
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Operations Research Modeling
Language for an ERP System

André Miguel Coelho de Oliveira Rodrigues

Project Report

Master in Informatics and Computing Engineering

Supervisor: Luis Paulo Gonçalves dos Reis (Auxiliar Professor)

2008, July

c© André Rodrigues, 2008

Operations Research Modeling Language for an ERP
System

André Miguel Coelho de Oliveira Rodrigues

Project Report

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: João Carlos Pascoal de Faria (Auxiliar Professor)

External Examiner: Per Vikkelsøe (Development Lead II)

Internal Examiner: Luis Paulo Gonçalves dos Reis (Auxiliar Professor)

31st July, 2008

Abstract

Long are the times where businesses had to collect data from non-automated sources and
lacked the computing resources necessary to analyze and make decisions based on it.
Enterprise Resource Planning systems integrate several data sources and process them,
greatly improving what is commonly referred as Business Intelligence. Its purpose is to
collect, integrate, analyze and present data in order to support better business decision-
making.
Microsoft is currently on the ERP business with, among others, Microsoft Dynamics AX.
The product covers a wide group of areas that range from Customer Relationship Man-
agement (CRM) to production, human resources and more.
Current ERP systems still, however, face some problems, being one of the most impor-
tant ones the challenge of developing, deploying and maintaining customized solutions to
customers. This is pointed out as one of the most important factors in these systems and
having a flexible and easy to use way of doing it is increasingly becoming a key factor
when it comes to choose one over another.
The usage of mathematical models to describe some of the most common optimization
and decision-making problems has been, for long, used and current systems use state-of-
the-art solvers to approach it.
Partners and end-user customers haven’t, however, always been empowered with an easy
way of accessing such technologies and further customize the system. Not only because
of code openness and copyrights but also because there isn’t usually any easy way of do-
ing it.
Mathematical Modeling languages have been used for long and attempt to abstract away
the implementation details of the underlying solver technologies and allow users to focus
on the modeling part. There wasn’t, however, a clear attempt to empower an ERP solu-
tion, right out-of-the-box, with such technologies, in a fully integrated way with its data
sources and business logic.
This report introduces this problem that spawned a quest for a solution, one that this
project encompassed for a concrete product - Microsoft Dynamics AX. It explores some
of the various solver engine solutions and modeling languages available in the market
today. It also goes beyond it by studying interchangeable document formats and overall
ways of interacting with Microsoft Dynamics AX. It presents a new modeling environ-
ment, based on a modeling language, exposing the necessary requirements, while giving
concrete examples of its usage in addressing real optimization problems in this system.
Design and implementation details are also given, with a special focus on the interpreter
implementation, which made use of the MPLEX/MPPG tools, the Microsoft Math SDK,
the OpenXML SDK and the Microsoft Solver Foundation, as well as, the services it pro-
vides and its relation with the IDE project which has been tightly coupled with this project.

i

It then evaluates the overall solution by presenting some methodologies and tests that en-
sured a good project outcome, within the defined scope and quality levels, and outlining
how it addresses the previously problems. Some conclusions are then drawn on how the
users perceive the system and how could it be further expanded and improved by adding
mechanisms like debugging tools or solver independence.

ii

Resumo

Longe vão os tempos em que empresas tinham de recolher dados de forma manual e não
dispunham dos recursos computacionais necessários para os analizar e, com base nisso,
tomar decisões.
Os sistemas ERP integram e processam diversas fontes de dados, introduzindo inúmeras
melhorias no que se costuma designar de Business Intelligence. O seu propósito é recol-
her, integrar, analisar e apresentar informação de forma a suportar a tomada de melhores
decisões de negócio.
A Microsoft está, actualmente, presente no negócio dos ERP com, entre outros, o Mi-
crosoft Dynamics AX. Este produto cobre um grupo alargado de áreas que vão desde
gestão de clientes (CRM) até produção, passando pela gestão de recursos humanos e mais.
Os sistemas actuais, continuam, no entanto, a ter alguns problemas, sendo um dos mais
importantes a necessidade de desenvolver, implementar e manter solucções costumizadas
para os clientes. Este é, de facto, um dos mais importantes factores nestes sistemas e ter
uma maneira fácil e fléxivel de o fazer está, gradualmente, a tornar-se num factor chave
no momento da decisão por um em detrenimento de outro.
A utilização de modelos matemáticos para descrever alguns dos problemas de optimização
e decisão mais comuns tem ganho crescente aceitação e alguns ERPs usam aplicações de
optimização de ponta para os resolver.
Parceiros e clientes finais não têm, contudo, sempre sido empossados com uma maneira
de aceder a tais tecnologias e extender, eles mesmos, a costumização do sistema. Não só
por questões de abertura de código e legislação, mas também porque não existe, habitual-
mente, uma maneira de o fazer.
As linguagens de modelação matemática têm sido usadas, desde há muito, para abstrair
os detalhes de implementação das tecnologias que lhes estao subjacentes permitindo aos
utilizadores focarem-se na modelação. Não existiu, contudo, uma clara tentativa de im-
plementar, de origem, numa solução ERP tais tecnologias de uma maneira totalmente
integrada com as suas fontes de dados e lógica de negócio.
Este relatório introduz este problema e extende-se numa procura por uma solução, uma
que esteja orientada a um produto especifico - o Microsoft Dynamics AX. Explora al-
gumas das diferentes soluções existentes no mercado em aplicações de optimização e
linguagens de modelação e vai mais alêm estudando formatos de representação de tais
modelos e as diferentes maneiras de interair com o Microsoft Dynamics AX. Apresenta,
de seguida, um novo ambiente de modelação, expondo os requisitos necessários e apre-
sentando exemplos concretos da sua utilização em alguns dos probemas de optimzação
do Dynamics AX.
Detalhes de implementação são também dados, com um especial focus na implementação
do interpretador, que fez uso das ferramentas MPLEX/MPPG e da recente anunciada

iii

Framework Microsoft Solver Foundation, assim como, dos serviços que implementa e
na relacção que mantêm com o projecto de um IDE que está intimamente ligado a este
projecto.
Avalia, de seguida, a solução apresentando algumas das metodologias e testes que foram
usados para garantir o sucesso do projecto, dentro do seu âmbito e niveis de qualidade
desejados, salientado como ataca os problemas referidos.
Algumas conclusões são, por fim, retiradas sobre a forma como os utilizadores percep-
cionam o sistema e como este poderia ser expandido e melhorado pela adicção de mecan-
ismos como ferramentas de depuração e independência da tecnologia de resolução.

iv

Acknowledgements

First and foremost I would like to thank everyone at Microsoft for making this traineeship
possible. Special thanks go to Hans Jorgen Skovgaard, Per Vikkelsøe, Laurent Ricci and
all the other guys who interviewed me and actually opened me the gates. I would also like
to express my gratitude to André Lamego, João Magalhães and Tiago Silva for guiding
me during the first months in the company - you guys rock!
Thanks, also, to IAESTE Denmark for the help with the logistical and legal aspects of the
reallocation.
From FEUP I would like to thank Raul Vidal and AlumniLEIC for creating the bridge be-
tween Microsoft and the University that made the interviewing process, which culminated
with this traineeship, possible. I would also like to thank Luis Paulo Gonçalves dos Reis,
my project supervisor and João Pascoal Faria for their guidance, advices and great share
of knowledge throughout the project but, most of all, for their interest and time devotion
to this project. A word of gratitude also goes to António Augusto Sousa, my program’s
director, for all the help, support and interest in all the burocratic process that allowed us
to do the project.
A special mention to my friends in Delft, where I’ve spent, before coming here, 5 months
studying through the Erasmus program, and with whom I’ve experienced my first period
of living abroad and who tough me so much.
My thanks also go to Raquel Cristóvão, with whom I’ve shared my life during most of my
faculty years and that helped me through all the way. For this, and so much more, you’ll
always be in my heart.
Last, but not least, I wish to thank my parents Antides Santo and Maria dos Anjos Dixe
and my (best of the world) sister Irene Dixe for their every-day love and support, even
when separated by thousands of kilometers.

André Rodrigues

v

vi

Contents

1 Introduction 1
1.1 About Microsoft . 1

1.1.1 The Corporation . 1
1.1.2 Microsoft Dynamics . 2
1.1.3 Microsoft Development Center Copenhagen 3

1.2 Microsoft Dynamics AX . 3
1.2.1 Optimization Problems in Dynamics AX 3

1.3 Operations Research . 4
1.4 Motivation and Objectives . 5
1.5 Report Overview . 6

2 Problem Description 7
2.1 Declarative Optimization Language for an ERP System 7
2.2 Target Personas . 8
2.3 Optimization Problems in Microsoft Dynamics AX 9

2.3.1 Traveling Salesman . 9
2.3.2 Warehouse Picking Routes . 10
2.3.3 Production Scheduling . 12

2.4 Project Requirements . 12
2.4.1 ORML Interpreter . 14
2.4.2 Common Libraries . 15

2.5 Schedule and Deliverables . 16
2.6 Summary . 18

3 State of the Art 21
3.1 Microsoft Dynamics AX . 21

3.1.1 Application Model Layering . 22
3.1.2 The X++ Programming Language 23
3.1.3 Data Sources . 23
3.1.4 Integration . 24

3.2 Optimization Problems . 25
3.2.1 Linear Programming . 25
3.2.2 Integer Programming . 26
3.2.3 Constraint Satisfaction Programming 26

3.3 Optimization Engines . 26
3.3.1 ILog CPLEX . 26
3.3.2 Microsoft Solver Foundation . 27

vii

CONTENTS

3.4 Mathematical Modeling Languages . 28
3.4.1 OPL 6.0 . 29
3.4.2 MPL 4.2 . 30
3.4.3 AIMMS 3.8 . 33
3.4.4 AMPL . 35
3.4.5 Language Comparison . 36

3.5 Optimization Problems Formulation . 37
3.5.1 Traveling Salesman . 37
3.5.2 Warehouse Picking Routes . 38
3.5.3 Production Scheduling . 39

3.6 Mathematical Document Formats . 41
3.6.1 Mathematical Markup Language 41

3.6.1.1 Microsoft Math . 41
3.6.2 Office Math Markup Language 42

3.6.2.1 Open XML Formats SDK 43
3.7 .NET Framework . 43

3.7.1 Programming Languages . 44
3.8 Language Processors . 45

3.8.1 Compiler Compiler Tools . 47
3.9 Summary . 49

4 Solution Specification 51
4.1 Operations Research Modeling Language Specification 51

4.1.1 Language Overview . 51
4.1.2 Grammars . 53

4.1.2.1 Lexical Grammar . 54
4.1.2.2 Grammar Rules . 55

4.2 Modeling Optimization Problems in Microsoft Dynamics AX 61
4.2.1 Traveling Salesman . 62
4.2.2 Warehouse Picking Routes . 63

4.3 Summary . 64

5 Design and Implementation 67
5.1 Design . 67

5.1.1 ORML Interpreter . 68
5.1.1.1 Logical View . 69
5.1.1.2 Development View 76
5.1.1.3 Process View . 77
5.1.1.4 Physical View . 79

5.1.2 ORML Interpreter Services . 79
5.1.2.1 Syntax Highlight Service 79
5.1.2.2 Autocomplete Service 80
5.1.2.3 Export to MathML and OMML Service 80

5.1.3 Common Libraries . 81
5.1.3.1 Common Data Layer 81
5.1.3.2 Model Management Layer 82

5.2 Implementation . 83

viii

CONTENTS

5.2.1 ORML Interpreter . 83
5.2.1.1 Structures . 84
5.2.1.2 Lexical and Syntax Analyzers 86
5.2.1.3 Semantical Analyzer and Interpretation Engine 87
5.2.1.4 Interpreter Interface 89
5.2.1.5 Interpreter AxWrapper 90

5.2.2 ORML Interpreter Services . 90
5.2.2.1 Syntax Highlight Service 90
5.2.2.2 Autocomplete Service 91
5.2.2.3 Export to MathML and OMML Service 91

5.2.3 Common Libraries . 92
5.2.3.1 Common Data Layer 92
5.2.3.2 Model Management Layer 92

5.3 Development Methodologies . 93
5.4 Summary . 96

6 Evaluation of the Solution 97
6.1 Testing . 97

6.1.1 Test Scope . 97
6.1.1.1 ORML Interpreter . 98
6.1.1.2 ORML Interpreter Services 99
6.1.1.3 Common Libraries . 99

6.1.2 Test Strategy . 99
6.1.2.1 Testing Procedures . 99
6.1.2.2 Test Tools . 100

6.1.3 Test Resources . 100
6.1.4 Test Results . 101
6.1.5 ORML Interpreter . 101
6.1.6 ORML Interpreter Services . 103
6.1.7 Common Libraries . 103

6.2 Market Requirements Analysis . 103
6.3 Modeling Experience . 104
6.4 Summary . 104

7 Conclusions and Future Work 107
7.1 Success Evaluation . 107
7.2 Conclusions . 108
7.3 Originalities . 109
7.4 Limitations . 109
7.5 Project Continuum . 110

A Survey Questions 119

B Project Requirements 127

C Project Schedule 131

D Microsoft Math Supported Formats 133

ix

CONTENTS

E Language Definition 135

F Modeling Optimization Problems in Microsoft Dynamics AX 143
F.1 Traveling Salesman . 143
F.2 Warehouse Picking Routes . 144

G Computer Specifications 145
G.1 Quad-core processor desktop . 145
G.2 Single-core processor laptop . 145

H ORML Models 147
H.1 Zebra . 147
H.2 Boeing . 148
H.3 PetroChem . 149
H.4 WycoDoors . 150
H.5 Traveling Salesman . 151
H.6 Warehouse Picking Routes . 153

x

List of Figures

2.1 TSP Entity-Relationship Diagram . 10
2.2 Warehouse Environment . 10
2.3 Warehouse Entity-Relationship Diagram 11
2.4 Interpreter Interface - Use Cases . 14
2.5 Console Interpreter - Use Cases . 15

3.1 Dynamics AX Rich Client . 22
3.2 Dynamics AX Application Model Layers 22
3.3 Sample X++ Code . 23
3.4 MSF High Level Architecture . 27
3.5 OPL - Spreadsheet Reading Example . 30
3.6 OPL - Database Reading Example . 30
3.7 MPL - Model Example . 32
3.8 MPL - Text File Reading Example . 32
3.9 MPL - Spreadsheet Reading Example 33
3.10 MPL - Database Reading Example . 33
3.11 MPL - Spreadsheet Reading Example with Filtering 33
3.12 AIMMS - Spreadsheet Reading Example 35
3.13 AIMMS - Database Reading Example 35
3.14 AMPL - Text File Reading Example . 36
3.15 AMPL - Spreadsheet Reading Example 36
3.16 AMPL - Database Reading Example . 36
3.17 Microsoft Math . 42
3.18 .NET Framework 3.5 Architecture . 44
3.19 Compiler Front End Model . 47
3.20 Lex File Structure . 48
3.21 Yacc File Structure . 48

4.1 ORML Model - Structure . 56
4.2 ORML Model - Index Section Example 57
4.3 ORML Model - Input Section Example 58
4.4 ORML Model - Variables Section Example 59
4.5 ORML Model - Functions Section Example 59
4.6 ORML Model - Constraints Section Example 60
4.7 ORML Model - Outputs Section Example 60
4.8 ORML Model - Call Expression Example 60
4.9 ORML Model - Boolean Expression Example 61

xi

LIST OF FIGURES

4.10 ORML Model - Comparison Expression Example 61
4.11 ORML Model - Arithmetic Expression Example 61

5.1 4+1 model (adapted from [85]) . 68
5.2 ORML Interpreter - Namespaces Diagram 70
5.3 ASTNode Inheritance - Class Diagram 70
5.4 Example of ORML Statement Nodes - Class Diagram 71
5.5 Example of ORML Expression Nodes - Class Diagram 71
5.6 Example of a coefficient matrix . 74
5.7 ORML Interpreter - Interface - Class Diagram 75
5.8 ORML Interpreter - Component Distribution 76
5.9 ORML Interpreter - Activities . 77
5.10 ORML Model - Example . 78
5.11 Figure 5.10 corresponding Arithmetic Abstract Syntax Tree 78
5.12 Dynamics AX Deployment Scenario . 79
5.13 Autocomplete Situation Example . 80
5.14 ORML Interpreter - Export Activities 81
5.15 Common Data Layer - Class Diagram 82
5.16 Model Management Layer - Class Diagram 82
5.17 Model and Model Instances Entity-Relationship Diagram 83
5.18 ORML Interpreter - Semantic Analyzer - Check Example 88

6.1 Testing Categories . 100

A.1 Question 1 answers . 121
A.2 Question 2 answers . 122
A.3 Question 3 answers . 122
A.4 Question 4 answers . 123
A.5 Question 5 answers . 123
A.6 Question 5b answers . 124
A.7 Question 5c answers . 124
A.8 Question 5d answers . 125
A.9 Question 6 answers . 125
A.10 Question 7 answers . 126

C.1 Project Schedule . 131

F.1 ORML Model - Traveling Salesman . 143
F.2 ORML Model - Warehouse Picking Routes 144

H.1 ORML Model - Zebra . 147
H.2 ORML Model - PetroChem . 149
H.3 ORML Model - WycoDoors . 150
H.4 ORML Model - Traveling Salesman . 151
H.5 ORML Model - Warehouse Picking Routes 153

xii

List of Tables

2.1 Project Priorities . 17

3.1 Language Data Binding Comparison . 37

4.1 ORML Data Types . 52
4.2 ORML Operators . 53

5.1 Data Type Mappings . 75

6.1 Execution Times Tests . 102

D.1 Microsoft Math Engine Supported Formats 134

xiii

LIST OF TABLES

xiv

Glossary

A Mathematical Programming Language (AMPL) High-level programming
language for describing and solving high complexity problems for large scale
mathematical computation. 35

Abstract Syntax Tree Tree representation of the syntax of some source code. 17

ActiveX Component object model (COM) developed by Microsoft. 24

ADO.NET Set of computer software components that can be used by programmers to
access data and data services. ADO.NET is sometimes considered an evolution of
ActiveX Data Objects (ADO) technology but was changed so extensively that it
can be conceived of as an entirely new product. 15, 24, 74, 81

Advanced Interactive Mathematical Modeling Software Advanced development
environment for building optimization based decision support applications and
advanced planning systems. 33

Application Programming Interface Set of declarations of the functions (or
procedures) that an operating system library or service provides to support
requests made by computer programs. 43

Enterprise Resource Planning software systems that are used for operational planning
and administration and for optimizing internal business processes. 2, 3, 5

Framework Re-usable design for a software system that may include support programs
code libraries or other software to help develop and glue together the different
components of a software project. 7

Graphical User Interface Type of user interface which allows people to interact with
electronic devices like computers or hand-held devices. 35

Just-in-Time Also known as dynamic translation JIT is a technique for improving the
runtime performance of a computer program. It converts code at runtime prior to
executing it natively for example bytecode into native machine code. 68

Linear Programming Problem involving the optimization of a linear objective function
subject to linear equality and inequality constraints. 25

xv

Glossary

Microsoft Development Center Copenhagen Microsoft’s largest development center
in Europe and outside of the USA that is dedicated to the development of Business
Solutions. 3

Open Database Connectivity Standard software API for using database management
systems. 34

Open Office XML The Office Open XML format was originally developed by
Microsoft as a successor to its binary Microsoft Office file formats. The
specification was later handed over to Ecma International to be developed as the
Ecma 376 standard. It was published in December 2006 and can be freely
downloaded from Ecma international. 42

Unix Operating System Computer operating system originally developed in 1969 by a
group of AT&T employees at Bell Labs. 48

Yet Another Compiler Compiler Parser generator developed by Stephen C. Johnson at
AT&T for the Unix operating system. 48

xvi

Acronyms

AIMMS - Advanced Interactive Mathematical Modeling Software. 33–35, 49

AMPL - A Mathematical Programming Language. 35, 36, 49

ANTLR - ANother Tool for Language Recognition. 47

AOS - Application Object Server. 23

API - Application Programming Interface. 27, 28, 43, 73, 74

ASCII - American Standard Code for Information Interchange. 34

AST - Abstract Syntax Tree. 17, 48, 69–73, 77, 78, 80, 84, 85, 87, 88, 90, 96, 98, 119,
120

BCL - Base Class Library. 44

BIP - Binary Integer Programming. 26

BNF - Backus-Naur Form. 53

CDL - Common Data Layer. 92, 96

CLI - Common Language Infrastructure. 44

CLR - Common Language Runtime. 24, 44

COM - Component Object Model. 24

CPU - Central Processing Unit. 1

CRUD - Create/Read/Update/Delete. 16, 74, 99, 100

CSP - Constraint Satisfaction Programming. 4, 26, 102

CTS - Common Type System. 44

DBMS - Database Management System. 23, 74

DEV - Developer. 8

DLL - Dynamic Link Library. 76, 81

DSL - Domain-specific language. 8, 45, 48

xvii

Acronyms

ERP - Enterprise Resource Planning. 3, 5–7, 9, 11, 12, 21, 24, 25, 109

FP - Functional Programming. 45

GNU - GNU’s Not Unix. 47

GPLEX - Gardens Point Scanner Generator. 49

GPPG - Gardens Point Parser Generator. 49

GUI - Graphical User Interface. 35

IDE - Integrated Development Environment. 13, 14, 18, 29, 49, 67, 74, 91, 109, 121

IP - Integer Programming. 26, 51

IR - Intermediate Representation. 48

JIT - Just-In-Time. 68

JSSP - Job-shop scheduling problem. 39

LALR - Lookahead left-right. 48, 49

LINQ - Language Integrated Query. 24, 74

LISP - List Processing Language. 46

LP - Linear Programming. 4, 25, 26, 59, 73, 102

MathML - Mathematical Markup Language. 14, 17, 18, 41–43, 50, 76, 80, 91, 96, 99,
103, 108, 121

MDCC - Microsoft Development Center Copenhagen. 3, 7

MIP - Mixed Integer Programming. 26, 59, 102

MIT - Massachusetts Institute of Technology. 46

MPL - Mathematical Programming Language. 30–33, 49

MPLEX - Managed Package LEX. 49, 72, 83, 86, 87, 96

MPPG - Managed Package Parser Generator. 49, 72, 83, 87, 96

MSFT - Microsoft. 1

MSN - Microsoft Network. 2

ODBC - Open Database Connectivity. 34–36

OML - Optimization Modeling Language. 28

OMML - Office Math Markup Language. 14, 17, 18, 41–43, 50, 76, 80, 91, 96, 99, 100,
103, 108, 121

xviii

Acronyms

OOXML - Office Open XML. 42, 43, 80, 91

OPL - Optimization Programming Language. 29, 49

ORML - Operations Research Modeling Language. 6, 16, 18, 45, 49, 51–64, 68, 70, 73,
77, 80, 82, 85–87, 103, 108–110

PC - Personal Computer. 1

PM - Program Manager. 8, 113

POSIX - Portable Operating System Interface. 47

SDK - Software Development Kit. 42, 43, 48, 49

SFS - Solver Foundation Services. 27, 73

SQL - Structured Query Language. 32

TDD - Test-Driven Development. 17, 93, 94, 98, 101

TSP - Traveling Salesman Problem. 9, 38, 62, 64

VCS - Version Control System. 21

VES - Virtual Execution System. 44

VS - Visual Studio. 49

VSS - Visual Source Safe. 95

WPF - Windows Presentation Foundation. 18

WWW - World Wide Web. 41

XML - Extensible Markup Language. 34, 41

XSLT - Extensible Stylesheet Language Transformations. 43, 80, 121

YACC - Yet Another Compiler Compiler. 45, 47, 48, 87

xix

Acronyms

xx

Chapter 1

Introduction

No great discovery was ever made without a bold guess

Isaac Newton[1]

This chapter briefly contextualizes this internship project, presenting the company
where it was developed, the development center and the product division where it is car-
ried out.

1.1 About Microsoft

1.1.1 The Corporation

Microsoft Corporation [2] (NASDAQ: MSFT) is an American Multinational Computer
Technology Corporation headquartered on Redmond, Washington USA, that focuses on
the development of Software. The company was founded by the young entrepreneurs
’Bill’ (William Henry) Gates III and Paul Gardner Allen, on the 4th of April 1975 in Al-
buquerque, New Mexico, to develop and sell BASIC [3] interpreters for the Altair 8800
[4], a microcomputer based on the Intel Corporation [5] 8080A Central Processing Unit
(CPU) produced by Micro Instrumentation and Telemetry Systems [6].
A couple of years later, in August 1980, ten years before Linux was even an idea in Linus
Torvalds head [7] [8], Microsoft announced its first Operating System, the Xenix [9], as a
port of Unix for various 16-bit microprocessors. Later, in the mid-1980s, Microsoft rose
to dominate the home computer operating system market with the Microsoft Disk Oper-
ating System - MS-DOS [10].
In 1985, Microsoft started to explore the emerging graphical capabilities of the PC and
released Windows [11] version 1.0, but due to its lack of functionality it achieved very lit-
tle popularity among the users. This was not Microsoft’s final word on the subject and its
following versions (3.1, NT, 95/98, ME, 2000, XP and Vista) have had rising acceptance
and lead Microsoft to its leading position in the desktop computer market.

1

Introduction

As of June 30, 2007, Microsoft had about 79,000 employees and a declared 2007 Net
Revenue of about 51.12 Billion US Dollars, making it one of the largest software compa-
nies in the world [12] [13].
Having Windows and Office as the company’s flagship products, it is highly successful
in most of the industry areas. As of September 20, 2005, Microsoft is structured in three
major divisions, each one with its one president:

• Platform Products and Services - Windows Client, Server & Tools and MSN;

• Business - Information Worker and Microsoft Business Solutions;

• Entertainment & Devices - Mobile & Embedded Devices and Home & Entertain-
ment.

Microsoft’s current mission statement is to ”enable people and businesses throughout the
world to realize their full potential”.

1.1.2 Microsoft Dynamics

Microsoft Dynamics [14] is the line of business software made by Microsoft and it re-
places the previous family of Microsoft Business Solutions. It currently comprises the
following software:

• Customer relationship management

– Microsoft Dynamics CRM

• Enterprise Resource Planning

– Microsoft Dynamics AX (formerly Axapta)

– Microsoft Dynamics GP (formerly Great Plains Software)

– Microsoft Dynamics NAV (formerly Navision)

– Microsoft Dynamics SL (formerly Solomon IV)

• Retail management

– Microsoft Retail Management System (formerly QuickSell)

Microsoft business applications compete with the similar products from Oracle and SAP
but tend to appeal to small and medium-sized businesses.
To extend their functionality, as it is usual with other Microsoft products, third party or
other Microsoft software such as Windows Server, SQL Server and Exchange Server can
be used together. By making use of its stack1 [15] of class leading products that embrace

1Stack is mentioned in the solution’s stack sense as a set of software subsystems or components needed to deliver a
fully functional solution e.g. product or service.

2

Introduction

the concept of doing more with less, Microsoft tends to offer real attractive solutions to
its customers.

1.1.3 Microsoft Development Center Copenhagen

Microsoft Development Center Copenhagen (MDCC) is Microsoft’s biggest development
center in Europe and outside the United States [16] employing over 900 people from more
than 40 countries. Established in 2002, following the acquisition of the Danish company
Navision and mainly focused in [17] Enterprise Resource Planning (ERP) Solutions (Mi-
crosoft Dynamics AX and Microsoft Dynamics NAV), its goal is ”becoming the world’s
leading software development center for business solutions”.

1.2 Microsoft Dynamics AX

Microsoft Dynamics AX [18] is one of the ERP systems currently developed by Mi-
crosoft. Previously called Axapta, it was originally developed by the Danish Company
Damgaard Data A/S with its beginnings in 1983. In 2000, the company was merged
with Navision Software A/S (also from Denmark) and, together, they formed Navision-
Damgaard. The company had 1200 employees and 30 offices, mostly in Europe, with
130000 customers and a reported $181 million in revenue in the earlier year.
In July, 11th, 2002 the company was acquired by Microsoft [19], and the product joined
the previously acquired Great Plains (now Dynamics GP) and Solomon (now Dynamics
SL) products, reinforcing the position of the Microsoft Business Solutions group in the
ERP market for small and mid-market businesses, especially in Europe.
Microsoft Dynamics AX, in its 2009 version, is a ”comprehensive business management
solution for mid-sized and larger organizations that works like and with familiar Microsoft
software to help your people improve productivity”.
It was developed in 3 sites [18]: Fargo, USA (former Great Plains Software); Redmond,
USA (Microsoft headquarters); and Vedbæk, Denmark (former NavisionDamgaard), where
this project has been carried out.

1.2.1 Optimization Problems in Dynamics AX

Being an ERP system, Dynamics AX deals with huge chunks of data and should be able
to make the most out of them giving its users as much good information as possible within
time. It should also offer its users, again, within time and quality, answers to some of the
most common problems. Examples are: production planning, service technician schedul-
ing, warehouse picking routes or product modeling.
Currently, in Dynamics AX, most of these problems are solved using customized algo-
rithms coded in regular imperative programming languages, like C# or X++, which are

3

Introduction

hard to maintain and debug and usually have a low performance. This is a clear barrier to
study, maintain, improve or replace models.
Ongoing investigation supports the use of mathematical models (CSP, LP, etc) to improve
result accuracy and efficiency. In-code mathematical models do, however, loose almost
all of the simplicity that is intended in them and since Dynamics AX is an extendable
platform, where the user can, hopefully, easily add new functionality that is specific to his
business this means that the used mathematical models should be easy to add or change.

1.3 Operations Research

Operations research2 [20] is an interdisciplinary branch of applied mathematics which
uses methods like mathematical modeling, statistics and algorithms to achieve optimal or
good decisions in complex problems.
Some of the primary tools used by operations researches are statistics, optimization,
stochastic, queuing theory, game theory, graph theory, decision analysis, simulation and,
because of the computational nature of these fields it is also tied to computer science.
Although the modern field of operations research arose during World War II, according
to some [21][22], Charles Babbage (1791-1871) is the ”father of operations research”
because of his research into the cost of transportation and sorting of mail which led to
England’s universal ”Penny Post” in 1840.
During that time Babbage and his friend Colonel Colby were carrying out studies on the
postal system [23]. Although Rowland Hill, later the creator of the penny post, probably
have heard before about his studies, this was probably the first occasion on which he en-
countered an operational research approach to the postal system. It would also have been
his first encounter with the concept of a uniform postal rate, an immediate corollary of
Babbage’s theory of the cost of verifying prices, a theory which he was later to discuss in
his book ”On the Economy of Machinery and Manufactures” [24].
Although the Penny Post was original from 1680 [25], when a merchant named William
Dockwra organized the London Penny Post, which delivered mail anywhere in London
for a penny, it was absorbed into the Post Office and, from then on, the charges gradually
increased. These increases were particularly noticeable during, the almost continuous,
wars with France because each time more money was needed, the cost of postage was
increased. Because of these high costs, many frauds became common.
Rowland published a pamphlet entitled ”post office reform” in which he proposed an uni-
form postage rate of 1d, - one penny - which would lead to an increase in correspondence
and the virtual abolition of attempts to evade the postage.

