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Abstract

Online musical social communities are becoming more and more popular as time goes by.
Nowadays, these social communities give folksonomy systems to their users, allowing
them to play an active role by dictating musical tastes, popularity of artists and hit songs
like it never happened before. Since it is the people, and especially the fans, that really
determine how famous an artist can be or how a song can impact their musical tastes,
these Web social communities are the ultimate form of capturing the perspective of the
fans. Although the widespread musical communities give us more information about
music, there is still too much to learn about it. We are trying to bring results to this
information and find relations, patterns and knowledge that influence the music culture.
Our studies focused on the popular music social community Last.fm, where we have
access to millions of entries concerning music and artists. Our goal in this project is to
collect Last.fm musical data and learn interesting patterns and knowledge about music
from the past choices of fans, being the prediction of the popularity of artists our most
ambitious goal.

In order to fulfill our goals we proposed the development of a Last.fm data gathering
system, that had a crawling component (responsible for retrieving artists and their mu-
sical data from Last.fm) and a data mining component (responsible for processing the
previously gathered Last.fm data into visual graphs and datasets for data mining tools).

The development of this system was based on the Knowledge Discovery in Data and
the Cross Industry Standard Process for Data Mining major steps, which provided guide-
lines for the data retrieval from Last.fm and the processing of that same data in order to
be analyzed by data mining algorithms. The data mining algorithms applied were the
association apriori and the clustering k-means, and we discovered interesting musical as-
sociation rules and grouping of music data into clusters, respectively. With more temporal
snapshots of databases we could analyze data in order to find more interesting patterns and
knowledge than the ones we found during this project.

We can say that the development of this system was a success as it allowed us to have a
better understanding of Last.fm and gave us the necessary means to extract more musical
data from Last.fm, for better understanding musical information and musical popularity
measure in the future.
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Resumo

As comunidades sociais de musica online estão a tornar-se cada vez mais populares à
medida que o tempo passa. Hoje em dia, estas comunidades sociais oferecem sistemas de
folksonomy para os seus utilizadores, permitindo que estes desempenhem um papel ac-
tivo na imposição de gostos musicais, popularidade de artistas e músicas de sucesso como
nunca antes tinha acontecido. Visto que são as pessoas, especialmente os fãs, que ver-
dadeiramente determinam o quão famoso um artista pode ser ou qual o impacto que uma
canção tem nos seus gostos musicais, estas comunidades sociais na Web são a derradeira
forma de captar a perspectiva dos fãs.

Apesar das muito difundidas comunidades musicais nos darem mais informação sobre
música, ainda há muito para aprender sobre ela. Estamos a tentar trazer resultados para
esta informação e encontrar relações, padrões e conhecimento que influenciem a cultura
musical. Os nossos estudos incidiram sobre a comunidade social de música do Last.fm,
onde temos acesso a milhões de entradas sobre música e artistas. O nosso objectivo
neste projecto é a recolha de dados musicais do Last.fm e a aprendizagem de padrões
e conhecimento interessante sobre música através das escolhas antigas dos fãs, sendo o
nosso objectivo mais ambicioso a previsão da popularidade de artistas.

De forma a cumprir os nossos objectivos, propusemos o desenvolvimento de um sis-
tema de recolha de dados do Last.fm, que possuı́sse uma componente de crawling (re-
sponsável pela recolha de artistas e os seus dados musicais da Last.fm) e uma componente
de data mining (responsável pelo processamento dos dados anteriormente recolhidos do
Last.fm em gráficos e conjuntos de dados para as ferramentas de data mining).

O desenvolvimento deste sistema foi baseado nos passos essenciais de Knowledge
Discovery Data mining e Cross Industry Standard Process for Data Mining, que fornece-
ram linhas orientadoras para a extracção de dados do Last.fm e o processamento desses
dados para serem analisados por algoritmos de data mining. Os algoritmos de data min-
ing aplicados foram o de associação apriori e o de clustering k-means, e descobrimos
regras de associação musical interessantes e o agrupamento de dados musicais em clus-
ters, respectivamente. Com mais bases de dados temporais poderemos analisar os dados
de forma a descobrir mais padrões interessantes e conhecimento do que aqueles que foram
encontrados durante este projecto.

Podemos dizer que o desenvolvimento deste sistema foi um sucesso, visto que nos
permitiu uma melhor compreensão dos dados do Last.fm e nos deu os meios necessários
para extrair mais dados musicais do Last.fm, para melhor compreender a informação
musical e medidas de popularidade musical no futuro.
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Chapter 1

Introduction

1.1 Context

This project is inserted in the Multimedia and Telecommunications Unit of INESC Porto
(private non-profit association for scientific research and technological development, based
in Porto, Portugal).

This project is mainly inserted in two areas that interact with each other:

• Music Information Retrieval;

• Knowledge Discovery in Databases.

According to [Fin04], the Music Information Retrieval area is an area that studies mu-
sic data by bringing together different disciplines and paradigms regarding music, music
repositories and information retrieval.

The KDD data analysis approach transforms raw data from data repositories into valu-
able and interesting information that can help business, investigation and other sciences.

Altough the Music Information Retrieval embraces multiple areas, we will only focus
on the development of information retrieval software, and the discovery of music knowl-
edge using data mining programs and algorithms.

We will focus our study in the musical data repository of the Last.fm website1.

Last.fm

Created in 2002, Last.fm is an Internet radio and music community website, where
users are able to listen to music on demand or download it, and to create personal and
customized playlists and radio stations from any song available in the music library of

1www.lastfm.com
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Introduction

Last.fm [tfeb]. The site offers numerous social networking features and can recommend
and play artists similar to the users’ favourites. This online community exists thanks to a
music recommender system called ”Audioscrobbler”, which will be presented later.

Figure 1.1: Last.fm logo

Nowadays there are millions of songs in Last.fm’s music library from artists from
all over the world, with a huge variety of musical genres, and an extensive repertoire of
songs of the most famous artists in the world, which is updated on a regular basis. This
music library is constantly updated by the Last.fm staff, and by them only, so users don’t
have the rights to upload or download copyrighted songs, and therefore there is no piracy
and other illegal actions concerning music in Last.fm website. Although Last.fm has an
extensive amount of popular artists’ songs, this website also encourages, independent and
unknown artists to spread their musical work, in order to become more and more popular
when users already listen to similar artists.

Audioscrobbler System

As mentioned before, Audioscrobbler is a music recommender system that produces
detailed information of each user’s musical taste by recording details of all the songs the
user listens to via radio stations, personal computers and portable music devices. Then, all
the details are ”scrobbled” and stored in Last.fm databases via a plugin installed into the
users’ music players [tfeb]. This is an effective system to collect artist data from all over
the world. We now present a list of features, according to [tfeb] that make the Last.fm
website what it is today: an important music web resource and a community of users and
artists.

Artist profile pages

2
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When one user ”scrobbles” a song of a given artist, Last.fm automatically creates a
profile page for that artist, which displays detailed information and statistics of similar
artists, listeners, tags, albums, songs, and fans; it provides a shoutbox so that users can
leave messages for the artists; it also includes a player, where users can listen to small
portions of the artists’ songs. Last.fm gives users the power to edit and update the infor-
mation of an artist in its profile page, with a moderation to avoid misleading information
about all the artists present in Last.fm.

Tag system

Last.fm has a tag system that enables users to label artists, albums, and songs using
keywords that define them, in order to create a folksonomy (which is: ”the result of
personal free tagging of information and objects (anything with a URL) for one’s own
retrieval. The tagging is done in a social environment (shared and open to others). The act
of tagging is done by the person consuming the information”) of music. This tag system
gives users the freedom to create all sorts of defining keywords for all the elements of
Last.fm, which can be any form of music genre, any defining characteristic of the artists,
or any other form of music and artists classification. The most important benefit of this
system is that it allows users to browse and listen to music and artists via tags in order to
discover new artists similar to the ones they listen to and praise, which in the same way
also allows unknown artists to be known and discovered by the same users, and in this
way raise their popularity.

However, since tagging is not moderated, the manipulation by the site’s users most
often results in disagreements about music genres, inaccuracies in artist classification,
and input of junk data.

Last.fm radio

Last.fm offers free radio stations consisting of songs selected from the music files in
the Last.fm music library. This selection can be based on the users’ personal music tastes
and profiles, or be based on the group of friends that a user has. Last.fm also offers the
tag radio option, which consists of a radio with a huge compilation of songs that share the
same tag. Just like an actual radio station, Last.fm doesn’t allow users to interact in the
selection of the music that is played. Nowadays, the free radio stations are available for
a trial period only to users outside the United Kingdom, Germany and the United States
of America, that once expired requires for the users to pay a monthly fee, so that they can
continue listening to those radio stations.

Audioscrobbler plugin
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Last.fm offers the possibility of downloading the Audioscrobbler plugin, which is a
user interface for the previously mentioned Audioscrobbler system, and can create an
artist profile directly from the music played on the computer of a user. As long as the
song is longer than thirty seconds and has music and song metadata, the song is considered
valid for submission.

Chart system

Last.fm has a charting system that automatically generates and archives charts of top
artists and songs listened to by all Last.fm users by using the information of the Audio-
scrobbler plugin or the Last.fm radios. This generation is generally based on the informa-
tion compiled from the metadata from audio files ”scrobbled” from the users’ computers.
However, this information can have been incorrectly typed by users, therefore causing
inaccuracies in the listings. The rest of the charts are generated by using the artists’ lis-
teners’ metric, which consists of the number of users who play a certain artist or track
rather than the total number of times that a certain artist or track are played. This prevents
users from artificially boosting the popularity of an artist by listening to that artist’s songs
several times. This also prevents users from raising their own fan ranking in Last.fm.
For all that was mentioned above, Last.fm musical charts are different from any other
commercial music charts, which are based in radio plays and sales. The information in
Last.fm is less volatile, because an artist that is considered a music legend (even if it is not
recent) can be in the Last.fm charts for many months or years. Last.fm top charts reflect
not only the information about artists and their music, but also the tags that have been
inserted.

Social interaction

Last.fm allows users to interact with each other by giving the possibility of meeting
people and adding friends via social networking features. One interesting aspect of this
interaction is that Last.fm displays information about the musical compatibility between
users, which is an important measurement when meeting new people and getting to know
new musical tastes by listening to the friends’ praised artists. Another social feature in
Last.fm is one that allows users to leave messages or shouts in the artist profile pages.
Last.fm also provides information about artist concerts or live acts that will happen in the
geographical vicinity of the users, or the concerts or live acts which their friends or other
users will attend to, creating a whole new perspective in attending to musical events.

Last.fm API
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For development purposes of applications or plugins, Last.fm provides an API which
allows developers to call methods that respond in REST style XML, which enable a much
easier access to all Last.fm data. The API method calls range from artist information to
artist music, tags, fans, albums and shouts. Last.fm encourages users to use its API and
its applications in order to maximize and improve the Last.fm experience.

1.2 Problem definition

Nowadays - with the wide proliferation of the music industry over the Internet, the inten-
sive use of MP3 content and the Apple’s Ipods [New09] - more and more people listen
to music from all over the world, and can ditacte musical tastes, popularity of artists and
hit songs like it never happened before. The explosion of musical social networks, like
Last.fm2 and Myspace Music3, and its intensive use from a wide community all over
the world have provided information to the music industry about musical preferences and
tastes. The folksonomy systems, provided by the musical social networks, are responsible
for the generation and management of this musical information, due to the collaborative
creation of tags that identify and classify artists, music and other musical data. The use
of tags is useful for the creation and classification of music and artists, but also for sim-
plifying the search of that same music and artists.

