is because every time a trajectory passes a node more than once, it 
determines another closed path starting and ending at that node. 

Let LR = UeeLMLe and XR be the space of the sequences with elements in the alphabet 
LR. Let XN C XR be the subset of the sequences in XR describing the dynamics in 
the neighbourhood of the heteroclinic network E. 

We define a multi-tape Turing machine that constructs the sequences in XN. Each 
sequence in XN is constructed using a sequence in XM and a sequence in Xe, for each 
e e LM- A sequence in A'yv looks like (...2s362c.lsa2_s(,l_iS2als26...). 

We could have defined the subshift (XN,a) codifying the dynamics in the neigh­
bourhood of the heteroclinic network E without defining a Turing machine. The 
Turing machine is just a tool that helps to explain how the symbolic dynamics in 
the neighbourhood of the network E is defined using the symbolic dynamics along the 
network E and the symbolic dynamics that codifies the dynamics in the neighbourhood 
of the heteroclinic cycles in the network. The use of the Turing machine can be useful 
in connecting our study to Complexity theory. 

A Turing machine is a simple mathematical model of a computer (that is as powerful as 
any other computer - Church's thesis). We give here a very brief description of a multi-
-tape Turing machine, for a more detailed explanation see (Hopcroft and Ullman [28], 
chapter 7) and (Homer and Selman [27], chapter 2). As the name indicates, a multi-
-tape Turing machine has more than one tape. A multi-tape Turing machine consists 
of a finite state control connected to the output and input tapes and a read-write head 
for each of them, see figure 6.1. The finite control consists of a set of states, a transition 
function ô and the tape heads. Each tape is divided into cells and the tape heads scan 
one cell of the tape at a time. The tapes are infinite in both directions and we refer 
to the two directions on the tapes as left and right. The tape heads can be moved one 
cell to the left or to the right or can remain in the same position. Before the Turing 
machine starts computing, an input string is placed on each input tape, one symbol 
in each cell, and the ouput tape is blank. The tape head of each tape is positioned 
on a distinguished cell on the tape called the start cell, and the finite control is in a 
distinguished state, i, called the initial state. The Turing machine computes via the 
transition function ô. On a single move, depending on the state of the finite control 
and the symbol scanned by each of the tape heads, the machine can do the following 
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operations: change state; print a new symbol on the cell scanned by the output tape 
head; and move each of its tape heads, independently, one cell to the left or right, or 
keep it stationary. 

Formally, we denote a multi-tape Turing machine, with k tapes, as 

T=(Q,A1,...,Ak,M1,...,Mk,A,5,i,F), 

where 

Q 

Mj 

A 
Ô 

eQ 

is the finite set of states, 
is the set of input symbols in tape j , j G {1,..., k} 

and is a subset of Mj not including A, 
is the finite set of allowable tape symbols in tape j , j € {1,..., k} 
is the blank, and is a symbol of Mj, j G {1,..., k} 
is the next move function, a map from 

Q x Mx x ... x Mk to Q x Ml x ... x Mk x {L,R,S}k, 
is the initial state, 

(6.2) 

F Ç Q is the set of final states. 

Let X2 be the space of bi-infinite sequences of elements in the alphabet L2 = {1,2}. 

We could define a multi-tape Turing machine T constructing XN by considering 27 
tapes. The first one would initially be blank and during the computation would be 
replaced by the output sequence, the second would contain a sequence x G XM and 
the others contain a sequence ye 6 X2, one for each invariant saddle s G LM. The 
Turing machine T would read an element x^ = e, s G LM, in the second tape, read 
an element y? = d, d G L2, in the tape containing the sequence ye corresponding to e 
and would write de in the output tape (first tape). 

Consider a full shift (X, a) on n-symbols and consider k sequences x1,...,xk in X. 
Define a new sequence x satisfying x% <E {x\,..., x\}. Since (X, a) is a full shift, it is 
immediate that x € X. 

Considering the above observation, instead of defining a Turing machine with 27 tapes 
we define it with only 3 tapes. The first tape is initially blank and will contain the 
output sequence, the second tape contains a sequence x G XM, and the third tape 
contains a sequence y G X2. Assume, for example, x = (...sa s3b c sa . - sb -
s2a s2b a b...) and y = (...1112.12122...). 

Since the sequences are bi-infinite, the Turing machine that we define inspects alter­
nately one cell at the right and one cell at the left of the tapes. 
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Each state contains information regarding the number of the next cell of the tapes to 
be inspected and the number of cells the tape heads must move to the left or to the 
right until they reach that cell. 