2Also called Operational Research in the UK.

4

Introduction

1.4 Motivation and Objectives

Studies support that Enterprise Resource Planning Systems implementations have always
faced the ”plain vanilla versus customer satisfaction” problem [26]. How to balance
schedule and budget goals against the benefits of customizing an ERP software has been,
since ever, puzzling project managers minds. Truth is, customization does tend to make
users happier.
The flexibility provided, out off the box, by the newer generation ERP systems can pre-
ventive help to address this issue and, thus, reduce the stress in a company’s ERP system
implementation by simplifying the required customization.
In many, older-generation ERP system, most of the system’s configuration values were
”hard coded” making them hard to change and maintain each time a new release or up-
grade was installed. New generation ERP systems have, however, become increasingly
rules-based, meaning that the majority of these values, limits and other parameters are
now entered and maintained in the system through the use of tables that can be accessed
and maintained by the authorized, principal users of the system.
This project’s modeling environment takes customization further by proposing something
quite new in the industry by making use of mathematical models, with an easy to describe
language, which allows some ”algorithms”, and not just the parameters, to also be eas-
ily configured, stored and maintained. It has, thus, been faced as a proof-of-concept to
gather new ideas, study technologies and provide some feedback on user experience and
requirements on the tools it uses.
These are its objectives:

1. Research the state of the art on methodologies and technologies regarding modeling
and solving this type of problems;

2. Define a modeling language that can address, in an easy-to-use and simple way,
these problems while providing data-binding capabilities with the Dynamics AX
platform. Different approaches can be studied to carry this out: from extending
existing technology to creating our own, more flexible, language. Integrate with
Microsoft Dynamics AX database;

3. Identify 1-2 optimization problems in the Dynamics AX platform;

4. Design models, using the defined language, to solve the problems identified under
3;

5. Design and implement the ORML Interpreter;

6. Provide Integration with Microsoft Dynamics AX database, both in terms of data
and meta data;

5

Introduction

As secondary, but nonetheless also important, objectives it is also possible to refer:

1. Provide integration with the ORML IDE project;

2. Use state-of-the art and in-house (”house” being Microsoft) technologies when pos-
sible.

1.5 Report Overview

The rest of this report is organized as follows:

Chapter 2 - ”Problem Description” starts by giving a deeper understanding of the prob-
lem and what this project aims to accomplish. It will then present the project’s
priorities, schedule and the deliverables.

Chapter 3 - ”State of the Art” reviews the current concepts regarding relevant optimiza-
tion problems, solvers and its usage in ERP systems. It also details the frameworks
and tools used for the project’s development and how they were chosen.

Chapter 4 - ”Solution Specification” presents, on a high level, the proposed solution to
the previously identified problem. It starts by presenting the Operations Research
Modeling Language (ORML) language and goes on presenting approaches to some
of the identified optimization problems in the Dynamics AX system.

Chapter 5 - ”Implementation” gives the reader important knowledge about the way the
system has been designed and implemented, stating the relevant decisions, as well
as, the ways of interacting with it.

Chapter 6 - ”Solution Evaluation” evaluates the solution, starting by presenting different
techniques that were put in practice during the project to, preventively, ensure a
good project outcome. It then describes the tests that were done to ensure that the
developed product complies with its requirements with the expected quality levels.
It finally draws some conclusions regarding some user opinions collected about the
modeling experience.

Chapter 7 - ”Conclusion and Future Work” reviews the project, draws the necessary con-
clusions, achievements and ends up by pointing out some ideas concerning future
work that could be done.

6

Chapter 2

Problem Description

Things should be as simple as possible, but not simpler

Albert Einstein[27]

This chapter presents the requirements for the project and what it aims to achieve. It then
presents its roadmap, including priorities and milestones.

2.1 Declarative Optimization Language for an ERP System

As new generation ERP systems evolve, new ways of developing, configuring and de-
ploying them are constantly developed. Reducing the complexity of deploying and further
customizing such systems is a goal to every major development company in this market.
The usage of new optimization technologies and of modeling languages to access them
are some of these new approaches, for instance, in product configuration modules.
Microsoft currently has a team that is working in a new .NET-based system that provides
model-driven planning, scheduling and optimization capabilities (Microsoft Solver Foun-
dation) [28] which is designed to contribute to an integrated business and optimization
platform. Besides this framework, there are some other, smaller, projects like a constraint
solver developed in 2006 by two Portuguese trainee’s who also did their internship in the
MDCC [29] [30]. It would be interesting to study the use of some of these technologies to
solve some of the problems that Microsoft’s Dynamics AX ERP System currently tackles.
The Microsoft Solver Foundation Framework, in its current development state, doesn’t,
however, provide an easy to use way to model and, specially, bind the problem definition
and data. This becomes increasingly important when it is considered that the Dynam-
ics Ax product isn’t built on the usual Microsoft Stack technologies which makes it even
harder to integrate.
A solution to ease the modeling experience with tight integration, by providing data bind-
ing mechanisms, with the Dynamics AX system is, thus, an interesting challenge.
Instead of defining a solution, mathematical modeling languages, which can usually be

7

Problem Description

described as declarative Domain-specific languages (DSLs) describe a problem. This
means that, in contrast with imperative programming languages, where serial orders are
given to a computer stating the how, a declarative language focus on the what giving
the programmer a higher abstraction level on the problem. This clearly makes the code
shorter and easier to understand and maintain.

2.2 Target Personas

This project is targeting a wide variety of users. Being a proof-of-concept, it will also
evaluate its acceptance by the users and give some feedback on further requirements and
improvements. This project targets the following types of users:

1. Microsoft developers (Program Manager (PM)s and Developer (DEV)s) that cur-
rently have to put great efforts in translating operations research mathematical model
to code and, further, in maintaining them afterwards;

2. Partners that do customizations for clients;

3. Customers that may want themselves to customize their solution or simply do little
adjustments in the model.

Based on research and input from business customers, Microsoft has developed the Mi-
crosoft Dynamics Customer Model [14]. This model, acts as a tool to document, capture,
visualize and share how people work within departments, and how that drives perfor-
mance across organizations. The model visually represents people in different roles, or
personas, which are based on real user data, and create a common language to guide Mi-
crosoft Dynamics product design.
After a quick survey (Appendix A), within the organization, some of the target personas,
within this model, for this project, were identified:

• Emil - as a product designer, Emil has to be able to specify new products. The rules
which specify if a product is valid or not, in a configuration environment, can be
specified through the use of a constraint programming model. He also searches for
the least expensive components. To do this, some criteria should be matched and a
mathematical model which could describe the selection process may be developed.

• Ellen - as a warehouse manager, Ellen ensures that inventory levels are accurate and
that periodic physical inventory counts occur. She also optimizes the warehouse and
focuses on turnover rate reduction which means that she wants to know all sort of
different information about the warehouse and use this information to optimize it.
In the search of information some models may be useful.

8

Problem Description

• Sammy / Ted - They work in the logistics area and, mostly, try to optimize trans-
portation and shipping tasks. To find the optimal routes to do this, some models
could be used.

• Simon - As a partner system implementer/consultant, Simon analyzes customers’
needs, writes the specification and puts together a customized solution. He may use
models to easily customize and extend the ERP system.

2.3 Optimization Problems in Microsoft Dynamics AX

Optimization problems are common in ERP systems. The need for assisted decision
mechanism creates the need to formulate models and develop algorithms that can address
them in an automated way, supporting the user while doing it fast.
This section, presents two of these problems and adds a third one that was used in an
exploratory way - the Traveling Salesman Problem (TSP) problem.

2.3.1 Traveling Salesman

The TSP problem is one of the most widely studied integer programming problems. It is
a problem in discrete and combinatorial optimization and can easily be stated as [31]:

Problem 1. A salesman is required to visit each of n cities, indexed by 1, ...,n. He leaves
from a ”base city” indexed by 0, visits each of the n other cities exactly once, and returns
to city 0, During his travels he must return to 0 exactly t times, including his final return
(here t may be allowed to vary), and he must visit no more than p cities in one tour (By a
tour it is meant a succession of visits to cities without stopping at city 0).
It is required to find the itinerary which minimizes the total distance traveled by the sales-
man.

If t is fixed, then for the problem to have a solution we must have t p >= n. For t = 1,
p >= n, we have the standard traveling salesman problem.
Although the TSP is conceptually simple, it is difficult to obtain an optimal solution since
in a n-city situation, any permutation of n cities yields a possible solution, thus, creating,
m! possible tours that must be evaluated in the search space.
The study, within this project, was defined as being interesting because route optimization
problems are quite common in ERP systems and because this is actually a well defined
and studied model which can easily be modeled to trial the developed solution.
To do this, custom tables were created in a common AX system installation to support the
data on which one could apply such model.

9

Problem Description

Figure 2.1: TSP Entity-Relationship Diagram

2.3.2 Warehouse Picking Routes

Picking, also known as order picking, consists in collecting products from a warehouse,
to fulfill a client’s request. The picking activity usually reduces the average request cycle
time (time since the client places the order until it is fulfilled) although it may introduce
an overhead to the warehouse personal costs. Some strategies may, however be used to
optimize the picking operations, mainly, in three areas: product placement, operations and
documentation/information [32]. The main overhead in these operations is the time that

Figure 2.2: Warehouse Environment

the operators spend in movements to pick the products and the crucial factors in defining
a strategy to optimize these times are:

• Operators for request

• Products for request

• Request scheduling

With these factors in mind, one can present four, of the most known, strategies [33]:

10

Problem Description

Discrete picking - One operator does the complete collect. It is the process that is easier
to operate and with the lower error rate associated. The overhead with movements
between collects originates, however, is the biggest.

Picking by zone - The warehouse is divided in zones, according to product types and
each zone has an assigned operator. To fulfill an order, the operator collects the
products in his areas and places them in a common place. With this strategy, multi-
ple operators can work for the same order.

Picking by lot - There is order accumulation. When an operator goes to collect the orders
he can bring a greater quantity of that product thus improving its productivity.

Picking by wave - This process is similar to discrete picking but with order scheduling
in turns. This means some products are only picked during certain times in a day.
This introduces some advantages concerning reception and expedition of products.
This strategy can be easily merged with other strategies like the picking for zone or
lot.

Dynamics AX, like most ERPs, deals with order shipments. To process an order, one
must pick the items from a warehouse that is arranged in aisles and racks. This procedure
can be optimized using one of the previously presented strategies.
Currently, the product does not include an effective optimization algorithm for this op-
eration and since the platform this project aims to develop can address these kinds of
problems, it is an interesting problem to study.
In order to do so, the available relevant information in the current database was identified.
After this, the additional required information, which would require the minimal changes
to the database schema, was defined and a new table implemented according to figure 2.3.
This involved the usage of a discrete picking strategy.

Figure 2.3: Warehouse Entity-Relationship Diagram

11

Problem Description

2.3.3 Production Scheduling

Scheduling is an important part of manufacturing and engineering by being able to have a
major impact on a process’s productivity. Its goal is to minimize the production time and
costs by telling a production facility what to make, when, with which staff and on which
equipment among many other possible variables. Production scheduling tools currently
greatly outperform older manual scheduling methods. Two main types of scheduling can
be identified:

Forward scheduling - planning the tasks from the date resources become available to
determine the shipping date or the due date.

Backward scheduling - planning the tasks from the due date or required-by date to de-
termine the start date and/or any changes in capacity require.

In the Dynamics AX system, the data that is needed to solve this kind of problems is cur-
rently being constructed in run time by a pre-processor which should be always used to
access data. Because it is still in the initial phases of development all the details concern-
ing the necessary data were nott possible to acquire by the time of this report. The work
carried out for this problem will, however, be briefly presented as a way of introducing
another problem type that is quite common in ERP systems.

2.4 Project Requirements

A clear definition of the requirements, is a necessary step in assuring a good project out-
come [34] [35]. To do so, it is necessary to understand the market situation and the real
needs of the product within its scope. Much work has been done in the study and defini-
tion of Mathematical Modeling languages. Some key points where identified as being of
the most importance when creating such languages [36] [37].

• Syntax - The syntax should be complete, easy-to-learn and easy-read. Complete
means that it should, ideally, cover all the features and structures that are supported
by the state-of-the-art solvers (i.e. nonlinear functions, all sorts of variables, but
also ordered sets).

• Solver Suite - For difficult combinatorial problems, different solvers may demon-
strate very different behaviors. As such, it is important to allow the user to use his
one solver of choice or even, to use its own implemented solvers.

• Infeasibility tracing - During the early modeling stages, one might see the solver
returning infeasible solutions statements. Sometimes, it is really hard to identify the
reasons for this and it can be of great help to support the analysis in this phase.

12

Problem Description

• Platform independence - A modeling system should not only support multiple plat-
forms but should also be completely independent of the platforms and the operating
systems.

• Open design - This is important not only to support the different types of solvers but
also to support the great number of ways of storing data ranges that go from pure
plain text files to huge supply chain management systems databases as Dynamics
AX or SAP.

• Indexing - Real world problems, especially supply chain optimization models, easily
require ten or more indices. The software needs to allow that many indices, but it
also needs to handle the resulting data structures efficiently.

• Scalability - The language should support millions of constraints/variables. It’s im-
portant that the modeling language has been designed in such a way to guarantee
linear scale-up.

• Memory Management - The model generation phase can be very demanding in
terms of memory management.

• Performance - The model generation phase should be very, very fast.

• Robustness - Most modeling languages are around for a long while. This means
that if a new language is to come, it has to have an extra level of robustness or users
won’t adopt it.

Taking into account these criteria, a new language can be designed. Based on this lan-
guage it was the goal of this project, to develop an interpreter which could execute on
it. This interpreter should, among other things, provide the services to be used from third
party applications like an Integrated Development Environment (IDE)1 A good, and early,
definition of the requirements is of the greatest importance and can directly influence the
project outcome.
This section presents the functional requirements that were identified and that capture the
intended behavior of the interpreter system. This behavior is expressed as services, tasks
and functions that the system is required to perform. To do this, use case diagrams2 sup-
ported by a features list (Appendix B) will be used.

1This project will be carried out in parallel with another project which aims to develop an IDE for the language of
this project.

2Use cases have quickly become a widespread practice for capturing functional requirements by capturing the who
(actor), the what (interaction) and the purpose (goal) without dealing with system internals

13

Problem Description

2.4.1 ORML Interpreter

The interpreter is the core component of all the system and it provides the tools to process
and interpret the model source code and output the results. It also provides the services
like syntax highlight or auto completion to build a rich edition environment. To use these
functionalities, the interactions had to be studied and the connecting points identified.
To improve user’s experience some other features, which are supported by the interpreter,
have also been taken into account. These include model exporting capabilities to Math-
ematical Markup Language (MathML) and Microsoft’s Office Math Markup Language
(OMML) formats.
Use Cases
The use cases in figure 2.4 describe the features that were identified as necessary to be
supported by the interpreter interface.

Figure 2.4: Interpreter Interface - Use Cases

Using this interface, it’s defined as a goal to develop, also within the scope of this
project, a simple console interface. This makes this project partially independent of the
IDE project [38] while giving the user some additional usage options like being able to
use it outside the Dynamics AX system as an external application.
The use cases for such console application are presented in figure 2.5.

14

Problem Description

Figure 2.5: Console Interpreter - Use Cases

2.4.2 Common Libraries

Running along with this project, since the very first day, is, like previously presented the
ORML IDE project. Given the amount of common necessities among the projects, some
common libraries were defined. These libraries have to do, mainly, with the access to the
Dynamics AX data.
Two common libraries have been defined: the Common Data Layer and the Model Man-
agement Layer.

Common Data Layer

The common data layer was defined as the library that both projects would use to operate
on Dynamics AX data. By using it, it is possible, for instance, to commute between the
AX Business Connector and a regular ADO.NET access to a database.
The usage scenarios for this library were divided in two types: data and meta data.
The data usage scenarios, focus on retrieving, inserting and updating the actual data in the
system.
On the other hand, the meta data’s mainly focus on retrieving information about the dif-
ferent data elements (i.e. tables, views and X++ Query-like classes). While tables and
views can easily be understandable as data source elements, the X++ Query-like classes
have been thought to support more advanced functionalities. These classes were thought
to resemble what is commonly known as stored procedures since these, aren’t in fact,
available because of the underlying Dynamics AX design.

15

Problem Description

Model Management Layer

The Model Management Layer was thought as an abstraction layer over the models3 mak-
ing it easier to operate with them, by supporting, what is commonly referred as the CRUD
operations. Besides models, it was defined that there should also exist model instances
which represent a particular instance of a model with pre-defined parameter values. This
allows the user to define a specific model that is ready to be used with some given param-
eters (section 3.4).

2.5 Schedule and Deliverables

The definition of the project’s priorities, along with a schedule and a list of all the de-
liverables that should result from it, is an important step of every project. It gives the
project’s stakeholders a better vision and control over it, while establishing milestones
and outlining what may or not be accomplishable. This section will start by establishing
the project’s priorities, followed by defining what are the deliverables to be expected given
those priorities and ending up by presenting the schedule for such accomplishments.

Priorities

Prioritizing objectives is an important task in any project. This task can, however, prove to
be harder to execute than it may seem to an inexperienced developer. Many different fac-
tors have to be taken into account and many of those may even prove to be very wrought
estimates of what will be in practice thus providing a wrong decision criteria. Some of
the factors taken in account for the project scheduling and prioritizing were:

• Importance to the prototype as a proof-of-concept project;

• Development difficulty;

• Dependencies to other projects;

• Dependency to the ORML IDE Project;

• Estimated task duration.

The priority levels are to be seen as relative to each other and serve only to guide the
development schedule. The different use cases were categorized in the following way:

3A Model represents a problem definition in the ORML language. It represents the actual model text with its
objective functions, constraints, parameters, bindings, etc

16

Problem Description

Use case Priority
Perform Lexical Analysis (Int-UC01) High
Perform Syntax Analysis and Abstract Syn-
tax Tree (AST) construction (Int-UC02)

High

Perform Semantic Analysis (Int-UC03) High
Interpret Model (Int-UC04) High
Syntax Highlight Service (Int-UC05) Medium
Auto Complete Service (Int-UC06) Low
Export model to MathML (Int-UC07) Medium
Export model to OMML (Int-UC08) Medium

Table 2.1: Project Priorities

Schedule

This project time line has been divided in 4 different phases:

1. Spike4/Technology study

2. M1 Development

3. M2 Development

4. Documentation

These phases were decided upon the first phase taking into account the functionalities and
priorities that were previously shown. A detailed Gantt chart for the project can be seen
in Appendix C.

Spike/Technology Study

The Spike phase took about 1 month (15 February - 14 March) and consisted on the prob-
lem understanding, requirements elicitation and the major planning for the development
phases, including the definition of priority levels and milestone dates. It was also during
this phase that the main technologies were identified, briefly studied, and decided upon.
This phase resulted in a Vision document, a Requirements documents containing a brief
language description with examples and a preliminary Test Plan.

M1 Development

Starting where the previous phase ended, this phase also took about 1 month (17 March
- 16 May) and it was during it that the language definition was completely developed
and the first version of the interpreter developed using a Test-Driven Development (TDD)
approach aiming at a vertical prototype to demonstrate the data-binding capabilities. The

4Spike is a focused exploratory approach to a problem.

17

Problem Description

prototype for this version wasn’t yet fully compliant with the language definition nor did
it supported all the services and features. It did, however, support the syntax highlight
service to ensure a quick integration with the IDE. This phase produced the M1 code, an
updated Requirements Document, an updated Test Plan and a simple design document.
Some presentation materials were also produced during this phase for project promotion
within the Company and to FEUP.

M2 Development

Milestone 2 development phase took roughly another month (19 May - 4 June) and it
essentially took over the previously developed prototype and expanded it to, within rea-
sonable and possible with respect to time constraints, comply with the language definition
and the requirements on services and features.
On the services, the auto-complete service5 was implemented and the export to MathML
and export to OMML functionalities were also fully implemented.
This phase has mainly produced the M2 code. Again, some presentation materials were
also produced and updated for the project promotion.

Documentation

The final month was totally reserved for the project documentation and the final report
writing. Although much of its content has already been written along the project, there
was still plenty to be done. This phase resulted in the final documentation and in this
report.

2.6 Summary

This chapter began by presenting this project’s goal of defining a declarative optimization
language, called ORML, which would be used to address Optimization Research prob-
lems in the Microsoft Dynamics AX product. It was also defined, within its scope, the
development of an interpreter that can process this language.
This interpreter should be accessible through a console application, also to be developed
within the same project, and provide some services for the ORML IDE (an IDE based
on the Windows Presentation Foundation (WPF) [39] technology that will be developed
to support the language of this project). These two projects share two common libraries
that have been jointly developed: the Common Data Layer and the Model Management
Layer.
Finally, the four milestones for the project were presented: Spike / Technology Study,

5It was also result of this project the implementation of the graphical part of the auto-complete functionality in the
IDE using the WPF Framework.

18

Problem Description

milestone 1 where the first prototype was developed, milestone 2 where the code for the
project was developed and the documentation phase.

19

Problem Description

20

Chapter 3

State of the Art

Losers live in the past. Winners learn from the past and enjoy working in the present
toward the future.

Denis Waitley[40]

This chapter starts off by building the required base of knowledge concerning the current
Dynamics AX product, then presents the current state of the art on the field of relevant
optimization problems, Optimization/Mathematical Languages and it ends with a techno-
logical review to prepare the reader for the following chapters.

3.1 Microsoft Dynamics AX

Dynamics AX is an ERP application that is part of the Microsoft Business Solutions Dy-
namics products family. It gives ERP application developers both a unique development
and a run-time environment. This means that the system can be costumized or added extra
functionality directly from the application itself.
The development is supported by the MorphX Integrated Development Environment that
allows developers to graphically design data types, base enumerations, tables, queries,
forms, menus and reports while supporting drag and drop features. It also allows access
to any application classes that are available in the application, by launching the X++ code
editor. Microsoft Dynamics AX also offers a fully integrated Version Control System
(VCS) which supports collaborative development.
Like most ERP systems, it follows a client-server architecture where both a rich (native
windows application) and a thin (Enterprise Portal1) clients are available which provide
most of the same functionalities.

1The Enterprise Portal is an ASP.NET application which can be accessed, through the internet, using a common
web browser.

21

State of the Art

Figure 3.1: Dynamics AX Rich Client

3.1.1 Application Model Layering

Dynamics AX uses an application model layering [41] that allows very granular cus-
tomizations and extensions to model element definitions. When a new Dynamics AX
version, that is not country or region specific, is released, all elements reside in the lowest
layer of this stack. Elements defined at higher levels can, however, override others defined
at lower levels.

Figure 3.2: Dynamics AX Application Model Layers

22

State of the Art

Using this model, means that customizations may be preserved even if the application
is re-installed/upgraded.

3.1.2 The X++ Programming Language

The Dynamics AX business logic is specified by code written in the X++ programming
language which was specially designed for this product2. X++ is an object-oriented pro-
gramming language with similarities to C++ and C#, supporting inheritance, encapsula-
tion, polymorphism and it is case insensitive and strictly typed [42].
The language is application-aware because it includes keywords such as client, server,
changecompany and display that are useful to specify if the code should be executed
either on the client application or on the Application Object Server (AOS). It is also data-
aware because it includes keywords such as firstFast, forceSelectOrder and forUpdate,
as well as, a database query syntax that are useful for programming database applications.

1 p u b l i c s t a t i c vo id a c t i v a t e O r d e r T r a n s (s t r r o u t e I d)
2 {
3 WMSOrderTrans wmsOrderTrans ;
4 ;
5
6 w h i l e s e l e c t f o r u p d a t e wmsOrderTrans where wmsOrderTrans . r o u t e I d == r o u t e I d {
7 wmsOrderTrans . e x p e d i t i o n S t a t u s = ” A c t i v a t e d ” ;
8 }
9 }

Figure 3.3: Sample X++ Code

3.1.3 Data Sources

One of the Microsoft Dynamics AX key points regarding data sources is that it targets
at abstracting the system from the specifics of the database system allowing it to be used
with Microsoft SQL Server, Oracle or, eventually, other systems3. Because of this, its
database doesn’t have any information regarding relations, constraints and checks and the
option was to implement a data access layer which provides most of the common entities
available in a Database Management System (DBMS). These include:

• Tables

• Views
2The introduction of the X++ relates to the Damgaard company - the original Dynamics AX (Axapta) product

developer.
3Dynamics AX 2009 currently supports Oracle Database 10g and Microsoft SQL Server 2000 and 2005.

23

State of the Art

• Queries

3.1.4 Integration

Integration of ERP systems with other systems within and beyond an organization is now a
common requirement, thus, the Microsoft Dynamics AX product provides different ways
of interacting with it.
Regarding customizations or new features additions, it can be done, like previously men-
tioned, from the application itself by using X++ and the MorphX environment. This ap-
proach is, however, limited in different aspects including, but not only, the limited knowl-
edge on X++ and the necessity to use the limited built-in form designer. It is, however,
possible4 to import and use .NET libraries. It is also possible to load external ActiveX
controls via the Component Object Model (COM) runtime.
Regarding data interaction, Dynamics AX currently offers three main ways of doing it:

• Natively in the Dynamics AX Rich Client, using X++ code and its extensive class
library;

• In pure .NET, using the framework’s libraries;

• Using the Microsoft Dynamics AX Business Connector.

Accessing data and business logic through the X++ facilities is the actual way the AX
Rich client is implemented. Through it’s usage it is possible to use classes, tables, views
and much more. Interaction with external applications (e.g. .NET applications) it’s, how-
ever, not always an easy task due to the type mapping limitations.
The second alternative, encompasses the usage of pure .NET code making use of the
available libraries like ADO.NET which can be further extended using Language Inte-
grated Query (LINQ). This method is, however, not recommended because it lacks all the
information regarding the business logic (section 3.1.3).
Finally, by using the Business Connector, which mirrors most of the facilities actually
provided by the native Dynamics AX data layer, like being database-agnostic, it is possi-
ble to access both the data and the business logic but also most of the facilities provided
in the X++ libraries (e.g. it is possible to instantiate and use X++ classes). Currently, this
platform is constituted by two components: the COM Business Connector and the .NET
Business Connector.

4Although possible and relatively flexible, since X++ doesn’t run in the Common Language Runtime (CLR), there
are some type mapping limitations.

24

State of the Art

3.2 Optimization Problems

In mathematics and computer science, a mathematical optimization problem, or just opti-
mization problem, has the form []:

minimize/maximize f0(x) (3.1)

subject to: fi(x)≤ bi, i = 1, . . . ,m. (3.2)

Here, the vector x = (x1, . . . ,xn) is the optimization variable of the problem, the function
f0Rn → R is the objective function, the functions fi : Rn → R, i = 1, . . . ,m are the (in-
equality) constraint functions, and the constants b1, . . . ,bm are the limits, or bounds, for
the constraints. A vector x∗ is called optimal, or a solution of the problem 3.2, if it has
the smallest objective value among all vectors that satisfy the constraints: for any z with
f1(z)≤ b1, . . . , fm we have f0(z)≥ f0(x∗).

3.2.1 Linear Programming

Linear Programming (LP) dates back at least as far as Fourier [43], after whom the method
of Fourier-Motzin elimination [44] is named. George B. Dantzig and John von Neumann
were its main founders for publishing the Simplex method and the theory of the duality
in that same year. Leonid Kantorovich, a Russian mathematician who used similar tech-
niques in economics before Dantzig and won the Economics Nobel prize in 1975 should
also be mentioned as one of them.
Linear programming studies the case in which the objective function g is linear and the
set I is specified using only linear equalities and inequalities. If it is bounded, this set is
called a polyhedron or a polytope.
This kind of problems can be expressed in the following canonical form:

Maximize/Minimize(CT x) (3.3)

Subject to:
Ax≤ b (3.4)

Where x represents the vector of variables, c and b are vectors of coefficients and A is a
coefficient matrix.
Arising as a mathematical model in the Second World War, Linear Programming was
kept in secret until 1947, when, in the postwar, many industries found its use in their daily
planning.
This clearly demonstrates that this kind of problems is worth studying in an ERP system
implementation context. Many of the problem solutions in this kind of systems, as this
report will briefly demonstrate, actually lie in this problem category or within one of its

25

State of the Art

subsets, like Integer Programming.

3.2.2 Integer Programming

Integer Programming (IP) can be formulated similarly to LP problems and occur when all
the variables are required to be integers. Contrary to LP problems, which can be efficiently
solved, IP problems are in many cases NP-Hard5. If the variables, rather than arbitrary
integers, are required to be 0 or 1, the problem is defined as 0-1 integer programming
or Binary Integer Programming (BIP). Finally, if only some of the variables are required
to be integers, then the problem is called a Mixed Integer Programming (MIP) problem.
These different variants are generally also considered to be NP-Hard.

3.2.3 Constraint Satisfaction Programming

Constraint satisfaction problems study the scenario where the objective function g is con-
stant [45]. In this kind of problems, one must find states that satisfy a number of con-
straints. Constraint Satisfaction Programming (CSP) problems are subject of intense re-
search in both artificial intelligence and operations research. Some of the most common
algorithms used for solving constraint satisfaction problems include the AC-3 algorithm,
Backtracking and the min-conflicts algorithm.

3.3 Optimization Engines

Optimization Engines are in the heart of the computer assisted Operation Research method-
ologies. Many products exist in the market to address one specific type of problem while
others offer a variety of solvers. One of such products clearly has a dominant position in
the market today - ILog CPLEX. For this reason, and since it lies within the objectives of
this project to use a new Microsoft engine, this section will only address these two.

3.3.1 ILog CPLEX

CPLEX is an optimization software package developed by ILOG [46]. The key features
in the product are its high performance, presence of fundamental algorithms, robustness,
reliability and flexibility of interfaces. According to ILog, today, over 1000 corporations
(including some of the world’s leading software companies like SAP, Oracle and Sabre)
and government agencies use CPLEX, along with researchers at over 1000 universities.
This makes it one of the most, if not the most, used optimization engine in the market.

5NP-hard or nondeterministic polynomial-time hard problems are defined as.

