
Ricardo Jorge Gomes Lopes da Rocha

On Applying
Or-Parallelism and Tabling

to Logic Programs

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

)

2001

Ricardo Jorge Gomes Lopes da Rocha

On Applying
Or-Parallelism and Tabling

to Logic Programs

Tese submetida à Faculdade de Ciências da
Universidade do Porto para obtenção do grau de Doutor

em Ciência de Computadores

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

2001

To Rute
I Lobe You

Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisors, Fernando
Silva and Vítor Santos Costa, for their constant support, encouragement and guidance.
Both were always there, ready to discuss about any question and helped me to fix the
problems and find the answers to carry on this work. To both I also would like to thank
the revisions, comments and suggestions regarding the improvement of this thesis.

I am grateful to C. R. Ramakrishnan for his contribution in building runnable versions
of the XMC benchmark programs out of the XMC environment, and to Ashwin
Srinivasan for his availability in providing access to his parallel machine that allowed
us to evaluate our system.

I am also grateful to the Junta Nacional de Investigação Científica e Tecnológica (now
Fundação para a Ciência e a Tecnologia) for their support under the research grant
PRAXIS XXI/BD/9276/96 during the first 18 months of this work.

To Ricardo Lopes, Michel Ferreira, Álvaro Figueira, Luís Lopes, Eduardo Correia, Luís
Antunes and the guys from CDUP's football, I would like to testify their friendship
and the enjoyable moments spent together through these years.

To my family, I would like to say that they are part of this work. To my parents, José
and Noémia, for all the love you always gave me. To my sister, Silvia, for being such
a nice person. To my wife, Rute, for all the affection, support and understanding. I
love you.

I would like to express a final acknowledgment to all of those that throughout my life,
at different levels and by different means, had contributed to shape my personality
and help me to be the person I am. Thank you all!

Ricardo Rocha
September 2001

5

Abstract
Logic programming languages, such as Prolog, provide a high-level, declarative ap­
proach to programming. They offer a great potential for implicit parallelism and thus
allow parallel systems to automatically reduce a program's execution time without
any programmer intervention. For complex applications that take several hours, if not
days, to return an answer, even modest parallel execution speedups can be directly
translated to very significant productivity gains.

Despite the power, flexibility and good performance that Prolog has achieved, the past
years have seen wide effort at increasing Prolog's declarativeness and expressiveness.
Unfortunately, some deficiencies in Prolog's evaluation strategy - SLD resolution -
limit the potential of the logic programming paradigm. Tabling has proved to be
a viable technique to efficiently overcome SLD's susceptibility to infinite loops and
redundant subcomputations.

With this research we aim at demonstrating that implicit or-parallelism is a natural
fit for logic programs with tabling. To substantiate this belief, we propose novel
computational models that integrate tabling with or-parallelism, we design and imple­
ment an or-parallel tabling engine - OPTYap - and we use a shared memory parallel
machine to evaluate its performance. To the best of our knowledge, OPTYap is the first
implementation of a parallel tabling engine for logic programming systems. OPTYap
builds on Yap's efficient sequential Prolog engine. Its execution model is based on the
SLG-WAM for tabling, and on the environment copying for or-parallelism.

The results in this thesis make it clear that the mechanisms proposed to parallelize
search in the context of SLD resolution can indeed be effectively and naturally gener­
alized to parallelize tabled computations, and that the resulting systems can achieve
good performance on shared memory parallel machines. More importantly, it empha­
sizes our belief that through applying or-parallelism and tabling to logic programs we
can contribute to increase the range of applications for Logic Programming.

7

Resumo

Uma das vantagens do Prolog, como linguagem de Programação Lógica, é possuir uma
semântica que possibilita a exploração de paralelismo implícito. Esta característica
permite reduzir o tempo de execução de um programa, sem que para isso sejam neces­
sárias anotações adicionais do programador. Para aplicações complexas, que demoram
várias horas, senão dias, a calcular uma solução, mesmo ganhos de velocidade modestos
em execução paralela, podem traduzir-se em significantes ganhos de produtividade.

Apesar do poder, da flexibilidade e dos bons resultados que o Prolog tem demonstrado
desde o aparecimento da WAM, um amplo esforço tem vindo a ser desenvolvido para
aumentar o seu poder declarativo e expressivo. A estratégia de resolução SLD, na qual
o Prolog se baseia, é limitadora do potencial inerente ao paradigma da Programação
Lógica. Uma das mais bem sucedidas técnicas para solucionar a incapacidade da reso­
lução SLD no que respeita a ciclos infinitos e computações redundantes é a Tabulação.

Com este trabalho pretende-se demonstrar que a exploração implícita de paralelismo-
Ou em programas lógicos com tabulação pode ser tão eficaz como o é em programas
lógicos comuns. Para tal, propõem-se novos modelos para integrar paralelismo-Ou com
tabulação, desenvolve-se um novo sistema, o OPTYap, e avalia-se o seu desempenho.
Tanto quanto é do nosso conhecimento, o OPTYap é o primeiro sistema a explorar
paralelismo em programas lógicos com tabulação. O OPTYap foi desenvolvido tendo
por base o sistema Yap, um dos mais rápidos sistemas de execução sequencial de
Prolog. O seu modelo de execução é baseado na SLG-WAM, para tabulação, e em
cópia de ambientes, para paralelismo-Ou.

Os resultados mostram que os mecanismos para execução paralela de programas lógicos
podem generalizar-se para computações que usam tabulação, e que os sistemas daí
resultantes obtêm igualmente bons desempenhos em máquinas paralelas de memória
partilhada. Este trabalho reforça a convicção de que paralelismo e tabulação podem
contribuir para expandir o leque de aplicações alvo da Programação Lógica.

9

Résumé

Les langages de Programmation Logique, tels que le Prolog, fournissent une approche
déclaratif de niveau élevé à la programmation. Ils offrent un grand potentiel pour
l'exploration implicite du parallélisme et permettent ainsi, aux systèmes parallèles, de
réduire automatiquement le temps d'exécution d'un programme, sans interposition du
programmeur. Pour des applications complexes qui prennent plusieurs heures, sinon
des jours, pour renvoyer une réponse, même modestes gains de vélocité peuvent être
directement traduits aux gains très significatifs de productivité.

En dépit de la puissance, de la flexibilité et des bons résultats que le Prolog a réalisé,
les dernières années ont vu un large effort pour augmenter son pouvoir déclaratif
et expressif. Malheureusement, quelques insuffisances dans la stratégie d'évaluation
du Prolog, résolution SLD, limitent le potentiel du paradigme de Programmation
Logique. Tabulation a montré être une technique viable pour surmonter efficacement
la susceptibilité de SLD aux calculs infinis et aux computations redondantes.

Avec cette recherche nous visons démontrer que l'exploration implicite du parallélisme-
Ou est un ajustement naturel pour des programmes logiques avec la tabulation. Pour
justifier cette croyance, nous proposons des nouveaux modèles pour intégrer par-
allélisme-Ou avec tabulation, nous concevons une nouvelle système, l'OPTYap, et nous
évaluons son exécution. Au meilleur de notre connaissance, OPTYap est la première
mise en place d'un système parallèle de tabulation. OPTYap a été développé ayant
pour base le système Yap, l'un des plus rapides systèmes d'exécution séquentielle de
Prolog. Son modèle d'exécution est basé sur la SLG-WAM, pour tabulation, et sur
copie d'ambiants, pour parallélisme-Ou.

Les résultats indiquent que les mécanismes proposés pour exécution parallèle, dans le
contexte de la résolution SLD, peuvent être généralisés pour la tabulation, et que les
systèmes résultants peuvent obtenir aussi des bons résultats aux systèmes parallèles de
mémoire partagée. Cette thèse souligne notre croyance qu'en appliquant parallélisme-

11

Ou et tabulation aux programmes de logique nous pouvons contribuer à l'augmentation
de l'ensemble des applications pour la Programmation Logique.

12

Contents

Abstract 7

Resumo 9

Résumé 11

List of Tables 19

List of Figures 21

1 Introduction 25

1.1 Thesis Purpose 27

1.2 Thesis Outline 29

2 Logic Programming, Parallelism and Tabling 31

2.1 Logic Programming 31

2.1.1 Logic Programs 33

2.1.2 The Prolog Language 35

2.1.3 The Warren Abstract Machine 36

2.2 Parallelism in Logic Programs 39

2.2.1 Or-Parallelism 41

13

2.2.2 Or-Parallel Execution Models 44

2.3 Tabling for Logic Programs 46

2.3.1 Examples of Tabled Evaluation 48

2.3.2 SLG Resolution for Definite Programs 51

2.3.3 SLG-WAM: an Abstract Machine for SLG Resolution 55

2.3.4 Other Related Implementations 56

2.4 Chapter Summary 57

3 YapOr: The Or-Parallel Engine 59

3.1 The Environment Copying Model 59

3.1.1 Basic Execution Model 60

3.1.2 Incremental Copying 61

3.2 The Muse Approach for Scheduling Work 62

3.2.1 Scheduler Strategies 63

3.2.2 Searching for Busy Workers 64

3.2.3 Distributing Idle Workers 66

3.3 Extending Yap to Support Or-Parallelism 68

3.3.1 Memory Organization 68

3.3.2 Choice Points and Or-Frames 70

3.3.3 Worker Load 72

3.3.4 Sharing Work Process 73

3.3.5 New Pseudo-Instructions 74

3.4 Chapter Summary 76

4 YapTab: The Sequential Tabling Engine 77

14

4.1 The SLG-WAM Abstract Machine 77

4.1.1 Basic Tabling Definitions 78

4.1.2 SLG-WAM Overview 79

4.1.3 Batched Scheduling 79

4.1.4 Fixpoint Check Procedure 80

4.1.5 Incremental Completion 81

4.1.6 Instruction Set for Tabling 82

4.2 Extending Yap to Support Tabling 83

4.2.1 Overview 84

4.2.2 Table Space 85

4.2.3 Generator and Consumer Nodes 88

4.2.4 Subgoal and Dependency Frames 90

4.2.5 Freeze Registers 92

4.2.6 Forward Trail 93

4.2.7 Completion and Leader Nodes 96

4.2.8 Answer Resolution 99

4.2.9 A Comparison with the SLG-WAM 102

4.3 Local Scheduling 104

4.4 Chapter Summary 108

5 Parallel Tabling 109

5.1 Related Work 109

5.2 Novel Models for Parallel Tabling 112

5.2.1 Or-Parallelism within Tabling (OPT) 113

15

5.2.2 Tabling within Or-Parallelism (TOP) 114

5.2.3 Comparing the Models 116

5.2.4 Framework Motivation for the OPT Model 117

5.3 Chapter Summary 120

6 OPTYap: The Or-Parallel Tabling Engine 123

6.1 Implementation Overview 123

6.2 The Parallel Data Area 124

6.2.1 Memory Organization 125

6.2.2 Page Management 127

6.2.3 Improving Page Management for Answer Trie Nodes 129

6.3 Concurrent Table Access 130

6.3.1 Trie Structures 130

6.3.2 Table Locking Schemes 134

6.4 Data Frames Extensions 138

6.4.1 Or-Frames 138

6.4.2 Subgoal and Dependency Frames 140

6.5 Leader Nodes 141

6.6 The Flow of Control 146

6.6.1 Public Completion 146

6.6.2 Answer Resolution 151

6.6.3 Getwork 154

6.7 SCC Suspension 156

6.8 Scheduling Work 161

16

6.9 Local Scheduling 165

6.10 Chapter Summary 169

7 Speculative Work 171

7.1 Cut Semantics 172

7.2 Cut within the Or-Parallel Environment 173

7.2.1 Our Cut Scheme 173

7.2.2 Tree Representation 175

7.2.3 Leftmostness 177

7.2.4 Pending Answers 177

7.2.5 Scheduling Speculative Work 178

7.3 Cut within the Or-Parallel Tabling Environment 179

7.3.1 Inner and Outer Cut Operations 180

7.3.2 Detecting Speculative Tabled Answers 181

7.3.3 Pending Tabled Answers 183

7.4 Chapter Summary 185

8 Performance Analysis 187

8.1 Performance on Non-Tabled Programs 188

8.1.1 Non-Tabled Benchmark Programs 189

8.1.2 Overheads over Standard Yap 190

8.1.3 Speedups for Parallel Execution 191

8.2 Performance on Tabled Programs 192

8.2.1 Tabled Benchmark Programs 193

8.2.2 Timings for Sequential Execution 194

17

8.2.3 Characteristics of the Benchmark Programs 196

8.2.4 Parallel Execution Study 198

8.2.5 Locking the Table Space 206

8.3 Chapter Summary 208

9 Concluding Remarks 211

9.1 Main Contributions 211

9.2 Further Work 214

9.3 Final Remark 216

A Benchmark Programs 219

A.l Non-Tabled Benchmark Programs 219

A.2 Tabled Benchmark Programs 222

References 224

18

List of Tables

8.1 Yap, YapOr, YapTab, OPTYap and XSB execution time on non-tabled
programs 191

8.2 Speedups for YapOr and OPTYap on non-tabled programs 192

8.3 YapTab, OPTYap and XSB execution time on tabled programs 195

8.4 Characteristics of the tabled programs 197

8.5 Speedups for OPTYap using batched scheduling on tabled programs. . 198

8.6 Statistics of OPTYap using batched scheduling for the group of pro­
grams with parallelism 201

8.7 Statistics of OPTYap using batched scheduling for the group of pro­
grams without parallelism 202

8.8 Speedups for OPTYap using local scheduling on tabled programs. . . . 204

8.9 Statistics of OPTYap using local scheduling for the group of programs
showing worst speedups than for batched scheduling 205

8.10 OPTYap execution time with different locking schemes for the group of
programs with parallelism 207

19

List of Figures

2.1 WAM memory layout, frames and registers 37

2.2 An infinite SLD evaluation 48

2.3 A finite tabled evaluation 49

2.4 Fibonacci complexity for SLD and tabled evaluation 51

3.1 Backtracking to the bottom common node 61

3.2 Incremental Copying 62

3.3 Requesting work from workers within the current subtree 65

3.4 Requesting work from workers outside the current subtree 66

3.5 Scheduling strategies to move idle workers to better positions 67

3.6 Memory organization in YapOr 69

3.7 Remapping the local spaces 70

3.8 Sharing a choice point 71

3.9 The sharing work process 74

4.1 Compiled code for a tabled predicate 84

4.2 Using tries to organize the table space 86

4.3 Detailed tries structure relationships 87

4.4 Structure of interior, generator and consumer choice points 88

21

4.5 The nodes and their interaction with the table and dependency spaces. 89

4.6 Structure of subgoal and dependency frames 90

4.7 Dependencies between choice points, subgoal and dependency frames. . 91

4.8 Pseudo-code for adjust_freeze_registers() 93

4.9 The forward trail implementation 94

4.10 Pseudo-code for restore_bindings() 95

4.11 Spotting the current leader node 97

4.12 Pseudo-code for compute_leader_node() 97

4.13 Pseudo-code for completionO 98

4.14 Pseudo-code for answer_resolution() 99

4.15 Scheduling for a backtracking node 101

4.16 Batched versus local scheduling: an example 104

4.17 Handling generator nodes for supporting batched or local scheduling. . 106

4.18 Pseudo-code for completionO with a local scheduling strategy 107

5.1 Exploiting parallelism in the OPT model 114

5.2 Exploiting parallelism in the TOP model 115

5.3 Which is the leader node? 119

5.4 CAT's incremental completion for parallel tabling 120

6.1 Using memory pages as the basis for the parallel data area 125

6.2 Inside the parallel data area pages 126

6.3 Pseudo-code for a l loc_s t ruc t () 127

6.4 Pseudo-code for f ree_st ruct() 128

6.5 Pseudo-code for get_s t ruct() 129

22

6.6 Detailing the trie structure organization 131

6.7 trie_node_check_insert() call sequence for the new answer operation. 132

6.8 Pseudo-code for trie_node_check_insert() 133

6.9 Pseudo-code for trie_node_check_insert() with a TLNL scheme. . . 135

6.10 Pseudo-code for trie_node_check_insert() with a TLWL scheme. . . 136

6.11 Pseudo-code for trie_node_check_insert() with a TLWL-ABC scheme.137

6.12 New data fields for the or-frame data structure 139

6.13 Spotting the generator dependency node 142

6.14 Modified pseudo-code for compute_leader_node() 143

6.15 The generator dependency node inconsistency 144

6.16 Dependency frames in the parallel environment 145

6.17 The flow of control in a parallel tabled evaluation 147

6.18 Pseudo-code for public_completion() 149

6.19 Pseudo-code for answer_resolution() 152

6.20 Scheduling for a backtracking node in the parallel environment 153

6.21 Pseudo-code for get work () 155

6.22 From getwork to public completion 156

6.23 Suspending a SCC 157

6.24 Using or-frames to link suspended SCCs 159

6.25 Resuming a SCC 160

6.26 Scheduling for the nearest node with unexploited alternatives 162

6.27 Pseudo-code for move_up_one_node() 164

6.28 Local scheduling situation requiring special implementation support. . . 166

6.29 Pseudo-code for getwork () with a local scheduling strategy 167

23

24

6.30 Pseudo-code for answer_resolution() with a local scheduling strategy. 167

6.31 Pseudo-code for public_completion() with a local scheduling strategy. 168

7.1 Cut semantics overview 172

7.2 Pruning in the parallel environment 174

7.3 Pruning useless work as early as possible 176

7.4 Search tree representation 177

7.5 Dealing with pending answers 178

7.6 The two types of cut operations in a tabling environment 180

7.7 Pseudo-code for clause_with_cuts() 182

7.8 Pseudo-code for speculative_tabled_answer() 183

7.9 Dealing with pending tabled answers 184

Chapter 1

Introduction

Logic programming provides a high-level, declarative approach to programming. Ar­
guably, Prolog is the most popular and powerful logic programming language. Through­
out its history, Prolog has demonstrated the potential of logic programming in appli­
cation areas such as Artificial Intelligence, Natural Language Processing, Knowledge
Based Systems, Machine Learning, Database Management, or Expert Systems. Pro­
log's popularity was sparked by the success of the sequential execution model presented
in 1983 by David D. H. Warren, the Warren Abstract Machine (WAM) [109]. The
WAM compilation technology proved to be highly efficient and Prolog systems have
been shown to run logic programs nearly as fast as equivalents C programs [85].

Prolog programs are written in a subset of First-Order Logic, Horn clauses, that has an
intuitive interpretation as positive facts and rules. Programs use the logic to express
the problem, whilst questions are answered by a resolution procedure with the aid of
user annotations. The combination was summarized by Kowalski's motto [59]:

algorithm = logic + control

Ideally, one would want Prolog programs to be written as logical statements first, and
for control to be tackled as a separate issue. In practice, the operational semantics
of Prolog is given by SLD resolution [61], a refutation strategy particularly simple
that matches current stack based machines particularly well. Unfortunately, the
limitations of SLD resolution mean that Prolog programmers must be concerned with
SLD semantics throughout program development. For instance, it is in fact quite
possible that logically correct programs will enter infinite loops.

25

2G CHAPTER 1. INTRODUCTION

Several proposals have been put forth to overcome some of the SLD limitations and
therefore improve the declarativeness and expressiveness of Prolog. One such proposal
that has been gaining in popularity is the use of tabling (or tabulation or memoing [65]).
In a nutshell, tabling consists of storing intermediate answers for subgoals so that they
can be reused when a repeated subgoal appears during the resolution process. It can
be shown that tabling based models are able to reduce the search space, avoid looping,
and have better termination properties than SLD based models. In fact, it has been
proven that termination can be guaranteed for all programs with the bounded term-size
property [20].

Work on SLG resolution [20], as implemented in the XSB logic programming sys­
tem [44], proved the viability of tabling technology for applications such as Natural
Language Processing, Knowledge Based Systems and Data Cleaning, Model Checking,
and Program Analysis. SLG resolution also includes several extensions to Prolog,
namely support for negation [10], hence allowing for novel applications in the areas of
Non-Monotonic Reasoning and Deductive Databases.

One of the major advantages of logic programming is that it is well suited for parallel
execution. The interest in the parallel execution of logic programs mainly arose from
the fact that parallelism can be exploited implicitly from logic programs. This means
that parallel execution can occur automatically, that is, without input from the pro­
grammer to express or manage parallelism, hence making parallel logic programming
as easy as logic programming.

Logic programming offers two major forms of implicit parallelism, Or-Parallelism
and And-Parallelism. Or-parallelism results from the parallel execution of alterna­
tive clauses for a given predicate goal, while and-parallelism stems from the parallel
evaluation of subgoals in an alternative clause. Arguably, or-parallel systems, such as
Aurora [62] and Muse [6], have been the most successful parallel logic programming
systems so far. Experience has shown that or-parallel systems can obtain very good
speedups for applications that require search. Examples can be found in application
areas such Parsing, Optimization, Structured Database Querying, Expert Systems and
Knowledge Discovery applications. Parallel search can be also useful in Constraint
Logic Programming.

Tabling works for both deterministic and non-deterministic applications, but it has
frequently been used to reduce the search space. This rises the question of whether

1.1. THESIS PURPOSE 27

further efficiency improvements may be achievable through parallelism. Freire and
colleagues were the first to propose that tabled goals could indeed be a source of im­
plicit parallelism [39]. In their model, each tabled subgoal is computed independently
in a separate computational thread, a generator thread. Each generator thread is the
sole responsible for fully exploiting its subgoal and obtain the complete set of answers.
We argue that this model is limitative in that it restricts parallelism to concurrent
execution of generator threads. Parallelism arising from non-tabled subgoals or from
alternative clauses to tabled subgoals should also be exploited.

1.1 Thesis Purpose

Ideally, we would like to exploit maximum parallelism and take maximum advantage of
current technology for tabling and parallel systems. An interesting observation is that
tabling is still about exploiting alternatives to find answers for goals. Our suggestion is
that we should aim at using the same technique to exploit parallelism from both tabled
and non-tabled subgoals. By doing so we can both extract more parallelism, and reuse
the mature technology for tabling and parallelism. Towards this goal, we designed
two new computational models [79], the Or-Parallelism within Tabling (OPT) and
Tabling within Or-Parallelism (TOP) models. The models combine tabling with
or-parallelism by considering all open alternatives to subgoals as being amenable to
parallel exploitation, be they from tabled or non-tabled subgoals.

This thesis addresses the design, implementation and evaluation of OPTYap [84].
OPTYap is an or-parallel tabling system based on the OPT model [80] that, to the best
of our knowledge, is the first available system that can exploit parallelism from tabling
applications. The OPT model considers tabling as the base component of the parallel
system. Each worker1 behaves like a sequential tabling engine that fully implements all
the tabling operations. The or-parallel component of the system is triggered to allow
synchronized access to common parts of the search space or to schedule workers running
out of alternatives to exploit. We take advantage of the hierarchy of or-parallelism
within tabling to structure OPTYap's design and thus simplify its implementation.

^ h e term worker is widely used in the literature to designate each computational unit or agent
involved in the parallel environment. A worker is the abstract notion that represents, at the machine
level, a system processor or process.

28 CHAPTER 1. INTRODUCTION

We validate our design through a performance study of the OPTYap system builds on
the YapOr [78, 81] and YapTab [83, 82] engines. YapOr is an or-parallel engine that
extends Yap's efficient sequential engine [29] to exploit implicit or-parallelism in Prolog
programs. It is based on the environment copy model, as first implemented in the
Muse system [5]. YapTab is a sequential tabling engine that extends Yap's execution
model to support tabled evaluation for definite programs, that is, for programs not
including negation. YapTab's implementation is largely based on the ground-breaking
work for the XSB system [88, 76], and specifically on the SLG-WAM [86, 89, 87].
YapTab has been designed from scratch and its development was done taking into
account the major purpose of further integrate it to achieve an efficient parallel
tabling computational model, whilst comparing favorably with current state of the art
technology. In other words, we aim at developing an or-parallel tabling system that,
when executed with a single worker, runs as fast or faster than the current available
sequential tabling systems. Otherwise, the parallel performance results would not be
significant and fair, and thus it would be hard to evaluate the efficiency of the parallel
implementation.

We intend with our work to study and understand the implications of combining
tabling with or-parallelism and thereby develop an efficient execution framework to
exploit maximum parallelism and obtain good performance results. Accordingly, the
thesis presents novel data structures, algorithms and implementation techniques that
efficiently solve some difficult problems arising with the integration of both paradigms.
Our major contributions include the dependency frame data structure; the generator
dependency node concept and a novel algorithm to compute and detect leader nodes; a
novel termination detection scheme to allow public completion; support for suspension
of strongly connected components; improvements to scheduling technology; implemen­
tation techniques to deal with concurrent table access; and support for speculative
tabled answers.

In order to substantiate our claims we studied in detail the performance of our or-
parallel tabling engine, OPTYap, up to 32 workers. First, we evaluate the sequential
and parallel behavior of OPTYap for non-tabled programs and compare it with that of
Yap and YapOr. We then evaluate OPTYap with tabled programs and study its perfor­
mance for sequential and parallel execution. The gathered results show that OPTYap
introduces low overheads for sequential execution and that it compares favorably

1.2. THESIS OUTLINE 29

with current versions of XSB. Furthermore, the results show that OPTYap maintains
YapOr's speedups for parallel execution of non-tabled programs, and that there are
tabled applications that can achieve very high performance through parallelism. In
our study we gathered detailed statistics on the execution of each benchmark program
to help us in understanding and explaining some of the parallel execution results.

Ultimately, this thesis aims at substantiating our belief that tabling and parallelism
can together contribute to increasing the range of applications for Logic Programming.

1.2 Thesis Outline

The thesis is structured in nine major chapters that, in some way, reflect the different
phases of the work. We provide a brief description of each chapter next.

Chapter 1: Introduction. Is this chapter.

Chapter 2: Logic Programming, Parallelism and Tabling. Provides a brief in­
troduction to the concepts of logic programming, parallel logic programming,
and tabling, focusing on Prolog, or-parallelism, SLG resolution, and abstract
machines for standard Prolog and tabling, namely the WAM and the SLG-WAM.

Chapter 3: YapOr: The Or-Parallel Engine. Presents the design and implemen­
tation of the YapOr Prolog system. It introduces the general concepts of the
environment copying model, and then describes the major implementation issues
to extend the Yap Prolog system to support the model. Most of YapOr's
development was prior to the present work.

Chapter 4: Yap Tab: The Sequential Tabling Engine. First, it briefly describes
the fundamental aspects of the SLG-WAM abstract machine, and then details
YapTab's implementation. This includes discussing the motivation and major
contributions of the YapTab design, and presenting the main data areas, data
structures and algorithms to extend the Yap Prolog system to support sequential
tabling. YapTab has been designed and implemented from scratch and its
development was the first step towards the current or-parallel tabling system.

Chapter 5: Parallel Tabling. In this chapter we propose two new computational
models, OPT and TOP, to efficiently implement the parallel evaluation of tabled

30 CHAPTER 1. INTRODUCTION

logic programs. Initially, we describe related work to get an overall view of
alternative approaches to parallel tabling. Next, we introduce and detail the
fundamental aspects underlying the new computational models, and then we
discuss their advantages and disadvantages. At last, we focus on the OPT
computational model in order to discuss its implementation framework.

Chapter 6: OPTYap: The Or-Parallel Tabling Engine. Presents the imple­
mentation details for the OPTYap engine. We start by presenting an overall
view of the main issues involved in the implementation of the or-parallel tabling
engine and then we introduce and detail the new data areas, data structures and
algorithms used to implement it.

Chapter 7: Speculative Work. Discusses the problems arising with speculative
computations and introduces the mechanisms used in YapOr and OPTYap to
deal with them. Initially, we introduce the cut semantics and its particular be­
havior within or-parallel systems. Next, we present the cut scheme implemented
in YapOr and then discuss speculative tabling execution and present the support
currently implemented in OPTYap.

Chapter 8: Performance Analysis. In this chapter we assess the efficiency of the
or-parallel tabling implementation by presenting a detailed performance analysis.
We start by reporting an overall view of the overheads of supporting the several
Yap extensions: YapOr, YapTab and OPTYap. Next we compare OPTYap's
performance with that of YapOr on a similar set of non-tabled programs. Then
we use a set of tabled programs to measure the sequential behavior of YapTab,
OPTYap and XSB, and to assess OPTYap's performance when running the
tabled programs in parallel. At last, we study the impact of using different lock­
ing schemes to deal with concurrent accesses to the table space data structures.

Chapter 9: Concluding Remarks. Discusses the research, summarizes the contri­
butions and suggests directions for further work.

Chapters 4, 6 and 7 include pseudo-code for some important procedures. In order to
allow an easier understanding of the algorithms being presented in such procedures, the
code corresponding to potential optimizations or synchronizations is never included,
unless its inclusion was essential for the description. The Prolog code for the set of
benchmarks used in Chapter 8 is included, at the end of the thesis, as Appendix A.

Chapter 2

Logic Programming, Parallelism
and Tabling

The aim of this chapter is to provide a brief overview of the research areas embraced
by this thesis, highlighting the main ideas behind the key aspects of each area. We
discuss logic programming, parallel logic programming and tabling. Throughout, we
focus on Prolog, or-parallelism, SLG resolution, and abstract machines for standard
Prolog and tabling, namely in the WAM and the SLG-WAM.

2.1 Logic Programming

Logic programming languages, together with functional programming languages, form
a major class of languages called declarative languages. A common characteristic
of both groups of languages is that they have a strong mathematical basis. Logic
programming languages are based on the predicate calculus, while functional pro­
gramming languages are based on the lambda calculus.

Declarative languages are considered to be very high-level languages when compared
with conventional imperative languages because, generally, they allow the programmer
to concentrate more on what the problem is, leaving much of the details of how to
solve the problem to the computer. The mathematical basis of such languages makes
programming an easier task. The programmer can specify the problem at a more
application-oriented level and thus simplify the formal reasoning about it.

31

32 CHAPTER 2. LOGIC PROGRAMMING, PARALLELISM AND TABLING

Logic programming [61] is a programming paradigm based on Horn Clause Logic, a
subset of First Order Logic. Logic programming is a simple theorem prover that given
a theory (or program) and a query, uses the theory to search for alternative ways
to satisfy the query. Logic programming is often mentioned to include the following
major features [56]:

• Variables are logical variables which can be instantiated only once.

• Variables are untyped until instantiated.

• Variables are instantiated via unification, a pattern matching operation finding
the most general common instance of two data objects.

• At unification failure the execution backtracks and tries to find another way to
satisfy the original query.

Carlsson [17] claims that Logic programming languages, such as Prolog, are cited to
include the following advantages:

Simple declarative semantics. A logic program is simply a collection of predicate
logic clauses.

Simple procedural semantics. A logic program can be read as a collection of re­
cursive procedures. In Prolog, for instance, clauses are tried in the order they
are written and goals within a clause are executed from left to right.

High expressive power. Logic programs can be seen as executable specifications
that despite their simple procedural semantics allow for designing complex and
efficient algorithms.

Inherent non-determinism. Since in general several clauses can match a goal, prob­
lems involving search are easily programmed in these kind of languages.

These advantages lead to compact code that is easy to understand, program and
transform. Furthermore, they make logic programming languages very attractive for
the exploitation of implicit parallelism.

2.1. LOGIC PROGRAMMING 33

2.1.1 Logic Programs

A logic program consists of a collection of Horn clauses. Using Prolog's notation, each
clause may be a rule of the form

A : - Bu ..., Bn.

where A is the head of the rule and the Bi, ..., Bn are the body subgoals, or it may
be a fact and simply written as

A.

Rules represent the logical implication

V (£i A ... A Bn ->■ A)

while facts assert A as true. A separate type of clauses are those where the head goal
is false. These type of clauses are called queries and, in Prolog, they are written as

: — Bi, ..., Bn.

A goal is a predicate applied to a number of terms (or arguments) of the form

P (*1, - i tn)

where p is the predicate name, and the t\, ..., tn are the terms used as arguments. Each
term can be either a variable, an atom, or a compound term of the form f{u\, ..., um)
where / is a functor and the u±, ..., um are themselves terms. Terms in a program
represent world objects while predicates represent relationships among those objects.
Variables represent unspecified terms while atoms represent symbolic constants.

Information from a logic program is retrieved through query execution. The execution
of a query Q against a logic program P, leads to consecutive assignments of terms
to the variables of Q till a substitution 6 satisfied by P is found. A substitution is a
function that given a variable of Q returns a term assignment. Answers (or solutions)
for Q are retrieved by reporting for each variable X in Q the corresponding assignment
0(X). When a variable X is assigned a term T, then X is said to be bound and T is
called the binding of X. A variable can be bound to another different variable or to a
non-variable term.

Execution of a query Q with respect to a program P proceeds by reducing the initial
conjunction of subgoals of Q to another conjunctions of subgoals according to a

34 CHAPTER 2. LOGIC PROGRAMMING, PARALLELISM AND TABLING

resolution rule. The resolution rule of Prolog, Selective Linear Definite resolution
(SLD resolution) [61], is a simplified version of the general inference rule that result
from the pioneering work on resolution by Robinson [77]. SLD resolution proceeds as
follows:

• Let us assume that
: — Gi, ..., Gn.

is the current conjunction of subgoals. Initially and according to a predefined
selectuterai rule, a subgoal (or literal) Gi is selected.

• Assuming that Gi is the selected subgoal, then the program is searched for a
clause whose head goal unifies with Gi. If there are such clauses then, according
to a predefined selectciause rule, one is selected.

• Consider that
A : — Bi, ..., Bm.

is the selected clause that unifies with Gi. The unification process has determined
a substitution 9 to the variables of A and Gi such that A6 — Gi9. Execution
may proceed by replacing Gi with the body subgoals of the selected clause and
by applying 9 to the variables of the resulting conjunction of subgoals

: — (Gi, ..., Gi-i, B\, ..., Bm, CTJ+I, ..., Gn)9.

Notice that in the case the selected clause be a fact, Gi is simply removed from
the conjunction of subgoals

: ~~ {Gi, ..., Gi-i, Gi+i, ..., Gn)9.

• When there are no clauses unifying with the selected subgoal, then a failure
occurs. Failures are resolved through applying a backtracking mechanism. Back­
tracking exploits alternative execution paths by (i) undoing all the bindings
made since the preceding selected subgoal Gp, and by (ii) reducing Gp with the
next available clause unifying with it.

• The computation stops either when all alternatives have been exploited or when
an answer is found. An answer is found whenever the conjunction of subgoals is
reduced to the true subgoal, which therefore corresponds to the determination
of a query substitution satisfied by the program.

2.1. LOGIC PROGRAMMING 35

In [59], Kowalski stated that logic programming is about expressing problems as logic
and using a resolution procedure to obtain answers from the logic. Therefore, in a
computer implementation, the selectuterai and selectciause rules, that is the resolution
procedure, must be specified. Different specifications lead to different algorithms and
different languages (or semantics) can thus be obtained. Next, we introduce the logic
programming language Prolog.

2.1.2 The Prolog Language

Prolog is the most popular logic programming language. The name Prolog was
invented by Colmerauer as an abbreviation for PROgramotion en LOGic to refer to a
software tool designed to implement a man machine communication system in natural
language [24].

The pioneering work on resolution by Robinson, culminated in 1965 with the publica­
tion of his historical paper [77] describing the now well known general inference rule,
Resolution with Unification. Starting from Robinson's work, it was Kowalski [58] and
Colmerauer and colleagues [24] who first recognized the procedural semantics of Horn
clauses and provided some theoretical background showing that Prolog can be read
both procedurally and logically.

In 1977, David H. D. Warren made Prolog a viable language by developing the first
compiler for Prolog [108]. This helped to attract a wider following to Prolog and
made the syntax used in this implementation the de facto Prolog standard. In 1983,
Warren proposed a new abstract machine for executing compiled Prolog code [109]
that has come to be known as the Warren Abstract Machine, or simply WAM. The
WAM became the most popular way of implementing Prolog and almost all current
Prolog systems are based on WAM's technology.

The interest in logic programming has increased considerably when the Japanese
announced their Fifth Generation project. As a result, since then, many different
sequential and parallel models were proposed and implemented. The advances made
in the compilation technology of sequential implementations of Prolog proved to be
highly efficient which has enabled Prolog compilers to execute programs nearly as fast
as the conventional programming languages like C [85].

36 CHAPTER 2. LOGIC PROGRAMMING, PARALLELISM AND TABLING

The operational semantics of Prolog is given by SLD resolution, as it matches current
computer architectures particularly well. Prolog applies SLD resolution by speci­
fying that the selectuterai rule chooses the leftmost subgoal in a query, and that the
selectciause rule follows the textual order of the clauses in the program. To make Prolog
a useful programming language for real world problems, some additional features not
found within first order logic were introduced. These features include:

Meta-logical predicates. These predicates inquire the state of the computation and
manipulate terms.

Cut predicate. This predicate adds a limited form of control to the execution. It
prunes unexploited alternatives from the computation.

Extra-logical predicates. These are predicates which have no logical meaning at all.
They perform input/output operations and manipulate the Prolog database, by
adding or removing clauses from the program being executed.

Other predicates. These include arithmetic predicates to perform arithmetic oper­
ations, term comparison predicates to compare terms, extra control predicates
to perform simple control operations, and set predicates that give the complete
set of answers for a query.

An important aspect of many of these predicates is that their behavior is order-
sensitive. This means that they can potentially produce different outcomes if different
selectiiterai or selectciause rules are specified. Moreover, the use of some of these
predicates relies on a deep knowledge of Prolog execution. For readers not familiar
with Prolog, a more detailed presentation of these topics can be found in some of the
standard textbooks on Prolog, such as [23, 61, 95].

2.1.3 The Warren Abstract Machine

Prolog became the most popular logic programming language largely due to the success
of its efficient implementations based on the Warren Abstract Machine (WAM) [109].
Currently, most of the state of the art systems for logic programming languages still
rely on WAM's technology.

2.1. LOGIC PROGRAMMING 37

The WAM is a stack-based architecture with simple data structures and a low-level
instruction set. At any time, the state of a computation is obtained from the contents
of the WAM data areas, data structures and registers. See Figure 2.1 for a detailed
illustration of the WAM's organization.

M e m o r y L a y o u t

PDL

1
E n v i r o n m e n t F r a m e PDL

1 c o n t . e n v i r o n m e n t c o n t . e n v i r o n m e n t

c o n t . c o d e

t
TRAIL

c o n t . c o d e

t
TRAIL

1 s t p e r m a n e n t v a r .

n t h p e r m a n e n t v a r .

t
TRAIL

T
h sv.

STACK
L ^ \ C h o i c e P o i n t F r a m e

STACK 1 s t g o a l a r g u m e n t

n t h g o a l a r g u m e n t

1 s t g o a l a r g u m e n t

n t h g o a l a r g u m e n t

t
HEAP

1 s t g o a l a r g u m e n t

n t h g o a l a r g u m e n t

HB ► t
HEAP

c o n t . e n v i r o n m e n t t
HEAP

c o n t . c o d e
t

HEAP
p r e v . c h o i c e p o i n t

lli:
p r e v . c h o i c e p o i n t

lli: n e x t c l a u s e lli:
t r a i l p o i n t e r

P — ► t h e a p p o i n t e r

CP ► Co 3 e A r e a

TR

E

B

H

S

HB

P

CP

Registers

Top of Trail

Current Environment

Current Choice Point

Top of Heap

Structure Pointer

Heap Backtrack Pointer

Code Pointer

Continuation Code Pointer

Figure 2.1: WAM memory layout, frames and registers.

The WAM defines the following execution stacks:

PDL: The PDL is a push down list used by the unification process.

Trail: Organized as an array of addresses, it stores the addresses of the (stack or
heap) variables which must be reset upon backtracking. The TR register always
points to the top of this stack.

Stack: Also mentioned as local stack, it stores the environment and choice point
frames:

• Environments track the flow of control in a program. An environment is
pushed onto the stack whenever a clause containing several body subgoals
is picked for execution, and it is popped off before the last body subgoal

38 CHAPTER 2. LOGIC PROGRAMMING, PARALLELISM AND TABLING

gets executed. An environment frame consists of the stack address of the
previous environment, to reinstate if popped off; the code address of the
next instruction, to execute upon successful return from the invoked clause;
and a sequence of cells, as many as the number of permanent variables1 in
the body of the invoked clause. The E register points to the current active
environment.

• Choice points store open alternatives. A choice point contains all the
necessary data to restore the state of the computation back to when the
clause was entered; plus a pointer to the next clause to try, in case the
current one fails. A choice point frame is pushed onto the stack when a
goal is called for execution and has more than one candidate clause. It is
popped off when the last alternative clause is taken for execution. The B
register points to the current active choice point, which is always the last.

Note that some WAM implementations, like XSB [44] and SICStus Prolog [18],
use separate execution stacks to store environments and choice points.

Heap: Sometimes also referred as global stack, it is an array of data cells used to store
variables and compound terms that cannot be stored in the stack. The H register
points to the top of this stack.

Code Area: Contains the WAM instructions comprising the compiled form of the
loaded programs.

Figure 2.1 mentions other important WAM registers: the S register that is used during
unification of compound terms; the HB register that is used to determine if a binding
is conditional or not2; the P register that points to the current WAM instruction being
executed; and the CP register points to where to return to after successful execution
of the current invoked call.

Four main groups of instructions can be enumerated in the WAM instruction set:

Choice point instructions: As the name indicates these instructions manipulate
choice points. They allow to allocate/remove choice points and to recover the
state of a computation through the data stored in choice points.

1A permanent variable is a variable which occurs in more than one body subgoal [1].
2Conditional bindings are discussed next in subsection 2.2.1.

2.2. PARALLELISM IN LOGIC PROGRAMS 39

Control instructions: allocate/remove environments and manage the call/return

sequence of subgoals.

Unification instructions: These instructions implement specialized versions of the
unification algorithm according to the position and type of the arguments. There
are proper unification instruction to perform head unification, to perform sub-
argument unification, and to prepare arguments for subgoals. These three major
classes are further subdivided in specialized versions to treat first occurrence of
variables in a clause, non-first occurrences, constants in the clause, lists, and
other compound terms.

Indexing instructions. These type of instructions accelerate the process of deter­
mining which clauses unify with a given subgoal call. Depending on the first
argument of the call, they jump to specialized code that can directly index the
unifying clauses.

The apparent simplicity of WAM hides several intricate implementation issues. Com­
plete books, such as A'it-Kaci's tutorial on the WAM [1], discuss these topics.

2.2 Parallelism in Logic Programs

Traditional implementations of Prolog were designed for common, general-purpose
sequential computers. In fact, WAM based Prolog compilers proved to be highly effi­
cient for standard sequential architectures and have helped to make Prolog a popular
programming language. The efficiency of sequential Prolog implementations and the
declarativeness of the language have kindled interest on implementation for parallel
architectures. In these systems, several processors work together to speedup the
execution of a program. Parallel implementations of Prolog should obtain better
performance for current programs, whilst expanding the range of applications we can
solve with this language.

The following main forms of implicit parallelism can be identified in logic programs:

Or-parallelism: Appears from the non-determinism of the selectciause rule, when
a subgoal call unifies with more than one of the clauses defining the subgoal

40 CHAPTER 2. LOGIC PROGRAMMING, PARALLELISM AND TABLING

predicate. It corresponds to the parallel execution of the bodies of the alterna­
tive matching clauses. Or-parallelism is thus an efficient way of searching for
alternative answers to the query.

And-parallelism: Appears from the non-determinism of the selectuterai rule, when
more than one subgoal is present in the query or in the body of a clause. It
corresponds to the parallel execution of such subgoals. Two main forms of and-
parallelism are known [49]:

• Independent and-parallelism: Occurs when the subgoals, in the query
or in the body of a clause, do not share unbound variables. This guarantees
that potential bindings for the variables in each subgoal are compatible with
the outcome bindings from the other subgoals.

• Dependent and-parallelism. Occurs when the subgoals, in the query or
in the body of a clause, have common unbound variables. Notice that the
parallel execution of such subgoals can lead to incompatible bindings to the
common variables. Two major approaches arise: (i) the dependent subgoals
only execute simultaneously until one of them binds a common variable. As
an alternative, it is possible to continue executing the subgoals even after a
common variable has been bound, but in such case, the bindings produced
have to be checked for compatibility at the end; or (ii) the dependent
subgoals are executed independently and once a common variable is bound
by a subgoal, called the producer, the other subgoals, called the consumers,
read the binding as an input argument for the variable. Parallelism can be
further exploited by having the producer computing alternative bindings
for the common variable and the consumers computing with a particular
binding.

Unification parallelism. Appears during the process of unifying the arguments of
a subgoal with those of a head clause for the predicate with the same name and
arity. The different argument terms can be unified in parallel as can the different
sub-terms in a term [11]. Unification parallelism is very fine grained and has not
been the major focus of research in parallel logic programming.

Original research on the area resulted in several different proposals that successfully
supported these forms of parallelism. Arguably, some of the most well-known systems

2.2. PARALLELISM IN LOGIC PROGRAMS 41

are: Aurora [62] and Muse [6] for or-parallelism; &-Prolog[54] and &ACE [68, 69] for
independent and-parallelism; DASWAM [91, 90] and ACE [67] for dependent and-
parallelism; and Andorra-I [33, 113] for or-parallelism together with dependent and-
parallelism. A complete and detailed presentation of such systems and the challenges
and problems in their implementation can be found in [49].

Intuitively, as each form of parallelism explores different points of non-determinism in
the operational semantics of the language, it should be possible to exploit all of them
simultaneously. The overall principle in the design of a parallel system that exploits
several forms of parallelism simultaneously is orthogonality [27]. In an orthogonal
design, each form of parallelism should be exploited without affecting the exploitation
of the other. However, no efficient parallel system has been built yet that achieves
this, because practical experience has shown that this orthogonality is not so easily
translatable to the implementation level. A system extracting maximum parallelism
from logic programs while achieving the best possible performance is the ultimate goal
of researchers in parallel logic programming.

2.2.1 Or-Parallelism

Of the forms of parallelism available in logic programs, or-parallelism is arguably one
of the most successful. Intuitively, in a first step, or-parallelism seems easier and more
productive to exploit implicitly than and-parallelism. As referred by Lusk et al. [62]
the main advantages of exploiting or-parallelism are:

Generality. It is relatively straightforward to exploit or-parallelism without restrict­
ing the power of the logic programming language. In particular, or-parallelism
can profit from Prolog's adequacy to generate all answers to a query.

Simplicity. Or-parallelism can be exploited without requiring any extra programmer
annotation or any complex compile-time analysis.

Closeness to Prolog. Implementation technology for Prolog sequential execution
can be easily extended to cope with or-parallelism. This means that one can
easily preserve the language semantics and take full advantage of existing imple­
mentation technology to achieve high performance for a single worker.

42 CHAPTER 2. LOGIC PROGRAMMING, PARALLELISM AND TABLING

Granularity. Or-parallelism offers good potential to be exploited in Prolog programs.
For a large class of Prolog programs, the grain size of an or-parallel computation,
that is, the potential amount of or-parallel work that can be performed without
interaction with other pieces of work proceeding in parallel, is coarse grain [100,
56].

Applications. Or-parallelism arises in a wide range of applications, namely for ap­
plications in the general area of Artificial Intelligence involving detection of all
answers or large searches, whether it be exercising the rules of an expert system,
proving a theorem, parsing a natural language sentence, or answering a database
query.

These are arguably the main reasons why most of the research towards implicit parallel
Prolog systems starts from or-parallelism. The issues raised in attempting to exploit
several forms of parallelism are sufficiently complex that most research efforts are
focusing primarily on one single form. The least complexity of or-parallelism makes
its implementation more attractive as a first step.

Intuitively, or-parallelism seems easy to implement as the various alternative branches
of the search tree are independent of each other, therefore requiring minimum syn­
chronization between them. However, practice has shown that implementation of
or-parallelism is not an easy task. Two major problems must be addressed when
exploiting or-parallelism: (i) multiple binding representation and (ii) work scheduling.