Although the widespread musical communities give us more and more information
about music, there is still too much to learn about it, such as artist popularity and the hit
song science. We are trying to bring results to these areas, and find relations, patterns
and knowledge that influence the music culture. But before we can discover interesting
knowledge about music, we need to have access to a valid and complete musical reposi-
tory just like Last.fm, and the means to access it.

The need to analyze a musical repository in order to study interesting knowledge about
music led to the creation of this project.

Based on the definition of the MIR area (which is: ”an emerging research area that
focuses on the content-based retrieval of musical documents against musical queries,
where both documents and queries may be in acoustic or notated form” [otUoP]), we
proposed the creation of an infrastructure for musical information retrieval, in order to
acquire the data needed for our studies. We chose Last.fm to be the information repository
from which we would extract musical information, because of the very large community
around the world that it embraces, and its extensive database with millions of entries
regarding music and artists.

Figure 1.2 shows a basic diagram of our system.
2www.lastfm.com
3music.myspace.com

5
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Figure 1.2: Context Diagram

As we can see, our proposal is to create a system that retrieves information from the
Last.fm website, stores it, and makes it available to futher processing by data mining
tools.

Although we considered Last.fm to be a good choice for the study of temporal ten-
dencies of artists, songs, albums and tags, we were fully aware that it would be difficult to
filter and select the most relevant data, due to the freedom a user has in inserting tags and
the possibility that a user might ”scrobble” audio files that have incorrect music metadata.
Another obstacle we would face would be the need to gather millions of artists (without
knowing previously how many millions there would be) and their data in short intervals
of time (for example, once a month or once every fortnight).

1.3 Motivation and Goals

The recent growth of online social music communities with folksonomy systems led to
the empowerment of their users. In these communities they can actually take an active
roll in the classification of music and artists. Since it is the people, and especially the fans,
that really determine how famous an artist can be or how a song can impact their musical
tastes, these Web social communities are the ultimate form of capturing the perspective
of the fans.

That said, our main motivation was to identify interesting patterns and knowledge
about music from the past choices of fans. We can also state that our most ambitious

6
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motivation was the prediction of the popularity of artists, based on past information about
similar artists.

To fulfill our intentions, the following main goals of this project were defined:

• create a music data gathering system that interacts with the Last.fm data reposito-
ries;

• apply visual analyses to the Last.fm data;

• apply data mining algorithms in order to discover musical knowledge from the
Last.fm data.

1.4 Thesis Structure

This document is composed by the following six chapters.
In Chapter one, called ”Introduction”, we present the context where this project is

inserted, the motivation that drove us to the creation of this project, and what we have
done in order to fulfill the project objectives.

In Chapter two, called ”Analyzing the Last.fm data”, we present similar studies that
were done in this area, an overview of KDD, the study of different data mining problems
and algorithms, and the tools for fulfilling the data mining tasks.

In Chapter three, called ”Specifications”, we present the main features of our Last.fm
data gathering system that need to be implemented in order to fulfill our goals.

In Chapter four, called ”Implementation”, based on the previous specification, we
explain how the development process took place, and how the important modules of this
system were implemented.

In Chapter five, called ”Prospective Analysis of Data”, we present the analysis of
the retrieved Last.fm data during this project, the association and clustering algorithms
applied over data and the interesting patterns and knowledge found about Last.fm data.

In Chapter six, called ”Conclusions”, the conclusions and a critical analysis are made
regarding the developed work.

Finally, in Chapter seven, called ”Future work”, some notes are given about the future
work that needs to be done, in order to continue the purpose of this project.

7



Chapter 2

Analyzing the Last.fm data

In this chapter we present similar studies and applications to our project, by giving exam-
ples of studies that used Last.fm, music information retrieval and data mining techniques.
Then, we present an overview of KDD and the typical KDD architecture, which gave us
guidelines for building our own infrastructure for data gathering. Then, we focus on a very
important step of the KDD process - the data mining step - where we present the impor-
tance of that step, the different types of data mining problems, and algorithms that solve
those problems. Then, we refer some tools for data mining which will be responsible for
the data mining tasks over the data collected with our system.

2.1 Similar studies and applications

The following studies address problems similar to the ones we are tackling and provide
approaches that could help us in the course of this project.

Hit Song Science

[PR08] mentions the problem of determining music title popularity by processing two
sets of music title attributes. In this paper it is claimed that with well-known state of the
art data mining algorithms it is not possible to determine if a music title will be a hit or
not only by analyzing its audio features.

Artist Classification with Web-based Data

[KPW04] mentions the problem of classifying artists into musical genres by retrieving
music information from the Internet. In this paper an approach of researching musical

8



Analyzing the Last.fm data

information from the top 50 webpages retrieved from Google1 or Yahoo!2 is used, in
order to proceed to the artist classification into musical genres.

Automatic Detection of members and Instruments

[SWPS07] mentions the problem of automatically detect band members and instru-
mentation by retrieving music information from the Internet. In this paper an approach
of researching musical information from the top 100 webpages retrieved from Google is
used, in order to perform linguistic analysis to determine the actual role of an artist in a
band.

Truth about tags

[GSK07] mentions the problem of verifying the consistency of tagging in the artist
similarities, by analyzing tag musical data retrieved from the Last.fm website. In this
paper it is claimed that the act of tagging for classification of artists and music is consistent
for artist similarities, and that tags are descriptive enough for artist classification.

Automatically Generated Music Information System

[SKPW08] mentions the purpose of creating a music information system just like
Last.fm, but instead of using the interaction of people to fill the data repositories, it uses
an automatic method to retrieve the music information. The Google search engine is used
in order to retrieve the most relevant data about music and artists.

2.2 Knowledge Discovery in Databases

2.2.1 Overview

According to [HK00], Knowledge Discovery in Databases is the software task responsi-
ble for the extraction of knowledge from large amounts of data stored in databases, data
warehouses, or other information repositories. The term ”data mining” derives from the
prehistoric activity of mining minerals, and the extraction of a small quantity of precious
materials from large quantities of raw materials, which in this case is the extraction of
knowledge from a large amount of data. Although the extraction of knowledge is the ba-
sis of the definition of data mining, data mining is only one step of the overall process of
knowledge discovery. The KDD process is essentially composed by the iterative sequence
of seven major steps:

1www.google.com
2www.yahoo.com
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1. Data cleaning - the first step of the whole process that is responsible for the re-
moval of noise and inconsistent data that is not relevant for the overall extraction of
knowledge;

2. Data integration - the step when multiple retrieved and cleaned data sources are
combined to produce only one data source to be analyzed on the remaining steps;

3. Data selection - the step when limited samples of relevant data are retrieved from
the database, so that it can be analyzed on the data processing set of steps;

4. Data transformation - the step where data is prepared and transformed into a spe-
cific form so that the data mining processes can understand the previous form of
data;

5. Data mining - the most important step in knowledge discovery, where intelligent
mechanisms are employed to the previously prepared data in order to extract data
patterns that can define the knowledge we are looking for in this whole process;

6. Pattern evaluation - the step when the previous data patterns are identified, based
on intelligent measures, and only the truly interesting ones are selected to be the
representative knowledge;

7. Knowledge presentation - the step where the knowledge found from the whole
knowledge discovery process is visually and graphically presented to the user.

Figure 2.1 shows the process model of the KDD.
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Figure 2.1: Process of the KDD

The CRISP-DM Methodology

One process model that emerged in the industry that is closely related to the KDD
process and is considered a standardization of data mining language [HK00] is the Cross
Industry Standard Process for Data Mining (CRISP-DM) reference model [CCK+00].
This process model aims for the facilitation of a systematic development of data mining
solutions.

Figure 2.2 represents the CRISP-DM data mining project lifecycle.
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Figure 2.2: CRISP-DM data mining project lifecycle

CRISP-DM describes a typical data mining project lifecycle, which provides guide-
lines for tackling and solving data mining problems. The CRISP-DM lifecycle is essen-
tially composed of six major phases [She00a]:

1. Business understanding - this phase is where the understanding of the project ob-
jectives and requirements should take place, from a business perspective. As soon as
the objectives are well known and defined, one should define a data mining problem
and an early plan, in order to meet the objectives and requirements initially defined;

2. Data understanding - this phase is where one should collect initial data and analyze
it, in order to discover a global perception of the data. This perception enables
further detection of subsets for the discovery of interesting patterns;

3. Data preparation - this phase consists of the compiling of raw data in order to
construct a dataset ready to be analyzed by data mining tools or modules. This
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phase is cyclical and can be performed numerous times, in order to find the best
dataset possible to fufill the business objectives;

4. Modelling - this phase represents the Data Mining step of the KDD process, where
intelligent modelling techniques are selected and applied. Sometimes, one needs to
get back to the data preparation phase, due to the requirements of some modelling
techniques;

5. Evaluation - this phase takes place after the building of the modelling phase in
the project. But before proceeding to the final phase of this process, one needs to
evaluate and review all previous phases that were executed to construct the model,
in order to know with certainty that the business objectives were achieved. After
doing that, one must decide what usage will be given to the data mining results;

6. Deployment - this phase is about using the knowledge gained in the previous phases
and deploying it to the organization’s decision making processes.

The basic architecture of a knowledge discovery system has to inherit the previous
stated steps and integrate all the components in an effective way so that it can meet its
objectives. The basic architecture of this kind of systems is represented in Figure 2.3:

Figure 2.3: Basic Architecture of the KDD process

13



Analyzing the Last.fm data

To conclude, KDD is a fast growing interdisciplinary field that includes areas such as:
database systems, data warehousing, statistics, machine learning, data visualization, in-
formation retrieval, pattern recognition, spatial data analysis, image databases and signal
processing.

2.2.2 The Importance of KDD

Nowadays, there is an high and instant availability of huge amounts of data, but the infor-
mation and knowledge that derives from that data is not easily accessible. In fact, it can
be stated that we are data rich but information poor [HK00]. So, the urge to retrieve such
useful information and knowledge from huge amounts of data has lead, over the years, to
the necessity of creating the means to fulfill it. In order to extract knowledge from data,
the first step that needs to be taken is the development and evolution of sophisticated and
powerful database systems, which took place since the 1960s. This evolution led to an
era where there were so many different sophisticated kinds of databases and information
repositories, such as data warehouses with analytical and decision making tools, yet so
few data detailed analysis tools, such as data classification, clustering, and the character-
ization of data. At that time, the abundant data that was stored on databases wasn’t used
as it should have been, by the lack of powerful data mining tools and the human incom-
prehension of that abundant data. Consequently, important decisions were often based on
human intuition, and made the retrieval of data pointless [HK00]. So, the future relies
on data mining tasks in order to retrieve knowledge from abundant amounts of data and
uncover important data patterns, contributing greatly to business strategies, market analy-
sis, fraud detection, customer retention, production control, science exploration and other
knowledge bases [HK00].

As it is common in the literature, we will use the terms KDD and Data Mining inter-
changeably from now on.

Data Mining Problems

When performing a set of data mining tasks, it is important, in the knowledge discovery
process, for the users to basically understand what type of data matters and what kinds of
patterns in that data can be interesting. It is a very difficult task and it may be impossible to
understand this immediately and intuitively, so multiple and parallel searches of different
kinds of patterns must be applied. In order to accomplish the previously stated situation,
one needs to be in possession of a data mining system that can mine different kinds of
patterns for multiple situations, applications and expectations, and that is able to receive
guidance from users to focus the search for the most relevant patterns in data. A data
mining system must meet all these purposes by having two categories of data mining
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tasks: descriptive, where the general properties of the data to be analyzed is characterized;
and predictive, where inference on data to make predictions is performed [HK00]. In this
thesis, we will only address the descriptive tasks of cluster analysis and association rules
discovering, due to the context of this project.