26

State of the Art

The same company also distributes the ILog OPL which is a modeling language that pro-
vides a way to represent optimization models, requiring far less effort than using general-
purpose programming languages.
Its usage is, however, not adequate for this project since the option, like previously stated,
is to use, where possible, in-house technologies.

3.3.2 Microsoft Solver Foundation

Microsoft Solver Foundation is a NETfx/CLR-based platform for business planning, risk
modeling, scheduling, configuration, and decision optimization. It delivers advanced
technologies of mathematical programming and constraint processing to developers, mod-
elers, and technical analysts to simplify and improve strategic and tactical decision mak-
ing. MSF uses highly declarative models, consisting of simple components that are solved
by the application of solvers, meta-heuristics, search techniques and combinatorial opti-
mization mechanism to accelerate the solution finding process. The model components
include:

• Decisions - The ”outputs” of the solver - correspond to the results of the model that
is being solved;

• Constraint - Business constraints that have to be accounted for in solving a problem;

• Goals or Objectives - The business goal or goals to be achieved;

• Parameters - Data that plugs into the model so that a solution may be computed.

Based on its set of extensible solvers, that include, among others, support for linear and
constraint programming, the platform defines several running modes (Figure 3.4) which
can be used to both use it directly or to build applications based on it.

Figure 3.4: MSF High Level Architecture

In its current development stage, the platform provides a runtime Application Pro-
gramming Interface (API), the Solver Foundation Services (SFS), which further augments
the capabilities of the individual solvers with framework-level model analysis and meta-
heuristics. Its usage, abstracts the users from the complexities of optimization allowing

27

State of the Art

them to focus on the modeling and solving. One of the key factors in this API is the Op-
timization Modeling Language (OML) which is made available, in a type safe version, to
any .NET application, but also, to the Microsoft Excel Product in a syntax safe version.

3.4 Mathematical Modeling Languages

The word ”modeling” comes from the Latin word modellus and describes a typical human
way of representing the reality. Although abstract representation of real-world objects
have been in use since the stone age, a fact backed up by caveman paintings, the first
recognizable models were the numbers; as it is documented since about 30,000 BC.
A model can be simply put as:

A model is a simplified version of something that is real.

Mathematical modeling (or programming) consist in translating problems from an ap-
plication area into tractable mathematical formulations whose theoretical and numerical
analysis provides insight, answers, and guidance useful for the originating application.
Mathematical modeling languages were motivated by the desire to simplify the solving of
mathematical programming problems. The fundamental underlying reason is the recog-
nition that many mathematical programming problems can be expressed in a computer
language whose syntax is close to the standard presentation of these problems in text-
books or scientific papers.
These languages abstract away the implementation details of the underlying solver tech-
nologies and allow users to focus on the modeling [36].
An important clear separation in these languages is the separation between the model and
the instance data, which ensures that the same model can be applied to many instances
without further additional work. For this, data binding mechanisms have became increas-
ingly required and most solutions offer a variety of offers concerning this.
Although, traditionally, these modeling languages were particularly strong in linear and
integer programming problems, new versions now include support to constraint and other
types of problems.
Mathematical models have a close relationship with the mathematical modeling languages
that are built upon them and which attempt to tackle the problem of building efficient op-
timization solutions in a faster way and requiring less effort than using general-purpose
programming languages.
The translation process from a conceptual mathematical model to a modeling language
is intended to be as easy and straightforward as possible. Since most of these languages
have similar structures, this process has, however, become a somewhat standard process
and can be defined in the following steps:

1. Describe the input and output data using sets and indexed identifiers;

28

State of the Art

2. Specify the optimization model;

3. Specify procedures for data pre- and post-processing;

4. Initialize the input data from files, spreadsheets and/or databases;

5. Solve the optimization model;

6. Display the results (or write them back to a database).

This section will present some of these languages. As a side note, it is worth noticing that
all of them have support for the CPLEX optimization engine [47]. This clearly shows the
importance of this software package in the market today.
One should also note that, during the analysis, a special focus was put in the data-binding
mechanisms that each languages supports since this is one of the requirements for this
project (Section 2.4).

3.4.1 OPL 6.0

The Optimization Programming Language (OPL) was originally developed by Pascal Van
Hentenryck 6, and is a modeling language which combines the power of a Constraint Pro-
gramming language and of a mathematical modeling language. It is the defacto language
of the ILOG OPL Development Studio (currently in version 6.0).
Models developed in OPL can then be used from the ILOG OPL-CPLEX Analyst IDE or
deployed into an external application written in Java, .NET or C++

Data-Binding

OPL models support data import from different internal and external data sources. This
section focus on the external ones: Excel spreadsheets and database sources.

Excel Spreadsheets

Spreadsheet optimization allows users to create models that are easy to use, enabling
the user to quickly update the data and solve the model. Microsoft Excel thus provides
some excellent user-interface capabilities for optimization models. OPL builds on these
capabilities by offering the ability to import and export data directly from Excel ranges.
The model can then be solved with no limits on the size, speed or robustness of the
solution.
Reading data form an Excel spreadsheet can be accomplished using the syntax of the
example shown in figure 3.5. In the example of figure 3.5, the Cutstock.xls document is

6Pascal Van Henteryck was also the co-author of a previous, noticeable mathematical modeling language - Numerica

29

State of the Art

1 /∗ . mod f i l e ∗ /
2 { s t r i n g } C u t s I n P a t t e r n ;
3
4 /∗ . d a t f i l e ∗ /
5 / / c o n n e c t t o t h e s p r e a d s h e e t
6 S h e e t C o n n e c t i o n s h e e t (” C u t s t o c k . x l s ”) ;
7
8 / / r e a d s p r e a d s h e e t r a n g e
9 C u t s I n P a t t e r n from Shee tRead (s h e e t , ” p a t t e r n s ! A2 : A4”) ;

10
11 / / w r i t e t o s p r e a d s h e e t r a n g e
12 C u t s I n P a t t e r n t o S h e e t W r i t e (s h e e t , ” p a t t e r n s ! B2 : B4”) ;

Figure 3.5: OPL - Spreadsheet Reading Example

opened and the specified cell range is first read and then written to another range using
the SheetRead and SheetWrite commands.

Databases

Reading data from a database can be accomplished by using syntax of the example shown
in figure 3.6.

1 /∗ . d a t f i l e ∗ /
2 / / c o n n e c t t o d a t a b a s e
3 DBConnection db (” odbc ” , ” c u t s t o c k / u s e r / passwd ”) ;
4 DBConnection db (” a c c e s s ” , ” c u t s t o c k . mdb”) ;
5
6 / / r e a d v a l u e s from d a t a b a s e
7 C u t s I n P a t t e r n from DBRead (db , ”SELECT ∗ FROM p a t t e r n s ”) ;

Figure 3.6: OPL - Database Reading Example

In the example of figure 3.6 the CutsInPattern values are read from the cutstock.mdb
Microsoft Access database using the DBRead command.

3.4.2 MPL 4.2

Mathematical Programming Language (MPL) [48] is an ”advanced modeling system that
allows the model developer to formulate complicated optimization models in a clear, con-
cise and efficient way”. Models developed in MPL can be solved with any of the multiple
commercial optimizers available on the market today.
Within the advantages that this product offers to the users, one should also highlight its
feature-rich model development environment and its data import and export capabilities

30

State of the Art

from databases or spreadsheets. Some of the more notable and relevant features of the
MPL language include [49]:

• Separation of the data from the model formulation;

• Import data from different data sources;

• Independence from specific solvers;

• Readable and helpful error messages.

An MPL model file is divided into two main parts: the definition and the model. The
definition part is where the various items that are used throughout the model are defined -
the model parameters. The model part then contains the actual model formulation. Each
part is then further divided into sections, which are as follows: The Definition Part:

TITLE - The problem name.

INDEX - Dimensions of the problem.

DATA - Scalars, datavectors and files.

DECISION VARIABLES - Vector variables.

MACRO - Macros for repetitive parts.

The Model Part:

MODEL

MAX or MIN - The objective function.

SUBJECT TO - The constraints.

BOUNDS - Simple upper and lower bounds.

FREE - Free variables.

INTEGER - Integer variables.

BINARY - Binary (0/1) variables.

END

None of these sections is mandatory in a MPL model but, in order to have a valid opti-
mization model, it should have, at least, an objective function and a constraint.
MPL allows sections to be placed in any order in the model, as long as, any item is de-
clared before it is used in the model. Multiple entries of each section are also allowed.
Figure 3.7 shows a simple example model.

31

State of the Art

1 MODEL
2 MAX x + y ;
3 SUBJECT TO
4 x + 2y < 10 ;
5 END

Figure 3.7: MPL - Model Example

Data-Binding

MPL models support importing data from different data sources.

Text Files

MPL supports reading data from external text files which are mainly used when the data
for the model is stored locally, generated by other programs or by running Structured
Query Language (SQL) queries from a database. Reading data from a text file can be
accomplished using the DATAFILE keyword followed by a filename inside parentheses.
Figure 3.8 presents an example of such usage.

1 DATA
2 Demand [p r o d u c t , month] := 1000 DATAFILE(” demand . d a t ”) ;

Figure 3.8: MPL - Text File Reading Example

In this example, the demand vector has 36 values (12 months times 3 products) which
are stored in the file demand.dat. Each number in the file is multiplied by 1000 as it is
read. The file is a free-format text file where numbers are read in the order they appear,
separated with commas or spaces. It is also required that there are enough numbers to
satisfy the size of the vector.

Excel Spreadsheets

Reading data from an Excel spreadsheet can be accomplished using the EXCELRANGE
keyword followed by parentheses containing the Excel wordbook filename and the Excel
range name that the user wants to import from. An example of this, can be seen in Figure
3.9.

32

State of the Art

1 DATA
2 C u t s I n P a t t e r n [p a t t e r n s , c u t s] := EXCELRANGE (” C u t s t o c k . x l s ” , ” P a t t e r n s ”) ;

Figure 3.9: MPL - Spreadsheet Reading Example

In this example, MPL will open the Excel spreadsheet Cutstock.xls, locate the range
patterns, and then retrieve the entries for the data vector CutsInPattern.

Databases

Elements for a data vector can also be directly imported from a database. Reading data
from a database can thus be accomplished by using the DATABASE keyword followed by
parentheses containing the table name and the column/filed name the user wants to import
from. An example of this, can be seen in Figure 3.10.

1 DATA
2 Fac tDepCos t [f a c t o r y , d e p o t] := DATABASE(” FactDep ” , ” TrCos t ”) ;

Figure 3.10: MPL - Database Reading Example

In this example, MPL will open the database table FactDep, locate the columns TR-
Cost, FactID and DepotID and then read in the entries for the datavector FactDepCost.
It also allows filtering the instances one may want to read from a table. In that case, the
WHERE keyword might be used followed by a condition on one of the columns. Figure
3.11 outlines an example of such situation.

1 DATA
2 Fac tDepCos t [f a c t o r y , d e p o t] := DATABASE(” FactDep ” , ” TrCos t ” WHERE Region =

” NorthWest ”) ;

Figure 3.11: MPL - Spreadsheet Reading Example with Filtering

In this example, only the transportation costs from the FactDep table where the Region
column contains the entry NorthWest will be read.

3.4.3 AIMMS 3.8

Advanced Interactive Mathematical Modeling Software (AIMMS) is an advanced model-
ing tool for building decision support applications and advanced planning systems[50].
Along with its mathematical modeling language, AIMMS offers a graphical interface for

33

State of the Art

both developers and end-users, including a wide variety of solvers, and can be further
extended to incorporate any of the advanced commercial solvers available on the market
today.
With this, AIMMS provides a platform to create advanced prototypes that can be easily
transformed into operational end-user systems.
An AIMMS model can be divided into three main parts:

• A declarative part which specifies all sets and multidimensional identifier defined
over these sets, together with the fixed functional relationships defined over these
identifiers;

• An algorithmic part consisting of one or more procedures which describes the se-
quence of statements that transform the input data of a model into the output data;

• A utility part consisting of additional identifier declarations and procedures to sup-
port a graphical end-user interface for the application.

Data-Binding

The initialization of sets, parameters and variables in an AIMMS application can be ac-
complished in several ways [51].

Text Files

AIMMS supports reading data from both ascii files in its own data format and from binary
case files with a previous session.

XML Files

Extensible Markup Language (XML) Files read and write operations are also supported
in AIMMS in two modes:

• Generate and read XML data based on identifier definitions in the model, or

• Generate and read XML data according to a given XML schema specification.

To access them, AIMMS provides the following functions:

• WriteXML(XMLFile,MappingFile[,merge]);

• ReadXML(XMLFile,MappingFile[,merge][,SchemaFile]).

Excel Spreadsheets

AIMMS supports reading data from an external Open Database Connectivity (ODBC)- or
OLE DB-compliant database. Figure 3.12 presents an example of this.

34

State of the Art

1 E x c e l R e t r i e v e S e t (” C u t s t o c k . x l s ” , C u t s I n P a t t e r n , ” P a t t e r n s ”) ;

Figure 3.12: AIMMS - Spreadsheet Reading Example

Databases

AIMMS supports reading data from an external ODBC- or OLE DB-compliant database.
An example of the syntax required to accomplish this is given by figure 3.13.

1 SET :
2 i d e n t i f i e r : Rou tes
3 s u b s e t o f : (C i t i e s , C i t i e s) ;
4 DATABASE TABLE:
5 i d e n t i f i e r : RouteData
6 d a t a s o u r c e : ” T o p o l o g i c a l Data ”
7 t a b l e name : ” Route D e f i n i t i o n ”
8 mapping :
9 ” from ” −−> i , ! name s u b s t i t u t i o n

10 ” t o ” −−> j ,
11 ” d i s t ” −−> D i s t a n c e (i , j) ,
12 ” f c o s t ” −−> T r a n s p o r t C o s t (i , j , ’ f i x e d ’) , ! s l i c i n g
13 ” v c o s t ” −−> T r a n s p o r t C o s t (i , j , ’ v a r i a b l e ’) ,
14 (” from ” , ” t o ”) −−> Routes ; ! mapping t o r e l a t i o n

Figure 3.13: AIMMS - Database Reading Example

3.4.4 AMPL

Developed at Bell Laboratories, A Mathematical Programming Language (AMPL) (AMPL)
is a comprehensive and powerful algebraic modeling language for linear and nonlinear
optimization problems with discrete or continuous variables[52]. As opposed to some
others, AMPL doesn’t have any native Graphical User Interface (GUI) environment, but
there is an AMPL Studio [53] developed by OptiRisk Systems Company.

Data-Binding

The initialization of sets, parameters and variables in an AMPL application can be ac-
complished in several ways.

Text Files

In AMPL, the model and the data are stored in text files (.mod and .dat accordingly).
Figure 3.14 presents an example of the syntax.

35

State of the Art

1 param max prd := 1 2 3 . 7 ;

Figure 3.14: AMPL - Text File Reading Example

Excel Spreadsheets

The same mechanism that allows AMPL to interact with relational databases, the ODBC,
also allows it to access common excel spreadsheets. An example of the syntax to accom-
plish this type of data binding may be seen in figure 3.15.

1 t a b l e Foods IN ”ODBC” ” d i e t . x l s ” : FOOD <− [FOOD] , c o s t , f min , f max ;

Figure 3.15: AMPL - Spreadsheet Reading Example

Databases

The AMPL table declaration allows to import/export data and solution values from AMPL
back to a relational database. This is done through standard handler support packages
that can communicate via the ODBC standard under Windows. Figure 3.16 presents an
example of such situation.

1 t a b l e Foods IN ”ODBC” ” d i e t . mdb” : FOOD <− [FOOD] , c o s t , f min , f max ;

Figure 3.16: AMPL - Database Reading Example

3.4.5 Language Comparison

A comparison of some modeling languages is an interesting step. Table 3.1 presents a
comparison between the different data-binding mechanisms offered by some of them:

36

State of the Art

Language Text Files XML Files Excel Spreadsheets Databases
OPL No No Yes Yes
MPL Yes No Yes Yes

AIMMS Yes Yes Yes Yes
AMPL Yes No Yes Yes

Table 3.1: Language Data Binding Comparison

It’s interesting to notice that, like it was previously referred, most of them offer a wide
variety of data-binding mechanisms being the most common ones the databases and the
excel spreadsheets. Based on this, it’s fair to conclude that these should be supported
in any future modeling language, the moment it hits the market, if it wants to be fairly
competitive.

3.5 Optimization Problems Formulation

The first step on solving optimization problems is usually to identify a mathematical
model which can describe the model. To do this, the problem’s parameters, variables, ob-
jectives and constraints have to be identified. The problems, for which this report presents
some of these models, are, however, subject of much study from mathematicians, scien-
tists and engineers. Therefore, the solutions which this report presents are just a part of the
vast literature that exists and serves merely as an approach to the study of the framework
which this project intended to fulfill.

3.5.1 Traveling Salesman

The traveling salesman problem, as it was presented, it is one of the most well stud-
ied problems in optimizations research. Different formulations have been presented and
further extended to include a variety of transportation scheduling problems, such as the
Multi-Traveling Salesman problem, the Delivery problem, the School Bus problem or the
Dial-a-Bus problem.
The most compact mathematical formulation to the problem was, however, the formula-
tion given by [31]:

Theorem 1. Let di j(i 6= j = 0,1, . . . ,n) be the distance covered in traveling from city i to
city j.

37

State of the Art

Objective: Minimize the traveled distance

Minimize
(n

∑
i=1

n

∑
j=1
j 6=i

ci j ∗δi j

)
(3.5)

Where ci j represents the cost from city i to city j and σi j is 0 if the path is not taken and
1 if it is.
Subject to:
Exactly one city must be visited immediately after city i.(n

∑
j=1
i6= j

δi j

)
= 1, i = 1,2, . . . ,n (3.6)

Exactly one city must be visited immediately before city j.(n

∑
j=1
i 6= j

δi j

)
= 1, j = 1,2, . . . ,n (3.7)

Avoid sub tours.
ui−u j +nxi j ≤ n−1, i, j = 2, . . . ,n∧ i 6= j (3.8)

Where ui is the sequence in which city i is visited (i! = 1).
This is a mixed integer programming formulation with n2 zero-one variables and n-1
continuous variables. One of the major drawbacks of this formulation is, however, the
fact that it is usually limited to the traveling salesman problem only and cannot be easily
extended to other transportation scheduling problems which are related to it [54].

3.5.2 Warehouse Picking Routes

The warehouse Picking Routes problem can be approached in a way which is very similar
to the TSP problem. Given the different pickup points that the worker should visit to ful-
fill an order, the distance between them and the start and end points the problem almost
completely resembles the TSP with the difference that the worker doesn’t have to start
and end at the same place.

Theorem 2. Let di j(i! = j = 0,1, . . . ,n) be the distance covered in traveling from pickup
point i to pickup point j.

38

State of the Art

Objective: Minimize the traveled distance

Minimize
(n

∑
i=1

n

∑
j=1
j 6=i

ci j ∗δi j

)
(3.9)

Where ci j represents the cost from pickup point i to pickup point j and σi j is 0 if the path
is not taken and 1 if it is.
Subject to:
Exactly one pickup point must be visited immediately after pickup point i.(n

∑
j=1
i 6= j

δi j

)
= 1, i = 1,2, . . . ,n∧ i 6= StartLocation (3.10)

Exactly one pickup point must be visited immediately before pickup point j.(n

∑
j=1
i 6= j

δi j

)
= 1, j = 1,2, . . . ,n∧ j 6= StartLocation (3.11)

Where ui is the sequence in which pickup point i is visited (i! = 1).
This formulation does, however, pose a couple of restrictions which were considered to
be acceptable for the purpose of the study:

• A product has to be in only one specific location;

• The complete order has to be processed by only one worker.

It does, however, take into account that multiple items can be taken from one position
since the model works with locations and not items.

3.5.3 Production Scheduling

The production scheduling problem can be approached as a common job-shop problem[55].
In the job-shop scheduling problem (JSSP), a finite set of jobs is processed on a finite set
of machines. In the common approach, each job is characterized by a fixed order of op-
erations, each of which is to be processed on a specific machine for a specific duration.
Each machine can process at most one job at a time and once a job initiates processing
on a given machine it must complete processing uninterrupted. The objective of the JSSP
is to find a ”schedule” that minimizes the overall duration of the jobs. An mathematical
model formulation for this type of problems can be stated as:

39

State of the Art

Objective: Minimize the traveled distance

Minimize
(I

∑
i=1

M

∑
j=1

ci j ∗δi j

)
(3.12)

Subject to:

tsi ≥ ri, i = 1,2, . . . ,n (3.13)

tsi ≤ di−
M

∑
m=1

pimδi j, i = 1,2, . . . , I (3.14)

n

∑
j=1

δi j = 1, i = 1,2, . . . ,n (3.15)

I

∑
i=1

δi j pi j ≤ max{di}−min{ri},m = 1,2, . . . ,M (3.16)

yii′+ yi′i ≥ δim +δi′m−1, i, i′ = 1,2, . . . , I, i′ > i,m = 1,2, . . . ,M (3.17)

tSi′ ≥ tSi +
M

∑
m=1

pimδi j−U(1− yii′), i, i′ = 1,2, . . . , I, i′ 6= i (3.18)

yii′+ yi′i ≤ 1, i, i′ = 1,2, . . . , I, i′ > i (3.19)

yii′+ yi′i +δi j +δi′ j′ ≤ 2, i, i′ = 1,2, . . . , I, i′ > i,m,m′ = 1,2, . . . ,M,m 6= m′ (3.20)

tsi ≥ 0 (3.21)

δi j ∈ {0,1}, i = 1,2, . . . , I,m = 1,2, . . . ,M (3.22)

{
yii′ ∈ {0,1

, i, i′ = 1,2, . . . , I, i′ 6= i

}
(3.23)

Since this problem, due to the reasons stated in 2.3.3, was never solved, its studied ended
here.

40

State of the Art

3.6 Mathematical Document Formats

Mathematical document formats allow describing mathematical notations and formulas
making it easy to interchange and represent them. MathML is one of the most popular
formats but others do exist, like the OpenMath, the OMDoc and the OMML.
Some of these formats have been considered in order to support the exporting functional-
ities (Appendix B).

3.6.1 Mathematical Markup Language

The Mathematical Markup Language or, in short, MathML [56] is a XML format docu-
ment for describing mathematical notations and capturing both its structure and content.
MathML’s original application is about encoding the structure of mathematical expres-
sions so that they can be distributed, displayed and manipulated across the World Wide
Web (WWW). With the increase support of the Mathematical Software vendors, MathML
is rapidly becoming the defacto language for scientific publications on the Web.

3.6.1.1 Microsoft Math

Microsoft Math [57] is an educational program that allows users to solve math and science
problems. Some of its top features include a graphics calculator with extensive graphics
and equation-solving capabilities, a triangle solver that help to explore the relationship
between the parts of triangles, a unit conversion tool, a step-by-step equation solver that
provides step-by-step solutions to many math problems from basic math to calculus, a
formulas and equation library with more than 100 common equations and formulas in a
single location and, finally, Ink Handwriting support to work with Tablet and Ultra-mobile
PCs.

41

State of the Art

Figure 3.17: Microsoft Math

Its Software Development Kit (SDK) [58] offers a wide range of functionalities and
futures to extend it or use it in external applications. An example might be its Math Engine
which offers a wide variety of mathematical representation formats as well as, mechanism
to convert between them (Appendix D) including the MathML format. Its usage, through
the extension of this library was then leveraged as a basis for the export services that this
project intended to achieve (Appendix B).

3.6.2 Office Math Markup Language

OMML is a mathematical markup language which can be embedded in an Open Office
XML document [59], with intrinsic support for including word processing markup like
revision markings, footnotes, comments, images and elaborate formatting and styles. The
Office Open XML (OOXML) format uses a file package conforming to the Open Pack-
aging convention that uses the ZIP file format [60] and contains the individual files that
form the basis of the document. In addition to office markup, the package can also include
embedded files such as images, videos or other documents.
Its primary markup languages are:

• WordprocessingML for word-processing (used in Office Word c©2007);

• SpreadsheetML for spreadsheets (used in Office Excel c©2007);

• PresentationML for presentations (used in Office Powerpoint c©2007);

• DrawingML used for vector drawing, charts, and for example, text art (additionally,
through deprecated, VML is supported for drawing).

42

State of the Art

The OMML format is partially compatible with the MathML format through relatively
simple Extensible Stylesheet Language Transformations (XSLT) [61] based transforma-
tion files which are actually shipped with the Microsoft Office 2007 [62] product.

3.6.2.1 Open XML Formats SDK

Following the introduction of the Open XML formats, Microsoft developed an SDK to
access and process files in this format as part of the WinFX technologies in the Sys-
tem.IO.packaging namespace[63].
The OOXML was built on top of this technology providing an easier-to-use Application
Programming Interface (API) that provides strongly-typed part classes to manipulate Of-
fice 2007 documents [64]. By encapsulating many of the common tasks that are typically
performed on OpenXML packages, complex operations can be performed with less lines
of code. Some of these common tasks include [65]:

• Search;

• Document assembly;

• Validation;

• Data update;

• Privacy.

It is possible to use this technology in any language supported by the Microsoft .NET
Framework which makes it especially suitable for this project.

3.7 .NET Framework

The Microsoft .NET Framework [66] was first publicly released in the year of 2002 as a
way of competing with the unchallenged popularity of Java [67]. This language, created
by James Gosling and other coworkers at Sun Microsystems in June 1991 [68], has several
reasons for its success. Its popularity has been attributed to a series of characteristics that
were introduced in it mainly from the fact that the code was run in a virtual machine.
By doing so, java outperformed other languages in a large variety of tasks, especially
in the enterprise market, due to a series of features like platform-independence, object-
oriented language, has garbage collection and huge variety of libraries.
Following this launch, Microsoft tried to present its own alternative, a modified version
of Java, called J++. This product was, however, unsuccessful due to copyright issues.
After this attempt, bearing in mind the critical success factors in Java and in some other
programming languages, Microsoft developed its own solution: The .NET framework.

43

State of the Art

Its main design goals were: interoperability, having a common runtime engine, language
independence, security, portability, simplified deployment and having a vast Base Class
Library (BCL).

Figure 3.18: .NET Framework 3.5 Architecture

3.7.1 Programming Languages

Microsoft’s .NET Framework [69] offers its users a variety of general-purpose program-
ming languages which have in common the fact that they run over the Common Language
Infrastructure (CLI). The purpose of the CLI is to provide a language-agnostic platform
for application development and execution. Microsoft’s implementation of the CLI is
called the CLR. The CLR is composed of four primary parts:

• Common Type System (CTS);

• CTS;

• Metadata;

• Virtual Execution System (VES).

Visual C#

Microsoft Visual C# [70] is Microsoft’s implementation of the C# programming language
specification which Microsoft also created. It is an object-oriented programming language
developed as part of the .NET framework. It has a procedural, object-oriented syntax
based on C++ and includes influences from several other programming languages (most
notably Delphi and Java). The term Visual denotes a brand-name relationship with other

44

State of the Art

Microsoft Programming Languages such as Visual Basic, Visual FoxPro, Visual J# and
Visual C++.

Visual F#

Functional Programming (FP) is the oldest of the three major programming paradigms.
Invented in 1995, about a year before FORTRAN, IPL was the first FP language. Visual
F#[71][72], like visual C#, is Microsoft’s implementation of the new F# programming
language, which is a new programming language that is being developed in the Microsoft
Research Labs at Cambridge. One of its great strengths is that it can use multiple pro-
gramming paradigms and mix them to solve problems.
Supporting functional programming, F# is specially suited to language oriented program-
ming because this paradigm generally has features that are well suited to creating parsers
and compilers.
F# therefore allows the implementation of DSLs easily through two different approaches:

Metaprogramming with quotations: by using quote operators, the user can instruct the
compiler to generate data structures representing the code rather than IL. This means
that instead executing the code directly, the programmer will have a data structure
that represents the code that was coded. This can be used to interpret or compile it
into another language.

FSLex and FSYacc: This is the regular approach to the creation of stand-alone DSLs.
F# currently supplies its own Lex and Yacc implementations supporting the pro-
grammer with tools that can ease the development of a language processor.

Implementing the ORML language/interpreter in F# would be a suitable decision. Using
quotations, it is possible to develop an easy to use and straightforward grammar while
keeping it inside a common programming language with all the advantages this can bring.
For instance, if a user wants to add heuristic processing after an initial solution, that can
be done. However, since most of the .NET code in Dynamics AX product is C# and since
there was no upfront knowledge on F# (meaning that it would require some learning time)
the option was not use it. C#’s usage was also a request from the project coordinator.

3.8 Language Processors

Programming languages are notations for describing computations to people and machin-
ery. They differ from most other forms of human expression in that they require a greater
degree of precision and completeness. Since computer do exactly what they are told to
do, and cannot understand the code the programmer ”intended” to write, they require a
greater degree of precision and completeness than natural languages.

45

State of the Art

Higher-level programming languages are generally divided for convenience into compiled
languages and interpreted languages although there are also modern trends toward just-
in-time compilation and byte code interpretation which introduce some gray areas into
traditional categorizations.
Briefly stated, a compiler is a computer program (or set of programs) that translates text
written in a computer language (the source language) into another computer language (the
target language)[73]. Commonly, the output has a form suitable for processing by other
programs (e.g. a linker), but it may be a human-readable text file. The first self-hosting7

compiler that was capable of compiling its own source code in a high-level language was
created by Hart and Levin at MIT in 1962 for the LISP programming language.
If a compiler had to process only correct source files, its design and implementation would
be greatly simplified. However, programmers often write incorrect programs and a good
compiler should assist them in identifying and locating errors. It is, therefore, an impor-
tant compiler role, to report any errors in the source program detected during the transla-
tion process.
Errors may be of different levels and types. For example, errors can be:

• Lexical (e.g. misspelling an identifier, keyword or operator);

• Syntactic (e.g. arithmetic expression with unbalanced parentheses);

• Semantic (e.g. operator applied to an incompatible operand);

• Logical (e.g. infinitely recursive call).

An interpreter is another common kind of language processor. Instead of producing a
target program as a translation, it appears to directly execute the operations specified in
the source file, eventually, with user input.
The machine-language target program produced by a compiler is usually much faster
than an interpreter at mapping inputs to outputs. An interpreter, however, can usually give
better error diagnostics than a compiler, because it executes the source program statement
by statement.

7Self-hosting refers to the use of a computer program as part of the tool chain or operating system that produces
new versions of the same program.

