

Development of a system for communication and control of

an electrical spindle

THANG VAN TRAN

Dissertação do MIEM

Orientadores:

Prof. Manuel Rodrigues Quintas

Prof. Paulo Augusto Ferreira de Abreu

Mestrado Integrado em Engenharia Mecânica

Porto, Julho de 2011

ii

1

Abstract

 Today, the beauty is one of the main major in enjoying. The things which people wear are

very important. So shoes are one aspect contributing for that. However, shoes making is

based on small and medium enterprises with an intensive manual labor. This structure has

strong barriers to the automation of technological processes, which affect productivity, giving

it a strong dependence of labor-skilled personal and low flexibility. What is executed in this

project is to improve an existing robotic system for finishing operations of shoes. The robotic

system includes a robot carrying a shoe, a device carries a cutting tool, a control unit which

control the velocity of the tool depend on the position of tool

Keyword: Finishing operation, robotic system, automation global architecture.

2

3

 Acknowledgments.

 Start here by expressing a deep gratitude to my advisors, Professor Manuel Quintas and

Professor Paul Abreu for their support, availability and tireless dedication throughout this

semester. For the long hours spent with me in seeking solutions to problems that arose with

the development of this project, and the sharing of knowledge that helped me at various

stages to improve this work, I leave here my sincere thanks.

 I also thank the coordinator of the Lotus project, the staff Ana Paiva, the monitoring done

during this period, and for her constructive criticism.

 I would also like to thank my colleagues in the automation option, especially when Carlos,

Patricia, Antonio and Na, the help they gave and for the good times of fellowship and

relaxation with table soccer ("matraquilhos")

 To my friends in general, to colleagues with whom I shared the house, my friends from

Erasmus, for their support and memories we are building together in recent years and will

never forget.

 Finally I would like to thank my family, especially my brother, my parents and my

grandparents, who are an example of life for me and always supported me in all

circumstances, so I often do not always the easiest way is most helpful.

4

5

Table of Contents

1. Introduction .. 9

1.1 Introduction ... 9

1.2 Objectives of the Project ... 10

2. The Existing Robot System and Features .. 11

2.1 Introduction ... 11

2.2 The Robotic System .. 11

2.2.1 Hardware .. 11

2.2.2 Principle of Operation of Finishing Process .. 14

2.3 The Characteristic of Current System ... 17

3. Development of the new Control Unit ... 19

3.1 Introduction ... 19

3.2 New Global Architecture .. 19

3.3 Control Unit Architecture.. 20

3.3.1 Description of Architecture.. 20

3.3.2 Devices for the Control Unit .. 22

3.4 Software Development .. 25

3.4.1 Development Tool ... 25

3.4.2 Control Algorithm .. 27

3.5 Conclusion ... 29

4. Implementation of the new Control Unit ... 31

4.1 Introduction ... 31

4.2 Simulation ... 31

4.3 Hardware Prototype... 34

4.4 Conclusion ... 34

5. Conclusions and Recommendations .. 35

6

6. References .. 37

Appendix A: Delta Ac Driver .. 39

Appendix B: Mcp4821 ... 47

Appendix C: Pic 4432 .. 49

Appendix D: Schematic for Electronic Board of Control Unit.. 53

Appendix E: The Detail Flow Chart .. 55

Appendix F: Code Programming for Control Unit Board ... 57

7

List of Figures

Figure 2.1 - Robot ABB IRB2400 and robot controller IRC5 [ABB Robotic,2010] 12

Figure 2.2 - Tool mounted on force control device. [Viana,2010] .. 12

Figure 2.3 - Direction of force control [Viana, 2010] ... 13

Figure 2.4 - Structure of control force device [Viana, 2010] ... 14

Figure 2.5 - Reference position of the tool. [Viana, 2010] ... 16

Figure 2.6 - Operating principle of the system [Viana,2010] .. 16

Figure 2.7 - Global architecture system. .. 17

Figure 3.1 - New global architecture. .. 20

Figure 3.2 - Control unit architecture .. 21

Figure 3.3 - MCP 48821 image.. 23

Figure 3.4 - PIC 18f4431 ... 23

Figure 3.5 - AC motor driver [Delta, 2010] ... 24

Figure 3.6 - CCS C compiler ... 25

Figure 3.7 - The mode 1 graph... 28

Figure 3.8 - The mode 2 graph... 28

Figure 3.9 - The outline flowchart. .. 29

Figure 4.1 - ISIS interface.[Proteus,2010] ... 32

Figure 4.2 - Electronic diagram for simulation. ... 33

Figure 4.3 - Hardware prototype .. 34

8

9

1. Introduction

1.1 Introduction

 This thesis is organized in five chapters. The first chapter presents an introduction about this

project, an overview of project. The second chapter describes the robotic system for finishing

soles of shoes and the auxiliary device which will be integrated into the finish that best meet

the requirements and meets the resources available. The robotic system presented was

developed for finishing shoes soles, but it can be applied well for any finishing operation of

others product. A global architecture is mentioned so that reader can understand operation of

robotic system.

 The third chapter refers the strategy to be adopted in implementing the new control unit,

goes through the construction and integration into the old control unit, the new control block

for tool velocity, conceived in this project in view of the requirements thereof and analyzed

previously.

 In this chapter, there are sections as new global architecture, control unit architecture,

description of architecture, devices in control unit, software development, development tool

control algorithm. Following sections in order to understand clearly about new control unit.

 The fourth chapter focuses on implementation control unit of developed in the third chapter.

All procedures carried out to test and validate the proposed solution are explained in detail

here as well as the tests conducted and the experimental results. Furthermore, this section

presents the prototype, simulation for work done above. The last chapter presents the global

conclusions.

10

1.2 Objectives of the Project

 The objective of this work involves the development of a system to control the speed of an

electrical spindle to be used in a device used in robotic machine operations. The device has a

linear actuator, with a position sensor, that supports the spindle. The device has a

microcontroller that reads the data from a position sensor and send that data to the robot

controller. It is now envisage to add the capability of controlling the speed of the spindle

through a new microcontroller. For that purpose, the microcontroller must be connected to

the driver of the spindle, to send a reference velocity signal and to start/stop the motor.

 So far, the actual device where the spindle will be fitted has been developed. The device has

a pneumatic actuator so that the contact force can be regulated through pneumatic valves,

having a position sensor (encoder) to measure the position of tool. The current

implementation, based on a microcontroller, enables to communicate the position data to the

robot controller through a RS232 link. The proposed work must now be built on top of the

existing system, so that it will be possible to control the speed of the spindle. With this

implementation it will be possible to implement a cooperative working mode between the

device with the spindle and the robot. The implementation of the speed control will be based

on the microcontroller.

11

2. The Existing Robot System and Features

2.1 Introduction

 This chapter describes the finishing robotic system for shoes and the auxiliary device which

is integrated into the robotic cell. The robotic system is developed for finishing shoes soles,

but it can be applied well for any finishing operation of others product. A global architecture

is mentioned so that the reader can understand the robotic system operation.

2.2 The Robotic System

2.2.1 Hardware

 Typically the robot cell concept includes the presence of certain systems. These systems

apart from including the existence of a robot and its controller, include a tool carried by the

robot, a system of supply / removal of products, positioning systems, safety mechanisms. The

robot cell available to this project, has only the basic systems, such as the robot (and its

controller) and the finishing device.

 Robot & Robot Controller

The robot used in this project is an ABB IRB2400 available at the Robotics Laboratory

Department of Mechanical Engineering, Faculty of Engineering, University of Porto, with its

driver IRC5 (Figure 1.1). This six-axis manipulator has a maximum range of 1.5m, a

maximum load capacity of 16kg and a repeatability of 0.06mm. [ABB Robotic ,2010]

12

 Figure 2.1 - Robot ABB IRB2400 and robot controller IRC5 [ABB Robotic,2010]

Tool & spindle

 It was determined that the cutting tool used was a cylindrical cutter because of its

advantages. The diameter and number of teeth of the tool, are two factors to take into account

when choosing the tool. Tools with small diameter have a lower peripheral velocity which

implies a higher speed of the tool, while the excessive increase of their diameter cannot

ensure a desired finish on parts with tight contours. Increasing the number of teeth provides a

better finish, but also allows the accumulation of material between the cutting edges,

resulting in unwanted heating of the tool, and a bad cut. Thus, it was chose a generic cutter

with 20mm in diameter with three straight teeth.