If the tape heads are not positioned at the cell to be inspected, they move to the left 
or to the right accordingly to the information in the state. When the tape heads are 
positioned at the cell to be inspected, the Turing machine T reads the element Xi = e, 
e G LM in the second tape and the element y% = d, d € L2 in the third tape, writes de in 
the output tape, advances the tapes one element to the left or to the right, adjusts the 
state information, and continues with the same procedure. For the example sequences 
given, the output sequence in the first tape is (...lsaWc2sa.l_a62_s20ls262a26...). See 
figure 6.1. 

',: 7 "sa •la 2A h ~> 
a 

Finue 
Control 

sa A C sa .-sb i -sn s2b a b 

1 i I 2 .1 2 1 2 2 

Figure 6.1: The Turing machine T that takes a sequence in XM, a sequence in X2 and 
outputs a sequence in X^. 

The set of possible output sequences is the set of bi-infinite sequences with elements 
in LR, such that, de and lk are two consecutive elements in a sequence if and only if 
there is a connection in the heteroclinic network E from saddle e to saddle k. 

The Turing machine T that constructs the sequences in XN is formally defined as 

T=(Q,A1,A2,A3,Ml,M2,M3,A,6J,F), 

where 

Q = { (p , i , r )} ,pEZ ) i 1 r6 4 i = (0,0,0) 6 Q, F 
M = {}• A2 = LM, A3 

MY = L H U { A } , M2 = L M u{A} , M3 

= {}, 
= L2, (6.3) 
= L2U{A}. 
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For each state (p, I, r) 6 Q, the variable p contains the number of the next cell to 
be inspected and the variables / and r give the number of cells the tape heads should 
move, respectively, to the left or to the right to reach the cell p. The transition function 
is defined as 

Q x Mi x M2 x M3 ->Q x Mx x M2 x M3 x {L,R,5}3, (6.4) 

with 
5{(0,0,0),[,e,d}) = 

<5((n,0, k),[w, e,d]) = 
5((n,0,0),[ ,e,d]) = 

6{(-n,k,0),[w,e,d]) = 

6{{-n,0,0),[,e,d}) = 

n € A/", e € LM, d € L2, and de <E L#. 

{l,0,0),[de,e,d],[R,R,R}), 
[n,0,k-l),[w,e,d],[R,R,R]), 
-n,2n-1,0),[de,e,d},[L,L,L]), 
-n,k- l,0),[w,e,d],[L,L,L]), 

[n + 1,0,2n),[de, e,d],[R, R, R}), 

(6.5) 

Notice that the set of final states is empty since the sequences are infinite. However, at 
any time we can stop the computation of the Turing machine and inspect the contents 
of the output tape. 

We construct the space XN of the sequences that define the symbolic dynamics that 
characterizes the local dynamics in the neighbourhood of the heteroclinic network £ 
using the map 

XM x X2 —> XN 

(x,y) H­> z = T{x,y) 
which given two sequences in XM and X2 produces a sequence in XN that is the output 
sequence of the defined Turing machine 7'. 

We order the elements in the alphabet LR as follows, 

l a -> 1 l­« - » 11 1ft — > • 21 1-6 — > • 31 lc ­ » 41 

2a -> 2 2­a -> 12 2fe ­ > 22 2-6 -» 32 2c ­ 4 42 

i-sa -> 3 *- — sa -> 13 1«6 ­ 4 23 1­sò -» 33 *-sc ­ » 43 
^sa — > ■ 4 2 

*—sa 
— > ■ 14 2S6 -> 24 2­s6 -> 34 o ­ 4 44 

1 2 —> 5 l ­s 2 a -» 15 l s 2 6 -» 25 l­«26 -> 35 1 2 -» 45 
9 2 
— s-a 

— > 6 s2a —► 16 2S26 -» 26 2 ­ S 2 ò ­> 36 2 2 ­>• 46 
1 3 
*-sóa 

-> 7 1 3 
± — s-sa 

-» 17 1S
3
6 - » 27 l ­ s 3 6 ­ 4 37 1 3 ­ 4 47 

2 3 — > 8 2 ­ s 3 a -> 18 2 s3i, ­ 4 28 2­S3(, — > ■ 38 2 S 3 C -> 48 

l^o — > ■ 9 l ­ s 4 a -» 19 l s 4 6 ­ 4 29 l ­ s 4 6 —» 39 l s 4 c — > 49 

2 s ­ i a -> 10 2­S<a -> 20 2 S 4 6 -> 30 2 ­ S 4 6 -> 40 2S4C -> 50 

The transition matrix N that defines the subshift of finite type codifying the dynamics 
in the neighbourhood of the heteroclinic network has the same block structure as the 
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matrix M that defines the subshift of finite type that codifies the dynamics along the 
heteroclinic network. 