46

State of the Art

Figure 3.19: Compiler Front End Model

3.8.1 Compiler Compiler Tools

Compiler Compiler Tools have become increasingly popular in the 60’s [74]. The first
compiler-compiler tool was written by Tony Brooker in 1960 and was used to create com-
pilers for the Atlas Computer at the University of Manchester.
Many others of such tools were to follow, most noticeable Yet Another Compiler Com-
piler (YACC), ANTLR [75], JavaCC or the GNU’s Not Unix (GNU) bison.
These tools aren’t able to read directly from a text input stream and require a series of
tokens and, as such, are normally used with lexical analyzer generators like Lex or Flex
which support the creating of lexical analyzers whose specification is usually based on
regular expressions.

Lex/Yacc

Lex and Yacc are generators that can help the developer in creating lexical analyzers and
parsers for his compiler.
Lex was originally written by Eric Schmidt and Mike Lesk and is the standard lexical ana-
lyzer generator on many Unix systems [76]. Its behavior is specified as part of the Portable
Operating System Interface (POSIX) standard. Lex can read an input stream that specifies
the lexical analyzer using regular expressions to describe patterns for tokens and outputs
source code that implements the Lexical Analyzer in the C programming language. Inter-
nally, Lex transforms the input patterns into a transition diagram and generates code in a
file called ”lex.yy.c” that simulates this transition diagram. The outputted C program is a
working lexical analyzer that can take a stream of input character and produce a stream of
tokens. Its normal use is based on parser invocations of its functions that return an integer

47

State of the Art

that represents the code for one of the possible token names. The attribute value, whether
it will be another numeric code, a pointer to the symbol table, or nothing, is placed in a
global variable yylval, which is shared between the lexical analyzer and parser, thereby
making it simple to return both the name and an attribute value of a token.

1 D e f i n i t i o n s e c t i o n
2 %%
3 Rules s e c t i o n
4 %%
5 C code s e c t i o n

Figure 3.20: Lex File Structure

Yet Another Compiler Compiler (YACC) is a Lookahead left-right (LALR) parser
generator developed by Stephen C. Johnson for the Unix Operating System [76]. Like
its lexical brother (Lex), YACC also generates the code for the parser in the C program-
ming language. It shares a similar file structure to Lex although it has a different, parser
oriented, syntax.

1 D e f i n i t i o n s e c t i o n
2 %%
3 T r a n s l a t i o n r u l e s s e c t i o n
4 %%
5 C code s e c t i o n

Figure 3.21: Yacc File Structure

Microsoft Phoenix

Microsoft Phoenix is the code name for the software optimization and analysis frame-
work that is the basis for all future Microsoft compiler technologies [77]. Because of this,
before developing a language processor, its usage should be leveraged.
Phoenix is being developed at Microsoft Research and it’s also available as an SDK. Us-
ing ASTs, flow graphs and an exception handling model. It also defines an Intermediate
Representation (IR) and for any program to be handled, it needs to be converted to it.
Phoenix comes bundled with readers for Portable Executable binary files, CIL and the
output of the Visual C++ front-end. Readers for other languages, have, however, to be
written through third party tools such as Lex and Yacc. As such, it is not particularly
suited for this project since an interpreter for a DSL doesn’t rely on most of the usual
mechanisms that are present in the back-end of a compiler for a general purpose pro-
gramming language.

48

State of the Art

MPLEX/MPPG

Managed Package LEX (MPLEX) is a scanner generator which accepts a ”LEX-like”
specification and produces a C# output file. MPLEX development is closely related to the
Gardens Point Scanner Generator (GPLEX) application developed by John Gough and
the Queensland University of Technology.
It is currently shipped with Microsoft Visual Studio 2008 SDK [78] and, offers some ad-
ditional VS-specific interfaces when compared to GPLEX.
It is meant to be used with Managed Package Parser Generator (MPPG), which is also
closely related to the Gardens Point Parser Generator (GPPG) generator for LALR(1)
parsers. It accepts a ”YACC/BISON-like” input specification and produces a C# output
file.
The parsers they both produce are thread-safe, with all parser state held within the parser
instance.
Both of these tools use the generic types defined in C# 2.0 and, therefore, the .NET frame-
work 2.0 or later is a requirement.
Among the advantages of using MPLEX and MPPG we can refer that since it is Microsoft
proprietary software everything built with it can easily be put in production without any
license issues. Another advantage is that it is very oriented to the visual studio IDE there-
fore allowing an easier future integration if it is seen as an advantage for the product.
This also implies that, most probably, other Microsoft IDE’s that might exist now or in
the future will have better compatibility with the language since its usual to maintain the
ways of interaction.

3.9 Summary

This chapter started by presenting the Microsoft Dynamics AX product, introducing its
high-level architecture, how the model layering system works and the X++ programming
language with which most of the system is actually programmed. It also introduced the
different ways of accessing its data giving a special focus to the .NET Business Connec-
tor.
Some of the most common optimization problem types were presented: linear, integer,
and constraint programming. The solvers that support these kinds of problems were also
presented: specifically CPLEX and the Microsoft Solver Foundation.
An analysis of existing modeling languages in the market followed. OPL, MPL, AMPL
and AIMMS represent some of the most used mathematical/optimization modeling lan-
guages in the market today and serve as a reference point to the introduction of the ORML
language.

49

State of the Art

A section about potential mathematical document formats followed, introducing some
of the formats that may support the intended export functionality: the MathML and the
OMML formats.
The chapter ended by presenting some additional technological stack that will be used
during the project implementation like the .NET framework and a brief section about lan-
guage processors, introducing some tools that may be used for the actual implementation.

50

Chapter 4

Solution Specification

I have been impressed with the urgency of doing. Knowing is not enough; we must
apply. Being willing is not enough; we must do.

Leonardo da Vinci[79]

This chapter presents the solution defined to address the previously presented problem,
making use of the knowledge that was gathered along the state of the art. It starts by
presenting the language that was designed, defining its structure, elements and rules while
giving demonstrative examples of its usage. It then presents how this language can address
the example problems (Section 2.3) that this project was set to study.

4.1 Operations Research Modeling Language Specification

After studying and carefully analyzing the previously presented general requirements
(section 2.4) and the different languages already in the market (section 3.4), a language
definition was prepared. It wasn’t a goal of this solution to address all of the identified
requirements but only the ones which would allow this project to serve its purpose - a
proof of concept of such system in Dynamics AX.

4.1.1 Language Overview

ORML is an optimization modeling language that aims to be solver and problem agnos-
tic. Although it is mainly targeted at linear programming (IP included) and constraint
satisfaction problems for the scope of this project, it has been designed in such a way that
future extensions to other types of problems are possible. Being solver agnostic means:

• A model doesn’t have to include an explicit mention to the type of model being
solved - the interpreter will figure it out;

51

Solution Specification

• The syntax is similar for the different types of models (e.g. a variables section,
except for problem specific options, has most of the same syntax in both a constraint
and a linear programming models);

The language is an interpreted and it has mechanisms to bind data to and from the Dy-
namics AX system.

Types

ORML supports two kinds of types: value types and reference types. Variables of value
types directly contain their data whereas variables of reference type store references to
their data. ORML’s value types can further be classified as simple types and the reference
types can be further classified as Vector types. Table 4.1 provides an overview of ORML’s
type system.

Category Description

Value types Simple Types
Signed integral: Integer
IEEE floating point: Real

Reference types Set types Single and multi-dimensional, for ex-
ample, [Integer] and [Integer,Integer]

Table 4.1: ORML Data Types

Expressions

Expressions are constructed from operands and operators. The operators of an expression
indicate which operations to apply to the operands. Example of operators include +, -, *
and /. Examples of operands include literals, locations and expressions.
When expressions contain multiple operators, the precedence of the operators controls the
order in which the individual operators are evaluated. For example, the expression x + y
* z is evaluated as x + (y * z) because the * operator has higher precedence than the +
operator.
The following table summarizes ORML’s operators, listing the operator categories in
order of precedence from highest to lowest. Operators in the same category have equal
precedence.

52

Solution Specification

Category Expression Description
Unary -x Negation
Multiplicative x * y Multiplication

x / y Division
x % y Remainder

Additive x + y Addition
x - y Subtraction

Relational x < y Less than
x > y Greater than
x <= y Less than or equal
x >= y Greater than or equal

Equality x == y Equal
x != y Not equal

Conditional AND x && y Evaluates y only if x is true
Conditional OR x || y Evaluates y only if x is false
Assignment X = y Assignment

Table 4.2: ORML Operators

Statements

The actions of a model are expressed using statements.
ORML supports several different kinds of statements:

• Labeled statements - used to distinguish between the different parts of the models;

• Declaration statements - used to declare variables and constants;

• Expression statements - used to evaluate expressions. Assignment expressions can
be used as statements;

• Iteration statements - used to repeatedly execute an embedded statement. In this
group we mainly highlight the where statement.

4.1.2 Grammars

Language grammars can be described by context-free grammars or Backus-Naur Form
(BNF) notation [80]. Grammars offer significant advantages to both the language design-
ers and compiler writers [81]:

• They give a precise definition of a language;

• From certain classes of grammars we can automatically construct an efficient parser
that determines if a source program is syntactically well formed. As an additional
benefit, the parser construction process can reveal syntactic ambiguities and other
difficult-to-parse constructs that might otherwise go undetected in the initial design
phase of a language and its compiler;

53

Solution Specification

• Languages evolve over a period of time, acquiring new constructs and performing
additional tasks. These new construct can be added to a language more easily when
there is an existing implementation based on a grammatical description of the lan-
guage.

The lexical grammar defines how characters are combined to form line terminators, white
spaces, comments and tokens. The syntactic grammar defines how the tokens resulting
from the lexical grammar are combined to form ORML models. Further definition, in-
cluding the regular expressions and the grammar rules can be seen in Appendix E.

4.1.2.1 Lexical Grammar

An ORML model uses a lexical grammar based on four types of elements. This section
will give a short description on them.

Line Terminators Line terminators divide the characters of an ORML source file into
lines. ORML’s line terminators comply with the Unicode standard.

White Spaces White spaces can appear anywhere in the language and are ignored. A
white space is defined as a space character, a horizontal tab character, a vertical tab char-
acter or a form feed character.

Comments Two types of comments are supported: single-line comments and delimited
comments. Single-line comments start with the characters // and extend to the end of the
source line. Delimited comments start with the characters /* and end with the characters
*/. Delimited comments may span multiple lines.

Tokens There are several kinds of tokens: identifiers, keywords, literals, operators and
punctuators. Comments, white space and line terminator characters are not tokens, though
they act as separators for tokens.

Identifiers Identifiers (also called symbols) represent entity names. The identifiers
can be constituted by letters (a to z), digits and underscores (). An identifier cannot
contain only underscores and should contain at least one letter. Letters can be upper or
lower case and the identifiers, like the keywords, are also case sensitive.

Keywords A keyword is an identifier-like sequence of characters that is reserved,
and cannot be used as an identifier. Keywords are case-sensitive.

54

Solution Specification

Literals A literal is a source code representation of a value.
Integer numbers are sequences of (only) digits that are expressed in decimal system. They
cannot start with 0. Negative numbers are expressed with a starting dash (-).
Float numbers are also always expressed in the decimal system and should contain a dot
(.). They can start with an integer number (0 included) and can have an optional fractional
part after the dot. There should also exist at least an integer or a fractional part.

Operators and Punctuators There are several kinds of operators and punctuators.
Operators are used in expressions to describe operations involving one or more operands.
For example, the expression a + b uses the + operator to add the two operands a and
b. Punctuators are for grouping and separating. Based on these types of elements, it is
then possible to defined proper grammar rules that can build complete statements and
expressions based on them.

4.1.2.2 Grammar Rules

An ORML model is conceptually divided into 6 different sections:

1. Indexes - Represent sets and are used to iterate through data sets. Can come from
databases or from direct user input;

2. Inputs - Represent the model parameters. Can also come from a database or be
directly specified by the user. In this section, the input data binding is done;

3. Variables - Represent the model variables. Among other things, can specify the
domain, the type and their names and dimensions (arrays/maps);

4. Functions - The model objective. In linear models can be either maximize or mini-
mize;

5. Constraints - Specify the rules that bound the model;

6. Outputs - Specify where the model’s results should be stored.

Figure 4.1 outlines an example of a model written in ORML.

55

Solution Specification

1 Model s a l e s m a n {
2 I n d e x e s :
3 / / t h e i n d e x e s s e c t i o n
4 I n p u t s :
5 / / t h e i n p u t s s e c t i o n
6 V a r i a b l e s :
7 / / t h e v a r i a b l e s s e c t i o n
8 Minimize :
9 / / t h e f u n c t i o n s e c t i o n

10 C o n s t r a i n t s :
11 / / t h e c o n s t r a i n t s s e c t i o n
12 O u t p u t s :
13 / / t h e o u t p u t s s e c t i o n

Figure 4.1: ORML Model - Structure

Although order does matter in the interpretation (e.g. an identifier may not be used
before declared), the sections in an ORML model may appear in any order within the
model.
As a corollary to what this means, the output section will, however, be interpreted after
all the other rules in the model are processed.

Indexes

Indexes are used as sets that specify iteration domains and is a relatively common section
in optimization modeling languages of this nature (section 3.4.2). They can be used to
specify domains which can be used to iterate over data. [82].
The user can specify four types of indexes:

1. Numeric;

(a) Fully defined sequence;

(b) Interval for integer indexes.

2. Named (Strings);

(a) Fully defined sequence.

3. Database;

(a) Which has to be a database primary key or unique column from a table or a
view.

4. Query-like classes.

56

Solution Specification

(a) Specially designed classes that are implemented to be query like and which can
be integrated with ORML models. These classes will be further addressed in
chapter 5.

Used in a model, an index section could be something like the example presented in figure
4.2.

1 Model {
2 I n d e x e s :
3 C i t i e s = T a b l e s . C i t i e s . name ; / / v a l u e s from t h e name f i e l d i n t h e c i t i e s

t a b l e
4 L o c a t i o n s = C l a s s e s . WMSGetRouteItemLocations (RouteId , S t a r t L o c a t i o n ,

EndLoca t ion) . l o c a t i o n ; / / v a l u e s from t h e l o c a t i o n f i e l d o f t h e que ry
l i k e WMSGetRouteItemLocations c l a s s when i n v o c a t e d wi th t h e RouteId ,
S t a r t L o c a t i o n , EndLoca t ion p a r a m e t e r s .

5 C o s t s = [0 . . 4] ; / / a s e t w i th t h e numbers i n t h e i n t e r v a l from 0 t o 4
i n c l u s i v e

6 C os t s2 = [0 , 4] ; / / a s e t w i th t h e numbers i n t h e i n t e r v a l from 0 t o 4
i n c l u s i v e

7 Sequences = {1 , 2 , 3 , 4 , 5} ; / / a s e t w i th t h e s p e c i f i e d numbers
8 S t r i n g S e q u e n c e = { ” L e i r i a ” , ” P o r t o ” , ” Coimbra ” } ;
9 }

Figure 4.2: ORML Model - Index Section Example

Inputs

The input section represents the data to be used by the model. It represents the data to be
used, both explicitly or implicitly through the usage of the binding mechanisms.
The following types of inputs can be used:

1. Constant inputs or scalars - Mainly used to aid readability and make the model easier
to maintain;

2. Sets - Are used when the coefficients come in lists or tables of numerical data. They
can be specified as lists of numbers in the model. Their domain can be specified
by using an index. To specify the indexes used, list the index names in brackets
immediately after the set name and separate them with commas;

3. Database Sets - After the definition of the name of the set, the user can specify a
database source, like in the indexes section, followed by the name of the columns
the user wants to import;

4. Query-like classes - Query-like classes can be implemented in the AX Client which
can be integrated with ORML models. These classes will be further addressed in
the chapter 5.

57

Solution Specification

An example of a input section is given in figure 4.3.

1 Model {
2 I n p u t s :
3 Num = 2 ; / / c o n s t a n t d e c l a r a t i o n
4 T e s t = {12 , 13 , 14 , 15 , 16 } ; / / s e t d e c l a r a t i o n
5 T e s t [C i t i e s] = {12 , 13 , 14 , 15 , 16} ; / / i n d e x e d s e t d e c l a r a t i o n
6 C i t i e s = T a b l e s . C i t i e s . name ; / / d a t a b a s e s e t d e c l a r a t i o n
7 C o s t s = T a b l e s . C o s t s . c o s t [from , t o] ; / / i n d e x e d d a t a b a s e s e t d e c l a r a t i o n
8 C os t s2 = T a b l e s . C o s t s . c o s t [from=FromIndex , t o] ; / / f i l t e r e d i n d e x e d

d a t a b a s e s e t d e c l a r a t i o n
9 }

Figure 4.3: ORML Model - Input Section Example

Having a better look into the example, we can describe each of the declarations as
follows:

Constant Declaration A constant declaration is defined as a direct attribution of a value
(Line 3 in figure 4.3).

Set Declaration A set declaration is defined by a list of values. Line 4 in figure 4.3
outlines an example of such declaration.
The ORML language also supports indexed sets (i.e. Test[0] = 12, Test[4] = 16). An
example can be seen in line 5 of the same figure.
If the specified index dimensions are different from the number of given elements in the
Set, a semantic error should be given (e.g. Test[”Leiria”] = 12).

Database Set Declaration Database set declaration are similar to regular set declarations
with the difference that, this time, the values come from a database. The syntax is similar
to most of other languages in the market (section 3.4) with the specificities required to
make it easier to model in the Dynamics AX product. An example of such situation can
be seen in figure 4.3, line 6.
The indexing process is, however, a little different when compared to regular set decla-
rations. Database set indexing is done by specifying the columns whose values should
be used to index the set. An example can be seen in line 7 of the same figure (eg.
Costs[”Leiria”,”Porto”] = 2).
It is also possible to apply filters to the elements in the set by writing matching conditions
against the specified indexes. An example may be seen in line 8 of, again, the same figure.

58

Solution Specification

Variables

The variables section is where the user may declare the decision variables he wants to use
in the model definition.
They are the elements under control of the model developer and their values determine
the solution of the model.
Like in the inputs, there are two types of decision variables: plain variables and vector
variables (sometimes called subscripted variables). Each variable can also have one of
two types: Integer or Real and a specific domain.
Figure 4.4 presents an example of a variables section within an ORML model.

1 Model {
2 V a r i a b l e s :
3 I n t e g e r i n [0 . . 1] : Pa thFromCi tyToCi ty [C i t i e s , C i t i e s] ;
4 I n t e g e r i n [1 . . NumCit ies] : S e q u e n c e C i t y V i s i t e d [C i t i e s] ;
5 I n t e g e r i n [0 . . 1] : A n o t h e r V a r i a b l e , OneMoreVar iable ;
6 Rea l i n [0 . . 2] : Y e t A n o t h e r V a r i a b l e ;
7 }

Figure 4.4: ORML Model - Variables Section Example

Still in this section, it is worth noticing how the grammar supports multiple variable
declarations in one line (Lines 3 and 4).

Functions

The functions sections specify the objective in a model. It can either be a maximize or
minimize objective and it may be used in LP or MIP models.
Figure 4.5 presents an example of a functions section in an ORML model.

1 Model {
2 Minimize :
3 Sum(i i n C i t i e s ; Sum(j i n C i t i e s , i != j ; C o s t s [i , j] ∗

Pa thFromCi tyToCi ty [i , j]))
4 }

Figure 4.5: ORML Model - Functions Section Example

Constraints

The constraints section specifies to which limits will be the variables bound and how they
relate to which other in other to solve to model.
An example of a constraints section can be seen in figure 4.6.

59

Solution Specification

1 C o n s t r a i n t s :
2 Sum(j i n C i t i e s | i != j ; Pa thFromCi tyToCi ty [i , j]) == 1 where (i i n C i t i e s

) ;
3 Sum(i i n C i t i e s | i != j ; Pa thFromCi tyToCi ty [i , j]) == 1 where (j i n C i t i e s

) ;
4 (S e q u e n c e C i t y V i s i t e d [i] − S e q u e n c e C i t y V i s i t e d [j] + NumCit ies ∗

EdgeFromCityToCity [i , j]) <= (NumCit ies − 1) where (j i n C i t i e s | j != i
) ;

Figure 4.6: ORML Model - Constraints Section Example

Outputs

The output section allows the user to specify where he wants to put the results of an
execution in a database. Figure 4.7 presents an example of such section.

1 O u t p u t s :
2 T a b l e s . s e q u e n c e s . o r d e r [c i t y] = S e q u e n c e c i t y V i s i t e d ;

Figure 4.7: ORML Model - Outputs Section Example

Expressions

Concerning the valid expressions in ORML, the following rules apply:

Calls A call expression represents the invocation of a pre-defined function. Although the
ORML language, in its current version, doesn’t support custom function definition, some
system functions exist. Furthermore, this type of expressions could be easily extended in
future language versions to support custom functions. An example of a call is given in
figure 4.8.

1 Model {
2 I n p u t s :
3 T e s t = {12 , 13 , 13 , 14 , 15 , 16 , 17} ;
4 V a r i a b l e s :
5 I n t e g e r i n [0 . . 20] : b ;
6 C o n s t r a i n t s :
7 b < max (T e s t) ; / / c a l l t o t h e max f u n c t i o n
8 }

Figure 4.8: ORML Model - Call Expression Example

60

Solution Specification

Boolean Expressions A boolean expressions consists in a boolean operation between two
child expressions. An example is shown in figure 4.9.

1 C o n s t r a i n t s :
2 b > 2 | | b < 3 ;

Figure 4.9: ORML Model - Boolean Expression Example

Comparison Expressions A comparison expressions consists in a comparison operation
between two child expressions. An example is given in figure 4.10.

1 C o n s t r a i n t s :
2 b >= 2 ;

Figure 4.10: ORML Model - Comparison Expression Example

Arithmetic and other expressions An arithmetic expressions consists in an arithmetic
operation between two child expressions. An example of such expression is given in
figure 4.11.

1 Sum(j i n C i t i e s | i != j ; Pa thFromCi tyToCi ty [i , j]) == 1 where (i i n C i t i e s) ;
2 Sum(i i n C i t i e s | i != j ; Pa thFromCi tyToCi ty [i , j]) == 1 where (j i n C i t i e s) ;
3 (S e q u e n c e C i t y V i s i t e d [i] − S e q u e n c e C i t y V i s i t e d [j] + NumCit ies ∗

EdgeFromCityToCity [i , j]) <= (NumCit ies − 1)

Figure 4.11: ORML Model - Arithmetic Expression Example

4.2 Modeling Optimization Problems in Microsoft Dynamics AX

After the mathematical formulation of the problem and defining the ORML language
syntax, it is now possible to formulate, in ORML, the models that were presented as the
ones this report would address. It is however to mention that, given the reasons previously
presented, it was not interesting enough to continue the study regarding the production
scheduling since the pre-processor wasn’t available within time for the purpose of this
project and, therefore, such model will not be addressed here

61

Solution Specification

4.2.1 Traveling Salesman

The ORML code that corresponds to the previously presented TSP mathematical model
(see Appendix F for the complete model) starts by defining a model that has an Integer
parameter:

1 Model (I n t e g e r NewPath) {

This parameter will be used to assign a code to the newly created path that will be
outputed at the end of the run.
Next, a set cities is declared. This set is bound to the id field in the cities table and will be
retrieved with no selection. This assumes that a path that travels through all the cities in
the table is wanted.

2 I n d e x e s :
3 C i t i e s = T a b l e s . C i t i e s . i d ;

The next step will be to get the costs between the previously selected cities. To do
this, an input will be declared and bounded to the cost field in the Paths table. This input
will be then indexed by the from and the to column.
An input storing the number of cities is also declared.

4 I n p u t s :
5 C o s t s = T a b l e s . P a t h s . c o s t [from , t o] ;
6 NumCit ies = Count (C i t i e s) ;

At this point, every needed value to solve the problem is already in the model. Next,
the decision variables need to be declared. Considering the model presented in 3.5.1, two
variable sets are required: one that defines if a path is, or isn’t, taken and, the other one,
that is the actual result stating the order by which each city is visited.

7 V a r i a b l e s :
8 I n t e g e r i n [0 . . 1] Pa thFromCi tyToCi ty [C i t i e s , C i t i e s] ;
9 I n t e g e r i n [0 . . NumCities −1] S e q u e n c e C i t y V i s i t e d [C i t i e s] ;

The objective function is then defined. It defines a minimize goal just like the mathe-
matical model.

10 Minimize :
11 Sum(i i n C i t i e s ; Sum(j i n C i t i e s | i != j ; C o s t s [i , j] ∗

Pa thFromCi tyToCi ty [i , j])) ;

Then, the three constraints that specify the visiting rules are specified.

12 C o n s t r a i n t s :
13 Sum(j i n C i t i e s | i != j ; Pa thFromCi tyToCi ty [i , j]) == 1 where (i i n C i t i e s

) ;
14
15 Sum(i i n C i t i e s | i != j ; Pa thFromCi tyToCi ty [i , j]) == 1 where (j i n C i t i e s

) ;

62

Solution Specification

16
17 (S e q u e n c e C i t y V i s i t e d [i] − S e q u e n c e C i t y V i s i t e d [j] + NumCit ies ∗

Pa thFromCi tyToCi ty [i , j]) <= (NumCit ies − 1) where (j i n C i t i e s , i i n
C i t i e s | j != i && i != 1 && j != 1) ;

Finally, it is specified that the output of this model is the set SequenceCityVisited and that
this set will be stored in the ordernum field of the CityPathSequence and that the results
will be indexed by the city (remember that the SequenceCityVisited is uni-dimensionally
indexed) and by the path columns. The path column will have the fixed value of the
NewPath parameter.

18 O u t p u t s :
19 T a b l e s . C i t y P a t h S e q u e n c e . ordernum [c i t y , p a t h =NewPath] = S e q u e n c e C i t y V i s i t e d ;
20 }

4.2.2 Warehouse Picking Routes

The ORML model that corresponds to the previously presented mathematical model starts
by the definition of the model parameters. For this model, three parameters are required:
the routeId that specified the route which the model should optimize, the StartLocation
that specifies the picking start location and the EndLocation that specifies the droping
location.

1 Model (S t r i n g RouteId , S t r i n g S t a r t L o c a t i o n , S t r i n g EndLoca t ion) {

Then, the costs input is read from the field distance of the query-like class WM-
SLocationDistance indexing the results by the values of the WMSLocationOrigin and
WMSLocationDestination fields of the same class.

2 I n p u t s :
3 C o s t s = T a b l e s . WMSLocationDistance . D i s t a n c e [WMSLocationOrigin ,

WMSLoca t ionDes t ina t ion] ;

An index is then read from the WMSGetRouteItemLocation query-like class that re-
ceives the model parameters and returns the complete list of locations that should be
visited.

4 I n d e x e s :
5 L o c a t i o n s = C l a s s e s . WMSGetRouteItemLocations (RouteId , S t a r t L o c a t i o n ,

EndLoca t ion) . l o c a t i o n ;

Like in the previous model, the next step is the declaration of an input that will hold
the number of locations.

6 I n p u t s :
7 LocationNum = Count (L o c a t i o n s) ;

63

Solution Specification

Next, the variables are declared. Again the same type of variables as in the TSP model
are used.

8 V a r i a b l e s :
9 I n t e g e r i n [0 . . 1] P a t h F r o m L o c a t i o n T o L o c a t i o n [L o c a t i o n s , L o c a t i o n s] ;

10 I n t e g e r i n [1 . . LocationNum] S e q u e n c e L o c a t i o n V i s i t e d [L o c a t i o n s] ;

The objective function is set.

11 Minimize :
12 Sum(i i n L o c a t i o n s ;
13 Sum(j i n L o c a t i o n s | i != j ; C o s t s [i , j] ∗

P a t h F r o m L o c a t i o n T o L o c a t i o n [i , j])) ;

And the constraints that state how the picking points should be visited, are then de-
fined.

14 C o n s t r a i n t s :
15 Sum(j i n L o c a t i o n s | i != j && E x i s t s (C o s t s [i , j]) ;

P a t h F r o m L o c a t i o n T o L o c a t i o n [i , j]) == 1
16 where (i i n L o c a t i o n s | i != EndLoca t ion) ;
17 Sum(i i n L o c a t i o n s | i != j && i != EndLoca t ion && E x i s t s (C o s t s [i , j]) ;

P a t h F r o m L o c a t i o n T o L o c a t i o n [i , j]) == 1
18 where (j i n L o c a t i o n s | j != S t a r t L o c a t i o n) ;
19 S e q u e n c e L o c a t i o n V i s i t e d [i] − S e q u e n c e L o c a t i o n V i s i t e d [j] + LocationNum

∗ P a t h F r o m L o c a t i o n T o L o c a t i o n [i , j] <= (LocationNum − 1)
20 where (i i n L o c a t i o n s , j i n L o c a t i o n s | j != i && i != S t a r t L o c a t i o n

&& j != S t a r t L o c a t i o n) ;

The final step, specifies that the outputs - SequenceLocationVisited - should be
”placed” in the sortcode field of the WMSUpdateOrderTrans Query-like class, indexed
by the location and routeId fields.

21 O u t p u t s :
22 C l a s s e s . WMSUpdateOrderTrans . s o r t c o d e [l o c a t i o n , r o u t e I d = Rou te Id] =

S e q u e n c e L o c a t i o n V i s i t e d ;
23 }

4.3 Summary

This chapter began by introducing the goal for this project: a declarative modeling lan-
guage that can address optimization problems within the AX system. The language spec-
ification was presented together with some usage examples. Simply stated, an ORML
model can be divided in six different sections: Indexes - which are used as sets that spec-
ify iterations domains; Inputs, which represent the data to be used by the model; Vari-
ables, that represent the decisions in the model; Functions, that specify the objectives;
Constraints, that specify the limits to which the variables will be bound and how they

64

Solution Specification

relate to each other and Outputs that specify where to store the results of an execution.
After the introduction of the language, the problems previously introduced were addressed
using it. Examples of complete models for both the Traveling Salesman and the Ware-
house Picking Routes problems were given and explained.
These models will make part of the evaluations made in chapter 6 to the developed solu-
tion and serve as a basis to draw some conclusions in chapter 7.

65

Solution Specification

66

Chapter 5

Design and Implementation

Do, or do not. There is no try.

Jedi Master Yoda[83]

This chapter presents an inside look into the system implementation process. Special
emphasis will be given on the complex tasks, such as the compilation and interpretation
mechanisms, as well as, data access, services and export functionalities.
It starts by presenting the ORML Interpreter design details. This defines how the system
was built, based on which components and how they interact. This will set the stage for
the following section regarding the implementation details where the specifics regarding,
especially, the interpretation process are presented.
This description is complemented by the details on the services implementation. Finally,
some details concerning the export features are also be given.
The chapter then highlights some points on the implementation of the Common Libraries
that are used by both this and the IDE project. It ends by presenting some development
methodologies and tools as a way of presenting the mechanisms and practices that have
been used throughout the project and that can provide a valuable help to further evolve or
document it.

