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Abstract 
Logic programming languages, such as Prolog, provide a high-level, declarative ap­
proach to programming. They offer a great potential for implicit parallelism and thus 
allow parallel systems to automatically reduce a program's execution time without 
any programmer intervention. For complex applications that take several hours, if not 
days, to return an answer, even modest parallel execution speedups can be directly 
translated to very significant productivity gains. 

Despite the power, flexibility and good performance that Prolog has achieved, the past 
years have seen wide effort at increasing Prolog's declarativeness and expressiveness. 
Unfortunately, some deficiencies in Prolog's evaluation strategy - SLD resolution -
limit the potential of the logic programming paradigm. Tabling has proved to be 
a viable technique to efficiently overcome SLD's susceptibility to infinite loops and 
redundant subcomputations. 

With this research we aim at demonstrating that implicit or-parallelism is a natural 
fit for logic programs with tabling. To substantiate this belief, we propose novel 
computational models that integrate tabling with or-parallelism, we design and imple­
ment an or-parallel tabling engine - OPTYap - and we use a shared memory parallel 
machine to evaluate its performance. To the best of our knowledge, OPTYap is the first 
implementation of a parallel tabling engine for logic programming systems. OPTYap 
builds on Yap's efficient sequential Prolog engine. Its execution model is based on the 
SLG-WAM for tabling, and on the environment copying for or-parallelism. 

The results in this thesis make it clear that the mechanisms proposed to parallelize 
search in the context of SLD resolution can indeed be effectively and naturally gener­
alized to parallelize tabled computations, and that the resulting systems can achieve 
good performance on shared memory parallel machines. More importantly, it empha­
sizes our belief that through applying or-parallelism and tabling to logic programs we 
can contribute to increase the range of applications for Logic Programming. 
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Resumo 

Uma das vantagens do Prolog, como linguagem de Programação Lógica, é possuir uma 
semântica que possibilita a exploração de paralelismo implícito. Esta característica 
permite reduzir o tempo de execução de um programa, sem que para isso sejam neces­
sárias anotações adicionais do programador. Para aplicações complexas, que demoram 
várias horas, senão dias, a calcular uma solução, mesmo ganhos de velocidade modestos 
em execução paralela, podem traduzir-se em significantes ganhos de produtividade. 

Apesar do poder, da flexibilidade e dos bons resultados que o Prolog tem demonstrado 
desde o aparecimento da WAM, um amplo esforço tem vindo a ser desenvolvido para 
aumentar o seu poder declarativo e expressivo. A estratégia de resolução SLD, na qual 
o Prolog se baseia, é limitadora do potencial inerente ao paradigma da Programação 
Lógica. Uma das mais bem sucedidas técnicas para solucionar a incapacidade da reso­
lução SLD no que respeita a ciclos infinitos e computações redundantes é a Tabulação. 

Com este trabalho pretende-se demonstrar que a exploração implícita de paralelismo-
Ou em programas lógicos com tabulação pode ser tão eficaz como o é em programas 
lógicos comuns. Para tal, propõem-se novos modelos para integrar paralelismo-Ou com 
tabulação, desenvolve-se um novo sistema, o OPTYap, e avalia-se o seu desempenho. 
Tanto quanto é do nosso conhecimento, o OPTYap é o primeiro sistema a explorar 
paralelismo em programas lógicos com tabulação. O OPTYap foi desenvolvido tendo 
por base o sistema Yap, um dos mais rápidos sistemas de execução sequencial de 
Prolog. O seu modelo de execução é baseado na SLG-WAM, para tabulação, e em 
cópia de ambientes, para paralelismo-Ou. 

Os resultados mostram que os mecanismos para execução paralela de programas lógicos 
podem generalizar-se para computações que usam tabulação, e que os sistemas daí 
resultantes obtêm igualmente bons desempenhos em máquinas paralelas de memória 
partilhada. Este trabalho reforça a convicção de que paralelismo e tabulação podem 
contribuir para expandir o leque de aplicações alvo da Programação Lógica. 
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Résumé 

Les langages de Programmation Logique, tels que le Prolog, fournissent une approche 
déclaratif de niveau élevé à la programmation. Ils offrent un grand potentiel pour 
l'exploration implicite du parallélisme et permettent ainsi, aux systèmes parallèles, de 
réduire automatiquement le temps d'exécution d'un programme, sans interposition du 
programmeur. Pour des applications complexes qui prennent plusieurs heures, sinon 
des jours, pour renvoyer une réponse, même modestes gains de vélocité peuvent être 
directement traduits aux gains très significatifs de productivité. 

En dépit de la puissance, de la flexibilité et des bons résultats que le Prolog a réalisé, 
les dernières années ont vu un large effort pour augmenter son pouvoir déclaratif 
et expressif. Malheureusement, quelques insuffisances dans la stratégie d'évaluation 
du Prolog, résolution SLD, limitent le potentiel du paradigme de Programmation 
Logique. Tabulation a montré être une technique viable pour surmonter efficacement 
la susceptibilité de SLD aux calculs infinis et aux computations redondantes. 

Avec cette recherche nous visons démontrer que l'exploration implicite du parallélisme-
Ou est un ajustement naturel pour des programmes logiques avec la tabulation. Pour 
justifier cette croyance, nous proposons des nouveaux modèles pour intégrer par-
allélisme-Ou avec tabulation, nous concevons une nouvelle système, l'OPTYap, et nous 
évaluons son exécution. Au meilleur de notre connaissance, OPTYap est la première 
mise en place d'un système parallèle de tabulation. OPTYap a été développé ayant 
pour base le système Yap, l'un des plus rapides systèmes d'exécution séquentielle de 
Prolog. Son modèle d'exécution est basé sur la SLG-WAM, pour tabulation, et sur 
copie d'ambiants, pour parallélisme-Ou. 

Les résultats indiquent que les mécanismes proposés pour exécution parallèle, dans le 
contexte de la résolution SLD, peuvent être généralisés pour la tabulation, et que les 
systèmes résultants peuvent obtenir aussi des bons résultats aux systèmes parallèles de 
mémoire partagée. Cette thèse souligne notre croyance qu'en appliquant parallélisme-
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Ou et tabulation aux programmes de logique nous pouvons contribuer à l'augmentation 
de l'ensemble des applications pour la Programmation Logique. 
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Chapter 1 

Introduction 

Logic programming provides a high-level, declarative approach to programming. Ar­
guably, Prolog is the most popular and powerful logic programming language. Through­
out its history, Prolog has demonstrated the potential of logic programming in appli­
cation areas such as Artificial Intelligence, Natural Language Processing, Knowledge 
Based Systems, Machine Learning, Database Management, or Expert Systems. Pro­
log's popularity was sparked by the success of the sequential execution model presented 
in 1983 by David D. H. Warren, the Warren Abstract Machine (WAM) [109]. The 
WAM compilation technology proved to be highly efficient and Prolog systems have 
been shown to run logic programs nearly as fast as equivalents C programs [85]. 

Prolog programs are written in a subset of First-Order Logic, Horn clauses, that has an 
intuitive interpretation as positive facts and rules. Programs use the logic to express 
the problem, whilst questions are answered by a resolution procedure with the aid of 
user annotations. The combination was summarized by Kowalski's motto [59]: 

algorithm = logic + control 

Ideally, one would want Prolog programs to be written as logical statements first, and 
for control to be tackled as a separate issue. In practice, the operational semantics 
of Prolog is given by SLD resolution [61], a refutation strategy particularly simple 
that matches current stack based machines particularly well. Unfortunately, the 
limitations of SLD resolution mean that Prolog programmers must be concerned with 
SLD semantics throughout program development. For instance, it is in fact quite 
possible that logically correct programs will enter infinite loops. 
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Several proposals have been put forth to overcome some of the SLD limitations and 
therefore improve the declarativeness and expressiveness of Prolog. One such proposal 
that has been gaining in popularity is the use of tabling (or tabulation or memoing [65]). 
In a nutshell, tabling consists of storing intermediate answers for subgoals so that they 
can be reused when a repeated subgoal appears during the resolution process. It can 
be shown that tabling based models are able to reduce the search space, avoid looping, 
and have better termination properties than SLD based models. In fact, it has been 
proven that termination can be guaranteed for all programs with the bounded term-size 
property [20]. 

Work on SLG resolution [20], as implemented in the XSB logic programming sys­
tem [44], proved the viability of tabling technology for applications such as Natural 
Language Processing, Knowledge Based Systems and Data Cleaning, Model Checking, 
and Program Analysis. SLG resolution also includes several extensions to Prolog, 
namely support for negation [10], hence allowing for novel applications in the areas of 
Non-Monotonic Reasoning and Deductive Databases. 

One of the major advantages of logic programming is that it is well suited for parallel 
execution. The interest in the parallel execution of logic programs mainly arose from 
the fact that parallelism can be exploited implicitly from logic programs. This means 
that parallel execution can occur automatically, that is, without input from the pro­
grammer to express or manage parallelism, hence making parallel logic programming 
as easy as logic programming. 

Logic programming offers two major forms of implicit parallelism, Or-Parallelism 
and And-Parallelism. Or-parallelism results from the parallel execution of alterna­
tive clauses for a given predicate goal, while and-parallelism stems from the parallel 
evaluation of subgoals in an alternative clause. Arguably, or-parallel systems, such as 
Aurora [62] and Muse [6], have been the most successful parallel logic programming 
systems so far. Experience has shown that or-parallel systems can obtain very good 
speedups for applications that require search. Examples can be found in application 
areas such Parsing, Optimization, Structured Database Querying, Expert Systems and 
Knowledge Discovery applications. Parallel search can be also useful in Constraint 
Logic Programming. 

Tabling works for both deterministic and non-deterministic applications, but it has 
frequently been used to reduce the search space. This rises the question of whether 



1.1. THESIS PURPOSE 27 

further efficiency improvements may be achievable through parallelism. Freire and 
colleagues were the first to propose that tabled goals could indeed be a source of im­
plicit parallelism [39]. In their model, each tabled subgoal is computed independently 
in a separate computational thread, a generator thread. Each generator thread is the 
sole responsible for fully exploiting its subgoal and obtain the complete set of answers. 
We argue that this model is limitative in that it restricts parallelism to concurrent 
execution of generator threads. Parallelism arising from non-tabled subgoals or from 
alternative clauses to tabled subgoals should also be exploited. 

1.1 Thesis Purpose 

Ideally, we would like to exploit maximum parallelism and take maximum advantage of 
current technology for tabling and parallel systems. An interesting observation is that 
tabling is still about exploiting alternatives to find answers for goals. Our suggestion is 
that we should aim at using the same technique to exploit parallelism from both tabled 
and non-tabled subgoals. By doing so we can both extract more parallelism, and reuse 
the mature technology for tabling and parallelism. Towards this goal, we designed 
two new computational models [79], the Or-Parallelism within Tabling (OPT) and 
Tabling within Or-Parallelism (TOP) models. The models combine tabling with 
or-parallelism by considering all open alternatives to subgoals as being amenable to 
parallel exploitation, be they from tabled or non-tabled subgoals. 

This thesis addresses the design, implementation and evaluation of OPTYap [84]. 
OPTYap is an or-parallel tabling system based on the OPT model [80] that, to the best 
of our knowledge, is the first available system that can exploit parallelism from tabling 
applications. The OPT model considers tabling as the base component of the parallel 
system. Each worker1 behaves like a sequential tabling engine that fully implements all 
the tabling operations. The or-parallel component of the system is triggered to allow 
synchronized access to common parts of the search space or to schedule workers running 
out of alternatives to exploit. We take advantage of the hierarchy of or-parallelism 
within tabling to structure OPTYap's design and thus simplify its implementation. 

^ h e term worker is widely used in the literature to designate each computational unit or agent 
involved in the parallel environment. A worker is the abstract notion that represents, at the machine 
level, a system processor or process. 
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We validate our design through a performance study of the OPTYap system builds on 
the YapOr [78, 81] and YapTab [83, 82] engines. YapOr is an or-parallel engine that 
extends Yap's efficient sequential engine [29] to exploit implicit or-parallelism in Prolog 
programs. It is based on the environment copy model, as first implemented in the 
Muse system [5]. YapTab is a sequential tabling engine that extends Yap's execution 
model to support tabled evaluation for definite programs, that is, for programs not 
including negation. YapTab's implementation is largely based on the ground-breaking 
work for the XSB system [88, 76], and specifically on the SLG-WAM [86, 89, 87]. 
YapTab has been designed from scratch and its development was done taking into 
account the major purpose of further integrate it to achieve an efficient parallel 
tabling computational model, whilst comparing favorably with current state of the art 
technology. In other words, we aim at developing an or-parallel tabling system that, 
when executed with a single worker, runs as fast or faster than the current available 
sequential tabling systems. Otherwise, the parallel performance results would not be 
significant and fair, and thus it would be hard to evaluate the efficiency of the parallel 
implementation. 

We intend with our work to study and understand the implications of combining 
tabling with or-parallelism and thereby develop an efficient execution framework to 
exploit maximum parallelism and obtain good performance results. Accordingly, the 
thesis presents novel data structures, algorithms and implementation techniques that 
efficiently solve some difficult problems arising with the integration of both paradigms. 
Our major contributions include the dependency frame data structure; the generator 
dependency node concept and a novel algorithm to compute and detect leader nodes; a 
novel termination detection scheme to allow public completion; support for suspension 
of strongly connected components; improvements to scheduling technology; implemen­
tation techniques to deal with concurrent table access; and support for speculative 
tabled answers. 

In order to substantiate our claims we studied in detail the performance of our or-
parallel tabling engine, OPTYap, up to 32 workers. First, we evaluate the sequential 
and parallel behavior of OPTYap for non-tabled programs and compare it with that of 
Yap and YapOr. We then evaluate OPTYap with tabled programs and study its perfor­
mance for sequential and parallel execution. The gathered results show that OPTYap 
introduces low overheads for sequential execution and that it compares favorably 
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with current versions of XSB. Furthermore, the results show that OPTYap maintains 
YapOr's speedups for parallel execution of non-tabled programs, and that there are 
tabled applications that can achieve very high performance through parallelism. In 
our study we gathered detailed statistics on the execution of each benchmark program 
to help us in understanding and explaining some of the parallel execution results. 

Ultimately, this thesis aims at substantiating our belief that tabling and parallelism 
can together contribute to increasing the range of applications for Logic Programming. 

1.2 Thesis Outline 

The thesis is structured in nine major chapters that, in some way, reflect the different 
phases of the work. We provide a brief description of each chapter next. 

Chapter 1: Introduction. Is this chapter. 

Chapter 2: Logic Programming, Parallelism and Tabling. Provides a brief in­
troduction to the concepts of logic programming, parallel logic programming, 
and tabling, focusing on Prolog, or-parallelism, SLG resolution, and abstract 
machines for standard Prolog and tabling, namely the WAM and the SLG-WAM. 

Chapter 3: YapOr: The Or-Parallel Engine. Presents the design and implemen­
tation of the YapOr Prolog system. It introduces the general concepts of the 
environment copying model, and then describes the major implementation issues 
to extend the Yap Prolog system to support the model. Most of YapOr's 
development was prior to the present work. 

Chapter 4: Yap Tab: The Sequential Tabling Engine. First, it briefly describes 
the fundamental aspects of the SLG-WAM abstract machine, and then details 
YapTab's implementation. This includes discussing the motivation and major 
contributions of the YapTab design, and presenting the main data areas, data 
structures and algorithms to extend the Yap Prolog system to support sequential 
tabling. YapTab has been designed and implemented from scratch and its 
development was the first step towards the current or-parallel tabling system. 

Chapter 5: Parallel Tabling. In this chapter we propose two new computational 
models, OPT and TOP, to efficiently implement the parallel evaluation of tabled 
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logic programs. Initially, we describe related work to get an overall view of 
alternative approaches to parallel tabling. Next, we introduce and detail the 
fundamental aspects underlying the new computational models, and then we 
discuss their advantages and disadvantages. At last, we focus on the OPT 
computational model in order to discuss its implementation framework. 

Chapter 6: OPTYap: The Or-Parallel Tabling Engine. Presents the imple­
mentation details for the OPTYap engine. We start by presenting an overall 
view of the main issues involved in the implementation of the or-parallel tabling 
engine and then we introduce and detail the new data areas, data structures and 
algorithms used to implement it. 

Chapter 7: Speculative Work. Discusses the problems arising with speculative 
computations and introduces the mechanisms used in YapOr and OPTYap to 
deal with them. Initially, we introduce the cut semantics and its particular be­
havior within or-parallel systems. Next, we present the cut scheme implemented 
in YapOr and then discuss speculative tabling execution and present the support 
currently implemented in OPTYap. 

Chapter 8: Performance Analysis. In this chapter we assess the efficiency of the 
or-parallel tabling implementation by presenting a detailed performance analysis. 
We start by reporting an overall view of the overheads of supporting the several 
Yap extensions: YapOr, YapTab and OPTYap. Next we compare OPTYap's 
performance with that of YapOr on a similar set of non-tabled programs. Then 
we use a set of tabled programs to measure the sequential behavior of YapTab, 
OPTYap and XSB, and to assess OPTYap's performance when running the 
tabled programs in parallel. At last, we study the impact of using different lock­
ing schemes to deal with concurrent accesses to the table space data structures. 

Chapter 9: Concluding Remarks. Discusses the research, summarizes the contri­
butions and suggests directions for further work. 

Chapters 4, 6 and 7 include pseudo-code for some important procedures. In order to 
allow an easier understanding of the algorithms being presented in such procedures, the 
code corresponding to potential optimizations or synchronizations is never included, 
unless its inclusion was essential for the description. The Prolog code for the set of 
benchmarks used in Chapter 8 is included, at the end of the thesis, as Appendix A. 



Chapter 2 

Logic Programming, Parallelism 
and Tabling 

The aim of this chapter is to provide a brief overview of the research areas embraced 
by this thesis, highlighting the main ideas behind the key aspects of each area. We 
discuss logic programming, parallel logic programming and tabling. Throughout, we 
focus on Prolog, or-parallelism, SLG resolution, and abstract machines for standard 
Prolog and tabling, namely in the WAM and the SLG-WAM. 

2.1 Logic Programming 

Logic programming languages, together with functional programming languages, form 
a major class of languages called declarative languages. A common characteristic 
of both groups of languages is that they have a strong mathematical basis. Logic 
programming languages are based on the predicate calculus, while functional pro­
gramming languages are based on the lambda calculus. 

Declarative languages are considered to be very high-level languages when compared 
with conventional imperative languages because, generally, they allow the programmer 
to concentrate more on what the problem is, leaving much of the details of how to 
solve the problem to the computer. The mathematical basis of such languages makes 
programming an easier task. The programmer can specify the problem at a more 
application-oriented level and thus simplify the formal reasoning about it. 

31 
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Logic programming [61] is a programming paradigm based on Horn Clause Logic, a 
subset of First Order Logic. Logic programming is a simple theorem prover that given 
a theory (or program) and a query, uses the theory to search for alternative ways 
to satisfy the query. Logic programming is often mentioned to include the following 
major features [56]: 

• Variables are logical variables which can be instantiated only once. 

• Variables are untyped until instantiated. 

• Variables are instantiated via unification, a pattern matching operation finding 
the most general common instance of two data objects. 

• At unification failure the execution backtracks and tries to find another way to 
satisfy the original query. 

Carlsson [17] claims that Logic programming languages, such as Prolog, are cited to 
include the following advantages: 

Simple declarative semantics. A logic program is simply a collection of predicate 
logic clauses. 

Simple procedural semantics. A logic program can be read as a collection of re­
cursive procedures. In Prolog, for instance, clauses are tried in the order they 
are written and goals within a clause are executed from left to right. 

High expressive power. Logic programs can be seen as executable specifications 
that despite their simple procedural semantics allow for designing complex and 
efficient algorithms. 

Inherent non-determinism. Since in general several clauses can match a goal, prob­
lems involving search are easily programmed in these kind of languages. 

These advantages lead to compact code that is easy to understand, program and 
transform. Furthermore, they make logic programming languages very attractive for 
the exploitation of implicit parallelism. 
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2.1.1 Logic Programs 

A logic program consists of a collection of Horn clauses. Using Prolog's notation, each 
clause may be a rule of the form 

A : - Bu ..., Bn. 

where A is the head of the rule and the Bi, ..., Bn are the body subgoals, or it may 
be a fact and simply written as 

A. 

Rules represent the logical implication 

V (£i A ... A Bn ->■ A) 

while facts assert A as true. A separate type of clauses are those where the head goal 
is false. These type of clauses are called queries and, in Prolog, they are written as 

: — Bi, ..., Bn. 

A goal is a predicate applied to a number of terms (or arguments) of the form 

P (*1, - i tn) 

where p is the predicate name, and the t\, ..., tn are the terms used as arguments. Each 
term can be either a variable, an atom, or a compound term of the form f{u\, ..., um) 
where / is a functor and the u±, ..., um are themselves terms. Terms in a program 
represent world objects while predicates represent relationships among those objects. 
Variables represent unspecified terms while atoms represent symbolic constants. 

Information from a logic program is retrieved through query execution. The execution 
of a query Q against a logic program P, leads to consecutive assignments of terms 
to the variables of Q till a substitution 6 satisfied by P is found. A substitution is a 
function that given a variable of Q returns a term assignment. Answers (or solutions) 
for Q are retrieved by reporting for each variable X in Q the corresponding assignment 
0(X). When a variable X is assigned a term T, then X is said to be bound and T is 
called the binding of X. A variable can be bound to another different variable or to a 
non-variable term. 

Execution of a query Q with respect to a program P proceeds by reducing the initial 
conjunction of subgoals of Q to another conjunctions of subgoals according to a 
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resolution rule. The resolution rule of Prolog, Selective Linear Definite resolution 
(SLD resolution) [61], is a simplified version of the general inference rule that result 
from the pioneering work on resolution by Robinson [77]. SLD resolution proceeds as 
follows: 

• Let us assume that 
: — Gi, ..., Gn. 

is the current conjunction of subgoals. Initially and according to a predefined 
selectuterai rule, a subgoal (or literal) Gi is selected. 

• Assuming that Gi is the selected subgoal, then the program is searched for a 
clause whose head goal unifies with Gi. If there are such clauses then, according 
to a predefined selectciause rule, one is selected. 

• Consider that 
A : — Bi, ..., Bm. 

is the selected clause that unifies with Gi. The unification process has determined 
a substitution 9 to the variables of A and Gi such that A6 — Gi9. Execution 
may proceed by replacing Gi with the body subgoals of the selected clause and 
by applying 9 to the variables of the resulting conjunction of subgoals 

: — (Gi, ..., Gi-i, B\, ..., Bm, CTJ+I, ..., Gn)9. 

Notice that in the case the selected clause be a fact, Gi is simply removed from 
the conjunction of subgoals 

: ~~ {Gi, ..., Gi-i, Gi+i, ..., Gn)9. 

• When there are no clauses unifying with the selected subgoal, then a failure 
occurs. Failures are resolved through applying a backtracking mechanism. Back­
tracking exploits alternative execution paths by (i) undoing all the bindings 
made since the preceding selected subgoal Gp, and by (ii) reducing Gp with the 
next available clause unifying with it. 

• The computation stops either when all alternatives have been exploited or when 
an answer is found. An answer is found whenever the conjunction of subgoals is 
reduced to the true subgoal, which therefore corresponds to the determination 
of a query substitution satisfied by the program. 
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In [59], Kowalski stated that logic programming is about expressing problems as logic 
and using a resolution procedure to obtain answers from the logic. Therefore, in a 
computer implementation, the selectuterai and selectciause rules, that is the resolution 
procedure, must be specified. Different specifications lead to different algorithms and 
different languages (or semantics) can thus be obtained. Next, we introduce the logic 
programming language Prolog. 

2.1.2 The Prolog Language 

Prolog is the most popular logic programming language. The name Prolog was 
invented by Colmerauer as an abbreviation for PROgramotion en LOGic to refer to a 
software tool designed to implement a man machine communication system in natural 
language [24]. 

The pioneering work on resolution by Robinson, culminated in 1965 with the publica­
tion of his historical paper [77] describing the now well known general inference rule, 
Resolution with Unification. Starting from Robinson's work, it was Kowalski [58] and 
Colmerauer and colleagues [24] who first recognized the procedural semantics of Horn 
clauses and provided some theoretical background showing that Prolog can be read 
both procedurally and logically. 

In 1977, David H. D. Warren made Prolog a viable language by developing the first 
compiler for Prolog [108]. This helped to attract a wider following to Prolog and 
made the syntax used in this implementation the de facto Prolog standard. In 1983, 
Warren proposed a new abstract machine for executing compiled Prolog code [109] 
that has come to be known as the Warren Abstract Machine, or simply WAM. The 
WAM became the most popular way of implementing Prolog and almost all current 
Prolog systems are based on WAM's technology. 

The interest in logic programming has increased considerably when the Japanese 
announced their Fifth Generation project. As a result, since then, many different 
sequential and parallel models were proposed and implemented. The advances made 
in the compilation technology of sequential implementations of Prolog proved to be 
highly efficient which has enabled Prolog compilers to execute programs nearly as fast 
as the conventional programming languages like C [85]. 
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The operational semantics of Prolog is given by SLD resolution, as it matches current 
computer architectures particularly well. Prolog applies SLD resolution by speci­
fying that the selectuterai rule chooses the leftmost subgoal in a query, and that the 
selectciause rule follows the textual order of the clauses in the program. To make Prolog 
a useful programming language for real world problems, some additional features not 
found within first order logic were introduced. These features include: 

Meta-logical predicates. These predicates inquire the state of the computation and 
manipulate terms. 

Cut predicate. This predicate adds a limited form of control to the execution. It 
prunes unexploited alternatives from the computation. 

Extra-logical predicates. These are predicates which have no logical meaning at all. 
They perform input/output operations and manipulate the Prolog database, by 
adding or removing clauses from the program being executed. 

Other predicates. These include arithmetic predicates to perform arithmetic oper­
ations, term comparison predicates to compare terms, extra control predicates 
to perform simple control operations, and set predicates that give the complete 
set of answers for a query. 

An important aspect of many of these predicates is that their behavior is order-
sensitive. This means that they can potentially produce different outcomes if different 
selectiiterai or selectciause rules are specified. Moreover, the use of some of these 
predicates relies on a deep knowledge of Prolog execution. For readers not familiar 
with Prolog, a more detailed presentation of these topics can be found in some of the 
standard textbooks on Prolog, such as [23, 61, 95]. 

2.1.3 The Warren Abstract Machine 

Prolog became the most popular logic programming language largely due to the success 
of its efficient implementations based on the Warren Abstract Machine (WAM) [109]. 
Currently, most of the state of the art systems for logic programming languages still 
rely on WAM's technology. 
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The WAM is a stack-based architecture with simple data structures and a low-level 
instruction set. At any time, the state of a computation is obtained from the contents 
of the WAM data areas, data structures and registers. See Figure 2.1 for a detailed 
illustration of the WAM's organization. 
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Figure 2.1: WAM memory layout, frames and registers. 

The WAM defines the following execution stacks: 

PDL: The PDL is a push down list used by the unification process. 

Trail: Organized as an array of addresses, it stores the addresses of the (stack or 
heap) variables which must be reset upon backtracking. The TR register always 
points to the top of this stack. 

Stack: Also mentioned as local stack, it stores the environment and choice point 
frames: 

• Environments track the flow of control in a program. An environment is 
pushed onto the stack whenever a clause containing several body subgoals 
is picked for execution, and it is popped off before the last body subgoal 
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gets executed. An environment frame consists of the stack address of the 
previous environment, to reinstate if popped off; the code address of the 
next instruction, to execute upon successful return from the invoked clause; 
and a sequence of cells, as many as the number of permanent variables1 in 
the body of the invoked clause. The E register points to the current active 
environment. 

• Choice points store open alternatives. A choice point contains all the 
necessary data to restore the state of the computation back to when the 
clause was entered; plus a pointer to the next clause to try, in case the 
current one fails. A choice point frame is pushed onto the stack when a 
goal is called for execution and has more than one candidate clause. It is 
popped off when the last alternative clause is taken for execution. The B 
register points to the current active choice point, which is always the last. 

Note that some WAM implementations, like XSB [44] and SICStus Prolog [18], 
use separate execution stacks to store environments and choice points. 

Heap: Sometimes also referred as global stack, it is an array of data cells used to store 
variables and compound terms that cannot be stored in the stack. The H register 
points to the top of this stack. 

Code Area: Contains the WAM instructions comprising the compiled form of the 
loaded programs. 

Figure 2.1 mentions other important WAM registers: the S register that is used during 
unification of compound terms; the HB register that is used to determine if a binding 
is conditional or not2; the P register that points to the current WAM instruction being 
executed; and the CP register points to where to return to after successful execution 
of the current invoked call. 

Four main groups of instructions can be enumerated in the WAM instruction set: 

Choice point instructions: As the name indicates these instructions manipulate 
choice points. They allow to allocate/remove choice points and to recover the 
state of a computation through the data stored in choice points. 

1A permanent variable is a variable which occurs in more than one body subgoal [1]. 
2Conditional bindings are discussed next in subsection 2.2.1. 
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Control instructions: allocate/remove environments and manage the call/return 

sequence of subgoals. 

Unification instructions: These instructions implement specialized versions of the 
unification algorithm according to the position and type of the arguments. There 
are proper unification instruction to perform head unification, to perform sub-
argument unification, and to prepare arguments for subgoals. These three major 
classes are further subdivided in specialized versions to treat first occurrence of 
variables in a clause, non-first occurrences, constants in the clause, lists, and 
other compound terms. 

Indexing instructions. These type of instructions accelerate the process of deter­
mining which clauses unify with a given subgoal call. Depending on the first 
argument of the call, they jump to specialized code that can directly index the 
unifying clauses. 

The apparent simplicity of WAM hides several intricate implementation issues. Com­
plete books, such as A'it-Kaci's tutorial on the WAM [1], discuss these topics. 

2.2 Parallelism in Logic Programs 

Traditional implementations of Prolog were designed for common, general-purpose 
sequential computers. In fact, WAM based Prolog compilers proved to be highly effi­
cient for standard sequential architectures and have helped to make Prolog a popular 
programming language. The efficiency of sequential Prolog implementations and the 
declarativeness of the language have kindled interest on implementation for parallel 
architectures. In these systems, several processors work together to speedup the 
execution of a program. Parallel implementations of Prolog should obtain better 
performance for current programs, whilst expanding the range of applications we can 
solve with this language. 

The following main forms of implicit parallelism can be identified in logic programs: 

Or-parallelism: Appears from the non-determinism of the selectciause rule, when 
a subgoal call unifies with more than one of the clauses defining the subgoal 
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predicate. It corresponds to the parallel execution of the bodies of the alterna­
tive matching clauses. Or-parallelism is thus an efficient way of searching for 
alternative answers to the query. 

And-parallelism: Appears from the non-determinism of the selectuterai rule, when 
more than one subgoal is present in the query or in the body of a clause. It 
corresponds to the parallel execution of such subgoals. Two main forms of and-
parallelism are known [49]: 

• Independent and-parallelism: Occurs when the subgoals, in the query 
or in the body of a clause, do not share unbound variables. This guarantees 
that potential bindings for the variables in each subgoal are compatible with 
the outcome bindings from the other subgoals. 

• Dependent and-parallelism. Occurs when the subgoals, in the query or 
in the body of a clause, have common unbound variables. Notice that the 
parallel execution of such subgoals can lead to incompatible bindings to the 
common variables. Two major approaches arise: (i) the dependent subgoals 
only execute simultaneously until one of them binds a common variable. As 
an alternative, it is possible to continue executing the subgoals even after a 
common variable has been bound, but in such case, the bindings produced 
have to be checked for compatibility at the end; or (ii) the dependent 
subgoals are executed independently and once a common variable is bound 
by a subgoal, called the producer, the other subgoals, called the consumers, 
read the binding as an input argument for the variable. Parallelism can be 
further exploited by having the producer computing alternative bindings 
for the common variable and the consumers computing with a particular 
binding. 

Unification parallelism. Appears during the process of unifying the arguments of 
a subgoal with those of a head clause for the predicate with the same name and 
arity. The different argument terms can be unified in parallel as can the different 
sub-terms in a term [11]. Unification parallelism is very fine grained and has not 
been the major focus of research in parallel logic programming. 

Original research on the area resulted in several different proposals that successfully 
supported these forms of parallelism. Arguably, some of the most well-known systems 
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are: Aurora [62] and Muse [6] for or-parallelism; &-Prolog[54] and &ACE [68, 69] for 
independent and-parallelism; DASWAM [91, 90] and ACE [67] for dependent and-
parallelism; and Andorra-I [33, 113] for or-parallelism together with dependent and-
parallelism. A complete and detailed presentation of such systems and the challenges 
and problems in their implementation can be found in [49]. 

Intuitively, as each form of parallelism explores different points of non-determinism in 
the operational semantics of the language, it should be possible to exploit all of them 
simultaneously. The overall principle in the design of a parallel system that exploits 
several forms of parallelism simultaneously is orthogonality [27]. In an orthogonal 
design, each form of parallelism should be exploited without affecting the exploitation 
of the other. However, no efficient parallel system has been built yet that achieves 
this, because practical experience has shown that this orthogonality is not so easily 
translatable to the implementation level. A system extracting maximum parallelism 
from logic programs while achieving the best possible performance is the ultimate goal 
of researchers in parallel logic programming. 

2.2.1 Or-Parallelism 

Of the forms of parallelism available in logic programs, or-parallelism is arguably one 
of the most successful. Intuitively, in a first step, or-parallelism seems easier and more 
productive to exploit implicitly than and-parallelism. As referred by Lusk et al. [62] 
the main advantages of exploiting or-parallelism are: 

Generality. It is relatively straightforward to exploit or-parallelism without restrict­
ing the power of the logic programming language. In particular, or-parallelism 
can profit from Prolog's adequacy to generate all answers to a query. 

Simplicity. Or-parallelism can be exploited without requiring any extra programmer 
annotation or any complex compile-time analysis. 

Closeness to Prolog. Implementation technology for Prolog sequential execution 
can be easily extended to cope with or-parallelism. This means that one can 
easily preserve the language semantics and take full advantage of existing imple­
mentation technology to achieve high performance for a single worker. 
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Granularity. Or-parallelism offers good potential to be exploited in Prolog programs. 
For a large class of Prolog programs, the grain size of an or-parallel computation, 
that is, the potential amount of or-parallel work that can be performed without 
interaction with other pieces of work proceeding in parallel, is coarse grain [100, 
56]. 

Applications. Or-parallelism arises in a wide range of applications, namely for ap­
plications in the general area of Artificial Intelligence involving detection of all 
answers or large searches, whether it be exercising the rules of an expert system, 
proving a theorem, parsing a natural language sentence, or answering a database 
query. 

These are arguably the main reasons why most of the research towards implicit parallel 
Prolog systems starts from or-parallelism. The issues raised in attempting to exploit 
several forms of parallelism are sufficiently complex that most research efforts are 
focusing primarily on one single form. The least complexity of or-parallelism makes 
its implementation more attractive as a first step. 

Intuitively, or-parallelism seems easy to implement as the various alternative branches 
of the search tree are independent of each other, therefore requiring minimum syn­
chronization between them. However, practice has shown that implementation of 
or-parallelism is not an easy task. Two major problems must be addressed when 
exploiting or-parallelism: (i) multiple binding representation and (ii) work scheduling. 

Multiple Binding Representation 

The multiple binding representation is a crucial problem for the efficiency of an or-
parallel system. The concurrent execution of alternative branches of the search tree 
can result in several conflicting bindings for shared variables. The environments of 
alternative branches have to be organized in such a way that conflicting bindings can 
easily be discernible. A binding of a variable is said to be conditional if the variable 
was created before the last choice point, otherwise it is said unconditional The main 
problem in the management of multiple environments is that of efficiently representing 
and accessing conditional bindings, since unconditional bindings can be treated as in 
normal sequential execution. 
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Essentially, the problem of multiple environment management is solved by devising a 
mechanism where each branch has some private area where it stores its conditional 
bindings. A number of approaches have been proposed to tackle this problem [110, 50]. 
However, each approach has associated costs that are incurred at the time of node3 

creation, at the time of variable access, at the time of variable binding, or at the time 
of environment switching to start executing a new branch. Gupta and Jayaraman [50] 
claim that, for an ideal or-parallel system, the cost of all these operations should 
be constant time. The term constant time is used to mean that the time for these 
operations is independent of the number of nodes in the or-parallel search tree, as 
well as the number of goals and the size of terms that appear in goals [48]. However, 
Gupta and Jayaraman [50] conjectured that it is impossible to executed all operations 
in constant time because the cost of at least one of this operations will increase by a 
non-constant overhead. More recently, this intuitive result has been formally proved 
to hold by Ranjan et al. [75]. 

Work Scheduling 

Even though the cost of managing multiple environments cannot be completely avoided, 
it may be minimized by the or-parallel system if it is able to divide efficiently the 
available work during execution. The system component responsible for finding and 
distributing parallel work to available workers is known as the scheduler. Work 
scheduling is a complex problem because of the dynamic nature of work in or-parallel 
systems, as in fact, unexploited branches arise irregularly. To efficiently deal with this 
irregularity, careful scheduling strategies are required. Several different strategies have 
been proposed to tackle this problem [16, 5, 12, 94, 93]. 

Two major policies are known to dispatch work for or-parallel execution: (i) topmost 
and (ii) bottommost. In the topmost policy, when an idle worker asks for work, only 
a restricted number of nodes with available work is made public4. The nodes are made 
public in sequence, starting from the root node, and the number of nodes is selected 
according to the scheduler's strategy. The topmost policy leads to bigger private 
regions of the search tree, which intuitively one would expect to correspond to an 

3A node is the abstract notion that is implemented at the engine level as a choice point. 
4A node is called public when it is shared by several workers. Otherwise, when belonging to an 

unique worker, it is called private. 
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increase in the granularity of an or-parallel computation. In contrast, the bottommost 
policy turns public the whole private region of a worker when it shares work. This 
maximizes the amount of shared work and possibly avoids that the requesting worker 
runs out of work too early and therefore invokes the scheduler too often. Practice 
showed that, for shared memory parallel systems, bottommost is the best policy 
to dispatch work for or-parallel execution and thus achieve higher granularity of or-
computations. 

A major problem for scheduling is the presence of pruning operators like the cut 
predicate. When a cut predicate is executed, all alternatives to the right of the cut 
are pruned, therefore never being executed in a sequential system. However, in a 
parallel system, the work corresponding to these alternatives can be early picked for 
parallel execution, therefore resulting in wasted computational effort when pruning 
takes place. This form of work is known as speculative work. Giving higher scheduling 
priority to work on the left part of the search tree is a way of reducing the probability 
of further pruning. An advanced scheduler must be able to reduce to a minimum the 
speculative computations and at the same time maintain the granularity of the work 
scheduled for execution [8, 13, 94]. The speculative work problem is discussed in detail 
in Chapter 7. 

2.2.2 Or-Parallel Execution Models 

A number of execution models have been proposed in the literature towards exploiting 
or-parallelism (a detailed analysis of about 20 models can be found in [50]). These mod­
els mainly differ in the mechanism employed for solving the problem of environment 
representation. Arguably, the two most successful ones are environment copying [6, 5], 
as implemented in the Muse system, and binding arrays [112, 111], as implemented in 
the Aurora system. 

In the environment copying model each worker maintains its own copy of the envi­
ronment in which it can write without causing binding conflicts. In this model even 
unconditional bindings are not shared. When a variable is bound, the binding is stored 
in the private environment of the worker doing the binding. 

When an idle worker picks work from another worker, it copies all the stacks from 
the sharing worker. Copying of stacks is made efficient through the technique of 
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incremental copying. The idea of incremental copying is based on the fact that the 
idle worker could have already traversed a part of the search tree that is common to 
the sharing worker, and thus it does not need to copy this part of stacks. Furthermore, 
copying of stacks is done from the virtual memory addresses of the sharing worker to 
exactly the same virtual memory addresses of the idle worker, which therefore avoids 
potential reallocation of address values. 

As a result of copying, each worker can carry out execution exactly like a sequential 
system, requiring very little synchronization with other workers. Synchronization 
between workers is achieved through a single auxiliary data structure associated with 
the choice points. In section 3.1 we analyze in detail the environment copying approach 
to or-parallelism, including its implementation. 

On the other hand, in the binding arrays model each worker maintains a private 
array data structure, called the binding array, where it stores its conditional bindings. 
Each variable along a branch is assigned to an unique number that identifies its offset 
entry in the binding array. The numbering of variables is done so that it forms a 
strict increasing sequence. This is achieved by maintaining a private counter. New 
variables are always marked with the current value of the counter. Next, the counter is 
incremented. The counter is saved at every choice point so that whenever a worker gets 
an alternative branch it can get a copy of the counter and continue its own numbering. 
Bindings for a variable are conditional when the variable's number is smaller than the 
counter stored in the current choice point. 

Conditional bindings are stored in the private binding array of the worker doing the 
binding, at the offset location given by the offset value of that conditional variable. In 
addition, the conditional binding together with the address of the conditional variable 
are stored in a global binding tree, that is, the WAM's trail stack. This global binding 
tree is then used to ensure consistency when a worker switches from one branch to 
another, as in such cases, the switching worker has to update its binding array to 
reflect the bindings of the new branch. 

Both models allow constant-time cost for node creation, variable access and for variable 
binding, but induce non-constant time cost for environment switching. 

The success of these models is partly due to the fact that their corresponding systems 
do support sequential Prolog semantics. A parallel system is said to support sequential 
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Prolog semantics when it achieves the same effect of sequential execution and supports 
all the additional features not found within pure Horn Clause Logic [21] (refer to the 
meta-logical, extra-logical and other predicates of subsection 2.1.2). The advantage of 
such an approach is that all existing Prolog programs can be taken and executed in 
parallel without any modifications. 

