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RESUMO 

Os processos tecnológicos de conformação plástica de chapa são hoje correntemente utilizados 

em diversas áreas de produção. A complexidade crescente dos produtos, a constante redução dos 

ciclos de desenvolvimento e as tendências actuais de utilização de materiais mais leves e mais 

resistentes colocaram novos desafios aos processos de conformação plástica de chapa. Para fazer 

face a estes desafios, existe uma crescente aproximação ao conceito de produção virtual, e em 

particular ao uso da simulação numérica por elementos finitos. Nas últimas décadas, tem sido 

dedicado um extenso esforço no desenvolvimento destas ferramentas numéricas e no 

estabelecimento de modelos matemáticos que permitam modelar o comportamento da chapa 

quando sujeita ao processo de conformação plástica. Um dos desafios principais está relacionado 

com a previsão da ocorrência de rotura, especialmente importante para a nova classe de 

materiais mais leves e mais resistentes. A presente dissertação pretende ser uma contribuição 

para a melhoria e desenvolvimento de modelos de previsão de rotura em processos de 

conformação plástica de chapas metálicas, no âmbito da teoria da Mecânica do Dano Contínuo. 

São introduzidas as definições escalar e de ordem superior para a variável de dano e são 

desenvolvidos os modelos constitutivos correspondentes, seguindo uma formulação 

termodinamicamente consistente. É dedicada uma atenção especial aos aspectos computacionais 

da implementação numérica dos modelos constitutivos desenvolvidos e aos temas relacionados 

com a sua integração num programa de elementos finitos comercial. Para avaliar o desempenho 

da estratégia proposta, foram realizados vários testes numéricos e os ensaios experimentais 

correspondentes de modo a determinar a precisão dos modelos propostos na previsão de rotura. 

Com o objectivo de determinar o evento mais restritivo no processo de conformação plástica de 

chapas metálicas, estricção ou rotura, é proposta uma abordagem conjunta entre um critério de 

instabilidade e um modelo de dano. O algoritmo para a integração numérica do modelo é 

descrito e a importância da abordagem é ilustrada por intermédio da comparação dos resultados 

numéricos com resultados experimentais obtidos por outros autores.  

 

Palavras-Chave: Dano dúctil; Conformação Plástica; Modelação Numérica; Rotura; Instabilidade 

plástica.  
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ABSTRACT 

Sheet metal forming processes are widely used in several production areas. The growing 

complexity of the products, the shortening of development cycles and the actual trends of using 

lighter and higher strength materials has placed new challenges to the sheet metal forming 

processes. To face these challenges, a successive approach to virtual production has arisen, 

namely to finite element numerical simulation. In last decades, an extensive effort has been 

dedicated in the development of these numerical tools and in the establishment of mathematical 

models that allow a better modelling of sheet metal behaviour under plastic deformation. One 

key challenge is related with failure prediction, especially important for the new class of lighter 

and more resistant materials. The present dissertation intends to provide a contribution in the 

improvement and development of reliable failure prediction models for the simulation of metal 

forming processes, within Continuum Damage Mechanics theory. Scalar and high-order 

definitions for the damage variable are introduced and the derivation of corresponding 

constitutive models is addressed, following a thermodynamically consistent framework. 

Particular attention is devoted to the computational issues of the numerical implementation of 

derived constitutive models and to aspects related to its integration into a commercial finite 

element code. To evaluate the performance of the proposed framework, several numerical tests 

and corresponding experimental testings were carried out in order to assess the robustness and 

accuracy of the proposed models in the failure prediction in sheet metal forming processes. With 

the aim of determining the most restrictive event in sheet metal forming, necking or fracture, an 

integrated approach between an instability criterion and a damage model is proposed. The 

algorithm for numerical integration of the model is addressed and the importance of the coupled 

approach is illustrated by means of a comparison with experimental results obtained by other 

authors. 

 

Keywords: Ductile damage; Sheet Metal Forming; Numerical modelling; Failure; Plastic 

instability. 
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RÉSUMÉ 

Les procédés de mise en forme de tôles minces sont largement utilisés dans plusieurs areas de la 

production. La complexité croissante des produits, la diminution des cycles de développement et 

les tendances actuelles de l'utilisation de matériaux plus légers et plus résistants ont engendré de 

nouveaux défis pour les procédés de mise en forme de tôles minces. Pour affronter ces défis, il ya 

un approchement à la notion de production virtuelle, et, particulièrement, à la utilisation de la 

simulation numérique par éléments finis. Dans les dernières décades, un grand effort a été 

consacré au développement de ces outils numériques et a l’établissement de modèles 

mathématiques qui permettent un meilleur modelage du comportement de la tôle sous 

déformation plastique. Un des principaux défis se rapporte à la prévision de la survenue de 

rupture, particulièrement important pour la nouvelle classe de matériaux plus légers et plus 

résistants. Cette dissertation aspire de offrir une contribution à l'amélioration et le 

développement de modèles de prévision de rupture en la simulation de procédés de mise en 

forme, en vertu de la théorie de la mécanique des l’endommagent continu. Les définitions 

scalaire et tensorielle pour la variable d'endommagement sont introduites et les modèles de 

comportement correspondants sont développés, à la suite d'une formulation thermodynamique 

cohérente. C’en porte une spéciale attention aux aspects de mise en œuvre du calcul numérique 

des modèles de comportement développés et aux questions liées à son intégration dans un 

programme commercial d'éléments finis. Pour évaluer la performance de la stratégie proposée, 

ont été effectuées plusieurs tests numériques et des essais expérimentaux correspondants pour 

déterminer l'exactitude des modèles proposés pour prédire la rupture. Afin de déterminer 

l’événement plus restrictif dans les procédés de mise en forme de tôles minces, striction ou 

rupture, on propose une approche commune entre un critère d'instabilité et un modèle 

d'endommagement. L'algorithme d'intégration numérique du modèle est décrit et l'importance de 

l'approche est illustrée par la comparaison des résultats numériques avec les résultats 

expérimentaux obtenus par d'autres auteurs. 

 

Mots-clés: Endommagement ductile; Mise en forme; Modélisation numérique; Rupture; 

Instabilité plastique. 
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1. INTRODUCTION 

This chapter establish the overall framework of the problems 

associated with the numerical simulation of metal forming 

processes, emphasizing on aspects such as the technological 

challenges and industrial interest. The objectives for the work 

developed in this thesis, based on the described challenges, are 

defined. The structure and contents of this dissertation, in order 

to guide the reader and to assist the consultation, are also 

presented. 

1.1 Motivation 

Metal forming processes are characterized by the ability to obtain mechanical parts 

with high production rates with a minimum waste of material (near net-shape 

technology). Moreover, it is their high production rates that make these processes 

especially suitable for the production of components on a large scale. Among these 

technological processes, we may include those for making sheet metal parts. Terms like 

deep drawing, press working and press forming are used commonly in industry to 

describe general sheet forming operations, since they are performed usually on presses 

using a set of dies. Typically, a deep drawing operation implies the presence of three 

main components: a punch, a die and a blank holder. The principle of the process is 

illustrated in Figure 1.1. 

The punch moves towards an initially flat metal sheet and deforms it in order to 

achieve a desired shape. The blank holder transfers an external force to the metal 

sheet, preventing wrinkling and allowing the control of the flow of the material. The 

two principal deformation modes in this process may depend directly on the blank 

holder action and its corresponding force. In the example presented in Figure 1.1, a tool 

used to draw an axisymmetric part is shown. However, deep drawing is also used to 

produce complex geometry parts, and, for some products and due to its inherent 
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complexity, several deep drawing stages may be required to obtain a single final 

product, using several tool sets, one for each stamping stage. 

 

Figure 1.1 Deep drawing process. 

Sheet metal forming processes are used in several production areas and industries 

such as automotive, household appliances (washing machines, refrigerators, grills, 

stoves, etc.), domestic and decorative elements (bathtubs, dishwashers, containers, 

lamps, LPG cylinders, etc.), electrical and electronics (switches, computer and lamp 

socket components, etc.), food utensils (cookware, tableware, lids, trays, etc.), 

aerospace, ships, etc. 

Current trends in these industries may be characterized by the flexibility and 

increasing complexity of products due to the demands imposed by the market. The 

strong competition among several producers coupled with increasing shortening of 

product life requires a rapid development of economic and high quality products, 

demanding a high flexibility for changes in design in order to fulfil the imposed 

innovation on such products [Yang 2002]. 

This reduction in development time cycle has left an extremely short period to the 

design of new tools and their correction and tuning. Typically, it takes many cycles and 

several costly trial-and-error stages in the development phase using prototype tools. 

The time consumption and press shop equipment occupation, needed for production, 

increase these development costs, compromising the necessary reduction in product-to-

market cycle.  

Among the industries that make use of sheet metal forming technology, we may 

emphasize the automotive industry due to its large production volumes and high 

variety of stamped components. The economic significance of this industry in developed 

countries associated with the strong competition among many producers creates vitality 

for the development of several knowledge areas including metal forming technologies.  
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Current main concerns in the automotive industry include environmental 

protection issues, fuel economy and safety specifications. The overall strategy 

incorporates the reduction of total vehicle weight, thus permitting to achieve better 

performances and fuel consumption reductions as well as decreasing greenhouse gas 

emissions. At the same time, the passenger’s safety must be continuously improved by 

addressing increasingly demanding safety specifications imposed by legislation. All these 

requirements have forced a policy of low weight concepts and structures prepared to 

withstand impacts [Pickett 2004], making use of lighter and / or more resistant 

materials. 

However, the trend is not to have a single approach on the use of materials. The 

light, safe, clean and financially accessible car follows a multi-material concept, where 

different materials are used in body-in-white components of the vehicle, depending on 

the required strength for the part. The concept includes mild steels (MS), aluminium 

alloys (AA), conventional high strength steels (HSS) and advanced high strength steels 

(AHSS) such as dual phase steels (DP), transformation induced plasticity steels (TRIP) 

and martensitic steels (MS) [IISI 2006]. The introduction of new materials in the 

automobile industry has brought new challenges for metal forming technologies. The 

behaviour observed with conventional steels does not apply to these new materials and 

the empirical knowledge acquired over the years with conventional steels cannot be 

extrapolated to these new alloys, being needed the definition of new operating 

conditions. 

These factors combined with the growing complexity of deep drawing technology 

led to a successive approximation to the virtual production concepts, in particular, the 

numerical simulation of metal forming processes by the finite element method and the 

extension of its use throughout all the production chain [Roll 2002]. 

The numerical simulation of metal forming has, therefore, assumed a vital role in 

satisfying the industry needs. The interest shown in these methods by the industry is 

evident: it allows to virtually validate a forming tool, reducing (or even replacing) the 

experimental tests on press, thus reducing the time-to market for new products and 

consequently the costs involved in its development. Still, the contribution of numerical 

simulation can go further, rather than being only confined to the simulation of the 

metal forming process and the validation of the manufacturability of the part. The 

optimization of the entire chain of production through the numerical simulation, 

starting from the raw material up to the final product, passing through assembling 

steps, aiming a cost reduction in each stage, can lead to significant gains in both 

economic and technical terms, crucial in the current highly competitive market. To 

achieve these higher objectives, several requirements are imposed to the numerical 

simulation [Makinouchi 2001]: 
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• Simulation of all plastic forming process including stamping, cutting and 

folding; 

• Reliability of numerical results in the prediction of forming defects including 

springback, wrinkling and fracture; 

• Applicability to the wide variety of products produced by metal forming; 

• Use of different materials such as mild steels, aluminum alloys, high 

strength steels and advanced high strength steels; 

• Obtaining results in reasonable time. 

An extensive effort has been devoted over the last decades in the development of 

the numerical simulation codes focusing on the fulfilment of these requirements. Several 

areas are currently subject of intense research in order to approximate numerical 

simulation results to experimental reality: mechanical behaviour of materials and the 

establishment of constitutive laws to describe it, optimization of existing simulation 

codes, tribological aspects related to sheet / tool contact and the corresponding 

modelling, among others. The integration and interaction of information and 

developments collected in all these areas (extremely difficult) makes it possible the 

prediction of forming defects in the early stages of product development. The typical 

forming defects may range from small dimensional defects to extremely evident defects 

such as cracks and rupture. According to Lange [1985], forming defects can be classified 

into three distinct classes: dimensional defects, surface defects and defects related with 

unsatisfactory final mechanical properties. Other criteria such as aesthetic defects vs. 

functional defects or causes that originated them are also used to establish a distinction 

between different defects. A particularly broad criterion was proposed by Ajmar et al. 

[2001] that sets a differentiation between global and local defects. A defect is considered 

as a global defect if affects all the stamped part. A local defect is any defect that is 

limited to a restricted area of the part. This classification seems more appropriate to 

classify all forming defects, and can be applied to all types of defects, either aesthetic or 

functional, and can even be applied to defects for which the cause is unknown or is not 

perfectly defined. Following this classification, a list and classification of typical 

forming defects are presented in Table 1.1. 

Traditionally, the major challenge was raised by the forming defects that were 

affecting the final geometry of the stamped part, namely the prediction of global 

defects related to springback [Santos 2008]. However, in the last years, fracture has 

assumed a prominent position. This trend is directly connected with the use of new 

materials, especially the Advanced High Strength Steels (AHSS), which present a 
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distinct mechanical behaviour, for which there is a smaller experience and prediction 

capability. 

Table 1.1 Typical forming defects classification. 

Forming defect Global Local 

Twisting •  

3D Springback •  

Wrinkles • • 
2D Springback  • 
Surface deflection • • 
Excessive thinning  • 
Rupture / cracks  • 
Marks  • 
Spoilers  • 

 

The application of these materials is intimately related with the obvious 

advantages that those materials can offer in terms of yield stress and tensile strength 

when compared to deep-drawing quality mild steels and conventional high-strength 

steels (HSS), as shown in Figure 1.2 [IISI 2006]. Their advantageous mechanical 

properties allow to produce lighter and more resistant components through the use of 

thinner sections, thus reducing the total structure weight and, in some cases, also allow 

the reduction of the number of components. 

 

Figure 1.2 Different types of steels and their mechanical characteristics: Advanced high strength steels 

(AHSS) compared to mild steels (MS) and low-resistance and conventional high-strength steels (HSS). 

But, these advantages in terms of weight, strength and stiffness of such 

components must be balanced with their lower ductility and premature rupture during 

processing. Fractures that rarely occurred a decade ago in resistance testings of the 
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components, have become frequent with the AHSS steels due to their lower ductility 

and its higher work hardening when compared with conventional steels. In these 

materials, failure often occurs before any necking occurrence and, therefore, without 

any notice, as seen in Figure 1.3.  

 

Figure 1.3 Localized necking prior to the rupture in a DP600 steel (left) and fracture without any visible 

necking in a DP980 steel (right) [Shi 2006]. 

This behaviour raises questions to the applicability of conventional methods to 

assess forming limits, such as the well-established forming limit diagram (FLD) 

concept, which is defined for the occurrence of localized necking.  

Therefore, the theoretical analysis of plastic instability and the initiation of 

fracture is of paramount importance for these materials in order to determine forming 

limits either by necking onset or by premature fracture occurrence. To model fracture 

initiation, a successive approximation is observed to theories that consider material 

inhomogeneities and describe the mechanism of internal damaging in ductile materials, 

either by using a micromechanics-based formulation [Gurson 1977] or a Continuous 

Damage Mechanics approach [Lemaitre 1985a]. The current trend for the failure 

prediction in forming simulations is to attempt the replacement of the common use of 

FLDs by a generalized incremental stress state dependent damage model, able to 

account for load-path dependent failure behaviour and to provide reliable prediction of 

the stress and strain histories, indispensable for predicting the onset of fracture in 

metals [Roll 2008].  

1.2 Scope and layout of the thesis 

The driven-force of this thesis is the ability enhancement of numerical codes for failure 

prediction in metal forming processes by the development of more advanced numerical 

models based on the Continuum Damage Mechanics theory. Therefore, the main 

objective of the present work is to contribute to the improvement and development of 

reliable failure prediction models for the simulation of sheet metal forming processes, 
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emphasizing issues related to continuum modelling as well as to the computational 

aspects relevant to the application of the proposed models in large scale numerical 

simulations in explicit time integration schemes. 

In order to face this main goal, this thesis is divided into eight chapters. After this 

introductory one, Chapter 2 sets out the basic concepts of continuum mechanics and 

thermodynamics which form the basis for the constitutive model developments in the 

subsequent chapters. Also, with an introductory nature, the principles of finite element 

methods are introduced in Chapter 3.  

Chapter 4 deals with the isotropic damage mechanics theory. A review of the basic 

concepts of internal damage in solids is provided and the developments under the 

Continuum Damage Mechanics theory are reviewed concerning different state and 

dissipation couplings. The original isotropic damage model proposed by Lemaitre 

[1985a] is presented and an enhancement of the model is introduced by the inclusion of 

plastic anisotropy described by the Hill48 criterion. A simplified partial coupling 

algorithm is proposed, which allows introducing additional effects without increasing 

dramatically the analysis time, namely the quasi-unilateral effect on damage evolution. 

Chapter 5 introduces anisotropic damage mechanics. A review of higher order 

damage variables used to describe internal damage state of the material is presented 

and the physical interpretation of a second-order representation is provided. Using this 

latter definition, the thermodynamically consistent anisotropic damage model proposed 

by Lemaitre et al. [2000a] is described and its implementation into a commercial finite 

element code is addressed, also considering plastic anisotropic behaviour, as previously 

done for the isotropic damage theory. A sensitivity analysis of the implemented model 

is presented regarding the influence of several parameters on damage evolution and 

mechanical properties degradation. 

Chapter 6 is mainly devoted to a qualitative validation of the implemented 

damage models and a discussion of the obtained results. Some basic classical testings 

and complex applications are considered in order to evaluate the performance of the 

models in the prediction of the ductile damage and failure that is expected to occur 

during metal forming processes. Intrinsically, a complete characterization of adopted 

damage models is achieved aiming to propose a methodology to virtually reproduce (or 

simulate) metal forming processes in order to predict when and where ductile failure 

will take place inside the stamped part. 

Chapter 7 introduces a new criterion for forming limits prediction based on an 

integrated approach between the presented anisotropic damage model and the necking 

criterion proposed by Hora et al. [1996], combining the determination of the onset of 

the two last phases of plastic deformation: necking and failure. A review on forming 

limit diagrams modelling is provided and the most important criteria are presented. 
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The importance of the proposed coupled approach is shown by providing improved 

prediction in necking occurrence and allowing to determine which phenomenon, necking 

or failure, is the most restrictive event in a sheet metal forming operation, especially 

important in materials where fracture can occur before required conditions for necking 

are achieved.  

Chapter 8 summarizes the main issues addressed in the thesis and cast the general 

conclusions of this work, along with suggestions for future research. 
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2. TOPICS IN CONTINUUM 

MECHANICS AND 

THERMODYNAMICS 

This chapter reviews some basic concepts of mechanics and 

thermodynamics of continuous media. The objective is not to 

enter in full detail on the subjects, but to focus precisely on the 

points that have been employed and implemented throughout 

this work. The definitions and notation introduced will be 

systematically employed throughout the subsequent chapters of 

this thesis. The material presented here is well established in 

the continuum mechanics literature [Lemaitre 1994] [Simo 1998] 

[Doghri 2000] [Souza Neto 2008] and an effort has been made to 

follow the notation and nomenclature used in standard 

textbooks. 

2.1 Kinematics of deformation and strain measures 

Consider a body B  embedded in the three dimensional Euclidian space R3  in its 

reference (undeformed) configuration with boundary ∂B  as represented in Figure 2.1 

[Souza Neto 2008]. Each material particle p  can be labelled by its position in the 

orthogonal basis 
i
E . In its current (deformed) configuration, B  occupies the region 

( )ϕ B  defined by the deformation map ϕ . The corresponding current position of 

particle p  can be defined as [Souza Neto 2008]: 

 ( )=x pϕ . (2.1) 

This description based on material coordinates is known as Lagrangian description. The 

corresponding vector field, which is the displacement, is defined by: 
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 ( ) ( )= −u p p pϕ �  (2.2) 

and, thus, one may write that: 

 ( )= +x p u p . (2.3) 

Due to the physical meaning of x  and p  and by the fact that map ( )⋅ϕ � is a one-to-

one relation, deformation map can be uniquely inverted: 

 ( )1−=p xϕ  (2.4) 

where −ϕ 1  is called reference map. This description, based on spatial coordinates, is 

known as Eulerian description. 

 

Figure 2.1 Configurations of a deformable body. 

Now, consider an infinitesimal vector dp  in the reference configuration. This 

infinitesimal vector dp  is transformed to its deformed state dx , by the deformation 

gradient F , as: 

 
d

d d
d

= ⇔ =
x

x F p F
p

 (2.5) 

or, alternatively, due to relation shown in Equation (2.3), deformation gradient can also 

be written as: 

 = +∇F I u  (2.6) 

where ∇u  represents the gradient of displacement field.  

Consider, now, an infinitesimal volume inside body B , defined by the infinitesimal 

vectors da , db  and dc . In the reference configuration, volume is expressed by: 

 ( )0
dV d d d= × ⋅a b c . (2.7) 
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By applying the deformation gradient to the infinitesimal vectors, the deformed 

infinitesimal volume, denoted as dV , becomes: 

 ( )dV d d d= × ⋅F a F b F c . (2.8) 

Making use of tensor algebra, it follows that: 

 
( )

( )0

det
d d ddV

J
dV d d d

× ⋅
= = =

× ⋅

F a F b F c
F

a b c
 (2.9) 

where J  denotes the determinant of F , representing, locally, the volume after 

deformation per unit reference volume [Pires 2005]. In order to have a physically 

acceptable situation, in any deformation of a body, J  must be always greater than 

zero (otherwise infinitesimal volume would collapse into a point). 

The deformation gradient relates, therefore, quantities before deformation to 

quantities after deformation and provides a complete description of deformation 

including stretch as well as rigid body rotations. As rigid body rotations do not 

contribute for size and shape change of body B , it is imperative to decompose the 

deformation gradient F  into stretch and rotation components [Pires 2005]. By 

applying the polar decomposition theorem, schematically represented in Figure 2.2, to 

the deformation gradient F , one obtains: 

 = =F RU VR  (2.10) 

where U  is the right stretch tensor and V  is the left stretch tensor. The tensor R  is 

the local orthogonal rotation tensor and connects both configurations, reference and 

deformed configurations. 

 

Figure 2.2 Schematic representation of the polar decomposition theorem. 
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The two stretch tensors, U  and V , represent, in fact, measures of stretch itself 

since they only contain the stretch part of the deformation gradient. Therefore, polar 

decomposition is extremely important in the definition of strain measures, i.e., to define 

and quantify the change of distance between two particles between reference and 

deformed configurations. Before introducing strain measures, let us define the right and 

left Cauchy-Green stretch tensors C  and b , respectively given by: 

 2 T= =C U F F , 2 T= =b V FF . (2.11) 

Based on the right Cauchy-Green stretch tensor C , one can define an important family 

of strain measures, the Lagrangian strain tensors E . The most particular member of 

this family is the Green-Lagrange tensor, which is obtained as: 

 ( ) ( ) ( )2 21 1
2 2

T= − = −E U I F F I . (2.12) 

Based on the left stretch tensor b , the Eulerian counterpart of the Lagrangian family 

tensors, denoted by ε , are defined as: 

 ( ) ( )1
0

ln 0

m
m m

m
m

⎧⎪⎪ − ≠⎪⎪= ⎨⎪ ⎡ ⎤⎪ =⎢ ⎥⎪ ⎣ ⎦⎪⎩

V I

V
ε  (2.13) 

where m  is a real number and ln ⎡ ⎤⋅⎢ ⎥⎣ ⎦  denotes the tensor logarithm of ⎡ ⎤⋅⎢ ⎥⎣ ⎦ . Both 

Lagrangian and Eulerian strain tensors are related by: 

 ( ) ( )m m T=RE Rε  (2.14) 

where R  is a local rotation. 