5.1 Design

Software design/architecture deals with the design and implementation of the high-level
structure of the software. It deals with abstraction, with decomposition and composition,
with style and aesthetics and is commonly organized in views, which are analogous to the
different types of blueprints made in building architecture.
The goal, according to the Rational Unified Process [84], is to show how the system will
be realized in the implementation phase.
The Software architecture can be expressed in a model composed of multiple views or
perspectives - the 4+1 model [85].

67

Design and Implementation

This software model enables to describe the architecture of software-intensive systems,
based on the use of multiple, concurrent views [86]. This enables to handle separately the
functional and non functional requirements and allows to address separately the concerns
of the various people involved in the architecture: systems engineers, developers, project
managers and end-users [85]. While the first view was already presented in section 2.4
through the use cases, this section presents the other four.

Figure 5.1: 4+1 model (adapted from [85])

5.1.1 ORML Interpreter

After the essential task of establishing a correct language definition, a language processor
can be designed to accommodate it. It’s important to mention that the language defini-
tion should be treated completed separately from the interpreter since others could also be
implemented based on the ORML language definition. The ORML Interpreter represents
the set of components that are related to the model’s interpretation and that serve as the
basis to the services implementation.
An Interpreter’s front-end architecture is quite similar to the one of a compiler having its
major differences in the back-end - whereas a compiler aims at translating representations
like a general purpose programming language (e.g. C#) to machine code, an interpreter
expects to process the instructions, eventually, outputting some result. Generally, an in-
terpreter may be a program that either [87]:

• Executes the source code directly;

• Translates source code into some efficient intermediate representation (code) and
immediately executes this. This is also called Just-in-Time (JIT) compilation;

• Explicitly executes stored precompiled code made by a compiler which is part of
the interpreter system.

68

Design and Implementation

While the second and third options may give some performance advantages, they also
required some added effort in development and may bring some security issues for having
an intermediate data representation. Thus, it was decided that the source code for the
models would be executed directly. As such, the interpreter should perform the following
operations:

• Lexical analysis - This is the process of converting a sequence of characters into a
sequence of tokens being a token a categorized block of text, also known as lexeme.

• Syntax Analysis - This is the process of analyzing the sequence of tokens retrieved
from the lexical analysis and determining the grammatical structure with respect to
a given format grammar.

• AST Construction - The AST is a tree representation of the syntax of some source
code where each node denotes a construct occurring in the source code while being
abstract because it may not represent some constructs that appear in the original
source (parentheses is a common example of this).

• Semantic Analysis - In this phase, the semantic information is added and the sym-
bols table is built. Semantic checks such as type checking are performed during this
phase.

• Interpretation - In this last phase, the AST is finally interpreted and the operations
executed.

Details on how these phases were implemented will be given in section 5.2.

5.1.1.1 Logical View

The logical view focuses on presenting the application’s functionality in terms of struc-
tural elements, key abstractions and mechanisms, separation of concerns and distribution
of responsibilities.
This section will presents each of the different components functionality by exposing their
main classes and structures.
In order to give the interpreter the desired level of flexibility and, an overall, good de-
sign, a proper component distribution is required. Figure 5.2 represents the namespaces
that were identified for the complete interpreter, including its interfaces and the console
application.

69

Design and Implementation

Figure 5.2: ORML Interpreter - Namespaces Diagram

ORML Interpreter Structures

The Orml.Interpreter.Structures namespace includes all the classes that represent the
common structures that the interpreter uses. This includes the AST nodes, the symbols
table classes, but also some common interfaces.
The AST nodes allow to represent an ORML model and are mainly defined by the ex-
pression and statement types that exist in the language definition. The tree’s fundamental
element is the AstNode class since all other nodes inherit from it. Figure 5.3 represents
this structure. One should note, however, that the diagrams that follow are not exhaustive
and don’t include all the classes that may constitute an AST.

Figure 5.3: ASTNode Inheritance - Class Diagram

Further into the structure, the statement nodes are mainly divided in the section or
named statements that define the different parts of the model and the attribution nodes.

70

Design and Implementation

Figure 5.4: Example of ORML Statement Nodes - Class Diagram

Expression nodes, contrary to statement nodes, represent operations, locations, and
all the other kind of compositions that may return something. This includes locations,
functions, and the common arithmetic/boolean operations.

Figure 5.5: Example of ORML Expression Nodes - Class Diagram

Finally, still concerning the AST classes, it is important to mention that they were de-
signed having in mind a visitor pattern [88] [89] [90] which abstracts this general structure
from an entity that may need to access it. This is ideally suitable to compilers/interpreters
because it allows to have different algorithms working on the exact same structure without
adding any specific code to the structure itself[81].
Another important part of this namespace is the symbols table. This is the data structure
that is used by the semantic analyzer and the language interpreter where each identifier
in the model is associated with information related to its declaration in the source code
such as its type and scope level. Its implementation is based on a hash table to optimize
its most usual operations - insertions and lookups.
The symbols table has to deal with scopes and the option was to use a stack approach
where, for each scope, a new table is created and added to a stack. When an entry is
requested, the search begin in the top-most to the lower table on the stack.

ORML Interpreter Library

The Orml.Interpreter.Library namespace contains the interpreter’s front end classes. This
includes the lexical analyzer and syntax analyzer classes, with the required extensions to
further support services in higher layers.
The lexical analyzer is the entry point for the interpretation engine. It is responsible for

71

Design and Implementation

reading the input source file and identifying its tokens and producing a sequence that the
syntax analyzer may use.
Since it is the part of the interpreter/compiler that reads the source text, it also performs
some secondary tasks like stripping out from the source program comments and white
spaces. Additionally, it is also responsible for signaling eventual errors that may come
across during this process. The errors are associated with positions to enable the users to
easily correct them.
The Lexical Analyzer was created using the, previously presented (see section 3.8.1),
MPLEX tool. This means that some classes were auto-generated from a rules definition
file. Details concerning its implementation and extensions will be discussed in the next
chapter.
A Lexical Analyzer, built with such tool, derives from the ScanBase class, which con-
tains the methods that are common to all the lexical analyzers that may be built with it,
and implements the language specific functionality in the Scanner class, using the Scan-
ner::Table structure, which supports input from three different buffer types - Text, Stream
and String. The decision to use MPLEX was based on two things:

• Use Microsoft Technology

• This project aims to create a prototype that can easily evolve (keep in mind that this
project works like a proof of concept).

Since MPLEX ensures both these points while supporting the programming language of
choice (C#), it was the perfect match.
Controlling the lexical analysis process, it is the syntax analyzer. This component, re-
quests the tokens from the lexical analyzer and verifies if they can be matched against a
rule in the languages’s grammar.
The syntax analyzer implementation is supported by the, MPLEX counterpart, MPPG
tool. Its definition file contains the grammar rules, as well as, the procedures to be exe-
cuted against each of the rules.
These rules, allow the construction of the AST which will be then used by the semantic
analyzer and interpretation engine to actually process the model. The tree is built us-
ing the nodes defined in the Orml.Interpreter.Structures namespace which are generic
enough to then allow the programmer to implement its own mechanisms to process it.
It is also function of both the syntax and the lexical analyzers to signal eventual errors
that they may find during this phase. This is done using an error signaling method which
abstracts the programmer from how the errors are stored, processed and what information
to keep about them. The syntax analyzer’s error handler has simple-to-state goals:

• Report the presence of errors clearly and accurately;

• Recover from each error so that it is possible to detect subsequent errors;

72

Design and Implementation

• Avoid slowing down the processing of correct programs

ORML Interpreter

The Orml.Interpreter namespace builds on top of the Orml.Interpreter.Library names-
pace adding the semantic analysis and the interpretation. It provides an API that actually
allows to run the interpreter over a source file and obtain results programmatically. It
does, however, lack the ideal abstraction level to be used in the development of external
applications.
The semantic analysis consists in checking types, identifier declarations, domains and
overflows, as well as, incorrect model parameters and many other semantic rules. It is
executed immediately after the AST construction and has to be executed before the inter-
pretation itself since it is here that the symbol table is built. Although this phase could
actually be done together with the interpretation itself, the chosen 2-phases approach gives
a higher level of abstraction and makes the system more modular.
The decision to have semantic analysis was taken after having a careful look at what exists
in the market concerning optimization languages. Most of them don’t include this step
and that makes it harder for the user to code, detect errors and debug models.
Concerning the interpretation engine, it is responsible for processing the models and re-
turning the results after solving them. To do so, it makes use of the solver technologies
provided by the Microsoft Solver Foundation.
The integration with this technology will be made using the services provided by the SFS
API and will mainly consist on the translation of the models from the ORML language
format to the syntax accepted by this framework (OML) with the necessary interpretation
required to do the data-binding against the specific Dynamics AX sources through the
Business Connector .NET.
By using these services, it is possible to abstract from the specifics of the solvers like, for
instance, the definition of the coefficient matrixes for the constraints and/or goals. To bet-
ter understand what this is consider the example of some simple constraints in a possible
LP model:

x <= 4 (5.1)

3x+2y <= 18 (5.2)

2y <= 12 (5.3)

This would be translated to the following coefficient matrix:

73

Design and Implementation

 1 0 4
3 2 18
2 0 12

 (5.4)

Figure 5.6: Example of a coefficient matrix

Regarding the specific AX data sources, they were divided in two types:

• Tables/Views

• Query-like classes

The first, was accomplished through the usage of the Common Data Layer which will be
further describes in section 5.1.3.1. As a note, in this phase, it worth noticing that, through
the regular Create/Read/Update/Delete (CRUD) operations are simplified.
Concerning the second, it’s necessary to understand what a Query-like class is. Query-like
classes are X++ classes, implemented in the Dynamics AX which implement a specific
interface. Their goal is to resemble what is commonly known as stores procedures in
DBMS.
This approach was defined when it was perceived that direct interaction with the data-base
through the regular .NET stack (i.e. using ADO.NET or even LINQ) would be impossi-
ble due to reasons already presented in this chapter. Also, it’s worth noticing that the
”Queries” already provided by the AX system are not especially suited, nor sufficiently
extendable, for the wanted usage.
Regarding the interaction with this type of data-sources, it is possible through the direct
usage of the .NET Business Connector which provides an interop platform between .NET
and X++ code.

ORML Interpreter Interface

The Orml.Interpreter.Interface namespace provides an easy-to-use interface to the inter-
preter itself. Built on top of the Orml.Interpreter namespace, it has flow control over the
its different phases allowing the user to focus on supplying a source model and obtaining
the results in an easy-to-use API. This API is actually used by both the IDE and the con-
sole application.

74

Design and Implementation

Figure 5.7: ORML Interpreter - Interface - Class Diagram

ORML Interpreter Interface AxWrapper

The Orml.Interpreter.Interface.AxWrapper was designed to make the integration with the
Dynamics AX product easier to acomplish. Through it’s usage, and with only a couple
of lines of code, it is possible to create and execute a model or a model instance directly
from X++ code. This makes the models usable throughout the application in transparent
way.
The ability to run models, since the data-type conversions from X++ to .NET aren’t com-
plete (table 5.1 that represents the ones that are) was one of the design problems to deal
with in the implementation of this namespace. To pass the parameter Dictionary used in
the .NET implementation, the option was to design a method that would receive the name
value of the parameter and apply it to every parameter.

Dynamics AX data type .NET Framework data type
String, RString, VarString System.String

Integer System.Int32
Real System.Double

Enums System.Enum
Time System.Int
Date System.Date

Container AxaptaContainer
Boolean (enumeration) System.Boolean

GUID System.GUID
Int64 System.Int64

Table 5.1: Data Type Mappings

75

Design and Implementation

After the parameter attribution, it is then possible to run the model instance.
If the user wants to run a model instance directly, there is no need to specify parameters
and the instance can be run directly.

ORML Interpreter Console

The console application is a simple application that makes use of the interface library and
gives a standalone way of using the interpreter while providing access to many of the in-
terpreter’s features. This includes the export functionalities to both MathML and OMML.
This proved to be a good approach for the first development stages, when the ORML IDE
wasn’t still available.

5.1.1.2 Development View

The development view, contrary to the Logical View which is mainly at a conceptual
level, represents the physical-level artifacts. For ease of development and modularity, the
project was divided in different namespaces and Dynamic Link Librarys (DLLs).

Figure 5.8: ORML Interpreter - Component Distribution

By taking this is approach it is easier to use different parts of the program and to
replace them. This view, complements the logical view, which already presented the
overall system entities. Both of them serve as an input to the development process.

76

Design and Implementation

5.1.1.3 Process View

The process view considers non-functional aspects such as performance, scalability and
throughput. In order to evaluate such aspects it’s required to identify the main processes in
the systems. For the ORML Interpreter the main process is the interpretation of an ORML
model. Like previously presented (section 5.1.1), the proposed interpreter executes 5 main
steps which can be divided in 4 main activities plus outputting the results.
There is, however, the possibility of not being able to execute all of them when the user
submits a model to the interpreter. The most common reason for this is the presence of
errors which may or not be critical to the interpretation process. The following diagram
presents the different flows between the activities:

Figure 5.9: ORML Interpreter - Activities

An important part of the interpreter is its front end conversion from the source code
into the AST. After the definition of the types of nodes (section 5.1.1.1), an example
situation can be presented:

77

Design and Implementation

1 Model {
2 V a r i a b l e s :
3 I n t e g e r i n [0 . . 1] a ;
4 I n t e g e r i n [0 . . 1] b ;
5 Maximize :
6 a + b ;
7 }

Figure 5.10: ORML Model - Example

This model has two sections: variables and function. The variable section is consti-
tuted by two declarations and the objective function by one objective. This can easily be
translated to the AST of figure 5.11.

Figure 5.11: Figure 5.10 corresponding Arithmetic Abstract Syntax Tree

Knowing that this is the main process of the developed product, all the four steps
should be optimized with respect to the non-functional requirements. It’s worth, however,
mentioning that since this is a prototype, these aren’t actually critical objectives for the
project and it was defined as more important to implement a flexible design, which can be
easily changed to improve and test the language, than to have a performer system.
Finally, one should also note that, since the ultimate solving steps will be done by an
external application (Microsoft Solver Foundation) it is out of the reach of this project to
optimize on that aspect being the only possibility to give the input in the best possible
way.

78

Design and Implementation

5.1.1.4 Physical View

This view encompasses the nodes that form the system’s hardware topology on which the
system executes; it focuses on distribution, communication and provisioning.
The deployment of the ORML Interpreter can be easily bounded to the deployment of the
AX Rich Client since this is the target platform.

Figure 5.12: Dynamics AX Deployment Scenario

The ORML Interpreter, through the common data layer and the .NET Business Con-
nector can communicate with the application servers.

5.1.2 ORML Interpreter Services

5.1.2.1 Syntax Highlight Service

The syntax highlight service intends to help the user identifying what kind of tokens he’s
using and overly making the model easier to read and understand.
The basic algorithm behind it consists in running the lexical analyzer, keeping the po-
sitions of each token, and then providing this information to external applications (e.g.
ORML IDE).

79

Design and Implementation

5.1.2.2 Autocomplete Service

The autocomplete service objective is to help the user in writing models faster and safely.
The overal quality of the results and modeling experience tends to improve with the
amount of information this service can get about the context of edition.
The decision was to base this system in the syntax analyzer engine. This way, it is easy to
retrieve context information based on the grammar rules. Consider the situation of figure
5.13.

In this situation, and considering that the cursor is currently after the ”” character, the

1 Model {

Figure 5.13: Autocomplete Situation Example

system should sugest the various types of namedstatement as possible completions (e.g.
the keyword ”Variables”).

5.1.2.3 Export to MathML and OMML Service

The Orml.Interpreter.Interface.Export namespace provides the export features supported
by the Interpreter. The export functionalities are partially supported by the Microsoft
Math Engine Library. This Library, like it was presented in the state of the art, contains
conversion mechanisms between different mathematical notations. By adding support to
the ORML Language it was possible to make it easier to convert to most (if not all) of
the different supported formats. The way it works is similar to a compiler - The library
receives an input representation in some format, converts it to an intermediate representa-
tion similar to an AST and then back to the output representation format. Unfortunately,
and since this is proprietary code, complete details on this architecture cannot be subject
of this report.
Conversions between MathML and OMML will be carried out using Office’s own XSLT
documents that do this transformation in both ways. After having the OMML outputing
the results to an OOXML file using the Open XML Formats SDK (section 3.6.2.1) be-
comes a straighforward operation.
Figure 5.14 summarizes the activities as well as the technologies used in the ”Export to
OMML” (Int-UC08) feature.

80

Design and Implementation

Figure 5.14: ORML Interpreter - Export Activities

Regarding the ”Export to MathML” feature, since the format doesn’t support all the
necessities in correctly representing a model in a single file, the option was to write to
different files the different formulas within the model.
It’s worth noticing that, for this specific feature, there was some contribution from the
ORML IDE project in the initial design phase. After the initial analysis of the Microsoft
Math Technology the implementation carried on, independently by this project.

5.1.3 Common Libraries

The Common Libraries are each bundled in one DLL that supports in some way the overall
system. They’re common because they support both the interpreter and the IDE directly.
Its architecture and development was, thus, a joint effort of both these projects.

5.1.3.1 Common Data Layer

The Common Data Layer implements a level of abstraction over the access to the database,
allowing the software to easily commute between using AX Business Connector or an-
other kind of provider like pure ADO.NET.
By default, the system will connect to the AX database through the AX Business connec-
tor. This decision was based on the fact that the AX Database doesn’t have any notion on
business logic or even relations (foreign keys, for instance, are inexistent in the database).
Its design was mainly based on the adapter pattern to allow the necessary abstraction from
the database provider, although some other common design patterns were also put in prac-
tice like the factory method to request rows from a table or view or the template pattern
to abstract the usage of the different elements (tables, views or classes).

81

Design and Implementation

Figure 5.15: Common Data Layer - Class Diagram

5.1.3.2 Model Management Layer

The model management layer goal is to allow the necessary level of abstraction over the
way the models are managed and stored. It’s design was based on using the previously
defined common data layer which makes it effectively database technology independent.
The model management layer supplies the classes and methods necessary to manage both
models and model instances. Models represent the actual definition of an ORML model
and can be defined to have parameters. These can parameters can be instantiated in model
instances which can also be stores, in a ready to run way, in the same data storage system
as the models.
A class diagram for this library is presented in figure 5.16.

Figure 5.16: Model Management Layer - Class Diagram

82

Design and Implementation

In order to store the models in the Dynamics AX server, it was necessary to also
define some new tables. Figure 5.17 represents the tables that were created, as well as,
the relations between them.

Figure 5.17: Model and Model Instances Entity-Relationship Diagram

Besides the general model and model instance managing features, another relevant
feature in this library is the fact that, relying on the interpreter, the model instances have
a method to solve them. This creates the following possibilities:

• Solving a saved model by fetching it from the database, creating an instance, setting
the arguments values and invoking Run();

• Solving a saved model instance by fetching the model, from it, get the required
instance and invoking the method Run().

These are, in fact, the most interesting operations for the ORML Interpreter. They are
especially used when running the models from the console application.

5.2 Implementation

This section discusses in deeper detail how the implementation actually took place, de-
scribing the main application classes and their respective features, referring back to the
issues discussed in the previous design section when relevant.

5.2.1 ORML Interpreter

The ORML Interpreter represents the main component of this project. Its implementation
was supported by the usage of the MPLEX and MPPG tools, as well as, other technologies

83

Design and Implementation

as the Microsoft Solver Foundation and specific libraries of the Microsoft Math applica-
tion.

5.2.1.1 Structures

The implementation of the AST classes is a direct result of the identified token types and
grammar rules of the language.
The separation and abstraction of the structure from the concrete algorithms that will
execute on it is an important design option that was addressed using the Visitor. The
IVisitor and the IVisitable interfaces specify the required infrastructure to implement the
concrete AST node classes, as well as the different visitor classes, with the desired amount
of abstraction.

IVisitor

The IVisitor interface was designed to be implemented by the different AST visitors. The
visitors will execute specific operations over the AST nodes and may have different pur-
poses. They contain all the logic that is required to do the operations while keeping the
structure free of it. A visitor has then to implement a specific method for each type of
concrete (non abstract) node that may exist in a given AST. This insures the right amount
of flexibility required for the implemented interpreter.

• void Visit(ModelNode node) - Visits a node of the ModelNode type and executes
some operation with it. This includes, usually, do recursive calls to also process
inner nodes (recursive descend).

• . . .

• void Visit(IndexDeclarationNode node)

This interface is implemented by both the semantic analyzer and the interpretation engine
classes.

IVisitable

The IVisitable interface was designed to be implemented by the AST node classes. By
implementing it, the classes are supplying a common way of accessing them which can
then be used by the specific visitors to operate over them, thus keeping all the algorithmic
details out of the structure itself.

• void Accept(IVisitor visitor) - Accepts a visitor class and the method definition will
call the correct visitor method back based on what class is accepting it.

84

Design and Implementation

With this structure defined the required AST node classes and the dependencies between
them were identified. This resulted in the implementation of an abstract class that would
contain the methods and attributes common to all the nodes in an AST - The AstNode
class.

• public Position Position { get; set; } - Defines the position of a given node in the
source file. This information is mainly useful for error signaling.

• public AstNode NextNode { get; set; } - Nodes usually have references to others
nodes in the same scope level (example: sections / named statements in a model).
This property allows building a linked list between the different nodes.

The specifics of each node concerning possible Childs are implemented in the specific
node. This is possible since the visitors have the information about what kind of node
they are visiting and thus is possible to properly navigate through them.

Symbols Table

The symbols table allows a compile/interpreter to keep track of scope and binding in-
formation about names. It is searched every time a name/identifier is encountered in the
source text and changes occur if a new name/identifier or some new information about
one has been founded.
There are two common approaches to implement a symbols table: a linear list or a hash
table. Although the linear list is easier to implement, it performs poorly in regard to addi-
tions and consults when compared to an hash table, especially for bigger programs. Hash
table, however, provide a better performance at the cost of greater programming effort
and space overhead. One should also keep in mind that a symbols table should have a
dynamic size so that it can handle any program that might be presented.
The option, for the ORML Interpreter, like presented in the previous chapter, was to im-
plement the symbols table using a Hash Table.
Each entry in the hash table represents a declaration of a name and it contains specific
information regarding the type of declaration: variable, input, index or inline variable.
To support the ORML language inline variables, used, for instance, in iterations, it is nec-
essary to have the notion of scope of declaration. The scope is defined as the enclosing
context where values and expressions are associated. A scope declaration cannot, there-
fore, be used in the parent scope. To support scopes in a symbols table, different strategies
may be used. The chosen one was to maintain a separate symbol table for each scope. In
effect additions are done to the current symbols table and lookups are recursively done
starting from the current to the oldest (with the largest scope) symbols table returning the
first match. Tables are then maintained in a Stack and have information regarding the
node where they were defined. This way, when a new scope is started, the method can

85

Design and Implementation

verify if there is already any scope defined for such node and, if not, create a new symbols
table and put it on top of the stack.

• public SymbolsTableEntry<Type> Enter(string name, Type value) - Enter a new
symbol in the current symbols table (in the current scope);

• public SymbolsTableEntry<Type> Lookup(string name) - Looks up a symbol in
the current symbols table stack;

• public void BeginScope(AstNode node) - Begins a new scope by creating a new
symbols table for the given node or by retrieving the previously declared one, de-
pending if there is already one or not;

• public void EndScope() - Terminates the current scope by removing the current
symbols table from the active symbols table stack.

It is worth mentioning that the proposed ORML language interpreter doesn’t however
support in-scope declaration of a previously defined name. This was purely a design
decision based on the fact that this could make the model harder to understand and, if
wanted, is a restriction that could be easily withdrawn.

5.2.1.2 Lexical and Syntax Analyzers

The Lexical Analysis is the first phase of the ORML interpreter. It is Lexical Analyzer’s
task to identify and pass the tokens in the source file by Syntax Analyzer’s requests. Its
implementation was based on the MPLEX tool that is currently shipped with the Visual
Studio 2008 SDK. This tool, which is ”lex-like” accepts a specification and produces a C#
output file.
Regarding the sections in an MPLEX specification file (section 3.8.1), one important part
is, clearly, the patterns definition. Patterns are regular expressions [91] which are special
text strings for describing search patterns. They work like extended wildcards so if the
reader is familiar with wildcard notations such as ”*.txt” to find all text files in a file
manager, the regex counterpart would be ".*\\.txt".
It lies outside of the scope for this report to present all the regular expressions and tokens
that were defined for the ORML language. To illustrate the subject, a few examples can,
however, be presented:

• 0—[1-9]{digit}* - Regular expression used to recognize an integer literal. The regu-
lar expression is defined to match the number 0 or a sequence of numbers that start
with a number from 1 to 9 and that has any number of digits. Possible overflows are
dealt later in the rule specific user code.

86

Design and Implementation

• Maximize - Maximize keyword. Identifies the string ”Maximize” like it is defined.
It’s important to note here that this means that the keywords are case sensitive. This
was also a design option and resembles common programming languages like C#
[92].

• >= - Equals or greater than operator. Identifies the ”>=” token which represents
the equals or greater than operation.

The Syntax Analyzer uses the information about the tokens returned by the Lexical An-
alyzer and, matching them against the language grammar rules, builds the correspondent
AST. The Lexical Analyzer was built using the MPPG tool that is also shipped, together
with the MPLEX tool, in the Visual Studio 2008 SDK. Its grammar is based on the tradi-
tional YACC language.
Also, outside of the scope for this report, lie the syntax grammar rules. To illustrate the
subject, once again, a few examples can be presented:

• ModelStatement: KWMODEL LCURLYBRACE NamedStatementList RCURLY-
BRACE - Rule for a model statement. A model is defined by the Model keyword
following by a list of named statements enclosed in curly braces. Upon identifying
this rule, the NamedStatementList is processed and a model node is built in the
AST with the enclosed named statements.

• Literal: INTEGER - Rule for an integer literal. Upon identifying this rule, the integer
value is extracted and a literal node is built in the AST.

5.2.1.3 Semantical Analyzer and Interpretation Engine

The ORML.Interpreter namespace is mainly defined by the SemanticAnalyzer and Orm-
lInterpreterEngine classes.

Their external structure is quite similar since both of them represent visitors (consid-
ering the visitor pattern in order to operate over a given ORML AST. They both begin
their analysis process starting from the root (model) node and recursively descend the
tree operating on the consecutive nodes.
Since one of the main tasks for this interpreter is the data-binding, this is consecutively
an important part for both the Semantic Analyzer and the interpretation engine.
Like previously presented in section 5.1, the binding to data sources is accomplished
through the Common Data Layer.
The binding for the Query-like classes, on the other hand, it is accomplished through di-
rect method calling of the classes. This is possible through the usage of the following
methods that the classes define when implementing the required interface:

• anytype getField(str field) - This method is used to get the current row’s field value
based on its name;

87

Design and Implementation

• Array getFields() - returns an array of all the fields that are available in the current
row;

• str getFieldType(str name) - returns the type of a field in the current row (example:
”String”);

• boolean moveNext() - Changes the current row to the next row if available (returns
false if there aren’t any more rows)

Regarding the semantic analyzer’s basic operations, it consists in traversing the AST and,
for each node visited, returns its resulting type and, when the parent is visited, this type is
verified. If valid, it is used to form the new return type of the current node, if not an error
is signaled. Figure 5.18 presents an example of such procedure for a valid expression.

Figure 5.18: ORML Interpreter - Semantic Analyzer - Check Example

Besides the type checking operations, some other semantic checks are also performed,
being, most of them, based on checking identifier declarations:

• Duplicate identifier

• Undeclared identifier

• Wrong type identifier

These are performed using the symbols table that stores, at each declaration, the name
and type of the identifier, eventually, together with some other information.
Upon finding one identifier declaration in the source code the steps in algorithm 1 are
performed.

88

Design and Implementation

Input: AST node
Output: AST node type

begin
if identifier found then

if declaration then
if identifier was declared then

return duplicate declaration error
end

else
if identifier was declared then

return identifier type and, if it is the case, value
else

return undeclared declaration error
end

end
end

end
Algorithm 1: Semantic Analyzer - Identifier Checks

Regarding the interpretation engine, it was the main component to be implemented
in this project. It works in a similar way to the semantic analyzer but, instead of doing
checking, it instantiates and stores declarations values and processes constraints, variables
and functions submitting them, in the desired format to the Microsoft Solver Foundation
Rewrite system.
This system allows the user to submit well defined problems which are then solved by the
framework.
Unfortunately, due to the previously presented reasons (section 3.3.2), further details, on
this specific component aren’t possible on this report since it would disclose Microsoft
Solver Foundation details.

5.2.1.4 Interpreter Interface

The ORML Interface, defined in the ORML.Interpreter.Interface namespace, provides
the necessary abstraction over the Interpreter system. It allows third party application
to easily communicate and make use of the system by providing access its functionality
through a common interface.
The most noticeable and relevant methods are exposed by the OrmlInterpreter class:

• public OrmlInterpreter(StreamReader inputStream, DatabaseAdapter dbAdapter)
- Builds a new instance of the ORML Interpreter Interface Class. The user should
specify the input stream that he wants to process and the database adapter that should
be used during the interpretation for the data retrieving and binding.

89

Design and Implementation

• public AstNode Parse() - Performs the Lexical and Syntactical Analysis on the
specified source stream.

• OrmlStatistics Interpret(AstNode astRootNode, Dictionary<string, object> pa-
rameters) - Performs the Semantical Analysis and Interprets the specified AST and
parameters.

• public OrmlStatistics Interpret(AstNode astRootNode, bool process, Dictionary<string,
object> parameters) - Performs the Semantical Analysis and/or Interprets (depend-
ing on the process flag) the specified AST and parameters.

5.2.1.5 Interpreter AxWrapper

The Orml.Interpeter.Interface.AxWrapper namespace makes the integration with the Dy-
namics AX product code easier.
The wrapper defines the following methods:

• public void InitWrapper(string modelId, string company) - Inits the wrapper for a
specific model in a specific company database;

• public void InitWrapper(string modelId, string modelInstanceId, string company)
- Inits the wrapper for a specific model instance in a specific company database;

• object GetParameter(string name) - Gets the current value of a given parameter;

• void SetParameter(string name, object value) - Set a new value for the given pa-
rameter;

• InterpreterRunResult RunModel() - Runs the specific model with the, already de-
fined, parameter values.

By using this wrapper it is possible to, with just a few lines of code, run and obtain results
from the ORML Interpreter.