Multiple Binding Representation

The multiple binding representation is a crucial problem for the efficiency of an or-
parallel system. The concurrent execution of alternative branches of the search tree
can result in several conflicting bindings for shared variables. The environments of
alternative branches have to be organized in such a way that conflicting bindings can
easily be discernible. A binding of a variable is said to be conditional if the variable
was created before the last choice point, otherwise it is said unconditional The main
problem in the management of multiple environments is that of efficiently representing
and accessing conditional bindings, since unconditional bindings can be treated as in
normal sequential execution.

2.2. PARALLELISM IN LOGIC PROGRAMS 43

Essentially, the problem of multiple environment management is solved by devising a
mechanism where each branch has some private area where it stores its conditional
bindings. A number of approaches have been proposed to tackle this problem [110, 50].
However, each approach has associated costs that are incurred at the time of node3

creation, at the time of variable access, at the time of variable binding, or at the time
of environment switching to start executing a new branch. Gupta and Jayaraman [50]
claim that, for an ideal or-parallel system, the cost of all these operations should
be constant time. The term constant time is used to mean that the time for these
operations is independent of the number of nodes in the or-parallel search tree, as
well as the number of goals and the size of terms that appear in goals [48]. However,
Gupta and Jayaraman [50] conjectured that it is impossible to executed all operations
in constant time because the cost of at least one of this operations will increase by a
non-constant overhead. More recently, this intuitive result has been formally proved
to hold by Ranjan et al. [75].

Work Scheduling

Even though the cost of managing multiple environments cannot be completely avoided,
it may be minimized by the or-parallel system if it is able to divide efficiently the
available work during execution. The system component responsible for finding and
distributing parallel work to available workers is known as the scheduler. Work
scheduling is a complex problem because of the dynamic nature of work in or-parallel
systems, as in fact, unexploited branches arise irregularly. To efficiently deal with this
irregularity, careful scheduling strategies are required. Several different strategies have
been proposed to tackle this problem [16, 5, 12, 94, 93].

Two major policies are known to dispatch work for or-parallel execution: (i) topmost
and (ii) bottommost. In the topmost policy, when an idle worker asks for work, only
a restricted number of nodes with available work is made public4. The nodes are made
public in sequence, starting from the root node, and the number of nodes is selected
according to the scheduler's strategy. The topmost policy leads to bigger private
regions of the search tree, which intuitively one would expect to correspond to an

3A node is the abstract notion that is implemented at the engine level as a choice point.
4A node is called public when it is shared by several workers. Otherwise, when belonging to an

unique worker, it is called private.

44 CHAPTER 2. LOGIC PROGRAMMING, PARALLELISM AND TABLING

increase in the granularity of an or-parallel computation. In contrast, the bottommost
policy turns public the whole private region of a worker when it shares work. This
maximizes the amount of shared work and possibly avoids that the requesting worker
runs out of work too early and therefore invokes the scheduler too often. Practice
showed that, for shared memory parallel systems, bottommost is the best policy
to dispatch work for or-parallel execution and thus achieve higher granularity of or-
computations.

A major problem for scheduling is the presence of pruning operators like the cut
predicate. When a cut predicate is executed, all alternatives to the right of the cut
are pruned, therefore never being executed in a sequential system. However, in a
parallel system, the work corresponding to these alternatives can be early picked for
parallel execution, therefore resulting in wasted computational effort when pruning
takes place. This form of work is known as speculative work. Giving higher scheduling
priority to work on the left part of the search tree is a way of reducing the probability
of further pruning. An advanced scheduler must be able to reduce to a minimum the
speculative computations and at the same time maintain the granularity of the work
scheduled for execution [8, 13, 94]. The speculative work problem is discussed in detail
in Chapter 7.

2.2.2 Or-Parallel Execution Models

A number of execution models have been proposed in the literature towards exploiting
or-parallelism (a detailed analysis of about 20 models can be found in [50]). These mod­
els mainly differ in the mechanism employed for solving the problem of environment
representation. Arguably, the two most successful ones are environment copying [6, 5],
as implemented in the Muse system, and binding arrays [112, 111], as implemented in
the Aurora system.

In the environment copying model each worker maintains its own copy of the envi­
ronment in which it can write without causing binding conflicts. In this model even
unconditional bindings are not shared. When a variable is bound, the binding is stored
in the private environment of the worker doing the binding.

When an idle worker picks work from another worker, it copies all the stacks from
the sharing worker. Copying of stacks is made efficient through the technique of

2.2. PARALLELISM IN LOGIC PROGRAMS 45

incremental copying. The idea of incremental copying is based on the fact that the
idle worker could have already traversed a part of the search tree that is common to
the sharing worker, and thus it does not need to copy this part of stacks. Furthermore,
copying of stacks is done from the virtual memory addresses of the sharing worker to
exactly the same virtual memory addresses of the idle worker, which therefore avoids
potential reallocation of address values.

As a result of copying, each worker can carry out execution exactly like a sequential
system, requiring very little synchronization with other workers. Synchronization
between workers is achieved through a single auxiliary data structure associated with
the choice points. In section 3.1 we analyze in detail the environment copying approach
to or-parallelism, including its implementation.

On the other hand, in the binding arrays model each worker maintains a private
array data structure, called the binding array, where it stores its conditional bindings.
Each variable along a branch is assigned to an unique number that identifies its offset
entry in the binding array. The numbering of variables is done so that it forms a
strict increasing sequence. This is achieved by maintaining a private counter. New
variables are always marked with the current value of the counter. Next, the counter is
incremented. The counter is saved at every choice point so that whenever a worker gets
an alternative branch it can get a copy of the counter and continue its own numbering.
Bindings for a variable are conditional when the variable's number is smaller than the
counter stored in the current choice point.

Conditional bindings are stored in the private binding array of the worker doing the
binding, at the offset location given by the offset value of that conditional variable. In
addition, the conditional binding together with the address of the conditional variable
are stored in a global binding tree, that is, the WAM's trail stack. This global binding
tree is then used to ensure consistency when a worker switches from one branch to
another, as in such cases, the switching worker has to update its binding array to
reflect the bindings of the new branch.

Both models allow constant-time cost for node creation, variable access and for variable
binding, but induce non-constant time cost for environment switching.

The success of these models is partly due to the fact that their corresponding systems
do support sequential Prolog semantics. A parallel system is said to support sequential

46 CHAPTER 2. LOGIC PROGRAMMING, PARALLELISM AND TABLING

Prolog semantics when it achieves the same effect of sequential execution and supports
all the additional features not found within pure Horn Clause Logic [21] (refer to the
meta-logical, extra-logical and other predicates of subsection 2.1.2). The advantage of
such an approach is that all existing Prolog programs can be taken and executed in
parallel without any modifications.

Arguably, copying is the most efficient way to maintain or-parallel environments.
Most modern parallel logic programming systems, including SICStus Prolog [18],
ECLiPSe [107], and YAP [31] use copying as a solution to the multiple bindings
problem. Copying was made popular by the Muse or-parallel system, a system de­
rived from an early release of SICStus Prolog. Muse showed excellent performance
results [8, 9, 7, 30, 26, 32] and in contrast to other approaches, it also showed low
overhead over the corresponding sequential system. On the other hand, copying has
a few drawbacks. First, it can be expensive to exploit more than just or-parallelism
with copying, as the efficiency of copying largely depends on copying large contiguous
blocks of memory, which is difficult to guarantee in the presence of and-parallelism [51].
A second issue is that copying makes it more expensive to suspend branches during
execution, which can be a problem when implementing cuts and side-effects, although
Ali and Karlsson [8] proposed solutions to efficiently solve this problem.

2.3 Tabling for Logic P rog rams

Prolog execution is based on SLD resolution for Horn clauses. This strategy allows
efficient implementation, but suffers from fundamental limitations, such as in dealing
with infinite loops and redundant subcomputations. These limitations make Prolog
unsuitable to important applications such as, for example, Deductive Databases. The
limitations of SLD resolution are well known, and extensive efforts have been made
to remedy them. On approach is to use resolution strategies similar to SLD, but
that can avoid redundant computations by remembering subcomputations and reusing
their results in order to respond to later requests. This process of remembering and
reuse has been widely called tabling, tabulation or memoing [65]. Tabling methods
have been proposed from a number of different starting points and given a number
of different names: OLDT [103], SLD-AL [105], Extension Tables [37], and Backchain
Iteration [106] are the better known. The tabling concept also forms the basis of

2.3. TABLING FOR LOGIC PROGRAMS 47

a transformation used with bottom-up evaluation to compute answers for deductive
database queries, that is known by the generic name of magic [14, 73].

Another major research direction followed during the past years in order to increase the
expressiveness of logic programming, was concerned with the introduction of negation
on the body subgoals of clauses. Although the inclusion of negation seems simple, the
definition of the declarative semantics of logic programs including negative subgoals
is a major problem [10]. One of the most popular resolution methods that includes
negation is SLDNF [22], an extension to SLD resolution that supports negation as finite
failure. However, this method has not proved to be sufficient for important areas of
application, such as Deductive Databases, Non-Monotonic Reasoning and models for
executable specifications, such as Model Checking.

A strong drawback of SLDNF results from its inadequacy in handling positive and
negative loops. Because tabling methods already address the handling of positive
loops, it is natural, then, to extend them to handle negative loops and thereby support
frameworks such as the well-founded semantics [43]. The well-founded semantics
provides a natural and robust declarative meaning to all logic programs with negation.
However, practical use of the well-founded semantics depends upon the implementation
of an effective and efficient evaluation procedure.

Although various procedural semantics have been proposed for the well-founded se­
mantics, one such proposal that has been gaining in popularity is Linear resolution with
Selection function for General logic programs (SLG resolution) [20]. SLG resolution is
a tabling based method of resolution that has polynomial time data complexity and is
sound and search space complete for all non-floundering queries under the well-founded
semantics. SLG resolution can thus reduce the search space for logic programs and in
fact it has been proven that it can avoid looping and thus terminate for all programs
with the bounded-term-size property [20]. SLG's popularity is largely due to the work
done on the XSB system [88, 76], and namely on the SLG-WAM [86, 89, 87], the
original engine of the XSB system.

Next, we further motivate the need for tabling (or memoing) in a logic programming
framework, and then we briefly review the underlying features of SLG resolution and
SLG-WAM. At the end, we overview other related implementations of tabling.

48 CHAPTER 2. LOGIC PROGRAMMING, PARALLELISM AND TABLING

2.3.1 Examples of Tabled Evaluation

The basic idea behind tabling is straightforward: programs are evaluated by storing
newly found answers of current subgoals in a proper data space, called the table space.
The method then uses this table to verify for repeated calls to subgoals. Whenever such
a repeated subgoal is found, the subgoal's answers are recalled from the table instead
of being re-evaluated against the program clauses. In the following, we illustrate the
advantage of tabling through an example.

Consider the Prolog program of Figure 2.2 that defines a small directed graph (rep­
resented by the arc/2 predicate) with a relation of reachability (given by the path/2
predicate), and the query goal ?- path(a,Z).

f \
path(X,Z) :- path(X,Y) , path(Y,Z)
path(X,Z) :- arc(X,Z) .

a r c (a , b) .
a r c (b , c) .

?- p a t h (a , Z) .

Figure 2.2: An infinite SLD evaluation.

Applying SLD evaluation to solve the given query goal will lead to an infinite SLD tree
due to the existence of positive loops. Regard, for example, what happens when the
leftmost branch of the corresponding search tree is exploited. In contrast, if tabling
is applied then the search tree is finite, hence termination is ensured. Figure 2.3
illustrates the evaluation sequence for the same program and query goal using tabling.

The figure depicts the evaluation sequence for the given query goal. At the top,

2.3. TABLING FOR LOGIC PROGRAMS 49

c
: - table path/2.

\

path(X,Z) :- path(X,Y), path(Y,Z)
path(X,Z) :- arc(X,Z) .

arc(a,b) .
arc (b,c) .

?- path(a,Z) .

c X c
subgoal answers

X c

0. path(a,Z) 3. Z = b
10. Z = c

X c

5. path(b,Z) 9. Z = c

X c

11. path(c,Z)

X c X

Tabled evaluation Co. path(a,Z) J

c 1. path(a,Y), path(Y,Z) ^)

i s . path(b,Z) J 18. path(c,Z

2. arc(a.Z)

3. Z = b 4. fail

10. Z = c 19. fail

Mj7path(b,Z) J

i s . path(b,Y), path(Y,Z))

ill. path(c,Z)J

7. arc(b,Z)

). fail 9. Z = c

17. fail

(ll. path(cZ)^

12. path(c,Y) , path :h(Y,zA

16. fail

13. arc(c,Z)

14. fail 15. fail

Figure 2.3: A finite tabled evaluation.

the figure illustrates the program code and the appearance of the table space at the
end of the evaluation. Declaration : - t ab le path/2 in the program code indicates
that predicate path/2 should be tabled, therefore tabling will be applied to solve its
subgoals calls. The bottom block shows the resulting forest of trees for the three tabled
subgoal calls. The numbering of nodes denote the evaluation sequence.

Whenever a tabled subgoal is first called, a new tree is added to the forest of trees and

50 CHAPTER 2. LOGIC PROGRAMMING, PARALLELISM AND TABLING

a new entry is added to the table space. On the other hand, variant calls5 to tabled
subgoals start, instead, by consuming the answers already stored in the table space for
the corresponding subgoal. When all currently available answers are consumed, the
execution of the variant subgoal is suspended until new answers arise. In Figure 2.3,
the former situation is depicted by white oval boxes surrounding the subgoal calls,
while the latter is depicted by gray oval boxes.

Let us examine the evaluation in more detail. The evaluation begins by creating a
new tree rooted by path(a,Z) and by inserting a new entry in the table space for
it. Next, path (a, Z) is first resolved against the first clause for path/2, creating node
I. Execution proceeds with path (a, Y) and in principle the same procedure should
be applied again. However, since path (a, Y) is a variant of the initially encountered
subgoal path(a,Z), no new tree is created, and instead, the execution of node 1
suspends. This happens because currently the subgoal has no answers stored in the
table space. Therefore, the only resolution applicable is to node 0 where the second
path/2 clause is tried, thus leading to a first answer for path(a,Z). After exhausting
all alternatives in node 2, the computation is resumed at node 1 with the newly found
answer, which in turn leads to a first call to subgoal path(b,Z). The evaluation creates
a new tree rooted by path(b,Z), inserts a new entry in the table space for it, and
proceeds as for the latter case. The process continues, giving rise to one more tree,
for subgoal path(c,Z), and to more answers, one for path (a, Z) and the other for
path(b.Z).

By avoiding the recomputation of p(a,Y), p(b,Y) and p(c,Y) in nodes 1, 5 and
II , respectively, tabling ensures the termination of the given query. Besides avoiding
infinite loops, tabling also reduces the number of steps we need to perform and may
reduce the complexity of a program. This later property is better clarified next.
Consider, for example, the well-known Fibonacci program as defined in Figure 2.4.

The figure presents, by using a tree structure, the number of calls to the f ib /2
predicate given the query ?- f ib(5,Z) , for the cases where SLD or tabled evaluation
are applied. As predicate f ib /2 is declared as tabled, each different subgoal call is
only computed once, as for repeated calls, the corresponding answer is already stored
in the table space. To compute fib(n) for some integer n, SLD will search a tree whose
size is exponential in n. Because tabling remembers subcomputations, the number of

5A call is a variant of another call if the two calls are the same up to variable renaming.

c \
:- t a b l e f i b / 2 .

2.3. TABLING FOR LOGIC PROGRAMS 51

f i b (0 , l) .
f i b (l , l) .
f i b (N , Z) : - P i s N - 1 ,

Q i s N - 2 ,
f i b (P , X) ,
£ i b (Q , Y) ,
Z i s X + Y.

?- f i b (5 , Z) .

c
SLD evaluation

fib(5)
V

fib(4) fib(3) 7\
fib(3) fib (2) fib(2) fib(l)

/ \
fib(2) fib(l)

/ \
fib(l) fib{0) fib(l) fib(O)

fib(l) fib(O) ^

/
Tabled

evaluation
fib(5) \

fib(4) fib(3)

fi
/

/
b(3)

\
fib(2)

/
fib(2)

\
fib(l)

fib(l) fib(O)

Figure 2.4: Fibonacci complexity for SLD and tabled evaluation,

resolution steps for this example is linear in n.

2.3.2 SLG Resolution for Definite Programs

Restricted to the class of definite programs, that is, to the class of programs not includ­
ing negation, SLG resolution reduces to SLD with tabling, and does not significantly
differ from the other tabling evaluation methods previously referred. Remember that
the aim of this thesis is to address the problem of or-parallel tabling, focusing on
traditional tabling, that is, tabling not extended to include negation.

In the following, we offer a brief review of SLG resolution for definite programs using
the simplified definitions from Sagonas and Swift [87]. For a more detailed discussion,
the reader is referred to Chen and Warren [20].

Definition 2.1 (SLG System) An SLG system is a forest of SLG trees, along
with an associated table. Root nodes of SLG trees are subgoals of tabled predicates.
Non-root nodes either have the form fail or

Answer ..Template : — Goal-List

52 CHAPTER 2. LOGIC PROGRAMMING, PARALLELISM AND TABLING

The Answer .Template is a positive literal, and Goal-List is a possibly empty sequence
of subgoals. The table is a set of ordered triples of the form

(Subgoal, Answer .Set, State)

where the first element is a subgoal, the second a set of positive literals, and the third
either the constant complete or incomplete. D

Definition 2.2 (SLG Evaluation) Given a tabled program P, an SLG evaluation 6
for a subgoal G of a tabled predicate is a sequence of systems <S0, Si, ..., Sn such that:

• S0 is the forest consisting of a single SLG tree rooted by G and the table
{(G, 0, incomplete)};

• for each finite ordinal k, Sk+i is obtained from Sk by an application of one of
the operations in definition 2.3.

If no operation is applicable to Sn, Sn is called a final system of 9. D

In a SLG system, the nodes of an SLG tree are often described by its status. The root
node of an SLG tree has status generator. Non-root nodes may have status answer,
if its GoaLList is empty; interior, if its selected subgoal is non-tabled; or consumer if
its selected subgoal is tabled. Using this terminology, the SLG operations for definite
programs are defined as follows.

Definition 2.3 (SLG Operations for Definite Programs) Given a tabled pro­
gram P and a system Sk of an SLG evaluation 9, Sk+i may be produced by one
of the following operations.

New Tabled Subgoal Call. Given a consumer node J\f with selected subgoal S,
where S is not present in the table of Sk, create a new SLG tree with root S and
add the entry (S, 0, incomplete) to the table.

Program Clause Resolution. Let J\f be a node in Sk that is either a generator node
S or an interior node of the form

Answer -Template : — S, Goals.

2.3. TABLING FOR LOGIC PROGRAMS 53

Let
C = Head : — Body

be a program clause such that Head unifies with S with substitution 9 and
assume that C has not been used for resolution at node J\f. Then

• if A/" is a generator node, produce a child of JV

(S : - Body)6.

• if Af is an interior node, produce a child of J\f

(Answer-Template : — Body, Goals)9.

Answer Resolution. Let A/" be a consumer node

Answer-Template : — S, Goals.

Let A be an answer for S in Sk and assume that A has not been used for
resolution against Af. Then produce a child of J\f

(Answer.Template : — Goals)9.

where 9 is the substitution unifying S and A.

New Answer. Let
A : -

be a node in a tree rooted by a subgoal S, such that A is not an answer in the
table entry for S in Sk- Then add A to the set of answers for S in the table.

Completion. If C is a set of subgoals that is completely evaluated (according to
definition 2.5), remove all trees whose root is a subgoal in C, and change the
state of all table entries for subgoals in C from incomplete to complete. D

Definition 2.4 (Subgoal Dependency Graph) Let Sk be an SLG system and T
its SLG forest. We say that a tabled subgoal S directly depends on a tabled subgoal
S' if and only if the tree rooted by S contains a consumer node whose selected subgoal
is S'.

54 CHAPTER 2. LOGIC PROGRAMMING, PARALLELISM AND TABLING

The Subgoal Dependency Graph of Sk

SDG(Sk) = (V, E)

is a directed graph in which V is the set of root goals for trees in T and (S, S') belongs
to E if and only if subgoal S directly depends on subgoal S'. D

Since the subgoal dependency graph of a given system is a directed graph, it can be
partitioned into Strongly Connected Components, or SCCs. As an artifact of the SLG-
WAM, it can happen that the stack segments for a SCC S remain within the stack
segments for another SCC S'. In such cases, S cannot be recovered in advance when
completed, and thus, its recovering is delayed until S' also completes. To approximate
SCCs in SLG-WAM's stack-based implementation of SLG resolution, Sagonas [86]
denotes a set of SCCs that can be recovered together as an Approximate SCC or
ASCC. An ASCC is termed independent if it depends on no other ASCC which it
does not contain. This terminology leads to the following operational definition of
when a set of subgoals has been completely evaluated.

Definition 2.5 (Completely Evaluated Set of Subgoals) Given an SLG system
Sk, a set C of subgoals is completely evaluated if and only if either of the following
conditions is satisfied:

1. C is an independent ASCC of SDG(Sk) and for each subgoal S in C all applicable
SLG operations other than Completion have been performed for nodes in the
tree rooted by S according to definition 2.3.

2. C — {S} and S contains an answer identical to itself in the table entry for S.

We say that a subgoal S is completely evaluated if and only if C is a completely
evaluated set of subgoals and 5" belongs to C D

For simplicity, throughout the thesis we will not distinguish between SCCs and ASCCs
and we will use the SCC notation to refer the approximation resulting from the
stack organization. The correct distinction between both notations is necessary when
determining negative loops among subgoals in programs with negation, which is not
our case.

2.3. TABLING FOR LOGIC PROGRAMS 55

2.3.3 SLG-WAM: an Abstract Machine for SLG Resolution

SLG resolution has been firstly implemented in the XSB system by extending the
WAM into the SLG-WAM, an abstract machine designed to fully integrate Prolog
SLD code and tabling SLG code with minimal overhead. The SLG-WAM extends
the WAM layout both to include a representation of tables, and to operate over a
forest of SLG trees rather than over a single SLD tree. Performance evaluation of the
SLG-WAM, as reported in [88, 99], showed that it can compute in-memory recursive
queries an order of magnitude faster than current deductive databases systems.

The data structures, data areas, instructions set, and algorithms used by the SLG-
WAM for definite programs are described in [98], while extensions to handle normal
logic programs according to the well-founded semantics are discussed in [86, 89, 87].
Here, we briefly summarize the main extensions made by the SLG-WAM to the WAM
in order to support SLG resolution for definite programs.

1. The SLG-WAM includes a proper space for tables, and the table access methods
are tightly integrated with WAM data structures.

2. The SLG-WAM is able to suspend computations when it encounters consumer
subgoals and to resume them at a later point to consume newly found answers.
The need for suspending and resuming requires efficient mechanisms to restore an
environment to the same computational state as it was before being suspended.

3. Since a computation can be resumed in suspended consumer nodes, space for
these nodes cannot be reclaimed upon backtracking, but only when the SCC
to which they belong is completed. A mechanism was developed to detect
completion of SCCs in order to allow early space reclamation.

4. The decision of applying a certain SLG operation to continue an evaluation gives
rise to possible alternative scheduling strategies. Such alternatives can influence
differently the architecture and performance of the abstract machine. Originally,
SLG-WAM had a simple scheduling mechanism, named single stack scheduling,
which formed the basis of the XSB system as described in [98]. A detailed
description of the operational semantics of single stack scheduling can be found
in [97]. Meanwhile, practice showed that single stack scheduling was expensive
in terms of trailing and choice point creation, and thus, Freire and colleagues

56 CHAPTER 2. LOGIC PROGRAMMING, PARALLELISM AND TABLING

proposed two more sophisticated scheduling strategies, named batched scheduling
and local scheduling [40], to overcome these problems. Since version 1.5, XSB
had used batched scheduling as the default strategy, although the last version
of XSB (version 2.4 released in July 2001) has adopted local scheduling as the
default. Another scheduling strategy that has been evaluated in SLG-WAM was
breadth-first scheduling [41]. Breadth-first scheduling was proposed by Freire [38]
to address the inability of resolution-based systems to deal with applications that
require massive amounts of data residing in external databases.

5. The preceding features are implemented by using WAM-like instructions.

We return to these topics in section 4.1 where a complete description of the funda­
mental aspects underlying the SLG-WAM abstract machine is given.

2.3.4 Other Related Implementations

More recently, other related mechanisms for tabling have been implemented. Ramesh
and Chen [74] implemented a technique based on program transformation to incor­
porate tabled evaluation into existing Prolog systems. Their approach uses the C
language interface, available in most Prolog systems, to implement external tabling
primitives that provide direct control over the search strategies for a transformed
program. A tabled logic program is transformed to include the tabling primitives
through source level transformations, and only the resulting transformed program is
compiled. The mechanism is independent from the Prolog's engine which makes it
easily portable to any Prolog system with a C language interface.

Demoen and Sagonas proposed a copying approach to deal with tabled evaluations
and implemented two different models, the CAT [35] and the CHAT [36]. The main
idea of the CAT implementation is that it replaces SLG-WAM's freezing of the stacks
by copying the state of suspended computations to a proper separate stack area.
The CHAT implementation improves the CAT design by combining ideas from the
SLG-WAM with those from the CAT. It avoids copying all the execution stacks that
represent the state of a suspended computation by introducing a technique for freezing
stacks without using freeze registers. We discuss CAT and CHAT in more detail in
subsection 5.2.4.

2.4. CHAPTER SUMMARY 57

Zhoueí al. [114] and Guo and Gupta [47] implemented tabling mechanisms that work
on a single SLD tree without requiring suspensions/resumptions of computations and
mechanisms to preserve the state of suspended computations. Zhou et al. implements
a linear tabling mechanism whose main idea is to let variant calls execute from the
remaining clauses of the former first call. The main idea is as follows: when there are
answers available in the table, the call consumes the answers; otherwise, it uses the
predicate clauses to produce answers. Meanwhile, if a call that is a variant of some
former call occurs, it takes the remaining clauses from the former call and tries to
produce new answers by using them. The variant call is then repeatedly re-executed,
until all the available answers and clauses have been exhausted, that is, until a fixpoint
is reached. The Guo and Gupta approach [47] is similar. It is based on dynamic
reordering of alternatives with variant calls and it uses the alternatives leading to
variant calls to repeatedly recompute them until a fixpoint is reached. This approach
is discussed in more detail in subsection 5.1.

None of these approaches showed to outperform SLG-WAM performance. The only
candidate that actually competes against SLG-WAM is CHAT [36]. It showed com­
parable (and for some programs better) execution time performance to those of SLG-
WAM and lower and more controlled memory consumption than SLG-WAM. However,
as will be discussed in subsection 5.2.4 we believe that, considering the further inte­
gration with or-parallelism, SLG-WAM is still the better choice for sequential tabling.

2.4 Chapter Summary

In order to make this thesis as self-contained as possible, we presented in this chapter
a short survey on logic programming, parallel logic programming and tabling.

We gave a brief description of logic programs, the Prolog language and its implemen­
tation in the WAM. We discussed parallelism and focused on or-parallelism. We gave
emphasis to the problems that must be addressed when exploiting or-parallelism and
introduced the environment copying and binding arrays proposals to solve those prob­
lems. We motivated for the advantages of tabling in a logic programming framework,
and briefly reviewed the underlying features of SLG resolution and SLG-WAM. At the
end, we presented other related implementations of tabling.

58 CHAPTER 2. LOGIC PROGRAMMING, PARALLELISM AND TABLING

Chapter 3

YapOr: The Or-Parallel Engine

This chapter describes the design and implementation of the YapOr engine. YapOr is
an or-parallel Prolog system that extends the Yap Prolog system to support implicit
or-parallelism in Prolog programs. YapOr is based on the environment copying model,
as first implemented in the Muse system [6]. The YapOr engine is the basis for the
or-parallel component of our combined or-parallel tabling engine.

We start by introducing in further detail the general concepts of the environment copy­
ing model, and then we describe the major implementation issues that we addressed
in order to extend the Yap Prolog system to support the model.

3.1 The Environment Copying Model

The environment copying model is based on the multi-sequential approach [2, 110].
In this approach, a set of workers are expected to spend most of their computational
time performing reductions as sequential engines. When a worker fully exploits its set
of available alternatives, it starts looking for unexploited work from fellow workers.
Which workers it asks for work and which work it receives is up to the scheduler to
decide.

59

60 CHAPTER 3. YAPOR: THE OR-PARALLEL ENGINE

3.1.1 Basic Execution Model

In more detail, a set of workers perform parallel execution of a program. Initially,
all but one workers are idle, that is, looking for their first work assignment. A single
worker, say V, starts executing the initial query as a normal Prolog engine. Whenever
V executes a goal that matches several clauses, it creates a private choice point in its
local stack to save the state of the computation at predicate entry. This choice point
marks the presence of potential work to be performed in parallel.

As soon as an idle worker finds that there is available work in the system, it will
request that work directly from the worker owning it. Consider, for example, that
worker Q requests work from worker V. If V has unexploited work, it will share its
private choice points with Q. To do so, worker V must turn the choice points public
first. In Muse this operation is implemented by allocating special data structures,
named or-frames, in a shared space to permit synchronized access to the newly shared
choice points. After concluding this operation, worker V will handle Q a pointer to
the bottom shared choice point.

The next step is taken by worker Q. In order for Q to take a new task, it must copy
the computation state from worker V up to the bottom shared choice point. After
copying, worker Q must synchronize its status with the newly copied computation
state. This is done first by simulating a failure to the bottom choice point, and then
by backtracking to the next available alternative within that branch. Worker Q will
then start its execution as a normal sequential Prolog engine would.

At some point, a worker will fully explore its subtree and will become idle again. At
this point, it will return into the scheduler loop and start looking for busy1 workers
with available work in order to request unexploited work from them. It thus enters
the behavior just described for Q. Eventually, the execution tree will be fully explored
and execution will terminate with all workers idle.

1A worker is said to be busy when it is exploiting alternatives. A busy worker is a potential source
of unexploited alternatives.

3.1. THE ENVIRONMENT COPYING MODEL 61

3.1.2 Incremental Copying

The sharing work operation poses a major overhead to the system as it involves copying

the full execution stacks between workers. Hence, an incremental copying strategy [6]

has been devised to minimize this source of overhead.

The main goal of sharing work is to position the workers involved in the operation at
the same node of the search tree, leaving them with the same computational state.
Incremental copying achieves this goal by allowing the receiving worker to keep the
part of its state that is consistent with that of the giving worker. Only the differences
between both are copied.

This strategy can be better understood through Figures 3.1 and 3.2. Suppose that
worker Q does not find any available work in its branch2 (nodes A/"i, A/á and A/5),
and that there is a worker V with unexploited alternatives (in nodes A4 and A/4). Q
asks V for sharing and backtracks up to the lowest node (A/2) that is common to V,
therefore becoming partially consistent with part of V.

Public Nodes

Node without
alternatives
Node with

alternatives

Private Node

Figure 3.1: Backtracking to the bottom common node.

If worker V decides to share its private nodes (A/3 and A/4) with Q, then worker Q
only has to copy the stacks differences between both. These differences are calculated
through the register information stored in the common choice point found by Q and

2When we say a worker branch, we mean the current set of nodes of that worker.

62 CHAPTER 3. YAPOR: THE OR-PARALLEL ENGINE

through the top registers of the local, heap and trail stacks of V. In Figure 3.2 the
stack segments representing the differences to be copied are colored gray. Note that to
fully synchronize the computational state between the two workers, worker Q further
needs to install from V the conditional bindings made to variables belonging to the
maintained segments (this is the case of binding VAL 1 made to variable VAR l). The
references to such variables are obtained through consulting the trail entries of the
copied trail segment.

VAR 1

Worker P Local Space

Local Stack Heap Stack Trail Stack

Nl
Choice
Point

N2
Choice
Point

Stack
segments

to be copied

Common Stacks
with Q

VAR 1 <- VAL 1

VAR 2 <- VAL 2

Incremental
Copying

Figure 3.2: Incremental Copying.

3.2 The Muse Approach for Scheduling Work

We can divide the execution time of a worker in two modes: scheduling mode and
engine mode. A worker enters in scheduling mode whenever it runs out of work and
starts searching for available work. As soon as it gets a new piece of work, it enters in
engine mode. In this mode, a worker runs like a standard Prolog engine.

The scheduler is the system component that is responsible for distributing the available

3.2. THE MUSE APPROACH FOR SCHEDULING WORK 63

work between the various workers. The scheduler must arrange the workers in the
search tree in such a way that the total parallel execution time will be the least possible.
The scheduler must also maintain the correctness of sequential Prolog semantics. To
obtain best performance the scheduler must minimize the scheduling overheads present
in operations such as sharing nodes, copying segments of the stacks, backtracking,
restoring and undoing previous variable bindings.

3.2.1 Scheduler Strategies

Ali and Karlsson [5] proposed the following scheduler strategies for the Muse imple­
mentation:

• When a busy worker shares work, it must share all the private nodes it has at
that moment. This will maximize the amount of shared work and possibly avoid
that the requesting worker runs out of work too early.

• The scheduler should select the busy workers that are nearest to the idle worker,
and from these select the one that holds the highest work load. Being near
corresponds to the closest position in the search tree. The work load is a measure
of the amount of unexplored private alternatives. This strategy minimizes the
stacks parts to be copied and maximizes the amount of shared work.

• To guarantee the correctness of a sharing operation, it is necessary that the idle
worker is positioned at a node that belongs to the branch on which the busy
worker is working. To minimize overheads, the idle worker backtracks to the
bottommost common node before requesting work. This reduces the time spent
by the busy worker in the sharing operation.

• If at a certain point in time the scheduler does not find any available work in the
system, it moves the idle worker to a better position in the search tree, if some. A
better position corresponds to a position where the overheads of a future sharing
operation should be lower.

We can resume the scheduler algorithm as follows: when a worker runs out of work
it searches for the nearest unexploited alternative in its branch. If there is no such
alternative, it selects a busy worker with excess of work load to share work with,

64 CHAPTER 3. YAPOR: THE OR-PARALLEL ENGINE

according to the strategies above. If there is no such a worker, the idle worker tries to
move to a better position in the search tree.

3.2.2 Searching for Busy Workers

There are two alternative searches for busy workers in the execution tree: search within
the current subtree or search outside the current subtree3. Idle workers always start
to search within the current subtree, and only if they do not find any busy worker
there, will they search outside. The advantages of selecting a busy worker within
the current subtree instead of outside are mainly two. One is that the idle worker
can immediately make the sharing request, as its current node is already common to
the busy worker. This avoids backtracking in the tree and undoing variable bindings.
The second advantage is that the idle worker will maintain its relative position in
the search tree. This maximizes the portion of the stacks that are common to both
workers, as the current stacks of the idle worker are fully common with those of the
busy worker, which should minimize the stack segments to be copied. Regard that
this scheduling strategy corresponds to the bottommost policy of dispatching work for
or-parallel execution.

Figures 3.3 and 3.4 present different situations in order to better illustrate the scheduler
strategies to select busy workers positioned respectively within and outside the idle
worker current subtree. In these figures, Q represents the idle worker, V the busy
worker, and the different Qj's other idle workers.

The algorithm to select a busy worker within the current subtree of an idle worker
Q can be resumed as follows. Initially, the scheduler determines the set SB of busy
workers within the current subtree of Q. Then, it removes from SB each worker V
whose nearest idle worker in P's branch is not Q. This guarantees that SB remains
only with busy workers whose nearest idle worker is Q. Finally, from the remaining
workers in SB, the scheduler selects the one with the highest work load.

Applying this algorithm to the four situations presented in Figure 3.3, Q can request
work from V in all situations except (b). In situation (a) despite Q\ being in a deeper
position than Q, Qi is not in Vs branch, and thus Q is the nearest idle worker to

3When we say a worker subtree, we mean the subtree rooted by the current node of that worker.

3.2. THE MUSE APPROACH FOR SCHEDULING WORK 65

Q2

Q3

I l Q

r r
s>- 9-

(a) (b) (c) (d)
Q can request Q can not request Q can request Q can request
work from P work from P work from P work from P

Figure 3.3: Requesting work from workers within the current subtree.

V. However, this will stop being the case if Q\ backtracks to the previous node. We
allow Q to request work from V because in a more complex case it will be difficult to
predict what will be the behavior of the potentially idle workers in the same situation
as Qi. In situation (b), Q2 is closer to the busy worker V than Q, and thus, Q2 is the
one that should request work from V. In situation (c), Q is the nearest worker to V
and in situation (d), Q and Q4 are equally distant from V. Thus, both workers can
request work from V. As a worker can only answer a request at a time, the first one
making the request is the one that is served.

As mentioned before, an idle worker Q searches outside its current subtree only if it
cannot request work within. To select busy workers outside, the scheduler verifies first
if there are other idle workers positioned above4 in Q's branch. If this is the case, it
immediately aborts the search. This condition benefits the idle workers in upper nodes,
because they are closer to the busy workers positioned outside the current subtree of

4Throughout the thesis, it is assumed that root nodes are always the topmost nodes of the search
tree and that leaf nodes are always the bottommost. Therefore, and considering a node AÍ and a
node M positioned between M and the root node of the search tree, the following terminology can
be correctly used: M is above Aí (AÍ is below M); M is in a upper position than M (Aí is in a lower
position than M); or M is older than M (TV is younger than M).

66 CHAPTER 3. YAPOR: THE OR-PARALLEL ENGINE

Q, and hence they should be the ones requesting work.

When the previous condition fails, then the scheduler determines the set SB of busy
workers outside the current subtree of Q. Next, from SB it removes each worker V
that has idle workers in its branch. From the remaining workers in SB, the scheduler
selects the one with the highest work load.

(a) (b) (c)
Q can not request Q can not request Q can request

work from P work from P work from P

Figure 3.4: Requesting work from workers outside the current subtree.

Figure 3.4 presents three different situations when worker Q is searching for busy
workers outside its current subtree. It can request work from V only in situation
(c). In situation (a), Q has Qi above in its branch and in situation (b), Q2 is in
V's branch. In situation (c) none of the previous circumstances hold, and both idle
workers, Q and Q3, can request work from V.

3.2.3 Distributing Idle Workers

The third step of the main scheduler algorithm says that when the scheduler neither
finds unexplored alternatives nor busy workers, it tries to move the idle worker to
a better position in the search tree. This scheduling strategy aims to distribute the
idle workers in such a way as that the probability of finding, as soon as possible,

3.2. THE MUSE APPROACH FOR SCHEDULING WORK 67

busy workers with excess of work within the corresponding idle workers' subtrees is

substantially increased.

An idle worker Q moves to a better position in one of the following two cases: (i)
there are busy workers outside Q's subtree and Q is not within the subtree of any
other idle worker; or (ii) all workers within Q's subtree are idle. In the first situation,
Q backtracks until it reaches the first node that is above all the busy workers that
are not within the subtree of any other idle worker. In the second one, Q backtracks
until it reaches a node where there is at least one busy worker. Figure 3.5 shows an
example that illustrates this scheme. The left figure shows the initial workers' positions
and the right figure shows their positions after moving. From the two situations that
induce an idle worker to move to a better position, worker Qx fits the first one, Q2

the second, and Q3 none. Qx moves up because it is a topmost idle worker that has a
busy worker, V\, outside its subtree. Q2 moves up because there is no available work
within its subtree. On the other hand, Qz maintains its relative position because it
has Q\ idle above and Vj, busy below.

Q2

(a)
Initial situation

Ql

Q2

Q3

PI

P2

(b)
After moving

Figure 3.5: Scheduling strategies to move idle workers to better positions.

Our goal is for idle workers to move closest to busy workers so that sharing overheads
decrease. The first situation moves idle workers to cover all possible sources of work.
This is done by only moving up topmost idle workers, therefore preventing other idle

68 CHAPTER 3. YAPOR: THE OR-PARALLEL ENGINE

workers of losing their positions. The second situation releases idle workers from closed

work positions and moves them to parts of the tree that still have work.

3.3 Extending Yap to Support Or-Parallelism

The extensions required to implement support for or-parallelism in Yap can be divided
in three major areas: (i) those related to the environment copying model; (ii) those
related to the scheduling policy; and (iii) those related to scheduling support.

To implement environment copying major changes were required on the memory
organization and its management. Other extensions were also introduced to support
the process of sharing work. Regarding the scheduling policy, YapOr implements the
Muse approach described in the previous section. To support this approach, YapOr
introduces changes in choice point manipulation and in code compilation. Further, it
introduces new mechanisms to synchronize workers when exploiting shared branches
and to compute work load. We next describe those extensions.

3.3.1 Memory Organization

Following the original WAM definition [109], the Yap Prolog system includes four main
memory areas: code area, heap, local stack and trail. The local stack contains both
environment frames and choice points. Yap also includes an auxiliary area used to
support some internal operations.

The YapOr memory is divided into two major addressing spaces: the global space and
a collection of local spaces, as illustrated in Figure 3.6. The global space is further
divided in two major areas. One contains the code area inherited from Yap and the
other includes all the data structures necessary to support parallelism. Each local
space represents one system worker and it contains the four WAM execution stacks
inherited from Yap: heap, local, trail, and auxiliary stack. The relative position of the
memory areas presented in the figure does not necessary imply an identical memory
mapping implementation.

In order to efficiently meet the requirements of incremental copy, we follow the prin­
ciples used in Muse to map the set of memory local spaces. The starting worker, that

3.3. EXTENDING YAP TO SUPPORT OR-PARALLELISM 69

>bal
Code Area

ace
Parallel
Data Area

cal

Worker 0

cal
• • •

cal Worker i
ices • • •

Worker n

Figure 3.6: Memory organization in YapOr.

is workero, asks for shared memory in the system's initialization phase. Afterwards,
the remaining workers are created, through the use of the fork5 function [96], and
inherit the previously mapped addressing space. Then, each new worker rotates the
local spaces, in such a way that all workers will see their own spaces at the same
virtual memory addresses. Figure 3.7 helps to understand this remapping scheme.
It considers 3 workers and it illustrates the resulting mapping address view of each
worker after rotating the inherited local spaces. It can been seen that each worker
accesses its own local space starting from the Addrg virtual memory address.

This mapping scheme allows for efficient memory copying operations during incre­
mental copying. To copy a stack segment between two workers, we simply copy
directly from one worker space to the relative virtual memory address in the other
worker's space. Suppose, for instance, that worker^ wants to copy to workeri stacks
a segment of its stacks that starts at address Addrx (from worker^s view). Using
the mappings from Figure 3.7 the target memory address for this copying operation is
Addrx + (Addr2 — Addrg) (from worker-} s view). The major advantage of this scheme
is that no reallocation of address values in the copied segments is necessary.

In YapOr, this memory scheme is implemented through two different and alterna­
tive UNIX shared memory management functionalities, the mmap and shmget func­
tions [96]. These functions let us map shared memory segments at given addresses,

5 The fork function belongs to the UNIX libraries and it allows to create child processes equal to
the caller parent.

70 CHAPTER 3. YAPOR: THE OR-PARALLEL ENGINE

Forking Worker 1

r x
Worker 0

Mapping Address View

| Work - Addr 0

Addr ±

Addr 2

Worker 1

Addr 0

Addr ±

Addr 2 Worker 2

Addr 0

Addr ±

Addr 2

Addr 0

Addr ±

Addr 2

Forking Worker 2

Worker 1
Mapping Address View

l
:
#;'H'v,

: ■;■;■??

Worker 2

Worker 0

Addr,

Addr-

Addr.

Worker 2
Mapping Address View

Morfcei :

Worker 0

Worker 1

Addr,

Addr.

Addr.

Figure 3.7: Remapping the local spaces.

and unmap and remap them later at new addresses.

3.3.2 Choice Points and Or-Frames

The bottommost policy of dispatching work for parallel execution requires that a
busy worker releases all of its current private choice points when sharing work. This
maximizes the amount of shared work with the requesting worker and induces coarse
grain tasks which has proven to be very successful within environment copying.

In order to correctly exploit a shared branch, we need to synchronize workers in
such a way that we avoid executing twice the same alternative, as different workers
referencing a choice point might pick the same alternative for work. To do so, the
worker making a choice point public adds an or-frame data structure to the shared
space per public choice point. The or-frames form a tree that represents the public
search tree. Figure 3.8 illustrates how a private choice point is made public.

3.3. EXTENDING YAP TO SUPPORT OR-PARALLELISM 71

Choice Point
CP ALT ALT

CPCP CP

CPTR TR

CP_H H

C P B B

CPENV ENV

CP ORFR

CPLUB LI

Sharing

c
Choice P o i n t

OrFr l o c k

O r F r _ a l t

OrFr members

O r F r n o d e

O r F r n e a r e s t

OrFr n e x t

l i v e n o d e

iiiilliililllSllililil
CP

g e t w o r k

O r - F r a m e

OrFr l o c k

O r F r _ a l t

OrFr members

O r F r n o d e

O r F r n e a r e s t

OrFr n e x t

l i v e n o d e

TR U n l o c k e d OrFr l o c k

O r F r _ a l t

OrFr members

O r F r n o d e

O r F r n e a r e s t

OrFr n e x t

l i v e n o d e

H ALT

OrFr l o c k

O r F r _ a l t

OrFr members

O r F r n o d e

O r F r n e a r e s t

OrFr n e x t

l i v e n o d e

B P & Q

OrFr l o c k

O r F r _ a l t

OrFr members

O r F r n o d e

O r F r n e a r e s t

OrFr n e x t

l i v e n o d e

ENV

OrFr l o c k

O r F r _ a l t

OrFr members

O r F r n o d e

O r F r n e a r e s t

OrFr n e x t

l i v e n o d e

ENV

OrFr l o c k

O r F r _ a l t

OrFr members

O r F r n o d e

O r F r n e a r e s t

OrFr n e x t

l i v e n o d e i l l l l l l
| Hi

LUB

m

OrFr l o c k

O r F r _ a l t

OrFr members

O r F r n o d e

O r F r n e a r e s t

OrFr n e x t

l i v e n o d e i l l l l l l
| Hi

LUB

OrFr l o c k

O r F r _ a l t

OrFr members

O r F r n o d e

O r F r n e a r e s t

OrFr n e x t

l i v e n o d e

OrFr l o c k

O r F r _ a l t

OrFr members

O r F r n o d e

O r F r n e a r e s t

OrFr n e x t

l i v e n o d e l i v e n o d e

Figure 3.8: Sharing a choice point.

From the figure we can see the extended structure of a choice point. The first six fields
are inherited from Yap, while the last two were introduced in YapOr. The inherited
CP_ALT, CP_CP, CP_TR, CP_H, CP_B and CP_ENV choice point fields store, respectively,
the next unexploited alternative; success continuation program counter; top of trail at
choice point creation; top of global stack at choice point creation; failure continuation
choice point; and current environment [1]. The CP_0R-FR field stores the pointer
to the correspondent or-frame when the choice point is shared. Otherwise, it not
used. The CP_LUB field stores the local untried branches and reflects the number
of private unexplored alternatives above. It is used for computing worker load (see
subsection 3.3.3).

As an optimization, we can reduce the two introduced new fields to just one. While
the choice point is private, the field should act like the CP_LUB one, storing the local
untried branches. When it is made public it can act like the CP_0R-FR field because the
information in CP_LUB becomes unnecessary, as all unexplored alternatives in upper
choice points have been made public.

Figure 3.8 presents the choice point data structure before and after a sharing operation.
Sharing a choice point involves updating the CP_ALT field to point at the getwork
pseudo-instruction (see subsection 3.3.5) and storing the pointer to a newly allocated
or-frame in the CP_0R-FR field.