We have, 

N = 

where 

A, = P P 
P P 

,P = 

0 Ax 0 
A2 0 A z 3 

-44 0 A5 _ 

1-2x2 0 0 0 0 
0 1-2x2 0 0 0 
0 0 12x2 0 0 
0 0 0 1-2x2 0 
0 0 ( 3 0 1-2x2 

A2 = 
Ab A5 

A--, As ,A3 = 110x10 

1-10x10 
,AA = -10x10 -1-10x10 .An -10x10 -P. 

The space of sequences defined by matrix N is homeomorphic to the usual middle 
thirds Cantor set, similarly to what happens with the subshift defined by the matrix 
M. 

The topological entropy of the subshift defined by h(XN,a) ~ log(14.02658650) (de­
termined numerically with Maple). 

Identifying the local dynamics in the neighbourhood of the heteroclinic network E 
with the shift dynamics defined by matrix N we conclude that, it 

• has dense periodic trajectories, 

• has at least one point with dense trajectory, 

• has topological entropy ~ log(14.02658650), and 

• is of horseshoe type. 

As expected, the topological entropy of the dynamics in the neighbourhood of the 
heteroclinic network is greater than the topological entropy of the dynamics along the 
heteroclinic network. 

Assembling the information obtained, we have that, under certain conditions, 
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Proposition 39 (1) There are dense periodic trajectories in the neighbourhood of 
the network E and dense periodic trajectories in the neigbourhood of the hetero-
clmic cycles in E. 

(2) There is at least one point with dense trajectory in the neighbourhood of the 
network E and at least one point with dense trajectory in the neighbourhood of 
each heteroclinic cycle in E. 

(3) the dynamics in the neighbourhood of each heteroclinic cycle in E is horseshoe 
dynamics, and the dynamics in the neighbourhood of the network E is a horseshoe 
of horseshoe dynamics. 



Chapter 7 

Future work 

Finally, we point out some aspects related to the work in this thesis that we find 
interesting for future research. 

We would like to study the local behaviour in the neighbourhood of a generic het-
eroclinic cycle topologically equivalent to that of the example that we construct in 
section 4.2 involving two saddle-foci and a periodic trajectory. 

As we have mentioned, it seems that we can find conditions for horseshoe dynamics 
in the neighbourhood of such heteroclinic cycle using similar techniques and compu­
tations as in section 5.1 with some added difficulties. 

Moreover, it would be interesting to inspect, for the examples we constructed, if there is 
other kind of complicated behaviour, such as mixing properties. Consider, for example, 
the system constructed in section 4.1, where in the unperturbed system we have a two-
-dimensional heteroclinic connection that is a two-sphere on the invariant three-sphere, 
and then we perturb the rotational symmetry to get the transverse intersection of the 
two-dimensional invariant manifolds. 

As conjectured by M. Field [17], there can be the creation of shaped regions where 
orbits can escape from the 'inside' of the two-sphere. This is what we observe in the 
time series 4.8 in section 4.1.3.1. What are the asymptotics of these regions? To what 
extent can they create mixing between the 'inside' and the 'outside' of the original 
two-sphere? 

M. Field's guess is that the regions become streched out and spiral around the one-
-dimensional unperturbed connection (that would allow for reentry). What is the 
asymptotic probability of a point in one of these regions to reenter the 'inside' of the 
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two-sphere the next time round? After n-times? Does the series sum to a number 
strictly less than one? 

We think that the symmetry breaking perturbations of the unperturbed examples in 
sections 4.1.1.2 and 4.2.1.2 deserve further study. 

We have proved that, under certain conditions, the dynamics in the neighbourhood 
of the Shilnikov heteroclinic network £ of Field's example is a horseshoe of horseshoe 
dynamics. This implies chaotic dynamics, but does not imply the existence of a chaotic 
attractor. Nevertheless, numerical integration with Dstool appears to yield trajectories 
asymptotic to chaotic motion, as in figure 3.3. The question remains: is the Field's 
example a chaotic attractor? 

Another interesting question is whether the chaotic behaviour in Field's example 
persists for small symmetry breaking perturbations, and how it bifurcates. Numerical 
computations with Dstool revealed the persistence of the chaotic behaviour for small 
linear perturbations. Increasing the value of the perturbation factor we observed the 
flow jumping alternately between two regions and staying in each region for a while. 
Further increasing the perturbing value the two regions seem to bifurcate to four 
attracting periodic trajectories. A detailed investigation is worth while. 

It is interesting to notice that the topological entropy of the symbolic dynamics in 
the neighbourhood of the heteroclinic network E equals the sum of the topological 
entropy of the symbolic dynamics along the network and of the topological entropy of 
the symbolic dynamics in the neighbourhood of the heteroclinic cycles in E. This is 
valid for heteroclinic networks where the symbolic dynamics that codifies the dynamics 
in the neighbourhood of the heteroclinic cycles are topologically conjugate. 