 Figure 2.2 - Tool mounted on force control device. [Viana,2010]

13

 Auxiliary Device for Control Contact Force

 Given the equipment available in the robotics lab, Faculty of Engineering, University of

Porto, it has been adopted setting the robot centered in the cell (Figure 2.2), being the most

appropriate configuration to existing conditions. To perform the finishing operations of the

soles of shoes it was conceived an auxiliary device that supports the tool, which the robot

moves the shoes. It is intended that its construction is simple, economical and appropriate use

of a robot controlled in position and velocity. Studied the generic settings possible for the

finishing device, and once in performing the finishing operations of the soles of shoes you

want to use a robot with 6 degrees of freedom, was conceived an auxiliary finishing device

fixed outside the robot, that supports the tool.

 Figure 2.3 - Direction of force control [Viana, 2010]

The robot is responsible for handling the shoe. The contact force that can be adjusted is

exerted in the direction perpendicular to the surface to be machined. Thus, taking advantage

Direction Of
Force Control

14

of the ability to position / orientation and the multiplicity of available configurations that such

a robot has, it is possible to implement force control system with reduced complexity.

Neglecting the forces generated by the cutting process, a direction of force control is

sufficient for this system, since the robot ensures the perpendicularity of the sole of the shoe

relative to the direction in which the force is controlled. The device has one linear degree of

freedom linear for force control. As can be seen in Figure 2.3, the contact force should be

controlled in the direction perpendicular to the surface to be machined. The robot is

responsible for ensuring the continuous positioning of the shoe, orienting it correctly in

relation to the tool, so that is only necessary to provide one direction for force control. It is

intended to eliminate the need for the existence of a system of force control in the robotic arm,

with higher cost.

 Figure 2.4 - Structure of control force device [Viana, 2010]

2.2.2 Principle of Operation of Finishing Process

 The operating principle of the system which is intended to implement is dependent on the

properties of the auxiliary device to finish. Thus, it is necessary to define its functional

characteristics firstly.

15

Device Characterization

 In the idealized setting, the auxiliary device is fixed in the workspace of the robot, and has

two fundamental characteristics:

• Allows adjustment of contact force between the tool that carries along a linear

degree of freedom, and the shoe that is manipulated by robot;

• Allows measurement of linear displacement corresponding to the position of the tool.

The contact force adjustment is performed in a passive manner, using a pneumatic actuator

system and adjusting the pneumatic pressure. The displacement is measured using a linear

incremental encoder. A micro controller reads and processes the encoder signal and sends to

the robot controller the position data through a serial port, using the principles of

communication via RS-232.

The device has also an adjustable mechanical stop to allow the limitation of the current

positioning of the axis of the tool.

 Principle of Operation of the System

 In the planned design, the robot is controlled in position and velocity trajectory and carries

the shoe that will be machined in the fixed auxiliary device, outside the robot. The robot

manipulates the shoe to ensure squarness of the sole from the cutting tool. It is intended that

the robot describes a known trajectory, with a preset speed, traversing a set of points

corresponding to the desired final shape of the contour of the sole of the shoe. During

execution of the cutting motion, the description of the trajectory is tangential to the cutting

tool. This remains at its reference position (defined by setting a mechanical stop), where the

real contour of the shoe’ sole resembles geometrically to its desired shape, imposed by the

path (Figure 2.5).

16

Figure 2.5 - Reference position of the tool. [Viana, 2010]

 In this situation, the default speed of the path is updated (reduced) by the robot controller,

depending on the signal received from the position of the tool. Thus, the default speed of

execution of the trajectory will be continuously updated in terms of greater or lesser amount

of material to remove.

 The diagram of Figure 2.6 shows the components and working principle of the system it that

is available.

 Figure 2.6 - Operating principle of the system [Viana,2010]

 Figure 2.6 shows the operating principle of the existing system. The robot controller is used

to command the robot which manipulate a shoe. The tool is operated at a fixed speed. The

position of the tool is measured and communicated through the serial port to the robot

Reference position

Adjustable
mechanic stop

controller

T

O

O

L

Robot

encoder

Actuator
Interface
measurement,
monitoring and
reporting

Force Control Device

17

controller. The execution speed of the robot trajectory is adjusted, depending on the value of

the position. Figure 2.7 show the global architecture of the existing system

 Figure 2.7 - Global architecture system.

2.3 The Characteristic of Current System

Tests carried out with this system were able to identity some problems. The update of the

robot path velocity is achieved but with a constant time delay. This is due to the time it takes

the robot controller to update the velocity and not from the time it takes to send the position

data from the device to the controller. This behavior has implications in the material remove

rate that can be achieved.

To improve the machining operations, it was found necessary to provide the tool with a

variable cutting speed.

18

19

3. Development of the new Control Unit

3.1 Introduction

 This chapter presents the new global architecture, the description of the control unit

architecture, and its components, the, and the development of the control algorithm.

 The strategy to be adopted in improving the existing device goes through the construction

and integration existing device with a new control unit for tool velocity adjustment.

It is intended so that the new control unit has the following characteristics

• Compatible with the old control unit

• Provide an interface to the ac driver driven the spindle

• Provide an interface to cope with alarm conditions

• Measure and display the working position of the tool

• Ability to control velocity based on the position of the tool

• Ability to communicate position data via serial port connection.

3.2 New Global Architecture

 Because of the disadvantages shown in section 2, the envisaged solution to overcome these

problems involves controlling the velocity of the tool based on the position of the tool. In the

old architecture, a control unit was made to receive the position signal from the encoder of

the pneumatic system then send it to robot controller. Figure 3.1 shows the new architecture.

As showed the velocity of the tool is depended on the position of the tool. For that purpose,

an AC spindle motor controlled with a variable frequency driver (Delta VFD-B) was chosen.

20

Figure 3.1 - New global architecture.

 As it is compared with the old global architecture, there are two more hardware components.

There is an AC driver that will be referred at the beginning of section 3 and a control unit.

 The input for each control unit is the position tool signal sent from encoder. But the unit 2

will output a control signal for tool velocity. So the difference is clear now. There are more

extra functions for control unit 2 listed step by step into each section.

3.3 Control Unit Architecture.

3.3.1 Description of Architecture

 It is necessary to design a device which is suitable with all the requirements presented.

Considerations about input and output signals are very important. For input signals it was

considered the need to cope with the encoder signal, the user interface communication and

signal that monitors the presence of the air supply that is required to operate the spindle.

 The output signals considered are reference voltage for the ac driver, the LCD display and a

led to be used as an alarm indicator.

21

Figure 3.2 - Control unit architecture

Figure 3.2 shows the architecture of the control unit that is based on the microcontroller Pic

18F4431. The input signals are connected directly to the Pic. To provide the analog output

signal that connects to the ac driver it was necessary since the microcontroller can only

output signals in the range from 0v to 4v and the ac driver requires a signal from 0v to 10v.

22

3.3.2 Devices for the Control Unit

The following table lists all components used for the control unit.

N Component

1. Power button

2. Switch “on/off”

3. Voltage Regulator Max 667

4.
Led

5. Pic 18f4431

6. Digital to analog converter MCP4821

7. Keypad

8. LCD

9. Capacitors

10. Resistors

11. Amplifier.

12. Ac driver.

Digital to Analog MCP 4821

 Description

 The microchip MCP4821 device is 2.7-5.5V, low power, low DNL, 12 bit digital to analog

converters (DACs) with internal band gap voltage reference, optional 1 buffered output and

serial peripheral interface(SPI). The MCP4821 DACs provide high accuracy and low noise

performance for industrial applications where calibration or compensation of signals (such as

temperature, pressure and humidity) are required. The MCP4821 are available in the

extended temperature range and PDIP, SOIC and MSOP packages. The MCP4821 includes

one-buffered registers, allowing simultaneous updates using the LDAC pin. The device also

incorporates a Power – on Reset(POR) circuit to ensure reliable power- up (Figure 3.4)

[MCP Datasheet, 2010]

23

 Figure 3.3 - MCP 48821 image

This component, it have SPI interface with 20 MHZ clock support, precision selectable

voltage reference, low power dace. It is voltage- output string DACs.