So far, all these quantities were considered time-independent. However, many 

plasticity formulations are developed in terms of rate quantities [Dunne 2005], even the 

rate-independent plasticity models. Thus, it is important to consider a time-dependent 

deformation of body B , also called as motion. In this case, a deformation map ( ),tϕ i  

defines the deformation of B  for each time t . Due to the time dependence of the 

motion, one can define velocity and acceleration of particle p  as being the first and 

second derivatives with respect to time as: 

 ( ) ( ),
,

t
t

t

∂
=

∂

p
x p

ϕ
� ; ( ) ( )2

2

,
,

t
t

t

∂
=

∂

p
x p

ϕ
�� , (2.15) 

or, using an Eulerian description as: 

 ( ) ( )1 ,
,

t
t

t

−∂
=

∂

x
v x

ϕ
; ( ) ( )2 1

2

,
,

t
t

t

−∂
=

∂

x
a x

ϕ
 (2.16) 
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where v  and a  are the spatial description of the velocity field and acceleration field, 

respectively.  

Considering a spatially varying velocity field v , it is also possible to calculate its 

spatial rate of change, given by the derivative of the velocity with respect to spatial 

coordinates as: 

 
x

= ∇l v  (2.17) 

where l  is called the velocity gradient tensor. Considering the derivative of the 

deformation gradient F  with respect to time and applying the derivative chain rule, 

one may equivalently write that: 

 1−=l FF� . (2.18) 

Therefore, velocity gradient maps the deformation gradient onto its rate of change. The 

velocity gradient tensor can be further decomposed into a symmetric tensor, d , called 

rate of deformation tensor or stretching tensor and a skew-symmetric tensor, w , called 

continuum spin or vorticity tensor, defined as: 

 ( ) ( )= = + Td l l l
1

sym
2

; ( ) ( )= = − Tw l l l
1

skew
2

. (2.19) 

Another definition is the skew-symmetric tensor Ω , also called angular velocity 

tensor. This tensor derives from tensor w  and defines only the rigid body rotation and 

its rate of change and is independent of the stretch. The angular velocity tensor is 

given by the expression: 

 T=RRΩ � . (2.20) 

The importance of this tensor will be shown in the definition of stress rates. Further 

decomposition of the deformation gradient F  can be performed, using the classical 

multiplicative decomposition theorem. 

Consider, again, a generic body B  embedded in the three dimensional Euclidian 

space R3  in its reference (undeformed) configuration, containing an infinitesimal vector 

dp , and the same body in its current (deformed) configuration, and the corresponding 

deformed infinitesimal vector dx  as seen in Figure 2.3 [Dunne 2005]. Additionally, 

consider an intermediate fictitious configuration of body B , corresponding to a stress-

free state which infinitesimal vector dp  has undergone only purely plastic deformation 

to become dX . The transformation mapping of dp  to dX  is the plastic deformation 

gradient so that [Dunne 2005]: 

 pd d=X F p  (2.21) 

and the plastic deformation gradient is defined as: 
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 p d
d

=
X

F
p

. (2.22) 

Considering the current configuration dX , the transformation map of dX  to dx  is 

the elastic deformation tensor eF  given by: 

 e d
d

=
x

F
X

. (2.23) 

 

Figure 2.3 Schematic representation of the multiplicative decomposition theorem. 

Thus, one may write: 

 e e pd d d= =x F X F F p , (2.24) 

and, therefore: 

 e p=F F F  (2.25) 

being this relation the classical multiplicative decomposition of the deformation 

gradient, into its elastic and plastic components. Using this decomposition, both the 

elastic and plastic deformation gradients may contain stretch and rigid body rotation 

resulting in a non-uniqueness intermediate configuration. By convention, and in order 

to achieve a unique intermediate configuration, rigid body rotations are affected to the 

plastic deformation gradient and as a result, eF  and pF  can be written as: 

 e e=F V ; p p=F V R  (2.26) 

where R  represents the total rigid body rotation between the initial and current 

configuration and eV  and pV  denote the elastic and plastic components of the left 

stretch tensor. Using this decomposition, one can redefine the velocity gradient l  and 
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address the decomposition of the elastic and plastic rates of deformation. From 

Equation (2.18) and Equation (2.25) and after some straightforward tensor algebra, one 

may write the elastic and plastic components of the velocity gradient as a function of 

the elastic and plastic deformation gradients: 

 ( ) 1
e e e

−
=l V V� ; ( ) 1

p p p
−

=l F F� . (2.27) 

So, the velocity gradient can be rewritten as: 

 ( ) 1
e e p e

−
= +l l V l V . (2.28) 

Performing the decomposition of this new definition of the velocity gradient into the 

rate of deformation tensor d  and the skew-symmetric continuum spin tensor, w , (see 

Equation (2.19)), one has: 

 
( ) ( )
( ) ( )

1 1

1 1

sym sym

skew skew

e e p e e p e

e e p e e p e

− −

− −

⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

d d V d V V w V

w w V d V V w V
. (2.29) 

Thus, it is possible to verify that elastic and plastic rates of deformation are not 

additively decomposed: 

 e p≠ +d d d . (2.30) 

However, if elastic strains can be considered small, which is the case of metal forming 

processes, then the elastic part of the left stretch tensor V  is almost equal to I : 

 ( ) 1
e e

−
= ≈V V I , (2.31) 

and it is possible to postulate the additive decomposition of the rate of deformation 

tensor as: 

 e p= +d d d . (2.32) 

2.2 Forces and stress measures 

In this section, the stress and equilibrium concepts for a large deformation analysis of a 

body will be introduced. The natural starting point for any description of stress 

measures is the Cauchy stress tensor. In order to introduce this definition, consider a 

body B  in the deformed configuration, Figure 2.4 [Pires 2005]. Let S  be an oriented 

surface of B  with unit normal vector n  at a point x . 
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Figure 2.4 Surface forces. The Cauchy stress. 

Cauchy’s axiom states that: “At x , the surface force, i.e., the force per unit area, 

exerted across S  by the material on the side of S  into which n  is pointing upon the 

material on the other side of S  depends on S  only through its normal n .” This 

means that identical forces are transmitted across any surfaces with normal n  at x . 

This force (per unit area) is called the Cauchy stress vector and will be denoted as 

[Souza Neto 2008]: 

 ( )t n  (2.33) 

with dependence on x  and time omitted for notational convenience. In the particular 

case when surface S  belongs to the boundary of B , the Cauchy stress vector 

represents the contact force exerted by the surrounding environment on B . 

Furthermore, the dependency of the surface force t  on the normal n  is linear. This 

implies that there exists a tensor field ( )xσ  such that the Cauchy stress vector is 

given by (Figure 2.4): 

 ( ) ( ), =t x n x nσ . (2.34) 

The tensor field σ  is symmetric: 

 T=σ σ  (2.35) 

and is called the Cauchy stress tensor. It is often referred as the true stress tensor or, 

simply, stress tensor. Two important definitions (particularly convenient for the 

purpose of constitutive modelling) are obtained from the decomposition of the Cauchy 

stress tensor: the deviatoric stress or stress deviator and the spherical stress tensor. The 

deviatoric stress s  is the traceless component of the stress tensor σ  and is given by: 

 
1

:
3

p
⎛ ⎞⎟⎜ ⎟= − = − ⊗⎜ ⎟⎜ ⎟⎜⎝ ⎠

s Iσ Ι Ι σI  (2.36) 

while the spherical stress tensor pI , related with the first invariant of the stress tensor 

σ , is the remainder component, computed as: 
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 ( )1
:

3
p = ⊗I Ι Ι σ  (2.37) 

where p  is the hydrostatic pressure (also referred as hydrostatic stress) calculated as: 

 ( )1
tr

3
p = σ . (2.38) 

Other common definitions for stress tensors can be found in the literature. In 

practical nonlinear analysis, the most used alternative stress measures are the Kirchhoff 

stress tensor τ  and the first and second Piola-Kirchhoff stress tensors, P  and S , 

respectively given by: 

 J=τ σ , (2.39) 

 TJ −=P Fσ , (2.40) 

 1 TJ − −=S F Fσ  (2.41) 

where J  is the volume ratio, as defined in Equation (2.9), and F  is the deformation 

gradient. From Equations (2.9) and (2.39), it is evident that, for incompressible 

deformation states ( 1J = ), there is no numerical distinction between the Cauchy and 

Kirchhoff stress tensors. Due to the symmetry of the Cauchy stress tensor, Kirchhoff 

stress is also a symmetric tensor. This is not usually the case of the first Piola-

Kirchhoff stress tensor, Equation (2.40), which is generally unsymmetric. However, it is 

possible to devise a symmetric stress tensor by using the second Piola-Kirchhoff stress 

definition, Equation (2.41). In spite of the mathematical convenience, this tensor does 

not admit a physical interpretation in terms of surface tractions as the Cauchy stress.  

Despite these alternative stress tensors, Cauchy stress tensor is the most 

commonly used stress measure to establish equilibrium or constitutive equations. As for 

the strains, it is imperative to inquire the objectivity of tensor σ . The objectivity 

concept can be assessed by studying the effect of a rigid body motion superimposed on 

the deformed configuration (more details in Section 2.4.1.2) [Pires 2005]. A second 

order quantity G  is said to be objective if transforms as: 

 T→G QGQ  (2.42) 

being Q  an orthogonal tensor describing an arbitrary superimposed rigid body 

rotation.  

To investigate material objectivity of Cauchy stress tensor, let us first apply a 

transformation to the normal and traction vectors by a rotation Q : 

 ( ) ( )=
=

t n Qt n
n Qn

� �
� . (2.43) 
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Using the relationship between the traction vector and stress tensor, ( ) =t n nσ , in 

conjunction with the above quantities gives, one can write: 

 ( ) ( ) ( ) ( ) T= ⇔ = ⇔ =t n Qt n t n Q n t n Q Q nσ σ
� � �� � � �

, (2.44) 

and, so: 

 T→Q Qσ σ . (2.45) 

Therefore, Cauchy stress tensor satisfies the objectivity requirement for a second order 

tensor, as defined in Equation (2.42), and is said to be objective. 

The same material objectivity, however, is not ensured by the time derivative of 

the Cauchy stress tensor, which transformation reads: 

 T T T→ + +Q Q Q Q Q Qσ σ σ σ� �� � . (2.46) 

Only in the special case of a time-independent rotation, i.e., when =Q 0� , it is possible 

to say that Cauchy stress rate σ�  is objective. Since plasticity problems are often 

formulated in a rate form, it is mandatory to define objective stress rates that ensure a 

transformation in accordance to Equation (2.42). These objective stress rates are 

usually defined by a suitable modification of the time derivative in order to satisfy 

material objectivity. The most common objective stress rates are the Jaumann-

Zaremba, Truesdell and Green-Naghdi stress rates. 

The Jaumann-Zaremba stress rate, denoted as ∇σ , is defined as: 

 ∇ = − +w wσ σ σ σ�  (2.47) 

where w  is the continuum spin or vorticity tensor (Equation (2.19)). 

The Truesdell rate of σ , in the other hand, is defined as: 

 ( )trT= − +l l lσ σ σ − σ σ○ �  (2.48) 

where l  is the velocity gradient tensor.  

The Green-Naghdi stress rate of tensor σ , here denoted ◊σ , is obtained by 

rotating σ  back to the reference configuration, taking the time material derivative of 

the rotated quantity and then rotating the resulting derivative forward to the deformed 

configuration. That is: 

 ( )T Td
dt

◊
⎡ ⎤
⎢ ⎥= = − +⎢ ⎥⎣ ⎦

R R R Rσ σ σ Ωσ σΩ�  (2.49) 

where Ω  is the skew-symmetric tensor or angular velocity tensor (Equation (2.20)).  
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2.3 Fundamental laws of thermodynamics 

In order to model physical phenomena of deformation and failure, it is important to use 

a method based on the general principles that govern representative state variables of 

material continuum. In this section, some basic concepts in thermodynamics of 

continuum mechanics are introduced. For this purpose, let us define the scalar fields θ , 

e , s  and r  defined over body B  which represent, respectively, the temperature, 

specific internal energy, specific entropy and the density of heat production. In 

addition, variables f  and q  denote vector fields of body force and heat flux, 

respectively. 

2.3.1 Conservation of mass 

The first law of conservation postulates the conservation of mass expressed as [Pires 

2005]: 

 div 0
x

ρ ρ+ =u��   

where div
x
⎡ ⎤⋅⎢ ⎥⎣ ⎦  denotes the spatial divergence. Expressing by words, this law states that 

mass of an isolated system cannot be changed as a result of processes acting inside the 

system. 

2.3.2 Momentum balance 

The second law of conservation expresses the momentum balance. In its local form, 

balance can be expressed by the following partial differential equation with boundary 

condition [Souza Neto 2008]: 

 
( )
( )

div in

in
x

ρ+ =

= ∂

f u

t n

σ ϕ

σ ϕ

�� B

B
 (2.50) 

where n  is the outward unit vector normal to the deformed boundary of B  and t  is 
the boundary traction vector field. The above momentum balance equations are 

formulated in the spatial (deformed) configuration. The corresponding formulation in 

the reference configuration is expressed in terms of the first Piola-Kirchhoff stress 

tensor as: 

 
div in

in
p

P

ρ+ =
= ∂
P f u
t m

�� B
B

 (2.51) 

where div
p
⎡ ⎤⋅⎢ ⎥⎣ ⎦  denotes the material divergence, f  is the body force measured per unit 

reference volume, ρ  is the density in the reference configuration: 

 Jρ ρ= . (2.52) 
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t  is the boundary traction force per unit reference area and m  is the outward normal 

to the boundary of B  in its reference configuration. 

2.3.3 The first principle 

The first principle of thermodynamics constitutes the third law of conservation related 

with the conservation of energy. It can be mathematically expressed by the equation 

[Pires 2005]: 

 : div
x

e rρ ρ= + −d qσ�  (2.53) 

where the product :dσ  stands for the stress power per unit volume in the deformed 

configuration. This principle states that the total energy inside an isolated system 

remains the same for any process occurring inside that system. Therefore, internal 

energy rate per unit deformed volume must be equal to the sum of stress power and 

heat production per unit deformed volume minus the spatial divergence of the heat 

flux. 

2.3.4 The second principle 

The second principle of thermodynamics postulates that “energy systems have a 

tendency to increase their entropy rather than decrease it” and, therefore, expresses the 

irreversibility of entropy production. This principle can be expressed by the inequality: 

 div 0
x

r
s

ρ
ρ

θ θ

⎡ ⎤
⎢ ⎥+ − ≥⎢ ⎥⎣ ⎦

q� . (2.54) 

2.3.5 The Clausius–Duhem inequality 

The Clausius–Duhem inequality can be used to express the second law of 

thermodynamics for elastic-plastic materials and is a statement concerning the 

irreversibility of natural processes, especially when energy dissipation is involved. The 

Clausius–Duhem inequality derives from the fundamental inequality which, in turn, can 

be obtained by combining of the first and second principles of thermodynamics. Hence, 

the fundamental inequality is given by the expression: 

 ( )1
div : div 0

x x
s eρ ρ

θ θ

⎡ ⎤
⎢ ⎥+ − − + ≥⎢ ⎥⎣ ⎦

q
d qσ� � . (2.55) 

Introducing a new variable, the specific free energy ψ  (also known as Helmholtz 

free energy per unit mass) given by [Pires 2005]: 

 e sψ θ= −  (2.56) 

and the equality, obtained by derivation: 
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2

1 1
div div

x x x
θ

θ θ θ

⎡ ⎤
⎢ ⎥ = − ⋅∇⎢ ⎥⎣ ⎦

q
q q  (2.57) 

into the fundamental inequality, one obtains the Clausius–Duhem inequality written as: 

 ( ) 1
: 0sρ ψ θ

θ
− + − ⋅ ≥d q gσ � �  (2.58) 

with 
x
θ= ∇g . Assuming that intrinsic (mechanical) dissipation is decoupled from the 

thermal dissipation, both following equations must be satisfied simultaneously: 

 
( ): 0

1
0

sρ ψ θ

θ

− + ≥

− ⋅ ≥

d

q g

σ � �
. (2.59) 

It should be noted that all presented principles are valid for all types of 

substances, either gases, fluids or solids as long as chemical and electromagnetic effects 

are not taken into account [Pires 2001]. 

2.4 Constitutive theory 

The distinction between different types of material’s behaviour is made by introducing 

a proper constitutive model. Before starting to introduce the principles that are the 

basis for the constitutive theories presented in subsequently chapters, let us define the 

three fundamental axioms that define a rather general class of constitutive models of 

continua. 

2.4.1 Constitutive axioms 

The axioms, briefly presented in this section, must be satisfied for any constitutive 

model. It is important to make a distinction between thermokinetic and calorodynamic 

processes [Truesdell 1969]. A thermokinetic process of a generic body B  is specified by 

a pair of thermokinetic variables: 

 ( ),tpϕ  and ( ),tθ p . (2.60) 

For the body B  at a given region of space R3  in which the thermokinetic process is 

occurring, the history of this process will be assumed to define a calorodynamic process 

or constitutive relations. The set of fields 

 ( ) ( ) ( ) ( ) ( ) ( ){ }, , , , , , , , , , ,t e t s t r t t tp p p p f p q pσ  (2.61) 

must satisfy the principles of thermodynamics and the momentum balance. 
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2.4.1.1 Thermodynamic determinism 

Thermodynamic determinism postulates that “the history of the thermokinetic process 

to which a neighbourhood of a point p  of B  has been subjected determines a 

calorodynamic process for B  at p ”. For simple materials, the deformation gradient 

F , the temperature θ  and the spatial gradient of temperature g  are sufficient to 

define the history of the thermokinetic process. Regarding all variables delivered by 

conservation laws and introducing the specific free energy, the principles of 

thermodynamic determinism implies the existence of constitutive functionals F , G , H  

and I  of histories of F , θ  and g  such that, for a point p , [Souza Neto 2008]: 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

, ,

, ,

, ,

, ,

t t t

t t t

t t t

t t t

t

t

s t

t

θ

ψ θ

θ

θ

=

=

=

=

F g

F g

F g

q F g

σ F

G

H

I

 (2.62) 

and the Clausius–Duhem inequality holds for every thermokinetic process of B . 

2.4.1.2 Material objectivity 

Material objectivity axiom states that “material response is independent of the 

observer”. Assuming a change in the observer, a motion *ϕ  is related with motion ϕ  

if it can be expressed as [Souza Neto 2008]: 

 ( ) ( ) ( ) ( )*
0

, ,t t t t⎡ ⎤= + −⎢ ⎥⎣ ⎦p y Q p xϕ ϕ  (2.63) 

where ( )ty  is a point in space, ( )tQ  is a rotation and ( ) 0
,t −p xϕ  is the position 

vector of ( ),tpϕ  relative to an arbitrary origin 
0
x . The deformation gradient 

corresponding to motion *ϕ  is given by the transformation: 

 * =F QF . (2.64) 

Scalar fields are unaffected by a change in observer but Cauchy stress σ , heat 

flux q  and temperature gradient g  transform according to the rules: 

 

*

*

*

T→ =

→ =

→ =

Q Q

q q Qq

g g Qg

σ σ σ
. (2.65) 

This objectivity principle also imposes some restrictions to the functionals 

expressed in Equation (2.62), namely relations: 
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( ) ( )
( ) ( )
( ) ( )
( ) ( )

* * *

* *

* *

* * *

, ,

, ,

, ,

, ,

t t t

t t t

t t t

t t t

t

t

s t

t

θ

ψ θ

θ

θ

=

=

=

=

F g

F g

F g

q F g

σ F

G

H

I

 (2.66) 

must hold for any transformation stated in Equations (2.64) and (2.65). 

2.4.1.3 Material symmetry 

The symmetry group of a material is the set of density preserving changes of reference 

configuration under which the material response functionals F , G , H  and I  are not 

affected. The symmetry group of a solid material is a subset of the proper orthogonal 

group +O . A subgroup S  of +O  is a symmetry group of a material defined by 

functionals F , G , H  and I  if relations: 

 

( )
( )
( )
( )

, , , ,

, , , ,

, , , ,

, , , ,

tt t t t t

tt t t t t

tt t t t t

tt t t t t

θ θ

θ θ

θ θ

θ θ

⎛ ⎞⎡ ⎤ ⎟⎜= ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤ ⎟⎜= ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤ ⎟⎜= ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤ ⎟⎜= ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

F g FQ g

F g FQ g

F g FQ g

F g FQ g

F F

G G

H H

I I

 (2.67) 

hold for every time-independent rotation Q . In an isotropic solid, its symmetry group 

S  is the entire proper orthogonal group. 

2.4.2 Thermodynamics with internal variables 

The use of constitutive equations written in terms of history functionals, as presented 

in Section 2.4.1, are too general to have practical utility in describing dissipative 

thermodynamical processes undergoing by real materials. A more effective way is to 

add some simplifying assumptions by adopting the so-called thermodynamics with 

internal variables. The starting point of this theory is the hypothesis that, at any 

instant of a thermodynamical process, the thermodynamic state (defined by σ , ψ , s  

and q ) at a given point p  can be completely defined by the knowledge of the 

instantaneous value of a finite number of state variables and not on their history [Pires 

2005]. This hypothesis is intimately connected with the assumption of the existence of a 

(fictitious) state of thermodynamic equilibrium known as the local accompanying state 

[Kestin 1977] described by the current value of the state variables. Every process can 

be considered to be a succession of thermodynamic equilibrium states [Lemaitre 1994]. 
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2.4.2.1 The state variables 

State variables can be seen as parameters from thermodynamic process history and as 

the replacement of the complex constitutive description in terms of functionals. Their 

nature and number will be determinant in the accuracy of the description of the 

physical phenomena. For the processes that we are concerned (metal forming 

processes), the thermodynamic state at a point is determined by the set of state 

variables: 

 { }, , ,θF g α  (2.68) 

where F , θ and g  are instantaneous values of deformation gradient, temperature and 

temperature gradient and: 

 { }k
α=α  (2.69) 

represent a set of internal variables containing, in general, entities of scalar, vectorial 

and tensorial nature associated with the dissipative mechanisms. 

2.4.2.2 Thermodynamic potential. Stress constitutive equation 

The state potential allows the derivation of the state laws and the definition of the 

associate variables or driving forces associated with the state variables that define the 

energy involved in each phenomenon. Assuming the above hypothesis (expressed in 

Equation (2.68)), the specific free energy is assumed to have the form [Souza Neto 

2008]: 

 ( ), ,ψ ψ θ= F α . (2.70) 

So, its rate of change is given by: 

 :
k

k

ψ ψ ψ
ψ θ α

θ α
∂ ∂ ∂

= + +
∂ ∂ ∂

F
F

� � � �  (2.71) 

where summation over k  is implied. In this case, using the relationship: 

 : :T−=d F Fσ σ �  (2.72) 

for the stress power, one obtains for the Clausius-Duhem inequality: 

 
1

: 0T
k

k

s
ψ ψ ψ

ρ ρ θ ρ α
θ α θ

−
⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎟ ⎟⎜ ⎜⎟ ⎟− − + − − ⋅ ≥⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜∂ ∂ ∂⎝ ⎠ ⎝ ⎠
F F q g

F
σ � � � , (2.73) 

or, equivalently, in terms of power per unit reference volume, as: 

 : 0
k

k

J
s

ψ ψ ψ
ρ ρ θ ρ α

θ α θ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎟ ⎟⎜ ⎜⎟ ⎟− − + − − ⋅ ≥⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜∂ ∂ ∂⎝ ⎠ ⎝ ⎠
P F q g

F
� � � . (2.74) 
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The principle of thermodynamic determinism requires that Equation (2.74) 

remains valid for any pair of functions ( ) ( ){ },t tθF� � . This implies the constitutive 

relations: 

 
ψ

ρ
∂

=
∂

P
F

, s
ψ
θ

∂
= −

∂
 (2.75) 

for the first Piola-Kirchhoff stress and entropy, respectively. The Cauchy stress tensor 

can be further obtained as: 

 
1 T

J
ψ

ρ
∂

=
∂
F

F
σ . (2.76) 

2.4.2.3 Thermodynamical forces 

For each internal variable 
k

α  of the set α , we define the conjugate thermodynamical 

force as [Pires 2005]: 

 
k

k

A
ψ

ρ
α
∂

≡
∂

. (2.77) 

With this definition and the identities in Equation (2.75), the Clausius-Duhem 

inequality can be rewritten as: 

 0
k k

J
A α

θ
− − ⋅ ≥q g� . (2.78) 

In what follows, we will adopt for convenience the notation: 

 { }k
A≡A  (2.79) 

for the set of all thermodynamical forces. 