Arguably, copying is the most efficient way to maintain or-parallel environments. 
Most modern parallel logic programming systems, including SICStus Prolog [18], 
ECLiPSe [107], and YAP [31] use copying as a solution to the multiple bindings 
problem. Copying was made popular by the Muse or-parallel system, a system de­
rived from an early release of SICStus Prolog. Muse showed excellent performance 
results [8, 9, 7, 30, 26, 32] and in contrast to other approaches, it also showed low 
overhead over the corresponding sequential system. On the other hand, copying has 
a few drawbacks. First, it can be expensive to exploit more than just or-parallelism 
with copying, as the efficiency of copying largely depends on copying large contiguous 
blocks of memory, which is difficult to guarantee in the presence of and-parallelism [51]. 
A second issue is that copying makes it more expensive to suspend branches during 
execution, which can be a problem when implementing cuts and side-effects, although 
Ali and Karlsson [8] proposed solutions to efficiently solve this problem. 

2.3 Tabling for Logic P rog rams 

Prolog execution is based on SLD resolution for Horn clauses. This strategy allows 
efficient implementation, but suffers from fundamental limitations, such as in dealing 
with infinite loops and redundant subcomputations. These limitations make Prolog 
unsuitable to important applications such as, for example, Deductive Databases. The 
limitations of SLD resolution are well known, and extensive efforts have been made 
to remedy them. On approach is to use resolution strategies similar to SLD, but 
that can avoid redundant computations by remembering subcomputations and reusing 
their results in order to respond to later requests. This process of remembering and 
reuse has been widely called tabling, tabulation or memoing [65]. Tabling methods 
have been proposed from a number of different starting points and given a number 
of different names: OLDT [103], SLD-AL [105], Extension Tables [37], and Backchain 
Iteration [106] are the better known. The tabling concept also forms the basis of 
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a transformation used with bottom-up evaluation to compute answers for deductive 
database queries, that is known by the generic name of magic [14, 73]. 

Another major research direction followed during the past years in order to increase the 
expressiveness of logic programming, was concerned with the introduction of negation 
on the body subgoals of clauses. Although the inclusion of negation seems simple, the 
definition of the declarative semantics of logic programs including negative subgoals 
is a major problem [10]. One of the most popular resolution methods that includes 
negation is SLDNF [22], an extension to SLD resolution that supports negation as finite 
failure. However, this method has not proved to be sufficient for important areas of 
application, such as Deductive Databases, Non-Monotonic Reasoning and models for 
executable specifications, such as Model Checking. 

A strong drawback of SLDNF results from its inadequacy in handling positive and 
negative loops. Because tabling methods already address the handling of positive 
loops, it is natural, then, to extend them to handle negative loops and thereby support 
frameworks such as the well-founded semantics [43]. The well-founded semantics 
provides a natural and robust declarative meaning to all logic programs with negation. 
However, practical use of the well-founded semantics depends upon the implementation 
of an effective and efficient evaluation procedure. 

Although various procedural semantics have been proposed for the well-founded se­
mantics, one such proposal that has been gaining in popularity is Linear resolution with 
Selection function for General logic programs (SLG resolution) [20]. SLG resolution is 
a tabling based method of resolution that has polynomial time data complexity and is 
sound and search space complete for all non-floundering queries under the well-founded 
semantics. SLG resolution can thus reduce the search space for logic programs and in 
fact it has been proven that it can avoid looping and thus terminate for all programs 
with the bounded-term-size property [20]. SLG's popularity is largely due to the work 
done on the XSB system [88, 76], and namely on the SLG-WAM [86, 89, 87], the 
original engine of the XSB system. 

Next, we further motivate the need for tabling (or memoing) in a logic programming 
framework, and then we briefly review the underlying features of SLG resolution and 
SLG-WAM. At the end, we overview other related implementations of tabling. 
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2.3.1 Examples of Tabled Evaluation 

The basic idea behind tabling is straightforward: programs are evaluated by storing 
newly found answers of current subgoals in a proper data space, called the table space. 
The method then uses this table to verify for repeated calls to subgoals. Whenever such 
a repeated subgoal is found, the subgoal's answers are recalled from the table instead 
of being re-evaluated against the program clauses. In the following, we illustrate the 
advantage of tabling through an example. 

Consider the Prolog program of Figure 2.2 that defines a small directed graph (rep­
resented by the arc/2 predicate) with a relation of reachability (given by the path/2 
predicate), and the query goal ?- path(a,Z). 

f \ 
path(X,Z) :- path(X,Y) , path(Y,Z) 
path(X,Z) :- arc(X,Z) . 

a r c ( a , b ) . 
a r c ( b , c ) . 

?- p a t h ( a , Z ) . 

Figure 2.2: An infinite SLD evaluation. 

Applying SLD evaluation to solve the given query goal will lead to an infinite SLD tree 
due to the existence of positive loops. Regard, for example, what happens when the 
leftmost branch of the corresponding search tree is exploited. In contrast, if tabling 
is applied then the search tree is finite, hence termination is ensured. Figure 2.3 
illustrates the evaluation sequence for the same program and query goal using tabling. 

The figure depicts the evaluation sequence for the given query goal. At the top, 
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c 
: - table path/2. 

\ 

path(X,Z) :- path(X,Y), path(Y,Z) 
path(X,Z) :- arc(X,Z) . 

arc(a,b) . 
arc (b,c) . 

?- path(a,Z) . 

c X c 
subgoal answers 

X c 

0. path(a,Z) 3. Z = b 
10. Z = c 

X c 

5. path(b,Z) 9. Z = c 

X c 

11. path(c,Z) 

X c X 

Tabled evaluation Co. path(a,Z) J 

c 1. path(a,Y), path(Y,Z) ^ ) 

i s . path(b,Z) J 18. path(c,Z 

2. arc(a.Z) 

3. Z = b 4. fail 

10. Z = c 19. fail 

Mj7path(b,Z) J 

i s . path(b,Y), path(Y,Z)) 

ill. path(c,Z)J 

7. arc(b,Z) 

). fail 9. Z = c 

17. fail 

(ll. path(cZ)^ 

12. path(c,Y) , path :h(Y,zA 

16. fail 

13. arc(c,Z) 

14. fail 15. fail 

Figure 2.3: A finite tabled evaluation. 

the figure illustrates the program code and the appearance of the table space at the 
end of the evaluation. Declaration : - t ab le path/2 in the program code indicates 
that predicate path/2 should be tabled, therefore tabling will be applied to solve its 
subgoals calls. The bottom block shows the resulting forest of trees for the three tabled 
subgoal calls. The numbering of nodes denote the evaluation sequence. 

Whenever a tabled subgoal is first called, a new tree is added to the forest of trees and 
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a new entry is added to the table space. On the other hand, variant calls5 to tabled 
subgoals start, instead, by consuming the answers already stored in the table space for 
the corresponding subgoal. When all currently available answers are consumed, the 
execution of the variant subgoal is suspended until new answers arise. In Figure 2.3, 
the former situation is depicted by white oval boxes surrounding the subgoal calls, 
while the latter is depicted by gray oval boxes. 

Let us examine the evaluation in more detail. The evaluation begins by creating a 
new tree rooted by path(a,Z) and by inserting a new entry in the table space for 
it. Next, path (a, Z) is first resolved against the first clause for path/2, creating node 
I. Execution proceeds with path (a, Y) and in principle the same procedure should 
be applied again. However, since path (a, Y) is a variant of the initially encountered 
subgoal path(a,Z), no new tree is created, and instead, the execution of node 1 
suspends. This happens because currently the subgoal has no answers stored in the 
table space. Therefore, the only resolution applicable is to node 0 where the second 
path/2 clause is tried, thus leading to a first answer for path(a,Z). After exhausting 
all alternatives in node 2, the computation is resumed at node 1 with the newly found 
answer, which in turn leads to a first call to subgoal path(b,Z). The evaluation creates 
a new tree rooted by path(b,Z), inserts a new entry in the table space for it, and 
proceeds as for the latter case. The process continues, giving rise to one more tree, 
for subgoal path(c,Z), and to more answers, one for path (a, Z) and the other for 
path(b.Z). 

By avoiding the recomputation of p(a,Y), p(b,Y) and p(c,Y) in nodes 1, 5 and 
II , respectively, tabling ensures the termination of the given query. Besides avoiding 
infinite loops, tabling also reduces the number of steps we need to perform and may 
reduce the complexity of a program. This later property is better clarified next. 
Consider, for example, the well-known Fibonacci program as defined in Figure 2.4. 

The figure presents, by using a tree structure, the number of calls to the f ib /2 
predicate given the query ?- f ib(5,Z) , for the cases where SLD or tabled evaluation 
are applied. As predicate f ib /2 is declared as tabled, each different subgoal call is 
only computed once, as for repeated calls, the corresponding answer is already stored 
in the table space. To compute fib(n) for some integer n, SLD will search a tree whose 
size is exponential in n. Because tabling remembers subcomputations, the number of 

5A call is a variant of another call if the two calls are the same up to variable renaming. 
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f i b ( 0 , l ) . 
f i b ( l , l ) . 
f i b ( N , Z ) : - P i s N - 1 , 

Q i s N - 2 , 
f i b ( P , X ) , 
£ i b ( Q , Y ) , 
Z i s X + Y. 

?- f i b ( 5 , Z ) . 

c 
SLD evaluation 

fib(5) 
V 

fib(4) fib(3) 7\ 
fib(3) fib (2) fib(2) fib(l) 

/ \ 
fib(2) fib(l) 

/ \ 
fib(l) fib{0) fib(l) fib(O) 

fib(l) fib(O) ^ 

/ 
Tabled 

evaluation 
fib(5) \ 

fib(4) fib(3) 

fi 
/ 

/ 
b(3) 

\ 
fib(2) 

/ 
fib(2) 

\ 
fib(l) 

fib(l) fib(O) 

Figure 2.4: Fibonacci complexity for SLD and tabled evaluation, 

resolution steps for this example is linear in n. 

2.3.2 SLG Resolution for Definite Programs 

Restricted to the class of definite programs, that is, to the class of programs not includ­
ing negation, SLG resolution reduces to SLD with tabling, and does not significantly 
differ from the other tabling evaluation methods previously referred. Remember that 
the aim of this thesis is to address the problem of or-parallel tabling, focusing on 
traditional tabling, that is, tabling not extended to include negation. 

In the following, we offer a brief review of SLG resolution for definite programs using 
the simplified definitions from Sagonas and Swift [87]. For a more detailed discussion, 
the reader is referred to Chen and Warren [20]. 

Definition 2.1 (SLG System) An SLG system is a forest of SLG trees, along 
with an associated table. Root nodes of SLG trees are subgoals of tabled predicates. 
Non-root nodes either have the form fail or 

Answer ..Template : — Goal-List 
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The Answer .Template is a positive literal, and Goal-List is a possibly empty sequence 
of subgoals. The table is a set of ordered triples of the form 

(Subgoal, Answer .Set, State) 

where the first element is a subgoal, the second a set of positive literals, and the third 
either the constant complete or incomplete. D 

Definition 2.2 (SLG Evaluation) Given a tabled program P, an SLG evaluation 6 
for a subgoal G of a tabled predicate is a sequence of systems <S0, Si, ..., Sn such that: 

• S0 is the forest consisting of a single SLG tree rooted by G and the table 
{(G, 0, incomplete)}; 

• for each finite ordinal k, Sk+i is obtained from Sk by an application of one of 
the operations in definition 2.3. 

If no operation is applicable to Sn, Sn is called a final system of 9. D 

In a SLG system, the nodes of an SLG tree are often described by its status. The root 
node of an SLG tree has status generator. Non-root nodes may have status answer, 
if its GoaLList is empty; interior, if its selected subgoal is non-tabled; or consumer if 
its selected subgoal is tabled. Using this terminology, the SLG operations for definite 
programs are defined as follows. 

Definition 2.3 (SLG Operations for Definite Programs) Given a tabled pro­
gram P and a system Sk of an SLG evaluation 9, Sk+i may be produced by one 
of the following operations. 

New Tabled Subgoal Call. Given a consumer node J\f with selected subgoal S, 
where S is not present in the table of Sk, create a new SLG tree with root S and 
add the entry (S, 0, incomplete) to the table. 

Program Clause Resolution. Let J\f be a node in Sk that is either a generator node 
S or an interior node of the form 

Answer -Template : — S, Goals. 
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Let 
C = Head : — Body 

be a program clause such that Head unifies with S with substitution 9 and 
assume that C has not been used for resolution at node J\f. Then 

• if A/" is a generator node, produce a child of JV 

(S : - Body)6. 

• if Af is an interior node, produce a child of J\f 

(Answer-Template : — Body, Goals)9. 

Answer Resolution. Let A/" be a consumer node 

Answer-Template : — S, Goals. 

Let A be an answer for S in Sk and assume that A has not been used for 
resolution against Af. Then produce a child of J\f 

(Answer.Template : — Goals)9. 

where 9 is the substitution unifying S and A. 

New Answer. Let 
A : -

be a node in a tree rooted by a subgoal S, such that A is not an answer in the 
table entry for S in Sk- Then add A to the set of answers for S in the table. 

Completion. If C is a set of subgoals that is completely evaluated (according to 
definition 2.5), remove all trees whose root is a subgoal in C, and change the 
state of all table entries for subgoals in C from incomplete to complete. D 

Definition 2.4 (Subgoal Dependency Graph) Let Sk be an SLG system and T 
its SLG forest. We say that a tabled subgoal S directly depends on a tabled subgoal 
S' if and only if the tree rooted by S contains a consumer node whose selected subgoal 
is S'. 
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The Subgoal Dependency Graph of Sk 

SDG(Sk) = (V, E) 

is a directed graph in which V is the set of root goals for trees in T and (S, S') belongs 
to E if and only if subgoal S directly depends on subgoal S'. D 

Since the subgoal dependency graph of a given system is a directed graph, it can be 
partitioned into Strongly Connected Components, or SCCs. As an artifact of the SLG-
WAM, it can happen that the stack segments for a SCC S remain within the stack 
segments for another SCC S'. In such cases, S cannot be recovered in advance when 
completed, and thus, its recovering is delayed until S' also completes. To approximate 
SCCs in SLG-WAM's stack-based implementation of SLG resolution, Sagonas [86] 
denotes a set of SCCs that can be recovered together as an Approximate SCC or 
ASCC. An ASCC is termed independent if it depends on no other ASCC which it 
does not contain. This terminology leads to the following operational definition of 
when a set of subgoals has been completely evaluated. 

Definition 2.5 (Completely Evaluated Set of Subgoals) Given an SLG system 
Sk, a set C of subgoals is completely evaluated if and only if either of the following 
conditions is satisfied: 

1. C is an independent ASCC of SDG(Sk) and for each subgoal S in C all applicable 
SLG operations other than Completion have been performed for nodes in the 
tree rooted by S according to definition 2.3. 

2. C — {S} and S contains an answer identical to itself in the table entry for S. 

We say that a subgoal S is completely evaluated if and only if C is a completely 
evaluated set of subgoals and 5" belongs to C D 

For simplicity, throughout the thesis we will not distinguish between SCCs and ASCCs 
and we will use the SCC notation to refer the approximation resulting from the 
stack organization. The correct distinction between both notations is necessary when 
determining negative loops among subgoals in programs with negation, which is not 
our case. 
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2.3.3 SLG-WAM: an Abstract Machine for SLG Resolution 

SLG resolution has been firstly implemented in the XSB system by extending the 
WAM into the SLG-WAM, an abstract machine designed to fully integrate Prolog 
SLD code and tabling SLG code with minimal overhead. The SLG-WAM extends 
the WAM layout both to include a representation of tables, and to operate over a 
forest of SLG trees rather than over a single SLD tree. Performance evaluation of the 
SLG-WAM, as reported in [88, 99], showed that it can compute in-memory recursive 
queries an order of magnitude faster than current deductive databases systems. 

The data structures, data areas, instructions set, and algorithms used by the SLG-
WAM for definite programs are described in [98], while extensions to handle normal 
logic programs according to the well-founded semantics are discussed in [86, 89, 87]. 
Here, we briefly summarize the main extensions made by the SLG-WAM to the WAM 
in order to support SLG resolution for definite programs. 

1. The SLG-WAM includes a proper space for tables, and the table access methods 
are tightly integrated with WAM data structures. 

2. The SLG-WAM is able to suspend computations when it encounters consumer 
subgoals and to resume them at a later point to consume newly found answers. 
The need for suspending and resuming requires efficient mechanisms to restore an 
environment to the same computational state as it was before being suspended. 

3. Since a computation can be resumed in suspended consumer nodes, space for 
these nodes cannot be reclaimed upon backtracking, but only when the SCC 
to which they belong is completed. A mechanism was developed to detect 
completion of SCCs in order to allow early space reclamation. 

4. The decision of applying a certain SLG operation to continue an evaluation gives 
rise to possible alternative scheduling strategies. Such alternatives can influence 
differently the architecture and performance of the abstract machine. Originally, 
SLG-WAM had a simple scheduling mechanism, named single stack scheduling, 
which formed the basis of the XSB system as described in [98]. A detailed 
description of the operational semantics of single stack scheduling can be found 
in [97]. Meanwhile, practice showed that single stack scheduling was expensive 
in terms of trailing and choice point creation, and thus, Freire and colleagues 
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proposed two more sophisticated scheduling strategies, named batched scheduling 
and local scheduling [40], to overcome these problems. Since version 1.5, XSB 
had used batched scheduling as the default strategy, although the last version 
of XSB (version 2.4 released in July 2001) has adopted local scheduling as the 
default. Another scheduling strategy that has been evaluated in SLG-WAM was 
breadth-first scheduling [41]. Breadth-first scheduling was proposed by Freire [38] 
to address the inability of resolution-based systems to deal with applications that 
require massive amounts of data residing in external databases. 

5. The preceding features are implemented by using WAM-like instructions. 

We return to these topics in section 4.1 where a complete description of the funda­
mental aspects underlying the SLG-WAM abstract machine is given. 

2.3.4 Other Related Implementations 

More recently, other related mechanisms for tabling have been implemented. Ramesh 
and Chen [74] implemented a technique based on program transformation to incor­
porate tabled evaluation into existing Prolog systems. Their approach uses the C 
language interface, available in most Prolog systems, to implement external tabling 
primitives that provide direct control over the search strategies for a transformed 
program. A tabled logic program is transformed to include the tabling primitives 
through source level transformations, and only the resulting transformed program is 
compiled. The mechanism is independent from the Prolog's engine which makes it 
easily portable to any Prolog system with a C language interface. 

Demoen and Sagonas proposed a copying approach to deal with tabled evaluations 
and implemented two different models, the CAT [35] and the CHAT [36]. The main 
idea of the CAT implementation is that it replaces SLG-WAM's freezing of the stacks 
by copying the state of suspended computations to a proper separate stack area. 
The CHAT implementation improves the CAT design by combining ideas from the 
SLG-WAM with those from the CAT. It avoids copying all the execution stacks that 
represent the state of a suspended computation by introducing a technique for freezing 
stacks without using freeze registers. We discuss CAT and CHAT in more detail in 
subsection 5.2.4. 
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Zhoueí al. [114] and Guo and Gupta [47] implemented tabling mechanisms that work 
on a single SLD tree without requiring suspensions/resumptions of computations and 
mechanisms to preserve the state of suspended computations. Zhou et al. implements 
a linear tabling mechanism whose main idea is to let variant calls execute from the 
remaining clauses of the former first call. The main idea is as follows: when there are 
answers available in the table, the call consumes the answers; otherwise, it uses the 
predicate clauses to produce answers. Meanwhile, if a call that is a variant of some 
former call occurs, it takes the remaining clauses from the former call and tries to 
produce new answers by using them. The variant call is then repeatedly re-executed, 
until all the available answers and clauses have been exhausted, that is, until a fixpoint 
is reached. The Guo and Gupta approach [47] is similar. It is based on dynamic 
reordering of alternatives with variant calls and it uses the alternatives leading to 
variant calls to repeatedly recompute them until a fixpoint is reached. This approach 
is discussed in more detail in subsection 5.1. 

None of these approaches showed to outperform SLG-WAM performance. The only 
candidate that actually competes against SLG-WAM is CHAT [36]. It showed com­
parable (and for some programs better) execution time performance to those of SLG-
WAM and lower and more controlled memory consumption than SLG-WAM. However, 
as will be discussed in subsection 5.2.4 we believe that, considering the further inte­
gration with or-parallelism, SLG-WAM is still the better choice for sequential tabling. 

2.4 Chapter Summary 

In order to make this thesis as self-contained as possible, we presented in this chapter 
a short survey on logic programming, parallel logic programming and tabling. 

We gave a brief description of logic programs, the Prolog language and its implemen­
tation in the WAM. We discussed parallelism and focused on or-parallelism. We gave 
emphasis to the problems that must be addressed when exploiting or-parallelism and 
introduced the environment copying and binding arrays proposals to solve those prob­
lems. We motivated for the advantages of tabling in a logic programming framework, 
and briefly reviewed the underlying features of SLG resolution and SLG-WAM. At the 
end, we presented other related implementations of tabling. 
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Chapter 3 

YapOr: The Or-Parallel Engine 

This chapter describes the design and implementation of the YapOr engine. YapOr is 
an or-parallel Prolog system that extends the Yap Prolog system to support implicit 
or-parallelism in Prolog programs. YapOr is based on the environment copying model, 
as first implemented in the Muse system [6]. The YapOr engine is the basis for the 
or-parallel component of our combined or-parallel tabling engine. 

We start by introducing in further detail the general concepts of the environment copy­
ing model, and then we describe the major implementation issues that we addressed 
in order to extend the Yap Prolog system to support the model. 

3.1 The Environment Copying Model 

The environment copying model is based on the multi-sequential approach [2, 110]. 
In this approach, a set of workers are expected to spend most of their computational 
time performing reductions as sequential engines. When a worker fully exploits its set 
of available alternatives, it starts looking for unexploited work from fellow workers. 
Which workers it asks for work and which work it receives is up to the scheduler to 
decide. 

59 
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3.1.1 Basic Execution Model 

In more detail, a set of workers perform parallel execution of a program. Initially, 
all but one workers are idle, that is, looking for their first work assignment. A single 
worker, say V, starts executing the initial query as a normal Prolog engine. Whenever 
V executes a goal that matches several clauses, it creates a private choice point in its 
local stack to save the state of the computation at predicate entry. This choice point 
marks the presence of potential work to be performed in parallel. 

As soon as an idle worker finds that there is available work in the system, it will 
request that work directly from the worker owning it. Consider, for example, that 
worker Q requests work from worker V. If V has unexploited work, it will share its 
private choice points with Q. To do so, worker V must turn the choice points public 
first. In Muse this operation is implemented by allocating special data structures, 
named or-frames, in a shared space to permit synchronized access to the newly shared 
choice points. After concluding this operation, worker V will handle Q a pointer to 
the bottom shared choice point. 

The next step is taken by worker Q. In order for Q to take a new task, it must copy 
the computation state from worker V up to the bottom shared choice point. After 
copying, worker Q must synchronize its status with the newly copied computation 
state. This is done first by simulating a failure to the bottom choice point, and then 
by backtracking to the next available alternative within that branch. Worker Q will 
then start its execution as a normal sequential Prolog engine would. 

At some point, a worker will fully explore its subtree and will become idle again. At 
this point, it will return into the scheduler loop and start looking for busy1 workers 
with available work in order to request unexploited work from them. It thus enters 
the behavior just described for Q. Eventually, the execution tree will be fully explored 
and execution will terminate with all workers idle. 

1A worker is said to be busy when it is exploiting alternatives. A busy worker is a potential source 
of unexploited alternatives. 
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3.1.2 Incremental Copying 

The sharing work operation poses a major overhead to the system as it involves copying 

the full execution stacks between workers. Hence, an incremental copying strategy [6] 

has been devised to minimize this source of overhead. 

The main goal of sharing work is to position the workers involved in the operation at 
the same node of the search tree, leaving them with the same computational state. 
Incremental copying achieves this goal by allowing the receiving worker to keep the 
part of its state that is consistent with that of the giving worker. Only the differences 
between both are copied. 

This strategy can be better understood through Figures 3.1 and 3.2. Suppose that 
worker Q does not find any available work in its branch2 (nodes A/"i, A/á and A/5), 
and that there is a worker V with unexploited alternatives (in nodes A4 and A/4). Q 
asks V for sharing and backtracks up to the lowest node (A/2) that is common to V, 
therefore becoming partially consistent with part of V. 

Public Nodes 

Node without 
alternatives 
Node with 

alternatives 

Private Node 

Figure 3.1: Backtracking to the bottom common node. 

If worker V decides to share its private nodes (A/3 and A/4) with Q, then worker Q 
only has to copy the stacks differences between both. These differences are calculated 
through the register information stored in the common choice point found by Q and 

2When we say a worker branch, we mean the current set of nodes of that worker. 
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through the top registers of the local, heap and trail stacks of V. In Figure 3.2 the 
stack segments representing the differences to be copied are colored gray. Note that to 
fully synchronize the computational state between the two workers, worker Q further 
needs to install from V the conditional bindings made to variables belonging to the 
maintained segments (this is the case of binding VAL 1 made to variable VAR l). The 
references to such variables are obtained through consulting the trail entries of the 
copied trail segment. 

VAR 1 

Worker P Local Space 

Local Stack Heap Stack Trail Stack 

Nl 
Choice 
Point 

N2 
Choice 
Point 

Stack 
segments 

to be copied 

Common Stacks 
with Q 

VAR 1 <- VAL 1 

VAR 2 <- VAL 2 

Incremental 
Copying 

Figure 3.2: Incremental Copying. 

3.2 The Muse Approach for Scheduling Work 

We can divide the execution time of a worker in two modes: scheduling mode and 
engine mode. A worker enters in scheduling mode whenever it runs out of work and 
starts searching for available work. As soon as it gets a new piece of work, it enters in 
engine mode. In this mode, a worker runs like a standard Prolog engine. 

The scheduler is the system component that is responsible for distributing the available 
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work between the various workers. The scheduler must arrange the workers in the 
search tree in such a way that the total parallel execution time will be the least possible. 
The scheduler must also maintain the correctness of sequential Prolog semantics. To 
obtain best performance the scheduler must minimize the scheduling overheads present 
in operations such as sharing nodes, copying segments of the stacks, backtracking, 
restoring and undoing previous variable bindings. 

3.2.1 Scheduler Strategies 

Ali and Karlsson [5] proposed the following scheduler strategies for the Muse imple­
mentation: 

• When a busy worker shares work, it must share all the private nodes it has at 
that moment. This will maximize the amount of shared work and possibly avoid 
that the requesting worker runs out of work too early. 

• The scheduler should select the busy workers that are nearest to the idle worker, 
and from these select the one that holds the highest work load. Being near 
corresponds to the closest position in the search tree. The work load is a measure 
of the amount of unexplored private alternatives. This strategy minimizes the 
stacks parts to be copied and maximizes the amount of shared work. 

• To guarantee the correctness of a sharing operation, it is necessary that the idle 
worker is positioned at a node that belongs to the branch on which the busy 
worker is working. To minimize overheads, the idle worker backtracks to the 
bottommost common node before requesting work. This reduces the time spent 
by the busy worker in the sharing operation. 

• If at a certain point in time the scheduler does not find any available work in the 
system, it moves the idle worker to a better position in the search tree, if some. A 
better position corresponds to a position where the overheads of a future sharing 
operation should be lower. 

We can resume the scheduler algorithm as follows: when a worker runs out of work 
it searches for the nearest unexploited alternative in its branch. If there is no such 
alternative, it selects a busy worker with excess of work load to share work with, 
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according to the strategies above. If there is no such a worker, the idle worker tries to 
move to a better position in the search tree. 

3.2.2 Searching for Busy Workers 

There are two alternative searches for busy workers in the execution tree: search within 
the current subtree or search outside the current subtree3. Idle workers always start 
to search within the current subtree, and only if they do not find any busy worker 
there, will they search outside. The advantages of selecting a busy worker within 
the current subtree instead of outside are mainly two. One is that the idle worker 
can immediately make the sharing request, as its current node is already common to 
the busy worker. This avoids backtracking in the tree and undoing variable bindings. 
The second advantage is that the idle worker will maintain its relative position in 
the search tree. This maximizes the portion of the stacks that are common to both 
workers, as the current stacks of the idle worker are fully common with those of the 
busy worker, which should minimize the stack segments to be copied. Regard that 
this scheduling strategy corresponds to the bottommost policy of dispatching work for 
or-parallel execution. 

Figures 3.3 and 3.4 present different situations in order to better illustrate the scheduler 
strategies to select busy workers positioned respectively within and outside the idle 
worker current subtree. In these figures, Q represents the idle worker, V the busy 
worker, and the different Qj's other idle workers. 

The algorithm to select a busy worker within the current subtree of an idle worker 
Q can be resumed as follows. Initially, the scheduler determines the set SB of busy 
workers within the current subtree of Q. Then, it removes from SB each worker V 
whose nearest idle worker in P's branch is not Q. This guarantees that SB remains 
only with busy workers whose nearest idle worker is Q. Finally, from the remaining 
workers in SB, the scheduler selects the one with the highest work load. 

Applying this algorithm to the four situations presented in Figure 3.3, Q can request 
work from V in all situations except (b). In situation (a) despite Q\ being in a deeper 
position than Q, Qi is not in Vs branch, and thus Q is the nearest idle worker to 

3When we say a worker subtree, we mean the subtree rooted by the current node of that worker. 
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Figure 3.3: Requesting work from workers within the current subtree. 

V. However, this will stop being the case if Q\ backtracks to the previous node. We 
allow Q to request work from V because in a more complex case it will be difficult to 
predict what will be the behavior of the potentially idle workers in the same situation 
as Qi. In situation (b), Q2 is closer to the busy worker V than Q, and thus, Q2 is the 
one that should request work from V. In situation (c), Q is the nearest worker to V 
and in situation (d), Q and Q4 are equally distant from V. Thus, both workers can 
request work from V. As a worker can only answer a request at a time, the first one 
making the request is the one that is served. 

As mentioned before, an idle worker Q searches outside its current subtree only if it 
cannot request work within. To select busy workers outside, the scheduler verifies first 
if there are other idle workers positioned above4 in Q's branch. If this is the case, it 
immediately aborts the search. This condition benefits the idle workers in upper nodes, 
because they are closer to the busy workers positioned outside the current subtree of 

4Throughout the thesis, it is assumed that root nodes are always the topmost nodes of the search 
tree and that leaf nodes are always the bottommost. Therefore, and considering a node AÍ and a 
node M positioned between M and the root node of the search tree, the following terminology can 
be correctly used: M is above Aí (AÍ is below M); M is in a upper position than M (Aí is in a lower 
position than M); or M is older than M (TV is younger than M). 
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Q, and hence they should be the ones requesting work. 

When the previous condition fails, then the scheduler determines the set SB of busy 
workers outside the current subtree of Q. Next, from SB it removes each worker V 
that has idle workers in its branch. From the remaining workers in SB, the scheduler 
selects the one with the highest work load. 

(a) (b) (c) 
Q can not request Q can not request Q can request 

work from P work from P work from P 

Figure 3.4: Requesting work from workers outside the current subtree. 

Figure 3.4 presents three different situations when worker Q is searching for busy 
workers outside its current subtree. It can request work from V only in situation 
(c). In situation (a), Q has Qi above in its branch and in situation (b), Q2 is in 
V's branch. In situation (c) none of the previous circumstances hold, and both idle 
workers, Q and Q3, can request work from V. 

3.2.3 Distributing Idle Workers 

The third step of the main scheduler algorithm says that when the scheduler neither 
finds unexplored alternatives nor busy workers, it tries to move the idle worker to 
a better position in the search tree. This scheduling strategy aims to distribute the 
idle workers in such a way as that the probability of finding, as soon as possible, 
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busy workers with excess of work within the corresponding idle workers' subtrees is 

substantially increased. 

An idle worker Q moves to a better position in one of the following two cases: (i) 
there are busy workers outside Q's subtree and Q is not within the subtree of any 
other idle worker; or (ii) all workers within Q's subtree are idle. In the first situation, 
Q backtracks until it reaches the first node that is above all the busy workers that 
are not within the subtree of any other idle worker. In the second one, Q backtracks 
until it reaches a node where there is at least one busy worker. Figure 3.5 shows an 
example that illustrates this scheme. The left figure shows the initial workers' positions 
and the right figure shows their positions after moving. From the two situations that 
induce an idle worker to move to a better position, worker Qx fits the first one, Q2 

the second, and Q3 none. Qx moves up because it is a topmost idle worker that has a 
busy worker, V\, outside its subtree. Q2 moves up because there is no available work 
within its subtree. On the other hand, Qz maintains its relative position because it 
has Q\ idle above and Vj, busy below. 

Q2 

(a) 
Initial situation 

Ql 

Q2 

Q3 

PI 

P2 

(b) 
After moving 

Figure 3.5: Scheduling strategies to move idle workers to better positions. 

Our goal is for idle workers to move closest to busy workers so that sharing overheads 
decrease. The first situation moves idle workers to cover all possible sources of work. 
This is done by only moving up topmost idle workers, therefore preventing other idle 
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workers of losing their positions. The second situation releases idle workers from closed 

work positions and moves them to parts of the tree that still have work. 

3.3 Extending Yap to Support Or-Parallelism 

The extensions required to implement support for or-parallelism in Yap can be divided 
in three major areas: (i) those related to the environment copying model; (ii) those 
related to the scheduling policy; and (iii) those related to scheduling support. 

To implement environment copying major changes were required on the memory 
organization and its management. Other extensions were also introduced to support 
the process of sharing work. Regarding the scheduling policy, YapOr implements the 
Muse approach described in the previous section. To support this approach, YapOr 
introduces changes in choice point manipulation and in code compilation. Further, it 
introduces new mechanisms to synchronize workers when exploiting shared branches 
and to compute work load. We next describe those extensions. 

3.3.1 Memory Organization 

Following the original WAM definition [109], the Yap Prolog system includes four main 
memory areas: code area, heap, local stack and trail. The local stack contains both 
environment frames and choice points. Yap also includes an auxiliary area used to 
support some internal operations. 

The YapOr memory is divided into two major addressing spaces: the global space and 
a collection of local spaces, as illustrated in Figure 3.6. The global space is further 
divided in two major areas. One contains the code area inherited from Yap and the 
other includes all the data structures necessary to support parallelism. Each local 
space represents one system worker and it contains the four WAM execution stacks 
inherited from Yap: heap, local, trail, and auxiliary stack. The relative position of the 
memory areas presented in the figure does not necessary imply an identical memory 
mapping implementation. 

In order to efficiently meet the requirements of incremental copy, we follow the prin­
ciples used in Muse to map the set of memory local spaces. The starting worker, that 
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Figure 3.6: Memory organization in YapOr. 

is workero, asks for shared memory in the system's initialization phase. Afterwards, 
the remaining workers are created, through the use of the fork5 function [96], and 
inherit the previously mapped addressing space. Then, each new worker rotates the 
local spaces, in such a way that all workers will see their own spaces at the same 
virtual memory addresses. Figure 3.7 helps to understand this remapping scheme. 
It considers 3 workers and it illustrates the resulting mapping address view of each 
worker after rotating the inherited local spaces. It can been seen that each worker 
accesses its own local space starting from the Addrg virtual memory address. 

This mapping scheme allows for efficient memory copying operations during incre­
mental copying. To copy a stack segment between two workers, we simply copy 
directly from one worker space to the relative virtual memory address in the other 
worker's space. Suppose, for instance, that worker^ wants to copy to workeri stacks 
a segment of its stacks that starts at address Addrx (from worker^s view). Using 
the mappings from Figure 3.7 the target memory address for this copying operation is 
Addrx + (Addr2 — Addrg) (from worker-} s view). The major advantage of this scheme 
is that no reallocation of address values in the copied segments is necessary. 

In YapOr, this memory scheme is implemented through two different and alterna­
tive UNIX shared memory management functionalities, the mmap and shmget func­
tions [96]. These functions let us map shared memory segments at given addresses, 

5 The fork function belongs to the UNIX libraries and it allows to create child processes equal to 
the caller parent. 
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Figure 3.7: Remapping the local spaces. 

and unmap and remap them later at new addresses. 

3.3.2 Choice Points and Or-Frames 

The bottommost policy of dispatching work for parallel execution requires that a 
busy worker releases all of its current private choice points when sharing work. This 
maximizes the amount of shared work with the requesting worker and induces coarse 
grain tasks which has proven to be very successful within environment copying. 

In order to correctly exploit a shared branch, we need to synchronize workers in 
such a way that we avoid executing twice the same alternative, as different workers 
referencing a choice point might pick the same alternative for work. To do so, the 
worker making a choice point public adds an or-frame data structure to the shared 
space per public choice point. The or-frames form a tree that represents the public 
search tree. Figure 3.8 illustrates how a private choice point is made public. 
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Figure 3.8: Sharing a choice point. 

From the figure we can see the extended structure of a choice point. The first six fields 
are inherited from Yap, while the last two were introduced in YapOr. The inherited 
CP_ALT, CP_CP, CP_TR, CP_H, CP_B and CP_ENV choice point fields store, respectively, 
the next unexploited alternative; success continuation program counter; top of trail at 
choice point creation; top of global stack at choice point creation; failure continuation 
choice point; and current environment [1]. The CP_0R-FR field stores the pointer 
to the correspondent or-frame when the choice point is shared. Otherwise, it not 
used. The CP_LUB field stores the local untried branches and reflects the number 
of private unexplored alternatives above. It is used for computing worker load (see 
subsection 3.3.3). 

As an optimization, we can reduce the two introduced new fields to just one. While 
the choice point is private, the field should act like the CP_LUB one, storing the local 
untried branches. When it is made public it can act like the CP_0R-FR field because the 
information in CP_LUB becomes unnecessary, as all unexplored alternatives in upper 
choice points have been made public. 

Figure 3.8 presents the choice point data structure before and after a sharing operation. 
Sharing a choice point involves updating the CP_ALT field to point at the getwork 
pseudo-instruction (see subsection 3.3.5) and storing the pointer to a newly allocated 
or-frame in the CP_0R-FR field. 

We next briefly introduce the functionality of each or-frame data field and describe 
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how they are initialized. The OrFr_lock field supports a busy-wait locking mutex 
mechanism that guarantees atomic updates to the or-frame data. It is initially set to 
unlocked. The OrFr_alt field stores the pointer to the next available alternative as 
previously stored in the CP_ALT choice point field. OrFr_members is a bitmap that stores 
the set of workers for which their current branch contains the choice point. OrFr_node 
is a back pointer to the correspondent choice point. OrFr_nearest_livenode is a 
pointer to the or-frame that corresponds to the nearest choice point above with 
unexploited alternatives. Hence, if a worker reaches a public choice point with a 
NULL pointer in the OrFrjnearest_livenode field, it knows it is out of work. Last, 
the OrFr_next field is a pointer to the parent or-frame on the current branch. 

To delimit the private from the public region, each worker holds a T0P_0R_FR register 
that points to the or-frame corresponding to the bottom shared choice point on the 
current branch. 

3.3.3 Worker Load 

Each worker maintains a local register, LOCAL.load, that estimates the number of 
private unexploited alternatives. The LOCAL.load register helps the scheduler when 
searching for a busy worker to request work from. There is a compromise thus between 
its correct value and the efficiency of the parallel process. Our implementation updates 
the L0CAL_load register only when creating a new choice point. With this scheme it 
is possible to maintain a very good approximation of its correct value avoiding regular 
actualizations, as we show next. 

In subsection 3.3.2 we said that the CP_LUB choice point field is used to compute the 
worker's load. We also said that the CP_LUB field stores the number of local untried 
branches in the choice points above. This number does not include branches starting 
at the current choice point in order to avoid regular actualizations when backtracking 
occurs. Computing L0CAL_load is thus achieved by adding the value of CP_LUB with 
the number of the alternative branches in the newly created choice point. 

The number of unexploited alternatives in a choice point is found by consulting 
the or_arg argument of the next available alternative. The or_arg argument holds 
the number of available alternatives starting from the current alternative, and it is 
generated by the compiler. Consider, for instance, a predicate with three alternative 
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clauses. To represent the three alternatives, the first clause is compiled with a value 
of three in the or_arg argument. The second clause is compiled with a value of two 
to represent the two remaining clauses, and the last clause is always compiled with a 
value of one. 

A worker has shareable work if the value in the L0CAL_load register is positive. 
Nevertheless, a great number of Prolog programs contain predicates that generate 
relatively small tasks. To attain good performance it is fundamental to avoid sharing 
such fine grained work. In YapOr, the scheduler only considers that a worker has 
shareable work when its load register is greater than a certain threshold value (the 
threshold value is dynamically configurable in the system's initialization phase). This 
introduces some delay in propagating work, avoiding eager sharing, therefore allowing 
a worker to build up a reserve of local work which may increase task granularity. 

3.3.4 Sharing Work Process 

The process of sharing work makes parallel execution of goals possible. This process 
takes place when an idle worker Q makes a sharing request to a busy worker V and 
receives a positive answer. V can refuse a sharing request if (i) Q is not above V, or 
(ii) if V has a load value above the threshold value and the OrFr_nearest_livenode 
of its current top shared or-frame is NULL. The latter case happens when V does not 
have any unexploited alternatives except the one it is executing. When Q receives a 
negative answer it returns to scheduler mode. 

Sharing is implemented by two model dependent functions: p_share_work(), for the 
busy worker, and q_share_work(), for the idle one. In copying, the sharing process 
can be divided in four main steps. The initial step is where the auxiliary variables are 
initialized and the limits of stack segments to be copied are computed. The sharing 
step is where the private choice points are turned into public ones. The copy step 
is where the computed segments are copied from the busy worker stacks to the idle 
worker ones. Finally, the installation step is where the bindings trailed in the copied 
trail segment that refer to conditional variables stored in the maintained segments are 
copied to the idle worker stacks. To minimize overheads, both workers cooperate in 
the execution of the four steps. The sharing work algorithm is detailed in Figure 3.9. 