We next briefly introduce the functionality of each or-frame data field and describe

72 CHAPTER 3. YAPOR: THE OR-PARALLEL ENGINE

how they are initialized. The OrFr_lock field supports a busy-wait locking mutex
mechanism that guarantees atomic updates to the or-frame data. It is initially set to
unlocked. The OrFr_alt field stores the pointer to the next available alternative as
previously stored in the CP_ALT choice point field. OrFr_members is a bitmap that stores
the set of workers for which their current branch contains the choice point. OrFr_node
is a back pointer to the correspondent choice point. OrFr_nearest_livenode is a
pointer to the or-frame that corresponds to the nearest choice point above with
unexploited alternatives. Hence, if a worker reaches a public choice point with a
NULL pointer in the OrFrjnearest_livenode field, it knows it is out of work. Last,
the OrFr_next field is a pointer to the parent or-frame on the current branch.

To delimit the private from the public region, each worker holds a T0P_0R_FR register
that points to the or-frame corresponding to the bottom shared choice point on the
current branch.

3.3.3 Worker Load

Each worker maintains a local register, LOCAL.load, that estimates the number of
private unexploited alternatives. The LOCAL.load register helps the scheduler when
searching for a busy worker to request work from. There is a compromise thus between
its correct value and the efficiency of the parallel process. Our implementation updates
the L0CAL_load register only when creating a new choice point. With this scheme it
is possible to maintain a very good approximation of its correct value avoiding regular
actualizations, as we show next.

In subsection 3.3.2 we said that the CP_LUB choice point field is used to compute the
worker's load. We also said that the CP_LUB field stores the number of local untried
branches in the choice points above. This number does not include branches starting
at the current choice point in order to avoid regular actualizations when backtracking
occurs. Computing L0CAL_load is thus achieved by adding the value of CP_LUB with
the number of the alternative branches in the newly created choice point.

The number of unexploited alternatives in a choice point is found by consulting
the or_arg argument of the next available alternative. The or_arg argument holds
the number of available alternatives starting from the current alternative, and it is
generated by the compiler. Consider, for instance, a predicate with three alternative

3.3. EXTENDING YAP TO SUPPORT OR-PARALLELISM 73

clauses. To represent the three alternatives, the first clause is compiled with a value
of three in the or_arg argument. The second clause is compiled with a value of two
to represent the two remaining clauses, and the last clause is always compiled with a
value of one.

A worker has shareable work if the value in the L0CAL_load register is positive.
Nevertheless, a great number of Prolog programs contain predicates that generate
relatively small tasks. To attain good performance it is fundamental to avoid sharing
such fine grained work. In YapOr, the scheduler only considers that a worker has
shareable work when its load register is greater than a certain threshold value (the
threshold value is dynamically configurable in the system's initialization phase). This
introduces some delay in propagating work, avoiding eager sharing, therefore allowing
a worker to build up a reserve of local work which may increase task granularity.

3.3.4 Sharing Work Process

The process of sharing work makes parallel execution of goals possible. This process
takes place when an idle worker Q makes a sharing request to a busy worker V and
receives a positive answer. V can refuse a sharing request if (i) Q is not above V, or
(ii) if V has a load value above the threshold value and the OrFr_nearest_livenode
of its current top shared or-frame is NULL. The latter case happens when V does not
have any unexploited alternatives except the one it is executing. When Q receives a
negative answer it returns to scheduler mode.

Sharing is implemented by two model dependent functions: p_share_work(), for the
busy worker, and q_share_work(), for the idle one. In copying, the sharing process
can be divided in four main steps. The initial step is where the auxiliary variables are
initialized and the limits of stack segments to be copied are computed. The sharing
step is where the private choice points are turned into public ones. The copy step
is where the computed segments are copied from the busy worker stacks to the idle
worker ones. Finally, the installation step is where the bindings trailed in the copied
trail segment that refer to conditional variables stored in the maintained segments are
copied to the idle worker stacks. To minimize overheads, both workers cooperate in
the execution of the four steps. The sharing work algorithm is detailed in Figure 3.9.

Initially, the idle worker Q waits for a sharing signal while the busy worker V computes

74 CHAPTER 3. YAPOR: THE OR-PARALLEL ENGINE

p_share_work() Signals q_ share _work()

Compute stacks to copy

Share private nodes

Help Q in copy ?

Wait copy_done signal
Back to Prolog execution

Release shared node ?
Wait ready signal

-sharing-

—nodes_shared—>

< copy_done
copy_done >

-ready-

Wait sharing s igna l

Copy t r a i l ?
Copy heap ?
Wait nodes_shared s igna l

Copy loca l s tack ?

Wait copy_done s igna l
I n s t a l l bindings

Fa i l t o top shared node

Figure 3.9: The sharing work process.

the stacks to copy. After that , V prepares its private nodes for sharing whilst Q

performs incremental copying. Q copies the stacks from V in the following order:

trail, heap and local stack. The local stack can only be copied after V finishes the

sharing step. V may help in the copying process to speed it up. It copies the stacks

to Q but in a reverse order. This scheme has proved to be efficient as it avoids some

useless variables checks and locks. The two workers then synchronize to determine the

end of copying. At last, V goes back to Prolog execution and Q installs the bindings

referring variables in the maintained part of the stacks and restarts a new task from

the recently installed work. To avoid possible undoing of bindings, V cannot release a

shared node from its stacks until Q does not complete the installation step.

3.3.5 New Pseudo-Instructions

YapOr introduces four new instructions over Yap, namely, ge twork_f i r s t_ t ime,

getwork, ge twork_sequent ia l , and synch. These instructions are never generated

by the compiler. The former three are introduced according to the progress of parallel

execution, while the latter is called before a side effect instruction gets executed. Next,

we briefly describe how each instruction fits the YapOr execution model.

Whenever the search tree for the top level goal is fully exploited, all workers, except

worker0, execute the ge twork_f i r s t_ t ime instruction. This instruction blocks the

3.3. EXTENDING YAP TO SUPPORT OR-PARALLELISM 75

workers. They will wait for a signal from workero, that indicates the beginning of a
new query goal, worker^ is further responsible to present the answers encountered for
the last exploited query and to control the interface with the user until he asks for a
new query goal.

As mentioned in the previous subsection, the CP_ALT choice point fields are updated to
point to the getwork instruction when they are being shared. This sharing procedure
forces the future execution of the getwork instruction every time a worker backtracks
to a shared choice point. The execution of this instruction allows the workers sharing
the correspondent or-frame synchronized access to unexploited alternatives, guaran­
teeing that every alternative is exploited only once.

Sometimes it may be advantageous to declare a predicate as sequential [57] to force
the scheduler to traverse its alternatives in a left to right fashion. A : - sequential
pred/n declaration can be useful when the programmer wants to guarantee that
only after an alternative is fully exploited the next one should be taken. Sequential
predicates are implemented in YapOr by using the getwork_sequential instruction
instead of a getwork instruction when sharing a choice point for a predicate declared
as sequential. This variant of the getwork instruction ensures that the alternatives
are taken one at a time according to its left to right order. Note that the subtree
corresponding to each alternative can still be exploited in parallel.

A major problem when implementing parallel Prolog systems is the support for cuts
and side effects. For cuts, YapOr currently implements a scheme based on the strate­
gies described in [8] that prunes useless work as early as possible. A complete de­
scription of this scheme can be found is section 7.2. For side effects, the current
implementation of YapOr is very simple. As soon as a worker reaches the execution
of a side effect, it enters the synch instruction. The synch instruction implements a
delaying procedure that waits until the worker's current branch becomes the leftmost
one in the search tree. Only when the worker becomes leftmost synch returns and the
side effect execution proceeds. If the worker, while waiting, is pruned by a left branch
then the side effect is never executed. This ensures that side effects are executed in
the same way and in the same order as in sequential execution.

76 CHAPTER 3. YAPOR: THE OR-PARALLEL ENGINE

3.4 Chapter Summary

This chapter introduced the YapOr or-parallel engine. YapOr extends the Yap Prolog
system to support implicit or-parallelism in Prolog programs. YapOr's implementation
is largely based on the Muse approach for or-parallelism. We presented the environ­
ment copying model, as first implemented in the Muse system, and described the Muse
strategies to scheduling work for or-parallel execution.

Next, we described the main issues in extending the Yap Prolog system to support
or-parallelism. These included the extensions related with the environment copying
model, such as, memory organization and work sharing; those related with the schedul­
ing policy and the scheduling strategies; and those related with scheduling support,
such as, code compilation, choice point manipulation, and work load.

Chapter 4

YapTab: The Sequential Tabling
Engine

YapTab is a sequential tabling engine that extends the Yap Prolog system to support
tabling. YapTab is based on the SLG-WAM engine [86, 89, 87] as first implemented
in the XSB Prolog system. YapTab is also the base tabling engine for the combined
or-parallel tabling engine that we address later.

First, we briefly describe the fundamental aspects of the SLG-WAM abstract machine,
and then we detail the YapTab implementation. This includes discussing the moti­
vation and major contributions of the YapTab design, and presenting the main data
areas, data structures and algorithms to extend the Yap Prolog system to support
tabling.

4.1 The SLG-WAM Abstract Machine

Remember that the scope of this thesis is to address the problem of combining or-
parallelism and tabling for logic programs not including negation. Hence, we will only
consider those aspects of the SLG-WAM abstract machine that are relevant for the
support of variant-based tabling of definite programs.

77

78 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

4.1.1 Basic Tabling Definitions

Tabling is about storing and reusing intermediate answers for goals. Whenever a tabled
subgoal S is called for the first time, an entry for S is allocated in the table space.
This entry will collect all the answers generated for S. Repeated calls to variants of
S are resolved by consuming the answers already stored in the table. Meanwhile, as
new answers are generated for S, they are inserted into the table and returned to all
variant subgoals. Within this model, the nodes in the search space are classified as
follows:

Generator nodes: nodes corresponding to first calls to tabled subgoals. They use
program clause resolution to produce answers.

Consumer nodes: nodes corresponding to variant calls to tabled subgoals. They
consume answers from the table space.

Interior nodes: nodes corresponding to non-tabled predicates. These nodes are
evaluated by standard SLD resolution.

For definite programs, tabling based evaluation has four main types of operations:

Tabled Subgoal Call: looks up if the subgoal is in the table and if not, inserts it
and allocates a new generator node. Otherwise, allocates a consumer node and
starts consuming the available answers.

New Answer: verifies whether a newly generated answer is already in the table, and
if not, inserts it.

Answer Resolution: consumes the next found answer, if any.

Completion: determines whether a SCC is completely evaluated, and if not, sched­
ules a possible resolution to continue the execution.

Space for a subgoal can be reclaimed when the subgoal has been completely evaluated.
A subgoal is said to be completely evaluated when all its possible resolutions have
been performed, that is, when all available alternatives have been exploited and the
variant subgoals have consumed all the available answers. Remember that a number

4.1. THE SLG-WAM ABSTRACT MACHINE 79

of subgoals may be mutually dependent, forming a strongly connected component (or
SCC), and therefore can only be completed together. The completion operation is
then performed at the leader of the SCC, that is, at the oldest subgoal in the SCC,
when all possible resolutions have been made for all subgoals in the SCC [87].

4.1.2 SLG-WAM Overview

The SLG-WAM extends the WAM to fully integrate Prolog and tabling. In short, the
SLG-WAM introduces a new set of instructions to deal with the tabling operations,
a special mechanism to allow suspension and resumption of computations, and two
new memory areas: a table space, used to save the answers for tabled subgoals; and a
completion stack, used to detect when a set of subgoals is completely evaluated.

Further, whenever a consumer node gets to a point in which it has consumed all
available answers, but the correspondent tabled subgoal has not yet completed and
new answers may still be generated, the current computation must be suspended. The
SLG-WAM implements the suspension mechanism through a new set of registers, the
freeze registers, which protect the WAM stacks at the suspension point so that all data
belonging to the suspended branch cannot be erased. To later resume a suspended
branch, the bindings belonging to the branch must be restored. SLG-WAM achieves
this by using an extension of the standard trail, the forward trail, to keep track of the
bindings values.

4.1.3 Batched Scheduling

Usually it is possible to apply more than one strategy to continue after suspending a
computation. For instance, there may be alternative clauses to resolve with generator
or interior nodes, answers to be returned to consumer nodes, or completion operations
to be performed. The decision of which operation to perform is determined by the
scheduling strategy. The SLG-WAM default scheduling strategy (for versions 1.5 and
higher of XSB) is called Batched Scheduling [40].

Batched scheduling takes its name because it tries to minimize the need to move around
the search tree by batching the return of answers. When new answers are found for
a particular tabled subgoal, they are added to the table space and the evaluation

80 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

continues until it resolves all program clauses for the subgoal in hand. Only then the
newly found answers will be returned to consumer nodes.

Batched scheduling schedules the program clauses in a depth-first manner as does
the WAM. Calls to non-tabled subgoals allocate interior nodes. First calls to tabled
subgoals allocate generator nodes and variant calls allocate consumer nodes. However,
if we call a variant tabled subgoal, and the correspondent subgoal is already completed,
we can avoid consumer node allocation and instead perform what is called a completed
table optimization [87]. This optimization allocates a node, similar to an interior node,
that will consume the set of found answers executing compiled code directly from the
trie data structure associated with the completed subgoal. In [71, 72], I. V. Ramakr-
ishnan et al. shows that the built-in set of SLG-WAM instructions introduced to
execute the compiled answer tries can outperform standard WAM compiled code.

When backtracking we may encounter three situations: (i) if backtracking to a gen­
erator or interior node with available alternatives, the next program clause is taken;
(ii) if backtracking to a consumer node, we take the next unconsumed answer from
the table space; (iii) if there are no available alternatives or no unconsumed answers,
we simply backtrack to the previous node on the current branch. Note however that,
in case (iii), if the node without alternatives is a leader generator node, then we must
check for completion.

4.1.4 Fixpoint Check Procedure

In order to perform completion, the scheduler must ensure that all answers have been
returned to all consumer subgoals in the SCC. The process of resuming a consumer
node, consuming the available set of answers, suspending and then resuming another
consumer node can be seen as an iterative process which repeats until a fixpoint is
reached. This fixpoint is reached when the SCC is completely evaluated.

At engine level, the fixpoint check procedure is controlled by the leader of the SCC.
The procedure traverses the consumer nodes in the SCC in a bottom-up manner to
determine whether the subgoals in a SCC have been completely evaluated or whether
further answers need to be returned to consumer nodes. Initially, it searches for the
bottom consumer node with unresolved answers. If there is such a node, it is resumed
and as long as there are newly found answers, it will consume them. After consuming

4.1. THE SLG-WAM ABSTRACT MACHINE 81

the available set of answers, the consumer suspends and fails into the next consumer
node with unresolved answers. This process repeats until it reaches the last consumer
node, in which case it fails into the leader node in order to allow the re-execution of
the fixpoint check procedure. When a fixpoint is reached, all subgoals in the SCC are
marked completed, the stack segments belonging to the completed subtree are released
and the freeze registers are updated.

Please refer to subsection 2.3.1 and to Figure 2.3 for an example of a tabling evaluation

sequence.

4.1.5 Incremental Completion

Incremental completion was first introduced in [19]. Instead of performing completion
at the very end it reclaims the stack space occupied by sets of subgoals when they
are determined to be completely evaluated. Incremental completion is necessary for
the SLG-WAM to be efficient in terms of space and therefore to be effective on large
programs. Incremental completion further enables the completed table optimization
to be performed.

To implement incremental completion, the SLG-WAM introduces a new memory
area, the completion stack. A completion frame is pushed onto the completion stack
whenever a new tabled subgoal is first called, and is popped off when incremental
completion is performed over that subgoal.

A completion frame for subgoal S is assigned to an unique depth-first number (DFN),
through the use of a global counter. Furthermore, the frame maintains a representation
of the oldest subgoal upon which S may depend. This representation results from
computations involving the DFNs of the frames on which S or any subgoal younger
than S have dependencies. The number it is updated when a variant subgoal is
called or when checking for completion. If S depends on no older subgoals, then S
is a leader subgoal. Being leader, it can be checked for completion and if S and all
younger subgoals are completely evaluated then incremental completion takes place.
If S depends upon older subgoals, it is not a leader subgoal and therefore it cannot
perform completion. A detailed description of these algorithms can be found in [86, 87].

82 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

4.1.6 Instruction Set for Tabling

The SLG-WAM provides a new set of instructions in order to implement the four main
tabling operations. Tabled predicates defined by several clauses are compiled using
the table_try_me, table_retry_me, and table_trust_me SLG-WAM instructions, in
a similar manner to the WAM's try_me, retry_me, and trust_me sequence.

The table_try_me instruction extends the WAM's try_me instruction to support the
tabled subgoal call operation. When table_try_me corresponds to a first call to a
tabled subgoal, it inserts the subgoal at hand into the table space, by allocating the
necessary data structures; pushes a new generator choice point and a new environment
onto the local stack; pushes a completion frame onto the completion stack; and
initializes all cells in these structures.

On the other hand, if the call is a variant call, then the subgoal is already in the
table space, and two different situations may occur, depending on whether the sub-
goal is completed or not. If the subgoal is completed, the table_try_me instruc­
tion implements the completed table optimization. Otherwise, a consumer choice
point is allocated, the freeze registers are updated to the current top stack point­
ers, and the available answers start being consumed. The answer resolution opera­
tion is supported through setting the CP_ALT consumer choice to point to the SLG-
WAM answer_resolution instruction. This instruction is responsible for guaran­
teeing that all answers are given once and just once to each variant subgoal. The
answer_resolution instruction gets executed through backtracking or through direct
failure to a consumer node in the fixpoint check procedure.

The table_retry_me and table_trust_me differ from the retry_me WAM instruction
in that they always restore a generator choice point, rather than an interior (WAM-
style) choice point. The only difference between both instructions is in the way they
update the CP_ALT generator choice point field. In the table_retry_me implementa­
tion, the CP_ALT field is made to point to the compiled code for the next clause, while
in the table_trust_me it is updated to the completion instruction. The completion
instruction implements the completion operation in order to ensure the complete and
correct evaluation of the subgoal search space. It gets executed through backtracking
or through direct failure from the last node on the chain of consumer nodes as described
in the fixpoint check procedure.

4.2. EXTENDING YAP TO SUPPORT TABLING 83

Tabled predicates defined by a single clause are compiled using the SLG-WAM
table_try_me.single instruction. This instruction optimizes the table_try_me in­
struction for the case when the tabled predicate is defined by a single clause. Similarly
to the table_trust_me instruction, the CP_ALT generator choice point field is made to
point to the completion instruction.

The SLG-WAM introduces a new_answer instruction to implement the new answer
operation. This instruction is produced by the compiler when compiling a clause
for a tabled predicate. It is the final instruction of the clause's compiled code and
it includes the functionalities of the deal locate and proceed WAM instructions.
As the new_answer instruction is the final instruction of a compiled tabled clause,
the arguments from the body of the clause have been resolved when the instruction
is reached. Thus, by dereferencing them we obtain the binding substitution which
identifies the answer for the subgoal.

To give a flavor of what to expect from the compiled code of a tabled predicate,
consider the following path/2 definition:

:- table path/2.

path(X.Z) :- path(X,Y), arc(Y.Z).
path(X.Z) :- arc(X.Z).

Figure 4.1 shows the resulting compiled code for the two clauses of the tabled predicate
path/2, using the just described instruction set. As path/2 is defined by several
clauses, a table_try_me instruction begins the code for its first clause, with the label
pointing at the start of the second clause as an argument. On the other hand, as the
second clause is the last clause for path/2, its code begins with a table_trust_me
instruction. The code for both clauses follows the usual WAM code for the head
and body subgoals of the clauses. The exception is that at the end a new_answer
instruction closes each block.

4.2 Extending Yap to Support Tabling

YapTab has been designed to achieve an efficient tabling computational model that
can be integrated with an or-parallel component. To achieve high performance, we
are very interested in developing a sequential tabling implementation that compares

84 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

path/2_l:
table_try_me path/2_2 // path
get_variable Yl, A2 // (X,Z) :-
put_variable Y2, A2 // path(X,Y
call
put_value
put_value
call

path/2
Y2, Al
Yl, A2
arc/2

//
//
//
//

new_answer //

path/2_2:
table_trust.
call

.me
arc 72

// path(X,Z) :
// arc(X. ,Z)

new_answer //

) ,
arc(Y,

Z
)

Figure 4.1: Compiled code for a tabled predicate.

favorably with the current state of the art technology. In other words, we want the
parallel tabling system, when executed with a single worker, to run as fast or faster
than the current available sequential systems. Otherwise, the parallel performance
results would not be significant and fair, and thus it would be hard to evaluate the
efficiency of the parallel implementation.

4.2.1 Overview

The YapTab design is WAM based, as is the SLG-WAM. It implements two tabling
scheduling strategies, batched and local [40]. Our initial design only considers positive
programs. As in the original SLG-WAM, it extends the WAM with a new data area, the
table space; a new set of registers, the freeze registers; an extension of the standard
trail, the forward trail; and support for the four main tabling operations: tabled
subgoal call, new answer, answer resolution and completion.

The major differences between both designs, and corresponding implementations,
reside in the issues that can be a potential source of overheads when the tabling
engine is extended to a parallel model. In a parallel environment, duplication of items
is a major source of overhead. It requires synchronization mechanisms when updating
common items and when replicating the new values. To efficiently integrate tabling
with parallelism we should minimize this duplication.

To address this need, YapTab introduces a new data structure, the dependency frame,
that resides in a single shared space that we name the dependency space. The de-

4.2. EXTENDING YAP TO SUPPORT TABLING 85

pendency frame data structures maintain in a single space all data concerning tabling
suspensions. By data related with tabling suspension we mean the data involved
in the fixpoint check procedure and in the resumption of suspended nodes. The
introduction of this new data structure allows us to reduce the number of extra fields in
tabled choice points and eliminates the need for a separate completion stack, avoiding
potential synchronization points, and thus simplifying the complexity in managing
shared tabling suspensions.

To benefit from the philosophy behind the dependency frame data structure, all the
algorithms related with suspension, resumption and completion were redesigned. We
next present the main data areas, data structures and algorithms implemented to
extend the Yap system to support tabling. The algorithms described assume a batched
scheduling strategy implementation, we discuss local scheduling later.

4.2.2 Table Space

The table space can be accessed in different ways: to look up if a subgoal is in the table,
and if not insert it; to verify whether a newly found answer is already in the table, and if
not insert it; to pick up answers to consumer nodes; and to mark subgoals as completed.
Hence, a correct table design with efficient algorithms to access and manipulate the
table data is a critical issue to obtain a valid tabling system implementation.

Our implementation uses tries as the basis for tables, as proposed by I. V. Ramakr-
ishnan et al. [71, 72]. Tries provide complete discrimination for terms and permit
lookup and possibly insertion to be performed in a single pass through a term. In
later chapters, we shall discuss the performance of tries on the parallel environment.

Figure 4.2 shows the general tries structure for a tabled predicate. At the entry point
we have the table entry data structure. This structure is allocated when a predicate
declared as tabled is being compiled, so that a pointer to the table entry can be
included in the compiled code. This guarantees that further calls to the predicate will
access the table starting from the same point.

Below the table entry, we have the subgoal trie structure. Each different tabled subgoal
call to the predicate in hand corresponds to an unique path through the subgoal trie
structure, always starting from the table entry, passing by several subgoal trie data

86 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

Figure 4.2: Using tries to organize the table space.

units, the subgoal trie nodes, and reaching a leaf data structure, the subgoal frame. The
subgoal frame acts like an entry point to the answer trie structure and stores additional
information about the subgoal. Each unique path through the answer trie data units,
the answer trie nodes, corresponds to a different answer to the entry subgoal.

Figure 4.3 details the tries structure by presenting an example for a concrete predicate
t / 2 after the execution of several table_try_me.single and new_answer instructions.
Each invocation of table_try_me.single leads to either finding a path through the
subgoal trie nodes until a matching subgoal frame is reached, or creating a new path
when one does not exist. This happens, respectively, when we are in the presence
of either variant or first subgoal calls. In a similar fashion, each invocation of the
new_answer instruction corresponds to finding or creating a new path through the
answer trie nodes, starting from the corresponding subgoal frame.

Searching through a chain of sibling nodes that represent alternative paths is done
sequentially. However, if the chain becomes larger then a threshold value, we dynami­
cally index the nodes through a hash table to provide direct node access and therefore
optimize the search.

Analyzing the figure, it can be observed that the answer trie for call t (X, w) stores only
the binding a to the unbound variable, and avoids storing the complete answer (a,w).
This optimization is called substitution factoring [71, 72]. The core idea behind this

4.2. EXTENDING YAP TO SUPPORT TABLING

compiled code 1
for t/2 |

table try me single t(X,w)
new answer t(X,a) -> X = a
tabletrymesingle t(Y,Z)
newanswer t(Y,Z) -> Y = b Z = c
new answer t(Y,Z) -> Y = b Z = d
new answer t(Y,Z) -> Y = e Z = f

subgoal frame
for call

t(var 0,var 1)
subgoal frame

for call
t(var 0,w)

Figure 4.3: Detailed tries structure relationships.

optimization is to only store in the answer trie substitutions for the unbound variables
in the subgoal call.

Each subgoal frame includes two pointers to provide access to the answers already
stored in table. The SgFr_first_answer pointer provides access to the first found
answer, while the SgFr_last_answer pointer provides access to the last. Furthermore,
the leaves' answer nodes are chained together in insertion time order, in such a way
that, starting from the SgFr_f irst .answer pointer, and following the chain of leaf
nodes, we reach the node pointed by the SgFr_last_answer pointer once and only
once.

Using this chain, a consumer node can ensure that no answer is skipped or consumed
twice. This is done by holding a private pointer to the leaf node of its last consumed
answer and following the chain of leaves to consume new answers. To load an answer,
the trie nodes for the answer in hand are traversed in bottom-up order, starting from
the pointer to the leaf node and following the parent pointer to the preceding node on
the path until reaching the subgoal frame.

88 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

The answer trie structure is not traversed in a top-down manner because the insertion
and consumption of answers is an asynchronous process. Since new trie nodes may be
inserted at anytime and anywhere in the answer trie structure, this induces complex
dependencies that may limit the efficiency of possible top-down control schemes.
Remark that the completed table optimization allows us to efficiently traverse the
answer trie structure in a top-down way. However, it is only performed when the
subgoal is completed, which ensures that no more nodes are added. A field of the
subgoal frames marks subgoals as completed.

4.2.3 Generator and Consumer Nodes

Generator and consumer nodes correspond, respectively, to first and variant calls
to tabled subgoals, while interior nodes correspond to normal, not tabled, subgoals.
The abstract notion of a node is implemented at the engine level as a choice point.
Figure 4.4 details YapTab's choice point structure for these nodes.

Interior CP Generator CP Consumer CP
CP_ ALT

CP CP

CP TR

CP H

CP B

CP_ ENV

CP_ ALT

CP CP

CP TR

CP H

CP _B

CP_ ENV

CPJDKP_FR

Figure 4.4: Structure of interior, generator and consumer choice points.

Remember that interior nodes are implemented as normal WAM choice points and that
the CP_ALT, CP_CP, CP_TR, CP_H, CP_B and CP_ENV choice point fields store respectively,
the next unexploited alternative; success continuation program counter; top of trail;
top of global stack; failure continuation choice point; and current environment. Gen­
erator and consumer nodes are also implemented as WAM choice points, but extended
with an extra field, respectively, the CP_SG_FR and CP_DEP_FR fields.

The SLG-WAM implements the generator nodes as WAM choice points extended
with several extra fields. One of those fields stores the pointer to the correspondent

4.2. EXTENDING YAP TO SUPPORT TABLING 89

subgoal frame, the others hold the top freeze registers at choice point creation. Our
implementation only requires the subgoal frame pointer because we adjust the freeze
registers by using the top of stack values kept in the consumer choice points (see
subsection 4.2.5 for details).

Regarding consumer nodes, SLG-WAM also implements them as WAM choice points
with several extra fields. In YapTab, we move consumer information to a dependency
frame and leave the pointer to this frame in the CP_DEP_FR field. Figure 4.5 illustrates
the relationships between the novel choice points fields and the table and dependency
spaces.

Table Space

Interior Node
WAM

choice
point

Consumer Node

Generator Node

Consumer Node

Local Stack

Dependency Space

Figure 4.5: The nodes and their interaction with the table and dependency spaces.

The dependency frames are linked together to form a dependency graph between con­
sumer nodes. Additionally, they store information to efficiently check for completion
points, and to efficiently move across the dependency graph. As we shall see, this
functionality replaces the need for a completion stack.

To take advantage of substitution factoring, we create in the local stack a substitution
factor where we store references to the set of unbound variables in the subgoal call.

90 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

The substitution factor is created when traversing the subgoal trie structure to check
for/insert the subgoal call, the dereferenced pointers to unbound variables from the
subgoal are pushed onto the local stack. The substitution factor thus points to
variables on the local or heap stack. A generator choice point executing a new
answer operation determines the answer substitution simply through dereferencing
the substitution factor. A consumer choice point can correctly load an answer from
the table space by unifying the substitution factor pointers with the meanwhile copied
answer substitution.

4.2.4 Subgoal and Dependency Frames

The subgoal and dependency frames are the main data structures required to control
the flow of a tabled computation. As mention before, the subgoal frames provide
access to the answer trie structure and to check for and mark the completion of a
subgoal. The dependency frames synchronize suspension, resumption and completion
of subcomputations. Figure 4.6 details the subgoal and dependency frame structures.

Subgoal Frame
SgFr_gen_cp

SgFr_answer_trie

SgFr_£irst_answer

SgFrlast answer

SgFr_completed

SgFr next

Dependency Frame
DepFr_back_cp

DepFrleader cp

DepFr_cons_cp

DepFr sg_fr

DepFrlastans

DepFr_next

Figure 4.6: Structure of subgoal and dependency frames.

A subgoal frame includes six fields. The SgFr_gen_cp is a back pointer to the cor­
respondent generator choice point; the SgFr_answer_trie points to the top answer
trie node, and is mainly used to access the answer trie structure to check for/insert
new answers; the SgFr_first.answer points to the leaf answer trie node of the first
available answer; the SgFr_last_answer points to the leaf answer trie node of the
last available answer; the SgFr_completed is a flag that indicates if the subgoal is
completed or not; and the SgFr_next points to the next subgoal frame, that is, to the
subgoal frame for the youngest generator older than the current choice point. It is

4.2. EXTENDING YAP TO SUPPORT TABLING 91

used to traverse subgoal frames when performing completion. To access the subgoal
frames chain, we use a T0P_SG_FR register that points to the youngest subgoal frame.

Each dependency frame is also a six field data structure. The DepFr_back_cp points to
the generator choice point involved in the last unsuccessful completion operation, and
is used by the fixpoint check procedure to schedule for a backtracking node (see 4.2.8 for
details); the DepFr_leader_cp points to the leader choice point and it is used to check
for completion points; the DepFr_cons_cp is a back pointer to the consumer choice
point; the DepFr_sg_f r and the DepFr_last_ans point to the correspondent subgoal
frame and to the last consumed answer, respectively, and they provide access to the
table space in order to search for and to pick up new answers; and the DepFr_next
is a pointer to the next dependency frame, that is, to the dependency frame for the
youngest consumer older than the current choice point. It is used to form a dependency
graph between consumer nodes to efficiently check for leader nodes and to efficiently
implement the completion and fixpoint check procedures. To access the dependency
graph, we use a T0P_DEP_FR register that points to the youngest dependency frame.

Figure 4.7 shows an example of how the data structures presented are used in a
particular evaluation. The leftmost sub-figure presents the execution tree dependencies
between the predicates involved in the example.

table_try_me t(X)

table_try_me v(Y)

tab le t r y me v(Y)

table_try_me t{X)

table_retry_me

table trust me

O Consumer Node

Figure 4.7: Dependencies between choice points, subgoal and dependency frames.

The first instance of table_try_me searches the table space for the corresponding

92 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

subgoal t (X). As this is the first call to the subgoal, it must allocate a subgoal frame
and store a generator choice point. Assuming that t / 1 is a three clause predicate, the
CP_ALT field of the generator choice point will point to the table_retry_me instruction
that starts the compiled code of the second clause. Assuming that v/1 is a two clause
predicate, an analogous situation occurs with the first call to subgoal v(Y). The only
difference is that the CP_ALT field will now point to a table_trust_me instruction (note
that this initialization is not illustrated in the figure).

Following the example, the second call to v(Y) searches the table space and finds that
it is a variant call of the subgoal v(var 0). Thus, it allocates a dependency frame
and stores a consumer choice point. A consumer choice point is initialized with its
CP_ALT field pointing to the answer_resolution pseudo instruction. Assuming that
no answers were found for subgoal v(var 0), the computation will backtrack to the
previous choice point CPi. The table_trust_me instruction gets executed, and the
CP_ALT field is update to the completion pseudo instruction. The second call to t(X)
is similar to the second call to v(Y).

The dependency frame fields DepFr_back_cp and DepFr_leader_cp and the pseudo
instructions answer_resolution and completion are detailed next.

4.2.5 Freeze Registers

A tabled evaluation can be seen as a sequence of subcomputations that suspend and
later resume. The SLG-WAM preserves the environment of a suspended computation
by freezing stacks. A set of freeze registers, one per stack, says where stacks are frozen.
Freeze registers protect therefore the space belonging to the suspended branch until
the completion of the appropriate subgoal call takes place, ft is only upon completion
that we can release the space previously frozen and adjust the freeze registers.

The SLG-WAM extends the generator choice points to store the freeze registers at
choice point creation, so that they can be adjusted if completion takes place. In
YapTab, we adjust the freeze registers by using the top stack values kept in the
youngest consumer choice point, after completion. We access that choice point through
the top dependency frame as given by the T0P_DEP_FR register. Figure 4.8 shows the
pseudo-code that adjusts the freeze registers.

4.2. EXTENDING YAP TO SUPPORT TABLING 93

adjust_freeze_registers() {
B_FZ = DepFr_cons_cp(TOP_DEP_FR) // B_FZ is the stack freeze register
H_FZ = CP_H(B_FZ) // H_FZ is the heap freeze register
TR_FZ = CP_TR(B_FZ) // TR_FZ is the trail freeze register

}

Figure 4.8: Pseudo-code for adjust_freeze_registers() .

The introduction of freeze registers creates situations where the current stack registers
can point to older positions than those given by the freeze registers. To guarantee that
frozen segments are safe from being overwritten, we need to guarantee that new data
always is placed at the younger position of both registers. Several schemes may be
followed to ensure that: (i) we always compare the top stack register with the freeze
register and determine the youngest; (ii) we have an additional register that always
holds the youngest; or (iii) we ensure that, when writing, the top stack register is
always younger than the freeze register and thus proceed as usual. Scheme (iii) is
the one which introduces the least overheads for the execution. However, it cannot
be applied to the local stack because tabled evaluation leads to situations where B is
necessarily older than B_FZ.

By default, YapTab implements scheme (i) to deal with the local stack and scheme
(iii) to deal with the heap and trail stacks. As a configuration option, it is possible to
execute YapTab using scheme (ii) for the local stack. The following subsection details
the implementation of scheme (iii) for the trail stack.

4.2.6 Forward Trail

To resume the computation to a suspended consumer node, we have to restore all the
variable bindings to their state at the time the node was suspended. The forward trail
is a data structure that extends the standard WAM trail entries to record variable
bindings. In the SLG-WAM, each forward trail frame has three fields: the address of
the trailed variable, as in the WAM; the value to which the variable was bound, so
that it can be restored later; and a pointer to the parent trail frame, used to correctly
move across the variables in a branch, hence avoiding variables in frozen segments [87].

In YapTab, the forward trail is implemented without parent trail frame pointers.
Yap already uses the trail to store information beyond the normal variable trailing,
say to control dynamic predicates and to implement multi-assignment variables. We

94 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

extend this information to also control the chain between frozen segments. In terms
of computation complexity the two approaches are equivalent. The main advantage
of our scheme is that we only need two fields.

Figure 4.9 illustrates our implementation scheme. Consider that the execution has
reached the consumer node marked as (a) and that the computation is suspended as
there are no available answers to be consumed. At this point, the trail freeze register
TR_FZ is set to the trail register TR.

™ _ — , — „ ~

X = a

Y - b

Z » c

frozen
segment

Y = d

Z » a

frozen'
segment

z = f

Figure 4.9: The forward trail implementation.

Now if backtracking takes place up to the node marked as (b), the bindings belonging
to the backtracked segment are untrailed and TR is made to point to the next untrailed
frame. At this point, TR points to a position above the one pointed by TR_FZ. To ensure
that the trail segment corresponding to the frozen branch is not erased, and is not
used by untrailing operations corresponding to different branches, we use a special trail
frame to mark the existence of a frozen segment just above it (see illustration (c)).
This frame records the continuation trail frame that allows for the frozen segment to
be ignored in a future untrailing operation. The trail register TR is updated to point
to this new trail frame.

Suppose that the execution has evolved to situation (d), in which the trail shows a
more complex chaining of segments, and assume that the computation is being resumed
to the first suspended node. To accomplish the correct restoration of the variable
environment, the bindings belonging to the current branch need to be unbound and the
bindings belonging to the branch being resumed need to be restored. Similarly to other

TR » TR F Z ­

x = a

Y = b

Z = c

X • a
Y -b

Z " c

:■;■,■ ■■ \ :&3S.:-

f r o z e n
segment

TR: trail register
TR FZ: trail freeze register

TR1: trail register at first suspension
TR2: trail register at second suspension

4.2. EXTENDING YAP TO SUPPORT TABLING 95

strategies presented previously, we can minimize the overhead of these operations by

only unbinding/rebinding up to the youngest frame common to both branches, X = a

in this case. By following TR, and visiting Z = f and Y = d, we unbind variables Z

and Y, and by following TR1, and visiting Z = c and Y = b, we bind Z and Y to c and

b, respectively.

Figure 4.10 shows the pseudo-code for restoring a variable environment given the top

trail frame for the current branch (argument unbind_fr) and the top trail frame for

the branch being resumed (argument reb ind_fr) .

r e s t o r e _ b i n d i n g s (t r a i l frame unbind_fr, t r a i l frame rebind_fr) {
common_fr = rebind_fr
while (unbind_fr != common_fr) {

while (unbind_fr > common_fr) { / / rewind loop
ref = Trail_Addr(—unbind_fr)
if (ref i s a va r i ab le)

unbind_var iable(ref)
e l se if (ref i s a frozen segment po in te r)

unbind_fr = ref
}
while (unbind_fr < common_fr) { / / search a common frame

ref = Trail_Addr(—common_fr)
if (ref i s a frozen segment po in te r)

common_fr = ref
}

}
while (rebind_fr != common_fr) { / / rebind loop

ref = Trail_Addr(—rebind_fr)
i f (ref i s a va r i ab le)

b ind_var iab le (re f , Trai l_Value(rebind_fr))
e l s e if (ref i s a frozen segment po in te r)

rebind_fr = ref
}

}

Figure 4.10: Pseudo-code for r e s t o r e _ b i n d i n g s () .

The procedure starts with both unbind_f r and common_f r following their chains until

a common frame is reached, with unbind_f r unbinding variables as it goes. Then,

r eb ind . f r follows its chain till the just found common frame, restoring the variables

on the way. Note that the frames traversed by common_fr and reb ind_fr are the

same. However, variables are not restored when first searching for the common frame

because they can be later unbound in the rewind loop. Note also that the rebind loop

applies the bindings in the opposite order in which they were trailed. This is safe since

no branch can have more than one trail entry for the same variable.

96 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

4.2.7 Completion and Leader Nodes

The completion operation takes place when a generator node exhausts all alternatives
and finds itself as a leader node. We designed novel algorithms to quickly determine
whether a generator node is a leader node. The key idea is that each dependency frame
holds a pointer to the presumed leader node of its SCC. Using the leader node from
the dependency frames, a generator node can quickly determine whether it is a leader
node. A generator finds itself as a leader node when there are no younger dependencies,
that is, no younger consumer nodes, or when it is the leader node referred in the top
dependency frame.

The algorithm requires computing leader node information when allocating a depen­
dency frame for a new consumer node C. To do so, we first hypothesize that the leader
node is the generator node for the variant subgoal call relative to C, say Q. Next,
for all consumer nodes between C and Ç, we check whether they depend on an older
generator node. Consider that the oldest dependency is for the generator node Q'. If
this is the case, then Q' is the leader node, otherwise our hypothesis was correct and
the leader is indeed the initially found generator node Q.

Figure 4.11 presents a small example that illustrates how the current leader node
changes during evaluation. By current leader node we mean the leader of the current
SCC. In situation (a), the generator node A/3 is the current leader node because there
are no younger consumer nodes. Moving to situation (b), a new consumer node is
created and a new dependency frame is allocated. Because A/4 is a variant subgoal a
for the generator node A/i and there are no other consumer nodes in between, A/i is
the leader node for A/4's dependency frame. As a result, the current leader node for
the new set of nodes including A/4 becomes A/i. Situation (c) is similar to (a), and A/5
becomes the new current leader node. The consumer node A/é, from situation (d), is
a variant subgoal c for generator node A3. Since consumer node A/4 is between nodes
A/é and A/3 and depends on an older generator node, A/i, the leader node information
for A/é's dependency frame is also A/i. This turns again A/i as the current leader node.

Figure 4.12 shows the procedure that computes the leader node information for the
current consumer node. The procedure traverses the dependency frames for the
consumer nodes between the current consumer and its generator in order to check
for older dependencies. As an optimization it only searches until it finds the first

4.2. EXTENDING YAP TO SUPPORT TABLING 97
(a) (b)

r
Nl | a J

\

N2 (b J (b)

N3Q~]

^

(c)

N 1
l
 a |

N2 fb \

"F1
N4 \

a
^ *" Nl 1

(d)

Generator Node

Current Leader Node

O
o

Consumer Node

Interior Node

□ DepFr_leader_cp Field
Next On Stack

Figure 4.11: Spotting the current leader node.

dependency frame holding an older reference (the DepFr_leader_cp field). The nature

of the procedure ensures that the remaining dependency frames cannot hold older

references.

compute_leader_node(dependency frame dep_fr) {
leader_cp = SgFr_gen_cp(DepFr_sg_fr(dep_fr))
df = T0P_DEP_FR
while (DepFr_cons_cp(df) i s younger than leader_cp) {

/ / searching for an older dependency
i f (leader_cp i s equal or younger than DepFr_leader_cp(df)) {

leader_cp = DepFr_leader_cp(df)
break

}
df = DepFr_next(df)

}
DepFr_leader_cp(dep_fr) = leader_cp

}

Figure 4.12: Pseudo-code for compute_leader_node() .

We next give an argument on the correctness of the algorithm. Consider a consumer

node with generator node Q and assume that its leader node V is found in the

dependency frame for consumer node C. Now hypothesize that there is a consumer

node M younger than Q with a reference V older than V. Therefore, when previously

98 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

computing the leader node for C one of the following situations occurred: (i) V is the
generator node for C or (ii) V was found in a dependency frame for a consumer node
C. Situation (i) is not possible because M is younger than V and it holds a reference
older than V. Regarding situation (ii), C is necessarily younger than M as otherwise
the reference found for C had been V. By recursively applying the previous argument
to the computation of the leader node for C we conclude that our initial hypothesis
cannot hold because the number of nodes between C and M is finite.

Figure 4.13 presents the pseudo-code that implements the completion() procedure.
It gets executed when the computation fails to a generator choice point with no
alternatives left.

completion(generator node G) {
if (G is the current leader node) {
df = T0P_DEP_FR
while (DepFr_cons_cp(df) is younger than G)) {
if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
// dependency frame with unconsumed answers
DepFr_back_cp(df) = G
C = DepFr_cons_cp(df)
restore_bindings(CP_TR(G), CP_TR(C))
goto answer_resolution(C)

>
df = DepFr_next(df)

}
perform_completion()
adjust_freeze_registers()

}
backtrack_to(CP_B(G))

}

Figure 4.13: Pseudo-code for complet ion ().

Whenever a generator node finds out that it is the current leader node, it checks
whether there are younger consumer nodes with unconsumed answers. This can be
implemented by going through the chain of dependency frames looking for a frame
with unconsumed answers. If there is such a frame, it resumes the computation to
the corresponding consumer node. However, before resuming it must update the
DepFr_back_cp dependency frame field (more details in 4.2.8) and use the forward
trail to restore bindings.

Otherwise, it can perform completion. This includes marking as completed all the
subgoals in the SCC, using the T0P_SG_FR to go through the subgoals frames, and
deallocating all the younger dependency frames, using the T0P_DEP_FR register to go

4.2. EXTENDING YAP TO SUPPORT TABLING 99

through the dependency frames. At last, the algorithm must adjust the freeze registers

and backtrack to the previous node to continue the execution.

In order to make the pseudo-code for procedures more intuitive and less verbose,

throughout the thesis, we will frequently use goto statements like the one on Fig­

ure 4.13. With a goto statement we intend to denote that the flow of execution

continues within the called procedure and that there is no return to the caller.

4.2.8 Answer Resolution

When a consumer choice point is allocated, its CP_ALT field is made to point to

the answer_reso lu t ion instruction. This instruction is responsible for resuming the

computation and guaranteeing that every answer is consumed once and just once.

Figure 4.14 shows the procedure that implements the answer_reso lu t ion instruction.

The procedure gets executed either when the computation fails or is resumed to a

consumer choice point.

answer_resolution(consumer node C) {
dep_fr = CP_DEP_FR(C)
i f (DepFr_last_ans(dep_fr) != SgFr_last_answer(DepFr_sg_fr(dep_fr))) {

/ / unconsumed answers in current dependency frame
load_next_answer_from_subgoal(DepFr_sg_fr(dep_fr))
proceed

>
back_cp = DepFr_back_cp(dep_fr)
if (back_cp == NULL)

backtrack_to(CP_B(C))
df = DepFr_next(dep_fr)
while (DepFr_cons_cp(df) i s younger than back_cp)) {

i f (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
/ / dependency frame with unconsumed answers
DepFr_back_cp(df) = back_cp
back_cp = DepFr_cons_cp(df)
restore_bindings(CP_TR(C), CP_TR(back_cp))
goto answer_resolution(back_cp)

}
df = DepFr_next(df)

}
restore_bidings(CP_TR(C), CP_TR(back_cp))
goto completion(back_cp)

}

Figure 4.14: Pseudo-code for a n s w e r _ r e s o l u t i o n () .

The answer_ reso lu t ion () procedure first checks the table space for unconsumed

100 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

answers for the subgoal in hand. If there are new answers, it loads the next available
answer and proceeds the execution. Otherwise, it schedules for a backtracking node.

If this is the first time that backtracking from that consumer node takes place, then it
is performed as usual to the previous node. This is the case when the DepFr_back_cp
dependency frame field is NULL. Otherwise, we know that DepFr_back_cp points to
the generator node Q from where the computation has been resumed during the
last unsuccessful completion operation. Therefore, backtracking must retry the next
consumer node that has unconsumed answers and that is younger than Q. If there is
no such a consumer node then backtracking must be done to the generator node Q.

Figure 4.15 presents two different situations that illustrate the functionality of the
DepFr_back_cp field in the process of scheduling for a backtracking node. In both
situations, the illustration sequence starts with the computation in a leader node
position and assuming that all younger consumer nodes have unconsumed answers. A
W is used to mark the node where the computation is positioned at each illustration.
The vertical dashed line in between the nodes denotes the possible existence of other
nodes not related to execution of tabled predicates.

In situation (a), the execution of the completionO procedure in the leader node
C leads the computation to be resumed to the younger consumer node C2. Before
resuming, the DepFr_back_cp field of the dependency frame relative to C2 is updated
to C. Then, after all available unconsumed answers for C2 have been consumed,
answer_resolution() schedules for a backtracking node. As there is a consumer
node C\ younger than the generator given by the DepFr_back_cp field of C2, then
backtracking is done to C\ and the DepFr_back_cp field of the dependency frame
relative to C\ is updated to C AS there is no consumer nodes between C and C\,
C is scheduled for backtracking when all available unconsumed answers for C\ have
been consumed.