2.4.2.4 Dissipation. Evolution of the internal variables 

The thermodynamic potential allows the establishment of relations between each 

internal variable 
k

α  and the corresponding conjugate thermodynamical force 
k

A . 

However, in order to fully describe the dissipative mechanisms and completely 

characterize the constitutive model, a complementary formalism is required, namely, 

the postulation of constitutive equations for the flux variables 1 θq  and α� . Assuming 

that flux variables are given functions of the state variables, one may write the 

following constitutive equations [Souza Neto 2008]: 

 
( )
( )

, , ,

1
, , ,

f

h

θ

θ
θ

=

=

F g

q F g

α α

α

�
. (2.80) 
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Naturally, the formulation of functions f  and h  is restricted due to the fact that 

Clausius-Duhem inequality as expressed in Equation (2.78) must hold for any process 

(further details in [Truesdell 1969]). To have a more general form of Equation (2.80)1 

accounting for different natures of internal variables (scalar, vectorial or tensorial), it is 

convenient to define it in terms of objective rates rather than in the standard material 

time derivative, in order to achieve frame invariant evolution laws for variables that 

represent physical states associated with material directions.  

2.4.2.5 Dissipation potential. Normal dissipativity 

An effective way to ensure that Equation (2.78) is satisfied consists in postulating the 

existence of a scalar-valued dissipation (pseudo-) potential, continuous, non-negative 

and convex with respect to each 
k

A  and g . The dissipation (pseudo-) potential takes 

the form: 

 ( ), ; , ,θΞ = Ξ A g F α  (2.81) 

where state variables F , θ  and α  are introduced in the dissipation potential but only 

as parameters. In addition, the hypothesis of normal dissipativity is introduced, i.e., the 

flux variables are assumed to be determined by the laws: 

 
k

k
A

α
∂Ξ

= −
∂

� , 
1
θ

∂Ξ
= −

∂
q

g
. (2.82) 

A constitutive model defined by Equations (2.70), (2.75) and (2.82) satisfies ‘a 

priori’ the dissipation inequality [Pires 2005]. It should be noted, however, that the 

constitutive description by means of convex potentials as described above is not a 

direct consequence of thermodynamics but rather an instrument for formulating 

constitutive equations without violating thermodynamics. 

2.4.3 Phenomenological and micromechanical approaches 

Any material behaviour can be stated as a mathematical model as long as an 

appropriate set of internal variables are chosen. The choice of those internal variables 

and the analytical expressions for the state and dissipation potentials must be carefully 

taken because the success of the constitutive model in the description of the phenomena 

depends crucially on such selection. There are no rules for this selection process but, in 

general terms, the choice must be guided by the type of material, phenomena and the 

identification of all the physical mechanisms involved, corresponding conditions and 

expected accuracy and predictions delivered by the developed model. 

Two main approaches can be distinguished in constitutive modelling with internal 

variables: the micromechanical and the phenomenological approaches. The 
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micromechanical approach involves the determination of mechanisms and related 

variables at the atomic, molecular or crystalline levels. In general, these variables are 

discrete quantities and their continuum (macroscopic) counterparts can be defined by 

means of homogenisation techniques. The phenomenological approach, on the other 

hand, is based on the study of the response of the representative volume element 

(RVE), i.e., the element of matter large enough to be regarded as a homogeneous 

continuum. The internal variables, in this case, will be directly associated with the 

dissipative behaviour observed at the macroscopic level in terms of continuum 

quantities (such as strain, stress, temperature, etc.). Despite the macroscopic nature of 

theories derived on the basis of the phenomenological methodology, it should be 

expected that “good” phenomenological internal variables will be somehow related to 

the underlying microscopic dissipation mechanisms [Souza Neto 2008]. 

2.4.4 The purely mechanical theory 

Having cold sheet metal forming in mind and, therefore, thermal effects being 

disregarded, the general constitutive equations based in the internal variables approach 

for a pure mechanical case are given by: 

 

( )

( )

,

,f

ψ ψ
ψ

ρ

⎧⎪ =⎪⎪⎪ ∂⎪⎪ =⎨⎪ ∂⎪⎪ =⎪⎪⎪⎩

F

P
F
F

α

α α�

. (2.83) 

2.4.5 The constitutive initial value problem 

Assuming a purely mechanical theory (as stated above) and the adoption of the 

internal variable approach in the formulation of constitutive equations, the mechanical 

constitutive initial value problem can be stated as follows: 

“Given the deformation history ( )tF , 
0
,t t t⎡ ⎤∈ ⎢ ⎥⎣ ⎦  and the initial conditions for the 

internal values ( )0
tα , determine functions ( )tP  and ( )tα  for the first Piola-Kirchhoff 

stress and the set of internal variables such that the constitutive equations: 

 
( )

( ) ( ) ( )( ),
t

t

t f t t

ψ
ρ

⎧⎪ ∂⎪ =⎪⎪ ∂⎨⎪⎪ =⎪⎪⎩

P
F

Fα α�
 (2.84) 

are satisfied for 
0
,t t t⎡ ⎤∈ ⎢ ⎥⎣ ⎦ .” 
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2.5 Weak equilibrium. The principle of virtual work 

The momentum balance, as expressed in Equations (2.50) and (2.51), cannot be 

discretized directly by the finite element method. In order to discretize this equation, a 

weak form, often called a variational form, is needed [Belytschko 2000]. The principle of 

virtual work, or weak form, which will be stated in this section, is fundamental to the 

definition of the basic initial boundary value problem (IVBP) and can be used to 

approximate the strong form by finite elements procedures, as reviewed in Chapter 3. 

The spatial version of the principle virtual work states that “the body B  is in 

equilibrium if and only if its Cauchy stress field, σ , satisfies the equation: 

 ( )
( ) ( )

: 0
x

dv da
ϕ ϕ

ρ
∂

⎡ ⎤∇ − − ⋅ − ⋅ =⎢ ⎥⎣ ⎦∫ ∫f u tσ η η η��
B B

, ∀ ∈η V  (2.85) 

where f  and t  are the body force per unit deformed volume and boundary traction 

per unit deformed area and V  is the space of virtual displacements of B , i.e., the 

space of sufficiently regular arbitrary displacements:  

 ( ): →η ϕ B U .” (2.86) 

The equivalently expression of the principle virtual work in the reference 

configuration is given by: 

 ( ): 0
p

dv daρ
∂

⎡ ⎤∇ − − ⋅ − ⋅ =⎢ ⎥⎣ ⎦∫ ∫P f u tη η η��
B B

, ∀ ∈η V  (2.87) 

where P  is the first Piola-Kirchhoff stress field, J=f f  is the reference body force 

and t  is the boundary traction per unit deformed area. Similarly, V  is the space of 

virtual displacements defined as the space of sufficiently regular arbitrary 

displacements:  

 : →η B U . (2.88) 
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3. FINITE ELEMENT METHOD 

This chapter presents some basic concepts in the field of 

numerical methods, namely the finite element method, and 

addresses the most relevant issues and aspects for the sheet 

metal forming area. The material presented in this chapter is 

well-established in the specific literature devoted to finite 

element method and reader is referred to [Belytschko 2000] 

[Zienkiewicz 2000a] [Souza Neto 2008], among others, for further 

details. 

3.1 Definition of the initial boundary value problem 

A set of phenomena occurs simultaneous during metal forming operations: heat 

exchange, large plastic strains, nonlinear hardening, ductile damage, contact with 

friction between sheet metal and tools, etc. In addition these non-linear phenomena, it 

is crucial to add the imposed initial boundary conditions and to treat all the evolving 

boundary conditions (such is the case of contact-friction conditions). These phenomena 

and constraints define a highly non-linear initial boundary value problem (IBVP) that 

has to be solved, iteratively, by using a proper solution scheme. But, before addressing 

the required spatial discretization and the time-stepping integration scheme, it is 

important to define the initial boundary value problem to be solved in the case of metal 

forming processes. Let us suppose that a deformed body B  occupies, at time t , a 

volume v  delimited by the boundary ∂B  [Saanouni 2007]. During processing, the part 

will be submitted to an imposed: 

• Displacement field u  acting on 
u

∂B  of ∂B ; 

• Force field 
F
t  acting on 

F
∂B  of ∂B ; 

• Contact force 
C
t  acting on 

C
∂B  of ∂B ; 

• Body force field f  acting on B , 



30 Spatial discretization of initial boundary value problem Ch. 3 

 

with 
u F C

∂ ∪ ∂ ∪ ∂ = ∂B B B B  and 
u F C

∂ ∩ ∂ ∩ ∂ = ∅B B B . The problem to be solved 

can be casted in the weak form of the momentum balance, in its spatial description, as 

follows:  

 ( ) ( ) ( )

( ) ( )

:

0,
C F

x

C F

dv dv dv

da da
ϕ ϕ ϕ

ϕ ϕ

ρ

∂ ∂

∇ − ⋅ + ⋅

− ⋅ − ⋅ = ∀ ∈

∫ ∫ ∫
∫ ∫

f u

t t

σ η η η

η η η

��
B B B

B B
V

 (3.1) 

where u��  is the acceleration field, η  is the virtual displacement field, ρ  is the density 

and [ ]
x

∇ ⋅  denotes the spatial gradient of [ ]⋅ . So, the displacement based finite element 

analysis consists in finding the set of kinematically admissible deformations of B , 

defined as: 

 { }: | on
u

= → = ∂u u uK B U B  (3.2) 

that, at time t , satisfies the momentum balance described in Equation (3.1). As we 

will see later, the Cauchy stress tensor σ  has to satisfy the (non-linear) constitutive 

equation, and will be dependent of the displacement u  (through the velocity gradient 

l ) and of a set of internal variables α  related to plasticity, hardening and other 

phenomena such as ductile damage. 

With the introduction of a spatial and time discretization approximations, this 

original initial boundary value problem is reduced to a set of incremental (generally 

nonlinear) algebraic finite element equations to be solved at each time station of the 

considered time interval [Souza Neto 2008], as we will see in the following sections. 

3.2 Spatial discretization of initial boundary value problem 

In order to numerically analyse the IBVP, at first, it is required to discretize the 

continuum domain by a finite number of elements, 
elem

n , having each one an 

elementary volume such as: 

 ( )

elem

1

n
h

e
e=

≅ = ∪B B B  (3.3) 

with hB  representing the discrete domain of B  and 
( )e
B  the domain of a generic finite 

element e . The operation ∪  stands for the addition operation between all elements. It 

is important to emphasize that the quality of this spatial discretization is one of the 

key points that can affect the rigor and accuracy of results obtained by numerical 

simulation. Essentially, there are two main aspects that should be considered when 

performing the spatial discretization of the computational domain: the mesh geometry 

(topology) and the finite element type adopted (typology) [Alves 2003]. The first aspect 

is concerned to issues related with the geometric boundary of the computational 
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domain and the configuration of elementary finite element (structured or non-

structured mesh, regular or non-regular mesh, isotropic or anisotropic mesh). A finite 

element mesh that presents distorted elements can affect negatively the accuracy of the 

solution. The latter aspect is related with the element type adopted for the spatial 

discretization (solid, shell, solid-shell, etc.), his behaviour and the way that equations 

are formulated at the elemental level. 

Focussing our attention to a generic finite element e , it can be defined by a finite 

number of nodes ( )
node
en . Each node i  from element e  has an associated shape function 

(or interpolation function) ( )N e
i

 such as: 

 ( )( )e j
i ij

N δ=x  (3.4) 

where jx  is the node coordinate and 
ij
δ  is the Kronecker symbol. In words, it means 

that the shape function is equal to one if i j=  and zero for all the other nodes of the 

element e . A generic field ( )a x  defined over the element domain can be obtained by 

the finite element interpolation: 

 ( ) ( )
( )
node

( )

1

en
h e

i i
i

a a N
=

= ∑x x  (3.5) 

and, for the entire domain, as: 

 ( ) ( )
node

1

n
h g

i i
i

a a N
=

= ∑x x  (3.6) 

where g
i

N  is the global finite element shape function associated with global node i . 

Using this interpolation procedure, approximation to the boundary value problem 

defined in Equations (3.1) and (3.2) can be obtained by replacing the functionals K  

and V  by their discrete counterparts hK  and hV  as: 

 ( )
1

noden
h g

i i
i

N
=

= ∑u x u  and ( )
1

noden
h g

i i
i

N
=

= ∑ xη η , ( )∀ ∈x ϕ B  (3.7) 

where 
i
u  is the nodal displacement. Inserting Equation (3.7) into the weak form in 

Equation (3.1), one obtains the semi-discrete system of equations: 

 ( )int ext+ =Mu u�� f f  (3.8) 

where u  are the nodal displacements, M  is called the consistent mass matrix, in the 

sense that it is calculated from the same shape functions gN  that are used for the 

interpolation of the displacement field, and is given by: 
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 ( )Tg gdvρ= ∫M N N
B

. (3.9) 

( )int uf  represents the internal force contribution from the element stress field and the 

term extf  represents external forces arising from the applied tractions and contact 

conditions. These force vectors are obtained also as assemblies [Souza Neto 2008]: 

 ( )
elem

int int
( )1

n

ee=
= Af f  (3.10) 

 ( )
elem

ext ext
( )1

n

ee=
= Af f  (3.11) 

of the element vectors: 

 
( )

int
( )

e

T
e

dv= ∫
B

f B σ  (3.12) 

 
( ) ( )

ext
( )

e e

T T
e

dv da
∂

= +∫ ∫f tf N N
B B

 (3.13) 

where A  stands for the finite element assembly operator and matrix B  is the standard 

discrete symmetric gradient operator. 

3.3 Time integration and incremental solution procedures 

For the solution of the boundary value problem, there are two fundamental methods 

for problem formulation and time integration. If inertial forces are neglected, then 

problem is said to be quasi-static. If, on the other hand, inertial forces are considered in 

the equilibrium equations, the problem is said to be transient dynamic. For time 

integration, the scheme can be called either implicit or explicit. The difference between 

these two schemes is mainly related with the time instant when the constitutive model 

integration and the formulation of equilibrium equations are made. In the case of an 

implicit time integration scheme, solution is carried out at time 
1 1n n n

t t t
+ +

= +Δ  

while in the explicit method, solution is performed at time 
n
t , without any verification 

of equilibrium conditions at time 
1n

t + . Any combination between problem formulation 

and time integration is possible. Thus, one can have the following solution procedures: 

Static Explicit (SE), Static Implicit (SI), Dynamic Explicit (DE) and Dynamic Implicit 

(DI). Although all solution procedures are feasible (as for example the static explicit 

code ITAS3D [Santos 1993]), in this work, we will restrict ourselves to the two most 

widely used procedures: the static implicit (SI) and the dynamic explicit (DE) methods 

and focused in the dynamic explicit procedure. The choice between the two procedures 

is far from being consensual; there are tenacious supporters for each strategy. 
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Inevitably, the selection is linked with the advantages and disadvantages presented by 

each procedure and, in some cases, the choice often tend to be oriented by the working 

group and biased by the researcher preferences. Without pretending to get into deep 

discussions on this subject, here we will limit the discussion just mentioning some of 

the advantages and disadvantages of each solution procedure. 

A deep-drawing operation usually runs at a slow speed and can be classified as a 

quasi-static process, and, thus, inertia effects, related with gravity and accelerations 

fields, can be disregarded. This is the basic assumption made in the static solution 

procedure that considers that the work done by the inertial forces is very small when 

compared with the work associated with the plastic deformation [Alves 2003], and, 

consequently, it can be neglected and removed from equilibrium equations. Thus, the 

problem is reduced to the solution of the non-linear algebraic system: 

 ( ) ( )int ext
1 1 1

=
n n n+ + +

− =u ur f f 0  (3.14) 

for the nodal displacement 
1n+

u  at time 
1n

t
+

. Being Equation (3.14) a non-linear 

system and if an implicit time integration scheme is considered, the solution is 

undertaken by an iterative method, which, in general, is the Newton-Raphson 

algorithm, until the static equilibrium between internal and external global force 

vectors is achieved. This solution procedure needs the exact linearization of algebraic 

system of Equation (3.14). It should be mentioned that this linearization requires the 

computation of consistent tangent operators, which can be a challenging task, 

especially when complex integration algorithms and material models are involved [Pires 

2005]. Nevertheless, static implicit methods are widely used in springback calculations 

since it is widely accepted that purely explicit methods are not able to deliver a reliable 

prediction of springback [Alves 2003]. They can be considered unconditionally stable 

and, so, time increment tΔ  can be virtually equal to the total time 
max

t . However, in 

practice, it is limited by non-linearities of constitutive models and contact treatment. 

As disadvantages, one can point out the almost quadratic increase of calculating time 

with increasing degrees of freedom and the required physical memory for the solution of 

the system of equations. Also, the contact treatment (and friction) in implicit methods 

is considered to be one of the main causes responsible for non-convergence or slowness 

of convergence in implicit methods. 

A numerically more efficient algorithm is given by the dynamic explicit method, 

which can handle reasonably well with all the nonlinearities and discontinuities of the 

constitutive laws that model the physical phenomena, such as material constitutive 

laws and contact with friction modelling. It is considered also efficient for dealing with 

extremely refined meshes, with large problems and a high number of degrees of freedom 

associated with those problems [Alves 2003]. 
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However, due to the explicit formulation, these methods may incur in a successive 

deviation from the equilibrium state and, consequently, from the exact solution, mainly 

due to the accumulation of small errors during the incremental integration of the 

boundary value problem. Therefore, the accuracy of the results will be strongly 

dependent on the size of the time increment tΔ , being this method conditionally 

stable. Nevertheless, in most situations, this is not a concern for explicit dynamic 

analysis because the stable time increment is usually sufficiently small to ensure good 

accuracy. 

3.3.1 Explicit dynamic finite element solution strategy 

For the sake of completeness and before addressing the explicit dynamic finite element 

solution strategy, it is imperative to state the incremental boundary value problem in 

the weak form of the equilibrium: 

“Given the set 
n

α  of internal variables at time 
n
t , and given the body forces 

1n+
f  and 

surface traction 
1n+t  fields at 

1n
t + , find a kinematically admissible configuration 

( )1 1n n
ϕ

+ +
∈B K  such that the virtual work equation: 

 ( ) ( )

( ) ( )

1 1

1 1

1

1 1

:

0
n n

n n C

x n

n n

dv dv

dv da
ϕ ϕ

ϕ ϕ
ρ

+ +

+ +

+

+ +∂

∇ − ⋅

+ ⋅ − ⋅ =

∫ ∫
∫ ∫

f

u t

σ η η 

η η��
B B

B B

 (3.15) 

is satisfied for any ∈η V , where 
1n

ϕ +  is the deformation map at 
1n

t + . The set 
1n+K  is 

defined as: 

 { }1 1
: | on

n n u+ +
= → = ∂u u uK B U B  (3.16) 

where 
1n+

u  is the prescribed boundary displacement at 
1n

t
+

.” As already stated, the 

initial boundary value problem will be reduced to a set of incremental boundary value 

problems, making use of the contemporary configuration at time 
n
t  as the reference 

configuration for the time step 
1

,
n n
t t

+
⎡ ⎤⎢ ⎥⎣ ⎦ . This formulation is known as Updated 

Lagrangian formulation (UL), distinctive from the Total Lagragian formulation (TL) 

that always refer to the initial (unstressed) configuration as the reference configuration 

[Klerck 2000].  

In the case of the dynamic explicit integration scheme, the resolution of the 

incremental boundary value problem will be performed at time 
n
t . So, let us go back to 

the dynamic discrete system given by Equation (3.8). The objective is, then, to obtain 

the values of all dynamic quantities at the end of a specific time interval 

1 1n n n
t t t

+ +
= +Δ , exclusively based on values available at time 

n
t . Written at the thn  



Ch. 3 FINITE ELEMENT METHOD 35 

 

time increment, the semi-discrete form of the dynamic equilibrium equation (Equation 

(3.8)) is given as follows [Saanouni 2007]: 

 ( )int ext
n n n
+ =Mu u�� f f , (3.17) 

in which the mass matrix M  is generally a symmetric, positive definite, but non-

diagonal matrix. The accelerations for all nodes at time 
n
t  are directly obtained as: 

 ( )1 int ext
n n n

− ⎡ ⎤= −⎢ ⎥⎣ ⎦u M u�� f f . (3.18) 

It is computationally advantageous to replace the non-diagonal consistent matrix 

M  by a diagonal one, called the lumped mass matrix LM . The use of a lumped mass 

matrix is justified by the reduced (almost null) computation cost of its inverse 

calculation and by the straightforward multiplication with the inertial force vector, 

requiring only n  operations, being n  the number of degrees of freedom in the model. 

This nodal mass lumping consists in placing concentrated point masses 
i

m  at nodes i  

in the directions of assumed displacement DOF’s [Saanouni 2007], rendering a diagonal 

mass matrix. More details of mathematical methods for nodal mass lumping and its 

consequences for the solution accuracy, the reader is referred to [Zienkiewicz 2000a], 

among many others. 

To obtain the displacement field 
1n+u , at time 

1 1n n n
t t t+ += +Δ , the central 

difference integration scheme is used and is illustrated in Figure 3.1 [Pires 2005].  

 

Figure 3.1 Central difference scheme. 

The relevant mid-increment velocities are defined as: 

 1
1 2

n n
n

n
t

−
−

−
=

Δ

u u
v  and 1

1 2
1

n n
n

n
t

+
+

+

−
=

Δ

u u
v . (3.19) 

The second order central difference equation for acceleration at time 
n
t  is given by: 

 
1 2 1 2

1 2

n n

n
n
t

+ −

+

−
=

Δ

v v
u��  (3.20) 
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where 
1 2n

t +Δ  is an average time step, calculated as: 

 1
1 2 2

n n
n

t t
t +

+

Δ +Δ
Δ = . (3.21) 

Using Equations (3.18) and (3.20), the mid-increment velocity 
1 2n+v  can be rewritten 

as: 

 ( )1 int ext
1 2 1 2 1 2n n n n n

t −
+ − +

⎡ ⎤= +Δ −⎢ ⎥⎣ ⎦v v M uf f  (3.22) 

and displacement, at time 
1n

t
+

, calculated as: 

 
1 1 1 2n n n n

t+ + += +Δu u v . (3.23) 

After the computation of the displacement field, the dynamic explicit solution 

strategy proceeds with the calculation of internal force vector ( )int
1 1n n+ +uf  assembled 

from the individual contributions of the internal force vector for each element: 

 ( )
( )( )

int
( ) 1

ˆ ,
e

T
e n n

dv
ϕ

+= ∫ u α
B

f B σ  (3.24) 

where σ̂  is the vector containing the Cauchy stress components delivered by the 

constitutive model algorithm. This assembling is made in such way that a global 

stiffness matrix is not needed to be formed [ABAQUS 2008]. In this stage, it is required 

to integrate the constitutive equation over the time step 
1n

t
+

Δ  and obtain the 

corresponding updated Cauchy stress. This local integration of the constitutive 

equations is further explained in Section 3.4. The external force vector ext
1n+

f , comprising 

all forces acting on boundary, including contact forces, is also assembled from the 

individual contributions of the external force vector for each element: 

 

( ) ( )( ) ( )

ext
( ) 1 1

e e

T T
e n n

dv da
ϕ ϕ

+ +

∂

= +∫ ∫f t
B B

f N N . (3.25) 

Finally, the velocity field at time 
1n

t +
 can also be evaluated by using the mid-

increment quantity as: 

 
1 1 2 1 1

1
2n n n n

t+ + + += + Δv v u�� . (3.26) 

The dynamic explicit solution strategy is conveniently summarized in Box 3.1. As 

seen, no iteration procedure is required for the dynamic explicit scheme as well as the 

assembling of the tangent stiffness matrix. However, no verification is performed at 

time 
1n

t
+

 concerning the equilibrium state. Due to the intrinsic conditional stability of 

the central difference operator [Klerck 2000], this incremental solution procedure is also 
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Box 3.1 Dynamic Explicit (DE) solution strategy. 

i) Lump the mass matrix and set initial conditions: 

 L→M M ; 

ii) Estimate the time step 
1n

t
+

Δ  by calculating the critical time step: 

 
1n cr

t t+Δ = Δ ; 

iii) Update displacements 
1n+

u : 

 
1 1 1 2n n n n

t+ + += +Δu u v , 

 1
1 2 1 2 2

n n
n n n

t t +
+ −

Δ +Δ
= +v v u�� , 

 1
1 2

n n
n

n
t

−
−

−
=

Δ

u u
v ; 

iv) Compute the stress 
1n+

σ and internal variables 
1n+

α  by integrating the full set 

of constitutive equations (see Section 3.4); 

 

v) Compute the internal forces ( )int
1 1n n+ +uf  vector: 

 ( ) ( )
elem

int int
1 1 ( )1

n

n n ee+ + =
=u Af f ; 

vi) Compute the external forces ext
1n+

f  vector: 

 ( )
elem

ext ext
1 ( )1

n

n ee+ =
= Af f ; 

vii) Solve discretized dynamic system for the accelerations: 

 ( ) ( )
1

int ext
1 1 1 1

L
n n n n

−

+ + + +
⎡ ⎤= −⎢ ⎥⎣ ⎦u M u�� f f ; 

viii) Compute the velocity field: 

 
1 1 2 1 1

1
2n n n n

t+ + + += + Δv v u�� ; 

ix) If 
max

t t<  go to (ii), if not STOP. 