Initially, the idle worker Q waits for a sharing signal while the busy worker V computes 
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Figure 3.9: The sharing work process. 

the stacks to copy. After that , V prepares its private nodes for sharing whilst Q 

performs incremental copying. Q copies the stacks from V in the following order: 

trail, heap and local stack. The local stack can only be copied after V finishes the 

sharing step. V may help in the copying process to speed it up. It copies the stacks 

to Q but in a reverse order. This scheme has proved to be efficient as it avoids some 

useless variables checks and locks. The two workers then synchronize to determine the 

end of copying. At last, V goes back to Prolog execution and Q installs the bindings 

referring variables in the maintained part of the stacks and restarts a new task from 

the recently installed work. To avoid possible undoing of bindings, V cannot release a 

shared node from its stacks until Q does not complete the installation step. 

3.3.5 New Pseudo-Instructions 

YapOr introduces four new instructions over Yap, namely, ge twork_f i r s t_ t ime, 

getwork, ge twork_sequent ia l , and synch. These instructions are never generated 

by the compiler. The former three are introduced according to the progress of parallel 

execution, while the latter is called before a side effect instruction gets executed. Next, 

we briefly describe how each instruction fits the YapOr execution model. 

Whenever the search tree for the top level goal is fully exploited, all workers, except 

worker0, execute the ge twork_f i r s t_ t ime instruction. This instruction blocks the 
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workers. They will wait for a signal from workero, that indicates the beginning of a 
new query goal, worker^ is further responsible to present the answers encountered for 
the last exploited query and to control the interface with the user until he asks for a 
new query goal. 

As mentioned in the previous subsection, the CP_ALT choice point fields are updated to 
point to the getwork instruction when they are being shared. This sharing procedure 
forces the future execution of the getwork instruction every time a worker backtracks 
to a shared choice point. The execution of this instruction allows the workers sharing 
the correspondent or-frame synchronized access to unexploited alternatives, guaran­
teeing that every alternative is exploited only once. 

Sometimes it may be advantageous to declare a predicate as sequential [57] to force 
the scheduler to traverse its alternatives in a left to right fashion. A : - sequential 
pred/n declaration can be useful when the programmer wants to guarantee that 
only after an alternative is fully exploited the next one should be taken. Sequential 
predicates are implemented in YapOr by using the getwork_sequential instruction 
instead of a getwork instruction when sharing a choice point for a predicate declared 
as sequential. This variant of the getwork instruction ensures that the alternatives 
are taken one at a time according to its left to right order. Note that the subtree 
corresponding to each alternative can still be exploited in parallel. 

A major problem when implementing parallel Prolog systems is the support for cuts 
and side effects. For cuts, YapOr currently implements a scheme based on the strate­
gies described in [8] that prunes useless work as early as possible. A complete de­
scription of this scheme can be found is section 7.2. For side effects, the current 
implementation of YapOr is very simple. As soon as a worker reaches the execution 
of a side effect, it enters the synch instruction. The synch instruction implements a 
delaying procedure that waits until the worker's current branch becomes the leftmost 
one in the search tree. Only when the worker becomes leftmost synch returns and the 
side effect execution proceeds. If the worker, while waiting, is pruned by a left branch 
then the side effect is never executed. This ensures that side effects are executed in 
the same way and in the same order as in sequential execution. 
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3.4 Chapter Summary 

This chapter introduced the YapOr or-parallel engine. YapOr extends the Yap Prolog 
system to support implicit or-parallelism in Prolog programs. YapOr's implementation 
is largely based on the Muse approach for or-parallelism. We presented the environ­
ment copying model, as first implemented in the Muse system, and described the Muse 
strategies to scheduling work for or-parallel execution. 

Next, we described the main issues in extending the Yap Prolog system to support 
or-parallelism. These included the extensions related with the environment copying 
model, such as, memory organization and work sharing; those related with the schedul­
ing policy and the scheduling strategies; and those related with scheduling support, 
such as, code compilation, choice point manipulation, and work load. 



Chapter 4 

YapTab: The Sequential Tabling 
Engine 

YapTab is a sequential tabling engine that extends the Yap Prolog system to support 
tabling. YapTab is based on the SLG-WAM engine [86, 89, 87] as first implemented 
in the XSB Prolog system. YapTab is also the base tabling engine for the combined 
or-parallel tabling engine that we address later. 

First, we briefly describe the fundamental aspects of the SLG-WAM abstract machine, 
and then we detail the YapTab implementation. This includes discussing the moti­
vation and major contributions of the YapTab design, and presenting the main data 
areas, data structures and algorithms to extend the Yap Prolog system to support 
tabling. 

4.1 The SLG-WAM Abstract Machine 

Remember that the scope of this thesis is to address the problem of combining or-
parallelism and tabling for logic programs not including negation. Hence, we will only 
consider those aspects of the SLG-WAM abstract machine that are relevant for the 
support of variant-based tabling of definite programs. 

77 
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4.1.1 Basic Tabling Definitions 

Tabling is about storing and reusing intermediate answers for goals. Whenever a tabled 
subgoal S is called for the first time, an entry for S is allocated in the table space. 
This entry will collect all the answers generated for S. Repeated calls to variants of 
S are resolved by consuming the answers already stored in the table. Meanwhile, as 
new answers are generated for S, they are inserted into the table and returned to all 
variant subgoals. Within this model, the nodes in the search space are classified as 
follows: 

Generator nodes: nodes corresponding to first calls to tabled subgoals. They use 
program clause resolution to produce answers. 

Consumer nodes: nodes corresponding to variant calls to tabled subgoals. They 
consume answers from the table space. 

Interior nodes: nodes corresponding to non-tabled predicates. These nodes are 
evaluated by standard SLD resolution. 

For definite programs, tabling based evaluation has four main types of operations: 

Tabled Subgoal Call: looks up if the subgoal is in the table and if not, inserts it 
and allocates a new generator node. Otherwise, allocates a consumer node and 
starts consuming the available answers. 

New Answer: verifies whether a newly generated answer is already in the table, and 
if not, inserts it. 

Answer Resolution: consumes the next found answer, if any. 

Completion: determines whether a SCC is completely evaluated, and if not, sched­
ules a possible resolution to continue the execution. 

Space for a subgoal can be reclaimed when the subgoal has been completely evaluated. 
A subgoal is said to be completely evaluated when all its possible resolutions have 
been performed, that is, when all available alternatives have been exploited and the 
variant subgoals have consumed all the available answers. Remember that a number 
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of subgoals may be mutually dependent, forming a strongly connected component (or 
SCC), and therefore can only be completed together. The completion operation is 
then performed at the leader of the SCC, that is, at the oldest subgoal in the SCC, 
when all possible resolutions have been made for all subgoals in the SCC [87]. 

4.1.2 SLG-WAM Overview 

The SLG-WAM extends the WAM to fully integrate Prolog and tabling. In short, the 
SLG-WAM introduces a new set of instructions to deal with the tabling operations, 
a special mechanism to allow suspension and resumption of computations, and two 
new memory areas: a table space, used to save the answers for tabled subgoals; and a 
completion stack, used to detect when a set of subgoals is completely evaluated. 

Further, whenever a consumer node gets to a point in which it has consumed all 
available answers, but the correspondent tabled subgoal has not yet completed and 
new answers may still be generated, the current computation must be suspended. The 
SLG-WAM implements the suspension mechanism through a new set of registers, the 
freeze registers, which protect the WAM stacks at the suspension point so that all data 
belonging to the suspended branch cannot be erased. To later resume a suspended 
branch, the bindings belonging to the branch must be restored. SLG-WAM achieves 
this by using an extension of the standard trail, the forward trail, to keep track of the 
bindings values. 

4.1.3 Batched Scheduling 

Usually it is possible to apply more than one strategy to continue after suspending a 
computation. For instance, there may be alternative clauses to resolve with generator 
or interior nodes, answers to be returned to consumer nodes, or completion operations 
to be performed. The decision of which operation to perform is determined by the 
scheduling strategy. The SLG-WAM default scheduling strategy (for versions 1.5 and 
higher of XSB) is called Batched Scheduling [40]. 

Batched scheduling takes its name because it tries to minimize the need to move around 
the search tree by batching the return of answers. When new answers are found for 
a particular tabled subgoal, they are added to the table space and the evaluation 
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continues until it resolves all program clauses for the subgoal in hand. Only then the 
newly found answers will be returned to consumer nodes. 

Batched scheduling schedules the program clauses in a depth-first manner as does 
the WAM. Calls to non-tabled subgoals allocate interior nodes. First calls to tabled 
subgoals allocate generator nodes and variant calls allocate consumer nodes. However, 
if we call a variant tabled subgoal, and the correspondent subgoal is already completed, 
we can avoid consumer node allocation and instead perform what is called a completed 
table optimization [87]. This optimization allocates a node, similar to an interior node, 
that will consume the set of found answers executing compiled code directly from the 
trie data structure associated with the completed subgoal. In [71, 72], I. V. Ramakr-
ishnan et al. shows that the built-in set of SLG-WAM instructions introduced to 
execute the compiled answer tries can outperform standard WAM compiled code. 

When backtracking we may encounter three situations: (i) if backtracking to a gen­
erator or interior node with available alternatives, the next program clause is taken; 
(ii) if backtracking to a consumer node, we take the next unconsumed answer from 
the table space; (iii) if there are no available alternatives or no unconsumed answers, 
we simply backtrack to the previous node on the current branch. Note however that, 
in case (iii), if the node without alternatives is a leader generator node, then we must 
check for completion. 

4.1.4 Fixpoint Check Procedure 

In order to perform completion, the scheduler must ensure that all answers have been 
returned to all consumer subgoals in the SCC. The process of resuming a consumer 
node, consuming the available set of answers, suspending and then resuming another 
consumer node can be seen as an iterative process which repeats until a fixpoint is 
reached. This fixpoint is reached when the SCC is completely evaluated. 

At engine level, the fixpoint check procedure is controlled by the leader of the SCC. 
The procedure traverses the consumer nodes in the SCC in a bottom-up manner to 
determine whether the subgoals in a SCC have been completely evaluated or whether 
further answers need to be returned to consumer nodes. Initially, it searches for the 
bottom consumer node with unresolved answers. If there is such a node, it is resumed 
and as long as there are newly found answers, it will consume them. After consuming 
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the available set of answers, the consumer suspends and fails into the next consumer 
node with unresolved answers. This process repeats until it reaches the last consumer 
node, in which case it fails into the leader node in order to allow the re-execution of 
the fixpoint check procedure. When a fixpoint is reached, all subgoals in the SCC are 
marked completed, the stack segments belonging to the completed subtree are released 
and the freeze registers are updated. 

Please refer to subsection 2.3.1 and to Figure 2.3 for an example of a tabling evaluation 

sequence. 

4.1.5 Incremental Completion 

Incremental completion was first introduced in [19]. Instead of performing completion 
at the very end it reclaims the stack space occupied by sets of subgoals when they 
are determined to be completely evaluated. Incremental completion is necessary for 
the SLG-WAM to be efficient in terms of space and therefore to be effective on large 
programs. Incremental completion further enables the completed table optimization 
to be performed. 

To implement incremental completion, the SLG-WAM introduces a new memory 
area, the completion stack. A completion frame is pushed onto the completion stack 
whenever a new tabled subgoal is first called, and is popped off when incremental 
completion is performed over that subgoal. 

A completion frame for subgoal S is assigned to an unique depth-first number (DFN), 
through the use of a global counter. Furthermore, the frame maintains a representation 
of the oldest subgoal upon which S may depend. This representation results from 
computations involving the DFNs of the frames on which S or any subgoal younger 
than S have dependencies. The number it is updated when a variant subgoal is 
called or when checking for completion. If S depends on no older subgoals, then S 
is a leader subgoal. Being leader, it can be checked for completion and if S and all 
younger subgoals are completely evaluated then incremental completion takes place. 
If S depends upon older subgoals, it is not a leader subgoal and therefore it cannot 
perform completion. A detailed description of these algorithms can be found in [86, 87]. 
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4.1.6 Instruction Set for Tabling 

The SLG-WAM provides a new set of instructions in order to implement the four main 
tabling operations. Tabled predicates defined by several clauses are compiled using 
the table_try_me, table_retry_me, and table_trust_me SLG-WAM instructions, in 
a similar manner to the WAM's try_me, retry_me, and trust_me sequence. 

The table_try_me instruction extends the WAM's try_me instruction to support the 
tabled subgoal call operation. When table_try_me corresponds to a first call to a 
tabled subgoal, it inserts the subgoal at hand into the table space, by allocating the 
necessary data structures; pushes a new generator choice point and a new environment 
onto the local stack; pushes a completion frame onto the completion stack; and 
initializes all cells in these structures. 

On the other hand, if the call is a variant call, then the subgoal is already in the 
table space, and two different situations may occur, depending on whether the sub-
goal is completed or not. If the subgoal is completed, the table_try_me instruc­
tion implements the completed table optimization. Otherwise, a consumer choice 
point is allocated, the freeze registers are updated to the current top stack point­
ers, and the available answers start being consumed. The answer resolution opera­
tion is supported through setting the CP_ALT consumer choice to point to the SLG-
WAM answer_resolution instruction. This instruction is responsible for guaran­
teeing that all answers are given once and just once to each variant subgoal. The 
answer_resolution instruction gets executed through backtracking or through direct 
failure to a consumer node in the fixpoint check procedure. 

The table_retry_me and table_trust_me differ from the retry_me WAM instruction 
in that they always restore a generator choice point, rather than an interior (WAM-
style) choice point. The only difference between both instructions is in the way they 
update the CP_ALT generator choice point field. In the table_retry_me implementa­
tion, the CP_ALT field is made to point to the compiled code for the next clause, while 
in the table_trust_me it is updated to the completion instruction. The completion 
instruction implements the completion operation in order to ensure the complete and 
correct evaluation of the subgoal search space. It gets executed through backtracking 
or through direct failure from the last node on the chain of consumer nodes as described 
in the fixpoint check procedure. 
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Tabled predicates defined by a single clause are compiled using the SLG-WAM 
table_try_me.single instruction. This instruction optimizes the table_try_me in­
struction for the case when the tabled predicate is defined by a single clause. Similarly 
to the table_trust_me instruction, the CP_ALT generator choice point field is made to 
point to the completion instruction. 

The SLG-WAM introduces a new_answer instruction to implement the new answer 
operation. This instruction is produced by the compiler when compiling a clause 
for a tabled predicate. It is the final instruction of the clause's compiled code and 
it includes the functionalities of the deal locate and proceed WAM instructions. 
As the new_answer instruction is the final instruction of a compiled tabled clause, 
the arguments from the body of the clause have been resolved when the instruction 
is reached. Thus, by dereferencing them we obtain the binding substitution which 
identifies the answer for the subgoal. 

To give a flavor of what to expect from the compiled code of a tabled predicate, 
consider the following path/2 definition: 

:- table path/2. 

path(X.Z) :- path(X,Y), arc(Y.Z). 
path(X.Z) :- arc(X.Z). 

Figure 4.1 shows the resulting compiled code for the two clauses of the tabled predicate 
path/2, using the just described instruction set. As path/2 is defined by several 
clauses, a table_try_me instruction begins the code for its first clause, with the label 
pointing at the start of the second clause as an argument. On the other hand, as the 
second clause is the last clause for path/2, its code begins with a table_trust_me 
instruction. The code for both clauses follows the usual WAM code for the head 
and body subgoals of the clauses. The exception is that at the end a new_answer 
instruction closes each block. 

4.2 Extending Yap to Support Tabling 

YapTab has been designed to achieve an efficient tabling computational model that 
can be integrated with an or-parallel component. To achieve high performance, we 
are very interested in developing a sequential tabling implementation that compares 
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path/2_l: 
table_try_me path/2_2 // path 
get_variable Yl, A2 // (X,Z) :-
put_variable Y2, A2 // path(X,Y 
call 
put_value 
put_value 
call 

path/2 
Y2, Al 
Yl, A2 
arc/2 

// 
// 
// 
// 

new_answer // 

path/2_2: 
table_trust. 
call 

.me 
arc 72 

// path(X,Z) : 
// arc(X. ,Z) 

new_answer // 

) , 
arc(Y, 

Z 
) 

Figure 4.1: Compiled code for a tabled predicate. 

favorably with the current state of the art technology. In other words, we want the 
parallel tabling system, when executed with a single worker, to run as fast or faster 
than the current available sequential systems. Otherwise, the parallel performance 
results would not be significant and fair, and thus it would be hard to evaluate the 
efficiency of the parallel implementation. 

4.2.1 Overview 

The YapTab design is WAM based, as is the SLG-WAM. It implements two tabling 
scheduling strategies, batched and local [40]. Our initial design only considers positive 
programs. As in the original SLG-WAM, it extends the WAM with a new data area, the 
table space; a new set of registers, the freeze registers; an extension of the standard 
trail, the forward trail; and support for the four main tabling operations: tabled 
subgoal call, new answer, answer resolution and completion. 

The major differences between both designs, and corresponding implementations, 
reside in the issues that can be a potential source of overheads when the tabling 
engine is extended to a parallel model. In a parallel environment, duplication of items 
is a major source of overhead. It requires synchronization mechanisms when updating 
common items and when replicating the new values. To efficiently integrate tabling 
with parallelism we should minimize this duplication. 

To address this need, YapTab introduces a new data structure, the dependency frame, 
that resides in a single shared space that we name the dependency space. The de-
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pendency frame data structures maintain in a single space all data concerning tabling 
suspensions. By data related with tabling suspension we mean the data involved 
in the fixpoint check procedure and in the resumption of suspended nodes. The 
introduction of this new data structure allows us to reduce the number of extra fields in 
tabled choice points and eliminates the need for a separate completion stack, avoiding 
potential synchronization points, and thus simplifying the complexity in managing 
shared tabling suspensions. 

To benefit from the philosophy behind the dependency frame data structure, all the 
algorithms related with suspension, resumption and completion were redesigned. We 
next present the main data areas, data structures and algorithms implemented to 
extend the Yap system to support tabling. The algorithms described assume a batched 
scheduling strategy implementation, we discuss local scheduling later. 

4.2.2 Table Space 

The table space can be accessed in different ways: to look up if a subgoal is in the table, 
and if not insert it; to verify whether a newly found answer is already in the table, and if 
not insert it; to pick up answers to consumer nodes; and to mark subgoals as completed. 
Hence, a correct table design with efficient algorithms to access and manipulate the 
table data is a critical issue to obtain a valid tabling system implementation. 

Our implementation uses tries as the basis for tables, as proposed by I. V. Ramakr-
ishnan et al. [71, 72]. Tries provide complete discrimination for terms and permit 
lookup and possibly insertion to be performed in a single pass through a term. In 
later chapters, we shall discuss the performance of tries on the parallel environment. 

Figure 4.2 shows the general tries structure for a tabled predicate. At the entry point 
we have the table entry data structure. This structure is allocated when a predicate 
declared as tabled is being compiled, so that a pointer to the table entry can be 
included in the compiled code. This guarantees that further calls to the predicate will 
access the table starting from the same point. 

Below the table entry, we have the subgoal trie structure. Each different tabled subgoal 
call to the predicate in hand corresponds to an unique path through the subgoal trie 
structure, always starting from the table entry, passing by several subgoal trie data 
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Figure 4.2: Using tries to organize the table space. 

units, the subgoal trie nodes, and reaching a leaf data structure, the subgoal frame. The 
subgoal frame acts like an entry point to the answer trie structure and stores additional 
information about the subgoal. Each unique path through the answer trie data units, 
the answer trie nodes, corresponds to a different answer to the entry subgoal. 

Figure 4.3 details the tries structure by presenting an example for a concrete predicate 
t / 2 after the execution of several table_try_me.single and new_answer instructions. 
Each invocation of table_try_me.single leads to either finding a path through the 
subgoal trie nodes until a matching subgoal frame is reached, or creating a new path 
when one does not exist. This happens, respectively, when we are in the presence 
of either variant or first subgoal calls. In a similar fashion, each invocation of the 
new_answer instruction corresponds to finding or creating a new path through the 
answer trie nodes, starting from the corresponding subgoal frame. 

Searching through a chain of sibling nodes that represent alternative paths is done 
sequentially. However, if the chain becomes larger then a threshold value, we dynami­
cally index the nodes through a hash table to provide direct node access and therefore 
optimize the search. 

Analyzing the figure, it can be observed that the answer trie for call t (X, w) stores only 
the binding a to the unbound variable, and avoids storing the complete answer (a,w). 
This optimization is called substitution factoring [71, 72]. The core idea behind this 
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compiled code 1 
for t/2 | 

table try me single t(X,w) 
new answer t(X,a) -> X = a 
tabletrymesingle t(Y,Z) 
newanswer t(Y,Z) -> Y = b Z = c 
new answer t(Y,Z) -> Y = b Z = d 
new answer t(Y,Z) -> Y = e Z = f 

subgoal frame 
for call 

t(var 0,var 1) 
subgoal frame 

for call 
t(var 0,w) 

Figure 4.3: Detailed tries structure relationships. 

optimization is to only store in the answer trie substitutions for the unbound variables 
in the subgoal call. 

Each subgoal frame includes two pointers to provide access to the answers already 
stored in table. The SgFr_first_answer pointer provides access to the first found 
answer, while the SgFr_last_answer pointer provides access to the last. Furthermore, 
the leaves' answer nodes are chained together in insertion time order, in such a way 
that, starting from the SgFr_f irst .answer pointer, and following the chain of leaf 
nodes, we reach the node pointed by the SgFr_last_answer pointer once and only 
once. 

Using this chain, a consumer node can ensure that no answer is skipped or consumed 
twice. This is done by holding a private pointer to the leaf node of its last consumed 
answer and following the chain of leaves to consume new answers. To load an answer, 
the trie nodes for the answer in hand are traversed in bottom-up order, starting from 
the pointer to the leaf node and following the parent pointer to the preceding node on 
the path until reaching the subgoal frame. 
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The answer trie structure is not traversed in a top-down manner because the insertion 
and consumption of answers is an asynchronous process. Since new trie nodes may be 
inserted at anytime and anywhere in the answer trie structure, this induces complex 
dependencies that may limit the efficiency of possible top-down control schemes. 
Remark that the completed table optimization allows us to efficiently traverse the 
answer trie structure in a top-down way. However, it is only performed when the 
subgoal is completed, which ensures that no more nodes are added. A field of the 
subgoal frames marks subgoals as completed. 

4.2.3 Generator and Consumer Nodes 

Generator and consumer nodes correspond, respectively, to first and variant calls 
to tabled subgoals, while interior nodes correspond to normal, not tabled, subgoals. 
The abstract notion of a node is implemented at the engine level as a choice point. 
Figure 4.4 details YapTab's choice point structure for these nodes. 

Interior CP Generator CP Consumer CP 
CP_ ALT 

CP CP 

CP TR 

CP H 

CP B 

CP_ ENV 

CP_ ALT 

CP CP 

CP TR 

CP H 

CP _B 

CP_ ENV 

CPJDKP_FR 

Figure 4.4: Structure of interior, generator and consumer choice points. 

Remember that interior nodes are implemented as normal WAM choice points and that 
the CP_ALT, CP_CP, CP_TR, CP_H, CP_B and CP_ENV choice point fields store respectively, 
the next unexploited alternative; success continuation program counter; top of trail; 
top of global stack; failure continuation choice point; and current environment. Gen­
erator and consumer nodes are also implemented as WAM choice points, but extended 
with an extra field, respectively, the CP_SG_FR and CP_DEP_FR fields. 

The SLG-WAM implements the generator nodes as WAM choice points extended 
with several extra fields. One of those fields stores the pointer to the correspondent 
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subgoal frame, the others hold the top freeze registers at choice point creation. Our 
implementation only requires the subgoal frame pointer because we adjust the freeze 
registers by using the top of stack values kept in the consumer choice points (see 
subsection 4.2.5 for details). 

Regarding consumer nodes, SLG-WAM also implements them as WAM choice points 
with several extra fields. In YapTab, we move consumer information to a dependency 
frame and leave the pointer to this frame in the CP_DEP_FR field. Figure 4.5 illustrates 
the relationships between the novel choice points fields and the table and dependency 
spaces. 

Table Space 

Interior Node 
WAM 

choice 
point 

Consumer Node 

Generator Node 

Consumer Node 

Local Stack 

Dependency Space 

Figure 4.5: The nodes and their interaction with the table and dependency spaces. 

The dependency frames are linked together to form a dependency graph between con­
sumer nodes. Additionally, they store information to efficiently check for completion 
points, and to efficiently move across the dependency graph. As we shall see, this 
functionality replaces the need for a completion stack. 

To take advantage of substitution factoring, we create in the local stack a substitution 
factor where we store references to the set of unbound variables in the subgoal call. 
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The substitution factor is created when traversing the subgoal trie structure to check 
for/insert the subgoal call, the dereferenced pointers to unbound variables from the 
subgoal are pushed onto the local stack. The substitution factor thus points to 
variables on the local or heap stack. A generator choice point executing a new 
answer operation determines the answer substitution simply through dereferencing 
the substitution factor. A consumer choice point can correctly load an answer from 
the table space by unifying the substitution factor pointers with the meanwhile copied 
answer substitution. 

4.2.4 Subgoal and Dependency Frames 

The subgoal and dependency frames are the main data structures required to control 
the flow of a tabled computation. As mention before, the subgoal frames provide 
access to the answer trie structure and to check for and mark the completion of a 
subgoal. The dependency frames synchronize suspension, resumption and completion 
of subcomputations. Figure 4.6 details the subgoal and dependency frame structures. 

Subgoal Frame 
SgFr_gen_cp 

SgFr_answer_trie 

SgFr_£irst_answer 

SgFrlast answer 

SgFr_completed 

SgFr next 

Dependency Frame 
DepFr_back_cp 

DepFrleader cp 

DepFr_cons_cp 

DepFr sg_fr 

DepFrlastans 

DepFr_next 

Figure 4.6: Structure of subgoal and dependency frames. 

A subgoal frame includes six fields. The SgFr_gen_cp is a back pointer to the cor­
respondent generator choice point; the SgFr_answer_trie points to the top answer 
trie node, and is mainly used to access the answer trie structure to check for/insert 
new answers; the SgFr_first.answer points to the leaf answer trie node of the first 
available answer; the SgFr_last_answer points to the leaf answer trie node of the 
last available answer; the SgFr_completed is a flag that indicates if the subgoal is 
completed or not; and the SgFr_next points to the next subgoal frame, that is, to the 
subgoal frame for the youngest generator older than the current choice point. It is 
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used to traverse subgoal frames when performing completion. To access the subgoal 
frames chain, we use a T0P_SG_FR register that points to the youngest subgoal frame. 

Each dependency frame is also a six field data structure. The DepFr_back_cp points to 
the generator choice point involved in the last unsuccessful completion operation, and 
is used by the fixpoint check procedure to schedule for a backtracking node (see 4.2.8 for 
details); the DepFr_leader_cp points to the leader choice point and it is used to check 
for completion points; the DepFr_cons_cp is a back pointer to the consumer choice 
point; the DepFr_sg_f r and the DepFr_last_ans point to the correspondent subgoal 
frame and to the last consumed answer, respectively, and they provide access to the 
table space in order to search for and to pick up new answers; and the DepFr_next 
is a pointer to the next dependency frame, that is, to the dependency frame for the 
youngest consumer older than the current choice point. It is used to form a dependency 
graph between consumer nodes to efficiently check for leader nodes and to efficiently 
implement the completion and fixpoint check procedures. To access the dependency 
graph, we use a T0P_DEP_FR register that points to the youngest dependency frame. 

Figure 4.7 shows an example of how the data structures presented are used in a 
particular evaluation. The leftmost sub-figure presents the execution tree dependencies 
between the predicates involved in the example. 

table_try_me t(X) 

table_try_me v(Y) 

tab le t r y me v(Y) 

table_try_me t{X) 

table_retry_me 

table trust me 

O Consumer Node 

Figure 4.7: Dependencies between choice points, subgoal and dependency frames. 

The first instance of table_try_me searches the table space for the corresponding 
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subgoal t (X). As this is the first call to the subgoal, it must allocate a subgoal frame 
and store a generator choice point. Assuming that t / 1 is a three clause predicate, the 
CP_ALT field of the generator choice point will point to the table_retry_me instruction 
that starts the compiled code of the second clause. Assuming that v/1 is a two clause 
predicate, an analogous situation occurs with the first call to subgoal v(Y). The only 
difference is that the CP_ALT field will now point to a table_trust_me instruction (note 
that this initialization is not illustrated in the figure). 

Following the example, the second call to v(Y) searches the table space and finds that 
it is a variant call of the subgoal v(var 0). Thus, it allocates a dependency frame 
and stores a consumer choice point. A consumer choice point is initialized with its 
CP_ALT field pointing to the answer_resolution pseudo instruction. Assuming that 
no answers were found for subgoal v(var 0), the computation will backtrack to the 
previous choice point CPi. The table_trust_me instruction gets executed, and the 
CP_ALT field is update to the completion pseudo instruction. The second call to t(X) 
is similar to the second call to v(Y). 

The dependency frame fields DepFr_back_cp and DepFr_leader_cp and the pseudo 
instructions answer_resolution and completion are detailed next. 

4.2.5 Freeze Registers 

A tabled evaluation can be seen as a sequence of subcomputations that suspend and 
later resume. The SLG-WAM preserves the environment of a suspended computation 
by freezing stacks. A set of freeze registers, one per stack, says where stacks are frozen. 
Freeze registers protect therefore the space belonging to the suspended branch until 
the completion of the appropriate subgoal call takes place, ft is only upon completion 
that we can release the space previously frozen and adjust the freeze registers. 

The SLG-WAM extends the generator choice points to store the freeze registers at 
choice point creation, so that they can be adjusted if completion takes place. In 
YapTab, we adjust the freeze registers by using the top stack values kept in the 
youngest consumer choice point, after completion. We access that choice point through 
the top dependency frame as given by the T0P_DEP_FR register. Figure 4.8 shows the 
pseudo-code that adjusts the freeze registers. 
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adjust_freeze_registers() { 
B_FZ = DepFr_cons_cp(TOP_DEP_FR) // B_FZ is the stack freeze register 
H_FZ = CP_H(B_FZ) // H_FZ is the heap freeze register 
TR_FZ = CP_TR(B_FZ) // TR_FZ is the trail freeze register 

} 

Figure 4.8: Pseudo-code for adjust_freeze_registers() . 

The introduction of freeze registers creates situations where the current stack registers 
can point to older positions than those given by the freeze registers. To guarantee that 
frozen segments are safe from being overwritten, we need to guarantee that new data 
always is placed at the younger position of both registers. Several schemes may be 
followed to ensure that: (i) we always compare the top stack register with the freeze 
register and determine the youngest; (ii) we have an additional register that always 
holds the youngest; or (iii) we ensure that, when writing, the top stack register is 
always younger than the freeze register and thus proceed as usual. Scheme (iii) is 
the one which introduces the least overheads for the execution. However, it cannot 
be applied to the local stack because tabled evaluation leads to situations where B is 
necessarily older than B_FZ. 

By default, YapTab implements scheme (i) to deal with the local stack and scheme 
(iii) to deal with the heap and trail stacks. As a configuration option, it is possible to 
execute YapTab using scheme (ii) for the local stack. The following subsection details 
the implementation of scheme (iii) for the trail stack. 

4.2.6 Forward Trail 

To resume the computation to a suspended consumer node, we have to restore all the 
variable bindings to their state at the time the node was suspended. The forward trail 
is a data structure that extends the standard WAM trail entries to record variable 
bindings. In the SLG-WAM, each forward trail frame has three fields: the address of 
the trailed variable, as in the WAM; the value to which the variable was bound, so 
that it can be restored later; and a pointer to the parent trail frame, used to correctly 
move across the variables in a branch, hence avoiding variables in frozen segments [87]. 

In YapTab, the forward trail is implemented without parent trail frame pointers. 
Yap already uses the trail to store information beyond the normal variable trailing, 
say to control dynamic predicates and to implement multi-assignment variables. We 
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extend this information to also control the chain between frozen segments. In terms 
of computation complexity the two approaches are equivalent. The main advantage 
of our scheme is that we only need two fields. 

Figure 4.9 illustrates our implementation scheme. Consider that the execution has 
reached the consumer node marked as (a) and that the computation is suspended as 
there are no available answers to be consumed. At this point, the trail freeze register 
TR_FZ is set to the trail register TR. 

™ _ — , — „ ~ 

X = a 

Y - b 

Z » c 

frozen 
segment 

Y = d 

Z » a 

frozen' 
segment 

z = f 

Figure 4.9: The forward trail implementation. 

Now if backtracking takes place up to the node marked as (b), the bindings belonging 
to the backtracked segment are untrailed and TR is made to point to the next untrailed 
frame. At this point, TR points to a position above the one pointed by TR_FZ. To ensure 
that the trail segment corresponding to the frozen branch is not erased, and is not 
used by untrailing operations corresponding to different branches, we use a special trail 
frame to mark the existence of a frozen segment just above it (see illustration (c)). 
This frame records the continuation trail frame that allows for the frozen segment to 
be ignored in a future untrailing operation. The trail register TR is updated to point 
to this new trail frame. 

Suppose that the execution has evolved to situation (d), in which the trail shows a 
more complex chaining of segments, and assume that the computation is being resumed 
to the first suspended node. To accomplish the correct restoration of the variable 
environment, the bindings belonging to the current branch need to be unbound and the 
bindings belonging to the branch being resumed need to be restored. Similarly to other 
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strategies presented previously, we can minimize the overhead of these operations by 

only unbinding/rebinding up to the youngest frame common to both branches, X = a 

in this case. By following TR, and visiting Z = f and Y = d, we unbind variables Z 

and Y, and by following TR1, and visiting Z = c and Y = b, we bind Z and Y to c and 

b, respectively. 

Figure 4.10 shows the pseudo-code for restoring a variable environment given the top 

trail frame for the current branch (argument unbind_fr) and the top trail frame for 

the branch being resumed (argument reb ind_fr ) . 

r e s t o r e _ b i n d i n g s ( t r a i l frame unbind_fr, t r a i l frame rebind_fr) { 
common_fr = rebind_fr 
while (unbind_fr != common_fr) { 

while (unbind_fr > common_fr) { / / rewind loop 
ref = Trail_Addr(—unbind_fr) 
if (ref i s a va r i ab le ) 

unbind_var iable(ref) 
e l se if (ref i s a frozen segment po in te r ) 

unbind_fr = ref 
} 
while (unbind_fr < common_fr) { / / search a common frame 

ref = Trail_Addr(—common_fr) 
if (ref i s a frozen segment po in te r ) 

common_fr = ref 
} 

} 
while (rebind_fr != common_fr) { / / rebind loop 

ref = Trail_Addr(—rebind_fr) 
i f (ref i s a va r i ab le ) 

b ind_var iab le ( re f , Trai l_Value(rebind_fr)) 
e l s e if (ref i s a frozen segment po in te r ) 

rebind_fr = ref 
} 

} 

Figure 4.10: Pseudo-code for r e s t o r e _ b i n d i n g s ( ) . 

The procedure starts with both unbind_f r and common_f r following their chains until 

a common frame is reached, with unbind_f r unbinding variables as it goes. Then, 

r eb ind . f r follows its chain till the just found common frame, restoring the variables 

on the way. Note that the frames traversed by common_fr and reb ind_fr are the 

same. However, variables are not restored when first searching for the common frame 

because they can be later unbound in the rewind loop. Note also that the rebind loop 

applies the bindings in the opposite order in which they were trailed. This is safe since 

no branch can have more than one trail entry for the same variable. 
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4.2.7 Completion and Leader Nodes 

The completion operation takes place when a generator node exhausts all alternatives 
and finds itself as a leader node. We designed novel algorithms to quickly determine 
whether a generator node is a leader node. The key idea is that each dependency frame 
holds a pointer to the presumed leader node of its SCC. Using the leader node from 
the dependency frames, a generator node can quickly determine whether it is a leader 
node. A generator finds itself as a leader node when there are no younger dependencies, 
that is, no younger consumer nodes, or when it is the leader node referred in the top 
dependency frame. 

The algorithm requires computing leader node information when allocating a depen­
dency frame for a new consumer node C. To do so, we first hypothesize that the leader 
node is the generator node for the variant subgoal call relative to C, say Q. Next, 
for all consumer nodes between C and Ç, we check whether they depend on an older 
generator node. Consider that the oldest dependency is for the generator node Q'. If 
this is the case, then Q' is the leader node, otherwise our hypothesis was correct and 
the leader is indeed the initially found generator node Q. 

Figure 4.11 presents a small example that illustrates how the current leader node 
changes during evaluation. By current leader node we mean the leader of the current 
SCC. In situation (a), the generator node A/3 is the current leader node because there 
are no younger consumer nodes. Moving to situation (b), a new consumer node is 
created and a new dependency frame is allocated. Because A/4 is a variant subgoal a 
for the generator node A/i and there are no other consumer nodes in between, A/i is 
the leader node for A/4's dependency frame. As a result, the current leader node for 
the new set of nodes including A/4 becomes A/i. Situation (c) is similar to (a), and A/5 
becomes the new current leader node. The consumer node A/é, from situation (d), is 
a variant subgoal c for generator node A3. Since consumer node A/4 is between nodes 
A/é and A/3 and depends on an older generator node, A/i, the leader node information 
for A/é's dependency frame is also A/i. This turns again A/i as the current leader node. 

Figure 4.12 shows the procedure that computes the leader node information for the 
current consumer node. The procedure traverses the dependency frames for the 
consumer nodes between the current consumer and its generator in order to check 
for older dependencies. As an optimization it only searches until it finds the first 
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Figure 4.11: Spotting the current leader node. 

dependency frame holding an older reference (the DepFr_leader_cp field). The nature 

of the procedure ensures that the remaining dependency frames cannot hold older 

references. 

compute_leader_node(dependency frame dep_fr) { 
leader_cp = SgFr_gen_cp(DepFr_sg_fr(dep_fr)) 
df = T0P_DEP_FR 
while (DepFr_cons_cp(df) i s younger than leader_cp ) { 

/ / searching for an older dependency 
i f (leader_cp i s equal or younger than DepFr_leader_cp(df)) { 

leader_cp = DepFr_leader_cp(df) 
break 

} 
df = DepFr_next(df) 

} 
DepFr_leader_cp(dep_fr) = leader_cp 

} 

Figure 4.12: Pseudo-code for compute_leader_node() . 

We next give an argument on the correctness of the algorithm. Consider a consumer 

node with generator node Q and assume that its leader node V is found in the 

dependency frame for consumer node C. Now hypothesize that there is a consumer 

node M younger than Q with a reference V older than V. Therefore, when previously 
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computing the leader node for C one of the following situations occurred: (i) V is the 
generator node for C or (ii) V was found in a dependency frame for a consumer node 
C. Situation (i) is not possible because M is younger than V and it holds a reference 
older than V. Regarding situation (ii), C is necessarily younger than M as otherwise 
the reference found for C had been V. By recursively applying the previous argument 
to the computation of the leader node for C we conclude that our initial hypothesis 
cannot hold because the number of nodes between C and M is finite. 

Figure 4.13 presents the pseudo-code that implements the completion() procedure. 
It gets executed when the computation fails to a generator choice point with no 
alternatives left. 

completion(generator node G) { 
if (G is the current leader node) { 
df = T0P_DEP_FR 
while (DepFr_cons_cp(df ) is younger than G)) { 
if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) { 
// dependency frame with unconsumed answers 
DepFr_back_cp(df) = G 
C = DepFr_cons_cp(df) 
restore_bindings(CP_TR(G), CP_TR(C)) 
goto answer_resolution(C) 

> 
df = DepFr_next(df) 

} 
perform_completion() 
adjust_freeze_registers() 

} 
backtrack_to(CP_B(G)) 

} 

Figure 4.13: Pseudo-code for complet ion (). 

Whenever a generator node finds out that it is the current leader node, it checks 
whether there are younger consumer nodes with unconsumed answers. This can be 
implemented by going through the chain of dependency frames looking for a frame 
with unconsumed answers. If there is such a frame, it resumes the computation to 
the corresponding consumer node. However, before resuming it must update the 
DepFr_back_cp dependency frame field (more details in 4.2.8) and use the forward 
trail to restore bindings. 

Otherwise, it can perform completion. This includes marking as completed all the 
subgoals in the SCC, using the T0P_SG_FR to go through the subgoals frames, and 
deallocating all the younger dependency frames, using the T0P_DEP_FR register to go 
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through the dependency frames. At last, the algorithm must adjust the freeze registers 

and backtrack to the previous node to continue the execution. 

In order to make the pseudo-code for procedures more intuitive and less verbose, 

throughout the thesis, we will frequently use goto statements like the one on Fig­

ure 4.13. With a goto statement we intend to denote that the flow of execution 

continues within the called procedure and that there is no return to the caller. 

4.2.8 Answer Resolution 

When a consumer choice point is allocated, its CP_ALT field is made to point to 

the answer_reso lu t ion instruction. This instruction is responsible for resuming the 

computation and guaranteeing that every answer is consumed once and just once. 

Figure 4.14 shows the procedure that implements the answer_reso lu t ion instruction. 

The procedure gets executed either when the computation fails or is resumed to a 

consumer choice point. 

answer_resolution(consumer node C) { 
dep_fr = CP_DEP_FR(C) 
i f (DepFr_last_ans(dep_fr) != SgFr_last_answer(DepFr_sg_fr(dep_fr))) { 

/ / unconsumed answers in current dependency frame 
load_next_answer_from_subgoal(DepFr_sg_fr(dep_fr)) 
proceed 

> 
back_cp = DepFr_back_cp(dep_fr) 
if (back_cp == NULL) 

backtrack_to(CP_B(C)) 
df = DepFr_next(dep_fr) 
while (DepFr_cons_cp(df) i s younger than back_cp)) { 

i f (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) { 
/ / dependency frame with unconsumed answers 
DepFr_back_cp(df) = back_cp 
back_cp = DepFr_cons_cp(df) 
restore_bindings(CP_TR(C), CP_TR(back_cp)) 
goto answer_resolution(back_cp) 

} 
df = DepFr_next(df) 

} 
restore_bidings(CP_TR(C), CP_TR(back_cp)) 
goto completion(back_cp) 

} 

Figure 4.14: Pseudo-code for a n s w e r _ r e s o l u t i o n ( ) . 