 The coding of the device is straight binary, with the ideal output voltage given by equation

PIC 18f4431

Description

 Figure 3.4 - PIC 18f4431

 The microcontroller used is the PIC 18F4432 from Microchip, and is the central element of

this control unit (Figure 3.5). This micro controller from Microchip was chosen to integrate

this circuit, because it belongs to a family of micro controllers whose characteristics are

perfectly suited to the requirements.

 This component has a serial communications interface, which allows for serial

communication with other devices, and an interface for connection of incremental encoder

24

QEI (Quadrature Encoder Interface) capable of measuring speeds, directions and detect

changes of direction. It also has an internal oscillator that can be programmed to the desired

clock frequency, thus eliminating the need to incorporate external crystals in the system

electronics. The frequency used was 8 MHz. The clearly description of this chip is in

appendix C. [Pic datasheet, 2010]

 The programming of this element was made using the card electronics mikroElektronika's

development Easypic 4, and its software programming mikroC. The programming code used

in this system is in Appendix E.

AC motor driver: Delta VDF – B Series:

 Description

 The driver considered is from Delta Electronics Company [Delta, 2010]. The model VFD-B

represents Delta's NEMA1 general purpose AC drive. The VFD-B series drive is rated to

provide constant torque, featuring open and closed loop vector control. Delta offers an

optional 2000 Hz high speed output that can be factory programmed at the customer's request.

 Figure 3.5 - AC motor driver [Delta, 2010]

25

3.4 Software Development

3.4.1 Development Tool

 This section presents the developments of the software for the control unit 2. First, the

requirements for programming involved the choice of an integrated developing environment

(IDE). Among the ones available, the Micro C and CCS were considered. It was chosen CCS

as it provides flexible environment bases on standard computing language. It also have large

library of function which is easy for user.

CCS Overview

 CCS for use in this project is 4.122 PCW Compiler version (2011). The latest versions of

multiple-function 3227 is new and new functions, new update. Their programming for the

PIC 12 bit, 14 bit and PIC 18. the menus and toolbars are set-up in specially organized

Ribbon. Each Ribbon relates to a specific type of activity and is only shown when selected.

CCS has included a “user toolbar” ribbon that allows the user to customize the ribbon for

individual needs. [CCS, 2011]

Figure 3.6 - CCS C compiler

Program syntax

A program is made up of the following four elements in a file:

• Comment

• Pre-Processor Directive

• Data Definition

• Function Definition

26

Every C program must contain a main function which is the starting point of the program

execution. The program can be split into multiple functions according to their purpose and

the functions can be called from the main or the sub functions. In a large project functions

can also be placed in different C files or header files that can be included in the main C file to

group the related functions by their category. CCS C also requires to include the appropriate

device file using #include directive to include the device specific functionality. There are also

some preprocessor directives like #fuses to specify the fuses for the chip and #use delay to

specify the clock speed. The functions contain the data declarations, definitions, statements

and expressions. The compiler also provides a large number of standard C libraries as well as

other device drivers that can be included and used in the programs.

Here is a sample program with explanation using CCS C to read analogue samples over

RS232:[4]

///

/// This program displays the min and max of 30, ///

/// comments that explains what the program does, ///

/// and A/D samples over the RS-232 interface. ///

///

#if defined(__PCM__) // preprocessor directive that chooses the compiler

#include <16F877.h> // preprocessor directive that selects the chip PIC16F877

#fuses HS,NOWDT,NOPROTECT,NOLVP // preprocessor directive that defines fuses for

the chip

#use delay(clock=20000000) // preprocessor directive that specifies the clock speed

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7) // preprocessor directive that includes

the rs232 libraries

#if defined(__PCH__) // same as above but for the PCH compiler and PIC18F452

#include <18F452.h>

#fuses HS,NOWDT,NOPROTECT,NOLVP

#use delay(clock=20000000)

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)

#endif

void main() { // main function

int i, value, min, max; // local variable declaration

printf("Sampling:"); // printf function included in the RS232 library

setup_port_a(ALL_ANALOG); // A/D setup functions- built-in

27

setup_adc(ADC_CLOCK_INTERNAL); // A/D setup functions- built-in

set_adc_channel(0); // A/D setup functions- built-in

do { // do while statement

min=255; // expression

max=0;

for(i=0; i<=30; ++i) { // for statement

delay_ms(100); // delay built-in function call

value = Read_ADC(); // A/D read functions- built-in

if(value<min) // if statement

min=value;

if(value>max) // if statement

max=value;

}

printf("\n\rMin: %2X Max: %2X\n\r",min,max);

} while (TRUE);

} [CCS,2011]

3.4.2 Control Algorithm

 Two modes definition

The control algorithm implements two modes of operation to define the velocity reference (to

be sent to the driver) based on the measurement position of the tool. The first mode generates

a continuous reference velocity (see figure 3.7). The second mode generates a two level

discrete reference (see figure 3.8). The user has the choice of choosing one of these control

modes and to define the parameters for that.

In figure 3.7 is showed the first mode.

28

Figure 3.7 - The mode 1 graph

The following graph in Figure 3.8 presents the second mode.

Figure 3.8 - The mode 2 graph.

29

Figure 3.9 presents an outline flowchart for algorithm.

 Figure 3.9 - The outline flowchart.

More detailed flowcharts are presented in Appendix E.

3.5 Conclusion

This section presents the reasons & solution for a new control unit. At the beginning, it

presents about reasons then introduce a new global architecture. Inside the new global

architecture, there is a new control unit described carefully, from architecture to device, from

development tool to control algorithm.

Star

Mode 1 or

Mode 1 Mode 2

Enter or

Mode

Star

Mode

30

31

4. Implementation of the new Control Unit

4.1 Introduction

 The fourth chapter focuses on the implementation of the control unit presented in the third

chapter. All procedures carries out to test and validate the proposed solution are explained in

detail here, and the tests conducted and the experimental results. Also, this section shows

simulations and prototype built.

4.2 Simulation

The developed control unit, based on the Microchip microcontroller was first simulated on a

software from Proteus System. The software tool is ISIS – intelligent schematic input system

[Figure 4.1] ISIS provides full control of the drawing appearance in terms of line widths, fill

styles, colors and fonts. This enables to produce attractive schematics like the ones seen on

magazines rather than the 'thin line' diagrams often associated with older CAD software.

Once your drawing is complete you can export it as a graphics file or copy it to the clipboard

for incorporation in other documents. This makes ISIS ideal for use in producing technical

documentation, academic papers, project reports, as well as being an excellent front end for

PCB design. The drawing appearance is defined in terms of a style template - especially

useful if you want to apply a ‘house style’ to all your designs. Furthermore, the scheme

allows you to customize the appearance of the library parts supplied with the package.

[Proteus, 2010]

32

 Figure 4.1 - ISIS interface.[Proteus,2010]

Library device.

ISIS comes with a device library including over 10,000 parts. The libraries include standard

symbols, transistors, diodes, thermionic valves, TTL, CMOS, ECL, microprocessor and

memory parts, PLDs, analog ICs and op-amps as well as manufacturer specific libraries from

National Semiconductor, Philips, Motorola, Teccor, Texas and Zetex. More libraries are

being created as part of an ongoing program.

Schematic diagram.

Based on a demo version of ISIS, available for download from the Proteus website, it was

simulated the control unit developed.

 To conduct this simulation it was necessary to draw the electronic schematic, as shown in

Figure 4.2. There is not enough symbols in ISIS to present devices for electronic devices. It is

necessary to choose blocks which have the same characteristics with device but differ in

name. For example, to simulate the encoder signal it was used from the library of ISIS, a

block called Encoder – motor. The display and keypad are standard elements of the library. A

switch present for air supply connection. A button used for start button. A led present for

alarm in real system and a multimeter is used for showing output signal.

33

Figure 4.2 - Electronic diagram for simulation.

The following list explains simulation symbols used for the electronic diagram.
1. The motor–encoder used to generate the encoder signal which present the position signal.

The signal can be increased or decreased when the switch 1 (10) turn on or turn off.
2. Dc voltmeter presents for multimeter measuring output analog signal.
3. Switch – SPST presents for air supply connection. If the air is connected, the switch is

closed
4. The standard LCD LM016L
5. Keypad smallcallc
6. The button presents the start button in real system.
7. The led green presents for alarm in real system: when there are something happened such

as air supply is not connected, the alarm will ring.
8. The pic 18f4431
9. The led – biddy presents for enable another device.
10. The mcp4821
11. Two switches – SPDT two change direction of motor mean changing increasing or

decreasing encoder signal

34

After drawing schematic diagram, the ccs tool compile to hex file. In ISIS, there is a function

which allow to input hex file for simulation. It just need to be directed to the directory.