 

conditionally stable, being the accuracy of the solution of the IBVP highly dependent 

on the chosen time step tΔ . Therefore, and according to the high nonlinearity of the 

system (Equation (3.8)), the explicit scheme should be used only with an automatic 
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variation of time increment tΔ . So, it is essential to establish some restrictions in such 

automatic time step control in order to avoid exceeding stability limits and to control 

solution accuracy. An approximation to the stability limit is often written as the 

smallest transit time of a dilatational wave across any of the elements in the mesh: 

 min
e

d

L
t

c

⎛ ⎞⎟⎜ ⎟⎜Δ ≤ ⎟⎜ ⎟⎟⎜⎝ ⎠
 (3.27) 

where eL  is the smallest element dimension in the mesh (calculated as the smallest 

distance between adjacent nodes of the element e ) and 
d

c  is the dilatational wave 

speed of the material, determined by calculating the effective hypoelastic material 

moduli from the material's constitutive response (for more details see [ABAQUS 2008]). 

As the critical time interval calculated by Equation (3.27) can be of order 710−  or 

lower, the number of required increments for a stamping simulation can easily exceed 

one million, representing unacceptable calculation times. To reduce the necessary 

number of increments, some numerical artifices are used to achieve such aimed 

reduction [Alves 2003], namely the virtual increase of the punch speed comparatively to 

the real punch speed (and thus reducing the total time 
max

t ) and / or the virtual 

increase of density, reducing the dilatational wave speed of the material, and, according 

to Equation (3.27), allowing larger time intervals.  

3.4 Local integration of constitutive equations 

Whatever the solution scheme is chosen, there is a central issue in the incremental 

solution procedures: the computation of the new stress state 
1n+

σ  and the updated set 

of internal variables 
1n+α  based on the incremental displacement Δu  and the 

knowledge of the converged values 
n

σ  and 
n

α  at time 
n
t . Using the additive 

decomposition of the rate of deformation tensor, the objective class of phenomenological 

constitutive equations can be defined as: 

 ( ): :e p• = = −d d dσ E E  (3.28) 

where σ•  is an objective stress rate of the spatial Cauchy stress, E  is the objective 

fourth order linear elastic operator and pd  is the plastic rate of deformation, defined by 

a flow rule as: 

 p γ
∂Φ

=
∂

d
σ

�  (3.29) 

where γ�  is the plastic consistency parameter and Φ  is a plastic potential. To satisfy 

the objectivity requirement, the original rate constitutive equation is mapped into a 

rigid motion-insensitive local configuration. This approach is formally known as 
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rotation neutralized description or rotated frame formulation. In this work, the 

objective Green-Naghdi stress update procedure is adopted. It must be remarked that 

the elastic response predicted by the rate-form constitutive equation will be dependent 

on the objective stress rate employed. However, since in metal plasticity elastic strains 

are small, the inconsistencies associated with these hypoelastic-based models remain 

almost negligible.  

Let us consider a time interval 
1n n

t t t
+

Δ = −  and, for this time interval, the 

midpoint velocity gradient 
1 2n+l  is given by: 

 
1 2 1 2 1 2n n n+ + += ∇l v  (3.30) 

obtained for the midpoint configuration 
1 2n+u  defined as: 

 
1 2

1
2n n+ = + Δu u u  (3.31) 

by the calculation of the corresponding mid-increment velocity: 

 1
1 2

n n
n t

+
+

−
=

Δ

u u
v . (3.32) 

Using the velocity gradient defined in Equation (3.30), it is possible to define the 

midpoint stretching tensor: 

 ( )1 2 1 2
sym

n n+ +=d l . (3.33) 

Applying the same midpoint rule, the equivalent rate form, in the local rotated 

configuration, of the rate constitutive equation defined in Equation (3.28) is given by: 

 
1 1 2 1 2

:
n n n n

t t
+ + +

− = Δ = Δ DΣ Σ Σ E�  (3.34) 

where 
n

Σ  denotes the rotated Cauchy stress tensor, calculated as: 

 T
n n n n
=R RΣ σ  (3.35) 

and the midpoint rotated stretching tensor, denoted as 
1 2n+D , is computed as: 

 
1 2 1 2 1 2 1 2

T
n n n n+ + + +

=D R d R . (3.36) 

The midpoint rotation tensor 
1 2n+R  is calculated by the polar decomposition of the 

deformation gradient at the midpoint configuration: 

 ( )1 2 1 2 1 2 1 2

1
2n n n n+ + + += = + ∇ ΔF R U I u . (3.37) 
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In order to achieve second-order accuracy [Klerck 2000], the strain increment is 

evaluated at the midpoint configuration: 

 ( )1 2 1 2 1 2
T
n n n

t+ + +Δ = ΔR d Rε  (3.38) 

conveniently rotated to the reference configuration. After the computation of all the 

above quantities, the algorithm proceeds with the computation of the updated rotated 

stress 
1n+

Σ  using the standard small strain integration algorithm, here denoted as 

[Pires 2005]: 

 ( )1
ˆ , ,

n n n+ = ΔΣ Σ Σ ε α  (3.39) 

where 
n

α  represents a set of internal variables, that should be rotated accordingly if 

tensorial variables are included. 

The standard small strain integration algorithm relies in the operator split 

methodology that results in an algorithm which consists of two basic steps [Pires 2005]. 

The first step corresponds to the elastic predictor, where the problem is supposed to be 

purely elastic between times 
n
t  and 

1n
t +  and, therefore, no plastic flow neither internal 

variable evolution is assumed to occur. If this elastic trial state is plastically admissible, 

then the process is indeed purely elastic and the updated state corresponds to the 

computed trial state. Otherwise, plastic yielding occurs between times 
n
t  and 

1n
t

+
, 

then the second step, the plastic corrector, is used in order to restore consistency by 

“returning” the trial stress to the yield surface. In this step, the elastic trial state is 

taken as the initial condition in the solution of a discrete system of equations 

comprising the elasticity law, plastic flow, internal variables evolution and the loading 

/ unloading criterion, written as: 

 0γ ≥� ; 0Φ ≤ ; 0γΦ =� . (3.40) 

Finally, after the computation of the updated rotated stress 
1n+Σ , the updated stress 

1n+
σ  is obtained by rotating the updated rotated quantity back to the spatial 

configuration: 

 ( )1 1 1 1
T

n n n n+ + + +=R Rσ Σ . (3.41) 

The incrementally objective integration algorithm for a general Green-Naghdi rate-

based finite plasticity model is summarized in Box 3.2. It should be mentioned that, 

throughout this thesis and for the sake of simplicity, all tensorial quantities used in the 

development of rate-independent plasticity algorithms in subsequent chapters are 

assumed to be in the rotated configuration, and, so, all subscripts and specific rotated 

quantities notation will be omitted. 
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Box 3.2 Objective Green-Nagdhi stress update procedure. 

i) Update configuration and compute midpoint configuration: 

 
1 1n n n+ += +Δu u u , 

1 2

1
2n n+ = + Δu u u ; 

ii) Compute midpoint velocity configuration: 

 1
1 2

n n
n t t

+
+

− Δ
= =

Δ Δ

u u u
v ; 

iii) Compute midpoint velocity gradient and stretching tensors: 

 
1 2 1 2 1 2n n n+ + += ∇l v , ( )1 2 1 2

sym
n n+ +

=d l ; 

ii) Perform polar decomposition to assemble rotation matrices: 

 
n n n
=F RU , 

1 2 1 2 1 2n n n+ + +=F R U , 
1 1 1n n n+ + +=F R U ; 

iv) Calculate strain increment at midpoint configuration: 

 ( )1 2 1 2 1 2
T
n n n

t
+ + +

Δ = ΔR d Rε ; 

v) Map Cauchy stress from previous configuration (time t ) to reference 

configuration: 

 ( )T
n n n n
=R RΣ σ ; 

vi) Update rotated stress in reference configuration: 

 ( )1
ˆ , ,

n n n+ = ΔΣ Σ Σ ε α ; 

vii) Update Cauchy stress in spatial configuration by mapping rotated stress from 

reference configuration: 

 ( )1 1 1 1
T

n n n n+ + + +=R Rσ Σ . 

 

3.5 Contact with friction modelling 

Since interaction between tool and blank is always present in metal forming processes, 

the numerical treatment of contact with friction must be taken into account because 

the frictional behaviour has an important contribution in the equilibrium equations, as 

a part of the external force vector. The contact with friction modelling introduces 

additional initial and evolving boundary conditions and adds extra complexity to the 

boundary value problem due to the non-linear nature of the introduced boundary 

conditions. Two main subjects must be addressed in the contact-friction modelling: the 

contact search algorithm and the numerical treatment of the contact occurrences. 

Basically, contact is established between two surfaces: a master surface, considered 

as a reference, and a slave surface, which relative movement to the first one is mapped. 

Both surfaces can be considered as deformable surfaces, but, usually, in metal forming, 
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the tool surface (master) is considered as a rigid (undeformable) surface while the part 

surface is defined as a deformable one, being only necessary to satisfy contact-friction 

equations for this deformable body. 

The contact search algorithm allows detecting any kinematic incompatibilities such 

as the penetration of the slave surface nodes into the master surface. This task can be 

an extremely time-consuming step in the numerical simulation. An efficient algorithm 

should use, at first, a global search stage, to detect potential areas where the contact 

interaction can be introduced, and, then, a local search algorithm, in order to 

determine the location where the contact is established. This hierarchical global / local 

search algorithm promotes an increase of algorithm efficiency and a subsequent 

reduction in the computation time spent in this search task [ABAQUS 2008].  

Important in this master / slave strategy is the way the rigid surfaces are defined. 

Several ways can be considered in the definition of tool surfaces: analytical functions, 

parametric surfaces, points or rigid elements. A critical assessment of the advantages 

and disadvantages of these different tool descriptions is provided in [Santos 1993]. The 

calculation of surface normal, required for the computation of gap distance between 

tool surface and nodes from deformable body, will be necessarily depending on the type 

of tool surface description. But, no matter the tool description approach, the 

impenetrability condition must hold and can be stated by the Signorini conditions: 

 0d ≥ ; 0
n

F ≥  and 0
n

dF =  (3.42) 

where d  and 
n

F  represent the distance and normal component of the contact force, 

respectively. The solution of these contact conditions can be undertaken by different 

methods: Lagrange multipliers method, penalty method and augmented Lagrangian 

method [Alves 2003]. Once contact is established, it is required to calculate contact and 

friction kinematic variables, by using appropriate frictional constitutive equations. 

The friction mechanism is a highly complex phenomenon and depends directly of 

several factors: contact pressure, sliding speed, material of contacting bodies, surface 

roughness, lubrication, temperature, etc. Due to the large variety of highly interactive 

factors, the formulation of the contact-friction models is a very complex task justifying 

the limit number of available theoretical and numerical methods for the modelling of 

contact-friction behaviour. Moreover, these available models are considered too 

simplistic in comparison to the real physical phenomenon [Alves 2003]. The main used 

contact-friction constitutive law is the classical Coulomb friction model, which is based 

on a phenomenological approach and follows a formalism similar to the plasticity 

theory. The basic concept of this model is to relate the maximum allowable frictional 

(shear) stress across an interface to the contact pressure between the contacting bodies 

[ABAQUS 2008]. To relate both quantities, a friction yield surface is introduced and a 
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definition of an equivalent tangential stress must be provided. In a 3D contact 

situation, the equivalent tangential stress, 
eq
τ , is given by: 

 2 2
1 2eq

τ τ τ= +  (3.43) 

where 
1
τ  and 

2
τ  are the two principal directions of tangential stresses, calculated in 

the contact interface. Using this equivalent quantity, the Coulomb friction model can 

be defined as: 

 
(sticking contact)

(sliding contact)

0

0
eq t

eq t

P v

P v

τ μ

τ μ

⎧⎪ < ⇒ =⎪⎪⎨⎪ > ⇒ >⎪⎪⎩
 (3.44) 

where P  is the contact pressure, 
t

v  is the relative tangential velocity and μ  is the 

friction coefficient. In words, the Coulomb friction model defines a critical shear stress, 

crit
Pτ μ= , at which sliding of the surfaces starts as a fraction of the contact pressure, 

P , between the surfaces. In this classical model, the friction coefficient is considered to 

be isotropic (not dependent upon the sliding direction) and assumed constant during all 

forming operation. 

For further discussion about these contact issues and numerical aspects, reader is 

referred to more specific works as [Santos 1993] [Oliveira 2005] and user’s manual 

[ABAQUS 2008], among others. 
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4. ISOTROPIC DAMAGE MECHANICS 

This chapter reviews some basic concepts of internal damage in 

solids. A review on developments in Continuum Damage 

Mechanics is provided and the original isotropic damage model 

proposed by Lemaitre [1984] is presented. An enhancement to 

this model is proposed by the inclusion of plastic anisotropy 

described by the Hill48 yield criterion. For the numerical 

implementation, two integration algorithms are presented: 

partial coupling and full coupling schemes. Based on the 

simplified partial coupling algorithm, quasi-unilateral effects on 

damage evolution are introduced in order to model micro-crack 

closure effect under compressive stress states. 

4.1 Introduction 

The growing knowledge of the physical mechanisms that promote internal progressive 

deterioration of the mechanical properties for a high range of materials turned possible 

the formulation of constitutive models capable of describing the initiation and evolution 

of such mechanical degradation. This new branch of Continuous Mechanics theory is 

known as Continuous Damage Mechanics (CDM). The progress in the understanding of 

physical phenomena, allied with the development of the numerical techniques, allowed 

that the use of computational tools can perform reliable failure predictions and 

determine the remaining useful life of structural components, representing, therefore, a 

viable alternative decision tool in the development of new products and in the 

determination of current damage state of a component in service. 

After more than four decades since its origin, Continuous Damage Mechanics has 

now reached a development stage that allows solving most of the practical engineering 

problems. The theory is based on the definition of a continuous variable (damage), 

which can be related to the density of internal defects, to describe the evolution of 

mechanical deterioration of the material before the initiation of macro-cracks. This 
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continuous quantity is one of the main aspects that distinguish this theory from other 

branches such as the Fracture Mechanics framework, which considers the process of 

initiation and growth of micro-cracks as a discontinuous phenomenon. Especially 

important for our main area of interest (metal forming processes) is the ductile damage 

phenomenon, for which is given a particular emphasis in the brief historical review 

provided in the next paragraphs.  

4.2  Physical aspects of internal damage in solids 

Damage in materials is the physical process of progressive deterioration that can lead 

to macroscopic collapse. That degradation is the result of the nucleation, growth and 

coalescence of micro-cracks and micro-cavities, visible from microscopic observations. 

The description of this internal degradation, as well as the its scale (microscopic, 

macroscopic or structural), is strongly dependent on the material, type and rate of 

loading application, temperature and other environmental factors to which the material 

is subjected. Therefore, instead of analyzing only the material itself, it is important to 

consider a combined analysis including also the thermo-mechanical process, in order to 

study the evolution of material degradation. Although it is nearly impossible to 

enumerate all damaging processes in the case of metallic materials, the damaging 

phenomenon can be generally divided in two different types: brittle damage and ductile 

damage.  

Brittle damage occurs mainly in the form of cleavage of crystallographic planes in 

the presence of negligible inelastic deformations [Souza Neto 2008]. It is associated with 

cleavage forces that, although small to produce slips, are sufficient to overcome 

debonding forces. This behaviour is usually observed for many metallic materials at low 

temperatures, but it can also appear for high temperatures, associated with creep 

mechanisms. Ductile damage occurs simultaneously with large plastic deformations, 

larger than a certain threshold [Lemaitre 1996]. It results from the nucleation of 

cavities due to decohesions between inclusions and the matrix followed by their growth 

and their coalescence through the phenomenon of plastic instability. Although a 

distinction can be made between brittle and ductile damage, for most metallic 

materials, damage behaviour is a combination of brittle and ductile response. 

Another type of damage, worth mentioning, is the fatigue damage. It occurs when 

material is subjected to a large number of loading and / or temperature cycles, at a low 

stress level, below the macroscopic yield stress limit. Strains remain also very low and 

are almost negligible. Despite the low meso-scale stress level, micro-cracking nucleates 

in highly stressed areas near microscopic defects, where localized cycles of plastic 

deformation occur [Souza Neto 2008]. Fatigue damage is essentially attributed to this 

micro-cracking caused by this cyclic straining and also to the accumulation of 
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dislocations. Coalescence of these micro-cracks often results in a transgranular crack 

propagation mode.  

In this work, we will limit ourselves to the study of ductile damage. Three 

important phases occur in the ductile damaging process [Chaboche 2007], as shown in 

Figure 4.1. 

 

Figure 4.1 Schematic of ductile damage evolution. 

The first phase corresponds to a limited apparent deterioration and, although it leads 

to a reduction in remaining life, its effects on the physical properties of the material 

can be neglected. In this phase, nucleation of micro-cracks at the boundaries of some 

favourable inclusions is the main damaging process. During second phase, nucleation 

still occurs but a significant growth of already nucleated micro-cracks is observed. This 

growth is associated with particle debonding, rupture of brittle phases, very localized 

and intense dislocation pilings and deformation accumulations, leading to cavities or 

micro-cracks. The material properties are highly affected in this phase and damage 

effect in mechanical properties can be measured. The last phase corresponds to the 

coalescence of local damage defects due to the proximity between them and the failure 

of residual ligaments due to high localized plastic deformation. Further coalescence 

results in the localization into a main defect that can be considered as a major crack 

[Chaboche 2007]. This last phase corresponds to the limit of validity of CDM 

approaches, being acceptable to make a macro-crack analysis in order to define its 

propagation, i.e., the consideration of a Fracture Mechanics-based model. 

4.3 Continuous Damage Mechanics developments 

4.3.1 Original developments 

At microscopic scale, damage can be considered as a discontinuous phenomenon, 

related with decohesion of interatomic bounds or the plastic magnification of micro-
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voids. Without a well-defined physical definition, Kachanov [1958] was the first author 

to propose the definition of a continuous internal variable to reflect the density of such 

defects and to characterize the observable loss of load-carrying capability. The physical 

interpretation of damage was later developed by Rabotnov [1963] who proposed the 

reduction of the cross-sectional area due to the presence of cracks and cavities as the 

measure for the state of internal damage. In order to define and manipulate this 

dimensionless variable, it is necessary to enlarge the phenomena to the scale of a 

representative volume element (RVE) that contains enough and randomly distributed 

defects so that damage mechanism can be well represented by a mean variable, leading 

to continuous variable [Voyiadjis 2005]. Let A  be a sectional area of a damaged RVE 

identified by its normal n . 

 

Figure 4.2 Damaged representative volume element. 

In this sectional area, micro-cracks and cavities (which constitute damage) assume 

different shapes and sizes and are randomly distributed. Consider an effective resistant 

area A� , lower than the original area A  (A A<� ), taking into account the area 

occupied by those defects, the micro-stress concentrations in the neighbourhood of 

geometric discontinuities and the interactions between the neighbouring defects 

[Lemaitre 1984]. The difference between original area A  and effective resistant area A� : 

 
D

A A A= − �  (4.1) 

gives the total area of defects. Damage is then introduced as: 

 D
A

D
A

= , (4.2) 

representing a ratio between the total area of defects 
D

A  and the total sectional area 

A . From a mathematical point of view, when the total area of defects 
D

A  tends to the 

total sectional area A , damage D  will tend to 1, and thus, damage can assume values 

from 0 ( 0
D

A = ), corresponding to virgin (undamaged) material, up to 1 (
D

A A= ), 

corresponding to the fully damaged material and the physical separation of the RVE in 
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two parts. So, the physical definition for the damage value can be postulated as the 

relative (or corrected) area of cracks and cavities, cut by a plane normal to the 

direction n .  

The introduction of a damage variable which represents a surface density of 

discontinuities in the material leads directly to the concept of effective stress, i.e., to 

the stress calculated over the section which effectively resists the forces [Voyiadjis 

2005]. Considering an uniaxial case, if a force F  is applied to a RVE with a transverse 

section A , the stress that satisfies the balance is given by: 

 
F
A

σ = . (4.3) 

But, in the presence of damage, the resistant area is reduced due to the presence of 

micro-cracks and force F  will act in this reduced or effective area. The effective or 

corrected area A�  is obtained from the initial area A  by the relation (using Equation 

(4.1) and (4.2)): 

 ( )1
D

A A A A D= − = −� . (4.4) 

This reduction in the resistant area increases stress effects induced by the external 

force. This magnified or effective stress σ�  is given by the expression: 

 
( ) 11

F F
DA A D

σ
σ = = =

−−
� � . (4.5) 

In order to describe the strain rate increase that characterizes tertiary creep, 

Kachanov [1958] has replaced the observed uniaxial stress σ  by this effective stress σ�  

in the standard Norton’s law for creep. 

After this pioneering work of Kachanov [1958] and Rabotnov [1963], essentially 

applied to describe creep failure in metallic materials, several works have followed this 

starting point of CDM. Using a thermodynamic formalism, the theoretical concepts of 

CDM were later described by Germain et al. [1983] and successfully extended to 

describe other types of damage: Elastic-brittle [Murakami 1997] [Lubarda 1995] 

[Murakami 1988], brittle [Krajcinovic 1981] [Krajcinovic 1983], creep [Murakami 1981] 

[Leckie 1974], fatigue [Chaboche 1988a] [Chaboche 1988b] [Lemaitre 1999] and creep-

fatigue damage [Chaboche 1988a] [Chaboche 1988b]. 

Concerning damage quantification, damage effects are measurable during second 

phase of damaging process, as already stated in Section 4.2. Different methods can be 

used for such measurement [Lemaitre 1987]. In a broad sense, they can be divided into 

direct and non-direct methods. Direct methods are based on the direct assessment of 

micro-cracks, volume fraction of defects and cavities, present in the material. This is 

done by the observation of micrographic pictures or by using the decrease of the 
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density, measurable based on the Archimedean principle. In non-directs methods, as 

the name states, damage is not measured directly but through its effects on mechanical 

behaviour. The most popular method for damage evaluation is the measurement of its 

influence on the degradation of elastic moduli by ultrasonic waves propagation methods 

or micro-hardness techniques [Mkaddem 2006]. A critical assessment of the reliability of 

the latter indentation-based damage quantification procedures is discussed in [Tasan 

2009]. 

4.3.2 Ductile damage 

Ductile fracture in structural metals deformed at room temperature takes place by the 

nucleation, growth and coalescence of micro-voids. The voids generally nucleate by 

decohesion of second-phase particles or by particle fracture, and grow by plastic 

deformation of the surrounding matrix. Due to great difficulties in the modelling of 

interactivity between micro-cracks and their spatial distribution, at the present, 

micromechanical analyses are meaningful only under the assumption of dilute micro-

cracks. Also, since microscopic-macroscopic homogenization procedures are rather time 

consuming, the rigor of quantum mechanics is ultimately traded for the computational 

efficiency needed in engineering design, using phenomenological models [Wu 2008]. 