Association rules

Before knowing what association rule mining really means, one must know the defini-
tion of frequent patterns. So, according to [HK00], frequent patterns, as it is suggested by
the name, are patterns that occur frequently in data. An itemset is frequent when the set
of items frequently appear together in a dataset. The importance of mining frequent pat-
terns is that it leads to the discovery of interesting association rules derived from data. By
analyzing frequent patterns, one can know several different association rules, with a sup-
port percentage and confidence percentage. For example, if we have the association rule
”rock” => ”indie”, with a 90% support and a 90% confidence, that means that an artist
that plays rock music has a 90% chance or certainty of also playing indie music. The
90% support means that 90% of the data analyzed showed that an artist that plays rock
music also plays indie music. Basically, if a minimum support threshold and a minimum
confidence threshold is defined, some association rules may be considered uninteresting
if they don’t satisfy both minimum support and minimum confidence measures.

Cluster Analysis

A cluster is a group of data objects that are somehow similar to each other, and differ
from objects of other groups. According to [HK00] clustering is the process of group-
ing the data objects into clusters of similar objects, and a form of data compression and
segmentation.

Clustering has been an important process for numerous of areas, such as data min-
ing, statistics, machine learning, spatial database technology, business, biology and many
other areas that require pattern recognition, data analysis, and image processing. As a data
mining function, clustering can also be used as a tool to gain insight into the distribution
of data, to observe the characteristics of each cluster, and to focus on a particular set of
clusters for in-depth analysis.

Applications of clustering ask for a particular set of requirements in order to success-
fully find clusters that are coherent to reality, such as: scalability, in other words, the
ability to process different sizes of data sets; ability to deal with different types of at-
tributes, such as numerical, nominal, binary or a fusion of all; discovery of clusters with
arbitrary shape; ability to deal with noisy data; incremental clustering and insensi-
tivity to the order of input records; and clustering based on constraints.
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So, this process is very important for this project, because with it, we can identify re-
gions in object space and discover distribution patterns and interesting correlations among
Last.fm data attributes. Just like it happened in our childhood when we made distinctions
between objects and created subconscious clustering schemes, this automated clustering
must be done in the same way, regarding the Last.fm data of this project.

Algorithms for Data Mining

Although there is a variety of algorithms to solve the previously stated problems, for
the context of this project the most popular ones were chosen for each data mining prob-
lem. The following sections present a brief explanation of the Association Apriori and
Clustering k-means Algorithms.

Association Apriori Algorithm

According to [HK00], Apriori is a classic algorithm proposed by R. Agrawal and R.
Srikant in 1994 [SA97] for mining frequent itemsets in order to learn association rules
from that. The algorithm uses prior knowledge of frequent itemset properties, mainly
collected from databases of all sorts, and its name is based on that fact. In association
mining problems, given a set of itemsets, this kind of algorithm attempts to find subsets
which are common to at least a minimum number C of the itemsets. So, the algorithm
uses a level-wise iterative search, where k-itemsets are used to explore (k+1)-itemsets, by
the following sequence:

• Initially, the set of frequent 1-itemsets, denoted L1, is found by scanning the dataset,
in order to count each item, and collect the items that satisfy a minimum support;

• Then, the previously set L1 is used to find the next set of frequent 2-itemsets, the L2

set, that has counts of a pair of two items with a minimum support;

• The previous step is repeated in order to find L3, L4...,Lk, until there is no more
frequent k-itemsets available to be found.

The previous process is considered the first step for this algorithm, and the second
is the effective generation of association rules with all Lk itemsets with constraints of a
minimal threshold support, in order to create interesting association rules.

The Apriori property present in this algorithm is used to improve the efficiency of the
generation of frequent itemsets and reduce the search space, in other words, all nonempty
subsets of a frequent itemset must also be frequent. So, if an itemset does not satisfy a
minimum support threshold, then that itemset is not frequent, and also, if an item is added
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to an itemset, then the resulting itemset cannot occur more frequently than the original
one.

The following process is a brief explanation of how the previous property is used in the
context of the algorithm, where Ck is a candidate itemset of size k, and Lk is a frequent
itemset of size k. The first step is responsible for finding a frequent set Lk−1, then the
second step, called join step, is responsible for generating Ck by joining Lk−1 with itself,
and finally, any (k-1)-itemset that is not frequent is removed, because it is not a subset of
a frequent k-itemset. This process is repeated until there is nothing to be compared by
this algorithm.

Clustering k-means Algorithm

According to [HK00] the clustering k-means algorithm is responsible for the division
of a set of n objects into k clusters, in a way that the resulting intracluster similarity is
high but the intercluster similarity is low. The measurement of this similarity is possible
because of the mean value of the objects in a cluster, which is commonly named cluster’s
centroid. As said previously, the algorithm takes a parameter k from input, which will
divide a set of objects into k clusters. Then, the algorithm chooses k objects to be the
k initial clusters centroids, and each object is distributed to a cluster according to the
similarity to the cluster center. After that, the centroid of each cluster is recalculated
based on the current objects in the cluster, and the objects are distributed again, using
the recalculated centroids. The process terminates when no redistribution of objects is
possible, and the resulting clusters are provided to the user.

Tools for Data Mining

This section enumerates some data mining tools that can aid us in the discovery of data
patterns and trends with the data collected from Last.fm. In the following sections, we
describe three tools for data mining: Weka, Perl Association Data Mining Module and
the RapidMiner programs.

WEKA

WEKA is free machine learning software implemented in Java and developed by the
University of Waikato in New Zeland [oW].

WEKA is able to perform several standard data mining tasks, like clustering, clas-
sification, regression, associations and data pre-processing problems by analyzing data
available on a single file, that contains a fixed number of attributes [Gar95].
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WEKA provides its users the freedom to use not only numeric or nominal attributes,
but any kind of attribute, on the assumption that the user as already defined the overall
universe of elements to be considered. This tool also has very short processing times,
when running the program by command-line terminals, which enables the processing of
datasets with many attributes in short periods of time.

As it was said previously, WEKA expects a single file, but it is very restrictive. In
most of the cases, data is stored in a database, which Weka cannot understand, due to the
necessity of knowing type information about each attribute which cannot be automatically
deduced from the attribute values. So, in order to make Weka analyze anything, one needs
to convert data in the ARFF file format [ea08].

Although Weka provides simple access to SQL databases using Java Database Con-
nectivity, it can only process results returned by a single database at a time [ea08], which
is a problem when dealing with multiple databases, just as we intend to do.

The interfaces of Weka are presented to the users by interacting with a command-line
terminal or by interacting with a GUI. Although the GUI is most of the times more simple
and intuitive to the user, the command-line interface presents better processing response
times and allows the execution of more complex data mining tasks.

RapidMiner

RapidMiner is an open-source environment for data mining experiments. [RI] states
that Rapidminer is a data-mining solution that simplifies the construction of experiments
and the evaluation of different data approaches. Rapidminer uses a GUI in order to pro-
vide an integrated development environment for data mining tasks.

Perl Association Data Mining Module

This module is not as complete as WEKA or RapidMiner, since it only covers associ-
ation data mining problems [Fra]. The inability to cover any other data mining problem,
such as classification or clustering, is well compensated by its simple use, and by not
needing to receive data that is pre-processed too much, as it happens in WEKA. However,
this module has the constraint of only supporting data sets with two atributtes, and its
ability to process data is not as fast as the processing times of WEKA.

2.3 Conclusions

Analyzing the similar studies and applications to our project that we surveyed in this
chapter, we can see that those studies focus on certain aspects of music only (such as tags,
band members or hit songs), which differs from our general perspective of researching
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multiple variables and measures for our experiments. For the discovery of interesting
knowledge and patterns about music our approach is more global and it consists of the
gathering of as much as music information we can possibly retrieve. Since Last.fm is a
musical community where the music specialists, the fans, actually input data about it, we
think that we don’t need to look for other musical webpages in Google or Yahoo! to fulfill
our objectives.

Although, as stated previously, data mining is an effective way of studying data trends,
and of gathering and grouping data objects in order to detect interesting patterns and
knowledge. We must have into consideration, however, that data mining is not ”magic”
in disguise to understand Last.fm as we want, and that there is the possibility that with
the Last.fm data that we have in hand, data mining cannot produce interesting and new
knowledge about artists and their data. Another aspect that we should take into consider-
ation is that, although the data mining step in the knowledge discovery process is a very
important one, one needs to spend a lot of time pre-processing data, removing the noisy
values, and having a global understanding of how Last.fm data interacts and impacts the
project.

In this part of the project, we didn’t know how much data we needed to retrieve from
Last.fm, but our suspicions pointed to millions of artists. So, for that amount of data we
needed data mining tools that had faster data processing times. Since the GUI generally
drops the processing times, we selected the WEKA and Perl Association data mining
tools that provided a command-line interface where we could make our experiments and
have high data processing times.
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Chapter 3

Specifications

The specifications attend to all the considerations made in the beginning of the project,
and are an important list of guidelines during the implementation of the Last.Fm crawling
system. The features of the system were based on the KDD data analysis approach and
the CRISP-DM methodology in order to fulfill our top priorities and business objectives.

Then, we present the system architecture, the details of its modules and how they
interact with each other. The system architecture provides us guidelines for the imple-
mentation phase of this project, too.

During the preliminary analysis of the system, it was discussed that the Last.fm crawl-
ing system would have the purpose of fulfilling the data mining pre-processing tasks
(Data cleaning, Data integration, Data selection and Data transformation) of the Last.fm
database, and graph plotting tasks of that pre-processed data.

The Last.Fm crawling system would mainly have two components in order to meet its
purpose:

• The Last.fm crawling component;

• The Last.fm data mining component.

3.1 Last.fm crawling component

This module has the capability of gathering all data from Last.fm, including artists, their
albums, their songs, their fans, their tags, their shouts and their related artists. So, in order
to meet its purpose, this module has the following main features:

• discovery of all Last.fm artists and their similarity to other ones;

• retrieval of artist tags;
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• retrieval of artist albums;

• retrieval of artist shouts;

• retrieval of artist tracks or songs;

• retrieval of artist basic statistics;

• retrieval of artist fans;

• gathering of the previously retrieved information and artists’ global statistics.

Each feature is not independent and has a specific order to be executed, for exam-
ple, the retrieval of artist data (tags, albums, shouts) and its global statistics would be
impossible if the discovery of Last.fm artists didn’t take place before.

So, each feature should be executed in iterations, and until the previous one wasn’t
completed, the next couldn’t be started.

The following sections describe in more detail the purposes and implications of each
feature of the Last.fm crawler module.

Artist discovery

This module should be responsible for gathering all of Last.fm artists and their simi-
larity with other ones, and build all of the artists’ relations, which should represent the
first step of all data retrieval from Last.fm. It was discussed that this module would firstly
receive the most considered popular artist in Last.fm and begin the discovery of its sim-
ilar artists. Once the similar artists to that popular artist were discovered, the process of
discovery of each one of them too much, and so on, until all artists in Last.fm were dis-
covered. The discovery of artists presupposed not only the retrieval of the artist name,
but also the general information of that artist, like artist profile and image links, and the
degree of relation with other artists, so that it could be differentiated which artist is more
similar to other artists and at what level.

Retrieval of artist data

Assuming that the discovery of artists was successful, this module would be in charge
of:

• consulting each artist and discover all data concerning that same artist, regarding
tags, albums, fans, songs, shouts and other info;

• gathering the previously data for each artist, in order to be consulted later for other
modules.
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It was discussed that each type of data in Last.fm regarding tags, albums, fans, songs
and shouts should have an unique and independent crawler for parallelization and faster
crawling purposes.

Gathering of global statistics

Finally, the last step of the Last.fm crawler would be responsible for:

• collecting all data previously fetched from Last.fm;

• generating global statistics for each artist in Last.fm in order to be much easily
analyzed by the user or other modules of the Last.fm crawling program.