Situation (a) corresponds to a complete loop step for the fixpoint check procedure.
Starting from a leader node, it goes through the younger consumer nodes and ends
eventually returning to the leader node. Situation (b) presents a slightly different
sequence. It also starts from a leader node position, £2 , and resumes the computation
to a consumer node C2. However, when exploiting an unconsumed answer for C2, a new
consumer node is allocated and in consequence the current leader node changes and
becomes C\. Despite this leader modification, the backtracking sequence is similar to

4.2. EXTENDING YAP TO SUPPORT TABLING 101

(a)

(b)

answer
g o t o

r e s o l u t i o n (C2) answer
g o t o

r e s o l u t i o n (C I)
g o t o

c o m p l e t i o n(L)

CD
/ ■ \

\ C l \ —► NULL 1 ^ c i \ — ► N U L L ! W <^^Q 4-Q
\ C 2 \ — ♦ m U L L J

w < ^ ­ Q < ^ ­ Q < « > - □
answer

g o t o LI becomes t h e g o t o g o t o
r e s o l u t i o n (C 2) c u r r e n t l e a d e r node a n s w e r _ r e s o l u t i o n (C I) comple t i on (L2)

f \ f \ f X

W | t.2 | Lil Çj Q W | L2 |

\^\—►NULL! \Cl\ ► NULL 1 ^ C J \ — ► N U L L ! w A ­ » | L2 I < ^ ­ Q
/ c 2 \ ► N U L L I

w < ^ Q w / c X — ► ! L2 I < ^ ­ Q < ^ ­ Q
\ C 3 \ » NULL 1 O a 3 \ ►NULLI \ C ^ \ ► NULL 1

1 J C u r r e n t Leade r Node _ ^ 1 | D B p F r _ b . e k _ o p F i e i d

/ \ Consumer Node Fo l lows On S t a c k

Figure 4.15: Scheduling for a backtracking node.

the one of situation (a). After consuming all the available unconsumed answers for
(?2, C\ is scheduled for backtracking, and after consuming all the available unconsumed
answers for C\, £ 2 is scheduled for backtracking.

At that point, we may question why waste time backtracking to the previous leader
node £ 2 if there is a new leader node C\. Note that completion only resumes the
computation to younger consumer nodes because all younger generator and interior
nodes are necessarily exploited, that is, without alternatives. As DepFr_back_cp points
to £2 , this allows us to conclude that all younger generator and interior nodes than £ 2

are exploited. However, nothing can be said about the generator and interior nodes
older than £2 . Hence, despite £1 becoming the current leader node in the sequence of
situation (b), between C\ and £ 2 may exist other nodes not exploited, and therefore

102 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

we still have to backtrack to £2-

4.2.9 A Comparison with the SLG-WAM

The major difference between YapTab and the original SLG-WAM design resides in
the way YapTab handles suspensions. The SLG-WAM considers that the control of
leader detection and scheduling of unconsumed answers should be done at the level
of the data structures corresponding to first calls to tabled subgoals, and it does
so through associating completion frames to generator nodes. On the other hand,
YapTab considers that such control should be performed through the data structures
corresponding to variant calls to tabled subgoals, and thus it associates dependency
frames to consumer nodes. We argue that managing dependencies at the level of the
consumer nodes is a more intuitive approach that we can take advantage of.

The SLG-WAM's design presents therefore some differences when compared with
YapTab. First, the SLG-WAM uses an auxiliary data space, the completion stack,
in order to determine when a generator node is a leader node. Each completion
frame corresponds to a different subgoal call and a new completion frame is allocated
whenever a new generator node is created. The dependencies introduced by variant
subgoal calls update the top completion frame in the completion stack according to
a proper rule (for details about the completion stack please consult [86, 87]). The
process of determining if a generator node is a leader node requires, in the worst case,
consulting the completion frames of all younger subgoal calls.

YapTab uses dependency frames to determine when a node is a leader node. In order
to motivate for the implementation required for the or-parallel tabling engine, we also
assumed an auxiliary data space, the dependency space, where dependency frames are
stored. However, for a strictly sequential engine, we can simplify the implementation
by moving the data from the dependency space to the local stack and by storing
dependency frames as extensions of consumer nodes. A dependency frame is allocated
for each new consumer node and the leader node for the resulting SCC is computed in
advance and stored in the dependency frame. By consulting the leader data stored in
the youngest dependency frame, a generator node can thus determine in constant-time
if it is the current leader node.

Another relevant difference is how consumer nodes with unconsumed answers are

4.2. EXTENDING YAP TO SUPPORT TABLING 103

scheduled for execution. Consider a leader node with several different groups of
consumer nodes within its SCC, with each group corresponding to a common variant
subgoal call. The SLG-WAM proceeds as follows. The groups are scheduled one at a
time, starting from the group corresponding to the oldest subgoal call until reaching
the group corresponding to the youngest subgoal call. If there are unconsumed answers
for a particular group, the process is aborted by causing the evaluation to be resumed
at the nodes with unconsumed answers. After such a batch of answers has been
consumed, the evaluation returns to the leader node. When returning to the leader
node, the process repeats until no unconsumed answers are found in a single pass
through the whole set of groups. In this case, a fixpoint is reached and the SCC is
completely evaluated.

YapTab simplifies the process by considering the whole set of consumer nodes within a
SCC as a single group, independently of the subgoal call associated with each one. By
following the chain of dependency frames, YapTab traverses in a single pass the whole
set of consumer nodes which we argue may therefore reduce the overheads of scheduling
consumer nodes with unconsumed answers in of controlling the loop procedure.

In short, the YapTab's resolution scheme attained with the previously presented
compute_leader_node, completion and answer_resolution procedures, improves
SLG-WAM's scheme in that it: (i) replaces the need for a completion stack; (ii)
quickly determines when a generator node is a leader node; and (iii) automatically
schedules the set of consumer nodes with unconsumed answers within a SCC.

Furthermore, in practice, we found that this solution simplifies the implementation
of fundamental aspects that may influence the parallel system's efficiency. Sharing
tabling suspensions is straightforward, as the worker requesting work only needs to
update its private top dependency frame pointer to the one of the sharing worker.
Concurrent accesses or updates to the shared suspension data can be synchronized
through the use of a locking mechanism at the dependency frame level. The completion
algorithm for shared branches can take advantage of the dependency frame data
structure to avoid explicit communication and synchronization between workers.

104 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

4.3 Local Scheduling

The algorithms described in the previous subsections assume a batched scheduling
strategy. We are interested in alternative tabling scheduling strategies in order to
study its impact when combining tabling with parallelism. Local scheduling is an
alternative tabling scheduling strategy that tries to evaluate subgoals as independently
as possible [40]. Evaluation is done one SCC at a time, and answers are returned
outside of a SCC only after that SCC is completely evaluated. In other words, with
local scheduling answers will only be returned to the leader's calling environment when
its SCC is completely evaluated. Because local scheduling completes subgoals sooner,
we can expect less complex dependencies when running in parallel. Figure 4.16 clarifies
the differences between batched and local scheduling evaluation.

:- table b/1.

a(X,Y) :- b(X) , b (Y)

b(l) .
b(2).

?- a(x,Y).

Batched scheduling
subgoa1 ajiSwers

1 . b(X)
2 . X = 1
5 . X = 2

1 0 . comple te

c 1 . b (X) D
2 . X = 1 5 . X = 2 4 . Y = 1

0 . a (x , Y)

1 . b (X) , b (Y)

9 . Y = 2 7 . Y = 2 8 . Y = 2

L o c a l s c h e d u l i n g

subgoa l answers

1 . b ix)
2 . X = 1
3 X = 2

4 . comple te

1 . b (X) J
2 . X = 1

0 . a (x , Y)

3 . X = 2 6 . Y = 1 7 . Y = 2 9 . Y = 2 1 0 . Y = 2

Figure 4.16: Batched versus local scheduling: an example.

4.3. LOCAL SCHEDULING 105

At the top, Figure 4.16 illustrates the program code and query goal used for both
evaluations. Below, the figure depicts the evaluation sequence for each scheduling
strategy, which includes the resulting table space and the resulting forest of trees.
The numbering of nodes denote the evaluation sequence.

The most interesting aspect that results from the figure, is how both strategies handle
the evaluation of the tabled subgoal call b(X). The first answer for b(X) binds X
to 1. Batched scheduling then proceeds executing as in standard Prolog with the
continuation call b(Y), while local scheduling fails to find the complete set of answers
for b(X) and therefore completes the SCC before returning answers to the calling
environment.

For local scheduling, the variant subgoal calls to b(x) at steps 5 and 8 are resolved by
executing compiled code directly from the trie structure associated with the completed
subgoal b(X). For batched scheduling, the same variant subgoal calls lead to suspension
points that are resolved by consuming answers as they are being found.

The clear advantage of local scheduling shown in the example of Figure 4.16 does not
always hold. In batched scheduling when a new answer is found, variable bindings
are automatically propagated to the calling environment. Since local scheduling de­
lays answers, it does not benefit from this propagation, and instead, when explicitly
returning the delayed answers, it incurs an extra overhead for copying them out of
the table. Local scheduling does perform arbitrarily better than batched scheduling
for applications that benefit from answer subsumption, that is, where we delete non-
minimal answers every time a new answer is added to the table. On the other hand,
Freire et al. [40] showed that on average local scheduling is 15% slower than batched
scheduling.

We next present how local scheduling is implemented on top of batched scheduling.
As the reader will see, it is straightforward to extend the engine to perform local
scheduling.

To prevent answers from being returned to the calling environment of a generator
node, after a new answer is found for a particular tabled subgoal, local scheduling
fails and backtracks in order to search for the complete set of answers. Therefore,
when backtracking to a generator node, we must also act like a consumer node
to consume the answers that could not be returned to their environment. In our

106 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

approach, we implement a generator choice point also as a consumer choice point.
Figure 4.17 illustrates how generators are differently handled if supporting batched or
local scheduling.

Local Stack

Generator
Choice
Point

CP SG FR

Consumer
Choice
Point

CP DEP FR

/7A

!

■L.DC& icteni / Pramn

DepFr_sg_fr
DepFr_leader_cp

TOP DEP FR

Batched Scheduling

Local Stack

Generator
Choice
Point

CP DEP FR

Consumer
Choice
Point

CP DEP FR

/W\

Subgoal Frame

;;i;:Dej)endency ■ Frame S ;

DepFr_sg_fr
DepFr_leader_cp

DepFr_next

Il ,, t«l V V ■ D)<

DepFr_sg_fr
DepFr_leader_cp

*:; DepFr_next

TOP DEP FR

■­Local:;: Scheduling''

Figure 4.17: Handling generator nodes for supporting batched or local scheduling.

For local scheduling, when we store a generator node we also allocate a dependency
frame. The dependency frame is initialized similarly as for the consumer nodes. As an
optimization we can avoid calling compute_leader_node() procedure to initialize the
DepFr_leader_cp field, as it will always compute the new generator node as the leader
node. To access subgoal frames, in batched scheduling we use the CP_SG_FR generator
choice point field. In local scheduling we must use the CP_DEF_FR generator choice
point field and follow the DepFr_sg_f r field of the dependency frame. Further, to fully
implement local scheduling, we need to slightly change the completion() procedure.
Figure 4.18 shows the modified pseudo­code.

There is a major change to the completion algorithm for local scheduling. As newly
found answers cannot be immediately returned, we need to consume them at a later
point. If we perform completion with success, we start consuming the set of answers
that have been found by executing compiled code directly from the trie data structure
associated with the completed subgoal. Otherwise, we must act like a consumer node
and start consuming answers.

4.3. LOCAL SCHEDULING 107
completion(generator node G) {
if (G is the current leader node) {
df = T0P_DEP_FR
while (DepFr_cons_cp(df) is younger than G) {

if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
DepFr_back_cp(df) = G
C = DepFr_cons_cp(df)
restore_bindings(CP_TR(G), CP_TR(C))
goto answer_resolution(C)

}
df = DepFr_next(df)

}
perform_completion()
adjust_freeze_registers()
goto completed_table_optimization(DepFr_sg_fr(CP_DEP_FR(G))) // new

}
CP_ALT(G) = answer_resolution // new
load_first_answer_from_subgoal(DepFr_sg_fr(CP_DEP_FR(G))) // new
proceed // new

}

Figure 4.18: Pseudo-code for completion() with a local scheduling strategy.

Empirical work from Freire et al. [40, 41] showed that, regarding the requirements
of an application, the choice of the scheduling strategy can differently affect the
memory usage, execution time and disk access patterns. Freire argues [38] that there
is no single best scheduling strategy, and whereas a strategy can achieve very good
performance for certain applications, for others it might add overheads and even lead
to unacceptable inefficiency. As a means of achieving the best possible performance,
Freire and Warren [42] proposed the ability of using multiple strategies within the
same evaluation, by supporting mixed-strategy evaluation at the predicate level.

We believe that Yap Tab is more suitable than the SLG-WAM to be extended to
support a mixed-strategy evaluation. In result of its clear design based on the de­
pendency frame data structure, extending YapTab to use multiple strategies at the
predicate level seems straightforward. Only two features have to be addressed: (i)
support strategy-specific Prolog declarations like ' : - batched pa th /2 . ' in order to
allow the user to define the strategy to be used to resolve the subgoals of a given
predicate; (ii) at compile time generate appropriate tabling instructions, such as
batched_new_answer or local-completion, accordingly to the declared strategy for
the predicate. With these two simple compiler extensions we are able to use all the
algorithms described and already implemented for batched and for local scheduling
without any further modification. Although in this work we concentrated on the

108 CHAPTER 4. YAPTAB: THE SEQUENTIAL TABLING ENGINE

issues concerning the exploitation of parallel implementation, we expect to exploit a
mixed-strategy evaluation in the future.

4.4 Chapter Summary

In this chapter we introduced the YapTab engine. Yap Tab extends the Yap Prolog
system to support sequential tabling in Prolog programs. YapTab's implementation
is largely based on the SLG-WAM approach to tabling.

We started by presenting the SLG-WAM abstract machine, as first implemented in the
XSB system, and then we focused on its key aspects, namely, the batched scheduling
strategy, the incremental completion optimization and its instruction set for tabling.

Next, we discussed the motivation for the YapTab design and described the main issues
in extending the Yap Prolog system to support sequential tabling. We introduced a
novel data structure, the dependency frame, and a new completion detection algorithm
not based on the intrinsically sequential completion stack. YapTab innovates by
considering that the control of leader detection and scheduling of unconsumed answers
should be done at the level of the data structures corresponding to variant calls to
tabled subgoals.

To further study the impact of alternative scheduling strategies when combining
tabling with parallelism, we implemented an alternative strategy, local scheduling,
and described how it was implemented on top of batched scheduling.

Chapter 5

Parallel Tabling

In this chapter we propose two new computational models to efficiently implement the
parallel evaluation of tabled logic programs. We start by describing related work to
get an overall view of alternative approaches to parallel tabling. Next, we introduce
and detail the fundamental aspects underlying the new computational models, and
then we discuss their advantages and disadvantages. Last, we focus on the elected
computational model to discuss its implementation framework.

5.1 Related Work

One important advantage of logic programming is that it allows the implicit exploita­
tion of parallelism. This is true for SLD based systems, and should also apply for
SLG based systems. A first proposal on how to exploit implicit parallelism in tabling
systems was Freire's Table-parallelism [39]. Table-parallelism resembles the Linda's
tuple-space model, in that it views the table space as a shared data structure through
which cooperating agents may synchronize and communicate.

In the Table-parallelism model, each tabled subgoal is computed independently in a
single computational thread, a generator thread. Each generator thread is associated
with an unique tabled subgoal and it is responsible for fully exploiting its search tree
in order to obtain the complete set of answers. As new answers are being produced,
they are inserted in the table space. A generator thread dependent on other tabled
subgoals will asynchronously consume answers as the correspondent generator threads

109

110 CHAPTER 5. PARALLEL TABLING

will make them available.

Within this model, parallelism results from having several generator threads running
concurrently. Parallelism arising from non-tabled subgoals or from execution alterna­
tives to tabled subgoals is not exploited. Moreover, in order to fully implement the
model a deep redesign of the base tabling engine is required, including new scheduling
strategies and a new completion algorithm. Load balancing for this model can also
be a difficult task. When the number of tabled subgoals is large, the dependencies
between them can be quite intricate. Even when the number of tabled subgoals is
small, some subgoals may have much larger search spaces than others. We expect that
the scheduling problem of selecting which subgoals to allocate to which processors
would be even harder than for traditional parallel systems.

More recent work [46], proposes a different approach to the problem of exploiting
implicit parallelism in tabled logic programs. Curiously, this new approach was also
named as Table-parallelism. The approach is a consequence of a new sequential tabling
scheme whose design simplifies the exploitation of parallelism. The new sequential
tabling scheme is based on dynamic reordering of alternatives with variant calls, and it
works in a single SLD tree without requiring suspension of goals and freezing of stacks.
The alternatives leading to variant calls are denominated as looping alternatives. This
dynamic alternative reordering strategy not only tables the answers to tabled subgoals,
but also the looping alternatives. A tabled subgoal will repeatedly recompute its
looping alternatives until a fixpoint is reached.

If we find a variant call to a tabled predicate when exploiting a subgoal S, the current
alternative clause A is tabled as a looping alternative and it is reordered and placed at
the end of the alternative list for the call. Moreover, the variant call is not expanded
immediately, given it can lead to an infinite loop. Instead, a failure is simulated in
order for A to be backtracked over. After exploiting all matching clauses, the subgoal
<S enters a looping state, where the looping alternatives, if they exist, start being
tried repeatedly. If no new answer for S is added to the table in a complete cycle
over the looping alternatives, then we can say that subgoal S has reached its fixpoint.
Within this model, parallelism arises if we schedule the multiple looping alternatives
to different workers. Communication among the different workers can be done through
the table space.

An important characteristic of tabling is that it avoids recomputation of tabled sub-

5.1. RELATED WORK 111

goals. An interesting point of the dynamic reordering strategy is that it avoids recom-
putation through performing recomputation. The process of retrying alternatives may
cause redundant recomputations of the non-tabled subgoals that appear in the body of
a looping alternative. It may also cause redundant consumption of answers if the body
of a looping alternative contains more than one variant subgoal call. Furthermore, to
really judge the potential of the model as proclaimed by the authors [47], a more
detailed performance evaluation is needed.

We believe that parallelism may cause even more drawbacks in this model. A major
problem in parallel execution with this model is the way alternatives may be scheduled
to be recomputed. Assume, for instance, two workers, Wi and VV2, recomputing two
different looping alternatives for the same subgoal. Consider that within its alternative,
W\ consumes the available answers for a given subgoal S and then backtracks to
continue exploitation. Suppose that in the meantime W2 finds a new answer for S.
When W\ exhausts its looping alternative, it has to recompute it from the beginning
in order to consume the newly found answer. However, a similar situation may occur
and W2 may find another answer for S that may lead to a new recomputation of the
alternative owned by W\. Therefore, parallelism may not come so naturally as for
SLD evaluations and parallel execution may lead to doing more work.

There have been other proposals for concurrent tabling but in a distributed memory
context. Hu [55] was the first to formulate a method for distributed tabled evaluation
termed Multi-Processor SLG (SLGMP). This method matches subgoals with proces­
sors in a similar way to Freire's approach [39]. Each processor gets a single subgoal
and it is responsible for fully exploiting its search tree and obtain the complete set
of answers. One of the main contributions of SLGMP is its controlled scheme of
propagation of subgoal dependencies in order to safely perform distributed completion.
An implementation prototype of SLGMP was developed, but as far as we know no
results have been reported.

A different approach for distributed tabling was proposed by Damásio in [34]. The
architecture for this proposal relies on four types of components: a goal manager
that interfaces with the outside world; a table manager that selects the clients for
storing tables; table storage clients that keep the consumers and answers of tables;
and prover clients that perform evaluation. An interesting aspect of this proposal
is the completion detection algorithm. It is based on a classical credit recovery

112 CHAPTER 5. PARALLEL TABLING

algorithm [64] for distributed termination detection. Dependencies among subgoals
are not propagated and, instead, a controller client, associated with each SCC, controls
the credits for its SCC and detects completion if the credits reach the zero value. An
implementation prototype has also been developed, but further analysis is required.

Marques et al. [63] have proposed an initial design for an architecture for a multi­
threaded tabling engine. Their first aim is to implement an engine capable of process­
ing multiple query requests concurrently. The main idea behind this proposal seems
very interesting, however the work is still in an initial stage.

5.2 Novel Models for Parallel Tabling

Our work is based on the observation that tabling is still about exploiting alternatives
to finding answers for goals, and that or-parallel systems have precisely been designed
to achieve this goal efficiently. Our suggestion is that all alternatives to subgoals should
be amenable to parallel exploitation, be they from tabled or non-tabled subgoals, and
that or-parallel frameworks can be used as the basis to do so. This gives an unified
approach with two major advantages. First, it does not restrict parallelism to tabled
subgoals, and, second, it can draw from the large experience in implementing or-
parallel systems. We believe that this approach can be an efficient model for the
exploitation of parallelism in tabling-based systems.

One of the important characteristics of tabling-based systems is that some subgoals
need to suspend on other subgoals to obtain the full set of answers. Or-parallel systems
also need to suspend, either while waiting for leftmostness in the case of side-effects,
or to avoid speculative execution. The need for suspending introduces an interesting
similarity between tabling and or-parallelism that influenced our work. We therefore
propose two new computational models, the OPT and TOP models.

To develop an efficient parallel tabling system we believe that it should exploit maxi­
mum parallelism and take maximum advantage of current parallel and tabling technol­
ogy. A key idea in our proposals is that we want to explore in parallel all the available
alternatives, be they from generator, consumer or interior nodes. For efficiency reasons
we are also most interested in multi-sequential systems [110], that is, in systems where
workers compute independently in the search tree, and mainly communicate with each

5.2. NOVEL MODELS FOR PARALLEL TABLING 113

other to fetch work.

5.2.1 Or-Parallelism within Tabling (OPT)

In this first approach, that we name Or-Parallelism within Tabling (OPT), parallel
evaluation is done by a set of independent tabling engines that may share different
common branches of the search tree during execution. Each worker can be considered a
sequential tabling engine that fully implements the tabling operations: access the table
space to insert new subgoals or answers; allocate data structures for the different types
of nodes; suspend tabled subgoals; resume subcomputations to consume newly found
answers; and complete private (not shared) subgoals. As most of the computation
time is spent in exploiting the search tree involved in a tabled evaluation, we can say
that tabling is the base component of the system.

The or-parallel component of the system is triggered to allow synchronized access to
the shared parts of the execution tree, in order to get new work when a worker runs out
of alternatives to exploit, and to perform completion of shared subgoals. Unexploited
alternatives should be made available for parallel execution, regardless of whether they
originate from generator, consumer or interior nodes. From the viewpoint of SLG reso­
lution, the OPT computational model generalizes the Warren's multi-sequential engine
framework for the exploitation of or-parallelism. Or-parallelism stems from having
several engines that implement SLG resolution, instead of implementing Prolog's SLD
resolution.

Figure 5.1 illustrates how parallelism can be exploited in the OPT model. It assumes
two workers, W\ and W2, and it represents a possible evaluation for the following
program code with ?- a(X) as the query goal.

:- table a /1 .

a(X) :- a(X).
a(X) :- b(X).

b (l) .
b(X) :- . . .
b(X) :- . . .

?- a(X).

Consider that worker Wi executes the query goal. It first inserts an entry for the

114 CHAPTER 5. PARALLEL TABLING

tabled subgoal a(X) into the table space and creates a generator node for it. The
execution of the first alternative leads to a recursive call for a(X), W\ hence creates
a consumer node for a(X) and, because there are no available answers, it backtracks.
The next alternative finds a non-tabled subgoal b(X) for which an interior node is
created. The first alternative for b(X) succeeds and an answer for a(X) is therefore
found: a (l) . The worker inserts the newly found answer in the table and then starts
exploiting the next alternative for b(X).

f X a Generator Node ;

O Consumer Node

o Interior Node

û New Answer

f > Public Tree

Exploited Branch
j

Figure 5.1: Exploiting parallelism in the OPT model.

At this point, worker W2 moves in to share work. Consider that worker W\ decides to
share all of its private nodes. The two workers will share three nodes: the generator
node for a(X), the consumer node for a(X), and the interior node for b(X). Worker
W2 takes the next unexploited alternative of b(X) and from now on, both workers can
find further answers for a(X) and any of them can restart the shared consumer node.

5.2.2 Tabling within Or-Parallelism (TOP)

The second approach, that we name Tabling within Or-Parallelism (TOP), considers
that a parallel evaluation is performed by a set of independent WAM engines, each
managing an unique branch of the search tree at a time. These base engines are
extended to include direct support to the basic table access operations, that allow the
insertion of new subgoals and answers.

We have seen that subgoals in tabling based systems need to suspend on other subgoals
to obtain the full set of answers. Or-parallel systems also need to suspend, either while

5.2. NOVEL MODELS FOR PARALLEL TABLING 115

waiting for leftmostness in the case of side­effects, or to avoid speculative execution.
The need for suspending introduces an important similarity between tabling and or­

parallelism. The TOP approach therefore unifies or­parallel suspensions and suspen­

sions due to tabling. When exploiting parallelism, some branches may be suspended,
say, because they are speculative or not leftmost, or because they include consumer
nodes waiting for more answers, while others are available for parallel execution. In
TOP, the or­parallel suspension mechanism is extended to also manage the suspensions
related to the tabling evaluation. Consequently, a suspended branch can wake up
for reasons such as, new answers have been found for the consumer node on that
branch, the branch becoming leftmost, or just for lack of non­speculative work in the
search tree. The TOP name arises from the fact that tabled evaluation is attained by
embracing the tabling suspension mechanism within the or­parallel component.

Figure 5.2 illustrates how parallelism is exploited under this approach for the same
previous program. We can observe from the left figure that as soon as W\ suspends on
consumer node for a(X), it makes the whole branch public and only after it backtracks
to the upper node. The suspended branch thus stops being the responsibility of Wi
and becomes, instead, shared work that anyone can wake up when new answers to
a(X) are found.

| | Generator Node

^ \ Consumer Node

(1 Interior Node

■ New Answer

f JH Public Tree

Exploited Branch

Figure 5.2: Exploiting parallelism in the TOP model.

Continuing the execution, W\ finds an answer for subgoal a(X) in the first alternative
for subgoal b(X). So, when worker W2 starts looking for work, it can choose whether
to resume the consumer node with the newly found answer or to ask worker W\ to
share his private nodes. The right figure assumes that the first option was chosen.

116 CHAPTER 5. PARALLEL TABLING

5.2.3 Comparing the Models

The TOP model is a very attractive model, as it provides a clean and systematic
unification of tabling and or-parallel suspensions. Workers have a clearly defined
position, because a worker always occupies the tip of a single branch in the search
tree. Everything else is shared work. It also has practical advantages, such as the fact
that in this approach we can guarantee that a suspended branch will only appear once,
instead of possibly several times for several workers. On the other hand, as suspended
nodes are always shared in or-parallel systems, the unified suspension may result in
having a larger public part of the tree, which may increase overheads. Besides, in
order to support all forms of suspension with minimal overhead, the unified suspension
mechanism must be implemented efficiently.

In TOP, we have a standard Prolog system extended with an or-parallel/tabling
component. If adopting SLG-WAM for tabling, this means that TOP is most adequate
for, say, binding arrays models [112, 111] for the or-parallel component, as a result
of the similar cactus stack organization that both approaches use. An alternative
for tabling is Demoen and Sagonas's CAT [35] model. CAT seems to fulfill best the
requirements of the TOP approach, since it assumes a linear stack for the current
branch and uses an auxiliary area to save the suspended nodes. If implementing TOP
based on CAT, then we should adopt for the or-parallel component an environment
copying model [6, 5] as it fits best with the kind of operations that CAT introduces.

On the other hand, the OPT approach offers interesting advantages. First, it reduces
to a minimum the overlap between or-parallelism and tabling. In OPT we have a
tabling system extended with an or-parallel component. Moreover, it enables different
combinations for or-parallelism and tabling, giving implementors the highest degree
of freedom. For instance, one can use the SLG-WAM for tabling, and environment
copying or binding arrays for or-parallelism.

Taking into account the advantages and disadvantages presented, we decided to focus
our work on the design and implementation of the OPT model. Our choice seems
the most natural as we believe that the OPT approach gives the highest degree of
orthogonality between or-parallelism and tabling. The hierarchy of or-parallelism
within tabling results in a property that one can take advantage of to structure the
design and thus simplify the implementation.

5.2. NOVEL MODELS FOR PARALLEL TABLING 117

5.2.4 Framework Motivation for the OPT Model

We adopted a framework based on the YapOr and YapTab engines in order to imple­
ment the OPT model. We choose to use environment copying for or-parallelism and
SLG-WAM for tabling based on the fact that these are, respectively, two of the most
successful or-parallel and tabling engines. In our case, we already had the experience
of implementing environment copying in the Yap Prolog, the YapOr system, with
excellent performance results when compared with the Muse system [78, 81]. Adopting
YapOr for the or-parallel component of the combined system was therefore our first
choice.

On the other hand, YapTab was initially developed based on the SLG-WAM because,
at the time, SLG-WAM was the most, and perhaps unique, successful tabling engine.
The later appearance of the CAT [35] and CHAT [36] approaches to tabling, opened
news paths and raised questions about the direction our work should follow. Instead
of freezing computations, CAT uses an external data area to where it copies suspended
computations. It turns out that CAT may have arbitrarily worst behavior than the
SLG-WAM for some programs, and thus, a variation of the CAT approach, the CHAT,
was later proposed to overcome some limitations of the CAT design. CHAT is an
hybrid approach that combines certain features of the SLG-WAM with others of CAT.
It innovates by introducing a technique for freezing stacks without using neither freeze
registers nor stack copying. CHAT still copies the choice point and the trail stacks but
not the environment and heap stacks. Instead, the latter are protected by manipulating
pointers in the choice points.

We considered these new models as alternatives to the SLG-WAM, but after studying
and considering their integration with an or-parallel component, we decided not to
change the course of our work because CAT and CHAT have major problems for
support parallelism over YapOr. First, to take best advantage of CAT or CHAT we
need to have separate environment and choice point stacks, but Yap has an integrated
local stack. Second, and more importantly, we believe that CHAT is not appropriate
for parallel execution and that CAT is less suitable than the SLG-WAM to an efficient
extension to or-parallelism.

Regarding CHAT, we argue that it is its choice point manipulation technique that
makes it inappropriate as a base model to support parallel execution. Consider, for

118 CHAPTER 5. PARALLEL TABLING

example, two different workers, Wi and W2, exploiting alternative branches from a
public choice point J\f and W\ suspending a computation that requires manipulating
pointers in M. Obviously, parallelism is not compatible with this kind of choice point
manipulation. If W2 backtracks to M then we can expect arbitrary behavior when W2
restores jV's pointers.

As the SLG-WAM, CAT assumes an incremental completion technique in order to be
more efficient in terms of memory consumption and to minimize the size of stacks to
be copied. It was precisely this incremental completion principle that we believe
it is less suitable to an efficient extension of the model to or-parallelism. CAT
implements incremental completion through an incremental copying mechanism that
saves intermediate states of the execution stacks. The mechanism works as follows:
when suspending a consumer node, the state of the computation is saved to a proper
CAT area up to the nearest generator node Q on the current branch, in such a way that
if execution fails back to Q, all younger consumer nodes have saved all information
needed for their restoration. If Q is a leader node, on reaching fixpoint, completion
can occur and the space for the CAT area can be freed. Otherwise, to allow for the
younger consumers to be further restored, since backtracking over Q will occur we need
to perform an incremental state saving. Incremental saving is always done up to the
next nearest generator node and linked to the CAT areas previously saved up to Q.
This incremental saving of computational states maximizes sharing between common
state segments and therefore, avoids double copying of the same segments.

In sequential tabling, the notion of leader node only makes sense if that node is a
generator node. However, if we want to preserve incremental completion efficiency in
a parallel tabling environment, we need to enlarge the concept behind the notion of
leader node. Consider, for example, the situation from Figure 5.3. Starting from a
common public node, worker W\ takes the leftmost alternative while worker W2 takes
the rightmost. While exploiting their alternatives, Wi calls a tabled subgoal a and
W2 calls a tabled subgoal b. As this is the first call to both subgoals, a generator node
is stored for each one. Next, each worker calls the tabled subgoal firstly called by the
other, and consumer nodes are therefore allocated. At that point, we may question at
which node we should check for completion? Intuitively, we might choose a node that is
common to both branches and the youngest common node seems the better choice. As
an alternative, we might store a dummy generator node at the beginning of the stacks

5.2. NOVEL MODELS FOR PARALLEL TABLING 119

in order to guarantee that there is always an older generator node where we will check
for completion. Obviously, if adopting this latter approach, incremental completion is
not practicable and the efficiency of the model in terms of memory consumption and
the size of stacks to be saved and later reinstalled is the worst possible.

genei ■<■ -i node?

­Youngest ['common :xioõe?

O
Public Node

Generator Node

Consumer Node

m
Figure 5.3: Which is the leader node?

As motivated by the example, if one adopts the youngest common node approach, then
in a parallel tabled evaluation any kind of node (generator, consumer or interior) may
be a leader node. Moreover, situations where a worker has several consumer nodes
but not a single generator node are common. The efficiency of the CAT's incremental
completion technique is based in the fact that the next place where completion may
take place is in the upper generator node and that between two generator nodes
there cannot exist another completion point. Parallel tabling does not preserve these
properties. As an example, consider the situation from Figure 5.4.

The figure shows three workers, Wi, W2 and W3 executing a tabled evaluation in
parallel. The left sub­figure shows a situation where W2 and W3 are about to suspend,
respectively, the consumer nodes for the tabled subgoals a and b. The sub­figure on
the right shows the resulting state if the youngest common node approach is adopted
for suspension. Note that nodes A/"i and A/3 are, respectively, the youngest common
nodes to the branches of the generator and consumer nodes for a and b. Therefore,
consumer node for a is suspended at A/i and consumer node for b is suspended at A/3.

120 CHAPTER 5. PARALLEL TABLING

Figure 5.4: CAT's incremental completion for parallel tabling.

Assume now that no more suspensions occur until W2 and W3 both backtrack from
A/3. Such a situation leads to a major problem. How should the last worker leaving
A/3 handle the suspension for b?

To solve this problem we need a very flexible mechanism that can decide when a sus­
pension depends on upper suspensions. Besides, even if such mechanism is efficiently
implemented, introducing parallelism over CAT would activate incremental saving
whenever backtracking from public nodes. Moreover, incremental saving should be
performed up to the parent node, as potentially it can hold other suspensions or be the
next completion point. Obviously, this node-to-node segmentation of the incremental
saving technique will degrade the efficiency of any parallel system. The problems
behind the management of incremental completion in parallel tabling were the major
reason why we were unwilling to change our initial framework choice.

5.3 Chapter Summary

In this chapter we proposed two novel computational models for parallel tabled evalu­
ation, OPT and TOP models, and we discussed their fundamental aspects, advantages
and drawbacks. We also discussed two related approaches to exploit parallelism from

5.3. CHAPTER SUMMARY 121

tabled logic programs, the Table-parallelism approach from Freire et al. [39] and the
Table-parallelism approach from Guo and Gupta [46].

We then motivated for a framework based on the YapOr and YapTab engines to
implement the OPT model and stated the reasons for our choice. In the next two
chapters we present the details for the implementation.

YapOr's engine was recently extended [32] to support two newer or-parallel binding
approaches based on the Sparse Binding Array [27, 25] and on the Copy-On-Write [28]
models. Therefore, we aim at integrating these binding models with YapTab in order
to enlarge the combinations for the or-parallel tabling engine.

122 CHAPTER 5. PARALLEL TABLING

Chapter 6

OPTYap: The Or-Parallel Tabling
Engine

This chapter presents the implementation details for the OPTYap engine. OPTYap
is an or-parallel tabling system that implements the OPT computational model. As
introduced in previous chapters, the OPT model is based on environment copying for
the or-parallel component, and on the SLG-WAM for the tabling component. Our
initial design only supports parallel tabled evaluation for definite clauses.

We start by presenting an overall view of the main issues involved in the implementa­
tion of the or-parallel tabling engine and then we introduce and detail the new data
areas, data structures and algorithms required to implement it.

6.1 Implementation Overview

In our model, a set of independent workers will execute a tabled program by traversing
a search tree where each node is a candidate entry point for parallelism. Each worker
physically owns its environment, that is, a set of stacks, and shares the data structures
that support tabling and scheduling. During execution, the search tree is implicitly
divided into a public and private regions. Workers in their private region execute
nearly as in sequential tabling. Workers exploiting the public region of the search tree
must be able to synchronize in order to ensure the correctness of the tabling operations.

123

124 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

Parallel execution requires novel algorithms in a number of different situations. In
some cases, parallel execution is straightforward, such as when backtracking to a public
generator or to an interior node in order to take the next available alternative; when
backtracking to a public consumer node to take the next unconsumed answer; or when
inserting new answers into the table space. However, parallel execution can be quite
complex in other situations. Therefore, it is a crucial implementation issue to achieve
efficiency within the parallel tabling system. Complex cases include completion,
resumption of computations, and the fixpoint check procedure, when operating over
the public part of the execution tree. In a parallel tabling system, the relative positions
of generator and consumer nodes are not as clear as for sequential systems, hence we
need more complex algorithms to determine whether a node can be a leader node and
to determine whether a SCC can be completed. As we shall see, the condition of being
a leader node is not, by itself, sufficient to perform completion.

We follow a multi-sequential design. Therefore, a worker running out of alternatives
to exploit enters in scheduling mode and uses the YapOr scheduler to search for busy
workers with unexploited work. Alternatives are made available for parallel execution,
regardless of whether they originate from generator, consumer or interior nodes. A
worker is said to have shareable work if it contains private nodes with unexploited
alternatives or with unconsumed answers. When a worker shares work with another
worker, incremental copying is used to set the environment for the requesting worker.

6.2 The Parallel Data Area

A crucial part for the efficiency of a parallel system is how concurrent handling of
shared data is achieved and synchronized. In this section we present the data-area
design that allows for an efficient management of data structures in OPTYap. Memory
allocation in OPTYap follows the same organization as in YapOr (please refer to
Figure 3.6). Memory is divided into a global addressing space and a collection of local
spaces, each one supporting one system worker. The global space includes the code
area and a parallel data area that consists of all the data structures required to support
concurrent execution. OPTYap extends the parallel data area to include the table and
dependency spaces inherited from YapTab. A new data space preserves the stacks of
suspended branches with dependencies in other branches (further details are given in

6.2. THE PARALLEL DATA AREA 125

section 6.7).

6.2.1 Memory Organization

The parallel data area stores data structures that may be accessed and updated
concurrently. A major source of overhead regarding data access or update in parallel
systems are memory cache misses and page faults. To deal with these, we need to
achieve good locality for these data structures.

An important characteristic of almost all parallel data structures in the parallel data
area is that elements of the same type are linked together to improve the efficiency of
the common procedures that search through a chain until a certain condition is met.
Hence, a good heuristic for increasing locality is to organize memory in such a way
that data structures that are near at the abstract chain level, are also near at the
memory level.

Modern computer architectures use pages to handle memory. Pages are fixed size
blocks of contiguous memory cells. If we guarantee that most consecutive memory
references are also physically consecutive, we may obtain access to the whole set of
references when loading a memory page. Based on this characteristic, we adopt a
page organization scheme in order to split memory among different data structures
resident in the parallel data area. Figure 6.1 gives an overview of the parallel data
area memory organization.

.......................
X data

structures
Y data

structures
Z data

structures 1
X data

*«S I structures
X data

structures
Y data

structures
Z data

structures 1
X data

*«S I structures :: Pa:Tain**:l:: ̂ J X data
structures

Y data
structures

Z data
structures 1

X data
*«S I structures

X data
structures

Y data
structures

Z data
structures 1

X data
*«S I structures

■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : - : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : • : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : • : ■ : ■ : • : ■ : ■ : ■ : - : ■ : ■ : ■ : - : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ : ■ ^:■:::::::r:::::r::!:!^:!^ :

t
Unreleased Pages 1

Figure 6.1: Using memory pages as the basis for the parallel data area.

Figure 6.1 shows that each memory page only contains data structures of the same
type. Whenever a new request for a data structure of type T appears, the next
available structure on one of the T pages is returned. If there are no available
structures in any T page, then a new T page must be requested. If there are pages
already marked as free, as in the figure, then one of them is made to be of type

126 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

T. Otherwise, a new page can be released from a pool of unreleased pages. This is
achieved by making the page given by the Unreleased_Pages pointer to be of type T,
and by updating the pointer to the next unreleased page. A page is freed when all its
data structures are released. A free page can be immediately reassigned to a different
structure type. Figure 6.2 details the parallel data area pages organization.

Figure 6.2: Inside the parallel data area pages.

Access to pages of a given data type is synchronized by the page entry data structure.
In Figure 6.2, PAGES_T is the page entry that allows access to the data structures of
type T. A page entry structure includes two data fields. The Pg_lock field implements
a lock mechanism to synchronize access to available data structures, in such a way that
only a worker at a time may be updating the chain of available pages or the set of
available data structures. The Pg_free_pg field is a pointer to the first page with
available data structures of the given type.

6.2. THE PARALLEL DATA AREA 127

6.2.2 Page Management

The management of pages and data structures within pages is achieved by allocating a
special page header structure at the beginning of each page and by uniformly splitting
the remaining of each page in data structures of the type being handled. A page header
consists of four fields. The PgHd_str_in_use field stores the number of structures in
use within the page. When it goes to zero the page can be freed. The PgHd_f ree_str
field points to the first available data structure within the page. The PgHd_next
and PgHd_previous fields point, respectively, to the next and previous pages with
available structures. Within a page, available data structures are linked through their
next fields. Access to free pages is also synchronized by a proper page entry data
structure, named PAGES_vo id. The management of theses pages is simple because the
PgHd_next page header field is sufficient to maintain the chain of free pages.

Figures 6.3 and 6.4 present, respectively, the pseudo-code for allocating and freeing a
data structure of a given page entry type.

a l loc_s t ruc t (page entry pg_entry) {
lock(Pg_lock(pg_entry))
i f (Pg_free_pg(pg_entry) == NULL) / / if no ava i l ab le pages then . . .

Pg_free_pg(pg_entry) = al loc_page() II ... request a new page
header = Pg_free_pg(pg_entry)
PgHd_str_in_use(header)++
s t r = PgHd_free_str(header)
PgHd_free_str(header) = s t r u c t _ n e x t (s t r)
i f (PgHd_free_str(header) == NULL) { / / if no ava i l ab le s t r u c t u r e s t h e n . . .

Pg_free_pg(pg_entry) = PgHd_next(header) / / . . . move to next page
if (PgHd_next(header) != NULL)

PgHd_previous(PgHd_next(header)) = NULL
>
unlock(Pg_lock(pg_entry))
r e t u r n s t r

}

Figure 6.3: Pseudo-code for a l loc_s t ruc t () .

The a l loc_s t ruc t () procedure initially checks for available pages. If there are no
pages a new one is requested through a call to alloc_page(). Next, we get the first
available structure from the page we obtained and update the page header to point
to the next available structure. If no more structures are available then the page is
fully used. Hence, we update the page entry at hand to point to the next page with
available structures.

128 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

free_struct(page entry pg_entry, data structure str) {
header = page.header(str) // header of the page that includes str
lock(Pg_lock(pg_entry))
if (—PgHd_str_in_use(header) == 0) { // if no structures in use then ...

I I . . . put page free
if (PgHd_previous(header)) {
PgHd_next(PgHd_previous(header)) = PgHd_next(header)
if (PgHd.next(header) != NULL)
PgHd_previous(PgHd_next(header)) = PgHd_previous(header)

} else {
Pg_free_pg(pg_entry) = PgHd_next(header)
if (PgHd.next(header) != NULL)
PgHd_previous(PgHd_next(header)) = NULL

}
free_page(header)

} else {
struct_next(str) = PgHd_free_str(header)
PgHd_free_str(header) = str
if (struct_next(str) == NULL) { // if first available structure then ...

I I . . . put page available
PgHd_previous(header) = NULL
PgHd_next(header) = Pg_free_pg(pg_entry)
if (PgHd_next(header) != NULL)
PgHd_previous(PgHd_next(header)) = header

Pg_free_pg(pg_entry) = header
}

}
unlock(Pg_lock(pg_entry))

}

Figure 6.4: Pseudo-code for f ree_s t ruc t () .

The f ree_struct() procedure starts by determining if the page that includes the
structure being released is fully available, that is, without any other structure being
used. If this is the case the page stops being of the current type and instead it is
made free. Otherwise, the structure is chained in the available structures within the
page, and if it is the first structure made available then the page is also chained in the
available pages for that type.

The management scheme attained with the a l loc_s t ruc t () and free_struct 0 pro­
cedures enables local references for data structures of the same type. Subsequent
allocate requests for data structures of the same type are serviced from the same
memory page, and data structures being freed are chained within their own pages in
order to keep locality of reference in further requests. Moreover, reclaiming unused
pages is trivial as a simple reference count is sufficient to detect unused pages; allocat­
ing and freeing data structures are fast, constant-time operations, all we have to do
is to move a structure to or from a list of free structures; and memory fragmentation

6.2. THE PARALLEL DATA AREA 129

is minimal, the only wasted space is the unused portion at the end of a page when it

cannot accommodate any more data structures.

To the best of our knowledge, the idea of page-based allocation of shared memory

was first proposed by Bonwick for his Solaris Slab memory allocator [15]. Bonwick

also proposes several alignment mechanisms in order to reduce cache misses. Our

performance evaluation has not shown the need for such sophisticated mechanisms in

OPTYap.

6.2.3 Improving Page Management for Answer Trie Nodes

During parallel evaluation, some data structures may induce high lock contention in the

page entry access, because of higher rates of concurrent allocating and release requests.

Through experimentation, we observed that this problem mainly occurs with answer

trie nodes. In order to attenuate these overheads, we introduced a different mechanism

to specifically deal with answer trie nodes. The idea is that: each worker maintains

a private pre-allocated set of available answer trie nodes. When a worker runs out of

pre-allocated answer trie nodes, it asks for an available answer trie node page and pre-

allocates all the structures in it. To implement that mechanism, a new local register

is necessary and a different procedure to request for available data structures is used.

We next present the pseudo-code for that procedure.

ge t_s t ruc t (page entry pg_entry, da ta s t r u c t u r e l o c a l _ s t r) {
s t r = l o c a l _ s t r
i f (s t r == NULL) { / / i f no ava i l ab l e p re -a l l oca t ed s t r u c t u r e s then . . .

/ / . . . get an ava i l ab le page and p r e - a l l o c a t e a l l the s t r u c t u r e s in i t
lock(Pg_lock(pg_entry))
i f (Pg_free_pg(pg_entry) == NULL)

Pg_free_pg(pg_entry) = al loc_page()
header = Pg_free_pg(pg_entry)
PgHd_str_in_use(header) = structs_per_page(pg_entry)
s t r = PgHd_free_str(header)
PgHd_free_str(header) = NULL
Pg_free_pg(pg_entry) = PgHd_next(header)
unlock(Pg_lock(pg_entry))

}
l o c a l _ s t r = s t r u c t _ n e x t (s t r)
r e t u r n s t r

Figure 6.5: Pseudo-code for g e t _ s t r u c t () .

The g e t _ s t r u c t () procedure includes support for the pre-allocation mechanism and

130 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

it replaces the a l loc_s t ruc t () procedure when dealing with requests for answer trie
nodes. The second argument is the local register that points to the next available
pre-allocated data structure.