4.3 Hardware Prototype
After having the control unit fully defined in the simulation software, it was built a hardware

version of it. For that purpose it was used a breadboard where the components were

assembled and connected. It was used a rotary encoder. To check the analog output signal

that is send to the driver of the motor, it was used a multimeter, apart from being possible to

read its value in the programed display. The pic18f4431 & mcp4821 are new from the

laboratory of Mechanical Department. The LCD used has 2 rows, each one having 16

characters. The keypad is a new one from the lab in Mechanical Department. The power

supply is a Tektronix PS282 to generate a voltage 5 volts through a new MAX667.

 Figure 4.3 - Hardware prototype

4.4 Conclusion

 Once the implementation of the developed system and the simulation taken as required to

assess their behavior, we can have several conclusions. The developed control unit 2 fulfills

the requirements established for the system. The user can choose two modes operating.

Reference voltage change whenever input signal change. Simulation work made both in

Proteus and bread board. Simulation in Proteus is easier than in bread board.

35

5. Conclusions and Recommendations

 This project took near 4 months in the laboratory of Mechanical Department. The procedure

happened as following. The initial time was taken study the current existing system

identifying its capability and disadvantages.

 Then it was defined a new control architecture for operating the existing system. This had to

the choice of implementing a new control unit, based on a microcontroller. The requirements

for this control unit were established both in terms of hardware and in operating condition.

This control unit was first simulated with the ISIS software, and then an hardware version

was built on a breadboard.

 The experimental results were able to confirm the functionality of the simulated and the

hardware version of the developed control unit.

 The work for future is building the prototype on a circuit board, connecting the prototype to

the system, and testing the new control unit working with the robotic cell.

36

37

6. References

 [1]ABB. ABB Robotics. www.abb.com/robotics 2010.

 [2]ABB. ABB Robotics. www.abb.com/review 2010.

 [3]CCS. Reference manual,2011.

 [4]Delta Electronic Inc. VFD-B Reference manual 2005

 [5]Mcp4821 Datasheet 2010.

 [6]Pic18f4431 Datasheet 2010.

 [7]Proteus. Reference manual ISIS, 2010.

 [8]Viana, Desenvolvimento de uma Solução Robótica para Opẻações de Acabamento de

Solas de Solas de Sapatos, Msc Thesis, FEUP, 2010

38

39

Appendix A: Delta Ac Driver

A: Version Type

23: Mains Input Voltage

 21:230V Single phase 23:230V Three phase

 43:460V Three phase

B: B Series

007: Applicable motor capacity

 007: 1 HP(0.7kW) 150: 20HP(15kW)

 022: 3 HP(2.2kW) 220: 30 HP(22kW)

 037: 5 HP(3.7kW) 300: 40HP(30kW)

 055: 7.5HP(5.5kW) 370: 50 HP(37kW)

 075: 10 HP(7.5kW) 450: 60HP(45kW)

 110: 15 HP(11kW) 550: 75HP(55kW)

 750: 100HP(75kW)

VFD: Series Name (Variable Frequency Drive)

Features

Specific Control Terminal

The importance thing user must know about ac driver are control terminal. This following list

is all control terminal and function of ac motor.

40

41

42

43

Operation method.

Description of the digital keypad VFD – PU01.

 Group Parameters.

The VFD-B parameters are divided into 12 groups by property for easy setting. In most

applications, the user can finish all parameter settings before start-up without the need for re-

adjustment during operation. The 12 groups are as follows:

 Group 0: User parameters

 Group 1: Basic parameters

 Group 2: Operation method parameters

44

 Group 3: Output function parameters

 Group 4: Input function parameters

 Group 5: Multi-step speed and PLC parameters

 Group 6: Protection parameters

 Group 7: Motor Parameters

 Group 8: Special Parameters

 Group 9: Communication Parameters

 Group 10: PID Control Parameters

 Group 11: Fan & Pump Control Parameters

User can choose group parameter to set up depend on case of project is. Some group is need

to set in standard for every time. The choice of the right AC motor drive for the application is

very important and has great influence on its lifetime. If the capacity of AC motor drive is too

large, it cannot offer complete protection to the motor and motor maybe damaged. If the

capacity of AC motor drive is too small, it cannot offer the required performance and the AC

motor drive maybe damaged due to overloading. But by simply selecting the AC motor drive

of the same capacity as the motor, user application requirements cannot be met completely. In

according to consider all the conditions, including load type, load speed, load characteristic,

operation method, rated output, rated speed, power and the change of load capacity. The

following table lists the factors considered to choose ac motor.

45

46

47

Appendix B: Mcp4821

Programmable Gain Block

The rail to rail output amplifier has configurable gain, allowing optimal full-scale outputs for

differing voltage reference inputs. The output amplifier gain has two selections, a gain of

1v/v(GA=1) or a gain of 2v/v (GA=0).

The output range is 0.000v to 4095/4096*2.048v when G=1, and 0.000 to 4095/4096*4.096v

when G= 2. The default value for this bit is gain of 2, yielding an ideal full- scale output of

0.000v to 4.096v due to the internal 2.048v Vref

 Voltage Reference.

The MCP 4821 device utilize internal 2.048v voltage reference. The voltage reference has

low temperature coefficient and low noise characteristics.

 Power – on Reset Circuit

The power- on reset circuit ensures that the DACs power-up with SHDN=0(high- impedance).

The device will continue to have a high-impedance output until a valid write command is

performed to either of the DAC register and the LDAC pin meets the input low threshold. If

the power supply voltage is less than the power on reset threshold (Vpor=2.0, typical), the

DACs will be held in their reset state. They will remain in that state until Vdd>Vpor and a

subsequent write command is received.

Shutdown Mode

Shutdown mode can be entered by using either hardware or software commands. In the

device there is pin SHDN available. During Shutdown mode, the supply current is isolated

from most of the internal circuitry. The serial in the serial interface remains active, thus

allowing a write command to bring the device out of shutdown mode.

 Serial interface

The MCP 4821 family is designed to interface directly with the SPI port, available on many

microcontrollers, and supports mode 0,0 and mode 1,1. Commands and data are sent to the

device via the SDI pin, with data being clocked-in on the rising edge of SCK. The

communications are unidirectional and, thus, data cannot be read out of the MCP4821 device.

The CS pin must be held low for the duration of a write command. The write command

consists of 16 bits and is used to configure the DAC’s control and data latches. Register 5-1

details the input registers used to configure and load the DAC register.

48

Write command

The write command is initiated by driving the CS pin low, followed by clocking the four

configuration bits and the 12 data bits into the SDI pin on the rising edge of SCK. The CS pin

is then raised, causing the data to be latched into the selected DAC’s input registers. The

MCP4821 use a buffered latch to allow DAC’s outputs to be synchronized with the LDAC

pin, if desired. Upon the LDAC pin achieving a low state, the values held in the DAC’s input

register and are transferred in to DAC’s output registers. The output will transition to the

value and held in the DAC register. All writes to the MCP4821 device are 16 bits words. Any

clocks past 16 will be ignored. The most significant four bits are configuration bits. The

remaining 12 bits are data bits. No data can be transferred into the device with CS high. This

transfer will only occur if 16 clocks have been transferred into the device. If the rising edge

of CS occurs prior, shifting of data into the input registers will be aborted.

 Register 5-1: Write command register.

49

Appendix C: Pic 4432

This chip offers the advantages of all PIC18 microcontrollers namely, high computational

performance at an economical price, with the addition of high endurance enhanced Flash

program memory and a high-speed 10-bit A/D converter. On top of these features, the

PIC18F2331/2431/4331/4431 family introduces design enhancements that make these

microcontrollers a logical choice for many high performance, power control and motor

control applications. These special peripherals include:

• 14-bit resolution Power Control PWM Module (PCPWM) with programmable dead time

insertion

• Motion Feedback Module (MFM), including a 3-channel Input Capture (IC) Module and

Quadrature Encoder Interface (QEI)

• High-speed 10-bit A/D Converter (HSADC) the PCPWM can generate up to eight

complementary PWM outputs with dead-band time insertion. Overdrive current is detected

by off-chip analog comparators or the digital fault inputs (FLTA, FLTB). The MFM

Quadrature Encoder Interface provides precise rotor position feedback and/or velocity

measurement. The MFM 3 X input capture or external interrupts can be used to detect the

rotor state for electrically commutated motor applications using Hall Sensor feedback, such

as BLDC motor drives. PIC18F2331/2431/4331/4431 devices also feature Flash program

memory and an internal RC oscillator with built-in LP modes.