3.2 Last.fm data mining component

The purpose of this module was defined, so that:

• it could access all data gathered from Last.fm;

• it could plot some line or bars graphs, so that data could be more easily compre-
hended and analyzed;

• it could create datasets with relevant information, in order to be analyzed by the data
mining tools presented in the ”Analyzing the Last.fm Data” chapter.

3.3 General Implications

Finally, with all features clearly stated, some major implications that the Last.fm crawling
system should also fulfill were discussed. The following list states those implications:

• the program should be able to fetch and gather all relevant information from Last.fm
in a defined period of time, and should be cyclical. It was defined that the program
should fetch all Last.fm data every fortnight;

• the program and its elements, such as crawlers or parsers, must be tolerant to flaws;

• the conception of the Last.fm crawling program should be based on an existent
crawling prototype implemented by Luı́s Sarmento;

• it should be possible to launch multiple instances of each crawler in order to opti-
mize the time of the crawling process;

• the system should be implemented in order to run on Linux and MacOSX operating
systems.
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3.4 System Architecture

Based on the Last.fm crawling program requirements discussed previously, the context
diagram, and the basic architecture of the typical data mining system presented in the
”Analyzing the Last.fm Data” chapter, the system architecture of the Last.fm crawling
program was sketched. Figure 3.1 represents the architecture of the system:
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Figure 3.1: System Architecture

The diagram depicted in Figure 3.1 shows us that this system is comprised by: the
Last.fm web service API, the Last.fm crawling system and the database server. The fol-
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lowing sections will try to explain how each of these modules will interact with each
other.

The Last.fm web service API

This web service is provided by Last.fm, which provides an API and enables our system
to call specific methods about artists and their related information.

The Last.fm crawling program

This module is the core of all of our system, which gathers all artists and their relevant
information from the Last.fm by using its API web service, and redirecting that same
information to the specific databases present in the database server.

The main components that define this module are listed below:

• The crawling system - this system is responsible for launching all different kinds
of crawlers, such as artist info, shouts, tags and albums crawlers, which communi-
cate with the WSClient to request specific information, and communicate with the
DBIClient in order to store the previously requested information in the databases.
This system also communicates with the DBInitializer module, in order to create
and prepare all databases to receive the crawled data. The crawling of shouts is en-
abled by the communication with the MasterDBI module, which updates the Shouts
database;

• The data mining system - This system is responsible for communicating with all
existent databases of Last.fm data in the database server, via MasterDBI or DBI-
Client modules, and for fetching all relevant Last.fm data it needs to create datasets.
This system is also able to fetch all Last.fm data present in the database server, in
order to produce graphs displaying basic statistics and other information;

• The WSClient - this module stands for Web service client, and is responsible for
communicating directly with the Last.fm via API methods, in order to retrieve the
data from the Last.fm website databases. As stated previously, the WSClient re-
sponds to all crawlers in this system with the data from Last.fm;

• The DBIClient - this module stands for Database interface client, and is responsible
for communicating directly with the database server’s Last.fm and Shouts databases.
This client can perform basic operations of inserting and consulting the data fetched
by the rest of the modules;
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• The DBInitializer - this module is where all the process of crawling begins and
stands for Database Initializer. It is responsible for the creation and the preparation
of all databases, in order to be ready to store all data that comes from the Last.fm
website. It receives temporal information of the month and the year from the Timer
module, in order to fully classify each database by its date. When the crawler sys-
tem has crawlers running, they communicate with this module in order to create the
database and the tables that are ready to store the data fetched from Last.fm. Fi-
nally, this module communicates with the DBI Client module by giving it the basic
operations for creating and preparing all databases and tables;

• The MasterDBI - this module stands for Master Database Interface, and has a
global access to all existent databases. It is also responsible for fetching artists’
names and updating the Shouts database via the Shouts crawler by receiving in-
formation of the current date from the Timer module. This module communicates
with the data mining system by providing all necessary info from the databases,
producing datasets and displaying graphs;

• The Timer - this module is responsible for giving temporal information of the cur-
rent date to the overall system, which enables the creation of temporal databases
and enables the crawling of shouts from a specific point of time.

The database server

This server meets the purpose of storing temporal snapshots of Last.fm data in databases
that can be identified by the date they were created. It also stores the Shouts database,
that contains all shouts from the most popular artists in Last.fm since the beginning of
this project.
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Chapter 4

Implementation

The development phase of the Last.fm crawling is described in this chapter of the thesis.
In the first section, the technologies involved in the development process are briefly de-
scribed and some conclusions about their applications are presented. Then, we describe
the implementation process of this system. Firstly, we describe the selection of artist at-
tributes of each Last.fm API method, which would be the same as the ones present in
our databases. Then, we describe the algorithm that supports each crawler of the system.
Finally, we present the artist filter functionality, which was discovered in the middle of
the implementation process, and proved to be very useful in the extraction of artists in
useful time.

4.1 Technologies and Development Environment

This section presents a brief description about all the technologies used during the de-
velopment of the Last.fm crawling system. The program was mainly developed in Perl
and the editor employed was Eclipse IDE. The combination of these programming tools
proved to be very useful and practical due to the inbuilt support for development, the
easily available documentation and the help of the Internet for some pertinent situations.

4.1.1 Perl

Perl is a high-level dynamic programming language that was originally developed by
Larry Wall in 1987 [She00b]. Perl derives from various programming features and has
similarities with other programming languages such as C and shell scripting, but claims
to be much more simple to program [WCO00].

This programming language became the chosen one for the development of the Last.fm
crawling program, due to its efficient text processing capabilities, easy access to database
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systems and web pages on the Internet. Another characteristic is its integration with
the CPAN module search engine1, that provides useful and easy to install modules for
Perl [WCO00].

4.1.2 MySQL

MySQL, created by MySQL AB in Sweden, is a relational database management system
that runs as a server providing multiple access to a number of databases [Ull06].

Accessing MySQL databases is possible in all major programming languages by us-
ing specific APIs, libraries and plugins. MySQL works on several system platforms,
such as FreeBSD, Linux, Mac OS X, Microsoft Windows, and includes several features,
such as: openness, application support (like Java, Perl, C/C++ and PHP), cross-database
joins, outer join support, several different character sets support and cross-platform sup-
port [KRY02].

4.1.3 Eclipse IDE

Eclipse is a software development platform that embodies an IDE and a plug-in system
to extend it. Although this platform is designed for developing Java applications, it can
also be used to develop applications with other programming languages such as C, C++,
Cobol, Python, Perl and PHP, with the installation of several plugins in order to enable
the integration of all these programming languages [tfea].

Although Eclipse presents various features and functionalities, some of them would
become essential during the development stage of the Last.fm crawler:

• Perl EPIC plug-in - open source Perl IDE that is integrated in the Eclipse platform,
compatible with Windows, Linux and Mac OS X, which is mainly considered to
be the most complete, rich and extensible free Perl IDE available today, due to its
integration with Eclipse. Perl EPIC major features include: syntax highlighting,
real-time syntax check, Perl auto-completion and content assistance, and Perldoc
support [Int];

• Subclipse’s Subversion (SVN) plug-in - version control system created by Col-
labNet Inc in 2000, with the purpose of maintaining current and historical versions
of applications’ source code, web pages, and other documentation [tfec]. This sys-
tem integrates with Eclipse platform by giving an easy access to current version
repositories.

1www.cpan.org
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4.1.4 Personal Review of technologies

The Perl language and the Eclipse IDE chosen provided a powerful development environ-
ment with enough freedom to experiment new situations. The Perl CPAN module search
engine provided powerful modules that helped in the development process of this system.
MySQL proved to be a good database management system when storing our databases;
however, its ability to recover crashed databases took more time to complete than it was
previously expected.

4.2 Implementation details

In this section, we will present implementation details of this Last.fm crawling program.
First, we describe in detail the Last.fm API methods that were used and selected in order
to fetch from Last.fm only the necessary data to meet the purposes of this project. Then
we present the implementation details of the most important module of the program: the
crawling system. Finally, new modules are presented, due to the massive amount of data
that was fetched.

4.2.1 Last.fm API methods

In order to gather the relevant Last.fm data of artists and their associated information, we
have selected the most relevant Last.fm API methods regarding that information. Based
on the detailed information contained on the Last.fm API page2, the following methods
were selected:

• artist.getInfo - this method retrieves general information about an artist, including
its statistics in Last.fm and its biography;

• artist.getShouts - this method retrieves all shouts regarding an artist;

• artist.getSimilar - this method retrieves information about similar artists of a given
artist;

• artist.getTopAlbums - this method retrieves information about the top albums of a
given artist;

• artist.getTopTags - this method retrieves information about the top tags of a given
artist;

• artist.getTopTracks - this method retrieves information about the top tracks of a
given artist;

2www.lastfm.com/api
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• artist.getTopFans - this method retrieves information about the top fans of a given
artist.

Although all previous methods were included in the application, we will only address the
details of the methods considered more important to fulfill the purposes of this project.
The following sections will present tables with details of the most relevant attributes that
were selected for each method, and the reason why they were selected is presented. Ob-
viously, the same attributes selected from each method would be the same as the ones
stored in our databases.

artist.getInfo method

Figure 4.1: artist.getInfo method attributes details

artist.getShouts method
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Figure 4.2: artist.getShouts method attributes details

artist.getSimilar method

Figure 4.3: artist.getSimilar method attributes details
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artist.getTopTags method

Figure 4.4: artist.getTopTags method attributes details

artist.getTopAlbums method
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Figure 4.5: artist.getTopAlbums method attributes details

4.2.2 Database creation

As said previously, this program would have the ability to create Last.fm databases in a
defined period of time. By using the temporal information from the Timer module, the
system has its particular way to classify each database created.

The implementation of this mechanism was defined to be structured as the following
procedure:

1. Receive information about the actual month and the year;

2. Creation of a database with the name: LastFm <MONTH><YEAR>;

3. Storage of the name and the basic information of one of the most popular artists in
Last.fm.

The storage of the name and the basic information of one of the most popular artists
in Last.fm is an essential step in order to prepare the discovery of Last.fm artists.
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4.2.3 Crawler system

This module represents the most important module on this system, where the actual gath-
ering of Last.fm data takes place. Using a time scheduler system, this system is able to
launch the crawlers automatically and in a certain period of time, which is from month to
month. The system uses the following crawlers:

• artist discovery crawler;

• album crawler;

• artist Info crawler;

• tag crawler;

• track crawler;

• fan crawler;

• shout crawler.

Although all of the previous crawlers were implemented in this system, only the more
important will be addressed in the following sections:

Artist discovery crawler

This crawler is very important, and it is where the beginning of the gathering of Last.fm
data takes place. It is responsible for gathering all artists from the Last.fm website, start-
ing from a given artist that is assumed to be in the database, and iteratively finding its
related artists, which will in turn be crawled so that their similar artists can be found. The
implementation of this crawler was defined to be structured as the following procedure:

1. Start by finding the similar artists of a given artist, by giving the name of the artist
to the WSClient;

2. The WSClient, using the Last.fm artist.getSimilar method, retrieves the information
of similar artists of a given artist;

3. The information is parsed and only the relevant one about the similar artists is stored
in the database, using the DBIClient;

4. The status that defines if an artist was searched is updated, depending on the success
in the retrieving similar artists or not;

5. If there are no more artists to be discovered, the procedure ends;
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6. Else, there are artists to be discovered and the whole procedure starts again.

The process crawls artists stored in the databases randomly, which permits multiple
crawlers to be executed simulteanously. The update of the status of each artist enables the
continuity of the crawling process, if the process is interrupted.

After all of the names of the artists and their similar ones were fetched from the
Last.fm, the preparation for all the rest of the crawlers is possible.

