ANA MARIA MELO VENTURA REIS LICENCIADA EM QUÍMICA (U. P.)

TERMOQUÍMICA DE DIALQUILDITIOCARBAMATOS

Dissertação para Doutoramento em Química na Faculdade de Ciências da Universidade do Porto

DEPARTAMENTO DE QUÍMICA FACULDADE DE CIÊNCIAS DO PORTO

> PORTO 1 9 8 6

ANA MARIA MELO VENTURA REIS LICENCIADA EM QUÍMICA (U. P.)

TERMOQUÍMICA DE DIALQUILDITIOCARBAMATOS

Dissertação para Doutoramento em Química na Faculdade de Ciências da Universidade do Porto

DEPARTAMENTO DE QUÍMICA FACULDADE DE CIÊNCIAS DO PORTO

> PORTO 1986

RESUMO

Este trabalho tem como objectivo determinar alguns parâmetros termo dinâmicos, referentes a dialquilditiocarbamatos, que possibilitem o cálculo das energias médias de dissociação metal-enxofre em complexos metálicos de di alguilditiocarbamato.

Determinaram-se, por calorimetria de solução-reacção, as entalpias de formação padrão, a 298.15 K, de cinco dialquilditiocarbamatos (valores registados na Tabela 3.18, pág.46 deste trabalho). Estes mesmos parâmetros foram também determinados por calorimetria de combustão em bomba rotativa (valo res registados na Tabela 4.6, pág.138 deste trabalho) o que permitiu reconfir mar os valores anteriormente obtidos.

As entalpias de formação padrão, a 298.15 K, de vinte e cinco complexos metálicos, correspondentes a cinco dialquilditiocarbamatos de cinco me tais da primeira série de transição, foram determinados por calorimetria de solução-reacção, valores registados nas Tabelas 3.41 (pág.59), 3.63 (pág.71), 3.85 (pág.84), 3.108 (pág.97) e 3.137 (pág.114), deste trabalho.

Por microcalorimetria Calvet de altas temperaturas, determinaram-se as entalpias de decomposição e os valores das pressões de vapor em função da temperatura de quatro dos dialquilditiocarbamatos de dialquilamónio (valores registados na Tabela 5.5, pág. 148 deste trabalho), assim como as entalpias de sublimação dos complexos metálicos de cobre (II) e niquel (II), valores re gistados nas Tabelas 5.21 e 5.22 (pág.163) deste trabalho.

Os valores calculados para as entalpias médias de dissociação metal -enxofre, registados nas Tabelas 6.5 e 6.6 (pág. 171) deste trabalho, são interpretados em termos estruturais.

I

ABSTRACT

The aim of this work is the experimental determination of some the<u>r</u> modynamic parameters necessary for the calculation of the mean bond dissociation enthalpies of the metal-sulfur bond in metal dithiocarbamate complexes.

The standard enthalpies of formation, at 298.15 K, of five dialkylammonium dialkyldithiocarbamates have been determined by solution and reaction calorimetry (results in Table 3.18, page 46 of this thesis). The same properties were also determined by rotating-bomb combustion calorimetry (values in Table 4.6, page 138 of this thesis), in good agreement with those obtained by the other technique.

The standard enthalpies of formation, at 298.15 K, of twenty five metal complexes of five dialkyldithiocarbamates with five metals of the first transition series, were determined by solution and reaction calorimetry - results in Tables 3.41 (page 59), 3.63 (page 71), 3.85 (page 84), 3.108(page 97) and 3.137 (page 114) of this thesis.

High-temperature Calvet microcalorimetry was used to measure the en thalpies of decomposition and vapor pressures of four dialkylammonium dialkyldithiocarbamates at different temperatures (values in Table 5.5, page 148), of this thesis), as well as sublimation enthalpies of copper (II) and nickel (II) dithiocarbamate complexes (values in Tables 5.21 and 5.22, page 163, of this thesis).

The calculated values for the mean metal-sulfur dissociation enthal pies (Tables 5.21 and 5.22, page 163 of this thesis) are interpreted in terms of sructure.

AGRADECIMENTOS

Ao meu supervisor Professor Doutor M.A.V. Ribeiro da Silva agradeço todo o apoio, orientação, encorajamento e amizade, sem o qual não seria possível a concretização deste trabalho.

Ao Departamento de Química da Faculdade de Ciências (U.P.) agradeço o apoio prestado para que me fosse concedida dispensa de serviço docente durante cerca de três anos.

Ao INIC agradeço a concessão de uma bolsa de estudo a tempo total no País, durante o meu primeiro semestre de dispensa de serviço, assim como as bolsas de estudo, de curta duração, concedidas para as deslocações e estadias em Inglaterra.

Ao Magnifico Reitor da Universidade do Porto agradeço a autorização para a minha dispensa de serviço durante os últimos dois anos e meio, ao abrigo do artigo 27º do E.C.D.U.

Ao Dr. G. Pilcher agradeço as oportunidades que me proporcionou de efectuar trabalho experimental no Departamento de Química da Universidade de Manchester, assim como a valiosa ajuda e atenção constantemente dispensadas.

Aos meus colegas do Departamento de Química, em especial aos meus colegas da Linha 5 - Termoquímica, do CIQ (UP), agradeço a ajuda, compreensão e amizade que me dispensaram.

A Sra. D. Maria Helena Miranda agradeço o cuidado e interesse que colocou na dactilografia desta dissertação.

INDICES

INDICE GERAL

	ray.
RESUMO	I
ABSTRACT	III
AGRADECIMENTOS	٧
INDICE GERAL	IX
INDICE TABELAS	XV
INDICE FIGURAS	XXI

CAPÍTULO 1 - INTRODUÇÃO

1.1.	CONSIDE	RAÇÕES GERAIS	3
1.2.	PROPRIE	DADES GERAIS DOS DITIOCARBAMATOS	4
1.3.	ALGUNS	ASPECTOS PARTICULARES DOS, COMPLEXOS ESTUDADOS COM OS	
	DIFEREN	TES METAIS	7
1.4.	TERMOQU	ÍMICA DE COMPLEXOS METÁLICOS DE DITIOCARBAMATO	9
	1.4.1.	Generalidades	9
	1.4.2.	Estudos de volatilidade	9
	1.4.3.	Calorimetria de solução-reacção	11
1.5.	UNIDADE	SS	12

CAPÍTULO 2 - PREPARAÇÃO E PURIFICAÇÃO DE COMPOSTOS

2.1.	PREPARAÇÃ	O DE DIALQUILDITIOCARBAMATOS DE DIALQUILAMÓNIO	15
2.2.	PREPARAÇÃ	O DE DITIOCARBAMATOS METÁLICOS	16
	2.2.1. P	Preparação de dialquilditiocarbamatos de Cu(II), Ni(II)	
	F	e(III) e Co(III)	16

Dão

1	٤	2	,
	1	í	
4	1	1	۱
			-

			Pāg.
	2.2.2.	Preparação de dialquilditiocarbamatos de Cr (III)	16
2.3.	PREPAR	AÇÃO DE SOLVENTES CALORIMÉTRICOS	18
	2.3.1.	Dimetilformamida	18
	2.3.2.	Tolueno	18
	2.3.3.	Etanol	18
2.4.	PREPAR	AÇÃO DE OUTROS REAGENTES CALORIMÉTRICOS	18
	2.4.1.	Sulfato de cobre (II) com cinco moléculas de água de cristalização	18
	2.4.2.	Cloreto de níquel (II) com seis moléculas de água de cristalização	18
	2.4.3.	Cloreto de crómio (III) com seis moléculas de água de cristalização	19
	2.4.4.	Sulfato de cobalto (II) com seis moléculas de água de cristalização	19
	2.4.5.	Cloretos de ferro (II) e (III)	19
	2.4.6.	Dialquilaminas	19
	2.4.7.	Sulfureto de carbono	19
	2.4.8.	Acido cloridrico	20
	2.4.9.	Acido sulfúrico	20
	2.4.10.	Agua	20
2.5.	CONTROL	E DE PUREZA	20
CAPIT	ULO 3 -	CALORIMETRIA DE SOLUÇÃO-REACÇÃO	
3.1.	CONSIDE	RAÇÕES GERAIS	23
	3.1.1.	Descrição do calorimetro	23
	3.1.2.	Calibração	24
	3.1.3.	Reacção química padrão	27

			Pag.
	3.1.4.	O equivalente energético do calorimetro	28
	3.1.5.	Método de cálculo de ∆Tad	29
	3.1.6.	Cálculo da variação de entalpia de uma reacção	34
	3.1.7.	O intervalo de incerteza	35
3.2.	DETERMI	NAÇÕES EXPERIMENTAIS	36
	3.2.1.	Parâmetros termodinâmicos auxiliares	36
	3.2.2.	Determinação experimental das entalpias de formação p <u>a</u> drão de dialquilditiocarbamatos de dialquilamónio	38
		3.2.2.1. Determinação experimental da entalpia de for- mação padrão do dietilditiocarbamato de die- tilamónio	39
		3.2.2.2. Determinação experimental da entalpia de for- mação dos dialquilditiocarbamatos de dialquil amónio com o grupo alquil, R = n-propil, iso- -propil, n-butil e iso-butil	39
	3.2.3.	Determinação experimental das entalpias de formação p <u>a</u> drão de dialquilditiocarbamatos de Cu(II)	46
	3.2.4.	Determinação experimental das entalpias de formação p <u>a</u> drão de dialquilditiocarbamatos de Ni(II)	59
	3.2.5.	Determinação experimental das entalpias de formação p <u>a</u> drão de dialquilditiocarbamatos de Fe(III)	72
	3.2.6.	Determinação experimental das entalpias de formação p <u>a</u> drão de dialquilditiocarbamatos de Cr(III)	84
	3.2.7.	Determinação experimental das entalpias de formação p <u>a</u> drão de dialquilditiocarbamatos de Co(III)	98
3.3.	DISCUS	SÃO DOS RESULTADOS	114

-	-		
ν	2	a	
	α	ч	
г	α	ч	

	WALL AN ADDITION DE CONDUCTÃO EN DOMON DOTATIVA	
CAPIT	ULO 4 – CALORIMETRIA DE COMBUSIÃO EM BOMBA RUTATIVA	
4.1.	INTRODUÇÃO	119
4.2.	DESCRIÇÃO DO CALORÍMETRO DE BOMBA ROTATIVA	119
	4.2.1. Sistema calorimétrico	119
	4.2.2. Equipamento auxiliar	123
4.3.	PROCEDIMENTO EXPERIMENTAL	123
4.4.	ANÁLISE DOS PRODUTOS DE COMBUSTÃO	125
	4.4.1. Análise do dióxido de carbono	125
	4.4.2. Determinação do ácido nítrico	125
	4.4.3. Determinação do ácido nitroso	125
4.5.	DETERMINAÇÃO DO EQUIVALENTE ENERGÉTICO DO CALORÍMETRO	126
4.6.	CÁLCULO DE ATad	127
4.7.	CÁLCULO DA ENTALPIA DE COMBUSTÃO	129
4.8.	O INTERVALO DE INCERTEZA	132
4.9.	DETERMINAÇÃO EXPERIMENTAL DE ENTALPIAS DE FORMAÇÃO PADRÃO DE DIALQUILDITIOCARBAMATOS DE DIALQUILAMÓNIO POR CALORIMETRIA DE COMBUSTÃO	133
САРІТ	ULO 5 - MICROCALORIMETRIA DE ALTAS TEMPERATURAS	
5.1.	INTRODUÇÃO	141
5.2.	DESCRIÇÃO DO CALORÍMETRO	141
5.3.	MÉTODO DE CÁLCULO E CALIBRAÇÃO	142
5.4.	DETERMINAÇÃO EXPERIMENTAL DE ENTALPIAS DE "DECOMPOSIÇÃO" DE ALGUNS DIALQUILDITIOCARBAMATOS DE DIALQUILAMÓNIO	145

-	-		
D	3	~	
г	а	u	
•	-	_	•

5.5.	DETERMINAÇÃO EXPERIMENTAL DE PRESSÕES DE VAPOR DE ALGUNS DIAL- QUILDITIOCARBAMATOS DE DIALQUILAMÓNIO E CÁLCULO DAS RESPECTIVAS ENTALPIAS DE SUBLIMAÇÃO	149
5.6.	DETERMINAÇÃO EXPERIMENTAL DE ENTALPIAS DE SUBLIMAÇÃO PADRÃO DE ALGUNS DIALQUILDITIOCARBAMATOS METÁLICOS	157
5.7.	COMPARAÇÃO DOS VALORES OBTIDOS NESTE TRABALHO COM VALORES EXIS- TENTES NA LITERATURA	162
CAPIT	ULO 6 - CÁLCULO DE ENERGIAS MÉDIAS DE DISSOCIAÇÃO METAL-ENXOFRE E CONCLUSÕES	
6.1.	CÁLCULO DE ENERGIAS MÉDIAS DE DISSOCIAÇÃO METAL-ENXOFRE	167
6.2.	INTERPRETAÇÃO DE VALORES DE D (M - S)	172
6.3.	TERMOS DE ENERGIA DE LIGAÇÃO	176

APÊNDICES

APÊNDICE 1 -	Cálculo de valores de entalpias normais de formação de	
	aminas secundárias	181
APÊNDICE 2 -	Estimativa de valores de H _T - H ₂₉₈	183

BIBLIOGRAFIA	189
--------------	-----

INDICE DE TABELAS

Tabela 2.1 - 1	Resultados analíticos para os dialquilditiocarbamatos de dialquilamónio	15
Tabela 2.2 -	Resultados analíticos para dialquilditiocarbamatos m <u>e</u> tálicos	17
Tabela 3.1 -	Valores da literatura para a variação de entalpia da reacção de THAM com HCl 0.1 <u>M</u>	27
Tabela 3.2 -	Entalpia de reacção de THAM com HCl 0.1 <u>M</u>	28
Tabela 3.3 -	Determinação do equivalente energético do calorimetro (I = 85 mA, t = 300 s)	28
Tabela 3.4 -	Determinação do equivalente energético do calorimetro (I = 100 mA, t = 210 s)	29
Tabela 3.5 -	Entalpias de formação padrão a 298.15 K, de compostos usados	37
Tabelas 3.6 - a 3.8	de $Et_2NH_2S_2CN$ Et_2 (c)	40
Tabelas 3.9 - a 3.17	Resutados experimentais da calorimetria de solução de R ₂ NH ₂ S ₂ CN R ₂ (c), R = Pr, Pr ⁱ , Bu, Bu ⁱ	41 45
Tabela 3.18 -	Entalpias de formação padrão de dialquilditiocarbama- tos de dialquilamónio	46

Pág.

-	-		
	2	~	
+	a	ч	
		-	

Tabelas a	3.19 3.40	-	Resultados experimentais da calorimetria de solução de $[Cu(S_2CNR_2)_2](c)$, R=Et, Pr, Pr ⁱ , Bu e Bu ⁱ	48 58
Tabela	3.41		Estudo termoquímico de dialquilditiocarbamatos de cobre (II)	59
Tabelas a	3.42 3.62	-	Resultados experimentais da calorimetria de solução de [Ni(S ₂ CNR ₂) ₂](c), R=Et, Pr, Pr ⁱ , Bu e Bu ⁱ	61 71
Tabela	3.63	-	Estudo termoquímico de dialquilditiocarbamatos de níquel (II)	71
Tabelas a	3.64 3.84	-	Resultados experimentais da calorimetria de solução de $[Fe(S_2CNR_2)_3](c)$, R = Et, Pr, Pr ⁱ , Bu e Bu ⁱ	72 83
Tabela	3.85	-	Estudo termoquímico de dialquilditiocarbamatos de ferro (III)	84
Tabelas a	3.86 3.107	-	Resultados experimentais da calorimetria de solução de $[Cr(S_2CNR_2)_3](c)$, R = Et, Pr, Pr ⁱ , Bu e Bu ⁱ	86 97
Tabela	3.108	-	Estudo termoquímico de dialquilditiocarbamatos de crómio (III)	97
Tabelas a	3.109 3.136	-	Resultados experimentais da calorimetria de solução de $[Co(S_2CNR_2)_3](c)$, R = Et, Pr, Pr ⁱ , Bu e Bu ⁱ	100 113
Tabela	3.137	-	Estudo termoquímico de dialquilditiocarbamatos de cobalto (III)	114
Tabela	3.138	-	Estudo termoquímico de Et ₂ NH ₂ S ₂ CN Et ₂ (c) em dife- rentes solventes	115

		Pāg.
Tabela 4.1	- Resultados da determinação do equivalente energético do calorimetro de bomba rotativa	128
Tabela 4.2	- Energia de combustão de Et ₂ NH ₂ S ₂ CN Et ₂ (c)	134
Tabela 4.3	- Energia de combustão de Pr ₂ NH ₂ S ₂ CN Pr ₂ (c)	135
Tabela 4.4	- Energia de combustão de $Pr_2^i NH_2 S_2 CN Pr_2^i$ (c)	136
Tabela 4.5	- Energia de combustão de Bu ₂ NH ₂ S ₂ CN Bu ₂ ⁱ (c)	137
Tabela 4.6	- Entalpias de combustão padrão e entalpias de forma- ção padrão de dialquilditiocarbamatos de dialquilamó-	138
Tabela 5.1	- Entalpia de decomposição de Et ₂ NH ₂ S ₂ CN Et ₂ (c)	146
Tabela 5.2	- Entalpia de decomposição de Pr ₂ NH ₂ S ₂ CN Pr ₂ (c)	147
Tabela 5.3	- Entalpia de decomposição de $Pr_2^i NH_2 S_2 CN Pr_2^i$ (c)	147
Tabela 5.4	- Entalpia de decomposição de $Bu_2^i NH_2 S_2 CN Bu_2^i$ (c)	148
Tabela 5.5	- Entalpias de decomposição de dialquilditiocarbamatos de dialquilamónio a 298 K	148
Tabela 5.6	- Valores de pressão de vapor de Et ₂ NH ₂ S ₂ CN Et ₂ (c) a diferentes temperaturas	150
Tabela 5.7	- Valores de pressão de vapor de Pr ₂ NH ₂ S ₂ CN Pr ₂ (c) a diferentes temperaturas	150
Tabela 5.8	- Valores de pressão de vapor de Pr ⁱ ₂ NH ₂ S ₂ CN Pr ⁱ ₂ (c) a diferentes temperaturas	151

Tabela !	5.9	-	Valores de pressão de vapor de Bu ⁱ ₂ NH ₂ S ₂ CN Bu ⁱ ₂ (c) a diferentes temperaturas	151
Tabela !	5.10	-	Entalpias de sublimação padrão de dialquilditiocarb <u>a</u> matos de dialquilamónio	152
Tabela !	5.11	-	Entalpia de sublimação padrão de $[Cu(S_2CNEt_2)_2]$ (c).	157
Tabela !	5.12	-	Entalpia de sublimação padrão de $[Cu(S_2CNPr_2)_2]$ (c).	158
Tabela !	5.13	-	Entalpia de sublimação padrão de $[Cu(S_2CNPr_2^i)_2]$ (c).	158
Tabela !	5.14	-	Entalpia de sublimação padrão de [Cu(S ₂ CNBu ₂) ₂] (c).	159
Tabela	5.15	-	Entalpia de sublimação padrão de $[Cu(S_2CNBu_2^i)_2]$ (c).	159
Tabela	5.16	-	Entalpia de sublimação padrão de [Ni(S ₂ CNEt ₂) ₂] (c).	160
Tabela	5.17	-	Entalpia de sublimação padrão de [Ni(S ₂ CNPr ₂) ₂] (c).	160
Tabela	5.18	-	Entalpia de sublimação padrão de $[Ni(S_2CNPr_2^i)_2]$ (c).	161
Tabela	5.19	-	Entalpia de sublimação padrão de [Ni(S ₂ CNBu ₂) ₂] (c).	161
Tabela	5.20	-	Entalpia de sublimação padrão de [Ni(S ₂ CNBu ⁱ ₂) ₂] (c).	162
Tabela	5.21	-	Entalpias de sublimação padrão de dialquilditiocarb <u>a</u> matos de cobre (II)	163
Tabela	5.22	-	Entalpias de sublimação padrão de dialquilditiocarb <u>a</u> matos de níquel (II)	163

Tabela 6.1	-	Entalpias de formação padrão de alguns dialquilditio- carbamatos de cobre (II) e níquel (II) em fase gasosa	167
Tabela 6.2	-	Valores estimados para as entalpias de sublimação pa- drão de complexos do tipo [M(S ₂ CNR ₂) ₃] com M=Fe(III), Co(III) e Cr(III)	168
Tabela 6.3	-	Entalpias de formação padrão de alguns ácidos dial- quilditiocarbâmicos e dos respectivos radicais ,	169
Tabela 6.4	-	Entalpias de formação padrão de alguns átomos metáli- cos gasosos	170
Tabela 6.5	-	Valores de D (M-S) para dialquilditiocarbamatos de c <u>o</u> bre (II) e niquel (II)	171
Tabela 6.6	-	Valores de D̄ (M-S) para dialquilditiocarbamatos de Fe (III), Co (III) e Cr (III)	171
Tabela 6.7	-	Valores de energias de atomização e de Ē (M-S) para os complexos estudados	177
Tabela A.l.	.1-	Valores de entalpias de formação padrão de aminas se- cundárias no estado gasoso	182
Tabela A.l.	. 2-	Valores de $\Delta H_{f}^{O}(g)$, $\Delta H_{vap}^{O} \in \Delta H_{f}^{O}(\ell)$ para aminas secu <u>n</u> dárias	182
Tabela A.2.	. 1-	(H _T - H ₂₉₈) (g) para alguns compostos simples de C,H, O, S e N	184

Tabela A.2.2- (H_T - H₂₉₈) (g) para CO₂, COS e CS₂ 185

Pāg.

Pāg.

Tabela	A.2.3 -	Valores	s calculados	de (H _T	- H ₂₉₈)	(g) para	HS2CNR2 e	
		R ₂ NH .			•••••			185

INDICE DE FIGURAS

				Pág.
Figura	1.1	-	Estrutura esquemática de complexos do tipo $[Cu(S_2CNR_2)_2]$.	7
Figura	3.1	-	Calorimetro de solução reacção - vaso calorimétrico	25
Figura	3.2	-	Sistema de calibração eléctrica	26
Figura	3.3	-	Curva de temperatura-tempo para uma reacção exotérmica ti- pica	31
Figura	4.1	-	Calorímetro de combustão de bomba rotativa N.P.L Corpo da bomba	121
Figura	4.2	-	Calorimetro de combustão de bomba rotativa N.P.L Esque- ma geral	122
Figura	5.1	-	Célula de vidro	143
Figura	5.2	-	Representação gráfica de $ln p = f(T^{-1})$ para o Et ₂ NH ₂ S ₂ CN Et ₂ (c)	153
Figura	5.3	-	Representação gráfica de $ln p = f(T^{-1})$ para o $Pr_2NH_2S_2CN Pr_2(c)$	154
Figura	5.4		Representação gráfica de $ln p = f(T^{-1})$ para o $Pr_2^i NH_2 S_2 CN Pr_2^i(c) \dots$	155
Figura	5.5	-	Representação gráfica de $ln p = f(T^{-1})$ para o Bu ₂ ⁱ NH ₂ S ₂ CN Bu ₂ ⁱ	156
Figura	6.1	-	Variação de D (M - S) com o grupo alquilo para dialquildi- tiocarbamatos de cobre (II) e níquel (II)	173
Figura	6.2	-	Variação de D (M - S) com o grupo alquilo para dialquildi- tiocarbamatos de ferro(III), cobalto(III) e crómio(III)	174

CAPITULO 1

INTRODUÇÃO

1.1 - CONSIDERAÇÕES GERAIS

O sulfureto de carbono reage com grande número de nucleofilos, X⁻, originando compostos chamados ditioácidos. Quando X⁻ é o anião dialquilamino (base conjugada da amina secundária) RR'N⁻:

$$CS_2 + \frac{R}{R} N^- \longrightarrow \frac{R}{R} N - C_{S}^{S} - C_{S}^{S}$$

os ácidos formados, ácidos ditiocarbâmicos, são instáveis e a sua forma não protonada reage fortemente com uma grande variedade de iões metálicos, dando origem a complexos em que, com raras excepções, ambos os átomos de enxofre es tão ligados ao átomo metálico:

$$n \xrightarrow{R} N - C \xrightarrow{S} - + M^{n+} \longrightarrow \begin{pmatrix} R & N - C \xrightarrow{S} & M \\ R & N - C \xrightarrow{S} & M \end{pmatrix}$$

Os ditiocarbamatos foram descobertos no inicio do estudo da química dos compostos organossulfúricos^{1,2}. O interesse crescente no estudo destes com postos deve-se à descoberta da sua aplicação, com sucesso, em diversos sectores: na composição de fungicidas e pesticidas³, como agentes vulcanizadores e antioxidantes na indústria da borracha⁴ e na fabricação de lubrificantes de alta pressão; também, no campo da Medicina⁵, são utilizados como componentes de medicamentos para o tratamento de doenças de pele e alcoolismo crónico.

Inicialmente, a investigação dirigiu-se principalmente a aspectos <u>ge</u> rais^{6,7} e aplicações analíticas⁸ destes compostos, verificando-se que, somente na última década, a termoquímica de ditiocarbamatos metálicos e compostos similares teve um desenvolvimento progressivo⁹.

Para os dialquilditiocarbamatos de metais da primeira série de tra<u>n</u> sição, os poucos valores experimentais de entalpias de formação e sublimação, existentes na literatura, referem-se, quase exclusivamente, aos derivados di<u>e</u> til. Assim, dada a escassez desses valores e numa tentativa de sistematização do conhecimento de novos dados termoquímicos sobre dialquilditiocarbamatos, decidiu-se, neste trabalho, fazer um estudo de dialquilditiocarbamatos, com o grupo alquilo: etil, n-propil, iso-propil, n-butil e iso-butil, com alguns metais da primeira série de transição, nomeadamente níquel (II), cobre (II), ferro (III), cobalto (III) e crómio (III).

1.2 - PROPRIEDADES GERAIS DOS DITIOCARBAMATOS

O estudo de complexos metálicos com ligandos contendo átomos de enxo fre dadores é de particular interesse devido às peculiaridades observadas nas propriedades dadoras do enxofre, quando comparadas com as do seu congénere oxigénio. Com efeito, muito embora oxigénio e enxofre apresentem várias semelhanças, as suas propriedades dadoras variam consideravelmente, o que vulgarmente se atribui à menor electronegatividade do átomo de enxofre, relativamente ao átomo de oxigénio. Assim, a menor electronegatividade do enxofre diminui o carácter iónico da ligação e, portanto, altera a estabilidade relativa dos vários tipos de ligação.

A existência de complexos metálicos com ligandos contendo átomos de enxofre é explicada pela aptidão dos átomos de enxofre para a formação de ligações múltiplas (ligações π), uma vez que o enxofre possui orbitais d π não pree<u>n</u> chidas. Observando os valores da razão neflauxética para diferentes ligandos com átomos de enxofre¹⁰, verifica-se que estes ligandos ocupam as últimas posições, na série neflauxética com vários átomos dadores, F < 0 < N < Cl < Br < S = I<Se, sugerindo uma forte contribuição covalente no carácter de ligação metal-enxofre. Também, os ligandos com átomos de enxofre dadores têm posições baixas nas séries espectroquímicas de ligandos¹¹.

Várias fórmulas de estrutura podem ser escritas para os ditiocarbamatos, $[M(S_2CNR_2)_n]$, em que M é o átomo metálico e n o seu estado de valência:

A contribuição da forma de ressonância (C) nestes compostos é prova velmente devida ao efeito mesomérico do grupo $-NR_2$, consequentemente o tipo de substituinte R em $-NR_2$ deve influenciar a estabilidade e outras propriedades físico-químicas destes complexos metálicos, dependendo do efeito indutivo desses substituintes. Na forma de estrutura (C) a deslocalização de electrões para os átomos de enxofre aumenta a sua capacidade dadora e diminui a afinida de electrónica das orbitais d. Por isso, o ião do ligando ditiocarbamato per mite a formação de complexos com metais pesados, com reduzida tendência à for mação de ligações dativas π do átomo metálico para o átomo de enxofre.

De entre os ligandos poliatómicos, o ditiocarbamato é dos que tem a possibilidade de estabilizar estados de oxidação altos dos átomos metálicos nos seus complexos. As fortes ligações metal-enxofre dos ditiocarbamatos são também traduzidas pelo insolubilidade dos complexos em água, com excepção dos metais alcalinos e alcanino-terrosos.

Estudos de infra-vermelho de Chatt e colaboradores¹² atribuem a ban da bem definida que aparece nos espectros de I.V. de ditiocarbamatos metálicos, na região 1550 - 1480 cm⁻¹ à vibração da ligação polar (C = N⁺); o valor desta frequência de vibração é intermediário entre o de uma ligação (C-N) simples, 1350 - 1250 cm⁻¹, e o de uma ligação (C=N) dupla, 1700-1630 cm⁻¹. Em geral, o valor da frequência de vibração da ligação (C=N) é deslocado para valores menores, quando comparado com idêntico parâmetro do ligando. Esta ten dência, contudo, só se verifica em complexos em que o grupo ditiocarbamato tem o comportamento de ligando bidentado; no caso de se comportar como ligando mo nodentado, não há variação no valor da frequência de vibração ou há um deslocamento para frequências mais elevadas.

Chatt e colaboradores¹³ concluiram, também, que o valor da frequência de vibração da ligação (C=N), numa série de dietilditiocarbamatos metál<u>i</u> cos, varia com a estrutura dos complexos, diminuindo da seguinte forma:plano> >tetraédrico>octaédrico>octaédrico distorcido ou piramidal.

Coucouvanis e Fackler¹⁴ constataram que sendo o grupo R arilo ou h<u>i</u> drogénio, o valor da frequência de vibração (C==N) é menor, estando o valor fora dos limites mencionados por Chatt¹². A importância da contribuição da forma de ressonância (C) para a estrutura dos complexos de ditiocarbamato é também confirmada pelo comprimento da ligação carbono-azoto. Estudos de cristalografia de raios X, indicam que o valor médio do comprimento da ligação carbono-azoto em complexos metálicos de ditiocarbamatos é aproximadamente 1.34 Å⁶; comparando este valor com o valor do comprimento de uma ligação simples carbono-azoto, cerca de 1.47 Å⁶, vemos que nos complexos mencionados a ligação é mais forte. O valor médio do comprimento da ligação carbono-enxofre nos complexos metálicos de ditiocarbamatos, aproxima damente 1.70 Å⁶, é também significativamente menor do que o de uma ligação simples carbono-enxofre, aproximadamente 1.82 Å. Estes parâmetros de estrutura cristalina indicam a importância de todas as formas canónicas mencionadas na de<u>s</u> crição da estrutura electrónica dos complexos de ditiocarbamato.

A estabilidade dos complexos de ditiocarbamatos é dependente do pH. A pH baixo, dá-se a decomposição segundo o esquema¹⁵:

$$\frac{R}{R} - C \stackrel{s}{\underset{\underline{S}}{\longrightarrow}} \stackrel{R}{\underset{\underline{S}}{\longrightarrow}} \frac{R}{R} \stackrel{t}{\underset{\underline{N}}{\longrightarrow}} C \stackrel{s}{\underset{\underline{S}}{\longleftarrow}} \stackrel{R}{\underset{\underline{S}}{\longrightarrow}} NH + CS_{2}$$

Mesmo no estado solido ha uma decomposição lenta, cuja velocidade aumenta com a temperatura¹⁶. Em soluções não aquosas, os ácidos ditiocarbâmicos são geralme<u>n</u> te solúveis e bastante mais estáveis, o que lhes permite numerosas aplicações , principalmente nas extracções de metais em solução, sob a forma de quelatos¹⁷.

Constantes de estabilidade para uma grande variedade de ditiocarbamatos de cobre, prata e ouro foram determinadas. Janssen^{18,19} publicou os valores das constantes de estabilidade de vários ditiocarbamatos de cobre (II), medidos em misturas de etanol/água a 20⁰C. Peschehevitskii e Erenberg²⁰ determinaram o valor da constante de estabilidade do dietilditiocarbamato de ouro (I) e os val<u>o</u> res referentes a outros ditiocarbamatos de ouro (I) foram obtidos por Usatenko e colaboradores²¹. Bhatt e Soni²² determinaram a constante de estabilidade do dietilditiocarbamato de prata (I).

Briscoe e Humphries²³ determinaram as constantes de estabilidade de de vários complexos de paládio, incluindo dietilditiocarbamato de paládio(II).

Bode e Tusche²⁴ estudaram reacções de permuta entre complexos metálicos de ditiocarbamato em tetracloreto de carbono e iões metálicos em fase aquosa e Eckert²⁵ demonstrou que a estabilidade de complexos metálicos com d<u>i</u> etilditiocarbamato em solução aumenta na seguinte ordem: manganês > arsénio> > zinco > estanho > ferro > cádmio > chumbo > bismuto > cobalto > níquel > > cobre > prata > mercúrio. O mercúrio desloca todos os outros átomos metál<u>i</u> cos dos complexos, sendo a permuta dependente do pH.

1.3 - ALGUNS ASPECTOS PARTICULARES DOS COMPLEXOS ESTUDADOS COM OS DIFERENTES METAIS

Os ditiocarbamatos de cobre (II) foram pela primeira vez mencionados por Delepine² como precipitados insolúveis em água, obtidos quando soluções aquosas de Cu²⁺ eram tratadas com soluções aquosas de R_2S_2CN . Mais tarde, Cambi e Coriselli²⁶ prepararam uma variedade de complexos de forma geral [Cu (S_2CNR_2)₂] e discutiram as suas propriedades químicas e magnéticas. Estes investigadores estabeleceram a estrutura monomérica destes complexos em solução e referiram pela primeira vez que os complexos [Cu (S_2CNRH)₂] são in<u>s</u> táveis e se decompõem nos correspondentes compostos de Cu (I). Os ditiocarbamatos de Cu (II) dissubstituídos são estáveis. No estado sólido, estes compl<u>e</u> xos são dimeros com os átomos de Cu (II) pentacoordenados (Figura 1.1).