The answer_ reso lu t ion ( ) procedure first checks the table space for unconsumed 
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answers for the subgoal in hand. If there are new answers, it loads the next available 
answer and proceeds the execution. Otherwise, it schedules for a backtracking node. 

If this is the first time that backtracking from that consumer node takes place, then it 
is performed as usual to the previous node. This is the case when the DepFr_back_cp 
dependency frame field is NULL. Otherwise, we know that DepFr_back_cp points to 
the generator node Q from where the computation has been resumed during the 
last unsuccessful completion operation. Therefore, backtracking must retry the next 
consumer node that has unconsumed answers and that is younger than Q. If there is 
no such a consumer node then backtracking must be done to the generator node Q. 

Figure 4.15 presents two different situations that illustrate the functionality of the 
DepFr_back_cp field in the process of scheduling for a backtracking node. In both 
situations, the illustration sequence starts with the computation in a leader node 
position and assuming that all younger consumer nodes have unconsumed answers. A 
W is used to mark the node where the computation is positioned at each illustration. 
The vertical dashed line in between the nodes denotes the possible existence of other 
nodes not related to execution of tabled predicates. 

In situation (a), the execution of the completionO procedure in the leader node 
C leads the computation to be resumed to the younger consumer node C2. Before 
resuming, the DepFr_back_cp field of the dependency frame relative to C2 is updated 
to C. Then, after all available unconsumed answers for C2 have been consumed, 
answer_resolution() schedules for a backtracking node. As there is a consumer 
node C\ younger than the generator given by the DepFr_back_cp field of C2, then 
backtracking is done to C\ and the DepFr_back_cp field of the dependency frame 
relative to C\ is updated to C AS there is no consumer nodes between C and C\, 
C is scheduled for backtracking when all available unconsumed answers for C\ have 
been consumed. 

Situation (a) corresponds to a complete loop step for the fixpoint check procedure. 
Starting from a leader node, it goes through the younger consumer nodes and ends 
eventually returning to the leader node. Situation (b) presents a slightly different 
sequence. It also starts from a leader node position, £2 , and resumes the computation 
to a consumer node C2. However, when exploiting an unconsumed answer for C2, a new 
consumer node is allocated and in consequence the current leader node changes and 
becomes C\. Despite this leader modification, the backtracking sequence is similar to 
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Figure 4.15: Scheduling for a backtracking node. 

the one of situation (a). After consuming all the available unconsumed answers for 
(?2, C\ is scheduled for backtracking, and after consuming all the available unconsumed 
answers for C\, £ 2 is scheduled for backtracking. 

At that point, we may question why waste time backtracking to the previous leader 
node £ 2 if there is a new leader node C\. Note that completion only resumes the 
computation to younger consumer nodes because all younger generator and interior 
nodes are necessarily exploited, that is, without alternatives. As DepFr_back_cp points 
to £2 , this allows us to conclude that all younger generator and interior nodes than £ 2 

are exploited. However, nothing can be said about the generator and interior nodes 
older than £2 . Hence, despite £1 becoming the current leader node in the sequence of 
situation (b), between C\ and £ 2 may exist other nodes not exploited, and therefore 
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we still have to backtrack to £2-

4.2.9 A Comparison with the SLG-WAM 

The major difference between YapTab and the original SLG-WAM design resides in 
the way YapTab handles suspensions. The SLG-WAM considers that the control of 
leader detection and scheduling of unconsumed answers should be done at the level 
of the data structures corresponding to first calls to tabled subgoals, and it does 
so through associating completion frames to generator nodes. On the other hand, 
YapTab considers that such control should be performed through the data structures 
corresponding to variant calls to tabled subgoals, and thus it associates dependency 
frames to consumer nodes. We argue that managing dependencies at the level of the 
consumer nodes is a more intuitive approach that we can take advantage of. 

The SLG-WAM's design presents therefore some differences when compared with 
YapTab. First, the SLG-WAM uses an auxiliary data space, the completion stack, 
in order to determine when a generator node is a leader node. Each completion 
frame corresponds to a different subgoal call and a new completion frame is allocated 
whenever a new generator node is created. The dependencies introduced by variant 
subgoal calls update the top completion frame in the completion stack according to 
a proper rule (for details about the completion stack please consult [86, 87]). The 
process of determining if a generator node is a leader node requires, in the worst case, 
consulting the completion frames of all younger subgoal calls. 

YapTab uses dependency frames to determine when a node is a leader node. In order 
to motivate for the implementation required for the or-parallel tabling engine, we also 
assumed an auxiliary data space, the dependency space, where dependency frames are 
stored. However, for a strictly sequential engine, we can simplify the implementation 
by moving the data from the dependency space to the local stack and by storing 
dependency frames as extensions of consumer nodes. A dependency frame is allocated 
for each new consumer node and the leader node for the resulting SCC is computed in 
advance and stored in the dependency frame. By consulting the leader data stored in 
the youngest dependency frame, a generator node can thus determine in constant-time 
if it is the current leader node. 

Another relevant difference is how consumer nodes with unconsumed answers are 
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scheduled for execution. Consider a leader node with several different groups of 
consumer nodes within its SCC, with each group corresponding to a common variant 
subgoal call. The SLG-WAM proceeds as follows. The groups are scheduled one at a 
time, starting from the group corresponding to the oldest subgoal call until reaching 
the group corresponding to the youngest subgoal call. If there are unconsumed answers 
for a particular group, the process is aborted by causing the evaluation to be resumed 
at the nodes with unconsumed answers. After such a batch of answers has been 
consumed, the evaluation returns to the leader node. When returning to the leader 
node, the process repeats until no unconsumed answers are found in a single pass 
through the whole set of groups. In this case, a fixpoint is reached and the SCC is 
completely evaluated. 

YapTab simplifies the process by considering the whole set of consumer nodes within a 
SCC as a single group, independently of the subgoal call associated with each one. By 
following the chain of dependency frames, YapTab traverses in a single pass the whole 
set of consumer nodes which we argue may therefore reduce the overheads of scheduling 
consumer nodes with unconsumed answers in of controlling the loop procedure. 

In short, the YapTab's resolution scheme attained with the previously presented 
compute_leader_node, completion and answer_resolution procedures, improves 
SLG-WAM's scheme in that it: (i) replaces the need for a completion stack; (ii) 
quickly determines when a generator node is a leader node; and (iii) automatically 
schedules the set of consumer nodes with unconsumed answers within a SCC. 

Furthermore, in practice, we found that this solution simplifies the implementation 
of fundamental aspects that may influence the parallel system's efficiency. Sharing 
tabling suspensions is straightforward, as the worker requesting work only needs to 
update its private top dependency frame pointer to the one of the sharing worker. 
Concurrent accesses or updates to the shared suspension data can be synchronized 
through the use of a locking mechanism at the dependency frame level. The completion 
algorithm for shared branches can take advantage of the dependency frame data 
structure to avoid explicit communication and synchronization between workers. 
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4.3 Local Scheduling 

The algorithms described in the previous subsections assume a batched scheduling 
strategy. We are interested in alternative tabling scheduling strategies in order to 
study its impact when combining tabling with parallelism. Local scheduling is an 
alternative tabling scheduling strategy that tries to evaluate subgoals as independently 
as possible [40]. Evaluation is done one SCC at a time, and answers are returned 
outside of a SCC only after that SCC is completely evaluated. In other words, with 
local scheduling answers will only be returned to the leader's calling environment when 
its SCC is completely evaluated. Because local scheduling completes subgoals sooner, 
we can expect less complex dependencies when running in parallel. Figure 4.16 clarifies 
the differences between batched and local scheduling evaluation. 

:- table b/1. 

a(X,Y) :- b(X) , b (Y) 
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Figure 4.16: Batched versus local scheduling: an example. 
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At the top, Figure 4.16 illustrates the program code and query goal used for both 
evaluations. Below, the figure depicts the evaluation sequence for each scheduling 
strategy, which includes the resulting table space and the resulting forest of trees. 
The numbering of nodes denote the evaluation sequence. 

The most interesting aspect that results from the figure, is how both strategies handle 
the evaluation of the tabled subgoal call b(X). The first answer for b(X) binds X 
to 1. Batched scheduling then proceeds executing as in standard Prolog with the 
continuation call b(Y), while local scheduling fails to find the complete set of answers 
for b(X) and therefore completes the SCC before returning answers to the calling 
environment. 

For local scheduling, the variant subgoal calls to b(x) at steps 5 and 8 are resolved by 
executing compiled code directly from the trie structure associated with the completed 
subgoal b(X). For batched scheduling, the same variant subgoal calls lead to suspension 
points that are resolved by consuming answers as they are being found. 

The clear advantage of local scheduling shown in the example of Figure 4.16 does not 
always hold. In batched scheduling when a new answer is found, variable bindings 
are automatically propagated to the calling environment. Since local scheduling de­
lays answers, it does not benefit from this propagation, and instead, when explicitly 
returning the delayed answers, it incurs an extra overhead for copying them out of 
the table. Local scheduling does perform arbitrarily better than batched scheduling 
for applications that benefit from answer subsumption, that is, where we delete non-
minimal answers every time a new answer is added to the table. On the other hand, 
Freire et al. [40] showed that on average local scheduling is 15% slower than batched 
scheduling. 

We next present how local scheduling is implemented on top of batched scheduling. 
As the reader will see, it is straightforward to extend the engine to perform local 
scheduling. 

To prevent answers from being returned to the calling environment of a generator 
node, after a new answer is found for a particular tabled subgoal, local scheduling 
fails and backtracks in order to search for the complete set of answers. Therefore, 
when backtracking to a generator node, we must also act like a consumer node 
to consume the answers that could not be returned to their environment. In our 
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approach, we implement a generator choice point also as a consumer choice point. 
Figure 4.17 illustrates how generators are differently handled if supporting batched or 
local scheduling. 
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Figure 4.17: Handling generator nodes for supporting batched or local scheduling. 

For local scheduling, when we store a generator node we also allocate a dependency 
frame. The dependency frame is initialized similarly as for the consumer nodes. As an 
optimization we can avoid calling compute_leader_node() procedure to initialize the 
DepFr_leader_cp field, as it will always compute the new generator node as the leader 
node. To access subgoal frames, in batched scheduling we use the CP_SG_FR generator 
choice point field. In local scheduling we must use the CP_DEF_FR generator choice 
point field and follow the DepFr_sg_f r field of the dependency frame. Further, to fully 
implement local scheduling, we need to slightly change the completion() procedure. 
Figure 4.18 shows the modified pseudo­code. 

There is a major change to the completion algorithm for local scheduling. As newly 
found answers cannot be immediately returned, we need to consume them at a later 
point. If we perform completion with success, we start consuming the set of answers 
that have been found by executing compiled code directly from the trie data structure 
associated with the completed subgoal. Otherwise, we must act like a consumer node 
and start consuming answers. 
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completion(generator node G) { 
if (G is the current leader node) { 
df = T0P_DEP_FR 
while (DepFr_cons_cp(df) is younger than G) { 

if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) { 
DepFr_back_cp(df) = G 
C = DepFr_cons_cp(df) 
restore_bindings(CP_TR(G), CP_TR(C)) 
goto answer_resolution(C) 

} 
df = DepFr_next(df) 

} 
perform_completion() 
adjust_freeze_registers() 
goto completed_table_optimization(DepFr_sg_fr(CP_DEP_FR(G))) // new 

} 
CP_ALT(G) = answer_resolution // new 
load_first_answer_from_subgoal(DepFr_sg_fr(CP_DEP_FR(G))) // new 
proceed // new 

} 

Figure 4.18: Pseudo-code for completion() with a local scheduling strategy. 

Empirical work from Freire et al. [40, 41] showed that, regarding the requirements 
of an application, the choice of the scheduling strategy can differently affect the 
memory usage, execution time and disk access patterns. Freire argues [38] that there 
is no single best scheduling strategy, and whereas a strategy can achieve very good 
performance for certain applications, for others it might add overheads and even lead 
to unacceptable inefficiency. As a means of achieving the best possible performance, 
Freire and Warren [42] proposed the ability of using multiple strategies within the 
same evaluation, by supporting mixed-strategy evaluation at the predicate level. 

We believe that Yap Tab is more suitable than the SLG-WAM to be extended to 
support a mixed-strategy evaluation. In result of its clear design based on the de­
pendency frame data structure, extending YapTab to use multiple strategies at the 
predicate level seems straightforward. Only two features have to be addressed: (i) 
support strategy-specific Prolog declarations like ' : - batched pa th /2 . ' in order to 
allow the user to define the strategy to be used to resolve the subgoals of a given 
predicate; (ii) at compile time generate appropriate tabling instructions, such as 
batched_new_answer or local-completion, accordingly to the declared strategy for 
the predicate. With these two simple compiler extensions we are able to use all the 
algorithms described and already implemented for batched and for local scheduling 
without any further modification. Although in this work we concentrated on the 
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issues concerning the exploitation of parallel implementation, we expect to exploit a 
mixed-strategy evaluation in the future. 

4.4 Chapter Summary 

In this chapter we introduced the YapTab engine. Yap Tab extends the Yap Prolog 
system to support sequential tabling in Prolog programs. YapTab's implementation 
is largely based on the SLG-WAM approach to tabling. 

We started by presenting the SLG-WAM abstract machine, as first implemented in the 
XSB system, and then we focused on its key aspects, namely, the batched scheduling 
strategy, the incremental completion optimization and its instruction set for tabling. 

Next, we discussed the motivation for the YapTab design and described the main issues 
in extending the Yap Prolog system to support sequential tabling. We introduced a 
novel data structure, the dependency frame, and a new completion detection algorithm 
not based on the intrinsically sequential completion stack. YapTab innovates by 
considering that the control of leader detection and scheduling of unconsumed answers 
should be done at the level of the data structures corresponding to variant calls to 
tabled subgoals. 

To further study the impact of alternative scheduling strategies when combining 
tabling with parallelism, we implemented an alternative strategy, local scheduling, 
and described how it was implemented on top of batched scheduling. 



Chapter 5 

Parallel Tabling 

In this chapter we propose two new computational models to efficiently implement the 
parallel evaluation of tabled logic programs. We start by describing related work to 
get an overall view of alternative approaches to parallel tabling. Next, we introduce 
and detail the fundamental aspects underlying the new computational models, and 
then we discuss their advantages and disadvantages. Last, we focus on the elected 
computational model to discuss its implementation framework. 

5.1 Related Work 

One important advantage of logic programming is that it allows the implicit exploita­
tion of parallelism. This is true for SLD based systems, and should also apply for 
SLG based systems. A first proposal on how to exploit implicit parallelism in tabling 
systems was Freire's Table-parallelism [39]. Table-parallelism resembles the Linda's 
tuple-space model, in that it views the table space as a shared data structure through 
which cooperating agents may synchronize and communicate. 

In the Table-parallelism model, each tabled subgoal is computed independently in a 
single computational thread, a generator thread. Each generator thread is associated 
with an unique tabled subgoal and it is responsible for fully exploiting its search tree 
in order to obtain the complete set of answers. As new answers are being produced, 
they are inserted in the table space. A generator thread dependent on other tabled 
subgoals will asynchronously consume answers as the correspondent generator threads 
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will make them available. 

Within this model, parallelism results from having several generator threads running 
concurrently. Parallelism arising from non-tabled subgoals or from execution alterna­
tives to tabled subgoals is not exploited. Moreover, in order to fully implement the 
model a deep redesign of the base tabling engine is required, including new scheduling 
strategies and a new completion algorithm. Load balancing for this model can also 
be a difficult task. When the number of tabled subgoals is large, the dependencies 
between them can be quite intricate. Even when the number of tabled subgoals is 
small, some subgoals may have much larger search spaces than others. We expect that 
the scheduling problem of selecting which subgoals to allocate to which processors 
would be even harder than for traditional parallel systems. 

More recent work [46], proposes a different approach to the problem of exploiting 
implicit parallelism in tabled logic programs. Curiously, this new approach was also 
named as Table-parallelism. The approach is a consequence of a new sequential tabling 
scheme whose design simplifies the exploitation of parallelism. The new sequential 
tabling scheme is based on dynamic reordering of alternatives with variant calls, and it 
works in a single SLD tree without requiring suspension of goals and freezing of stacks. 
The alternatives leading to variant calls are denominated as looping alternatives. This 
dynamic alternative reordering strategy not only tables the answers to tabled subgoals, 
but also the looping alternatives. A tabled subgoal will repeatedly recompute its 
looping alternatives until a fixpoint is reached. 

If we find a variant call to a tabled predicate when exploiting a subgoal S, the current 
alternative clause A is tabled as a looping alternative and it is reordered and placed at 
the end of the alternative list for the call. Moreover, the variant call is not expanded 
immediately, given it can lead to an infinite loop. Instead, a failure is simulated in 
order for A to be backtracked over. After exploiting all matching clauses, the subgoal 
<S enters a looping state, where the looping alternatives, if they exist, start being 
tried repeatedly. If no new answer for S is added to the table in a complete cycle 
over the looping alternatives, then we can say that subgoal S has reached its fixpoint. 
Within this model, parallelism arises if we schedule the multiple looping alternatives 
to different workers. Communication among the different workers can be done through 
the table space. 

An important characteristic of tabling is that it avoids recomputation of tabled sub-
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goals. An interesting point of the dynamic reordering strategy is that it avoids recom-
putation through performing recomputation. The process of retrying alternatives may 
cause redundant recomputations of the non-tabled subgoals that appear in the body of 
a looping alternative. It may also cause redundant consumption of answers if the body 
of a looping alternative contains more than one variant subgoal call. Furthermore, to 
really judge the potential of the model as proclaimed by the authors [47], a more 
detailed performance evaluation is needed. 

We believe that parallelism may cause even more drawbacks in this model. A major 
problem in parallel execution with this model is the way alternatives may be scheduled 
to be recomputed. Assume, for instance, two workers, Wi and VV2, recomputing two 
different looping alternatives for the same subgoal. Consider that within its alternative, 
W\ consumes the available answers for a given subgoal S and then backtracks to 
continue exploitation. Suppose that in the meantime W2 finds a new answer for S. 
When W\ exhausts its looping alternative, it has to recompute it from the beginning 
in order to consume the newly found answer. However, a similar situation may occur 
and W2 may find another answer for S that may lead to a new recomputation of the 
alternative owned by W\. Therefore, parallelism may not come so naturally as for 
SLD evaluations and parallel execution may lead to doing more work. 

There have been other proposals for concurrent tabling but in a distributed memory 
context. Hu [55] was the first to formulate a method for distributed tabled evaluation 
termed Multi-Processor SLG (SLGMP). This method matches subgoals with proces­
sors in a similar way to Freire's approach [39]. Each processor gets a single subgoal 
and it is responsible for fully exploiting its search tree and obtain the complete set 
of answers. One of the main contributions of SLGMP is its controlled scheme of 
propagation of subgoal dependencies in order to safely perform distributed completion. 
An implementation prototype of SLGMP was developed, but as far as we know no 
results have been reported. 

A different approach for distributed tabling was proposed by Damásio in [34]. The 
architecture for this proposal relies on four types of components: a goal manager 
that interfaces with the outside world; a table manager that selects the clients for 
storing tables; table storage clients that keep the consumers and answers of tables; 
and prover clients that perform evaluation. An interesting aspect of this proposal 
is the completion detection algorithm. It is based on a classical credit recovery 
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algorithm [64] for distributed termination detection. Dependencies among subgoals 
are not propagated and, instead, a controller client, associated with each SCC, controls 
the credits for its SCC and detects completion if the credits reach the zero value. An 
implementation prototype has also been developed, but further analysis is required. 

Marques et al. [63] have proposed an initial design for an architecture for a multi­
threaded tabling engine. Their first aim is to implement an engine capable of process­
ing multiple query requests concurrently. The main idea behind this proposal seems 
very interesting, however the work is still in an initial stage. 

5.2 Novel Models for Parallel Tabling 

Our work is based on the observation that tabling is still about exploiting alternatives 
to finding answers for goals, and that or-parallel systems have precisely been designed 
to achieve this goal efficiently. Our suggestion is that all alternatives to subgoals should 
be amenable to parallel exploitation, be they from tabled or non-tabled subgoals, and 
that or-parallel frameworks can be used as the basis to do so. This gives an unified 
approach with two major advantages. First, it does not restrict parallelism to tabled 
subgoals, and, second, it can draw from the large experience in implementing or-
parallel systems. We believe that this approach can be an efficient model for the 
exploitation of parallelism in tabling-based systems. 

One of the important characteristics of tabling-based systems is that some subgoals 
need to suspend on other subgoals to obtain the full set of answers. Or-parallel systems 
also need to suspend, either while waiting for leftmostness in the case of side-effects, 
or to avoid speculative execution. The need for suspending introduces an interesting 
similarity between tabling and or-parallelism that influenced our work. We therefore 
propose two new computational models, the OPT and TOP models. 

To develop an efficient parallel tabling system we believe that it should exploit maxi­
mum parallelism and take maximum advantage of current parallel and tabling technol­
ogy. A key idea in our proposals is that we want to explore in parallel all the available 
alternatives, be they from generator, consumer or interior nodes. For efficiency reasons 
we are also most interested in multi-sequential systems [110], that is, in systems where 
workers compute independently in the search tree, and mainly communicate with each 
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other to fetch work. 

5.2.1 Or-Parallelism within Tabling (OPT) 

In this first approach, that we name Or-Parallelism within Tabling (OPT), parallel 
evaluation is done by a set of independent tabling engines that may share different 
common branches of the search tree during execution. Each worker can be considered a 
sequential tabling engine that fully implements the tabling operations: access the table 
space to insert new subgoals or answers; allocate data structures for the different types 
of nodes; suspend tabled subgoals; resume subcomputations to consume newly found 
answers; and complete private (not shared) subgoals. As most of the computation 
time is spent in exploiting the search tree involved in a tabled evaluation, we can say 
that tabling is the base component of the system. 

The or-parallel component of the system is triggered to allow synchronized access to 
the shared parts of the execution tree, in order to get new work when a worker runs out 
of alternatives to exploit, and to perform completion of shared subgoals. Unexploited 
alternatives should be made available for parallel execution, regardless of whether they 
originate from generator, consumer or interior nodes. From the viewpoint of SLG reso­
lution, the OPT computational model generalizes the Warren's multi-sequential engine 
framework for the exploitation of or-parallelism. Or-parallelism stems from having 
several engines that implement SLG resolution, instead of implementing Prolog's SLD 
resolution. 

Figure 5.1 illustrates how parallelism can be exploited in the OPT model. It assumes 
two workers, W\ and W2, and it represents a possible evaluation for the following 
program code with ?- a(X) as the query goal. 

:- table a /1 . 

a(X) :- a(X). 
a(X) :- b(X). 

b ( l ) . 
b(X) :- . . . 
b(X) :- . . . 

?- a(X). 

Consider that worker Wi executes the query goal. It first inserts an entry for the 
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tabled subgoal a(X) into the table space and creates a generator node for it. The 
execution of the first alternative leads to a recursive call for a(X), W\ hence creates 
a consumer node for a(X) and, because there are no available answers, it backtracks. 
The next alternative finds a non-tabled subgoal b(X) for which an interior node is 
created. The first alternative for b(X) succeeds and an answer for a(X) is therefore 
found: a ( l ) . The worker inserts the newly found answer in the table and then starts 
exploiting the next alternative for b(X). 

f X a Generator Node ; 

O Consumer Node 

o Interior Node 

û New Answer 

f > Public Tree 

Exploited Branch 
j 

Figure 5.1: Exploiting parallelism in the OPT model. 

At this point, worker W2 moves in to share work. Consider that worker W\ decides to 
share all of its private nodes. The two workers will share three nodes: the generator 
node for a(X), the consumer node for a(X), and the interior node for b(X). Worker 
W2 takes the next unexploited alternative of b(X) and from now on, both workers can 
find further answers for a(X) and any of them can restart the shared consumer node. 

5.2.2 Tabling within Or-Parallelism (TOP) 

The second approach, that we name Tabling within Or-Parallelism (TOP), considers 
that a parallel evaluation is performed by a set of independent WAM engines, each 
managing an unique branch of the search tree at a time. These base engines are 
extended to include direct support to the basic table access operations, that allow the 
insertion of new subgoals and answers. 

We have seen that subgoals in tabling based systems need to suspend on other subgoals 
to obtain the full set of answers. Or-parallel systems also need to suspend, either while 
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waiting for leftmostness in the case of side­effects, or to avoid speculative execution. 
The need for suspending introduces an important similarity between tabling and or­

parallelism. The TOP approach therefore unifies or­parallel suspensions and suspen­

sions due to tabling. When exploiting parallelism, some branches may be suspended, 
say, because they are speculative or not leftmost, or because they include consumer 
nodes waiting for more answers, while others are available for parallel execution. In 
TOP, the or­parallel suspension mechanism is extended to also manage the suspensions 
related to the tabling evaluation. Consequently, a suspended branch can wake up 
for reasons such as, new answers have been found for the consumer node on that 
branch, the branch becoming leftmost, or just for lack of non­speculative work in the 
search tree. The TOP name arises from the fact that tabled evaluation is attained by 
embracing the tabling suspension mechanism within the or­parallel component. 

Figure 5.2 illustrates how parallelism is exploited under this approach for the same 
previous program. We can observe from the left figure that as soon as W\ suspends on 
consumer node for a(X), it makes the whole branch public and only after it backtracks 
to the upper node. The suspended branch thus stops being the responsibility of Wi 
and becomes, instead, shared work that anyone can wake up when new answers to 
a(X) are found. 

| | Generator Node 

^ \ Consumer Node 

( 1 Interior Node 

■ New Answer 

f JH Public Tree  

Exploited Branch 

Figure 5.2: Exploiting parallelism in the TOP model. 

Continuing the execution, W\ finds an answer for subgoal a(X) in the first alternative 
for subgoal b(X). So, when worker W2 starts looking for work, it can choose whether 
to resume the consumer node with the newly found answer or to ask worker W\ to 
share his private nodes. The right figure assumes that the first option was chosen. 
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5.2.3 Comparing the Models 

The TOP model is a very attractive model, as it provides a clean and systematic 
unification of tabling and or-parallel suspensions. Workers have a clearly defined 
position, because a worker always occupies the tip of a single branch in the search 
tree. Everything else is shared work. It also has practical advantages, such as the fact 
that in this approach we can guarantee that a suspended branch will only appear once, 
instead of possibly several times for several workers. On the other hand, as suspended 
nodes are always shared in or-parallel systems, the unified suspension may result in 
having a larger public part of the tree, which may increase overheads. Besides, in 
order to support all forms of suspension with minimal overhead, the unified suspension 
mechanism must be implemented efficiently. 

In TOP, we have a standard Prolog system extended with an or-parallel/tabling 
component. If adopting SLG-WAM for tabling, this means that TOP is most adequate 
for, say, binding arrays models [112, 111] for the or-parallel component, as a result 
of the similar cactus stack organization that both approaches use. An alternative 
for tabling is Demoen and Sagonas's CAT [35] model. CAT seems to fulfill best the 
requirements of the TOP approach, since it assumes a linear stack for the current 
branch and uses an auxiliary area to save the suspended nodes. If implementing TOP 
based on CAT, then we should adopt for the or-parallel component an environment 
copying model [6, 5] as it fits best with the kind of operations that CAT introduces. 

On the other hand, the OPT approach offers interesting advantages. First, it reduces 
to a minimum the overlap between or-parallelism and tabling. In OPT we have a 
tabling system extended with an or-parallel component. Moreover, it enables different 
combinations for or-parallelism and tabling, giving implementors the highest degree 
of freedom. For instance, one can use the SLG-WAM for tabling, and environment 
copying or binding arrays for or-parallelism. 

Taking into account the advantages and disadvantages presented, we decided to focus 
our work on the design and implementation of the OPT model. Our choice seems 
the most natural as we believe that the OPT approach gives the highest degree of 
orthogonality between or-parallelism and tabling. The hierarchy of or-parallelism 
within tabling results in a property that one can take advantage of to structure the 
design and thus simplify the implementation. 
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5.2.4 Framework Motivation for the OPT Model 

We adopted a framework based on the YapOr and YapTab engines in order to imple­
ment the OPT model. We choose to use environment copying for or-parallelism and 
SLG-WAM for tabling based on the fact that these are, respectively, two of the most 
successful or-parallel and tabling engines. In our case, we already had the experience 
of implementing environment copying in the Yap Prolog, the YapOr system, with 
excellent performance results when compared with the Muse system [78, 81]. Adopting 
YapOr for the or-parallel component of the combined system was therefore our first 
choice. 

On the other hand, YapTab was initially developed based on the SLG-WAM because, 
at the time, SLG-WAM was the most, and perhaps unique, successful tabling engine. 
The later appearance of the CAT [35] and CHAT [36] approaches to tabling, opened 
news paths and raised questions about the direction our work should follow. Instead 
of freezing computations, CAT uses an external data area to where it copies suspended 
computations. It turns out that CAT may have arbitrarily worst behavior than the 
SLG-WAM for some programs, and thus, a variation of the CAT approach, the CHAT, 
was later proposed to overcome some limitations of the CAT design. CHAT is an 
hybrid approach that combines certain features of the SLG-WAM with others of CAT. 
It innovates by introducing a technique for freezing stacks without using neither freeze 
registers nor stack copying. CHAT still copies the choice point and the trail stacks but 
not the environment and heap stacks. Instead, the latter are protected by manipulating 
pointers in the choice points. 

We considered these new models as alternatives to the SLG-WAM, but after studying 
and considering their integration with an or-parallel component, we decided not to 
change the course of our work because CAT and CHAT have major problems for 
support parallelism over YapOr. First, to take best advantage of CAT or CHAT we 
need to have separate environment and choice point stacks, but Yap has an integrated 
local stack. Second, and more importantly, we believe that CHAT is not appropriate 
for parallel execution and that CAT is less suitable than the SLG-WAM to an efficient 
extension to or-parallelism. 

Regarding CHAT, we argue that it is its choice point manipulation technique that 
makes it inappropriate as a base model to support parallel execution. Consider, for 



118 CHAPTER 5. PARALLEL TABLING 

example, two different workers, Wi and W2, exploiting alternative branches from a 
public choice point J\f and W\ suspending a computation that requires manipulating 
pointers in M. Obviously, parallelism is not compatible with this kind of choice point 
manipulation. If W2 backtracks to M then we can expect arbitrary behavior when W2 
restores jV's pointers. 

As the SLG-WAM, CAT assumes an incremental completion technique in order to be 
more efficient in terms of memory consumption and to minimize the size of stacks to 
be copied. It was precisely this incremental completion principle that we believe 
it is less suitable to an efficient extension of the model to or-parallelism. CAT 
implements incremental completion through an incremental copying mechanism that 
saves intermediate states of the execution stacks. The mechanism works as follows: 
when suspending a consumer node, the state of the computation is saved to a proper 
CAT area up to the nearest generator node Q on the current branch, in such a way that 
if execution fails back to Q, all younger consumer nodes have saved all information 
needed for their restoration. If Q is a leader node, on reaching fixpoint, completion 
can occur and the space for the CAT area can be freed. Otherwise, to allow for the 
younger consumers to be further restored, since backtracking over Q will occur we need 
to perform an incremental state saving. Incremental saving is always done up to the 
next nearest generator node and linked to the CAT areas previously saved up to Q. 
This incremental saving of computational states maximizes sharing between common 
state segments and therefore, avoids double copying of the same segments. 

In sequential tabling, the notion of leader node only makes sense if that node is a 
generator node. However, if we want to preserve incremental completion efficiency in 
a parallel tabling environment, we need to enlarge the concept behind the notion of 
leader node. Consider, for example, the situation from Figure 5.3. Starting from a 
common public node, worker W\ takes the leftmost alternative while worker W2 takes 
the rightmost. While exploiting their alternatives, Wi calls a tabled subgoal a and 
W2 calls a tabled subgoal b. As this is the first call to both subgoals, a generator node 
is stored for each one. Next, each worker calls the tabled subgoal firstly called by the 
other, and consumer nodes are therefore allocated. At that point, we may question at 
which node we should check for completion? Intuitively, we might choose a node that is 
common to both branches and the youngest common node seems the better choice. As 
an alternative, we might store a dummy generator node at the beginning of the stacks 
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in order to guarantee that there is always an older generator node where we will check 
for completion. Obviously, if adopting this latter approach, incremental completion is 
not practicable and the efficiency of the model in terms of memory consumption and 
the size of stacks to be saved and later reinstalled is the worst possible. 

genei ■<■ -i node? 

­Youngest ['common :xioõe? 

O 
Public Node 

Generator Node 

Consumer Node 

m 
Figure 5.3: Which is the leader node? 

As motivated by the example, if one adopts the youngest common node approach, then 
in a parallel tabled evaluation any kind of node (generator, consumer or interior) may 
be a leader node. Moreover, situations where a worker has several consumer nodes 
but not a single generator node are common. The efficiency of the CAT's incremental 
completion technique is based in the fact that the next place where completion may 
take place is in the upper generator node and that between two generator nodes 
there cannot exist another completion point. Parallel tabling does not preserve these 
properties. As an example, consider the situation from Figure 5.4. 

The figure shows three workers, Wi, W2 and W3 executing a tabled evaluation in 
parallel. The left sub­figure shows a situation where W2 and W3 are about to suspend, 
respectively, the consumer nodes for the tabled subgoals a and b. The sub­figure on 
the right shows the resulting state if the youngest common node approach is adopted 
for suspension. Note that nodes A/"i and A/3 are, respectively, the youngest common 
nodes to the branches of the generator and consumer nodes for a and b. Therefore, 
consumer node for a is suspended at A/i and consumer node for b is suspended at A/3. 
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Figure 5.4: CAT's incremental completion for parallel tabling. 

Assume now that no more suspensions occur until W2 and W3 both backtrack from 
A/3. Such a situation leads to a major problem. How should the last worker leaving 
A/3 handle the suspension for b? 

To solve this problem we need a very flexible mechanism that can decide when a sus­
pension depends on upper suspensions. Besides, even if such mechanism is efficiently 
implemented, introducing parallelism over CAT would activate incremental saving 
whenever backtracking from public nodes. Moreover, incremental saving should be 
performed up to the parent node, as potentially it can hold other suspensions or be the 
next completion point. Obviously, this node-to-node segmentation of the incremental 
saving technique will degrade the efficiency of any parallel system. The problems 
behind the management of incremental completion in parallel tabling were the major 
reason why we were unwilling to change our initial framework choice. 

5.3 Chapter Summary 

In this chapter we proposed two novel computational models for parallel tabled evalu­
ation, OPT and TOP models, and we discussed their fundamental aspects, advantages 
and drawbacks. We also discussed two related approaches to exploit parallelism from 
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tabled logic programs, the Table-parallelism approach from Freire et al. [39] and the 
Table-parallelism approach from Guo and Gupta [46]. 

We then motivated for a framework based on the YapOr and YapTab engines to 
implement the OPT model and stated the reasons for our choice. In the next two 
chapters we present the details for the implementation. 

YapOr's engine was recently extended [32] to support two newer or-parallel binding 
approaches based on the Sparse Binding Array [27, 25] and on the Copy-On-Write [28] 
models. Therefore, we aim at integrating these binding models with YapTab in order 
to enlarge the combinations for the or-parallel tabling engine. 
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Chapter 6 

OPTYap: The Or-Parallel Tabling 
Engine 

This chapter presents the implementation details for the OPTYap engine. OPTYap 
is an or-parallel tabling system that implements the OPT computational model. As 
introduced in previous chapters, the OPT model is based on environment copying for 
the or-parallel component, and on the SLG-WAM for the tabling component. Our 
initial design only supports parallel tabled evaluation for definite clauses. 

We start by presenting an overall view of the main issues involved in the implementa­
tion of the or-parallel tabling engine and then we introduce and detail the new data 
areas, data structures and algorithms required to implement it. 

6.1 Implementation Overview 

In our model, a set of independent workers will execute a tabled program by traversing 
a search tree where each node is a candidate entry point for parallelism. Each worker 
physically owns its environment, that is, a set of stacks, and shares the data structures 
that support tabling and scheduling. During execution, the search tree is implicitly 
divided into a public and private regions. Workers in their private region execute 
nearly as in sequential tabling. Workers exploiting the public region of the search tree 
must be able to synchronize in order to ensure the correctness of the tabling operations. 

123 
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Parallel execution requires novel algorithms in a number of different situations. In 
some cases, parallel execution is straightforward, such as when backtracking to a public 
generator or to an interior node in order to take the next available alternative; when 
backtracking to a public consumer node to take the next unconsumed answer; or when 
inserting new answers into the table space. However, parallel execution can be quite 
complex in other situations. Therefore, it is a crucial implementation issue to achieve 
efficiency within the parallel tabling system. Complex cases include completion, 
resumption of computations, and the fixpoint check procedure, when operating over 
the public part of the execution tree. In a parallel tabling system, the relative positions 
of generator and consumer nodes are not as clear as for sequential systems, hence we 
need more complex algorithms to determine whether a node can be a leader node and 
to determine whether a SCC can be completed. As we shall see, the condition of being 
a leader node is not, by itself, sufficient to perform completion. 

We follow a multi-sequential design. Therefore, a worker running out of alternatives 
to exploit enters in scheduling mode and uses the YapOr scheduler to search for busy 
workers with unexploited work. Alternatives are made available for parallel execution, 
regardless of whether they originate from generator, consumer or interior nodes. A 
worker is said to have shareable work if it contains private nodes with unexploited 
alternatives or with unconsumed answers. When a worker shares work with another 
worker, incremental copying is used to set the environment for the requesting worker. 

6.2 The Parallel Data Area 

A crucial part for the efficiency of a parallel system is how concurrent handling of 
shared data is achieved and synchronized. In this section we present the data-area 
design that allows for an efficient management of data structures in OPTYap. Memory 
allocation in OPTYap follows the same organization as in YapOr (please refer to 
Figure 3.6). Memory is divided into a global addressing space and a collection of local 
spaces, each one supporting one system worker. The global space includes the code 
area and a parallel data area that consists of all the data structures required to support 
concurrent execution. OPTYap extends the parallel data area to include the table and 
dependency spaces inherited from YapTab. A new data space preserves the stacks of 
suspended branches with dependencies in other branches (further details are given in 
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section 6.7). 

6.2.1 Memory Organization 

The parallel data area stores data structures that may be accessed and updated 
concurrently. A major source of overhead regarding data access or update in parallel 
systems are memory cache misses and page faults. To deal with these, we need to 
achieve good locality for these data structures. 

An important characteristic of almost all parallel data structures in the parallel data 
area is that elements of the same type are linked together to improve the efficiency of 
the common procedures that search through a chain until a certain condition is met. 
Hence, a good heuristic for increasing locality is to organize memory in such a way 
that data structures that are near at the abstract chain level, are also near at the 
memory level. 

Modern computer architectures use pages to handle memory. Pages are fixed size 
blocks of contiguous memory cells. If we guarantee that most consecutive memory 
references are also physically consecutive, we may obtain access to the whole set of 
references when loading a memory page. Based on this characteristic, we adopt a 
page organization scheme in order to split memory among different data structures 
resident in the parallel data area. Figure 6.1 gives an overview of the parallel data 
area memory organization. 
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Figure 6.1: Using memory pages as the basis for the parallel data area. 

Figure 6.1 shows that each memory page only contains data structures of the same 
type. Whenever a new request for a data structure of type T appears, the next 
available structure on one of the T pages is returned. If there are no available 
structures in any T page, then a new T page must be requested. If there are pages 
already marked as free, as in the figure, then one of them is made to be of type 
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T. Otherwise, a new page can be released from a pool of unreleased pages. This is 
achieved by making the page given by the Unreleased_Pages pointer to be of type T, 
and by updating the pointer to the next unreleased page. A page is freed when all its 
data structures are released. A free page can be immediately reassigned to a different 
structure type. Figure 6.2 details the parallel data area pages organization. 

Figure 6.2: Inside the parallel data area pages. 

Access to pages of a given data type is synchronized by the page entry data structure. 
In Figure 6.2, PAGES_T is the page entry that allows access to the data structures of 
type T. A page entry structure includes two data fields. The Pg_lock field implements 
a lock mechanism to synchronize access to available data structures, in such a way that 
only a worker at a time may be updating the chain of available pages or the set of 
available data structures. The Pg_free_pg field is a pointer to the first page with 
available data structures of the given type. 



6.2. THE PARALLEL DATA AREA 127 

6.2.2 Page Management 

The management of pages and data structures within pages is achieved by allocating a 
special page header structure at the beginning of each page and by uniformly splitting 
the remaining of each page in data structures of the type being handled. A page header 
consists of four fields. The PgHd_str_in_use field stores the number of structures in 
use within the page. When it goes to zero the page can be freed. The PgHd_f ree_str 
field points to the first available data structure within the page. The PgHd_next 
and PgHd_previous fields point, respectively, to the next and previous pages with 
available structures. Within a page, available data structures are linked through their 
next fields. Access to free pages is also synchronized by a proper page entry data 
structure, named PAGES_vo id. The management of theses pages is simple because the 
PgHd_next page header field is sufficient to maintain the chain of free pages. 

Figures 6.3 and 6.4 present, respectively, the pseudo-code for allocating and freeing a 
data structure of a given page entry type. 

a l loc_s t ruc t (page entry pg_entry) { 
lock(Pg_lock(pg_entry)) 
i f (Pg_free_pg(pg_entry) == NULL) / / if no ava i l ab le pages then . . . 