An extensive literature concerning damage accumulation in ductile materials has 

been published. Generally, they can be divided into two main frameworks: 

micromechanical-based (or physical) damage models and phenomenological damage 

models. The first framework is related with the original work developed by Gurson 

[1977], that has formulated a model for the description of material degradation by using 

an internal variable that represents the volume fraction of spherical voids, f , defined 

as the ratio between the accumulated volume of individual voids and the total volume 

of the RVE. In order to establish the coupling between plasticity and damage, Gurson 

[1977] proposed an approximate macroscopic yield function for a ideally plastic matrix 

material containing a certain volume of fraction voids, considering the effects of 

hydrostatic stress. The evolution equation for the volume fraction was obtained as a 

sum of three rates, representing the three phases of damage mechanism (nucleation, 

growth and coalescence) being postulated from experimental observations [Gurson 

1977]. This model was later developed by Tvergaard [1982] and Tvergaard and 

Needleman [1984], who have modified Gurson’s yield function in order to account for 

rate sensitivity and necking instabilities in plastically deforming solids and to provide 

better representation of final void coalescence. The Gurson-Tvergaard-Needleman 

(GTN) model has shown to be especially suitable for the representation of behaviour of 

porous materials although it is also used for sheet metals [Brunet 2001] [Chen 2009]. 
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The other framework, called phenomenological approach, is based on the classical 

CDM theory proposed by Lemaitre et al. [1984] [1985a] [1985b], who has described the 

above discussed three phases of ductile damage by using a purely phenomenological 

model within the framework of thermodynamics of irreversible processes [Germain 

1983] [Lemaitre 2000b]. The original development was made by assuming an isotropic 

condition, i.e., considering that cracks and voids were equally distributed in all 

directions, not dependent upon n  (see Figure 4.2) and, therefore, the intrinsic damage 

variable was represented by a scalar D  (Chapter 5 deals with higher-order definition of 

damage variables). Evoking the method of local state [Lemaitre 1996], Lemaitre has 

postulated the principle of strain equivalence which states that “Every strain behaviour 

of a damaged material is represented by constitutive equations of the undamaged 

material in the potential of which the stress is simply replaced by the effective stress”, 

avoiding a micromechanical analysis for each type of defect and each type of 

mechanism of damage. Using this principle and the effective stress concept, it is 

possible to establish the uniaxial law of elasticity of a damaged material as: 

 Eσ ε=�  (4.6) 

or, equivalently, as: 

 Eσ ε= �  (4.7) 

where E  and: 

 ( )1E D E= −�  (4.8) 

are the Young’s moduli of virgin (undamaged) and damaged materials, respectively. 

Hence, the variation of the Young’s modulus as ductile damage progresses can be used 

as the measure of damage itself, redefining it as: 

 1
E

D
E

= −
�

 (4.9) 

for a ideally isotropic case, instead of the evaluation of load bearing area by means of 

micrographic pictures. Another type of equivalence principle was proposed by 

Cordebois and Sideroff [1982], the energy equivalence principle, which considers an 

equivalence of elastic strain energy between the effective (undamaged) material and the 

current damaged configuration. A drawback of this equivalence principle is the 

significant constraints that are induced on the form of the damaged elastic stiffness (or 

compliance stiffness) [Chaboche 2007]. 

The thermodynamically consistent framework developed by Lemaitre et al. [1985a] 

[1996] for the description of elasto-plasticity with damage has been a subject of study 

and developments over the past three decades. Several alternative formulations have 



52 Continuous Damage Mechanics developments Ch. 4 

 

emerged, mainly related with different equivalence assumptions (strain or energy 

equivalences), with different forms of state coupling (inclusion of damage in the 

Helmholtz free energy or Gibbs thermodynamic potential) and with different coupling 

of dissipations (coupling between damage and plasticity mechanisms). 

Concerning state coupling, the equivalence principles and the effective stress 

concept allow to establish a state coupling between elasticity and damage. The initial 

theoretical format, as proposed by Lemaitre and Chaboche [1978], considers that state 

coupling remains linked only with the elastic part of the Helmholtz free energy and 

there is no coupling between damage and hardening. This theory provides an associated 

thermodynamical force that has the same meaning, no matter if a purely elastic or 

elasto-plastic case is considered. Later, Cordebois and Sideroff [1982] included an 

additional term in the free energy, dependent of a new variable β  that represents a 

measure of cumulative damage. Although this theory does not introduce an explicit 

coupling between damage and hardening, it adds another term in the energy dissipated 

by damage, corresponding to the product between the new variable and its 

corresponding thermodynamical force. A stronger state coupling is achieved by 

considering that damage influences both elastic and plastic terms in the Helmholtz free 

energy. This approach is followed by Ju [1989] and Saanouni et al. [2000]. Obviously, 

the introduction of this dependence changes the conjugate thermodynamical force, now 

containing two terms, corresponding to the elastic and plastic-damaged components. 

Concerning coupling of dissipative phenomena, Lemaitre’s original theory 

[Lemaitre 1985a] [Lemaitre 1996] assumes that both plasticity and damage are 

governed by a single mechanism and by a single dissipation potential. This dissipation 

potential, from which derives the evolution equations, is assumed to be additively 

decomposed into plastic and damage terms. With this assumption, there is a strong 

coupling between the two dissipative processes, plasticity and damage, meaning that 

damage cannot take place without plastic yielding. This can be seen as a strong 

limitation, especially in the cases where damage occurs without significant plastic flow, 

as for example, high-cycle fatigue. To overcome this limitation, Lemaitre et al. [1999] 

used a two scale model applied to fatigue deterioration, considering a micro-mechanics 

based model of a weak micro-inclusion subjected to plasticity and damage embedded in 

an elastic meso-element. Due to distinct degradation phenomena taking place in 

plasticity (dislocation along slip planes) and damage (micro-crack nucleation, growth 

and coalescence), other theories have postulated the existence of several independent 

dissipation potentials, each one associated with a dissipative process. This is the case of 

the framework followed by several authors [Cordebois 1982] [Chow 1987] [Zhu 1995] 

[Al-Rub 2003] [Voyiadjis 2009]. Besides the plastic flow potential, an additional 

potential is associated with damage mechanism and damage effects are introduced in 
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the plastic flow potential through the effective stress concept. This double-dissipative 

coupled model allows that damage yielding and plastic yielding can occur 

independently, letting damage evolution occurrence without plasticity, thus providing a 

simplified analysis in the case of high-cycle fatigue.  

Another question is related with the selection of the plastic yielding surface. The 

effective stress concept supplies a limited choice for the plastic yield surface selection 

[Chaboche 2007]. In his original work, Lemaitre [1996] considered that damage only 

influences Cauchy stress tensor σ  and no amplification of hardening is considered due 

to damage growth. This assumption leads to a plastic yield surface not centered in the 

back-stress tensor X . A more standard form of the plastic yield surface is to include 

damage effects in the kinematic hardening term, as later proposed by Lemaitre and 

Chaboche [1990], and, therefore, elastic domain remains centered on the effective back-

stress tensor X�  in the stress space. Another possibility was explored by Saanouni et al. 

[2000] [2006] by including the definition of an effective isotropic hardening variable R� . 

Although good results were obtained, this approach present some difficulties to 

generalize for higher-order damage variables and, so, the previous form is usually 

preferred [Chaboche 2007].  

Despite the considered state or dissipation coupling, computational aspects were 

also subject of different approaches. Two main ways can be taken to numerically 

simulate damage occurrence: uncoupled and coupled approaches. Uncoupled approach 

consists in carry out the conventional FEA simulation, evaluating part shape and stress 

state during a forming operation. Damage evaluation is done by post-processing the 

finite element solution, performing the time integration of the damage evolution law 

using the computed thermodynamical fields. Inevitably, this kind of approach neglects 

stress and strain redistribution caused by damage growth and consequent plastic 

softening behaviour. Nevertheless, it can be used as a fast procedure for early 

development phases. For more accurate engineering applications, coupling between 

elasto-inelastic constitutive equations and damage must be strong and, therefore, the 

so-called fully coupled approach is required. A more complete review can be found in 

several works [Lemaitre 2005] [Chaboche 2007] [Voyiadjis 2005]. 

4.4 Lemaitre’s elasto-plastic isotropic damage theory 

The description of Lemaitre’s ductile damage model [Lemaitre 1985a] [Lemaitre 1996] is 

presented in the following. 

4.4.1 State potential and state relations 

The starting point of the theory is the assumption of a state or thermodynamic 

potential, from which derives the state laws. The Helmholtz free energy is taken as the 
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thermodynamic potential and can be defined as a function of the set { }, , ,e r Dε β  of 

state variables, in the form: 

 ( ), , ,e r Dψ ψ= ε β  (4.10) 

where eε  is the elastic strain tensor and r  and D  are the scalar internal variables 

associated, respectively, with isotropic hardening and isotropic damage. The second 

order tensor β  is the internal variable related to kinematic hardening. Table 4.1 

depicts the state variables and the corresponding associated thermodynamical forces. 

Table 4.1 State variables for isotropic damage theory. 

Mechanism Type State Variables Associated 

Variables Observables Internal 

Elasticity Tensor ε   σ  
Plasticity Tensor  pε  −σ  
Isotropic Hardening Scalar  r  R  

Kinematic Hardening Tensor  β  X  
Damage Scalar  D  Y  

 

In this case, it is assumed an isothermal process, so the choice of internal variables 

depends on the physical phenomena under consideration (elasticity, isotropic and 

kinematic hardening and damage). Under the hypothesis that damage only affects 

elasticity, the Helmholtz free energy can be expressed by an additive decomposition of 

two state potentials corresponding to the elastic-damage and hardening contributions 

to the free energy, given by the sum: 

 ( ) ( ) ( ), , , , ,e ed e pr D D rψ ψ ψ= +ε β ε β  (4.11) 

where edψ  and pψ  are, respectively, the elastic-damage and plastic terms of the free 

energy. The elastic-damage state potential is defined as: 

 ( ) ( )1 1
, : : : 1 :

2 2
ed e e e e eD Dρψ = = −ε ε ε ε εE E�  (4.12) 

where E  is standard isotropic elasticity tensor. A classical proof [Chaboche 2007] 

allows to eliminate all the reversible processes from the Clausius-Duhem inequality, 

and, therefore, state relations are given by: 

 
( )

( )
,

1 :
ed e

e

e

D
D

ψ
ρ
∂

= = −
∂

ε
σ ε

ε
E  (4.13) 

which represents the linear elasticity law or Hooke’s law. Equivalently, the above 

damaged elastic law can be written as: 
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 : e=σ εE�  (4.14) 

where σ�  is the effective stress tensor, being related with Cauchy stress tensor by the 

expression: 

 
1

1 D
=

−
σ σ� . (4.15) 

The thermodynamical force associated with damage internal variable, Y , also 

derives from the elastic-damage state potential and can be expressed as: 

 
( ), 1

: :
2

ed e

e e
D

Y
D

ψ
ρ
∂

= = −
∂

ε
ε εE  (4.16) 

or, using the inverse of the elastic stress / strain law, as: 

 11
: :

2
Y −= − σ σE� � . (4.17) 

After some straightforward algebra, it is possible to define Y  as a function of the stress 

triaxiliaty ratio ( )H
σ σ  as [Souza Neto 2008]: 
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HY
E D

σσ
ν ν

σ

⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜ ⎟⎜= − + + −⎢ ⎥⎟⎜ ⎟⎟⎜⎢ ⎥⎝ ⎠− ⎢ ⎥⎣ ⎦

 (4.18) 

where σ  represents the von Mises equivalent stress, ν  the Poisson ratio and 
H

σ  the 

hydrostatic stress. Also, it can be demonstrated that Y−  is equal to half the elastic 

strain energy released by damage evolution at fixed stress [Chaboche 2007]. Starting 

from the law of elasticity and differentiating, one has: 

 : :e ed d dD
D

∂
= + =

∂
0σ ε εEE

�� . (4.19) 

Knowing that ( )1 D= −E E�  and rearranging, Equation (4.19) can be written as: 

 
1

e e dD
d

D
=

−
ε ε . (4.20) 

Defining the elastic energy variation, at constant stress, as: 

 :e edW d= σ ε  (4.21) 

and using the definition of Equation (4.20), it is sufficient to calculate: 
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 (4.22) 

and, finally, using the definition of Equation (4.16), one may write: 

 
1
2

edW
Y

dD
σ

− = . (4.23) 

This last equation allows Y−  to be called the strain energy density release rate, equal 

to one half the variation of the strain energy density corresponding to a variation of 

damage at constant stress [Lemaitre 1996]. It corresponds to the elastic energy release 

rate for a crack, J , used in basic Fracture Mechanics theories. 

Concerning the plastic state potential ( ),p rψ β , it is considered as the sum of 

independent contributions of isotropic and kinematic hardenings. Therefore, plastic 

state potential is given by the sum of terms: 

 ( ) ( ), :
2

p I a
r rρψ ρψ= +β β β  (4.24) 

where a  is a material constant associated with kinematic hardening and the isotropic 

hardening contribution, ( )I rψ , is an arbitrary scalar function of the internal isotropic 

variable r . So, it is possible to postulate the state relations for the thermodynamical 

forces associated with isotropic and kinematic hardening, R  and X , respectively, 

related with internal variables as: 

 
( ) ( ) ( )

,p Ir r
R R r

r r

ψ ψ
ρ
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= = =
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β
 (4.25) 
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a
ψ

ρ
∂

= =
∂

X
β

β
β

 (4.26) 

where X  is the so-called back-stress tensor. 

4.4.2 Dissipation potential and associated evolution equations 

Having all the state and corresponding associated variables defined, a second potential 

will give the kinetic constitutive relations to describe the evolution of the phenomena 

[Lemaitre 1996]. The existence of a single dissipation potential, Ψ , is assumed from 

which, using a normality rule, the evolution equations for all internal variables are 

derived. But, before presenting the explicit expression for the dissipation potential, let 
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us define some restrictions to its formulation. Selecting three physical phenomena, 

isotropic hardening, kinematic hardening and damage, the intrinsic dissipation must 

satisfy the Second Principle of Thermodynamics, written as: 

 : : 0p Rr YD− − − ≥Xσ ε β� �� � , (4.27) 

taking into account the definition of the thermodynamic associated force to each 

internal variable. One can rewrite the above inequality assuming that it can be 

decomposed in two terms, namely, plastic dissipation and damage dissipation, 

respectively, given by: 

 
: : 0

0

p Rr

YD

− − ≥

− ≥

Xσ ε β�� �
� . (4.28) 

As shown in Equation (4.28), the inequality should be identically verified for each 

selected dissipative mechanism. As Y−  is a positive quadratic function (see Equation 

(4.18)), the damage rate D�  must also be a non-negative function. This means that 

damage variable only takes into account progressive deterioration of materials, not 

being possible any kind of recovery of strength. In order to satisfy ‘a priori’ this 

restriction and the dissipation inequality, it is assumed the existence of a scalar-valued 

dissipation (pseudo-) potential *Ψ , function of the rates of change of the internal 

variables: 

 ( )* * , , , ; , , ,p pr D r DΨ = Ψ ε β ε β� �� �  (4.29) 

where internal variables as considered as parameters in this potential. Using the 

Legendre-Fenschel transformation, a complementary equivalent dissipation (pseudo-) 

potential Ψ  can be postulated. It is also a scalar-valued function, continuous, non-

negative and convex with respect to each thermodynamical forces: 

 ( ), , , ; , , ,pR Y r DΨ = Ψ Xσ ε β . (4.30) 

Using a single dissipation potential approach, this complementary dissipation 

potential is given by an additive decomposition of hardening pΨ  and damage dΨ  

potentials in the form: 
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p d b S Y
a SD s

+⎛ ⎞− ⎟⎜ ⎟Ψ = Ψ + Ψ = Φ + + ⎜ ⎟⎜ ⎟⎜− + ⎝ ⎠
X X  (4.31) 

where a , b , S  and s  are material constants and Φ  is the yield function of von Mises 

type: 
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where 
0Y

σ  is the initial yield stress of the material. According to the hypothesis of 

generalised normality, the plastic flow is given by: 

 p γ γ
∂Ψ

= =
∂

Nε
σ

� � �  (4.33) 

where N  stands for the flow vector, expressed as: 
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The evolution of internal variables associated with isotropic and kinematic 

hardening, r�  and β� , are: 
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and damage evolution law is given by: 
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�� �  (4.36) 

where γ�  is the plastic parameter, that must satisfies the standard complementary law 

of rate-independent plasticity: 

 0γ ≥� ; 0Φ ≤ ; 0γΦ =� . (4.37) 

To complete the formal description of elasto-plasticity coupled with damage, it is 

important to define the equivalent plastic strain rate pε� , which has to be in accordance 

with the considered yield criterion. For the von Mises criterion and assuming the 

equivalence of plastic work rate, one has: 

 :p p pW σ ε= =σ ε� �� . (4.38) 

Using Equation (4.33) and the definition of equivalent stress for a von Mises material: 

 ( )
1
2

3
:

2
σ = s s , (4.39) 

equivalent plastic strain rate is calculated from the equivalence in Equation (4.38) as: 

 
1

p

D
γ

ε =
−
�� . (4.40) 
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Thus, using Equation (4.36) and (4.40), one can rewrite the evolution equation for 

damage as: 

 

s

p Y
D

S
ε

⎛ ⎞− ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
� � . (4.41) 

4.4.3 Damage threshold 

As already stated in Section 4.2, for low values of accumulated plastic strain, a limited 

apparent deterioration is observed and its effects on physical properties can be 

neglected. Taking as example the monotonic pure tension case, it is assumed that 

internal degradation or damage only starts to grow when a certain value of 

accumulated plastic strain is attained [Lemaitre 1996]. Since damage evolution equation 

is governed by the equivalent plastic strain rate, it is logical to define this threshold 

based on the accumulated plastic strain. This critical value is denoted by damage 

threshold p
D
ε  and corresponds to value of equivalent plastic strain below which no 

damage by micro-cracking occurs. Although this threshold depends upon type of 

loading and type of damage, it is generally considered a material parameter, identified 

from a monotonic uniaxial loading. This threshold is introduced in the model by using 

the Heaviside step function H  as: 

 ( )
s

p p p
D

Y
D H

Y S
γ ε ε ε

⎛ ⎞∂Ψ − ⎟⎜ ⎟= = −⎜ ⎟⎜ ⎟⎜∂ ⎝ ⎠
� ��  (4.42) 

where H , the Heavyside step function, is defined as: 

 ( )
if 0

0 if 0

a a
H a

a

⎧⎪ ≥⎪= ⎨⎪ <⎪⎩
. (4.43) 

4.4.4 Critical damage criterion 

Several ways are possible to define localization and meso-crack initiation. The simplest 

and most practical solution is to use the critical damage criterion, which states that a 

meso-crack is initiated when damage reaches a critical value [Lemaitre 2005]: 

 
C

D D> . (4.44) 

The term 
C

D  is considered a material constant. Although its value is difficult to 

obtain, for most materials, critical damage ranges from 0.2 up to 0.5. 

Another possible way to identify meso-crack initiation is to use a strain damage 

localization criterion. The most common approaches are the bifurcation approach and 

the perturbation analysis theory. The bifurcation approach consists of the analysis of 
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the loss of uniqueness in the rate mechanical problem. The perturbation approach is 

based on the perturbation of the reference solution and the analysis of the perturbed 

solution. Instability is assumed if the perturbed solution drifts from the reference 

solution. The main disadvantages of these criterions are due to their intrinsic difficulty 

to be handled inside finite element codes, requiring high computation times, and also, 

to their dependence on the type of material and damage evolution law. 

4.4.5 Computational aspects 

The numerical integration of Lemaitre’s elasto-plastic isotropic damage constitutive 

equations by means of a return mapping-type scheme has been originally proposed by 

Benallal et al. [1988] and Doghri and Billardon [1995] under small-strain hypothesis and 

later explored by several authors within finite strains context [Souza Neto 1994] [Souza 

Neto 1998] [Saanouni 2000]. Original integration algorithm leads to a non-linear system 

of 15 scalar equations for a general 3D case, solved iteratively according to the Newton-

Rapshon scheme. Exploiting standard return mapping procedures [Simo 1998], the 

return mapping stage can be reduced to the solution of 2 non-linear equations in the 

case of fully isotropic case [Saanouni 2007]. Further simplification to the solution of a 

single scalar non-linear equation was proposed by Souza Neto [2002] for a version of 

Lemaitre’s ductile damage model that disregards kinematic hardening. The proposed 

integration algorithm has proven to be particularly efficient, but requires the knowledge 

‘a priori’ of the evolution of internal variable r , not possible to obtain directly from a 

stress-strain curve obtained from a standard tensile test. 

4.5 Elasto-plastic isotropic damage model with anisotropic flow 

The constitutive model proposed in this section, to describe the mechanism of internal 

damaging, was inspired in the model described in Section 4.4. In this improved model, 

plastic anisotropy, which generally characterizes thin sheet behaviour, is introduced. 

While for bulk metal forming, the assumption of initial isotropy is admissible, in 

the case of sheet metal forming, the previous history of thermo-mechanical processing 

of sheet material induces preferred directions for plastic deformation, which generally 

has an orthotropic character. In such cases, the isotropy assumption may lead to a poor 

representation of the actual mechanical behaviour and the formulation and the use of 

appropriate anisotropic plasticity models becomes crucial to ensure reasonable accuracy 

in finite element predictions. Also, during forming operation, additional anisotropy can 

be introduced by the evolution of the microstructure and may even be responsible for 

the destruction of orthotropic plastic behaviour. However, this deformation-induced 

anisotropy is usually considered very small in comparison with the anisotropy imposed 

during hot and cold rolling. This consideration is well accepted and widely adopted in 



Ch. 4 ISOTROPIC DAMAGE MECHANICS 61 

 

the analysis of sheet metal forming processes. So, for the modelling of initial anisotropy, 

the quadratic Hill48 [Hill 1948] criterion was selected. 

This criterion represents a generalization of the isotropic quadratic criterion 

proposed by von Mises [von Mises 1913], capable to describe orthotropic behaviour 

found in rolled sheets. With 
ij

σ  denoting the components of the stress tensor in the 

orthogonal reference system { }1 2 3, ,e e e , which vectors coincide with principle axes of 

plastic orthotropy, yield function for this criterion is given by: 

 ( ) ( ) ( )2 2 2 2 2 2
22 33 33 11 11 22 23 31 12

2 2 2

Y

F G H L M Nσ σ σ σ σ σ σ σ σ

σ

Φ = − + − + − + + +

−
(4.45) 

where F , G , H , L , M  and N  are the Hill’s anisotropic parameters that define 

material anisotropy and 
Y
σ  is the updated yield stress that describes the hardening 

state of the material. Hill’s parameters are calculated from the Lankford coefficients 
0

r , 

45
r  and 

90
r , determined from uniaxial tensile testings at 3 different directions 0º , 45º  

and 90º  from rolling direction, through the expressions: 
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One important feature of this criterion is the fact that fully recovers the von Mises 

isotropic criterion when anisotropic coefficients 
0

r , 
45

r  and 
90

r  are considered equal to 

1. Also, like the isotropic criterion, it is “pressure insensitive”, which reflects the 

independence of the criterion of the hydrostatic pressure, allowing to express its yield 

function in terms of the components of the stress deviator, s . This criterion has been 

widely used in the numerical modelling of sheet metal forming processes over the past 

years. Besides being well accepted theoretically and proven to properly describe sheet 

metal initial anisotropy, it can be applied to a generic stress state and leads to linear 

relations between stress and incremental plastic strains.  