Figura 1.1 - Estrutura esquemática de complexos do tipo |Cu (S₂CN R₂)₂|

7

Contudo, a interacção axial Cu - S (2.851 Å) não persiste em solução sendo, pois, os complexos monoméricos em solução^{26,27}. Petterson e Vänngard²⁸, por e<u>s</u> tudos de E.P.R. de amostras cristalinas, calcularam parâmetros relacionados com o grau de covalência da ligação C - S; concluindo que a ligação σ Cu - S é apreciavelmente covalente.

O dietilditiocarbamato e o diisobutilditiocarbamato de crómio (III) foram preparados pela primeira vez por Delepine². Mais tarde, Malatesta preparou vários ditiocarbamatos de crómio (III), tendo estudado as sua propriedades magnéticas²⁹. As propriedades dos complexos de crómio (III) são consistentes com uma coordenação octaédrica do ião Cr^{3+10} ; em presença de água estes complexos hidrolisam originando produtos básicos²⁹.

Os ditiocarbamatos de ferro (II) são instáveis e rapidamente oxidados pelo ar aos correspondentes complexos de ferro (III)³⁰. A química dos complexos de ferro (III) foi estudada com considerável detalhe, especialmente a dos compostos com importância comercial, usados como fungicidas. Estudos de propriedades magnéticas³¹, espectroscopia de infravermelho¹³ e espectros de de raios X³² demonstram a semelhança entre os complexos [Fe (S₂CNR₂)₃] e os correspondentes complexos de cobalto (III). Estudos de estrutura cristalina do [Fe (S₂CN Bu₂)₃]³³, descrevem a geometria F - S₆ como intermédia entre o prisma trigonal e o antiprisma trigonal.

Os ditiocomplexos de cobalto (II) são extremamente instáveis e oxidam facilmente para os correspondentes complexos de cobalto (III). Fackler e Holah³⁴ mencionam que soluções aquosas de Co (II) oxidam espontaneamente a Co (III) quando misturadas a soluções aquosas de ditiocarbamato de sódio, mesmo na ausência de oxigénio.

Cavelle Sugden³⁵ foram talvez os primeiros a associar o diamagnetismo dos complexos de níquel (II), [Ni $(S_2CNR_2)_2$], com uma estrutura plana de acordo com a teoria de valência de Pauling. Esta estrutura foi mais tarde confirmada por vários investigadores^{36,37,38}, sendo rigorosamente plana, com o átomo metálico formando um anel de quatro lados com o sulfureto de carbono do ligando e o comprimento das ligações Ni - S de 2.46 Å.

1.4 - TERMOQUÍMICA DE COMPLEXOS METÁLICOS DE DITIOCARBAMATO

1.4.1 - GENERALIDADES

Os dados termoquímicos da literatura, referentes a ditiocarbamatos, são essencialmente provenientes da aplicação de diversas técnicas tais como: termogravimetria, análise térmica diferencial, calorimetria diferencial, cromatografia em fase gasosa, espectometria de massa e, em menor extensão, calorimetria de solução e titulação termométrica.

Dados de termogravimetria de complexos metálicos de ditiocarbamato, têm sido extremamente úteis para diferenciar os complexos voláteis dos que se decompõem com o aquecimento³⁹. Os complexos voláteis geralmente têm particular interesse na separação e determinação quantitativa de metais por cromatografia gasosa. Complexos de ditiocarbamato de metais bivalentes típicos, como níquel, paládio e platina parecem poder ser separados quantitativamente por cromatografia gasosa.

A termogravimetria também foi utilizada para investigar aspectos ci néticos⁴⁰ e mecanismos⁴¹ de decomposição térmica. Deve contudo notar-se que mecanismos de decomposição térmica, baseados exclusivamente em dados de termo gravimetria são aproximados. Mecanismos mais válidos podem ser derivados dos dados referidos anteriormente quando combinados com dados de identificação de produtos de decomposição por aplicação de técnicas relativamente modernas tais como análise programada e técnicas conjuntas de pirólise, cromatografia gasosa e espectometria de massa⁴².

A analise térmica diferencial foi inicialmente aplicada ao estudo de mudanças de fase, particularmente no estado solido, para a determinação de pontos de fusão de ditiocarbamatos metálicos⁴³. Entalpias de fusão e sublimação de alguns ditiocarbamatos metálicos foram determinadas por calorimetria <u>di</u> ferencial⁴⁴.

1.4.2 - ESTUDOS DE VOLATILIDADE

A volatilidade de complexos metálicos de ditiocarbamatos é um assu<u>n</u> to controverso e os dados quantitativos de pressão de vapor são escassos. Os primeiros estudos de volatilidade referem-se a dialquilditiocarbamatos de cobre (II) e níquel (II), surgiram em 1908, em sequência de um trab<u>a</u> lho de investigação de Delepine^{45,46}.

A ordem relativa de volatilidade e a possibilidade de separação por cromatografia em fase gasosa de vários complexos deste tipo foi alvo de vários trabalhos, sendo talvez os mais importantes os de D'Ascenzo e Wendlandt^{47,48}, Sceney e colaboradores⁴¹, Cardwell e colaboradores³⁹ e Riekkola⁴⁹.

Contudo, a partir dos dados actualmente existentes é difícil estab<u>e</u> lecer tendências bem definidas.

Estudos, de Kosareva e Larinov⁵⁰, de sublimação de complexos de ditiocarbamatos parecem mostrar que a volatilidade dos respectivos complexos aumenta quando o estado de oxidação do átomo metálico diminui. Relativamente à variação de ligando, a volatilidade aumenta com a ramificação dos grupos alqui lo dos ligandos, aumentando também à medida em que eles são progressivamente fluoretados.

Várias tentativas têm sido feitas para relacionar o grau de volatil<u>i</u> dade dos complexos metálicos de ditiocarbamatos com a respectiva estrutura. Estudos de difracção de raios X indicam que o dietilditiocarbamato de níquel(II), de geometria quadrangular plana³⁶ e os dietilditiocarbamatos de cobalto(III)⁵¹, $Cr(III)^{10}$, $Ir(III)^{52}$ e Fe(III)³³, octaedros distorcidos, são monoméricos no estado sólido. Os dietilditiocarbamatos de Zn(II), Cu(II) e Cd(II) são dímeros no estado sólido⁵³. O dietilditiocarbamato de mercúrio (II) existe em ambas as for mas⁵⁴ e o dietilditiocarbamato de prata tem uma estrutura de agregado hexamérico⁵³. Assim, parece não existir nenhuma correlação simples entre a volatilidade e a estrutura destes complexos.

Dados de pressão de vapor e entalpias de sublimação de dialquilditio carbamatos metálicos referem-se, principalmente, aos derivados dietil.D'Ascenzo e Wendlandt^{47,48} mediram a pressão de vapor em função da temperatura para dietilditiocarbamatos de Fe(III), Ni(II), Cu(II) e Zn(II) utilizando o isotenescópio. Pelo método de transpiração, dados de pressão de vapor /temperatura foram determinados, por Tavlaridis e Neeb⁵⁵, para dietilditiocarbamatos de níquel(II) cobre(II) e zinco(II). Os mesmos autores⁵⁵ determinaram, valores de entalpia de sublimação para vários complexos metálicos de dialquilditiocarbamatos.

Cavell, Hill e Magee⁴⁴ determinaram a entalpia de sublimação do dietilditiocarbamato de níquel (II), cobre (II) e cobalto (III) por calorimetria diferencial. Os mesmos autores⁵⁶ derivaram valores para a entalpia de s<u>u</u> blimação dos dietilditiocarbamatos de níquel (II) e cobre (II) a partir de d<u>a</u> dos de pressão de vapor em função de temperatura, obtidos pela técnica de sublimação em ampola de Melia e Merrifield⁵⁷; pelo mesmo método determinaram ainda o valor da entalpia de sublimação do dietilditiocarbamato de dietilamónio⁵⁶.

No Capítulo 5, ponto 5.7, deste trabalho, são mencionados todos os valores numéricos anteriormente referidos existentes na literatura.

1.4.3 - CALORIMETRIA DE SOLUÇÃO REACÇÃO

Bernard e Borel⁵⁸ determinaram a entalpia de formação padrão a 298K de três ditiocarbamatos metálicos $[M(S_2CNH_2)_2]$: M(II) = Zn, Cd e Pb por calorimetria de solução, usando como base das determinações experimentais a reacção descrita por:

$$2 \text{ NH}_{4}^{+} \text{ }^{\text{S}}_{2} \text{CN H}_{2} (c) + \text{M}^{2+} (aq) \longrightarrow [M(\text{S}_{2} \text{CN H}_{2})_{2}] (c) + 2 \text{ NH}_{4}^{+} (aq)$$

Referem também valores de entalpia de precipitação e dissolução, em hidroxido de sódio, destes complexos.

Annuar e colaboradores⁵⁹ determinaram, por calorimetria de solução, a variação de entalpia referente ao processo descrito por:

$$FeCl_3(c) + 3 NaS_2CN (C_2H_5)_2(c) \rightarrow [Fe(S_2CN (C_2H_5)_2]_3(c) + 3 NaC1(c)$$

Cavell e colaboradores^{60 61} determinaram a entalpia de formação padrão dos dietilditiocarbamatos de Ni(II) e Cu(II) por calorimetria de soluçã<u>o</u> -reacção, através do estudo da reacção de substituição de ligandos represent<u>a</u> da por:

$$[M (C_5H_7O_2)_2] (c) + 2 Et_2NH_2S_2CN Et_2 (c) \longrightarrow$$
$$\longrightarrow [M (S_2CNEt_2)_2] (c) + 2 Et_2NH (\ell) + 2 C_5H_8O_2(\ell)$$

calculando, também, as respectivas energias de dissociação metal-enxofre; os valores referentes a este estudo, bem como a sua discussão, entontram-se no ponto 3.3 deste trabalho.

Parâmetros termoquímicos referentes à dimerização de dialquilditio carbamatos de cádmio (II) e referentes à adição de bases heterocíclicas a $|Cd (S_2CNR_2)_2| e |Zn (S_2CNR_2)_2|$, em soluções benzénicas, foram determinados por Ang e Graddon⁶², por titulação calorimétrica.

Com um microcalorimetro de solução de celulas gemeas Mellgren e Ramachandra Rao⁶³ determinaram a entalpia de formação do dietilditiocarbamato de chumbo, formado a partir de dietilditiocarbamato de potássio e também de alguns sais de chumbo.

1.5 - UNIDADES

No presente trabalho adoptou-se o Sistema Internacional de Unidades ⁶⁴, registaram-se, contudo, as pressões em atmosferas (atm = 101.325 Pa) ou mi limetros de mercurio (mm Hg = 133.32 Pa) e as concentrações molares em <u>M</u> (<u>M</u> = = mol dm⁻³).

Os valores das massas atómicas utilizados são os da "Tabela de Massas Atómicas Relativas de 1979"⁶⁵.

CAPITULO 2

PREPARAÇÃO E PURIFICAÇÃO DE COMPOSTOS

2.1 - PREPARAÇÃO DE DIALQUILDITIOCARBAMATOS DE DIALQUILAMONIO

Prepararam-se cinco dialquilditiocarbamatos de dialquilamónio com o grupo alquil, respectivamente etil, n-propil, iso-propil, n-butil e iso-butil, segundo o método descrito por Delépine⁴⁵ posteriormente por Cavell⁶⁶. Adicionou-se, a uma solução a 25% de dialquilamina em acetona, colocada num banho de gelo e sal, excesso ($\approx 20\%$) de sulfureto de carbono tendo, de seguida, o vo lume da solução sido reduzido a cerca de metade fazendo borbulhar azoto na so lução; os sólidos obtidos, de cor amarelo pálido, foram filtrados em vácuo e lavados várias vezes com éter de petróleo (p.e. $60-80^{\circ}$ C) e, posteriormente,r<u>e</u> cristalizados de uma mistura (2:1) de acetona/éter de petróleo (p.e. $60-80^{\circ}$ C) com excepção do dietilditiocarbamato de dietilamónio que foi recristalizado de éter etílico. Os compostos foram secos num exsicador sobre gel de sílica, em vácuo e depois guardados em frascos de vidro escuro; os resultados das análises elementares estão registados na Tabela 2.1.

Tabela	2.1	-	Resultados	analiticos	para	os	dialquilditiocarbamatos	de	dial-
			quilamónio						

R	valo	res teo	ricos	valo	valores experimentais			
	%C	%H	%N	%C	%H	%N		
Et	48.61	10.02	12.60	48.68	9.78	12.47		
Pr	56.13	10.97	10.10	55.85	10.82	10.10		
Pr ⁱ	56.13	10.97	10.10	55.90	10.95	10.03		
Bu	61.04	11.45	8.37	59.80	10.98	8.06		
Bu ⁱ	61.04	11.45	8.37	60.92	11.32	8.33		

2.2 - PREPARAÇÃO DE DITIOCARBAMATOS METÁLICOS

2.2.1 - PREPARAÇÃO DE DIALQUILDITIOCARBAMATOS DE Cu(II), Ni(II), Fe(III) e Co(III)

Estes complexos foram preparados usando o método descrito por Couco<u>u</u> vanis⁶; adicionaram-se soluções aquosas $(4x10^{-2}M)$ do sal metálico "AnalaR" re<u>s</u> pectivamente CuSO₄· 6H₂O, Ni(NO₃); 6H₂O, FeCl₃· 6H₂O e Co(NO₃); 6H₂O a uma solução aquosa contendo excesso de dialquilditiocarbamato de dialquilamónio (R = etil, n-propil, iso-propil e iso-butil), numa proporção de 3:1 para os dois primei - ros metais mencionados e, de 4:1 para os restantes. Os complexos formados, for temente corados, precipitaram imediatamente, filtraram-se em vácuo, lavaram-se diversas vezes com água quente e posteriormente foram recristalizados de aceto na. Os complexos contendo o grupo n-butil, foram preparados a partir dos sais metálicos anteriormente indicados usando, contudo, um processo análogo ao seguidamente descrito para os complexos de crómio (III).

Os resultados das análises elementares dos complexos metálicos encontram-se registados na Tabela 2.2.

2.2.2 - PREPARAÇÃO DE DIALQUILDITIOCARBAMATOS DE Cr (III)

Os cinco complexos de crómio (III) estudados foram preparados pelo processo sugerido por Malatesta^{2,9} A uma solução contendo excesso de dialquilditiocarbamato de dialquilamónio em etanol, p.a. (seco sobre filtros moleculares durante vários dias), adicionou-se uma suspensão de cloreto de crómio anidro em etanol p.a. seco. A solução resultante foi aquecida, moderadamente, com agi tação durante 2 a 3 horas, tempo necessário para precipitarem os respectivos complexos de cor azul violácea, que foram filtrados em vácuo e posteriormente recristalizados em clorofórmio.

Os resultados das análises elementares para os complexos metálicos encontram-se registados na Tabela 2.2.

Complexo	valor	es teóri	cos	valor	es experimer	ntais
(c)	%C	%Н	%N	%C	%H	%N
[Cu(S ₂ CNEt ₂) ₂]	33.36	5.60	7.78	33.32	5.66	7.97
[Cu(S ₂ CNPr ₂) ₂]	40.40	6.78	6.73	40.26	6.67	6.77
[Cu(S ₂ CNPr ⁱ ₂) ₂]	40.40	6.78	6.73	41.83	6.70	6.67
[Cu(S ₂ CNBu ₂) ₂]	46.16	7.68	5.93	45.98	7.60	5.82
[Cu(S ₂ CNBu ⁱ ₂) ₂]	46.16	7.68	5.93	46.02	7.63	5.72
[Ni(S ₂ CNEt ₂) ₂]	33.81	5.67	7.89	34.22	5.67	7.80
[Ni(S ₂ CNPr ₂)2]	40.88	6.86	6.81	41.01	6.77	6.85
$[Ni(S_2CNPr_2^i)_2]$	40.88	6.86	6.81	41.10	6.90	6.92
[Ni(S2CNBu2)2]	46.25	7.76	5.99	45.81	7.59	6.21
$[Ni(S_2CNBu_2^i)_2]$	46.25	7.76	5.99	46.02	7.66	6.01
[Fe(S ₂ CNEt ₂) ₃]	36.00	6.04	8.39	35.71	5.89	8.19
[Fe(S ₂ CNPr ₂) ₃]	43.13	7.24	7.19	42.98	7.20	7.03
[Fe(S ₂ CNPr ⁱ ₂) ₃]	43.13	7.24	7.19	43.02	7.05	7.12
[Fe(S ₂ CNBu ₂) ₃]	48.48	8.14	6.28	48.00	8.10	6.20
[Fe(S ₂ CNBu ⁱ ₂) ₃]	48.48	8.14	6.28	48.24	8.12	6.25
[Cr(S2CNEt2)3]	36.27	6.09	8.46	36.20	6.01	8.39
[Cr(S2CNPr2)3]	42.90	7.20	7.14	42.53	7.02	7.02
[Cr(S2CNPr2)3]	42.90	7.20	7.14	42.35	7.18	7.10
[Cr(S ₂ CNBu ₂) ₃]	48.76	8.18	6.32	48.21	8.01	6.03
$[Cr(S_2CNBu_2^i)_3]$	48.76	8.18	6.32	48.57	8.12	6.20
[Co(S ₂ CNEt ₂) ₃]	35.77	6.00	8.34	35.81	5.79	8.08
[Co(S ₂ CNPr ₂) ₃]	42.90	7.20	7.15	40.56	7.32	7.33
[Co(S2CNPr2)3]	42.90	7.20	7.15	41.04	7.05	7.4
[Co(S ₂ CNBu ₂) ₃]	48.25	8.10	6.25	47.98	8.01	6.10
[Co(S ₂ CNBu ⁱ ₂) ₂]	48.25	8.10	6.25	48.15	8.08	6.18

Tabela 2.2 - Resultados analíticos para dialquilditiocarbamatos metálicos

2.3 - PREPARAÇÃO DE SOLVENTES CALORIMETRICOS

2.3.1 - DIMETILFORMAMIDA

Dimetilformamida p.a. Merck foi utilizada sem qualquer purificação.

2.3.2 - TOLUENO

A purificação do tolueno foi realizada de acordo com métodos descritos na literatura⁶⁷.

Tolueno "AnalaR" foi sucessivamente seco sobre cloreto de calcio an<u>i</u> dro e sobre sódio metálico e, finalmente, destilado, tendo-se recolhido a fra<u>c</u> ção de ponto de ebulição 110⁰C a 760 mmHg.

2.3.3 - ETANOL

Etanol "AnalaR" foi seco sobre filtros moleculares e utilizado sem qualquer outra purificação.

2.4 - PREPARAÇÃO DE OUTROS REAGENTES CALORIMETRICOS

2.4.1 - SULFATO DE COBRE (II) COM CINCO MOLÉCULAS DE ÁGUA DE CRISTALIZAÇÃO

Sulfato de cobre (II), hidratado, AnalaR, foi pulverizado e, seguid<u>a</u> mente, seco num exsicador sobre gel de silica. Fez-se o doseamento electrogr<u>a</u> vimétrico do cobre^{6 8} que conduziu à composição CuSO₄5.00H₂0. O sal foi armazen<u>a</u> do num frasco fechado, sob atmosfera de azoto seco. Análises periódicas mostr<u>a</u> ram que a sua composição se manteve inalterável.

2.4.2 - CLORETO DE NÍQUEL (II) COM SEIS MOLECULAS DE ÁGUA DE CRISTALIZAÇÃO

Cloreto de niquel (II), hidratado, AnalaR, foi pulverizado e seco num exsicador sobre pastilhas de hidroxido de sódio. Por análise de niquel com EDTA⁶⁹, confirmou-se a composição NiCl;6.00H₂O. O sal foi armazenado num frasco fechado sob azoto seco. Análises periódicas mostraram que a sua composição se manteve inalterável.

2.4.3 - CLORETO DE CRÔMIO (III) COM SEIS MOLÉCULAS DE ÁGUA DE CRISTALIZAÇÃO

Cloreto de crómio (III), hidratado, AnalaR, foi pulverizado e seco num exsicador sobre gel de sílica. O doseamento dicromatométrico do crómio⁶, conduziu a composição CrCl₃ $6.00H_20$. O sal foi armazenado num frasco fechado em atmosfera de azoto seco. Análises periódicas mostraram que a sua composicão se manteve inalterável.

2.4.4 - SULFATO DE COBALTO (II) COM SEIS MOLÉCULAS DE ÁGUA DE CRISTALIZAÇÃO

Sulfato de cobalto (II), hidratado, AnalaR, foi pulverizado e seco num exsicador sobre gel de sílica. A composição foi determinada por análise do cobalto com EDTA (cit. em^{70}) tendo-se obtido resultados que conduzem à composição CoSO₄ 6.00H₂O. O sal foi armazenado num frasco fechado e em atmos fera de azoto seco. Análises periódicas mostraram que a sua composição se manteve inalterável.

2.4.5 - CLORETOS DE FERRO (II) e (III)

Cloretos de ferro (II) e (III), anidros, obtidos comercialmente em ampolas, de CERAC, 99.99% puros, foram utilizados sem qualquer purificação.

2.4.6 - DIALQUILAMINAS

Dialquilaminas, de fórmula geral R_2NH , com R = Et, Pr, Prⁱ, Bu e Buⁱ, p.a., Merck, foram previamente destiladas a pressão reduzida.

2.4.7 - SULFURETO DE CARBONO

Sulfureto de carbono puro, BDH, foi utilizado sem qualquer purificação.

2.4.8 - ÁCIDO CLORÍDRICO

Uma solução de acido cloridrico 2.0000 <u>M</u>, a que corresponde a composição HCl·26.61H $_2$ O⁷¹, foi preparada por diluição de uma solução volumé - trica de HCl B.D.H. em água desionizada.

2.4.9 - ACIDO SULFURICO

Uma solução de ácido sulfúrico 1.0000 <u>M</u>, a que corresponde a composição H_2SO_4 53.54 H_2O^{71} , foi preparada por diluição de uma solução volum<u>é</u> trica de H_2SO_4 B.D.H. em água desionizada.

2.4.10 - ÁGUA

Toda a água utilizada na preparação de soluções e em medições calorimétricas foi desionizada e bidestilada.

2.5 - CONTROLE DE PUREZA

O controle de pureza dos diferentes dialquilditiocarbamatos de dialquilamónio, com excepção do dibutil, foi efectuado por espectroscopia de infra-vermelho, por comparação com espectros apresentados na literatura.

Análises elementares de carbono, hidrogénio e azoto foram efec tuadas em diferentes laboratórios: Centro de Química Estrutural do Complexo Interdisciplinar I.S.T. (Lisboa), Departamento de Química da Universidade de Manchester (Inglaterra) ou "Microanalytical Service" do Departamento de Quími ca da Universidade de Surrey (Inglaterra) e encontram-se registadas nas Tabelas 2.1 e 2.2.
CAPITULO 3

CALORIMETRIA DE SOLUÇÃO-REACÇÃO

3.1 - CONSIDERAÇÕES GERAIS

A calorimetria de reacção abrange uma larga área de investigação ex perimental em que se determinam variações de entalpia de uma reacção química, ou de um processo de dissolução. A determinação calorimétrica exacta de uma variação de entalpia é, por natureza, sempre comparativa. Assim, em calorimetria de solução-reacção o método de calibração internacionalmente reconhecido é o processo eléctrico.

A calorimetria de solução-reacção é utilizada, hoje em dia, para o estudo de processos químicos muito diversificados, razão pela qual se conhecem imensas variedades de calorímetros assim como a literatura científica tra ta profusamente aspectos teóricos e experimentais desses calorímetros 72-77.

3.1.1 - DESCRIÇÃO DO CALORÍMETRO

O calorimetro de solução-reacção utilizado neste trabalho foi construido no Porto, tendo já sido descrito por M.D. Ribeiro da Silva⁷⁸constitui<u>n</u> do uma versão modificada dos calorimetros de solução-reacção existentes nos Laboratórios da Universidade de Manchester⁷⁹, Instituto Superior Técnico (Li<u>s</u> boa)⁸⁰ e Universidade de Surrey⁸¹.

O banho calorimétrico, com uma capacidade de aproximadamente 65dm³, é mantido a 25.000 ± 0.001ºC por um controlador de temperatura TRONAC PTC 40.

O vaso calorimétrico (Fig. 3.1) é um vaso Dewar de vidro, A, de 150 $\rm cm^3$ de capacidade, com uma tampa em latão na qual estão suspensos um suporte para as ampolas, B, um quebra ampolas, C, um agitador de pás, D, em vidro, um tubo de vidro para alojar a probe do termómetro de quartzo, E, e um tubo de vidro que contém uma resistência de aquecimento, R_h. O agitador de vidro estã ligado, através de um cabo flexível, a um motor SPNL, permitindo uma velocida de de rotação entre 20 e 2800 r.p.m. nos dois sentidos.

A temperatura no interior do vaso calorimétrico é medida com um ter mómetro de quartzo, Hewlett-Packard 2804-A, acoplado a um registador térmico, Hewlett-Packard 5150-A. O sistema de calibração eléctrica, cujo esquema é apresentado na Fig. 3.2, é constituído por uma resistência de aquecimento, R_h , de 49.98 Ω , uma caixa de resistências de precisão Cropico, RBB4 (que permite variar a intensidade da corrente entre O e 100 mA), uma resistência, R_p , de 10.000 \pm 0.005 Ω , nos ex tremos da qual é possível medir com exactidão e precisão a intensidade de cor rente eléctrica que percorre o circuito, através de um Potenciómetro de Precisão D.C., Cropico P10-7 acoplado a um Detector de Zero ao Centro D.C., Cropico NDZ, e alimentado por uma Fonte de Alimentação, Cropico P10-7/S.

O tempo de passagem da corrente eléctrica é medido com um relógio digital, CFUP, com precisão de 10⁻²s e um relógio mecânico, Jaquet, com precisão de 0.1 s.

O sistema de calibração possui ainda uma resistência de dissipação de 10 Ω , R_D, e uma fonte de alimentação de Corrente Contínua, AA O500 Ether, Ltd., com tensão de saída de 30 V.

3.1.2 - CALIBRAÇÃO

O calorimetro foi calibrado electricamente, fazendo passar uma corren te eléctrica, previamente seleccionada, na resistência de aquecimento, durante um periodo de tempo conhecido e determinando a correspondente variação de temp<u>e</u> ratura. Todo o calor dissipado por efeito Joule na resistência de aquecimento é suposto ser absorvido pelo calorimetro e seu conteúdo.

Assim, numa calibração eléctrica, a resistência R_h é percorrida dura<u>n</u> te um tempo t, por uma corrente de intensidade I. A tensão aplicada à resistência de aquecimento e o tempo de passagem da corrente são previamente ajust<u>a</u> dos de acordo com o desejado. Assim, é possível definir um valor da constante de calibração do calorimetro e seu conteúdo, ε , para o sistema em estudo pela expressão

$$\varepsilon = \frac{R_h I^2 t}{\Delta Tad}$$
(3.1)

em que ∆Tad é a variação de temperatura corrigida para o processo adiabático.

24

Figura 3.2 - Sistema de calibração eléctrica

3.1.3 - REACÇÃO QUÍMICA PADRÃO

A utilização de reacções teste, com valores de entalpias de reacção bem definidos, é de grande importância como meio de verificar que o funciona mento de um dado calorimetro não é afectado por erros sistemáticos. Como exem plo de alguns destes erros citam-se efeitos de evaporação e condensação, per das de calor pela resistência de aquecimento, etc.

O uso de reacções teste é de particular importância não só em calorimetros recém-construidos, como na verificação periódica e sistemática de qualquer destes aparelhos.

A reacção química padrão mais usada para teste de funcionamento e calibração de calorímetros de solução-reacção foi sugerida, em 1964, por Ir ving e Wadsö⁸² e consiste na reacção do tris(hidroximetil) aminometano, (2 - -amino-2-hidroximetil-1,3-propanodiol), geralmente designado por "TRIS" ou "THAM" com uma solução de ácido clorídrico 0.1 M. A supracitada reacção tem sido alvo de diversos estudos⁸³⁻⁸⁶ e, embora se tenham também apresentado outras reacções padrão alternativas, assim como se tenha questionado as caracte rísticas do THAM como substância padrão, um trabalho de Vanderzee⁸⁷ parece mostrar que o THAM continua a possuir boas qualidades como padrão termoquími co, emitindo contudo recomendações e normas para o seu uso.

Os resultados de uma série de 5 determinações efectuadas, com o calorimetro usado neste trabalho, encontram-se registados na Tabela 3.2, encontrando-se em boa concordância com valores da literatura^{82,83,85-89} resumidos na Tabela 3.1.

∆H/kJ mol ⁻¹	Ano	Referência
-29.273 ± 0.021	1964	8 2
-29.744 ± 0.006	1969	8 8
-29.735 ± 0.003	1970	8 3
-29.765 ± 0.033	1975	8 9
-29.739 ± 0.010	1977	8 5
-29.771 ± 0.032	1977	8 6
-29.773 ± 0.008	1981	8 7

Tabela 3.1 - Valores da literatura para a variação de entalpia da reacção de THAM com HCl 0.1 M

m/g	10 ³ n / mol	ΔΤ/Κ	ε/JK ⁻¹	∆H / kJ mol ⁻¹
0.37079	3.06084	0.1539	592.12	-29.772
0.36030	2.97424	0.1492	592.45	-29.720
0.36390	3.00400	0.1508	592.25	-29.731
0.35670	2.94453	0.1477	592.74	-29.732
0.36784	3.03649	0.1522	592.99	-29.723

Tabela 3.2 - Entalpia de reacção de THAM com HC1 0.1 M

3.1.4 - O EQUIVALENTE ENERGÉTICO DO CALORÍMETRO

Utilizando como líquido calorimétrico a água, mediu-se o valor do equivalente energético do calorimetro, isto é da capacidade calorifica do calorimetro e seu conteúdo. A precisão desta constante é uma indicação da preci são total das determinações experimentais efectuadas, pelo que a sua redeter minação, periódica, fornece uma indicação quantitativa da reprodutibilidade e funcionamento do calorimetro. Neste trabalho efectuaram-se determinações em duas condições experimentais diferentes, registando-se os respectivos valores na Tabela 3.3 (85 mA, 5 minutos) e na Tabela 3.4 (100 mA, 3,5 minutos).

Tabela 3.3 - Determinação do equivalente energético do calorimetro

(I	=	85	mA.	t =	= 300	s.)
· -		00		•		•••	L

ΔΤ / Κ	ε / JK ⁻¹
0.1810	593.15
0.1810	593.09
0.1808	593.50
0.1810	592.37
0.1807	593.47

ΔΤ / Κ	≈ / JK ⁻¹
0.1862	593.65
0.1740	593.30
0.1747	593.34
0.1742	595.02
0.1743	593.90
valor médio = 593.82 ± 0.61	J

Tabela 3.4 - Determinação do equivalente energético do calorímetro (I = 100 mA, t = 210 s)

3.1.5 - METODO DE CALCULO DE ATad

Ha varios métodos de calculo de ∆Tad, variação de temperatura obser vada se o processo fosse adiabático^{73,76,77,90}sendo os mais utilizados os de Re ghault-Pfaundler e o método gráfico que, de seguida, se expõem resumidamente.

Considerando uma representação da variação de temperatura com o tem po para uma reacção típica, representada na Fig. 3.3, podemos considerar três períodos distintos: um período inicial a-b e um período final c-d, em que a variação de temperatura é unicamente devida à transferência de calor entre o calorímetro e o banho e ao calor de agitação, e o período de reacção em que a variação de temperatura é principalmente devida à reacção. As linhas horizontais superiores representam a temperatura do banho, Tj, e a temperatura de convergência, T_{∞} , isto é a temperatura a que o calorímetro ficaria ao fim de um tempo infinito, se a temperatura do banho e a velocidade de agitação perma necessem constantes.

Designando por $T_b e T_c$ a temperatura do calorimetro, respectivamente, no principio e no fim do periodo reaccional, então a variação de temperatura observada será $T_c - T_b$. Esta variação de temperatura tem que ser corrigi da tendo em conta o calor de agitação e as trocas de calor com o banho termos tático. Esta correcção é calculada a partir do gráfico da Fig. 3.3, supondo constante a velocidade, u, de aumento de temperatura do calorimetro devido ao calor de agitação e que a velocidade de aumento de temperatura devida a trocas de calor com o banho é proporcional à diferença entre as temperaturas do calorimetro e do banho (lei de Newton). Então a velocidade de aumento de temperatura motivada por estas duas causas é dada pela equação

$$\frac{dT}{dt} = u + k (T_j - T)$$
(3.2)

em que k é a constante de arrefecimento do calorimetro. Outra expressão equivalente é obtida facilmente pela condição de, para t = t_{∞} , dT/dt = 0

$$T_j = T_{\infty} - \frac{u}{k}$$
(3.3)

Substituindo o valor de T_i dado por esta expressão na eq. (3.2) obtem-se

$$\frac{dT}{dt} = k (T_{\infty} - T)$$
(3.4)

As constantes u e k ou T_{∞} e k podem ser calculadas a partir dos períodos inicial e final. Representando por g_i e g_f os valores de dT/dt para as temperatu ras T_i e T_f dos períodos inicial e final, respectivamente, obtem-se, a partir das equações (3.2) e (3.4)

$$k = \frac{g_i - g_f}{T_f - T_i}$$
(3.5)

$$u = g_{f} + k (T_{f} - T_{j})$$
 (3.6)

$$T_{\infty} = \frac{g_{f}}{k} + T_{f} = \frac{g_{i}T_{f} - g_{f}T_{i}}{g_{i} - g_{f}}$$
(3.7)

Uma terceira expressão de dT/dt, que não envolve u, T_j nem T_{∞} , pode ser obtida combinando as equações (3.2) e (3.6)

$$\frac{dT}{dt} = g_f + k (T_f - T)$$
(3.8)

Figura 3.3 - Curva de temperatura - tempo para uma reacção exotérmica típica

A correcção ΔT que deve ser adicionada à variação de temperatura observada $(T_c - T_b)$ para eliminar o efeito do calor de agitação e das trocas de calor com o banho termostático, pode ser obtida integrando qualquer uma das equações (3.2), (3.4) ou (3.8). As expressões resultantes para ΔT são, respectiva mente, as equações (3.9), (3.10) e (3.11)

$$\Delta T = -u (t_c - t_b) - k \int_{t_b}^{t_c} (T_j - T) dt$$

$$= -[u + k (T_j - T_m)]^{t_b} (t_c - t_b)$$
(3.9)

$$\Delta T = -k \int_{t_b}^{t_c} (T_{\infty} - T) dt = -k (T_{\infty} - T_m) (t_c - t_b)$$
(3.10)

$$\Delta T = -g_{f} (t_{c} - t_{b}) - k \int_{t_{b}}^{t_{c}} (T_{f} - T) dt$$

$$= -[g_{f} + k (T_{f} - T_{m})] (t_{c} - t_{b})$$
(3.11)

Nestas expressões, T_m representa a temperatura média das paredes do calorimetro no periodo reaccional. Não havendo nenhuma expressão analítica simples pa ra a relação entre a variação de temperatura e o tempo, durante o periodo da reacção, o valor de T_m tem que ser determinado por integração numérica ou gr<u>ã</u> fica.