Pg_free_pg(pg_entry) = al loc_page() II ... request a new page 
header = Pg_free_pg(pg_entry) 
PgHd_str_in_use(header)++ 
s t r = PgHd_free_str(header) 
PgHd_free_str(header) = s t r u c t _ n e x t ( s t r ) 
i f (PgHd_free_str(header) == NULL) { / / if no ava i l ab le s t r u c t u r e s t h e n . . . 

Pg_free_pg(pg_entry) = PgHd_next(header) / / . . . move to next page 
if (PgHd_next(header) != NULL) 

PgHd_previous(PgHd_next(header)) = NULL 
> 
unlock(Pg_lock(pg_entry)) 
r e t u r n s t r 

} 

Figure 6.3: Pseudo-code for a l loc_s t ruc t ( ) . 

The a l loc_s t ruc t ( ) procedure initially checks for available pages. If there are no 
pages a new one is requested through a call to alloc_page(). Next, we get the first 
available structure from the page we obtained and update the page header to point 
to the next available structure. If no more structures are available then the page is 
fully used. Hence, we update the page entry at hand to point to the next page with 
available structures. 



128 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE 

free_struct(page entry pg_entry, data structure str) { 
header = page.header(str) // header of the page that includes str 
lock(Pg_lock(pg_entry)) 
if (—PgHd_str_in_use(header) == 0) { // if no structures in use then ... 

I I . . . put page free 
if (PgHd_previous(header)) { 
PgHd_next(PgHd_previous(header)) = PgHd_next(header) 
if (PgHd.next(header) != NULL) 
PgHd_previous(PgHd_next(header)) = PgHd_previous(header) 

} else { 
Pg_free_pg(pg_entry) = PgHd_next(header) 
if (PgHd.next(header) != NULL) 
PgHd_previous(PgHd_next(header)) = NULL 

} 
free_page(header) 

} else { 
struct_next(str) = PgHd_free_str(header) 
PgHd_free_str(header) = str 
if (struct_next(str) == NULL) { // if first available structure then ... 

I I . . . put page available 
PgHd_previous(header) = NULL 
PgHd_next(header) = Pg_free_pg(pg_entry) 
if (PgHd_next(header) != NULL) 
PgHd_previous(PgHd_next(header)) = header 

Pg_free_pg(pg_entry) = header 
} 

} 
unlock(Pg_lock(pg_entry)) 

} 

Figure 6.4: Pseudo-code for f ree_s t ruc t ( ) . 

The f ree_struct() procedure starts by determining if the page that includes the 
structure being released is fully available, that is, without any other structure being 
used. If this is the case the page stops being of the current type and instead it is 
made free. Otherwise, the structure is chained in the available structures within the 
page, and if it is the first structure made available then the page is also chained in the 
available pages for that type. 

The management scheme attained with the a l loc_s t ruc t ( ) and free_struct 0 pro­
cedures enables local references for data structures of the same type. Subsequent 
allocate requests for data structures of the same type are serviced from the same 
memory page, and data structures being freed are chained within their own pages in 
order to keep locality of reference in further requests. Moreover, reclaiming unused 
pages is trivial as a simple reference count is sufficient to detect unused pages; allocat­
ing and freeing data structures are fast, constant-time operations, all we have to do 
is to move a structure to or from a list of free structures; and memory fragmentation 
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is minimal, the only wasted space is the unused portion at the end of a page when it 

cannot accommodate any more data structures. 

To the best of our knowledge, the idea of page-based allocation of shared memory 

was first proposed by Bonwick for his Solaris Slab memory allocator [15]. Bonwick 

also proposes several alignment mechanisms in order to reduce cache misses. Our 

performance evaluation has not shown the need for such sophisticated mechanisms in 

OPTYap. 

6.2.3 Improving Page Management for Answer Trie Nodes 

During parallel evaluation, some data structures may induce high lock contention in the 

page entry access, because of higher rates of concurrent allocating and release requests. 

Through experimentation, we observed that this problem mainly occurs with answer 

trie nodes. In order to attenuate these overheads, we introduced a different mechanism 

to specifically deal with answer trie nodes. The idea is that: each worker maintains 

a private pre-allocated set of available answer trie nodes. When a worker runs out of 

pre-allocated answer trie nodes, it asks for an available answer trie node page and pre-

allocates all the structures in it. To implement that mechanism, a new local register 

is necessary and a different procedure to request for available data structures is used. 

We next present the pseudo-code for that procedure. 

ge t_s t ruc t (page entry pg_entry, da ta s t r u c t u r e l o c a l _ s t r ) { 
s t r = l o c a l _ s t r 
i f ( s t r == NULL) { / / i f no ava i l ab l e p re -a l l oca t ed s t r u c t u r e s then . . . 

/ / . . . get an ava i l ab le page and p r e - a l l o c a t e a l l the s t r u c t u r e s in i t 
lock(Pg_lock(pg_entry)) 
i f (Pg_free_pg(pg_entry) == NULL) 

Pg_free_pg(pg_entry) = al loc_page() 
header = Pg_free_pg(pg_entry) 
PgHd_str_in_use(header) = structs_per_page(pg_entry) 
s t r = PgHd_free_str(header) 
PgHd_free_str(header) = NULL 
Pg_free_pg(pg_entry) = PgHd_next(header) 
unlock(Pg_lock(pg_entry)) 

} 
l o c a l _ s t r = s t r u c t _ n e x t ( s t r ) 
r e t u r n s t r 

Figure 6.5: Pseudo-code for g e t _ s t r u c t ( ) . 

The g e t _ s t r u c t ( ) procedure includes support for the pre-allocation mechanism and 
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it replaces the a l loc_s t ruc t ( ) procedure when dealing with requests for answer trie 
nodes. The second argument is the local register that points to the next available 
pre-allocated data structure. 

The procedure starts by checking if pre-allocated data structures are available. If this 
is the case, it gets the first available structure and updates the local register to point 
to the next pre-allocated structure. Otherwise, a new page is requested and the local 
register is made to point to the first available structure within that page. Moreover, 
the page is marked as fully used and the page entry is updated to the next page with 
available structures. 

6.3 Concurrent Table Access 

The table space is the major data area open to concurrent access operations in a 
parallel tabling environment. To maximize parallelism, whilst minimizing overheads, 
accessing and updating the table space must be carefully controlled. Reader/writer 
locks are the ideal implementation scheme for this purpose. However, several different 
approaches may be taken. One is to have an unique lock for the table, thus enabling 
a single writer for the whole table space; or one can have one lock per table entry, 
allowing one writer per predicate; or one lock per path, allowing one writer per subgoal 
call; or one lock per trie node, to attain least contention on locks; or hybrid locking 
schemes combining the above. 

6.3.1 Trie Structures 

The table data structures, and mainly the subgoal trie and answer trie structures, 
should be protected from races when operations that can change their structure are 
being executed. The tabling operations that change the subgoal trie and answer trie 
structures are the tabled subgoal call operation and the new answer operation. 

Three different situations may occur when executing a tabled subgoal call operation. 
If the subgoal in hand is the first call to a tabled predicate, then a complete path of 
subgoal trie nodes is inserted into the subgoal trie structure. The opposite is when 
the subgoal is a variant of a subgoal in the table space, then no subgoal trie nodes are 
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inserted or updated, and thus, the subgoal trie structure remains unaltered. Last, if 
the subgoal is partially common to other tabled subgoals, only the divergent subgoal 
trie path is inserted into the subgoal trie structure. A similar set of situations may 
occur for the new answer operation. The difference is that the new answer operation 
works over the answer trie structure instead of the subgoal trie structure. 

A table locking scheme must consider the situations described above. To better 
understand the peculiarities behind alternative locking schemes, we next give a more 
detailed description about the organization and handling of trie structures. Figure 6.6 
illustrates the trie structure organization by focusing in more detail on one of the 
answer trie structures previously presented in Figure 4.3, including the complete set 
of the trie nodes contents and dependencies. 
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Figure 6.6: Detailing the trie structure organization. 
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A trie node is a data structure with four main data fields. The TrNode_entry stores the 
term that represents the node; the TrNode_next is a pointer to the sibling node that 
represents an alternative path; the TrNode.parent is a back pointer to the preceding 
node on path; and the TrNode_child is a pointer to the next node on path. 

The figure presents the organization for the answer trie structures. The subgoal trie 
structures are organized similarly. The difference resides in how the TrNode_child field 
of the leaves trie nodes are processed. In an answer trie structure, the TrNode_child 
field of the leaves answer trie nodes forms a chain through the answers already stored 
in the table. In the subgoal trie structure, the TrNode_child field of the subgoal trie 
leaves gives access to the correspondent subgoal frame (please refer to subsection 4.2.2). 

The completed table optimization allows compiled code execution from a trie. The 
optimization requires that answer trie nodes include two extra fields. One field, the 
TrNode_instr, stores the compiled instruction that implements unification for the 
term stored in the node. The other, the TrNode_or_arg field, stores the number of 
sibling nodes and supports the worker load computation scheme (see subsection 3.3.3). 
For simplicity, these fields were not included in Figure 6.6. 

Besides the nodes needed to represent the several alternative paths, a root node marks 
the beginning of a trie structure. In Figure 6.6, the root node is the one represented 
with a ' - ' in the TrNode_entry field. This root node synchronizes access to the first 
level of sibling nodes (nodes with terms e and b in the figure). Its usefulness can be 
better understood through Figure 6.7. It illustrates a trie_node_check_insert() call 
sequence in the context of a new answer operation. For a tabled subgoal call operation 
a similar sequence will be used. 

/ / SG_FR is the subgoal frame for the subgoal in hand 
/ / (Tl, . . . , Tn) are the substitution factors for the new answer 

current_node = SgFr_answer_trie(SG_FR) / / s ta r t from the root node 
current_node = trie_node_check_insert(Tl, current_node) 

current_node = trie_node_check_insert(Tn, current_node) 

Figure 6.7: trie_node_check_insert() call sequence for the new answer operation. 

The trie_node_check_insert() is called by tabled subgoal call and new answer 
operations to traverse the subgoal and answer trie structures. It is called for each 
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term that represents the path being checked or inserted. Given a term T and a trie 

node V, the t r i e_node_check_ inse r t ( ) procedure returns the child trie node of V 

that represents the given term T. If such node was not already inserted by a previous 

operation then a new trie node to represent T is allocated and inserted as a child of 

V. 

Figure 6.8 introduces the algorithm that implements the t r i e_node_check_ inse r t ( ) 

procedure. Initially the algorithm traverses the chain of sibling nodes that represent 

alternative paths from the given parent node and checks for one representing the 

given term. If such a node is found then execution is stopped and the node returned. 

Otherwise, in order to represent the given term a new trie node is allocated and inserted 

in the beginning of the chain. We should stress that trie nodes corresponding to new 

paths are inserted in the trie structure through invocation of the new_trie_node() 

procedure. This procedure allocates new trie nodes, and it initializes the fields of 

the newly allocated node. The TrNode_entry, TrNode_next, TrNode_parent and 

TrNode_child fields are respectively initialized with the first, second, third and forth 

argument. 

t r ie_node_check_inser t ( term t , t r i e node parent) { 
/ / check if the node represen t ing t i s already in se r t ed 
ch i ld = TrNode_child(parent) 
while (chi ld) { 

if (TrNode_entry(child) == t ) 
/ / node represen t ing t found 
r e tu rn ch i ld 

ch i ld = TrNode_next(child) 
} 
/ / i n s e r t a new node to represen t t 
ch i ld = new_trie_node(t , TrMode_child(parent), pa ren t , NULL) 
TrNode_child(parent) = ch i ld 
r e tu rn ch i ld 

} 

Figure 6.8: Pseudo-code for t r i e_node_check_inser t ( ) . 

We should mention that at this point we are still not considering any locking scheme 

to synchronize access to the trie structures. Furthermore, currently we do not support 

dynamic tries, that is, using tries to represent clauses for dynamic predicates. The 

locking schemes that we present next assume therefore that , whilst evaluating a 

subgoal, we cannot remove trie nodes from the tables. 
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6.3.2 Table Locking Schemes 

We are now ready to discuss the different locking schemes. In a nutshell, we can 
say that there are two critical issues that determines the efficiency of a table locking 
scheme. One is the lock duration, that is, the amount of time a data structure is 
locked. The other is the lock grain, that is, the amount of data structures that are 
protected through a single lock request. It is the balance between lock duration and 
lock grain that compromises the efficiency of different table locking approaches. For 
instance, if the lock scheme is short duration or fine grained, then inserting many trie 
nodes in sequence, corresponding a long trie path, may result in a large number of 
lock requests. On the other hand, if the lock scheme is long duration or coarse grain, 
then going through a trie path without extending or updating its trie structure, may 
unnecessarily lock data and prevent possible concurrent access by others. 

OPTYap implements four alternative locking schemes to deal with concurrent accesses 
to the table space data structures, the Table Lock at Entry Level scheme, the Table 
Lock at Node Level scheme, the Table Lock at Write Level scheme, and the Table Lock 
at Write Level - Allocate Before Check scheme. 

The Table Lock at Entry Level (TLEL) scheme was the first table locking scheme 
implemented in OPTYap. The TLEL scheme allows a single writer per subgoal trie 
structure and a single writer per answer trie structure. To do so, it uses the table entries 
and the subgoal frames to lock, respectively, the subgoal trie and answer trie structures. 
Within this scheme, a single lock request is sufficient to protect the trie structure 
subject to concurrent access (coarse grain lock scheme). However, the trie structure is 
only unlocked when the path for the subgoal/answer in hand was completely traversed 
(long duration lock scheme). 

The main drawback of TLEL is the contention resulting from its lock duration scheme. 
We then implemented a new lock scheme, the Table Lock at Node Level (TLNL). The 
TLNL only enables a single writer per chain of sibling nodes that represent alternative 
paths from a common parent node. Its implementation leads to extending the trie 
node data structure with a new TrNode_lock field, used to lock access to the node's 
children. This scheme has the advantage that in order to traverse a trie structure each 
node on path only needs to be locked once. Within this scheme, the number of lock 
requests is proportional to the length of the path, and the period of time a node is 
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locked is proportional to the average time needed to traverse the node (mean duration 
lock scheme). Remark however, that a lock on a node synchronizes access to the chain 
of children nodes (fine grain lock scheme) and not to the node itself. 

To fully implement this node level lock scheme, it is also necessary to adapt the 
procedure responsible for traversing trie structures. Figure 6.9 shows the pseudo­
code that implements the trie_node_check_insert () procedure to support the TLNL 
scheme. The main difference from the original trie_node_check_insert() procedure 
is that here we lock the parent node while accessing its children nodes. 

trie_node_check_insert(term t , t r i e node parent) { 
lock(TrNode_lock(parent)) / / locking the parent node 
child = TrNode_child(parent) 
while (child) { 

if (TrNode_entry(child) == t ) { 
unlock(TrNode_lock(parent)) / / unlocking before return 
return child 

} 
child = TrNode_next(child) 

} 
child = new_trie_node(t, TrNode_child(parent), parent, NULL) 
TrNode_child(parent) = child 
unlock(TrNode_lock(parent)) / / unlocking before return 
return child 

} 

Figure 6.9: Pseudo-code for trie_node_check_insert() with a TLNL scheme. 

An important drawback of the TLNL scheme is that the amount of memory in the 
parallel data area can increase substantially. During larger tabled evaluations, the trie 
nodes, and mainly the answer trie nodes, are the major data types responsible for the 
high percentage of memory pages being used in the parallel data area. Including an 
extra field in the subgoal and answer trie node data structure leads, respectively, to a 
25% and 16% size growth. Due to the high number of trie nodes pages, this ratio can 
proportionally reflect the parallel data area memory usage. 

We next developed a new scheme, the Table Lock at Write Level (TLWL) scheme, in 
order to avoid the TLNL drawbacks without loosing its benefits. In fact, the TLWL 
scheme improves over TLNL by reducing memory usage, whilst also reducing lock 
duration. Like TLNL, the TLWL scheme only enables a single writer per chain of 
sibling nodes that represent alternative paths to a common parent node. However, in 
TLWL, the common parent node is only locked when writing to the table is likely. 
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Figure 6.10 presents the pseudo-code that implements the TLWL scheme. Initially, 
the chain of sibling nodes that succeed the given parent node is traversed without 
locking. Only when the given term is not found is that we lock the parent node. This 
avoids locking when the term already exists in the chain. Moreover, it delays locking 
while insertion of a new node to represent the term is not likely. Notice that we need 
to check if, during our attempt to lock, other worker expanded the chain to include 
the given term. 

trie_node_check_insert(term t, trie node parent) { 
child = TrNode_child(parent) 
initial_child = child // keep the initial child node 
while (child) { // traverse the initial chain of sibling nodes ... 

if (TrNode_entry(child) == t) // ... searching for t 
return child 

child = TrNode_next(child) 
} 
lock(GLOBAL_locks[hash_node(parent)]) // locking the common parent node 
// traverse the nodes inserted in the meantime by other workers before ... 
child = TrNode_child(parent) 
while (child != initial_child) { 

if (TrNode_entry(child) == t) { 
unlock(GL0BAL_locks[hash_node(parent)]) // unlocking before return 
return child 

} 
child = TrNode_next(child) 

} 
// ... insert a new node to represent t 
child = new_trie_node(t, TrNode_child(parent), parent, NULL) 
TrNode_child(parent) = child 
unlock(GL0BAL_locks[hash_node(parent)]) // unlocking before return 
return child 

Figure 6.10: Pseudo-code for trie_node_check_insert() with a TLWL scheme. 

It can be observed that TLWL maintains the lock granularity of TLNL (fine grain lock 
scheme), but reduces the lock duration (short duration lock scheme). On average, the 
number of lock requests in the TLWL scheme is lower, it ranges from zero to the 
number of nodes on path. The amount of time a node is locked is on average also 
smaller. It is the time needed to check the nodes that in the meantime were inserted 
by other workers, if any, plus the time needed to allocate and initialize a new node. 

TLWL avoids the TLNL memory usage problem by replacing trie node lock fields 
(TrNode_lock) with a global array of lock entries (GL0BAL_locks). A locking node 
operation is achieved by applying an hash algorithm (hash_node()) to the node address 
in order to index the global array entry that should be locked. This lock mechanism 
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preserves the TLNL lock semantics, whilst reducing the memory needed to implement 

locks to a fixed sized global array. 

Lastly, we present the Table Lock at Write Level - Allocate Before Check (TLWL-

ABC) scheme. The TLWL-ABC scheme is a variant of the TLWL scheme that follows 

the probable node insertion notion introduced in TLWL, but uses a different strategy 

on when to allocate a node. In order to reduce to a minimum the lock duration 

(minimum duration lock scheme), the TLWL-ABC scheme anticipates the allocation 

and initialization of nodes that are likely to be inserted in the table space to before 

locking. Note that , if in the meantime a different worker introduces first an identical 

node, we pay the cost of having pre-allocated an unnecessary node, that has to be 

additionally freed. Figure 6.11 presents the pseudo-code that implements the TLWL-

ABC scheme. 

t r ie_node_check_inser t ( term t , t r i e node parent) { 
ch i ld = TrNode_child(parent) 
i n i t i a l _ c h i l d = ch i ld 
while (chi ld) { 

i f (TrNode_entry(child) == t ) 
return child 

child = TrNode next(child) 
} 
// pre-allocate a node to represent t 
pre_alloc = new_trie_node(t, NULL, parent, NULL) 
lock(GLOBAL_locks[hash_node(parent)]) 
child = TrNode_child(parent) 
TrNode_next(pre_alloc) = child 
while (child != initial_child) { 

if (TrNode_entry(child) == t) { 
// freeing the pre-allocated node 
free_struct(PAGES_trie_nodes, pre_alloc) 
unlock(GLOBAL_locks[hash_node(parent)]) 
return child 

} 
child = TrNode_next(child) 

} 
/ / i n s e r t i n g the p r e - a l l o c a t e d node 
TrNode_child(parent) = p re_a l loc 
unlock(GLOBAL_locks[hash_node(parent)]) 
r e t u r n pre_al loc 

} 

Figure 6.11: Pseudo-code for t r i e_node_check_ inse r t ( ) with a TLWL-ABC scheme. 

OPTYap supports all these table locking schemes. The TLWL scheme is the default 

scheme adopted for OPTYap. In Chapter 8 we present a detailed evaluation of the four 

alternative locking schemes, justifying our decision to choose TLWL as the default. 



138 CHAPTER 6. OPTYAP: THE OR-PARALLEL TABLING ENGINE 

6.4 Data Frames Extensions 

The or-frames, the subgoal frames and the dependency frames were the main data 
structures introduced to support the YapOr and YapTab models. To implement 
OPTYap, these data structures were extended to support parallel tabling. 

6.4.1 Or-Frames 

Or-frames synchronize access to the available alternatives for public choice points and 
support scheduling of work. 

In the WAM, the choice point stack represents a single branch of the execution tree at 
a time. In the SLG-WAM, the choice point stack supports several different branches 
at a time. This leads to non-linearity in choice points. In other words, between two 
choice points for adjacent nodes in a branch there may exist several other choice points 
representing different branches. Hence, the notion of being public has to be clarified. 
A worker can physically share a choice point C, physically in the sense that it holds C 
on its stacks, while it is not logically sharing C, logically in the sense that its current 
branch contains C. 

OPTYap considers that a physically shared choice point is a public choice point. When 
sharing work, the whole set of choice points being incrementally copied are made 
public, be they on the current branch of the sharing worker or not. This maximizes 
parallelism and simplifies the further management of suspended branches. The whole 
set of data structures representing the execution dependencies can be shared without 
changing its structure. However, the or-frame data structure has to store additional 
information to reflect the new choice point environment. Figure 6.12 shows an example 
that illustrates the new or-frame data fields. 

The example is presented through three sub-figures. The sub-figure on the left shows 
the evaluation being considered. The sub-figure in the middle presents nodes depen­
dencies at three different points of the evaluation. The nodes are presented linearly 
to reflect the physical choice point stack order. A link between two nodes indicates 
adjacent nodes on a branch. Situation (a) presents node dependencies after a worker V 
had traversed nodes H\ and A/2, suspended on A/2, backtracked to A/i, and traversed 
nodes A/3 and A/4. Situation (b) considers that worker V accepted a sharing work 
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Figure 6.12: New data fields for the or­frame data structure. 

request from worker Q and that it has made public the whole set of nodes. Last, 
situation (c) assumes that V suspends on A4, backtracks to A3 and follows to node 
A5 (note that A5 is not public). 

The sub­figure on the right presents or­frames dependencies at the end of situation (c). 
Observe that both workers hold the whole set of public nodes despite A2 not being on 
either worker's current branch and A/4 not being on Vs current branch. Remember 
that OrFr_members stores the set of workers which contain the choice point on their 
branch. A new or­frame data field, OrFr .owners, stores the number of workers that 
hold the choice point on their stack, be it on their branch or not. The OrFr_members 
field allows worker Q, in situation (c), to determine that it is the unique worker with 
node A/4 on its branch. The OrFr Jiembers field allows worker Q to know that there 
is another worker holding A4. That worker may, through a completion or answer 
resolution operation, include A4 on its branch. 

Figure 6.12 also shows two other fields, the OrFr_next and OrFr_next_on_stack fields, 
and two registers controlling or­frames, T0P_0R_FR and T0P_0R_FR_0N_STACK. Remem­

ber that T0P_0R_FR allows access to the youngest or­frame on the worker's branch, and 
that OrFr_next points to the parent or­frame on branch. The T0P_0R_FR_0N_STACK 
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is a new register that allows access to the youngest or-frame on stack, while the 
OrFr_next_on_stack is a new or-frame data field that points to the or-frame that 
corresponds to the preceding choice point on stack, in such a way that the choice 
point stack order can be obtained starting from T0P_0R_FR_0N_STACK and following 
the OrFr_next_on_stack fields. 

To allow support for suspension of SCCs, the or-frame data structure includes two ad­
ditional fields. The OrFr_suspensions field points to the suspended SCCs stored in the 
frame. The OrFr_nearest_suspnode field points to the next or-frame in the worker's 
list of or-frames with suspended SCCs that corresponds to the nearest youngest choice 
point on stack. The process of suspending SCCs and the role that these new fields 
play in the process is detailed in section 6.7. 

6.4.2 Subgoal and Dependency Frames 

Remember that subgoal frames provide access to answer trie structures, while depen­
dency frames support the fixpoint check procedure. A detailed description of YapTab's 
subgoal and dependency frames was given in subsection 4.2.4. Next, we present the 
extensions introduced to deal with the OPT model. Both subgoal and dependency 
frames include three additional data fields. 

For the subgoal frames, these fields are: SgFr_lock, SgFr.worker and SgFr_top_or_f r. 
SgFr_lock is a lock that synchronizes concurrent updates to the frame fields. It 
can also be used to support the TLEL table lock scheme. SgFr.worker stores the 
identification number for the worker that allocated the frame. SgFr_top_or_fr points 
to the generator or-frame, if the generator choice point is shared, and otherwise to the 
or-frame that corresponds to the youngest shared choice point on the generator choice 
point branch. Both SgFr_worker and SgFr_top_or_fr are used to compute the leader 
node information (see section 6.5). 

The new fields in the dependency frames are: DepFr_lock, DepFr_gen_on_stack and 
DepFr_top_or_fr. DepFr_lock synchronizes concurrent updates to the frame fields. 
DepFr_gen_on_stack is a boolean that indicates whether the generator choice point 
for the correspondent leader choice point is on stack or not. In OPT, a consumer 
node can have its generator on other worker's branch. DepFr_top_or_fr points to 
the consumer or-frame, if the consumer choice point is shared, and otherwise to the 
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or-frame that corresponds to the youngest shared choice point on the consumer choice 
point branch. Both DepFr_gen_on_stack and DepFr_top_or_f r support the fixpoint 
check procedure for shared nodes (see section 6.6). 

6.5 Leader Nodes 

Or-parallel systems execute alternatives early. As a result, it is possible that generators 
will execute earlier, and in a different branch than in sequential execution (as an 
example, please refer to Figure 5.3). In fact, different workers may execute the 
generator and the consumer goals. Workers may have consumer nodes while not 
having the corresponding generator nodes in their branches. Conversely, the owner of 
a generator node can have consumer nodes being executed by several different workers. 
This may induce complex dependencies between workers, therefore requiring a more 
elaborate completion operation that may involve the branches from several workers. 

To clarify the dependencies between generator and consumer nodes we introduce a 
new concept, the Generator Dependency Node (or GDN). Its purpose is to signal the 
nodes that are candidates to be leader nodes, therefore representing a similar role as 
that of the generator nodes for sequential tabling. A GDN is calculated whenever a 
new consumer node, say C, is created. It is defined as the youngest node V on the 
current branch of C, that is an ancestor of the generator node Q for C. Obviously, if 
G belongs to the current branch of C then G is the GDN. On the other hand, if the 
worker allocating C is not the one that allocated G then the youngest node D is a 
public node, but not necessarily G-

Figure 6.13 presents three different situations that better illustrate the GDN concept. 
WG is always the worker that allocated the generator node G, WC is the worker that 
is allocating a consumer node C, and the node pointed by the black arrow is the GDN 
for the new consumer. 

In situation (a), the generator node G is on the branch of the consumer node C, and 
thus, G is the GDN. In situation (b), nodes M\ and A/2 are on the branch of C and 
both contain a branch leading to the generator G- As A/2 is the youngest node of both, 
it is the GDN. In situation (c), A/i is the unique node that belongs to C's branch and 
that also contains G in a branch below. A/2 contains G in a branch below, but it is not 
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Figure 6.13: Spotting the generator dependency node. 

on C's branch, while M% is on C's branch, but it does not contain Q in a branch below. 
Therefore, N\ is the GDN. Notice that in both cases (b) and (c) the GDN can be a 
generator, a consumer or an interior node. 

Sequential tabling performs only completion detection at generator nodes. Our parallel 
tabling design perform completion at GDNs. The procedure to compute the leader 
node information when allocating a dependency frame for a new consumer node now 
relies on the GDN concept. Remember that it is through leader node information 
stored in the dependency frames that a node can determine whether it is a leader 
node. The main difference from the sequential tabling algorithm is that now we 
first hypothesize that the leader node for the consumer node in hand is its GDN, 
and not its generator node. Figure 6.14 presents the modified pseudo-code for the 
compute_leader_node() procedure. 

The parallel compute_leader_node() procedure can be divided in two main blocks. 
The first block computes the GDN, and the second block computes leader node 
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compute_leader_node(dependency frame dep_fr) { 
// start by computing the generator dependency node 
sg_fr = DepFr_sg_fr(dep_fr) 
if (SgFr_worker(sg_fr) == W0RKER_ID) { 
leader_cp = SgFr_gen_cp(sg_fr) 
on_stack = TRUE 

} else { 
or_fr = SgFr_top_or_fr(sg_fr) 
while (W0RKER_ID is not in OrFr_members(or_fr)) 

or_fr = OrFr_next(or_fr) 
leader_cp = OrFr_node(or_fr) 
on stack = (SgFr_gen_cp(sg_fr) == leader_cp) 

} 
/ / and then compute the leader node 
df = T0P_DEP_FR 
while (DepFr_cons_cp(df) i s younger than leader_cp) { 

i f (leader_cp i s equal to DepFr_leader_cp(df)) { 
on_stack |= DepFr_gen_on_stack(df) 
break 

} e l se if ( leader_cp i s younger than DepFr_leader_cp(df)) { 
leader_cp = DepFr_leader_cp(df) 
on_stack = DepFr_gen_on_stack(df) 
break 

} 
df = DepFr_next(df) 

} 
DepFr_leader_cp(dep_fr) = leader_cp 
DepFr_gen_on_stack(dep_fr) = on_stack 

Figure 6.14: Modified pseudo-code for compute_leader_node(). 

information to be stored in the DepFr_leader_cp field. Note that the procedure now 

also computes the value of the DepFr_gen_on_stack field. This field is initialized to 

TRUE when the generator node for the computed leader node is on stack. Otherwise it 

is initialized to FALSE. 

The first code block checks if the worker allocating the consumer node is the one 

that allocated the generator node. If so, then we assume the generator node is the 

GDN. Otherwise, we are in one of the situation presented in Figure 6.13 and we must 

traverse the chain of or-frames, starting from the one given by the SgFr_top_or_fr 

pointer relative to the subgoal in hand, until we reach one in the consumer branch. 

The node for the common or-frame corresponds to the GDN. 

Regarding the second code block, we first check the consumer nodes younger than 

the newly found GDN for an older dependency. Remark that as soon as an older 

dependency V is found in a consumer node C, the remaining consumer nodes, older 
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than C but younger than the GDN, do not need to be checked because the leader 
node computation ensures that they do not contain older dependencies than V. The 
previous computation of the leader node information for the consumer node C already 
represents the oldest dependency that includes the remaining consumer nodes. This ar­

gument is similar to the one proved for sequential tabling (remember subsection 4.2.7). 

By now, the reader may have spotted an inconsistency between the original GDN 
definition and the code block that computes it. If a consumer node was allocated by 
the same worker that allocated the generator node, then the procedure assumes that 
the GDN is the generator node. However, there are situations where this is not true. 
Observe for instance Figure 6.15. Node Q is the GDN computed by the procedure, 
despite A/2 being, by definition, the correct GDN. As explained next, this inconsistency 
is intentional to achieve code efficiency. 

□ Generator Node O Consumer Node 
Follows 
on Branch 

Follows 
on Stack 

If Generator Dependency Node 
^ ^ Procedure's Computed Node 

Figure 6.15: The generator dependency node inconsistency. 

The key observation is that backtracking over a generator node Q without completing, 
it only happens when there is a suspension point younger than Q that depends on 
a node older than Q. We can therefore infer that there must exist a consumer 
node A/3 such that A/2, or an ancestor A/i, is its correspondent GDN. Thus, if we 
execute the remaining compute_leader_node() procedure we will eventually conclude 
that the leader of the SCC that includes C is correctly determined, even if starting 
from an incorrect node for the generator dependency. This optimization avoids the 
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computation time required to detect the GDN, which can be quite significant in more 
complex situations. 

As a final note we should remark that due to the dependency frame's design, con­
currency is not a problem for the compute_leader_node() procedure. Observe, for 
example, the situation from Figure 6.16. Two workers, Wi and W2, exploiting different 
alternatives from a common public node, A4, are allocating new private consumer 
nodes. They compute the leader node information for the new dependency frames 
without requiring any explicit communication between both and without requiring 
any synchronization if consulting the common dependency frame for node A/3. The 
resulting dependency chain for each worker is illustrated on each side of the figure. 
Note that the dependency frame for consumer node A/3 is common to both workers. 
It is illustrated twice only for simplicity. 

O o 
Generator Node 

Consumer Node 

DepFrleaderop 
Field 

Nl 

-CD 

—{jp 
T O P D E P F R ( W 2 ) 8 

Figure 6.16: Dependency frames in the parallel environment. 

A new consumer node is always a private node and a new dependency frame is always 
the youngest dependency frame for a worker. The leader information stored in a 
dependency frame denotes the resulting leader node at the time the correspondent 
consumer node was allocated. Thus, after computing such information it remains 
unchanged. If when allocating a new consumer node the leader changes, the new 
leader information is only stored in the dependency frame for the new consumer, 
therefore not influencing others. With this scheme each worker views its own leader 
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node independently from the execution being done by others. Determining the leader 
node where several dependent SCCs from different workers may be completed together 
is the problem that we address next. 

6.6 The Flow of Control 

OPTYap is a multi-sequential system where workers may be in engine mode, that 
is, doing work, or in scheduling mode, that is, looking for work. Actual execution 
control of a parallel tabled evaluation mainly flows through four procedures. The 
process of completely evaluating SCCs is accomplished by the completion() and 
answer_resolution() procedures, while parallel synchronization is achieved by the 
getworkO and scheduler () procedures. 

Here we focus on the flow of control in engine mode, that is on the completionO, 
answer_resolution() and getworkO procedures, and leave scheduling for a following 
section. Figure 6.17 presents a general overview of how control flows between the 
three procedures in discussion and how it flows within each procedure. The design 
and implementation details for each procedure are presented in detail next. 

6.6.1 Public Completion 

Detection of completion in sequential tabling is a complex problem. With the in­
troduction of parallelism the complexity increases even further. The correctness and 
efficiency of the completion algorithm appear to be one of the most important issues 
in the implementation of a parallel tabling system. 

Different paths may be followed when a worker W reaches a leader node for a SCC 
S. The simplest case is when the node is private. In this case, we should proceed 
as for sequential tabling. Hence, W enters the sequential completionO procedure 
previously presented in Figure 4.13. Otherwise, the node is public, and there may 
exist dependencies on branches explored by other workers. Therefore, even when all 
younger consumer nodes on W's stacks do not have unconsumed answers, completion 
cannot be performed. The reason for this is that the other workers can still influence 
S. For instance, these workers may find new answers for a consumer node in S, in 
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Figure 6.17: The flow of control in a parallel tabled evaluation. 

which case the consumer must be resumed to consume the new answers. As a result, 
in order to allow W to continue execution it becomes necessary to suspend the SCC 
at hand. 

Suspending in this context is obviously different from suspending consumer nodes. 
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Consumer nodes are suspended due to tabling evaluation. SCCs are suspended due 
to or-parallel execution to enable the current worker to proceed executing work. 
Suspending a SCC includes saving the SCCs stacks to a proper space in the parallel 
data area, leaving in the leader node a reference to where the stacks were saved, 
and readjusting the freeze registers and the stack and frame pointers (more details in 
section 6.7). If the worker did not suspend the SCC, hence not saving the stacks to 
the parallel data area, any future sharing work operation might damage the SCCs 
stacks and therefore make delayed completion unworkable. An alternative would be 
for the worker to wait until no one else could influence it and only then complete the 
SCC. Obviously, this is not an efficient strategy. 

To deal with the new particularities arising with concurrent evaluation a novel com­
pletion procedure, public_completion(), implements completion detection for public 
leader nodes. Most often, the public_completion() procedure executes through 
backtracking to a public generator node whose next available alternative leads to 
the completion instruction. Remember that the completion instruction follows a 
table_try_me_single or a table_trust_me instruction and that it forces completion 
detection when all alternatives have been exploited for a generator node. Note that 
the completion instruction only needs to get executed once for each particular gen­
erator node. Further executions of completion detection are triggered by the fixpoint 
check procedure. As a consequence, after a completion instruction gets loaded, the 
OrFr_alt field of the correspondent or-frame is set to NULL. Remember that for public 
nodes, the next available alternative is stored in the OrFr.alt field of the correspondent 
or-frame. 

Looking back to Figure 6.17, it can be observed that there are two other situations from 
where the public_completion() procedure is directly invoked for execution (search for 
the 'goto public_completion()' statement). A first situation occurs when resuming 
a suspended SCC, we restart execution by performing public_completion() at the 
leader of the resumed SCC. A second situation occurs when failing to a public leader 
node. The exception is when the public leader node is a generator node for the 
current SCC and it contains unexploited alternatives. In such cases, the current SCC 
is not fully exploited, and therefore we should exploit first such alternatives. This last 
situation can be better understood in subsection 6.6.3. 

Figure 6.18 introduces the pseudo-code for the public_completion() procedure. The 
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first step in the algorithm is to check for younger consumer nodes with unconsumed 
answers. If there is such a node, we resume the computation to it. In parallel tabling, 
resuming a computation to an younger consumer node C includes: (i) updating the 
DepFr_back_cp dependency frame field of C when the leader detecting for comple­
tion is older than the current reference stored in DepFr_back_cp (details about the 
DepFr_back_cp semantics for public nodes in subsection 6.6.2); (ii) setting the worker's 
bit in the OrFr_member field for the or-frames in the branch being resumed; and (iii) 
using the forward trail to restore the bindings for the branch being resumed. 

public_completion(public node N) { 
if (N is the current leader node) { 

/ / remember that T0P_0R_FR points to N's or-frame 
owners = OrFr_owners(TOP_OR_FR) / / keep N's owners 
df = T0P_DEP_FR 
while (DepFr_cons_cp(df) is younger than N)) { 

if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) { 
// dependency frame with unconsumed answers 
lock(DepFr_lock(df)) 
DepFr_back_cp(df) = oldest(N, DepFr_back_cp(df)) 
unlock(DepFr_lock(df)) 
restore_member_info(T0P_0R_FR, DepFr_top_or_fr(df)) 
C = DepFr_cons_cp(df) 
restore_bindings(CP_TR(N), CP_TR(C)) 
goto answer_resolution(C) 

} 
df = DepFr_next(df) 

} 
L = youngest_node_holding_a_suspended_SCC_to_resume() 
if (L is equal or younger than N) { 
// L belongs to the current SCC 
suspend_SCC(N) 
resume_SCC(L) 
goto public_completion(L) 

} 
if (owners == 1) { 
// the current SCC is completely evaluated 
perform_public_completion() 

> else { 
// other workers can still influence the current SCC 
suspend_SCC(N) 

} 
goto getwork(N) 

} 
goto scheduler() 

} 

Figure 6.18: Pseudo-code for public_completion(). 

If the algorithm does not find any younger consumer node with unconsumed answers 
it must check for suspended SCCs in the scope of its SCC. A suspended SCC should 
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be resumed if it contains consumer nodes with unconsumed answers. To resume a 
suspended SCC a worker needs to copy the saved stacks to the correct position in its 
own stacks, and thus, it has to suspend its current SCC first. 

We thus adopted the strategy of resuming suspended SCCs only when the worker finds 
itself at a leader node, since this is a decision point where the worker either completes 
or suspends the current SCC. Hence, if the worker resumes a suspended SCC it does 
not introduce further dependencies. This is not the case if the worker would resume 
a suspended SCC 1Z as soon as it reached the node where it had suspended. In that 
situation, the worker would have to suspend its current SCC S, and after resuming 7Z 
it would probably have to also resume S to continue its execution. A first disadvantage 
is that the worker would have to make more suspensions and resumptions. Moreover, 
if we resume earlier, 1Z may include consumer nodes with unconsumed answers that 
are common with S. On the other hand, in a leader node position, we know that the 
consumer nodes belonging to S have consumed all the answers currently available, and 
thus if 71 has to be resumed it is because it has consumer nodes with unconsumed 
answers that do not belong to S. More importantly, suspending in non-leader nodes 
leads to further complexity. Answers can be found in upper branches for suspensions 
made in lower nodes, and this can be very difficult to manage. 

A SCC S is completely evaluated when (i) there are no unconsumed answers in any 
consumer node in its scope, that is, in any consumer node belonging to S or in any 
consumer node within a SCC suspended in a node belonging to S; and (ii) there 
is only a single worker owning its leader node C Condition (ii) has to be satisfied 
first, that is, before the worker W performing completion starts checking for younger 
consumer nodes with unconsumed answers. Otherwise, other workers may find new 
answers in the meantime for the consumer nodes already checked by W and these 
workers may retire from owning £ before W ends checking. As a result, S may be 
incorrectly considered completely evaluated. 

When a SCC is found to be completely evaluated then it is completed. Completing a 
SCC includes marking all dependent subgoals as complete; releasing the dependency 
and or-frames belonging to the complete branches, including the branches in suspended 
SCCs; releasing the frozen stacks and the memory space used to hold the stacks from 
suspended SCCs; and finally readjusting the freeze registers and the whole set of stack 
and frame pointers. 
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Our public completion algorithm has two major advantages. One is that the worker 
checking for completion determines if its current SCC is completely evaluated or not 
without requiring any explicit communication or synchronization with other workers. 
The other is that it uses the SCC as the unit for suspension. This latter advantage 
is very important since it simplifies the management of dependencies arising from 
branches not on stack. A leader node determines the position from where dependencies 
may exist in younger branches. As a suspension unit includes the whole SCC and 
suspension only occurs in leader node positions, we can simply use the leader node to 
represent the whole scope of a suspended SCC, and therefore simplify its management 
(section 6.7 details this issue). 