5.2.2 ORML Interpreter Services

This section presents a brief overlook on how the ORML Interpreter services were imple-
mented and how can they be used in-code.

5.2.2.1 Syntax Highlight Service

The syntax highlight service, like presented in the design section, consists in one method
that runs the Lexical Analyzer in one model source text and provides the list of tokens

90

Design and Implementation

that are identified, together with their position within the text. This method was defined
as follows:

• public IEnumerable<ColorToken> GetTokens()

5.2.2.2 Autocomplete Service

The auto complete service is based on the Lexical and Syntax Analyzers. Based on the
current state of the Syntax Analyzer, the list of possible suggestions is updated with pos-
sible tokens and, if there is the possibility of identifiers following, the previously declared
identifiers are added to the list.
The service can be used from the previously discussed Interface class and consists in the
following method:
public List<ColorToken> getNextTokens(out int offset) - Auto complete service. Sup-
plies the next possible tokens based on the specified input stream text and on the given
cursor offset.
Following the implementation of the autocomplete engine on the ORML Interpreter, the
service had to be implemented on the IDE as well. To do this, the custom Autocom-
pletePopup user control was created. This component could be used from the CodeEd-
itor user control, that represents the code edition area and that was created, as a result of
the ORML IDE project, as part of its core infrastructure.

5.2.2.3 Export to MathML and OMML Service

The export features are supported by the Orml.Interpreter.Interface.Export namespace.
This namespace provides the necessary abstraction over the operations to export to both
MathML and OMML. To convert a model to this formats the user must first instantiate
the class OrmlExport with the default constructor:

• public OrmlExport(string modelText) - Export to a string.

Then, the class provides the methods necessary to export to the required formats:

• public void ConvertToWord(string outputFile) - Converts the model to the OOXML
format and writes it to a string.

• public void ConvertToWord(string outputFile) - Converts the model to the OOXML
format and writes it to a stream (e.g. file).

• public MathMLModel ConvertToMathML() - Returns an MathMLModel which con-
tains the various sections of the model.

91

Design and Implementation

5.2.3 Common Libraries

This section presents some implementation details regarding the common data and the
model management layers.

5.2.3.1 Common Data Layer

The main operations that the common data layer provide, are based on the DatabaseAdapter
abstract class. Using it, the user can obtain table, views or query-like classes from the sys-
tem and, based on these, it is possible, for instance, to select, insert or update rows.
A normal Common Data Layer (CDL) usage session begins by constructing the spe-
cific implementing adapter class. If the user wants to target a Dynamics AX installation,
through the Business Connector (which is the only option that was actually implemented),
it can be done through the specific constructor:

• public AxDatabaseAdapter(string company, string language, string objectServer,
string configuration)

With this object, it is then possible to retrieve regular elements using the following meth-
ods:

• public Table GetTable(string name)

• public View GetView(string name)

• public View GetQuery(string name)

It is then possible to operate over these elements using, for instance, the following meth-
ods:

• public IEnumerable¡TableRow¿ GetRows(Table table, TableRow match)

• public void Insert(Table row)

• public void UpdateRows(Table table, TableRow newValues, TableRow match)

5.2.3.2 Model Management Layer

The model management layer library is mainly used, in this project, by the Console appli-
cation to execute models directly from the database. To do this, two main methods have
been created to execute models and model instances respectively.
Independently of the method, the first step is to instantiate the ModelManager by provid-
ing a CDL adapter.

• public ModelManager(DatabaseAdapter adapter)

92

Design and Implementation

The next step is to get the model to be run or that will provide the correct model instance.
This can be accomplished with the method:

• public Model GetModel(string modelName)

From the model, it is possible to then get (if the user wants to run an already existent) or
create (if the aim is to run the model with some specific parameters) a model instance.

• public Model GetModel(string modelName)

• public Model CreateModel(string modelName)

Finally, the model instance can be run.

• public InterpreterRunResult Run()

5.3 Development Methodologies

Software engineering is the application of a systematic, disciplined, quantifiable approach
to the development, operation and maintenance of software [93]. Engineering Excel-
lence deals with studying the best approaches in performing that activity. By systemizing
methodologies and best practices it is possible to improve the overall product quality
while reducing costs and efforts.
This section presents some of such methodologies, best practices and tools that were put
in use to enforce them. This isn’t however, an extensive description on the subject, only
highlighting the ones that were identified as the ones of the most importance.

Test Driven Development

TDD [94] [95] [96] is related to the test-first programming concepts of extreme Pro-
gramming which begun in the late 20th century. It is a software development technique
consisting of short iterations where test cases are written before implementing the desired
improvement or functionality. Then, the production code necessary to pass the tests is
implemented and finally the software is refactored to accommodate changes.
Among its advantages one can highlight the rapid feedback after any change and its use
not just as a mere test method but also as a method of designing software.
The TDD Cycle can be divided [97] in the following steps (slight variations exist among
TDD practitioners):

1. Understand the requirements of the features one wants to work on;

2. Create a test and make it fail - This test must inevitably fail because it is written be-
fore the feature has been implemented. This ensures that the developer understands

93

Design and Implementation

the specification and the requirements of the feature clearly. This differentiation
against writing test after the code is written, makes one focus on the requirements
before actually writing any code which is a subtle but very important difference;

3. Make the Test pass by any means necessary - this involves writing the production
code to make the test pass. In this step, some advocate the hard-coding of the
expected return value first to verify that the test correctly detects success. It is
important that the code written is only designed to pass the test; no further should
be predicted because that may make to user to disregard eventual test scenarios;

4. Refactor - Change the code to remove duplication in the project and to improve the
design while ensuring that all tests still pass;

5. Repeat the cycle (2-4) - Each cycle should be very short.

This project has used a TDD Approach from the start. Since the project’s early stages,
when the language was being defined, it was clear that the example scenarios created for
the language could help the design and test process in the product development. By cre-
ating small test scenarios and evolving them it was possible to ensure that the design was
properly done before actually implementing the code. This also assured that if the lan-
guage changes, everything that was already coded can be verified against the introduced
changes, thus detecting regressions [98].
This is a small list of the benefits immediately drawn from performing Test-Driven De-
velopment:

• The tests provide constant feedback about whether each component is still working;

• The tests act as documentation that cannot go out-of-date, unlike separate documen-
tation, which can and frequently does;

• When the test passes and the production code is refactored to remove duplication, it
is clear that the code is finished and the developer can move on to a new feature;

• Forces critical analysis and design because the developer cannot create the produc-
tion code without truly understanding what the desired result should be and how to
test it;

• Software design tends to improve, that is, it tends to be loosely coupled and easily
maintainable, because the developer is free to make design decisions and refactor at
any time while making sure that the software is still working by running the tests;

• The test suite acts as a regression safety net on bugs;

• Reduced debugging time - Since the tests are created, run and the code incrementally
verified, debugging time tends to diminish because of the reduced waterfall effect.

94

Design and Implementation

Version Control

In software engineering, revision control [99] is any practice that tracks and provides
control over changes to source code. Software tools for revision control are increasingly
recognized as being necessary for the organization of multi-developer projects.
Although Microsoft has had a rather known tool called Visual Source Safe (VSS) for
version control, within Microsoft very few projects have relied in VSS. Source Depot, a
custom version of Perforce[100], has been the most used system and it did in fact support
many popular products.
Nowadays, Microsoft Developer Division is, however, starting to use the new Visual Stu-
dio Team System [101] for most of the internal project. This project, at the time of its
execution, has, however, still relied in the Source Depot tool where the different versions
were stored.

Nightly Builds

In software development, a nightly build is a kind of neutral build that takes place auto-
matically, this is, is a build that reflects the current state of the source code checked into
the version control system without any developer-specific changes [102].
This project has had from its very early stages nightly builds. This allowed to keep notion
of eventual problems in the repository, keep track of work and ensure a better coordination
with the ORML IDE project. By checking the generated logs it is possible to understand,
each day, if something unexpected was done wrong in the previous day. The Nightly
Build Process can be summed to the following operations:

1. Retrieve latest source code version from source depot repository

2. Store Source File

3. Build the Source Code

4. Store Binaries

5. Run Tests

6. Store Tests Results

If something during this process fails, the following phases will not be done and a log is
kept to report the error. By doing so, nightly builds, also made sure that, if needed, the
project team would always be able to easily find a stable version just by looking back to
the most recent dates (some other advantages may be seen in [103] or [104]).
One should also note that, in the event of a build failing, the team corrected the problem

95

Design and Implementation

and execute a rebuild to try to keep, as least, one working build for each day.

Bug Tracking Tool

A bug tracking tool is a software application that is designed to help quality assurance
and programmers to keep track of reported software bugs in their work [105].
Since this project was implemented together with the ORML IDE project and, during its
development, has become clear that while testing one project; it is common to discover
problems or enhancement suggestions in the other and given that it is not always possible
to correct such things immediately, it was important to track all of these issues and keep
them accessible to everyone.
The usage of a bug tracking tool, available in the intranet, through a web-page, has made
this possible and easy to use. This has greatly improved both projects awareness on prob-
lems/requests while giving a general perspective on both projects progress.

5.4 Summary

This chapter presented the design and implementation details on the developed solu-
tion. Regarding the design details, it was defined that the ORML Interpreter executes the
glsacro:orml language source and outputs its results directly. To do this, the interpreter
performs the following operations: Lexical analysis, Syntax Analysis with the associated
AST construction, Semantic Analysis and Interpretation.
The fact that the result of this project is a prototype and because it was given preference
for Microsoft Tools, it was defined that the MPLEX and MPPG tools would be used to
implement the Lexical Analyzer and the Syntax Analyzer respectively. Regarding the Se-
mantic Analyzer and the Interpretation Engine, they are implemented as visitors of the
AST structure.
To suppot the data-binding, the CDL library was implemented to the tables and views
sources and a common structure to support X++ Query-like classes was defined.
It was then presented how the Interpretation Engine makes use of the Microsoft Solver
Foundation to actually solve the modeled problems.
Finally, details regarding how the export to MathML and the export to OMML features
were implemented. The export to MathML functionality is supported by the Microsoft
Math Engine library and is further backed up by the Office’s 2007 MathML to OMML
XSL transformation documents and by the OpenXML framework to support the word
document creation.

96

Chapter 6

Evaluation of the Solution

Put everything that you are, in the minimum that you do.

Fernando Pessoa[106]

This chapter presents an evaluation of the developed solution against its compliance
to the goals of the project, its requirements, testing and benchmarking.

6.1 Testing

Software testing is used to assess the quality of software. It is conducted to provide in-
formation about the quality of the product, usually, by comparison against a specification.
During this project some tests were developed to ensure that the result met the speci-
fication within scope and quality, while helping and supporting the actual development
process.

6.1.1 Test Scope

Before beginning the implementation of the actual tests, it is important to precisely de-
fine what should or shouldn’t be tested. When looking at the overall project, taking into
consideration the design breakdown, three test targets can be identified:

• The ORML Interpreter;

• The services it provides;

• The Common Libraries

This section defines the scope for each of these targets.

97

Evaluation of the Solution

6.1.1.1 ORML Interpreter

These are the tests where most of the effort was put. Following the TDD approach, these
tests, have been designed progressively and before the actual feature was implemented.
Concerning the lexical analyzers the tests should verify the ability to:

• Correctly identify the different tokens in a given input (Valid Scenario);

• Signal the eventual errors that may be detected (Invalid Scenario).

Regarding the syntax analyzer, the tests should be designed to test its abilities to:

• Correctly identify the grammar rules based on a correct list of token (Valid Sce-
nario);

– Build a correct AST;

• Signal the eventual errors that may be detected (Invalid Scenario).

– Recover from errors and continue with the parsing;

The next tests aimed at testing the semantic analyzer. Their purpose was to test the fol-
lowing capabilities:

• Detect semantic errors:

– Duplicate symbols;

– Undeclared Symbols;

– Inappropriate use of expressions.

• Signal eventual errors that may be detected during this phase.

Finally, the tests for the interpretation engine aimed at testing its ability to:

• Process a valid AST and give appropriate results:

– Read inbound data;

– Declare the declared parameters, inputs, indexes and variables;

– Recognize and process the objectives;

– Recognize and process the constraints;

– Write outbound data.

• Output results.

Some tests were also designed to test the solution’s performance against both the models
used in the project and, some other, common, optimization models.

98

Evaluation of the Solution

6.1.1.2 ORML Interpreter Services

Some autoamted tests were also developed to test the export functionalities in the ORML
Interpreter Services. These tests target specifically the ”export to OMML” features which,
indirectly, also tests most of the ”export to MathML” feature.
Regarding the autocomplete and syntax highlight services, the option was to do manual
testing on them by actually using them in the ORML IDE.

6.1.1.3 Common Libraries

Some unit tests were also developed for the Common Libraries. These tests where de-
veloped together with the ORML IDE project and intended to verify that the basic CRUD
functionalities before they were put into use.

6.1.2 Test Strategy

The test strategy defines the testing procedures, tools and conditions. For this project,
there were to main types of testing:

• Automated tests - Unit tests were developed to cover most of the product function-
alities like the interpretation process, common libraries and export features

• Manual tests - Although automated tests are enough for most of the features, manual
testing was also used, mainly, to test the autocomplete and syntax highlight services.

6.1.2.1 Testing Procedures

This section presents the testing procedures used to test the different components of the
developed solution.

ORML Interpreter

The option was to classify and document each test by category and description so that
one could easily track which test is failing and what is it failing on. This followed a
divide-and-conquer[107] test approach which attempted to make sure each component of
the interpreter is properly tested before moving to the next one. Figure 6.1 represents the
hierarchy of such division into categories.

99

Evaluation of the Solution

Figure 6.1: Testing Categories

ORML Interpreter Services

The approach taken to test the ORML Interpreter services, and in particular, the ”export
to OMML” capabilities, was to develop specific models which could support the devel-
opment of the different parts of the features and, in a later stage, extend the testing to all
the test scenarios that were already used for the ORML Interpreter.

Common Libraries

The test strategy for the Common Libraries was to develop unit test that could test, mainly,
its CRUD operations.

6.1.2.2 Test Tools

Currently, Visual Studio Team System 2008 offers all the tools required to do Test-Driven
Development [94]. The creation of unit tests is possible through generation from the
source code or by authoring them by hand. It is then possible to group tests in different
lists and run them separately.
Additionally, code coverage features are also available to further ensure the correct test
coverage.

6.1.3 Test Resources

The tests were mainly performed in two machines (Appendix G). The automated tests
were mainly performed on the Quad-core machine and the manual tests were performed
in both machines.

100

Evaluation of the Solution

6.1.4 Test Results

This section presents the main results that were obtained through the, previously defined,
testing strategies.

6.1.5 ORML Interpreter

Following the defined strategy, the following tests were implemented and tested success-
fully for the ORML Interpreter:

• Lexical and syntax analyzers - 45 Valid scenario tests and 12 invalid scenario tests
(approximately 82% code coverage);

• Semantic analyzer - 34 Valid scenario tests and 20 invalid scenario tests (approxi-
mately 80% code coverage);

• Interpreter engine - 58 Valid scenario tests (approximately 80% code coverage).

Concerning the tests that were presented, it’s important to notice that what they intend
to test is incremental and, thus, the semantic analyzer tests will also test the lexical/syn-
tactical analyzer capabilities and the interpretation tests will also test the semantical/lexi-
cal/syntactical analyzer capabilities.
During the development phase of the project it’s important to note that the TDD method-
ologies were put in practice and tests were run before each commit to the repositories in
order to enforce that the code that it is shared is actually executable and to help avoiding
late detection of eventual regressions.
By the time this project was concluded, all the tests that were designed were passing,
giving an extra confidence to the project’s outcome. Like any other testing approach, one
should, however, be aware that this doesn’t mean that the product doesn’t include bugs. It
only means that the features one intended to have implemented, in the specific situations
that they were tested, work.

Execution Times

Execution times tests allow to identify bottlenecks in the system as well as to evaluate its
usability. Some generic problems were identified as to be benchmarked by the system.
The chosen problems are among the most common in this kind of systems. Some AX
Problems specific benchmarks were also performed to account with the data binding ex-
perience and, in fact, its overall goal to be integrated within the system.
Among the factors to take into account when creating or choosing the tests one can high-
light the following:

101

Evaluation of the Solution

• Type of problem: LP, MIP, CSP;

• Number of variables;

• Number of objective functions;

• Number of constraints.

Although a comparison between the model solving time can’t be made due to the inter-
nal strategies that might be used even by the same solver, the absolute values may still
contribute to the general understanding of the system. The complete definitions on these
models may be seen in Appendix H.

Model Variables Objectives Constraints Lexical and
Syntactical
Analysis

Semantical
Analysis

Interpretation

Constraint
Program-
ming
Zebra 25 - 19 158 ms 36 ms 277 ms
Linear/Integer
Program-
ming
Without
Data Bind-
ing
Boeing 384 1 440 276 ms 52 ms 5399 ms
PetroChem 2 1 7 153 ms 31 ms 427 ms
WycoDoors 2 1 3 158 ms 32 ms 422 ms
With Data
Binding
Traveling
Salesman

42 1 32 164 ms 179 ms 621 ms

Warehouse
Picking
Routes

30 1 20 170 ms 581 ms 553 ms

Table 6.1: Execution Times Tests

Looking at the results, for the syntax and lexical analysis it’s possible to confirm the
guess that the bigger the model, the longer it would take to scan and parse. It’s also possi-
ble to see that, usually, the semantic and interpretation phases take longer than these two
first phases since they are where the model is actually solved and where the data-binding
exists.
Without any test to testify this, it’s also fair to admit that, for the same model, if data-
binding is performed against a database, the model should take longer to process and

102

Evaluation of the Solution

solve than the same model with explicit binding. Proof’s on these ideas where actually
never enforced during the project since they were considered to be out of scope, since
performance wasn’t a key issue. Their study would, however, be interesting for a final
(non-prototype) product.
A comparison between these execution times and the execution times of the same prob-
lems in similar languages would be interesting. However, due to the time constraints,
these comparisons where actually never performed.

6.1.6 ORML Interpreter Services

The defined strategy to test the ORML Interpreter services resulted in a total of 130 Tests.
These tests helped ensuring that the MathML and OMML export functionalities worked
within expected while making the test creation process fast by reusing many of same tests
(that already included most of the intended language constructs that one should test) that
were used in the other test scope.

6.1.7 Common Libraries

The test strategy defined for the Common Libraries conducted to 30 unit tests that tested
mostly of the functionalities that were intended to be tested.

6.2 Market Requirements Analysis

The ORML language has been designed taking into account the requirements that were
identified as the ones of most importance given the project scope: a proof of concept in
the Dynamics AX system to evaluate its viability.
Considering the general requirements for new generation mathematical modeling lan-
guages that were presented in section 2.4, and although they weren’t a goal for the project,
some of them were tackled.

• Syntax - The ORML language has an easy to use language syntax. Although it is
not complete, given that this is a prototype, it could easily accommodate further
options.

• Solver Suite - The ORML interpreter engine has been designed using a Visitor pat-
tern, this way, if a new solver is to be used, the user only has to implement a new
engine.

• Indexing - Indexes are a distinctive part of the ORML language and, within memory
constraints, any number of them is allowed.

103

Evaluation of the Solution

• Scalability - By using variable sets, it’s possible, and easy, to define a large number
of variables in just a few commands.

• Robustness - Although the limited scope of this project, industry standard develop-
ment methods have been applied to improve the robustness level of the solution.

Although these characteristics already give an good perception of such language, it is the
belief of the author that, a generic final product, would, in fact, have to address most, if
not all, of the initial design requirements.
The designed language, however, was targeting a specific platform and, given the time
span of the project, was designed to address specific problems and serve its purpose as a
proof-of-concept.

6.3 Modeling Experience

The modeling experience is an important part in a project of this nature. It is, in fact,
pointed out as one of the defying factors in new generation mathematical modeling lan-
guages (section 2.4).
The overall language syntax has been designed to be easy to use and to be similar to so-
lutions that already exist in the market (section 3.4).
To further enhance this experience, some services were also developed taking into account
what already exists in the market and some feedback from potential users (Questions 5c
and 5d - Appendix A).
This approach has conducted to good results which can be further verified by the accep-
tance of the product by the same potential users (Question 6 - Appendix A).
Further usability tests could and should be done to evaluate how the users really interact
with the systems. Contrary to popular belief, some authors assure [108], in fact, that a
small number os users can account for a very accurate result.

6.4 Summary

This chapter reviewed the implemented solution giving some notes on methodologies that
were put in practice to ensure its successful outcome taking into account important crite-
ria like quality and scope.
A test-driven methodology was used during the project development. This approach al-
lowed ensuring a correct understanding of the requirements while supporting a good level
of quality in the code produced. This methodology has been in practice while designing
the tests.
The solution was then reviewed with regard to the requirements and the developed tests.

104

Evaluation of the Solution

This chapter ended by presenting some early results on how the users perceive the system,
their experience with it, in regard to user experience and outlining the fact that, in a small
survey, everyone understood it’s possible interest in future AX versions.

105

Evaluation of the Solution

106

Chapter 7

Conclusions and Future Work

You’re not thinking fourth dimensionally!

Emmett Brown[109]

This chapter reviews the project development process and its outputs. Based on this,
conclusions are drawn and some suggestions are presented as an input for the project
continuum.

7.1 Success Evaluation

To evaluate the success of the project, one should assess its compliance against the original
objectives (section 1.4). As such these are the assessments which can be drawn:

1. Research the state of the art on methodologies and technologies regarding mod-
eling and solving this type of problems - This report presented a rather complete
overview on the different existent technologies including modeling languages and
solver technologies but also supporting frameworks and platforms

2. Define a modeling language (. . .) - A language was defined which can bind against
Dynamics AX data its applicability as been demonstrated using some common prob-
lems in the industry like the PetroChem or the Boeing models;

3. Identify 1-2 optimization problems in the Dynamics AX platform - Three problems
have been identified in the Dynamics AX product: warehouse, traveling salesman
and production scheduling;

4. Design models, using the defined language, to solve the problems identified under
3 - Models have been designed to solve two of three identified problems;

5. Design and implement the ORML Interpreter - The ORML Interpreter has been
successfully implemented and totally supports the ORML language definition being
its developed supported by industry recognized methodologies and tools;

107

Conclusions and Future Work

6. Provide Integration with Microsoft Dynamics AX database, both in terms of data
and meta data - The ORML language provides mechanisms to bind against Dynam-
ics AX data.

Looking at the secondary objectives, they could be also considered as achieved.
As such, and given the results that have been presented (section 6), one can conclude that
the project met the requirements it was proposed to, with the implementation of every
component suggested in chapter 2.

7.2 Conclusions

The proposed ORML language and its interpreter present a solution to the problem that
this project aimed to tackle 1.4). Looking at the results of a small survey (Appendix A)
taken among some of the persons who assisted some of the project’s in-site presentations,
when asked about the interest of such a product coupled with the Dynamics AX, its po-
tential becomes clear.
The ORML Interpreter, was successfully developed, implementing every feature of the
language specification and supplying a set of services that can be used by third party ap-
plications such as the ORML IDE or the, also developed, console application.
It’s worth mentioning that the developed interpreter includes some features that are not
common in this type of languages like the semantic analysis. This greatly improves the
modeling experience by giving early and better feedback to the user in regard to eventual
errors.
The Interpreter is capable of reading data from and writing results back to Dynamics AX
specific sources (tables, views or query-like classes). These data sources, especially the
query-like classes have proven to be flexible enough to allow a great deal of usages by
allowing custom user code. Through their usage, it is possible to implement very specific
code and, although it was never tested, a similar syntax could be used to introduce heuris-
tics in the search process (e.g. use a query-like class as an evaluation function).
It was also demonstrated1, how the Microsoft Solver Foundation framework could be
used, in an easy way, from the Dynamics AX system, not only by Microsoft developers
and partners, but also by costumers which could now empowered to do specific modeling.
Finally, the export functionalities to both MathML and OMML proposed an easy way of
representing the models to anyone who is not familiar with mathematical programming
or with the ORML language specificities.
Some software engineering best practices were also developed and put in practice and,

1Although this subject isn’t taken very deeply in this report due to the reasons stated in section 3.3.2

108

Conclusions and Future Work

regarding this, the reader was presented with some notions on how the product was de-
veloped and what could be applied in similar projects to improve their outcome.

7.3 Originalities

The language this project presents has been developed to the image of many other proven
languages that exist in the market for quite some time now. Innovation in this specific
area, and for a project of this time span, would be hard to accomplish. Its underlying
concept and some of its specificity is, however, something new. By being natively inte-
grated in an ERP system, the ORML language, its interpreter and IDE, present an easy
way to access, edit or create the models that are being used in the system. This comes in
opposition to the hard to locate models that exist in other ERP systems and makes it much
more usable by both partners and final costumers.
The developed solution also presents some services, like syntax highlighting or auto com-
pletion, that aid the user in the model edition and that aren’t always present in other
languages in the market.
Given the Dynamics AX specificities on accessing its database data and the impossibility
of using the normal mechanisms which are presented by other frameworks in the mar-
ket, the presented data-binding mechanisms also introduce something new in the system,
which demonstrates how the concept could be put into production while providing a start-
ing point for gathering usage experience and feedback.
Finally, the export functionalities, give an extra value to the project by providing a univer-
sal view of the models which makes them accessible to anyone who might not be familiar
with the specificities of the ORML language.

7.4 Limitations

Given the time span of this project, there are, still some limitations in the developed prod-
uct. This has mainly to do with language extensions to support new types of operations
and even features like functions. This aspect could greatly restrain the number of models
that could be modeled in its current version. If one considers that this project aimed at
developing a prototype to demonstrate a concept, this is, however, not a big limitation
and could easily be overcome since the language and its interpreter have been defined, in
such a way, that it would be easy to extend them in feature versions. This was ensured,
for instance, through the usage of well defined model structures in the language definition
and by the usage of appropriate design patterns and tools in the interpreter’s structure and
components.
Some other key aspects for a new language are not completely present in the developed
solution. Some of the most noticeable ones are performance and infeasibility tracing.

109

Conclusions and Future Work

These weren’t, however, identified as being primordial in a project of this nature and,
their disregard has been a decision that had to be taken given the time span of the project.

7.5 Project Continuum

The development of a mathematical modeling language is a complex process and its evo-
lution is coupled, among other things, with the evolution of solver and modeling tech-
nologies. For these reasons, and considering the time span of this project, the developed
solution is, therefore, subject of many ideas for future improvements. This section will
present some of them.

Extended language constructs

The constructs that were defined in the ORML language, at this stage, only cover ba-
sic functionalities and operations. This definition was prepared taking into account the
prototyping purposes of this project and therefore aimed at a relatively narrow family of
optimization problems.
Extended language constructs including, but not only, the ability of defining functions,
and other operation types should be added in a production quality product.

Support for other types of optimization problems

The ORML language, and its interpreter, are not oriented towards a specific type of opti-
mization problems. Enough freedom has remained in the language definition to support
other types of optimization problems keeping a common construct grammar - this can be
easily observed in the linear and constraint programming models that were presented and
that are both partially addressed by the developed prototype.
However, only two types of such problems are addressed in the current solution. In a
market-worthy product, other types of problems should be supported by both the lan-
guage and the interpreter.

Debug System

A debug system could provide a simple way of understanding the logic behind the model,
adding the possibility of knowing which constraints are making the model infeasible or
even some additional information like shadow prices. The debug system should also
allow the runtime stoppage of the solver to verify the algorithms it is using, as well as, the
current variable values.

110

Bibliography

[1] MSN Encarta. Isaac newton, 2008. [Online; accessed 12-June-2008] http://
encarta.msn.com/encyclopedia_761573959/Isaac_Newton.html.

[2] Microsoft. Microsoft corporation, 2008. [Online; accessed 9-June-2008] http:
//www.microsoft.com/en/us/default.aspx.

[3] Microsoft Corporation. Microsoft CP/M BASIC: Reference Book. Microsoft Press,
1977.

[4] David A. Lien. Ms-dos, 1986. ISBN: 0-932-76041-4.

[5] Intel. Intel, 2008. [Online; accessed 9-June-2008] http://www.intel.com/.

[6] Britannica. Micro instrumentation and telemetry systems, April 2008. [Online; ac-
cessed June-9-2008] http://www.britannica.com/EBchecked/topic/
725876/Micro-Instrumentation-Telemetry-Systems.

[7] Linus Torvalds and David Diamond. Just for Fun: The Story of an Accidental
Revolutionary. HarperBusiness, 2001. ISBN: 0-0666-2072-4.

[8] Glyn Moody. Rebel Code: Linux and the Open Source Revolution. Allen Lane,
2001. ISBN: 0-7139-9520-3.

[9] Softpanorama. Xenix – microsoft short-lived love affair with unix, February 2008.
[Online; accessed 9-June-2008] http://www.softpanorama.org/People/
Torvalds/Finland_period/xenix_microsoft_shortlived_love_
affair_with_unix.shtml.

[10] Van Wolverton. Running MS-DOS: Covers Through Version 6.0. Microsoft Press,
2008. ISBN: 1-556-15542-5.

[11] Microsoft. Windows, 2008. [Online; accessed 9-June-2008] http://www.
microsoft.com/WINDOWS/.

[12] Microsoft Corporation. Annual report 2007. Technical report, Microsoft, 2008.

[13] Forbes. Special report - the global 2000, March 2007. [Online; accessed 6-July-
2008] http://www.forbes.com/lists/2007/18/biz_07forbes2000_
The-Global-2000_Rank.html.

[14] Microsoft. Microsoft dynamics is familiar to your people, June 2006. [Online; ac-
cessed 16-June-2008] http://www.microsoft.com/dynamics/product/
familiartoyourpeople.mspx.

111

http://encarta.msn.com/encyclopedia_761573959/Isaac_Newton.html
http://encarta.msn.com/encyclopedia_761573959/Isaac_Newton.html
http://www.microsoft.com/en/us/default.aspx
http://www.microsoft.com/en/us/default.aspx
http://www.intel.com/
http://www.britannica.com/EBchecked/topic/725876/Micro-Instrumentation-Telemetry-Systems
http://www.britannica.com/EBchecked/topic/725876/Micro-Instrumentation-Telemetry-Systems
http://www.softpanorama.org/People/Torvalds/Finland_period/xenix_microsoft_shortlived_love_affair_with_unix.shtml
http://www.softpanorama.org/People/Torvalds/Finland_period/xenix_microsoft_shortlived_love_affair_with_unix.shtml
http://www.softpanorama.org/People/Torvalds/Finland_period/xenix_microsoft_shortlived_love_affair_with_unix.shtml
http://www.microsoft.com/WINDOWS/
http://www.microsoft.com/WINDOWS/
http://www.forbes.com/lists/2007/18/biz_07forbes2000_The-Global-2000_Rank.html
http://www.forbes.com/lists/2007/18/biz_07forbes2000_The-Global-2000_Rank.html
http://www.microsoft.com/dynamics/product/familiartoyourpeople.mspx
http://www.microsoft.com/dynamics/product/familiartoyourpeople.mspx

BIBLIOGRAPHY

[15] wcigroup. Does your it strategy maximise the potential of your existing in-
vestments? [Online; accessed 9-June-2008] http://www.wcigroup.com/
Utilities/Microsoft+Stack/.