O método de Regnault-Pfaundler pode ser usado quando n valores de temperatura, T_r , são medidos em iguais intervalos de tempo, Δt , durante o periodo da reacção; a temperatura média é então dada por

$$T_{m} = \left\{ \sum_{r=2}^{n-1} T_{r} + \frac{T_{b}^{-T} c}{2} \right\} \frac{\Delta T}{t_{c}^{-} t_{b}}$$

$$= \left\{ \sum_{r=2}^{n-1} T_{r} + \frac{T_{b}^{-T} c}{2} \right\} \frac{1}{n-1}$$
(3.12)

Então

$$\Delta Tad = T_{c} - T_{b} + \Delta T$$
(3.13)

CANE.

34

Em que ΔT pode ser obtido por qualquer uma das equações (3.9), (3.10) ou (3.11) e T_m pode ser obtido pela equação (3.12). Considerando a variação de T = f (t) linear nos periodos inicial e final, os valores de g_i e g_f podem ser calculados pelo método dos minimos quadrados e os valores de T_i e T_f por extrapolação num<u>é</u> rica.

O método gráfico de Dickinson⁷⁷ para obter ΔT , consiste em encontrar um valor de t_v tal que

$$-g_{b}(t_{x}-t_{b}) - g_{c}(t_{c}-t_{x}) = k \left(\int_{t_{b}}^{t_{c}} (T-T_{\infty}) dt = \Delta T \right)$$
(3.14)

Dickinson provou que estas condições são satisfeitas se as duas áreas tracejadas da Fig. 3.3 forem iguais. Logo, o método de determinar t_x consiste em representar graficamente T = f(t) e encontrar por tentativas um valor t_x tal que as áreas acima referidas sejam iguais. Para reacções extremamente rápidas, em que a curva é exponencial, T_m ocorrerá no instante correspondente a 63% do calor total posto em jogo, por isso, na prática, faz-se a extrapolação no instante correspondente a 0.6 $(T_f - T_i)$.

Segundo Wadsö⁷⁶para reacções rápidas e calibrações, em que o período reaccional não exceda 5 minutos, ambos os métodos dão idênticos resultados, não devendo, contudo, o método gráfico ser utilizado para períodos de reacção mais longos.

No presente trabalho, uma vez que todas as reacções estudadas são rapidas, utilizou-se o método gráfico, tendo-se, para confirmação de resultados, nalguns casos também utilizado o método de Regnault-Pfaundler, através da util<u>i</u> zação de um programa proveniente do Grupo de Termoquímica da Universidade de Manchester, com algumas adaptações para um mini-computador COMMODORE 8096.

3.1.6 - CÁLCULO DA VARIAÇÃO DE ENTALPIA DE UMA REACÇÃO

Os valores da variação de entalpia molar de dissolução/reacção apresentados neste trabalho, foram calculados a partir da expressão

$$\Delta H = \frac{\varepsilon \ \Delta Tad}{r},$$

em que:

- ε valor da constante de calibração do calorímetro e conteúdo para o sistema em estudo (ver 3.1.2),
- ∆Tad variação de temperatura corrida para a reacção (ver 3.1.5),
 - n número de moles de reagente utilizado.

3.1.7 - O INTERVALO DE INCERTEZA

A amplitude dos erros sistemáticos associados a determinações termo químicas depende de diferentes factores inerentes ao equipamento usado, ao ma terial em estudo e as próprias reacções a serem estudadas.

O valor da entalpia de qualquer reacção, no presente trabalho, ΔH_R é tomado como a média de pelo menos cinco determinações independentes e o des vio padrão da média σ_R , calculado por

$$\sigma_{\rm R} = \left[\frac{\delta^2}{n(n-1)}\right]^{1/2}$$

em que δ^2 é a soma dos quadrados dos desvios δ (relativamente à média) e n o número total de determinações independentes.

No presente trabalho adopta-se a sugestão de Rossini⁷, em que cada medição termoquímica deve ter associada um intervalo de incerteza que, por convenção⁹¹, deve ser duas vezes o desvio padrão da média. Assim, todos os r<u>e</u> sultados são expressos na forma

$$\Delta H_R \pm 2 \sigma_R$$

o que corresponde a um grau de confiança de 95%.

3.2 - DETERMINAÇÕES EXPERIMENTAIS

A variação de entalpia a 298.15 K, para uma reacção reversível e het<u>e</u> rogênea, r, representada pela equação

$$n_a A + n_b B + \dots \rightleftharpoons n_m M + n_n N + \dots,$$

pode ser medida, indirectamente, por calorimetria de solução-reacção usando um solvente apropriado, em que todos os componentes sejam solúveis. Os reagentes puros A, B, ..., nas respectivas proporções estequiométricas, são sucessivame<u>n</u> te dissolvidos num dado volume de solvente puro, a 298.15 K e são medidas as respectivas entalpias de dissolução, respectivamente ΔH_a , ΔH_b , De modo an<u>ã</u> logo, os produtos puros M, N, ..., nas respectivas proporções estequiométricas, são sucessivamente dissolvidos em igual volume do mesmo solvente puro a 298.15K e os correspondentes valores de ΔH são sucessivamente medidos. Os dois sistemas são termodinâmicamente equivalentes, desde que se atinja o equilibrio em ambos os sistemas durante o tempo da experiência. Assim, pela lei de Hess, calcula-se ΔH_r

$$\Delta H_{r} = [n_{a} \Delta H_{a} + n_{b} \Delta H_{b} + \dots] - [n_{n} \Delta H_{n} + n_{m} \Delta H_{m} + \dots]$$

A entalpia de formação padrão de qualquer dos componentes pode ser calculada, a 298.15 K, se se conhecer o valor correspondente para todos os outros componentes, pela expressão

$$- \Delta H_{X}^{O} = \left[n_{a} \Delta H_{A}^{O} + n_{b} \Delta H_{B}^{O} + \ldots\right] - \left[n_{n} \Delta H_{N}^{O} + n_{m} \Delta H_{M}^{O} + \ldots\right]$$

em que ΔH_{x}^{0} é a entalpia de formação padrão do composto x.

3.2.1 - PARÂMETROS TERMODINÂMICOS AUXILIARES

Na tabela 3.5 encontram-se registados os valores dos parametros termo dinâmicos utilizados no calculo das entalpias de formação padrão dos ditiocarba matos de dialquilamónio e dos dialquilditiocarbamatos metálicos estudados.

COMPOSTO	∆H ^o f/kJ mol ⁻¹	REF.
H ₂ O (ℓ)	- 285.830 ± 0.042	9 2
HC1 em 26.61H ₂ 0 (ℓ)	$-886.87 \pm 0.01^{(a)}$	9 2
H ₂ SO ₄ em 53.54H ₂ O (<i>l</i>)	$-164.44 \pm 0.01^{(a)}$	9 2
$CS_{2}(\ell)$	89.7 ± 0.7	9 2
FeC1 ₃ (c)	- 399.49 [±] 0.26	9 2
FeCl ₂ (c)	- 341.79 ± 0.21	9 2
CoSO4 6.00H20 (c)	-2683.6 ± 2.1	92
CrCl ₃ .6.00H ₂ 0 (c)	$-2455.8 \pm 8.4^{(b)}$	9 2
NiCl_+6.00H_0 (c)	-2103.17 ± 0.21	9 2
CuSO4.5.00H20 (c)	-2279.65 ± 0.21	9 2
$Et_{2}NH(\ell)$	- 103.8 ± 1.3	93
$Pr_{2}NH(\ell)$	$-153.6 \pm 2.0^{(c)}$	
\Pr_{i}^{i} NH (ℓ)	$-175.3 \pm 2.0^{(c)}$	
$Bu_{o}NH(\ell)$	$-204.3 \pm 2.5^{(c)}$	
$Bu_2^{i}NH(\ell)$	$-211.0 \pm 2.5^{(c)}$	

± 2.1

± 3.2

± 2.9

+ 3.6

± 3.6

Tabela 3.5 - Entalpias de formação padrão a 298.15 K

Et2NH2S2CNEt2 (c)

Pr2NH2S2CNPr2 (c)

Pr2NH2S2CNPr2 (c)

Bu2NH2S2CNBu2 (.c)

Bu2NH2S2CNBu2 (c)

(a) Valores obtidos por interpolação gráfica.

(b) Por medida da condutibilidade molar de uma solução 10^{-3} M do cloreto de crómio (III) com seis moléculas de água de cristalização utilizado, verificou-se que correspondia ao isomero de estrutura $[Cr(H_{2}0)_{5}C1]C1_{2}.H_{2}0$ para o qual não hã, na literatura, valor para a entalpia de formação padrão, pelo que o valor foi estimado a partir dos valores das entalpias de formação padrão existentes na literatura para outros isomeros, por considerações estruturais.

- 248.9

- 348.2

- 343.5

- 448.9

- 458.2

este trabalho

este trabalho

este trabalho

este trabalho

este trabalho

(c) Os valores adoptados para as entalpias de formação das aminas secundárias no estado líquido foram calculados a partir de valores de entalpias de for mação no estado gasoso calculados a partir de parâmetros estruturais⁹³ e de valores de ΔH^O_{vap} de Wadsö⁹⁵ (ver Apêndice 1).

3.2.2 - DETERMINAÇÃO EXPERIMENTAL DAS ENTALPIAS DE FORMAÇÃO PADRÃO DE DIALQUIL-DITIOCARBAMATOS DE DIALQUILAMÓNIO

As entalpias de formação padrão de dialquilditiocarbamatos de dialquilamónio com o grupo alquil, R=etil, n-propil,iso-propil, n-butil e iso-butil foram determinadas a partir da reacção representada por

 $2 R_2 NH (\ell) + CS_2 (\ell) \longrightarrow R_2 NH_2 S_2 CNR_2 (c)$

Inicialmente utilizou-se como solvente calorimétrico tolueno, no estudo do composto com o grupo R=etil; os resultados obtidos foram confirmados usando-se outros solventes como dimetilformamida, pura, Merck, tendo-se concluido que a dimetilformamida parecia ser um bom solvente para todos os cinco compostos, por nele todos os componentes serem satisfatoriamente solúveis e as reacções de dis solução ou formação rápidas, desde que as condições fossem rigorosamente manti das, ainda assim os valores determinados foram posteriormente confirmados por calorimetria de combustão em bomba rotativa (CAP. 4).

O diagrama termoquímico utilizado nas determinações efectuadas, esta representado no esquema 3.1.

ESQUEMA 3.1

 $\Delta H_r = \Delta H_1 + 2 \Delta H_2 - \Delta H_3 + \Delta H_4$

Ao solvente calorimétrico adicionou-se $\approx 0.2 \text{ cm}^3 \text{ de CS}_2(\ell)$ pois, como se viu em (2.1), o composto forma-se em excesso de sulfureto de carbono e assim garante-se a sua formação quantitativa. Em seguida adicionaram-se, suces sivamente, quantidades estequiométricas de amina (ampola calorimétrica) e sulfureto de carbono (microsseringa) e mediram-se as respectivas entalpias de dis solução, $\Delta H_1 e \Delta H_2$. A uma segunda quantidade do mesmo solvente, com o mesmo ex cesso de sulfureto de carbono, adicionou-se uma ampola contendo o respectivo dialquilditiocarbamato de dialquilamónio e mediu-se o valor ΔH_3 . Usou-se como base de estequiometria 6×10^{-4} mol de composto. Os resultados experimentais, valores de ΔH_r e calculos das respectivas entalpias de formação padrão encontram-se seguidamente apresentadas. A identidade das duas soluções finais A e A' foi confirmada por traçado de espectros de infra-vermelho.

3.2.2.1 - Determinação experimental da entalpia de formação padrão do dietilditiocarbamato de dietilamónio

Os valores das diferentes determinações experimentais efectuadas, en contram-se registados nas Tabelas 3.6, 3.7 e 3.8, conduzindo ao cálculo de

$$\Delta H_{m} = -130.98 \pm 0.63 \text{ kJ mol}^{-1}$$

A partir deste valor e dos valores das entalpias de formação padrão relevantes registados na Tabela 3.5, calculou-se

$$\Delta H_{f}^{0}$$
 (Et₂NH₂S₂ CNEt₂, c) = -248.9 ± 2.1 kJ mol⁻¹

3.2.2.2 - Determinação experimental da entalpia de formação dos dialquilditiocarbamatos de dialquilamónio com o grupo alquil, R = n-propil, iso--propil, n-butil, iso-butil

Os valores das diferentes determinações experimentais efectuadas, e<u>n</u> contram-se registados nas Tabelas 3.9 a 3.17.

massa/g	10 ² n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
1.263	1.658	263.17	0.0880	1.400
1.263	1.658	263.63	0.0622	0.989
1.263	1.658	263.67	0.0801	1.274
1.263	1.658	259.55	0.0665	1.041
1.263	1.658	259.51	0.0874	1.368

Tabela 3.6 - Entalpia de dissolução de $CS_2(\ell)$ em tolueno (130 cm³) + 0.2 cm³ CS₂(ℓ)

Tabela 3.7 - Entalpia de dissolução de $Et_2NH(\ell)$ em tolueno (130 cm³) + 0.2 cm³ CS₂ (ℓ) + CS₂ (ℓ)

massa/g	10 ³ n / mol	ε/ЈК ^{−1}	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.2039	2.7878	260.68	0.54034	-50.526
0.2040	2.7892	259.39	0.54818	-50.979
0.2020	2.7618	257.85	0.54409	-50.797
0.1976	2.7017	258.87	0.52105	-49.926
0.2036	2.7837	259.58	0.54341	-50.673

∆H/kJ mol	ΔΤ/Κ	ε/JK ⁻¹	10 ³ n / mol	massa/g
31.510	0.16026	259.54	1.320	0.2937
30.878	0.16790	263.35	1.432	0.3185
31.202	0.16446	259.16	1.366	0.3038
30.514	0.17596	255.61	1.474	0.3278
31.078	0.17346	257.28	1.436	0.3194

Tabela 3.8 - Entalpia de dissolução de $Et_2NH_2S_2CN Et_2$ (c) em tolueno (130 cm³) + 0.2 cm³ CS₂ (ℓ)

Tabela 3.9 - Entalpia de dissolução de $CS_2(\ell)$ em DMF (120 cm³) + 0.2 cm³ $CS_2(\ell)$

massa/g	10 ² n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
 0.94153	1.2367	303.70	0.1535	3.769
0.89709	1.1784	304.20	0.1425	3.679
0.91906	1.2072	301.69	0.1457	3.641
0.40275	0.52902	300.14	0.0670	3.801
0.70038	0.91997	310.39	0.1127	3.802
0.70035	0.91993	308.24	0.1092	3.660

massa/g	10 ³ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.32034	3.1657	306.85	0.5786	-56.083
0.32604	3.2221	306.05	0.5940	-56.421
0.25651	2.5349	306.45	0.4642	-56.118
0.28609	2.8301	304.04	0.5240	-56.294
0.22198	2.1937	302.99	0.4065	-56.145

Tabela 3.10 - Entalpia de dissolução de $Pr_2NH(\ell)$ em DMF (120 cm³) + 0.2 cm³ CS₂(\ell) + CS₂(\ell)

Tabela 3.11 - Entalpia de dissolução de $Pr_2NH_2S_2CNPr_2$ (c) em DMF (120 cm³) + 0.2 cm³ CS₂ (ℓ)

massa/g	10 ² n / mo1	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.21861	7.8488	315.15	0.0549	22.069
0.15170	5.4465	312.24	0.0382	22.071
0.15023	5.3938	312.67	0.0380	22.028
0.14864	5.3367	313.87	0.0375	22.055
0.15917	5.7147	313.42	0.0400	21.938

Tabela	3.1	2 -	Entalpia	de dissolução de Pr2 NH	(L) em
			DMF (120	cm^{3}) + 0.2 cm^{3} CS ₂ (ℓ) + 1	$cs_2(l)$

∆H/kJ mol ⁻	∆ T /K	ε/JK ⁻¹	10 ³ n / mol	massa/g
-14.475	0.1342	304.03	2.8185	0 28521
-14.194	0.1197	304.37	2.5668	0.25973
-14.706	0.1272	305.50	2 6424	0.25375
-14.747	0.1103	305.04	2 2816	0.20739
-14.055	0.1419	306.65	3 0961	0.23007

 $\Delta H_2 = -14.44 \pm 0.28 \text{ kJ mol}$

Tabela 3.13 - Entalpia de dissolução de $Pr_2^i NH_2S_2CNPr_2^i$ em DMF (120 cm³) + CS₂ (ℓ) 0.2 cm³

nassa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻
20314	7,2934	310.04	0.1343	57.083
10058	7,1656	308.49	0.1336	57.517
19643	7.0525	310.42	0.1305	57.440
19694	7.0708	310.87	0.1313	57.726
0.20094	7.2144	311.53	0.1331	57.475

massa/g	10 ³ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.28409	2.1980	310.11	0.3822	-54.347
0.27746	2.1467	311.90	0.3798	-55.182
0.28378	2.1956	309.17	0.3926	-55.283
0.27550	2.1315	306.82	0.3820	-54.987
0.26451	2.0465	309.50	0.3605	-54.520

Tabela 3.14 - Entalpia de dissolução de $Bu_2 NH (\ell)$ em DMF (120 cm³) + CS₂ (ℓ) 0.2 cm³ + CS₂ (ℓ)

Tabela 3.15 - Entalpia de dissolução de $Bu_2NH_2S_2CNBu_2$ (c) em DMF (120 cm³) + CS₂ (ℓ) 0.2 cm³

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.18976	5.6707	306.10	0.0608	32.819
0.18985	5.6734	309.25	0.0600	32.705
0.18810	5.6211	309.78	0.0602	33.176
0.19419	5.8031	309.51	0.0620	33.068
0.19036	5.6886	307.01	0.0612	33.029

44

Tabela 3.16 - Entalpia de dissolução de $Bu_2^i NH(\ell)$ em DMF (120 cm³) + CS₂(ℓ) 0.2 cm³ + CS₂(ℓ)

massa/g	10 ³ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻
0.31076	2.4043	309.21	0.3874	-49.822
0.30222	2.3383	310.39	0.3770	-50.044
0.29867	2.3108	309.69	0.3742	-50.150
0 31259	2.4185	308.46	0.3925	-50.060
0.30238	2.3395	308.06	0.3814	-50.022

Tabela 3.17 - Entalpia de dissolução de $Bu_2^i NH_2S_2CNBu_2^i$ (c) em DMF (120 cm³) + CS₂ (ℓ) 0.2 cm³

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol
0 20116	6.0113	300.19	0.0406	20.275
0 20475	6.1186	301.57	0.0414	20.405
0.21654	6.4710	302.88	0.0440	20.595
0.19111	5.7110	301.23	0.0383	20.202
0.18969	5.6686	300.41	0.0381	20.191

Para cada reacção calcularam-se os valores de ΔH_r para a equação representada no esquema 3.1 (ver Tabela 3.18) e, com auxílio dos valores das en talpias de formação padrão relevantes registados na tabela 3.5, calcularam-se as entalpias de formação padrão dos diferentes dialquilditiocarbamatos de dial quilamónio que se encontram registadas na Tabela 3.18.

R	∆H _r / kJ mol ⁻¹	$\Delta H_{f}^{0} R_{2} N H_{2} S_{2} C N R_{2} (c) / kJ mo 1^{-1}$
Pr	- 130.72 ± 0.20	- 348.2 ± 3.2
Pr ⁱ	- 82.60 ± 0.45	- 343.5 ± 2.9
Bu	- 139.31 ± 0.55	- 458.2 ± 3.6
Bu ⁱ	- 116.64 ± 0.22	- 488.9 ± 3.6

Tabela 3.18 - Entalpias de formação padrão de dialquilditiocarbamatos de dialquilamónio

3.2.3 - DETERMINAÇÃO EXPERIMENTAL DAS ENTALPIAS DE FORMAÇÃO PADRÃO DE DIALQUIL-DITIOCARBAMATOS DE COBRE (II)

As entalpias de formação padrão de dialquilditiocarbamatos de cobre (II), com o grupo alquil, R = etil, n-propil, iso-propil, n-butil e iso-butil, foram calculadas a partir da determinação experimental da entalpia padrão da reacção indicada no esquema seguidamente apresentado, tendo-se usado, como sol vente calorimétrico, dimetilformamida (120 cm³), solvente em que todos os componentes se dissolvem rapidamente e em que o complexo se forma, sendo a reacção de formação igualmente rápida; a base de estequiometria usada, foi de 4.0×10^{-4} mol de complexo.

 $\Delta H_{r(R)} = 48.54 \ \Delta H_{1} + \Delta H_{2} + 2 \ \Delta H_{3} - \Delta H_{4} - 2 \ \Delta H_{5} - \Delta H_{6} + \Delta H_{7}$

A partir dos valores de $\Delta H_1 = \Delta H_6$ determinados experimentalmente, para os dif<u>e</u> rentes complexos, e registados nas Tabelas 3.19 a 3.40, calculou-se para cada complexo o valor de $\Delta H_{r(R)}$.

A partir destes valores e dos valores das entalpias de formação padrão relevantes da Tabela 3.5, calcularam-se os valores das entalpias de forma ção padrão dos vários complexos de cobre (II), os quais se encontram registados, conjuntamente com os valores calculados para os diferentes $\Delta H_{r(R)}$ na Tabe la 3.41.

massa/g	10 ² n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.25034	1.3890	303.95	0.1582	-3.462
0.31046	1.7233	305.66	0.1932	-3.427
0.35253	1.9568	299.91	0.2242	-3.434
0.39177	2.1747	309.65	0.2349	-3.372
0.35070	1.9467	303.24	0.2230	-3.474

Tabela 3.19 - Entalpia de dissolução de H_20 (ℓ) em DMF (120 cm³)

Tabela 3.20 - Entalpia de dissolução de $CuSO_4$ 5.00 H_2O (c) em DMF (120 cm³) + H_2O (ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.12109	4.8498	289.01	0.0247	14.719
0.11440	4.5819	289.64	0.0235	14.855
0.11630	4.6580	286.92	0.0236	15.399
0.11023	4.4149	289.87	0.0225	14.773
0.11765	4.7120	283.07	0.0250	15.019

massa/g	10 ⁴ n / mol	€/JK ⁻¹	∆T∕K	∆H/kJ mol ⁻¹
0.16699	7.5080	288.57	0.0295	-11.607
0.18035	8.1086	302.68	0.0321	-11.982
0.17847	8.0241	292.45	0.0332	-12.100
0.17462	7.8510	286.78	0.0325	-11.872
0.18335	8.2435	290.01	0.0342	-12.031

Tabela 3.21 - Entalpia de dissolução de $Et_2NH_2S_2CN Et_2$ (c) em DMF (120 cm³) + H_2O (ℓ) + CuSO₄·5.00H₂O (c)

Tabela 3.22 - Entalpia de dissolução de [Cu $(S_2CN Et_2)_2$] (c) em DMF (120 cm³)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.14645	4.0672	297.19	0.0475	32.881
0.14528	4.0347	308.67	0.0435	33.279
0.14269	3.9627	305.62	0.0378	33.009
0.14271	3.9633	305.21	0.0430	33.114
0.12835	3.5645	305.20	0.0386	33.050

massa/g	10 ³ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.07813	1.0682	297.19	0.0025	0.696
0.06201	0.84783	308.67	0.0020	0.728
0.07008	0.95037	296.82	0.0037	0.625
0.05106	0.69811	305.62	0.0027	0.657
0.06724	0.91933	312.21	0.0020	0.679

Tabela 3.23 - Entalpia de dissolução de Et_2NH (ℓ) em

DMF (120 cm³) + $[Cu(S_2CN Et_2)_2]$ (c)

Tabela 3.24 - Entalpia de dissolução de $H_2SO_4 \cdot 53.54H_2O(\ell)$ em DMF (120 cm³) + [Cu(S₂CN Et₂)₂] (c) + Et₂NH (ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.40035	3.7676	310.16	0.3802	-294.30
0.41365	3.8928	312.32	0.3670	-294.44
0.38230	3.5978	312.78	0.3375	-293.41
0.40941	3.8529	310.20	0.3660	-294.67
0.40092	3.7730	306.78	0.3620	-294.34

50

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.22896	8.2204	303.93	0.0337	-12.460
0.21439	7.6973	302.25	0.0318	-12.487
0.21799	7.8343	300.57	0.0335	-12.853
0.21829	7.8375	300.43	0.0339	-12.995
0.22017	7.9049	302.90	0.0330	-12.645

Tabela 3.25 - Entalpia de dissolução de $Pr_2NH_2S_2CN Pr_2$ (c) em DMF (120 cm³) + H_2O (ℓ) + CuSO₄· 5.00H₂O (c)

Tabela 3.26 - Entalpia de dissolução de $[Cu(S_2CN Pr_2)_2]$ (c) em DMF (120 cm³)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆ T/K	∆H/kJ mol
0.16655	4.0018	308.27	0.0463	35.666
0.16685	4.0090	301.72	0.0475	35.749
0.16325	3.9234	299.00	0.0472	35.971
0.16500	3.9645	303.38	0.0471	36.043
0.16510	3.9669	303.53	0.0470	35.962

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.09577	9.4644	302.21	0.0084	2.682
0.08358	8.2597	308.27	0.0074	2.762
0.11474	11.339	303.53	0.0103	2.757
0.07622	7.5324	301.72	0.0068	2.724
0.11603	11.467	299.00	0.0102	2.713

Tabela 3.27 - Entalpia de dissolução de $Pr_2NH(\ell)$ em DMF (120 cm³) + [Cu(S₂CN Pr_2)₂] (c)

Tabela 3.28 - Entalpia de dissolução de H_2SO_4 ·53.54 $H_2O(\ell)$ em DMF (120 cm³) + [Cu(S₂CN Pr₂)₂] (c) + Pr₂NH (ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.36556	3.4402	307.21	0.3114	-278.08
0.45161	4.2500	309.51	0.3810	-277.47
0.41717	3.9259	312.13	0.3492	-277.63
0.41447	3.9005	309.46	0.3500	-277.68
0.43291	4.0741	309.30	0.3660	-277.86

Tabela 3.29 - Entalpia de dissolução de $Pr_2^i NH_2 CN Pr_2^i$ (c) em DMF (120 cm³) + $H_2 O (\ell) + [Cu(S_2 CN Pr_2^i)_2]$ (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.22135	7.9472	311.59	0.0954	-37.404
0.21893	7.8603	307.49	0.0965	-37.750
0.21764	7.8140	310.67	0.0948	-37.691
0.21423	7.6916	306.44	0.0948	-37.769
0.21961	7.8848	307.20	0.0970	-37.792

Tabela 3.30 - Entalpia de dissolução de $[Cu(S_2CN Pr_2^i)_2]$ (c) em DMF (120 cm³)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.16748	4.0241	305.59	0.0373	28.326
0.16563	3.9797	304.65	0.0368	28.171
0.16920	4.0655	305.50	0.0375	28.179
0.16523	3.9701	307.67	0.0364	28.209
0.16536	3.9732	305.53	0.0365	28.068

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.09873	9.7569	305.53	0.0067	2.098
0.09351	9.2410	305.50	0.0064	2.116
0.12187	12.044	305.65	0.0082	2.081
0.08289	8.1915	305.50	0.0057	2.126
0.13880	13.717	305.59	0.0095	2.116

Tabela 3.31 - Entalpia de dissolução de $Pr_2^i NH(\ell)$ em DMF (120 cm³) + [Cu(S₂CN $Pr_2^i)_2$] (c)

Tabela 3.32 - Entalpia de dissolução de H_2SO_4 53.54 $H_2O(\ell)$ em DMF (120 cm³) + [Cu(S₂CN Prⁱ₂)₂] (c) + Prⁱ₂NH (ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.39841	3.7494	309.76	0.3340	-276.59
0.41731	3.9273	309.78	0.3506	-276.55
0.39979	3.7641	309.49	0.3360	-276.26
0.37267	3.5072	309.28	0.3127	-275.75
0.39556	3.7226	309.84	0.3322	-276.41

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.26598	7.9484	303.23	0.0200	-7.630
0.26014	7.7739	305.80	0.0195	-7.671
0.25180	7.5246	300.50	0.0210	-8.386
0.24669	7.3719	302.87	0.0193	-7.929
0.25888	7.7362	305.50	0.0207	-8.174

Tabela 3.33 - Entalpia de dissolução de $Bu_2NH_2S_2CN Bu_2$ (c) em DMF (120 cm³) + $H_2O(\ell)$ + $CuSO_4$ 5.00 H_2O (c)

Tabela 3.34 - Entalpia de dissolução de $[Cu(S_2CN Bu_2)_2]$ (c) em DMF (120 cm³)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.19057	4.0349	313.21	0.0554	43.004
0.18740	3.9678	313.21	0.0550	43.416
0.18047	3.8211	312.72	0.0528	43.212
0.18153	3.8435	311.93	0.0532	43.176
0.17963	3.8033	310.52	0.0526	42.945

massa/g	10 ³ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol
0.13256	1.0256	313.21	0.0146	4.459
0.10700	0.82785	309.72	0.0120	4.490
0.18799	1.4545	312.00	0.0210	4.505
0.13523	1.0463	312.50	0.0150	4.480
0.15186	1.1749	312.40	0.0168	4.467

Tabela 3.35 - Entalpia de dissolução de $Bu_2NH(\ell)$ em DMF (120 cm³) + [Cu(S₂CN Bu₂)₂] (c)

Tabela 3.36 - Entalpia de dissolução de H_2SO_4 53.54 $H_2O(\ell)$ em DMF (120 cm³) + [Cu(S₂CN Bu₂)₂] (c) + Bu₂NH (ℓ)

	and the second s	
30 312.77	0.3164	-282.10
314.55	0.3506	-279.97
312.50	0.3032	-282.36
312.46	0.3161	-281.35
314.55	0.3223	-279.85
	30 312.77 314.55 314.55 56 312.50 95 312.46 27 314.55	30 312.77 0.3164 91 314.55 0.3506 56 312.50 0.3032 95 312.46 0.3161 27 314.55 0.3223

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.25449	7.6050	309.23	0.0472	-19.123
0.25487	7.6164	300.92	0.0488	-19.281
0.25820	7.7159	303.93	0.0494	-19.458
0.26908	8.0410	293.93	0.0533	-19.483
0.26658	7,9663	294.94	0.0516	-19.104

Tabela 3.37 - Entalpia de dissolução de $Bu_2^i NH_2 S_2 CN Bu_2^i$ (c) em DMF (120 cm³) + $H_2 O (\ell)$ + $CuSO_4 \cdot 5.00H_2 O$ (c)

Tabela 3.38 - Entalpia de dissolução de $[Cu(S_2CN Bu_2^i)_2]$ (c) em DMF (120 cm³)

massa/g	10 ⁴ n / mol	€/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.19058	4.0351	301.50	0.0239	17.858
0.18939	4.0100	297.60	0.0236	17.515
0.18323	3.8795	301.75	0.0230	17.889
0.18779	3.9761	299.54	0.0240	18.080
0.17920	3.7942	304.65	0.0223	17.905

massa/g	10 ⁴ n / mo1	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.11612	8.9841	301.50	0.0130	4.363
0.12251	9.4785	297.60	0.0140	4.396
0.12668	9.8012	301.75	0.0142	4.372
0.15987	12.369	299.54	0.0180	4.359
0.16440	12.720	304.65	0.0180	4.311

Tabela 3.39 - Entalpia de dissolução de $Bu_2^i NH(\ell)$ em DMF (120 cm³) + [Cu(S₂CN $Bu_2^i)_2$] (c)

Tabela 3.40 - Entalpia de dissolução de $H_2SO_4 \cdot 53.54H_2O(\ell)$ em DMF (120 cm³) + [Cu(S₂CN Buⁱ₂)₂] (c) + Buⁱ₂NH(ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.34508	3.2475	310.92	0.2822	-270.18
0.34749	3.2702	309.15	0.2853	-269.71
0.33811	3.1819	311.50	0.2767	-270.69
0.36683	3.4522	310.27	0.2982	-268.01
0.36282	3.4145	310.65	0.2976	-270.76
R	∆H _{r(R)} /kJ mol ⁻¹	$\Delta H_{f}^{0} \{ [Cu(S_{2}CNR_{2})_{2}], c \} / kJ mo1^{-1}$		
-----------------	--	--		
Et	+ 84.42 ± 0.63	- 169.6 ± 3.6		
n-Pr	+ 59.48 ± 0.86	- 293.4 ± 5.4		
Pr ⁱ	+ 17.00 ± 0.50	- 283.0 ± 5.0		
n-Bu	$+ 61.55 \pm 0.77$	- 409.9 ± 6.3		
Bu ⁱ	+ 53.2 ± 1.1	- 386.2 ± 6.3		

Tabela 3.41 - Estudo termoquímico de dialquilditiocarbamatos de cobre (II)

3.2.4 - DETERMINAÇÃO EXPERIMENTAL DAS ENTALPIAS DE FORMAÇÃO PADRÃO DE DIAL-QUILDITIOCARBAMATOS DE NÍQUEL (II)

As entalpias de formação padrão de cinco dialquilditiocarbamatos de níquel (II), em que os ligandos são os mesmos que se usaram para os complexos de cobre (II) (ver 3.2.3) foram determinadas por um processo inteiramente an<u>a</u> logo, usando o mesmo solvente e a mesma base de estequiometria, de acordo com o esquema apresentado na página seguinte.

Os valores das entalpias de dissolução-reacção das diferentes espécies, necessários ao cálculo dos vários $\Delta H_{r(R)}$ dos complexos em estudo, encontram-se registados nas Tabelas 3.42 a 3.62.