6.6.2 Answer Resolution 

The answer resolution operation loads tabled answers from the table space to the ex­
ecution stacks. The operation also support the fixpoint check procedure. Usually, the 
answer_resolution() procedure gets executed through failure to a consumer node, in 
which case execution jumps to the answer_resolution instruction through the CP_ALT 
choice point field. The execution can also flow directly to the answer_resolution() 
procedure when scheduling for a backtracking node during the fixpoint check procedure 
(these are the cases for the goto answer_resolution() statement in Figure 6.17). 

Figure 6.19 shows the pseudo-code that implements the answer resolution operation for 
the parallel environment. Comparing with the procedure previously presented in Fig­
ure 4.14 for sequential tabling, it can be observed that the new answer_resolution() 
procedure extends the sequential algorithm to support the new situations arising with 
parallelism. 

Initially, the procedure checks the consumer node C for unconsumed answers to be 
loaded for execution. If we have answers, execution will jump to them. Otherwise, 
if there are no such answers, we schedule for a backtracking node. Remember that 
a valid reference B in the DepFr_back_cp field of the dependency frame associated 
with C indicates that we are in a fixpoint check procedure. Therefore, we search for 
a consumer node with unconsumed answers. If found then answer resolution gets re-
executed. Otherwise, we backtrack to the youngest node between the current leader 
node and B. For both situations, the OrFr_member bitmaps and the bindings for the 
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answer_resolution(consumer node C) { 
DEP_FR = CP_DEP_FR(C) 
if (DepFr_last_ans(DEP_FR) != SgFr_last_answer(DepFr_sg_fr(DEP_FR))) { 
// unconsumed answers in current dependency frame 
load_next_answer_from_subgoal(DepFr_sg_fr(DEP_FR)) 
proceed 

} 
dep_back_cp = DepFr_back_cp(DEP_FR) 
if (dep_back_cp == NULL) { 
if (C is a public node) 
goto scheduler() 

else 
backtrack_to(CP_B(C)) 

} 
back_cp = youngest(DepFr_leader_cp(TOP_DEP_FR), dep_back_cp) 
df = DepFr_next(DEP_FR) 
while (DepFr_cons_cp(df) is younger than back_cp)) { 

if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) { 
// dependency frame with unconsumed answers 
lock(DepFr_lock(df)) 
DepFr_back_cp(df) = oldest(DepFr_back_cp(df), dep_back_cp) 
unlock(DepFr_lock(df)) 
restore_member_info(TOP_OR_FR, DepFr_top_or_fr(df)) 
back_cp = DepFr_cons_cp(df) 
restore_bindings(CP_TR(C), CP_TR(back_cp)) 
goto answer_resolution(back_cp) 

} 
df = DepFr_next(df) 

} 
restore_member_info(TOP_OR_FR, CP_OR_FR(back_cp)) 
restore_bindings(CP_TR(C), CP_TR(back_cp)) 
if (back_cp is a public node) 
goto getwork(back_cp) 

else 
goto completion(back_cp) 

} 

Figure 6.19: Pseudo-code for answer_resolution(). 

branch being resumed should be restored. Moreover, if we backtrack to a consumer 
node, the correspondent DepFr_back_cp field should be updated. 

There are two interesting aspects, both related with the fixpoint check procedure, that 
should be pointed in the answer_resolution() procedure. One is that the youngest 
node between the current leader node and the node given by the C's DepFr_back_cp 
is used by the procedure as the node that limits the search for youngest consumer 
nodes with unconsumed answers. The other is that if a consumer node B is scheduled 
for backtracking, the DepFr_back_cp field associated with B is updated to the oldest 
node between its current reference node and the node given by C's DepFr_back_cp 
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field. In order clarify these aspects, Figure 6.20 illustrates two different sequences 
for a complete loop over the fixpoint check procedure. Both sequences start with a 
worker W in a leader node position, and assume that all younger consumer nodes have 
unconsumed answers. 

(a) 

(b) 
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Figure 6.20: Scheduling for a backtracking node in the parallel environment. 

Regarding situation (a), the computation initially moves from leader node £ 2 to 
consumer node C2, which includes updating the DepFr_back_cp field of C2 to the leader 
reference C2. Then, while worker W was consuming the available unconsumed answers 
for C2, another worker, also in a fixpoint check procedure, updates Ci's DepFr_back_cp 
to its leader reference, C\ in the case. Thus, after consuming all available answers in 
C2, W is scheduled to consumer node C\, but Ci's DepFr_back_cp remains unchanged 
because it holds an older leader reference. Last, when all available unconsumed 
answers for C\ have been consumed, W backtracks to £2 . Despite C\ holding a 
DepFr_back_cp reference to £1, meaning that all generator and interior nodes younger 
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than JCI are necessarily exploited, the current leader node is younger than C\, and 
therefore backtracking should be performed first to £ 2 in order to avoid computation 
from flowing to nodes outside the current SCC. 

Situation (b) presents a slightly different sequence. Worker W starts from a leader 
node £ 2 that resumes the computation to consumer node C2. Next, a different worker 
updates the DepFr_back_cp field of C\ while W is consuming the available answers 
for C2. However, when exploiting an unconsumed answer for C2, W allocates a new 
consumer node and as a consequence, changes its current leader node to become C\. 
After all available answers for C2 have been consumed, C\ is scheduled for backtracking. 
The interesting difference from situation (a) happens when, at the end, after all 
available answers for C\ have been consumed, Cx is scheduled for backtracking. This 
results not only from the fact that L\ is the current leader node, but also from the £1 
reference in the DepFr_back_cp field of C\ that allows us to conclude that the branch 
between the initial leader node £ 2 and the current leader node £1 is already exploited. 
Note that, nothing can be concluded about £1, for instance, £1 can still have available 
alternatives. Hence, using public_completionO to continue execution for C\ would 
be incorrect. We therefore use getworkO to ensure the correct behavior, as discussed 
next. 

6.6.3 Getwork 

Getwork is the last flow control procedure. It contributes to the progress of a parallel 
tabled evaluation by moving to effective work. Remark that, despite this procedure 
being related with the process of getting a new piece of work, it is independent from 
the process of scheduling for a new piece of work. More precisely, we use getwork 
for public nodes bordering private regions, that is, the youngest public nodes on each 
branch, while scheduling works over interior nodes in the public region of the search 
tree. 

The usual way to execute getworkO is through failure to the youngest public node on 
the current branch, in which case the getwork instruction gets loaded for execution. 
However, there are three other cases from where getworkO is directly invoked to 
continue the execution. One occurs in the fixpoint check procedure to ensure the 
correct behavior of the computation when the leader node is scheduled for backtrack-
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ing. The other two occur in the public completion algorithm and both are related 

with situations where the SCC in hand is removed from the execution stacks, either 

because it is completed or suspended. 

Figure 6.21 presents the pseudo-code that implements the ge tworkO procedure. We 

can distinguish two blocks of code. The first block detects completion points and 

therefore makes the computation flow to the pub l ic_comple t ion( ) procedure. The 

second block corresponds to or-parallel execution. It checks the associated or-frame 

for available alternatives and executes the next one, if any. Otherwise, it invokes 

the scheduler. Remember that the T0P_0R_FR register points to the or-frame for the 

youngest public node on the current branch, that is, the or-frame related with A/". 

getwork(public node N) { 
/ / code for de tec t ing completion po in t s 
if (DepFr_leader_cp(TOP_DEP_FR) == N && 

(DepFr_gen_on_stack(TOP_DEP_FR) == FALSE | | OrFr_alt(T0P_0R_FR) == NULL)) 
goto public_completion(N) 

/ / o r i g i n a l code i nhe r i t ed from YapOr 
i f (0rFr_alt(T0P_0R_FR) != NULL) { 

load_next_altemative_from_frame(TOP_OR_FR) 
proceed 

} e l s e 
goto scheduler() 

} 

Figure 6.21: Pseudo-code for ge tworkO. 

The ge tworkO procedure detects a completion point when M is the leader node 

pointed by the top dependency frame. The exception is if M is itself a generator node 

for a consumer node within the current SCC (DepFr_gen_on_stack(TOP_DEP_FR) --

TRUE) and it contains unexploited alternatives (OrFr_alt(T0P_0R_FR) != NULL). In 

such cases, the current SCC is not fully exploited. Hence, we should exploit first the 

available alternatives, and only then invoke completion. 

Figure 6.22 illustrates the complete set of situations where computation flows from 

ge tworkO to pub l i c_comple t ion ( ) . It distinguishes two different cases: goto situ­

ations, and load situations. The goto situations correspond to the completion points 

detected by ge tworkO. A load situation occurs when completion is loaded for execu­

tion from a generator node whose next available alternative points to a complet ion 

instruction. This situation occurs independently of the generator being leader or not. 
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Figure 6.22: From getwork to public completion. 

6.7 SCC Suspension 

Whenever a worker executing a public completion operation determines that the 
current SCC depends on branches being exploited outside the SCC, it should delay 
completion until no more dependencies exist. To allow the worker to proceed with 
the execution of other work it is convenient to suspend the current SCC at this point. 
Remark that SCC suspension is absolutely necessary for an environment copy based 
implementation. Environment copy requires coherency between workers for the sub-
stacks corresponding to shared regions. Delayed completion would be incorrect if a 
SCC is not suspended and an incremental copying operation damages its stacks. 

The SCC suspension procedure includes saving the stacks segments relative to the SCC 
being suspended to a proper space in the parallel data area and leaving a reference 
to where the stacks were saved in the leader node. This reference corresponds to 
the suspension frame data structure. The suspension frame is a novel data structure 
introduced to allow for suspended SCCs to be resumed. Figure 6.23 presents an 
example of suspension that illustrates how suspension frames relate with suspended 
SCCs. 

The process of suspending a SCC works as follows. Initially, the set of stack segments 
corresponding to the SCC being suspended is copied to the parallel data area. After 
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Figure 6.23: Suspending a SCC. 

that, a new suspension frame is allocated and a reference to it is stored in the or-
frame relative to the leader node of the SCC being suspended. Finally, the whole set 
of stack and frame pointers are readjusted in order to correctly reflect the resulting 
computation state. 

A suspension frame holds the following data from a suspended SCC: the values from 
the T0P_SG_FR, T0P_DEP_FR, and T0P_0R_FR_0N_STACK registers at the time the SCC 
was suspended, the pointers to the beginning of each area where the segments were 
saved, and the size of each suspended segment. The data stored in a suspension frame 
plus the data stored in the node that holds the reference to the suspension frame are 
sufficient to restore a suspended SCC to its original computation state. 

Notice that we never need to suspend a SCC S that does not contain private nodes. 
Otherwise, S will repeatedly suspend for each worker sharing it. This is a safe 
optimization because, at least, one of the workers, say W, sharing S will later suspend 
or complete S, either because the current SCC of W includes <S and further private 
nodes, or because W will be the last worker executing public completion over S. 

In order to access the suspension frames for a particular node, the or-frame data 
structure was extended with a OrFr_suspensions extra field to point to a linked list 
of suspension frames for the node. The linked list is maintained through a SuspFr_next 
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field (not illustrated in Figure 6.23). 

A suspended SCC is resumed when a worker executing completion in a public leader 
node finds that a suspended SCC in the scope of its current SCC contains consumer 
nodes with unconsumed answers. In order to find out which suspended SCCs need 
to be resumed, each worker maintains a list of suspended SCCs that may contain 
consumer nodes with unconsumed answers. In order to avoid frequent and redundant 
checking operations for suspended SCCs, a worker only checks for suspended SCCs 
when it is the last worker backtracking from a node J\f. If there are suspended SCCs, 
the or-frame associated with M is included in the worker's list of or-frames with 
suspended SCCs. If the or-frame already belongs to other worker's list, it is not 
collected. This guarantees that each or-frame only belongs to a worker's list at a time. 

Each worker holds a TOP_SUSP_FR register that points to the list C of or-frames with 
suspended SCCs. The list always starts with the or-frame of C that corresponds to 
the youngest choice point on stack. The list C is maintained through a new field 
OrFr_nearest_suspnode in the or-frame. The field always points to the next or-frame 
of C that corresponds to the nearest younger choice point on stack. In this way we 
guarantee that the list of or-frames belonging to C is traversed in stack order. 

Figure 6.24 illustrates how or-frames referring suspended SCCs are linked. The figure 
assumes two workers, W\ and W2, and four public nodes containing suspended SCCs. 
For simplicity of illustration, the figure only presents the segment of the local stack 
that is shared between both workers. 

The figure shows that even if a worker contains several or-frames with suspended SCCs, 
it may not refer the complete list. It further shows that an or-frame with suspended 
SCCs may not be in any linking list. The or-frames relative to nodes A"i and A4 are 
in the list for Wi, the or-frame relative to A3 is in the list for W2, while the or-frame 
for A2 is not in any list. An or-frame with suspended SCCs does not belong to any 
worker's list either if there still exist workers in the node, or if it is already known 
that none of the suspended SCCs contain consumer nodes with unconsumed answers. 
However, this latter case does not guarantees that the SCCs are completely evaluated. 
As a result of a completion operation performed above, workers can still be scheduled 
to include nodes belonging to those SCCs. 

A worker executing public completion follows its list of or-frames with suspended 
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Figure 6.24: Using or­frames to link suspended SCCs. 

SCCs in order to search for SCCs to be resumed. It starts searching the suspended 
SCCs in the or­frame given by the TOP_SUSP_FR register and then it follows the 
OrFr_nearest_suspnode chain until either a suspended SCC with unconsumed an­

swers is found or until reaching an or­frame corresponding to a node younger than 
the leader node executing completion. At the end of the process, it updates the 
TOP_SUSP_FR register to the or­frame where searching was aborted, either because a 
SCC was resumed there or because it corresponds to a node older than the leader node. 
Resuming a SCC includes copying the previously saved stack segments in the parallel 
data area to the correct stack positions of the worker resuming the SCC. Therefore, 
in order to protect the current stack's data from being lost, the worker has to suspend 
its current SCC first. 

Figure 6.25 illustrates the management of suspended SCCs when searching for SCCs 
to resume. The figure considers a worker W executing public completion in a leader 
node M\ and assumes that the worker's list of or­frames with suspended SCCs refers 
two or­frames in its current SCC S\. 

The search for SCCs to be resumed starts at the or­frame given by TOP_SUSP_FR. 
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Figure 6.25: Resuming a SCC. 

Assuming that the suspended SCC <S4 does not contain unconsumed answers, the 
search continues in the next or­frame in the list. Here, suppose that SCC «S2 does not 
have consumer nodes with unconsumed answers, but SCC <S3 does. At this point, the 
current SCC «Si must be suspended. This includes storing the correspondent reference 
in the or­frame relative to its leader node A/i, and updating TOP_SUSP_FR to the or­

frame referring to the SCC to be resumed. Now we can resume «S3. 

Resuming <S3 includes copying the set of suspended stack segments from the parallel 
data area to the correct position in W's stacks; updating the OrFr_members and 
OrFr_owners info for the or­frames below the previous leader node (A/"i in this case), 
including the or­frames from «S3; adjusting the whole set of stack and frame pointers 
in order to reflect the previous computation state of «S3; and releasing the suspension 
frame related to «S3. 

Still regarding Figure 6.25, notice that the or­frame relative to node A/3 was removed 
from W's list of or­frames with suspended SCCs. This happens because <S3 may not 
include A/3 in its stack segments. For simplicity and efficiency, instead of checking 
«S3's segments, we simply remove A/3's or­frame from W's list. Note that this is a 
safe decision as a SCC only depends from branches below the leader node and thus, 
if «S3 does not include A3 then no new answers can be found for «S/t's consumer nodes. 
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Otherwise, if this is not the case then W or other workers can eventually be scheduled 
to a node held by S4 and find new answers for at least one of its consumer nodes. In this 
case, when failing, these workers will necessarily backtrack through A/3, S^s leader. 
Therefore, the last worker backtracking from A/3 will collect the or-frame relative to 
A3 for its own list of or-frames with suspended SCCs, which allows £4 to be later 
resumed when public completion is being executed in an upper leader node. 

Remember even when a worker does not find any suspended SCC to resume, it may 
not always perform completion. This occurs when it is not the unique owner of the 
current leader node. Remember that a worker W containing a node ÁÍ in its stacks 
is an owner of A/". A problem arises if W suspends the SCC that includes ÁÍ. W 
then retires from owning A/". Nevertheless, if W later resumes the suspended SCC 
then W again owns M. Execution would be incorrect if a worker would complete 
a SCC based on being the unique owner of the current leader node £, and then a 
suspended SCC that includes C was resumed. To overtake this problem, we assume 
that the number of owners of a node M corresponds to the number of representations 
of A/" in the computational environment, be M represented in the execution stacks of a 
worker or be N in the suspended stack segments of a SCC. Therefore, whenever a SCC 
is suspended, the OrFr_owners field of the or-frames belonging to the SCC remains 
unchanged. 

6.8 Scheduling Work 

Scheduling work is the scheduler's task. It is about efficiently distributing the available 
work for exploitation between the running workers. In a parallel tabling environment 
we have the extra constraint of keeping the correctness of sequential tabling semantics. 
A worker enters in scheduling mode when it runs out of work and returns to execution 
whenever a new piece of unexploited work is assigned to it by the scheduler. 

Subsection 3.2 presented the YapOr's scheduler algorithm: when a worker runs out 
of work it searches for the nearest unexploited alternative in its branch. If there is no 
such alternative, it selects a busy worker with excess of work load to share work with. 
If there is no such a worker, the idle worker tries to move to a better position in the 
search tree. 
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The scheduler for the OPTYap engine is mainly based on YapOr's scheduler. All 
the scheduler strategies implemented for YapOr were used in OPTYap. However, 
extensions were introduced in order to preserve the correctness of tabling semantics. 
These extensions allow support for leader nodes, frozen stack segments, and suspended 
SCCs. 

Figure 6.26 presents two different situations that illustrate how leader node semantics 
influences the usual scheduling for the nearest node with unexploited alternatives 
within the current branch. Situation (a) considers that the current leader node is 
equal or older than the nearest node with unexploited alternatives, while situation 
(b) considers that the current leader node is younger than the nearest node with 
unexploited alternatives. 
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Figure 6.26: Scheduling for the nearest node with unexploited alternatives. 

A node has available work if the 0rFr_alt field of its relative of-frame is not NULL. 
Besides the usual instructions corresponding to unexploited alternatives, this includes 
the cases where the 0rFr_alt field points to a completion or to an answer_resolution 
instruction. 
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The OPTYap model was designed to enclose the computation within a SCC until 
the SCC was suspended or completely evaluated. Thus, OPTYap introduces the 
constraint that the computation cannot flow outside the current SCC, and workers 
cannot be scheduled to execute at nodes older than their current leader node. Therefore, 
when scheduling for the nearest node with unexploited alternatives, if it is found that 
the current leader node is younger than the potential nearest node with unexploited 
alternatives, then the current leader node is the node scheduled to proceed with the 
evaluation. This is the case illustrated in situation (b) of Figure 6.26. 

The next case is when the process of scheduling for the nearest node with unexploited 
alternatives does not return any node to proceed execution. The scheduler then starts 
searching for busy workers that can be requested for work. If such a worker B is 
found, then the requesting worker moves up to the lowest node that is common to B, 
in order to become partially consistent with part of B. Otherwise, no busy worker 
was found, and the scheduler moves the idle worker to a better position in the search 
tree. Therefore, we can enumerate three different situations for a worker to move up 
to a node M: (i) M is the nearest node with unexploited alternatives; (ii) M is the 
lowest node common with the busy worker we found; or (iii) M corresponds to a 
better position in the search tree. 

The process of moving up in the search tree from a current node Mo to a target node 
J\ff is mainly implemented by the move_up_one_node() procedure. This procedure is 
invoked for each node that has to be traversed until reaching Mj. The presence of 
frozen stack segments or the presence of suspended SCCs in the nodes being traversed 
influences and can even abort the usual moving up process. Figure 6.27 presents the 
pseudo-code that implements the move_up_one_node() procedure for OPTYap. 

The argument for the move_up_one_node() procedure is the node Mi where the idle 
worker W is currently positioned at and from where it wants to move up one node. 
Initially, the procedure checks for frozen nodes on the stack to infer whether W is 
moving within a SCC. If so, W is simply deleted from member of the or-frame relative 
to Mi and if it is the last worker leaving the frame then it checks for suspended SCCs 
to be collected. 

The interesting case is when W is not within a SCC. If Mi holds a suspended SCC, then 
W can safely resume it. If resumption does not take place, the procedure proceeds 
to check whether Mi is a consumer node. Being this the case, W is deleted from the 
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move_up_one_node(public node N) { 
// remember that T0P_0R_FR points to N's or-frame 
lock(0rFR_lock(T0P_0R_FR)) 

// frozen nodes on stack ? 
if (B_FZ is younger than N) { 
delete_from_bitmap(OrFr_members(TOP_OR_FR), W0RKER_ID) 
if (OrFr_members(TOP_OR_FR) is empty) { 
collect_suspended_SCCs(TOP_OR_FR) 

> 
unlock(OrFR_lock(T0P_0R_FR)) 
return CP_B(N) 

} 
// suspended SCCs to resume ? 
if (N holds a suspended SCC to resume) { 
unlock(OrFR_lock(TOP_OR_FR)) 
restore_bindings(TR, CP_TR(N)) 
resume_SCC(N) 
goto public_completion(N) 

// N is a consumer node ? 
if (B_FZ == N) { 
delete_from_bitmap(OrFr_members(TOP_OR_FR), W0RKER_ID) 
if (OrFr_owners(TOP_OR_FR) == 1) 
complete_suspended_SCCs(TOP_OR_FR) 

unlock(OrFR_lock(TOP_OR_FR)) 
return CP_B(N) 

} 

// unique owner ? 
if (OrFr_owners(TOP_OR_FR) == 1) { 
complete_suspended_SCCs(TOP_OR_FR) 
if (SgFr_gen_cp(TOP_SG_FR) == N) 
mark_subgoal_as_completed(TOP_SG_FR) 

free_struct(PAGES_or_frames, T0P_0R_FR) 
return CP_B(N) 

} 

delete_from_bitmap(OrFr_members(TOP_OR_FR), W0RKER_ID) 
OrFr_owners(T0P_0R_FR)— 
unlock(OrFR_lock(TOP_OR_FR)) 
return CP_B(N) 

> 

Figure 6.27: Pseudo-code for move_up_one_node(). 

members bitmap of the or-frame relative to Mi and if W is the unique owner of M% then 
the suspended SCCs in Mi can be completed. Completion can be safely performed over 
the suspended SCCs in Mi not only because the SCCs are completely evaluated, as 
none was previously resumed, but also because no more dependencies exist, as there 
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are no more branches below A/í. 

The reasons given to complete the suspended SCCs in A/í hold even if A/í is not a 
consumer node, as long as W is the unique owner of A/Í- In such case, as W is the last 
owner leaving A/í, the or-frame for A/í can be freed and if A/í is a generator node then 
its correspondent subgoal can be also marked as completed. Otherwise, W is simply 
deleted from being member and owner of the or-frame relative to A/í-

The scheduler extensions presented are mainly related with tabling support. Further 
work is needed to implement and experiment with proper scheduling strategies that 
can take advantage of the parallel tabling environment, as the scheduling strategies 
inherited from the YapOr's scheduler were designed for an or-parallel model, and not 
for an or-parallel tabling model. Next, we propose two new scheduling strategies that 
explicitly deal with the flow of a parallel tabling evaluation: 

• When a worker is looking for others with available work, the scheduler must give 
higher priority to work that contains suspended SCCs. By doing so, suspended 
SCCs can be resumed sooner, and therefore we increase the probability of an 
early successful completion. Furthermore, we may avoid further dependencies 
that would occur if the subgoals involved were not completed early. 

• The scheduler must avoid sharing branches with consumer nodes. Consumer 
nodes correspond to frozen segments, and frozen segments involve extra copying 
of stack segments. Moreover, we may generated suspended SCCs that in turn 
contain repeated stack segments corresponding to shared frozen segments. 

We believe that these strategies can contribute to a more efficient distribution of work 
for parallel tabling and thus we intend to further implement and experiment the impact 
of these strategies in OPTYap's performance. 

6.9 Local Scheduling 

All the implementations issues described above assume a batched scheduling strategy. 
In this section we present how the batched based implementation for parallel tabling 
can be straightforwardly extended to support local scheduling. 
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Support for local scheduling in the parallel environment includes the extensions pre­

viously presented in subsection 4.3 to support local scheduling for sequential tabling. 
Remember that a generator choice point is implemented as a consumer choice point 
and that this includes allocating a dependency frame when storing a generator node. 
One should also remember that when a generator node loads the completion instruc­

tion for execution, it also updates the field for the next available alternative to the 
answer_resolution instruction, in order to guarantee that, subsequently, the node 
will act like a consumer node and consume the found answers. 

Full support for the parallel execution with local scheduling is attained by considering 
the novel situation where a generator turned consumer is both a public node and the 
youngest node on stack. Figure 6.28 illustrates the case in point. Note that node J\f 
obviously corresponds to the local scheduling implementation for generator nodes, as 
this is the unique case where the DepFr_leader_cp field of a node references itself. 

answer resolution 

□ 
O Top Consumer Node 

OrFr alt Field 

□ DepFr_leader_cp Field 
Figure 6.28: Local scheduling situation requiring special implementation support. 

The problem arising with this kind of situation is that M can be computed as a 
leader node. This happens because the DepFr_leader_cp field of the dependency 
frame corresponding to the top consumer node, that is A/", references J\f. However, 
A/" should only execute completion when it is found that no unconsumed answers are 
available. Implementation support for this special situation requires slight changes to 
the getworkO, answer_resolution() and public .complet ion () procedures. 

Figure 6.29 presents the modified pseudo­code for the getworkO procedure. It intro­

duces a single modification in the block of code that detects for completion points, 
by replacing NULL for answer_resolution in the test involving the OrFr_alt field of 
the T0P_0R_FR register, and by adding a new test condition that avoids completion 
detection for nodes in the local scheduling special situation. The first change is 
because, in local scheduling, the last update operation to the OrFr_alt field relative 
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to a generator node is to answer_resolution and not to NULL. The second change 
forces the nodes in the local scheduling special situation to act like consumer nodes 
and consume the newly found answers. 

getwork(public node M) { 
// code for detecting completion points 
if (DepFr_leader_cp(TOP_DEP_FR) == N kk 

(DepFr_gen_on_stack(TOP_DEP_FR) == FALSE I I 
(0rFr_alt(T0P_0R_FR) == answer_resolution kk B_FZ != N))) // changed 

goto public_completion(N) 

} " 

Figure 6.29: Pseudo-code for getworkQ with a local scheduling strategy. 

We next present in Figure 6.30 the new pseudo-code for the answer_resolution() 
procedure. When the node C executing the procedure is also the current leader 
node then it is known that we are in the presence of the local scheduling special 
situation, because a leader node never executes answer_resolution(). Notice that 
in this case, C forms a SCC with a single node, and thus, computation cannot flow 
to upper nodes while C remains on stack. Hence, if it is found that no unconsumed 
answers are available for C, no work can be done for the current SCC. The new 
code for answer_resolution() detects this kind of situations and moves the flow of 
the computation to the public_completion() procedure, which is where they are 
resolved. 

answer_resolution(consumer node C) { 
DEP_FR = CP_DEP_FR(C) 
if (DepFr_last_ans(DEP_FR) != SgFr_last_answer(DepFr_sg_fr(DEP_FR))) { 

load_next_answer_from_subgoal(DepFr_sg_fr(DEP_FR)) 
proceed 

} 
if (DepFr_leader_cp(TOP_DEP_FR) == C) // new 
goto public_completion(C) // new 

dep_back_cp = DepFr_back_cp(DEP_FR) 
} ' 

Figure 6.30: Pseudo-code for answer_resolution() with a local scheduling strategy. 

Figure 6.31 presents the extended pseudo-code for the public_completion() pro­
cedure. It includes the following modifications: adding a test condition to avoid 
getwork() when facing the local scheduling special situation; and introducing a new 
block of code to specifically process the situation. Notice that the new block of code is 
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positioned after the code that implements completion or suspension for the previous 
SCC on stack because this is from where a local scheduling special situation can result. 

public_completion(public node N) { 
if (N is the current leader node) { 

if (DepFr_leader_cp(TOP_DEP_FR) != N) // new 
goto getwork(N) 

// start of new block of code due to local scheduling 
df = T0P_DEP_FR 
if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) { 
unlock(OrFr_lock(T0P_0R_FR)) 
load_next_answer_from_subgoal(DepFr_sg_fr(df)) 
proceed 

} 
// no unconsumed answers found 
lock(0rFr_lock(T0P_0R_FR)) 
if (OrFr_owners(TOP_OR_FR) != 1) { 
// remove N from stack 
delete_from_bitmap(OrFr_members(TOP_OR_FR), W0RKER_ID) 
OrFr_owners(T0P_0R_FR)— 
T0P_0R_FR_0M_STACK = OrFr_next_on_stack(TOP_OR_FR) 
T0P_DEP_FR = DepFr_next(df) 
unlock(OrFr_lock(T0P_0R_FR)) 
if (SgFr_gen_cp(TOP_SG_FR) == N) 
T0P_SG_FR = SgFr_next(TOP_SG_FR) 

T0P_0R_FR = CP_OR_FR(CP_B(N)) 
adjust_freeze_registers() 
backtrack_to(CP_B(N)) 

} else { 
// make N an interior node 
0rFr_alt(T0P_0R_FR) = NULL 
unlock(0rFr_lock(T0P_0R_FR)) 
T0P_DEP_FR = DepFr_next(df) 
free_struct(PAGES_dependency_frames, df ) 
adjust_freeze_registers() 
goto scheduler() 

} 
// end of new block of code 

} 
goto scheduler() 

Figure 6.31: Pseudo-code for public_completion() with a local scheduling strategy. 

The new block of code starts by checking node M for unconsumed answers to proceed 
execution. If it is found that no unconsumed answers are available in J\f then no work 
can be done for the current SCC and therefore execution only proceeds if the current 
SCC changes. If the worker W executing the procedure is not the unique owner of M 
then H is removed from the stacks of W and execution is backtracked to the parent 
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node on the branch. Otherwise, as W is the unique owner, N is made to be an interior 
node without available alternatives so that W can enter in scheduling mode and get 
a new piece of work at a different node. Execution is not immediately backtracked 
in this second case because W is the last worker leaving J\T and therefore it must use 
the scheduler's move_up_one_node() procedure to move in the search tree to guarantee 
that, for instance, J\f is checked for suspended SCCs and the subgoal associated with 
Af is marked as completed. 

6.10 Chapter Summary 

This chapter introduced the OPTYap engine. To the best of our knowledge, OPTYap 
is the first implementation of a parallel tabling engine for logic programming systems. 
OPTYap extends Yap's efficient sequential Prolog engine to support or-parallel execu­
tion of tabled logic programs. It follows OPT's computation model for parallel tabling, 
and it builds on SLG-WAM for tabling and on environment copying for or-parallelism. 

We discussed the complete set of major problems addressed during OPTYap's de­
velopment, which included: memory management; concurrent table access; public 
completion; scheduling decisions for parallel tabling; and SCC suspension. For each 
problem we presented and described the new data areas, data structures and algo­
rithms introduced to efficiently solve them. We can emphasize the GDN concept of 
signalling nodes that are candidates to be leader nodes; the new algorithms to quickly 
compute and detect leader nodes; the novel termination detection scheme to allow 
completion in public nodes; the assumption of SCCs as the units for suspension; and 
the different locking schemes for concurrent table access. 
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Chapter 7 

Speculative Work 

In [21], Ciepielewski defines speculative work as work which would not be done in a 
system with one processor. The definition clearly shows that speculative work is an 
implementation problem for parallelism, that must be addressed carefully in order to 
reduce its impact. 

The presence of pruning operators during or-parallel execution introduces the problem 
of speculative work [52, 53, 8, 13]. Prolog has an explicit pruning operator, the cut 
operator. When a computation executes a cut operation, all branches to the right of 
the cut are pruned. Computations that can potentially be pruned are thus specula­
tive. Earlier execution of such computations may result in wasted effort compared to 
sequential execution. 

In this chapter, we discuss the problems arising with speculative computations and 
introduce the mechanisms used in YapOr and OPTYap to deal with it. Initially, we 
introduce the cut semantics and its particular behavior within or-parallel systems. 
After that we present the cut scheme currently implemented in YapOr and describe 
the main implementation details. Then we discuss speculative tabling execution and 
present the support actually implemented in OPTYap. 

171 
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7.1 Cut Semantics 

Cut is a system built-in predicate that is represented by the ! symbol. Its execution 
results in pruning all the branches to the right of the cut scope branch. The cut 
scope branch starts at the current node and finishes at the node corresponding to the 
predicate containing the cut. Cut is an asymmetric pruning operator because it only 
prunes branches at the right. Other parallel Prolog systems implement symmetric 
pruning operators, with a generic name of commit. The execution of commit results 
in pruning both to the left and to the right. YapOr and OPT Yap do not yet support 
symmetric pruning operators. 

Figure 7.1 gives a general overview of cut semantics by illustrating the left to right 
execution of a particular program containing cuts. The query goal a(X) leads the 
computation to the first alternative of predicate a and the query goal is replaced 
with the body of the first clause of a, where !(a) means a cut with the scope a. If 
!(a) gets executed, all the right branches until the node corresponding to predicate a, 
inclusively, should be pruned. 

\ / 

r 
a(X) 
a (X) 
a (X) 

: - b ( X ) , , c ( X ) . b (X) : 
b(X) : 

- X . • 1 . 
V 

? - a (X) . 

Figure 7.1: Cut semantics overview. 

As execution continues, b(X) is called and its first alternative succeeds by binding X 
to value 1. The cut corresponding to the first alternative of a is invoked next and thus 
the remaining alternatives for predicates a and b are pruned. As a consequence, the 
nodes representing both predicates can be removed. 
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7.2 Cut within the Or-Parallel Environment 

In a sequential system, cut only prunes alternatives whose exploitation has not been 
started yet. This does not hold for parallel systems, as cut can prune alternatives that 
are being exploited by other workers or that have already been completely exploited. 
Therefore, cut's semantics in a parallel environment have a new dimension. First, a 
pruning operation cannot always be completely performed if the cut scope branch is 
not leftmost, because the operation itself may be pruned by the execution of other 
pruning operation in a branch to the left. Similarly, an answer for the query goal in 
a non-leftmost branch may not be valid. Last, pruning a branch puts out of work the 
workers exploiting such branch. 

Ali [3] showed that speculative work can be completely banned from a parallel system 
if proper rules are applied. However, as such rules severely restrict the parallel 
exploitation of work, most or-parallel systems allow speculative work as it is their 
main source of parallelism. Speculative branches can be controlled more or less tightly. 
Ideally, we would prune all branches as soon as they become useless. In practice, 
deciding if a computation is still speculative or already useless can be quite complex 
when nested cuts with intersecting scopes are considered. 

7.2.1 Our Cut Scheme 

Implementing cut in an or-parallel system entails two main problems: the cut operation 
may have to prune work from the shared region of the search tree and the execution 
of the branch where the cut is found may itself be speculative. When implementing 
cut, the following rule must be preserved: we cannot prune branches that would not 
be pruned if our own branch will be pruned by a branch to the left. 

YapOr currently implements a cut scheme based on the ideas presented by Ali and 
Karlsson [8] that prunes useless work as early as possible. The worker executing cut, 
must go up in the tree until it reaches either the cut scope choice point or a choice point 
with workers executing branches to the left. While going up it may find workers in 
branches to the right. If so, it sends them a signal informing them that their branches 
have been pruned. When receiving such a signal, workers must backtrack to the shared 
part of the tree and become idle workers again. 
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Note that a worker may not be able to complete a cut if there are workers in left 
branches, as they can themselves prune the current cut. In these cases, one says the 
cut was left pending. In YapOr, a cut is left pending on the first (youngest) node A/" 
that has left branches. A pending cut can be resumed only when all workers to the 
left backtrack into the shared node Af. It will then be the responsibility of the last 
worker backtracking to M to continue the execution of the pending cut. 

Even if a cut is left pending in a node A/", there may be branches, older than A/*, that 
correspond to useless work according to the cut rule mentioned above. YapOr's cut 
scheme prunes these branches immediately. To illustrate how these branches can be 
detected we present in Figure 7.2 a small example taken from [8]. To better understand 
the example, we index the repeated calls to the same predicate by call order. For 
instance, the node representing the first call to predicate p is referred as pi, the second 
as p2 and successively. We also write pi to denote the ith alternative of node pn. 
Notice also, that we use the mark ! in the branch of an alternative to indicate that it 
contains at least one cut predicate. 

( X 
■i:V ■-

p ( [ 1 , 2 ] ) . 

Y q ( l ) , p ( [ 2 ] > . ! (pi) . 

Y< p ( [ 2 ] ) , I ( p i ) 

C
p2

J 
i q ( 2 ) , p ( U ) , (p2) . ! (pi) . 

fa> 

■(: ù 
p ( [ ] ) , ! ( p 2 ) . ! (pi) . 

K p 2 ) , ! ( p i ) . 

c X 
p ( [ H | T ] ) 
p u n . 

: - q(H) , p ( T ) , ! . 

q ( l ) . 
q ( 2 ) . 
q ( 3 ) . 

? - p ( [ l , 2 ] ) . 
u 

Figure 7.2: Pruning in the parallel environment. 

Assume that a worker W, in a parallel execution environment, is computing the branch 
corresponding to [pi , q{ , p2 , q2 , P3 ] ■ There are only two branches to the 
left, corresponding to alternatives pjj and q̂ 1**. If there are workers within alternative 
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p3W then W cannot execute any pruning at all because p 3 ^ is marked as containing 
cuts. A potential execution of a pruning operation in p^1) will invalidate any cut 
executed in p 3 ^ by W. Therefore, W saves a pending cut marker in p3 and when the 
work in p 3 ^ terminates, pruning for the pending cut is executed. 

Lets now assume that there are no workers in alternative p 3 ^ , but there are in alter­
native q 2 ^ . Alternative q 2 ^ is not marked as containing cuts, but the continuation 
of q2 contains two pruning operations, !(p2) and !(pi). The worker W first executes 
!(p2) in order to prune q2̂

3^ and p 2 ^ . This is a safe pruning operation because any 
pruning from q 2 ^ will also prune q 2 ^ and p 2 ^ . At the same time W stores a cut 
marker in q2 to signal the pruning operation done. 

Pursuing with the example, W executes !(pi) in order to prune q^2\ q^ and p^2). 
However, this is a dangerous operation. A worker in q^1) may execute the previous 
pruning operation, !(p2), pruning W s branch but not q^2 \ q^3) or p i ^ . Hence, there 
is no guarantee that the second pruning, !(pi), is safe. The cut marker stored in q2 

is a warning that this possibility exists. So, instead of doing pruning immediately, 
W updates the pending cut marker stored in q2 to indicate the did not complete cut 
operation. 

Figure 7.3 shows the effect of executing two pruning operations using our cut scheme. 
Initially, the pruning operations, !(b) and !(c), are respectively executed until nodes 
f and e as these are the closest nodes that contain unexploited alternatives in left 
branches. Therefore, cut markers are stored in nodes f and e. A cut marker is a two 
field data structure consisting of the cut scope and the branch executing the cut. 

However, we know that no branch to the left, except the ones marked with !, can 
invalidate further pruning for the current operations. Therefore !(b) can execute up 
to node d and !(c) can fully execute till node c. The cut marker stored in f indicates 
a pending cut operation, while the cut marker stored in e prevents possible future 
pruning operations from the same branch. 

7.2.2 Tree Representation 

Supporting the cut predicate requires efficient mechanisms to represent the absolute 
and relative positions of each worker in the search tree. Checking whether the current 
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.̂  ^̂  

1(b), instl. 1(c), inst2. instl. 

Before pruning. After pruning. 

Figure 7.3: Pruning useless work as early as possible. 

branch is leftmost or identifying workers working on branches to the left/right need 
to be very efficient operations. 

The current YapOr implementation has the following representation of a Prolog search 
tree. We use a bi-dimensional matrix, branch [] , to represent the current branch of 
each worker. Each entry branch[W, V] corresponds to the alternative taken by worker 
W in the shared node with depth V of its current branch. The advantage of this simple 
representation is that moving a worker in the search tree is a very efficient operation 
- neither locking nor extra overheads for maintaining the tree topology are needed. 

Figure 7.4 presents a small example that clarifies the correspondence between a Prolog 
search tree and its matrix representation. Notice that we only represent the shared 
part of a search tree in the branch matrix. This is due to the fact that the position 
of each worker in the private part of the search tree is not helpful when computing 
relative positions. 

To correctly consult or update the branch matrix, we need to know the depth of each 
shared node. To achieve this, we introduce a new data field in the or-frame data 
structure, the OrFr.depth field, that holds the depth of the corresponding node. By 
using the OrFr.depth field together with the OrFr jnembers bitmap of each or-frame 
to consult the branch matrix, we can easily identify the workers in a node that are in 
branches at the left or at the right the current branch of a given worker. 
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branch [w, d] 
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J 

Figure 7.4: Search tree representation. 

7.2.3 Left most ness 

Let us suppose that a worker W wants to check whether it is leftmost or at which 
node it ceases from being leftmost. W should start from the bottom shared node 
M on its branch, read the OrFr_members bitmap from the or-frame associated with 
M to determine the workers sharing the node, and investigate the branch matrix 
to determine the alternative number taken by each worker sharing M. If W finds an 
alternative number less than its own, then W is not leftmost. Otherwise, W is leftmost 
in J\f and will repeat the same procedure at the next upper node on branch and so on 
until reaching the root node or a node where it is not leftmost. 

Two improvements were introduced [5] to obtain an efficient implementation. The first 
improvement reduces the number of workers to be consulted in each shared node, by 
avoiding consulting workers already known to be to the right. The second improvement 
reduces the number of nodes to be investigated in a branch, by associating with each 
shared node a new or-frame data field named OrFr_nearest_lef tnode pointing to the 
nearest upper node with branches to the left. 