[16] Microsoft. Microsoft development center copenhagen - who we are, 2008. [Online;
accessed 9-June-2008] http://www.microsoft.com/danmark/om/mdcc/
introduction.mspx.

[17] Microsoft. Microsoft development center copenhagen - products, 2008. [Online;
accessed 9-June-2008] http://www.microsoft.com/danmark/om/mdcc/
products.mspx.

[18] Luis X. B. Mourão and David Weiner. Dynamics AX - A guide to Microsoft Axapta.
Microsoft Press, 2005. ISBN: 1-590-059489-4.

[19] Internet News. Microsoft to buy navision for $1.3 billion, May 2002. [On-
line; accessed 9-June-2008] http://www.internetnews.com/bus-news/
article.php/1038841.

[20] Hamdy A. Taha. Operations Research: An Introduction. Pearson/Prentice Hall,
2006. ISBN: 0-131-88923-0.

[21] Hamdy A. Taha. Operations Research: An Introduction. Prentice Hall, 1997.
ISBN: 0-132-72915-6.

[22] What about he ”o” in o.r.?, 2007. [Online; accessed 5-July-2008] http://www.
lionhrtpub.com/orms/orms-12-07/frqed.html.

[23] Anthony Hyman. Charles Babbage - Pioneer of the computer. Princeton University
Press, 1982.

[24] Charles Babbage. On the Economy of Machinery and Manufactures. Charles
Knight, Pall Mall East, 1832.

[25] Victorianweb. The penny post, October 2006. [Online; accessed 6-March-2008]
http://www.victorianweb.org/history/pennypos.html.

[26] Educause. The erp dilemma: ”plain vanilla” versus customer satisfaction, 2003.
[Online; accessed 9-June-2008] http://net.educause.edu/ir/library/
pdf/EQM0327.pdf.

[27] MSN Encarta. Albert einstein, 2008. [Online; accessed 12-June-
2008] http://encarta.msn.com/encyclopedia_761562147/Albert_
Einstein.html.

[28] Gazeta Mercantil. Microsoft lança programa financeiro, June 2008. [Online; ac-
cessed 16-June-2008] http://www.investnews.net/integraNoticia.
aspx?Param=606%2C0%2C+%2C1880772%2CUIOU.

[29] Rui Barbosa Martins. Base system architecture and constraints for a concurrent
managed constraint solver at microsoft. Technical report, Copenhagen, 2006.

112

http://www.wcigroup.com/Utilities/Microsoft+Stack/
http://www.wcigroup.com/Utilities/Microsoft+Stack/
http://www.microsoft.com/danmark/om/mdcc/introduction.mspx
http://www.microsoft.com/danmark/om/mdcc/introduction.mspx
http://www.microsoft.com/danmark/om/mdcc/products.mspx
http://www.microsoft.com/danmark/om/mdcc/products.mspx
http://www.internetnews.com/bus-news/article.php/1038841
http://www.internetnews.com/bus-news/article.php/1038841
http://www.lionhrtpub.com/orms/orms-12-07/frqed.html
http://www.lionhrtpub.com/orms/orms-12-07/frqed.html
http://www.victorianweb.org/history/pennypos.html
http://net.educause.edu/ir/library/pdf/EQM0327.pdf
http://net.educause.edu/ir/library/pdf/EQM0327.pdf
http://encarta.msn.com/encyclopedia_761562147/Albert_Einstein.html
http://encarta.msn.com/encyclopedia_761562147/Albert_Einstein.html
http://www.investnews.net/integraNoticia.aspx?Param=606%2C0%2C+%2C1880772%2CUIOU
http://www.investnews.net/integraNoticia.aspx?Param=606%2C0%2C+%2C1880772%2CUIOU

BIBLIOGRAPHY

[30] Nuno José Pinto Bessa de Melo Cerqueira. Search and propagation engine for a
concurrent managed constraint solver at microsoft. Technical report, Copenhagen,
2006.

[31] C.E. Miller, A.W. Tucker, and R.A. Zemlin. Integer programming formulation of
travelling salesman problems. ACM 7, pages 326–329, 1960.

[32] Alexandre Medeiros Rodrigues. Estratégias de picking na armazenagem. Instituto
COPPEAD de Administração, Centro de Estudos em Logı́stica, Rio de Janeiro,
1999.

[33] Paul Schönsleben. Integral Logistics Management: Planning & Control of Com-
prehensive Supply Chains. CRC Press, 2003. ISBN: 1-574-44355-0.

[34] Steve McConnell. Software Project Survival Guide. Microsoft Press, 1997. ISBN:
1-57231-621-7.

[35] Ian Sommerville. Software Engineering. Addison-Wesley, 8th edition, 2006. ISBN:
0-321-31379-8.

[36] Josef Kallrath. Modeling Languages in Mathematical Optimization. Kluwer Aca-
demic Publishers, Norwell, Masschusetts, 2005. ISBN: 1-4020-7547-2.

[37] Stefan Voß and David L. Woodruff. Introduction to Computational Optimization
Models for Production Planning in a Supply Chain. Springer, Berlin, Heidelberg,
2005. ISBN: 3-540-00023-2.

[38] Joaquim Rendeiro. Operations research modeling environment for an erp system.
Technical report, FEUP, Porto, 2008.

[39] Chris Sells and Ian Griffiths. Programming WPF. O’Reilly Media, Gravenstein
Highway North, Sebastopol, CA, 2005. ISBN: 0-596-10113-9.

[40] Waitley. Meet dr. denis waitley. [Online; accessed 12-June-2008] http://www.
waitley.com/Meet%20Denis%20Waitley.html.

[41] Hans J. Skovgaard and Arthur Greef. Inside Microsoft Dynamics AX 4.0. Microsoft
Press, Redmond, Washington, 2006. ISBN: 978-0-7356-2257-4.

[42] MSDN. X++ programming guide, 2008. [Online; accessed 7-July-2008] http:
//msdn.microsoft.com/en-us/library/aa867122.aspx.

[43] MSN Encarta. Linear programming, 2008. [Online; accessed 11-June-
2008] http://encarta.msn.com/encyclopedia_761560547/Linear_
Programming.html.

[44] German Vitaliy. Solving linear constraints over real, December 2006. [Online;
accessed 11-June-2008] http://www.risc.uni-linz.ac.at/projects/
intas/Timisoara/Presentations/German/Grman.pdf.

[45] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of Constraint Pro-
gramming. Elsevier, 2006. ISBN: 0-444-52726-5.

113

http://www.waitley.com/Meet%20Denis%20Waitley.html
http://www.waitley.com/Meet%20Denis%20Waitley.html
http://msdn.microsoft.com/en-us/library/aa867122.aspx
http://msdn.microsoft.com/en-us/library/aa867122.aspx
http://encarta.msn.com/encyclopedia_761560547/Linear_Programming.html
http://encarta.msn.com/encyclopedia_761560547/Linear_Programming.html
http://www.risc.uni-linz.ac.at/projects/intas/Timisoara/Presentations/German/Grman.pdf
http://www.risc.uni-linz.ac.at/projects/intas/Timisoara/Presentations/German/Grman.pdf

BIBLIOGRAPHY

[46] ILog Changing the rules of business. Ilog cplex, 2008. [Online; accessed 12-June-
2008] http://www.ilog.com/products/cplex/.

[47] ILOG. Model development, 2008. [Online; accessed 3-July-2008] http://www.
ilog.com/products/model_development/.

[48] Maximal USA. Mpl modeling system - introducing mpl for windows 4.2, 2002.
[Online; accessed 9-June-2008] http://www.maximal-usa.com/mpl/.

[49] Maximal-USA. Mpl manual - table of contents, 2003. [Online; accessed 14-June-
2008] http://www.maximal-usa.com/mplman/mplwtoc.html.

[50] AIMMS. Aimms, world leader in optimization modeling, 2008. [Online; accessed
14-June-2008] http://www.aimms.com/aimms/index.cgi.

[51] AIMMS. Aimms - the language reference, may 2008. [Online; accessed 14-June-
2008] http://www.aimms.com/aimms/download/manuals/AIMMS3_
LR.pdf.

[52] AMPL. What’s ampl?, April 2008. [Online; accessed 14-June-2008] http://
www.ampl.com/.

[53] OptiRisk Systems. Ampl studio. [Online; accessed 17-June-2008] http://www.
optirisk-systems.com/products_amplstudio.asp.

[54] Bezalel Gavish and Stephen C. Graves. The travelling salesman problem and re-
lated problems. Technical report, Massachusetts Institute of Technology, Boston,
1978.

[55] Peter Brucker. Scheduling Algorithms. Spring, Berlin, Heidelberg, 2007. ISBN:
978-3-540-69515-8.

[56] W3C Math Home. What is mathml?, May 2008. [Online; accessed 9-June-2008]
http://www.w3.org/Math/.

[57] Microsoft. Microsoft math, 2008. [Online; accessed 16-June-2008] http://
www.microsoft.com/math/default.mspx.

[58] Microsoft Corporation. Microsoft math sdk manual. 2006.

[59] Msdn. Introducing the office (2007) open xml file formats, 2008. [Online;
accessed 9-June-2008] http://msdn.microsoft.com/en-us/library/
aa338205.aspx.

[60] BNET. Pkware releases new zip file format specification, June 2008. [On-
line; accessed 9-June-2008] http://findarticles.com/p/articles/mi_
m0EIN/is_2001_Dec_5/ai_80555082.

[61] The World Wide Web Consortium. Extensible markup language (xml). [Online;
accessed 6-July-2008] http://www.w3.org/XML.

[62] Microsoft. Microsoft office online, 2008. [Online; accessed 16-June-2008]
office.microsoft.com.

114

http://www.ilog.com/products/cplex/
http://www.ilog.com/products/model_development/
http://www.ilog.com/products/model_development/
http://www.maximal-usa.com/mpl/
http://www.maximal-usa.com/mplman/mplwtoc.html
http://www.aimms.com/aimms/index.cgi
http://www.aimms.com/aimms/download/manuals/AIMMS3_LR.pdf
http://www.aimms.com/aimms/download/manuals/AIMMS3_LR.pdf
http://www.ampl.com/
http://www.ampl.com/
http://www.optirisk-systems.com/products_amplstudio.asp
http://www.optirisk-systems.com/products_amplstudio.asp
http://www.w3.org/Math/
http://www.microsoft.com/math/default.mspx
http://www.microsoft.com/math/default.mspx
http://msdn.microsoft.com/en-us/library/aa338205.aspx
http://msdn.microsoft.com/en-us/library/aa338205.aspx
http://findarticles.com/p/articles/mi_m0EIN/is_2001_Dec_5/ai_80555082
http://findarticles.com/p/articles/mi_m0EIN/is_2001_Dec_5/ai_80555082
http://www.w3.org/XML
office.microsoft.com

BIBLIOGRAPHY

[63] MSDN. Welcome to the open xml format sdk 1.0, 2008. [Online; accessed 6-
July-2008] http://msdn.microsoft.com/en-us/library/bb448854.
aspx.

[64] Ecma International. Office open xml file format. Ecma International, pages 11–15.

[65] MSDN. About the open xml format sdk 1.0, 2008. [Online; accessed 6-July-2008]
http://msdn.microsoft.com/en-us/library/bb456487.aspx.

[66] MSDN. .net framework, 2008. [Online; accessed 9-June-2008] http://msdn.
microsoft.com/en-us/netframework/default.aspx.

[67] Java. Java, 2008. [Online; accessed 9-June-2008] http://www.java.com.

[68] Ken Arnold and James Gosling. The Java Programming Language. Addison-
Wesley, 1998. ISBN: 0-201-31006-6.

[69] Andrew Troelsen. Pro C# 2008 and the .NET 3.5 Platform. Apress, 2007. ISBN:
978-1-59059-884-9.

[70] Jesse Liberty. Programming C#: Building .NET Applications with C#. O’Reilly,
2005. ISBN: 978-0-596-00699-0.

[71] Robert Pickering. Foundation of F#. Apress, 2007. ISBN: 978-1-59059-757-6.

[72] Don Syme, Adam Granicz, and Antonio Cisternino. Expert F#. Apress, 2007.
ISBN: 978-1-59059-850-4.

[73] Kenneth C. Louden. Compiler Construction: Principles and Practice. PWS Pub-
lishing Company, Boston, 1997. ISBN: 978-3-540-69515-8.

[74] Wikipedia. Compiler compiler, June 2008. [Online; accessed 28-June-2008]
http://en.wikipedia.org/wiki/Compiler_compiler.

[75] What is antlr?, 2008. [Online; accessed 5-July-2008] http://www.antlr.
org/.

[76] Doug Brown, John Levine, and Tony Mason. lex & yacc. O’Reilly, 1992. ISBN:
978-1-56592-000-7.

[77] Microsoft Research. Phoenix academic program, 2007. [Online; accessed 11-June-
2008] http://research.microsoft.com/Phoenix/.

[78] Lars Powers and Mike Snell. Microsoft Visual Studio 2008 Unleashed. Pearson
Educationy, Boston, 2008. ISBN: 978-0-672-32972-2.

[79] MSN Encarta. Leonardo da vinci, 2008. [Online; accessed 12-June-2008]
http://encarta.msn.com/encyclopedia_761561520/Leonardo_
da_Vinci.html.

[80] Peter Naur. Revised report on the algorithmic language algol 60. Technical report,
ACM, 1962.

115

http://msdn.microsoft.com/en-us/library/bb448854.aspx
http://msdn.microsoft.com/en-us/library/bb448854.aspx
http://msdn.microsoft.com/en-us/library/bb456487.aspx
http://msdn.microsoft.com/en-us/netframework/default.aspx
http://msdn.microsoft.com/en-us/netframework/default.aspx
http://www.java.com
http://en.wikipedia.org/wiki/Compiler_compiler
http://www.antlr.org/
http://www.antlr.org/
http://research.microsoft.com/Phoenix/
http://encarta.msn.com/encyclopedia_761561520/Leonardo_da_Vinci.html
http://encarta.msn.com/encyclopedia_761561520/Leonardo_da_Vinci.html

BIBLIOGRAPHY

[81] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers - Principles, Tech-
niques and Tools. Addison-Wesley Publishing Company, Stanford, California,
1986. ISBN: 0-201-10194-7.

[82] MPL. Mpl for windows manual, 2003. [Online; accessed 11-April-2008] http:
//www.maximal-usa.com/mplman/mplw6/mpw06000.html.

[83] Starwars. Yoda, 2008. [Online; accessed 14-June-2008] http://www.
starwars.com/databank/character/yoda/.

[84] Rational Unified Process. Best practices for software development teams,
November 2001. [Online; accessed 17-June-2008] http://www.ibm.com/
developerworks/rational/library/content/03July/1000/1251/
1251_bestpractices_TP026B.pdf.

[85] Philippe Kruchten. Architectural blueprints - the ”4+1” view model of software
architecture. Technical report, Rational Software Corp., November 1995.

[86] Veer Muchandi. Applying 4+1 view architecture with uml 2 - white paper. Tech-
nical report, First FCG - Software Services, 2007.

[87] Wikipedia. Interpreter (computing), June 2008. [Online; accessed 16-June-2008]
http://en.wikipedia.org/wiki/Interpreter_%28computing%29.

[88] James W. Cooper. C# Design Patterns - A tutorial. Addison-Wesley, 2003. ISBN:
0-201-84453-2.

[89] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 2001.
ISBN: 0-201-63361-2.

[90] Judith Bishop. C# 3.0 Design Patterns. O’Reilly, 2007. ISBN: 978-0-596-52773-0.

[91] Regular-Expressions. Welcome to regular-expressions.info, August 2007. [Online;
accessed 25-June-2008] http://www.regular-expressions.info/.

[92] Msdn Visual C# Developer Center. The c# language, 2008. [Online; accessed 25-
June-2008] http://msdn.microsoft.com/en-us/vcsharp/aa336809.
aspx.

[93] IEEE Standards Board. Ieee standard glossary of software engineering terminol-
ogy. Technical report, IEEE, New York, 1990.

[94] James W. Newkirk and Alexei A. Vorontsov. Test-Driven Development in Microsoft
.NET. Microsoft Press, 2004. ISBN: 978-0-735-61948-7.

[95] Agile Data. Introduction to test driven design (tdd), March 2007. [Online; accessed
14-June-2008] http://www.agiledata.org/essays/tdd.html.

[96] Kent Beck. Test-Driven Development - By Example. Addison-Wesley, 2002. ISBN:
0-321-14653-0.

116

http://www.maximal-usa.com/mplman/mplw6/mpw06000.html
http://www.maximal-usa.com/mplman/mplw6/mpw06000.html
http://www.starwars.com/databank/character/yoda/
http://www.starwars.com/databank/character/yoda/
http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://en.wikipedia.org/wiki/Interpreter_%28computing%29
http://www.regular-expressions.info/
http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx
http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx
http://www.agiledata.org/essays/tdd.html

BIBLIOGRAPHY

[97] Msdn. Guidelines for test-driven development, May 2006. [Online;
accessed 14-June-2008] http://msdn.microsoft.com/en-us/library/
aa730844(VS.80).aspx.

[98] AutomatedQA. Testcomplete - regression testing, 2008. [Online; accessed
14-June-2008] http://automatedqa.com/products/testcomplete/
tc_regression_testing.asp.

[99] Better Exaplined. A visual guide to version control, 2007. [On-
line; accessed 14-June-2008] http://betterexplained.com/articles/
a-visual-guide-to-version-control/.

[100] Perforce. Perforce software, 2008. [Online; accessed 6-July-2008] http://www.
perforce.com/.

[101] Microsoft. Team Development with Visual Studio Team Foundation Server. Mi-
crosoft Press.

[102] Joel Spolsky. More Joel on Software. Apress, 2008. ISBN: 978-1-4302-0987-4.

[103] Joel Spolsky. Daily builds are your friend, January 2001. [Online; accessed 6-July-
2008] http://www.joelonsoftware.com/articles/fog0000000023.
html.

[104] Steve McConnell. Best practices: Daily build and smoke test. IEEE Software, 4,
July 1996.

[105] Leena Singh and Leonard Drucker. Advanced Verification Techniques. Springer,
2004. ISBN: 978-1-4020-7672-5.

[106] MSN Encarta. Fernando antonio nogueira pessoa, June 2008. [On-
line; accessed 14-June-2008] http://encarta.msn.com/encyclopedia_
762506694/Pessoa_Fernando_Antonio_Nogueira.html.

[107] Elfriede Dustin. Effective Software Testing: 50 Specific Ways to Improve Your
Testing. Addison-Wesley, Boston, 2003. ISBN: 0-201-79429-2.

[108] Why you only need to test with 5 users, march 2000. [Online; accessed 5-July-
2008] http://www.useit.com/alertbox/20000319.html.

[109] Wikipedia. Emmett brown, June 2008. [Online; accessed 15-June-2008] http:
//en.wikipedia.org/wiki/Doc_Brown.

117

http://msdn.microsoft.com/en-us/library/aa730844(VS.80).aspx
http://msdn.microsoft.com/en-us/library/aa730844(VS.80).aspx
http://automatedqa.com/products/testcomplete/tc_regression_testing.asp
http://automatedqa.com/products/testcomplete/tc_regression_testing.asp
http://betterexplained.com/articles/a-visual-guide-to-version-control/
http://betterexplained.com/articles/a-visual-guide-to-version-control/
http://www.perforce.com/
http://www.perforce.com/
http://www.joelonsoftware.com/articles/fog0000000023.html
http://www.joelonsoftware.com/articles/fog0000000023.html
http://encarta.msn.com/encyclopedia_762506694/Pessoa_Fernando_Antonio_Nogueira.html
http://encarta.msn.com/encyclopedia_762506694/Pessoa_Fernando_Antonio_Nogueira.html
http://www.useit.com/alertbox/20000319.html
http://en.wikipedia.org/wiki/Doc_Brown
http://en.wikipedia.org/wiki/Doc_Brown

BIBLIOGRAPHY

118

Appendix A

Survey Questions

Questions

Question 1 - Career Path? (Choose one)

• Developer

• Tester

• Program Manager

Question 2 - What was your field of study? (Choose one)

• Computer Science

• Mathematics

• Engineering

• Other

Question 3 - What program did you take? (Choose one)

• Undergratuate

• Master

• PhD

• Other

Question 4 - Did you, during your education, have had any contact with the Operations
Research subject? (Choose one)

• Yes (go to question 5)

• No (go to question 6)

119

Survey Questions

Question 5 - Have you ever experimented an optimization modeling language? (e.g. OML,
MPL, AIMMS) (Choose one)

• Yes (go to question 5b)

• No (go to question 6)

Question 5b - Which ones? (e.g. OML, MPL, AIMMS) (Choose the ones that apply)

• NL (OML)

• OPL

• AIMMS

• AMPL

• MPL

• GAMS

• Other

Question 5c - What do you think that are the most important things in such languages?
(Choose the ones that apply)

• Functions Available

• Ease of writting

• Data-binding Mechanisms

• Good Documentation

• Solver Independence

• Other

Question 5d - What do you think that are the most important in an IDE for such languages?
(Choose the ones that apply)

• Syntax Highlight

• Good Error Feedback

• Autocompletion Mechanisms

• Other

Question 6 - Do you think an Optimization language within the Dynamics AX product for
problem modeling would be an advantage in regard to the methods used now? (Choose one)

• Yes

• No

120

Survey Questions

Question 7 - Which Persona, in the MBS customer model, do you think that could benefit the
most from such facility? (Free text)

Results

This survey served the purpose of getting some feedback on the different points of the
project and provide some new information and opinios. It was therefore, narrowed to a
small sample of 10 persons.

Question 1

These are question’s 1 results. Looking at them, it is clear the the majority of the answers
were taken from developers. The fact that there aren’t any PM answers has to do with the
fact that it wasn’t possible to send the survey to one.

Figure A.1: Question 1 answers

Question 2

Question 2 showed that the majority of the interviewed had a computer science back-
ground.

121

Survey Questions

Figure A.2: Question 2 answers

Question 3

Question 3 showed that we’re interviewing, mostly, persons with a masters degree which
is important information considering the next following questions.

Figure A.3: Question 3 answers

Question 4

Question 4 showed that most of the persons have had some contact with the operations
research topic during their education. These kind of persons should be able to use the
ORML language with little effort.

122

Survey Questions

Figure A.4: Question 4 answers

Question 5

Question showed that, although many people have had contact with operations research,
this was probably a more theorical contact with the algorithms and processes and not with
the environments. Thus, the adaptation the the ORML language can be harder for the
ones who haven’t tried any.

Figure A.5: Question 5 answers

Question 5b

From the ones that have tried one modeling language, NL is clearly the most used one,
mainly because this is the language that the Microsoft Solver Foundation team promoted.
Other than this, the OPL language was also apointed.

123

Survey Questions

Figure A.6: Question 5b answers

Question 5c

This and the following questions prooved that users want all sort of features that they are
already used to and take for granted. The introduction of a new technology that doesn’t
address all this issues will probably be frustrated.

Figure A.7: Question 5c answers

124

Survey Questions

Question 5d

Figure A.8: Question 5d answers

Question 6

Question 6 was, in a certain way, a surprise. It showed that everyone, from the enquired,
agreed that a language like ORML with the specific details, including the data-binding
mechanisms, to the Dynamics AX product, would be an advantage for the it.

Figure A.9: Question 6 answers

125

Survey Questions

Question 7

Although the interest was clear, there wasn’t a clear definition on who could use this
feature. On the other hand, this may show that the usage is transversal and may reach all
sorts of users.

Figure A.10: Question 7 answers

126

Appendix B

Project Requirements

ORML Interpreter Features List

Perform Lexical Analysis (Int-UC01)

Purpose Identify the different types of tokens in a source code text.

Inputs The source code text.

Processing Use regular expressions to identify the different types of tokens and supply
them to the Syntax Analyzer.

Outputs The meaningful types of tokens identified.

Priority High

Perform Syntax Analysis and AST construcion (Int-UC02)

Purpose Match the identified tokens against the specific language grammar rules and
produce an AST.

Inputs Types of tokens, identified one by one, or the termination character when there
is no more token to be processed.

Processing Match identified token sequences against the specific grammar rules in a
bottom-up approach.

Outputs An AST that fully represents the code processed.

Priority High

127

Project Requirements

Perform Semantic Analysis (Int-UC03)

Purpose Add semantic information to the parse tree and builds the symbol table. This
phase performs semantic checks such as type checking (checking for type errors), or
object binding (associating variable and function references with their definitions), or
definite assignment (requiring all local variables to be initialized before use), rejecting
incorrect programs or issuing warnings.

Inputs The AST that was previously build by the parser.

Processing Create the semantic table to represent the different symbols in the AST, as
well as, doing the required checking and signaling the errors to the specific handlers.

Outputs A symbols table and, if it is the case, the identified warnings/errors.

Priority High

Interpret Model (Int-UC04)

Purpose Translate the AST and symbols table into instructions and actually process
them in order to obtain the results for the model.

Inputs The previously built AST and symbols table.

Processing Navigate through the AST using the symbols table and translating them to
instructions.

Outputs The model results or, otherwise, a list of warnings/errors.

Priority High

Color Highlight service (Int-UC05)

Purpose Identify the different types of tokens within a text to be processed.

Inputs String with the source code to be processed.

Processing Process the input text through the scanner to identify the different types of
tokens.

Outputs List of identified tokens together with their classification.

Priority Medium

128

Project Requirements

Autocomplete service (Int-UC06)

Purpose Based on some current input text supplied by the user through the IDE identify
possible future sequences of characters. It speeds up software development by reducing
the amount of name memorization needed and keyboard input required. It also allows for
less reference to external documentation as interactive documentation on many symbols
(i.e. variables and functions).

Inputs Current user’s input.

Processing Based on the input, using the possible tokens to be formed and possible
grammar rules, identify future code possibilities.

Outputs A list of code possibilities to predict a word or phrase that the user wants to
type in without actually having to type it in completely.

Priority Low

Export model to MathML (Int-UC07)

Purpose Export an ORML model to the MathML document format.

Inputs The ORML model text.

Processing Convert the ORML model to the MathML format section by section and then
to a single file.

Outputs An MathML document that corresponds to the original ORML model.

Priority Medium

Export model to OMML (Int-UC08)

Purpose Export an ORML model to the OMML document format.

Inputs The ORML model text.

Processing Convert the ORML model to the MathML format section by section and
then convert each of the sections to OMML using the correspondent office’s XSLT. If the
desired output is a file, use the OpenXML library to write the results.

Outputs An OMML document that corresponds to the original ORML model.

Priority Medium

129

Project Requirements

130

Appendix C

Project Schedule

Figure C.1: Project Schedule

131

Project Schedule

132

Appendix D

Microsoft Math Supported Formats

Format Description
Formula This format is not very human-readable, but best for ma-

chine processing and unit test. The meaning of an expres-
sion is precise, there is no need for parentheses, and it’s easy
to parse. While other serializers may contain little tweaks
to make the UI component work as expected, this format
doesn’t change often because no real UI uses it. Example:
Sum[1,Divide[2,x]]

InvariantFormula Similar to Formula, except the variables are in the for-
mat of Var(0), Var(1), ... instead of in their names.
Used in serialization only (CasContext.FormatOptions) but
not in parsing (CasContext.ParsingOptions). Example:
Sum[1,Divide[2,Var(0)]]

FormulaWithoutAggregate Similar to Formula, except the aggregates (grouping paren-
theses) are silently removed during serialization. The
primary usage for this format is in internal test cases.
When used in parsing, it’s identical to Formula. Example:
Sum[1,Divide[2,x]]

Linear This format is the most human-readable one. Can be used
in command line applications or application that accept and
displays linear syntax. Also, the RichEdit wrapper returns
linear syntax and it should be parsed with Linear format type.
Example: 1+2/x

LinearInput This format is similar to linear format, but during serializa-
tion it uses ASCII characters only (except for variable named
specified by the user) and can roundtrip back to the linear
parser. When used in parsing it’s identical to Linear.

133

Microsoft Math Supported Formats

MathML The standard MathML format. Note that the
math engine can only parse a subset of the syn-
tax in the MathML specification. Example:
<math><mn>1</mn><mo>+</mo><mfrac><mn>2</mn>
<mi>x</mi></mfrac></math>

MathMLNoWrapper Same as MathML, except this format type won’t
generate the root element ¡math¿. Used in seri-
alization only (CasContext.FormatOptions) but not
in parsing (CasContext.ParsingOptions). Example:
<mn>1</mn><mo>+</mo><mfrac><mn>2</mn><mi>x</mi>
</mfrac>

InlineMathRichEdit This format type is for the RichEdit wrapper to render math
in RichEdit. It’s same with MathRichEdit format with one
exception: fractions are rendered horizontally instead of
vertically. This is a better choice if the display area is
confined with a small height. Used in serialization only
(CasContext.FormatOptions) but not in parsing (CasCon-
text.ParsingOptions). Example: 1 + x/(2 a)

Binary The most compact format. Uses binary data. Like Format, it
guarantees roundtrip between parsing and serialization.

InvariantBinary Similar to Binary, except variableIds are used instead of vari-
able name.

Base64 This is the base-64 encoded Binary format.
InvariantBase64 This is the base-64 encoded InvariantBinary format.

Table D.1: Microsoft Math Engine Supported Formats

134

Appendix E

Language Definition

The lexical grammar will be presented using regular expressions. By using them in a
scanner generator tool, it is possible to generate a scanner that will successfully identify
the different grammar productions in the language. For the syntactic grammar, grammar
productions will be used. Each grammar production defines a non-terminal symbol and
the possible expansions of that non-terminal symbol into sequences of non-terminal and
terminal symbols. In grammar productions, non-terminal symbols are shown in italic
type, and terminal symbols are shown in a fixed-width font.
The first terminal line of a grammar production is the name of the non symbol being de-
fined, followed by a colon. Each successive indented line contains a possible expansion
of the non-terminal given as a sequence of non-terminal or terminal symbols.
When there is more than one possible expansion of a non-terminal symbol, the alterna-
tives are listed on separate lines. For example, the production:

1 s t a t e m e n t− l i s t :
2 s t a t e m e n t s t a t e m e n t− l i s t
3 s t a t e m e n t

defines a statement-list that either consists of a statement or a statement followed by a
statement-list.