The procedure starts by checking if pre-allocated data structures are available. If this
is the case, it gets the first available structure and updates the local register to point
to the next pre-allocated structure. Otherwise, a new page is requested and the local
register is made to point to the first available structure within that page. Moreover,
the page is marked as fully used and the page entry is updated to the next page with
available structures.

6.3 Concurrent Table Access

The table space is the major data area open to concurrent access operations in a
parallel tabling environment. To maximize parallelism, whilst minimizing overheads,
accessing and updating the table space must be carefully controlled. Reader/writer
locks are the ideal implementation scheme for this purpose. However, several different
approaches may be taken. One is to have an unique lock for the table, thus enabling
a single writer for the whole table space; or one can have one lock per table entry,
allowing one writer per predicate; or one lock per path, allowing one writer per subgoal
call; or one lock per trie node, to attain least contention on locks; or hybrid locking
schemes combining the above.

6.3.1 Trie Structures

The table data structures, and mainly the subgoal trie and answer trie structures,
should be protected from races when operations that can change their structure are
being executed. The tabling operations that change the subgoal trie and answer trie
structures are the tabled subgoal call operation and the new answer operation.

Three different situations may occur when executing a tabled subgoal call operation.
If the subgoal in hand is the first call to a tabled predicate, then a complete path of
subgoal trie nodes is inserted into the subgoal trie structure. The opposite is when
the subgoal is a variant of a subgoal in the table space, then no subgoal trie nodes are

6.3. CONCURRENT TABLE ACCESS 131

inserted or updated, and thus, the subgoal trie structure remains unaltered. Last, if
the subgoal is partially common to other tabled subgoals, only the divergent subgoal
trie path is inserted into the subgoal trie structure. A similar set of situations may
occur for the new answer operation. The difference is that the new answer operation
works over the answer trie structure instead of the subgoal trie structure.

A table locking scheme must consider the situations described above. To better
understand the peculiarities behind alternative locking schemes, we next give a more
detailed description about the organization and handling of trie structures. Figure 6.6
illustrates the trie structure organization by focusing in more detail on one of the
answer trie structures previously presented in Figure 4.3, including the complete set
of the trie nodes contents and dependencies.

subgoal frame
for call

t(var O/Var 1)

r*r- * V r*r-

- Trie Structure in Detail
r*r-

NULL
Trie Structure in Detail

r*r-

NULL

Trie Structure in Detail
r*r-

Trie Structure in Detail
r*r-r*r-

' •

r*r-

e b

r*r-

NULL

r*r-

NULL

r*r-r*r-r*r-r*r-

*

r*r-

■ ' '

r*r-

f d c

r*r-

NULL NULL

r*r-

NULL NULL

r*r-

1 >

r*r-

1 >

r*r-

NULL NULL
i ' ♦ : I i I

Figure 6.6: Detailing the trie structure organization.

132 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

A trie node is a data structure with four main data fields. The TrNode_entry stores the
term that represents the node; the TrNode_next is a pointer to the sibling node that
represents an alternative path; the TrNode.parent is a back pointer to the preceding
node on path; and the TrNode_child is a pointer to the next node on path.

The figure presents the organization for the answer trie structures. The subgoal trie
structures are organized similarly. The difference resides in how the TrNode_child field
of the leaves trie nodes are processed. In an answer trie structure, the TrNode_child
field of the leaves answer trie nodes forms a chain through the answers already stored
in the table. In the subgoal trie structure, the TrNode_child field of the subgoal trie
leaves gives access to the correspondent subgoal frame (please refer to subsection 4.2.2).

The completed table optimization allows compiled code execution from a trie. The
optimization requires that answer trie nodes include two extra fields. One field, the
TrNode_instr, stores the compiled instruction that implements unification for the
term stored in the node. The other, the TrNode_or_arg field, stores the number of
sibling nodes and supports the worker load computation scheme (see subsection 3.3.3).
For simplicity, these fields were not included in Figure 6.6.

Besides the nodes needed to represent the several alternative paths, a root node marks
the beginning of a trie structure. In Figure 6.6, the root node is the one represented
with a ' - ' in the TrNode_entry field. This root node synchronizes access to the first
level of sibling nodes (nodes with terms e and b in the figure). Its usefulness can be
better understood through Figure 6.7. It illustrates a trie_node_check_insert() call
sequence in the context of a new answer operation. For a tabled subgoal call operation
a similar sequence will be used.

/ / SG_FR is the subgoal frame for the subgoal in hand
/ / (Tl, . . . , Tn) are the substitution factors for the new answer

current_node = SgFr_answer_trie(SG_FR) / / s ta r t from the root node
current_node = trie_node_check_insert(Tl, current_node)

current_node = trie_node_check_insert(Tn, current_node)

Figure 6.7: trie_node_check_insert() call sequence for the new answer operation.

The trie_node_check_insert() is called by tabled subgoal call and new answer
operations to traverse the subgoal and answer trie structures. It is called for each

6.3. CONCURRENT TABLE ACCESS 133

term that represents the path being checked or inserted. Given a term T and a trie

node V, the t r i e_node_check_ inse r t () procedure returns the child trie node of V

that represents the given term T. If such node was not already inserted by a previous

operation then a new trie node to represent T is allocated and inserted as a child of

V.

Figure 6.8 introduces the algorithm that implements the t r i e_node_check_ inse r t ()

procedure. Initially the algorithm traverses the chain of sibling nodes that represent

alternative paths from the given parent node and checks for one representing the

given term. If such a node is found then execution is stopped and the node returned.

Otherwise, in order to represent the given term a new trie node is allocated and inserted

in the beginning of the chain. We should stress that trie nodes corresponding to new

paths are inserted in the trie structure through invocation of the new_trie_node()

procedure. This procedure allocates new trie nodes, and it initializes the fields of

the newly allocated node. The TrNode_entry, TrNode_next, TrNode_parent and

TrNode_child fields are respectively initialized with the first, second, third and forth

argument.

t r ie_node_check_inser t (term t , t r i e node parent) {
/ / check if the node represen t ing t i s already in se r t ed
ch i ld = TrNode_child(parent)
while (chi ld) {

if (TrNode_entry(child) == t)
/ / node represen t ing t found
r e tu rn ch i ld

ch i ld = TrNode_next(child)
}
/ / i n s e r t a new node to represen t t
ch i ld = new_trie_node(t , TrMode_child(parent), pa ren t , NULL)
TrNode_child(parent) = ch i ld
r e tu rn ch i ld

}

Figure 6.8: Pseudo-code for t r i e_node_check_inser t () .

We should mention that at this point we are still not considering any locking scheme

to synchronize access to the trie structures. Furthermore, currently we do not support

dynamic tries, that is, using tries to represent clauses for dynamic predicates. The

locking schemes that we present next assume therefore that , whilst evaluating a

subgoal, we cannot remove trie nodes from the tables.

134 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

6.3.2 Table Locking Schemes

We are now ready to discuss the different locking schemes. In a nutshell, we can
say that there are two critical issues that determines the efficiency of a table locking
scheme. One is the lock duration, that is, the amount of time a data structure is
locked. The other is the lock grain, that is, the amount of data structures that are
protected through a single lock request. It is the balance between lock duration and
lock grain that compromises the efficiency of different table locking approaches. For
instance, if the lock scheme is short duration or fine grained, then inserting many trie
nodes in sequence, corresponding a long trie path, may result in a large number of
lock requests. On the other hand, if the lock scheme is long duration or coarse grain,
then going through a trie path without extending or updating its trie structure, may
unnecessarily lock data and prevent possible concurrent access by others.

OPTYap implements four alternative locking schemes to deal with concurrent accesses
to the table space data structures, the Table Lock at Entry Level scheme, the Table
Lock at Node Level scheme, the Table Lock at Write Level scheme, and the Table Lock
at Write Level - Allocate Before Check scheme.

The Table Lock at Entry Level (TLEL) scheme was the first table locking scheme
implemented in OPTYap. The TLEL scheme allows a single writer per subgoal trie
structure and a single writer per answer trie structure. To do so, it uses the table entries
and the subgoal frames to lock, respectively, the subgoal trie and answer trie structures.
Within this scheme, a single lock request is sufficient to protect the trie structure
subject to concurrent access (coarse grain lock scheme). However, the trie structure is
only unlocked when the path for the subgoal/answer in hand was completely traversed
(long duration lock scheme).

The main drawback of TLEL is the contention resulting from its lock duration scheme.
We then implemented a new lock scheme, the Table Lock at Node Level (TLNL). The
TLNL only enables a single writer per chain of sibling nodes that represent alternative
paths from a common parent node. Its implementation leads to extending the trie
node data structure with a new TrNode_lock field, used to lock access to the node's
children. This scheme has the advantage that in order to traverse a trie structure each
node on path only needs to be locked once. Within this scheme, the number of lock
requests is proportional to the length of the path, and the period of time a node is

6.3. CONCURRENT TABLE ACCESS 135

locked is proportional to the average time needed to traverse the node (mean duration
lock scheme). Remark however, that a lock on a node synchronizes access to the chain
of children nodes (fine grain lock scheme) and not to the node itself.

To fully implement this node level lock scheme, it is also necessary to adapt the
procedure responsible for traversing trie structures. Figure 6.9 shows the pseudo­
code that implements the trie_node_check_insert () procedure to support the TLNL
scheme. The main difference from the original trie_node_check_insert() procedure
is that here we lock the parent node while accessing its children nodes.

trie_node_check_insert(term t , t r i e node parent) {
lock(TrNode_lock(parent)) / / locking the parent node
child = TrNode_child(parent)
while (child) {

if (TrNode_entry(child) == t) {
unlock(TrNode_lock(parent)) / / unlocking before return
return child

}
child = TrNode_next(child)

}
child = new_trie_node(t, TrNode_child(parent), parent, NULL)
TrNode_child(parent) = child
unlock(TrNode_lock(parent)) / / unlocking before return
return child

}

Figure 6.9: Pseudo-code for trie_node_check_insert() with a TLNL scheme.

An important drawback of the TLNL scheme is that the amount of memory in the
parallel data area can increase substantially. During larger tabled evaluations, the trie
nodes, and mainly the answer trie nodes, are the major data types responsible for the
high percentage of memory pages being used in the parallel data area. Including an
extra field in the subgoal and answer trie node data structure leads, respectively, to a
25% and 16% size growth. Due to the high number of trie nodes pages, this ratio can
proportionally reflect the parallel data area memory usage.

We next developed a new scheme, the Table Lock at Write Level (TLWL) scheme, in
order to avoid the TLNL drawbacks without loosing its benefits. In fact, the TLWL
scheme improves over TLNL by reducing memory usage, whilst also reducing lock
duration. Like TLNL, the TLWL scheme only enables a single writer per chain of
sibling nodes that represent alternative paths to a common parent node. However, in
TLWL, the common parent node is only locked when writing to the table is likely.

136 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

Figure 6.10 presents the pseudo-code that implements the TLWL scheme. Initially,
the chain of sibling nodes that succeed the given parent node is traversed without
locking. Only when the given term is not found is that we lock the parent node. This
avoids locking when the term already exists in the chain. Moreover, it delays locking
while insertion of a new node to represent the term is not likely. Notice that we need
to check if, during our attempt to lock, other worker expanded the chain to include
the given term.

trie_node_check_insert(term t, trie node parent) {
child = TrNode_child(parent)
initial_child = child // keep the initial child node
while (child) { // traverse the initial chain of sibling nodes ...

if (TrNode_entry(child) == t) // ... searching for t
return child

child = TrNode_next(child)
}
lock(GLOBAL_locks[hash_node(parent)]) // locking the common parent node
// traverse the nodes inserted in the meantime by other workers before ...
child = TrNode_child(parent)
while (child != initial_child) {

if (TrNode_entry(child) == t) {
unlock(GL0BAL_locks[hash_node(parent)]) // unlocking before return
return child

}
child = TrNode_next(child)

}
// ... insert a new node to represent t
child = new_trie_node(t, TrNode_child(parent), parent, NULL)
TrNode_child(parent) = child
unlock(GL0BAL_locks[hash_node(parent)]) // unlocking before return
return child

Figure 6.10: Pseudo-code for trie_node_check_insert() with a TLWL scheme.

It can be observed that TLWL maintains the lock granularity of TLNL (fine grain lock
scheme), but reduces the lock duration (short duration lock scheme). On average, the
number of lock requests in the TLWL scheme is lower, it ranges from zero to the
number of nodes on path. The amount of time a node is locked is on average also
smaller. It is the time needed to check the nodes that in the meantime were inserted
by other workers, if any, plus the time needed to allocate and initialize a new node.

TLWL avoids the TLNL memory usage problem by replacing trie node lock fields
(TrNode_lock) with a global array of lock entries (GL0BAL_locks). A locking node
operation is achieved by applying an hash algorithm (hash_node()) to the node address
in order to index the global array entry that should be locked. This lock mechanism

6.3. CONCURRENT TABLE ACCESS 137

preserves the TLNL lock semantics, whilst reducing the memory needed to implement

locks to a fixed sized global array.

Lastly, we present the Table Lock at Write Level - Allocate Before Check (TLWL-

ABC) scheme. The TLWL-ABC scheme is a variant of the TLWL scheme that follows

the probable node insertion notion introduced in TLWL, but uses a different strategy

on when to allocate a node. In order to reduce to a minimum the lock duration

(minimum duration lock scheme), the TLWL-ABC scheme anticipates the allocation

and initialization of nodes that are likely to be inserted in the table space to before

locking. Note that , if in the meantime a different worker introduces first an identical

node, we pay the cost of having pre-allocated an unnecessary node, that has to be

additionally freed. Figure 6.11 presents the pseudo-code that implements the TLWL-

ABC scheme.

t r ie_node_check_inser t (term t , t r i e node parent) {
ch i ld = TrNode_child(parent)
i n i t i a l _ c h i l d = ch i ld
while (chi ld) {

i f (TrNode_entry(child) == t)
return child

child = TrNode next(child)
}
// pre-allocate a node to represent t
pre_alloc = new_trie_node(t, NULL, parent, NULL)
lock(GLOBAL_locks[hash_node(parent)])
child = TrNode_child(parent)
TrNode_next(pre_alloc) = child
while (child != initial_child) {

if (TrNode_entry(child) == t) {
// freeing the pre-allocated node
free_struct(PAGES_trie_nodes, pre_alloc)
unlock(GLOBAL_locks[hash_node(parent)])
return child

}
child = TrNode_next(child)

}
/ / i n s e r t i n g the p r e - a l l o c a t e d node
TrNode_child(parent) = p re_a l loc
unlock(GLOBAL_locks[hash_node(parent)])
r e t u r n pre_al loc

}

Figure 6.11: Pseudo-code for t r i e_node_check_ inse r t () with a TLWL-ABC scheme.

OPTYap supports all these table locking schemes. The TLWL scheme is the default

scheme adopted for OPTYap. In Chapter 8 we present a detailed evaluation of the four

alternative locking schemes, justifying our decision to choose TLWL as the default.

138 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

6.4 Data Frames Extensions

The or-frames, the subgoal frames and the dependency frames were the main data
structures introduced to support the YapOr and YapTab models. To implement
OPTYap, these data structures were extended to support parallel tabling.

6.4.1 Or-Frames

Or-frames synchronize access to the available alternatives for public choice points and
support scheduling of work.

In the WAM, the choice point stack represents a single branch of the execution tree at
a time. In the SLG-WAM, the choice point stack supports several different branches
at a time. This leads to non-linearity in choice points. In other words, between two
choice points for adjacent nodes in a branch there may exist several other choice points
representing different branches. Hence, the notion of being public has to be clarified.
A worker can physically share a choice point C, physically in the sense that it holds C
on its stacks, while it is not logically sharing C, logically in the sense that its current
branch contains C.

OPTYap considers that a physically shared choice point is a public choice point. When
sharing work, the whole set of choice points being incrementally copied are made
public, be they on the current branch of the sharing worker or not. This maximizes
parallelism and simplifies the further management of suspended branches. The whole
set of data structures representing the execution dependencies can be shared without
changing its structure. However, the or-frame data structure has to store additional
information to reflect the new choice point environment. Figure 6.12 shows an example
that illustrates the new or-frame data fields.

The example is presented through three sub-figures. The sub-figure on the left shows
the evaluation being considered. The sub-figure in the middle presents nodes depen­
dencies at three different points of the evaluation. The nodes are presented linearly
to reflect the physical choice point stack order. A link between two nodes indicates
adjacent nodes on a branch. Situation (a) presents node dependencies after a worker V
had traversed nodes H\ and A/2, suspended on A/2, backtracked to A/i, and traversed
nodes A/3 and A/4. Situation (b) considers that worker V accepted a sharing work

6.4. DATA FRAMES EXTENSIONS 139

Execution Tree

auap*nd*d (c)

P s h a r i n g
.work wi th Q

P Q

Nodes Dependencies

Continuing
with P

c Or \
­Frames Dependencies

O r F r m e m b e r s [P:Q]

-■
O r F r o v m e r s [2]

-■ O r F r n e x t -■
O r F r n e x t o n s t a c k

-■

NI OR­FR

-■

O r F r m e m b e r s []

­ J
O r F r o w n e r s [2]

­ J O r F r n e x t ­ J
O r F r n e x t o n s t a c k

­ J

N2 OR­FR

­ J

­ * ■

O r F r m e m b e r s [P :Q]

1\ ­ * ■

O r F r o w n e r s [2]

1\ ­ * ■

O r F r n e x t

1\ ­ * ■

O r F r n e x t o n s t a c k

1\ ­ * ■ N3 OR­FR
1\ 1\

O r F r m e m b e r s IQ]

1\
O r F r o w n e r s [2]

1\

O r F r n e x t

1\

O r F r n e x t o n s t a c k

1\

N4 OR­FR

1\

_

1\

_
TOP_OR_FR | 1

_ _
TOP OR FR ON STACK |

Figure 6.12: New data fields for the or­frame data structure.

request from worker Q and that it has made public the whole set of nodes. Last,
situation (c) assumes that V suspends on A4, backtracks to A3 and follows to node
A5 (note that A5 is not public).

The sub­figure on the right presents or­frames dependencies at the end of situation (c).
Observe that both workers hold the whole set of public nodes despite A2 not being on
either worker's current branch and A/4 not being on Vs current branch. Remember
that OrFr_members stores the set of workers which contain the choice point on their
branch. A new or­frame data field, OrFr .owners, stores the number of workers that
hold the choice point on their stack, be it on their branch or not. The OrFr_members
field allows worker Q, in situation (c), to determine that it is the unique worker with
node A/4 on its branch. The OrFr Jiembers field allows worker Q to know that there
is another worker holding A4. That worker may, through a completion or answer
resolution operation, include A4 on its branch.

Figure 6.12 also shows two other fields, the OrFr_next and OrFr_next_on_stack fields,
and two registers controlling or­frames, T0P_0R_FR and T0P_0R_FR_0N_STACK. Remem­

ber that T0P_0R_FR allows access to the youngest or­frame on the worker's branch, and
that OrFr_next points to the parent or­frame on branch. The T0P_0R_FR_0N_STACK

140 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

is a new register that allows access to the youngest or-frame on stack, while the
OrFr_next_on_stack is a new or-frame data field that points to the or-frame that
corresponds to the preceding choice point on stack, in such a way that the choice
point stack order can be obtained starting from T0P_0R_FR_0N_STACK and following
the OrFr_next_on_stack fields.

To allow support for suspension of SCCs, the or-frame data structure includes two ad­
ditional fields. The OrFr_suspensions field points to the suspended SCCs stored in the
frame. The OrFr_nearest_suspnode field points to the next or-frame in the worker's
list of or-frames with suspended SCCs that corresponds to the nearest youngest choice
point on stack. The process of suspending SCCs and the role that these new fields
play in the process is detailed in section 6.7.

6.4.2 Subgoal and Dependency Frames

Remember that subgoal frames provide access to answer trie structures, while depen­
dency frames support the fixpoint check procedure. A detailed description of YapTab's
subgoal and dependency frames was given in subsection 4.2.4. Next, we present the
extensions introduced to deal with the OPT model. Both subgoal and dependency
frames include three additional data fields.

For the subgoal frames, these fields are: SgFr_lock, SgFr.worker and SgFr_top_or_f r.
SgFr_lock is a lock that synchronizes concurrent updates to the frame fields. It
can also be used to support the TLEL table lock scheme. SgFr.worker stores the
identification number for the worker that allocated the frame. SgFr_top_or_fr points
to the generator or-frame, if the generator choice point is shared, and otherwise to the
or-frame that corresponds to the youngest shared choice point on the generator choice
point branch. Both SgFr_worker and SgFr_top_or_fr are used to compute the leader
node information (see section 6.5).

The new fields in the dependency frames are: DepFr_lock, DepFr_gen_on_stack and
DepFr_top_or_fr. DepFr_lock synchronizes concurrent updates to the frame fields.
DepFr_gen_on_stack is a boolean that indicates whether the generator choice point
for the correspondent leader choice point is on stack or not. In OPT, a consumer
node can have its generator on other worker's branch. DepFr_top_or_fr points to
the consumer or-frame, if the consumer choice point is shared, and otherwise to the

6.5. LEADER NODES 141

or-frame that corresponds to the youngest shared choice point on the consumer choice
point branch. Both DepFr_gen_on_stack and DepFr_top_or_f r support the fixpoint
check procedure for shared nodes (see section 6.6).

6.5 Leader Nodes

Or-parallel systems execute alternatives early. As a result, it is possible that generators
will execute earlier, and in a different branch than in sequential execution (as an
example, please refer to Figure 5.3). In fact, different workers may execute the
generator and the consumer goals. Workers may have consumer nodes while not
having the corresponding generator nodes in their branches. Conversely, the owner of
a generator node can have consumer nodes being executed by several different workers.
This may induce complex dependencies between workers, therefore requiring a more
elaborate completion operation that may involve the branches from several workers.

To clarify the dependencies between generator and consumer nodes we introduce a
new concept, the Generator Dependency Node (or GDN). Its purpose is to signal the
nodes that are candidates to be leader nodes, therefore representing a similar role as
that of the generator nodes for sequential tabling. A GDN is calculated whenever a
new consumer node, say C, is created. It is defined as the youngest node V on the
current branch of C, that is an ancestor of the generator node Q for C. Obviously, if
G belongs to the current branch of C then G is the GDN. On the other hand, if the
worker allocating C is not the one that allocated G then the youngest node D is a
public node, but not necessarily G-

Figure 6.13 presents three different situations that better illustrate the GDN concept.
WG is always the worker that allocated the generator node G, WC is the worker that
is allocating a consumer node C, and the node pointed by the black arrow is the GDN
for the new consumer.

In situation (a), the generator node G is on the branch of the consumer node C, and
thus, G is the GDN. In situation (b), nodes M\ and A/2 are on the branch of C and
both contain a branch leading to the generator G- As A/2 is the youngest node of both,
it is the GDN. In situation (c), A/i is the unique node that belongs to C's branch and
that also contains G in a branch below. A/2 contains G in a branch below, but it is not

142 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

(a) (b) (c)

(1J Public Node

f \ Private Node

| I Generator Node

(^ Consumer Node

/
Generator
Dependency Node

Next on Branch

Next on Stack

Figure 6.13: Spotting the generator dependency node.

on C's branch, while M% is on C's branch, but it does not contain Q in a branch below.
Therefore, N\ is the GDN. Notice that in both cases (b) and (c) the GDN can be a
generator, a consumer or an interior node.

Sequential tabling performs only completion detection at generator nodes. Our parallel
tabling design perform completion at GDNs. The procedure to compute the leader
node information when allocating a dependency frame for a new consumer node now
relies on the GDN concept. Remember that it is through leader node information
stored in the dependency frames that a node can determine whether it is a leader
node. The main difference from the sequential tabling algorithm is that now we
first hypothesize that the leader node for the consumer node in hand is its GDN,
and not its generator node. Figure 6.14 presents the modified pseudo-code for the
compute_leader_node() procedure.

The parallel compute_leader_node() procedure can be divided in two main blocks.
The first block computes the GDN, and the second block computes leader node

6.5. LEADER NODES 143

compute_leader_node(dependency frame dep_fr) {
// start by computing the generator dependency node
sg_fr = DepFr_sg_fr(dep_fr)
if (SgFr_worker(sg_fr) == W0RKER_ID) {
leader_cp = SgFr_gen_cp(sg_fr)
on_stack = TRUE

} else {
or_fr = SgFr_top_or_fr(sg_fr)
while (W0RKER_ID is not in OrFr_members(or_fr))

or_fr = OrFr_next(or_fr)
leader_cp = OrFr_node(or_fr)
on stack = (SgFr_gen_cp(sg_fr) == leader_cp)

}
/ / and then compute the leader node
df = T0P_DEP_FR
while (DepFr_cons_cp(df) i s younger than leader_cp) {

i f (leader_cp i s equal to DepFr_leader_cp(df)) {
on_stack |= DepFr_gen_on_stack(df)
break

} e l se if (leader_cp i s younger than DepFr_leader_cp(df)) {
leader_cp = DepFr_leader_cp(df)
on_stack = DepFr_gen_on_stack(df)
break

}
df = DepFr_next(df)

}
DepFr_leader_cp(dep_fr) = leader_cp
DepFr_gen_on_stack(dep_fr) = on_stack

Figure 6.14: Modified pseudo-code for compute_leader_node().

information to be stored in the DepFr_leader_cp field. Note that the procedure now

also computes the value of the DepFr_gen_on_stack field. This field is initialized to

TRUE when the generator node for the computed leader node is on stack. Otherwise it

is initialized to FALSE.

The first code block checks if the worker allocating the consumer node is the one

that allocated the generator node. If so, then we assume the generator node is the

GDN. Otherwise, we are in one of the situation presented in Figure 6.13 and we must

traverse the chain of or-frames, starting from the one given by the SgFr_top_or_fr

pointer relative to the subgoal in hand, until we reach one in the consumer branch.

The node for the common or-frame corresponds to the GDN.

Regarding the second code block, we first check the consumer nodes younger than

the newly found GDN for an older dependency. Remark that as soon as an older

dependency V is found in a consumer node C, the remaining consumer nodes, older

144 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

than C but younger than the GDN, do not need to be checked because the leader
node computation ensures that they do not contain older dependencies than V. The
previous computation of the leader node information for the consumer node C already
represents the oldest dependency that includes the remaining consumer nodes. This ar­

gument is similar to the one proved for sequential tabling (remember subsection 4.2.7).

By now, the reader may have spotted an inconsistency between the original GDN
definition and the code block that computes it. If a consumer node was allocated by
the same worker that allocated the generator node, then the procedure assumes that
the GDN is the generator node. However, there are situations where this is not true.
Observe for instance Figure 6.15. Node Q is the GDN computed by the procedure,
despite A/2 being, by definition, the correct GDN. As explained next, this inconsistency
is intentional to achieve code efficiency.

□ Generator Node O Consumer Node
Follows
on Branch

Follows
on Stack

If Generator Dependency Node
^ ^ Procedure's Computed Node

Figure 6.15: The generator dependency node inconsistency.

The key observation is that backtracking over a generator node Q without completing,
it only happens when there is a suspension point younger than Q that depends on
a node older than Q. We can therefore infer that there must exist a consumer
node A/3 such that A/2, or an ancestor A/i, is its correspondent GDN. Thus, if we
execute the remaining compute_leader_node() procedure we will eventually conclude
that the leader of the SCC that includes C is correctly determined, even if starting
from an incorrect node for the generator dependency. This optimization avoids the

6.5. LEADER NODES 145

computation time required to detect the GDN, which can be quite significant in more
complex situations.

As a final note we should remark that due to the dependency frame's design, con­
currency is not a problem for the compute_leader_node() procedure. Observe, for
example, the situation from Figure 6.16. Two workers, Wi and W2, exploiting different
alternatives from a common public node, A4, are allocating new private consumer
nodes. They compute the leader node information for the new dependency frames
without requiring any explicit communication between both and without requiring
any synchronization if consulting the common dependency frame for node A/3. The
resulting dependency chain for each worker is illustrated on each side of the figure.
Note that the dependency frame for consumer node A/3 is common to both workers.
It is illustrated twice only for simplicity.

O o
Generator Node

Consumer Node

DepFrleaderop
Field

Nl

-CD

—{jp
T O P D E P F R (W 2) 8

Figure 6.16: Dependency frames in the parallel environment.

A new consumer node is always a private node and a new dependency frame is always
the youngest dependency frame for a worker. The leader information stored in a
dependency frame denotes the resulting leader node at the time the correspondent
consumer node was allocated. Thus, after computing such information it remains
unchanged. If when allocating a new consumer node the leader changes, the new
leader information is only stored in the dependency frame for the new consumer,
therefore not influencing others. With this scheme each worker views its own leader

146 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

node independently from the execution being done by others. Determining the leader
node where several dependent SCCs from different workers may be completed together
is the problem that we address next.

6.6 The Flow of Control

OPTYap is a multi-sequential system where workers may be in engine mode, that
is, doing work, or in scheduling mode, that is, looking for work. Actual execution
control of a parallel tabled evaluation mainly flows through four procedures. The
process of completely evaluating SCCs is accomplished by the completion() and
answer_resolution() procedures, while parallel synchronization is achieved by the
getworkO and scheduler () procedures.

Here we focus on the flow of control in engine mode, that is on the completionO,
answer_resolution() and getworkO procedures, and leave scheduling for a following
section. Figure 6.17 presents a general overview of how control flows between the
three procedures in discussion and how it flows within each procedure. The design
and implementation details for each procedure are presented in detail next.

6.6.1 Public Completion

Detection of completion in sequential tabling is a complex problem. With the in­
troduction of parallelism the complexity increases even further. The correctness and
efficiency of the completion algorithm appear to be one of the most important issues
in the implementation of a parallel tabling system.

Different paths may be followed when a worker W reaches a leader node for a SCC
S. The simplest case is when the node is private. In this case, we should proceed
as for sequential tabling. Hence, W enters the sequential completionO procedure
previously presented in Figure 4.13. Otherwise, the node is public, and there may
exist dependencies on branches explored by other workers. Therefore, even when all
younger consumer nodes on W's stacks do not have unconsumed answers, completion
cannot be performed. The reason for this is that the other workers can still influence
S. For instance, these workers may find new answers for a consumer node in S, in

6.6. THE FLOW OF CONTROL 147

answer xesolutxoivfncxie N)

YES>.-.-.J if has unconsumed answers?

load next unconsumed answer
proceed

First time backtracking? t-

Consumer node C younger than L
with unconsumed answers?

(L is the backtracking node)

%■■■:■:■:■:■:■:•■■ ■ ■:-:■ YES: r H is public? >

teeter* eavironment (or mm,
 :
mm

iilllii L i s public?
;;;:] goto scheduler O II backtrack () I

■store environment I
goto getwork(L)

restore environment for L
goto completion(L)

g.­i'w ­ k (p u b l i c node N)
:
:
:
:
:
:;:::

:
::;

:
:
:
:
:
:
:
:;:

:
:ÏËS

:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

N i s leader?

N is a generator node of the current §/¥Ë£XyXy>yË&-

SCC with unexploited alternatives?
Unexploited
alternatives?

load next unexploited alternative
proceed

goto scheduler{)

Figure 6.17: The flow of control in a parallel tabled evaluation.

which case the consumer must be resumed to consume the new answers. As a result,
in order to allow W to continue execution it becomes necessary to suspend the SCC
at hand.

Suspending in this context is obviously different from suspending consumer nodes.

148 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

Consumer nodes are suspended due to tabling evaluation. SCCs are suspended due
to or-parallel execution to enable the current worker to proceed executing work.
Suspending a SCC includes saving the SCCs stacks to a proper space in the parallel
data area, leaving in the leader node a reference to where the stacks were saved,
and readjusting the freeze registers and the stack and frame pointers (more details in
section 6.7). If the worker did not suspend the SCC, hence not saving the stacks to
the parallel data area, any future sharing work operation might damage the SCCs
stacks and therefore make delayed completion unworkable. An alternative would be
for the worker to wait until no one else could influence it and only then complete the
SCC. Obviously, this is not an efficient strategy.

To deal with the new particularities arising with concurrent evaluation a novel com­
pletion procedure, public_completion(), implements completion detection for public
leader nodes. Most often, the public_completion() procedure executes through
backtracking to a public generator node whose next available alternative leads to
the completion instruction. Remember that the completion instruction follows a
table_try_me_single or a table_trust_me instruction and that it forces completion
detection when all alternatives have been exploited for a generator node. Note that
the completion instruction only needs to get executed once for each particular gen­
erator node. Further executions of completion detection are triggered by the fixpoint
check procedure. As a consequence, after a completion instruction gets loaded, the
OrFr_alt field of the correspondent or-frame is set to NULL. Remember that for public
nodes, the next available alternative is stored in the OrFr.alt field of the correspondent
or-frame.

Looking back to Figure 6.17, it can be observed that there are two other situations from
where the public_completion() procedure is directly invoked for execution (search for
the 'goto public_completion()' statement). A first situation occurs when resuming
a suspended SCC, we restart execution by performing public_completion() at the
leader of the resumed SCC. A second situation occurs when failing to a public leader
node. The exception is when the public leader node is a generator node for the
current SCC and it contains unexploited alternatives. In such cases, the current SCC
is not fully exploited, and therefore we should exploit first such alternatives. This last
situation can be better understood in subsection 6.6.3.

Figure 6.18 introduces the pseudo-code for the public_completion() procedure. The

6.6. THE FLOW OF CONTROL 149

first step in the algorithm is to check for younger consumer nodes with unconsumed
answers. If there is such a node, we resume the computation to it. In parallel tabling,
resuming a computation to an younger consumer node C includes: (i) updating the
DepFr_back_cp dependency frame field of C when the leader detecting for comple­
tion is older than the current reference stored in DepFr_back_cp (details about the
DepFr_back_cp semantics for public nodes in subsection 6.6.2); (ii) setting the worker's
bit in the OrFr_member field for the or-frames in the branch being resumed; and (iii)
using the forward trail to restore the bindings for the branch being resumed.

public_completion(public node N) {
if (N is the current leader node) {

/ / remember that T0P_0R_FR points to N's or-frame
owners = OrFr_owners(TOP_OR_FR) / / keep N's owners
df = T0P_DEP_FR
while (DepFr_cons_cp(df) is younger than N)) {

if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
// dependency frame with unconsumed answers
lock(DepFr_lock(df))
DepFr_back_cp(df) = oldest(N, DepFr_back_cp(df))
unlock(DepFr_lock(df))
restore_member_info(T0P_0R_FR, DepFr_top_or_fr(df))
C = DepFr_cons_cp(df)
restore_bindings(CP_TR(N), CP_TR(C))
goto answer_resolution(C)

}
df = DepFr_next(df)

}
L = youngest_node_holding_a_suspended_SCC_to_resume()
if (L is equal or younger than N) {
// L belongs to the current SCC
suspend_SCC(N)
resume_SCC(L)
goto public_completion(L)

}
if (owners == 1) {
// the current SCC is completely evaluated
perform_public_completion()

> else {
// other workers can still influence the current SCC
suspend_SCC(N)

}
goto getwork(N)

}
goto scheduler()

}

Figure 6.18: Pseudo-code for public_completion().

If the algorithm does not find any younger consumer node with unconsumed answers
it must check for suspended SCCs in the scope of its SCC. A suspended SCC should

150 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

be resumed if it contains consumer nodes with unconsumed answers. To resume a
suspended SCC a worker needs to copy the saved stacks to the correct position in its
own stacks, and thus, it has to suspend its current SCC first.

We thus adopted the strategy of resuming suspended SCCs only when the worker finds
itself at a leader node, since this is a decision point where the worker either completes
or suspends the current SCC. Hence, if the worker resumes a suspended SCC it does
not introduce further dependencies. This is not the case if the worker would resume
a suspended SCC 1Z as soon as it reached the node where it had suspended. In that
situation, the worker would have to suspend its current SCC S, and after resuming 7Z
it would probably have to also resume S to continue its execution. A first disadvantage
is that the worker would have to make more suspensions and resumptions. Moreover,
if we resume earlier, 1Z may include consumer nodes with unconsumed answers that
are common with S. On the other hand, in a leader node position, we know that the
consumer nodes belonging to S have consumed all the answers currently available, and
thus if 71 has to be resumed it is because it has consumer nodes with unconsumed
answers that do not belong to S. More importantly, suspending in non-leader nodes
leads to further complexity. Answers can be found in upper branches for suspensions
made in lower nodes, and this can be very difficult to manage.

A SCC S is completely evaluated when (i) there are no unconsumed answers in any
consumer node in its scope, that is, in any consumer node belonging to S or in any
consumer node within a SCC suspended in a node belonging to S; and (ii) there
is only a single worker owning its leader node C Condition (ii) has to be satisfied
first, that is, before the worker W performing completion starts checking for younger
consumer nodes with unconsumed answers. Otherwise, other workers may find new
answers in the meantime for the consumer nodes already checked by W and these
workers may retire from owning £ before W ends checking. As a result, S may be
incorrectly considered completely evaluated.

When a SCC is found to be completely evaluated then it is completed. Completing a
SCC includes marking all dependent subgoals as complete; releasing the dependency
and or-frames belonging to the complete branches, including the branches in suspended
SCCs; releasing the frozen stacks and the memory space used to hold the stacks from
suspended SCCs; and finally readjusting the freeze registers and the whole set of stack
and frame pointers.

6.6. THE FLOW OF CONTROL 151

Our public completion algorithm has two major advantages. One is that the worker
checking for completion determines if its current SCC is completely evaluated or not
without requiring any explicit communication or synchronization with other workers.
The other is that it uses the SCC as the unit for suspension. This latter advantage
is very important since it simplifies the management of dependencies arising from
branches not on stack. A leader node determines the position from where dependencies
may exist in younger branches. As a suspension unit includes the whole SCC and
suspension only occurs in leader node positions, we can simply use the leader node to
represent the whole scope of a suspended SCC, and therefore simplify its management
(section 6.7 details this issue).

6.6.2 Answer Resolution

The answer resolution operation loads tabled answers from the table space to the ex­
ecution stacks. The operation also support the fixpoint check procedure. Usually, the
answer_resolution() procedure gets executed through failure to a consumer node, in
which case execution jumps to the answer_resolution instruction through the CP_ALT
choice point field. The execution can also flow directly to the answer_resolution()
procedure when scheduling for a backtracking node during the fixpoint check procedure
(these are the cases for the goto answer_resolution() statement in Figure 6.17).

Figure 6.19 shows the pseudo-code that implements the answer resolution operation for
the parallel environment. Comparing with the procedure previously presented in Fig­
ure 4.14 for sequential tabling, it can be observed that the new answer_resolution()
procedure extends the sequential algorithm to support the new situations arising with
parallelism.

Initially, the procedure checks the consumer node C for unconsumed answers to be
loaded for execution. If we have answers, execution will jump to them. Otherwise,
if there are no such answers, we schedule for a backtracking node. Remember that
a valid reference B in the DepFr_back_cp field of the dependency frame associated
with C indicates that we are in a fixpoint check procedure. Therefore, we search for
a consumer node with unconsumed answers. If found then answer resolution gets re-
executed. Otherwise, we backtrack to the youngest node between the current leader
node and B. For both situations, the OrFr_member bitmaps and the bindings for the

152 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

answer_resolution(consumer node C) {
DEP_FR = CP_DEP_FR(C)
if (DepFr_last_ans(DEP_FR) != SgFr_last_answer(DepFr_sg_fr(DEP_FR))) {
// unconsumed answers in current dependency frame
load_next_answer_from_subgoal(DepFr_sg_fr(DEP_FR))
proceed

}
dep_back_cp = DepFr_back_cp(DEP_FR)
if (dep_back_cp == NULL) {
if (C is a public node)
goto scheduler()

else
backtrack_to(CP_B(C))

}
back_cp = youngest(DepFr_leader_cp(TOP_DEP_FR), dep_back_cp)
df = DepFr_next(DEP_FR)
while (DepFr_cons_cp(df) is younger than back_cp)) {

if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
// dependency frame with unconsumed answers
lock(DepFr_lock(df))
DepFr_back_cp(df) = oldest(DepFr_back_cp(df), dep_back_cp)
unlock(DepFr_lock(df))
restore_member_info(TOP_OR_FR, DepFr_top_or_fr(df))
back_cp = DepFr_cons_cp(df)
restore_bindings(CP_TR(C), CP_TR(back_cp))
goto answer_resolution(back_cp)

}
df = DepFr_next(df)

}
restore_member_info(TOP_OR_FR, CP_OR_FR(back_cp))
restore_bindings(CP_TR(C), CP_TR(back_cp))
if (back_cp is a public node)
goto getwork(back_cp)

else
goto completion(back_cp)

}

Figure 6.19: Pseudo-code for answer_resolution().

branch being resumed should be restored. Moreover, if we backtrack to a consumer
node, the correspondent DepFr_back_cp field should be updated.

There are two interesting aspects, both related with the fixpoint check procedure, that
should be pointed in the answer_resolution() procedure. One is that the youngest
node between the current leader node and the node given by the C's DepFr_back_cp
is used by the procedure as the node that limits the search for youngest consumer
nodes with unconsumed answers. The other is that if a consumer node B is scheduled
for backtracking, the DepFr_back_cp field associated with B is updated to the oldest
node between its current reference node and the node given by C's DepFr_back_cp

6.6. THE FLOW OF CONTROL 153

field. In order clarify these aspects, Figure 6.20 illustrates two different sequences
for a complete loop over the fixpoint check procedure. Both sequences start with a
worker W in a leader node position, and assume that all younger consumer nodes have
unconsumed answers.

(a)

(b)

answe
goto

_resolution(C2)
; i i s updated by
another worker answe

goto
­ resolution(CI)

goto
getwork(L2)

(=) 0 0 0 0
"0 0 0 0 W rta J

\c i \—*- NULLI < c i ^ — ^ Í N Õ L L I 4>^EI w<^-*Qrj <$-\zl
^ C 2 \ — * ­ | N U L L | w

v^~H
L2 1 w

v^~-|
 L2 1 -̂*Q <^_Q

answer
goto CI i s updated by LI becomes the goto goto

resolution(C2) another worker current leader node answerresolution(Cl) getwork(Ll)

© 0 © 0 W Qa\

W f 1­2 J è è 0 0 0
\Cl\ *■ NULL I \C]X—*■ NULL! ­̂o <^H3 w^^[n~| 4-EI
A : 2 \ — ► I K O L L I W ^ C 2 ^ — » | L2 | wV^~*"l " 1 W ^ C 2 ^ — > | M | 4>^EJ < -̂EI

■

\cà\—►IHULLI \cs\—> NULL! \pi\—*■ NDLLI

f J Current Leader Node —*\ 1 DepPr backup Field

/ ^ Consumer Node ; Follows On Stack

Figure 6.20: Scheduling for a backtracking node in the parallel environment.

Regarding situation (a), the computation initially moves from leader node £ 2 to
consumer node C2, which includes updating the DepFr_back_cp field of C2 to the leader
reference C2. Then, while worker W was consuming the available unconsumed answers
for C2, another worker, also in a fixpoint check procedure, updates Ci's DepFr_back_cp
to its leader reference, C\ in the case. Thus, after consuming all available answers in
C2, W is scheduled to consumer node C\, but Ci's DepFr_back_cp remains unchanged
because it holds an older leader reference. Last, when all available unconsumed
answers for C\ have been consumed, W backtracks to £2 . Despite C\ holding a
DepFr_back_cp reference to £1, meaning that all generator and interior nodes younger

154 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

than JCI are necessarily exploited, the current leader node is younger than C\, and
therefore backtracking should be performed first to £ 2 in order to avoid computation
from flowing to nodes outside the current SCC.

Situation (b) presents a slightly different sequence. Worker W starts from a leader
node £ 2 that resumes the computation to consumer node C2. Next, a different worker
updates the DepFr_back_cp field of C\ while W is consuming the available answers
for C2. However, when exploiting an unconsumed answer for C2, W allocates a new
consumer node and as a consequence, changes its current leader node to become C\.
After all available answers for C2 have been consumed, C\ is scheduled for backtracking.
The interesting difference from situation (a) happens when, at the end, after all
available answers for C\ have been consumed, Cx is scheduled for backtracking. This
results not only from the fact that L\ is the current leader node, but also from the £1
reference in the DepFr_back_cp field of C\ that allows us to conclude that the branch
between the initial leader node £ 2 and the current leader node £1 is already exploited.
Note that, nothing can be concluded about £1, for instance, £1 can still have available
alternatives. Hence, using public_completionO to continue execution for C\ would
be incorrect. We therefore use getworkO to ensure the correct behavior, as discussed
next.

6.6.3 Getwork

Getwork is the last flow control procedure. It contributes to the progress of a parallel
tabled evaluation by moving to effective work. Remark that, despite this procedure
being related with the process of getting a new piece of work, it is independent from
the process of scheduling for a new piece of work. More precisely, we use getwork
for public nodes bordering private regions, that is, the youngest public nodes on each
branch, while scheduling works over interior nodes in the public region of the search
tree.

The usual way to execute getworkO is through failure to the youngest public node on
the current branch, in which case the getwork instruction gets loaded for execution.
However, there are three other cases from where getworkO is directly invoked to
continue the execution. One occurs in the fixpoint check procedure to ensure the
correct behavior of the computation when the leader node is scheduled for backtrack-

6.6. THE FLOW OF CONTROL 155

ing. The other two occur in the public completion algorithm and both are related

with situations where the SCC in hand is removed from the execution stacks, either

because it is completed or suspended.

Figure 6.21 presents the pseudo-code that implements the ge tworkO procedure. We

can distinguish two blocks of code. The first block detects completion points and

therefore makes the computation flow to the pub l ic_comple t ion() procedure. The

second block corresponds to or-parallel execution. It checks the associated or-frame

for available alternatives and executes the next one, if any. Otherwise, it invokes

the scheduler. Remember that the T0P_0R_FR register points to the or-frame for the

youngest public node on the current branch, that is, the or-frame related with A/".

getwork(public node N) {
/ / code for de tec t ing completion po in t s
if (DepFr_leader_cp(TOP_DEP_FR) == N &&

(DepFr_gen_on_stack(TOP_DEP_FR) == FALSE | | OrFr_alt(T0P_0R_FR) == NULL))
goto public_completion(N)

/ / o r i g i n a l code i nhe r i t ed from YapOr
i f (0rFr_alt(T0P_0R_FR) != NULL) {

load_next_altemative_from_frame(TOP_OR_FR)
proceed

} e l s e
goto scheduler()

}

Figure 6.21: Pseudo-code for ge tworkO.

The ge tworkO procedure detects a completion point when M is the leader node

pointed by the top dependency frame. The exception is if M is itself a generator node

for a consumer node within the current SCC (DepFr_gen_on_stack(TOP_DEP_FR) --

TRUE) and it contains unexploited alternatives (OrFr_alt(T0P_0R_FR) != NULL). In

such cases, the current SCC is not fully exploited. Hence, we should exploit first the

available alternatives, and only then invoke completion.

Figure 6.22 illustrates the complete set of situations where computation flows from

ge tworkO to pub l i c_comple t ion () . It distinguishes two different cases: goto situ­

ations, and load situations. The goto situations correspond to the completion points

detected by ge tworkO. A load situation occurs when completion is loaded for execu­

tion from a generator node whose next available alternative points to a complet ion

instruction. This situation occurs independently of the generator being leader or not.

156 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

Goto Situations

Load Situations

(1 Any Node

i I G e n e r a t o r Node

O Top Consumer Node

O

OrFralt Field

DepFr_leader_cp Field

DepFr_gen_on_stack Field

Follows On Stack

Figure 6.22: From getwork to public completion.

6.7 SCC Suspension

Whenever a worker executing a public completion operation determines that the
current SCC depends on branches being exploited outside the SCC, it should delay
completion until no more dependencies exist. To allow the worker to proceed with
the execution of other work it is convenient to suspend the current SCC at this point.
Remark that SCC suspension is absolutely necessary for an environment copy based
implementation. Environment copy requires coherency between workers for the sub-
stacks corresponding to shared regions. Delayed completion would be incorrect if a
SCC is not suspended and an incremental copying operation damages its stacks.