7.2.4 Pending Answers 

With speculative work, a new answer for the query goal in a non-leftmost branch may 
not be valid since the branch where the answer was found may be pruned. To deal 
with this kind of situations, it is necessary to efficiently store the newly found answers 
in such a way that, by end of the computation, all valid answers are easily obtained. 
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YapOr stores a new answer in the first (youngest) shared node where the current branch 
is not leftmost. To accomplish this, a new data field was introduced in the or­frame 
data structure, the OrFr_qg_answers field. This, to allow access to the set of pending 
answers stored in the corresponding node. New data structures were introduced to 
store the pending answers that are being found for the query goal in hand. Figure 7.5 
details the data structures used to efficiently keep track of pending answers. Answers 
from the same branch are grouped into a common top data structure. The top data 
structures are organized by reverse branch order. This organization simplifies the 
pruning of answers that became invalid in consequence of a cut operation to the left. 
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Figure 7.5: Dealing with pending answers. 

When a node M is fully exploited and its corresponding or­frame is being deallocated, 
the whole set of pending answers stored in J\f can be easily linked together and moved 
to the next node where the current branch is not leftmost. At the end, the set of 
answers stored in the root node are the set of valid answers for the given query goal. 

7.2.5 Scheduling Speculative Work 

We have seen that pruning speculative branches as soon as a cut to the left is exe­

cuted is a key implementation issue in order to efficiently deal with speculative work 
in a parallel environment. Besides this important aspect, speculative work can be 
minimized if proper scheduling strategies are used. The Muse system implements a 
sophisticated strategy named actively seeking the leftmost available work strategy [8], 
that concentrates workers on the leftmost unexploited work of a search tree as long as 
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there is enough parallelism, in order to avoid workers entering into speculative work 

if less speculative work is available. 

The set of unexploited alternatives in a search tree can be ordered according to their 
degree of speculativeness. Speculativeness decreases towards the bottom of the leftmost 
branch and increases towards the top of the rightmost one. Scheduling strategies that 
benefit the branches closer to the leftmost bottom corner of the execution tree should 
make useless work less probable. 

The general idea of the actively seeking the leftmost available work strategy is to 
concentrate workers in the less speculative branches of the search tree in order to 
simulate the sequential Prolog execution as much as possible. The search tree is divided 
into two parts: the left part contains active work and the right part contains suspended 
work. Periodically, if there are no idle workers, all workers cooperate to compute their 
ordering and load information. Whenever there exists leftmost available work, the 
rightmost worker suspends all non-suspended alternatives to its right, including its 
current branch, and moves to the leftmost available alternative. When the amount of 
work to the left is not enough for the running workers, the leftmost suspended work 
to the right is taken and made active for exploitation. 

Further work is still necessary to make YapOr's scheduler take full advantage of this 
kind of strategies. 

7.3 Cut within the Or-Parallel Tabling Environ­
ment 

The previous sections shown us that dealing with speculative work is not simple. 
Extending the or-parallel system to include tabling introduces complexity into cut's 
semantics. During a tabled computation, not only the answers found for the query goal 
may not be valid, but also answers found for tabled predicates may be invalidated. The 
problem here is even more serious because tabled answers can be consumed elsewhere in 
the tree, which makes impracticable any late attempt to prune computations resulting 
from the consumption of invalid tabled answers. Indeed, consuming invalid tabled 
answers may result in finding more invalid answers for the same or other tabled 
predicates. 
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Notice that finding and consuming answers is the natural way to get a tabled computa­

tion going forward. Delaying the consumption of answers may compromise such flow. 
Therefore, tabled answers should be released as soon as it is found that they are safe 
from being pruned. Whereas for all­solution queries the requirement is that, at the 
end of the execution, we will have the set of valid answers, in tabling the requirement 
is to have the set of valid tabled answers released as soon as possible. Dealing with 
speculative tabled computations and guaranteeing the correctness of tabling semantics, 
without compromising the performance of the or­parallel tabling system, requires very 
efficient implementation mechanisms. Next, we discuss the OPTYap's approach. 

7.3.1 Inner and Outer Cut Operations 

Allowing pruning operations in a tabling environment introduces a major design 
problem: how to deal with the operations that prune tabled nodes. We consider two 
types of cut operations in a tabling environment, cuts that do not prune tabled nodes 
­ inner cut operations, and cuts that prune tabled nodes ­ outer cut operations. 
Figure 7.6 illustrates four different situations corresponding to inner and outer cut 
operations. Below each illustration we present a block of Prolog code that may lead 
to such situations. Predicates t and s correspond respectively to the tabled and 
scope nodes illustrated. Notice that the last situation only occurs if a parallel tabling 
environment is considered. 

Inner Cut 

table t/Q. 

t :-
t j-

( Outer Cut 

/scope\ 
\ n o d e « 

"V 

t a b l e d 1 
node I 
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t a b l s t / O . 

a . , t , . . . , 1, 
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t :- .. 
t :- ... 

S Outer Cut 

<> 
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t a b l e d 
a n d 

scope node 

1 (scope) 

^ 
­ ■ ­ t a b l e t / O . 

t ­ ... . , I , . 
:f­­ ­ ■ 

Outer Cut 

S :- ..., I, ... 
s :- ..., t, ... 

t : - ... 
t : -

Figure 7.6: The two types of cut operations in a tabling environment. 
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Cut semantics for outer cut operations is still an open problem. The intricate de­
pendencies in a tabled evaluation makes pruning a very complex problem. A major 
problem is that of pruning generator nodes. Pruning generator nodes cancels its 
further completion and puts the table space in an inconsistent state. This may lead 
dependent consumer nodes to incorrect computations as the set of answers found for 
the pruned generator node may be incomplete. A possible solution to this problem 
can lay on moving the generator's role to a not pruned dependent consumer node, 
if any, in order to allow further exploitation of the generator's unexploited branches. 
Such a solution will require that the other non-pruned consumer nodes recompute 
and update their dependencies relatively to the new generator node. Otherwise, if all 
dependent consumer nodes are also pruned, we can suspend the execution stacks and 
the table data structures of the pruned subgoal and try to resume them when the next 
variant call takes place. Scheduling also appears to be a problem. Applying different 
resolution strategies to return answers may lead to different pruning sequences that 
may influence the order that tabled nodes are pruned. Obviously, these are only simple 
preliminary ideas about the problems in discussion. Further research is still necessary 
in order to study the combination of pruning and tabling. Currently, OPTYap does 
not support outer cut operations. For such cases, execution is aborted. 

7.3.2 Detecting Speculative Tabled Answers 

As mentioned before, a main goal in the implementation of speculative tabling is to 
allow storing safe answers immediately. We would like to maintain the same perfor­
mance as for the programs without cut operators. In this subsection, we introduce 
and describe the data structures and implementation extensions required to efficiently 
detect if a tabled answer is speculative or not. 

We introduced a global bitmap register named GLOBAL_pruning_workers to keep track 
of the workers that are executing alternatives that contain cut operators and that, in 
consequence, may prune the current goal. Additionally, each worker maintains a local 
register, LOCAL_safe_scope, that references the bottommost (youngest) node that 
cannot be pruned by any pruning operation executed by itself. 

The correct manipulation of these new registers is achieved by introducing the new 
WAM instruction clause_with_cuts. This new instruction marks the blocks of code 
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that include cut instructions. During compilation, the WAM code generated for 
the clauses containing cut operators was extended to include the clause_with_cuts 
instruction so that it is the first instruction to be executed for such clauses. When 
a worker loads a clause_with_cuts instruction, it executes the clause_with_cuts() 
procedure. 

Figure 7.7 details the pseudo-code that implements the clause_with_cuts() proce­
dure. It sets the worker's bit of the global register GLOBAL_pruning_workers, and 
updates the worker's local register L0CAL_saf e_scope to the oldest reference between 
its current value and the current node. The current node is the resulting top node if 
a pruning operation takes place from the clause being executed. 

clause_with_cuts() { 
if (LOCAL_safe_scope == NULL) { 
// first execution of clause_with_cuts 
insert_into_bitmap(GLOBAL_pruning_workers, W0RKER_ID) 
L0CAL_safe_scope = B 

} else if (L0CAL_safe_scope is younger than B) 
// B is the local stack register 
LOCAL_safe_scope = B 

} 
load_next.instruction 
proceed 

} 

Figure 7.7: Pseudo-code for clause_with_cuts(). 

When a worker finds a new answer for a tabled subgoal call, it inserts the answer's trie 
representation into the table space and then it checks if the answer is safe from being 
pruned. When this is the case, the answer is included in the chain of available answers 
for the tabled subgoal, as usually. Otherwise, if it is found that the answer can be 
pruned by another worker, its availability is delayed. Figure 7.8 presents the pseudo­
code that implements the checking procedure. When it is found that the answer being 
checked can be speculative, the procedure returns the or-frame that corresponds to 
the youngest node where the answer can be pruned by a worker in a left branch. That 
or-frame is where the answer should be left pending. Otherwise, if is found the answer 
is safe, the procedure returns NULL. 

Note that the spéculâtive_tabled_answer() procedure is only called when the gen­
erator node for the answer being checked in is public, as otherwise any pruning corre­
sponds to an outer cut operation. The procedure's pseudo-code starts by determining 
if there are workers that may execute pruning operations. If so, it checks the safeness 
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speculative_tabled_answer(generator node G) { 
// G is the generator node for the answer being checked 
prune_wks = GLOBAL_pruning_workers 
delete_from_bitmap(prune_wks, W0RKER_ID) 
if (prune_wks is not empty) { 
// there are workers that may execute pruning operations 
or_fr = T0P_0R_FR 
depth = OrFr_depth(or_fr) 
scope_depth = OrFr_depth(CP_OR_FR(G)) 
while (depth > scope_depth) { 

// checking the public branch till the generator node 
alt.number = branch(WORKER.ID, depth) 
for (w = 0; w < number_workers; w++) { 

if (w is in OrFr_members(or_fr) && 
branch(w, depth) < alt_number && 
w is in prune_wks && 
OrFr_node(or_fr) is younger than LOCAL_safe_scope(w)) 

// the answer can be pruned by worker w 
return or_fr 

} 
or_fr = OrFr_next(or_fr) 
depth = OrFr_depth(or_fr) 

} 
} 
/ / the answer is safe from being pruned 
return NULL 

} 

Figure 7.8: Pseudo-code for speculative_tabled_answer(). 

of the branch where the tabled answer was found. The branch only needs to be 
checked until the corresponding generator node, as otherwise it would be an outer 
cut operation. A branch is found to be safe if it is leftmost, or if the workers in the 
branches to the left cannot prune it. 

The spéculâtive_tabled_answer() procedure is similar to the leftmost check pro­
cedure described before. Hence, the implementation improvements mentioned for 
the leftmost check procedure can also be used here to improve the efficiency of the 
speculative_tabled_answer() procedure. However, for simplicity of presentation, 
none of those improvements were included in the pseudo-code. 

7.3.3 Pending Tabled Answers 

If a tabled answer is speculative, its availability is delayed. A speculative answer 
should remain in a pending state until it is pruned by a left branch or until it is found 
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that it is safe from being pruned. In the latter case it should be released as a valid 
answer. Dealing with pending tabled answers requires efficient support to allow that 
the operations of pruning or releasing pending answers are efficiently performed. 

Remember that pending answers are stored in a node. To allow access to the set of 
pending answers for a node, a new data field was introduced in the or­frame data 
structure, the OrFr_tg_answers field. New data structures were also introduced to 
efficiently keep track of the pending answers being found for the several tabled subgoal 
calls. Figure 7.9 details that data structure organization. 
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Figure 7.9: Dealing with pending tabled answers. 

The figure shows a situation where three tabled answers, answer­x, answer­y and 
answer­z, were found to be speculative and in consequence have all been left pending 
in a common node J\f. M is the bottommost node where a worker in a left branch, W 
in the figure, holds a L0CAL_saf e_scope register pointing to a node older than M. 

Pending answers found for the same subgoal and from the same branch are addressed 
by a common top frame data structure. As the answers in the figure were found in 
different subgoal/branch pairs, three top frames were required, answer­x, answer­y 
and answer­z were found respectively in branches 2, 3 and 3 for the subgoals corre­

sponding to generator nodes Q\, Q\ and Ç2. The top frames are organized in older to 
younger generator order and by reverse branch order when there are several frames 
for the same generator. Hence, each frame contains two types of pointers to follow the 
chain of frames, one points to the frame that corresponds to the next younger generator 
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node, while the other points to the frame that corresponds to the next branch within 

the same generator. 

Blocks of answers address the set of pending answers for a subgoal/branch pair. Each 
block points to a fixed number of answers. By linking the blocks we can have a 
large number of answers for the same subgoal/branch pair. Note that the block data 
structure does not hold the representation of a pending answer, only a pointer to the 
leaf answer trie node of the answer trie structure representing the pending answer. 
This happens because tabled answers are inserted in advance into the table space even 
if they are to be pruned later. 

As already mentioned, a key point in the implementation support for pending answers 
is the efficiency of the procedure to release answers. OPTYap implements the fol­
lowing algorithm: the last worker W leaving a node Af with pending tabled answers, 
determines the next node M on its branch that can be pruned by a worker to the left. 
The pending answers from J\f that correspond to generator nodes equal or younger 
than M are made available, while the remaining are moved from M to M. Notice 
that W only needs to check for the existence of a node M up to the oldest generator 
node in the pending answers stored in A/". To simplify finding the oldest generator 
node we organized top frames in older to younger generator order. 

Last, in order to correctly implement direct compiled code execution in OPTYap, 
it is required that the answer trie nodes representing pruned answers are removed 
from the trie structure. For simplicity and efficiency, this is performed by the tabled 
subgoal call that first calls the tabled subgoal after it has been completed because it 
requires traversing the whole answer trie structure. The code for direct compiled code 
execution is therefore computed while traversing the answer trie structure. 

7.4 Chapter Summary 

This chapter discussed the problems behind the management of speculative compu­
tations. A computation is named speculative if it can potentially be pruned during 
parallel evaluation, therefore resulting in wasted effort when compared to sequential 
execution. 

We started by introducing the semantics for the standard pruning operator - cut, 
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and then we discussed its behavior for parallel execution. Next we presented YapOr's 
approach to efficiently deal with speculative work and described the supporting data 
structures and algorithms for its implementation. 

Lastly, we motivated the problems of combining pruning with tabling and distinguished 
two different types of cut operations in a tabling environment, cuts that do not prune 
tabled nodes - inner cuts, and cuts that prune tabled nodes - outer cuts. Cut semantics 
for outer cuts is still an open problem. We thus focused on the support for inner cuts 
and described OPTYap's approach to efficiently deal with speculative tabled answers. 



Chapter 8 

Performance Analysis 

The overall goal of research in parallel logic programming is to achieve of higher 
performance through parallelism. The initial implementations of successful or-parallel 
Prolog systems, such as Aurora and Muse, relied on a detailed knowledge of a specific 
Prolog system, SICStus Prolog [18], and on the evaluation attained from original 
shared memory machines, such as the Sequent Symmetry. Modern Prolog systems, 
although WAM based, have made substantial improvements in sequential execution. 
These improvements largely result from the development of new and refined optimiza­
tions not found in the original SICStus Prolog. Besides, the impressive improvements 
on CPU performance over the last years have not been followed by similar gains in 
bus and memory performance. As a result, modern parallel machines show a much 
higher memory latency, as measured by the number of CPU clock cycles, than original 
Sequent style machines. 

The question therefore arises of whether the good results previously obtained with 
Aurora and Muse in Sequent style machines are still reachable with current Prolog 
systems in modern parallel architectures. In particular, we can question whether such 
results extend to parallel tabling implementations as tabling, by nature, reduces the 
potential non-determinism available in logic programs. Also notice that accomplish­
ing good speedups may not necessarily translate to a corresponding improvement in 
performance with respect to state of the art sequential implementations. The cost of 
managing parallelism can make the performance of the parallel implementation with 
a single worker considerably worst than the base sequential implementation. 

187 
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To assess the efficiency of our parallel tabling implementation and thus respond to 
the questions just raised, we present next a detailed analysis of OPTYap's perfor­
mance. We start by presenting an overall view of the overheads of supporting several 
Yap extensions: YapOr, YapTab and OPTYap. Then, we compare YapOr's parallel 
performance with that of OPTYap for a set of non-tabled programs. Next, we use 
a set of tabled programs to measure the sequential behavior of YapTab, OPTYap 
and XSB, and to assess OPTYap's performance when running the tabled programs in 
parallel. At last, we study the impact of using the alternative locking schemes from 
subsection 6.3.2 to deal with concurrent accesses to the table space data structures. 

YapOr, YapTab and OPTYap are based on Yap's 4.2.1 engine1. We used the same 
compilation flags for Yap, YapOr, YapTab and OPTYap. Concerning YapTab and 
OPTYap, we studied performance under both batched and local scheduling strate­
gies. Regarding XSB Prolog, we used version 2.3 with the default configuration and 
the default execution parameters (chat engine and batched scheduling) for batched 
scheduling, and version 2.4 with the default configuration and the default execution 
parameters (chat engine and local scheduling) for local scheduling. 

The environment for our experiments was oscar, a Silicon Graphics Cray Origin2000 
parallel computer from the Oxford Supercomputing Centre. Oscar consists of 96 MIPS 
195 MHz R10000 processors each with 256 Mbytes of main memory (for a total shared 
memory of 24 Gbytes) and running the IRIX 6.5.12 kernel. While benchmarking, 
the jobs were submitted to an execution queue responsible for scheduling the pending 
jobs through the available processors in such a way that, when a job is scheduled 
for execution, the processors attached to the job are fully available during the period 
of time requested for execution. We have limited our experiments to 32 processors 
because the machine was always with a very high load and we were limited to a 
guest-account. 

8.1 Performance on Non-Tabled Programs 

To place our performance results in perspective we first evaluate how the original 
Yap Prolog engine compares against the several Yap extensions we implemented and 

1Note that sequential execution would be somewhat better with more recent Yap engines. 
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against the most well-known tabling engine, XSB Prolog. Since OPTYap is based on 
the same environment model as the one used by YapOr, we then compare OPTYap's 
performance with that of YapOr on a similar set of non-tabled programs. 

8.1.1 Non-Tabled Benchmark Programs 

We use a set of standard non-tabled logic programming benchmarks [100, 56, 92, 32]. 
The set includes the following benchmark programs2: 

cubes: solves the N-cubes or instant insanity problem from Tick's book [104]. It 
consists of stacking 7 colored cubes in a column so that no color appears twice 
within any given side of the column. 

ham: finds all hamiltonian cycles for a graph consisting of 26 nodes with each node 
connected to other 3 nodes. 

map: solves the problem of coloring a map of 10 countries with five colors such that 
no two adjacent countries have the same color. 

nsort: naive sort algorithm. It sorts a list of 10 elements by brute force starting from 
the reverse order (and worst) case. 

puzzle: places numbers 1 to 19 in an hexagon pattern such that the sums in all 15 
diagonals add to the same value (also taken from Tick's book [104]). 

queens: a non-naive algorithm to solve the problem of placing 11 queens on a 11x11 
chess board such that no two queens attack each other. 

All benchmarks find all the answers for the problem. Multiple answers are computed 
through automatic failure after a valid answer has been found. To measure total 
execution time we used the Prolog code that follows. 

:- sequential run/0. 

go :- s ta t is t ics(wal l t ime, [S ta r t ,_ ] ) , 
run, 
s ta t is t ics(wal l t ime, [End,_]), 

2The Prolog code for these benchmark programs is included as Appendix A.l. 
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Time is End-Start, 
write('WallTime is ' ) , write(Time), nl. 

run :- benchmark, fail, 
run. 

benchmark :- ... 

The go/0 predicate is the top query goal. For each particular benchmark, benchmark/0 
is the predicate that triggers the benchmark's execution. The run/0 predicate is 
defined by two clauses. The first clause implements the automatic failure mechanism, 
while the second accomplishes successfully completes execution of the top query goal. 
Note that for parallel execution one needs to declare the run/0 predicate as sequential 
in order to ensure that the second clause only gets executed after the whole search 
space for the benchmark in hand has been exploited. 

8.1.2 Overheads over Standard Yap 

Fundamental criteria to judge the success of an or-parallel, tabling, or of a combined 
or-parallel tabling model includes measuring the overhead introduced by these models 
when running programs that do not take advantage of the particular extension. Ideally, 
a program should not pay a penalty for or-parallel or tabling mechanisms that it does 
not require. Therefore, in order to develop a successful or-parallel, tabling, or or-
parallel tabling engine such overheads should be minimal. 

Table 8.1 shows the base execution time, in seconds, for Yap, YapOr, YapTab, OPTYap 
and XSB for our set of non-tabled benchmark programs. In parentheses, it shows the 
overhead over the Yap execution time. Obviously, the timings reported for YapOr 
and OPTYap correspond to the execution with a single worker. For simplicity, in this 
section, we will not distinguish between batched and local scheduling when reporting 
to YapTab, OPTYap and XSB, as for non-tabled programs there are no execution 
differences between both strategies. 

The results indicate that YapOr, YapTab and OPTYap introduce, on average, an 
overhead of about 10%, 5% and 17% respectively over standard Yap. YapOr overheads 
result from handling the work load register and from testing operations that (i) verify 
whether the bottommost node is shared or private, (ii) check for sharing requests, 
and (iii) check for backtracking messages due to cut operations. On the other hand, 
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P r o g r a m Yap YapOr YapTab OPTYap XSB 2.4 

cubes 

ham 

map 
nsort 
puzzle 
queens 

1.97 
4.04 
9.01 

33.05 
2.04 

16.77 

2.06(1.05) 
4.61(1.14) 

10.25(1.14) 

37.52(1.14) 
2.22(1.09) 

17.68(1.05) 

2.05(1.04) 
4.28(1.06) 
9.19(1.02) 

35.85(1.08) 
2.19(1.07) 

17.58(1.05) 

2.16(1.10) 

4.95(1.23) 
11.08(1.23) 
39.95(1.21) 

2.36(1.16) 

18.57(1.11) 

4.81(2.44) 
10.36(2.56) 
24.11(2.68) 
83.72(2.53) 

4.97(2.44) 
36.40(2.17) 

Average (1.10) (1.05) (1.17) (2.47) 

Table 8.1: Yap, YapOr, YapTab, OPTYap and XSB execution time on non-tabled 

programs. 

YapTab overheads are due to the handling of the freeze registers and support of the 
forward trail. OPTYap overheads inherits both sources of overheads. Considering that 
Yap Prolog is one of the fastest Prolog engines currently available, the low overheads 
achieved by YapOr, YapTab and OPTYap are very good results. 

Regarding XSB, the results from Table 8.1 show that, on average, XSB is 2.47 times 
slower than Yap. This is a result mainly due to the faster Yap engine. 

8.1.3 Speedups for Parallel Execution 

To assess the performance of OPTYap's or-parallel engine when executing non-tabled 
programs in parallel, we ran OPTYap with a varying number of workers for the set of 
non-tabled benchmark programs. 

The results reported in previous work [78, 81], for parallel execution of non-tabled 
programs, showed that YapOr is very efficient in exploiting or-parallelism and that it 
obtains better speedup ratios than Muse with the increase in the number of workers. 
This was a surprising result given that YapOr has better base performance. Note, 
however, that Muse under SICStus is a more mature system that implements some 
functionalities that are still lacking in YapOr. Since OPTYap is based on YapOr's 
engine, we also tested YapOr against the same set of benchmark programs to get a 
better perspective of OPTYap's results. 

Table 8.2 shows the speedups relative to the single worker case for YapOr and OPTYap 
with 4, 8, 16, 24 and 32 workers. Each speedup corresponds to the best execution time 
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obtained in a set of 3 runs. 

Program 
YapOr OPTYap 

Program 4 8 16 24 32 4 8 16 24 32 

cubes 
ham 
map 
nsort 

puzzle 
queens 

3.99 
3.93 
3.98 
3.98 
3.93 
4.00 

7.81 
7.61 
7.73 
7.92 
7.56 
7.95 

14.66 
13.71 
14.03 
15.62 
13.71 
15.39 

19.26 
15.62 
17.11 
22.90 
18.18 
21.69 

20.55 
15.75 
18.28 
29.73 
16.53 
25.69 

3.98 
3.92 
3.98 
3.96 
3.93 
3.99 

7.74 
7.64 
7.88 
7.84 
7.51 
7.93 

14.29 
13.54 
13.74 
15.50 
13.53 
15.41 

18.67 
16.25 
18.36 
22.75 
16.57 
20.90 

20.97 
17.51 
16.68 
29.47 
16.73 
25.23 

Average 3.97 7.76 14.52 19.13 21.09 3.96 7.76 14.34 18.92 21.10 

Table 8.2: Speedups for YapOr and OPTYap on non-tabled programs. 

The results show that YapOr and OPTYap achieve identical effective speedups in all 
benchmark programs. Despite that OPTYap includes all the machinery required to 
support tabled programs, these results allow us to conclude that OPTYap maintains 
YapOr's behavior in exploiting or-parallelism in non-tabled programs. 

8.2 Performance on Tabled Programs 

In this section we start by describing the set of tabled benchmark programs that we 
used to assess performance for tabling execution. We then measure the performance 
of YapTab and OPTYap for sequential execution and compare the results with those 
of XSB. Next, we assess OPTYap's performance for parallel execution on these tabled 
programs and discuss various statistics gathered during execution so that the results 
obtained can be better understood. At last, we study the impact of using alternative 
locking schemes to access the table space during parallel execution. 
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8.2.1 Tabled Benchmark Programs 

The tabled benchmark programs were obtained from the XMC3 [45] and XSB [44] world 
wide web sites and are frequently used in the literature to evaluate such systems. The 

benchmark programs are4: 

sieve: the transition relation graph for the sieve specification5 defined for 5 processes 
and 4 overflow prime numbers. 

leader: the transition relation graph for the leader election specification defined for 
5 processes. 

iproto: the transition relation graph for the i-protocol specification defined for a 
correct version (fix) with a huge window size (w = 2). 

samegen: solves the same generation problem for a randomly generated 24x24x2 
cylinder. The cylinder data can be thought of as a rectangular matrix of 24x24 
elements where each element in row n (except the last) is connected to two 
elements in row n + 1. A pair of nodes is said to belong to the same generation 
when they are the same or when each one holds a connection to nodes that are in 
the same generation. This benchmark is very interesting because for sequential 
execution it does not allocate any consumer choice point. Variant calls to tabled 
subgoals only occur when the subgoals are already completed. 

lgrid: computes the transitive closure of a 25x25 grid using a left recursion algorithm. 
A link between two nodes, n and m, is defined by two different relations; one 
indicates that we can reach m from n and the other indicates that we can reach 
n from m. 

lgrid/2: the same as lgrid but it only requires half the relations to indicate that two 
nodes are connected. It defines links between two nodes by a single relation, and 

3 The XMC system [70] is a model checker implemented atop the XSB system which verifies 
properties written in the alternation-free fragment of the modal /i-calculus [60] for systems specified 
in XL, an extension of value-passing CCS [66]. 

4The Prolog code for these benchmark programs is included as Appendix A.2. 
5We are thankful to C. R. Ramakrishnan for helping us in dumping the transition relation graph 

of the automatons corresponding to each given XL specification, and in building runnable versions 
out of the XMC environment. 
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it uses a predicate to achieve symmetric reachability. This modification alters 
the order by which answers are found, therefore leading to a more randomly 
distribution. This modification also lead the benchmark to take more time to 
execute, and in consequence we reduced the search space to a 20x20 grid. 

rgrid/2: the same as lgrid/2 but it computes the transitive closure using a right 
recursion algorithm. 

Similarly to what was done for non-tabled benchmark programs, here we use the same 
mechanisms to search for all answers for each problem and to measure the execution 
time necessary to fully search the execution tree of a particular benchmark. 

8.2.2 Timings for Sequential Execution 

In order to place OPTYap's results in perspective we start by analyzing the overheads 
introduced to extend YapTab to parallel execution and by measuring Yap Tab and 
OPTYap behavior when compared with the latest versions of the XSB system. 

Table 8.3 shows the execution time, in seconds, for YapTab, OPTYap and XSB 
using batched and local scheduling strategies for the tabled benchmark programs. 
In parentheses it shows the overheads, respectively, over the YapTab Batched and 
YapTab Local execution time. The execution time reported for OPTYap correspond 
to the execution with a single worker. We used the TLWL locking scheme for OPTYap 
Batched and the TLWL-ABC locking scheme for OPTYap Local. We choose these 
schemes as a result of the performance study that we present in subsection 8.2.5. In 
what follows, if nothing is said, when reporting OPTYap Batched or OPTYap Local 
we assume the locking schemes mentioned above. Regarding XSB, we used version 2.3 
for batched scheduling and version 2.4 for local scheduling, as referred in the beginning 
of this chapter. Notice that the average result obtained for XSB using local scheduling 
is clearly influenced by the strange behavior showed for the rgrid/2 benchmark. If we 
do not consider such benchmark then the average result is 1.97. 

The results indicate that, for these set of tabled benchmark programs, OPTYap 
introduces, on average, an overhead of about 15% over YapTab for both batched 
and local scheduling strategies. This overhead is very close to that observed for non-
tabled programs (11%). The small difference results from locking requests to handle 
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P r o g r a m 

Batched Scheduling Local Scheduling 

P r o g r a m YapTab O P T Y a p XSB 2.3 YapTab O P T Y a p XSB 2.4 

sieve 
leader 
iproto 
samegen 
lgrid 
lgrid/2 
rgrid/2 

235.31 
76.60 
20.73 
23.36 

3.55 
59.53 

6.24 

268.13(1.14) 
85.56(1.12) 
23.68(1.14) 
26.00(1.11) 
4.28(1.21) 

69.02(1.16) 
7.51(1.20) 

433.53(1.84) 
158.23(2.07) 
53.04(2.56) 
37.91(1.62) 

7.41(2.09) 
98.22(1.65) 
15.40(2.47) 

242.38 
77.45 
21.93 
24.82 

3.85 
61.17 

6.15 

260.65(1.08) 
85.49(1.10) 
25.33(1.16) 
27.73(1.12) 

4.65(1.21) 
71.13(1.16) 

7.32(1.19) 

458.33(1.89) 
161.22(2.08) 
54.38(2.48) 
38.28(1.54) 

8.19(2.13) 
102.72(1.68) 
94.06(15.29) 

Average (1.15) (2.04) (1.15) (3.87) 

Table 8.3: YapTab, OPTYap and XSB execution time on tabled programs. 

the data structures introduced by tabling. Locks are require to insert new trie nodes 
into the table space, and to update subgoal and dependency frame pointers to tabled 
answers. These locking operations are all related with the management of tabled 
answers. Therefore, the benchmarks that deal with more tabled answers are the ones 
that potentially can perform more locking operations. This causal relation seems to 
be reflected in the execution times showed in Table 8.3, because the benchmarks that 
show higher overheads are also the ones that find more answers. The answers found 
by each benchmark are presented in Table 8.4. In this table we can observe that lgrid 
and rgrid/2 are the benchmarks that find more answers, followed by the iproto and 
lgrid/2 benchmarks. 

The results also confirm previous results from Freire et al. [40] where local scheduling 
performs worst than batched scheduling. Regardless, our results did show a smaller 
slowdown. YapTab Local is only about 3% slower than YapTab Batched (this overhead 
is not included in the table). Moreover, there is one benchmark, rgrid/2, where local 
scheduling performs slightly better than batched. 

Table 8.3 shows that YapTab is on average about twice as fast as XSB for these 
set of benchmarks. This may be partly due to the faster Yap engine, as seen in 
Table 8.1, and also to the fact that XSB implements functionalities that are still 
lacking in YapTab and that XSB may incur through overheads in supporting those 
functionalities. Independently of the scheduling strategy, the average execution time 
for the single worker case proved that OPTYap runs as fast or faster than current 
XSB. 
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We believe that these results clearly show that we have accomplished our initial aim 
of implementing an or-parallel tabling system that compares favorably with current 
state of the art technology Hence, we believe the following evaluation of the parallel 
engine is significant and fair. 

8.2.3 Characteristics of the Benchmark Programs 

In order to achieve a deeper insight on the behavior of each benchmark, and therefore 
clarify some of the results that are presented next, we first present in Table 8.4 data 
on the benchmark programs. The columns in Table 8.4 have the following meaning: 

first: is the number of first calls to subgoals corresponding to tabled predicates. It 
corresponds to the number of generator choice points allocated. 

nodes: is the number of subgoal/answer trie nodes used to represent the complete 
subgoal/answer trie structures of the tabled predicates in the given benchmark. 
For the answer tries, in parentheses, it shows the percentage of saving that the 
trie's design achieves on these data structures. Given the total number of nodes 
required to represent individually each answer and the number of nodes used by 
the trie structure, the saving can be obtained by the following expression: 

total — used 
saving total 

As an example, consider two answers whose single representation requires re­
spectively 12 and 8 answer trie nodes for each. Assuming that the answer trie 
representation of both answers only requires 15 answer trie nodes, thus 5 of those 
being common to both paths, it achieves a saving of 25%. Higher percentages of 
saving reflect higher probabilities of lock contention when concurrently accessing 
the table space. 

depth: is the number of nodes required to represent a path through a subgoal/answer 
trie structure. In other words, it is the number of nodes required to represent a 
subgoal call or to represent an answer. It is a three value column. The first and 
third values correspond, respectively, to the minimum and maximum depth of a 
path in the whole subgoal/answer tries. The second value is the average depth 
of the whole set of paths in the corresponding subgoal/answer trie structures. 
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Trie structures with smaller average depth values are more amenable to higher 

lock contention. 

unique: is the number of non-redundant answers found for tabled subgoals. It corre­
sponds to the number of answers stored in the table space. 

repeated: is the number of redundant answers found for tabled subgoals. A high 
number of redundant answers can degrade the performance of the parallel system 
when using table locking schemes that lock the table space without taking into 
account whether writing to the table is, or is not, likely. 

Program 
Subgoal Tries New Answers Answer Tries 

Program first nodes depth unique repeated nodes depth 

sieve 1 7 6/6/6 380 1386181 8624(57%) 21/53/58 

leader 1 5 4/4/4 1728 574786 41793(70%) 15/81/97 

iproto 1 6 5/5/5 134361 385423 1554896(77%) 4/51/67 

samegen 485 971 2/2/2 23152 65597 24190(33%) 1/1.5/2 

lgrid 1 3 2/2/2 390625 1111775 391251(49%) 2/2/2 

lgrid/2 1 3 2/2/2 160000 449520 160401(49%) 2/2/2 

rgrid/2 626 1253 2/2/2 781250 2223550 782501(33%) 1/1.5/2 

Table 8.4: Characteristics of the tabled programs. 

By observing Table 8.4 it seems that sieve and leader are the benchmarks least 
amenable to table lock contention because they are the ones that find the least number 
of answers and also the ones that have the deepest trie structures. In this regard, lgrid, 
lgrid/2 and rgrid/2 correspond to the opposite case. They find the largest number of 
answers and they have very shallow trie structures. However, rgrid/2 is a benchmark 
with a large number of first subgoals calls which can reduce the probability of lock 
contention because answers can be found for different subgoal calls and therefore be 
inserted with minimum overlap. Likewise, samegen is a benchmark that can also 
benefit from its large number of first subgoal calls, despite also presenting a very 
shallow trie structure. Finally, iproto is a benchmark that can also lead to higher 
ratios of lock contention. It presents a deep trie structure, but it inserts a huge 
number of trie nodes in the table space. Moreover, it is the benchmark showing the 
highest percentage of saving. 
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8.2.4 Parallel Execution Study 

To assess OPTYap's performance when running tabled programs in parallel, we ran 
OPTYap with varying number of workers for the set of tabled benchmark programs. 
We start by studying parallel execution with batched scheduling. 

Parallel Execution with Batched Scheduling 

Table 8.5 presents the speedups for OPTYap with 2, 4, 6, 8, 12, 16, 24 and 32 workers 
using batched scheduling. The speedups are relative to the single worker case of 
Table 8.3. They correspond to the best speedup obtained in a set of 3 runs. The table 
is divided in two main blocks: the upper block groups the benchmarks that showed 
potential for parallel execution, whilst the bottom block groups the benchmarks that 
do not show any gains when run in parallel. 

Program 
Number of Workers 

Program 2 4 6 8 12 16 24 32 

sieve 
leader 

iproto 
samegen 
lgrid/2 

2.00 
2.00 
1.72 
1.94 
1.88 

3.99 
3.98 
3.05 
3.72 
3.63 

5.99 
5.97 
4.18 
5.50 
5.29 

7.97 
7.92 
5.08 
7.27 
7.19 

11.94 
11.84 
7.70 

10.68 
10.21 

15.87 
15.78 
9.01 

13.91 
13.53 

23.78 
23.57 

8.81 
19.77 
19.93 

31.50 
31.18 

7.21 
24.17 
24.35 

Average 1.91 3.67 5.39 7.09 10.47 13.62 19.17 23.68 

lgrid 
rgrid/2 

0.46 
0.73 

0.65 
0.94 

0.69 
1.01 

0.68 
1.15 

0.68 
0.92 

0.55 
0.72 

0.46 
0.77 

0.39 
0.65 

Average 0.60 0.80 0.85 0.92 0.80 0.64 0.62 0.52 

Table 8.5: Speedups for OPTYap using batched scheduling on tabled programs. 

The results show superb speedups for the XMC sieve and the leader benchmarks up 
to 32 workers. These benchmarks reach speedups of 31.5 and 31.18 with 32 workers! 
Two other benchmarks in the upper block, samegen and lgrid/2, also show excellent 
speedups up to 32 workers. Both reach a speedup of 24 with 32 workers. The remaining 
benchmark, iproto, shows a good result up to 16 workers and then it slows down with 
24 and 32 workers. Globally, the results for the upper block are quite good, especially 
considering that they include the three XMC benchmarks that are more representative 
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of real-world applications. 

On the other hand, the bottom block shows almost no speedups at all. Only for rgrid/2 
with 6 and 8 workers we obtain a slight positive speedup of 1.01 and 1.15. The worst 
case is for Igrid with 32 workers, where we are about 2.5 times slower than execution 
with a single worker. In this case, surprisingly, we observed that for the whole set of 
benchmarks the workers are busy for more than 95% of the execution time, even for 
32 workers. The actual slowdown is therefore not caused because workers became idle 
and start searching for work, as usually happens with parallel execution of non-tabled 
programs. Here the problem seems more complex: workers do have available work, 
but there is a lot of contention to access that work. 

The parallel execution behavior of each benchmark program can be better understood 
through the statistics described in the tables that follows. The columns in these tables 
have the following meaning: 

variant: is the number of variant calls to subgoals corresponding to tabled predicates. 
It matches the number of consumer choice points allocated. 

complete: is the number of variant calls to completed tabled subgoals. It is when 
the completed table optimization takes places, that is, when the set of found 
answers is consumed by executing compiled code directly from the trie structure 
associated with the completed subgoal. 

SCC suspend: is the number of SCCs suspended. 

SCC resume: is the number of suspended SCCs that were resumed. 

contention points: is the total number of unsuccessful first attempts to lock data 
structures of all types. Note that when a first attempt fails, the requesting worker 
performs arbitrarily locking requests until it succeeds. Here, we only consider 
the first attempts. 

subgoal frame: is the number of unsuccessful first attempts to lock subgoal 
frames. A subgoal frame is locked in three main different situations: (i) 
when a new answer is found which requires updating the subgoal frame 
pointer to the last found answer; (ii) when marking a subgoal as completed; 
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(iii) when traversing the whole answer trie structure to remove pruned 
answers and compute the code for direct compiled code execution. 

dependency frame: is the number of unsuccessful first attempts to lock de­
pendency frames. A dependency frame has to be locked when it is checked 
for unconsumed answers. 

trie node: is the number of unsuccessful first attempts to lock trie nodes. Trie 
nodes must be locked when a worker has to traverse a trie structure to 
check/insert for new subgoal calls or answers. 

To accomplish these statistics it was necessary to introduce in the system a set 
of counters to measure the several parameters. Although, the counting mechanism 
introduces an additional overhead in the execution time, we assume that it does not 
significantly influence the parallel execution pattern of each benchmark program. 

Tables 8.6 and 8.7 show respectively the statistics gathered for the group of programs 
with and without parallelism. We do not include the statistics for the leader bench­
mark because its execution behavior showed to be identical to the observed for the 
sieve benchmark. 

The statistics obtained for the sieve benchmark support the excellent performance 
speedups showed for parallel execution. It shows insignificant amounts of contention 
points, it only calls a variant subgoal, and despite the fact that it suspends some 
SCCs it successfully avoids resuming them. In this regard, the samegen benchmark 
also shows insignificant amounts of contention points. However the number of variant 
subgoals calls and the number of suspended/resumed SCCs indicate that it introduces 
more dependencies between workers. Curiously, for more than 4 workers, the amount 
of variant calls and the amount of suspended SCCs seems to be stable. The only 
parameter that slightly increases is the number of resumed SCCs. Regarding iproto 
and lgrid/2, lock contention seems to be the major problem. Trie nodes show identical 
lock contention, however iproto inserts about 10 times more answer trie nodes than 
lgrid/2. Subgoal and dependency frames show an identical pattern of contention, but 
iproto presents higher contention ratios. Moreover, if we remember from Table 8.3 
that iproto is about 3 times faster than lgrid/2 to execute, we can conclude that the 
contention ratio for iproto is obviously much higher per time unit, which justifies its 
worst behavior. 