This raises an interesting question: In general, given a heteroclinic network with some 
structure, is it possible to establish a relation between the entropy in the neighbour­
hood of the heteroclinic network with the entropy along the heteroclinic network and 
the entropy in the neighbourhood of parts of the network? 

The use of symbolic dynamics and of a Turing machine that generates the space of 
allowed sequences connects to the part of complexity theory supported by concepts 
from probability and information theory. We would like to explore this connection 
(see Badii and Politi [5]). 

We would like to prove the conjecture 33 in section 5.1.6 of the extension of the 
Invariant sphere theorem [15]. 



Appendix A 

Dstool programming and results 

A.l Dstool program 

The basic Dstool specification of a dynamical system (vector field or mapping) com­
prizes essentially the definition of the set of governing equations for the dynamical 
system and the definition of the initial settings of the variables and parameters. 
Additionally procedures can be written to define derivatives or auxiliary scalar-valued 
functions. 

We give a brief explanation of how the Dstool program that we defined to study Field's 
example works. At the end of the section we present a complete printing of the Dstool 
program. 

The routine f i e ld ( ) is called in each iteration; it reads the current state variables in 
array x and the current parameters in array p, and places the new state in the array 
f. The routine f i e ldO calls the routine field_aux(). 

The routine f ield_aux() is the routine that we define to control whether a trajectory 
is near an equilibrium or periodic trajectory. The array equ i l íb r io contains the 
coordinates of the equilibria, and the array nomes contains the identification of those 
equilibria. 

For each coordinate of the actual position in phase space, the routine field_aux() 
first computes its distance to the coordinates of an equilibrium. Then it compares 
each of those values with the pre-defined distance in variable d i s t . This is repeated 
for each point in the array of equilibria. 
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The pre-defined distance is considered as a parameter and so its value can be changed 
during the Dstool execution. 

If the distance computed in each coordinate is less than the fixed distance, this means 
that the trajectory passes near the equilibrium that is being analised. In this case it 
prints the identification of the equilibrium and the distance in each coordinate. 

This same procedure is then executed for each of the points in the array ciclo 
that correspond to points of the periodic trajectories. We study the proximity of a 
trajectory to a periodic trajectory by its proximity to some points of the periodic 
trajectory. The values e l l , . . . ,082 defined in the begining of the routine were 
numerically computed using Dstool and represent coordinates in the (j/1,y2)-plane 
of 8 points that belong to the periodic trajectory c. The points of the remaining 
periodic trajectories are computed using the group action. 

The definition is completed with the information in routine f i e ld_ in i t ( ) about 
the structure of the phase space, the names of the variables, initial values and the 
maximum and minimum values. This routine also provides information on parameters, 
auxiliary functions and numerical algorithms. 

In what concerns interpretation of data in the sequences, we emphasize two facts. 

One is that the network in the Field's example is not asymptotically stable, so there are 
some parts of the sequences that we have ignored because we think that the trajectory 
did not come sufficiently close to the equilibrium or periodic trajectory so as to draw 
any conclusion. The other important aspect is the value that we consider to be the 
radius of the neighbourhoods. 

/» 

This program is the property of: 

Cornell University 
Center for Applied Mathematics 

Ithaca, NY 14853 

and may be used, modified and distributed freely, subject to the 
following restrictions: 

Any product which incorporates source code from the dstool 
program or utilities, in whole or in part, is distributed 
with a copy of that source code, including this notice. You 
must give the recipients all the rights that you have with 
respect to the use of this software. Modifications of the 
software must carry prominent notices stating who changed 
the files and the date of any change. 
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DsTool is distributed in the hope that it will be useful, but 
WITHOUT ANY WARRANTY; without even the implied warranty of FITNESS 
FOR A PARTICULAR PURPOSE. The software is provided as is without 
any obligation on the part of Cornell faculty, staff or students to 
assist in its use, correction, modification or enhancement. 

„/ 
tinclude <model_headers.h> 

/♦ 
Required function used to define the vector field or map. 
The values of the vector field mapping at point x with parameter 
values p are returned in the pre-allocated array f. For vector fields, 
the last components of both f and x are time components. All arrays are 
indexed starting from 0. 