The SCC suspension procedure includes saving the stacks segments relative to the SCC
being suspended to a proper space in the parallel data area and leaving a reference
to where the stacks were saved in the leader node. This reference corresponds to
the suspension frame data structure. The suspension frame is a novel data structure
introduced to allow for suspended SCCs to be resumed. Figure 6.23 presents an
example of suspension that illustrates how suspension frames relate with suspended
SCCs.

The process of suspending a SCC works as follows. Initially, the set of stack segments
corresponding to the SCC being suspended is copied to the parallel data area. After

6.7. SCC SUSPENSION 157

f . \
Heap T r a i l Local

III Suspending
SCC

r Heap T r a i l Local

\

§§i

\

§§i

;£;i:;;;' Leader Node ISCC Stack
Segment

Figure 6.23: Suspending a SCC.

that, a new suspension frame is allocated and a reference to it is stored in the or-
frame relative to the leader node of the SCC being suspended. Finally, the whole set
of stack and frame pointers are readjusted in order to correctly reflect the resulting
computation state.

A suspension frame holds the following data from a suspended SCC: the values from
the T0P_SG_FR, T0P_DEP_FR, and T0P_0R_FR_0N_STACK registers at the time the SCC
was suspended, the pointers to the beginning of each area where the segments were
saved, and the size of each suspended segment. The data stored in a suspension frame
plus the data stored in the node that holds the reference to the suspension frame are
sufficient to restore a suspended SCC to its original computation state.

Notice that we never need to suspend a SCC S that does not contain private nodes.
Otherwise, S will repeatedly suspend for each worker sharing it. This is a safe
optimization because, at least, one of the workers, say W, sharing S will later suspend
or complete S, either because the current SCC of W includes <S and further private
nodes, or because W will be the last worker executing public completion over S.

In order to access the suspension frames for a particular node, the or-frame data
structure was extended with a OrFr_suspensions extra field to point to a linked list
of suspension frames for the node. The linked list is maintained through a SuspFr_next

158 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

field (not illustrated in Figure 6.23).

A suspended SCC is resumed when a worker executing completion in a public leader
node finds that a suspended SCC in the scope of its current SCC contains consumer
nodes with unconsumed answers. In order to find out which suspended SCCs need
to be resumed, each worker maintains a list of suspended SCCs that may contain
consumer nodes with unconsumed answers. In order to avoid frequent and redundant
checking operations for suspended SCCs, a worker only checks for suspended SCCs
when it is the last worker backtracking from a node J\f. If there are suspended SCCs,
the or-frame associated with M is included in the worker's list of or-frames with
suspended SCCs. If the or-frame already belongs to other worker's list, it is not
collected. This guarantees that each or-frame only belongs to a worker's list at a time.

Each worker holds a TOP_SUSP_FR register that points to the list C of or-frames with
suspended SCCs. The list always starts with the or-frame of C that corresponds to
the youngest choice point on stack. The list C is maintained through a new field
OrFr_nearest_suspnode in the or-frame. The field always points to the next or-frame
of C that corresponds to the nearest younger choice point on stack. In this way we
guarantee that the list of or-frames belonging to C is traversed in stack order.

Figure 6.24 illustrates how or-frames referring suspended SCCs are linked. The figure
assumes two workers, W\ and W2, and four public nodes containing suspended SCCs.
For simplicity of illustration, the figure only presents the segment of the local stack
that is shared between both workers.

The figure shows that even if a worker contains several or-frames with suspended SCCs,
it may not refer the complete list. It further shows that an or-frame with suspended
SCCs may not be in any linking list. The or-frames relative to nodes A"i and A4 are
in the list for Wi, the or-frame relative to A3 is in the list for W2, while the or-frame
for A2 is not in any list. An or-frame with suspended SCCs does not belong to any
worker's list either if there still exist workers in the node, or if it is already known
that none of the suspended SCCs contain consumer nodes with unconsumed answers.
However, this latter case does not guarantees that the SCCs are completely evaluated.
As a result of a completion operation performed above, workers can still be scheduled
to include nodes belonging to those SCCs.

A worker executing public completion follows its list of or-frames with suspended

6.7. SCC SUSPENSION 159

Loca l SI

mi

m

n

| |

Figure 6.24: Using or­frames to link suspended SCCs.

SCCs in order to search for SCCs to be resumed. It starts searching the suspended
SCCs in the or­frame given by the TOP_SUSP_FR register and then it follows the
OrFr_nearest_suspnode chain until either a suspended SCC with unconsumed an­

swers is found or until reaching an or­frame corresponding to a node younger than
the leader node executing completion. At the end of the process, it updates the
TOP_SUSP_FR register to the or­frame where searching was aborted, either because a
SCC was resumed there or because it corresponds to a node older than the leader node.
Resuming a SCC includes copying the previously saved stack segments in the parallel
data area to the correct stack positions of the worker resuming the SCC. Therefore,
in order to protect the current stack's data from being lost, the worker has to suspend
its current SCC first.

Figure 6.25 illustrates the management of suspended SCCs when searching for SCCs
to resume. The figure considers a worker W executing public completion in a leader
node M\ and assumes that the worker's list of or­frames with suspended SCCs refers
two or­frames in its current SCC S\.

The search for SCCs to be resumed starts at the or­frame given by TOP_SUSP_FR.

;ack
■ Or-Frames

►■ Suspended
SCCs

Wl (TOP SUSP_FR)

W2 (TOP_SUSP_FR)

160 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

Local

Or-Frames

•— — ►

Suspended
SCCs

TOP SUSP FR

Resuming
SCC S3

Local

w mm

Or-Frames
Suspended

SCCs

Figure 6.25: Resuming a SCC.

Assuming that the suspended SCC <S4 does not contain unconsumed answers, the
search continues in the next or­frame in the list. Here, suppose that SCC «S2 does not
have consumer nodes with unconsumed answers, but SCC <S3 does. At this point, the
current SCC «Si must be suspended. This includes storing the correspondent reference
in the or­frame relative to its leader node A/i, and updating TOP_SUSP_FR to the or­

frame referring to the SCC to be resumed. Now we can resume «S3.

Resuming <S3 includes copying the set of suspended stack segments from the parallel
data area to the correct position in W's stacks; updating the OrFr_members and
OrFr_owners info for the or­frames below the previous leader node (A/"i in this case),
including the or­frames from «S3; adjusting the whole set of stack and frame pointers
in order to reflect the previous computation state of «S3; and releasing the suspension
frame related to «S3.

Still regarding Figure 6.25, notice that the or­frame relative to node A/3 was removed
from W's list of or­frames with suspended SCCs. This happens because <S3 may not
include A/3 in its stack segments. For simplicity and efficiency, instead of checking
«S3's segments, we simply remove A/3's or­frame from W's list. Note that this is a
safe decision as a SCC only depends from branches below the leader node and thus,
if «S3 does not include A3 then no new answers can be found for «S/t's consumer nodes.

6.8. SCHEDULING WORK 161

Otherwise, if this is not the case then W or other workers can eventually be scheduled
to a node held by S4 and find new answers for at least one of its consumer nodes. In this
case, when failing, these workers will necessarily backtrack through A/3, S^s leader.
Therefore, the last worker backtracking from A/3 will collect the or-frame relative to
A3 for its own list of or-frames with suspended SCCs, which allows £4 to be later
resumed when public completion is being executed in an upper leader node.

Remember even when a worker does not find any suspended SCC to resume, it may
not always perform completion. This occurs when it is not the unique owner of the
current leader node. Remember that a worker W containing a node ÁÍ in its stacks
is an owner of A/". A problem arises if W suspends the SCC that includes ÁÍ. W
then retires from owning A/". Nevertheless, if W later resumes the suspended SCC
then W again owns M. Execution would be incorrect if a worker would complete
a SCC based on being the unique owner of the current leader node £, and then a
suspended SCC that includes C was resumed. To overtake this problem, we assume
that the number of owners of a node M corresponds to the number of representations
of A/" in the computational environment, be M represented in the execution stacks of a
worker or be N in the suspended stack segments of a SCC. Therefore, whenever a SCC
is suspended, the OrFr_owners field of the or-frames belonging to the SCC remains
unchanged.

6.8 Scheduling Work

Scheduling work is the scheduler's task. It is about efficiently distributing the available
work for exploitation between the running workers. In a parallel tabling environment
we have the extra constraint of keeping the correctness of sequential tabling semantics.
A worker enters in scheduling mode when it runs out of work and returns to execution
whenever a new piece of unexploited work is assigned to it by the scheduler.

Subsection 3.2 presented the YapOr's scheduler algorithm: when a worker runs out
of work it searches for the nearest unexploited alternative in its branch. If there is no
such alternative, it selects a busy worker with excess of work load to share work with.
If there is no such a worker, the idle worker tries to move to a better position in the
search tree.

162 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

The scheduler for the OPTYap engine is mainly based on YapOr's scheduler. All
the scheduler strategies implemented for YapOr were used in OPTYap. However,
extensions were introduced in order to preserve the correctness of tabling semantics.
These extensions allow support for leader nodes, frozen stack segments, and suspended
SCCs.

Figure 6.26 presents two different situations that illustrate how leader node semantics
influences the usual scheduling for the nearest node with unexploited alternatives
within the current branch. Situation (a) considers that the current leader node is
equal or older than the nearest node with unexploited alternatives, while situation
(b) considers that the current leader node is younger than the nearest node with
unexploited alternatives.

U Tf Ti
U * S
g o) a

(a)

A

o-
□-

\ r

alternative

completion

answer resolution

(b)

04:
Current
Leader
Node

□-

alternative

completion

answer resolution

Current Node Position OrFr alt Field

Scheduled Node Ur- OrFr nearest livenode Field

J

Figure 6.26: Scheduling for the nearest node with unexploited alternatives.

A node has available work if the 0rFr_alt field of its relative of-frame is not NULL.
Besides the usual instructions corresponding to unexploited alternatives, this includes
the cases where the 0rFr_alt field points to a completion or to an answer_resolution
instruction.

6.8. SCHEDULING WORK 163

The OPTYap model was designed to enclose the computation within a SCC until
the SCC was suspended or completely evaluated. Thus, OPTYap introduces the
constraint that the computation cannot flow outside the current SCC, and workers
cannot be scheduled to execute at nodes older than their current leader node. Therefore,
when scheduling for the nearest node with unexploited alternatives, if it is found that
the current leader node is younger than the potential nearest node with unexploited
alternatives, then the current leader node is the node scheduled to proceed with the
evaluation. This is the case illustrated in situation (b) of Figure 6.26.

The next case is when the process of scheduling for the nearest node with unexploited
alternatives does not return any node to proceed execution. The scheduler then starts
searching for busy workers that can be requested for work. If such a worker B is
found, then the requesting worker moves up to the lowest node that is common to B,
in order to become partially consistent with part of B. Otherwise, no busy worker
was found, and the scheduler moves the idle worker to a better position in the search
tree. Therefore, we can enumerate three different situations for a worker to move up
to a node M: (i) M is the nearest node with unexploited alternatives; (ii) M is the
lowest node common with the busy worker we found; or (iii) M corresponds to a
better position in the search tree.

The process of moving up in the search tree from a current node Mo to a target node
J\ff is mainly implemented by the move_up_one_node() procedure. This procedure is
invoked for each node that has to be traversed until reaching Mj. The presence of
frozen stack segments or the presence of suspended SCCs in the nodes being traversed
influences and can even abort the usual moving up process. Figure 6.27 presents the
pseudo-code that implements the move_up_one_node() procedure for OPTYap.

The argument for the move_up_one_node() procedure is the node Mi where the idle
worker W is currently positioned at and from where it wants to move up one node.
Initially, the procedure checks for frozen nodes on the stack to infer whether W is
moving within a SCC. If so, W is simply deleted from member of the or-frame relative
to Mi and if it is the last worker leaving the frame then it checks for suspended SCCs
to be collected.

The interesting case is when W is not within a SCC. If Mi holds a suspended SCC, then
W can safely resume it. If resumption does not take place, the procedure proceeds
to check whether Mi is a consumer node. Being this the case, W is deleted from the

164 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

move_up_one_node(public node N) {
// remember that T0P_0R_FR points to N's or-frame
lock(0rFR_lock(T0P_0R_FR))

// frozen nodes on stack ?
if (B_FZ is younger than N) {
delete_from_bitmap(OrFr_members(TOP_OR_FR), W0RKER_ID)
if (OrFr_members(TOP_OR_FR) is empty) {
collect_suspended_SCCs(TOP_OR_FR)

>
unlock(OrFR_lock(T0P_0R_FR))
return CP_B(N)

}
// suspended SCCs to resume ?
if (N holds a suspended SCC to resume) {
unlock(OrFR_lock(TOP_OR_FR))
restore_bindings(TR, CP_TR(N))
resume_SCC(N)
goto public_completion(N)

// N is a consumer node ?
if (B_FZ == N) {
delete_from_bitmap(OrFr_members(TOP_OR_FR), W0RKER_ID)
if (OrFr_owners(TOP_OR_FR) == 1)
complete_suspended_SCCs(TOP_OR_FR)

unlock(OrFR_lock(TOP_OR_FR))
return CP_B(N)

}

// unique owner ?
if (OrFr_owners(TOP_OR_FR) == 1) {
complete_suspended_SCCs(TOP_OR_FR)
if (SgFr_gen_cp(TOP_SG_FR) == N)
mark_subgoal_as_completed(TOP_SG_FR)

free_struct(PAGES_or_frames, T0P_0R_FR)
return CP_B(N)

}

delete_from_bitmap(OrFr_members(TOP_OR_FR), W0RKER_ID)
OrFr_owners(T0P_0R_FR)—
unlock(OrFR_lock(TOP_OR_FR))
return CP_B(N)

>

Figure 6.27: Pseudo-code for move_up_one_node().

members bitmap of the or-frame relative to Mi and if W is the unique owner of M% then
the suspended SCCs in Mi can be completed. Completion can be safely performed over
the suspended SCCs in Mi not only because the SCCs are completely evaluated, as
none was previously resumed, but also because no more dependencies exist, as there

6.9. LOCAL SCHEDULING 165

are no more branches below A/í.

The reasons given to complete the suspended SCCs in A/í hold even if A/í is not a
consumer node, as long as W is the unique owner of A/Í- In such case, as W is the last
owner leaving A/í, the or-frame for A/í can be freed and if A/í is a generator node then
its correspondent subgoal can be also marked as completed. Otherwise, W is simply
deleted from being member and owner of the or-frame relative to A/í-

The scheduler extensions presented are mainly related with tabling support. Further
work is needed to implement and experiment with proper scheduling strategies that
can take advantage of the parallel tabling environment, as the scheduling strategies
inherited from the YapOr's scheduler were designed for an or-parallel model, and not
for an or-parallel tabling model. Next, we propose two new scheduling strategies that
explicitly deal with the flow of a parallel tabling evaluation:

• When a worker is looking for others with available work, the scheduler must give
higher priority to work that contains suspended SCCs. By doing so, suspended
SCCs can be resumed sooner, and therefore we increase the probability of an
early successful completion. Furthermore, we may avoid further dependencies
that would occur if the subgoals involved were not completed early.

• The scheduler must avoid sharing branches with consumer nodes. Consumer
nodes correspond to frozen segments, and frozen segments involve extra copying
of stack segments. Moreover, we may generated suspended SCCs that in turn
contain repeated stack segments corresponding to shared frozen segments.

We believe that these strategies can contribute to a more efficient distribution of work
for parallel tabling and thus we intend to further implement and experiment the impact
of these strategies in OPTYap's performance.

6.9 Local Scheduling

All the implementations issues described above assume a batched scheduling strategy.
In this section we present how the batched based implementation for parallel tabling
can be straightforwardly extended to support local scheduling.

166 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

Support for local scheduling in the parallel environment includes the extensions pre­

viously presented in subsection 4.3 to support local scheduling for sequential tabling.
Remember that a generator choice point is implemented as a consumer choice point
and that this includes allocating a dependency frame when storing a generator node.
One should also remember that when a generator node loads the completion instruc­

tion for execution, it also updates the field for the next available alternative to the
answer_resolution instruction, in order to guarantee that, subsequently, the node
will act like a consumer node and consume the found answers.

Full support for the parallel execution with local scheduling is attained by considering
the novel situation where a generator turned consumer is both a public node and the
youngest node on stack. Figure 6.28 illustrates the case in point. Note that node J\f
obviously corresponds to the local scheduling implementation for generator nodes, as
this is the unique case where the DepFr_leader_cp field of a node references itself.

answer resolution

□
O Top Consumer Node

OrFr alt Field

□ DepFr_leader_cp Field
Figure 6.28: Local scheduling situation requiring special implementation support.

The problem arising with this kind of situation is that M can be computed as a
leader node. This happens because the DepFr_leader_cp field of the dependency
frame corresponding to the top consumer node, that is A/", references J\f. However,
A/" should only execute completion when it is found that no unconsumed answers are
available. Implementation support for this special situation requires slight changes to
the getworkO, answer_resolution() and public .complet ion () procedures.

Figure 6.29 presents the modified pseudo­code for the getworkO procedure. It intro­

duces a single modification in the block of code that detects for completion points,
by replacing NULL for answer_resolution in the test involving the OrFr_alt field of
the T0P_0R_FR register, and by adding a new test condition that avoids completion
detection for nodes in the local scheduling special situation. The first change is
because, in local scheduling, the last update operation to the OrFr_alt field relative

6.9. LOCAL SCHEDULING 167

to a generator node is to answer_resolution and not to NULL. The second change
forces the nodes in the local scheduling special situation to act like consumer nodes
and consume the newly found answers.

getwork(public node M) {
// code for detecting completion points
if (DepFr_leader_cp(TOP_DEP_FR) == N kk

(DepFr_gen_on_stack(TOP_DEP_FR) == FALSE I I
(0rFr_alt(T0P_0R_FR) == answer_resolution kk B_FZ != N))) // changed

goto public_completion(N)

} "

Figure 6.29: Pseudo-code for getworkQ with a local scheduling strategy.

We next present in Figure 6.30 the new pseudo-code for the answer_resolution()
procedure. When the node C executing the procedure is also the current leader
node then it is known that we are in the presence of the local scheduling special
situation, because a leader node never executes answer_resolution(). Notice that
in this case, C forms a SCC with a single node, and thus, computation cannot flow
to upper nodes while C remains on stack. Hence, if it is found that no unconsumed
answers are available for C, no work can be done for the current SCC. The new
code for answer_resolution() detects this kind of situations and moves the flow of
the computation to the public_completion() procedure, which is where they are
resolved.

answer_resolution(consumer node C) {
DEP_FR = CP_DEP_FR(C)
if (DepFr_last_ans(DEP_FR) != SgFr_last_answer(DepFr_sg_fr(DEP_FR))) {

load_next_answer_from_subgoal(DepFr_sg_fr(DEP_FR))
proceed

}
if (DepFr_leader_cp(TOP_DEP_FR) == C) // new
goto public_completion(C) // new

dep_back_cp = DepFr_back_cp(DEP_FR)
} '

Figure 6.30: Pseudo-code for answer_resolution() with a local scheduling strategy.

Figure 6.31 presents the extended pseudo-code for the public_completion() pro­
cedure. It includes the following modifications: adding a test condition to avoid
getwork() when facing the local scheduling special situation; and introducing a new
block of code to specifically process the situation. Notice that the new block of code is

168 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

positioned after the code that implements completion or suspension for the previous
SCC on stack because this is from where a local scheduling special situation can result.

public_completion(public node N) {
if (N is the current leader node) {

if (DepFr_leader_cp(TOP_DEP_FR) != N) // new
goto getwork(N)

// start of new block of code due to local scheduling
df = T0P_DEP_FR
if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
unlock(OrFr_lock(T0P_0R_FR))
load_next_answer_from_subgoal(DepFr_sg_fr(df))
proceed

}
// no unconsumed answers found
lock(0rFr_lock(T0P_0R_FR))
if (OrFr_owners(TOP_OR_FR) != 1) {
// remove N from stack
delete_from_bitmap(OrFr_members(TOP_OR_FR), W0RKER_ID)
OrFr_owners(T0P_0R_FR)—
T0P_0R_FR_0M_STACK = OrFr_next_on_stack(TOP_OR_FR)
T0P_DEP_FR = DepFr_next(df)
unlock(OrFr_lock(T0P_0R_FR))
if (SgFr_gen_cp(TOP_SG_FR) == N)
T0P_SG_FR = SgFr_next(TOP_SG_FR)

T0P_0R_FR = CP_OR_FR(CP_B(N))
adjust_freeze_registers()
backtrack_to(CP_B(N))

} else {
// make N an interior node
0rFr_alt(T0P_0R_FR) = NULL
unlock(0rFr_lock(T0P_0R_FR))
T0P_DEP_FR = DepFr_next(df)
free_struct(PAGES_dependency_frames, df)
adjust_freeze_registers()
goto scheduler()

}
// end of new block of code

}
goto scheduler()

Figure 6.31: Pseudo-code for public_completion() with a local scheduling strategy.

The new block of code starts by checking node M for unconsumed answers to proceed
execution. If it is found that no unconsumed answers are available in J\f then no work
can be done for the current SCC and therefore execution only proceeds if the current
SCC changes. If the worker W executing the procedure is not the unique owner of M
then H is removed from the stacks of W and execution is backtracked to the parent

6.10. CHAPTER SUMMARY 169

node on the branch. Otherwise, as W is the unique owner, N is made to be an interior
node without available alternatives so that W can enter in scheduling mode and get
a new piece of work at a different node. Execution is not immediately backtracked
in this second case because W is the last worker leaving J\T and therefore it must use
the scheduler's move_up_one_node() procedure to move in the search tree to guarantee
that, for instance, J\f is checked for suspended SCCs and the subgoal associated with
Af is marked as completed.

6.10 Chapter Summary

This chapter introduced the OPTYap engine. To the best of our knowledge, OPTYap
is the first implementation of a parallel tabling engine for logic programming systems.
OPTYap extends Yap's efficient sequential Prolog engine to support or-parallel execu­
tion of tabled logic programs. It follows OPT's computation model for parallel tabling,
and it builds on SLG-WAM for tabling and on environment copying for or-parallelism.

We discussed the complete set of major problems addressed during OPTYap's de­
velopment, which included: memory management; concurrent table access; public
completion; scheduling decisions for parallel tabling; and SCC suspension. For each
problem we presented and described the new data areas, data structures and algo­
rithms introduced to efficiently solve them. We can emphasize the GDN concept of
signalling nodes that are candidates to be leader nodes; the new algorithms to quickly
compute and detect leader nodes; the novel termination detection scheme to allow
completion in public nodes; the assumption of SCCs as the units for suspension; and
the different locking schemes for concurrent table access.

170 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE

Chapter 7

Speculative Work

In [21], Ciepielewski defines speculative work as work which would not be done in a
system with one processor. The definition clearly shows that speculative work is an
implementation problem for parallelism, that must be addressed carefully in order to
reduce its impact.

The presence of pruning operators during or-parallel execution introduces the problem
of speculative work [52, 53, 8, 13]. Prolog has an explicit pruning operator, the cut
operator. When a computation executes a cut operation, all branches to the right of
the cut are pruned. Computations that can potentially be pruned are thus specula­
tive. Earlier execution of such computations may result in wasted effort compared to
sequential execution.

In this chapter, we discuss the problems arising with speculative computations and
introduce the mechanisms used in YapOr and OPTYap to deal with it. Initially, we
introduce the cut semantics and its particular behavior within or-parallel systems.
After that we present the cut scheme currently implemented in YapOr and describe
the main implementation details. Then we discuss speculative tabling execution and
present the support actually implemented in OPTYap.

171

172 CHAPTER 7. SPECULATIVE WORK

7.1 Cut Semantics

Cut is a system built-in predicate that is represented by the ! symbol. Its execution
results in pruning all the branches to the right of the cut scope branch. The cut
scope branch starts at the current node and finishes at the node corresponding to the
predicate containing the cut. Cut is an asymmetric pruning operator because it only
prunes branches at the right. Other parallel Prolog systems implement symmetric
pruning operators, with a generic name of commit. The execution of commit results
in pruning both to the left and to the right. YapOr and OPT Yap do not yet support
symmetric pruning operators.

Figure 7.1 gives a general overview of cut semantics by illustrating the left to right
execution of a particular program containing cuts. The query goal a(X) leads the
computation to the first alternative of predicate a and the query goal is replaced
with the body of the first clause of a, where !(a) means a cut with the scope a. If
!(a) gets executed, all the right branches until the node corresponding to predicate a,
inclusively, should be pruned.

\ /

r
a(X)
a (X)
a (X)

: - b (X) , , c (X) . b (X) :
b(X) :

- X . • 1 .
V

? - a (X) .

Figure 7.1: Cut semantics overview.

As execution continues, b(X) is called and its first alternative succeeds by binding X
to value 1. The cut corresponding to the first alternative of a is invoked next and thus
the remaining alternatives for predicates a and b are pruned. As a consequence, the
nodes representing both predicates can be removed.

7.2. CUT WITHIN THE OR-PARALLEL ENVIRONMENT 173

7.2 Cut within the Or-Parallel Environment

In a sequential system, cut only prunes alternatives whose exploitation has not been
started yet. This does not hold for parallel systems, as cut can prune alternatives that
are being exploited by other workers or that have already been completely exploited.
Therefore, cut's semantics in a parallel environment have a new dimension. First, a
pruning operation cannot always be completely performed if the cut scope branch is
not leftmost, because the operation itself may be pruned by the execution of other
pruning operation in a branch to the left. Similarly, an answer for the query goal in
a non-leftmost branch may not be valid. Last, pruning a branch puts out of work the
workers exploiting such branch.

Ali [3] showed that speculative work can be completely banned from a parallel system
if proper rules are applied. However, as such rules severely restrict the parallel
exploitation of work, most or-parallel systems allow speculative work as it is their
main source of parallelism. Speculative branches can be controlled more or less tightly.
Ideally, we would prune all branches as soon as they become useless. In practice,
deciding if a computation is still speculative or already useless can be quite complex
when nested cuts with intersecting scopes are considered.

7.2.1 Our Cut Scheme

Implementing cut in an or-parallel system entails two main problems: the cut operation
may have to prune work from the shared region of the search tree and the execution
of the branch where the cut is found may itself be speculative. When implementing
cut, the following rule must be preserved: we cannot prune branches that would not
be pruned if our own branch will be pruned by a branch to the left.

YapOr currently implements a cut scheme based on the ideas presented by Ali and
Karlsson [8] that prunes useless work as early as possible. The worker executing cut,
must go up in the tree until it reaches either the cut scope choice point or a choice point
with workers executing branches to the left. While going up it may find workers in
branches to the right. If so, it sends them a signal informing them that their branches
have been pruned. When receiving such a signal, workers must backtrack to the shared
part of the tree and become idle workers again.

174 CHAPTER 7. SPECULATIVE WORK

Note that a worker may not be able to complete a cut if there are workers in left
branches, as they can themselves prune the current cut. In these cases, one says the
cut was left pending. In YapOr, a cut is left pending on the first (youngest) node A/"
that has left branches. A pending cut can be resumed only when all workers to the
left backtrack into the shared node Af. It will then be the responsibility of the last
worker backtracking to M to continue the execution of the pending cut.

Even if a cut is left pending in a node A/", there may be branches, older than A/*, that
correspond to useless work according to the cut rule mentioned above. YapOr's cut
scheme prunes these branches immediately. To illustrate how these branches can be
detected we present in Figure 7.2 a small example taken from [8]. To better understand
the example, we index the repeated calls to the same predicate by call order. For
instance, the node representing the first call to predicate p is referred as pi, the second
as p2 and successively. We also write pi to denote the ith alternative of node pn.
Notice also, that we use the mark ! in the branch of an alternative to indicate that it
contains at least one cut predicate.

(X
■i:V ■-

p ([1 , 2]) .

Y q (l) , p ([2] > . ! (pi) .

Y< p ([2]) , I (p i)

C
p2

J
i q (2) , p (U) , (p2) . ! (pi) .

fa>

■(: ù
p ([]) , ! (p 2) . ! (pi) .

K p 2) , ! (p i) .

c X
p ([H | T])
p u n .

: - q(H) , p (T) , ! .

q (l) .
q (2) .
q (3) .

? - p ([l , 2]) .
u

Figure 7.2: Pruning in the parallel environment.

Assume that a worker W, in a parallel execution environment, is computing the branch
corresponding to [pi , q{ , p2 , q2 , P3] ■ There are only two branches to the
left, corresponding to alternatives pjj and q̂ 1**. If there are workers within alternative

7.2. CUT WITHIN THE OR-PARALLEL ENVIRONMENT 175

p3W then W cannot execute any pruning at all because p 3 ^ is marked as containing
cuts. A potential execution of a pruning operation in p^1) will invalidate any cut
executed in p 3 ^ by W. Therefore, W saves a pending cut marker in p3 and when the
work in p 3 ^ terminates, pruning for the pending cut is executed.

Lets now assume that there are no workers in alternative p 3 ^ , but there are in alter­
native q 2 ^ . Alternative q 2 ^ is not marked as containing cuts, but the continuation
of q2 contains two pruning operations, !(p2) and !(pi). The worker W first executes
!(p2) in order to prune q2̂

3^ and p 2 ^ . This is a safe pruning operation because any
pruning from q 2 ^ will also prune q 2 ^ and p 2 ^ . At the same time W stores a cut
marker in q2 to signal the pruning operation done.

Pursuing with the example, W executes !(pi) in order to prune q^2\ q^ and p^2).
However, this is a dangerous operation. A worker in q^1) may execute the previous
pruning operation, !(p2), pruning W s branch but not q^2 \ q^3) or p i ^ . Hence, there
is no guarantee that the second pruning, !(pi), is safe. The cut marker stored in q2

is a warning that this possibility exists. So, instead of doing pruning immediately,
W updates the pending cut marker stored in q2 to indicate the did not complete cut
operation.

Figure 7.3 shows the effect of executing two pruning operations using our cut scheme.
Initially, the pruning operations, !(b) and !(c), are respectively executed until nodes
f and e as these are the closest nodes that contain unexploited alternatives in left
branches. Therefore, cut markers are stored in nodes f and e. A cut marker is a two
field data structure consisting of the cut scope and the branch executing the cut.

However, we know that no branch to the left, except the ones marked with !, can
invalidate further pruning for the current operations. Therefore !(b) can execute up
to node d and !(c) can fully execute till node c. The cut marker stored in f indicates
a pending cut operation, while the cut marker stored in e prevents possible future
pruning operations from the same branch.

7.2.2 Tree Representation

Supporting the cut predicate requires efficient mechanisms to represent the absolute
and relative positions of each worker in the search tree. Checking whether the current

176 CHAPTER 7. SPECULATIVE WORK

.̂ ^̂

1(b), instl. 1(c), inst2. instl.

Before pruning. After pruning.

Figure 7.3: Pruning useless work as early as possible.

branch is leftmost or identifying workers working on branches to the left/right need
to be very efficient operations.

The current YapOr implementation has the following representation of a Prolog search
tree. We use a bi-dimensional matrix, branch [] , to represent the current branch of
each worker. Each entry branch[W, V] corresponds to the alternative taken by worker
W in the shared node with depth V of its current branch. The advantage of this simple
representation is that moving a worker in the search tree is a very efficient operation
- neither locking nor extra overheads for maintaining the tree topology are needed.

Figure 7.4 presents a small example that clarifies the correspondence between a Prolog
search tree and its matrix representation. Notice that we only represent the shared
part of a search tree in the branch matrix. This is due to the fact that the position
of each worker in the private part of the search tree is not helpful when computing
relative positions.

To correctly consult or update the branch matrix, we need to know the depth of each
shared node. To achieve this, we introduce a new data field in the or-frame data
structure, the OrFr.depth field, that holds the depth of the corresponding node. By
using the OrFr.depth field together with the OrFr jnembers bitmap of each or-frame
to consult the branch matrix, we can easily identify the workers in a node that are in
branches at the left or at the right the current branch of a given worker.

7.2. CUT WITHIN THE OR-PARALLEL ENVIRONMENT 177

\
branch [w, d]
Wl W2 W3 W4

l i i i

1 2 3 3

2 - 2 3

J

Figure 7.4: Search tree representation.

7.2.3 Left most ness

Let us suppose that a worker W wants to check whether it is leftmost or at which
node it ceases from being leftmost. W should start from the bottom shared node
M on its branch, read the OrFr_members bitmap from the or-frame associated with
M to determine the workers sharing the node, and investigate the branch matrix
to determine the alternative number taken by each worker sharing M. If W finds an
alternative number less than its own, then W is not leftmost. Otherwise, W is leftmost
in J\f and will repeat the same procedure at the next upper node on branch and so on
until reaching the root node or a node where it is not leftmost.

Two improvements were introduced [5] to obtain an efficient implementation. The first
improvement reduces the number of workers to be consulted in each shared node, by
avoiding consulting workers already known to be to the right. The second improvement
reduces the number of nodes to be investigated in a branch, by associating with each
shared node a new or-frame data field named OrFr_nearest_lef tnode pointing to the
nearest upper node with branches to the left.

7.2.4 Pending Answers

With speculative work, a new answer for the query goal in a non-leftmost branch may
not be valid since the branch where the answer was found may be pruned. To deal
with this kind of situations, it is necessary to efficiently store the newly found answers
in such a way that, by end of the computation, all valid answers are easily obtained.

depth 0

depth 1

depth 2

depth 0
1
2
3

depth
0
1
2
3

depth

0
1
2
3 depth

0
1
2
3

0
1
2
3

178 CHAPTER 7. SPECULATIVE WORK

YapOr stores a new answer in the first (youngest) shared node where the current branch
is not leftmost. To accomplish this, a new data field was introduced in the or­frame
data structure, the OrFr_qg_answers field. This, to allow access to the set of pending
answers stored in the corresponding node. New data structures were introduced to
store the pending answers that are being found for the query goal in hand. Figure 7.5
details the data structures used to efficiently keep track of pending answers. Answers
from the same branch are grouped into a common top data structure. The top data
structures are organized by reverse branch order. This organization simplifies the
pruning of answers that became invalid in consequence of a cut operation to the left.

answer-x answer-y
answer-z

next frame
branch order
first answer
last answer

answer
next answer

OrFr qganswers(CP OR_FR(N)) 1

next frame
branch order
first answer
last answer

answer
next answer

next frame
branch order
first answer
last answer

answer
next answer

NULL next frame
branch order
first answer
last answer

answer
next answer

NULL next frame
branch order
first answer
last answer

answer
next answer

3 2
next frame
branch order
first answer
last answer

answer
next answer

next frame
branch order
first answer
last answer

answer
next answer

" '

next frame
branch order
first answer
last answer

answer
next answer

next frame
branch order
first answer
last answer

answer
next answer

J

next frame
branch order
first answer
last answer

answer
next answer

next frame
branch order
first answer
last answer

answer
next answer

answer-y answer-x

next frame
branch order
first answer
last answer

answer
next answer

answer-y answer-x

next frame
branch order
first answer
last answer

answer
next answer i rn NULL 1

next frame
branch order
first answer
last answer

answer
next answer

■ ■ ■ : ■ ■ ■ . A

answer-z

i
■ ■ ■ : ■ ■ ■ . A

■.■■■. ■
answer-z

i
■ ■ ■ : ■ ■ ■ . A

NULL i
■ ■ ■ : ■ ■ ■ . A ■ ■ ■ : ■ ■ ■ . A

Figure 7.5: Dealing with pending answers.

When a node M is fully exploited and its corresponding or­frame is being deallocated,
the whole set of pending answers stored in J\f can be easily linked together and moved
to the next node where the current branch is not leftmost. At the end, the set of
answers stored in the root node are the set of valid answers for the given query goal.

7.2.5 Scheduling Speculative Work

We have seen that pruning speculative branches as soon as a cut to the left is exe­

cuted is a key implementation issue in order to efficiently deal with speculative work
in a parallel environment. Besides this important aspect, speculative work can be
minimized if proper scheduling strategies are used. The Muse system implements a
sophisticated strategy named actively seeking the leftmost available work strategy [8],
that concentrates workers on the leftmost unexploited work of a search tree as long as

7.3. CUT WITHIN THE OR-PARALLEL TABLING ENVIRONMENT 179

there is enough parallelism, in order to avoid workers entering into speculative work

if less speculative work is available.

The set of unexploited alternatives in a search tree can be ordered according to their
degree of speculativeness. Speculativeness decreases towards the bottom of the leftmost
branch and increases towards the top of the rightmost one. Scheduling strategies that
benefit the branches closer to the leftmost bottom corner of the execution tree should
make useless work less probable.

The general idea of the actively seeking the leftmost available work strategy is to
concentrate workers in the less speculative branches of the search tree in order to
simulate the sequential Prolog execution as much as possible. The search tree is divided
into two parts: the left part contains active work and the right part contains suspended
work. Periodically, if there are no idle workers, all workers cooperate to compute their
ordering and load information. Whenever there exists leftmost available work, the
rightmost worker suspends all non-suspended alternatives to its right, including its
current branch, and moves to the leftmost available alternative. When the amount of
work to the left is not enough for the running workers, the leftmost suspended work
to the right is taken and made active for exploitation.

Further work is still necessary to make YapOr's scheduler take full advantage of this
kind of strategies.

7.3 Cut within the Or-Parallel Tabling Environ­
ment

The previous sections shown us that dealing with speculative work is not simple.
Extending the or-parallel system to include tabling introduces complexity into cut's
semantics. During a tabled computation, not only the answers found for the query goal
may not be valid, but also answers found for tabled predicates may be invalidated. The
problem here is even more serious because tabled answers can be consumed elsewhere in
the tree, which makes impracticable any late attempt to prune computations resulting
from the consumption of invalid tabled answers. Indeed, consuming invalid tabled
answers may result in finding more invalid answers for the same or other tabled
predicates.

180 CHAPTER 7. SPECULATIVE WORK

Notice that finding and consuming answers is the natural way to get a tabled computa­

tion going forward. Delaying the consumption of answers may compromise such flow.
Therefore, tabled answers should be released as soon as it is found that they are safe
from being pruned. Whereas for all­solution queries the requirement is that, at the
end of the execution, we will have the set of valid answers, in tabling the requirement
is to have the set of valid tabled answers released as soon as possible. Dealing with
speculative tabled computations and guaranteeing the correctness of tabling semantics,
without compromising the performance of the or­parallel tabling system, requires very
efficient implementation mechanisms. Next, we discuss the OPTYap's approach.

7.3.1 Inner and Outer Cut Operations

Allowing pruning operations in a tabling environment introduces a major design
problem: how to deal with the operations that prune tabled nodes. We consider two
types of cut operations in a tabling environment, cuts that do not prune tabled nodes
­ inner cut operations, and cuts that prune tabled nodes ­ outer cut operations.
Figure 7.6 illustrates four different situations corresponding to inner and outer cut
operations. Below each illustration we present a block of Prolog code that may lead
to such situations. Predicates t and s correspond respectively to the tabled and
scope nodes illustrated. Notice that the last situation only occurs if a parallel tabling
environment is considered.

Inner Cut

table t/Q.

t :-
t j-

(Outer Cut

/scope\
\ n o d e «

"V

t a b l e d 1
node I

1 (scope):

?
t a b l s t / O .

a . , t , . . . , 1,
B

t :- ..
t :- ...

S Outer Cut

<>

"V

t a b l e d
a n d

scope node

1 (scope)

^
­ ■ ­ t a b l e t / O .

t ­ , I , .
:f­­ ­ ■

Outer Cut

S :- ..., I, ...
s :- ..., t, ...

t : - ...
t : -

Figure 7.6: The two types of cut operations in a tabling environment.

7.3. CUT WITHIN THE OR-PARALLEL TABLING ENVIRONMENT 181

Cut semantics for outer cut operations is still an open problem. The intricate de­
pendencies in a tabled evaluation makes pruning a very complex problem. A major
problem is that of pruning generator nodes. Pruning generator nodes cancels its
further completion and puts the table space in an inconsistent state. This may lead
dependent consumer nodes to incorrect computations as the set of answers found for
the pruned generator node may be incomplete. A possible solution to this problem
can lay on moving the generator's role to a not pruned dependent consumer node,
if any, in order to allow further exploitation of the generator's unexploited branches.
Such a solution will require that the other non-pruned consumer nodes recompute
and update their dependencies relatively to the new generator node. Otherwise, if all
dependent consumer nodes are also pruned, we can suspend the execution stacks and
the table data structures of the pruned subgoal and try to resume them when the next
variant call takes place. Scheduling also appears to be a problem. Applying different
resolution strategies to return answers may lead to different pruning sequences that
may influence the order that tabled nodes are pruned. Obviously, these are only simple
preliminary ideas about the problems in discussion. Further research is still necessary
in order to study the combination of pruning and tabling. Currently, OPTYap does
not support outer cut operations. For such cases, execution is aborted.

7.3.2 Detecting Speculative Tabled Answers

As mentioned before, a main goal in the implementation of speculative tabling is to
allow storing safe answers immediately. We would like to maintain the same perfor­
mance as for the programs without cut operators. In this subsection, we introduce
and describe the data structures and implementation extensions required to efficiently
detect if a tabled answer is speculative or not.

We introduced a global bitmap register named GLOBAL_pruning_workers to keep track
of the workers that are executing alternatives that contain cut operators and that, in
consequence, may prune the current goal. Additionally, each worker maintains a local
register, LOCAL_safe_scope, that references the bottommost (youngest) node that
cannot be pruned by any pruning operation executed by itself.

The correct manipulation of these new registers is achieved by introducing the new
WAM instruction clause_with_cuts. This new instruction marks the blocks of code

182 CHAPTER 7. SPECULATIVE WORK

that include cut instructions. During compilation, the WAM code generated for
the clauses containing cut operators was extended to include the clause_with_cuts
instruction so that it is the first instruction to be executed for such clauses. When
a worker loads a clause_with_cuts instruction, it executes the clause_with_cuts()
procedure.

Figure 7.7 details the pseudo-code that implements the clause_with_cuts() proce­
dure. It sets the worker's bit of the global register GLOBAL_pruning_workers, and
updates the worker's local register L0CAL_saf e_scope to the oldest reference between
its current value and the current node. The current node is the resulting top node if
a pruning operation takes place from the clause being executed.

clause_with_cuts() {
if (LOCAL_safe_scope == NULL) {
// first execution of clause_with_cuts
insert_into_bitmap(GLOBAL_pruning_workers, W0RKER_ID)
L0CAL_safe_scope = B

} else if (L0CAL_safe_scope is younger than B)
// B is the local stack register
LOCAL_safe_scope = B

}
load_next.instruction
proceed

}

Figure 7.7: Pseudo-code for clause_with_cuts().

When a worker finds a new answer for a tabled subgoal call, it inserts the answer's trie
representation into the table space and then it checks if the answer is safe from being
pruned. When this is the case, the answer is included in the chain of available answers
for the tabled subgoal, as usually. Otherwise, if it is found that the answer can be
pruned by another worker, its availability is delayed. Figure 7.8 presents the pseudo­
code that implements the checking procedure. When it is found that the answer being
checked can be speculative, the procedure returns the or-frame that corresponds to
the youngest node where the answer can be pruned by a worker in a left branch. That
or-frame is where the answer should be left pending. Otherwise, if is found the answer
is safe, the procedure returns NULL.

Note that the spéculâtive_tabled_answer() procedure is only called when the gen­
erator node for the answer being checked in is public, as otherwise any pruning corre­
sponds to an outer cut operation. The procedure's pseudo-code starts by determining
if there are workers that may execute pruning operations. If so, it checks the safeness

7.3. CUT WITHIN THE OR-PARALLEL TABLING ENVIRONMENT 183

speculative_tabled_answer(generator node G) {
// G is the generator node for the answer being checked
prune_wks = GLOBAL_pruning_workers
delete_from_bitmap(prune_wks, W0RKER_ID)
if (prune_wks is not empty) {
// there are workers that may execute pruning operations
or_fr = T0P_0R_FR
depth = OrFr_depth(or_fr)
scope_depth = OrFr_depth(CP_OR_FR(G))
while (depth > scope_depth) {

// checking the public branch till the generator node
alt.number = branch(WORKER.ID, depth)
for (w = 0; w < number_workers; w++) {

if (w is in OrFr_members(or_fr) &&
branch(w, depth) < alt_number &&
w is in prune_wks &&
OrFr_node(or_fr) is younger than LOCAL_safe_scope(w))

// the answer can be pruned by worker w
return or_fr

}
or_fr = OrFr_next(or_fr)
depth = OrFr_depth(or_fr)

}
}
/ / the answer is safe from being pruned
return NULL

}

Figure 7.8: Pseudo-code for speculative_tabled_answer().

of the branch where the tabled answer was found. The branch only needs to be
checked until the corresponding generator node, as otherwise it would be an outer
cut operation. A branch is found to be safe if it is leftmost, or if the workers in the
branches to the left cannot prune it.

The spéculâtive_tabled_answer() procedure is similar to the leftmost check pro­
cedure described before. Hence, the implementation improvements mentioned for
the leftmost check procedure can also be used here to improve the efficiency of the
speculative_tabled_answer() procedure. However, for simplicity of presentation,
none of those improvements were included in the pseudo-code.

7.3.3 Pending Tabled Answers

If a tabled answer is speculative, its availability is delayed. A speculative answer
should remain in a pending state until it is pruned by a left branch or until it is found

184 CHAPTER 7. SPECULATIVE WORK

that it is safe from being pruned. In the latter case it should be released as a valid
answer. Dealing with pending tabled answers requires efficient support to allow that
the operations of pruning or releasing pending answers are efficiently performed.

Remember that pending answers are stored in a node. To allow access to the set of
pending answers for a node, a new data field was introduced in the or­frame data
structure, the OrFr_tg_answers field. New data structures were also introduced to
efficiently keep track of the pending answers being found for the several tabled subgoal
calls. Figure 7.9 details that data structure organization.

/

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

1 r_tganswers (CP OR_FR(N)) |

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

1 r_tganswers (CP OR_FR(N)) |

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

1
lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

1 • NULL I lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

1 NULL NULL I
lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

1 NULL NULL I
lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

Gl Gl G2 ç

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

3 2 3 £

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

-• i

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

-•]

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

NULL NULL NULL r

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

1 1 1 c

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

answer-y answer-x answer-z !

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

- - -

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers - - J

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers - - J

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

lexfc: generator frame :
ext branch frame
renerator: node;
ranch order :;

irst block of answers
asfc block of answers

lext block
mswers on block í;:::

pointers to the°::I:::
leaves nodes of the

> trie structures
representing the
pending answers

r
1 "■

X

t t ■
: ■ . i

:■,■ ■ ■ ■ . ■ ■ ■ ; . ■■■. n «
■

: ■ . i

:■,■ ■ ■ ■ . ■ ■ ■ ; .

■

1
3
J ■-.

■

. a G2 1

■

m m
J
1

o
■■■■:■■ O (

 N J
l /

2 \3

JC\ Gl(answer-x) Gl(answer-y)
G2 (answer-z)

Figure 7.9: Dealing with pending tabled answers.

The figure shows a situation where three tabled answers, answer­x, answer­y and
answer­z, were found to be speculative and in consequence have all been left pending
in a common node J\f. M is the bottommost node where a worker in a left branch, W
in the figure, holds a L0CAL_saf e_scope register pointing to a node older than M.

Pending answers found for the same subgoal and from the same branch are addressed
by a common top frame data structure. As the answers in the figure were found in
different subgoal/branch pairs, three top frames were required, answer­x, answer­y
and answer­z were found respectively in branches 2, 3 and 3 for the subgoals corre­

sponding to generator nodes Q\, Q\ and Ç2. The top frames are organized in older to
younger generator order and by reverse branch order when there are several frames
for the same generator. Hence, each frame contains two types of pointers to follow the
chain of frames, one points to the frame that corresponds to the next younger generator

7.4. CHAPTER SUMMARY 185

node, while the other points to the frame that corresponds to the next branch within

the same generator.