Feature Used for this Application

The Motion Feedback module is a special-purpose peripheral designed for motion feedback

applications. It provides a variety of control solutions for a wide range of electric motors. The

module actually consists of two hardware sub-modules:

• Input Capture module (IC)

• Quadrature Encoder Interface (QEI).

 Many of the features for the IC and QEI sub modules are fully programmable, creating a

flexible peripheral structure that can accommodate a wide range of in-system uses. In this

section the QEI sub modules is used because it is suitable with quadrature encoder feedback.

Three QEI inputs: two phase signals (QEA and QEB) and one index signal (INDX)

• Direction of movement detection with a direction change interrupt (IC3DRIF),16-bit

up/down position counter, standard and high-precision position tracking modes, two position

50

update modes (x2 and x4), velocity measurement with a programmable post scale for high-

speed velocity measurement, position counter interrupt (IC2QEIF in the PIR3 register)

velocity control interrupt (IC1IF in the PIR3 register), the QEI sub-module has three main

components: the QEI control logic block, the position counter and velocity post scale.

 QEI Operation

The Position Counter register pair (POSCNTH: POSCNTL) acts as an integrator, whose

value is proportional to the position of the sensor rotor that corresponds to the number of

active edges detected. POSCNT can either increment or decrement, depending on a number

of selectable factors which are decoded by the QEI logic block. These include the count mode

selected, the phase relationship of QEA to QEB (“lead/lag”), the direction of rotation, and if a

reset event occurs. The logic is detailed in the sections that follow.

QEIM2:

QEIM0

Mode/ Reset Description

000 QEI disable

001 x2

update/index

pulse

Two clocks per QEA pulse.

INDX resets POSCNT.

010 x2 update/

Period match

Two clocks per QEA pulse.

POSCNT reset by the period

match(MAXCNT).

011 _ unused

100 _ unused

101 x4 update/

index

 Four clocks per QEA and QEB

PULSE pair. INDX resets

POSCNT.

110 x4 update/

Period match

Four clocks per QEA and QEB

PULSE pair.

POSCNT reset by the period

Match(MAXCNT).

111 _ Unused

 QEI Mode

51

SPI MODE

SPI mode allows 8 bits of data to be synchronously

transmitted and received simultaneously. To accomplish communication, typically three pins

are used:

• Serial Data Out (SDO) – RC7/RX/DT/SDO

• Serial Data In (SDI) – RC4/INT1/SDI/SDA

• Serial Clock (SCK) – RC5/INT2/SCK/SCL

Additionally, a fourth pin may be used when in a Slave mode of operation:

• Slave Select (SS) – RC6/TX/CK/SS

When initializing the SPI, several options need to be specified. This is done by programming

the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>.

These control bits allow the following to be specified:

• Master mode (SCK is the clock output)

• Slave mode (SCK is the clock input)

• Clock polarity (Idle state of SCK)

• Clock edge (output data on rising/falling edge of

SCK)

• Clock rate (Master mode only)

• Slave Select mode (Slave mode only)

52

53

Appendix D: Schematic for Electronic Board of Control

Unit

54

55

Appendix E: The Detail Flow Chart

no

no

Star

Air key =

yes

Start

no

yes

Pls Select mode

1 2

Select 1 or

no

yes

Mode...:

P1: _ P2:

 Enter p1 & p2

Enter or
Clear

Enter

 Enter v1 & v2

Clear

Enter or

Enter

56

Enter

P < p1 P > p2

Mode 1 Mode

no

Yes

Mode 1 : P…

Vout V1:

Mode 2 : P…

Vout V2

Stop

Enter to switch

Stop to reset

Enter or

Pls select mode:

1 2

Start

Switch

Stop mode

P < p1 p1 < P < p2

Mode

v = v1 - (p – p1)(p2-p1)/(v1-v2) Mode1 : P: ...

Vout: v1

Mode1 : P: ...

Vout: v

57

Appendix F: Code Programming for Control Unit Board

 LCD

 ///
//// LCD.C ////
//// Driver for common LCD modules ////
//// ////
//// lcd_init() Must be called before any other function. ////
//// ////
//// lcd_putc(c) Will display c on the next position of the LCD. ////
//// \a Set cursor position to upper left ////
//// \f Clear display, set cursor to upper left ////
//// \n Go to start of second line ////
//// \b Move back one position ////
//// If LCD_EXTENDED_NEWLINE is defined, the \n character ////
//// will erase all remanining characters on the current ////
//// line, and move the cursor to the beginning of the next ////
//// line. ////
//// If LCD_EXTENDED_NEWLINE is defined, the \r character ////
//// will move the cursor to the start of the current ////
//// line. ////
//// ////
//// lcd_gotoxy(x,y) Set write position on LCD (upper left is 1,1) ////
//// ////
//// lcd_getc(x,y) Returns character at position x,y on LCD ////
//// ////
//// CONFIGURATION ////
//// The LCD can be configured in one of two ways: a.) port access or ////
//// b.) pin access. Port access requires the entire 7 bit interface ////
//// connected to one GPIO port, and the data bits (D4:D7 of the LCD) ////
//// connected to sequential pins on the GPIO. Pin access ////
//// has no requirements, all 7 bits of the control interface can ////
//// can be connected to any GPIO using several ports. ////
//// ////
//// To use port access, #define LCD_DATA_PORT to the SFR location of ////
//// of the GPIO port that holds the interface, -AND- edit LCD_PIN_MAP ////
//// of this file to configure the pin order. If you are using a ////
//// baseline PIC (PCB), then LCD_OUTPUT_MAP and LCD_INPUT_MAP also must ////
//// be defined. ////
//// ////
//// Example of port access: ////
//// #define LCD_DATA_PORT getenv("SFR:PORTD") ////
//// ////
//// To use pin access, the following pins must be defined: ////
//// LCD_ENABLE_PIN ////
//// LCD_RS_PIN ////
//// LCD_RW_PIN ////

58

//// LCD_DATA4 ////
//// LCD_DATA5 ////
//// LCD_DATA6 ////
//// LCD_DATA7 ////

//// ////

//// Example of pin access: ////

//// #define LCD_ENABLE_PIN PIN_E0 ////

//// #define LCD_RS_PIN PIN_E1 ////

//// #define LCD_RW_PIN PIN_E2 ////

//// #define LCD_DATA4 PIN_D4 ////

//// #define LCD_DATA5 PIN_D5 ////

//// #define LCD_DATA6 PIN_D6 ////

//// #define LCD_DATA7 PIN_D7 ////

//// ////

///

//// (C) Copyright 1996,2010 Custom Computer Services ////

//// This source code may only be used by licensed users of the CCS C ////

//// compiler. This source code may only be distributed to other ////

//// licensed users of the CCS C compiler. No other use, reproduction ////

//// or distribution is permitted without written permission. ////

//// Derivative programs created using this software in object code ////

//// form are not restricted in any way. ////

///

// define the pinout.

// only required if port access is being used.

typedef struct

{ // This structure is overlayed

 BOOLEAN enable; // on to an I/O port to gain

 BOOLEAN rs; // access to the LCD pins.

 BOOLEAN rw; // The bits are allocated from

 BOOLEAN unused; // low order up. ENABLE will

 int data : 4; // be LSB pin of that port.

 #if defined(__PCD__) // The port used will be LCD_DATA_PORT.

 int reserved: 8;

59

 #endif

} LCD_PIN_MAP;

// this is to improve compatability with previous LCD drivers that accepted

// a define labeled 'use_portb_lcd' that configured the LCD onto port B.

#if ((defined(use_portb_lcd)) && (use_portb_lcd==TRUE))

 #define LCD_DATA_PORT getenv("SFR:PORTB")

#endif

#if defined(__PCB__)

 // these definitions only need to be modified for baseline PICs.

 // all other PICs use LCD_PIN_MAP or individual LCD_xxx pin definitions.