,/ 
int field(f,x,p) 
double *f,*x,»p; 
{ 

double l = p [ 0 ] , b = p [ l ] , g=p[2] ; 

f i e l d _ a u x ( f , x , p ) ; 

f [0]=l*x[0]­ (x[0]*x[0]+x[ l ]*x[ l ]+x[2]*x[2]+x[3]*x[3])*x[0] + 

+b* (x [0] *x [0] *x [2]­x [1] *x [1] *x [2]­2*x [0] *x [1] *x [3] ) + 

+g* (x [2] *x [2] *x [2] ­3*x[2] *x [3] *x [3] ) ; 

f [1] =l*x [1] ­ (x [0] *x [0] +x [1] *x [1] +x [2] *x [2] +x [3] *x [3] ) *x [1] + 

+b* (­x [0] *x [0] *x[3] +x [1] *x [1] *x [3] ­2*x [0] *x [1] *x [2] ) + 

+g* (­x [3] *x [3] *x[3] +3*x [2] *x [2] *x [3] ) ; 

f [2] =l*x [2] ­ (x [0] *x [0] +x [1] *x [1] +x [2] *x [2] +x [3] *x [3] ) *x [2] + 

+b* (x [0] *x [2] *x [2] ­x [0] *x [3] *x [3] +2*x [1] *x [2] *x [3] ) + 

+g* (x [0] *x [0] *x [0] ­3*x[0] *x [1] *x [1] ) ; 

f [3] =l*x [3] ­ (x [0] *x [0] +x [1] *x[1] +x [2] *x [2] +x [3] *x [3] ) *x [3] + 

+b* (x [1] *x [2] *x [2] ­x [1] *x [3] *x [3] ­2*x [0] *x [2] *x [3] ) + 

+g* (x [1] *x [1] *x [1] ­3*x [0] *x [0] *x [1] ) ; 

} 

/ ♦ 

Optional function used to define the Jacobian m at point x with 
parameters p. The matrix m is pre-allocated (by the routine dmatrix); 
At exit, m[i][j] is to be the partial derivative of the i'th component 
of f with respect to the j'th component of x.  

t/ 

/* 

int user_jac(m,x,p) 
double **m, *x, *p; 
{ 
} 
*/ 

/* 
Optional function used to define the inverse or approximate inverse y at 
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the point x with parameter values p. The array y is pre-allocated. 

/* 
int user_inv(y,x,p) 
double *y,*x,*p; 
{ 
} 
*/ 

*/ 

/* 
Optional function used to define aux functions f of the varbiables x 
and parameters p. The array f is pre-allocated. Time is available as the 
last component of x. 

*/ 
/* 

ROUTINE field.aux STARTS HERE 

*/ 
int field_aux(f,x,p) 
double *f,*x,*p; 
{ 

int flag=0; 
int viz=0; 
int i=0; 
double dis t=p[3] ; 

double d[4]= { 0 , 0 , 0 , 0 } ; 

double s i n ( ) , c o s ( ) ; 

double r o o t a = s q r t ( ( - p [ 0 ] ) / ( p [ 1 ] + p [ 2 ] - 2 ) ) ; 
double roo tb=sq r t ( (p [0 ] ) / (p [1 ]+p[2 ]+2) ) ; 

double 
double 

cll=l.0228068; 
c!2=-0.0067817186; 

double 
double 

c21=-l.0123465; 
c22=0.083224282; 

double 
double 

c31=0.021242525; 
c32=l.0214375; 

double 
double 

c41=-0.097350043; 
c42=-l.0095621; 

double 
double 

c51=0.35436298; 
c52=-0.94794071; 

double 
double 

c61=-0.08908218; 
c62=0.96830921; 

double 
double 

c71=0.3958211; 
c72=0.89402183; 

double 
double 

c81=-0.90502673; 
c82=-0.49743481; 

char* nomes[21]={"zero" 
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" a " , " s a " , " s 2 a " , " s 3 a " , " s 4 a " , " - a " , " - s a " , " - s 2 a " , " - s 3 a " , " - s 4 a " , 
" b " , " s b " , " s 2 b " , " s 3 b " , " s 4 b " , " - b " , " - s b " , " - s 2 b " , " - s 3 b " , H - s 4 b " , 
}; 

char* nomec i c lo s [41 ]={"ze ro" , " c " , " s c " , " s 2c " , " s 3c " , " s 4c " , " c " , " s c " , " s 2c " , " s 3c " , " s 4c " , 
" c " , " s c " , " s 2 c " , " s 3 c " , " s 4 c " , " c " , " s c " , " s 2 c " , " s 3 c " , " s 4 c " , 
" e " , " s c " , " s 2 c " , " s 3 c " , " s 4 c " , " c " , " s c " , " s 2 c " , " s 3 c " , " s 4 c " , 
"c" , " s c " , " s 2 c " , " s 3 c " , " s 4 c " , " c " , " s c " , " s 2 c " , " s 3 c " , " s 4 c " } ; 