Blocks of answers address the set of pending answers for a subgoal/branch pair. Each
block points to a fixed number of answers. By linking the blocks we can have a
large number of answers for the same subgoal/branch pair. Note that the block data
structure does not hold the representation of a pending answer, only a pointer to the
leaf answer trie node of the answer trie structure representing the pending answer.
This happens because tabled answers are inserted in advance into the table space even
if they are to be pruned later.

As already mentioned, a key point in the implementation support for pending answers
is the efficiency of the procedure to release answers. OPTYap implements the fol­
lowing algorithm: the last worker W leaving a node Af with pending tabled answers,
determines the next node M on its branch that can be pruned by a worker to the left.
The pending answers from J\f that correspond to generator nodes equal or younger
than M are made available, while the remaining are moved from M to M. Notice
that W only needs to check for the existence of a node M up to the oldest generator
node in the pending answers stored in A/". To simplify finding the oldest generator
node we organized top frames in older to younger generator order.

Last, in order to correctly implement direct compiled code execution in OPTYap,
it is required that the answer trie nodes representing pruned answers are removed
from the trie structure. For simplicity and efficiency, this is performed by the tabled
subgoal call that first calls the tabled subgoal after it has been completed because it
requires traversing the whole answer trie structure. The code for direct compiled code
execution is therefore computed while traversing the answer trie structure.

7.4 Chapter Summary

This chapter discussed the problems behind the management of speculative compu­
tations. A computation is named speculative if it can potentially be pruned during
parallel evaluation, therefore resulting in wasted effort when compared to sequential
execution.

We started by introducing the semantics for the standard pruning operator - cut,

186 CHAPTER 7. SPECULATIVE WORK

and then we discussed its behavior for parallel execution. Next we presented YapOr's
approach to efficiently deal with speculative work and described the supporting data
structures and algorithms for its implementation.

Lastly, we motivated the problems of combining pruning with tabling and distinguished
two different types of cut operations in a tabling environment, cuts that do not prune
tabled nodes - inner cuts, and cuts that prune tabled nodes - outer cuts. Cut semantics
for outer cuts is still an open problem. We thus focused on the support for inner cuts
and described OPTYap's approach to efficiently deal with speculative tabled answers.

Chapter 8

Performance Analysis

The overall goal of research in parallel logic programming is to achieve of higher
performance through parallelism. The initial implementations of successful or-parallel
Prolog systems, such as Aurora and Muse, relied on a detailed knowledge of a specific
Prolog system, SICStus Prolog [18], and on the evaluation attained from original
shared memory machines, such as the Sequent Symmetry. Modern Prolog systems,
although WAM based, have made substantial improvements in sequential execution.
These improvements largely result from the development of new and refined optimiza­
tions not found in the original SICStus Prolog. Besides, the impressive improvements
on CPU performance over the last years have not been followed by similar gains in
bus and memory performance. As a result, modern parallel machines show a much
higher memory latency, as measured by the number of CPU clock cycles, than original
Sequent style machines.

The question therefore arises of whether the good results previously obtained with
Aurora and Muse in Sequent style machines are still reachable with current Prolog
systems in modern parallel architectures. In particular, we can question whether such
results extend to parallel tabling implementations as tabling, by nature, reduces the
potential non-determinism available in logic programs. Also notice that accomplish­
ing good speedups may not necessarily translate to a corresponding improvement in
performance with respect to state of the art sequential implementations. The cost of
managing parallelism can make the performance of the parallel implementation with
a single worker considerably worst than the base sequential implementation.

187

188 CHAPTER 8. PERFORMANCE ANALYSIS

To assess the efficiency of our parallel tabling implementation and thus respond to
the questions just raised, we present next a detailed analysis of OPTYap's perfor­
mance. We start by presenting an overall view of the overheads of supporting several
Yap extensions: YapOr, YapTab and OPTYap. Then, we compare YapOr's parallel
performance with that of OPTYap for a set of non-tabled programs. Next, we use
a set of tabled programs to measure the sequential behavior of YapTab, OPTYap
and XSB, and to assess OPTYap's performance when running the tabled programs in
parallel. At last, we study the impact of using the alternative locking schemes from
subsection 6.3.2 to deal with concurrent accesses to the table space data structures.

YapOr, YapTab and OPTYap are based on Yap's 4.2.1 engine1. We used the same
compilation flags for Yap, YapOr, YapTab and OPTYap. Concerning YapTab and
OPTYap, we studied performance under both batched and local scheduling strate­
gies. Regarding XSB Prolog, we used version 2.3 with the default configuration and
the default execution parameters (chat engine and batched scheduling) for batched
scheduling, and version 2.4 with the default configuration and the default execution
parameters (chat engine and local scheduling) for local scheduling.

The environment for our experiments was oscar, a Silicon Graphics Cray Origin2000
parallel computer from the Oxford Supercomputing Centre. Oscar consists of 96 MIPS
195 MHz R10000 processors each with 256 Mbytes of main memory (for a total shared
memory of 24 Gbytes) and running the IRIX 6.5.12 kernel. While benchmarking,
the jobs were submitted to an execution queue responsible for scheduling the pending
jobs through the available processors in such a way that, when a job is scheduled
for execution, the processors attached to the job are fully available during the period
of time requested for execution. We have limited our experiments to 32 processors
because the machine was always with a very high load and we were limited to a
guest-account.

8.1 Performance on Non-Tabled Programs

To place our performance results in perspective we first evaluate how the original
Yap Prolog engine compares against the several Yap extensions we implemented and

1Note that sequential execution would be somewhat better with more recent Yap engines.

8.1. PERFORMANCE ON NON-TABLED PROGRAMS 189

against the most well-known tabling engine, XSB Prolog. Since OPTYap is based on
the same environment model as the one used by YapOr, we then compare OPTYap's
performance with that of YapOr on a similar set of non-tabled programs.

8.1.1 Non-Tabled Benchmark Programs

We use a set of standard non-tabled logic programming benchmarks [100, 56, 92, 32].
The set includes the following benchmark programs2:

cubes: solves the N-cubes or instant insanity problem from Tick's book [104]. It
consists of stacking 7 colored cubes in a column so that no color appears twice
within any given side of the column.

ham: finds all hamiltonian cycles for a graph consisting of 26 nodes with each node
connected to other 3 nodes.

map: solves the problem of coloring a map of 10 countries with five colors such that
no two adjacent countries have the same color.

nsort: naive sort algorithm. It sorts a list of 10 elements by brute force starting from
the reverse order (and worst) case.

puzzle: places numbers 1 to 19 in an hexagon pattern such that the sums in all 15
diagonals add to the same value (also taken from Tick's book [104]).

queens: a non-naive algorithm to solve the problem of placing 11 queens on a 11x11
chess board such that no two queens attack each other.

All benchmarks find all the answers for the problem. Multiple answers are computed
through automatic failure after a valid answer has been found. To measure total
execution time we used the Prolog code that follows.

:- sequential run/0.

go :- s ta t is t ics(wal l t ime, [S ta r t ,_]) ,
run,
s ta t is t ics(wal l t ime, [End,_]),

2The Prolog code for these benchmark programs is included as Appendix A.l.

190 CHAPTER 8. PERFORMANCE ANALYSIS

Time is End-Start,
write('WallTime is ') , write(Time), nl.

run :- benchmark, fail,
run.

benchmark :- ...

The go/0 predicate is the top query goal. For each particular benchmark, benchmark/0
is the predicate that triggers the benchmark's execution. The run/0 predicate is
defined by two clauses. The first clause implements the automatic failure mechanism,
while the second accomplishes successfully completes execution of the top query goal.
Note that for parallel execution one needs to declare the run/0 predicate as sequential
in order to ensure that the second clause only gets executed after the whole search
space for the benchmark in hand has been exploited.

8.1.2 Overheads over Standard Yap

Fundamental criteria to judge the success of an or-parallel, tabling, or of a combined
or-parallel tabling model includes measuring the overhead introduced by these models
when running programs that do not take advantage of the particular extension. Ideally,
a program should not pay a penalty for or-parallel or tabling mechanisms that it does
not require. Therefore, in order to develop a successful or-parallel, tabling, or or-
parallel tabling engine such overheads should be minimal.

Table 8.1 shows the base execution time, in seconds, for Yap, YapOr, YapTab, OPTYap
and XSB for our set of non-tabled benchmark programs. In parentheses, it shows the
overhead over the Yap execution time. Obviously, the timings reported for YapOr
and OPTYap correspond to the execution with a single worker. For simplicity, in this
section, we will not distinguish between batched and local scheduling when reporting
to YapTab, OPTYap and XSB, as for non-tabled programs there are no execution
differences between both strategies.

The results indicate that YapOr, YapTab and OPTYap introduce, on average, an
overhead of about 10%, 5% and 17% respectively over standard Yap. YapOr overheads
result from handling the work load register and from testing operations that (i) verify
whether the bottommost node is shared or private, (ii) check for sharing requests,
and (iii) check for backtracking messages due to cut operations. On the other hand,

S.J. PERFORMANCE ON NON-TABLED PROGRAMS 191

P r o g r a m Yap YapOr YapTab OPTYap XSB 2.4

cubes

ham

map
nsort
puzzle
queens

1.97
4.04
9.01

33.05
2.04

16.77

2.06(1.05)
4.61(1.14)

10.25(1.14)

37.52(1.14)
2.22(1.09)

17.68(1.05)

2.05(1.04)
4.28(1.06)
9.19(1.02)

35.85(1.08)
2.19(1.07)

17.58(1.05)

2.16(1.10)

4.95(1.23)
11.08(1.23)
39.95(1.21)

2.36(1.16)

18.57(1.11)

4.81(2.44)
10.36(2.56)
24.11(2.68)
83.72(2.53)

4.97(2.44)
36.40(2.17)

Average (1.10) (1.05) (1.17) (2.47)

Table 8.1: Yap, YapOr, YapTab, OPTYap and XSB execution time on non-tabled

programs.

YapTab overheads are due to the handling of the freeze registers and support of the
forward trail. OPTYap overheads inherits both sources of overheads. Considering that
Yap Prolog is one of the fastest Prolog engines currently available, the low overheads
achieved by YapOr, YapTab and OPTYap are very good results.

Regarding XSB, the results from Table 8.1 show that, on average, XSB is 2.47 times
slower than Yap. This is a result mainly due to the faster Yap engine.

8.1.3 Speedups for Parallel Execution

To assess the performance of OPTYap's or-parallel engine when executing non-tabled
programs in parallel, we ran OPTYap with a varying number of workers for the set of
non-tabled benchmark programs.

The results reported in previous work [78, 81], for parallel execution of non-tabled
programs, showed that YapOr is very efficient in exploiting or-parallelism and that it
obtains better speedup ratios than Muse with the increase in the number of workers.
This was a surprising result given that YapOr has better base performance. Note,
however, that Muse under SICStus is a more mature system that implements some
functionalities that are still lacking in YapOr. Since OPTYap is based on YapOr's
engine, we also tested YapOr against the same set of benchmark programs to get a
better perspective of OPTYap's results.

Table 8.2 shows the speedups relative to the single worker case for YapOr and OPTYap
with 4, 8, 16, 24 and 32 workers. Each speedup corresponds to the best execution time

192 CHAPTER 8. PERFORMANCE ANALYSIS

obtained in a set of 3 runs.

Program
YapOr OPTYap

Program 4 8 16 24 32 4 8 16 24 32

cubes
ham
map
nsort

puzzle
queens

3.99
3.93
3.98
3.98
3.93
4.00

7.81
7.61
7.73
7.92
7.56
7.95

14.66
13.71
14.03
15.62
13.71
15.39

19.26
15.62
17.11
22.90
18.18
21.69

20.55
15.75
18.28
29.73
16.53
25.69

3.98
3.92
3.98
3.96
3.93
3.99

7.74
7.64
7.88
7.84
7.51
7.93

14.29
13.54
13.74
15.50
13.53
15.41

18.67
16.25
18.36
22.75
16.57
20.90

20.97
17.51
16.68
29.47
16.73
25.23

Average 3.97 7.76 14.52 19.13 21.09 3.96 7.76 14.34 18.92 21.10

Table 8.2: Speedups for YapOr and OPTYap on non-tabled programs.

The results show that YapOr and OPTYap achieve identical effective speedups in all
benchmark programs. Despite that OPTYap includes all the machinery required to
support tabled programs, these results allow us to conclude that OPTYap maintains
YapOr's behavior in exploiting or-parallelism in non-tabled programs.

8.2 Performance on Tabled Programs

In this section we start by describing the set of tabled benchmark programs that we
used to assess performance for tabling execution. We then measure the performance
of YapTab and OPTYap for sequential execution and compare the results with those
of XSB. Next, we assess OPTYap's performance for parallel execution on these tabled
programs and discuss various statistics gathered during execution so that the results
obtained can be better understood. At last, we study the impact of using alternative
locking schemes to access the table space during parallel execution.

8.2. PERFORMANCE ON TABLED PROGRAMS 193

8.2.1 Tabled Benchmark Programs

The tabled benchmark programs were obtained from the XMC3 [45] and XSB [44] world
wide web sites and are frequently used in the literature to evaluate such systems. The

benchmark programs are4:

sieve: the transition relation graph for the sieve specification5 defined for 5 processes
and 4 overflow prime numbers.

leader: the transition relation graph for the leader election specification defined for
5 processes.

iproto: the transition relation graph for the i-protocol specification defined for a
correct version (fix) with a huge window size (w = 2).

samegen: solves the same generation problem for a randomly generated 24x24x2
cylinder. The cylinder data can be thought of as a rectangular matrix of 24x24
elements where each element in row n (except the last) is connected to two
elements in row n + 1. A pair of nodes is said to belong to the same generation
when they are the same or when each one holds a connection to nodes that are in
the same generation. This benchmark is very interesting because for sequential
execution it does not allocate any consumer choice point. Variant calls to tabled
subgoals only occur when the subgoals are already completed.

lgrid: computes the transitive closure of a 25x25 grid using a left recursion algorithm.
A link between two nodes, n and m, is defined by two different relations; one
indicates that we can reach m from n and the other indicates that we can reach
n from m.

lgrid/2: the same as lgrid but it only requires half the relations to indicate that two
nodes are connected. It defines links between two nodes by a single relation, and

3 The XMC system [70] is a model checker implemented atop the XSB system which verifies
properties written in the alternation-free fragment of the modal /i-calculus [60] for systems specified
in XL, an extension of value-passing CCS [66].

4The Prolog code for these benchmark programs is included as Appendix A.2.
5We are thankful to C. R. Ramakrishnan for helping us in dumping the transition relation graph

of the automatons corresponding to each given XL specification, and in building runnable versions
out of the XMC environment.

194 CHAPTER 8. PERFORMANCE ANALYSIS

it uses a predicate to achieve symmetric reachability. This modification alters
the order by which answers are found, therefore leading to a more randomly
distribution. This modification also lead the benchmark to take more time to
execute, and in consequence we reduced the search space to a 20x20 grid.

rgrid/2: the same as lgrid/2 but it computes the transitive closure using a right
recursion algorithm.

Similarly to what was done for non-tabled benchmark programs, here we use the same
mechanisms to search for all answers for each problem and to measure the execution
time necessary to fully search the execution tree of a particular benchmark.

8.2.2 Timings for Sequential Execution

In order to place OPTYap's results in perspective we start by analyzing the overheads
introduced to extend YapTab to parallel execution and by measuring Yap Tab and
OPTYap behavior when compared with the latest versions of the XSB system.

Table 8.3 shows the execution time, in seconds, for YapTab, OPTYap and XSB
using batched and local scheduling strategies for the tabled benchmark programs.
In parentheses it shows the overheads, respectively, over the YapTab Batched and
YapTab Local execution time. The execution time reported for OPTYap correspond
to the execution with a single worker. We used the TLWL locking scheme for OPTYap
Batched and the TLWL-ABC locking scheme for OPTYap Local. We choose these
schemes as a result of the performance study that we present in subsection 8.2.5. In
what follows, if nothing is said, when reporting OPTYap Batched or OPTYap Local
we assume the locking schemes mentioned above. Regarding XSB, we used version 2.3
for batched scheduling and version 2.4 for local scheduling, as referred in the beginning
of this chapter. Notice that the average result obtained for XSB using local scheduling
is clearly influenced by the strange behavior showed for the rgrid/2 benchmark. If we
do not consider such benchmark then the average result is 1.97.

The results indicate that, for these set of tabled benchmark programs, OPTYap
introduces, on average, an overhead of about 15% over YapTab for both batched
and local scheduling strategies. This overhead is very close to that observed for non-
tabled programs (11%). The small difference results from locking requests to handle

8.2. PERFORMANCE ON TABLED PROGRAMS 195

P r o g r a m

Batched Scheduling Local Scheduling

P r o g r a m YapTab O P T Y a p XSB 2.3 YapTab O P T Y a p XSB 2.4

sieve
leader
iproto
samegen
lgrid
lgrid/2
rgrid/2

235.31
76.60
20.73
23.36

3.55
59.53

6.24

268.13(1.14)
85.56(1.12)
23.68(1.14)
26.00(1.11)
4.28(1.21)

69.02(1.16)
7.51(1.20)

433.53(1.84)
158.23(2.07)
53.04(2.56)
37.91(1.62)

7.41(2.09)
98.22(1.65)
15.40(2.47)

242.38
77.45
21.93
24.82

3.85
61.17

6.15

260.65(1.08)
85.49(1.10)
25.33(1.16)
27.73(1.12)

4.65(1.21)
71.13(1.16)

7.32(1.19)

458.33(1.89)
161.22(2.08)
54.38(2.48)
38.28(1.54)

8.19(2.13)
102.72(1.68)
94.06(15.29)

Average (1.15) (2.04) (1.15) (3.87)

Table 8.3: YapTab, OPTYap and XSB execution time on tabled programs.

the data structures introduced by tabling. Locks are require to insert new trie nodes
into the table space, and to update subgoal and dependency frame pointers to tabled
answers. These locking operations are all related with the management of tabled
answers. Therefore, the benchmarks that deal with more tabled answers are the ones
that potentially can perform more locking operations. This causal relation seems to
be reflected in the execution times showed in Table 8.3, because the benchmarks that
show higher overheads are also the ones that find more answers. The answers found
by each benchmark are presented in Table 8.4. In this table we can observe that lgrid
and rgrid/2 are the benchmarks that find more answers, followed by the iproto and
lgrid/2 benchmarks.

The results also confirm previous results from Freire et al. [40] where local scheduling
performs worst than batched scheduling. Regardless, our results did show a smaller
slowdown. YapTab Local is only about 3% slower than YapTab Batched (this overhead
is not included in the table). Moreover, there is one benchmark, rgrid/2, where local
scheduling performs slightly better than batched.

Table 8.3 shows that YapTab is on average about twice as fast as XSB for these
set of benchmarks. This may be partly due to the faster Yap engine, as seen in
Table 8.1, and also to the fact that XSB implements functionalities that are still
lacking in YapTab and that XSB may incur through overheads in supporting those
functionalities. Independently of the scheduling strategy, the average execution time
for the single worker case proved that OPTYap runs as fast or faster than current
XSB.

196 CHAPTER 8. PERFORMANCE ANALYSIS

We believe that these results clearly show that we have accomplished our initial aim
of implementing an or-parallel tabling system that compares favorably with current
state of the art technology Hence, we believe the following evaluation of the parallel
engine is significant and fair.

8.2.3 Characteristics of the Benchmark Programs

In order to achieve a deeper insight on the behavior of each benchmark, and therefore
clarify some of the results that are presented next, we first present in Table 8.4 data
on the benchmark programs. The columns in Table 8.4 have the following meaning:

first: is the number of first calls to subgoals corresponding to tabled predicates. It
corresponds to the number of generator choice points allocated.

nodes: is the number of subgoal/answer trie nodes used to represent the complete
subgoal/answer trie structures of the tabled predicates in the given benchmark.
For the answer tries, in parentheses, it shows the percentage of saving that the
trie's design achieves on these data structures. Given the total number of nodes
required to represent individually each answer and the number of nodes used by
the trie structure, the saving can be obtained by the following expression:

total — used
saving total

As an example, consider two answers whose single representation requires re­
spectively 12 and 8 answer trie nodes for each. Assuming that the answer trie
representation of both answers only requires 15 answer trie nodes, thus 5 of those
being common to both paths, it achieves a saving of 25%. Higher percentages of
saving reflect higher probabilities of lock contention when concurrently accessing
the table space.

depth: is the number of nodes required to represent a path through a subgoal/answer
trie structure. In other words, it is the number of nodes required to represent a
subgoal call or to represent an answer. It is a three value column. The first and
third values correspond, respectively, to the minimum and maximum depth of a
path in the whole subgoal/answer tries. The second value is the average depth
of the whole set of paths in the corresponding subgoal/answer trie structures.

8.2. PERFORMANCE ON TABLED PROGRAMS 197

Trie structures with smaller average depth values are more amenable to higher

lock contention.

unique: is the number of non-redundant answers found for tabled subgoals. It corre­
sponds to the number of answers stored in the table space.

repeated: is the number of redundant answers found for tabled subgoals. A high
number of redundant answers can degrade the performance of the parallel system
when using table locking schemes that lock the table space without taking into
account whether writing to the table is, or is not, likely.

Program
Subgoal Tries New Answers Answer Tries

Program first nodes depth unique repeated nodes depth

sieve 1 7 6/6/6 380 1386181 8624(57%) 21/53/58

leader 1 5 4/4/4 1728 574786 41793(70%) 15/81/97

iproto 1 6 5/5/5 134361 385423 1554896(77%) 4/51/67

samegen 485 971 2/2/2 23152 65597 24190(33%) 1/1.5/2

lgrid 1 3 2/2/2 390625 1111775 391251(49%) 2/2/2

lgrid/2 1 3 2/2/2 160000 449520 160401(49%) 2/2/2

rgrid/2 626 1253 2/2/2 781250 2223550 782501(33%) 1/1.5/2

Table 8.4: Characteristics of the tabled programs.

By observing Table 8.4 it seems that sieve and leader are the benchmarks least
amenable to table lock contention because they are the ones that find the least number
of answers and also the ones that have the deepest trie structures. In this regard, lgrid,
lgrid/2 and rgrid/2 correspond to the opposite case. They find the largest number of
answers and they have very shallow trie structures. However, rgrid/2 is a benchmark
with a large number of first subgoals calls which can reduce the probability of lock
contention because answers can be found for different subgoal calls and therefore be
inserted with minimum overlap. Likewise, samegen is a benchmark that can also
benefit from its large number of first subgoal calls, despite also presenting a very
shallow trie structure. Finally, iproto is a benchmark that can also lead to higher
ratios of lock contention. It presents a deep trie structure, but it inserts a huge
number of trie nodes in the table space. Moreover, it is the benchmark showing the
highest percentage of saving.

198 CHAPTER 8. PERFORMANCE ANALYSIS

8.2.4 Parallel Execution Study

To assess OPTYap's performance when running tabled programs in parallel, we ran
OPTYap with varying number of workers for the set of tabled benchmark programs.
We start by studying parallel execution with batched scheduling.

Parallel Execution with Batched Scheduling

Table 8.5 presents the speedups for OPTYap with 2, 4, 6, 8, 12, 16, 24 and 32 workers
using batched scheduling. The speedups are relative to the single worker case of
Table 8.3. They correspond to the best speedup obtained in a set of 3 runs. The table
is divided in two main blocks: the upper block groups the benchmarks that showed
potential for parallel execution, whilst the bottom block groups the benchmarks that
do not show any gains when run in parallel.

Program
Number of Workers

Program 2 4 6 8 12 16 24 32

sieve
leader

iproto
samegen
lgrid/2

2.00
2.00
1.72
1.94
1.88

3.99
3.98
3.05
3.72
3.63

5.99
5.97
4.18
5.50
5.29

7.97
7.92
5.08
7.27
7.19

11.94
11.84
7.70

10.68
10.21

15.87
15.78
9.01

13.91
13.53

23.78
23.57

8.81
19.77
19.93

31.50
31.18

7.21
24.17
24.35

Average 1.91 3.67 5.39 7.09 10.47 13.62 19.17 23.68

lgrid
rgrid/2

0.46
0.73

0.65
0.94

0.69
1.01

0.68
1.15

0.68
0.92

0.55
0.72

0.46
0.77

0.39
0.65

Average 0.60 0.80 0.85 0.92 0.80 0.64 0.62 0.52

Table 8.5: Speedups for OPTYap using batched scheduling on tabled programs.

The results show superb speedups for the XMC sieve and the leader benchmarks up
to 32 workers. These benchmarks reach speedups of 31.5 and 31.18 with 32 workers!
Two other benchmarks in the upper block, samegen and lgrid/2, also show excellent
speedups up to 32 workers. Both reach a speedup of 24 with 32 workers. The remaining
benchmark, iproto, shows a good result up to 16 workers and then it slows down with
24 and 32 workers. Globally, the results for the upper block are quite good, especially
considering that they include the three XMC benchmarks that are more representative

8.2. PERFORMANCE ON TABLED PROGRAMS 199

of real-world applications.

On the other hand, the bottom block shows almost no speedups at all. Only for rgrid/2
with 6 and 8 workers we obtain a slight positive speedup of 1.01 and 1.15. The worst
case is for Igrid with 32 workers, where we are about 2.5 times slower than execution
with a single worker. In this case, surprisingly, we observed that for the whole set of
benchmarks the workers are busy for more than 95% of the execution time, even for
32 workers. The actual slowdown is therefore not caused because workers became idle
and start searching for work, as usually happens with parallel execution of non-tabled
programs. Here the problem seems more complex: workers do have available work,
but there is a lot of contention to access that work.

The parallel execution behavior of each benchmark program can be better understood
through the statistics described in the tables that follows. The columns in these tables
have the following meaning:

variant: is the number of variant calls to subgoals corresponding to tabled predicates.
It matches the number of consumer choice points allocated.

complete: is the number of variant calls to completed tabled subgoals. It is when
the completed table optimization takes places, that is, when the set of found
answers is consumed by executing compiled code directly from the trie structure
associated with the completed subgoal.

SCC suspend: is the number of SCCs suspended.

SCC resume: is the number of suspended SCCs that were resumed.

contention points: is the total number of unsuccessful first attempts to lock data
structures of all types. Note that when a first attempt fails, the requesting worker
performs arbitrarily locking requests until it succeeds. Here, we only consider
the first attempts.

subgoal frame: is the number of unsuccessful first attempts to lock subgoal
frames. A subgoal frame is locked in three main different situations: (i)
when a new answer is found which requires updating the subgoal frame
pointer to the last found answer; (ii) when marking a subgoal as completed;

200 CHAPTER 8. PERFORMANCE ANALYSIS

(iii) when traversing the whole answer trie structure to remove pruned
answers and compute the code for direct compiled code execution.

dependency frame: is the number of unsuccessful first attempts to lock de­
pendency frames. A dependency frame has to be locked when it is checked
for unconsumed answers.

trie node: is the number of unsuccessful first attempts to lock trie nodes. Trie
nodes must be locked when a worker has to traverse a trie structure to
check/insert for new subgoal calls or answers.

To accomplish these statistics it was necessary to introduce in the system a set
of counters to measure the several parameters. Although, the counting mechanism
introduces an additional overhead in the execution time, we assume that it does not
significantly influence the parallel execution pattern of each benchmark program.

Tables 8.6 and 8.7 show respectively the statistics gathered for the group of programs
with and without parallelism. We do not include the statistics for the leader bench­
mark because its execution behavior showed to be identical to the observed for the
sieve benchmark.

The statistics obtained for the sieve benchmark support the excellent performance
speedups showed for parallel execution. It shows insignificant amounts of contention
points, it only calls a variant subgoal, and despite the fact that it suspends some
SCCs it successfully avoids resuming them. In this regard, the samegen benchmark
also shows insignificant amounts of contention points. However the number of variant
subgoals calls and the number of suspended/resumed SCCs indicate that it introduces
more dependencies between workers. Curiously, for more than 4 workers, the amount
of variant calls and the amount of suspended SCCs seems to be stable. The only
parameter that slightly increases is the number of resumed SCCs. Regarding iproto
and lgrid/2, lock contention seems to be the major problem. Trie nodes show identical
lock contention, however iproto inserts about 10 times more answer trie nodes than
lgrid/2. Subgoal and dependency frames show an identical pattern of contention, but
iproto presents higher contention ratios. Moreover, if we remember from Table 8.3
that iproto is about 3 times faster than lgrid/2 to execute, we can conclude that the
contention ratio for iproto is obviously much higher per time unit, which justifies its
worst behavior.

8.2. PERFORMANCE ON TABLED PROGRAMS 201

Parameter

Number of Workers

Parameter 4 8 16 24 32

sieve
variant / complete
SCC suspend/resume
contention points

subgoal frame
dependency frame
trie node

1/0

20/0
108

0
0

96

1/0
70/0

329
0
0

188

1/0

136/0
852

0
1

415

1/0

214/0
1616

0
0

677

1/0

261/0
3040

2
4

1979

iproto
variant/complete
SCC suspend/resume
contention points

subgoal frame
dependency frame
trie node

1/0
5/0

7712
3832
678

3045

1/0
9/0

22473
9894
4685
6579

1/0
17/0

60703
21271
25006
10537

1/0
26/0

120162
33162
66334
11816

1/0
32/0

136734
33307
81515
11736

samegen
variant/complete
SCC suspend/resume
contention points

subgoal frame
dependency frame
trie node

485/1067
187/2

255
8

0
154

1359/193
991/11

314
52
0

119

1355/197
1002/20

743
112

1
201

1384/168
1024/25

1160
283

0
364

1363/189
1020/34

1607
493

0
417

lgrid/2
variant/complete
SCC suspend/resume
contention points

subgoal frame
dependency frame
trie node

1/0
4/0

4004
167
98

2958

1/0
8/0

10072
1124
1209
5292

1/0
16/0

28669
7319
5987

10341

1/0
24/0

59283
17440
23357
12870

1/0
32/0

88541
27834
35991
12925

Table 8.6: Statistics of OPT Yap using batched scheduling for the group of programs

with parallelism.

The statistics gathered for the second group of programs present very interesting

results. Remember that Igrid and rgrid/2 are the benchmarks that find the largest

202 CHAPTER 8. PERFORMANCE ANALYSIS

Parameter
Number of Workers

Parameter 4 8 16 24 32
lgrid
variant/complete
SCC suspend/resume
contention points
subgoal frame
dependency frame
trie node

1/0
4/0

112740
18502
17687
72751

1/0
8/0

293328
73966
113594
91909

1/0
16/0

370540
77930
215429
61857

1/0
24/0

373910
68313
223792
62629

1/0
32/0

452712
115862
248603
64029

rgrid/2
variant / complete
SCC suspend/resume
contention points
subgoal frame
dependency frame
trie node

3051/1124
1668/465

58761
55415

0
1519

3072/1103
1978/766
110984
103104

8
3595

3168/1007
2326/1107

133058
122938

5
5016

3226/949
2121/882
170653
159709

259
4780

3234/941
2340/1078

173773
160771

268
4737

Table 8.7: Statistics of OPTYap using batched scheduling for the group of programs
without parallelism.

number of answers per time unit (please refer to Tables 8.3 and 8.4). Regarding Igrid's
statistics it shows high contention ratios in all parameters considered. Closer analysis
of its statistics allows us to observe that it shows an identical pattern when compared
with lgrid/2. The problem is that the ratio per time unit is significantly worst for
lgrid. This reflects the fact that most of lgrid1 s execution time is spent in massively
accessing the table space to insert new answers and to consume found answers.

The sequential order by which answers are accessed in the trie structure is the key
issue that reflects the high number of contention points in subgoal and dependency
frames. When inserting a new answer we need to update the subgoal frame pointer
to point at the last found answer. When consuming a new answer we need to update
the dependency frame pointer to point at the last consumed answer. For programs
that find a large number of answers per time unit, this obviously increases contention
when accessing such pointers. Regarding trie nodes, the small depth of Igrid's answer
trie structure (2 trie nodes) is one of the main factors that contributes for the high
number of contention points when massively inserting trie nodes. Trie structures are

8.2. PERFORMANCE ON TABLED PROGRAMS 203

a compact data structure. Therefore, obtaining good parallel performance in the

presence of massive table access will always be a difficult task.

Analyzing the statistics for rgrid/2, the number of variant subgoals calls and the
number of suspended/resumed SCCs suggest that this benchmark leads to complex
dependencies between workers. Curiously, despite the large number of consumer nodes
that the benchmark allocates, contention in dependency frames is not a problem. On
the other hand, contention for subgoal frames seems to be a major problem. The
statistics suggest that the large number of SCC resume operations and the large
number of answers that the benchmark finds are the key aspects that constrain
parallel performance. A closer analysis shows that the number of resumed SCCs is
approximately constant with the increase in the number of workers. This may suggest
that there are answers that can only be found when other answers are also found,
and that the process of finding such answers cannot be anticipated. In consequence,
suspended SCCs have always to be resumed to consume the answers that cannot be
found sooner. We believe that the sequencing in the order that answers are found is
the other major problem that restrict parallelism in tabled programs.

Another aspect that can negatively influence this benchmark is the number of com­
pleted calls. Before executing the first call to a completed subgoal we need to traverse
the trie structure of the completed subgoal. When traversing the trie structure the
correspondent subgoal frame is locked. As rgrid/2 stores a huge number of answer trie
nodes in the table (please refer to Table 8.4) this can lead to longer periods of lock
contention.

Next, we present an identical study for parallel execution of OPT Yap using local
scheduling.

Parallel Execution with Local Scheduling

Table 8.8 presents the speedups for parallel execution of OPTYap with 2, 4, 6, 8, 12,
16, 24 and 32 workers using local scheduling. The speedups are relative to the single
worker case of Table 8.3 and they correspond to the best speedup obtained in a set of
3 runs. As for batched, we group the benchmarks in two main blocks.

On average the results for local scheduling are worst than those obtained for batched.

204 CHAPTER 8. PERFORMANCE ANALYSIS

Program
Number of Workers

Program 2 4 6 8 12 16 24 32

sieve

leader

iproto

samegen

lgrid/2

2.00

1.99

1.68

1.93

1.84

3.99
3.97
2.94
3.92

3.42

5.98

5.95

3.59

5.74

4.86

7.96

7.94

4.28

7.66

6.12

11.92

11.86

4.90

11.04

7.83

15.86

15.77

4.59

13.54

8.79

23.69

23.41

4.23

18.69

12.23

31.67

31.23

3.58

21.56

12.93

Average 1.89 3.65 5.22 6.79 9.51 11.71 16.45 20.19

lgrid
rgrid/2

0.47
1.60

0.40
0.87

0.42
0.84

0.46
0.71

0.35
0.54

0.29
0.46

0.25
0.40

0.17
0.37

Average 1.04 0.64 0.63 0.59 0.45 0.38 0.33 0.27

Table 8.8: Speedups for OPTYap using local scheduling on tabled programs.

Generally, the benchmarks that find more answers are the ones that introduce further
overheads and obtain lesser speedups with local scheduling. These are the cases of the
iproto and lgrid/2 benchmarks for the upper block and the lgrid and rgrid/2 for the
lower block. In order to understand what extra overheads local scheduling introduces
for parallel execution, we present in Table 8.9 some statistics gathered during parallel
execution of these four benchmarks. We do not include the statistics for the sieve,
leader and samegen benchmarks because their execution behavior showed to be similar
to the observed for batched scheduling.

A closer analysis of the statistics obtained in Table 8.9 for the four benchmarks in
discussion clearly shows that the worst results obtained for local scheduling relate
with a higher rate of contention in dependency frames. In particular, the difference is
most obvious on the rgrid/2 benchmark. The rest of the parameters show comparable
results to those obtained for batched scheduling.

We remember the reader that in local scheduling after a leader subgoal is completed
we need to consume the answers that were prevented from being returned to the caller
environment. For sequential execution this is done by executing compiled code directly
from the trie data structure associated with the completed subgoal. Unfortunately, this
optimization is not possible on our parallel implementation of local scheduling. The
problem is that workers may start consuming answers before subgoals were completed.
This occurs for workers where the subgoals are not leaders. Hence, when a leader
subgoal is completed we just act like a consumer node and start consuming answers.

8.2. PERFORMANCE ON TABLED PROGRAMS 205

Parameter
Number of Workers

Parameter 4 8 16 24 32
iproto
variant/complete
SCC suspend/resume
contention points
subgoal frame
dependency frame
trie node

1/0
7/0

36706
3506
31235
1208

1/0
13/0
78417
8892
64010
2763

1/0
19/0

135239
21657
100043
5754

1/0
30/0

192977
30505
142587
7317

1/0
32/0

206776
32820
155336
7121

lgrid/2
variant/complete
SCC suspend/resume
contention points
subgoal frame
dependency frame
trie node

1/0
4/0

50723
227

44217
4153

1/0
8/0

67230
2356
54850
6803

1/0
16/0

85438
7621
52434
11571

1/0
24/0

106969
18042
33311
13586

1/0
32/0

115023
31229
57167
13086

lgrid
variant/complete
SCC suspend/resume
contention points
subgoal frame
dependency frame
trie node

1/0
4/0

246749
18051
157773
56866

1/0
8/0

420431
59689
260984
78822

1/0
16/0

562025
98627
369394
65705

1/0
24/0

539567
46987
350291
58551

1/0
32/0

568159
45580
384847
55573

rgrid/2
variant /complete
SCC suspend/resume
contention points
subgoal frame
dependency frame
trie node

3018/1157
1711/509
155099
63247
87115
766

3003/1172
2199/995
237860
111433
116296
1854

3006/1169
2354/1139

370182
92703
270226
1658

3012/1163
2368/1154

349569
131749
207565
2255

3029/1146
2238/1014

295013
137762
90304
4989

Table 8.9: Statistics of OPTYap using local scheduling for the group of programs
showing worst speedups than for batched scheduling.

The results presented in Table 8.9 suggest that in some cases this may be incompatible
with good performance. The typical situation is when a leader subgoal with a large

206 CHAPTER 8. PERFORMANCE ANALYSIS

number of answers completes and its answers start being heavily consumed by the
available workers, therefore leading to high ratios of contention in the dependency
frames. We believe that this is a very hard problem to be solved even if different
parallel tabling approaches were developed.

The statistics presented in the tables above clearly illustrate some of the problems
behind parallel tabled evaluation. They are thus an excellent source for further study
in order to improve and/or reformulate some of the implementation issues that showed
to be less suitable for parallel execution.

Two major conclusions can be highlighted from the performance analysis done in this
section. First, there are table applications that can achieve very high performance
through parallelism. Second, batched scheduling showed to be more adequate than
local scheduling for parallel execution.

8.2.5 Locking the Table Space

OPTYap implements four alternative locking schemes to deal with concurrent accesses
to the table space data structures. These schemes were described in subsection 6.3.2
and were referred as: TLEL (Table Lock at Entry Level); TLNL (Table Lock at Node
Level); TLWL (Table Lock at Write Level); and TLWL-ABC (Table Lock at Write
Level - Allocate Before Check).

To evaluate the impact that different approaches to locking the table space may
produce during parallel execution, we ran OPTYap using the four alternative locking
schemes for the tabled benchmark programs that showed significant speedups for
parallel execution. Table 8.10 shows the speedups for the four alternative locking
schemes with varying number of workers for batched and local scheduling. The
speedups are relative to the single worker case and they correspond to the best speedup
obtained in a set of 3 runs.

Two main conclusions can be easily drawn from the speedups showed in Table 8.10.
First, all benchmarks show identical patterns with the increase in the number of work­
ers for both batched and local scheduling. Apparently, this suggests that scheduling
does not significantly influence lock contention in table access. Second, TLWL and
TLWL-ABC are the locking schemes that present the best speedup ratios and they are

8.2. PERFORMANCE ON TABLED PROGRAMS 207

Locking
Scheme

Batched Scheduling Local Scheduling Locking
Scheme 4 8 16 24 32 4 8 16 24 32

sieve
TLEL
TLNL
TLWL
TLWL-ABC

3.79
3.80
3.99
3.99

7.35
7.24
7.97
7.97

10.37
11.86
15.87
15.85

8.53
3.98

23.78
23.78

8.20
4.71

31.50
31.47

3.89
3.79
4.00
3.99

7.16
7.23
7.97
7.96

11.19
12.19
15.89
15.86

8.99
2.56

23.74
23.69

7.27
4.18

31.05
31.67

leader
TLEL
TLNL
TLWL
TLWL-ABC

3.80
3.49
3.98
3.98

6.16
6.32
7.92
7.94

5.77
8.45

15.78
15.75

5.34
4.39

23.57
23.46

4.69
3.05

31.18
31.07

3.74
3.32
3.99
3.97

6.42
5.86
7.94
7.94

6.36
9.91

15.78
15.77

5.59
3.56

23.47
23.41

4.88
3.07

31.07
31.23

iproto
TLEL
TLNL
TLWL
TLWL-ABC

1.66
1.68
3.05
3.10

1.41
2.65
5.08
5.13

1.25
1.86
9.01
7.78

1.23
1.05
8.81
8.48

1.05
1.00
7.21
7.19

1.87
1.54
2.72
2.94

1.58
2.45
4.41
4.28

1.12
1.18
4.42
4.59

1.09
1.00
3.79
4.23

1.01
0.96
3.42
3.58

samegen
TLEL
TLNL
TLWL
TLWL-ABC

3.70
3.68
3.72
3.83

7.28
7.23
7.27
7.29

13.79
13.80
13.91
13.92

19.58
19.64
19.77
19.71

21.51
24.04
24.17
24.29

3.94
3.88
3.89
3.92

7.67
7.64
7.59
7.66

13.74
13.74
13.66
13.54

18.28
18.86
18.92
18.69

19.26
21.46
21.42
21.56

lgrid/2
TLEL
TLNL
TLWL
TLWL-ABC

3.74
3.48
3.63
3.60

7.17
6.79
7.19
6.95

9.67
12.16
13.53
13.46

5.13
6.26

19.93
18.96

4.50
5.30

24.35
24.20

3.43
3.28
3.48
3.42

5.97
3.11
6.16
6.12

6.19
7.84
8.55
8.79

4.15
5.40
9.97

12.23

3.27
4.33

10.42
12.93

Table 8.10: OPTYap execution time with different locking schemes for the group of
programs with parallelism.

the only schemes showing scalability. Despite none of both schemes shows to clearly
outperform the other, TLWL seems slightly better for batched scheduling and TLWL-
ABC for local scheduling. In order to avoid choosing only one, we decided to use
TLWL for OPTYap Batched and TLWL-ABC for OPTYap Local in the performance
study described during this chapter.

208 CHAPTER 8. PERFORMANCE ANALYSIS

Closer analysis to Table 8.10 allows us to observe other interesting aspects: all schemes
show identical speedups for the samegen benchmark, and the TLEL and the TLNL
schemes clearly slow down for more than 16 workers. The reason for the good behavior
of all schemes with the samegen benchmark arises from the fact that this benchmark
calls 485 different tabled subgoals. This increases the number of entries where answers
can be stored and thus reduces the probability of two workers accessing simultaneously
the same answer trie structure.

The slow-down of TLEL and TLNL schemes is related to the fact that these schemes
lock the table space even when writing is not likely. In particular, for repeated answers
they pay the cost of performing locking operations without inserting any new trie
node. For these schemes the number of potential contention points is proportional
to the number of answers found during execution, being they unique or redundant.
This explains the slow-down presented by these schemes for the sieve and leader
benchmarks. These benchmarks find a smaller number of unique answers, but have
large number of redundant answers (please refer to Table 8.4). Curiously, for some
benchmarks TLEL obtains better speedups than TLNL with the increase of workers.
This suggests that for certain circumstances it is better to lock the whole trie and
traverse it more quickly than lock node by node and increase the points of contention
and the time spend to traverse the trie.

8.3 Chapter Summary

In this chapter we have presented a detailed analysis of OPTYap's performance. We
started by presenting an overall view of OPTYap's performance for execution of non-
tabled programs. Then, we measured the sequential tabling behavior of OPTYap
and compared it with current XSB. Next, we assessed OPTYap's performance when
running tabled programs in parallel and discussed its execution behavior. At last,
we studied the impact of using alternative locking schemes to concurrently access the
table space.

The initial results obtained for OPTYap shows that it introduces low overheads over
Yap and YapTab for sequential execution of non-tabled and tabled programs, and that
it compares favorably with current versions of XSB. Moreover, the results showed that
OPTYap maintains YapOr's effective speedups in exploiting or-parallelism in non-

8.3. CHAPTER SUMMARY 209

tabled programs. For parallel execution of tabled programs, OPTYap showed superb
results for two benchmarks and quite good results globally. However, there are tabled
programs where OPTYap may not speedup up execution. Our study suggested that
parallel execution of tabled programs is more natural for a batched scheduling strategy
and for a TLWL or a TLWL-ABC locking scheme.

210 CHAPTER 8. PERFORMANCE ANALYSIS

Chapter 9

Concluding Remarks

This long journey is about to end. In this final chapter, we begin by summarizing
the main contributions of the thesis and then we suggest several directions for further
travel. At the end, a final remark ceases the chapter and the thesis.

9.1 Main Contributions

The work described in this thesis can be stated as the design, implementation and
evaluation of the OPTYap system. To the best of our knowledge, OPTYap is the first
engine that exploits or-parallelism and tabling from logic programs. A major guideline
for OPTYap was concerned with making best use of the excellent technology already
developed for previous systems. In this regard, OPTYap uses Yap's efficient sequential
Prolog engine [29, 31] as its starting framework, and the SLG-WAM [86, 89, 87] and
environment copying [5, 56] approaches, respectively, as the basis for its tabling and
or-parallel components.

We then summarize the main contributions of our work.

Novel computational models for parallel tabling. We have proposed two novel
computational models, the Or-Parallelism within Tabling (OPT) and Tabling
within Or-Parallelism (TOP) models, that exploit implicit or-parallelism from
tabled logic programs by considering all subgoals as being parallelizable, be they
from tabled or non-tabled predicates.

211

212 CHAPTER 9. CONCLUDING REMARKS

The YapTab sequential tabling engine. We have presented the design and imple­
mentation of YapTab, an extension to the Yap Prolog system that implements
sequential tabling. YapTab reuses the principles of the SLG-WAM, whilst inno­
vating by separating the tabling suspension data in a single space, the depen­
dency space, and by proposing a new completion detection algorithm not based
on the intrinsically sequential completion stack. YapTab has been implemented
from scratch and it was developed to be used as the basis for OPTYap's tabling
component. YapTab showed low overheads over standard Yap when executing
non-tabled programs, and excellent results for tabling benchmarks if compared
with the more mature XSB system [44].

The OPTYap or-parallel tabling engine. OPTYap's execution framework was a
first step to study and understand the behavior and implications of exploiting
parallelism from tabled logic programs. During this thesis, we have presented
novel data structures, algorithms and implementation techniques to efficiently
solve the challenging issues that a project of this size encompasses. These
contributions can be used as a reference guide for other approaches that may
follow. Next, we enumerate the most relevant contributions.

• The dependency frame data structure and the idea of keeping apart, in a
common shared space, the whole data related with tabling suspensions.

• The generator dependency node (GDN) concept of signalling nodes that
are candidates to be leader nodes.

• New algorithms to quickly compute and detect leader nodes.

• The novel termination detection scheme to allow completion in public nodes.

• The support for suspension of strongly connected components (SCCs) and
the assumption of SCCs as the units for suspension.

• Newer scheduler heuristics to support tabling that explicitly deal with the
flow of a parallel tabled evaluation and achieve a more efficient distribution
of work in such evaluations.

• The implementation techniques to deal with concurrent table access and
the TLEL, TLNL, TLWL and TLWL-ABC locking schemes.