/* EN, RS, RW, UNUSED, DATA */

 const LCD_PIN_MAP LCD_OUTPUT_MAP = {0, 0, 0, 0, 0};

 const LCD_PIN_MAP LCD_INPUT_MAP = {0, 0, 0, 0, 0xF};

#endif

////////////////////// END CONFIGURATION ///////////////////////////////////

#ifndef LCD_ENABLE_PIN

 #define lcd_output_enable(x) lcdlat.enable=x

 #define lcd_enable_tris() lcdtris.enable=0

#else

 #define lcd_output_enable(x) output_bit(LCD_ENABLE_PIN, x)

 #define lcd_enable_tris() output_drive(LCD_ENABLE_PIN)

#endif

#ifndef LCD_RS_PIN

 #define lcd_output_rs(x) lcdlat.rs=x

 #define lcd_rs_tris() lcdtris.rs=0

#else

 #define lcd_output_rs(x) output_bit(LCD_RS_PIN, x)

 #define lcd_rs_tris() output_drive(LCD_RS_PIN)

#endif

60

#ifndef LCD_RW_PIN

 #define lcd_output_rw(x) lcdlat.rw=x

 #define lcd_rw_tris() lcdtris.rw=0

#else

 #define lcd_output_rw(x) output_bit(LCD_RW_PIN, x)

 #define lcd_rw_tris() output_drive(LCD_RW_PIN)

#endif

// original version of this library incorrectly labeled LCD_DATA0 as LCD_DATA4,

// LCD_DATA1 as LCD_DATA5, and so on. this block of code makes the driver

// compatible with any code written for the original library

#if (defined(LCD_DATA0) && defined(LCD_DATA1) && defined(LCD_DATA2) &&

defined(LCD_DATA3) && !defined(LCD_DATA4) && !defined(LCD_DATA5)

&& !defined(LCD_DATA6) && !defined(LCD_DATA7))

 #define LCD_DATA4 LCD_DATA0

 #define LCD_DATA5 LCD_DATA1

 #define LCD_DATA6 LCD_DATA2

 #define LCD_DATA7 LCD_DATA3

#endif

#ifndef LCD_DATA4

#ifndef LCD_DATA_PORT

 #if defined(__PCB__)

 #define LCD_DATA_PORT 0x06 //portb

 #define set_tris_lcd(x) set_tris_b(x)

 #else

 #if defined(PIN_D0)

 #define LCD_DATA_PORT getenv("SFR:PORTD") //portd

 #else

 #define LCD_DATA_PORT getenv("SFR:PORTB") //portb

 #endif

 #endif

#endif

61

#if defined(__PCB__)

 LCD_PIN_MAP lcd, lcdlat;

 #byte lcd = LCD_DATA_PORT

 #byte lcdlat = LCD_DATA_PORT

#elif defined(__PCM__)

 LCD_PIN_MAP lcd, lcdlat, lcdtris;

 #byte lcd = LCD_DATA_PORT

 #byte lcdlat = LCD_DATA_PORT

 #byte lcdtris = LCD_DATA_PORT+0x80

#elif defined(__PCH__)

 LCD_PIN_MAP lcd, lcdlat, lcdtris;

 #byte lcd = LCD_DATA_PORT

 #byte lcdlat = LCD_DATA_PORT+9

 #byte lcdtris = LCD_DATA_PORT+0x12

#elif defined(__PCD__)

 LCD_PIN_MAP lcd, lcdlat, lcdtris;

 #word lcd = LCD_DATA_PORT

 #word lcdlat = LCD_DATA_PORT+2

 #word lcdtris = LCD_DATA_PORT-0x02

#endif

#endif //LCD_DATA4 not defined

#ifndef LCD_TYPE

 #define LCD_TYPE 2 // 0=5x7, 1=5x10, 2=2 lines

#endif

#ifndef LCD_LINE_TWO

 #define LCD_LINE_TWO 0x40 // LCD RAM address for the second line

#endif

#ifndef LCD_LINE_LENGTH

 #define LCD_LINE_LENGTH 20

#endif

62

BYTE const LCD_INIT_STRING[4] = {0x20 | (LCD_TYPE << 2), 0xc, 1, 6};

 // These bytes need to be sent to the LCD

 // to start it up.

BYTE lcd_read_nibble(void);

BYTE lcd_read_byte(void)

{

 BYTE low,high;

 #if defined(__PCB__)

 set_tris_lcd(LCD_INPUT_MAP);

 #else

 #if (defined(LCD_DATA4) && defined(LCD_DATA5) && defined(LCD_DATA6) &&

defined(LCD_DATA7))

 output_float(LCD_DATA4);

 output_float(LCD_DATA5);

 output_float(LCD_DATA6);

 output_float(LCD_DATA7);

 #else

 lcdtris.data = 0xF;

 #endif

 #endif

 lcd_output_rw(1);

 delay_cycles(1);

 lcd_output_enable(1);

 delay_cycles(1);

 high = lcd_read_nibble();

 lcd_output_enable(0);

 delay_cycles(1);

 lcd_output_enable(1);

63

 delay_us(1);

 low = lcd_read_nibble();

 lcd_output_enable(0);

 #if defined(__PCB__)

 set_tris_lcd(LCD_OUTPUT_MAP);

 #else

 #if (defined(LCD_DATA4) && defined(LCD_DATA5) && defined(LCD_DATA6) &&

defined(LCD_DATA7))

 output_drive(LCD_DATA4);

 output_drive(LCD_DATA5);

 output_drive(LCD_DATA6);

 output_drive(LCD_DATA7);

 #else

 lcdtris.data = 0x0;

 #endif

 #endif

 return((high<<4) | low);

}

BYTE lcd_read_nibble(void)

{

 #if (defined(LCD_DATA4) && defined(LCD_DATA5) && defined(LCD_DATA6) &&

defined(LCD_DATA7))

 BYTE n = 0x00;

 /* Read the data port */

 n |= input(LCD_DATA4);

 n |= input(LCD_DATA5) << 1;

 n |= input(LCD_DATA6) << 2;

 n |= input(LCD_DATA7) << 3;

64

 return(n);

 #else

 return(lcd.data);

 #endif

}

void lcd_send_nibble(BYTE n)

{

 #if (defined(LCD_DATA4) && defined(LCD_DATA5) && defined(LCD_DATA6) &&

defined(LCD_DATA7))

 /* Write to the data port */

 output_bit(LCD_DATA4, bit_test(n, 0));

 output_bit(LCD_DATA5, bit_test(n, 1));

 output_bit(LCD_DATA6, bit_test(n, 2));

 output_bit(LCD_DATA7, bit_test(n, 3));

 #else

 lcdlat.data = n;

 #endif

 delay_cycles(1);

 lcd_output_enable(1);

 delay_us(2);

 lcd_output_enable(0);

}

void lcd_send_byte(BYTE address, BYTE n)

{

 #if defined(__PCB__)

 set_tris_lcd(LCD_OUTPUT_MAP);

 #else

 lcd_enable_tris();

 lcd_rs_tris();

 lcd_rw_tris();

 #endif

65

 lcd_output_rs(0);

 while (bit_test(lcd_read_byte(),7)) ;

 lcd_output_rs(address);

 delay_cycles(1);

 lcd_output_rw(0);

 delay_cycles(1);

 lcd_output_enable(0);

 lcd_send_nibble(n >> 4);

 lcd_send_nibble(n & 0xf);

}

#if defined(LCD_EXTENDED_NEWLINE)

unsigned int8 g_LcdX, g_LcdY;

#endif

void lcd_init(void)

{

 BYTE i;

 #if defined(__PCB__)

 set_tris_lcd(LCD_OUTPUT_MAP);

 #else

 #if (defined(LCD_DATA4) && defined(LCD_DATA5) && defined(LCD_DATA6) &&

defined(LCD_DATA7))

 output_drive(LCD_DATA4);

 output_drive(LCD_DATA5);

 output_drive(LCD_DATA6);

 output_drive(LCD_DATA7);

 #else

 lcdtris.data = 0x0;

 #endif

 lcd_enable_tris();

 lcd_rs_tris();

66

 lcd_rw_tris();

 #endif

 lcd_output_rs(0);

 lcd_output_rw(0);

 lcd_output_enable(0);

 delay_ms(15);

 for(i=1;i<=3;++i)

 {

 lcd_send_nibble(3);

 delay_ms(5);