double equilíbrio[21][4]= { 
{0,0,0,0}, 
{roota,0,roota,0} 
{roota*cos(2*PI/5),roota*sin(2*PI/5),roota*cos(4*PI/5),roota*sin(4*PI/5)}, 
-Croota*cos(4*PI/5),roota*sin(4*PI/5),roota*cos(-2*PI/5),roota*sin(-2*PI/5)}, 
{roota*cos(-4*PI/5),roota*sin(-4*PI/5),roota*cos(2*PI/5),roota*sin(2*PI/5)}, 
{roota*cos(-2*PI/5),roota*sin(-2*PI/5),roota*cos(-4*PI/5),roota*sin(-4*PI/5)}, 
{-roota,0,-roota,0}, 
{-roota*cos(2*PI/5),-roota*sin(2*PI/5),-roota*cos(4*PI/5),-roota*sin(4*PI/5)}, 
{-roota*cos(4*PI/5),-roota*sin(4*PI/5),-roota*cos(-2*PI/5),-roota*sin(-2*PI/5)}, 
{-roota*cos(-4*PI/5),-roota*sin(-4*PI/5),-roota*cos(2*PI/5),-roota*sin(2*PI/5)}, 
{-roota*cos(-2*PI/5),-roota*sin(-2*PI/5),-roota*cos(-4*PI/5),-roota*sin(-4*PI/5)}, 
{rootb,0,-rootb,0}, 
{rootb*cos(2*PI/5),rootb*sin(2*PI/5),rootb*cos(9*PI/5),rootb*sin(9*PI/5)}, 
{rootb*cos(4*PI/5),rootb*sin(4*PI/5),rootb*cos(3*PI/5),rootb*sin(3*PI/5)}, 
{rootb*cos(-4*PI/5),rootb*sin(-4*PI/5),rootb*cos(7*PI/5),rootb*sin(7*PI/5)}, 
{rootb*cos(-2*PI/5),rootb*sin(-2*PI/5),rootb*cos(PI/5),rootb*sin(PI/5)}, 
{-rootb,0,rootb,0}, 
{-rootb*cos(2*PI/5),-rootb*sin(2*PI/5),-rootb*cos(9*PI/5),-rootb*sin(9*PI/5)}, 
{-rootb*cos(4*PI/5),-rootb*sin(4*PI/5),-rootb*cos(3*PI/5),-rootb*sin(3*PI/5)}, 
{-rootb*cos(-4*PI/5),-rootb*sin(-4*PI/5),-rootb*cos(7*PI/5),-rootb*sin(7*PI/5)}, 
{-rootb*cos(-2*PI/5),-rootb*sin(-2*PI/5),-rootb*cos(PI/5),-rootb*sin(PI/5)}, 

}; 