Lexical Grammar

Line Terminators

A line terminator can be a Line feed character (U+000A); a Carriage return charac-
ter (U+000D); a Carriage return character (U+000D), followed by line feed character
(U+000A); a Next line character (U+0085); a Form feed character (U+000C); Line sep-
arator character (U+2028) or a Paragraph separator character (U+2029). The equivalent
regular expression is:

1 [\U000A\U000D\U0085\U000C\U2028\U2029] | \U000D\U000A

135

Language Definition

White Spaces

A white space is defined as a space character, a horizontal tab character, a vertical tab
character or a form feed character. The corresponding regular expression:

1 [\ t \ f \v]

Comments

For the two types of comments available (single-line comments and delimited comments),
the regular expression translates into:

1 C m n t S t a r t \ /\∗
2 CmntEnd \∗\ /
3 ABStar [ˆ\∗\ n]∗
4
5 \ / \ / . ∗
6 {C m n t S t a r t }{ABStar }\∗∗{CmntEnd}
7 {C m n t S t a r t }{ABStar }\∗∗
8 <COMMENT>\n
9 <COMMENT>{ABStar}\∗∗

10 <COMMENT>{ABStar }\∗∗{CmntEnd}

Tokens

For the different types of tokens, these are the regular expressions:

Identifiers

[language=none]

1 l e t t e r [A−Za−z]
2 d i g i t [0−9]
3 (| { l e t t e r }) ∗{ l e t t e r } (| { l e t t e r } |{ d i g i t }) ∗

Keywords

ORML’s keyword can be expressed by the following regular expressions:

1 I n t e g e r
2 Rea l
3 S t r i n g
4 Model
5 V a r i a b l e s
6 C o n s t r a i n t s
7 I n p u t s
8 I n d e x e s
9 O u t p u t s

10 T a b l e s
11 Views
12 C l a s s e s
13 i n
14 I n f i n i t y
15 where
16 Sum

136

Language Definition

17 Count
18 Max
19 E x i s t s
20 Abs
21 Unequal
22 Minimize
23 Maximize

Literals

ORML’s literals can be expressed by the following regular expressions:
1 d i g i t [0−9]
2 0 | [1−9]{ d i g i t }∗
3 ([1−9]{ d i g i t }∗) \ .
4 \ . ({ d i g i t }∗[1−9])
5 [1−9]{ d i g i t }∗\ . ({ d i g i t }∗[1−9])

Operators and Punctuators

ORML’s operators and punctuators can be described by the following regular expressions:
1 /∗ P u n c t u a t i o n t o k e n s ∗ /
2 ; / / Semi c o l o n
3 , / / Comma
4 : / / Colon
5 \ . / / Dot
6 \ . \ . / / Double Dot
7 \ [/ / L e f t b r a c k e t
8 \] / / R i g h t b r a c k e t
9 \ (/ / L e f t P a r e n t h e s e s

10 \) / / R i g h t P a r e n t h e s e s
11 \{ / / L e f t Cur ly Brace
12 \} / / R i g h t Cur ly Brace
13 \ | / / P ipe
14 /∗ A r i t h m e t i c o p e r a t o r t o k e n s ∗ /
15 \+ / / O p e r a t o r P l u s
16 − / / O p e r a t o r Minus
17 \∗ / / O p e r a t o r M u l t i p l i c a t i o n
18 \ / / / O p e r a t o r D i v i s i o n
19 \% / / O p e r a t o r Module
20
21 /∗ Compare o p e r a t o r t o k e n s ∗ /
22 != / / O p e r a t o r Not Equal
23 == / / O p e r a t o r Eq ua l s
24 \>= / / O p e r a t o r Equal o r G r e a t e r Than
25 \<= / / O p e r a t o r Equal o r Less Than
26 \> / / O p e r a t o r G r e a t e r Than
27 \< / / O p e r a t o r Less Than
28 \ ˆ / / O p e r a t o r Power
29
30 /∗ Boolean o p e r a t o r t o k e n s ∗ /
31 \&\& / / B i na ry O p e r a t o r And
32 \ | \ | / / B i na r y O p e r a t o r Or
33
34 /∗ S p e c i a l o p e r a t o r t o k e n s ∗ /
35 = / / O p e r a t o r A t t r i b u t i o n

137

Language Definition

Grammar Rules

An ORML model’s general structure can be described by the following rules:

1 Mode lS ta t emen t :
2 Model { NamedS ta t emen tL i s t }
3 Model (P a r a m e t e r D e c l a r a t i o n L i s t) { NamedS ta t emen tL i s t }
4
5 NamedS ta t emen tL i s t :
6 NamedStatement NamedS ta t emen tL i s t
7 NamedStatement
8
9 NamedStatement :

10 I n d e x S e c t i o n S t a t e m e n t
11 I n p u t S e c t i o n S t a t e m e n t
12 V a r i a b l e S e c t i o n S t a t e m e n t
13 F u n c t i o n S e c t i o n S t a t e m e n t
14 C o n s t r a i n t S e c t i o n S t a t e m e n t
15 O u t p u t S e c t i o n S t a t e m e n t
16
17 P a r a m e t e r D e c l a r a t i o n L i s t :
18 P a r a m e t e r D e c l a r a t i o n , P a r a m e t e r D e c l a r a t i o n L i s t
19 P a r a m e t e r D e c l a r a t i o n

Indexes

An Index section can be described by the following grammar rules:

1 I n d e x S e c t i o n S t a t e m e n t :
2 Index : I n d e x D e c l a r a t i o n D e c l s
3
4 I n d e x D e c l a r a t i o n D e c l s :
5 I n d e x D e c l a r a t i o n ; I n d e x D e c l a r a t i o n D e c l s
6 I n d e x D e c l a r a t i o n ;
7
8 I n d e x D e c l a r a t i o n :
9 I d e n t i f i e r = AxaptaRecord / / d a t a b a s e i n d e x

10 I d e n t i f i e r = S e t E x p r e s s i o n / / numer ic and named i n d e x e s

An axapta record can be expressed in the following way:

1 AxaptaRecord :
2 T a b l e s . I d e n t i f i e r . I d e n t i f i e r
3 Views . I d e n t i f i e r . I d e n t i f i e r
4 C l a s s e s . I d e n t i f i e r . I d e n t i f i e r
5 C l a s s e s . I d e n t i f i e r (E x p r e s s i o n L i s t) . I d e n t i f i e r

Concerning the set expressions, their syntax is defined as follows:

1 S e t E x p r e s s i o n :
2 { S e q u e n c e E l e m e n t L i s t }
3 [I n t e g e r . . I n t e g e r]
4 [I n t e g e r , I n t e g e r]
5
6 S e q u e n c e E l e m e n t L i s t :
7 SequenceElement , S e q u e n c e E l e m e n t L i s t
8 SequenceElement
9

10 SequenceElement :

138

Language Definition

11 L i t e r a l
12
13 L i t e r a l :
14 I n t e g e r
15 Rea l
16 S t r i n g

Inputs

An input section may be described by the following grammar rules:

1 I n p u t S e c t i o n S t a t e m e n t :
2 I n p u t : I n p u t D e c l a r a t i o n D e c l s
3
4 I n p u t D e c l a r a t i o n D e c l s :
5 I n p u t D e c l a r a t i o n ; I n p u t D e c l a r a t i o n D e c l s
6 I n p u t D e c l a r a t i o n ;
7
8 I n p u t D e c l a r a t i o n :
9 I d e n t i f i e r = AxaptaRecord

10 I d e n t i f i e r = AxaptaRecord [AxaptaRecordColumnLis t]
11 I d e n t i f i e r = S e t E x p r e s s i o n
12 I d e n t i f i e r = E x p r e s s i o n
13 I d e n t i f i e r [I n d e n t i f i e r L i s t]= S e t E x p r e s s i o n
14 I d e n t i f i e r [I n d e n t i f i e r L i s t]= E x p r e s s i o n
15
16 I d e n t i f i e r L i s t :
17 I d e n t i f i e r , I d e n t i f i e r L i s t
18 I d e n t i f i e r
19
20 AxaptaRecordColumnLis t :
21 AxaptaRecordColumn , AxaptaRecordColumnLis t
22 AxaptaRecordColumn
23
24 AxaptaRecordColumn :
25 I d e n t i f i e r == I d e n t i f i e r
26 I d e n t i f i e r

Variables

A Variables section may be described by the following grammar rules:

1 V a r i a b l e S e c t i o n S t a t e m e n t :
2 V a r i a b l e s : V a r i a b l e D e c l a r a t i o n D e c l s
3
4 V a r i a b l e D e c l a r a t i o n D e c l s :
5 V a r i a b l e D e c l a r a t i o n ; V a r i a b l e D e c l a r a t i o n D e c l s
6 V a r i a b l e D e c l a r a t i o n ;
7
8 V a r i a b l e D e c l a r a t i o n : ValueType i n I n t e r v a l : V a r i a b l e L i s t
9

10 ValueType :
11 I n t e g e r
12 F l o a t
13
14 I n t e r v a l :
15 [E x p r e s s i o n . . E x p r e s s i o n]

139

Language Definition

16 [E x p r e s s i o n , E x p r e s s i o n]

Notice that the interval definition grammar for the variables is less strict than the one
in the index declaration because, here, the user may want to use data already declared or
compose expressions. The ORML grammar also supports multiple variable declarations
in one line. The grammar that supports this can be described as follows:

1 V a r i a b l e L i s t :
2 V a r i a b l e , V a r i a b l e L i s t
3 V a r i a b l e
4
5 V a r i a b l e :
6 I d e n t i f i e r
7 I d e n t i f i e r [I d e n t i f i e r L i s t]

Functions

A functions section may be described by the following grammar rules:
1 F u n c t i o n S e c t i o n S t a t e m e n t :
2 Goal : E x p r e s s i o n ;
3
4 Goal :
5 Maximize
6 Minimize

Constraints

A constraints section may be described by the following grammar rules:
1 C o n s t r a i n t S e c t i o n S t a t e m e n t :
2 C o n s t r a i n t s : C o n s t r a i n t D e c l s
3
4 C o n s t r a i n t D e c l a r a t i o n D e c l s :
5 C o n s t r a i n t D e c l a r a t i o n ; C o n s t r a i n t D e c l a r a t i o n D e c l s
6 C o n s t r a i n t D e c l a r a t i o n ;
7
8 C o n s t r a i n t D e c l a r a t i o n :
9 B o o l e a n E x p r e s s i o n

10 B o o l e a n E x p r e s s i o n Where (S e t E x p r e s s i o n L i s t)
11 B o o l e a n E x p r e s s i o n Where (S e t E x p r e s s i o n L i s t | B o o l e a n E x p r e s s i o n)
12
13 S e t E x p r e s s i o n L i s t :
14 S e t E x p r e s s i o n , S e t E x p r e s s i o n L i s t
15 S e t E x p r e s s i o n
16
17 S e t E x p r e s s i o n :
18 I d e n t i f i e r i n I d e n t i f i e r
19 I d e n t i f i e r i n I n t e r v a l
20
21 L o c a t i o n :
22 I d e n t i f i e r
23 I d e n t i f i e r [E x p r e s s i o n L i s t]
24 AxaptaRecord
25
26 E x p r e s s i o n L i s t :
27 E x p r e s s i o n , E x p r e s s i o n L i s t

140

Language Definition

28 E x p r e s s i o n

Expressions

This section describes ORML expression’s grammar rules:

Calls

An ORML’s call may be defined by the following grammar rules:
1 C a l l :
2 Count (L o c a t i o n)
3 Max (L o c a t i o n)

Boolean Expression

An ORML’s boolean expression may be defined by the following grammar rules:
1 B o o l e a n E x p r e s s i o n :
2 B o o l e a n E x p r e s s i o n && B o o l e a n E x p r e s s i o n
3 B o o l e a n E x p r e s s i o n | | B o o l e a n E x p r e s s i o n
4 C o m p a r i s o n E x p r e s s i o n

Comparison Expression

An ORML’s comparison expression may be defined by the following grammar rules:
1 C o m p a r i s o n E x p r e s s i o n :
2 E x p r e s s i o n == E x p r e s s i o n
3 E x p r e s s i o n != E x p r e s s i o n
4 E x p r e s s i o n >= E x p r e s s i o n
5 E x p r e s s i o n <= E x p r e s s i o n
6 E x p r e s s i o n > E x p r e s s i o n
7 E x p r e s s i o n < E x p r e s s i o n

Arithmetic and other expressions

Other types of ORML’s expressions, including arithmetics, may be described by the fol-
lowing rules:

1 E x p r e s s i o n :
2 L i t e r a l
3 L o c a t i o n
4 C a l l
5 (E x p r e s s i o n)
6 − E x p r e s s i o n
7 E x p r e s s i o n + E x p r e s s i o n
8 E x p r e s s i o n − E x p r e s s i o n
9 E x p r e s s i o n ∗ E x p r e s s i o n

10 E x p r e s s i o n / E x p r e s s i o n
11 E x p r e s s i o n % E x p r e s s i o n
12 Sum (S e t E x p r e s s i o n L i s t ; E x p r e s s i o n)
13 Sum (S e t E x p r e s s i o n L i s t | B o o l e a n E x p r e s s i o n ; E x p r e s s i o n)

141

Language Definition

142

Appendix F

Modeling Optimization Problems in
Microsoft Dynamics AX

F.1 Traveling Salesman

1 Model (I n t e g e r NewPath) {
2 I n d e x e s :
3 C i t i e s = T a b l e s . C i t i e s . i d ;
4 I n p u t s :
5 C o s t s = T a b l e s . P a t h s . c o s t [from , t o] ;
6 NumCit ies = Count (C i t i e s) ;
7 V a r i a b l e s :
8 I n t e g e r i n [0 . . 1] Pa thFromCi tyToCi ty [C i t i e s , C i t i e s] ;
9 I n t e g e r i n [0 . . NumCities −1] S e q u e n c e C i t y V i s i t e d [C i t i e s] ;

10 Minimize :
11 Sum(i i n C i t i e s ; Sum(j i n C i t i e s | i != j ; C o s t s [i , j] ∗

Pa thFromCi tyToCi ty [i , j])) ;
12 C o n s t r a i n t s :
13 Sum(j i n C i t i e s | i != j ; Pa thFromCi tyToCi ty [i , j]) == 1 where (i i n C i t i e s

) ;
14
15 Sum(i i n C i t i e s | i != j ; Pa thFromCi tyToCi ty [i , j]) == 1 where (j i n C i t i e s

) ;
16
17 (S e q u e n c e C i t y V i s i t e d [i] − S e q u e n c e C i t y V i s i t e d [j] + NumCit ies ∗

Pa thFromCi tyToCi ty [i , j]) <= (NumCit ies − 1) where (j i n C i t i e s , i i n
C i t i e s | j != i && i != 1 && j != 1) ;

18 O u t p u t s :
19 T a b l e s . C i t y P a t h S e q u e n c e . ordernum [c i t y , p a t h =NewPath] = S e q u e n c e C i t y V i s i t e d ;
20 }

Figure F.1: ORML Model - Traveling Salesman

143

Modeling Optimization Problems in Microsoft Dynamics AX

F.2 Warehouse Picking Routes

1 Model (S t r i n g RouteId , S t r i n g S t a r t L o c a t i o n , S t r i n g EndLoca t ion) {
2 I n p u t s :
3 C o s t s = T a b l e s . WMSLocationDistance . D i s t a n c e [WMSLocationOrigin ,

WMSLoca t ionDes t ina t ion] ;
4 I n d e x e s :
5 L o c a t i o n s = C l a s s e s . WMSGetRouteItemLocations (RouteId , S t a r t L o c a t i o n ,

EndLoca t ion) . l o c a t i o n ;
6 I n p u t s :
7 LocationNum = Count (L o c a t i o n s) ;
8 V a r i a b l e s :
9 I n t e g e r i n [0 . . 1] P a t h F r o m L o c a t i o n T o L o c a t i o n [L o c a t i o n s , L o c a t i o n s] ;

10 I n t e g e r i n [1 . . LocationNum] S e q u e n c e L o c a t i o n V i s i t e d [L o c a t i o n s] ;
11 Minimize :
12 Sum(i i n L o c a t i o n s ;
13 Sum(j i n L o c a t i o n s | i != j ; C o s t s [i , j] ∗

P a t h F r o m L o c a t i o n T o L o c a t i o n [i , j])) ;
14 C o n s t r a i n t s :
15 Sum(j i n L o c a t i o n s | i != j && E x i s t s (C o s t s [i , j]) ;

P a t h F r o m L o c a t i o n T o L o c a t i o n [i , j]) == 1
16 where (i i n L o c a t i o n s | i != EndLoca t ion) ;
17 Sum(i i n L o c a t i o n s | i != j && i != EndLoca t ion && E x i s t s (C o s t s [i , j]) ;

P a t h F r o m L o c a t i o n T o L o c a t i o n [i , j]) == 1
18 where (j i n L o c a t i o n s | j != S t a r t L o c a t i o n) ;
19 S e q u e n c e L o c a t i o n V i s i t e d [i] − S e q u e n c e L o c a t i o n V i s i t e d [j] + LocationNum

∗ P a t h F r o m L o c a t i o n T o L o c a t i o n [i , j] <= (LocationNum − 1)
20 where (i i n L o c a t i o n s , j i n L o c a t i o n s | j != i && i != S t a r t L o c a t i o n

&& j != S t a r t L o c a t i o n) ;
21 O u t p u t s :
22 C l a s s e s . WMSUpdateOrderTrans . s o r t c o d e [l o c a t i o n , r o u t e I d = Rou te Id] =

S e q u e n c e L o c a t i o n V i s i t e d ;
23 }

Figure F.2: ORML Model - Warehouse Picking Routes

144

Appendix G

Computer Specifications

G.1 Quad-core processor desktop

Number of processors : 4

Processor : Intel Xeon E5345 @ 2.33 GHz

Cache memory (per core pair) : 4 MB

Cache memory (global) : 8 MB L2

Memory : 4.0 GB

Front side bus speed : 1333 MHz

Architecture : 64 bits

Operating System : Windows Server 2008 x64 (64-bit version)

.NET Framework version : 3.5

G.2 Single-core processor laptop

Number of processors : 1

Processor : Intel Pentium M 750 @ 1.87 GHz

Cache memory : 2 MB L2

Memory : 2.0 GB

Front side bus speed : 533 MHz

Architecture : 32 bits

Operating System : Windows Vista x86 (32-bit version)

.NET Framework version : 3.5

145

Computer Specifications

146

Appendix H

ORML Models

H.1 Zebra

1 Model {
2 V a r i a b l e s :
3 I n t e g e r i n [1 , 5]
4 E n g l i s h , Span ish , J apanese , I t a l i a n , Norwegian ,
5 red , green , whi te , b lue , ye l low ,
6 dog , s n a i l s , fox , hor se , zeb ra ,
7 p a i n t e r , s c u l p t o r , d ip loma t , v i o l i n i s t ,
8 d o c t o r , t e a , c o f f e e , milk , j u i c e , w a t e r ;
9

10 C o n s t r a i n t s :
11 Unequal (E n g l i s h , Span ish , J apanese , I t a l i a n , Norwegian) ;
12 Unequal (red , green , whi te , b lue , ye l l o w) ;
13 Unequal (dog , s n a i l s , fox , hor se , z e b r a) ;
14 Unequal (p a i n t e r , s c u l p t o r , d ip loma t , v i o l i n i s t , d o c t o r) ;
15 Unequal (t e a , c o f f e e , milk , j u i c e , w a t e r) ;
16
17 E n g l i s h == r e d ;
18 S p a n i s h == dog ;
19 J a p a n e s e == p a i n t e r ;
20 I t a l i a n == t e a ;
21 Norwegian == 1 ;
22 g r e e n == c o f f e e ;
23 (g r e e n − w h i t e) == 1 ;
24 s c u l p t o r == s n a i l s ;
25 d i p l o m a t == ye l l o w ;
26 mi lk == 3 ;
27 Abs (Norwegian − b l u e) == 1 ;
28 v i o l i n i s t == j u i c e ;
29 Abs (fox − d o c t o r) == 1 ;
30 Abs (h o r s e − d i p l o m a t) == 1 ;
31 }

Figure H.1: ORML Model - Zebra

147

ORML Models

Results

1 M i c r o s o f t (R) Orml Compi le r v e r s i o n 0 . 2 . 1
2 C o p y r i g h t (C) M i c r o s o f t C o r p o r a t i o n 2008 . A l l r i g h t s r e s e r v e d .
3
4 V a l i d Syn tax
5 V a l i d S e m a n t i c s
6 ======== Values =========
7 E n g l i s h −> 3
8 S p a n i s h −> 4
9 J a p a n e s e −> 5

10 I t a l i a n −> 2
11 Norwegian −> 1
12 r e d −> 3
13 g r e e n −> 5
14 w h i t e −> 4
15 b l u e −> 2
16 ye l l o w −> 1
17 dog −> 4
18 s n a i l s −> 3
19 fox −> 1
20 h o r s e −> 2
21 z e b r a −> 5
22 p a i n t e r −> 5
23 s c u l p t o r −> 3
24 d i p l o m a t −> 1
25 v i o l i n i s t −> 4
26 d o c t o r −> 2
27 t e a −> 2
28 c o f f e e −> 5
29 mi lk −> 3
30 j u i c e −> 4
31 w a t e r −> 1

H.2 Boeing

This model, due to its size, was decided to be omited from this report. If the reader wants
to access it, please contact the author.

148

ORML Models

H.3 PetroChem

1 Model {
2 V a r i a b l e s :
3 Rea l SA , VZ;
4 Minimize :
5 20 ∗ SA + 15 ∗ VZ;
6 C o n s t r a i n t s :
7 0 . 3 ∗ SA + 0 . 4 ∗ VZ >= 2000 ;
8 0 . 4 ∗ SA + 0 . 2 ∗ VZ >= 1500 ;
9 0 . 2 ∗ SA + 0 . 3 ∗ VZ >= 500 ;

10 SA <= 9000 ;
11 VZ <= 6000 ;
12 SA >= 0 ;
13 VZ >= 0 ;
14 }

Figure H.2: ORML Model - PetroChem

Results

1 M i c r o s o f t (R) Orml Compi le r v e r s i o n 0 . 2 . 1
2 C o p y r i g h t (C) M i c r o s o f t C o r p o r a t i o n 2008 . A l l r i g h t s r e s e r v e d .
3
4 V a l i d Syn tax
5 V a l i d S e m a n t i c s
6 ======== Goals =========
7 O b j e c t i v e Value = [9 2 5 0]
8 ======== Values =========
9 SA −> 200

10 VZ −> 350

149

ORML Models

H.4 WycoDoors

1 / / wynder g l a s s co . demo model f o r m2 p r e s e n t a t i o n
2 Model {
3 V a r i a b l e s :
4 Rea l i n [0 , I n f i n i t y] x , y ;
5 Maximize :
6 3 ∗ x + 5 ∗ y ;
7 C o n s t r a i n t s :
8 x <= 4 ;
9 2 ∗ y <= 1 2 ;

10 3 ∗ x + 2 ∗ y <= 1 8 ;
11 }

Figure H.3: ORML Model - WycoDoors

Results

1 M i c r o s o f t (R) Orml Compi le r v e r s i o n 0 . 1 . 4
2 C o p y r i g h t (C) M i c r o s o f t C o r p o r a t i o n 2008 . A l l r i g h t s r e s e r v e d .
3
4 V a l i d Syn tax
5 V a l i d S e m a n t i c s
6 ======== Goals =========
7 O b j e c t i v e Value = [3 6]
8 ======== Values =========
9 x −> 2

10 y −> 6

150

ORML Models

H.5 Traveling Salesman

1 Model {
2 I n d e x e s :
3 C i t i e s = T a b l e s . C i t i e s . i d ;
4 I n p u t s :
5 C o s t s = T a b l e s . P a t h s . c o s t [from , t o] ;
6 NumCit ies = Count (C i t i e s) ;
7 NewPath = 3 ;
8 V a r i a b l e s :
9 I n t e g e r i n [0 . . 1] Pa thFromCi tyToCi ty [C i t i e s , C i t i e s] ;

10 I n t e g e r i n [0 . . NumCities −1] S e q u e n c e C i t y V i s i t e d [C i t i e s] ;
11 Minimize :
12 Sum(i i n C i t i e s ; Sum(j i n C i t i e s | i != j ; C o s t s [i , j] ∗

Pa thFromCi tyToCi ty [i , j])) ;
13 C o n s t r a i n t s :
14 Sum(j i n C i t i e s | i != j ; Pa thFromCi tyToCi ty [i , j]) == 1 where (i i n C i t i e s

) ;
15
16 Sum(i i n C i t i e s | i != j ; Pa thFromCi tyToCi ty [i , j]) == 1 where (j i n C i t i e s

) ;
17
18 (S e q u e n c e C i t y V i s i t e d [i] − S e q u e n c e C i t y V i s i t e d [j] + NumCit ies ∗

Pa thFromCi tyToCi ty [i , j]) <= (NumCit ies − 1) where (j i n C i t i e s , i i n
C i t i e s | j != i && i != 1 && j != 1) ;

19 O u t p u t s :
20 T a b l e s . C i t y P a t h S e q u e n c e . ordernum [c i t y , p a t h =NewPath] = S e q u e n c e C i t y V i s i t e d ;
21 }

Figure H.4: ORML Model - Traveling Salesman

151

ORML Models

Results

This model was applied, among others, to a 4 cities situation which, due to its smaller
size, was chosen to be presented in this report.
The actual results of this model are only the information about a valid syntax and seman-
tics analysis. However, for the purpose of understanding, these are the results for the same
model without the ”outputs” section.

1 M i c r o s o f t (R) Orml Compi le r v e r s i o n 0 . 2 . 1
2 C o p y r i g h t (C) M i c r o s o f t C o r p o r a t i o n 2008 . A l l r i g h t s r e s e r v e d .
3
4 V a l i d Syn tax
5 V a l i d S e m a n t i c s
6 ======== Goals =========
7 O b j e c t i v e Value = [1 2]
8 ======== Values =========
9 Pa thFromCi tyToCi ty [1 , 1] −> 0

10 Pa thFromCi tyToCi ty [1 , 2] −> 0
11 Pa thFromCi tyToCi ty [1 , 3] −> 1
12 Pa thFromCi tyToCi ty [1 , 4] −> 0
13 Pa thFromCi tyToCi ty [2 , 1] −> 0
14 Pa thFromCi tyToCi ty [2 , 2] −> 0
15 Pa thFromCi tyToCi ty [2 , 3] −> 0
16 Pa thFromCi tyToCi ty [2 , 4] −> 1
17 Pa thFromCi tyToCi ty [3 , 1] −> 0
18 Pa thFromCi tyToCi ty [3 , 2] −> 1
19 Pa thFromCi tyToCi ty [3 , 3] −> 0
20 Pa thFromCi tyToCi ty [3 , 4] −> 0
21 Pa thFromCi tyToCi ty [4 , 1] −> 1
22 Pa thFromCi tyToCi ty [4 , 2] −> 0
23 Pa thFromCi tyToCi ty [4 , 3] −> 0
24 Pa thFromCi tyToCi ty [4 , 4] −> 0
25 S e q u e n c e C i t y V i s i t e d [1] −> 0
26 S e q u e n c e C i t y V i s i t e d [2] −> 1
27 S e q u e n c e C i t y V i s i t e d [3] −> 0
28 S e q u e n c e C i t y V i s i t e d [4] −> 2

Please note that, the way the chosen TSP model works, the original city (1) will have
a sequencecityvisite equal to 0, as well as, the first actual city. The correct order is,
therefore, to go from city 1, to city 3, to city 2, to city 4 and back to city 1. This can be
verified looking at the paths to visit.

152

ORML Models

H.6 Warehouse Picking Routes

1 Model {
2 I n p u t s :
3 C o s t s = T a b l e s . WMSLocationDistance . D i s t a n c e [WMSLocationOrigin ,

WMSLoca t ionDes t ina t ion] ;
4 S t a r t L o c a t i o n = ”001−01−0” ;
5 EndLoca t ion = ”001−04−0” ;
6 Rou te Id = ” 000069 103 ” ; / / w i l l be p a r a m e t e r
7
8 I n d e x e s :
9 L o c a t i o n s = C l a s s e s . WMSGetRouteItemLocations (RouteId , S t a r t L o c a t i o n ,

EndLoca t ion) . l o c a t i o n ;
10 I n p u t s :
11 LocationNum = Count (L o c a t i o n s) ;
12 V a r i a b l e s :
13 I n t e g e r i n [0 . . 1] P a t h F r o m L o c a t i o n T o L o c a t i o n [L o c a t i o n s , L o c a t i o n s] ;
14 I n t e g e r i n [1 . . LocationNum] S e q u e n c e L o c a t i o n V i s i t e d [L o c a t i o n s] ;
15 Minimize :
16 Sum(i i n L o c a t i o n s ;
17 Sum(j i n L o c a t i o n s | i != j ; C o s t s [i , j] ∗

P a t h F r o m L o c a t i o n T o L o c a t i o n [i , j])) ;
18 C o n s t r a i n t s :
19 Sum(j i n L o c a t i o n s | i != j && E x i s t s (C o s t s [i , j]) ;

P a t h F r o m L o c a t i o n T o L o c a t i o n [i , j]) == 1
20 where (i i n L o c a t i o n s | i != EndLoca t ion) ;
21 Sum(i i n L o c a t i o n s | i != j && i != EndLoca t ion && E x i s t s (C o s t s [i , j]) ;

P a t h F r o m L o c a t i o n T o L o c a t i o n [i , j]) == 1
22 where (j i n L o c a t i o n s | j != S t a r t L o c a t i o n) ;
23 S e q u e n c e L o c a t i o n V i s i t e d [i] − S e q u e n c e L o c a t i o n V i s i t e d [j] + LocationNum

∗ P a t h F r o m L o c a t i o n T o L o c a t i o n [i , j] <= (LocationNum − 1)
24 where (i i n L o c a t i o n s , j i n L o c a t i o n s | j != i && i != S t a r t L o c a t i o n

&& j != S t a r t L o c a t i o n) ;
25 O u t p u t s :
26 C l a s s e s . WMSUpdateOrderTrans . s o r t c o d e [l o c a t i o n , r o u t e I d = Rou te Id] =

S e q u e n c e L o c a t i o n V i s i t e d ;
27 }

Figure H.5: ORML Model - Warehouse Picking Routes

153