The implementation of this mechanism was defined to be structured as the following
procedure:

1. The artist names previously fetched by the artist discovery crawler are used in the
discovery of the information of all crawlers;

2. The crawled status of each artist is updated;

3. Each crawler artist status is reset, so that all information can be retrieved for the
previously fetched artists.

As soon as this process ends, each crawler can crawl all artist information regarding
tags, albums, shouts, and other statistics.

Album crawler

This crawler checks the databases for the previously discovered artists from the Artist
discovery crawler. It is responsible for gathering information of all albums of a given
artist. The implementation of this crawler was defined to be structured as the following
procedure:

1. Start by finding the albums of a given artist, by giving the name of the artist to the
WSClient;

2. The WSClient, using the Last.fm artist.getTopAlbums method, retrieves the infor-
mation of albums of a given artist;

3. The information is parsed and only the relevant one about the albums is stored in
the database, using the DBIClient;

4. The crawl status of the artist is updated, depending on the success of retrieving
albums or not;

5. If there are no more artists to be crawled, procedure ends;

6. Else, the whole procedure starts again.

The process crawls artists stored in databases randomly, which permits multiple crawlers
to execute simulteanously. The update of the status of each artist enables the continuity
of the crawling process, if the process is interrupted.
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Artist Info crawler

This crawler checks the databases for the previously discovered artists from the Artist
discovery crawler. It is responsible for gathering information of all basic statistics of
a given artist. The implementation of this crawler was defined to be structured as the
following procedure:

1. Start by finding the basic statistics of a given artist, by giving the name of the artist
to the WSClient;

2. The WSClient, using the Last.fm artist.getInfo method, retrieves the basic statistics
of a given artist;

3. The information is parsed and only the relevant one about the albums is stored in
the database, using the DBIClient;

4. The crawl status of the artist is updated, depending on the success of retrieving
statistics or not;

5. If there are no more artists to be crawled, procedure ends;

6. Else, the whole procedure starts again.

The process crawls artists stored in databases randomly, which permits multiple crawlers
to execute simulteanously. The update of the status of each artist enables the continuity
of the crawling process, if the process is interrupted.

Tag crawler

This crawler checks the databases for the previously discovered artists from the Artist
discovery crawler. It is responsible for gathering information of all tags of a given artist.
The implementation of this crawler was defined to be structured as the following proce-
dure:

1. Start by finding the tags of a given artist, by giving the name of the artist to the
WSClient;

2. The WSClient, using the Last.fm artist.getTopTags method, retrieves the informa-
tion about tag of a given artist;

3. The information is parsed and only the relevant one about the tags is stored in the
database, using the DBIClient;

4. The crawl status of the artist is updated, depending on the success of retrieving tags
or not;
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5. If there are no more artists to be crawled, procedure ends;

6. Else, the whole procedure starts again.

The process crawls artists stored in databases randomly, which permits multiple crawlers
to execute simulteanously. The update of the status of each artist enables the continuity
of the crawling process, if the process is interrupted.

Shout crawler

This crawler checks the databases for the previously discovered artists from the Artist
discovery crawler. It is responsible for gathering information of all shouts of a given
artist. The implementation of this crawler was defined to be structured as the following
procedure:

1. Start by finding the shouts of a given artist, by giving the name of the artist to the
WSClient;

2. The WSClient, using the Last.fm artist.getShouts method, retrieves the shouts of a
given artist;

3. The information is parsed and only the relevant one about the shouts is stored in the
database, using the DBIClient;

4. The crawl status of the artist is updated, depending on the success of retrieving
shouts or not;

5. If there are no more artists to be crawled, procedure ends;

6. Else, the whole procedure starts again.

The process crawls artists stored in databases randomly, which permits multiple crawlers
to execute simulteanously. The update of the status of each artist enables the continuity
of the crawling process, if the process is interrupted.

4.2.4 Artist Filter

When the system started to crawl Last.fm data, the need to filter artists arose in order to
meet the requirement of fetching Last.fm databases every month. Last.fm allows its users
to scrobble their songs in order to retrieve as much data of artists, tracks, albums...etc as
possible, while they enjoy their songs on a player in their computers. Although its a very
efficient way of getting data of artists, it also leads to what we call ”artist junk” due to
the inaccuracy of artist tags of some users’ songs, which can be seen as multiple forms
of strings, such as URLs and other dispensable info. Extracting the most relevant info
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from Last.fm in the crawling process requires the implementation of some sort of filter of
information in order to prevent the later processing of the above ”artist junk”.

The importance of the MusicBrainz website

The MusicBrainz website is a user-maintained community music metadatabase that
gathers information about artists, their music and albums in a similar way as Last.fm
does, but instead of the Last.fm file-oriented scrobbling, it scrobbles data in an album-
oriented way, which can limit the inaccuracy of the information and the proliferation of
unwanted ”artist junk” [Mus]. Although MusicBrainz is a very important web resource to
use in this project, it is not perfect because it can also gather ”artist junk” and, by itself, it
is not sufficient to filter all ”artist junk” available in Last.fm.

The Relevance of the MusicBrainz website

In order to prove the relevance of the MusicBrainz website, and that its metadatabase
doesn’t consist of United States of America artists only, 10 random non-US artists (Japanese,
Chinese, Russian, Portuguese, Indian and DJ artists) were researched. This study proved
that the MusicBrainz’s web resource is a valid asset for the filtering of artists from the
whole universe of artists of the Last.fm website.

The list of all researched artists of this study is presented in the Appendix section.
The need to conceive an artist filter for this system altered the initial system archi-

tecture and the communication between the crawlers and the WSClient. The redefined
system architecture is depicted in Figure 4.6 below:
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Figure 4.6: System Architecture with Artist Filter module

Artist Filter Implementation
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So basically, when the artist filter receives each name from the WSClient, it has to
discard names of artists by using two possible approaches: by resource of the Musicbrainz
web resource, or by analyzing the name of the artist. By using the Musicbrainz web
resource, this module has to discard all artist names that don’t have a proper id in the
MusicBrainz website (if it’s not there it’s not considered a real artist or a well-known
one). By analyzing the name of the artist, this module has to discard an artist name that:

• contains any kind of URL, website or any other Internet location on its name;

• contains the characters: .,!,?,’,<space>,&,, on the beginning of its name;

• is, in fact, an artist featuring another artist, or an artist battling another artist;

• contains the string MP3 or MP4 on its name;

• contains the string various artists on its name, which is not an artist but a group pf
artists;

• contains the string Track, OST, Original Soundtrack on its name, which is not an
artist but a song or a collection of songs.

4.3 Conclusion

The implementation process took more time than it was predicted in the beginning of the
project. In the beginning of the project, we didn’t have a single clue of how many artists
there were in the Last.fm website. There were a few difficulties in implementing the
majority of this system, but as soon as the exploration of an unknown universe of artists
in Last.fm began, too much time was spent optimizing the performance of the crawlers
and the overall procedure of crawling Last.fm data. Millions and millions of artists being
fetched made it impossible to extract Last.fm data every fortnight.
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Prospective Analysis of Data

This chapter describes the analysis of all data retrieved from the Last.fm website. Since
the actual analysis of this data was an important goal of this project, in this chapter we
deepen the analysis as much as possible.

5.1 Methodology

In order to analyze and comprehend all data taken from the Last.fm website, we followed
the KDD major steps. So, the Last.fm crawling system’s crawlers implement the first four
steps of KDD (data cleaning, data integration, data selection and data transformation),
and the Last.fm crawling’s plotters and the usage of Weka and the Perl Association rules
module data mining capabilities were responsible for the remaining steps (Data mining,
Pattern evaluation and Knowledge presentation).

At the beginning of the data mining studies over the Last.fm data retrieved, we fol-
lowed the CRISP-DM step of data understanding, where one would have to have a global
perspective of the data, such as the relation between artists and fans, tags, popularity and
many others, and then apply the data mining studies. So the following Visual Analysis
section gives that same perspective about that data by presenting the graphs produced by
the plotters and other relevant diagrams.

The Data mining section presents the tests that were conducted with the data mining
tools. For each test, we present the objective of the test, what was done to conduct that
test, and then we report the results, trends and predictions that were originated by the use
of data mining problems and algorithms over the data.
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5.2 Visual Analysis

This section shows all graphs and visual representations of the Last.fm data we have
gathered during this project.

5.2.1 Artist Universe

This section gives a perspective on the whole universe of Last.fm artists, and the intersec-
tion with the universe of Last.fm crawling and the Musicbrainz’s universe.

In order to understand the artist universes of Last.fm, and both universes of our pro-
gram using both approches of the artist filter, we performed the following tasks:

• Retrieval of Last.fm artists without the resource of the artist filter module;

• Retrieval of Last.fm artists with the resource of the artist filter module, using the
MusicBrainz’s web resource;

• Retrieval of Last.fm artists with the resource of the artist filter module, by analyzing
the name of the artists.

Once we had the three universes we were able to intersect each universe, by manually
searching for artists and querying the databases.

The Figure 5.1 shows the previously stated universes and how they intersect with each
other. This figure represents the real intersections on the three artist universes but lacks
precision, only giving an idea of how the different universes are related to each other.
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Figure 5.1: Overview of the Artist Universe

As we can see, Last.fm is mainly composed by two kinds of artists, the valid artists
and the junk artists. The valid artists are the ones that, as the name states, are valid and
real with known popularity and information; the junk artists are the ones that, as the name
suggests, are junk, not real and are actually user-created by scrobbled misformed tags
from songs.

So, as described in the implementation chapter, the artist filter tries to fetch as much
valid artists as possible, and as less junk artists as possible, but as it can be seen in the
diagram, the Last.fm crawling retrieves some junk artists and doesn’t fetch all valid artists,
due to the difficult Last.fm artist filter’s task of determining whether or not an artist is valid
only by its name.

Finally, about a half of the MusicBrainz’s artists are included in the Last.fm artist
universe, and the Last.fm crawling system is able to get most of those artists.

This section presents some of the relations between Last.fm’s attributes which are
relevant for this project. The graphs included in this section show those relations. When
necessary, and for a better comprehension of values and a better analysis of those values,
graph axis may need to be adapted to logarithmic scales, due to the wide range of values.

Due to unexpected delays at the implementation phase of this project, it was not pos-
sible to display all information about the overall Last.fm crawling universe in graphs. In
order to save time, the usage of a representative sample of all that universe was analyzed.
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So, we chose a sample with all artists from Last.fm with a defined Musicbrainz id; as
they had a defined Musicbrainz id we were sure that those artists were real and valid. By
using valid artists only, we can identify the true characteristics of each artist and we can
study and conclude about what characteristics of these artists differ from the characteris-
tics of junk artists. The MusicBrainz id sample contains about 212000 artists, which in
our perspective constitutes a good testing sample.

5.2.2 Artist Graphs

This section gives a global perspective about some relations with artists and their info. The
following graphs show that same perspective, and for each one of them some conclusions
about the information that each one addresses will be given.

Number of characters in artists’ names

As it was previously said, one important module of this program is the Artist filter,
which distinguishes artists that are valid from those that are junk. So, in the investigation
for how the process of filtering artists would work, one characteristic that we considered
was the filtering of artists by the number of characters in the artists’ names.

By using the artist universe that the Last.fm crawling system retrieved, and the sample
mentioned above, we can conclude about what information is inherent to a valid artist,
and how we can use that same information to separate the valid artists from the junk ones.