 }

 lcd_send_nibble(2);

 for(i=0;i<=3;++i)

 lcd_send_byte(0,LCD_INIT_STRING[i]);

 #if defined(LCD_EXTENDED_NEWLINE)

 g_LcdX = 0;

 g_LcdY = 0;

 #endif

}

void lcd_gotoxy(BYTE x, BYTE y)

{

 BYTE address;

 if(y!=1)

 address=LCD_LINE_TWO;

 else

 address=0;

 address+=x-1;

67

 lcd_send_byte(0,0x80|address);

 #if defined(LCD_EXTENDED_NEWLINE)

 g_LcdX = x - 1;

 g_LcdY = y - 1;

 #endifd

}

void lcd_putc(char c)

{

 switch (c)

 {

 case '\a' : lcd_gotoxy(1,1); break;

 case '\f' : lcd_send_byte(0,1);

 delay_ms(2);

 #if defined(LCD_EXTENDED_NEWLINE)

 g_LcdX = 0;

 g_LcdY = 0;

 #endif

 break;

 #if defined(LCD_EXTENDED_NEWLINE)

 case '\r' : lcd_gotoxy(1, g_LcdY+1); break;

 case '\n' :

 while (g_LcdX++ < LCD_LINE_LENGTH)

 {

 lcd_send_byte(1, ' ');

 }

 lcd_gotoxy(1, g_LcdY+2);

 break;

 #else

 case '\n' : lcd_gotoxy(1,2); break;

 #endif

68

 case '\b' : lcd_send_byte(0,0x10); break;

 #if defined(LCD_EXTENDED_NEWLINE)

 default :

 if (g_LcdX < LCD_LINE_LENGTH)

 {

 lcd_send_byte(1, c);

 g_LcdX++;

 }

 break;

 #else

 default : lcd_send_byte(1,c); break;

 #endif

 }

}

char lcd_getc(BYTE x, BYTE y)

{

 char value;

 lcd_gotoxy(x,y);

 while (bit_test(lcd_read_byte(),7)); // wait until busy flag is low

 lcd_output_rs(1);

 value = lcd_read_byte();

 lcd_output_rs(0);

 return(value);

}

69

Program for digital to analog converter: MCP4821

#ifndef EEPROM_SELECT

#define DAC_CS PIN_C6

#define DAC_CLK PIN_C5

#define DAC_DI PIN_C7

#define DAC_LDAC PIN_C3

#endif

void init_dac()

{

 output_high(DAC_CS);

 output_high(DAC_LDAC);

 output_high(DAC_CLK);

 output_high(DAC_DI);

}

void write_dac(int16 data, int8 ga) {

 BYTE cmd[3];

 BYTE i;

 cmd[0]=data;

 cmd[1]=(data>>8);

 cmd[2]=ga;

 output_high(DAC_LDAC);

 output_low(DAC_CLK);

 output_low(DAC_CS);

70

 for(i=0; i<=23; ++i)

 {

 if(i<4 || (i>7 && i<12))

 shift_left(cmd,3,0);

 else

 {

 output_bit(DAC_DI, shift_left(cmd,3,0));

 output_high(DAC_CLK);

 output_low(DAC_CLK);

 }

 }

 output_high(DAC_CS);

 output_low(DAC_LDAC);

 delay_us(10);

 output_HIGH(DAC_LDAC);

}

71

Program for KBD

//Keypad connection:

#define row0 PIN_B4

#define row1 PIN_B5

#define row2 PIN_B6

#define row3 PIN_B7

#define col0 PIN_B0

#define col1 PIN_B1

#define col2 PIN_B2

#define col3 PIN_B3

// Keypad layout:

char const KEYS[4][4] =

{{1,2,3,'A'},

 {4,5,6,'B'},

 {7,8,9,'C'},

 {'*',0,'#','D'}};

#define KBD_DEBOUNCE_FACTOR 20 // Set this number to apx n/333 where

// n is the number of times you expect

// to call kbd_getc each second

void kbd_init()

{

//set_tris_b(0xF0);

//output_b(0xF0);

port_b_pullups(true);

}

short int ALL_ROWS (void)

{

if(input (row0) & input (row1) & input (row2) & input (row3))

72

 return (0);

else

 return (1);

}

char kbd_getc()

{

static byte kbd_call_count;

static short int kbd_down;

static char last_key;

static byte col;

byte kchar;

byte row;

kchar=0xff;

if(++kbd_call_count>KBD_DEBOUNCE_FACTOR)

 {

 switch (col)

 {

 case 0:

 output_low(col0);

 output_high(col1);

 output_high(col2);

 output_high(col3);

 break;

 case 1:

 output_high(col0);

 output_low(col1);

 output_high(col2);

73

 output_high(col3);

 break;

 case 2:

 output_high(col0);

 output_high(col1);

 output_low(col2);

 output_high(col3);

 break;

 case 3:

 output_high(col0);

 output_high(col1);

 output_high(col2);

 output_low(col3);

 break;

 }

 if(kbd_down)

 {

 if(!ALL_ROWS())

 {

 kbd_down=false;

 kchar=last_key;

 last_key=0xff;

 }

 }

 else

 {

 if(ALL_ROWS())

 {

 if(!input (row0))

 row=0;

 else if(!input (row1))

74

 row=1;

 else if(!input (row2))

 row=2;

 else if(!input (row3))

 row=3;

 last_key =KEYS[row][col];

 kbd_down = true;

 }

 else

 {

 ++col;

 if(col==4)

 col=0;

 }

 }

 kbd_call_count=0;

 }

return(kchar);

}

75

Main program:

#include <18F4431.h>

#FUSES NOWDT //No Watch Dog Timer

#FUSES INTRC_IO //Internal RC Osc, no CLKOUT

#FUSES NOCPD //No EE protection

#FUSES NOPROTECT //Code not protected from reading

#FUSES MCLR //Master Clear pin enabled

#FUSES NOPUT //No Power Up Timer

#FUSES BROWNOUT //Reset when brownout detected

#BYTE QEICON=0xFB6 // quadrature configure

#bit QEICONDIR=0xFB6.5

#BYTE DFLTCON=0xF60 // quadrature noise filter configure

#BYTE CAP2BUFL=0xF66 // position counter

#BYTE CAP2BUFH=0xF67

#BYTE CAP3BUFL=0xF64 //max count

#BYTE CAP3BUFH=0xF65

#BYTE OSCCON = 0xFD3

#use delay(internal=8Mhz)

//#use fast_io(B)

#define LCD_ENABLE_PIN PIN_D3

#define LCD_RS_PIN PIN_D1

#define LCD_RW_PIN PIN_D2

#define LCD_DATA4 PIN_D4

#define LCD_DATA5 PIN_D5

#define LCD_DATA6 PIN_D6

#define LCD_DATA7 PIN_D7

#define LCD_TYPE 2

76

#include <C:\Documents and Settings\Administrator\My

Documents\Downloads\project\lcd.c>

#include <C:\Documents and Settings\Administrator\My

Documents\Downloads\project\mcp4821.c>

#include <C:\Documents and Settings\Administrator\My

Documents\Downloads\project\kbd.c>

#define WARNING PIN_C4

#define Control PIN_C2

int8 time= 20;

int1 stop = 1,pause = 0,start = 0;

int1 dac1=0, dac2=0;

unsigned char k;

unsigned int16 get_input2 (char x, char y){

unsigned int16 kb = 0;

//unsigned int16 p = 0;

unsigned char k;

 lcd_gotoxy(x,y);

 lcd_send_byte(0,0x0f);

 printf(lcd_putc,"%3ld",kb);

 do{

 do

 k=kbd_getc();

 while (k == 0xff);

 if (k < 10){

// p = kb;

 kb = 10*kb + k;

 lcd_gotoxy(x,y);

 printf(lcd_putc,"%3ld",kb);

 }

 if (k == 'B'){

 kb = kb/10;

 lcd_gotoxy(x,y);

 printf(lcd_putc,"%3ld",kb);

77

 }

 }

 while (k != 'A');

 return(kb);

}

int1 check_pin0(int pin){

 if(input(pin))--time;

 else time = 20;

 if(time == 0) return(0);

 else return(1);

}

int1 check_pin1(int1 pin){

 char t = 50;

 if(!input(pin)){

 do {

 delay_ms(5);

 --t;

 }while((!input(pin)) & (t > 0));

 }

return(input(pin));