4.5.1 Constitutive model 

Including initial plastic anisotropy, the main difference to the previous explained 

damage model is the replacement of the isotropic yield function in the dissipation 

potential by an anisotropic one. In this case, one has for the flow potential Ψ : 
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where S  and s  are damage-related material constants and Φ  is the yield function of 

Hill48 criterion [Hill 1948]: 
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Μ  is the Hill fourth order operator, function of the Hill’s anisotropic parameters. It is 

important to remark that, as in Lemaitre’s formulation, damage affects both stress σ  

and back-stress X  tensors, keeping the elastic domain centered on X  in the stress 

space as damage increases. Considering the standard hypothesis of generalised 

normality, the evolution law for the plastic flow is given by: 

 p γ γ γ
∂Ψ ∂Φ

= = =
∂ ∂

Nε
σ σ

� � � �  (4.49) 

where N  is the flow vector, which takes the following form for the Hill48 criterion: 
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( ) ( ) ( )
:

1 : :D

−∂Φ
= =

∂ − − −

X
N

X X

σ

σ σ σ

M

M
. (4.50) 

The evolution laws for the isotropic and kinematic hardening internal variables are 

respectively given by: 

 r
R

γ γ
∂Ψ

= − =
∂

� � �  (4.51) 

 ( )a bγ γ
∂Ψ

= − = −
∂

N X
X

β� � �  (4.52) 

and the damage evolution law written as: 

 
1

s
Y

D
Y D S

γ
γ

⎛ ⎞∂Ψ − ⎟⎜ ⎟= − = ⎜ ⎟⎜ ⎟⎜∂ − ⎝ ⎠

�� � . (4.53) 

By the equivalence of plastic work rate, equivalent plastic strain rate is calculated as: 

 
1

p

D
γ

ε =
−
��  (4.54) 

and the damage evolution law can be rewritten as: 

 

s

p Y
D

Y S
γ ε

⎛ ⎞∂Ψ − ⎟⎜ ⎟= − = ⎜ ⎟⎜ ⎟⎜∂ ⎝ ⎠
� �� . (4.55) 

The plastic multiplier γ�  satisfies the plastic loading / unloading rules (Kuhn-Tucker 

condition): 

 0γ ≥� ; 0Φ ≤ ; 0γΦ =� . (4.56) 
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The constitutive equations of the overall elasto-plastic isotropic damage model 

with anisotropic flow are summarized in Box 4.1. 

Box 4.1 Lemaitre’s ductile isotropic damage model with anisotropic flow. 

i) Elasto-plastic split of the strain tensor 
e p= +ε ε ε  

ii) Elastic law (coupled with damage) 

( )1 : eD= −σ εE  

iii) Yield function 

( ) ( )
( )0

: :

1 Y
R r

D
σ

− −
⎡ ⎤Φ = − +⎢ ⎥⎣ ⎦−

X Xσ σM
 

iv) Plastic flow and evolution equations 

( )
( ) ( ) ( )
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1 : :

p

D
γ

−
=

− − −

X

X X

σ
ε

σ σ

M

M
� �  

1
p

D
γ

ε =
−
��  

( )a bγ= −N Xβ� �  

s

p Y
D

S
ε

⎛ ⎞− ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
� �  

 with Y  given by: 

( )
1

2

1
: :

2 1
Y

D

−= −
−

σ σE  

v) Loading / unloading criterion 

0γ ≥� ; 0Φ ≤ ; 0γΦ =�  

4.5.2 Integration algorithm 

The integration algorithm of the equations of elasto-plasticity coupled with Lemaitre’s 

ductile damage model is a special case of the implicit scheme known as elastic predictor 

/ plastic corrector [Simo 1987]. Here we shall focus in the exact linearisation of the field 

equations which provides the basis of the standard Newton-Raphson iterative scheme 

for solution of the associated nonlinear boundary value problem. Other authors have 

also focused the numerical implementation of ductile damage model for orthotropic 

sheet metal forming processes [Saanouni 2006] [Khelifa 2007]. In these implementations, 

the return mapping procedure involves the solution of a system of two (or three) non-

linear equations, where at least one of the equations is a tensorial one. In this work and 

in order to obtain a simpler form for numerical implementation, kinematic hardening is 
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excluded from the constitutive model. The use of such simplified theory can be justified 

whenever the effects of kinematic hardening are not relevant, i.e., in any process where 

reverse plastic loading does not occur or has little influence on the overall evolution of 

damage and plastic flow [Souza Neto 2008]. 

Disregarding kinematic hardening, the return mapping stage can be reduced to the 

solution of a system of two scalar non-linear equations. In order to achieve such more 

efficient algorithm, it is important to define Hill48 yield criterion in a quadratic form 

as: 

 2: :
Y
σΦ = −σ σM . (4.57) 

This is a valid hypothesis since: 

 ( )( )
2: : 0

: : : : 0

: : 0 : : 0

Y

Y Y

Y Y
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σ σ

σ σ

− =

⇔ − + =

⇔ − = ∨ + =
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σ σ σ σ

σ σ σ σ

M

M M

M M

 (4.58) 

and the condition : : 0
Y
σ+ =σ σM  is unattainable. So, it is feasible to define yield 

criterion in such form, allowing the definition of updated stress 
+n

σ
1
 only as a function 

of incremental plastic multiplier γΔ , as we will see later. 

In the context of finite element analysis, the problem to be addressed in the 

integration algorithm is the updating of variables 
n

σ , e
nε , p

nε , p
nε  and 

n
D , converged 

in the previous increment 
n
t , into their corresponding values 

+n
σ

1
, +

e
nε 1 , +

p
nε 1 , ε +

p
n 1  e 

+n
D

1
 in the updated configuration, at time 

1n
t +

. Given a strain increment Δε  

corresponding to the pseudo-time interval 
1

,
n n
t t

+
⎡ ⎤⎢ ⎥⎣ ⎦ , the fully coupled damage-plasticity 

integration algorithm follows the evaluation of an elastic trial stress state, and, if the 

consistency condition is infringed, the return mapping process is applied. So, the 

algorithm starts with the computation of the elastic trial stress state trialσ : 

 :trial trial
n n n

ω ω+ Δ ==σ σ ε σ E �  (4.59) 

where trialσ�  is the effective trial stress tensor and 
n

ω  is the material integrity defined 

as: 

 = −
n n

Dω 1 , (4.60) 

introduced in the algorithm, instead of variable 
n

D , for computational convenience. 

Considering that all internal variables are “frozen” at time 
n
t , yield function is 

evaluated for the computed trial stress: 

 ( ) ( )2 2

2

: :
: :

trial trial
trial trial trial p p

Y n Y n

n

σ ε σ ε
ω

Φ = − = −
σ σ

σ σ
MM� � . (4.61) 
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If the condition 0trialΦ ≤  verifies, then all strain increment Δε  is purely elastic 

and there is no evolution of internal variables. Therefore, the trial state corresponds to 

updated state for 
+

=
n

t t
1
 and updated variables 

+n
σ

1
, +

e
nε 1 , +

p
nε 1 , ε +

p
n 1  e 

+n
D

1
are 

given by: 
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1
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 (4.62) 

In the other hand, if 0trialΦ > , then one must apply the plastic corrector 

algorithm to ensure the consistency condition. It is now important to define the 

updated stress tensor +n
σ

1
 as a function of the incremental consistent plastic 

parameter Δγ , and, additionally, as a function of the material integrity, 
1n

ω
+

. 

Starting from the definition of the elastic trial strain tensor 
e trialε  and assuming 

additive strain decomposition, one may write that: 

 
1

e triale p
n+

= −Δε ε ε . (4.63) 

Considering an associative flow rule, plastic flow is given by: 

 p γ
∂Φ

=
∂

ε
σ

� �  (4.64) 

which, for Hill48 criterion with isotropic damage written in a quadratic form, is equal 

to: 

 =� �pε σMγ
ω2

2
:  (4.65) 

and, therefore: 

 + +
+

Δ
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n n

n

ε ε σM :γ
ω1 12

1

2
. (4.66) 

Introducing in the above equation the trivial definitions: 

 

+ + +
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 (4.67) 



66 Elasto-plastic isotropic damage model with anisotropic flow Ch. 4 

 

and, after a straightforward algebraic manipulation, one obtains the following 

expression for the updated stress 
+n

σ
1
: 

 

−

+ +
+

⎛ ⎞Δ ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
�trial

n n
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G
σ σI Mγ

ω
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1

1 1
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4
:  (4.68) 

where I  is the fourth order identity tensor and G  is the bulk modulus. Furthermore, it 

is also possible to deduce explicitly the expression for the equivalent plastic strain 

increment pεΔ , function of the incremental consistent plastic parameter Δγ  and 

material integrity 
1n

ω +
. Using the definition of incremental plastic work Δ pW  and 

equality between effective and equivalent stress and strain states, the increment of 

equivalent plastic strain can be computed from the relation: 

 1

1

: p
p n

n

ε
σ

+

+

Δ
Δ =

σ ε�
�  (4.69) 

where 
1n

σ
+

�  is the effective equivalent stress given by: 
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So, equivalent plastic strain increment can be expressed as: 
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Δ
Δ = σ σM . (4.71) 

Therefore, the return mapping algorithm for the fully coupled integration of plasticity 

and damage can be reduced to the solution of a system of two non-linear scalar 

equations, function of the incremental consistent plastic multiplier Δγ  and material 

integrity +n
ω

1
: 
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 (4.72) 

where the first equation represents yield function and the second one the damage 

evolution law expressed by the material integrity 
+n

ω
1
. Variables 

+n
σ

1
, 

+
Δ p

n
ε

1
, 

+
p

n
ε

1
 e 

+n
Y

1
 are defined as: 
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The resulting implicit elastic predictor / plastic corrector procedure is summarized in 

Box 4.2 within an incremental time integration scheme. The solution of the system is 

undertaken by the Newton-Raphson iterative scheme, conveniently summarized in Box 

4.3. The partial derivatives used in the iterative scheme are given by: 
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where 'H  is the tangent modulus to the hardening curve. As local integration of the 

fully coupled constitutive equations will be undertaken in a dynamic explicit solution 

procedure, the computation of the consistent tangent operator with the described above 

integration scheme for the assembly of the tangent stiffness matrix is not required and 

it is not, therefore, addressed in this work. 
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Box 4.2 State update procedure for fully coupled Lemaitre’s ductile isotropic damage model. 

i) Elastic predictor 

 Given an elastic trial strain = +Δe trial e
nε ε ε , evaluate elastic trial stress: 

  + Δ=trial
n n

σ σ ε Eω :  

 Check plastic consistency: 

  IF ( )2

2

: :
0

trial trial
trial p

Y n

n

σ ε
ω

Φ = − ≤
σ σM

 THEN 

   Set ( ) ( )
+

=
trial

n 1
. .  and RETURN 

  ELSE go to (ii) 

 

(ii) Plastic corrector (solve the system for the unknowns Δγ  and 
+n

ω
1
) 
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(iii) Update 
+
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(iv) RETURN 
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Box 4.3 Newton-Raphson algorithm for return mapping system of equations for integration of fully coupled 

Lemaitre’s ductile isotropic damage model. 

i) Initialize Newton-Raphson method. Set initial guess ( )Δ =γ 0
0  and ( )

+ =
n n

ω ω0

1
and 

compute residuals rγ  and rω  
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ii) Perform Newton-Raphson iteration 
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 New guess for Δγ  and 
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ω
1
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 Update stress, equivalent plastic strain and energy release rate: 
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iii) Compute new residuals ( ),r rγ ω and check for convergence 

 IF r toleranceγ ≤  AND ≤r toleranceω  THEN RETURN 

 

iv) Go to (ii) 

 



70 Simplified elasto-plastic isotropic damage model with crack closure Ch. 4 

 

4.6 Simplified elasto-plastic isotropic damage model with crack closure 

The efficiency of the numerical integration schemes has a direct impact on the overall 

efficiency of the finite element framework. In the case of dynamic explicit solution 

strategy, the computational cost of an analysis depends decisively on the CPU time 

spent in Gauss point calculations. The use of more complex constitutive models, such 

the Barlat family criteria [Barlat 1991] [Barlat 2005] or recent criteria for HCP metals 

[Cazacu 2006] [Plunkett 2008], can potentially incur in a dramatic increase in analysis 

time, if a fully coupled damage model is adopted. Moreover, an extra degree of 

complexity is introduced in the theoretical formulation and in the exact linearization of 

the field equations for the implementation in a finite element code.  

Having in mind a dynamic explicit implementation, a possible way to reduce the 

computational cost and to have a fast integration algorithm is to consider a decoupling 

between stress and damage update algorithms, but with damage variable, converged in 

the previous time increment, affecting hardening law in the current stress update 

procedure. The main advantage of this approach is to provide a fast method to include 

damage evaluation in an already implemented constitutive model with minor changes 

in the code. Another characteristic is concerned with plastic softening behaviour and 

constant change in stress distribution and triaxiality information along component 

caused by damage growth. This problem associated with fully uncoupled approaches 

does not arise in this partial coupling strategy that enables the estimation of 

continuous degradation of the physical properties, as occurs in fully coupled 

approaches. Also, this simplified damage inclusion allows that further improvements to 

the original damage model can be included without the risk of increasing analysis time 

in a remarkable way or add extra difficulties in numerical implementation. 

An important refinement that can be included in the model is the micro-crack 

closure effect, particularly relevant for bulk metal forming processes where material is 

subjected to high compressive forces and extreme straining. Original Lemaitre’s model 

presents an important feature, typical of damage functions [Atkins 1996], which is 

related to the fact that damage evolution depends on the stress triaxiality: 

 
1

s
Y

D
D S

γ ⎛ ⎞− ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜− ⎝ ⎠

��  (4.78) 

where Y , the strain energy density release rate, is given by: 
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where σ  is the equivalent von Mises stress, 
H

σ  the hydrostatic stress and E  and ν  

are the Young’s modulus and Poisson’s ratio. But, since the dependence is done in a 

quadratic way, no distinction is made in terms of damage growth rates for identical 

stress triaxiality with opposite signs. As stated by Pires [2005], a clear distinction must 

be performed between both states due to the fact that, under a compressive state, 

micro-cracks may partially close and, therefore, there is an increase of loading bearing 

area, promoting a decrease in the damage growth rate. This important feature was 

studied and implemented by several authors [Pires 2003] [Pires 2005] [Desmorat 2008]. 

The basic idea is to introduce an additional parameter 
C

h  that enables the modelling 

of such micro-crack closure effect. 

Based on the work of Pires [2005], this section presents the simplified damage 

coupling strategy with the inclusion of unilateral effects in damage evolution. 

4.6.1 Crack closure effect definition 

Under compressive stresses, micro-defects may partially close, increasing the area that 

effectively carries the compression load. In this case, material stiffness may be partially 

or, depending on the conditions, fully recovered. It is known that some materials may 

present different values for the effective Young’s modulus for tension and compression. 

This phenomenon is usually referred as unilateral conditions, standing for partial (or 

fully) recovery of initial undamaged elasticity under compression [Lemaitre 2005]. Being 

a thermodynamical state, damage is represented by the same value in both states but 

its influence is dissimilar in tension and compression. To introduce this dissimilarity, let 

us consider the uniaxial stress case. In accordance with Lemaitre’s theory, for a 

material already damaged in tension, the effective Young’s modulus E�  is given by: 

 ( )1E D E= −� . (4.80) 

Using the hypothesis of strain equivalence and the effective stress concept, the uniaxial 

elastic damaged law is given by: 

 ( )1 D Eσ ε= −  (4.81) 

and damage D  can be defined as: 

 1
E

D
E

= −
�

. (4.82) 

When a compressive force is applied, perpendicular to the damaged section area, 

micro-cracks will partially close, thus effective load bearing area increases. In this case, 

damage will act in a less pronounced mode in the stress. To model this lower damage 
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influence, an extra parameter is introduced in the uniaxial elastic damaged law. 

Therefore, in compression, the uniaxial stress-strain law is assumed to take the form: 

 ( )1
C

h D Eσ ε= −  (4.83) 

where 
C

h  is the micro-crack closure parameter. This parameter can be determined 

experimentally and assumes values ranging from 0 up to 1. 1
C

h =  reports a similar 

behaviour in tension and compression, without any closure action, while 0
C

h =  

describes the full closure effect in compression, fully recovering the undamaged elastic 

behaviour. 

 

Figure 4.3 Uniaxial elastic model with damage and partial crack closure effect. 

Considering distinctive effective Young’s modulus for tension and compression as 

E+�  and E−� , respectively, 
C

h  can be calculated as: 

 
C

E E
h

E E

−

+

−
=

−

�
� . (4.84) 

A typical value of 0.2 for 
C

h  is observed in experiments [Lemaitre 1996] and it is 

assumed to be a material parameter, neglecting any effect of damage itself on the 

closure phenomenon and, consequently, in the variation of 
C

h . Figure 4.3 [Pires 2005] 

depicts the above described distinctive behaviour for an uniaxial stress state. 

4.6.2 Tensile / compressive split of stress tensor 

As seen, for the uniaxial case, it is relatively easy to establish a distinction between 

compressive and tensile states. However, the same model extension to a generic three-
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dimensional situation is not trivial. In model proposed by Pires [2005], such distinction 

is performed on the basis of a tensile / compressive split of the stress tensor. 

Representing a three-dimensional stress tensor σ  using their principal 

components, one can write that: 

 
3

1
i i i

i

σ
=

= ⊗∑ e eσ  (4.85) 

where 
i

σ  are the principal stresses and { }1 2 3
, ,e e e  is the orthonormal basis vectors 

along the principal directions. In this representation, stress tensor can be additively 

decomposed into positive and negative components as: 

 + −= +σ σ σ  (4.86) 

where +σ  and −σ  are, respectively, the tensile and compressive components of σ , 

defined as: 

 
3

1
i i i

i

σ+

=

= ⊗∑ e eσ  (4.87) 

 
3

1
i i i

i

σ−

=

= − − ⊗∑ e eσ . (4.88) 

The symbol  represents the Macauley bracket function, that for a scalar a , 

delivers: 

 
0

0 0

a if a
a

if a

⎧⎪ ≥⎪= ⎨⎪ <⎪⎩
. (4.89) 

This simple methodology will allows us to clearly establish a differentiation on damage 

growth in opposite stress states as we will see in the next section. 

4.6.3 Crack closure effect on damage evolution 

If a fully coupled analysis is considered, the inclusion of the above crack closure effect 

behaviour leads to a rather complex integration algorithm since the damaged elasticity 

law casted in the original Lemaitre’s model given by: 

 

( )

1
:

1
1 1

tr
1 2 2

D

D E E
ν ν

=
−

⎡ ⎤+⎢ ⎥= −⎢ ⎥− ⎣ ⎦
I

ε σ

σ σ

E
 (4.90) 

for a multi-dimensional damaged elastic material needs to be changed in order to 

contemplate the tensile / compressive split of the stress tensor as follows: 
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tr tr1

2 1 1 2 1 1
C C

E D h D E D h D
ν ν+ − ⎛ ⎞⎛ ⎞ − ⎟⎜+ ⎟⎜ ⎟⎜⎟⎜= + − + ⎟⎜⎟ ⎟⎜ ⎜⎟⎟ ⎟⎜ − − − − ⎟⎝ ⎠ ⎜⎝ ⎠

I
σ σσ σε . (4.91) 

As can be seen, this new stress-strain relation, although remaining isotropic, is no 

longer linear and its computation must be performed by means of a Newton-Raphson 

procedure. The computational implementation of the above damaged elasticity law, 

without any damage evolution, was treated by Souza Neto et al. [2008] within an 

implicit finite element environment. 

Assuming that elastic strains remain almost infinitesimal for the class of materials 

and processes addressed in this thesis, as supposed by Pires [2005], it is possible to 

justify the decoupling between elasticity and damage, avoiding the non-linear damaged 

elasticity law, and to take into account the closure effect only in the damage evolution 

law. This alternative description is provided by the damage evolution law proposed by 

Ladevèze and Lemaitre [1984] (described in more detail in [Lemaitre 1996]). In their 

approach, the inclusion of the crack closure effect is achieved by modifying the strain 

energy density release rate Y , given in the original model as: 

 
( )

( ) ( )tr
2

2

1
1 :

2 1
Y

E D
ν ν

− ⎡ ⎤
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−
σ σ σ  (4.92) 

by the definition: 
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σ σ σ

σ σ σ
 (4.93) 

where the tensile / compressive split of stress tensor is carried out according to 

Equation (4.86), keeping the damage evolution law unchanged: 

 
⎛ ⎞− ⎟⎜ ⎟= ⎜ ⎟⎜⎝ ⎠−

��
s

Y
D

D S
γ

1
. (4.94) 

4.6.4 Simplified integration algorithm 

In this section, the derivation of the simplified integration algorithm is done for the 

elasto-plastic damage constitutive model with quasi-unilateral effects as described in 

previous sections. As already done for the fully coupled analysis, let us consider what 

happens at a typical integration point of finite element mesh in a pseudo-time interval 

+
⎡ ⎤⎢ ⎥⎣ ⎦n n
t t

1
, . Having variables 

n
σ , e

nε , p
nε , ε p

n  and 
n

D  defined in the beginning of 

interval, 
n
t , and given a strain increment Δε  corresponding to the time interval 
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+
⎡ ⎤⎢ ⎥⎣ ⎦n n
t t

1
, , the numerical integration algorithm should supply the updated values +n

σ
1
, 

+
e
nε 1 , +

p
nε 1 , ε +

p
n 1  and 

+n
D

1
for the end of interval, 

+n
t

1
, in a consistent manner with 

the constitutive equations of the model. For the sake of completeness, the main steps 

leading to the numerical implementation are repeated here. 

4.6.4.1 Elastic predictor 

The first step is to evaluate the elastic trial stress, assuming that increment is purely 

elastic, without any evolution of internal variables. Therefore, the elastic trial stress 
trialσ  is calculated by using the linear isotropic elasticity law given by: 

 :trial
n
+ Δ=σ σ ε E  (4.95) 

where E  is the linear elastic operator. The yield function is then evaluated for the 

stress state defined in the elastic trial: 

 ( ) ( )Φ = − −trial trial trial p
n Y n

Dσ σM σ ε
2 2: : 1 . (4.96) 

Note that damage value 
n

D  converged in previous increment affects the hardening 

rule. If Φ ≤trial 0 , the process is indeed elastic within the interval 
+

⎡ ⎤⎢ ⎥⎣ ⎦n n
t t

1
,  and the 

elastic trial state coincides with the updated state at time 
+=

n
t t

1
. In other words, 

there is no plastic flow or damage evolution within the interval and: 
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D D
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+

+

+
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+

=
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=

=
=

σ σ
ε ε ε
ε ε . (4.97) 

If the consistency condition Φ ≤trial 0  is violated, one needs to apply the plastic 

corrector procedure and, additionally, the damage state update procedure, whose step-

by-step derivation is described in the following paragraphs. 

4.6.4.2 Plastic corrector 

Using the special features obtained for the updated stress tensor 
1n+

σ  and equivalent 

plastic strain 
1

p
n
ε

+
 by using the Hill48 criterion in a quadratic form (see Section 4.5.2), 

it is possible to reduce the plastic return algorithm to the solution of the non-linear 

equation in Δγ : 

 ( ) ( ) ( )2 2
1 1 1
: : 1 p

n n n Y n
Dγ σ ε+ + +Φ Δ = − −σ σM  (4.98) 
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where 
Y
σ  is the current yield stress, given by a hardening rule function of the 

equivalent plastic strain 
+
p
n
ε

1
, and 

1n+
σ  e 

+
p
n
ε

1
 are defined as a function of the 

incremental consistency plastic multiplier, Δγ : 

 ( ) 1

1
4 : trial

n
Gγ

−

+ = + Δσ σI M  (4.99) 
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n n n n
ε ε γ+ + += + Δ σ σM . (4.100) 

The solution of the system is undertaken by the Newton-Raphson iterative scheme. The 

term for the linearization of the iterative method is given by: 
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 (4.101) 

where 'H  denotes the updated slope to the hardening curve at 
1n

t
+

: 

 

1

'
p
n

Y
p

d
H

d
ε

σ

ε
+

= . (4.102) 

4.6.4.3 Damage state update 

After the computation of the new stress state 
+n

σ
1
, algorithm proceeds with the 

update of damage variable, 
+n

D
1
. The calculation of the new damage state is made by 

solving the non-linear equation for the updated damage 
1n

D
+

: 

 ( )1
1 1

1

0
1

s

p pn
n n n D
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Y
D D H

D S
γ

ε ε+
+ +

+

⎛ ⎞−Δ ⎟⎜ ⎟⎜− − − =⎟⎜ ⎟⎝ ⎠−
 (4.103) 

where Δγ  the incremental consistency plastic multiplier and 
+n

Y
1
 is the strain energy 

density release rate given by the expression: 
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 (4.104) 

accounting for micro-cracking closure effect.  