Figure 5.2 displays that same information about the number of characters in artists’
names for the whole universe of artists retrieved by the Last.fm crawling program, where
each point of the x axis represents the number of characters of a name of an artist, and the
y axis represents the total number of artists that have a specific number of characters:
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Figure 5.2: Histogram of Number of characters in artists names of the global universe

Figure 5.3 displays the previous information about the number of characters in artists’
names, but this time only for the universe of artists with valid MusicBrainz id, fetched by
the Last.fm crawling program, where each point of the x axis represents the number of
characters of a name of an artist, and the y axis represents the total number of artists that
have a specific number of characters.
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Figure 5.3: Histogram of Number of characters in artists names of the MusicBrainz universe

As we can see, the majority of artists’ names has a number of characters that range
from seven characters to eighteen characters. However, limiting the retrieval of artists by
that range can be very restrictive, because by analyzing this graph we can see that other
artists with a name that isn’t included in the majority range are in fact valid artists as well,
and we can’t afford to lose information and discard those same artists, as that could make
this project less credible.

By analyzing both previous graphs, some conclusions were made: the graph with the
Musicbrainz id universe has a maximum limit of 125 characters; the other, with the whole
universe of artists fetched, has a limit of 255 characters. Looking at this information we
can infer that the maximum valid limit of characters in an artist’s name is in fact 125
characters, and if a name is above that limit we can consider it a junk artist or more than
one artist, and it needs to be discarded from the system. Other considerations on filtering
artists could not be made, because they were too restrictive for the purpose of this project.

Number of artists by number of albums
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Another characteristic that was discussed to be included in the artist filter module was
to filter artists by the number of albums each one has or the albums their music was part
of. As before, the study reflected the Last.fm artists with Musicbrainz id sample, which
assures the validity of all artists. Figure 5.4 displays the information about albums and
their artists where each point of the x axis represents the number of albums of an artist,
or the number of albums where the music of that same artist is present, and the y axis
represents the total number of artists that have a specific number of albums:

Figure 5.4: Histogram of Number of artists by number of albums

As we can see, there are plenty of artists with albums ranging from zero to three, and
not so many for the rest of the number of albums. By analyzing the behavior of the graph,
as the number of albums increases, we can see that there are less and less artists with that
number of albums.

When the number of albums is 0, we can see that there are plenty of artists that don’t
have any albums. The reason behind it is that those artists only perform and produce
single songs with no albums. When the number of albums is ranged from 48 to 50, we
can see a relevant increase compared to the previous values. This increase can mean that
not only the most popular artists have albums ranging from 48 to 50, but also the less
popular ones. However this increase can also mean that the artists with more than 50
albums were also included here (because Last.fm has a limit of 50 albums per artist).

At first, we might think that the number of albums can measure the popularity of
artists, because just like few artists are very popular, few have a great number of albums as
well. However, we can’t state with all certainty that the popularity of artists is influenced
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by the number of albums, just by analyzing this graph. The popularity based on the
number of albums can be seen in Figure 5.10.

In conclusion, we cannot filter artists based on the number of albums, because as it
can be seen from the graph, various valid artists can have a different number of albums
and are as valid and real as any other.

Number of artists by number of tags

Another characteristic that was discussed to be included in the artist filter module was
the one that filters artists by the number of tags each one has. As before, the study reflected
the Last.fm artists with Musicbrainz id sample, which assures the validity of all artists.
Figure 5.5 displays the information about tags and their artists where each point of the x
axis represents the number of tags of an artist, and the y axis represents the total number
of artists that have that amount of tags:

Figure 5.5: Histogram of Number of artists by number of tags

As we can see, the majority of artists has a number of tags that range from one to
fifteen and one hundred tags. By analyzing the behavior of the graph, as the number of
tags increases, we can see that there are less and less artists with that number of tags,
except on the one hundred tags point, which has plenty of artists. This prabably happens
because of the fact that users of Last.fm, not only tag popular artists, but also tag artists
that are trendy during a certain period of time, but are not famous. The increase in the x
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value of 100 can also mean that there are artists with more than 100 tags (because Last.fm
has a limit of 100 tags per artist), because those values cover the artists with 100 tags or
more. There is no conclusion that can be taken about the relation of popularity and the
number of tags only by analyzing this graph, because the most famous artist in Last.fm
only has 99 tags, and there are many artists that are not as popular and have one hundred
tags. The popularity of artists should not be measured by the amount of tags the artists
have, but by the tags themselves (when an artist is not very popular, the tags are less
known or used). Filtering artists by the number of tags is out of the question, because
as we can see by analyzing the graph, there are various artists that can have a varying
number of tags (ranging from one to one hundred), and they are all valid and real.

Number of artists by number of listeners

Another characteristic that was discussed to be included in the artist filter module was
the one that filters artists by the number of listeners each one has. As before, the study
reflected the Last.fm artists with Musicbrainz id sample, which assures the validity of all
artists. Figure 5.6 displays the information about listeners and their artists where each
point of the x axis represents an interval of listeners of an artist, and the y axis represents
the total number of artists that are present in that interval. Due to the wide range of values
in the y axis, a logarithmic scale to the base 10 was used, in order to shrink the range of
values and to better understand them and the results of the graph.

Figure 5.6: Histogram of Number of artists by number of listeners

As we can see, most of the artists in the sample has an amount of listeners ranging
from one to 250000 listeners, but only one artist has an amount of listeners ranging from
2000001 to 2250000, and only an artist has an amount of listeners ranging from 2250001
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to 2500000. Also, as the number of listeners increases, the number of artists decreases.
Popularity is a trait that only few artists have, so, in a certain way, we can conclude that the
number of listeners of an artist can really determine its popularity, based on the decreasing
of the number of artists as the number of listeners increases.

Number of artists by total playcount

Another characteristic that was discussed to be included in the artist filter module, was
the one that filters artists by the number of playcounts each one has. As before, the study
reflected the Last.fm artists with Musicbrainz id sample, which assures the validity of all
artists. Figure 5.7 graph displays the information about playcount and its artists where
each point of the x axis represents an interval of playcount of an artist, and the y axis
represents the total number of artists that are present in that same interval. Due to the
wide range of values in the y axis, a logarithmic scale to the base 10 was used, in order to
shrink the range of values and to better understand them and the results of the graph.

Figure 5.7: Histogram of Number of artists by total playcount

As we can see, most of the artists in the sample has a total playcount ranging from one
to 40000000 playcounts, only one artist has a total playcount ranging from 120000001 to
160000000, and two artists ranging from 160000001 to 200000000. Also, as the number
of playcount increases, the number of artists decreases, except for the two last ranges of
playcounts. By comparing Figure 5.7 with Figure 5.6, we can see that the number of
artists decreases with higher values of listeners, but the number of artists doesn’t decrease
with higher values of playcounts. So, we can conclude that the number of listeners of
an artist can really determine the popularity of an artist. The number of playcounts can
determine the popularity of artists in a way, but huge values of playcount can be produced
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by many listeners and very few alike, which makes the playcount measure an unreliable
popularity classifier.

5.2.3 Popularity Graphs

This section presents a global perspective on the relations of different potencial popularity
measures of artists, and completes some of the conclusions taken from the Artist Graphs
section. The following graphs show that same perspective, and for each one of them,
some conclusions about the information that each one addresses will be given.

Artists by Listeners and Playcount

This section shows how the listeners and playcount attributes really determine the pop-
ularity of an artist. The graph on Figure 5.8 displays the information about listeners and
playcounts of about 208000 artists of the MusicBrainz sample. Each point of the x axis
represents the number of listeners of an artist, and the y axis represents the total number of
playcounts of an artist. Due to the wide range of values on both axis, a logarithmic scale
to the base 10 was used, in order to shrink the range of values and to better understand
them and the results of the graph.
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Figure 5.8: Artists by Listeners/Playcount

The results presented here corroborate what was concluded before about the fact that
listeners and playcounts can determine the popularity of an artist. As we can see, the
tendency of this graph is, as the number of listeners increases, the number of total play-
counts increase as well. But there are many cases that contradict this tendency. For
example, when the value of listeners is around 3.5 and 3.75 (which represents a range of
listeners from 3162 to 5623 listeners) there is an artist with the playcount value of 7.5
(which represents 31622776 playcounts), but then there are some neighbors with a higher
value of listeners (which means more artist popularity), but a lower value of playcounts.
We can’t state with all certainty that the popularity of artists is influenced by the play-
counts, but if an artist has a high value of playcounts, there is a great probability that that
artist is popular. But by analyzing the graph, we can say that if an artist has low values of
playcount that artist is not popular.

Artists by Listeners and Tags

This section determines how the number of tags actually interferes with the popularity
of artists. The graph on Figure 5.9 displays the information about the listeners and the
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number of tags of artists. Each point of the x axis represents the number of listeners of an
artist, and the y axis represents the total number of tags of an artist. Due to the wide range
of values on the x axis, a logarithmic axis to the base 10 was used, in order to shrink the
range of values and to better understand them and the results of the graph.

Figure 5.9: Histogram of Artists by Listeners/Tags

As we can see, the tendency of this graph is as the number of listeners increases the
number of total tags increase as well. But there are many cases that contradict this ten-
dency. For example, when the value of listeners is around 2.5 and 2.75 (which represents
a range of listeners from 316 to 562 listeners) there are several artists with 100 tags, but
then there are some neighbours with a value of listeners around 2.75 and 3 (which repre-
sents a range of listeners from 562 to 1000) that only have 75 tags. We can’t state with
all certainty that the popularity of artists is influenced by the number of tags, but if an
artist has a high value of tags, there is a great probability that that artist is popular. As
stated previously, the popularity of artists should not be measured by the amount of tags
the artists have, but by the tags themselves (when an artist is not very popular, the tags are
less known or used).

Artists by Listeners and Albums
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This section determines how the number of albums actually interferes with the popu-
larity of artists. The graph on Figure 5.10 displays the information about listeners and the
number of albums of artists. Each point of the x axis represents the number of listeners
of an artist, and the y axis represents the total number of albums of an artist. Due to the
wide range of values on the x axis, a logarithmic scale to the base 10 was used, in order
to shrink the range of values and to better understand them and the results of the graph.

Figure 5.10: Histogram of Artists by Listeners/Albums

As we can see, the tendency of this graph is as the number of listeners increases
the number of total albums increases as well. But there are many cases that contradict
this tendency. For example, when the value of listeners is around 2.5 and 2.75 (which
represents a range of listeners from 316 to 562 listeners) there is an artist with 50 albums,
but then there is a neighbor with a value of listeners around 2.75 and 3 (which represents a
range of listeners from 562 to 1000) with only 40 albums. We can’t state with all certainty
that the popularity of artists is influenced by the number of albums, but if an artist has a
high value of albums, there is a great probability that that artist is popular.
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5.2.4 Tags Graphs

This section gives a global perspective on the relations of artists and their tags, and com-
pletes some of the conclusions taken from the artist graphs section regarding tags. The
following graphs show that same perspective, and for each one of them, some conclusions
about the information that each one addresses will be given.

Top Ten Tags

The following graph is merely informative, showing the 10 most used tags in Last.fm.

Figure 5.11: Histogram of Top Tags

As we can see, the 10 most used tags in Last.fm are: seen live, rock, electronic, pop,
alternative, indie, electronica, punk, female vocalists and experimental. This information
is very useful because it can give us guidelines, in the data mining phase in order to try
to understand the relations that these tags have between them and between other tags, and
how they reflect the tags of an artist.

Number of artists by tags

As it was described in the state of the art chapter, the Last.fm website receives user-
input tags from all over the world, and we know that this kind of approach can insert lots
of junk information in the Last.fm system. In order to understand how much valid data
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regarding tags is present in the Last.fm system, the following graph gives a perspective
on the overall usage of tags in Last.fm. Each point of the x axis of this graph represents
a specific tag, and the y axis represents the total number of artists that have a specific tag.
The graph was decreasingly ordered by usage of tags and due to the wide range of values
in both axis, a logarithmic scale to the base 10 was used, in order to shrink the range of
values and to better understand them and the results of the graph.