Assim, os valores das entalpias de formação padrão dos complexos cristalinos foram calculados pela equação

$$\Delta H_{r(R)} = \Delta H_{f}^{0} [Ni(S_{2}CNR_{2})_{2}] (c) + 2 \Delta H_{f}^{0} R_{2}NH (\ell) + 2 \Delta H_{f}^{0} HC1 em 26.61H_{2}O + 6 \Delta H_{f}^{0} H_{2}O (\ell) - \Delta H_{f}^{0} NiCl_{2} \cdot 6.00H_{2}O (\ell) - 2 \Delta H_{f}^{0} R_{2}NH_{2}S_{2}CNR_{2}(c)$$

Na Tabela 3.63, encontram-se resumidos os valores calculados para os diferentes $\Delta H_{r(R)} = \Delta H_{f}^{o} \{ [Ni(S_2CNR_2)_2], c \}$ relativos aos complexos estudados.

ESQUEMA 3.3

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.10974	4.6167	312.41	0.0518	-35.053
0.11987	5.0429	313.11	0.0557	-34.584
0.11933	5.0202	310.61	0.0565	-34.958
0.11289	4.7493	311.60	0.0583	-34.576
0.14643	6.1603	307.44	0.0695	-34.685

Tabela 3.42 - Entalpia de dissolução de NiCl₂.6.00H₂0 (c) em DMF (120 cm³) + H₂0 (ℓ)

Tabela 3.43 - Entalpia de dissolução de $Et_2NH_2S_2CN Et_2(c)$ em DMF (120 cm³) + $H_2O(\ell)$ + NiCl₂ 6.00 $H_2O(c)$

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.17174	7.7215	300.05	0.0070	2.720
0.17117	7.6959	302.30	0.0070	2.755
0.16110	7.2432	303.10	0.0065	2.720
0.17739	7.9756	301.52	0.0070	2.646
0.17180	7.7242	300.40	0.0071	2.761

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.16683	4.6961	302.85	0.0404	26.054
0.16011	4.5070	300.05	0.0390	25.964
0.15496	4.3620	303.53	0.0374	26.025
0.15842	4.4594	300.36	0.0387	26.066
0.16774	4.7217	303.39	0.0405	26.023

Tabela 3.44 - Entalpia de dissolução de $[Ni(S_2CN Et_2)_2]$ (c) em DMF (120 cm³)

Tabela 3.45 - Entalpia de dissolução de $Et_2NH(\ell)$ em DMF (120 cm³) + [Ni(S₂CN Et_2)₂] (c)

massa/g	10 ³ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.15910	2.1753	300.50	0.0090	1.243
0.07824	1.0697	299.85	0.0045	1.261
0.06644	0.90839	303.50	0.0037	1.236
0.07528	1.0293	302.06	0.0043	1.262
0.08213	1.1229	303.53	0.0048	1.297

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.32958	6.3891	305.17	0.3530	-168.61
0.40758	7.9001	307.17	0.4343	-168.84
0.37898	7.3467	307.17	0.4008	-167.58
0.37719	7.3120	306.22	0.4016	-168.19
0.42266	8.1935	309.50	0.4440	-167.72

Tabela 3.46 - Entalpia de dissolução de HCl $26.61H_20$ (ℓ) em DMF (120 cm³) + [Ni(S₂CN Et₂)₂] (c) + Et₂NH (ℓ)

Tabela 3.47 - Entalpia de dissolução de $Pr_2NH_2S_2CN Pr_2$ (c) em DMF (120 cm³) + $H_2O(\ell)$ + NiCl₂ 6.00H₂O (c)

massa/g	10. ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.21873	7.8609	294.20	0.0036	1.347
0.22134	7.9547	294.29	0.0037	1.369
0.21039	7.5612	300.54	0.0035	1.391
0.21434	7.7031	305.04	0.0035	1.386
0.21189	7.6151	304.36	0.0035	1.399
	∆H ₃ =	+1.38 ± 0.02	kJ mol ⁻¹	

massa/g	10 ⁴ n / mol	ε/Jk ^{−1}	ΔΤ/Κ	∆H/kJ mol ⁻
0.16567	4.0274	300.87	0.0416	31.738
0.16039	3.8990	300.98	0.0405	31.173
0.16168	3.9304	305.70	0.0400	31.111
0.16516	4.0150	303.05	0.0413	31.783
0.15266	3.7110	299.70	0.0393	31.078

Tabela 3.48 - Entalpia de dissolução de $[Ni(S_2CN Pr_2)_2]$ (c) em DMF (120 cm³)

Tabela 3.49 - Entalpia de dissolução de Pr_2NH (ℓ) em

DMF (120 cm³) + [Ni(S₂CN Pr₂)₂] (c)

massa/g	10 ³ n ∕ mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.11849	1.1710	299.87	0.0106	2.714
0.12961	1.2809	300.87	0.0110	2.584
0.12838	1.2687	300.98	0.0109	2.586
0.09604	0.94911	305.70	0.0080	2.577
0.08961	0.8556	300.05	0.0080	2.713
	ΔH ₅ =	+2.64 ± 0.06	kJ mol ⁻¹	

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆ T /K	∆H/kJ mol ⁻¹
0.36144	7.0067	310.25	0.3860	-170.92
0.39706	7.6972	310.55	0.4258	-171.79
0.37332	7.2370	313.24	0.3963	-171.53
0.34075	6.6056	310.02	0.3660	-171.77
0.40700	7.8899	312.24	0.4310	-171.53

Tabela 3.50 - Entalpia de dissolução de HCl $26.61H_20$ (ℓ) em DMF (120 cm³) + [Ni(S₂CN Pr₂)₂] (c) + Pr₂NH (ℓ)

Tabela 3.51 - Entalpia de dissolução de $Pr_2^i NH_2S_2CN Pr_2^i$ (c) em DMF (120 cm³) + $H_2O(\ell)$ + NiCl₂ 6.00H₂O (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.21208	7.6219	305.02	0.0362	-14.486
0.21651	7.7811	305.67	0.0367	-14.417
0.21711	7.8027	305.05	0.0379	-14.817
0.21811	7.8386	305.00	0.0384	-14.941
0.21930	7.8814	306.00	0.0373	-14.482

65

massa/g	10 ⁴ n / mol	ε/JK ^{−1}	∆T/K	∆H/kJ mol ⁻¹
0.15768	3.8331	329.72	0.0198	17.032
0.15862	3.8560	333.77	0.0194	16.792
0.16822	4.0894	328.57	0.0205	16.471
0.15451	3.7561	323.94	0.0195	16.818
0.15607	3.7940	330.70	0.0193	16.864

Tabela 3.52 - Entalpia de dissolução de $[Ni(S_2CN Pr_2^i)_2]$ (c) em DMF (120 cm³)

Tabela 3.53 - Entalpia de dissolução de Pr_2^i NH (ℓ) em

DMF (120 cm³) + [Ni(S₂CN Pr_2^i)₂] (c)

massa/g	10 ⁴ n / mol ε/JK ⁻¹ ΔT		∆T/K	∆H/kJ mol ⁻¹
0.08036	7.9415	333.77	0.0060	2.522
0.14141	13.975	325.53	0.0112	2.609
0.07788	7.6964	323.94	0.0061	2.568
0.12904	12.904	325.74	0.0100	2.554
0.09274	9.1649	327.32	0.0071	2.542

Tabela 3.54 - Entalpia de dissolução de HCl 26.61 H_2^0 (ℓ) em

massa/g	10 ⁴ n / mol	10 ⁴ n / mol ε/JK ⁻¹ ΔT/K 7.4359 320.55 0.4070		∆H/kJ mol ⁻¹		
0.38358	7.4359			-175.45		
0.34774	6.7405	321.70	0.3680	-175.63		
0.38862	7.5336	321.25	0.4131	-176.16		
0.39296	7.6177	317.82	0.4205	-175.44		
0.37253	7.2217	320.42	0.3953	-175.39		

DMF (120 cm³) + [Ni(S₂CN Pr₂ⁱ)₂] (c) + Pr₂ⁱ NH (
$$\ell$$
)

Tabela 3.55 - Entalpia de dissolução de $Bu_2NH_2S_2CN Bu_2$ (c) em DMF (120 cm³) + $H_2O(\ell)$ + NiCl₂ 6.00 H_2O (c)

massa/g	a/g 10 ⁴ n/mo1 ε/JK ⁻¹ 635 7.9595 310.05		ΔΤ/Κ	∆H/kJ mol ⁻¹ 6.661	
0.26635			0.0171		
0.27290	8.1552	311.58	0.0175	6.686	
0.26465	7.9087 312.23 0.01		0.0168	6.632	
0.26696	7.9778	313.50	0.0166	6.523	
0.26882	8.0334	309.85	0.0170	6.557	
	∆H ₃ =	+6.61 ± 0.06	kJ mol ⁻¹		

67

massa/g	10 ⁴ n / mol	€/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.18565	3.9714	306.85	0.0472	36.469
0.18501	3.9577	300.66	0.0495	37.604
0.18396	3.9352	300.42	0.0506	38.575
0.18541	3.9662	307.73	0.0498	38.635
0.18411	3.9384	303.17	0.0486	37.411

Tabela 3.56 - Entalpia de dissolução de $[Ni(S_2CN Bu_2)_2]$ (c) em DMF (120 cm³)

Tabela 3.57 - Entalpia de dissolução de $Bu_2NH(\ell)$ em DMF (120 cm³) + [Ni(S₂CN Bu₂)₂] (c)

massa/g	10 ³ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.14060	1.0878	300.25	0.0153	4.223
0.13275	1.0271	301.27	0.0142	4.165
0.12533	0.96967	300.01	0.0134	4.146
0.13475	1.0426	302.15	0.0145	4.202
0.12236	0.94669	300.01	0.0134	4.246

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹	
0.39872	39872 7.7294 322.54		0.4020	-167.75	
0.37491	7.2678	325.76	0.3715	-166.52	
0.41093	7.9661	320.52	0.4160	-167.38	
0.38607	7.4842	326.66	0.3825	-166.95	
0.38033	7.3729	324.25	0.3813	-167.69	

Tabela 3.58 - Entalpia de dissolução de HCl $26.61H_20$ (ℓ) em DMF (120 cm³) + [Ni(S₂CN Bu₂)₂] (c)

Tabela 3.59 - Entalpia de dissolução de $Bu_2^i NH_2S_2CN Bu_2^i$ (c) em DMF (120 cm³) + $H_2O(\ell)$ + NiCl₂ 6.00 H_2O (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹ ΔT/Κ		∆H/kJ mol ⁻¹	
0.26562	7.9377	300.90	0.0194	-7.354	
0.26403	7.8902	302.79	0.0188	-7.215	
0.26667	7.9691	301.05	0.0191	-7.215	
0.26154	7.8158	301.98	0.0189	-7.302	
0.26512	7.9228	300.72	0.0190	-7.212	
	∆H ₃ =	-7.26 ± 0.06 k	J mol ⁻¹		

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.18472	3.9515	306.94	0.0310	24.080
0.18353	3.9260	305.67	0.0311	24.214
0.18692	3.9986	308.39	0.0310	23.909
0.17668	3.7796	307.47	0.0293	23.836
0.18138	3.8800	308.14	0.0300	23.825

Tabela 3.60 - Entalpia de dissolução de $[Ni(S_2CN Bu_2^i)_2]$ (c) em DMF (120 cm³)

Tabela 3.61 - Entalpia de dissolução de Bu $_2^i$ NH (ℓ) em

DMF (120 cm³) + $[Ni(S_2CN Bu_2^i)_2]$ (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.12608	9.7547	306.94	0.0126	3.965
0.11172	8.6437	305.67	0.0112	3.961
0.14941	11.560	310.39	0.0152	4.081
0.14312	11.073	307.47	0.0144	3.998
0.11843	9.1629	306.64	0.0119	3.982
	∆H ₅ = -	+4.00 ± 0.04 k	J mol-1	

Tabela 3.62 - Entalpia de dissolução de HC1 26.61 H_2^0 (ℓ) em

massa/g	/g 10 ⁴ n/mo1 ε/JK ⁻¹ ΔΤ/Κ		∆H/kJ mol ⁻¹		
0.41412	8.0279	319.51 0.4187		-166.64	
0.38395	7.4431	325.25	0.3825	-167.15	
0.41239	7.9944	321.67	0.4177	-168.07	
0.41413	8.0281	328.42	0.4097	-167.60	
0.39550	7.6107	320.20	0.3955	-166.40	
	∆H ₆ = ·	-167.17 ± 0.60	kJ mol ⁻¹		

		3			i -			i		
DMF	(120	cm")	+	$[Ni(S_2CN)]$	$Bu_2')_2$	(c)	+	Bu2	NH	(L)

Tabela 3.63 - Estudo termoquímico de dialquilditiocarbamatos de níquel (II)

R	∆H _{r(R)} / kJ mol ⁻¹	$\Delta H_{f}^{0} \{ [Ni(S_{2}CNR_{2})_{2}], c \} / k Jmo 1^{-1}$
Et	+116.54 ± 0.76	-233.0 ± 3.6
n-Pr	+112.16 ± 0.74	-336.4 ± 5.4
Pr ⁱ	+103.30 ± 0.53	-292.4 ± 5.0
n-Bu	+104.9 ± 1.1	-462.2 ± 6.3
Bu ⁱ	+91.11 ± 0.87	-444.0 ± 6.3

3.2.5 - DETERMINAÇÃO EXPERIMENTAL DE ENTALPIAS DE FORMAÇÃO PADRÃO DE DIALQUILDI-TIOCARBAMATOS DE FERRO (III)

Em condições perfeitamente analogas às utilizadas para os complexos de cobre (II) e de niquel (II), determinaram-se os valores das entalpias de forma ção padrão dos cinco ditiocarbamatos de ferro (III).

As determinações experimentais foram efectuadas de acordo com o indica do no esquema apresentado na página seguinte.

Os valores das diferentes entalpias de dissolução-reacção, necessários ao cálculo dos vários $\Delta H_{r(R)}$ dos complexos em estudo encontram-se registados nas tabelas 3.64 a 3.84.

As entalpias de formação padrão dos vários dialquilditiocarbamatos de ferro(III) cristalinos foram calculadas por aplicação da equação:

$$\Delta H_{r(R)} = \Delta H_{f}^{o} [Fe(S_{2}CNR_{2})_{3}] (c) + 3 \Delta H_{f}^{o} R_{2}NH (\ell) + 3 \Delta H_{f}^{o} HC1 \text{ em } 26.61H_{2}O - - \Delta H_{f}^{o} FeC1_{3} (c) - 3 \Delta H_{f}^{o} R_{2}NH_{2}S_{2}CNR_{2} (c)$$

A Tabela 3.85 resume os valores calculados para os diferentes $\Delta H_{r(R)}^{0} \in \Delta H_{f}^{0} \{ |Fe(S_{2}CNR_{2})_{3}|, c \}$.

Tabela 3.64 - Entalpia de dissolução de FeCl₃ (c) em DMF (120 cm³) + $H_2O(\ell)$

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.08845	5.4529	301.27	0.2145	-118.51
0.06280	3.8716	300.55	0.1524	-118.31
0.09370	5.7766	302.90	0.2260	-118.50
0.07003	4.3173	301.65	0.1695	-118.43
0.07134	4.3981	303.72	0.1720	-118.78

ESQUEMA 3.4

 $\Delta H_{r(R)} = 79.83 \Delta H_1 + \Delta H_2 + 3 \Delta H_3 - \Delta H_4 - 3 \Delta H_5 - 3 \Delta H_6 + \Delta H_7$

73

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.09886	4.4448	301.50	0.0110	7.462
0.09969	4.4821	300.12	0.0107	7.165
0.10013	4.5019	300.20	0.0108	7.202
0.11158	5.0167	298.87	0.0130	7.745
0.10570	4.7528	300.21	0.0120	7.580
	ΔH ₃ = -	+7.43 ± 0.22 k	J mol ⁻¹	

Tabela 3.65 - Entalpia de dissolução de $Et_2NH_2S_2CN Et_2$ (c) em DMF (120 cm³) + H_2O (ℓ) + FeCl₃ (c)

Tabela 3.66 - Entalpia de dissolução de $[Fe(S_2CN Et_2)_3]$ (c) em DMF (120 cm³)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆ T /K	∆H/kJ mol ⁻¹
0.07263	1.4507	300.25	0.0091	18.834
0.07567	1.5114	301.00	0.0094	18.720
0.07484	1.4948	301.73	0.0091	18.369
0.07269	1.4519	314.30	0.0087	18.833
0.07219	1.4419	302.71	0.0090	18.894

Tabela	3.67	-	Entalpia	de dissolução de $Et_2^{NH}(x)$ em	
			DMF (120	cm^3) + [Fe(S ₂ CN Et ₂) ₃] (c)	

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.05514	7.5390	297.48	0.0036	1.421
0.03175	4.3410	280.25	0.0022	1.420
0.06847	9.3615	290.00	0.0045	1.394
0.04754	6.4999	284.78	0.0032	1.402
0.09891	13.523	285.93	0.0069	1.459

Tabela 3.68 - Entalpia de dissolução de $HC1 \cdot 26.61H_20$ (ℓ) em

DMF (120 cm³) + [Fe(S₂CN Et₂)₃] (c) + $Et_2NH(\ell)$

massa/	g 10) ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.2069	3	4.0124	300.96	0.2173	-162.99
0.2164	4	4.1958	300.25	0.2272	-162.58
0.2120	5	4.1109	300.05	0.2233	-162.98
0.2053	9	3.9816	302.38	0.2134	-162.07
0.2063	3	4.0019	299.53	0.2188	-163.77

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T∕K	∆H/kJ mol
0.12597	4.5228	301.98	0.0110	7.345
0.06857	2.4684	299.12	0.0060	7.270
0.04945	1.7754	300.01	0.0044	7.435
0.13953	5.0096	300.22	0.0126	7.551
0.12792	4.5928	303.16	0.0113	7.460

Tabela 3.69 - Entalpia de dissolução de $Pr_2NH_2S_2CN Pr_2$ em DMF (120 cm³) + $H_2O(\ell)$ + FeCl₃ (c)

Tabela 3.70 - Entalpia de dissolução de $[Fe(S_2CN Pr_2)_3]$ (c) em DMF (120 cm³)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆ T/K	∆H/kJ mol ⁻¹
0.08557	1.4632	310.55	0.0115	24.408
0.08696	1.4870	305.23	0.0119	24.427
0.08668	1.4822	305.52	0.0120	24.735
0.08835	1.5107	303.00	0.0124	24.871
0.08670	1.4825	303.61	0.0119	24.371

massa/g	10 ⁴ n / mol	ε/ J K ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
 0.07215	7.1302	310.22	0.0043	1.871
0.09388	9.2776	305.26	0.0058	1.908
0.08587	8.4860	309.89	0.0051	1.862
0.08881	8.7766	304.11	0.0054	1.871
0.06337	6.2625	313.91	0.0038	1.905

Tabela 3.71 - Entalpia de dissolução de
$$Pr_2^{NH}(\ell)$$
 em

DMF (120 cm³) + $[Fe(S_2CN Pr_2)_3]$ (c)

Tabela 3.72 - Entalpia de dissolução de HC1 26.61 H_2^0 (ℓ) em

DMF (120 cm³) + [Fe(S₂CN Pr₂)₃] (c) + Pr₂NH (ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.19892	3.8562	312.24	0.2104	-170.36
0.23521	4.5597	310.19	0.2500	-170.07
0.20972	4.0655	313.17	0.2199	-169.39
0.22267	4.3166	312.00	0.2370	-171.30
0.20174	3.9108	310.74	0.2132	-169.40

Tabela 3.73 - Entalpia de dissolução de $[Pr_2^i NH_2S_2CN Pr_2^i](c)$ em

massa/g	10 ⁴ n / mol	ε/JK ^{−1}	∆T/K	∆H/kJ mol
0.12518	4.49.44	301.79	0.0156	-10.475
0.12546	4.5044	307.53	0.0157	-10.719
0.11729	4.2111	300.77	0.0148	-10.571
0.12127	4.3540	300.02	0.0155	-10.681
0.11960	4.2940	302.27	0.0147	-10.348
	∆H ₃ = ·	-10.56 ± 0.12	kJ mol ⁻¹	

DMF (120 cm³) + H_20 (ℓ) + FeCl₃ (c)

Tabela 3.74 - Entalpia de dissolução de $[Fe(S_2CN Pr_2^i)_3]$ (c) em DMF (120 cm³)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.09081	1.5528	302.78	0.0028	5.460
0.08531	1.4587	307.25	0.0026	5.476
0.08992	1.5376	300.02	0.0028	5.463
0.08685	1.4851	311.34	0.0026	5.451
0.08243	1.4095	303.34	0.0025	5.380
	$\Delta H_4 = -$	+5.45 ± 0.03 k	J mol ⁻¹	

Tabela 3.75 - Entalpia de dissolução de Pr_2^i NH (ℓ) em

1	massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
(0.06385	6.3099	299.19	0.0033	1.564
(0.06519	6.4423	300.00	0.0035	1.630
	0.04796	4.7396	299.53	0.0025	1.580
	0.03912	3.9124	300.15	0.0021	1.611
	0.07054	6.9710	299.82	0.0038	1.634

Tabela 3.76 - Entalpia de dissolução de HC1·26.61 H_2^0 (ℓ) em

DMF (120 cm³) + [Fe(S₂CN Pr₂ⁱ)₃] (c) + Pr₂ⁱ NH (ℓ)

	massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
	0.20739	4.0204	312.00	0.2230	-173.06
	0.20664	4.0058	310.05	0.2237	-173.14
	0.21242	4.1179	310.53	0.2301	-173.52
	0.19280	3.7375	308.25	0.2096	-172.87
	0.20133	3.9029	312.28	0.2177	-174.19
_		∆H ₆ =	-173.36 ± 0.46	kJ mol ⁻¹	

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.14965	4.4721	310.10	0.0271	18.791
0.15203	4.5432	305.40	0.0279	18.755
0.15057	4.4992	308.45	0.0277	18.989
0.15126	4.5202	306.37	0.0278	18.842
0.15572	4.6534	304.25	0.0281	18.372

Tabela 3.77 - Entalpia de dissolução de $Bu_2NH_2S_2CN Bu_2$ (c) em DMF (120 cm³) + H_2O (ℓ) + FeCl₃ (c)

Tabela 3.78 - Entalpia de dissolução de $[Fe(S_2CN Bu_2)_3]$ (c) em DMF (120 cm³)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹					
0.06780	1.0135	306.84	0.0101	30.578					
0.06842	1.0227	307.17	0.0102	30.636					
0.06590	0.9851	303.82	0.0100	30.842					
0.06471	0.9673	304.25	0.0097	30.510					
0.06676	0.9979	305.78	0.0100	30.642					
	$\Delta H_4 = +30.64 \pm 0.11 \text{ kJ mol}^{-1}$								

80

Tabela 3.79) -	Entalpia	de	dissolução	de	Bu2	NH	(l)	em
-------------	-----	----------	----	------------	----	-----	----	-----	----

	massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
3	0.10163	7.8631	303.18	0.0113	4.357
	0.06624	5.1250	298.56	0.0080	4.660
	0.07325	5.6673	300.98	0.0083	4.408
	0.06854	5.3029	302.21	0.0079	4.502
	0.07067	5.4677	301.79	0.0080	4.416
-		∆H ₅ =	+4.47 ± 0.11 k	J mol ⁻¹	

DMF (120 cm³) + [Fe($S_2CN Bu_2$)₃] (c)

Tabela 3.80 - Entalpia de dissolução de $HC1 \cdot 26.61H_2O(\ell)$ em DMF (120 cm³) + [Fe(S₂CN Bu₂)₃] (c) + Bu₂ NH (ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.21173	4.1045	308.25	0.2275	-170.85
0.22509	4.3635	311.56	0.2407	-171.86
0.22882	4.4358	310.02	0.2458	-171.79
0.22673	4.3953	309.78	0.2439	-171.90
0.22904	4.4401	310.27	0.2463	-172.11
	∆H ₆ =	-171.70 ± 0.44	kJ mol ⁻¹	

massa/g	10 ⁴ n / mo1	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.14708	4.3952	310.92	0.0006	0.424
0.15526	4.6397	307.27	0.0007	0.464
0.15896	4.7503	313.15	0.0007	0.461
0.15342	4.5847	311.23	0.0007	0.475
0.15973	4.7733	308.52	0.0008	0.517

Tabela 3.81 - Entalpia de dissolução de $Bu_2^i NH_2S_2CN Bu_2^i$ (c) em

DMF (120 cm³) + H_20 (ℓ) + FeCl₃ (c)

Tabela 3.82 - Entalpia de dissolução de $[Fe(S_2CN Bu_2^i)_3]$ (c) em DMF (120 cm³)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.06170	0.9223	304.82	0.0084	27.762
0.08120	1.2138	305.78	0.0109	27.459
0.06681	0.9987	307.10	0.0091	27.982
0.06768	1.0117	306.28	0.0090	27.549
0.06696	1.0009	307.28	0.0090	27.630

Tabela 3.83 - Entalpia de dissolução de Bu $_2^i$ NH (ℓ) em

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
 0.06683	5.1706	302.25	0.0085	4.970
0.05461	4.2251	299.51	0.0069	4.891
0.06173	4.7760	300.01	0.0078	4.900
0.06079	4.7033	301.25	0.0076	4.868
0.05983	4,6290	301.78	0.0074	4.824

DMF	(120	cm ³)	+	[Fe(S ₂ CN	$Bu_2^i)_3$]	(c)
	Contraction of the second second			2	L' 3-	

Tabela 3.84 - Entalpia de dissolução de HC1·26.61 H_2^0 (ℓ) em

DMF (120 cm³) + [Fe(S₂CN Bu₂ⁱ)₃] (c) + Bu₂ⁱ NH (ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆۲/К	∆H/kJ mol ⁻¹
 0.21052	4.0810	311.25	0.2188	-166.87
0.19493	3.7788	310.65	0.2025	-166.47
0.17142	3.3231	309.72	0.1795	-167.30
0.20987	4.0684	310.94	0.2186	-167.07
0.22321	4.3270	312.07	0.2305	-166.24
 	ΔH ₆ = ·	-166.79 ± 0.38	kJ mol ⁻¹	

R	∆H _{r(R)} /kJ mol ⁻¹	$\Delta H_{f}^{o} \{ [Fe(S_2CNR_2)_3]c \} / kJ mo1^{-1}$
Et	+95.6 ± 1.1	-245.8 ± 4.4
n-Pr	+110.0 ± 1.3	-379.9 ± 6.7
Pr ⁱ	+85.81± 0.95	-324.9 ± 6.2
n-Bu	+134.97± 0.95	-532.9 ± 7.6
Bu ⁱ	+67.10 0.79	-552.7 ± 7.6

Tabela 3.85 - Estudo termoquímico de dialquilditiocarbamatos de ferro (III)

3.2.6 - DETERMINAÇÃO EXPERIMENTAL DE ENTALPIAS DE FORMAÇÃO PADRÃO DE DIALQUILDI-TIOCARBAMATOS DE CRÓMIO (III)

Alguns problemas surgiram na escolha do solvente calorimétrico para o estudo dos ditiocarbamatos de crómio (III). Assim, tentando usar como solvente a dimetilformamida, verificou-se que os complexos não se formavam ao adicionar o respectivo dialquilditiocarbamato de dialquilamónio ao sal de crómio (III). Como se viu em (2.2.2) estes complexos foram preparados em etanol previamente seco, pelo que se experimentou como solvente, obtendo-se resultados satisfatórios, uma mistura de dimetilformamida/etanol 70/30 (v/v); os solventes foram previamente secos com filtros moleculares. O modo geral de procedimento encontra-se sintetisado no esquema 3.5.

Os valores das entalpias de solução-reacção das diferentes especies n<u>e</u> cessários ao cálculo dos vários $\Delta H_{r(R)}$ dos cinco complexos de crómio (III) em es tudo encontram-se registados nas Tabelas 3.86 a 3.107. Verificou-se que a entalpia de dissolução da água, ΔH_3 , nas diferentes misturas reaccionais para os cinco complexos em estudo é a mesma, muito embora as composições das soluções difiram.

Os valores das entalpias de formação padrão dos diferentes complexos cristalinos de crómio (III) foram calculados a partir da equação química:

$$\Delta H_{r(R)} = \Delta H_{f}^{o} [Cr(S_{2}CNR_{2})_{3}] (c) + 3 \Delta H_{f}^{o} R_{2}NH (\ell) + 3 \Delta H_{f}^{o} HC1 em$$

$$26.61H_{2}O (\ell) + 6 \Delta H_{f}^{o} H_{2}O (\ell) - \Delta H_{f}^{o} CrCl_{3} \cdot 6.00H_{2}O (c) - 3 \Delta H_{f}^{o} R_{2}NH_{2}S_{2}CNR_{2} (c)$$

Na Tabela 3.108 encontram-se resumidos os valores de $\Delta H_{r(R)} = \Delta H_{f}^{o} [Cr(S_{2}CNR_{2})_{3}]$ (c) para os diferentes complexos de crómio (III) estudados.

Tabela 3.86 - Entalpia de dissolução de $CrCl_3$ 6.00H₂0 (c) em DMF/EtOH (120 cm³)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.04766	1.7887	329.32	0.0407	-74.933
0.03287	1.2336	317.32	0.0295	-75.883
0.03823	1.4348	319.55	0.0337	-75.055
0.03849	1.4445	329.22	0.0330	-75.211
0.04095	1.5369	320.54	0.0360	-75.083

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆ T /K	∆H/kJ mol [−]
0.09830	4.4196	297.05	0.0268	18.013
0.09955	4.4758	290.23	0.0280	18.156
0.09896	4.4493	295.25	0.0267	17.718
0.10376	4.6651	295.30	0.0294	18.618
0.10007	4.4992	294.77	0.0292	19.131

Tabela 3.87 - Entalpia de dissolução de $Et_2NH_2S_2CN Et_2$ (c) em DMF/EtOH (120 cm³) + CrCl₃ 6.00H₂O (c)

Tabela 3.88 - Entalpia de dissolução de $H_2O(\ell)$ em DMF/EtOH (120 cm³) + CrCl₃·6.00H₂O(c) + Et₂NH₂S₂CN Et₂ (c)

massa/g	10 ² n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.16954	0.94109	326.97	0.1174	-4.079
0.19855	1.1021	322.73	0.1392	-4.076
0.21608	1.1994	325.85	0.1475	-4.007
0.19878	1.1034	320.10	0.1414	-4.102
0.20820	1.1557	318.28	0.1453	-4.002

massa/g	10 ⁴ / mol	ε/JK ^{−1}	∆ T/ K	∆H/kJ mol ⁻¹
0.07349	1.4792	308.16	0.0031	7.510
0.07386	1.4867	310.12	0.0036	7.509
0.06665	1.3416	304.80	0.0033	7.497
0.07422	1.4939	303.27	0.0037	7.511
0.07554	1.5205	305.02	0.0037	7.422

Tabela 3.89 - Entalpia de dissolução de $[Cr(S_2CN Et_2)_3]$ (c) em DMF/EtOH (120 cm³)

Tabela 3.90 - Entalpia de dissolução de $Et_2NH(\ell)$ em DMF/EtOH (120 cm³) + [Cr(S₂CN Et₂)₃] (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.02729	3.8173	319.16	0.0102	-8.528
0.02724	3.7244	313.98	0.0097	-8.177
0.03136	4.2877	312.43	0.0105	-8.161
0.03349	4.5789	320.42	0.0099	-8.187
0.03205	4.3823	314.80	0.0113	-8.117

massa/g	10 ⁴ n / mol	€/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.22598	4.3807	320.57	0.2419	-177.04
0.22657	4.3922	319.92	0.2419	-176.20
0.23761	4.6062	314.84	0.2591	-177.10
0.26680	4.7661	315.61	0.2668	-176.67
0.19931	3.8637	317.24	0.2153	-176.78

Tabela 3.91 - Entalpia de dissolução de HCl·26.61 H_2^0 (ℓ) em

DMF/EtOH (120 cm³) + $[Cr(S_2CN Et_2)_3]$ (c) + Et_2NH (ℓ)

Tabela 3.92 - Entalpia de dissolução de $Pr_2NH_2S_2CN Pr_2$ (c) em DMF/EtOH (120 cm³) + CrCl₃ 6.00H₂O (c)

massa/g	10 ⁴ n / mol	€/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.12477	4.4797	307.29	0.0306	20.990
0.12799	4.5953	303.38	0.0312	20.598
0.12541	4.5026	304.85	0.0305	20.650
0.12410	4.4556	309.89	0.0295	20.517
0.12325	4.4251	306.24	0.0302	20.900

massa/g	10 ⁴ n / mo1	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.08720	1.5009	305.37	0.0041	8.34
0.08814	1.5171	303.72	0.0043	8.61
0.08569	1.4750	304.60	0.0041	8.47
0.08673	1.4928	304.80	0.0042	8.58
0.08598	1.4799	300.20	0.0043	8.72

Tabela 3.93 - Entalpia de dissolução de $[Cr(S_2CN Pr_2)_3]$ (c) em DMF/EtOH (120cm³)

Tabela 3.94 - Entalpia de dissolução de $Pr_2NH(\ell)$ em DMF/EtOH (120 cm³) + [Cr(S₂CN Pr_2)₃] (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.06790	6.7101	309.03	0.0134	-6.173
0.05329	5.2663	300.80	0.0110	-6.280
0.04524	4.4708	305.52	0.0095	-6.492
0.05017	4.9580	307.03	0.0101	-6.254
0.05235	5.1734	306.45	0.0106	-6.279

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆ T/K	∆H/kJ mol ⁻¹
0.24777	4.8031	322.77	0.2685	-180.43
0.25946	5.0298	315.90	0.2902	-182.26
0.22306	4.3241	324.50	0.2416	-181.31
0.21892	4.2439	324.19	0.2361	-180.36
0.23528	4.5610	323.04	0.2552	-180.75

Tabela 3.95 - Entalpia de dissolução de HCl·26.61
$$H_2^0$$
 (ℓ) em

massa/g	10 ⁴ n / mol	ε/JK ⁻	∆T/K	∆H/kJ mol '
0.24777	4.8031	322.77	0.2685	-180.43
0.25946	5.0298	315.90	0.2902	-182.26
0.22306	4.3241	324.50	0.2416	-181.31
0.21892	4.2439	324.19	0.2361	-180.36
0.23528	4,5610	323.04	0.2552	-180.75