The solution of Equation (4.103) is also undertaken by the Newton-Raphson iterative 

scheme and the corresponding term for the linearization of the method is given by: 
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where derivative ( )1 1n n
d Y dD+ +− is calculated as: 
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The partial coupling state update algorithm can be summarized as presented in 

Box 4.4. Obviously, using this simplified decoupled implementation, damage growth 

indirectly affects the plasticity evolution law, causing plastic softening and allowing 

stress redistribution and triaxiality change due to damage. Thus, there is no need to 

recalibrate the material parameters, identified using a fully coupled implementation, for 

this simplified strategy. However, this integration algorithm has the disadvantage of 

being largely dependent on the considered time increment, Δt . If the time increment 

becomes too large, this partially coupled integration algorithm may not guarantee that 

the yield condition is satisfied on 
1n

t t += , incurring in small errors, and, as a result, it 

is possible that the solution drifts away from the updated yield surface. But, since a 

dynamic explicit finite element environment is used, this is not a concern because 

stable time increment is usually sufficiently small to overcome this disadvantage and 

provide good accuracy. 
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Box 4.4 State update procedure for partially coupled Lemaitre’s ductile isotropic damage model. 

i) Elastic predictor 

 Given an elastic trial strain 
e trial e

n= +Δε ε ε , evaluate elastic trial stress: 

  :trial
n

Δ= +σ σ εE  

 Check plastic consistency: 

  IF ( ) ( )2 2: : 1 0trial trial trial p
n Y n

D σ εΦ = − − ≤σ σM  THEN 

   Set ( ) ( )
+

=
trial

n 1
. .  and RETURN 

  ELSE go to (ii) 

 

ii) Plastic corrector (solve the non–linear equation for the unknown Δγ ) 

 ( ) ( )2 2
1 1
: : 1 0

n n n Y
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iii) Update 
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iv) Damage state update (solve the non–linear equation for the new damage state 

+n
D

1
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v) RETURN 
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4.7 Remarks on non-local formulations 

The classical theories of plasticity and damage, based on the use of internal variables 

and their evolution, are local continuum theories, meaning that material behaviour is 

assumed to be independent of influences of surroundings material points. With this 

assumption, the introduction of damage evolution in large deformation problems may 

result in numerical stability problems, namely a pathological effect of discretization 

dependence, either in size either in orientation. This is particularly relevant when the 

characteristic dimension of the plastic deformation or damage is of the same order as 

the material intrinsic length scale, as can occur in the neighbourhood of localized strain 

area. These length scale effects can be described by micromechanics theories and, 

although multi-scale modelling is an ongoing and promising research field, its 

implementation and application is still computationally expensive and 

phenomenological models are still favoured. 

To remedy and / or attenuate the pathological mesh dependence at a macroscopic 

scale, several authors supply an internal length scale to the continuum model, aiming 

to mimic length scale effects due to microstructure heterogeneity. In these so-called 

non-local formulations, the local constitutive internal quantity associated with the 

dissipative process is simply replaced by its non-local counterpart in order to alleviate 

the discretization dependence. To define this non-local field, two main approaches can 

be considered: integral and gradient formulations. In integral models, the non-local 

damage field D  is defined from a weighted average of the local damage field D  as:  

 ( ) ( ) ( ),
V

D w D dV= ∫x x p p  (4.107) 

where ( ),w x p  is a chosen non-local weight function, establishing the influence of the 

local damage at point p  to the non-local damage field at point x . 

In the case of gradient models, the non-local variable for damage D  is defined as 

an average of the local variable field D , conditioned by the length scale value l , which 

acts as a diffusivity term, and by the difference between the local and non-local fields, 

which acts as a source term: 

 ( ) ( ) ( )2 21
0

2
D D l D⎡ ⎤− + ∇ =⎢ ⎥⎣ ⎦x x x . (4.108) 

The length parameter determines the size of the volume, which effectively contributes 

to the non-local quantity and is related to the scale of the microstructure. 

In the literature, further details of these models are addressed in several works as 

the ones developed by [Peerlings 1996] [Bazant 2002] [Al-Rub 2004] [César de Sá 2006] 

[Mediavilla 2006], for instance. 
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5. ANISOTROPIC DAMAGE 

MECHANICS 

This chapter reviews higher order definitions for the damage 

variable, introduced in order to model the directional nature of 

damaging process. The physical interpretation of a second order 

representation is presented and the thermodynamically 

consistent damage model proposed by Lemaitre et al. [2000a], 

based on this definition, is described. The corresponding 

computational anisotropic damage model is developed and 

implemented using an updated Lagrangian finite element 

formulation for the numerical solution of the problem. Finally, a 

sensitivity analysis of the implemented model regarding the 

influence of several parameters is also presented. 

5.1 Introduction. Higher-order nature of damage variables 

The scalar definition is obviously the simplest representation that can be considered to 

define the damage variable [Chaboche 2007]. Its simplicity is very attractive for 

numerical implementation and, in the case of proportional loadings, the adoption of a 

scalar value for damage is sufficient to provide an acceptable prediction of load 

carrying capability to withstand additional loadings, number of cycles or useful life 

until failure of structural components.  

However, in situations of non-proportional loading and complex cases of 

anisotropy, the consideration of a scalar value to characterize damage can be simplistic. 

It is therefore imperative to define a variable of higher order to be able to capture the 

directional nature of nucleation and growth of micro-cracks, which are inevitably 

dependent on the direction of loading and plastic flow and, therefore, are essentially 

anisotropic. Different types of damage variables were introduced in order to describe 
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the oriented features of damaging effects [Chaboche 2007]. The most simple theory was 

proposed by Ladevèze [Lemaitre 1996] which employs a double scalar damage definition 

for attempting to describe anisotropic damage behaviour, affecting one variable to the 

deviatoric stress components and the other to the hydrostatic stress. Other theories 

introduce several scalar variables, each one associated with predefined material 

directions in order to describe directional nature of damage and / or several damage 

mechanisms present in the structure. This kind of approach is more used for composite 

structures, where micro-cracks are often oriented by the structure and direction of the 

constituents (plies, reinforcements, fibers) [Gasser 1998]. One-rank tensor damage 

variable was also proposed by Krajcinovic and Fonseka [1981] within the framework of 

the general thermodynamics theory. The original model assumed a vector-based 

damage variable to account for the progressive deterioration of brittle materials 

emphasizing a multitude of flat, penny-shaped planar micro-defects. A drawback of 

these vectorial damage variable models is related to the fact that they are not able to 

degenerate onto their isotropic versions. Only second or higher even-order tensors can 

be adopted as damage variables to properly describe damage-induced anisotropy [Wu 

2008]. Fourth-order tensors are the lowest order tensors capable to completely describe 

the damage-induced anisotropy, regardless of the initial isotropic or anisotropic damage 

state of the material. First consideration of this damage definition was made by 

Chaboche [Chaboche 2007] using directly the concept of effective stress associated with 

the principle of strain equivalence for linear elasticity. Others authors also pursuit this 

definition for the anisotropic damage behaviour [Ortiz 1985] [Ju 1989]. Although 

higher-rank tensors contain more information and can provide a more accurate 

representation of the behaviour of material degradation, drawbacks to the application 

of these tensors are often associated with the difficulty of measuring all the required 

material parameters, with inefficient numerical analysis and difficulties in postulating 

appropriate evolution laws [Wu 2008]. Thus, second-order tensor representation is 

preferred in the modelling of damage-induced anisotropy and corresponds to the most 

frequently used variable nature for the description of damage-induced anisotropy. This 

approach has been widely used by several authors [Cordebois 1982] [Chow 1987] 

[Murakami 1988] [Lemaitre 2000a] [Al-Rub 2003] [Brunig 2003] and stands as the 

minimum complexity of an anisotropic damage theory. The physical meaning of this 

variable can be related with the decrease of load-carrying effective area caused by the 

development of microscopic cracks and cavities [Murakami 1988], as in the isotropic 

damage definition, but this second order representation is limited to the description of 

orthotropic damage behaviour of initially isotropic materials. On the contrary of the 

fourth-order damage theory that directly provides the fourth-order operator for the 

effective stress definition, the second-rank damage variable introduces difficulties in the 
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effective stress definition, since it is necessary to state how the second-rank tensor acts 

on the fourth-rank operator characterizing the elastic-damaged behaviour [Murakami 

1988] [Chaboche 2007]. Nevertheless, due to its clear physical meaning and the 

thermodynamical consistent theory developed by Lemaitre et al. [2000a], the second-

order tensor damage variable is adopted in this work to express the elastic or plastic 

behaviours of anisotropic damaged materials. 

5.2 Physical interpretation of a second order damage variable 

In order to establish the physical interpretation of the second order damage variable, 

let us first define the concept of fictitious (or equivalent) undamaged state for the 

simplest case, the uniaxial case. Consider a bar, undeformed, with an initial sectional 

area 
0

A , in an undamaged state, 0D = , as shown in Figure 5.1a. 

 

Figure 5.1 Damage of a bar under uniaxial tension; a) Initial undeformed and undamaged state; b) Current 

damaged state; c) Equivalent (fictitious) undamaged state. 

Applying a force F  to both ends, the bar will deform plastically and, due to 

nucleation, growth and coalescence of micro-voids, damage will occur and the so-called 

current damaged state is attained, Figure 5.1b. In this state, the total area is 

represented by the variable A  and the stress that acts in this area can be written as: 

 
F
A

σ = . (5.1) 

But, due to damage, the load-carrying net area will be reduced and force F  will act in 

such reduced or effective area A� , magnifying the effects of stress. Damage can be 

related with this reduced area as: 

 1
A

D
A

− =
�

. (5.2) 
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It is then possible to assume the existence of a mechanically equivalent bar, Figure 

5.1c, undamaged, where the cross-sectional area is reduced due to damage to an 

effective area A�  and the stress is substituted by the amplified effective stress σ� , 

subjected to an equivalent force F : 

 F Aσ= �� . (5.3) 

Thus, damage D  can be seen as the relation between the areas A  and A�  

corresponding to the two mechanically equivalent states, current damaged state and 

fictitious undamaged state, expressed by the relation in Equation (5.2). This uniaxial 

concept of fictitious (or equivalent) undamaged state, taking into account the load-

carrying net area reduction due to damage, can also be extended to characterize 

damage state in a general tridimensional case [Murakami 1988].  

To this end, let us define an area element PQR , arbitrarily oriented in a three-

dimensional body B , as shown in Figure 5.2b. This element is represented by the line 

elements PQ  and PR  and the area PQR  is defined by vectors dx , dy  and dAυ . 

Consider, also, the existence of an initial state 
0
B , undeformed, and the representation 

of the corresponding area element in this state, defined by line elements 
0 0

PQ  and 

0 0
P R  and vectors 

0
dx , 

0
dy  and

0 0
dAυ . Additionally, consider that the deformation 

gradient that transforms the initial state into the deformed and damaged state is 

represented by F . 

 

Figure 5.2 Definition of a tridimensional damage state; a) Initial undamaged configuration; b) Current 

damaged configuration; c) Equivalent (fictitious) undamaged configuration. 

Considering the occurrence of tridimensional damage and its effects in reducing the 

area PQR , it is possible, as in the uniaxial case, to postulate the existence of a 

fictitious undamaged state �B , where the element PQR  in the current damaged 

configuration is equivalent to the surface element PQR� � �  in this fictitious configuration, 

defined by the vectors dx� , dy�  and dAυ �� . The fictitious deformation gradient that 

transforms B  to �B  is represented by F� . Therefore, vectors dx�  and dy�  are given as: 

 d Fd=x x��  and d Fd=y y��  (5.4) 

and the area vector dAυ ��  is related with dAυ  in B  as [Murakami 1988]: 
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 ( )11
2

T
dA d d J dA−= × =x y Fυ υ� � �� � �  (5.5) 

where J�  is the determinant of the deformation gradient F� : 

 ( )detJ = F� � . (5.6) 

Bearing in mind the relationship established between the areas of the damaged and 

fictitious configurations for the uniaxial case in Equation (5.2), it is also possible to 

define the same relation for a general damage state based on the transformation 

between area vectors dAυ  and dAυ �� . Thus, one has that: 

 ( )1
T

J − = −F I D� �  (5.7) 

where I  is the second-order identity tensor and the second-order tensor D  is, 

therefore, the damage variable that represents the general damage state of the material 

in the current damaged configuration. Some mathematical restrictions can be placed to 

this tensor [Murakami 1988]: positivity of tensor ( )−I D , proved by the positivity of 

scalar product between both area vectors dAυ  and dAυ �� :  

 ( ) ( ) 0dA dA⋅ >υ υ��  (5.8) 

and the assumption of a symmetric damage tensor D , proved by the null contribution 

of the antisymmetric part of ( )−I D  in the transformation of dAυ  into dAυ �� . This 

latter symmetry condition allows to state that the second order damage variable D  

possesses three orthogonal principal directions 
i
n  and, therefore, the tensor can be 

expressed in the canonical form: 

 
i i i

D= ⊗D n n  (5.9) 

where 
i

D  corresponds to the three principal damage values. To get a physical insight 

of the damage tensor, one can construct two tetrahedra in the principal coordinate 

system 
1 2 3

Ox x x  which vertices are the points P , Q  and R  for the current damage 

configuration and points P� , Q�  and R�  for the fictitious undamaged configuration, 

consisting in the area elements PQR  and PQR� � � , respectively, as can be seen in Figure 

5.3. Substituting Equation (5.9) into Equation (5.5) and considering Equation (5.7)

gives: 

 ( )
3

1 1 2 2 3 3
1

1
i i i

i

dA D dA dA dA dA
=

= − = + +∑ n n n nυ � � � ��  (5.10) 

with: 

 ( )1 ( 1,2,3)
i i i

dA D dA i= − =� . (5.11) 
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Figure 5.3 Interpretation of damage tensor; a) Current damaged configuration; b) Equivalent (fictitious) 

undamaged configuration. 

According to Equation (5.10) and representation in Figure 5.3, the principal values 

of the damage tensor can be interpreted as the load-carrying net area reduction that 

occurs on the three principal planes of D . This interpretation reinforces the 

assumption of the positivity of tensor ( )−I D  since the area reduction cannot be 

larger than the area itself. Furthermore, a direct conclusion of the canonical expression 

presented in Equation (5.9) is that this second order representation for the damage 

variable cannot describe damage states more complicated than orthotropic behaviour 

[Murakami 1988]. 

5.3 Coupled elasto-plastic anisotropic damage theory 

The formulation of anisotropic damage theory still remains a largely open question and 

at the leading edge of material modelling science. Using the physically related second-

order damage variable D , a problem arises in the definition of the effective stress 

tensor, to ensure the coupling between elasticity and damage. The direct extrapolation 

of the isotropic case, where effective stress is obtained by affecting the Cauchy stress 

tensor by ( )1 / 1 D− , does not yield a symmetric effective stress tensor in the 

anisotropic case, as required by constitutive relations for metals. Thus, some 

symmetrisation procedure should be adopted. Possible symmetrisation methods were 

proposed by Murakami [1988] by adopting: 

 ( ) ( )1 11
2

− −⎡ ⎤
= − + −⎢ ⎥⎢ ⎥⎣ ⎦

I D I Dσ σ σ� , (5.12) 

or, the symmetrisation technique suggested by Cordebois and Sideroff [1982], by 

considering effective stress equals to: 

 ( ) ( )1/2 1/2− −
= − −I D I Dσ σ� . (5.13) 

Despite these two methods, a particularly relevant symmetrisation procedure was 

proposed by Lemaitre et al. [2000a] that besides satisfying the restrictive principles of 
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thermodynamics, also keeps effective stress independent of the strain behaviour. 

Lemaitre et al. [2000a] proposed an effective stress definition for the second order 

damage tensor representation, within the principle of strain equivalence, as an 

approximation of the exact effective stress deduced from the general representation of 

the damage by the fourth order tensor, as we will see bellow. 

5.3.1 The constitutive model 

The description of the anisotropic damage constitutive model is presented in the 

following. 

5.3.1.1 State variables 

The Helmholtz free energy, the thermodynamic potential from which the state laws are 

derived, can be defined as a function of the set { }, ,e r Dε  of state variables, in the 

form: 

 ( ), ,e rψ ψ= Dε  (5.14) 

where eε  is the elastic strain tensor, r  is the internal variable associated isotropic 

hardening and D  is the second-order damage variable. In this formulation, kinematic 

hardening is excluded. Table 5.1 depicts the state variables and the respective 

associated thermodynamical forces. 

Table 5.1 State variables for anisotropic damage theory. 

Mechanism Type State Variables Associated 

Variables Observables Internal 

Elasticity Tensor ε   σ  
Plasticity Tensor  pε  −σ  
Isotropic Hardening Scalar  r  R  

Damage Tensor  D  Y  

 

5.3.1.2 Elastic-damage state potential 

Using the hypothesis of decoupling between elastic-damage and plastic hardening, the 

specific free energy is given by the sum: 

 ( ) ( ) ( ), , ,e ed e pr rψ ψ ψ ψ= = +D Dε ε  (5.15) 

where edψ  and pψ  are, respectively, the elastic-damage and plastic contributions for 

the free energy. The elastic-damage potential is postulated in the form: 
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 ( ) 1
, : :

2
ed e e eρψ =Dε ε εE�  (5.16) 

where E�  is the effective isotropic elasticity operator. As in the isotropic case, damage 

modifies the elastic properties of the material and an effective stiffness tensor E�  can be 

introduced by the composition: 

 1 :−=E L E�  (5.17) 

where L  is the fourth-rank damage effect operator, function of the damage tensor D , 

generalizing the isotropic case where E�  is defined as: 

 ( )1 D= −E E� . (5.18) 

In the scalar damage definition, operator L  is given by: 

 
1

1 D
=

−
L I   

being I  the fourth order identity tensor. Under the hypothesis of strain equivalence, the 

same fourth-rank damage effect operator L  is used to define the effective stress σ�  as: 

 : : e= =σ σ εL E� . (5.19) 

The question is how to define the fourth order tensor L  from the second order 

tensor D , keeping a compatibility between physics and thermodynamics, maintaining 

the independence of the effective stress tensor upon the elasticity parameters and 

supplying a symmetric effective stress tensor suitable for elasto-plastic constitutive 

relations for metals. To solve this question, Lemaitre et al. [2000a] introduced two 

damage quantities corresponding to two mechanisms: the variation of the deviatoric 

elastic constitutive behaviour and the variation of Poisson’s ratio due to damage. By 

convenience and using a partial Legendre-Fenschel transformation on the elastic strain 
eε , the dual equivalent potential from the Helmholtz free energy, the Gibbs specific 

free enthalpy *ψ , is postulated as: 

 ( ) ( ) 2
*

3 1 21
,

2 2 1
ed H

ij ij ij jk kl li
H

D H s H s
E E d

ν σν
ρψ σ

−+
= +

−
 (5.20) 

accounting for linear and initially isotropic elasticity and anisotropic damage, where E  

and ν  are, respectively, the Young’s modulus and Poisson ratio of the undamaged 

material, s  the deviatoric stress tensor and 
H

σ  the hydrostatic stress. The Gibbs 

elastic potential is, therefore, divided into a deviatoric part affected by a tensorial 

damage quantity H  and a hydrostatic part affected by another (scalar) damage 
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quantity 
H

d . H  is the so-called second order damage effect tensor and can be written 

as: 

 ( ) 12 −
= −H I D  (5.21) 

where I  represents the second order identity tensor. The scalar value 
H

d  that affects 

hydrostatic stress is a function of the hydrostatic damage and a good approximation for 

this function consists in taking [Lemaitre 2000a]: 

 
H H

d Dη=  (5.22) 

with 
H

D , the hydrostatic damage, given as:  

 ( )1
tr

3H
D = D . (5.23) 

The material parameter η  is required for a correct representation of experiments 

concerning the variation in the Poisson’s ratio with damage and characterizes material 

sensitivity to hydrostatic stress. This parameter is considered independent upon 

damage evolution and, for metals, has a value ranging from 2 to 3 [Desmorat 2008]. 

Following thermodynamics of internal variables, the elasticity law for this 

particular potential is given by: 

 
( )*

1
,

:
ed

e
ψ

ρ −
∂

= =
∂

Dσ
ε σ

σ
E �  (5.24) 

where σ�  is the effective stress tensor, related with the Cauchy stress tensor by the 

expression: 

 ( )dev
1

H

H
D

σ
η

= +
−

HsH Iσ�  (5.25) 

where ( )dev i  represents that only the deviatoric part of the tensor is taken. This 

relation introduces a symmetric effective stress tensor that will be used for the coupling 

with plasticity. The fourth order damage effect operator L  that transforms Cauchy 

stress into effective stress, as expressed in Equation (5.19), can be written as a function 

of the second order damage effect tensor H  as: 

 

[ ]

( )( )
( )

tr

2 2

2

1
3
1 1
9 3 1

H
Dη

= ⊗ − ⊗ + ⊗

+ ⊗ + ⊗
−

H H H I I H

H I I I I

L
. (5.26) 

The special tensorial operation ⊗  introduced in Equation (5.26) is calculated as: 

 ( ) ik ljijkl
H H⊗ =H H . (5.27) 
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When the Helmholtz free energy is used for the state potential, the damage 

conjugate force Y  is given as a function of the elastic strains. In this case, using the 

Gibbs equivalent potential, the conjugate thermodynamical force Y  to the damage 

variable D  is expressed as a function of the stress tensor as [Lemaitre 2000a]: 

 
( )

( )

2*
1 2 2

2

1 21
2 1

ed
H

ij kp pq ql klmn mi jn ij
ij

H

Y s H s A H H
D E E D

η ν σψ ν
ρ δ

η

−
−∂ +

= = +
∂ −

 (5.28) 

where tensor A  is defined as: 

 ( )1
2ijkl ik jl jl ik il jk jk il

A H H H Hδ δ δ δ= + + + . (5.29) 

Analogously to the isotropic case, a scalar quantity can be defined, the effective elastic 

energy density Y , related to the strain energy density release rate, as: 

 
1
2

e
ij ij

Y σ= ε�  (5.30) 

or, by using the effective stress definition, as: 

 11
2 ijkl ij kl

Y E σ σ−= � � . (5.31) 

A straightforward algebra leads to a definition of effective elastic energy density as an 

effective triaxiality function: 

 ( ) ( )
2

2 2
1 3 1 2

2 3
HY

E

σσ
ν ν

σ

⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜ ⎟⎜= + + −⎢ ⎥⎟⎜ ⎟⎟⎜⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

� �
�  (5.32) 

where σ�  and 
H

σ�  are the effective von Mises equivalent stress and the effective 

hydrostatic stress, respectively. This scalar quantity will be used for the definition of 

the anisotropic damage evolution law, as we will see later, instead of tensor Y .  