Figure 5.12: Number of artists by tags

This graph includes a universe of about 270000 tags, and as we can see from the curve,
after the 2.375 value in the x axis (which is equal to the 237th tag), the tags are only used
once. So, in about 270000 tags, only 237 are used more than once, which only represents
0.09% of the sample. Even though the tagging system of Last.fm is effective in artist
classification, the system allows for a huge amount - about 99,9% - of junk input-data to
be inserted.

5.3 Data Mining based prospective analysis

This section represents the second and most important part of the analysis of the results,
and the culmination of all that was previously done in this project. The first part of this
analysis was only a data representation of what was retrieved from the Last.fm website,
which provided a global vision and a perspective, in order to successfully study data trends
and patterns in Last.fm.
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Unfortunately, due to the lack of time, it was not possible to create several temporal
snapshots of the Last.fm database, in order to determine and predict important measures,
such as studies about the evolution of an artist, or prediction of popularity of a group
of artists. In addition, and also due to the lack of time, not all the possible data mining
testing was performed. In the conclusions and future work chapters we will address in
more detail what really needs to be done to perform these data mining tasks of analyzing
and studying artist evolution.

So, although we cannot perform complex data mining tasks over a large number of
databases with the Last.fm data, there were other data mining tasks that could be per-
formed with only one or two databases. In order to ensure the validity of these studies,
the selected databases were the ones with MusicBrainz id entries only. As stated previ-
ously, the majority of these artists are valid and real.

The following sections will explain the methodology used for the discovery of trends
and patterns with few databases, the results of that same discovery, and the analysis of
results of the most interesting patterns found with the Last.fm data. First, we will detail
the data mining clustering problems and their tests. Then, we will detail the data mining
association problems and their tests.

5.4 Clustering tests

5.4.1 Test 1: Grouping artists by tags

The purpose of this test was to determine how the tags of an artist really relate to the tags
of its most similar artist. What we were trying to discover was the percentage of related
artists that share the same tags.

Methodology used

In order to fulfill the purpose of this test, we focused on the artist tag data from the
databases and selected the following attributes to include in our test files:

• Most relevant tag of an artist;

• Most relevant tag of the most similar artist to the previous artist.

With this pre-processing of data, we prepared it to be used with the Weka clustering
algorithm. The data consisted of about 50000 artists, and 25000 pairs of tags, so that the
clustering algorithm could analyze the relations between those tags. We thought that this
sample would be representative for our studies, and the reason we didn’t include more
artist tag relations was to guarantee a good performance of the Weka program.
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Applied algorithm

So, as soon as we had the test files, the applied algorithm was the clustering k-means.
By using the information gathered on the Visual Analysis section about the tags, we de-
fined a test with 10 clusters in order to map the top 10 tags found in the Last.fm system.
For this test we used the Weka k-means algorithm because Weka was the only one, from
our data mining tools, capable of running clustering algorithms.

Test Conclusions

The results produced by the algorithm proved that:

• 75% of the similar artists analyzed had different tags;

• 25% of the similar artists analyzed had the same tags.

These results actually make sense, because both artists don’t necessarily need to have
the same tags in order to be similar. Their actual tags can be different but represent similar
music genres or similar information, which make them similar artists. In the case of both
tags being similar, the artists are similar too.

5.4.2 Test 2: Artist evolution

The purpose of this test was to determine the artist’s evolution in a month. What we were
trying to discover was the percentage of artists that in a month verified:

• A quick evolution;

• A normal evolution;

• A not so relevant evolution.

Methodology used

In order to fulfill the purpose of this test, we focused on the artist popularity measures
data from the databases and selected the following attributes to include in our test files:

• Subtraction of the listeners measure of an artist in two adjacent months;

• Subtraction of the playcount measure of an artist in two adjacent months;

• Subtraction of the album playcount measure of an artist in two adjacent months.
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With this pre-processing of data, we prepared it to be used with the Weka clustering
algorithms. The data consisted of about 45000 artists, so that the clustering algorithm
could analyze the possible growth of an artist. We thought that this sample would be rep-
resentative for our studies, and the reason we didn’t include more artists was to guarantee
a good performance of the Weka program.

Applied algorithm

So, as soon as we had the test files, the applied algorithm was the clustering k-means.
To achieve the purpose of this test, we defined a test with 3 clusters in order to map the
three situations we wanted to study. For this test we used the Weka k-means algorithm
because Weka was the only one, from our data mining tools, capable of running clustering
algorithms.

Test Conclusions

The algorithm produced its results with three centroids that were representative of the
three situations we wanted to analyze. The results proved that:

• 8% of the artists had a quick evolution on both listeners and playcount measures;

• 54% of the artists had a normal evolution on both listeners and playcount measures;

• 39% of the artists had a not so relevant evolution on both listeners and playcount
measures.

These results actually make sense based on the following facts:

• It is well known that only a small number of artists have a quick evolution in their
musical career, and actually evolve in the popularity charts;

• Most of the artists already have a place in the music industry, and have a normal
evolution in the popularity charts as time goes by;

• The rest of the artists can be artists that are being forgotten by their fans, or may be
artists that are not well known by the users and were not discovered yet.

5.5 Association tests

5.5.1 Test 3.1: Occurence of tags

The purpose of this test was to determine the occurence of a group of tags. What we were
trying to discover was the percentage of confidence in the occurence of a tag or a group
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of tags, given a tag or a group of tags. For example, if an artist has a ”rock” tag maybe we
can predict with a percentage of confidence that that same artist has the ”new rock” tag.

Methodology used

In order to fulfill the purpose of this test, we focused on the tag artist data from the
databases and selected the ten most relevant tags of a group of artists to be the attributes
to include in our test files.

The data consisted of about 150000 artists, so that the association algorithm could
analyze the possible occurence of tags. We split the data in order to use 90% of it in this
test. The other 10% would be used to validate the results this test would produce. We
thought that this sample would be representative for our studies.

Applied algorithm

So, as soon as we had the test files, the applied algorithm was the association apriori.
To achieve the purpose of this test, we defined a minimum confidence of 90% to be used
in this test. With this level of confidence, we can guarantee a high level of probability for
results to happen. For this test we used the Weka apriori algorithm only to see what kind
of results it would produce.

Test Conclusions

Unfortunately, Weka produced no results for this problem. We think that the reason
behind it is that with different possibilities of sets of 10 tags, Weka couldn’t find frequent
patterns only by knowing ten distinct tags of a given artist.

5.5.2 Test 3.2: Occurence of tags

The purpose of this test was to determine the occurence of a group of tags. What we were
trying to discover was the percentage of confidence in the occurence of a tag or a group
of tags, given a tag or a group of tags. For example, if an artist has a ”rock” tag maybe we
can predict with a percentage of confidence that that same artist has the ”new rock” tag.

Methodology used
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In order to fulfill the purpose of this test, we focused on the tag artist data from the
databases and selected the ten most relevant tags of a group of artists to be the attributes
to include in our test files.

The data consisted of about 150000 artists, so that the association algorithm could
analyze the possible occurence of tags. We split the data in order to use 90% of it in this
test. The other 10% would be used to validate the results this test would produce. We
thought that this sample would be representative for our studies.

Applied algorithm

So, as soon as we had the test files, the applied algorithm was the association apriori.
To achieve the purpose of this test, we defined a 90% minimum confidence to be used
in this test. With this level of confidence, we can guarantee a high level of probability
for results to happen. For this test we used the Perl Association module, due to the failed
attempt of using Weka, and also because this module is capable of running the association
apriori algorithm.

Test Conclusions

As soon as the algorithm produced its results, we compared the same results with the
10% data sample. The results proved that:

• with 92% of confidence, if an artist has the ”indie rock” and the ”rock” tags, it also
has the ”indie” tag;

• with 90% of confidence, if an artist has the tag ”electronica”, it also has the ”elec-
tronic” tag;

• with 92% of confidence, if an artist has the ”alternative rock” tag and the ”indie”
tag, it also has the ”rock” tag;

• with 91% of confidence, if an artist has the ”alternative rock” tag, it also has the
”rock” tag;

• with 94% of confidence, if an artist has the ”alternative” tag and the ”alternative
rock” tag, it also has the ”rock” tag;

• with 93% of confidence, if an artist has the ”indie pop” tag, it also has the ”indie”
tag;

• with 93% of confidence, if an artist has the ”alternative” tag and the ”indie rock”
tag, it also has the ”indie” tag;
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• with 95% of confidence, if an artist has the ”alternative” tag, ”alternative rock” tag
and the ”indie” tag, it also has the ”rock” tag;

• with 91% of confidence, if an artist has the ”alternative rock” tag, ”indie” tag and
the ”rock” tag, it also has the ”alternative” tag;

• with 90% of confidence, if an artist has the ”indie rock” tag, it also has the ”indie”
tag;

• with 95% of confidence, if an artist has the ”hard rock” tag, it also has the ”rock”
tag;

• with 93% of confidence, if an artist has the ”alternative” tag, the ”indie rock” tag,
and the ”rock” tag, it also has the ”indie” tag.

The results actually make sense, because the tags are similar musical genres or similar
information.

5.5.3 Test 4.1: Occurence of similar tags

The purpose of this test was to determine the occurence of artist tags with tags of similar
artists. What we were trying to discover was the percentage of confidence in the occurence
of an artist tag, given a similar artist tag. For example, if an artist has a ”rock” tag, maybe
we can predict with a percentage of confidence that a similar artist has the ”pop rock” tag.

Methodology used

In order to fulfill the purpose of this test, we focused on the artist tag data from the
databases and selected the following attributes to include in our test files:

• most relevant tag of an artist;

• most relevant tag of the most similar artist to the previous artist.

The data consisted of about 100000 artists, so that the association algorithm could
analyze the possible occurence of tags. We split the data in order to have 90% of it to
be used in this test. The other 10% would be used to validate the results this test would
produce. We thought that this sample would be representative for our studies.

Applied algorithm
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So, as soon as we had the test files, the applied algorithm was the association apriori.
To achieve the purpose of this test, we defined a minimum confidence of 90% to be used
in this test. With this level of confidence, we can guarantee a high level of probability for
results to happen. For this test we used the Weka apriori algorithm to see what kind of
results it would produce.

Test Conclusions

Unfortunately, Weka produced no results for this problem. We think that the reason
behind it is that with different possible pairs of tags, Weka couldn’t find frequent patterns
by knowing two tags only.

5.5.4 Test 4.2: Occurence of similar tags

The purpose of this test was to determine the occurence of artist tags with tags of similar
artists. What we were trying to discover was the percentage of confidence in the occurence
of an artist tag, given a similar artist tag. For example, if an artist has a ”rock” tag, maybe
we can predict with a percentage of confidence that a similar artist has the ”90s” tag.

Methodology used

In order to fulfill the purpose of this test, we focused on the artist tag data from the
databases and selected the following attributes to include in our test files:

• Most relevant tag of an artist;

• Most relevant tag of the most similar artist to the previous artist.

The data consisted of about 100000 artists, so that the association algorithm could
analyze the possible occurence of tags. We split the data in order to have 90% of it to
be used in this test. The other 10% would be used to validate the results this test would
produce. We thought that this sample would be representative for our studies.

Applied algorithm

So, as soon as we had the test files, the applied algorithm was the association apriori.
To achieve the purpose of this test, we defined a minimum confidence of 90% to be used
in this test. With this level of confidence, we can guarantee a high level of probability
for results to happen. For this test we used the Perl Association module, due to the failed
attempt of using Weka for this test, and also because this module is capable of running
the association apriori algorithm.
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Test Conclusions

As soon as the algorithm produced its results, we compared the same results with the
10% data sample. The results proved that:

• with 90% of confidence, if an artist has the ”pop rock” tag, its most similar artist
has the ”rock” tag;

• with 90% of confidence, if an artist has the ”acid house” tag, its most similar artist
has the ”house” tag;

• with 90% of confidence, if an artist has the ”Bossa Nova” tag, its most similar artist
has the ”jazz” tag;

• with 90% of confidence, if an artist has the ”country rock” tag, its most similar artist
has the ”classic rock” tag;

• with 90% of confidence, if an artist has the ”rock n roll” tag, its most similar artist
has the ”rock” tag.