• The distinction between inner and outer cut operations in a parallel tabling
environment and the support for speculative tabled answers.

9.1. MAIN CONTRIBUTIONS 213

Performance study. We have performed a detailed study to assess the performance
of the or-parallel tabling engine over a large number of parameters. During eval­
uation, the system was examined against a selected set of benchmark programs
that we believe are reasonably representative of existing applications. From the
results obtained, the following observations can be enumerated.

• Sequential execution of non-tabled programs showed that YapOr, YapTab
and OPTYap introduce, on average, respectively an overhead of about
10%, 5% and 17% over standard Yap. Considering that Yap Prolog is
one of the fastest Prolog engines currently available, these results are quite
satisfactory.

• Parallel execution of non-tabled programs showed that YapOr and OPTYap
achieve, on average, identical speedups up to 32 workers. This result
suggests that OPTYap do not introduces further overheads for parallel
execution of non-tabled programs, despite the fact that it includes all the
machinery required to support tabled programs.

• Sequential execution of tabled programs indicate that OPTYap introduces,
on average, an overhead of about 15% over YapTab for both batched and
local scheduling strategies, which is very close to the overhead observed
for non-tabled programs, about 11%. The small difference results from
locking requests to the data structures introduced with tabling. The results
also showed that we successfully accomplished our initial goal of comparing
favorably with current state of the art technology since, on average, YapTab
showed to be about twice as fast as XSB.

• Parallel execution of tabled programs showed that the system was able to
achieve excellent speedups up to 32 workers for applications with coarse
grained parallelism and quite good speedups for applications with medium
parallelism. Our results suggested that parallel execution of tabled pro­
grams is more natural for batched scheduling than for local scheduling and
that concurrent table access is best handled by schemes that lock table
data structures only when writing to the table is likely. On the other
hand, there are applications where OPTYap was not able to speedup their
execution. This is the case with applications whose evaluation is mostly
deterministic or whose main execution operations rely on massive accesses

214 CHAPTER 9. CONCLUDING REMARKS

to the table space. The parameters evaluated during execution suggested
that the slowdown for these applications is not caused by workers becoming
idle, but because there is a lot of contention in handling tabled answers.
In general, tabling tends to decrease the height of the search tree, whilst
increasing its breadth. We therefore believe that further improvements
in scheduling and on concurrent access to the data structures introduced
to support parallel tabling may be fundamental to achieve even better
scalability.

Through this research we aimed at showing that the models developed to exploit
implicit or-parallelism in standard logic programming systems can also be used to
successfully exploit implicit or-parallelism in tabled logic programming systems. Initial
results show that OPTYap can indeed speed up well known tabled programs without
programmer intervention. The results reinforced our belief that tabling and parallelism
are a very good match that can contribute to expand the range of applications for Logic
Programming.

9.2 Further Work

We hope that the work resulting from this thesis will be a basis to conduct further
improvements and further research in this area. OPTYap has achieved our initial goal.
Even so, the system still has some limitations that may reduce its use elsewhere and
its contribution in the support of realistic applications. Current limitations relate to
issues not within the scope of the present work, but that are very important for wider
use throughout the logic programming community. These include:

Further experimentation. The current implementation needs to be tested more
intensively with a wider range of applications. Many opportunities for refining
the system exist, and more will almost certainly be uncovered with profound
experimentation of the system. We gratefully acknowledge the generosity of
tabling logic programming community by providing us access to several inter­
esting applications, such as XMC. We are experimenting with other tabled logic
programming applications and differently platforms.

9.2. FURTHER WORK 215

Scheduling strategies. OPTYap scheduling strategies are essentially inherited from
YapOr's scheduler. Further work is still needed to implement and experiment
with proper scheduling strategies that can take advantage of the tabling envi­
ronment. In subsection 6.8 we have proposed novel scheduling strategies that
we believe should contribute for a more efficient work distribution strategy in an
or-parallel tabled evaluation.

Speculative work limitations. For certain groups of applications, such as best-
solution kind of problems, speculative computations represent a major problem.
OPTYap prunes speculative computations as soon as a cut causing their specu-
lativeness is executed. However, it does not implement any scheduling strategy
that makes speculative computations less likely. To some extent, these limita­
tion can be addressed by implementing Muse's sophisticated strategy - actively
seeking leftmost available work [8], to voluntary suspend rightmost computations
and thus reduce the degree of speculativeness of the work being done to obtain
high performance (please refer to subsection 7.2.5 for more details).

In the presence of tabling, pruning is an even more delicate issue. A deeper
understanding of the interaction between pruning and tabling is required. We
need to do it correctly, that is, in such a way that the system will not break but
instead produce sensible answers, and well, that is, allow useful pruning with
good performance.

Support for full Prolog. To support full Prolog semantics, the system still needs
more development, specially to support side-effects effectively. To ensure sequen­
tial Prolog semantics, side-effects must be executed by leftmost workers. Full
support for side-effects in YapOr can be achieved by extending some of the data
structures used to support the cut predicate and to support SCC suspension
for parallel tabling. One interesting problem is the management of the internal
database, as many applications require concurrency in database updates. Yap
already includes the base machinery to allow such concurrency, however further
work is need to make it usable by programmers. Several ideas about efficient
side-effects implementation can be found elsewhere [53, 5, 21, 101, 57, 102].

Tabling is a more complex problem. Semantics are different and side-effects
are not Prolog compatible in tabling, as they may depend on scheduling order.
What do programmers expect from side-effects in a tabling environment is still

216 CHAPTER 9. CONCLUDING REMARKS

an open problem.

Dynamic memory expansion. OPTYap allows to indicate the amount of memory
required for each data area. However, during execution one may discover that
the memory initially requested was insufficient. We would like to lift that burden
from the user by allowing dynamic memory expansion. Unfortunately, dynamic
memory expansion is a very complex operation when supporting an environment
copying based implementation. Accomplishing efficiency is even more laborious.
Proposals for novel memory organization schemes enabling efficient dynamic
memory expansion operations are therefore required.

Garbage collection. By nature, garbage collection is a heavy cost operation. For
an environment copying based system, garbage collection may also lead to in­
consistency between the execution stacks of the running workers. Special care
is not taken when incremental copying is used to share work. Although YapTab
supports garbage collection, OPTYap does not implement garbage collection at
all. In [4] K. Ali proposes some interesting mechanisms to deal with garbage
collection for environment copying systems.

Support for negation. A wide range of applications that use tabling require the
expressiveness granted by the possibility of manipulating negative subgoals.
OPTYap does not currently implement support for negation. Extending OPTYap
to efficiently support negation will certainly be one major step forward to make
OPTYap usable by a larger community.

9.3 Final Remark

Clearly, the research we present in this thesis is built on the vigorous research effort
made by preceding researchers. Their ideas brought us the flame that has lighted up
our way. With our work, we hope to shed at least a ray of light to someone else that
may follow.

Much work still remains to be done. A large amount of this available work will be
exploited in parallel by many different research workers all over the world. Sometimes,
much of the clues to pursue such work have already been tabled by other researchers
when studying variant problems. The question therefore is how to efficiently distribute

9.3. FINAL REMARK 217

the available tasks through the available workers in such a way that we avoid speculative
work and redundant answers for the subgoals of the ultimate query goal:

?- develop system(S), least-development-COst(S),
best-achievable-performance(S).

218 CHAPTER 9. CONCLUDING REMARKS

Appendix A

Benchmark Programs

This appendix contains the benchmark programs used in Chapter 8 to assess OPTYap's
performance. For the set of non-tabled benchmark programs we provide the full Prolog
code. On the other hand, as the tabled benchmark programs are quite lengthy, we
only show parts of the code. The author may be contacted for the full Prolog code of
these programs.

A.l Non-Tabled Benchmark Programs

cubes

benchmark : - cubes7(_) .

cubes7(Sol) : -
cubes(7,Qs),
solve(Qs,[] , S o l) .

c u b e s (7 , [q (p (5 , l) , p (0 , 5) , p (3 , l)) ,
q (p (2 , 3) , p (l , 4) , p (4 , 0)) ,
q (p (3 , 6) , p (0 > 0) , p (2 , 4)) >
q (p (6 , 4) , p (6 , l) , p (0 , l)) ,
q (p (l , 5) , p (3 , 2) , p (5 , 2)) ,
q (p (5 , 0) , p (2 , 3) > p (4 , 5)) >
q (p (4 , 2) , p (2 , 6) , p (0 , 3))]) .

so lve([] ,Rs,Rs) .
solve([CICs],Ps,Rs) : -

s e t (C ,P) ,
check(Ps.P) ,
so lve (Cs , [P |Ps] ,Rs) .

s e t (q (P l ,P2 ,P3) ,P) : -
r o t a t e (P l , P 2 , P) .

s e t (q (P l ,P2 ,P3) ,P) : -

r o t a t
s e t (q (P l

r o t a t
s e t (q (P l

r o t a t
s e t (q (P l

r o t a t
s e t (q (P l

r o t a t

e (P 2 , P l , P) .
P2,P3),P)

e (P l , P 3 , P) .
P2,P3),P)

e (P 3 , P l , P) .
,P2,P3),P)
e(P2,P3,P) .
,P2,P3),P)
e(P3,P2,P) .

check([] , _) .
check([q(Al ,Bl ,Cl ,Dl) |Ps] ,P) : -

P = q(A2,B2,C2,D2),
A1=\=A2,
B1=\=B2,
C1=\=C2,
D1=\=D2,
check(Ps.P) .

ro ta te(p(Cl ,C2) ,p(C3,C4) ,q(Cl ,C2,C3,C4)) .
ro ta te(p(Cl ,C2) ,p(C3,C4) ,q(Cl ,C2,C4,C3)) .
ro ta te(p(Cl ,C2) ,p(C3,C4) ,q(C2,Cl ,C3,C4)) .
rota te(p(Cl ,C2) ,p(C3,C4) ,q(C2,CI ,C4,C3)) .

219

220 APPENDIX A. BENCHMARK PROGRAMS

ham
benchmark : - ham(_).

ham(H) : -
cycle_ham([a . b . c . d . e . f . g . h . i . j ^ . ^ m . n ,

o , p , q , r , s , t , u , v , w , x , y , z] , H) .
cycle_ham([X|Y],[X,T|L]) : -

chain_ham([XIY] , [] , [TIL]) ,
ham_edge(T,X).

chain_ham([X],L,[X|L]).
chain_ham([X|Y],K,L) : -

ham_del(Z,Y,T),
ham_edge(X,Z),
chain_ham([Z|T],[X|K],L).

ham_del(X,[X|Y],Y).
ham_del(X,[U|Y] ,[U|Z]) : -

ham_del(X,Y,Z).
ham_edge(X,Y) :-

ham_connect(X,L),
ham_el(Y,L).

ham_el(X,[X|J).
ham_el(X,[_|L]) :-

ham_el(X,L).
ham_connect(a,[b,n,m]).

ham.
ham.
ham.
ham.
ham.
ham.
ham.
ham.
ham.
ham.
ham.
ham.
ham.
ham.
ham.
ham_
ham.
ham.
ham.
ham.
ham.
ham.
ham.
ham.
ham

connect(b
connect(c
connect(d
connect(e
connect(f
connect(g
connect(h
connect(i
connect(j
connect(k
connect(1
connect(m
connect(n
connect(o
connect(p
connect(q
connect(r
connect(s
connect(t
connect(u
connect(v
connect(w
connect(x
connect(y
connect(z

, [c , a , u])
, [d , b , o])
. [e , c , v])
, [f , d , p])
. [g , e , w]) .
, [h , f , q]) .
, [i . g . x]) .
, [j , h , r]) .
, [k , i , y]) .
, [l , j . B]) .
, [m, k, z]) .
, [a , l , t]) .
, [o , a , t]) .
. [p , n , c]) .
, [q , o , e]) .
,Cr,p,g]).
. [s , q , i]) .
, [t , r , k]) .
, [s , m , n]) .
, [v, z , b]) .
, [w, u, d]) .
, [x , v , f]) .
, [y , w , h]) .
, [z , x , j]) .
, C y , i , u]) .

map
benchmark : - map(_).

map(M) : -
my_map(M),
map_colours(C),
colour_map(M,C).

my_map([country(a,A,
country(b,B,
country(c,C,
country(d,D,
country(e,E,
country(f,F,
country(g,G,
country(h,H,
country(i,I,
country(j,J,

[B,C,D,F,G]),
[A.C.E.G]),
[A,B,D,E]),
CA,C,E,F,H]),
[B,C,D,H,I,J]),
[A,B,D,G,H,J]),
[A.B.F.J]),
[D.E.F.I.j]),
[E,H,J]),
[E,F,G,H,I])]).

colour_map([],_).
colour_map([Country I Map] .Colourlst) :-

colour_country(Country,Colourlst),
colour_map(Map,Colourlst).

colour_country(country(_,C,Adjacents).Colourlst)
map_del(C,Colourlst,CL),
map_subset(Adjacents,CL).

map_subset([],_).
map_subset([CICs] .Colourlst) :-

map_del(C,Colourlst,_),
map_subset(Cs,Colourlst).

map_colours([red ,green ,b lue ,whi te ,b lack]) .
map_del(X,[X|L],L).
map_del(X,[Y|Ll],[Y|L2]) : -

map_del(X, L1.L2).

nsort
benchmark : - n s o r t (_) .

nsort(L) :-
go_nsort([10,9,8,7,6,5,4,3,2,l],L).

go_nsort(Ll,L2) :-
nsort_permutation(Ll,L2),
nsort_sorted(L2).

nsort_permutation([] , []) .
nsor t_permutat ion(L,[HIT]) : -

nsor t_de le te (H,L,R) ,
nsor t_permutat ion(R,T) .

n so r t_de le te (X, [X |T] ,T) .
nsor t_dele te (X,[Y|T] , [Y |T1])

n so r t_de l e t e (X ,T ,T l) .
nsor t_sor ted([X,Y|Z]) : -

X=<Y,
nsort_sorted([Y|Z]).

nsort_sorted([_]).

A.l. NON-TABLED BENCHMARK PROGRAMS 221

puzzle

benchmark :- puzzle(_).

puzzle([A,B,C,D,E,F,G,H,I,J,K,L,M,N,0,P,Q,R,S])
List=[l,2,3,4,5,6,7,8,9,10,ll,

12,13,14,15,16,17,18,19] ,
member(A,List,La),
member(B,La,Lb),
C is 38-A-B,
member(C,Lb,Lc),
A<C,
member(D,Lc,Ld),
H is 38-A-D,
member(H,Ld,Lh),
A<H,
C<H,
member(E,Lh,Le),
member(F,Le,Lf),
G is 38-D-E-F,
member(G.Lf.Lg),
L is 38-C-G,
member(L,Lg,Ll),
A<L,
member(I,Ll,Li),
M is 38-B-E-I,
member(M,Li,Lm),

Q is 38-H-M,
member(Q,Lm,Lq),
A<q,
member(J,Lq,Lj),
N is 38-C-F-J-Q,
member(N,Lj,Ln),
K is 38-H-I-J-L,
member(K.Ln.Lk),
P is 38-B-F-K,
member(P,Lk,Lp),
S is 38-L-P,
member(S,Lp,Ls),
A<S,
R is 38-Q-S,
member(R,Ls,Lr),
38 is D+I+N+R,
member(Q,Lr,_Lo),
38 is M+N+Q+P,
38 is A+E+J+D+S,
38 is G+K+O+R.

member(X,[X|Y],Y).
member(X,[X2IY],[X2IY2])

X\==X2,
member(X,Y,Y2).

queens
benchmark : - queens(_) .

queens(S) : -
get_solutions(11,S).

get_solutions(Board_size,Soln) :-
solve(Boars_size,[],Soln).

solve(Board_size,Initial,Final) :-
newsquare(Init ial,Next),
solve(Board_size,[Next I I n i t i a l] . F i n a l) .

so lveCBs,[square(Bs.Y) |L] , [square(Bs.Y) |L])
s i ze (Bs) .

newsquare([square(I,J)IRest],square(X,Y)) :-
X is 1+1,
snint(Y),
not.threatened(I,J,X,Y) ,
safe(X,Y,Rest).

newsquare ([] .squared ,X)) :-
snint(X).

not_threatened(I,J,X,Y) :-

I=\=X,
J=\=Y,
I-J=\=X-Y,
I+J=\=X+Y.

safe(X,Y, [s q u a r e d , J) |L]) :
n o t . t h r e a t e n e d (I , J , X , Y) ,
safe(X,Y,L).

s a fe (X ,Y, []) .
size(11).
snint(l).
snint(2).
snint(3).
snint(4).
snint(5).
snint(6).
snint(7).
snint(8).
snint(9).
snint(lO).
snint(11).

222 APPENDIX A. BENCHMARK PROGRAMS

A.2 Tabled Benchmark Programs

sieve
benchmark : - reach(s ieve_0(5 ,4 ,27 ,end) , T).

: - t ab l e reach /2 .
reach(S,T) :-

trans(S,_,T).
reach(S.T) :-

reach(S,N),
trans(N,_,T).

'/, the transition relation graph
trans(par(A,end,end,B),nop,B).
trans(par(A,B,C,D),E,par(A,F,G,D)) :-

(partrans(A,E,B,C,F,G);partrans(A,E,C,B,G,F)).
trans(generator_0(A,B,C,D),out(A,B),D) :-

E is B+l, not B=<C.

'/, auxiliary predicates

leader
benchmark :- reach(systemLeader_0(5,end), T).

:- table reach/2.
reach(S,T) :-

trans(S,_,T).
reach(S,T) :-

reach(S,N),
trans(N,_,T).

'/, the transition relation graph
trans(par(A,end,end,B),nop,B).
trans(par(A,B,C,D),E,par(A,F,G,D)) :-

(partrans(A,E,B,C,F,G);partrans(A,E,C,B,G,F)).
trans(medium 0(A,B,C,D),

in(A,E),medium_0(A,B,[E|C],D)).

7, auxiliary predicates

iproto

benchmark :- reach(iproto_0(_,_,end), T).

:- table reach/2.
reach(S.T) :-

trans(S,_,T).
reach(S.T) :-

reach(S,N),
trans(N,_,T).

window_size(2).
seq(4).

fixed(fix).

'/, the transition relation graph
trans(par(A,end,end,B),nop,B).
trans(par(A,B,C,D),E,par(A,F,G,D)) :-

(partrans(A,E,B,C,F,G);partrans(A,E,C,B,G,F)).
trans(iproto_0(A,B,C),nop,imain_0(C)).

1, auxiliary predicates

samegen
benchmark :- same_generation(_,_).

:- table same_generation/2.
same_generation(X,Y) :-

cyl(X,Z),
same_generation(Z,W),
cyl(Y.W).

same_generation(X,X).

'/, the cylinder data
cyl(l,30).
cyl(l,40).
cyl(2,43).

cyl(551,569).
cyl(552,569).
cyl(552,564).

A.2. TABLED BENCHMARK PROGRAMS

lgrid
benchmark :- lpath(_,_).

:- table lpath/2.
lpath(X.Y) : -

lpa th(X.Z) ,
l ink(Z.Y) .

lpath(X,Y) : -
l ink(X.Y).

'/„ the 25x25 gr id
l i n k (l , 2) .
l i n k (2 , l) .
l i n k (2 , 3) .
l i n k (3 , 2) .

l ink(575 ,600) .
l ink(600 ,575) .
l ink(600 ,625) .
l ink(625 ,600) .

lgrid/2

benchmark : - l p a t h (_ , _) .

: - t a b l e l p a t h / 2 .
lpath(X.Y) :-

lpath(X.Z),
arc(Z.Y).

lpath(X.Y) :-
arc(X.Y).

arc(X.Y) :-
link(X.Y).

arc(X.Y) :-
link(Y.X).

'/. the 20x20 grid
l i n k (l , 2) .
l i n k (2 , 3) .
l i n k (3 , 4) .
l i n k (4 , 5) .
l i n k (5 , 6) .

l ink(300,320)
l ink(320,340)
l ink(340,360)
l ink(360,380)
l ink(380,400)

rgrid/2

benchmark : - r p a t h (_ , _) .

: - t a b l e r p a t h / 2 .
rpath(X.Y) :-

arc(X.Y).
rpath(X.Y) :-

arc(X.Z),
rpath(Z,Y).

arc(X.Y) :-
link(X.Y).

arc(X,Y) :-
link(Y.X).

'/. the 20x20 grid
link(l,2).
link(2,3).
link(3,4).
link(4,5).
link(5,6).

link(300,320).
link(320,340).
link(340,360).
link(360,380).
link(380,400).

224 APPENDIX A. BENCHMARK PROGRAMS

References

[1] H. A'it-Kaci. Warren's Abstract Machine — A Tutorial Reconstruction. MIT

Press, 1991.

[2] K. Ali. Or-parallel Execution of Prolog on a Multi-Sequential Machine.
International Journal of Parallel Programming, 15(3):189-214, June 1986.

[3] K. Ali. A Method for Implementing Cut in Parallel Execution of Prolog. In
Proceedings of the International Logic Programming Symposium, pages 449-456,
San Francisco, California, October 1987. IEEE Computer Society Press.

[4] K. Ali. A Simple Generational Real-Time Garbage Collection Scheme. New
Generation Computing, 16(2):201-221, 1998.

[5] K. Ali and R. Karlsson. Full Prolog and Scheduling OR-Parallelism in Muse.
International Journal of Parallel Programming, 19(6):445-475, December 1990.

[6] K. Ali and R. Karlsson. The Muse Approach to OR-Parallel Prolog. Interna­
tional Journal of Parallel Programming, 19(2):129-162, April 1990.

[7] K. Ali and R. Karlsson. OR-Parallel Speedups in a Knowledge Based System:
on Muse and Aurora. In Proceedings of the International Conference on
Fifth Generation Computer Systems, pages 739-745, ICOT, Japan, June 1992.
Association for Computing Machinery.

[8] K. Ali and R. Karlsson. Scheduling Speculative Work in MUSE and Perfor­
mance Results. International Journal of Parallel Programming, 21(6):449-476,
December 1992.

[9] K. Ali, R. Karlsson, and S. Mudambi. Performance of Muse on Switch-Based
Multiprocessor Machines. New Generation Computing, 11(1 & 4):81-103, 1992.

225

226 REFERENCES

[10] K. Apt and R. Bol. Logic Programming and Negation: A Survey. Journal of
Logic Programming, 19 & 20:9-72, May 1994.

[11] J. Barklund. Parallel Unification. PhD thesis, Uppsala University, 1990.

[12] A. Beaumont, S. Raman, P. Szeredi, and D. H. D. Warren. Flexible Scheduling
of OR-Parallelism in Aurora: The Bristol Scheduler. In Proceedings of the
Conference on Parallel Architectures and Languages Europe, number 506 in
LNCS, pages 403-420. Springer-Verlag, June 1991.

[13] A. Beaumont and D. H. D. Warren. Scheduling Speculative Work in Or-Parallel
Prolog Systems. In Proceedings of the 10th International Conference on Logic
Programming, pages 135-149. The MIT Press, 1993.

[14] C. Beeri and R. Ramakrishnan. On the Power of Magic. Journal of Logic
Programming, 10(3 & 4):255-299, April/May 1991.

[15] J. Bonwick. The Slab Allocator: An Object-Caching Kernel Memory Allocator.
In USENIX, editor, USENIX Summer 1994, pages 87-98, 1994.

[16] A. Calderwood and P. Szeredi. Scheduling Or-parallelism in Aurora - the
Manchester Scheduler. In Proceedings of the 6th International Conference on
Logic Programming, pages 419-435, Lisbon, June 1989. The MIT Press.

[17] M. Carlsson. Design and Implementation of an OR-Parallel Prolog Engine. PhD
thesis, The Royal Institute of Technology, Stockholm, Sweden, March 1990.

[18] M. Carlsson and J. Widen. SICStus Prolog User's Manual. SICS Research
Report R88007B, Swedish Institute of Computer Science, October 1988.

[19] W. Chen, T. Swift, and D. S. Warren. Efficient Top-Down Computation of
Queries under the Weil-Founded Semantics. Journal of Logic Programming,
24(3):161-199, September 1995.

[20] W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic
Programs. Journal of the ACM, 43(l):20-74, January 1996.

[21] A. Ciepielewski. Scheduling in Or-parallel Prolog Systems: Survey and Open
Problems. International Journal of Parallel Programming, 20(6):421-451,
December 1991.

REFERENCES 227

[22] K. Clark. Negation as Failure. In Proceedings of Logic and DataBases, pages
293-322, New York, 1978. Plenum Press.

[23] W. Clocksin and C. Mellish. Programming in Prolog. Springer-Verlag, fourth

edition, 1994.

[24] A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un système de
communication homme-machine en français. Technical report cri 72-18, Groupe
Intelligence Artificielle, Université Aix-Marseille II, October 1973.

[25] M. Correia. On the Implementation of And/Or Parallel Logic Programming
Systems. PhD thesis, Department of Computer Science, Faculty of Sciences,
University of Porto, Porto, Portugal, 2001.

[26] M. Correia, F. Silva, and V. Santos Costa. Aurora vs. Muse: A Performance
Study of Two Or-Parallel Prolog Systems. Computing Systems in Engineering,
6(4/5) :345-349, 1995.

[27] M. Correia, F. Silva, and V. Santos Costa. The SBA: Exploiting Orthogonality in
And-Or Parallel Systems. In Proceedings of the International Logic Programming
Symposium, pages 117-131, Port Jefferson, October 1997. The MIT Press.

[28] V. Santos Costa. COWL: Copy-On-Write for Logic Programs. In Proceedings
of the International Parallel Processing Symposium, Held Jointly with the Sym­
posium on Parallel and Distributed Processing, pages 720-727. IEEE Computer
Society Press, May 1999.

[29] V. Santos Costa. Optimising Bytecode Emulation for Prolog. In Proceedings
of Principles and Practice of Declarative Programming, number 1702 in LNCS,
pages 261-267, Paris, France, September 1999. Springer-Verlag.

[30] V. Santos Costa, M. Correia, and F. Silva. Aurora, Andorra-I and Friends on the
Sun. In Proceedings of the Workshop on Design and Implementation of Parallel
Logic Programming Systems, Ithaca, New York, November 1994.

[31] V. Santos Costa, L. Damas, R. Reis, and R. Azevedo. YAP User's Manual,
2000. Available from h t tp : //www. ncc. up. pt/~vsc/Yap.

[32] V. Santos Costa, R. Rocha, and F. Silva. Novel Models for Or-Parallel Logic
Programs: A Performance Analysis. In Proceedings of EuroPar 2000 Parallel

228 REFERENCES

Processing, number 1900 in LNCS, pages 744-753. Springer-Verlag, September
2000.

[33] V. Santos Costa, D. H. D. Warren, and R. Yang. Andorra-I: A Parallel
Prolog System that Transparently Exploits both And- and Or-Parallelism. In
Proceedings of the 3rd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 83-93. ACM Press, April 1991.

[34] C. Damásio. A distributed tabling system. In Proceedings of the 2nd Conference
on Tabulation in Parsing and Deduction, pages 65-75, Vigo, Spain, September
2000.

[35] B. Demoen and K. Sagonas. CAT: the Copying Approach to Tabling. In Proceed­
ings of Principles of Declarative Programming, 10th International Symposium on
Programming Language Implementation and Logic Programming, Held Jointly
with the 6th International Conference Algebraic and Logic Programming, number
1490 in LNCS, pages 21-35, Pisa, Italy, September 1998. Springer-Verlag.

[36] B. Demoen and K. Sagonas. CHAT: The Copy-Hybrid Approach to Tabling.
In Proceedings of the First International Workshop on Practical Aspects of
Declarative Languages, number 1551 in LNCS, pages 106-121, San Antonio -
Texas, USA, January 1999. Springer-Verlag.

[37] S. Dietrich. Extension Tables for Recursive Query Evaluation. PhD thesis,
Department of Computer Science, State University of New York, Stony Brook,
USA, 1987.

[38] J. Freire. Scheduling Strategies for Evaluation of Recursive Queries over Memory
and Disk-Resident Data. PhD thesis, Department of Computer Science, State
University of New York, Stony Brook, USA, August 1997.

[39] J. Freire, R. Hu, T. Swift, and D. S. Warren. Exploiting Parallelism in Tabled
Evaluations. In Proceedings of the 7th International Symposium on Programming
Languages: Implementations, Logics and Programs, number 982 in LNCS, pages
115-132, Utrecht, The Netherlands, September 1995. Springer-Verlag.

[40] J. Freire, T. Swift, and D. S. Warren. Beyond Depth-First: Improving Tabled
Logic Programs through Alternative Scheduling Strategies. In Proceedings of the

REFERENCES 229

Eight International Symposium on Programming Language Implementation and
Logic Programming, number 1140 in LNCS, pages 243-258, Aachen, Germany,
September 1996. Springer-Verlag.

[41] J. Freire, T. Swift, and D. S. Warren. Taking I/O seriously: Resolution
reconsidered for disk. In Proceedings of the 14th International Conference on
Logic Programming, pages 198-212, Leuven, Belgium, June 1997.

[42] J. Freire and D. S. Warren. Combining Scheduling Strategies in Tabled
Evaluation. In Proceedings of the Workshop on Parallelism and Implementation
Technology for Logic Programming, 1997.

[43] A. Van Gelder, K. Ross, and J. Schlipf. The Weil-Founded Semantics for General
Logic Programs. Journal of the ACM, 38(3):620-650, July 1991.

[44] The XSB Group. The XSB Logic Programming System, 2001. Available from
h t tp : / /xsb .sourceforge .net .

[45] The XSB Group. XMC: A logic programming The XSB Logic Programming
System, 2001. Available from http://www.cs.sunysb.edu/~lmc.

[46] Hai-Feng Guo and G. Gupta. A New Tabling Scheme with Dynamic Reordering
of Alternatives. In Proceedings of the Workshop on Parallelism and Implemen­
tation Technology for (Constraint) Logic Languages, July 2000.

[47] Hai-Feng Guo and G. Gupta. A Simple Scheme for Implementing Tabling based
on Dynamic Reordering of Alternatives. In Proceedings of the 2nd Conference on
Tabulation in Parsing and Deduction, pages 141-154, Vigo, Spain, September
2000.

[48] G. Gupta. Parallel Execution of Logic Programs on Multiprocessor Architectures.
PhD thesis, Department of Computer Science, University of North Carolina,
December 1991.

[49] G. Gupta, K. Ali, M. Carlsson, and M. V. Hermenegildo. Parallel Execution of
Prolog Programs: A Survey. Research report, Laboratory for Logic, Databases
and Advanced Programming, New Mexico State University, New Mexico, USA,
1997.

http://www.cs.sunysb.edu/~lmc

230 REFERENCES

[50] G. Gupta and B. Jayaraman. Analysis of Or-parallel Execution Models. ACM
Transactions on Programming Languages, 15(4):659—680, September 1993.

[51] G. Gupta, E. Pontelli, M. V. Hermenegildo, and V. Santos Costa. ACE: And/Or-
parallel Copying-based Execution of Logic Programs. In Proceedings of the 11th
International Conference on Logic Programming, pages 93-109. MIT Press, 1994.

[52] B. Hausman. Pruning and Scheduling Speculative Work in Or-Parallel Prolog. In
Proceedings of the Conference on Parallel Architectures and Languages Europe,
pages 133-150. Springer-Verlag, June 1989.

[53] B. Hausman. Pruning and Speculative Work in OR-Parallel PROLOG. PhD
thesis, The Royal Institute of Technology, Stockholm, Sweden, March 1990.

[54] M. V. Hermenegildo and K. Greene. The &-Prolog System: Exploiting
Independent And-Parallelism. New Generation Computing, 9(3,4):233-257,
1991.

[55] R. Hu. Efficient Tabled Evaluation of Normal Logic Programs in a Distributed
Environment. PhD thesis, Department of Computer Science, State University
of New York, Stony Brook, USA, December 1997.

[56] R. Karlsson. A High Performance OR-parallel Prolog System. PhD thesis, The
Royal Institute of Technology, Stockholm, Sweden, March 1992.

[57] R. Karlsson. How to Build Your Own OR-Parallel Prolog System. SICS Research
Report R92:03, Swedish Institute of Computer Science, March 1992.

[58] R. Kowalski. Predicate Logic as a Programming Language. In Proceedings of
Information Processing, pages 569-574. North-Holland, 1974.

[59] R. Kowalski. Logic for Problem Solving. Artificial Intelligence Series. North-
Holland, 1979.

[60] D. Kozen. Results on the propositional //-calculus. Theoretical Computer
Science, 27:333-354, 1983.

[61] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

REFERENCES 231

[62] E. Lusk, R. Butler, T. Disz, R. Oison, R. Overbeek, R. Stevens, D. H. D. Warren,
A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski,
and B. Hausman. The Aurora Or-Parallel Prolog System. In Proceedings of the
International Conference on Fifth Generation Computer Systems, pages 819—
830. ICOT, Tokyo, November 1988.

[63] R. Marques, T. Swift, and J. Cunha. An Architecture for a Multi-threaded
Tabling Engine. In Proceedings of the 2nd Conference on Tabulation in Parsing
and Deduction, pages 141-154, Vigo, Spain, September 2000.

[64] F. Mattern. Global Quiescence Detection based on Credit Distribution and
Recovery. Information Processing Letters, 30(4): 195-200, 1989.

[65] D. Michie. Memo Functions and Machine Learning. Nature, 218:19-22, April

1968.

[66] R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

[67] E. Pontelli and G. Gupta. Implementation Mechanisms for Dependent And-
Parallelism. In Proceedings of the 14-th International Conference on Logic
Programming, pages 123-137, Leuven, Belgium, June 1997. The MIT Press.

[68] E. Pontelli, G. Gupta, and M. V. Hermenegildo. A High-Performance Parallel
Prolog System. In Proceedings of the International Parallel Processing Sympo­
sium, pages 564-571. IEEE Computer Society Press, April 1995.

[69] E. Pontelli, G. Gupta, D. Tang, M. Carro, and M. V. Hermenegildo. Improving
the Efficiency of Nondeterministic Independent And-Parallel Systems. Journal
of Computer Languages, 22(2/3):115-142, 1996.

[70] C. R. Ramakrishnan, I. V. Ramakrishnan, S. Smolka, Y. Dong, X. Du,
A. Roychoudhury, and V. Venkatakrishnan. XMC: A logic-programming-based
verification toolset. In Proceedings of Computer Aided Verification, 2000.

[71] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren. Efficient
Tabling Mechanisms for Logic Programs. In Proceedings of the 12th International
Conference on Logic Programming, pages 687-711, Tokyo, Japan, June 1995.
The MIT Press.

232 REFERENCES

[72] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren. Efficient
Access Mechanisms for Tabled Logic Programs. Journal of Logic Programming,
38(l):31-54, January 1999.

[73] R. Ramakrishnan. Magic Templates: A Spellbinding Approach To Logic
Programs. Journal of Logic Programming, 11(3 & 4):189-216, 1991.

[74] R. Ramesh and W. Chen. Implementation of Tabled Evaluation with Delaying in
Prolog. IEEE Transactions on Knowledge and Data Engineering, 9(4):559-574,
July/August 1997.

[75] D. Ranjan, E. Pontelli, and G. Gupta. The Complexity of Or-Parallelism. New
Generation Computing, 17(3):285-306, 1999.

[76] P. Rao, K. Sagonas, T. Swift, D. S. Warren, and J. Freire. XSB: A System
for Efficiently Computing Well-Founded Semantics. In Proceedings of the Fourth
International Conference on Logic Programming and Non-Monotonic Reasoning,
number 1265 in LNCS, pages 431-441, Dagstuhl, Germany, July 1997. Springer-
Verlag.

[77] J. A. Robinson. A Machine Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(1):23-41, January 1965.

[78] R. Rocha. Um Sistema Baseado na Cópia de Ambientes para a Execução de
Prolog em Paralelo. MSc Thesis, Department of Informatics, University of
Minho, July 1996. In Portuguese.

[79] R. Rocha, F. Silva, and V. Santos Costa. On Applying Or-Parallelism to Tabled
Evaluations. In Proceedings of the First International Workshop on Tabling in
Logic Programming, pages 33-45, Leuven, Belgium, June 1997.

[80] R. Rocha, F. Silva, and V. Santos Costa. Or-Parallelism within Tabling.
In Proceedings of the First International Workshop on Practical Aspects of
Declarative Languages, number 1551 in LNCS, pages 137-151, San Antonio,
Texas, USA, January 1999. Springer-Verlag.

[81] R. Rocha, F. Silva, and V. Santos Costa. YapOr: an Or-Parallel Prolog System
Based on Environment Copying. In Proceedings of the 9th Portuguese Conference

REFERENCES 233

on Artificial Intelligence, number 1695 in LNAI, pages 178-192, Évora, Portugal,

September 1999. Springer-Verlag.

[82] R. Rocha, F. Silva, and V. Santos Costa. A Tabling Engine for the Yap Prolog
System. In Proceedings of the APPIA-GULP-PRODE Joint Conference on
Declarative Programming, La Habana, Cuba, December 2000.

[83] R. Rocha, F. Silva, and V. Santos Costa. YapTab: A Tabling Engine Designed
to Support Parallelism. In Proceedings of the 2nd Conference on Tabulation in
Parsing and Deduction, pages 77-87, Vigo, Spain, September 2000.

[84] R. Rocha, F. Silva, and V. Santos Costa. On a Tabling Engine that Can Exploit
Or-Parallelism. In Proceedings of the 18th International Conference on Logic
Programming, Cyprus, November/December 2001. To appear.

[85] P. Van Roy. Can Logic Programming Execute as Fast as Imperative Program­
ming? PhD thesis, University of California at Berkeley, November 1990.

[86] K. Sagonas. The SLG-WAM: A Search-Efficient Engine for Weil-Founded
Evaluation of Normal Logic Programs. PhD thesis, Department of Computer
Science, State University of New York, Stony Brook, USA, August 1996.

[87] K. Sagonas and T. Swift. An Abstract Machine for Tabled Execution of Fixed-
Order Stratified Logic Programs. ACM Transactions on Programming Languages
and Systems, 20(3):586-634, May 1998.

[88] K. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient Deductive Database
Engine. In Proceedings of the ACM SIGMOD International Conference on the
Management of Data, pages 442-453, Minneapolis, Minnesota, 1994. ACM Press.

[89] K. Sagonas, T. Swift, and D. S. Warren. An Abstract Machine for Computing
the Weil-Founded Semantics. In Proceedings of the Joint International Confer­
ence and Symposium on Logic Programming, pages 274-288, Bonn, Germany,
September 1996. The MIT Press.

[90] K. Shen. Exploiting Dependent And-parallelism in Prolog: The Dynamic De­
pendent And-Parallel Scheme (DDAS). In Proceedings of the Joint International
Conference and Symposium on Logic Programming, pages 717-731. MIT Press,
1992.

234 REFERENCES

[91] K. Shen. Studies of AND/OR Parallelism in Prolog. PhD thesis, University of
Cambridge, 1992.

[92] F. Silva. An Implementation of Or-Parallel Prolog on a Distributed Shared
Memory Architecture. PhD thesis, Department of Computer Science, University
of Manchester, Manchester, England, September 1993.

[93] F. Silva and P. Watson. Or-Parallel Prolog on a Distributed Memory Architec­
ture. Journal of Logic Programming, 43(2):173-186, 2000.

[94] R. Sindaha. Branch-Level Scheduling in Aurora: The Dharma Scheduler. In
Proceedings of the International Logic Programming Symposium, pages 403-419.
The MIT Press, 1993.

[95] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1994.

[96] W. R. Stevens. Advanced Programming in the UNIX Environment. Addison-
Wesley Publishing Company, 1992.

[97] T. Swift. Efficient Evaluation of Normal Logic Programs. PhD thesis,
Department of Computer Science, State University of New York, Stony Brook,
USA, December 1994.

[98] T. Swift and D. S. Warren. An abstract machine for SLG resolution: Definite
Programs. In Proceedings of the International Logic Programming Symposium,
pages 633-652, Ithaca, New York, November 1994. The MIT Press.

[99] T. Swift and D. S. Warren. Analysis of SLG-WAM Evaluation of Definite
Programs. In Proceedings of the International Logic Programming Symposium,
pages 219-235, Ithaca, New York, November 1994. The MIT Press.

[100] P. Szeredi. Performance Analysis of the Aurora Or-Parallel Prolog System. In
Proceedings of the North American Conference on Logic Programming, pages
713-732. MIT Press, October 1989.

[101] P. Szeredi. Using Dynamic Predicates in an Or-Parallel Prolog System. In
Proceedings of the International Logic Programming Symposium, pages 355-371.
MIT Press, October 1991.

REFERENCES 235

[102] P. Szeredi and Z. Farkas. Handling large knowledge bases in parallel Prolog. In
Workshop on High Performance Logic Programming Systems, European Summer
School on Logic, Language, and Information, August 1996.

[103] H. Tamaki and T. Sato. OLDT Resolution with Tabulation. In Proceedings of
the 3rd International Conference on Logic Programming, number 225 in LNCS,
pages 84-98, London, July 1986. Springer-Verlag.

[104] E. Tick. Parallel Logic Programming. The MIT Press, 1991.

[105] L. Vieille. Recursive Query Processing: The Power of Logic. Theoretical
Computer Science, 69(l):l-53, December 1989.

[106] A. Walker. Backchain Iteration: Towards a practical inference method that
is simple enough to be proved terminating, sound, and complete. Journal of
Automated Reasoning, 11(1):1—23, August 1993.

[107] M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A Platform for Constraint
Logic Programming. Technical report, IC-Parc, Imperial College, London, 1997.

[108] D. H. D. Warren. Applied Logic—Its Use and Implementation as a Programming
Tool. PhD thesis, Edinburgh University, 1977. Available as Technical Note 290,
SRI International.

[109] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI
International, 1983.

[110] D. H. D. Warren. Or-Parallel Execution Models of Prolog. In Proceedings of the
International Joint Conference on Theory and Practice of Software Development,
number 250 in LNCS, pages 243-259, Pisa, Italy, March 1987. Springer-Verlag.

[Ill] D. H. D. Warren. The SRI Model for Or-Parallel Execution of Prolog—Abstract
Design and Implementation Issues. In Proceedings of the International Logic
Programming Symposium, pages 92-102, San Francisco, California, October
1987. IEEE Computer Society Press.

[112] D. S. Warren. Efficient Prolog Memory Management for Flexible Control
Strategies. In Proceedings of the International Logic Programming Symposium,
pages 198-203, Atlantic City, February 1984. IEEE Computer Society Press.

236 REFERENCES

[113] R. Yang, A. Beaumont, I. Dutra, V. Santos Costa, and D. H. D. Warren.
Performance of the Compiler-based Andorra-I System. In Proceedings of the 10th
International Conference on Logic Programming, pages 150-166. MIT Press,
June 1993.

[114] Neng-Fa Zhou, Yi-Dong Shen, Li-Yan Yuan, and Jia-Huai You. Implementation
of a Linear Tabling Mechanism. In Proceedings of Practical Aspects of Declarative
Languages, number 1753 in LNCS, pages 109-123. Springer-Verlag, January
2000.

	Acknowledgments
	Abstract
	Resumo
	Résumé
	Contents
	List of Tables
	List of Figures
	Chapter 1 - Introduction
	1.1 Thesis Purpose
	1.2 Thesis Outline

	Chapter 2 - Logic Programming, Parallelism and Tabling
	2.1 Logic Programming
	2.1.1 Logic Programs
	2.1.2 The Prolog Language
	2.1.3 The Warren Abstract Machine

	2.2 Parallelism in Logic Programs
	2.2.1 Or-Parallelism
	2.2.2 Or-Parallel Execution Models

	2.3 Tabling for Logic Programs
	2.3.1 Examples of Tabled Evaluation
	2.3.2 SLG Resolution for Definite Programs
	2.3.3 SLG-WAM: an Abstract Machine for SLG Resolution
	2.3.4 Other Related Implementations

	2.4 Chapter Summary

	Chapter 3 - YapOr: The Or-Parallel Engine
	3.1 The Environment Copying Model
	3.1.1 Basic Execution Model
	3.1.2 Incremental Copying

	3.2 The Muse Approach for Scheduling Work
	3.2.1 Scheduler Strategies
	3.2.2 Searching for Busy Workers
	3.2.3 Distributing Idle Workers

	3.3 Extending Yap to Support Or-Parallelism
	3.3.1 Memory Organization
	3.3.2 Choice Points and Or-Frames
	3.3.3 Worker Load
	3.3.4 Sharing Work Process
	3.3.5 New Pseudo-Instructions

	3.4 Chapter Summary

	Chapter 4 - YapTab: The Sequential Tabling Engine
	4.1 The SLG-WAM Abstract Machine
	4.1.1 Basic Tabling Definitions
	4.1.2 SLG-WAM Overview
	4.1.3 Batched Scheduling
	4.1.4 Fixpoint Check Procedure
	4.1.5 Incremental Completion
	4.1.6 Instruction Set for Tabling

	4.2 Extending Yap to Support Tabling
	4.2.1 Overview
	4.2.2 Table Space
	4.2.3 Generator and Consumer Nodes
	4.2.4 Subgoal and Dependency Frames
	4.2.5 Freeze Registers
	4.2.6 Forward Trail
	4.2.7 Completion and Leader Nodes
	4.2.8 Answer Resolution
	4.2.9 A Comparison with the SLG-WAM

	4.3 Local Scheduling
	4.4 Chapter Summary

	Chapter 5 - Parallel Tabling
	5.1 Related Work
	5.2 Novel Models for Parallel Tabling
	5.2.1 Or-Parallelism within Tabling (OPT)
	5.2.2 Tabling within Or-Parallelism (TOP)
	5.2.3 Comparing the Models
	5.2.4 Framework Motivation for the OPT Model

	5.3 Chapter Summary

	Chapter 6 - OPTYap: The Or-Parallel Tabling Engine
	6.1 Implementation Overview
	6.2 The Parallel Data Area
	6.2.1 Memory Organization
	6.2.2 Page Management
	6.2.3 Improving Page Management for Answer Trie Nodes

	6.3 Concurrent Table Access
	6.3.1 Trie Structures
	6.3.2 Table Locking Schemes

	6.4 Data Frames Extensions
	6.4.1 Or-Frames
	6.4.2 Subgoal and Dependency Frames

	6.5 Leader Nodes
	6.6 The Flow of Control
	6.6.1 Public Completion
	6.6.2 Answer Resolution
	6.6.3 Getwork

	6.7 SCC Suspension
	6.8 Scheduling Work
	6.9 Local Scheduling
	6.10 Chapter Summary

	Chapter 7 - Speculative Work
	7.1 Cut Semantics
	7.2 Cut within the Or-Parallel Environment
	7.2.1 Our Cut Scheme
	7.2.2 Tree Representation
	7.2.3 Left most ness
	7.2.4 Pending Answers
	7.2.5 Scheduling Speculative Work

	7.3 Cut within the Or-Parallel Tabling Environment
	7.3.1 Inner and Outer Cut Operations
	7.3.2 Detecting Speculative Tabled Answers
	7.3.3 Pending Tabled Answers

	7.4 Chapter Summary

	Chapter 8 - Performance Analysis
	8.1 Performance on Non-Tabled Programs
	8.1.1 Non-Tabled Benchmark Programs
	8.1.2 Overheads over Standard Yap
	8.1.3 Speedups for Parallel Execution

	8.2 Performance on Tabled Programs
	8.2.1 Tabled Benchmark Programs
	8.2.2 Timings for Sequential Execution
	8.2.3 Characteristics of the Benchmark Programs
	8.2.4 Parallel Execution Study
	8.2.5 Locking the Table Space

	8.3 Chapter Summary

	Chapter 9 - Concluding Remarks
	9.1 Main Contributions
	9.2 Further Work
	9.3 Final Remark

	Appendix A - Benchmark Programs
	A.1 Non-Tabled Benchmark Programs
	A.2 Tabled Benchmark Programs

	References