DMF/EtOH (120 cm³) +
$$[Cr(S_2CN Pr_2)_3]$$
 (c) + Pr_2 NH (ℓ)

Tabela 3.96 - Entalpia de dissolução de $Pr_2^i NH_2S_2CN Pr_2^i$ (c) em

DMF/EtOH (120 cm³) + $CrC1_{3}$ 6.00H₂O (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.12130	4.3551	306.08	0.0150	10.542
0.12336	4.4290	308.65	0.0148	10.314
0.12547	4.5048	304.95	0.0156	10.560
0.12489	4.4840	297.58	0.0160	10.618
0.12005	4.3102	300.25	0.0154	10.728

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆ T/ K	∆H/kJ mol ⁻¹
0.08198	1.4111	319.27	0.0014	3.168
0.08386	1.4435	313.97	0.0015	3.044
0.07679	1.3218	325.20	0.0013	3.198
0.08273	1.4240	320.34	0.0014	3.149
0.08353	1.4378	319.35	0.0014	3.110

Tabela 3.97 - Entalpia de dissolução de $[Cr(S_2CN Pr_2^i)_3]$ (c) em DMF/EtOH (120cm³)

Tabela 3.98 - Entalpia de dissolução de $Pr_2^i NH(\ell)$ em DMF/EtOH (120 cm³) + [Cr(S₂CN Pr_2^i)₃] (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.07328	7.2418	319.35	0.0176	-7.761
0.04320	4.2692	312.60	0.0104	-7.651
0.06039	5.9680	311.26	0.0147	-7.667
0.03750	3.7059	315.33	0.0090	-7.658
0.05464	5.3997	312.92	0.0132	-7.650
	∆H ₅ =	-7.67 ± 0.05 k	J mol-1	

Tabela 3.99 - Entalpia de dissolução de HCl·26.61 H_2^0 (ℓ) em

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.21975	4.2600	324.00	0.2435	-185.20
0.24822	4.8119	329.72	0.2695	-184.67
0.23869	4.6271	323.66	0.2657	-185.85
0.20292	3.9337	322.32	0.2240	-183.54
0.27550	4.8582	320.89	0.2765	-182.63

DMF/EtOH (120 cm³) +
$$[Cr(S_2CN Pr_2^i)_3]$$
 (c) + Pr_2^i NH (ℓ)

Tabela 3.100 - Entalpia de dissolução de $Bu_2NH_2S_2CN Bu_2$ (c) em DMF/EtOH (120 cm³) + CrCl₃·6.00H₂O (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.14026	4.1914	300.02	0.0401	28.704
0.14671	4.3842	299.57	0.0438	29.928
0.14933	4.4625	300.12	0.0438	29.457
0.15282	4.5668	298.29	0.0456	29.785
0.15042	4.4951	300.94	0.0445	29.792
	∆H ₂ =	+29.53 ± 0.40	kJ mol ⁻¹	

massa/g	10 ⁴ / mol	€/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.09762	1.4677	302.02	0.0131	26.957
0.09878	1.4851	313.58	0.0126	26.605
0.09877	1.4850	306.29	0.0130	26.813
0.09589	1.4417	302.81	0.0127	26.675
0.09847	1.4805	305.81	0.0128	26.440

Tabela 3.101 - Entalpia de dissolução de $[Cr(S_2CN Bu_2)_3]$ (c) em DMF/EtOH (120cm³)

Tabela 3.102 - Entalpia de dissolução de $Bu_2NH(\ell)$ em DMF/EtOH (120 cm³) + [Cr(S₂CN Bu₂)₃] (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.06160	4.7660	302.85	0.0064	-4.067
0.06189	4.7884	305.28	0.0065	-4.144
0.08631	6.6778	301.35	0.0091	-4.106
0.07531	5.8267	299.58	0.0080	-4.113
0.06913	5.3485	299.54	0.0073	-4.088
Tabela 3.103 - Entalpia de dissolução de $HC1 \cdot 26.61H_20$ (ℓ) em DMF/EtOH (120 cm³) + [Cr(S₂CN Bu₂)₃] (c) + Bu₂ NH (ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.19934	3.8643	310.85	0.2224	-178.90
0.26353	5.1087	312.88	0.2900	-177.61
0.21950	4.2551	308.47	0.2473	-179.28
0.21647	4.1964	312.73	0.2412	-179.75
0.24133	4.6783	310.20	0.2693	-178.56
	∆H ₆ = .	-178.82 ± 0.72	kJ mol ⁻¹	

Tabela 3.104 - Entalpia de dissolução de $Bu_2^i NH_2S_2CN Bu_2^i$ (c) em

DMF/EtOH (120 cm³) + $CrC1_{3} \cdot 6.00H_{2}0$ (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.14988	4.4789	300.27	0.0148	9.922
0.14795	4.4212	308.36	0.0139	9.694
0.15243	4.5551	311.77	0.0144	9.856
0.14739	4.4045	305.45	0.0144	9.986
0.14893	4.4505	300.25	0.0145	9.780
0.14893	4.4505 ΔH ₂ = ·	+9.84 ± 0.10 k	J mol ⁻¹	5.760

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆ T /K	∆H/kJ mol ⁻¹
0.09789	1.4717	303.03	0.0080	16.472
0.09851	1.4811	301.06	0.0081	16.465
0.09909	1.4898	308.91	0.0082	17.003
0.10059	1.5123	300.77	0.0085	16.905
0.09943	1.4949	308.57	0.0081	16.720

Tabela 3.105 - Entalpia de dissolução de $[Cr(S_2CN Bu_2^i)_3]$ (c) em DMF/EtOH (120cm³)

Tabela 3.106 - Entalpia de dissolução de $Bu_2^i NH(\ell)$ em DMF/EtOH (120 cm³) + [Cr(S₂CN Bu_2^i)₃] (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.08180	6.3288	294.59	0.0028	1.303
0.09120	7.0561	293.93	0.0032	1.330
0.07258	5.6155	295.36	0.0026	1.368
0.07659	5.9257	292.60	0.0028	1.383
0.06076	4.7010	295.37	0.0021	1.320

Tabela 3.107 - Entalpia de dissolução de HC1·26.61 H_2^0 (ℓ) em

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.22895	4.4383	312.40	0.2540	-178.78
0.25120	4.8696	311.61	0.2790	-178.59
0.25184	4.8820	314.11	0.2785	-179.19
0.22670	4.3947	312.50	0.2520	-179.19
0.21602	4.1877	310.54	0.2408	-178.57

DMF/EtOH (120 cm³) +
$$[Cr(S_2CN Bu_2^i)_3]$$
 (c) + Bu_2^i NH (ℓ)

Tabela 3.108 - Estudo termoquímico de dialquilditiocarbamatos de crómio (III)

R	∆H _{r(R)} /kJ mol ⁻¹	ΔH ^O {[Cr(S ₂ CNR ₂) ₃],c}/kJ mol ⁻¹
Et	+228.2 ± 1.1	-454.6 ± 9.8
n-Pr	+241.4 ± 1.9	-590 ± 11
Pr ⁱ	+224.5 ± 2.0	-527 ± 11
n-Bu	+236.4 ± 1.5	-773 ± 11
Bu ⁱ	+171.2 ± 0.7	-790 ± 11

3.2.7 - DETERMINAÇÃO EXPERIMENTAL DE ENTALPIAS DE FORMAÇÃO PADRÃO DE DIALQUILDI-TIOCARBAMATOS DE COBALTO (III)

A formação dos dialquilditiocarbamatos de cobalto (III) é feita por adição dos "ligandos" respectivos a uma solução de nitrato de cobalto (II) (ver 2.2.1). Assim, verifica-se uma oxidação do Co (II) a Co (III) em solução na presença dos respectivos "ligandos".

No entanto, no estudo termoquímico destes complexos, para assegurar uma oxidação quantitativa do cobalto (II) a cobalto (III) seguida da formação do res pectivo complexo adicionou-se ao solvente, dimetilformamida (120 cm³), um excesso de FeCl₃(1,00cm³ de uma solução 0.1 <u>M</u>). O ciclo termoquímico utilizado está repre sentado no esquema 3.6, tendo-se usado como base de estequiometria 1.5×10^{-4} mol de complexo. Os valores de $\Delta H_{r(R)}$ calculados com base nos valores de ΔH_1 a ΔH_9 , para os diferentes complexos, determinados experimentalmente e registados nas Ta belas 3.109 a 3.136 encontram-se resumidos na Tabela 3.137, bem como os valores das respectivas entalpias de formação padrão, calculados pela equação

$$\Delta H_{r(R)} = \Delta H_{f}^{o} [Co(S_{2}CNR_{2})_{3}] (c) + \Delta H_{f}^{o} FeCl_{2}(c) + 3 \Delta H_{f}^{o} R_{2}NH (\ell) + + \Delta H_{f}^{o} HCl em 26.61H_{2}O (\ell) + \Delta H_{f}^{o} H_{2}SO_{4} em 53.54H_{2}O (\ell) + + 6 \Delta H_{f}^{o} H_{2}O (\ell) - \Delta H_{f}^{o} FeCl_{3} (c) - \Delta H_{f}^{o} CoSO_{4} 6.00H_{2}O (\ell) - - 3 \Delta H_{f}^{o} R_{2}NH_{2}S_{2}CNR_{2} (c)$$

Verificou-se que o valor de ΔH_1 não é afectado pelo facto de o solvente não ser dimetilformamida pura, mas conter 1,00 cm³ de FeCl₃ 0.1 <u>M</u>.

ESQUEMA 3.6

99

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.04220	2.6016	312.15	0.0977	-117.22
0.01499	0.92413	314.37	0.0342	-116.34
0.03077	1.8970	312.91	0.0710	-117.11
0.02919	1.7996	315.25	0.0663	-116.14
0.02795	1.7231	313.73	0.0643	-117.07

Tabela 3.109 - Entalpia de dissolução de FeCl₃ (c) em
DMF (120 cm³) + FeCl₃0.1 M (1cm³) + H₂0 (
$$\ell$$
)

Tabela 3.110 - Entalpia de dissolução de $CoSO_4$ 6.00 H_2O (c) em

DMF (120 cm³) + FeCl₃ 0.1 <u>M</u> (1 cm³) + FeCl₃ (c) + H₂0 (ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.04047	1.5383	317.89	0.0035	-7.233
0.03944	1.4991	308.82	0.0034	-7.004
0.03881	1.4752	309.07	0.0035	-7.331
0.04182	1.5896	309.50	0.0037	-7.204
0.03942	1.4983	308.56	0.0035	-7.208

Tabela 3.111 - Entalpia de dissolução de $Et_2NH_2S_2CN Et_2$ (c) em

DMF (120 cm³) + FeCl₃ 0.1 <u>M</u> (1 cm³) + FeCl₃ (c) + H₂0 (ℓ) + + CoSO₄·6.00H₂0 (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
 0.09736	4.3774	319.99	0.0632	-46.199
0.09957	4.4767	319.84	0.0652	-46.582
0.09612	4.3216	321.34	0.0626	-46.547
0.09729	4.3742	320.53	0.0629	-46.091
0.10014	4.50.24	317.34	0.0660	-46.518

Tabela 3.112 - Entalpia de dissolução de FeCl₂ (c) em

DMF	(120	cm ³)	+	FeC1.	0 1	м	(1	cm^{3})	
DI	(120		т	rec13	0.1	-	11	Cin)	

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
 0.03067	2.4197	310.27	0.0620	-79.501
0.02491	1.9652	310.52	0.0500	-79.005
0.02429	1.9163	311.24	0.0488	-79.260
0.01953	1.5408	310.71	0.0394	-79.452
0.02044	1.6126	310.35	0.0412	-79.291

Tabela 3.113 - Entalpia de dissolução de $[Co(S_2CN Et_2)_3]$ (c) em

massa/g	10 ⁴ n / mol	ε/JK ^{−1}	∆T/K	∆H/kJ mol ⁻¹
0.07668	1.5222	299.60	0.0068	13.384
0.07538	1.4964	307.58	0.0067	13.772
0.07361	1.4613	300.53	0.0066	13.572
0.07521	1.4928	299.83	0.0068	13.599
0.07489	1.4867	301.24	0.0068	13.778

Tabela 3.114 - Entalpia de dissolução de Et_2NH (ℓ) em DMF (120 cm³) +

+ FeCl₃ 0.1 \underline{M} (1 cm³) + FeCl₂ (c) + [Co(S₂CN Et₂)₃] (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.05915	8.0872	326.26	0.1500	-60.514
0.04818	6.5874	324.00	0.1212	-60.612
0.03947	5.3965	325.32	0.1009	-60.826
0.04512	6.1690	325.66	0.1145	-60.444
0.05273	7.2095	325.13	0.1338	-60.340

Tabela 3.115 - Entalpia de dissolução de HC1·26.61 H_2^0 (ℓ) em DMF (120 cm³) +

+ FeCl₃ 0.1 M (1 cm³) + FeCl₂ (c) +
$$[Co(S_2CN Et_2)_3]$$
 (c) +

+ Et₂ NH (*l*)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻
0.07856	1.5229	320.35	0.0560	-117.80
0.10149	1.9674	320.92	0.0723	-117.93
0.07501	1.4541	318.32	0.0542	-118.65
0.10000	1.9385	318.49	0.0712	-116.98
0.08937	1.7325	319.83	0.0634	-117.04

Tabela 3.116 - Entalpia de dissolução de H_2SO_4 53.54 H_2O (ℓ) em DMF (120cm³) + $FeCl_{3}0.1 \text{ M} (1 \text{ cm}^{3}) + FeCl_{2} (c) + [Co(S_{2}CN \text{ Et}_{2})_{3}] (c) +$

+ $Et_2 NH (\ell) + HC1 \cdot 26.61H_20 (\ell)$

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.15361	1.4456	321.98	0.0988	-220.06
0.15247	1.4349	322.11	0.0988	-220.65
0.15990	1.5048	322.75	0.1024	-219.63
0.14689	1.3824	322.99	0.0941	-219.86
0.15572	1.4655	322.43	0.0998	-219.57
	∆H ₉ =	-219.95 ± 0.42	kJ mol ⁻¹	

Tabela 3.117 - Entalpia de dissolução de $Pr_2NH_2S_2CN Pr_2$ (c) em DMF (120 cm³) +

massa/g	10 ⁴ n / mol	€/JK ⁻¹	. Δ Τ /Κ	∆H/kJ mol ⁻¹
0.12524	4.4965	313.17	0.0518	-36.077
0.12764	4.5827	318.39	0.0518	-35.989
0.12637	4.5371	315.68	0.0511	-35.554
0.12304	4.4176	317.23	0.0502	-36.049
0.12459	4.4732	316.72	0.0509	-36.039

 $\text{FeCl}_{3} 0.1 \underline{M} (1 \text{ cm}^{3}) + \text{FeCl}_{3} (c) + \text{H}_{2} 0 (\ell) + \text{CoSO}_{4} \cdot 6.00 \text{H}_{2} 0 (c)$

Tabela 3.118 - Entalpia de dissolução de $[Co(S_2CN Pr_2)_3]$ (c) em DMF (120 cm³) + + FeCl₃ 0.1 <u>M</u> (1 cm³) + FeCl₂ (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.08292	1.4104	317.38	0.0133	-29.929
0.08800	1.4968	306.87	0.0148	-30.343
0.08372	1.4240	315.29	0.0138	-30.554
0.08456	1.4383	316.35	0.0140	-30.792
0.08277	1.4079	317.33	0.0136	-30.654

Tabela 3.119 - Entalpia de dissolução de $Pr_2 NH (\ell) em DMF (120 cm^3) + FeCl_3 0.1 \underline{M} (1 cm^3) + FeCl_2 (c) + [Co(S_2CN Pr_2)_3] (c)$

massa/g	10 ⁴ n / mol	€;/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.05910	5.8405	295.56	0.0956	-48.379
0.05400	5.3365	302.04	0.0851	-48.166
0.05637	5.5707	303.75	0.0882	-48.092
0.05029	4.9699	305.25	0.0787	-48.337
0.05277	5.2149	303.27	0.0833	-48.443

Tabela 3.120 - Entalpia de dissolução de HC1·26.61 H_2^0 (ℓ) em DMF (120 cm³) +

+ FeCl₃ 0.1 \underline{M} (1 cm³) + FeCl₂ (c) + [Co(S₂CN Pr₂)₃] (c) +

+ Pr_2 NH (ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.09422	1.8265	300.98	0.0668	-110.08
0.10014	1.9413	310.30	0.0684	-109.33
0.08270	1.6032	305.72	0.0582	-110.98
0.09023	1.7492	307.26	0.0623	-109.43
0.08753	1.6968	308.03	0.0604	-109.65

Tabela 3.121 - Entalpia de dissolução de H_2SO_4 ·53.54 H_2O (ℓ) em DMF (120 cm³) +

+ FeCl₃ 0.1 M (1 cm³) + FeCl₂ (c) +
$$[Co(S_2CN Pr_2)_3]$$
 (c) +

+ Pr_2 NH (ℓ) + HC1 26.61H₂O (ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆ T/K	∆H/kJ mol ⁻¹	
0.19140	1.8012	320.02	0.1171	-208.04	
0.16900	1.5904	319.18	0.1045	-209.72	
0.15726	1.4800	320.25	0.0970	-209.89	
0.15429	1.4520	319.73	0.0953	-209.85	
0.16073	1.5126	319.56	0.0989	-208.94	
	∆H ₉ = ·	-209.29 ± 0.71	kJ mol ⁻¹		

Tabela 3.122 - Entalpia de dissolução de $Pr_2^i NH_2S_2CN Pr_2^i$ (c) em DMF (120 cm³) +

+ FeCl₃ 0.1 \underline{M} (1 cm³) + FeCl₃ (c) + CoSO₄·6.00H₂0 (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.12467	4.4761	312.62	0.0692	-48.331
0.12449	4.4696	315.00	0.0687	-48.417
0.12444	4.4678	302.59	0.0717	-48.560
0.12404	4.4579	311.94	0.0690	-48.283
0.12445	4.4682	312.22	0.0691	-48.284

Tabela 3.123 - Entalpia de dissolução de $[Co(S_2CN Pr_2^i)_3]$ (c) em

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.08423	1.4327	308.31	0.0180	-38.735
0.08628	1.4672	308.84	0.0184	-38.731
0.08494	1.4448	300.66	0.0188	-39.122
0.08813	1.4991	305.78	0.0192	-39.163
0.08626	1.4672	308.25	0.0185	-38.867

DMF (120 cm³) + FeCl₃ 0.1
$$\underline{M}$$
 (1 cm³) + FeCl₂ (c)

Tabela 3.124 - Entalpia de dissolução de $Pr_2^i NH (\ell)$ em DMF (120 cm³) + + FeCl₃ 0.1 <u>M</u> (1 cm³) + FeCl₂ (c) + [Co(S₂CN $Pr_2^i)_3$] (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆۲/К	∆H/kJ mol ⁻¹
0.05416	5.3523	316.78	0.0963	-56.996
0.04691	4.6358	317.94	0.0830	-56.924
0.04690	4.6348	315.95	0.0830	-56.580
0.04676	4.6210	315.76	0.0828	-56.579
0.04872	4.8147	316.23	0.0868	-57.010
	∆H ₇ =	-56.82 ± 0.10	kJ mol ⁻¹	

Tabela 3.125 - Entalpia de dissolução de HCl·26.61H₂O (ℓ) em DMF (120 cm³) + + FeCl₃ O.1 <u>M</u> (1 cm³) + FeCl₂ (c) + [Co(S₂CN Pr₂ⁱ)₃] (c) + Pr₂ⁱNH(ℓ)

massa/g	10 ⁴ n / mo1	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.07158	1.3876	319.90	0.0516	-118.96
0.06309	1.2230	317.59	0.0460	-119.45
0.09387	1.8197	319.11	0.0676	-118.55
0.07053	1.3673	318.92	0.0512	-119.42
0.06275	1.2164	319.25	0.0456	-119.68

Tabela 3.126 - Entalpia de dissolução de H_2SO_4 ·53.54 H_2O (ℓ) em DMF (120 cm³) +

+ $FeC1_3 0.1 \underline{M} (1 \text{ cm}^3) + FeC1_2 (c) + [Co(S_2CN Pr_2^i)_3] (c) + Pr_2^i NH (\ell)$

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.16091	1.5143	318.36	0.0972	-204.35
0.14425	1.3575	317.81	0.0887	-207.66
0.14922	1.4043	317.54	0.0913	-206.30
0.15737	1.4810	317.32	0.0959	-205.48
0.16202	1.5248	318.05	0.0993	-207.12

Tabela 3.127 - Entalpia de dissolução de $Bu_2NH_2S_2CN Bu_2$ (c) em DMF (120 cm³) + + FeCl₃ 0.1 <u>M</u> (1 cm³) + FeCl₃ (c) + CoSO₄·6.00H₂0 (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.09897	2.9576	326.06	0.0386	-42.554
0.09382	2.8037	322.53	0.0378	-43.484
0.15003	4.4834	320.72	0.0612	-42.779
0.15137	4.5234	323.07	0.0613	-43.782
0.14872	4.4443	322.31	0.0603	-43.737

Tabela 3.128 - Entalpia de dissolução de $[Co(S_2CN Bu_2)_3]$ (c) em

DMF (120 cm³) + FeCl₃ 0.1 \underline{M} (1 cm³) + FeCl₂ (c)

massa/g	10 ⁴ n / mol	€/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.09884	1.4707	309.57	0.0110	23.154
0.09997	1.4875	308.73	0.0110	22.830
0.10027	1.4920	310.05	0.0112	23.275
0.09925	1.4768	309.52	0.0110	23.055
0.10125	1.5113	308.76	0.0114	23.290

Tabela 3.129 - Entalpia de dissolução de Bu₂ NH (ℓ) em DMF (120 cm³) +

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.06925	5.3578	329.13	0.0892	-54.796
0.06941	5.3702	326.24	0.0910	-55.283
0.06273	4.8534	323.53	0.0832	-55.462
0.06329	4.8967	325.78	0.0836	-55.620
0.06407	4.9571	328.02	0.0841	-55.650

+ FeCl₃ 0.1 <u>M</u> (1 cm³) + FeCl₂ (c) + $[Co(S_2CN Bu_2)_3]$ (c)

Tabela 3.130 - Entalpia de dissolução de HC1·26.61 H_2^0 (ℓ) em DMF (120 cm³) +

+ FeCl₃ 0.1 <u>M</u> (1 cm³) + FeCl₂ (c) + $[Co(S_2CN Bu_2)_3]$ (c) +

+ Bu₂ NH (ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
 0.08393	1.6270	326.20	0.0552	-110.67
0.08223	1.5941	309.42	0.0592	-114.91
0.08075	1.5654	325.53	0.0531	-110.42
0.08184	1.5865	323.97	0.0558	-113.95
0.08002	1.5512	324.17	0.0528	-110.34

Tabela 3.131 - Entalpia de dissolução de H_2SO_4 53.54 H_2O (ℓ) em

DMF (120 cm³) + FeCl₃ 0.1 M (1 cm³) + FeCl₂ (c) +
+
$$[Co(S_2CN Bu_2)_3]$$
 (c) + Bu₂ NH (ℓ) + HCl·26.61H₂O (ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.16802	1.5812	328.59	0.1044	-216.95
0.16061	1.5115	330.05	0.0980	-214.01
0.16037	1.5092	329.23	0.0979	-213.57
0.16251	1.5294	329.58	0.0993	-213.99
0.16177	1.5224	328.92	0.0989	-213.68

9

Tabela 3.132 - Entalpia de dissolução de $Bu_2^i NH_2S_2CN Bu_2^i$ (c) em DMF (120 cm³) + FeCl₃ 0.1 \underline{M} (1 cm³) + H₂0 (ℓ) + FeCl₃ (c) + + CoSO₄.6.00H₂O (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol
0.10022	2.9949	310.99	0.0495	-51.401
0.10263	3.0669	310.86	0.0513	-51.998
0.15027	4.4906	312.07	0.0738	-51.287
0.15132	4.5220	311.72	0.0742	-51.149
0.14973	4.4744	311.25	0.0736	-51.198

Tabela 3.133 - Entalpia de dissolução de $[Co(S_2CN Bu_2^i)_3]$ (c) em DMF (120 cm³) + + FeCl₃ 0.1 <u>M</u> (1 cm³) + FeCl₂ (c)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆ T/K	∆H/kJ mol ⁻¹
0.09894	1.4722	307.86	0.0237	-49.560
0.09659	1.4372	312.14	0.0230	-49.953
0.09753	1.4512	310.53	0.0232	-49.644
0.09957	1.4815	308.21	0.0240	-49.928
0.10025	1.4917	309.37	0.0241	-49.983

Tabela 3.134 - Entalpia de dissolução de Bu_2^i NH (ℓ) em DMF (120 cm³) + + FeCl₃ 0.1 <u>M</u> (1 cm³) + FeCl₂ (c) + [Co(S₂CN Bu₂ⁱ)₃] (c)

1	massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
	0.05156	3.9892	323.71	0.0570	-46.254
	0.05738	4.4385	319.83	0.0653	-47.043
1	0.05679	4.3938	320.78	0.0637	-46.506
1	0.05482	4.2414	321.27	0.0612	-46.357
	0.05563	4.3041	320.52	0.0625	-46.543

Tabela 3.135 - Entalpia de dissolução de HCl·26.61 H_2 0 (ℓ) em DMF (120 cm³) +

massa/g	10 ⁴ n / mol	ε/JK ^{−1}	ΔΤ/Κ	∆H/kJ mol ⁻¹
0.06194	1.2007	313.72	0.0412	-107.65
0.06642	1.2876	313.17	0.0445	-108.23
0.06875	1.3328	313.21	0.0460	-108.10
0.06812	1.3205	314.12	0.0457	-108.71
0.06275	1.2164	314.22	0.0418	-107.98

Tabela 3.136 - Entalpia de dissolução de $H_2SO_4 \cdot 53.54H_2O(\ell)$ em DMF (120 cm³) + + FeCl₃ 0.1 <u>M</u> (1 cm³) + FeCl₂ (c) + [Co(S₂CN Buⁱ₂)₃] (c) + + Buⁱ₂ NH (ℓ) + HCl·26.61H₂O (ℓ)

massa/g	10 ⁴ n / mol	ε/JK ⁻¹	∆T/K	∆H/kJ mol ⁻¹
0.15603	1.4684	315.53	0.1036	-222.62
0.16061	1.5115	322.65	0.1036	-221.15
0.15882	1.4946	318.56	0.1034	-220.39
0.15993	1.5051	319.17	0.1039	-220.33
0.16224	1.5268	320.07	0.1053	-220.74

R	∆H _{r(R)} /kJ mo1 ⁻¹	$\Delta H_{f}^{0} \{ [Co(S_{2}CNR_{2})_{3}], c \} / kJ mo1^{-1}$
Et	+67.1 ± 1.2	-343.2 ± 4.9
n-Pr	+87.8 ± 1.2	-474.1 ± 7.0
Pr ⁱ	+90.8 ± 1.0	-388.7 ± 7.2
n-Bu	+40.3 ± 2.2	-699.6 ± 8.2
Bu ⁱ	+65.5 ± 1.3	-626.3 <u>+</u> 8.0

Tabela 3.137 - Estudo termoquímico de dialquilditiocarbamatos de cobalto (III)

3.3 - DISCUSSÃO DOS RESULTADOS

Cavell, Hill e Magee ⁹⁵ determinaram, por calorimetria de solução, a entalpia de formação padrão do dietilditiocarbamato de dietilamónio, através do estudo da reacção descrita no esquema 3.1, usando como solvente calorimétrico dioxano; tendo obtido para ΔH_r o valor de -81.1 ± 3.2 kJ mol⁻¹ e para ΔH_f^0 (Et₂NH₂S₂CN Et₂,c) -198.8 ± 4.1 kJ mol⁻¹. No entanto, uma vez que a calorimetria de solução deste composto foi estudada usando vários solventes diferentes, cujos resultados se encontram registados na Tabela 3.138, e a referida entalpia de formação foi também medida, independentemente, por calorimetria de combustão em bomba rotativa (ver 4.8), tendo-se obtido resultados consistentes entre si, o valor apresentado neste trabalho não nos merece qualquer dúvida, po dendo parecer concluir-se que no trabalho de Cavell ⁹⁵ houve um erro sistemáti co, que se presume tenha sido o uso de um solvente (dioxano) inadequado.

Solvente	۵H	∆H2	^{∆H} 3	۵Hr
Tolueno	1.2±0.2	-50.6±0.4	31.0±0.3	-131.0±0.9
Benzeno	2.2±0.2	-41.0±0.8	52.4±0.5	-132.2±1.7
Butanona	3.5±0.2	-73.0±1.0	-11.2±1.2	-131.3±2.3
DMF	4.0±0.3	-57.8±1.6	24.6±1.4	-136.2±3.5
Dioxano	2.1±0.1	-113.8±1.4	-144.4±1.6	-81.1±3.2

Tabela 3.138 - Estudo termoquímico de Et₂NH₂S₂CN Et₂ (c) em diferentes solve<u>n</u> tes (valores em kJ mol⁻¹)

Os mesmos autores^{61,60,96} determinaram também as entalpias de formação padrão dos dietilditiocarbamatos de Cu(II), Ni(II) e Co(III) a partir da reacção de permuta de ligando representada por

$$[M(C_{5}H_{7}O_{2})_{n}](c)+n Et_{2}NH_{2}S_{2}CNEt_{2}(c) \xrightarrow{\Delta H_{r}} [M(S_{2}CNEt_{2})_{n}](c)+n Et_{2}NH(\ell)+n C_{5}H_{8}O_{2}(\ell)$$

usando dioxano como solvente calorimétrico; a partir dos valores de ΔH_r obtidos, 97.5±1.1, 94.5±2.0 e -349.5±7.3 kJ respectivamente para Cu(II), Ni(II) e Co(III), calcularam os valores das entalpias de formação padrão dos respectivos complexos cristalinos, respectivamente -177±9.4, -118.4±9.8 e -727.6±2.6 kJ mol⁻¹. Recalculando os valores das entalpias de formação padrão destes complexos, usando os valores experimentais determinados pelos referidos autores 61,60,96 e para os valores auxiliares (entalpias de formação de outras espécies intervenientes nas reacções), valores da literatura e deste trabalho:

 $\Delta H_{f}^{0} [Cu(C_{5}H_{7}O_{2})_{2}] (c) = -809.9 \pm 1.3 \text{ kJ mol}^{-1^{97}}$ $\Delta H_{f}^{0} [Ni_{3}(C_{5}H_{7}O_{2})_{6}] (c) = -2582.9 \pm 6.2 \text{ kJ mol}^{-1^{98}}$ $\Delta H_{f}^{0} [Co(C_{5}H_{7}O_{2})_{3}] (c) = -1364 \pm 18 \text{ kJ mol}^{-1^{*99}}$

^{*} Este valor, a julgar por outros dos mesmos autores, não merece muita confian ça, mas parece ser o unico valor publicado na literatura.

$$\Delta H_{f}^{0} C_{5} H_{8} O_{2} (\ell) = -425.5 \pm 1.0 \text{ kJ mol}^{-1^{100}}$$

obtiveram-se, para entalpias de formação dos complexos cristalinos de Cu (II) , Ni (II) e Co (III) respectivamente os seguintes valores: -150.9, -205.9 e -872.7 kJ mol⁻¹.

Verifica-se ainda que estes valores são consideravelmente diferentes dos obtidos neste trabalho respectivamente -169.6 ± 3.6 , -233.0 ± 3.6 e -343.2 ± 4.9 kJ mol⁻¹, o que mais uma vez se julga ser devido a um erro sistemático na execução dos trabalhos de Cavell 61,60,96 : o dioxano não parece ser o solvente ideal para o estudo destes complexos, nem talvez as reacções de substituição as mais adequadas para o estudo dos compostos em questão.

CAPITULO 4

CALORIMETRIA DE COMBUSTÃO EM BOMBA ROTATIVA

4.1 - INTRODUÇÃO

No capitulo anterior focou-se que a entalpia de formação de um composto pode ser calculada através do estudo de uma reacção, envolvendo o composto como reagente ou produto, desde que as entalpias de formação de todos os outros reagentes e produtos sejam conhecidas. A referida reacção tem contu do de ser completa e única, isto e, não ser acompanhada de reacções laterais como decomposição, etc., apresentando todos os reagentes e produtos num estado químico e físico bem definido. Por estas razões o estudo de reacções de combustão apresenta, para alguns compostos, vantagens experimentais. O proces so de combustão é normalmente estudado sob oxigénio a alta pressão e, se necessario, usando compostos de combustão facil (oleo de parafina, acido benzoi co) como auxiliares, para assegurar uma combustão rápida e completa. A calori metria de combustão tem, por isso, sofrido um grande desenvolvimento, com o desenvolvimento de aparelhos de alta precisão, sendo corrente, para series de cinco/seis determinações experimentais, alcançar desvios padrão de apenas ± 0.01%. Por estas razões e sendo as reacções estudadas para a determinação das entalpias padrão de formação dos dialquilditiocarbamatos de dialquilamonio re accões complexas, estes valores foram confirmados por calorimetria de combustão, usando uma bomba de combustão rotativa. A técnica de combustão em bomba rotativa foi introduzida por Sunner¹⁰¹.

4.2 - DESCRIÇÃO DO CALORIMETRO DE BOMBA ROTATIVA

Todas as medições foram efectuadas com o calorimetro de bomba rotativa originalmente existente no National Physical Laboratory, Teddigton¹⁰² e, posteriormente, transferido para a Universidade de Manchester.

4.2.1 - SISTEMA CALORIMETRICO

O corpo da bomba de combustão, esquematizado na Figura 4.1, é de aço revestido a platina (0.5 mm de espessura), sendo o anel (a) e o cadinho (b) de platina. A parte superior da bomba (c) e as adaptações internas são r<u>e</u> vestidas igualmente a platina; as valvulas (d,e) são de aço inoxidavel sendo as respectivas bases de uma liga de 5% Pt/Au. As engrenagens (Gl-4) e as rodas dentadas (B1-3) permitem a rotação simultânea em torno dos eixos longitudinal e transversal da bomba; o contrapeso (f) contrabalança o peso da parte superior da bomba (\approx 1.7 Kg) reduzindo assim a deterioração da bomba e o desgaste no meca nismo de rotação. A bomba contém, na sua parte inferior, uma resistência de a-quecimento enrolada exteriormente (u) - Figura 4.2. O vaso calorimétrico (m) - Figura 4.2 - é dimensionado de tal modo que a quantidade de água necessária para preencher o espaço não ocupado pela bomba seja mínimo. O agitador (y) é formado por uma pá única. A temperatura do calorimetro é medida com um termóme tro de quartzo (z). O banho termostático (n) é cilíndrico e nele estão inseridos o sensor de um controlador de temperatura Halikainen, uma resistência de aquecimento (c.c), dois agitadores (sl e s2) e uma bomba (sp) para circulação da água através da tampa (x).