The results actually make sense because the tags of both similar artists are similar
musical genres. These results can also corroborate the results of Test 1, where 75% of the
similar artists have different tags.

5.5.5 Test 5: Global relations with similar artists

The purpose of this test was to determine global relations with different similar artists.
What we were trying to discover was association rules for tags, albums and different
popularity measures between similar artists.

Methodology used

In order to fulfill the purpose of this test, we focused on the artist global data from the
databases and selected the following attributes to include in our test files:

• information about the name and counts of the three most relevant tags of an artist;

• information about the name and counts of the three most relevant tags of the most
similar artist;

• information about the name and counts of the three most relevant tags of the second
most similar artist;

• information about the number of listeners of an artist;
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• information about the number of listeners of the most similar artist;

• information about the number of listeners of the second most similar artist;

• information about the number of playcounts of an artist;

• information about the number of playcounts of the most similar artist;

• information about the number of playcounts of the second most similar artist;

• information about the number of albums of an artist;

• information about the number of albums of the most similar artist;

• information about the number of albums of the second most similar artist.

The data consisted of about 50000 artists, so that the association algorithm could de-
termine global relations between similar artists. We split the data in order to have 90%
of it to be used in this test. The other 10% would be used to validate the results this test
would produce. We thought that this sample would be representative for our studies.

Applied algorithm

So, as soon as we had the test files, the applied algorithm was the association apriori.
To achieve the purpose of this test, we defined a minimum confidence of 90% to be used
in this test. With this level of confidence, we can guarantee a high level of probability for
the results to happen. For this test we used the Weka apriori algorithm because Weka was
the only one, from our data mining tools, capable of analyzing problems with more than
two attributes.

Test Conclusions

Unfortunately, Weka produced no interesting results for this problem. We should think
of new kinds of attributes that need to be included in our test files, or we should discard
redundant attributes that remove the interesting aspect of the results.
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Conclusions

The development and deployment of the Last.fm system architecture based on the KDD
data analysis approach and the CRISP-DM methodology guidelines was achieved suc-
cessfully. The implementation of this system enabled us to better understand the Last.fm
data and it gave us the necessary means to extract even more Last.fm musical data, in or-
der to better understand music information and music popularity measures in the future.

During the development of this system, a lot of time was spent in optimizing its per-
formance for data retrieval, due to the massive amount of data that needed to be retrieved.
By exploring the previously unknown amount of the Last.fm data, we discovered that it
was not possible to retrieve all of the relevant Last.fm data every fortnight. With millions
of artists, our best achievement was to retrieve all relevant data every month.

With the gathering of these millions of artists a new problem arose during this project.
We discovered that in the midst of this artist universe, there were many invalid artists, and
we spent a lot of time figuring out how we could manage to retrieve as much valid artists
as possible, and as less junk artists as possible. So, the need to implement an artist filter
arose, and we found a way to filter those artists by analyzing their names. The results
produced were satisfactory but not perfect. By analyzing an artist’s name, it was certain
that we could discard many junk artists - but we also discovered that not all junk artists
were discarded, and that some valid artists were discarded as well.

The retrieval of Last.fm data during this project gave us some knowledge about artist
similarity, artist evolution and tag relations, but we are fully aware that there is still too
much to learn about music from this massive amount of Last.fm musical data. We think
that, to better understand this musical data and to analyze it in order to find more complex
and interesting knowledge about music, there is still the need to retrieve at least one year of
Last.fm data, producing 12 successive Last.fm databases. By having one year of Last.fm
data, we think that we could more effectively visualize artists and music evolution during
a year, and we could infer and extract more interesting musical knowledge. Another
interesting aspect we can find is the seasonal popularity of artists or the impact that a
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song has during Christmastime or summertime, for example.
With the data gathered during the course of this project we were only able to do as-

sociation and clustering data mining tests, because of the few databases we were able to
fetch. We are certain that if we had at least one year of Last.fm databases we could try to
use different data mining problems and conduct new experiments in order to unveil new
musical knowledge.

The use of WEKA and the Perl association module using the command-line interface
proved to give results with good processing times, but the learning curve for these pro-
grams was too short due to the lack of intuitiveness of these interfaces. Maybe we should
reconsider Rapidminer and WEKA GUI for our future data mining experiments.

67



Chapter 7

Future work

Based on what was said in the conclusions chapter we are fully aware that there is still a
lot of work to be done.

First of all, we need to improve the artist filter module so that we can get better filtering
results. Maybe we should consider combining the use of the Last.fm website with other
web resources, such as Google or Wikipedia1, in order to produce those better filtering
results we need for more accurate results about artists.

Then, we need to gather Last.fm data for at least one year in order to better understand
music data and discover new knowledge about music.

After having this amount of data, there is still a need to investigate and study new
data mining problems and algorithms so that we can find more interesting and complex
musical knowledge.

For the pre-processing data and data mining tasks purposes, we should consider using
the GUI of WEKA and Rapidminer for better intuitiveness in our studies and results, or
we should integrate the WEKA libraries in our system in order to produce better results.

1en.wikipedia.org
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Appendix A

List of artists from the study of
Musicbrainz relevance

A.1 Japanese Artists

• - Mbid: e1410ddc-9745-4b5d-814d-77eb0cdfa6ad

• - Mbid: 078be324-de92-4c72-9371-65bdcf324154

• - Mbid: 4bd19b19-4ef4-42e0-ac5c-a21f709d248b

• - Mbid: 1e21cd5d-75e4-4585-9963-2d6c7d54fd79

• - Mbid: b215b03a-8e0b-48ca-b832-bbbd0db504f0

• - Mbid: 013509c5-7444-4982-88ce-e0f60c6a3fab

• - Mbid: ef8c4ade-2712-408a-bf49-aeeb59296f78

• - Mbid: 252c9f8a-be04-4146-b73e-a24696b2f5ed

• - Mbid: af3f7954-6b17-4973-9060-3c4526b2c12a

• - Mbid: 7d0780d9-d16b-4df4-9eef-71f9e23bff72

A.2 Chinese Artists

• - Mbid: b9a95482-d121-42c5-8a49-b735046e19cc

• - Mbid: d457f05e-8802-4888-83a6-b07d3df3bbf3

• - Mbid: 69528485-8804-4c14-8023-ad7c9834739f

• - Mbid: a2cab261-63cc-4ccf-8023-6b6e8588bb62

• - Mbid: a3dd7a70-697f-4747-816a-3209e2b8b97d

• - Mbid: ffd5961f-38bc-4e8f-9a7a-7e85d55a01d2

• - Mbid: 07234fa3-3edd-4658-9556-03cc1ee6eac5
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• - Mbid: d780609b-eca5-4277-a0c2-801cc0404764

• - Mbid: 26be5daf-fb48-4eb0-9263-1d9b687288dd

• - Mbid: 692e367d-2846-442d-b13d-1177c3681c65

A.3 Russian Artists

• - Mbid: 1b67ca7b-3da9-4607-a5aa-93ed56034924

• - Mbid: 2619c907-4ae9-4c98-b464-31d7cb71f54f

• - Mbid: 46c83515-6df3-4afa-b597-cffd21aab719

• - Mbid: 2dce2a7b-ea6e-4adf-bb8c-e973dad5a605

• - Mbid: f7456b5b-e5a5-454e-b5db-047308210c8e

• - Mbid: d67b79c0-a026-43ee-9e5f-68141ef31018

• & Co - Mbid: bec3b214-0f07-4026-a859-07b7bbaa6ce0

• - Mbid: 97a6afa1-56c2-4088-9c3f-d0ee5dd587b5

• - Mbid: 7fc01d88-9c5a-447e-9045-6f29950cff7a

• - Mbid 1129b484-4007-491b-b646-ee3f869f53eb

A.4 Portuguese Artists

• Pólo Norte - Mbid: 22163ab3-4588-4391-b3b7-a1c329dfcc66

• Rádio Macau - Mbid: d7753fb3-5447-4ef2-bd1c-94805f57e407

• João Pedro Pais - Mbid: de3124db-87fa-4f62-8631-7c2dc7e02b11

• Paulo Gonzo - Mbid: 0bed69b8-e010-462f-8616-3dd1fa11f666

• Pedro Abrunhosa - Mbid: d80cfb78-51ee-446d-8b3d-578d50a7ce2e

• Xutos & Pontapés - Mbid: 12f2de9e-83d0-48ee-902b-c73d7a7cb6c9

• Rui Veloso - Mbid: 758416ad-4871-472a-ab82-fd6e1b7b6c67

• André Sardet - Mbid: e4a4d411-f4dd-4368-82ef-5a22ff2955a7

• Delfins - Mbid: 4e6c2aa8-4df0-4888-8ecc-e93ec474a9d7

• Mafalda Veiga - Mbid: b8d9aca9-ba8c-4822-ad2d-0b5a0e113fff
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A.5 Indian Artists

• M. Balamuralikrishna - Mbid: d0e0e8cc-20e9-4909-927f-8be0ee71d094

• Dr. N. Ramani - Mbid: 74f1e36a-24c9-4929-b527-efd64d5a7208

• Lalgudi Jayaraman - Mbid: 9229f145-a8bd-442b-ae12-ca75e24ea178

• Nithyasree Mahadevan - Mbid: 243d59a5-f92b-4d51-a4a3-160827ed9a8f

• Kadri Gopalnath - Mbid: 3c785e5f-dc24-4a23-ab72-7c2931583ab2

• Raghunath Manet - Mbid: 5885e4b0-8ad0-4a8f-9b28-cac6d73b8c2e

• T.N. Krishnan - Mbid: 4d024ce6-f697-448e-be8a-c31caffdf068

• Kishori Amonkar - Mbid: d9bb0f7b-3f20-4951-8b20-3c6f5b3cab0d

• Shahid Parvez - Mbid: c2a765fd-3000-4ea8-953c-6ff87e074669

• Ram Narayan - Mbid: c94a221f-1708-4882-b035-37a1ed3d9cb4

• Budhaditya Mukherjee - Mbid: d29011df-6664-4d35-bfbf-8f704f8baf57

A.6 DJ Artists

• DJ Krush - Mbid: 38d16213-25ba-450d-8665-4e08548e62e3

• DJ Cam - Mbid: d2e123d0-c53e-4444-a52a-efeff44953c7

• DJ Vadim - Mbid: 66fce392-d89d-4eaa-a346-c50aa1021f00

• DJ Food - Mbid: 0019749d-ee29-4a5f-ab17-6bfa11deb969

• DJ QBert - Mbid: 47b0af85-4a35-4909-8ab5-7f9a5ed37a48

• DJ Spooky - Mbid: c8dbbadb-f5f1-449c-8827-43d00a73fe89

• DJ Format - Mbid: 65323ae4-1a49-497f-8f58-ae42b6c05eb6

• DJ Kentaro - Mbid: e5e9a7c1-9967-4385-b167-ff65a67779df

• DJ Yoda - Mbid: c266a7ab-7b9f-478f-a26d-91c5f8f04c7c

• DJ Z-Trip - Mbid: 03f93de6-6d62-4710-bcc7-9b3d7c3d95f5

73



Appendix B

Database Statistics

Database Artists fetched Artists processed Crawl duration

Lastfm Mar2009 484528 63678 10 days

Lastfm Apr2009 1895684 439422 26 days

Lastfm Apr2009 mb 216081 212605 5 days

Lastfm May2009 mb 216081 212605 5 days

Table B.1: Databases Crawl Statistics
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