8.2. PERFORMANCE ON TABLED PROGRAMS 201 

Parameter 

Number of Workers 

Parameter 4 8 16 24 32 

sieve 
variant / complete 
SCC suspend/resume 
contention points 

subgoal frame 
dependency frame 
trie node 

1/0 

20/0 
108 

0 
0 

96 

1/0 
70/0 

329 
0 
0 

188 

1/0 

136/0 
852 

0 
1 

415 

1/0 

214/0 
1616 

0 
0 

677 

1/0 

261/0 
3040 

2 
4 

1979 

iproto 
variant/complete 
SCC suspend/resume 
contention points 

subgoal frame 
dependency frame 
trie node 

1/0 
5/0 

7712 
3832 
678 

3045 

1/0 
9/0 

22473 
9894 
4685 
6579 

1/0 
17/0 

60703 
21271 
25006 
10537 

1/0 
26/0 

120162 
33162 
66334 
11816 

1/0 
32/0 

136734 
33307 
81515 
11736 

samegen 
variant/complete 
SCC suspend/resume 
contention points 

subgoal frame 
dependency frame 
trie node 

485/1067 
187/2 

255 
8 

0 
154 

1359/193 
991/11 

314 
52 
0 

119 

1355/197 
1002/20 

743 
112 

1 
201 

1384/168 
1024/25 

1160 
283 

0 
364 

1363/189 
1020/34 

1607 
493 

0 
417 

lgrid/2 
variant/complete 
SCC suspend/resume 
contention points 

subgoal frame 
dependency frame 
trie node 

1/0 
4/0 

4004 
167 
98 

2958 

1/0 
8/0 

10072 
1124 
1209 
5292 

1/0 
16/0 

28669 
7319 
5987 

10341 

1/0 
24/0 

59283 
17440 
23357 
12870 

1/0 
32/0 

88541 
27834 
35991 
12925 

Table 8.6: Statistics of OPT Yap using batched scheduling for the group of programs 

with parallelism. 

The statistics gathered for the second group of programs present very interesting 

results. Remember that Igrid and rgrid/2 are the benchmarks that find the largest 
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Parameter 
Number of Workers 

Parameter 4 8 16 24 32 
lgrid 
variant/complete 
SCC suspend/resume 
contention points 
subgoal frame 
dependency frame 
trie node 

1/0 
4/0 

112740 
18502 
17687 
72751 

1/0 
8/0 

293328 
73966 
113594 
91909 

1/0 
16/0 

370540 
77930 
215429 
61857 

1/0 
24/0 

373910 
68313 
223792 
62629 

1/0 
32/0 

452712 
115862 
248603 
64029 

rgrid/2 
variant / complete 
SCC suspend/resume 
contention points 
subgoal frame 
dependency frame 
trie node 

3051/1124 
1668/465 

58761 
55415 

0 
1519 

3072/1103 
1978/766 
110984 
103104 

8 
3595 

3168/1007 
2326/1107 

133058 
122938 

5 
5016 

3226/949 
2121/882 
170653 
159709 

259 
4780 

3234/941 
2340/1078 

173773 
160771 

268 
4737 

Table 8.7: Statistics of OPTYap using batched scheduling for the group of programs 
without parallelism. 

number of answers per time unit (please refer to Tables 8.3 and 8.4). Regarding Igrid's 
statistics it shows high contention ratios in all parameters considered. Closer analysis 
of its statistics allows us to observe that it shows an identical pattern when compared 
with lgrid/2. The problem is that the ratio per time unit is significantly worst for 
lgrid. This reflects the fact that most of lgrid1 s execution time is spent in massively 
accessing the table space to insert new answers and to consume found answers. 

The sequential order by which answers are accessed in the trie structure is the key 
issue that reflects the high number of contention points in subgoal and dependency 
frames. When inserting a new answer we need to update the subgoal frame pointer 
to point at the last found answer. When consuming a new answer we need to update 
the dependency frame pointer to point at the last consumed answer. For programs 
that find a large number of answers per time unit, this obviously increases contention 
when accessing such pointers. Regarding trie nodes, the small depth of Igrid's answer 
trie structure (2 trie nodes) is one of the main factors that contributes for the high 
number of contention points when massively inserting trie nodes. Trie structures are 
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a compact data structure. Therefore, obtaining good parallel performance in the 

presence of massive table access will always be a difficult task. 

Analyzing the statistics for rgrid/2, the number of variant subgoals calls and the 
number of suspended/resumed SCCs suggest that this benchmark leads to complex 
dependencies between workers. Curiously, despite the large number of consumer nodes 
that the benchmark allocates, contention in dependency frames is not a problem. On 
the other hand, contention for subgoal frames seems to be a major problem. The 
statistics suggest that the large number of SCC resume operations and the large 
number of answers that the benchmark finds are the key aspects that constrain 
parallel performance. A closer analysis shows that the number of resumed SCCs is 
approximately constant with the increase in the number of workers. This may suggest 
that there are answers that can only be found when other answers are also found, 
and that the process of finding such answers cannot be anticipated. In consequence, 
suspended SCCs have always to be resumed to consume the answers that cannot be 
found sooner. We believe that the sequencing in the order that answers are found is 
the other major problem that restrict parallelism in tabled programs. 

Another aspect that can negatively influence this benchmark is the number of com­
pleted calls. Before executing the first call to a completed subgoal we need to traverse 
the trie structure of the completed subgoal. When traversing the trie structure the 
correspondent subgoal frame is locked. As rgrid/2 stores a huge number of answer trie 
nodes in the table (please refer to Table 8.4) this can lead to longer periods of lock 
contention. 

Next, we present an identical study for parallel execution of OPT Yap using local 
scheduling. 

Parallel Execution with Local Scheduling 

Table 8.8 presents the speedups for parallel execution of OPTYap with 2, 4, 6, 8, 12, 
16, 24 and 32 workers using local scheduling. The speedups are relative to the single 
worker case of Table 8.3 and they correspond to the best speedup obtained in a set of 
3 runs. As for batched, we group the benchmarks in two main blocks. 

On average the results for local scheduling are worst than those obtained for batched. 
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Program 
Number of Workers 

Program 2 4 6 8 12 16 24 32 

sieve 

leader 

iproto 

samegen 

lgrid/2 

2.00 

1.99 

1.68 

1.93 

1.84 

3.99 
3.97 
2.94 
3.92 

3.42 

5.98 

5.95 

3.59 

5.74 

4.86 

7.96 

7.94 

4.28 

7.66 

6.12 

11.92 

11.86 

4.90 

11.04 

7.83 

15.86 

15.77 

4.59 

13.54 

8.79 

23.69 

23.41 

4.23 

18.69 

12.23 

31.67 

31.23 

3.58 

21.56 

12.93 

Average 1.89 3.65 5.22 6.79 9.51 11.71 16.45 20.19 

lgrid 
rgrid/2 

0.47 
1.60 

0.40 
0.87 

0.42 
0.84 

0.46 
0.71 

0.35 
0.54 

0.29 
0.46 

0.25 
0.40 

0.17 
0.37 

Average 1.04 0.64 0.63 0.59 0.45 0.38 0.33 0.27 

Table 8.8: Speedups for OPTYap using local scheduling on tabled programs. 

Generally, the benchmarks that find more answers are the ones that introduce further 
overheads and obtain lesser speedups with local scheduling. These are the cases of the 
iproto and lgrid/2 benchmarks for the upper block and the lgrid and rgrid/2 for the 
lower block. In order to understand what extra overheads local scheduling introduces 
for parallel execution, we present in Table 8.9 some statistics gathered during parallel 
execution of these four benchmarks. We do not include the statistics for the sieve, 
leader and samegen benchmarks because their execution behavior showed to be similar 
to the observed for batched scheduling. 

A closer analysis of the statistics obtained in Table 8.9 for the four benchmarks in 
discussion clearly shows that the worst results obtained for local scheduling relate 
with a higher rate of contention in dependency frames. In particular, the difference is 
most obvious on the rgrid/2 benchmark. The rest of the parameters show comparable 
results to those obtained for batched scheduling. 

We remember the reader that in local scheduling after a leader subgoal is completed 
we need to consume the answers that were prevented from being returned to the caller 
environment. For sequential execution this is done by executing compiled code directly 
from the trie data structure associated with the completed subgoal. Unfortunately, this 
optimization is not possible on our parallel implementation of local scheduling. The 
problem is that workers may start consuming answers before subgoals were completed. 
This occurs for workers where the subgoals are not leaders. Hence, when a leader 
subgoal is completed we just act like a consumer node and start consuming answers. 
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Parameter 
Number of Workers 

Parameter 4 8 16 24 32 
iproto 
variant/complete 
SCC suspend/resume 
contention points 
subgoal frame 
dependency frame 
trie node 

1/0 
7/0 

36706 
3506 
31235 
1208 

1/0 
13/0 
78417 
8892 
64010 
2763 

1/0 
19/0 

135239 
21657 
100043 
5754 

1/0 
30/0 

192977 
30505 
142587 
7317 

1/0 
32/0 

206776 
32820 
155336 
7121 

lgrid/2 
variant/complete 
SCC suspend/resume 
contention points 
subgoal frame 
dependency frame 
trie node 

1/0 
4/0 

50723 
227 

44217 
4153 

1/0 
8/0 

67230 
2356 
54850 
6803 

1/0 
16/0 

85438 
7621 
52434 
11571 

1/0 
24/0 

106969 
18042 
33311 
13586 

1/0 
32/0 

115023 
31229 
57167 
13086 

lgrid 
variant/complete 
SCC suspend/resume 
contention points 
subgoal frame 
dependency frame 
trie node 

1/0 
4/0 

246749 
18051 
157773 
56866 

1/0 
8/0 

420431 
59689 
260984 
78822 

1/0 
16/0 

562025 
98627 
369394 
65705 

1/0 
24/0 

539567 
46987 
350291 
58551 

1/0 
32/0 

568159 
45580 
384847 
55573 

rgrid/2 
variant /complete 
SCC suspend/resume 
contention points 
subgoal frame 
dependency frame 
trie node 

3018/1157 
1711/509 
155099 
63247 
87115 
766 

3003/1172 
2199/995 
237860 
111433 
116296 
1854 

3006/1169 
2354/1139 

370182 
92703 
270226 
1658 

3012/1163 
2368/1154 

349569 
131749 
207565 
2255 

3029/1146 
2238/1014 

295013 
137762 
90304 
4989 

Table 8.9: Statistics of OPTYap using local scheduling for the group of programs 
showing worst speedups than for batched scheduling. 

The results presented in Table 8.9 suggest that in some cases this may be incompatible 
with good performance. The typical situation is when a leader subgoal with a large 
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number of answers completes and its answers start being heavily consumed by the 
available workers, therefore leading to high ratios of contention in the dependency 
frames. We believe that this is a very hard problem to be solved even if different 
parallel tabling approaches were developed. 

The statistics presented in the tables above clearly illustrate some of the problems 
behind parallel tabled evaluation. They are thus an excellent source for further study 
in order to improve and/or reformulate some of the implementation issues that showed 
to be less suitable for parallel execution. 

Two major conclusions can be highlighted from the performance analysis done in this 
section. First, there are table applications that can achieve very high performance 
through parallelism. Second, batched scheduling showed to be more adequate than 
local scheduling for parallel execution. 

8.2.5 Locking the Table Space 

OPTYap implements four alternative locking schemes to deal with concurrent accesses 
to the table space data structures. These schemes were described in subsection 6.3.2 
and were referred as: TLEL (Table Lock at Entry Level); TLNL (Table Lock at Node 
Level); TLWL (Table Lock at Write Level); and TLWL-ABC (Table Lock at Write 
Level - Allocate Before Check). 

To evaluate the impact that different approaches to locking the table space may 
produce during parallel execution, we ran OPTYap using the four alternative locking 
schemes for the tabled benchmark programs that showed significant speedups for 
parallel execution. Table 8.10 shows the speedups for the four alternative locking 
schemes with varying number of workers for batched and local scheduling. The 
speedups are relative to the single worker case and they correspond to the best speedup 
obtained in a set of 3 runs. 

Two main conclusions can be easily drawn from the speedups showed in Table 8.10. 
First, all benchmarks show identical patterns with the increase in the number of work­
ers for both batched and local scheduling. Apparently, this suggests that scheduling 
does not significantly influence lock contention in table access. Second, TLWL and 
TLWL-ABC are the locking schemes that present the best speedup ratios and they are 
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Locking 
Scheme 

Batched Scheduling Local Scheduling Locking 
Scheme 4 8 16 24 32 4 8 16 24 32 

sieve 
TLEL 
TLNL 
TLWL 
TLWL-ABC 

3.79 
3.80 
3.99 
3.99 

7.35 
7.24 
7.97 
7.97 

10.37 
11.86 
15.87 
15.85 

8.53 
3.98 

23.78 
23.78 

8.20 
4.71 

31.50 
31.47 

3.89 
3.79 
4.00 
3.99 

7.16 
7.23 
7.97 
7.96 

11.19 
12.19 
15.89 
15.86 

8.99 
2.56 

23.74 
23.69 

7.27 
4.18 

31.05 
31.67 

leader 
TLEL 
TLNL 
TLWL 
TLWL-ABC 

3.80 
3.49 
3.98 
3.98 

6.16 
6.32 
7.92 
7.94 

5.77 
8.45 

15.78 
15.75 

5.34 
4.39 

23.57 
23.46 

4.69 
3.05 

31.18 
31.07 

3.74 
3.32 
3.99 
3.97 

6.42 
5.86 
7.94 
7.94 

6.36 
9.91 

15.78 
15.77 

5.59 
3.56 

23.47 
23.41 

4.88 
3.07 

31.07 
31.23 

iproto 
TLEL 
TLNL 
TLWL 
TLWL-ABC 

1.66 
1.68 
3.05 
3.10 

1.41 
2.65 
5.08 
5.13 

1.25 
1.86 
9.01 
7.78 

1.23 
1.05 
8.81 
8.48 

1.05 
1.00 
7.21 
7.19 

1.87 
1.54 
2.72 
2.94 

1.58 
2.45 
4.41 
4.28 

1.12 
1.18 
4.42 
4.59 

1.09 
1.00 
3.79 
4.23 

1.01 
0.96 
3.42 
3.58 

samegen 
TLEL 
TLNL 
TLWL 
TLWL-ABC 

3.70 
3.68 
3.72 
3.83 

7.28 
7.23 
7.27 
7.29 

13.79 
13.80 
13.91 
13.92 

19.58 
19.64 
19.77 
19.71 

21.51 
24.04 
24.17 
24.29 

3.94 
3.88 
3.89 
3.92 

7.67 
7.64 
7.59 
7.66 

13.74 
13.74 
13.66 
13.54 

18.28 
18.86 
18.92 
18.69 

19.26 
21.46 
21.42 
21.56 

lgrid/2 
TLEL 
TLNL 
TLWL 
TLWL-ABC 

3.74 
3.48 
3.63 
3.60 

7.17 
6.79 
7.19 
6.95 

9.67 
12.16 
13.53 
13.46 

5.13 
6.26 

19.93 
18.96 

4.50 
5.30 

24.35 
24.20 

3.43 
3.28 
3.48 
3.42 

5.97 
3.11 
6.16 
6.12 

6.19 
7.84 
8.55 
8.79 

4.15 
5.40 
9.97 

12.23 

3.27 
4.33 

10.42 
12.93 

Table 8.10: OPTYap execution time with different locking schemes for the group of 
programs with parallelism. 

the only schemes showing scalability. Despite none of both schemes shows to clearly 
outperform the other, TLWL seems slightly better for batched scheduling and TLWL-
ABC for local scheduling. In order to avoid choosing only one, we decided to use 
TLWL for OPTYap Batched and TLWL-ABC for OPTYap Local in the performance 
study described during this chapter. 
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Closer analysis to Table 8.10 allows us to observe other interesting aspects: all schemes 
show identical speedups for the samegen benchmark, and the TLEL and the TLNL 
schemes clearly slow down for more than 16 workers. The reason for the good behavior 
of all schemes with the samegen benchmark arises from the fact that this benchmark 
calls 485 different tabled subgoals. This increases the number of entries where answers 
can be stored and thus reduces the probability of two workers accessing simultaneously 
the same answer trie structure. 

The slow-down of TLEL and TLNL schemes is related to the fact that these schemes 
lock the table space even when writing is not likely. In particular, for repeated answers 
they pay the cost of performing locking operations without inserting any new trie 
node. For these schemes the number of potential contention points is proportional 
to the number of answers found during execution, being they unique or redundant. 
This explains the slow-down presented by these schemes for the sieve and leader 
benchmarks. These benchmarks find a smaller number of unique answers, but have 
large number of redundant answers (please refer to Table 8.4). Curiously, for some 
benchmarks TLEL obtains better speedups than TLNL with the increase of workers. 
This suggests that for certain circumstances it is better to lock the whole trie and 
traverse it more quickly than lock node by node and increase the points of contention 
and the time spend to traverse the trie. 

8.3 Chapter Summary 

In this chapter we have presented a detailed analysis of OPTYap's performance. We 
started by presenting an overall view of OPTYap's performance for execution of non-
tabled programs. Then, we measured the sequential tabling behavior of OPTYap 
and compared it with current XSB. Next, we assessed OPTYap's performance when 
running tabled programs in parallel and discussed its execution behavior. At last, 
we studied the impact of using alternative locking schemes to concurrently access the 
table space. 

The initial results obtained for OPTYap shows that it introduces low overheads over 
Yap and YapTab for sequential execution of non-tabled and tabled programs, and that 
it compares favorably with current versions of XSB. Moreover, the results showed that 
OPTYap maintains YapOr's effective speedups in exploiting or-parallelism in non-
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tabled programs. For parallel execution of tabled programs, OPTYap showed superb 
results for two benchmarks and quite good results globally. However, there are tabled 
programs where OPTYap may not speedup up execution. Our study suggested that 
parallel execution of tabled programs is more natural for a batched scheduling strategy 
and for a TLWL or a TLWL-ABC locking scheme. 
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Chapter 9 

Concluding Remarks 

This long journey is about to end. In this final chapter, we begin by summarizing 
the main contributions of the thesis and then we suggest several directions for further 
travel. At the end, a final remark ceases the chapter and the thesis. 

9.1 Main Contributions 

The work described in this thesis can be stated as the design, implementation and 
evaluation of the OPTYap system. To the best of our knowledge, OPTYap is the first 
engine that exploits or-parallelism and tabling from logic programs. A major guideline 
for OPTYap was concerned with making best use of the excellent technology already 
developed for previous systems. In this regard, OPTYap uses Yap's efficient sequential 
Prolog engine [29, 31] as its starting framework, and the SLG-WAM [86, 89, 87] and 
environment copying [5, 56] approaches, respectively, as the basis for its tabling and 
or-parallel components. 

We then summarize the main contributions of our work. 

Novel computational models for parallel tabling. We have proposed two novel 
computational models, the Or-Parallelism within Tabling (OPT) and Tabling 
within Or-Parallelism ( TOP) models, that exploit implicit or-parallelism from 
tabled logic programs by considering all subgoals as being parallelizable, be they 
from tabled or non-tabled predicates. 

211 
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The YapTab sequential tabling engine. We have presented the design and imple­
mentation of YapTab, an extension to the Yap Prolog system that implements 
sequential tabling. YapTab reuses the principles of the SLG-WAM, whilst inno­
vating by separating the tabling suspension data in a single space, the depen­
dency space, and by proposing a new completion detection algorithm not based 
on the intrinsically sequential completion stack. YapTab has been implemented 
from scratch and it was developed to be used as the basis for OPTYap's tabling 
component. YapTab showed low overheads over standard Yap when executing 
non-tabled programs, and excellent results for tabling benchmarks if compared 
with the more mature XSB system [44]. 

The OPTYap or-parallel tabling engine. OPTYap's execution framework was a 
first step to study and understand the behavior and implications of exploiting 
parallelism from tabled logic programs. During this thesis, we have presented 
novel data structures, algorithms and implementation techniques to efficiently 
solve the challenging issues that a project of this size encompasses. These 
contributions can be used as a reference guide for other approaches that may 
follow. Next, we enumerate the most relevant contributions. 

• The dependency frame data structure and the idea of keeping apart, in a 
common shared space, the whole data related with tabling suspensions. 

• The generator dependency node (GDN) concept of signalling nodes that 
are candidates to be leader nodes. 

• New algorithms to quickly compute and detect leader nodes. 

• The novel termination detection scheme to allow completion in public nodes. 

• The support for suspension of strongly connected components (SCCs) and 
the assumption of SCCs as the units for suspension. 

• Newer scheduler heuristics to support tabling that explicitly deal with the 
flow of a parallel tabled evaluation and achieve a more efficient distribution 
of work in such evaluations. 

• The implementation techniques to deal with concurrent table access and 
the TLEL, TLNL, TLWL and TLWL-ABC locking schemes. 

• The distinction between inner and outer cut operations in a parallel tabling 
environment and the support for speculative tabled answers. 
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Performance study. We have performed a detailed study to assess the performance 
of the or-parallel tabling engine over a large number of parameters. During eval­
uation, the system was examined against a selected set of benchmark programs 
that we believe are reasonably representative of existing applications. From the 
results obtained, the following observations can be enumerated. 

• Sequential execution of non-tabled programs showed that YapOr, YapTab 
and OPTYap introduce, on average, respectively an overhead of about 
10%, 5% and 17% over standard Yap. Considering that Yap Prolog is 
one of the fastest Prolog engines currently available, these results are quite 
satisfactory. 

• Parallel execution of non-tabled programs showed that YapOr and OPTYap 
achieve, on average, identical speedups up to 32 workers. This result 
suggests that OPTYap do not introduces further overheads for parallel 
execution of non-tabled programs, despite the fact that it includes all the 
machinery required to support tabled programs. 

• Sequential execution of tabled programs indicate that OPTYap introduces, 
on average, an overhead of about 15% over YapTab for both batched and 
local scheduling strategies, which is very close to the overhead observed 
for non-tabled programs, about 11%. The small difference results from 
locking requests to the data structures introduced with tabling. The results 
also showed that we successfully accomplished our initial goal of comparing 
favorably with current state of the art technology since, on average, YapTab 
showed to be about twice as fast as XSB. 

• Parallel execution of tabled programs showed that the system was able to 
achieve excellent speedups up to 32 workers for applications with coarse 
grained parallelism and quite good speedups for applications with medium 
parallelism. Our results suggested that parallel execution of tabled pro­
grams is more natural for batched scheduling than for local scheduling and 
that concurrent table access is best handled by schemes that lock table 
data structures only when writing to the table is likely. On the other 
hand, there are applications where OPTYap was not able to speedup their 
execution. This is the case with applications whose evaluation is mostly 
deterministic or whose main execution operations rely on massive accesses 
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to the table space. The parameters evaluated during execution suggested 
that the slowdown for these applications is not caused by workers becoming 
idle, but because there is a lot of contention in handling tabled answers. 
In general, tabling tends to decrease the height of the search tree, whilst 
increasing its breadth. We therefore believe that further improvements 
in scheduling and on concurrent access to the data structures introduced 
to support parallel tabling may be fundamental to achieve even better 
scalability. 

Through this research we aimed at showing that the models developed to exploit 
implicit or-parallelism in standard logic programming systems can also be used to 
successfully exploit implicit or-parallelism in tabled logic programming systems. Initial 
results show that OPTYap can indeed speed up well known tabled programs without 
programmer intervention. The results reinforced our belief that tabling and parallelism 
are a very good match that can contribute to expand the range of applications for Logic 
Programming. 

9.2 Further Work 

We hope that the work resulting from this thesis will be a basis to conduct further 
improvements and further research in this area. OPTYap has achieved our initial goal. 
Even so, the system still has some limitations that may reduce its use elsewhere and 
its contribution in the support of realistic applications. Current limitations relate to 
issues not within the scope of the present work, but that are very important for wider 
use throughout the logic programming community. These include: 

Further experimentation. The current implementation needs to be tested more 
intensively with a wider range of applications. Many opportunities for refining 
the system exist, and more will almost certainly be uncovered with profound 
experimentation of the system. We gratefully acknowledge the generosity of 
tabling logic programming community by providing us access to several inter­
esting applications, such as XMC. We are experimenting with other tabled logic 
programming applications and differently platforms. 
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Scheduling strategies. OPTYap scheduling strategies are essentially inherited from 
YapOr's scheduler. Further work is still needed to implement and experiment 
with proper scheduling strategies that can take advantage of the tabling envi­
ronment. In subsection 6.8 we have proposed novel scheduling strategies that 
we believe should contribute for a more efficient work distribution strategy in an 
or-parallel tabled evaluation. 

Speculative work limitations. For certain groups of applications, such as best-
solution kind of problems, speculative computations represent a major problem. 
OPTYap prunes speculative computations as soon as a cut causing their specu-
lativeness is executed. However, it does not implement any scheduling strategy 
that makes speculative computations less likely. To some extent, these limita­
tion can be addressed by implementing Muse's sophisticated strategy - actively 
seeking leftmost available work [8], to voluntary suspend rightmost computations 
and thus reduce the degree of speculativeness of the work being done to obtain 
high performance (please refer to subsection 7.2.5 for more details). 

In the presence of tabling, pruning is an even more delicate issue. A deeper 
understanding of the interaction between pruning and tabling is required. We 
need to do it correctly, that is, in such a way that the system will not break but 
instead produce sensible answers, and well, that is, allow useful pruning with 
good performance. 

Support for full Prolog. To support full Prolog semantics, the system still needs 
more development, specially to support side-effects effectively. To ensure sequen­
tial Prolog semantics, side-effects must be executed by leftmost workers. Full 
support for side-effects in YapOr can be achieved by extending some of the data 
structures used to support the cut predicate and to support SCC suspension 
for parallel tabling. One interesting problem is the management of the internal 
database, as many applications require concurrency in database updates. Yap 
already includes the base machinery to allow such concurrency, however further 
work is need to make it usable by programmers. Several ideas about efficient 
side-effects implementation can be found elsewhere [53, 5, 21, 101, 57, 102]. 

Tabling is a more complex problem. Semantics are different and side-effects 
are not Prolog compatible in tabling, as they may depend on scheduling order. 
What do programmers expect from side-effects in a tabling environment is still 
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an open problem. 

Dynamic memory expansion. OPTYap allows to indicate the amount of memory 
required for each data area. However, during execution one may discover that 
the memory initially requested was insufficient. We would like to lift that burden 
from the user by allowing dynamic memory expansion. Unfortunately, dynamic 
memory expansion is a very complex operation when supporting an environment 
copying based implementation. Accomplishing efficiency is even more laborious. 
Proposals for novel memory organization schemes enabling efficient dynamic 
memory expansion operations are therefore required. 

Garbage collection. By nature, garbage collection is a heavy cost operation. For 
an environment copying based system, garbage collection may also lead to in­
consistency between the execution stacks of the running workers. Special care 
is not taken when incremental copying is used to share work. Although YapTab 
supports garbage collection, OPTYap does not implement garbage collection at 
all. In [4] K. Ali proposes some interesting mechanisms to deal with garbage 
collection for environment copying systems. 

Support for negation. A wide range of applications that use tabling require the 
expressiveness granted by the possibility of manipulating negative subgoals. 
OPTYap does not currently implement support for negation. Extending OPTYap 
to efficiently support negation will certainly be one major step forward to make 
OPTYap usable by a larger community. 

9.3 Final Remark 

Clearly, the research we present in this thesis is built on the vigorous research effort 
made by preceding researchers. Their ideas brought us the flame that has lighted up 
our way. With our work, we hope to shed at least a ray of light to someone else that 
may follow. 

Much work still remains to be done. A large amount of this available work will be 
exploited in parallel by many different research workers all over the world. Sometimes, 
much of the clues to pursue such work have already been tabled by other researchers 
when studying variant problems. The question therefore is how to efficiently distribute 



9.3. FINAL REMARK 217 

the available tasks through the available workers in such a way that we avoid speculative 
work and redundant answers for the subgoals of the ultimate query goal: 

?- develop system(S), least-development-COst(S), 
best-achievable-performance(S). 
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Appendix A 

Benchmark Programs 

This appendix contains the benchmark programs used in Chapter 8 to assess OPTYap's 
performance. For the set of non-tabled benchmark programs we provide the full Prolog 
code. On the other hand, as the tabled benchmark programs are quite lengthy, we 
only show parts of the code. The author may be contacted for the full Prolog code of 
these programs. 

A.l Non-Tabled Benchmark Programs 

cubes 

benchmark : - cubes7(_) . 

cubes7(Sol) : -
cubes(7,Qs), 
solve(Qs,[ ] , S o l ) . 

c u b e s ( 7 , [ q ( p ( 5 , l ) , p ( 0 , 5 ) , p ( 3 , l ) ) , 
q ( p ( 2 , 3 ) , p ( l , 4 ) , p ( 4 , 0 ) ) , 
q ( p ( 3 , 6 ) , p ( 0 > 0 ) , p ( 2 , 4 ) ) > 
q ( p ( 6 , 4 ) , p ( 6 , l ) , p ( 0 , l ) ) , 
q ( p ( l , 5 ) , p ( 3 , 2 ) , p ( 5 , 2 ) ) , 
q ( p ( 5 , 0 ) , p ( 2 , 3 ) > p ( 4 , 5 ) ) > 
q ( p ( 4 , 2 ) , p ( 2 , 6 ) , p ( 0 , 3 ) ) ] ) . 

so lve( [ ] ,Rs,Rs) . 
solve([CICs],Ps,Rs) : -

s e t (C ,P ) , 
check(Ps.P) , 
so lve (Cs , [P |Ps ] ,Rs ) . 

s e t (q (P l ,P2 ,P3) ,P ) : -
r o t a t e ( P l , P 2 , P ) . 

s e t (q (P l ,P2 ,P3) ,P ) : -

r o t a t 
s e t (q (P l 

r o t a t 
s e t (q (P l 

r o t a t 
s e t (q (P l 

r o t a t 
s e t (q (P l 

r o t a t 

e ( P 2 , P l , P ) . 
P2,P3),P) 

e ( P l , P 3 , P ) . 
P2,P3),P) 

e ( P 3 , P l , P ) . 
,P2,P3),P) 
e(P2,P3,P) . 
,P2,P3),P) 
e(P3,P2,P) . 

check([] , _ ) . 
check( [q(Al ,Bl ,Cl ,Dl ) |Ps ] ,P) : -

P = q(A2,B2,C2,D2), 
A1=\=A2, 
B1=\=B2, 
C1=\=C2, 
D1=\=D2, 
check(Ps.P) . 

ro ta te(p(Cl ,C2) ,p(C3,C4) ,q(Cl ,C2,C3,C4)) . 
ro ta te(p(Cl ,C2) ,p(C3,C4) ,q(Cl ,C2,C4,C3)) . 
ro ta te(p(Cl ,C2) ,p(C3,C4) ,q(C2,Cl ,C3,C4)) . 
rota te(p(Cl ,C2) ,p(C3,C4) ,q(C2,CI ,C4,C3)) . 
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ham 
benchmark : - ham(_). 

ham(H) : -
cycle_ham( [ a . b . c . d . e . f . g . h . i . j ^ . ^ m . n , 

o , p , q , r , s , t , u , v , w , x , y , z ] , H ) . 
cycle_ham([X|Y],[X,T|L]) : -

chain_ham( [XIY] , [] , [TIL] ) , 
ham_edge(T,X). 

chain_ham([X],L,[X|L]). 
chain_ham([X|Y],K,L) : -

ham_del(Z,Y,T), 
ham_edge(X,Z), 
chain_ham([Z|T],[X|K],L). 

ham_del(X,[X|Y],Y). 
ham_del(X,[U|Y] ,[U|Z]) : -

ham_del(X,Y,Z). 
ham_edge(X,Y) :-

ham_connect(X,L), 
ham_el(Y,L). 

ham_el(X,[X|J). 
ham_el(X,[_|L]) :-

ham_el(X,L). 
ham_connect(a,[b,n,m]). 

ham. 
ham. 
ham. 
ham. 
ham. 
ham. 
ham. 
ham. 
ham. 
ham. 
ham. 
ham. 
ham. 
ham. 
ham. 
ham_ 
ham. 
ham. 
ham. 
ham. 
ham. 
ham. 
ham. 
ham. 
ham 

connect(b 
connect(c 
connect(d 
connect(e 
connect(f 
connect(g 
connect(h 
connect(i 
connect(j 
connect(k 
connect(1 
connect(m 
connect(n 
connect(o 
connect(p 
connect(q 
connect(r 
connect(s 
connect(t 
connect(u 
connect(v 
connect(w 
connect(x 
connect(y 
connect(z 

, [ c , a , u ] ) 
, [ d , b , o ] ) 
. [ e , c , v ] ) 
, [ f , d , p ] ) 
. [ g , e , w ] ) . 
, [ h , f , q ] ) . 
, [ i . g . x ] ) . 
, [ j , h , r ] ) . 
, [ k , i , y ] ) . 
, [ l , j . B ] ) . 
, [m, k, z] ) . 
, [ a , l , t ] ) . 
, [ o , a , t ] ) . 
. [ p , n , c ] ) . 
, [ q , o , e ] ) . 
,Cr,p,g]). 
. [ s , q , i ] ) . 
, [ t , r , k ] ) . 
, [ s , m , n ] ) . 
, [v, z , b] ) . 
, [w, u, d] ) . 
, [ x , v , f ] ) . 
, [ y , w , h ] ) . 
, [ z , x , j ] ) . 
, C y , i , u ] ) . 

map 
benchmark : - map(_). 

map(M) : -
my_map(M), 
map_colours(C), 
colour_map(M,C). 

my_map([country(a,A, 
country(b,B, 
country(c,C, 
country(d,D, 
country(e,E, 
country(f,F, 
country(g,G, 
country(h,H, 
country(i,I, 
country(j,J, 

[B,C,D,F,G]), 
[A.C.E.G]), 
[A,B,D,E]), 
CA,C,E,F,H]), 
[B,C,D,H,I,J]), 
[A,B,D,G,H,J]), 
[A.B.F.J]), 
[D.E.F.I.j]), 
[E,H,J]), 
[E,F,G,H,I])]). 

colour_map( [],_). 
colour_map([Country I Map] .Colourlst) :-

colour_country(Country,Colourlst), 
colour_map(Map,Colourlst). 

colour_country(country(_,C,Adjacents).Colourlst) 
map_del(C,Colourlst,CL), 
map_subset(Adjacents,CL). 

map_subset( [],_). 
map_subset([CICs] .Colourlst) :-

map_del(C,Colourlst,_), 
map_subset(Cs,Colourlst). 

map_colours( [ red ,green ,b lue ,whi te ,b lack] ) . 
map_del(X,[X|L],L). 
map_del(X,[Y|Ll],[Y|L2]) : -

map_del(X, L1.L2). 

nsort 
benchmark : - n s o r t ( _ ) . 

nsort(L) :-
go_nsort([10,9,8,7,6,5,4,3,2,l],L). 

go_nsort(Ll,L2) :-
nsort_permutation(Ll,L2), 
nsort_sorted(L2). 

nsort_permutation( [ ] , [ ] ) . 
nsor t_permutat ion(L,[HIT]) : -

nsor t_de le te (H,L,R) , 
nsor t_permutat ion(R,T) . 

n so r t_de le te (X, [X |T] ,T) . 
nsor t_dele te (X,[Y|T] , [Y |T1]) 

n so r t_de l e t e (X ,T ,T l ) . 
nsor t_sor ted([X,Y|Z]) : -

X=<Y, 
nsort_sorted([Y|Z]). 

nsort_sorted([_]). 
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puzzle 

benchmark :- puzzle(_). 

puzzle([A,B,C,D,E,F,G,H,I,J,K,L,M,N,0,P,Q,R,S]) 
List=[l,2,3,4,5,6,7,8,9,10,ll, 

12,13,14,15,16,17,18,19] , 
member(A,List,La), 
member(B,La,Lb), 
C is 38-A-B, 
member(C,Lb,Lc), 
A<C, 
member(D,Lc,Ld), 
H is 38-A-D, 
member(H,Ld,Lh), 
A<H, 
C<H, 
member(E,Lh,Le), 
member(F,Le,Lf), 
G is 38-D-E-F, 
member(G.Lf.Lg), 
L is 38-C-G, 
member(L,Lg,Ll), 
A<L, 
member(I,Ll,Li), 
M is 38-B-E-I, 
member(M,Li,Lm), 

Q is 38-H-M, 
member(Q,Lm,Lq), 
A<q, 
member(J,Lq,Lj), 
N is 38-C-F-J-Q, 
member(N,Lj,Ln), 
K is 38-H-I-J-L, 
member(K.Ln.Lk), 
P is 38-B-F-K, 
member(P,Lk,Lp), 
S is 38-L-P, 
member(S,Lp,Ls), 
A<S, 
R is 38-Q-S, 
member(R,Ls,Lr), 
38 is D+I+N+R, 
member(Q,Lr,_Lo), 
38 is M+N+Q+P, 
38 is A+E+J+D+S, 
38 is G+K+O+R. 

member(X,[X|Y],Y). 
member(X,[X2IY],[X2IY2]) 

X\==X2, 
member(X,Y,Y2). 

queens 
benchmark : - queens(_) . 

queens(S) : -
get_solutions(11,S). 

get_solutions(Board_size,Soln) :-
solve(Boars_size,[],Soln). 

solve(Board_size,Initial,Final) :-
newsquare(Init ial,Next), 
solve(Board_size,[Next I I n i t i a l ] . F i n a l ) . 

so lveCBs,[square(Bs.Y) |L] , [square(Bs.Y) |L]) 
s i ze (Bs ) . 

newsquare([square(I,J)IRest],square(X,Y)) :-
X is 1+1, 
snint(Y), 
not.threatened(I,J,X,Y) , 
safe(X,Y,Rest). 

newsquare ([] .squared ,X)) :-
snint(X). 

not_threatened(I,J,X,Y) :-

I=\=X, 
J=\=Y, 
I-J=\=X-Y, 
I+J=\=X+Y. 

safe(X,Y, [ s q u a r e d , J ) |L]) : 
n o t . t h r e a t e n e d ( I , J , X , Y ) , 
safe(X,Y,L). 

s a fe (X ,Y, [ ] ) . 
size(11). 
snint(l). 
snint(2). 
snint(3). 
snint(4). 
snint(5). 
snint(6). 
snint(7). 
snint(8). 
snint(9). 
snint(lO). 
snint(11). 
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A.2 Tabled Benchmark Programs 

sieve 
benchmark : - reach(s ieve_0(5 ,4 ,27 ,end) , T). 

: - t ab l e reach /2 . 
reach(S,T) :-

trans(S,_,T). 
reach(S.T) :-

reach(S,N), 
trans(N,_,T). 

'/, the transition relation graph 
trans(par(A,end,end,B),nop,B). 
trans(par(A,B,C,D),E,par(A,F,G,D)) :-

(partrans(A,E,B,C,F,G);partrans(A,E,C,B,G,F)). 
trans(generator_0(A,B,C,D),out(A,B),D) :-

E is B+l, not B=<C. 

'/, auxiliary predicates 

leader 
benchmark :- reach(systemLeader_0(5,end), T). 

:- table reach/2. 
reach(S,T) :-

trans(S,_,T). 
reach(S,T) :-

reach(S,N), 
trans(N,_,T). 

'/, the transition relation graph 
trans(par(A,end,end,B),nop,B). 
trans(par(A,B,C,D),E,par(A,F,G,D)) :-

(partrans(A,E,B,C,F,G);partrans(A,E,C,B,G,F)). 
trans(medium 0(A,B,C,D), 

in(A,E),medium_0(A,B,[E|C],D)). 

7, auxiliary predicates 

iproto 

benchmark :- reach(iproto_0(_,_,end), T). 

:- table reach/2. 
reach(S.T) :-

trans(S,_,T). 
reach(S.T) :-

reach(S,N), 
trans(N,_,T). 

window_size(2). 
seq(4). 

fixed(fix). 

'/, the transition relation graph 
trans(par(A,end,end,B),nop,B). 
trans(par(A,B,C,D),E,par(A,F,G,D)) :-

(partrans(A,E,B,C,F,G);partrans(A,E,C,B,G,F)). 
trans(iproto_0(A,B,C),nop,imain_0(C)). 

1, auxiliary predicates 

samegen 
benchmark :- same_generation(_,_). 

:- table same_generation/2. 
same_generation(X,Y) :-

cyl(X,Z), 
same_generation(Z,W), 
cyl(Y.W). 

same_generation(X,X). 

'/, the cylinder data 
cyl(l,30). 
cyl(l,40). 
cyl(2,43). 

cyl(551,569). 
cyl(552,569). 
cyl(552,564). 
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lgrid 
benchmark :- lpath(_,_). 

:- table lpath/2. 
lpath(X.Y) : -

lpa th(X.Z) , 
l ink(Z.Y) . 

lpath(X,Y) : -
l ink(X.Y). 

'/„ the 25x25 gr id 
l i n k ( l , 2 ) . 
l i n k ( 2 , l ) . 
l i n k ( 2 , 3 ) . 
l i n k ( 3 , 2 ) . 

l ink(575 ,600) . 
l ink(600 ,575) . 
l ink(600 ,625) . 
l ink(625 ,600) . 

lgrid/2 

benchmark : - l p a t h ( _ , _ ) . 

: - t a b l e l p a t h / 2 . 
lpath(X.Y) :-

lpath(X.Z), 
arc(Z.Y). 

lpath(X.Y) :-
arc(X.Y). 

arc(X.Y) :-
link(X.Y). 

arc(X.Y) :-
link(Y.X). 

'/. the 20x20 grid 
l i n k ( l , 2 ) . 
l i n k ( 2 , 3 ) . 
l i n k ( 3 , 4 ) . 
l i n k ( 4 , 5 ) . 
l i n k ( 5 , 6 ) . 

l ink(300,320) 
l ink(320,340) 
l ink(340,360) 
l ink(360,380) 
l ink(380,400) 

rgrid/2 

benchmark : - r p a t h ( _ , _ ) . 

: - t a b l e r p a t h / 2 . 
rpath(X.Y) :-

arc(X.Y). 
rpath(X.Y) :-

arc(X.Z), 
rpath(Z,Y). 

arc(X.Y) :-
link(X.Y). 

arc(X,Y) :-
link(Y.X). 

'/. the 20x20 grid 
link(l,2). 
link(2,3). 
link(3,4). 
link(4,5). 
link(5,6). 

link(300,320). 
link(320,340). 
link(340,360). 
link(360,380). 
link(380,400). 
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