A tampa do banho é composta por duas partes separadas, mas sobreponiveis, que permitem o acesso da água através das cavidades das dobradiças. A par te do lado direito da tampa possui um orificio coberto a vidro através do qual se vê a água circular. No lado esquerdo, a tampa tem quatro orificios destinados à passagem do termómetro (z), à ligação ao eixo de rotação da bomba (bd), à passagem de contactos eléctricos e do veio do agitador (y).

Os motores dos agitadores do banho (ml, m2), do agitador do calorimetro (m3) e de rotação da bomba (m4) e as respectivas caixas de transmissão, estão colocados na placa de suporte (mp), suspensa, a uma altura variável do banho calorimétrico, em dois pilares (pl, p2).

A transmissão de movimento entre os diversos motores e respectivos agitadores é feita por barras rígidas, com uniões e inserções de borracha.O veio de transmissão, entre o motor de rotação da bomba e o eixo de rotação, é de Teflon (para reduzir perdas de calor do calorímetro) sendo os restantes veios em aço.

As fontes de alimentação dos motores, do controlador de temperatura e da resistência de aquecimento estão colocadas num painel de distribuição fixona base do sistema.

Figura 4.1 - Calorimetro de combustão de bomba rotativa N.P.L. -- Corpo da bomba.

Figura 4.2 - Calorimetro de combustão de bomba rotativa N.P.L. - Esquema geral

4.2.2 - EQUIPAMENTO AUXILIAR

(A) SISTEMA DE IGNIÇÃO

A unidade foi projectada e construida em Manchester e consiste num acumulador de carga com a capacidade de 1281 μ F. A ignição é provocada pela descarga do condensador através do fio de platina (g) (ver Figura 4.1) colocado entre os eléctrodos (h,i). A energia de ignição é calculada por

$$\Delta U \text{ (ignição)} = \frac{1}{2} C V_1^2 - \frac{1}{2} C V_2^2$$

em que V_1 e V_2 são os valores do potencial no condensador, respectivamente antes e depois da descarga, medidos por um voltimetro digital.

(B) LINHA DE FORNECIMENTO DE OXIGENIO

Usou-se oxigénio de elevado grau de pureza sem qualquer purificação; a pressão de enchimento da bomba foi controlada com um manómetro Budenburg graduado em atmosferas e com precisão de ± 10 kPa.

(C) SISTEMA DE REGISTO DE TEMPERATURA

A temperatura do calorímetro é medida, em intervalos de 20 s, com um termómetro de quartzo Hewlett Packard HP2804 (precisão de $\pm 10^{-4}$ K), aco plado a um microcomputador Commodore 8096 programado para o cálculo de varia cão de temperatura adiabática (ver 4.6).

4.3 - PROCEDIMENTO EXPERIMENTAL

As amostras (solidas) são prensadas sob a forma de pastilha. Para al guns compostos a pastilha foi selada num saco de poliester (Melinex), usando os métodos descritos por Skinner e Snelson¹⁰ e Suradi¹⁰; para outros compostos foi usado oleo de parafina como auxiliar de combustão.

As pesagens das amostras foram efectuadas com uma microbalança Sar

torius 2405; o cadinho de platina é aquecido numa chama de bico de Bunsen (no dia anterior à experiência) e guardado num exsicador com gel de sílica.

O fio de platina (0.5 mm de diâmetro e 20-60 mm de comprimento) é aquecido moderadamente, numa chama de Bunsen, para o limpar e temperar e é li gado entre os eléctrodos da bomba. Um bocado de fio de algodão, previamente pesado, é usado como rastilho a partir do fio de platina.

Depois de pesado o cadinho, a pastilha (ou o saco de Melinex) é pesado no cadinho. No caso de se usar óleo de parafina, este é colocado no cadi nho também pesado. Coloca-se, então, o cadinho com o seu conteúdo no anel de suporte. O fio de algodão é posto em contacto com a pastilha (ou o saco de Me linex) de modo a não tocar em nenhuma parte metálica da bomba. Pipetam-se para dentro da bomba 10.00 cm³ de água, apos o que a parte superior da bomba (com o cadinho, etc.) é colocada cuidadosamente no corpo da bomba, tendo 0 cuidado de colocar o 'o' ring e posteriormente o anel vedante. A bomba é liga da à linha de fornecimento de oxigénio, que é admitido até atingir a pressão de 30 atmosferas, após o que se verifica que as valvulas não tenham fugas. A bomba é, de seguida, invertida com muito cuidado para que o suporte do cadinho não caia. A lingueta de contacto para a ignição é levantada (com auxílio de uma peça especial em forma de gancho) ligada ao electrodo da bomba, apos o que a bomba é ligada ao calorimetro.

O calorimetro é então cuidadosamente colocado no banho termostático e a água contida num matrãs (previamente pesada) é colocada no calorimetro, após o que se coloca a tampa. As ligações eléctricas são então efectuadas, a parte esquerda da tampa do banho é colocada, verificando-se que o agitador da bomba esteja perfeitamente adaptado; o termómetro de quartzo é fixado e o calorimetro finalmente fechado por um pequeno parafuso na tampa. A parte direita da tampa do banho é seguidamente fechada, a placa de suporte dos motores é descida e os veios de transmissão são convenientemente colocados. Ligam-se os agitadores do banho e do calorimetro, o qual é aquecido até cerca de 23.1° C, usando a resistência interna de aquecimento; atingido o equilíbrio, começam--se as leituras de temperatura cerca dos 23.4° C; passados 20 minutos, provoca-se a ignição (através do sistema descrito em 4.2.1) e um minuto depois, (tendo a elevação de temperatura atingido cerca de dois terços da elevação total), liga-se o sistema de rotação da bomba que é mantido em funcionamento até ao fim da experiência. O tempo de duração de uma experiência é de cerca de 65 minutos.

4.4 - ANÁLISE DOS PRODUTOS DE COMBUSTÃO

4.4.1 - ANÁLISE DO DIÓXIDO DE CARBONO

A massa de substância utilizada foi calculada pelo método de Jessup¹⁰⁵ com base na massa de dióxido de carbono produzida. A massa de dióxido de carbono produzida por grama de amostra foi medida em experiências separadas, tendo a bomba apenas 1,00 cm³ de água, visto uma grande quantidade de <u>á</u> gua na bomba poder dissolver parte do dióxido de carbono formado, não sendo portanto de confiança as recolhas feitas nessas condições. O dióxido de carbono produzido é deixado sair lentamente (cerca de 120 cm³ min⁻¹) através de um tubo de secagem e dois tubos, previamente pesados, com Carbosorb; depois da bomba evacuada, faz-se passar uma corrente de oxigénio puro durante cerca de 30 minutos para assegurar que todo o dióxido de carbono residual foi arrastado. No caso de se verificar a presença de um resíduo pequeno de carbono, menor que 1 mg, (sinal de que a combustão foi incompleta) a energia de combustão é corrigida; nos casos em que a massa de carbono é maior, a experiência é rejeitada.

4.4.2 - DETERMINAÇÃO DE ÁCIDO NÍTRICO

O ácido nitrico formado é determinado reduzindo os nitratos produzidos pelo método de Devard¹⁰⁶. O amoniaco formado é destilado e recolhido numa solução de ácido cloridrico padrão, titulando-se o excesso de ácido cl<u>o</u> ridrico com hidróxido de sódio.

4.4.3 - DETERMINAÇÃO DE ÁCIDO NITROSO

A determinação do ácido nitroso é feita por um método colorimétri

 co^{106} . Quando soluções ácidas diluídas de ácido sulfanílico e l-naftilamina re agem com ácido nitroso, produz-se uma coloração vermelha que pode ser utiliza da para a determinação colorimétrica dos nitritos. O ácido sulfanílico é convertido no composto diazo correspondente que reage com a l-naftilamina origi nando o ácido 4(l-naftilamino)azobenzenossulfónico(vermelho). A coloração não aparece imediatamente, mas uma comparação satisfatória de cores pode ser feita após 10 a 15 minutos, desde que a amostra e a solução padrão sejam tratadas exactamente da mesma forma.

4.5 - DETERMINAÇÃO DO EQUIVALENTE ENERGÉTICO DO CALORÍMETRO

O equivalente energético do calorímetro foi determinado usando acido benzoico padrão, N.B.S. referência 39i, que tem como valor certificado uma ener gia de combustão, nas condições padrão, de $-\Delta U_c^0 = 26433.9 \pm 3.0 \text{ Jg}^{-1}$. Para as condições experimentais, 1.00 cm³ de água na bomba, amostras com cerca de 1.5g sob oxigénio a 3.04 MPa, o valor foi corrigido para $-\Delta U_c = 26435.7 \pm 3.6 \text{ Jg}^{-1}, \text{mul}$ tiplicando o valor certificado por um factor f¹⁰⁷dado por:

$$f = 1 + 10^{-6} [20(P-30) + 42(m_a/V-3) + 30(m_{\overline{a}}/V-3) - 45(T-298.15)]$$

em que:

P - pressão inicial de oxigénio, em atmosferas
m_a - massa de amostra, em gramas
m_{āg} - massa da água colocada inicialmente na bomba
V - volume interno da bomba, em decimetros cúbicos
T - temperatura absoluta, Kelvin, a que a combustão deve ser referida.

Para o fio de algodão usado como rastilho de combustão de formula empirica C $H_{1.686} \stackrel{0}{_{0.8431}}, \Delta U_{c}^{0} = -16250 \text{ Jg}^{-1108}$. Para estas experiências de calibração ΔU_{Σ} (ver definições em 4.7 deste trabalho), as correcções para o estado padrão e as capacidades caloríficas do conteúdo da bomba, $\varepsilon_{i} = \varepsilon_{f}$ foram calculados pelo método de Hubbard e colaboradores¹⁰⁸, $\Delta m(H_{2}0)$ é a diferença entre a massa de água adicionada ao calorímetro em cada experiência e 4063.3 g. A partir de sete expe riências de calibração, calculou-se o valor de $\varepsilon_{cal} = 20695.1 \pm 0.6 \text{ JK}^{-1}$. Os valores obtidos nas diferentes experiências encontram-se registados na Tabe la 4.1. As correcções correspondentes à formação de ácido nítrico baseiam-se no valor de -59.7 kJ mol⁻¹ para a energia de formação de HNO₃ 0.1 <u>M</u> a partir de O₂, N₂ e H₂O(ℓ)⁹²

4.6 - CALCULO DE ATad

Numa reacção de combustão o cálculo de ∆Tad é análogo ao efectuado numa reacção de solução (ver 3.1.5). Contudo, na combustão de compostos com enxofre, sendo a combustão feita numa bomba rotativa, a energia de agitação não é constante ao longo de toda a experiência, podendo a energia extra ser calculada dos seguintes modos:

- i) Quando o motor faz parte do calorímetro, a energia de rotação pode ser medida directamente como energia eléctrica;
- ii) A energia de rotação é medida numa série de experiências independentes e como se prova ser constante para um determinado intervalo de tempo, então a rotação é feita exactamente durante o mesmo tem po na experiência de combustão e de calibração;
- iii) O método apresentado por Good e colaboradores¹⁰⁹ parece ser a melhor alternativa: a rotação da bomba começa num tempo, determinado pelo tempo de resposta do calorimetro (quando ocorreu 60% da elevação de temperatura) e permanece até ao fim da experiência. Este método apenas exige que o efeito da energia seja constante numa experiência in dividual, não requerendo equipamento extra, necessário no método indicado em (i), apresentando ainda a vantagem de exigir um menor rigor que o método indicado em (ii) que exige que a velocidade de produção de energia seja constante numa série de experiências.

O método (iii) apresenta o problema da energia extra (devida a rotação) durante a maior parte do tempo do periodo de reacção e na totalidade do periodo final; uma vez que a rotação da bomba fornece energia ao calorim<u>e</u> tro durante o periodo final, há duas temperaturas de convergência: uma para

energetico	
ente	
equival	
op	
determinação	
da	
ultados	
Resi	
1	
4.1	
Tabela	

do calorimetro de bomba rotativa

	-	2	ĸ	4	ъ	9	7
m'(ac henz)/d	1.504324	1.540293	1.515773	1.497040	1.479632	1.488846	1.503666
m'''(algodão)/g	0.002608	0.003030	0.002644	0.002742	0.002565	0.003089	0.002846
ATad/K	1.926594	1.973110	1.941167	1.917835	1.895051	1.907494	1.926317
-/JK-1	14.34	14.39	14.36	14.33	14.31	14.32	14.34
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	15.95	16.04	15.98	15.93	15.89	15.91	15.95
Am(H_0)/q	-10.5	-10.8	-10.8	-10.6	0.11-	-11.2	-11.0
- ΔU(ac.benz.)/J	39767.86	40718.72	40070.52	39575.30	39115.11	39358.69	39750.46
DU(HNO~)/J	4.39	8.07	3.18	6.54	3.15	2.82	3.39
ΔU(iqnicão)/J	0.73	0.83	0.72	0.80	0.75	0.84	0.77
∆U(alqodão)/J	42.35	49.21	42.94	44.53	41.66	50.17	46.22
- ΔU(PBI)/J	39815.33	40776.83	40117.36	39627.17	39160.67	39412.52	39800.84
ε/JK ⁻¹	20695.38	20696.57	20697.02	20693.25	20696.13	20694.17	20692.94

ε_{cal} = 20695.1 ± 0.6 JK⁻¹

o periodo inicial (agitação e troca de calor com o exterior) e outra para o periodo final (rotação, agitação e troca de calor com o exterior).

Rearranjando a equação (3.3) obtém-se, para o periodo inicial:

$$T_{\infty} = T_i + u/k$$

e, para o período final:

$$T'_{\infty} = T_{i} + (u + r)/k$$
,

em que r e a contribuição devida a rotação.

No periodo inicial:

$$g_i = k (T_{\infty} - T_i)$$

e no periodo final:

$$g_f = k (T'_{\infty} - T_f)$$

e como a rotação se iniciou no tempo, t_r , em que ocorreu 63% da elevação de temperatura, então:

$$-g_{i}(t_{r}-t_{i}) - g_{f}(t_{f}-t_{r}) = k \int_{t_{i}}^{t_{r}} (T-T_{\infty})dt + \int_{t_{r}}^{t_{f}} (T-T_{\infty}')dt$$

O resultado desta integração é idêntico ao da eq (3.14), logo o uso deste método faz automaticamente a correcção para o aumento de energia devido à rotação, visto os tempos t_x e t_r coincidirem com o tempo para o qual se verifica 63% da elevação da temperatura. Os valores de Δ Tad foram determinados usando um programa originário do Grupo de Termoquímica da Universidade de Manchester¹¹⁰.

4.7 - CÁLCULO DA ENTALPIA DE COMBUSTÃO

O cálculo da energia de combustão padrão do composto para o proces so isotérmico, ΔU_c^0 , é feito de acordo com o estabelecido por Hubbard e colaboradores¹⁰⁸.

em que ∆U(P.B.I.) é a variação de energia no processo de bomba isotérmico, a temperatura de referência de 298.15 K, calculada por:

$$\Delta U(P.B.I.) = -\epsilon_{cal} \Delta Tad + (T_i - 298.15)\epsilon_i + (298.15 - T_f + \Delta T)\epsilon_f$$

em que:

- ε_{cal} equivalente energético do sistema calorimétrico (ver 4.5 des te trabalho);
- ε_i capacidade calorífica do conteúdo inicial da bomba (oxigénio, composto, cadinho, água e eventuais auxiliares de combustão) calculada pela soma das capacidades caloríficas dos respectivos componentes;
- ε_{f} capacidade calorífica do conteúdo final da bomba;
- T_i temperatura inicial do calorímetro;
- T_f temperatura final do calorimetro;
- ΔT correcção para o efeito de qualquer energia adicionada ou removida;
- ∆Tad elevação de temperatura corrigida para o processo suposto adi abático (ver 3.1.5 deste trabalho).

O calculo do termo AU, que faz as correcções para as condições padrão a 298.15 K, é complexo; inicialmente foi calculado para a combustão de compostos contendo carbono, hidrogénio e oxigénio por Washburn¹¹¹. Este tratamento, conhecido por Correcção de Washburn, foi estendido por Hubbard, Scott e Waddington¹⁰⁸ a compostos com azoto, enxofre e halogéneos e por Hu e colaboradores¹¹² a compostos com cloro.

O método geral para o cálculo da correcção △Ц é o seguinte:

o processo global pode ser considerado como:

130

Reagentes (estado padrão, 298K) $\xrightarrow{\Delta U_{c}^{0}}$ Produtos (estado padrão, 298K) $\downarrow^{\Delta U_{1}}$ $\uparrow^{\Delta U_{3}}$ Reagentes (condições da experi- $\xrightarrow{\Delta U_{2}}$ Produtos (condições da experiência,T₂)

Como ΔU_2 é a energia correspondente ao processo que ocorre na bomba, permane cem dois termos por conhecer: $\Delta U_1 = \Delta U_3$.

 ΔU_1 corresponde à variação de energia entre os componentes no estado padrão (puros, à pressão de l atmosfera e a 298.15 K) e nas condições da experiência; esta variação de energia engloba vários processos: evaporação de água e sua saturação com oxigénio e azoto, dissolução do oxigénio e azoto na restante água líquida, a uma temperatura T₁ diferente da temperatura de referência e a uma pressão superior. Todos os efeitos energéticos destes processos são calculáveis a partir de dados existentes na literatura. O azoto gasoso é convencionalmente tratado como oxigénio uma vez que está presente apenas em pequena quantidade e as suas propriedades são suficientemen te semelhantes às do oxigénio, pelo que o erro cometido é insignificante.

O termo final, ΔU_3 , é a soma dos efeitos energéticos de separação dos produtos (separação do CO₂ (g) da solução da bomba e condensação da água gasosa) e passagem dos componentes das condições em que se realiza a experiência para as condições padrão a 298 K. O termo total ΔU_2 , diferença entre ΔU_1 e ΔU_3 , é um dos termos de energia a subtrair à energia total, $\Delta U(P.B.I)$.

Calcula-se, então, a energia padrão de combustão do composto, pela expressão

$$\Delta U_{C}^{O} = \Delta U(P.B.I.) - \Delta U(ignição) - \Delta U(algodão) - \Delta U(HNO_{3} + HNO_{2}) - \Delta U_{\Sigma} - \Delta U(auxiliares) + \Delta U(carbono)$$

e a entalpia de combustão, através de

 $\hat{e}ncia,T_1)$

$$\Delta H_{c}^{O} = \Delta U_{c}^{O} + \Delta n RT$$

em que ∆n é a variação do número de moles de gas, para a reacção de combus-
tão, representada genericamente por:

$$C_{a}H_{b}S_{d}N_{e}(c) + (a+b/4+3d/2) O_{2}(g) \longrightarrow a CO_{2}(g) + (b/2-d)H_{2}O(\ell) + d H_{2}SO_{4}(\ell) + e/2 N_{2}(g)$$

Os calculos foram efectuados a partir de um programa originario da Universidade de Manchester¹¹³.

4.8 - <u>O INTERVALO DE INCERTEZA</u>

O desvio padrão da média da energia de combustão foi calculado a par tir da relação

$$\sigma = \sqrt{(\sigma \epsilon_{cal})^2 + (\sigma \Delta U_B)^2 + (\sigma \Delta U_C^0)^2 + (\sigma \Delta c_{CO_2})^2}$$

em que:

σ ε_{cal} - desvio padrão da média do equivalente energético do calorimetro;
 σΔU_B - desvio padrão da média da energia de combustão padrão do ácido benzoico;

$$\sigma \Delta U_c^0$$
 - desvio padrão da média da energia de combustão padrão;

 $\sigma \Delta_{CO_{2}}$ - desvio padrão da média da análise de dióxido de carbono.

Os intervalos de confiança associados aos valores das entalpias de combustão e formação padrão são tomados de acordo com a sugestão de Rossini⁹¹, como duas vezes o desvio padrão da média e incluem as incertezas associadas ãs calibrações e parâmetros termodinâmicos auxiliares.

4.9 - DETERMINAÇÃO EXPERIMENTAL DE ENTALPIAS DE FORMAÇÃO PADRÃO DE DIALQUILDI-TIOCARBAMATOS DE DIALQUILAMÓNIO POR CALORIMETRIA DE COMBUSTÃO

O procedimento experimental usado com os compostos supracitados foi o descrito por Waddington e colaboradores¹¹⁴ para calorimetria de combustão de compostos organossulfúricos.

Os compostos foram queimados sob a forma de pastilha. Para os compos tos com o grupo alquilo etil e propil, as pastilhas foram seladas em sacos de Melinex; para os compostos com R = Prⁱ e Buⁱ verificou-se que a mesma técnica não podia ser utilizada, pois as combustões eram explosivas e portanto incom-O problema foi solucionado utilizando óleo de parafina como pletas. auxiliar de combustão. A massa de Melinex usada em cada experiência foi corrigida através da fracção em massa de água (0.0032)¹⁰°, a energia de combustão do Melinex seco foi tomada como ΔU_c^0 (Melinex) = -22902 ± 5 Jg⁻¹ e a massa de dióxido de car bono produzido pelo Melinex foi calculada de acordo com valores da literatura¹03 Para o oleo de parafina, C H_{1.886±0.01}, $\Delta U_c^0 = -45966.3\pm 2.0 \text{ Jg}^{-1115}$. A quantida de de substância queimada em cada experiência foi corrigida com base na massa média de dióxido de carbono produzida. Nas experiências efectuadas para determinação da massa de dióxido de carbono obtida na queima dos diferentes dialquilditiocarbamatos de dialquilamónio, obtiveram-se os seguintes valores (em percentagem): $R^{i} = Et(99.82\pm0.02); R = Pr(99.37\pm0.02); R = Pr^{i}(99.85\pm0.02); R =$ = Bu¹(99.74±0.12). Para o cálculo da massa no vazio das amostras dos diferentes compostos queimados nas várias experiências admitiu-se que o valor da massa específica para os diferentes compostos era de 1.2 g cm³. Igualmente se admitiu que, para todos os compostos a 298.15 K $(\delta U/\delta P)_T = -0.1 \text{ J g}^{-1} \text{ MPa}^{-1}$, va lor típico para a grande maioria dos sólidos orgânicos 111.

Os valores obtidos experimentalmente para a combustão dos dialquild<u>i</u> tiocarbamatos de dialquilamónio com o grupo alquilo = Et, Pr, Prⁱ e Buⁱ enco<u>n</u> tram-se registados nas Tabelas 4.2 a 4.5 respectivamente.

Tabera 4.2 - Energia de combustão de Et ₂ NH ₂ S ₂ CN Et ₂ (c)									
		1	2	., 3	4				
m'(composto)/g		1.083863	0.987421	1.086263	0.964456				
m''(melinex)/g		0.048994	0.051397	0.051896	0.051776				
m'''(algodão)/g		0.003022	0.003023	0.003128	0.003208				
∆Tad/K_		1.855666	1.698802	1.863110	1.660573				
ε _i /JK ⁻¹		53.1	52.9	53.1	52.9				
ε _f /JK ⁻¹		55.3	54.9	55.4	54.8				

-11.0

88.3

1.0

6.6

21.8

49.1

1122.1

34267.9

38417.4

-11.1

89.5

1.1

16.5

20.5

52.1

1185.8

34262.5

34377.2

-10.9

87.1

1.1

0.0

22.0

50.8

1188.5

34266.8

38572.3

 $\Delta U_{\rm c}^{\rm O} = -34265.0 \pm 1.3 \, {\rm Jg}^{-1}$

-12.1

88.0

0.8

6.6

20.7

49.1

1177.1

34263.5

35161.6

134

∆m(H₂0)/g

 $\Delta U(HNO_3 + HNO_2)/J$

-m'[']∆U^O(melinex)/J -m'''∆U(algodão)/J

 $-\Delta U_c^0(\text{composto})/Jg^{-1}$

∆U(ignição)/J

∆U(carbono)/J

-∆U(PBI)/J

 $\Delta U_{\Sigma}/J$

Tabela 4.3 - Energia de combustão de $nPr_2NH_2S_2CN nPr_2$

and the second sec					
	1	2	3	4	5
m'(composto)/g	1.016972	0.989068	1.105464	0.828090	0.959231
m''(melinex)/g	0.056188	0.052189	0.054185	0.050464	0.058111
m'''(algodão)/g	0.003041	0.003372	0.003052	0.003102	0.003064
∆Tad/K	1.873635	1.820481	2.027008	1.534100	1.774452
ε _i /JK ⁻¹	53.1	53.0	53.2	52.7	53.0
ε _f /JK ^{−I}	55.3	55.1	55.6	54.4	55.0
∆m(H ₂ 0)/g	-11.0	-10.8	-11.7	-11.0	-11.4
-∆U(PBI)/J	38789.3	37690.3	41959.1	31759.3	36732.9
$\Delta U(HNO_3 + HNO_2)/J$	84.7	101.5	80.6	82.1	86.5
∆U(ignição)/J	1.1	1.1	1.1	1.1	1.1
∆U _∑ ,/J	26.3	25.4	27.8	22.8	25.3
-m'ı́ΔU ^O (melinex)/J	1286.8	1195.2	1240.9	1155.7	1330.9
m'''∆U ^O (algodão)/J	49.4	54.8	49.6	50.4	49.8
$-\Delta U_c^o(\text{composto})/Jg^{-1}$	36717.8	36713.7	36689.7	36768.0	36737.0

 $\Delta U_{\rm c}^{\rm 0} = -36725.0 \pm 13.1 \ \rm Jg^{-1}$

	1	2	3	4
m'(composto)/g	0.995523	0.816984	0.784388	0.875845
m''(melinex)/g	0.063084			
m''(parafina)/g		0.571776	0.561080	0.596044
m'''(algodão)/g	0.002918	0.002998	0.002966	0.002811
∆Tad/K	1.844620	2.728845	2.646286	2.886829
ε _i / JK ⁻¹	53.02	53.91	53.83	54.06
ε _f / JK ⁻¹	55.16	57.06	56.87	57.45
∆m (H ₂ 0)/g	-10.1	-10.8	-10.8	-10.8
-∆U(PBI)/J	38195.3	56501.6	54791.7	59773.8
$\Delta U(HNO_3 + HNO_2)/J$	87.8	90.4	89.0	90.1
∆U(ignição)/J	1.1	1.1	1.1	1.1
$\Delta U_{\Sigma}^{}/J$	26.1	43.2	42.2	45.3
-m''∆U ^O (melinex)/J	1444.8	-		
-m'' $\Delta U_{c}^{0}(parafina)/J$		26282.4	25790.8	27397.9
-m''' ∆U _c (algodão)/J	47.4	48.7	48.2	45.7
$-\Delta U_c^{o}(composto) / Jg^{-1}$	36752.6	36764.2	36742.5	36757.3

Tabela 4.4 - Energia de combustão de $Pr_2^i NH_2S_2CN Pr_2^i$ (c)

 $\Delta U_{\rm c}^{\rm O} = -36754.2 \pm 4.6 \ {\rm Jg}^{-1}$

	1	2	3	4
m'(composto)/g	0.864113	0.827476	0.872244	0.847319
m''(parafina)/g	0.510742	0.558661	0.525382	0.546576
m'''(algodão)/g	0.003079	0.002703	0.002841	0.002932
∆Tad/K	2.746822	2.784863	2.794099	2.795298
ε _i / JK ⁻	53.89	53.93	53.93	53.94
ε _f / JK ⁻¹	57.09	57.15	57.20	57.18
∆m(H ₂ 0)/g	-10.9	-10.3	-11.0	-10.4
-ΔU(PBI)/J	56872.47	57667.31	57850.42	57882.15
$\Delta U(HNO_3 + HNO_2)/J$	89.51	89.51	83.54	89.53
∆U(ignição)/J	1.06	1.06	1.09	1.07
ΔU _Σ /J	44.81	45.94	45.64	45.90
-m''∆U ^O (parafina)/J	23476.92	25679.58	24149.87	25124.08
-m'''∆U _C ^O (algodão)/J	50.00	43.90	46.14	47.62
$-\Delta U_{c}^{o}(composto)/ Jg^{-1}$	38432.67	38438.96	38434.36	38443.55

Tabela 4.5 - Energia de combustão de $Bu_2^i NH_2S_2CN Bu_2^i$ (c)

 $\Delta U_{\rm c}^{\rm o}$ = -38437.4 ± 2.5 Jg⁻¹

Na Tabela 4.6 encontram-se registados os valores das entalpias de com bustão padrão e das respectivas entalpias de formação padrão, tendo-se utiliza do os seguintes parâmetros termodinâmicos auxiliares $\Delta H_f^0 H_2 O(\ell) = -285.83\pm0.04$ kJ mol⁻¹⁹², $\Delta H_f^0 CO_2(g) = -393.51\pm0.13$ kJ mol⁻¹⁹² e $\Delta H_f^0 H_2 SO_4$ em 115H₂O (ℓ) = = -887.84±0.40 kJ mol⁻¹⁹².

Tabela 4.6 - Entalpias de combustão padrão e entalpias de formação padrão de dialquilditiocarbamatos de dialquilamónio

R	∆H ^O _C / kJ mol ⁻¹	∆H ^O / kJ mol ⁻¹
Et	-7639.6 ± 3.3	-250.1 ± 3.6
Pr	-10252.3 ± 8.4	-354.7 ± 8.8
Pr ⁱ	-10260.4 ± 4.0	-346.7 ± 4.6
Bu ⁱ	-12891 ± 31	-434 ± 31

O elevado valor da incerteza associado a entalpia de combustão padrão do diisobutilditiocarbamato de diisobutilamónio deve-se ao valor da incerteza proveniente da análise de dióxido de carbono para este composto.

Comparando estes valores de entalpias de formação padrão com os deter minados por calorimetria de solução-reacção registados na Tabela 3.18 verifica--se que os valores obtidos pelos dois métodos são concordantes dentro dos limites dos erros experimentais.

Os valores usados neste trabalho em calculos que envolvem as entalpi as de formação padrão dos dialquilditiocarbamatos de dialquilamónio são os valo res obtidos por calorimetria de solução-reacção (Capítulo 3), pelo que os valo res de idênticos parâmetros obtidos por calorimetria de combustão com bomba rotativa, neste capítulo, são somente considerados como uma confirmação dos valores anteriormente determinados por calorimetria de solução-reacção.

CAPITULO 5

MICROCALORIMETRIA DE ALTAS TEMPERATURAS

5.1 - INTRODUÇÃO

Neste trabalho determinaram-se entalpias de sublimação de alguns dialquilditiocarbamatos metálicos e entalpias de "decomposição" de alguns dialquilditiocarbamatos de dialquilamónio utilizando um microcalorimetro Calvet de alta temperatura e de células gémeas. O princípio de funcionamento deste calorimetro encontra-se amplamente descrito na literatura¹¹⁶⁻¹¹⁹, tendo-se usado ne<u>s</u> neste trabalho a técnica de sublimação em vácuo desenvolvida por Skinner¹²⁰,¹²¹.

A determinação de pressões de vapor de dialquilditiocarbamatos de di alquilamónio foi feita com auxílio de uma célula de vidro, tipo célula de Knud sen, que se incorporou num microcalorimetro Calvet, como se descreve adiante.

5.2 - DESCRIÇÃO DO CALORÍMETRO

O microcalorimetro, Seteram, do tipo de células gémeas ¹²² utilizado neste trabalho, foi o aparelho existente no Departamento de Química da Universidade de Manchester (Inglaterra) já profusamente descrito na literatura¹²³ p<u>e</u> lo que aqui se apresenta somente uma descrição breve.

O calorimetro é constituido, essencialmente, por duas células gémeas colocadas num bloco metálico de elevada capacidade térmica, mantido a temperatura constante. Em volta das células estão distribuidos regularmente um elevado número de termopares, todos iguais e colocados a igual distância uns dos <u>ou</u> tros, constituindo, assim, duas pilhas termoeléctricas, que são ligadas em op<u>o</u> sição, cuja força electromotriz é directamente proporcional ao fluxo de calor vindo da célula, independentemente de flutuações de temperatura no exterior das células. O sinal produzido é amplificado (amplificador Seteram nanovoltmeterBN) e transmitido a um registador (Rikadenki DBE-2) com integrador de dois canais e impressor acoplado (Seteram ITC).

A técnica experimental utilizada na determinação de entalpias de sublimação, está pormenorizadamente descrita por Ferrão¹²³. Resumidamente consiste em: estabelecido o equlíbrio térmico nas células calorimétricas, a uma temperatura previamente seleccionada, a amostra (≃3/5 mg) contida num tubo capilar muito fino, à temperatura ambiente, é deixada cair na célula calorimétrica e, simultaneamente, um tubo capilar idêntico (aproximadamente a mesma massa) vazio, é deixado cair na célula de referência, para compensar os efeitos térmi cos resultantes da introdução dos tubos capilares nas células. Atingido o equi librio térmico entre as duas células, estas são ligadas a um sistema de vácuo e evacuadas simultaneamente. Na prática, geralmente, procede-se à evacuação antes de se ter atingido o equilibrio térmico entre as células. Assim, o sinal registado durante todo o processo é proporcional à energia do processo global de aquecimento e sublimação ou decomposição, representado por:

 $X (c, 298 K) \longrightarrow X (g, T)$

Na determinação de pressões de vapor de dialquilditiocarbamatos de dialquilamónio, utilizou-se uma célula de vidro especialmente desenhada para este estudo e esquematizada na Figura 5.1. Na célula de vidro (A), com uma altura de cerca de 3 cm, é colocado o composto; a esta célula é selado o tubo de pirex fino (B) cujo orificio terminal (C) tem cerca de 0.5 mm de diâmetro. O sistema é evacuado e mantido a uma temperatura constante, previamente escolhida, até se atingir o equilíbrio entre o sólido e o respectivo vapor. O sistema foi previamente calibrado com naftaleno para orificios com vários diâmetros e a diferentes temperaturas, tendo-se estabelecido a proporcionalidade entre a pressão de vapor a uma determinada temperatura e o sinal registado;a partir do sinal obtido para cada experiência, após o equilíbrio, calcula-se então, direc tamente, o valor da pressão de vapor da substância em estudo, a essa temperatura ra.