double ciclo[41][4]= { 
{0,0,0,0}, 
{0,cll,0,cl2}, 
{cll*cos(2*PI/5+PI/2),cll*sin(2*PI/5+PI/2),cl2*cos(4*PI/5-PI/2),cl2*sin(4*PI/5-PI/2)}, 
{cll*cos(4*PI/5+PI/2),cll*sin(4*PI/5+PI/2),cl2*cos(-2*PI/5-PI/2),cl2*sin(-2*PI/5-PI/2)}, 
{cll*cos(-4*PI/5+PI/2),cll*sin(-4*PI/5+PI/2),cl2*cos(2*PI/5-PI/2),cl2*sin(2*PI/5-PI/2)}, 
{cll*cos(-2*PI/5+PI/2),cll*sin(-2*PI/5+PI/2),cl2*cos(-4*PI/5-PI/2),cl2*sin(-4*PI/5-PI/2)}, 
{0,c21,0,c22}, 
{c21*cos(2*PI/5-PI/2),c21*sin(2*PI/5-PI/2),c22*cos(4*PI/5+PI/2),c22*sin(4*PI/5+PI/2)}, 
{c21*cos(4*PI/5-PI/2),c21*sin(4*PI/5-PI/2),c22*cos(-2*PI/5+PI/2),c22*sin(-2*PI/5+PI/2)}, 
{c21*cos(-4*PI/5-PI/2),c21*sin(-4*PI/5-PI/2),c22*cos(2*PI/5+PI/2),c22*sin(2*PI/5+PI/2)}, 
{c21*cos(-2*PI/5-PI/2),c21*sin(-2*PI/5-PI/2),c22*cos(-4*PI/5+PI/2),c22*sin(-4*PI/5+PI/2)}, 
{0,c31,0,c32}, 
{c31*cos(2*PI/5+PI/2),c31*sin(2*PI/5+PI/2),c32*cos(4*PI/5+PI/2),c32*siu(4*PI/5+PI/2)}, 
{c31*cos(4*PI/5+PI/2),c31*sin(4*PI/5+PI/2),c32*cos(-2*PI/5+PI/2),c32*sin(-2*PI/5+PI/2)}, 
{c31*cos(-4*PI/5+PI/2),c31*sin(-4*PI/5+PI/2),c32*cos(2*PI/5+PI/2),c32*sin(2*PI/5+PI/2)}, 
{c31*cos(-2*PI/5+PI/2),c31*sin(-2*PI/5+PI/2),c32*cos(-4*PI/5+PI/2),c32*sin(-4*PI/5+PI/2)}, 
{0,c41,0,c42}, 
{c41*cos(2*PI/5-PI/2),c41*sin(2*PI/5-PI/2),c42*cos(4*PI/5-PI/2),c42*sin(4*PI/5-PI/2)}, 
{c41*cos(4*PI/5-PI/2),c41*sin(4*PI/5-PI/2),c42»cos(-2*PI/5-PI/2),c42*sin(-2*PI/5-PI/2)}, 
{c41«cos(-4*PI/5-PI/2),c41*sin(-4*PI/5-PI/2),c42*cos(2*PI/5-PI/2),c42*sin(2*PI/5-PI/2)}, 
{c41*cos(-2*PI/5-PI/2),c41*sin(-2*PI/5-PI/2),c42*cos(-4*PI/5-PI/2),c42*sin(-4*PI/5-PI/2)}, 
{0,c51,0,c52}, 
{c51*cos(2*PI/5+PI/2),c51*sin(2*PI/5+PI/2),c52*cos(4*PI/5-PI/2),c52*sin(4*PI/5-PI/2)}, 
{c51*cos(4*PI/5+PI/2),c51*sin(4*PI/5+PI/2),c52*cos(-2*PI/5-PI/2),c52*sin(-2*PI/5-PI/2)}, 
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•Cc51*cos(-4*PI/5+PI/2),c51*sin(-4*PI/5+PI/2),c52*cos(2*PI/5-PI/2),c52*sin(2*PI/5-PI/2)}, 
{c51*cos(-2*PI/5+PI/2),c51*sin(-2*PI/5+PI/2),c52*cos(-4*PI/5-PI/2),c52*sin(-4*PI/5-PI/2)}, 
{0,c61,0,c62}, 
{c61*cos(2*PI/5-PI/2),c61*sin(2*PI/5-PI/2),c62*cos(4*PI/5+PI/2),c62*sin(4*PI/5+PI/2)}, 
{c61*cos(4*PI/5-PI/2),c61*sin(4*PI/5-PI/2),c62*cos(-2*PI/5+PI/2),c62*sin(-2*PI/5+PI/2)}, 
•Cc61*cos(-4*PI/5-PI/2),c61*sin(-4*PI/5-PI/2),c62*cos(2*PI/5+PI/2),c62*sin(2*PI/5+PI/2)}, 
{c61*cos(-2*PI/5-PI/2),c61*sin(-2*PI/5-PI/2),c62*cos(-4*PI/5+PI/2),c62*sin(-4*PI/5+PI/2)}( 
{0,c71,0,c72}, 
{c71*cos(2*PI/5+PI/2),c71*sin(2*PI/5+PI/2),c72*cos(4*PI/5+PI/2),c72*sin(4*PI/5+PI/2)}, 
{c71*cos(4*PI/5+PI/2) ,c71*sin(4*PI/5+PI/2),c72*cos(-2*PI/5+PI/2),c72*sin(-2*PI/5+PI/2)}, 
{c71*cos(-4*PI/5+PI/2),c71*sin(-4*PI/5+PI/2),c72*cos(2*PI/5+PI/2),c72*sin(2*PI/5+PI/2)}, 
{c71*cos(-2*PI/5+PI/2),c71*sin(-2*PI/5+PI/2),c72*cos(-4*PI/5+PI/2),c72*sin(-4*PI/5+PI/2)}, 
{0,c81,0,c82}, 
{c81*cos(2*PI/5-PI/2),c81*sin(2*PI/5-PI/2)>c82*cos(4*PI/5-PI/2),c82*sin(4*PI/5-PI/2)}> 
{c81*cos(4*PI/5-PI/2),c81*sin(4*PI/5-PI/2),c82*cos(-2*PI/5-PI/2),c82*sin(-2*PI/5-PI/2)}, 
{c81*cos(-4*PI/5-PI/2),c81*sin(-4*PI/5-PI/2),c82*cos(2*PI/5-PI/2),c82*sin(2*PI/5-PI/2)}, 
{c81*cos(-2*PI/5-PI/2),c81*sin(-2*PI/5-PI/2),c82*cos(-4*PI/5-PI/2),c82*sin(-4*PI/5-PI/2)}, 

}; 