}

int1 check_pin2(int1 pin){

 char t = 20;

 int1 r;

 if(!input(pin)){

 do {

 delay_ms(5);

 --t;

 }while((!input(pin)) & (t > 0));

 while(!input(pin)){

 r = 0;

 t = 20;

 do {

 delay_ms(5);

78

 --t;

 }while((input(pin)) & (t > 0));

 }

 }

 else r = 1;

return(r);

}

#INT_TIMER0

Void Check_air ()

{

 setup_timer_0(T0_OFF);

 if(k == 0xff) k = kbd_getc();

 if(stop){

 stop = check_pin0(PIN_A0);

 output_bit(WARNING,stop);

 }else{

 QEICON=0;

 write_dac(0,1);

 lcd_putc("\fAir supply\n");

 lcd_putc("turn off");

 do{

 while(check_pin2(PIN_A1));

 } while(check_pin1(PIN_A0));

 stop = 1;

 lcd_putc("\f");

 dac1 = 0;

 dac2 = 0;

 QEICON=0xB4;

 }

 if(pause){

 QEICON=0;

 write_dac(0,1);

 do k = kbd_getc();

79

 while(k != 'D');

 pause = 0;

 k =0xff;

 dac1 = 0;

 dac2 = 0;

 QEICON=0xB4;

}

setup_timer_0(T0_INTERNAL | T0_DIV_1);

set_timer0(-4000);

}

void main()

{

 unsigned int8 v1,v2,pi1,pi2;

 char mode;

 unsigned int16 p1,p2;

 signed int16 position=0;

 int16 length = 0;

 float32 x,vout;

 //OSCCON=OSC_8Mhz;

 // OSCCON = OSC_31KHZ;

 setup_oscillator(OSC_8Mhz);

 // QEICON=24; // quad in x4 mode, resettable by maxcount

 DFLTCON=38; // noise filter on QEA, QEB,, 1:2 clock

 CAP3BUFL=0xFF; // set max count

 CAP3BUFH=0xFF;

 CAP2BUFL=0;

 CAP2BUFH=0;

 lcd_init();

 kbd_init();

 init_dac();

 //setup interrupt for timer0

 enable_interrupts (INT_TIMER0) ; //enable interrupt timer0

 enable_interrupts (GLOBAL) ;

80

 set_timer0(-4000);

 output_low(Control);

do{

 lcd_putc("\fReady...\n");

 do{

 while(check_pin2(PIN_A1));

 } while(check_pin1(PIN_A0));

 output_high(Control);

 lcd_putc("\fPls select mode");

 lcd_putc("\n1 2");

 do

 k = kbd_getc();

 while ((k!= 1) & (k!=2));

 mode = k;

 do{

 printf(lcd_putc,"\fMode: %d",mode);

 lcd_putc("\nP1:");

 lcd_gotoxy(8,2);

 lcd_putc("P2:");

 // p1

 pi1 = get_input2(4,2);

 // P2

 pi2 = get_input2(11,2);

 if(pi1 > pi2){

 lcd_putc("\fError: p1 > p2");

 lcd_putc("\nPls enter again");

 delay_ms(1000);

 }

 else if((pi1 > 130) |(pi2 > 130)){

 lcd_putc("\fError: p > 130mm");

 lcd_putc("\nPls enter again");

 delay_ms(1000);

 }

81

 else{

 lcd_putc("\fEnter to cont.");

 lcd_putc("\nClear to back");

 do k = kbd_getc();

 while((k!='A') & (k!='B'));

 }

 }while (k == 'B' | (pi1 > pi2)|(pi1 > 130) |(pi2 > 130));

 p1 = pi1/0.03175;

 p2 = pi2/0.03175;

 // v1

 do{

 printf(lcd_putc,"\fMode: %d",mode);

 lcd_putc("\nV1:");

 lcd_gotoxy(8,2);

 lcd_putc("V2:");

 v1 = get_input2(4,2);

 v2 = get_input2(11,2);

 if(v1 < v2){

 lcd_putc("\fError: v1 < v2");

 lcd_putc("\nPls enter again");

 delay_ms(1000);

 }

 else if((v1 > 4) | (v2 > 4)){

 lcd_putc("\fError: v > 4V");

 lcd_putc("\nPls enter again");

 delay_ms(1000);

 }else{

 lcd_putc("\fEnter to cont.");

 lcd_putc("\nClear to back");

 do k = kbd_getc();

 while((k!='A') & (k!='B'));

 }

82

 }while ((k == 'B') | (v1 < v2)|(v1 > 4) | (v2 > 4));

 k =0xff;

 x = ((float)(v1 - v2)/(float)(p2 - p1));

 lcd_send_byte(0,0x0c);

 QEICON=0xB4;

do{

 setup_timer_0(T0_INTERNAL | T0_DIV_1);

 k = 0xff;

 lcd_putc("\f");

 switch (mode) {

 case 1:{

 do {

 k = 0xff;

 position=(CAP2BUFL+((int16)CAP2BUFH<<8));

 lcd_gotoxy(1,1);

 printf(lcd_putc,"Mode:%d",mode);

 lcd_gotoxy(9,1);

 length = (position*0.03175);

 printf(lcd_putc,"P:%5ld",length);

 if(position < 0) {

 CAP2BUFL = 0;

 CAP2BUFH = 0;

 }

 if((position <= p1)& (position >=0)){

 if(!dac1) {

 write_dac(1000*v1,1);

 dac1 = 1;

 dac2 = 0;

 lcd_gotoxy(1,2);

 printf(lcd_putc,"Vout:%3d",v1);

 }

 }

83

 if((position > p1) & (position <= p2)){

 if(QEICONDIR){

 write_dac(1000*v1,1);

 lcd_gotoxy(1,2);

 printf(lcd_putc,"Vout:%3d",v1);

 }else{

 write_dac(1000*v2,1);

 lcd_gotoxy(1,2);

 printf(lcd_putc,"Vout:%3d",v2);

 }

 }

 if(position > p2) {

 if(!dac2) {

 write_dac(1000*v2,1);

 dac1 = 0;

 dac2 = 1;

 lcd_gotoxy(1,2);

 printf(lcd_putc,"Vout:%3d",v2);

 }

 }

 // k = kbd_getc();

 if(k == 'D') pause = 1;

 }while (k!= 'C');

 k = 0xff;

 break;

 }

 case 2:{

 do {

 k = 0xff;

 lcd_gotoxy(1,1);

 printf(lcd_putc,"Mode: %d",mode);

 position=(CAP2BUFL+((int16)CAP2BUFH<<8));

 lcd_gotoxy(9,1);

84

 length = (position*0.03175);

 printf(lcd_putc,"P:%5ld",length);

 if(position < 0) {

 CAP2BUFL = 0;

 CAP2BUFH = 0;

 }

 if((position <= p1)& (position >=0)){

 if(!dac1) {

 printf(lcd_putc,"\fMode: %d",mode);

 write_dac(1000*v1,1);

 dac1 = 1;

 dac2 = 0;

 lcd_gotoxy(1,2);

 printf(lcd_putc,"Vout:%3d",v1);

 }

 }

 if((position > p1) & (position <= p2)){

 vout = v1 - (position - p1)*x;

 write_dac(1000*vout,1);

 lcd_gotoxy(1,2);

 printf(lcd_putc,"Vout:%3f",vout);

 }

 if(position > p2) {

 if(!dac2) {

 printf(lcd_putc,"\fMode: %d",mode);

 write_dac(1000*v2,1);

 dac1 = 0;

 dac2 = 1;

 lcd_gotoxy(1,2);

 printf(lcd_putc,"Vout:%3d",v2);

 }

 }

 // k = kbd_getc();

85

 if(k == 'D') pause = 1;

 }while(k!= 'C');

 k = 0xff;

 break;

 }

 }

 setup_timer_0(T0_OFF);

 lcd_putc("\fEnter to switch mode.");

 lcd_putc("\nStop to reset");

 do k = kbd_getc();

 while((k != 'A') & (k!= 'C'));

 dac1 = 0;

 dac2 = 0;

 if(k == 'A'){

 lcd_putc("\fPls select mode");

 lcd_putc("\n1 2");

 do

 k = kbd_getc();

 while ((k!= 1) & (k!=2));

 mode = k;

 k = 'A';

 }

 }while(k == 'A');

 QEICON=0;

 output_low(Control);

}while(k == 'C');

}