5.3 - MÉTODO DE CÁLCULO E CALIBRAÇÃO

O microcalorimetro Calvet foi previamente calibrado, a várias temperaturas, usando-se como calibrantes para o trabalho de sublimação o ácido benzóico¹²⁴, o iodo¹²⁵ e o naftaleno¹²⁶ e, para o trabalho de determinação de pressões de vapor, o naftaleno¹²⁷.

Os processos de sublimação podem ser representados por:

142

X (c, 298 K)
$$\xrightarrow{\Delta H_{obs,T}}$$
 X (g, T)
 $\Delta H_{sub1, 298}^{O}$ $(H_{T} - H_{298})$ (g)
X (g,298 K)

logo, as entalpias de sublimação padrão, ∆H_{subl,298}, podem ser calculadas p<u>e</u> la equação

$$\Delta H_{sub1,298}^{O} = \Delta H_{obs,T}^{O} - (H_{T} - H_{298}) (g)$$

Como o valor de $\Delta H_{obs,T}$ é obtido experimentalmente, é portanto necessário conhecer os valores de ($H_T - H_{298}$) (g) para os compostos em estudo; no caso, frequente, de não se conhecerem na literatura valores tabelados para estas diferenças, as mesmas são estimadas a partir de valores de outros compostos, por aplicação de esquemas aditivos (ver Apéndice 2).

A partir dos valores das pressões de vapor, obtidos para alguns di alquilditiocarbamatos de dialquilamónio, a várias temperaturas, determinaram -se os valores das respectivas entalpias de sublimação, por aplicação da equação de Clausius-Clapeyron através da representação gráfica de *l*np=f(1/T). O vapor do sólido é suposto estar completamente saturado, nas condições da experiência, visto o processo de efusão ser muito lento e, também, as pressões de vapor das substâncias estudadas serem suficientemente baixas, para o vapor poder ser considerado com comportamento quase ideal. Logo as entalpias de sublimação obtidas podem, com boa aproximação, ser consideradas entalpias de sublimação padrão.

5.4 - DETERMINAÇÃO EXPERIMENTAL DE ENTALPIAS DE "DECOMPOSIÇÃO" DE ALGUNS DI-ALQUILDITIOCARBAMATOS DE DIALQUILAMÔNIO

Ao tentar-se determinar experimentalmente a entalpia de sublimação do dietilditiocarbamato de dietilamónio usando a técnica anteriormente descrita, obteve-se um valor aproximadamente duplo do obtido por Cavell , 111.8 \pm 3.0 kJ mol⁻¹, através do chamado método da ampola de sublimação, em que a pressão de vapor é medida indirectamente por um método espectrofotométrico. Tendo-se obtido, no microcalorimetro, valores concordantes entre si, para duas temperaturas diferentes, parece poder concluir-se que o processo que realmente ocorre nestas condições experimentais é um processo de decomposição e não de sublimação; supôs-se, então, que possivelmente ocorre a dissociação em duas moléculas gasosas, representada pela equação

 $Et_2NH_2S_2CN Et_2 (c) \longrightarrow Et_2NH (g) + HS_2CN Et_2 (g);$

este processo de dissociação foi confirmado por espectrometria de massa.

Os valores das entalpias de decomposição de quatro dialquilditiocarbamatos de dialquilamónio (grupo alquil = Et, Pr, Prⁱ e Buⁱ) foram, neste trabalho, medidos a duas temperaturas diferentes, encontrando-se registados nas Tabelas 5.1 a 5.4.

m/mg	T/K	∆H _{obs,T} /kJ mol ⁻¹	(H _T -H ₂₉₈)/kJ mol ⁻¹	∆H ⁰ decomp,298/kJ mol ⁻¹				
5.044	387	236.8	37.4	208.8				
4.316	387	236.0	37.4	208.1				
3.595	387	241.1	37.4	213.2				
3.518	387	241.6	37.4	213.7				
3.042	387	237.6	37.4	209.7				
3.934	378	235.6	25.1	210.5				
3.945	378	231.9	25.1	206.8				
3.539	378	233.0	25.1	207.9				
3.547	378	235.6	25.1	210.5				
$\Delta H_{decomp, 298}^{0} = 209.9 \pm 2.0 \text{ kJ mol}^{-1}$								

Tabela 5.1 - Entalpia de decomposição de $Et_2NH_2S_2CN Et_2$ (c)

m/mg	T/K	ΔH _{obs,T} /kJ mol ⁻¹	(H _T -H ₂₉₈)/kJ mol ⁻¹	∆H ⁰ decomp,298/kJ mol ⁻¹
2.177	376	262.2	32.8	229.4
2.593	376	260.8	32.8	228.0
2.288	376	255.6	32.8	222.8
2.357	376	250.3	32.8	217.5
4.621	387	254.4	37.4	217.0
4.348	387	258.6	37.4	221.2
5.194	387	252.8	37.4	215.4
2.269	387	261.4	37.4	224.0
		∆H ⁰ decomp,298 =	221.9 ± 3.6 kJ mol ⁻¹	

Tabela 5.2 - Entalpia de decomposição de $Pr_2NH_2S_2CN Pr_2$ (c)

m/mg	T/K	∆H _{obs,T} /kJ mol ⁻¹	(H _T -H ₂₉₈)/kJ mol ⁻¹	∆H ⁰ decomp,298/kJ mol ⁻¹
3.534	387	219.8	37.4	182.4
3.107	387	231.1	37.4	193.7
4.746	387	213.7	37.4	176.3
4.280	387	224.6	37.4	187.2
4.257	387	231.5	37.4	194.1
3.435	378	220.3	32.8	187.5
3.636	378	223.4	32.8	190.6
4.395	378	217.1	32.8	184.3
2.936	378	217.6	32.8	184.8
3.973	378	219.1	32.8	186.3

Tabela 5.3 - Entalpia de decomposição de $Pr_2^i NH_2S_2CN Pr_2^i$ (c)

 $\Delta H_{decomp,298}^{O} = 186.7 \pm 3.2 \text{ kJ mol}^{-1}$

m/mg	T/K	ΔH _{obs,T} /kJ mol ⁻¹	(H _T -H ₂₉₈)/kJ mol ⁻¹	∆H ⁰ decomp,298/kJ mol ⁻¹
4.102	376	259.2	40.0	219.2
4.392	376	260.3	40.0	220.3
4.437	376	256.3	40.0	216.3
4.569	387	260.8	46.5	214.3
4.285	387	261.2	46.5	214.7
4.650	387	265.3	46.5	218.8
4.644	387	261.9	46.5	215.4
		$\Delta H_{decomp}^{0} =$	217.0 ± 1.8 kJ mol ⁻¹	

Tabela 5.4 - Entalpia de decomposição de $Bu_2^i NH_2S_2CN Bu_2^i$ (c)

Note-se que para cada composto, são concordantes entre si, não só os valores obtidos a cada temperatura (várias experiências diferentes) como também o são os valores calculados a 298 K, provenientes de medições a duas temperaturas diferentes. A Tabela 5.5 resume os valores calculados para entalpias de decomposição a 298 K, dos diferentes dialquilditiocarbamatos de dialquilamónio.

Tabela 5.5 - Entalpias de decomposição de dialquilditiocarbamatos de dialquil amónio a 298 K

∆H ⁰ decomp,298/kJ mol ⁻¹
209.9 ± 2.0
221.9 ± 3.6
186.7 ± 3.2
217.0 ± 1.8

5.5 - DETERMINAÇÃO EXPERIMENTAL DE PRESSÕES DE VAPOR DE ALGUNS DIALQUILDITIO-CARBAMATOS DE DIALQUILAMÓNIO E CÁLCULO DAS RESPECTIVAS ENTALPIAS DE SU-BLIMAÇÃO

Os valores das entalpias de sublimação têm sido determinados, funda mentalmente, por dois tipos de métodos experimentais: métodos indirectos, através dos quais se mede a pressão de vapor do sólido a várias temperaturas, e métodos directos, em que se mede, calorimetricamente, a energia absorvida por uma quantidade conhecida de composto durante o processo de sublimação.

Para estes compostos, como se viu em 5.4, tentou-se, inicialmente, um método de sublimação directa, mas os valores obtidos referem-se a processos de decomposição, pelo que, por um método indirecto, usando uma célula tipo Knudsen (de vidro) adaptada a um microcalorimetro Calvet, mediram-se pressões de vapor de alguns dialquilditiocarbamatos de dialquilamónio, a várias temperaturas, entre 300 e 330 K.

As entalpias de sublimação podem ser calculadas a partir da equação de Clapeyron

$$^{\Delta H}$$
subl, $T_1 = T_1 \left(\frac{dP}{dT}\right) (Vg - Vc)$ (5.1)

A aplicação da equação (5.1) implica o conhecimento da variação da pressão de vapor com a temperatura e dos volumes molares das fases coexistentes no equilibrio, \bar{a} temperatura T₁ e \bar{a} pressão de vapor no equilibrio.

Na prática, a aproximação habitualmente utilizada é a que resulta de considerar Vc desprezável relativamente a Vg. Para o cálculo rigoroso de Vg seria necessário conhecer a equação de estado do vapor na região da sua s<u>a</u> turação. Quando esta situação não se verifica, Vg poderá ser estimado por métodos descritos na literatura ou, mais vulgarmente, através da lei dos gases ideias. As aproximações anteriormente citadas dão a seguinte forma à equação (5.1)

$$\Delta H_{sub1,T_{1}} = RT_{1}^{2} \left(\frac{d\ell np}{dT}\right) = -R \frac{d\ell np}{d(T^{-1})}$$
(5.2)

Para intervalos de temperatura relativamente pequenos ∆H_{subl} pode, com boa aproximação, ser considerado independente da temperatura e a integração da equação (5.2) conduz a

$$ln p = -\frac{\Delta H_{sub1}}{RT} + C$$
(5.3)

-3.6400

-2.1603

-0.9341

Na prática, esta equação constitui uma aproximação razoável e o valor de ΔH_{subl} pode ser facilmente calculado a partir do declive da recta da representação gráfica de ℓn p em função de T⁻¹.

Para os dialquilditiocarbamatos de dialquilamónio, com o grupo alquil= = Et, Pr, Prⁱ e Buⁱ determinaram-se aproximada e experimentalmente, valores das pressões de vapor a várias temperaturas, que se encontram registados nas Tabelas 5.6 a 5.9.

T/K	p/mmHg	$(10^3/T)/K^{-1}$	ln p

300.3

311.0

320.5

0.026

0.115

0.393

labela 5.6	-	Valores	de	pressão	de	vapor	de	Et2NH2S2CN	Et2	(c)	a	diferentes
		temperat	turas	S					2			

3.3300

3.2154

3.1201

Tabela 5.7 - Valores de pressão de vapor de Pr₂NH₂S₂CN Pr₂ (c) a diferentes temperaturas

T/K	p/mmHg	(10 ³ /T)/K ⁻¹	ln p
309.5	0.067	3.2310	-2.7000
317.5	0.189	3.1496	-1.6657
325.5	0.569	3.0722	-0.5634
330.6	1.173	3.0248	0.1596

150

T/K	p/mmHg	(10 ³ /T) /K ⁻¹	ln p
301.2	0.028	3.3200	-3.5792
307.6	0.057	3.2509	-2.8582
311.2	0.074	3.2134	-2.6058
317.2	0.188	3.1526	-1.6724
319.4	0.420	3.1309	-0.8673
326.7	0.565	3.0609	-0.5713
330.2	1.000	3.0285	0.0000

Tabela 5.8 - Valores de pressão de vapor de Prⁱ₂NH₂S₂CN Prⁱ₂ a diferentes temperaturas

Tabela 5.9 - Valores de pressão de vapor de $Bu_2^i NH_2 S_2 CN$ Bu_2^i a diferentes temperaturas

-	T/K	p/mmHg	(10 ³ /T)/K ⁻¹	ln p
-	311.0	0.018	3.2154	-4.0400
	319.4	0.058	3.1309	-2.8439
	323.0	0.092	3.0960	-2.3908
	326.8	0.161	3.0600	-1.8238
	331.2	0.255	3.0193	-1.3657

As representações gráficas de $ln p = f(T^{-1})$, Figuras 5.2 a 5.5, per mitem o cálculo (a partir dos declives das rectas) dos valores de $\Delta H_{subl,298}^{o}$, os quais se encontram registados na Tabela 5.10.

Tabela 5.10 - Entalpias de sublimação de dialquilditiocarbamatos de dialquilamónio (valores em kJ mol⁻¹)

R	∆H ⁰ sub1,298	∆H ⁰ decomp,298/2
Et	118.1 ± 3.0	104.9 ± 2.8
Pr	112.5 ± 3.5	110.9 ± 3.6
Pr ⁱ	103.1 <u>+</u> 7.7	93.4 <u>+</u> 1.8
Bu ⁱ	114.6 ± 4.0	108.6 ± 1.8

Esta Tabela contém, também, os valores de $\Delta H_{decomp,298}^{O}/2$, anteriormente determinados (ver Tabela 5.5); a comparação destes dois parâmetros permite concluir que, dentro dos erros experimentais, são praticamente sobreponíveis ou que, pelo menos, mostram nitidamente uma mesma tendência na ordem relativa de volatilidade dos diferentes dialquilditiocarbamatos de dialquilamónio; o facto de os valores de $\Delta H_{decomp,298}^{O}$ serem duplos dos valores de $\Delta H_{sub1,298}^{O}$ sugerem que os processos de dissociação se referem à dissociação em duas moléculas na fase gasosa.

A Fig. 5.2, além dos valores experimentais obtidos neste trabalho co<u>n</u> tém, também, os valores de Cavell⁵⁶para as pressões de vapor do dietilditiocarb<u>a</u> mato de dietilamónio, verifica-se uma boa concordância nos dois conjuntos de valores, que conduzem precisamente ao mesmo valor numérico para

 ΔH_{sub1}^{o} (Et₂NH₂S₂CN Et₂, c).

5.6 - DETERMINAÇÃO EXPERIMENTAL DE ENTALPIAS DE SUBLIMAÇÃO PADRÃO DE ALGUNS DIALQUILDITIOCARBAMATOS METÁLICOS

Varios métodos têm sido utilizados para a determinação das entalpias de sublimação de complexos metálicos de ditiocarbamatos (como se referira em 5.7), os quais têm conduzido a resultados bastante diferentes para um mesmo composto, provavelmente devido a erros sistemáticos inerentes a alguns dos métodos experimentais usados.

Neste trabalho utilizou-se a técnica de sublimação em vácuo de Ski<u>n</u> ner¹²⁸,a qual, não tendo a precisão e exactidão inerentes a outros métodos calorimétricos, é uma técnica de fácil e rápida execução, necessitando de uma quantidade de composto muito pequena.

Determinaram-se experimentalmente as entalpias de sublimação de alguns dialquilditiocarbamatos de cobre (II) e níquel (II), tendo sido necessárias, em alguns casos, tentativas iniciais de ajuste de temperatura, para seleccionar aquela para a qual, nas condições de vácuo existentes, o processo de sublimação era mais rápido e completo. Os valores obtidos encontram-se registados nas Tabelas 5.11 a 5.20, correspondendo a experiências em que se verificou a sublimação total da amostra utilizada, sem quaisquer vestígios de decomposição.

 $\Delta H_{obs,T}/kJ mol^{-1} (H_T - H_{298})/kJ mol^{-1}$ ΔH^osub1,298/kJ mol⁻¹ T/K m/mg 4.192 472 232.9 72.0 160.9 3.833 472 236.6 72.0 164.6 3.444 472 234.3 72.0 162.3

Tabela 5.11 - Entalpia de sublimação padrão de $[Cu(S_2CN Et_2)_2]$ (c)

 $\Delta H_{sub1,298}^{0} = 162.6 \pm 1.1 \text{ kJ mol}^{-1}$

m/mg	T/K	ΔH _{obs,T} /kJ mol ⁻¹	(H _T -H ₂₉₈)/kJ mol ⁻¹	∆H ^o sub1,298/kJ mol ⁻¹
4.444	531	282.5	128.9	153.6
5.648	531	281.2	128.9	152.3
4.852	531	278.8	128.9	149.9
4.510	531	285.3	128.9	156.4
4.424	531	282.5	128.9	153.6
		0		

Tabela 5.12 - Entalpia de sublimação padrão de $[Cu(S_2CN Pr_2)_2]$ (c)

ΔH^o_{sub1,298} = 153.2 ± 1.1 kJ mol⁻¹

Tabela 5.13 - Entalpia de sublimação padrão de $[Cu(S_2CN Pr_2^i)_2]$ (c)

m/mg	т/к	∆H _{obs,T} /kJ mol ⁻¹	(H _T -H ₂₉₈)/kJ mol ⁻¹	∆H ⁰ sub1,298 ^{/kJ mol⁻¹}
3.342	531	285.9	129.5	156.4
3.486	531	290.2	129.5	160.7
3.488	555	300.0	145.4	154.6
2.707	555	301.4	145.4	156.0
3.268	555	308.7	145.4	163.3

 $\Delta H_{sub1,298}^{O} = 158.2 \pm 1.7 \text{ kJ mol}^{-1}$

m/mg	т/к	∆H _{obs,T} /kJ mol ⁻¹	(H _T -H ₂₉₈)/kJ mol ⁻¹	∆H ^o sub1,298/kJ mol ⁻¹
4.011	481	253.2	117.9	135.3
4.319	481	256.6	117.9	138.7
4.971	481	257.0	117.9	139.1
4.701	481	252.2	117.9	134.3
		0	$127.0 + 1.2 + 1 mol^{-1}$	

Tabela 5.14 - Entalpia de sublimação padrão de $[Cu(S_2CN Bu_2)_2]$ (c)

Tabela 5.15 - Entalpia de sublimação padrão de $[Cu(S_2CN Bu_2^i)_2]$ (c)

m/mg	T/K	∆H _{obs,T} /kJ mol ⁻¹	(H _T -H ₂₉₈)/kJ mol ⁻¹	∆H ^o sub1,298/kJ mol ⁻¹
5.068	481	256.2	118.1	138.1
4.542	481	261.2	118.1	143.1
4.500	481	253.6	118.1	135.5
4.159	481	257.2	118.1	139.1
4.810	481	257.8	118.1	139.7
		∆H ⁰ sub1,298 =	139.10 ± 1.2 kJ mol ⁻¹	

m/mg	T/K	∆H _{obs,T} /kJ mol ⁻¹	(H _T -H ₂₉₈)/kJ mol ⁻¹	∆H ^o sub1,298/kJ mol ⁻¹
4.846	508	243.9	88.8	155.1
4.885	508	248.3	88.8	159.5
5.117	508	255.2	88.8	166.4
5.487	508	244.1	88.8	155.3
2.349	508	238.8	88.8	150.0
		∆H ⁰ sub1,298 =	157.3 ± 2.7 kJ mol ⁻¹	

Tabela 5.16 - Entalpia de sublimação padrão de $[Ni(S_2CN Et_2)_2]$ (c)

Tabela 5.17 - Entalpia de sublimação padrão de $[Ni(S_2CN Pr_2)_2]$ (c)

m/mg	т/к	∆H _{obs,T} /kJ mol ⁻¹	(H _T -H ₂₉₈)/kJ mol ⁻¹	∆H ^o sub1,298/kJ mol ⁻¹
4.237	531	277.0	128.9	148.1
3.863	531	276.6	128.9	147.7
3.212	531	275.1	128.9	146.2
4.673	531	275.7	128.9	146.8

 $\Delta H_{sub1,298}^{0} = 147.2 \pm 1.8 \text{ kJ mol}^{-1}$

m/mg	T/K	∆H _{obs,T} /kJ mol ⁻¹	(H _T -H ₂₉₈)/kJ mol ⁻¹	∆H ^o sub1,298/kJ mol ⁻¹
0.3275	550	290.4	141.5	148.9
0.2889	550	289.9	141.5	148.4
0.4123	550	290.2	141.5	148.7
0.4276	550	289.6	141.5	148.1
0.3971	550	288.4	141.5	146.9
		$\Delta H_{sub1,298}^{0} = 1$	148.0 ± 1.2 kJ mol ⁻¹	

Tabela 5.18 - Entalpia de sublimação padrão de $[Ni(S_2CN Pr_2^i)_2]$ (c)

Tabela 5.19 - Entalpia de sublimação padrão de $[Ni(S_2CN Bu_2)_2]$ (c)

m/mg	T/K	∆H _{obs,T} /kJ mol ⁻¹	(H _T -H ₂₉₈)/kJ mol ⁻¹	∆H ^o sub1,298/kJ mol ⁻¹
0.4527	500	265.0	131.5	133.5
0.3817	500	261.7	131.5	130.2
0.2252	500	266.0	131.5	134.5
0.3543	500	263.7	131.5	132.2

 $\Delta H_{sub1,298}^{o} = 132.6 \pm 1.8 \text{ kJ mol}^{-1}$

m/mg	T/K	∆H _{obs,T} /kJ mol ⁻¹	(H _T -H ₂₉₈)/kJ mol ⁻¹	∆H ^o sub1,298/kJ mol ⁻¹
0.3872	510	272.9	139.6	133.3
0.4151	510	273.8	139.6	134.2
0.3667	510	274.6	139.6	135.0
0.4472	510	271.8	139.6	132.2
			· · · · · · · · · · · · · · · · · · ·	
		$\Delta H_{sub1,298}^{0} = 1$	33.6 ± 1.2 kJ mol ⁻¹	

Tabela 5.20 - Entalpia de sublimação padrão de $[Ni(S_2CN Bu_2^i)_2]$ (c)

5.7 - COMPARAÇÃO DOS VALORES OBTIDOS NESTE TRABALHO COM VALORES EXISTENTES NA LITERATURA

Os valores da literatura para entalpias de sublimação de dialquilditiocarbamatos metálicos referem-se, principalmente, aos derivados etil. Contudo, a partir dos dados existentes, actualmente, para estes complexos é difícil reconhecer tendências bem definidas.

D'Ascenzo e Wendlandt^{47,48} determinaram a pressão de vapor em função da temperatura para os dietilditiocarbamatos de Fe(III), Ni(II), Cu(II) e Zn (II) usando o método do isotenescópio. Pelo método de transpiração, Tavlaridis e Neeb⁵⁵estudaram a variação da pressão de vapor com a temperatura para os di<u>e</u> tilditiocarbamatos de Cu(II), Ni(II), Zn(II), Cd(II), Hg(II), Pb(II) e Co(III) e para vários dialquilditiocarbamatos de Ni(II) e Cu(II). Cavell e colaboradores⁴⁴mediram a entalpia de sublimação dos dietilditiocarbamatos de Ni (II), Cu(II) e Co(III), por análise calorimétrica diferencial. Os mesmos autores⁵⁶ de rivaram as entalpias de sublimação dos dietilditiocarbamatos de níquel (II) e cobre (II) a partir de dados de pressões de vapor em função da temperatura obtidos pela técnica de sublimação em ampola. As Tabelas 5.21 e 5.22 resumem, respectivamente para os complexos de Cu(II) e de Ni(II) os valores anteriormente publicados na literatura conjuntamente com os valores determinados ne<u>s</u> te trabalho (ver 5.6, este trabalho).

Ref.	5 5	48	44	56	Esta Tese
Me	147.4	<u> </u>		11 sko	
Et	149.1	87.0	103.8	116.2	162.6
Pr	118.4	. - 191	-		153.2
Pr ¹	129.5	-		- 1	158.2
Bu.	121.7	3. 1 1	an S an I		137.0
Bu ¹	-		_		139.1
Bu ^t	101.7		_		

Tabela 5.21 - Entalpias de sublimação padrão de dialquilditiocarbamatos de cobre (II) (valores em kJ mol⁻¹)

Tabela 5.22 - Entalpias de sublimação padrão de dialquilditiocarbamatos de níquel (II) (valores em kJ mol⁻¹)

Ref.						
R	5 5	4 8	44	5 6	Esta Tese	
Ме	139.8		_	-		
Et	152.0	61.1	91.9	102.6	157.3	
Pr.	126.0	-	-	_	147.2	
Pr ¹	143.4	-		-	148.0	
Bu.	136.5	-	-	-	132.6	
Bu		-	-	-	133.6	
Bu ^t	152.1		-	-	-	

Ż

Os valores existentes para a entalpia de sublimação padrão do dietilditiocarbamato de cobalto (III), anteriormente referidos, são respectivamen te 177.5⁵⁵, 95.0⁴⁴ kJ mol⁻¹. Para o dietilditiocarbamato de ferro (III), apenas se conhece o valor de ΔH_{subl}^{0} =65.7 kJ mol⁻¹⁴⁷.

Estudos de Kosareva e Larinov⁵⁰, de volatilidade em vácuo de dietilditiocarbamatos de vários metais, mostram a seguinte sequência Zn(II) > Cu(II)> > Ni(II) ~ Cd(II) ~ Pb(II) > Co(III) > Cr(III) > Fe(III), ou seja, os dietildi tiocarbamatos de metais de número de oxidação II são mais voláteis que os de metais de número de oxidação III. Com respeito à variação de "ligando", este mesmo estudo conclui que a volatilidade aumenta à medida que os grupos alquilo ligados ao ditiocarbamato se tornam maiores. Esta última conclusão parece estar de acordo com os valores obtidos neste trabalho para as entalpias de sublimação. Sabe-se que valores de entalpias de sublimação de complexos metálicos, determinados por diferentes técnicas, podem diferir bastante. Note-se que, para os complexos de Cu(II) e Ni(II) a sequência de volatilidades apresentada por Kosareva e Larinov⁵⁰ é consistente com os valores de entalpias de sublimação de Tavlaridis e Neeb⁵⁵, mas os valores de Cavell e colaboradores^{44,56} contradizem essa sequência. Os valores obtidos neste trabalho não parecem, tambem. seguir essa ordem de volatilidade, sendo, contudo, talvez difícil poder apresentar conclusões definitivas, uma vez que os valores experimentais obtidos nes te trabalho se referem somente a dois metais com o mesmo número de oxidação.

CAPITULO 6

CÁLCULO DE ENERGIAS MÉDIAS DE DISSOCIAÇÃO METAL-ENXOFRE E CONCLUSÕES

6.1 - CÁLCULO DE ENERGIAS MÉDIAS DE DISSOCIAÇÃO METAL-ENXOFRE

A entalpia de formação padrão de um composto nos estados sólido ou líquido, depende das forças intramoleculares e intermoleculares.

A medição directa das forças intramoleculares não é possível, mas a interpretação destas forças pode ser feita a partir dos valores das entalpias de formação, desde que seja removida a influência das forças intermoleculares, isto é, a partir do valor do referido parâmetro no estado gasoso, suposto id<u>e</u> al.

Para o caso de compostos solidos, a derivação de $\Delta H_{f}^{0}(g)$ requer o c<u>o</u> nhecimento da entalpia de sublimação padrão desses compostos.

Para os dialquilditiocarbamatos de cobre(II) e niquel(II) estudados, com base nos valores das entalpias de formação padrão no estado cristalino (Tabelas 3.41 e 3.63, respectivamente) e dos valores das entalpias de sublim<u>a</u> ção padrão determinados experimentalmente (ver 5.6 deste trabalho) calculara<u>m</u> -se os valores das respectivas entalpias de formação padrão no estado gasoso, registados na Tabela 6.1.

Tabela 6.1 - Entalpias de formação padrão de alguns dialquilditiocarbamatos de cobre (II) e níquel (II) em fase gasosa

R	∆H ^O [Cu(S ₂ CNR ₂) ₂](g) / kJ mol ⁻¹	∆H ^o [Ni(S ₂ CNR ₂) ₂](g)/ kJ mol ⁻¹
Et	-8.1 ± 3.7	-77.0 ± 4.5
Pr	-142.1 ± 5.4	-190.6 ± 5.7
Pr ⁱ	-127.5 ± 5.3	-142.4 ± 5.1
Bu	-274.3 + 6.3	-332.1 ± 6.5
Bu ⁱ	-248.4 + 6.3	-311.7 ± 6.4

Para os dialquilditiocarbamatos de ferro(III), cobalto(III) e cromio(III), os valores das respectivas entalpias de sublimação padrão foram estimados. De acordo com os estudos de Kosareva e Larinov⁵⁰, estes compostos são menos volāteis que os de cobre(II) e nīquel(II); supondo, também, que a varia ção de volatilidade com os diferentes grupos alquilo é análoga à verificada para os complexos de cobre(II) e níquel(II), e admitindo que as volatilidades dos ditiocarbamatos de um mesmo ligando e metais de número de oxidação III e geometria semelhante, é a mesma (pois, estando os átomos metálicos rodeados por três ligandos bidentados, as variações de ordem de volatilidade devidas a variação de metal deverão ser pequenas), estimaram-se os valores registados na Tabela 6.2. Aos valores estimados associou-se uma incerteza consideravel (± 10 kJ mol⁻¹) a qual tem por fim compensar os efeitos das hipóteses anteriormente formuladas nas estimativas efectuadas.

Tabela 6.2 - Valores estimados para as entalpias de sublimação padrão de complexos do tipo [M(S₂CNR₂)₃] com M=Fe(III), Co(III) e Cr(III)

R	ΔH_{sub}^{O} [M(S ₂ CNR ₂) ₃] / kJ mol ⁻¹
Et	170 ± 10
Pr	160 ± 10
Pr ⁱ	160 ± 10
Bu	145 <u>+</u> 10
Bu ⁱ	145 ± 10

A energia média de dissociação metal-enxofre pode ser relacionada com o valor da variação de entalpia da reacção de dissociação homolítica

 $[M(S_2CNR_2)_n] \xrightarrow{\Delta H_{f \cdot r}} M'(g) + nS_2CNR_2'(g)$

através da equação

$$\overline{D}$$
 (M-S) = $\frac{\Delta H}{2n}$ f.r.

Estes calculos exigem o conhecimento dos valores das entalpias de formação dos radicais S_2CNR_2 (g). Com base nos valores da variação de entalpia das reacções de decomposição anteriormente estudadas (ver Tabela 5.5), descritas por:

$$R_2NH_2S_2CNR_2$$
 (c) \longrightarrow R_2NH (g) + HS_2CNR_2 (g)

e dos valores de $\Delta H_f^0 R_2 NH$ (g) (Apéndice 1), calcularam-se os valores das entalpias de formação padrão dos respectivos ácidos dialquilditiocarbâmicos em fase gasosa, que se encontram registados na Tabela 6.3; estes valores não podem ser experimentalmente medidos para compostos contendo o grupo HS_S C- dado que estes compostos são instáveis, em fase condensada.

Tabela 6.3 - Entalpias de formação padrão de alguns ácidos dialquilditiocarb<u>â</u> micos e dos respectivos radicais

R	$\Delta H_{f}^{0} HS_{2}CNR_{2} (g) / kJ mol^{-1}$	$\Delta H_{f}^{o} S_{2}CNR_{2}^{i}$ (g) / kJ mol ⁻¹
Et	33.1 ± 3.6	200.0 ± 4.6
Pr	-13.3 ± 4.6	153.6 ± 5.6
Pr ⁱ	-15.6 ± 3.7	151.3 ± 4.7
Bu	-57.5 ± 6.0*	109.4 ± 5.0
Bu ⁱ	-59.6 ± 4.7	107.1 ± 5.7

* Valor estimado.

170

O cálculo das entalpias de formação padrão dos radicais S₂CNR² (g) exige , além do conhecimento da entalpia de formação padrão do ácido respecti vo, ΔH_{f}^{0} HS₂CNR₂ (g), o conhecimento da energia de dissociação S-H. Benson¹²⁹, num trabalho de revisão sobre termoquímica e cinética de moléculas e radicais contendo atomos de enxofre, e com base na constância de valores para a energia de dissociação da ligação S-H em compostos de enxofre divalente; em compostos como H_2S , CH_3SH , C_2H_5SH e RSH é sensivelmente constante, propõe um va lor de 385±4 kJ mol⁻¹. Na falta de um valor publicado para os compostos em es tudo neste trabalho, adoptou-se o valor proposto por Benson, consciente de que um valor eventualmente diferente implicara valores diferentes nos subsequentes calculos de \overline{D} (M-S), muito embora a variação relativa para os diferen tes complexos seja do mesmo tipo, o que portanto não invalidará a interpretação desses resultados em termos estruturais. Com os parâmetros anteriormente indicados e o valor de ΔH_f^0 H (g) = 218.00±0.01 kJ mol⁻¹¹³⁰, calcularam-se 05 valores de $\Delta H_{f}^{0} S_{2}CNR_{2}^{2}$ (g), que se encontram registados na Tabela 6.3.

Assim, os valores da energia média de dissociação metal-enxofre $\overline{D}(M-S)$ para os complexos de cobre (II) e níquel (II) estudados foram calculados, encontrando-se registados na Tabela 6.5. Tendo-se utilizado os parâmetros ter modinâmicos auxiliares necessários registados na Tabela 6.4.

Tabela 6.4 - Entalpias de formação padrão de alguns átomos metálicos gasosos

Atomo	ΔH ^O _f (g) / kJ mol ⁻¹⁹²		
Cr	396.6 ± 4.2		
Fe	416.3 ± 4.2		
Co	424.7 ± 4.2		
Ni	429.7 ± 4.2		
Cu	338.3 ± 1.2		
R	D (Cu-S)	/ kJ mol ⁻¹	D̄ (Ni-S) / kJ mol ⁻¹
-----------------	----------	------------------------	----------------------------------
Et	180	± 3	227 ± 2
Pr	197	± 3	232 ± 3
Pr ⁱ	192	± 3	219 ± 3
Bu	208	<u>+</u> 3	245 ± 3
Bu ⁱ	200	<u>+</u> 3	239 ± 2

Tabela 6.5 - Valores de \overline{D} (M-S) para dialquilditiocarbamatos de cobre (II) e níquel (II)

Para os restantes metais, Fe(III), Cr(III) e Co(III), os valores de \overline{D} (M-S) foram calculados pelo mesmo processo, utilizando nos cálculos os valores estimados das entalpias de sublimação padrão dos respectivos complexos cristalinos (ver Tabela 6.2); os valores de \overline{D} (M-S) calculados encontram-se registados na Tabela 6.6.