/ * while ( viz < 21 44 f lag == 0) * / 

while ( viz < 21) 

{ 

for ( i=0; i<4; i++) 

{ 

d [ i ] = x [ i ] - e q u i l i b r i o [ v i z ] [ i ] ; 

if (d [ i ] < 0) d [ i ] = - d [ i ] ; 

} 

if (d[0] < d i s t 44 d [ l ] < d i s t 44 d[2] < d i s t 44 d[3] < d i s t ) 

{ 

f l ag=l ; 

p r i n t f ( " equ i l i b r i um '/.s d is tance C/.f ,'/,f ,'/.f ,'/.f ) \n" ,nomes [viz] ,d[0] , d [ l ] ,d[2] ,d[3] ) ; 

} 

viz=viz+l ; 

} 

viz=0; 

/ * while ( viz < 41 44 f lag == 0) * / 

while ( viz < 41) 

{ 

for ( i=0; i<4; i++) 

{ 

d [ i ] = x [ i ] - c i c l o [ v i z ] [ i ] ; 

if ( d [ i ] < 0) d [ i ] = - d [ i ] ; 

} 

if (d[0] < d i s t 44 d [ l ] < d i s t 44 d[2] < d i s t 44 d[3] < d i s t ) 

< 
f l ag= l ; 

p r in t f ("per iodic t r a j e c t o r y 7,s d is tance C/.f ,7.f ,'/,f ,'/,f ) point '/,i \ n " , 

nomeciclos[viz] ,d[0] , d [ l ] ,d[2] ,d[3] ,v iz ) ; 

} 

v iz=viz+l ; 

} 

> 

/* 



APPENDIX A. DSTOOL PROGRAMMING AND RESULTS 

ROUTINE field.aux ENDS HERE 

*/ 
/* 

Required procedure to define default data for the dynamical system. NOTE: You 
may change the entries for each variable but PLEASE DO NOT change the list of 
items. If a variable is unused, NULL or zero the entry, as appropriate. 

,/ 
int field_init() 
{ 
/* define the dynamical system in this segment */ 

int n.varb=4; /* dim of phase space */ 
static char «variable.names[]={"xl","yl","x2","y2"}; /* list of phase varb names */ 
static double variables[]={0.790,0.000001,0.790,-0.00001}; /* default varb initial values */ 
static double variable_min[]={-3.,-3.,-3.,-3.}; /* default varb min for display */ 
static double variable_max[]={3.,3.,3.,3.}; /* default varb max for display */ 

static char 
double 
double 

*indep_varb_name="time" 
indep_varb_min=0.; 
indep_varb_max=10000.; 

/* name of indep variable */ 
/* default indep varb min for display */ 
/* default indep varb max for display */ 

int n_param=4; /* dim of parameter space */ 
static char *parameter_names[]={"lambda","beta","gamma",''distancia''}; /* list of param names 
static double parameters[]={1.,1,-0.6,0.15}; /* initial parameter values */ 
static double parameter_min[]={l.,-1.,-1.,-1.}; /* default param min for display */ 
static double parameter_max[]={l.,1.,1.,1.}; /* default param max for display */ 

int n_funct=l; /* number of user-defined functions */ 
static char *funct_names[]={"sequence"}; /* list of funct names; {""} if none */ 
static double funct_min[]={0.}; /* default funct min for display */ 
static double funct_max[]={1000}; /* default funct max for display */ 

int manifold.type=EUCLIDEAN; /* PERIODIC (a periodic varb) or EUCLIDEAN */ 
static int periodic.varb[]={FALSE, FALSE,FALSE,FALSE}; /* if PERIODIC, which varbs are periodi 
static double period.start[]={0.,0.}; /* if PERIODIC, begin fundamental domain */ 
static double period_end[]={l., 1.}; /* if PERIODIC, end of fundamental domain */ 

int 
int 

mapping.toggle=FALSE; 
inverse_toggle=FALSE; 

/* this is a map? TRUE or FALSE */ 
/* if so, is inverse FALSE, APPR0X.INV, */ 
/* or EXPLICIT.INV? FALSE for vec field */ 

/* In this section, input NULL or the name of the function which contains... */ 
int (*def.name)()=field; /* the eqns of motion */ 
int (*jac_name)()=NULL; /* the jacobian (deriv w.r.t. space) */ 
int (*aux_func_name)()=NULL; /* the auxiliary functions */ 
int (*inv.name)()=NULL; /* the inverse or approx inverse */ 
int (*dfdt_name)()=NULL; /* the deriv w.r.t time */ 
int (*dfdparam_name)()=NULL; /* the derivs w.r.t. parameters */ 

I*  
#include <ds_define.c> 
} 

end of dynamical system definition */ 
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