Tabela 6.6 - Valores de \overline{D} (M-S) para dialquilditiocarbamatos de Fe(III), Co(III) e Cr(III) (em kJ mol⁻¹)

R	D (Fe-S)	D (Co-S)	D (Cr-S)
Et	188 ± 6	206 ± 6	220 ± 6
Pr	187 ± 6	204 ± 6	219 ± 6
Pr ⁱ	177 <u>+</u> 6	189 <u>+</u> 6	208 <u>+</u> 6
Bu	191 ± 6	218 ± 6	228 ± 6
Bu ⁱ	194 ± 6	207 ± 6	230 ± 6

6.2 - INTERPRETAÇÃO DE VALORES DE D (M-S)

Numa tentativa de análise das incertezas que afectam os valores das energias médias de dissociação, metal-enxofre, para os dois metais de número de oxidação II, para os quais foram determinados, experimentalmente, todos os parâmetros necessários a esse cálculos, derivou-se a expressão completa através da qual se calculou o valor de \overline{D} (M-S):

$$\overline{D} (M-S) = \frac{1}{4} \Delta H_{f}^{O} (M,g) + \frac{1}{2} \overline{D} (S-H) - \frac{1}{2} \Delta H_{f}^{O} (H,g) + \frac{1}{2} \Delta H_{decomp} \frac{1}{4} \Delta H_{f}^{O} (MX_{2},c) + \frac{1}{2} \Delta H_{f} (HX,aq.) - \frac{1}{2} \Delta H_{vap} (R_{2}NH) + \frac{1}{4} \Delta H_{r} - \frac{1}{4} \Delta H_{subl} [M(S_{2}CNR_{2})_{2}](c)$$

Os erros que afectam os valores de \overline{D} (M-S) para um mesmo metal podem ser divi didos em dois grupos:

- (1) Quantidades que afectam todos os valores igualmente;
- (2) Quantidades que afectam as diferenças em \overline{D} (M-S), ou sejam os erros inerentes aos valores de ΔH_{decomp} , ΔH_r , ΔH_{vap} (R₂NH) e ΔH_{sub1} [M(S₂CNR₂)].

Por outro lado, considerou-se \overline{D} (S-H), nos ligandos, como constante apesar de não ser um valor previamente medido e três hipóteses hã a considerar: o valor ser na realidade constante, variar uniformemente com a variação do grupo alquilo ou ter uma variação brusca correspondente a uma mudança brus ca na estrutura do ligando (por exemplo se a um certo grupo alquilo correspon der uma estrutura em anel, em vez de uma estrutura em cadeia aberta) o que, com a informação actualmente existente, é impossível prever. Estas incertezas têm que ser tidas em conta em qualquer tentativa de explicação da variação de \overline{D} (M-S) ao longo da série de ligandos estudada.

Na Figura 6.1 representa-se graficamente a variação de \overline{D} (M-S), para o cobre (II) e o níquel (II), ao longo da série de ligandos estudada.

Também para os complexos de ferro (III), cobalto (III)e crómio(III) se representou graficamente idêntica variação (Figura 6.2).

Analisando a Figura 6.1, vê-se que, de uma maneira geral, \overline{D} (M-S) aumenta à medida que se substitui o grupo etil pelo propil e pelo butil,

$$\overline{D} (M^{II}-S)_{Et} < \overline{D} (M^{II}-S)_{Pr} < \overline{D} (M^{II}-S)_{Bu}$$

o que é interpretado pelo efeito mesomérico do grupo -NR₂⁹ . Este efeito não é tão visível com os complexos de metais de número de oxidação III, como se constata na Figura 6.2:

$$\overline{D} (M^{III}-S)_{Et} \simeq \overline{D} (M^{III}-S)_{Pr} \simeq \overline{D} (M^{III}-S)_{Br}$$

No entanto, a análise desta Figura mostra claramente um abaixamento de valores de \overline{D} (M-S) na passagem de R = Pr para R = Prⁱ:

$$\overline{D} (M^{III}-S)_{Pr} > \overline{D} (M^{III}-S)_{Pr}i$$

o que é interpretado por efeito estereoquímico. Note-se que, quando R = Bu, Buⁱ, este efeito deve ser mais diminuto, o que é observável no diagrama da Fi gura 6.2, muito embora as grandes incertezas associadas (± 6 kJ mol⁻¹) aos va lores de D (M^{III}-S). Note-se que, embora não seja de prever grandes efeitos estereoquímicos nos complexos de Cu (II) e Ni (II), o efeito de isomerização dos grupos alquilo é inequívoco:

$$\overline{D} (M^{III}-S)_{Pr} > \overline{D} (M^{II}-S)_{Pr}^{i}$$

$$\overline{D} (M^{II}-S)_{Bu} > \overline{D} (M^{II}-S)_{Bu}^{i}$$

Do anteriormente exposto, e dado que a energia de ligação é afectada por vários efeitos, torna-se impossível, com os conhecimentos actualmente disponíveis, discutir em maior detalhe a magnitude dos diferentes efeitos.Tal é ainda mais dificultado pelas elevadas incertezas associadas aos valores de \overline{D} (M^{III}-S), (da ordem de ±6 kJ mol⁻¹), motivadas pelas estimativas que foi n<u>e</u> cessário efectuar para o cálculo dos referidos parâmetros. Uma discussão mais completa exigirá não só a obtenção de valores de \overline{D} (M-S) com menores incertezas associadas, como também o seu alargamento a mais complexos semelhantes com outros ligandos e outros metais, assim como ao conhecimento das respectivas estruturas, não só no estado cristalino como no estado gasoso.

Para além destes, os únicos valores de energias médias de dissociação metal-enxofre em dialquilditiocarbamatos conhecidos, na literatura, são os valores de Hill e colaboradores^{60,61}para o dietilditiocarbamato de níquel e cobre, respectivamente 193 ± 13 e 143 ± 13 kJ mol⁻¹. Estes valores são, evidentemente, diferentes dos calculados neste trabalho porque, como jã foi referido em capítulos anteriores, têm por base parâmetros termodinâmicos experimentais diferentes. No entanto, interessa realçar que reflectem a mesma tendência: a ligação metal-enxofre é mais forte no dietilditiocarbamato de níquel (II) do que no de cobre (II), o que aliãs estã de acordo com os valores dos comprimen tos das ligações M-S nestes complexos⁵³: 221 e 231 pm, respectivamente, para o níquel e cobre.

6.3 - TERMOS DE ENERGIA DE LIGAÇÃO

O esquema de Laidler (1956), para cálculo de energias de ligação es tabelecido para alcanos, distingue ligações de quatro tipos dependentes do ti po de substituintes: E (C-C), E (C-H)_p, E (C-H)_s e E (C-H)_t. Cox e Pilcher (1970) estenderam o esquema a alcanos substituidos, considerando o valor de algumas energias de ligação constantes, por exemplo E (C-N), E (C-S), etc. e supondo as energias de ligação (C-H) dependentes da vizinhança, isto é apresentando diferentes valores para: E (C-H)^N_p, E (C-H)^N_s, E (C-H)^N_t, isto é para ligações C-H adjacentes a um átomo de azoto.

Aplicando o esquema, por exemplo ao dietilditiocarbamato de cobre (II)

 $\Delta H_{atomização} = \Sigma \Delta H_{f}^{O} (atomos,g) - \Delta H_{f}^{O} (complexo,g) = 4 E (Cu-S) + 2 E (C=S) + 2 E (C=S) + 2 E (C-S) + 6 E (C-N) + 4 E (C-C) + 8 E (C-H)_{S}^{N} + 12 E (C-H)_{D}$

Supondo que a ligação dos átomos de enxofre ao carbono pode ser calculada como E (C-S) + E (C=S), (sendo qualquer erro cometido nesta suposição constante para todos os complexos), calcularam-se para os complexos estudados as energias médias de ligação \overline{E} (M-S). Na Tabela 6.7 encontram-se registados os valores de ΔH (atomização) destes complexos calculados com base em valores de ΔH_f^O (atomos,g)⁹² e de ΔH_f^O (complexos gasosos) deste trabalho; registaram-se também os valores de ΣE que contém o somatório de todas as energias de ligação existentes no compl<u>e</u> xo (calculados com o auxílio dos valores dados por Cox e Pilcher⁹³) excepto as energias de ligação metal-enxofre.

É assim possível calcular os termos de energia de ligação média metal-enxofre, \overline{E} (M-S) (última coluna, Tabela 6.7) que manifestaram a mesma tendência de variação dos valores anteriormente apresentados para \overline{D} (M-S).

Complexo	${}^{\Delta H}atm$	Σ Ε	Ē (M-S)	
[Cu(S ₂ CNEt ₂) ₂]	13902.2	13210.4	172.9	
[Cu(S ₂ CNPr ₂) ₂]	18640.4	17896.8	185.9	
[Cu(S ₂ CNPr ⁱ ₂) ₂]	18625.8	17949.0	169.2	
[Cu(S ₂ CNBu ₂) ₂]	23376.8	22583.2	198.4	
[Cu(S ₂ CNBu ⁱ ₂) ₂]	23350.9	22617.3	183.4	
[Ni(S ₂ CNEt ₂) ₂]	14061.9	13210.3	212.9	
[Ni(S ₂ CNPr ₂) ₂]	18779.7	17896.9	220.7	

Tabela 6.7 - Valores de energias de atomização e de \overline{E} (M-S) para os complexos estudados (valores em kJ mol⁻¹)

Tabela 6.7 (continuação)

Complexo	ΔH_{atm}	ΣΕ.	Ē (M-S)
[Ni(S ₂ CNPr ⁱ ₂) ₂]	18731.5	17949.1	195.6
[Ni(S ₂ CNBu ₂) ₂]	23525.4	22583.0	235.6
[Ni(S ₂ CNBu ⁱ ₂) ₂]	23505.0	22617.0	222.0
<pre>[Fe(S2CNEt2)3]</pre>	20844.3	19839.3	167.5
[Fe(S ₂ CNPr ₂) ₃]	27889.7	26845.1	174.1
$[Fe(S_2CNPr_2^i)_3]$	27834.7	26923.3	151.9
[Fe(S ₂ CNBu ₂) ₃]	34959.0	33874.8	180.7
[Fe(S ₂ CNBu ⁱ ₂) ₃]	34973.8	33925.8	175.5
$[Cr(S_2CNEt_2)_3]$	21034.7	19839.5	199.2
[Cr(S ₂ CNPr ₂) ₃]	28081.0	19798.7	206.0
[Cr(S ₂ CNPr ⁱ ₂) ₃]	28019.0	26923.4	182.6
[Cr(S ₂ CNBu ₂) ₃]	35180.3	33874.7	217.6
[Cr(S ₂ CNBu ⁱ ₂) ₃]	35197.3	33925.9	211.9
[Co(S ₂ CNEt ₂) ₃]	20950.3	19839.7	185.1
[Co(S ₂ CNPr ₂) ₃]	27983.0	26845.4	189.6
[Co(S ₂ CNPr ⁱ ₂) ₃]	27907.3	26923.9	163.9
[Co(S ₂ CNBu ₂) ₃]	35116.5	33875.1	206.9
[Co(S ₂ CNBu ⁱ ₂) ₃]	35060.9	33926.3	189.1

APÊNDICES

APÊNDICE 1

CÁLCULO DE VALORES DE ENTALPIAS DE FORMAÇÃO PADRÃO DE AMINAS SECUNDÁRIAS

Os únicos valores existentes na literatura para entalpias de forma ção padrão de aminas secundárias usadas nesta tese, com excepção da dietilamina⁹³, são os do trabalho de Lebedera e colaboradores¹³¹. Estes valores são de rivados de resultados obtidos experimentalmente para as respectivas entalpias de combustão, em experiências em que o resultado não foi baseado na massa de dióxido de carbono recolhida, apesar dos compostos em causa serem muito higroscópicos. Não é pois de estranhar que os referidos valores não sejam muito consistentes entre si, quando testados nos jã bem estabelecidos es quemas de aditividade molecular.

Em face desta situação optou-se por calcular as entalpias de forma ção padrão das aminas secundárias, no estado gasoso, a partir de parâmetros de contribuição da estrutura molecular, usando valores de Cox e Pilcher⁹³ com a excepção já anteriormente referida da dietilamina⁹³. Os valores calculados, conjuntamente com os valores existentes na literatura, encontram-se registados na Tabela A.1.1; note-se que os valores não são muito diferentes.

O calculo das entalpias de formação padrão das respectivas aminas no estado condensado (líquido), efectuou-se com o auxilio dos valores das respectivas entalpias de vaporização, de Wadsö⁹⁵(ver Tabela A.1.2), encontra<u>n</u> do-se os valores obtidos também registados na Tabela A.1.2.

Composto	∆H ^O (calc.)	∆H ⁰ ¹³¹ f
Pr ₂ NH (g)	-113.6	-116.0 ± 1.4
Pr <mark>i</mark> NH (g)	-140.8	-144.0 ± 0.4
Bu ₂ NH (g)	-154.8	-156.6 ± 1.3
Bu ⁱ NH (g)	-171.7	-179.2 ± 0.6

Tabela A.1.1 - Valores de entalpias de formação padrão de aminas secundárias no estado gasoso (em kJ mol⁻¹)

Tabela A.1.2 - Valores de $\Delta H_{f}^{O}(g)$, $\Delta H_{vap.}^{O} \in \Delta H_{f}^{O}(\ell)$ para aminas secundárias (em kJ mol⁻¹)

Composto	∆H ^O (g) _{calc.}	∆H ^{O 95} Vap.	∆H ^o f (ℓ)
Et ₂ NH		31.18 ± 0.06	-103.8 <u>+</u> 1.3*
Pr ₂ NH	-113.6 ± 2.0	40.04 ± 0.06	-153.6 <u>+</u> 2.0
Pr2NH	-140.8 ± 2.0	34.51 ± 0.06	-175.3 ± 2.0
Bu ₂ NH	-154.8 ± 2.5	49.44 ± 0.08	-204.3 ± 2.5
Bu ⁱ 2NH	-171.7 ± 2.5		-211.0 ± 2.5**

* Ref.

** Valor estimado.

APÊNDICE 2

ESTIMATIVA DE VALORES DE HT - H298

Os valores de (H_T - H₂₉₈) (g) para as dialquilaminas e os respectivos ácidos dialquilditiocarbâmicos foram estimados, pelo método de aditividade, com base em valores experimentais existentes na literatura¹³² para outros compostos, valores esses registados na Tabela A.2.1.

O valor da diferença em $H_T - H_{298}$ entre uma ligação C=O e uma ligação C=S foi calculado a partir dos valores registados na Tabela A.2.2.

Usando métodos aditivos calcularam-se os valores de $(H_T - H_{298})$ para os compostos em questão, valores que se encontram registados na Tabela A.2.3. Por exemplo, para a dipropilamina e para o ácido dipropilditiocarbâmi co, os valores de $(H_T - H_{298})$ (g) foram calculados estabelecendo as seguintes relações:

$$H_T - H_{298}(Pr_2NH,g) = (H_T - H_{298}) \{ (C_2H_5)_2NH,g \} + 2(H_T - H_{298}) (C_4H_{10},g) - 2(H_T - H_{298}) (C_3H_8,g) \}$$

$$\begin{split} H_{T}-H_{298}(HS_{2}CNPr_{2},g) &= (H_{T}-H_{298})\{(C_{2}H_{5})_{3}N,g\}\} + (H_{T}-H_{298})\{(CH_{3})_{2}CO,g\} + \\ &+ (H_{T}-H_{298})(C_{2}H_{5}SH,g) + 2(H_{T}-H_{298})(C_{4}H_{10},g) - \\ &- 4(H_{T}-H_{298})(C_{3}H_{8},g) \end{split}$$

1 .

Usando um método aditivo inteiramente analogo, calcularam-se os valores de $(H_T - H_{298})$ para os outros compostos, valores esses que se encontram registados na Tabela A.2.3. Tabela A.2.1 - (H_T - H₂₉₈) (g) / kJ mol⁻¹¹³²

с ₂ н ₅ SH (с ₂ н ₅) ₂ NH сн ₃ сн(сн ₃) ₂ сн ₃ сн(сн ₃) ₂	0.17 0.25 0.42 0.50	8.24 13.35 22.59 27.78	17.74 29.37 50.04 61.34	28.53 47.95 82.01 100.58
(c ₂ H ₅) ₃ N (CH ₃) ₂ (0.33 0.17	18.62 8.54	41.00 18.58	67.03 30.12
n-C4H ₁₀	0.42	22.59	49.87	81.50
c ₃ H ₈	0.33	17.15	37.91	62.17
T/K	300	400	500	600

 			and the second		
Т/К	co ₂	COS	cs ₂	∆ entre C=O e C=S	-
300	0.08	0.08	0.13	0.04	
400	4.02	4.48	4.85	0.42	
500	8.33	9.20	9.96	0.82	
600	12.93	14.23	15.27	1.17	

Tabela A.2.2 - $(H_T - H_{298})$ (g) / kJ mol⁻¹¹³²

Tabela A.2.3 - Valores calculados de $H_T - H_{298}$ para $HS_2CNR_2(g) = R_2NH(g)$

(Valores em kJ mol⁻¹)

Т/	'K	Pr ₂ NH	Pr2NH	Bu ⁱ NH	HS2CNEt2	HS2CNPr2	HS2CNPr2	HS ₂ CNBu ⁱ 2
30	0	0.33	0.33	0.42	0.38	0.46	0.46	0.54
40	0	18.79	18.79	23.97	18.66	24.10	24.10	29.29
50	0	41.34	41.34	52.80	40.25	52.22	52.22	63.68
60	0.	67.28	67.28	86.36	64.68	84.01	84.01	103.09

BIBLIOGRAFIA

BIBLIOGRAFIA

1.	M. DEBUS, Justus Liebigs Ann. Chem., 73, 26 (1850).
2.	M. DELÉPINE, Compt. Rend., <u>144</u> , 1125 (1907).
3.	G.J. VAN DER KERK e H.L. KLOPPING, Rec. Trav. Chim., 71, 1179 (1952).
4.	J.A. McCLEVERTY et all., J.C.S. Dalton, 1945 (1980).
5.	R. WEST e F.W. SUNDERMAN, Am. J. Med. Soc., 50, 3106 (1928).
6.	D. COUCOUVANIS, Prog. Inorg. Chem., <u>11</u> , 233 (1970).
7.	D. COUCOUVANIS, Prog. Inorg. Chem., <u>26</u> , 301 (1979).
8.	R.J. MAGEE, Rev. in Anal. Chem., <u>1</u> , 333 (1973).
9.	J.O. HILL e R.J. MAGEE, <i>Rev. in Inorg. Chem.</i> , <u>3</u> , 141 (1981).
10.	C.K. JORGENSEN, J. Inorg. Nucl. Chem., 24, 1571 (1962).
11.	C.K. JORGENSON, Inorg. Chim. Acta Rev., 2, 65 (1968).
12.	J. CHATT, L.A. DUNCANSON e L.M. VENANZI, Nature, 177, 1042 (1956).
13.	J. CHATT, L.A. DUNCANSON e L.M. VENANZI, Soumin Kemi, <u>B.29</u> , 75 (1956).
14.	D. COUCOUVANIS e J.P. FACKLER Jr., Inorg. Chem., 6, 2047 (1967).
15.	A. HULANICKI, Talanta, 14, 1371 (1967).

16.	A. ULIM e S. ALCERSTROM, Acta Chim. Scand., 25, 393 (1971).
17.	H. BODE e F. NEUMAN, Z. Anal. Chem., <u>172</u> , 1 (1960).
18.	M.J. JANSSEN, Rev. Trav. Chim., <u>75</u> , 1411 (1956).
19.	M.J. JANSSEN, Rev. Trav. Chim., <u>76</u> , 827 (1957).
20.	B.I. PESCHEHEVITSKII e A.M. ERENBERG, Ser. Khim. Nauk., 4, 83 (1970).
21.	I. YU USATENKO, F.M. TUTYUPA e Z.F. GAMUS, <i>Zh. Neorg. Khim.</i> , <u>13</u> , 1023 (1968).
22.	I.M. BHATT e K.P. SONI, Indian J. Chem., <u>6</u> , 114 (1968).
23.	G.B. BRISCOE e S. HUMPHRIES, Talanta, <u>16</u> , 1043 (1969).
24.	H. BODE e K.J. TUSCHE, Z. Anal. Chem., <u>157b</u> , 414 (1957).
25.	G. ECKERT, Z. Anal. Chem., <u>155</u> , 23 (1957).
26.	L. CAMBI e C. CORISELLI, Gazz. Chim. Ital., <u>66</u> , 779 (1936).
27.	M.J. WEEKS e J.P. FACKLER, Inorg. Chem., 7, 2548 (1968).
28.	R. PETTERSON e T. VANNGARD, Arkiv Kemi, <u>17</u> , 249 (1960).
29.	L. MALATESTA, Gazz. Chim. Ital., <u>69</u> , 752 (1939).
30.	K. GLEJ e R. SCHWAB, Angew. Chem., <u>62</u> , 320 (1950).
31.	L. MALATESTA, Gazz. Chim. Ital., 70, 541 (1940).
32.	E.E. VAINSTEIN, A.P. SADORSKII e S.V. LARINOV, Zh.Strukt. Khim., 7, 623 (1966).

- 33. B.F. HOSKINS e B.P. KELLY, Chem. Comm., 1517 (1968).
- 34. J.P. FACKLER Jr. e D.G. HOLAH, Inorg. Nucl. Chem. Letters, 2, 251 (1966)
- 35. H.J. CAVELL e S. SUGDEN, J. Chem. Soc., 621 (1935).
- 36. A. VACIAGO, A. CABRINI e C. MARIANI, *Ric. Sci. Suppl.*, <u>30(12)</u>, 2519 (1960).
- 37. E.A. SHUGAN e V. M. LEVINA, Kristallografiya, 5, 257 (1960).
- 38. M. BONAMICO, G. DESSY, C. MARIANI, A. VACIAGO e L. ZAMBORELLI, Acta Cryst., 19, 619 (1965).
- 39. T.J. CARDWELL, D. DESARRO P.C. UDEN, Anal. Chim. Acta, 85, 415 (1976).
- 40. P.M.MADHUSUDANAN, K.K.MOHAMMED YUSUFF e C.G.RAMACHANDRAN, J.Therm. Anal., <u>8</u>, 31 (1975).
- 41. C.G. SCENEY, J.O. HILL e R.J. MAGEE, Thermochimica Acta, 11, 301 (1975).
- 42. J.F. SMITH, Int. J. Mass Spectrom. Ion Phys., 26, 149 (1978).
- 43. M. WIEBER e A. BASEL, Z. Anorg. Allg. Chem., 448, 89 (1979).
- 44. K.J. CAVELL, J.O. HILL e R.J. MAGEE, Thermochimica Acta, 33, 383 (1979).
- 45. M. DELÉPINE, Bull. Soc. Chim. Fr., 3, 643 (1908).
- 46. M. DELÉPINE, Compt. Rend., 146, 981 (1908).
- 47. G. D'ASCENZO e W.W. WENDLANDT, J. Therm. Anal., 1, 423 (1969).
- 48. G. D'ASCENZO e W.W. WENDLANDT, J. Inorg. Nucl. Chem., 32, 2431 (1970).

- 49. M. REIKKOLA, Finn. Chem. Lett., 83 (1980).
- 50. L.A. KOSAREVA e S.V. LARINOV, Z. Neorg. Khim., 24, 2834 (1979).
- 51. T. BRENNAN e I. BERNAL, J. Phys. Chem., 73, 443 (1969).
- 52. C.L. RASTON e A.H. WHITE, J. Chem. Soc. Dalton, 32 (1976).
- 53. R. EISENBERG, Progr. Inorg. Chem., 12, 295 (1971).
- 54. H. IWASAKI, Acta Crystallog., <u>B</u> 29, 2115 (1973).
- 55. A. TAVLARIDIS e R. NEEB, Z. Anal. Chem., 293, 211 (1978).
- 56. K.J. CAVELL, J.O. HILL e R.J. MAGEE, Thermochimica Acta, 34, 155 (1979).
- 57. T.P. MELIA e R. MERRIFIELD, J. Inorg. Nucl. Chem., 32, 1489 (1970).
- 58. M.A. BERNARD e M.M. BOREL, Bull. Soc. Chim. France, 9, 3064 (1969).
- 59. B. ANNUAR, J.O. HILL, D.J. MCIVOR e R.J. MAGEE, Thermochimica Acta, 9,143 (1974).
- 60. K.J. CAVELL, J.O. HILL e R.J. MAGEE, J. Chem. Soc. Dalton Transactions Inorg. Chem., 5, 763 (1980).
- 61. K.J. CAVELL, J.O. HILL e R.J. MAGEE, J.C.S. Dalton, 1638 (1980).
- 62. L. ANG e D.P. GRADDON, Aust. J. Chem., 29, 1429 (1976).
- 63. O. MELLGREN e S. RAMACHANDRA RAO, Trans. Inst. Min. Metall, 77, C65(1968)

64. M.L. MacGLASHAM, Manual of Symbols and Terminology for Physico- Chemical Quantities and Units International Union of Pure and Applied Chemistry", Butterworths, London (1970).

- 65. IUPAC, Pure App. Chem., 51, 409 (1970).
- 66. K.J. CAVELL, J.O. HILL e R.J. MAGEE, J. Inorg. Nucl. Chem., 4, 1277(1979)
- 67. D.D. PERRIN, W.L.F. ARMAREGO e D.R. PERRIN, "Purification of Laboratory Chemicals", Pergamon Press, Oxford (1966).
- 68. J.L.O. CABRAL, "Química Analítica Complementar, Trabalhos Práticos", Labo ratório de Química da Faculdade de Ciências do Porto (1968-69).
- 69. H.A. FLASKA, "EDTA Titrations", Pergamon Press, London (1959).
- 70. W.R. WALKER e N.C. LI, J. Inorg. Nucl. Chem., 27, 2255 (1965).
- 71. R.C. WEAST, editor, "Handbook of Chemistry and Physics", 55^a edição, The Chemical Rubber Co., Cleveland, Ohio (1974-1975).
- 72. H.A. SKINNER, editor, "Experimental Thermochemistry", Vol. II, Interscience, New York (1962).
- 73. F.D. ROSSINI, editor, "Experimental Thermochemistry", Vol. I, Interscien ce, New York (1956).
- 74. S. SUNNER e I. WADSO, Acta Chem. Scand., 13, 97 (1959).
- 75. S. SUNNER e I. WADSO, Science Tools, 13, 1 (1966).
- 76. I. WADSO, Science Tools, 13, 33 (1966).
- 77. S.R. GUNN, J. Chem. Thermodynamics, <u>3</u>, 19 (1971).
- 78. M.D.M.C. RIBEIRO DA SILVA, Dissertação de Doutoramento, Faculdade de Ciências, Universidade do Porto (1985).

- 79. M.T. ZAFARANI MOATTAR, Ph. D. Tnesis, University of Manchester, Inglater ra (1979).
- 80. J.A.M. SIMÕES, Tese de Doutoramento, I.S.T., Lisboa (1980).
- M.A.V. RIBEIRO DA SILVA, Ph. D. Thesis, University of Surrey, Inglaterra (1973).
- 82. R.J. IRVING e I. WADSO, Acta Chem. Scand., 18, 195 (1964).
- 83. S.R. GUNN, J. Chem. Thermodynamics, 2, 535 (1970).
- 84. S.R. GUNN, J.A. WATSON, H. HACKLE, H.A. GUNDRY, A.J. HEAD, M. MASON e S. SUNNER, J. Chem. Thermodynamics, 2, 549 (1970).
- 85. R. RYCHLY e V. PEKAREK, J. Chem. Thermodynamics, 9, 391 (1977).
- 86. R.L. MONTGOMERY, R.A. MELAUGH, C.C. LAU, G.H. MEIER, H.H. CHAN e F. D. ROSSINI, J. Chem. Thermodynamics, 9, 915 (1977).
- 87. C.E. VANDERZEE, D.H. WAUGH e N.C. HASS, J. Chem. Thermodynamics, <u>13</u>, 1 (1981).
- 88. J.O. HILL, G. OJELUND e I. WADSO, J. Chem. Thermodynamics, 1, 111 (1969).
- 89. D.J. EATOUGH, J.J. CHRISTENSEN e R.M. IZATT, J. Chem. Thermodynamics, 7, 417 (1975).
- 90. S. SUNNER e M. MASON, editores, "Experimental Chemical Thermodynamics, Vol. I - Combustion Calorimetry", IUPAC, Pergamon Press, Oxford (1979).
- 91. F.D. ROSSINI e W.E. DEMING, J. Wash. Acad. Sci., 29, 416 (1939).

- 92. D.D. WAGMAN, W.H. EVANS, V.B. PARKER, R.H. SCHUMM, J. HALOW, S.M. BAILEY K.L. CHURNEY e R. NUTTALL, J. Phys. Chem. Ref. Data, <u>11</u> (1982); Suplemento 2.
- 93. J.D. COX e G. PILCHER, "Thermochemistry of Organic and Organomettalic Compounds", Academic Press, London (1970).
- 94. I. WADSO, Acta Chem. Scand., 23, 2061 (1969).
- 95. K.J. CAVELL, J.O. HILL e R.J. MAGEE, Thermochimica Acta, 33, 377 (1979).
- 96. J.K. CAVELL, Ph. D. Thesis, La Trobe University, Australia (1977).
- 97. M.A.V. RIBEIRO DA SILVA, M.D.M.C. RIBEIRO DA SILVA, A.P.S.M.C. CARVALHO, J. Chem. Thermodynamics, 16, 137 (1984).
- 98. M.A.V. RIBEIRO DA SILVA, "Thermochemistry of β-diketones and metal-β-diketonates. Metal-oxygen Bond Enthalpies", em M.A.V. RIBEIRO DA SILVA, (editor), "Thermochemistry and Its Applications to Chemical and Biological Systems", NATO SI Series, Series C, Vol. 119, D. Reidel Publishing Company, Dordrecht, Holanda (1984).
- 99. J. L. WOOD e M. M. JONES, Inorg. Chem., 3, 1553 (1964).
- 100. J.M. HACKING e G. PILCHER, J. Chem. Thermodynamics, 11, 1015 (1979).
- 101. S. SUNNER, Svensk. Kem. Tids., 58, 71 (1946).
- 102. J.D. COX, H.A. GUNDRY e A.J. HEAD, Trans. Faraday Soc., 60, 653 (1964).
- 103. H.A. SKINNER e A. SELSON, Trans. Faraday Soc., 56, 1776 (1960).
- 104. S. SURADI, Ph. D. Thesis, University of Manchester (1981).

- 105. R.S. JESSUP, J. Res. Nat. Bur. Stand., 18, 115 (1937).
- 106. A.I. VOGEL, "Quantitative Inorganic Analysis", Longmans, Green and Co., London (1948).
- 107. J. COOPS, R.S. JESSUP e K. VAN NESS, "Calibration of Calorimeters for Reactions in a Bomb at Constant Volume", cap. 3 da Referência 73.
- 108. W.N. HUBBARD, D.W. SCOTT e G. WADDINGTON in "Experimental Thermodynamics" Vol. I, Cap. 5 (Ed.) Rossini, Interscience, New York (1956).
- 109. W.D. GOOD, D.W. SCOTT e G. WADDINGTON, J. Phys. Chem., 60, 1980 (1956).
- 110. G. PILCHER, Programa "qL qtz", Universidade de Manchester (1985).
- 111. E.W. WASHBURN, J. Res. Natl. Bur. Stand., 10, 525 (1933).
- 112. A.T. HU, G.C. SINKE, M. MASON e B. RINGNER, J. Chem. Thermodynamics, <u>4</u>, 283 (1972).
- 113. G. PILCHER, Programa "s wash", Universidade de Manchester (1985).
- 114. G. WADDINGTON, S. SUNNER e W.N. HUBBARD, "Experimental Thermochemistry", Vol. 1, Chap. 7, Rossini (Ed.), Interscience, New York (1956).
- 115. J. BICKERTON, M.E. MINAS DA PIEDADE e G. PILCHER, J. Chem. Thermodynamics, <u>16</u>, 661 (1984).
- 116. E. CALVET, Recent Progress in Microcalorimetry" Cap. 17 de H.A. Skinner editor "Experimental Thermochemistry", Vol. 2, Interscience, New York (1962).
- 117. E. CALVET e H. PRAT, "Microcalorimetrie", Masson e Cie., Paris (1956).

- 118. E. CALVET, "Microcalorimetry of Slow Phenomena" Cap. 12 de F. D.ROSSINI editor, "Experimental Thermochemistry", Vol. 1, Interscience, New York (1956).
- 119. E. CALVET e H. PRATT, "Recent Progres en Microcalorimetrie", Dunod, Paris (1958).
- 120. H.A. SKINNER e Y. VIRMANI, Rev. Romaine Chim., 17, 467 (1972).
- 121. J.A. CONNOR, H.A. SKINNER e Y. VIRMANI, J.C.S. Faraday Trans. 1,68,1754 (1972).
- 122. "Microcalorimètre Calvet, Modèle Haute Température Ambiente 1000° C",
 Note d'utilisation, SETARAM, Lyon, France
- 123. M.L.C.C.H. FERRÃO, Dissertação de Doutoramento, Faculdade de Ciências, Universidade do Porto (1982).
- 124. E. MORAWETZ, J. Chem. Thermodynamics, 4, 455 (1972).
- 125. JANAF, Thermochemical Tables P B 168 370 2, D.R. Stull director, U.S. National Bureau of Standards, Washington (1968).
- 126. IUPAC, Pure Appl. Chem., 51, 409 (1979).
- 127. C.G. KRUIF, J. Chem. Thermodynamics, 12, 243 (1980).
- 128. F.A. ADEDEJI; D.L.S. BROWN, J.A. CONNOR, W.L. LEUNG, I.M. PAZ-ANDRADE, e H.A. SKINNER, J. Organometal. Chem., 97, 221 (1975).
- 129. W. BENSON, Chem. Reviews, 78, 23 (1978)
- 130. CODATA, J. Chem. Therm., 10, 903 (1978).

- 131. N.D. LEBEDEVA, YU A. KATIN, G. YA AKMEDOVA, *Russ. J. Phys. Chem.*, <u>45</u>, 771 (1971).
- 132. D.R. STULL, E.F. WESTRUM e G.C. SINKE, "The Chemical Thermodynamics of Organic Compounds", J. Wiley and Sons, New York (1969).