As in the isotropic damage model, the isotropic hardening contribution is left as an 

arbitrary scalar function of the internal isotropic variable r . The thermodynamic force 

associated with isotropic hardening R  is calculated as: 

 
( ) ( ) ( )

p Ir r
R R r

r r

ψ ψ
ρ
∂ ∂

= = =
∂ ∂

. (5.33) 

5.3.1.3 Flow potential. Evolution of internal variables 

According to the thermodynamics framework, the evolution law of internal variables 

derives from a dissipation potential Ψ , assumed to be additively decomposed into 

plastic pΨ  and damage dΨ  components, written as: 
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 p dΨ = Ψ + Ψ . (5.34) 

The plastic component of the dissipation potential is considered to be equal to the 

yield function Φ . Instead of using the isotropic von Mises yield function as in the 

original Lemaitre’s formulation [Lemaitre 2000a], here we introduce again the 

anisotropic plastic behaviour by using the Hill48 yield function, writing the yield 

function in the following form: 

 ( ) ( )0
, , : :

Y
R R rσ⎡ ⎤Φ = − +⎢ ⎥⎣ ⎦Dσ σ σM� � . (5.35) 

According to the standard associative plasticity theory, the evolution law for the plastic 

flow of a damaged material is given by: 

 p γ γ
∂Ψ

= =
∂

Nε
σ

� � � . (5.36) 

The flow vector N  is obtained by the derivative chain rule as: 

 :
∂Φ ∂Φ ∂

= =
∂ ∂ ∂

N
σ

σ σ σ
�

�
 (5.37) 

where the partial derivatives are expressed as: 

 

1
:

: :

∂Φ
=

∂
∂

=
∂

σ
σ σ σ
σ
σ

M
M

L

�
� � �
�

. (5.38) 

The evolution law of the internal variable associated with isotropic hardening, r� , is 
also expressed by the normality rule as: 

 r
R

γ γ
∂Ψ

= − =
∂

� � � . (5.39) 

For the damage dissipation potential component, dΨ , Lemaitre et al. [2000a] 

proposed a “simple” extension of the isotropic case, providing a damage potential given 

by the expression: 

 :

iis p
d Y d

S dr

⎛ ⎞⎟⎜ ⎟Ψ = ⎜ ⎟⎜ ⎟⎜⎝ ⎠
Y

ε
 (5.40) 

where operation | |iii  performed to a tensor stands for the absolute value of the tensor 

components when represented in his principal components. Thus, considering the 

normality rule, the anisotropic damage evolution law is finally given by: 

 

s
ii

pY
S

γ
⎛ ⎞∂Ψ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜∂ ⎝ ⎠

D
Y

ε� ��  (5.41) 
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with S  and s  being material and temperature dependent parameters. This evolution 

law generalizes the isotropic (scalar) damage law to account for anisotropic damage 

induced by plasticity. According to Equation (5.41), the principal directions of the 

damage rate coincide with those of the plastic strain rate. 

To complete the formal description of the elasto-plastic anisotropic damage model, 

it is important to define the equivalent plastic strain rate pε� , which has to be in 

accordance with the considered yield criterion. Using the equivalent plastic work 

approach defined in terms of effective stresses, one has the equivalence: 

 :p pσ ε = σ ε�� ��  (5.42) 

which results in an equivalent plastic strain rate equal to: 

 
( ): : :

: :
pε γ=

σ σ

σ σ

M L
M

� �
� �

� �
. (5.43) 

The consistent plastic parameter γ�  that appears in the evolution laws is calculated by 

asserting the well-known plasticity loading / unloading conditions: 

 0γ ≥� ; 0Φ ≤ ; 0γΦ =� . (5.44) 

The constitutive equations of anisotropic ductile damage model are conveniently 

grouped in Box 5.1. 

One important aspect that any anisotropic damage theory should cover is the 

capability to degenerate into its isotropic damage definition. Considering the 

hydrostatic parameter η  equal to 1 and considering that damage tensor D  is equal to: 

 D=D I , (5.45) 

the corresponding second order damage effect tensor is represented by: 

 
1

1 D
=

−
H I . (5.46) 

and function 
H

d  becomes equal to: 

 ( )1
3H H

d D D D D Dη= = + + = . (5.47) 

Using the effective stress definition of Equation (5.25), one has: 

 

( )dev
1

1 1

1

H

H

H

d

D D

D

σ

σ

= +
−

= +
− −

=
−

HsH I

s
I

σ

σ

�

 (5.48) 
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Box 5.1 Lemaitre’s ductile anisotropic damage model with anisotropic flow. 

i) Elasto-plastic split of the strain tensor 
e p= +ε ε ε  

ii) Elastic law (coupled with damage) 

: e=σ εE�  
 with σ�  given by: 

( )dev
1

H

H
D

σ
η

= +
−

HsH Iσ�  

( )1
tr

3H
σ = σ  

( )1
tr

3H
D = D  

iii) Yield function 

( )0
: :

Y
R rσ⎡ ⎤Φ = − +⎢ ⎥⎣ ⎦σ σM� �  

iv) Plastic flow and evolution equations 

: :
: :

p γ
=ε σ

σ σ
M L

M
�� �

� �
 

r γ=� �  

( ): : :

: :
pε γ=

σ σ

σ σ

M L
M

� �� �
� �

 

s
ii

pY
S

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
D ε� �  

 with Y  given by: 

11
: :

2
Y −= σ σE� �  

v) Loading / unloading criterion 

0γ ≥� ; 0Φ ≤ ; 0γΦ =�  

 

recovering, therefore, the isotropic definition for the effective stress. The same 

degeneration to the isotropic model can also be demonstrated for the anisotropic 

damage evolution law, presented in Equation (5.41). Naturally, due to different nature 

of the variables, different damage potentials are formulated as the starting point for the 

derivation of the damage evolution law. Nevertheless, an equivalence between effective 

elastic energy density Y  (anisotropic case) and the strain energy release rate Y−  

(isotropic case) is observed: 

 Y Y− = . (5.49) 
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Using the effective stress definition from the isotropic law in Equation (5.36), one has 

for the plastic strain rate tensor: 

 
( )

:
1 : :

p

D

γ
γ= =

−
Nε σ

σ σ
M

M
�� �  (5.50) 

and for the equivalent plastic strain rate: 

 
( ): : :

: : 1
p

D
γ

ε γ= =
−

σ σ

σ σ

M L
M

� � �� �
� �

 (5.51) 

recovering, therefore, their isotropic definitions. Assuming that damage evolution law is 

given by D=D I� �  and using Equations (5.49) and (5.51), the anisotropic damage 

evolution law reduces to the isotropic one: 

 
1

s
Y

D
D S

γ ⎛ ⎞− ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜− ⎝ ⎠
D I I

�� � . (5.52) 

5.3.1.4 Damage threshold 

As for the isotropic model, it is assumed that damage effects on physical properties 

only starts to be significant after a certain amount of plastic strain. This threshold 

value is evaluated in terms of equivalent plastic strain, p
D
ε , and its inclusion in the 

constitutive model is done by switching off damage evolution before plastic strain 

threshold is attained: 

 
if

if

s
ii

p p p
D

p p
D

Y
S

ε ε

ε ε

⎧⎪⎛ ⎞⎪ ⎟⎜⎪ ⎟ >⎜⎪ ⎟⎜= ⎟⎜⎨⎝ ⎠⎪⎪⎪ <⎪⎩

D

0

ε�� . (5.53) 

5.3.1.5  Critical damage criterion 

In the isotropic model, the macro-crack initiation was attained when the damage 

reaches a critical value 
C

D , which is assumed to be independent of loading conditions 

and damage evolution, and, therefore, considered as a material parameter. For metals, 

this critical value ranges between 0.2 and 0.5 [Lemaitre 1996]. For anisotropic damage, 

a critical damage criterion is also used, but, in this case, calculation of critical damage 

is done by evaluating damage intensity acting in one plane, with normal 
j

n . The 

condition for macro-crack initiation is achieved when micro-crack density, defined as 

the norm of the damage vector 
ij j

D n , reaches the critical damage. A simple way to 

determine the larger micro-crack density and the corresponding plane is to perform the 

evaluation in the principal directions of the damage tensor, i.e., evaluating the principal 
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damage components. The critical damage criterion for the anisotropic damage model 

can then be written as [Lemaitre 2005]: 

 ( )max
I C

D D>  (5.54) 

where ( )max
I

D  represents the maximum value of principal damage components, 
1

D , 

2
D  or 

3
D . Additionally to this critical damage criterion, a purely mathematical stop 

criterion can also be defined in the function 
H

d . When 
H

d  equal to 1, an undefined 

result emerges in the hydrostatic part of the effective stress, Equation (5.25). Therefore, 

using the definition of Equation (5.22) for function 
H

d , one should also define the 

following stop criterion for damage evolution: 

 1
H

Dη ≈ . (5.55) 

5.3.2 Integration algorithm 

Let us consider what happens in a typical integration point of the finite element mesh 

in a pseudo time interval 
1

,
n n
t t

+
⎡ ⎤⎢ ⎥⎣ ⎦ . Given an incremental strain Δε , the algorithm 

integrates constitutive relations in a typical Gauss point, starting from the knowledge 

of the last equilibrium state, at time 
n

t t= , provided by variables 
n

σ , e
nε , p

nε , p
nε  

and 
n
D , and achieving a new equilibrium state in time 

1n
t t

+
=  and corresponding 

updated variables 
1n+σ , 1

e
n+ε , 1

p
n+ε , 1

p
n+ε  and 

1n+D . The integration algorithm based 

on Hill48 criterion coupled with the tensorial definition for damage is also a variation of 

the classical scheme elastic predictor / plastic corrector. 

5.3.2.1 Elastic Predictor 

The algorithm starts with the computation of the elastic trial stress. In this case, where 

damage is defined as a second order tensor, D , and, for the sake of simplicity, inside 

the state update subroutine, calculations are made using the effective stress concept, 

σ� , and the computation of the corresponding Cauchy stress tensor σ  is only 

performed at the end of algorithm, in order be returned to the finite element program. 

Since we adopted an explicit time integration scheme, the elastic predictor stage 

requires the following straightforward modification in the computation of the elastic 

trial stress tensor, trialσ� : 

 : :trial
n n

= + Δσ σ εL E�  (5.56) 

where 
n

L  is the fourth order damage effect tensor, function of the converged damage 

tensor 
n
D  at time 

n
t t= , defined as: 
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( )( )

( )
tr

2 2

2

1
3

1 1
9 3 1

n n n n n

n n
H

Dη

⎡ ⎤= ⊗ − ⊗ ⊗⎢ ⎥⎣ ⎦

+ ⊗ ⊗
−

H H H I I H

H I I I I

L +

+
 (5.57) 

with 
n
H , the second order damage effect tensor, computed as: 

 ( ) 12
n n

−
= −H I D  (5.58) 

and n
H

D , the hydrostatic damage, computed as: 

 ( )1
tr

3
n
H n

D = D . (5.59) 

Defined the elastic trial state trialσ� , the yield function is evaluated in a quadratic way 

(as done for the isotropic model, see section 4.5.2): 

 ( )2: :trial trial trial p
Y n
σ εΦ = −σ σM� � . (5.60) 

If the imposed strain increment in time interval 
1

,
n n
t t

+
⎡ ⎤⎢ ⎥⎣ ⎦  corresponds to an elastic 

state, i.e., inequality 0trialΦ ≤  verifies, no evolution of internal variables occurs and 

updated variables will be equal to the computed values converged in the previous time 

increment. The updated stress tensor 
1n+

σ  is calculated from the effective elastic trial 

stress tensor trialσ� , using the damage tensor 
n
D  to define the fourth order damage 

effect tensor 
n

L . Hence, updated variables 
1n+

σ , 1
e
n+ε , 1

p
n+ε , 1

p
n+ε  and 

1n+
D  are 

computed as: 

 

tr 1 tr
1

1

1

1

1

:ial ial
n n
e e
n n
p p
n n
p p

n n

n n

ε ε

−
+

+

+

+

+

= =

= +Δ

=

=
=D D

σ σ σ
ε ε ε
ε ε

L �

. (5.61) 

If yielding occurs with the imposed strain increment Δε , i.e., 0trialΦ >  verifies, 

an iterative procedure is required until condition 
1

0
n+Φ =  is reached.  

5.3.2.2 Plastic Corrector / Return Mapping 

The return mapping procedure in the case of tensorial damage definition is by far more 

complex than in the case of isotropic damage and requires the solution of a non-linear 

system of three equations, two of which are tensorial equations. The objective is to 

determine unknowns 
1n+

σ� , 
1n+

D  and γΔ , in order to satisfy the consistency condition 

1
0

n+
Φ =  over the actual time step. The calculation of the new stress and damage 
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states represent, in the most general case, the solution of a non-linear system of 

equations for a total of 13 unknowns. So, additional equations must be solved along 

with the consistency condition in order to determine all the variables that fully 

characterize the new incremental plastic state. Therefore, considering the independent 

variables 
1n+

σ� , 
1n+

D  and γΔ , the system of equations to be linearized and solved 

iteratively by the Newton-Raphson scheme can be written in the form: 

 ( )
( )

( )

2
1 1 1

1 tr
11

1
1 1

: : 0

:

p
n n Y n

ial
nn

s
ii

p p pn
n n n D

Y
H

S

σ ε

γ

ε ε

+ + +
−

++

+
+ +

⎧⎪ − =⎪⎪⎪⎪ +Δ =−⎪⎪⎨⎪ ⎛ ⎞⎪ ⎟⎜⎪ ⎟⎜− − Δ − =⎪ ⎟⎜ ⎟⎪ ⎜ ⎟⎝ ⎠⎪⎪⎩

N 0

D D 0

σ σ

σ σ

ε

M
E
� �

� �

 (5.62) 

where the first equation represents the yield function, the second one the additive 

decomposition of strain increment Δε  and the third equation represents the 

anisotropic damage evolution law. In order to apply the iterative Newton-Raphson 

method, it is imperative to define all the variables as a function of the independent 

variables, 
1n+

σ� , 
1n+

D  and γΔ . Using the quadratic formulation for the yield criterion, 

new relations for the plastic strain increment tensor pΔε  and for the equivalent plastic 

strain increment pεΔ  should be explicitly defined. The definition of these two 

quantities is, again, based on the associative plastic flow rule and on the incremental 

plastic work definition, respectively. In this way, using the associative flow rule, plastic 

strain increment tensor pΔε  is given by: 

 
1

p
n

γ
+

Δ = Δ Nε  (5.63) 

where 
1n+

N  is now equal to: 

 ( )1 1 1 1
dev

n n n n+ + + +=N H N H�  (5.64) 

where operation ( )dev i  represents that only the deviatoric part is taken into account 

and 
1n+N�  stands for the effective flow vector given as: 
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n
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+
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σ
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�
. (5.65) 

Using the above definitions, plastic strain increment tensor can be rewritten as: 
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+ + +

+ + +

Δ = Δ
⎡ ⎤⇔ Δ = Δ ⎢ ⎥⎣ ⎦

H N H

H H

ε

ε σM

�
 (5.66) 

or, equivalently, as: 

 
1 1

2 :p
n n

γ + +Δ = Δ Nε Q �  (5.67) 
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where 
1n+

Q  represents a fourth order tensor operator, function of damage tensor 
1n+

D , 

given by the expression: 

 2
1 1 1 1

1
3n n n n+ + + += ⊗ − ⊗H H I HQ . (5.68) 

The definition of the equivalent plastic strain increment is obtained from the 

incremental plastic work definition as: 
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The state update procedure for the anisotropic damage model is presented in Box 5.2. 

As already mentioned, the solution of the system is undertaken by using the Newton-

Raphson iterative scheme, conveniently summarized in Box 5.3. Partial derivatives of 

each equation with respect to variables 
1n+σ� , 

1n+D  e γΔ  that define the Jacobian 

matrix to be used in the Newton-Rapshon iterative procedure are given by: 
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The derivative of the flow vector N  with respect to damage tensor D  is obtained 

from the definition of the flow vector (for notation convenience the scripts are omitted): 

 ( ) ( )1
dev :

3
= = −N HNH HNH I HNH� � � . (5.73) 

Applying the chain derivative rule, one obtains: 
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( )2 21
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3
∂ ∂ ∂
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∂ ∂ ∂
N HNH H

I N H H
D H D

� �  (5.74) 

where the displayed partial derivatives are respectively given by: 
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and: 
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In order to avoid the calculation of “time-expensive” derivatives, 
1D n+∂ ∂r σ�  and 

1D n+∂ ∂r D  are simplified by eliminating the terms where derivative of the tensorial 

operation | |iii  is required and, therefore, derivatives assume an approximated form 

given by: 
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This approximation leads to an incomplete linearization of the Newton-Raphson 

method and, consequently, the quadratic convergence rate, typical of this iterative 

method, may not be achieved. Nevertheless, using the approximations of Equation 

(5.77), the quadratic convergence rate is traded by a less time consuming derivative 

calculation. Finally, as local integration of the fully coupled constitutive equations will 

be undertaken in a dynamic explicit solution procedure, the computation of the 

consistent tangent operator with the described above integration scheme for the 

assembly of the tangent stiffness matrix is not required and it is not addressed in this 

work. 
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Box 5.2 State update procedure for fully coupled Lemaitre’s ductile anisotropic damage model. 

i) Elastic predictor 

 Given an elastic trial strain 
e trial e

n= +Δε ε ε , evaluate elastic trial stress: 

  : :trial
n n

= + Δσ σ εL E�  

  with: 
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 Check plastic consistency: 

  IF ( )2: : 0trial trial trial p
Y n
σ εΦ = − ≤σ σM� �  THEN 

   Set 1
1

:trial trial
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σ−
+

= =σ σ L �  and ( ) ( )
1

. .
trial

n+
=  and RETURN 

  ELSE go to (ii) 

 

ii) Plastic corrector (solve the system for the unknowns γΔ , 
1n+σ�  and

1n+D ) 
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iv) RETURN 
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Box 5.3 Newton-Raphson algorithm for return mapping system of equations for integration of fully coupled 

Lemaitre’s ductile anisotropic damage model. 

i) Initialize Newton-Raphson method. Set initial guess ( )0 0γΔ = , ( )0
1

trial
n+ =σ σ� �  and 

( )0
1n n+ =D D and compute residuals rγ , σr  and 

D
r  
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ii) Perform Newton-Raphson iteration 
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 New guess for γΔ , 
1n+

σ�  and 
1n+

D : 
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 Update plastic strain, equivalent plastic strain and effective elastic density: 
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iii) Compute new residuals (rγ , σr ,
D
r ) and check for convergence 

 IF r toleranceγ ≤  AND toleranceσ ≤r  AND 
D

tolerance≤r  THEN 

 RETURN 

 

iv) Go to (ii) 
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5.4 Sensitivity analysis of anisotropic damage model 

In this section, a sensitivity analysis of the implemented anisotropic damage model is 

performed taking into account the variation of damage parameters, stress triaxiality 

ratio, hardening behaviour and anisotropic coefficients in order to quantify its effects on 

mechanical properties degradation. A fictitious material has been considered and 

corresponding material properties are presented in Table 5.2. 

Table 5.2 Initial material properties. 

Property Symbol Value 

Young modulus [GPa] E  70 

Poisson coefficient ν  0.3 

Initial yield stress [MPa] 
0Y

σ  137 

Yield stress [MPa] 
Y
σ  0.35570( )pε  

r-values 
0 45 90
, ,r r r  1.0, 1.0, 1.0 

Damage denominator [MPa] S  1.0 

Damage exponent s  1.0 

Damage threshold p
D
ε  0.0 

Damage hydrostatic parameter η  3.0 

5.4.1 Influence of damage evolution law parameters 

For the sake of completeness, the anisotropic damage evolution law is repeated in this 

section. The law is formulated as: 

 

s
ii

pY
S

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
D ε� �  (5.78) 

where S  and s  are characteristic material parameters and the effective elastic energy 

density Y  is given by: 
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2 2
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σσ
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σ

⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜ ⎟⎜= + + −⎢ ⎥⎟⎜ ⎟⎟⎜⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

� �
� . (5.79) 

The tensor 
ii

pε� , which represents the positive values of the plastic strain rate tensor, 

along with the effective elastic energy density Y , imply that damage is governed by 

the elastic energy and the plastic strain rate, as shown by many experimental 

observations [Lemaitre 1998]. There are, at least, two parameters that have a direct 

influence in the evolution law, the denominator S  and exponent s  damage parameters.  
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Concerning damage denominator parameter S  influence, it can be seen in Figure 

5.4b that, as higher values are considered for this parameter, damage rate will be 

considerably lower, traduced into a delay of the degradation of mechanical properties of 

the material, Figure 5.4a, and, hence, in a postponement of failure criterion 

achievement, Figure 5.4b. Although not shown, the behaviour of all components of the 

damage tensor follow the same trend presented for the hydrostatic damage in Figure 

5.4b. 

 

Figure 5.4 Influence of damage denominator parameter on stress and hydrostatic damage evolutions. 

Regarding the influence of the damage exponent parameter s , it is important to 

distinguish two different cases, directly related with the value calculated in the ratio 

/Y S . 

 

Figure 5.5 Influence of damage exponent parameter on stress and hydrostatic damage evolutions. 

When the ratio /Y S  is lower than unity, a higher value of the exponent leads to a 

slower damage evolution for all damage components, but, once the computed ratio 

/Y S  reaches a value greater than one, damage growth will be exponentially 

proportional to the considered exponent value and, therefore, critical damage will be 
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rapidly reached. This behaviour is valid for exponent values greater than one. However, 

there is the possibility of exponent values lower than 1 to be considered for some 

materials [Lemaitre 2005]. In this case, the behaviour of damage evolution rate is 

exactly opposite to that presented for values where 1s ≥ . The evolution becomes less 

noticeable when ratio /Y S  attains a value greater than unity, as shown in the Figure 

5.5b. Naturally, this influence in the damage rate has a corresponding effect in 

mechanical properties degradation, anticipating or delaying failure occurrence, as seen 

in Figure 5.5a. 

Another parameter, the hydrostatic parameter η , introduced in the effective stress 

definition (see Equation (5.25)), also shows to have a huge influence in the stress 

evolution and in the plastic strain value calculated for the occurrence of rupture. 

However, its influence is only noticeable for high values of damage, evidenced by the 

superposition of the damage evolution curves for hydrostatic damages values below 0.3, 

Figure 5.6b. The introduction of this parameter in the definition of effective stress is 

justified by the need for a proper modelling of the experimental values, in order to 

reflect the variation of Poisson's ratio with the plastic deformation [Lemaitre 2000a].  

 

Figure 5.6 Influence of damage hydrostatic parameter on stress and hydrostatic damage evolutions. 

 

Figure 5.7 Influence of damage hydrostatic parameter on Poisson ratio and Young modulus evolutions. 
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As seen in Figure 5.7a, the consideration of a higher value for this parameter leads to a 

faster degradation of the Poisson ratio, even when smaller damage values are 

computed. The influence of this parameter in the elastic modulus only becomes 

important for higher damage values, as shown in Figure 5.7b, similar to the influence 

observed for the equivalent stress evolution. 

Another important influence is related with stress triaxiality ratio /
H

σ σ�� , 

introduced in the evolution law through the effective elastic strain energy Y . In order 

to study the influence of this ratio in the stress and damage evolutions, three loading 

cases have been considered: uniaxial tension (UT), plane strain (PS) and equibiaxial 

stretching (BS) corresponding to stress triaxiality ratios of 1 / 3 , 1 / 3  and 2 / 3 , 

respectively (for a isotropic material and monotonic loadings). The influence of the 

stress triaxiality ratio is shown in Figure 5.8. 

 

Figure 5.8 Influence of stress triaxiality on stress and hydrostatic damage evolutions. 

According to Equations (5.78) and (5.79) and as expected, damage will grow more 

rapidly under higher stress triaxiality ratios, as the evolution of hydrostatic damage 

presented in Figure 5.8 depicts.  

5.4.2 Influence of hardening parameters 

To study the hardening effect in the evolution of damage and in the mechanical 

properties degradation of the material, three distinct values were considered for the 

hardening coefficient K  (300, 570 and 700 MPa) and for the hardening exponent n  

(0.1, 0.35 and 0.5). The considered hardening law is the power law given by the 

expression: 

 ( )np
Y

Kσ ε= . (5.80) 
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The stress-strain curves corresponding to the variations of the two hardening 

parameters are presented in Figure 5.9. 

 

Figure 5.9 Stress-strain curves for different hardening coefficients and hardening exponents. 

The influence of the hardening strength K  on stress and hydrostatic damage 

evolutions is shown in Figure 5.10. 

 

Figure 5.10 Influence of hardening strength on stress and hydrostatic damage evolutions. 

As can be seen in Figure 5.10, higher values of the hardening coefficient lead to higher 

damage growth rates and, consequently, to a faster degradation of mechanical 

properties. This behaviour is in agreement with the damage evolution law presented in 

Equation (5.78). The consideration of a higher value for the hardening coefficient drives 

to more important yield stress values for the same plastic strain, Figure 5.9a. Assuming 

that the triaxiality ratio remains constant (monotonic loading), these more important 

yield stress values lead to a higher computed value for the effective elastic energy 

density Y  that, maintaining the same denominator S  in the damage law, promotes a 

higher damage growth rate. 
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A similar effect in the damage evolution is rendered by the variation of exponent 

parameter n  of the hardening law, as seen in Figure 5.11. 

 

Figure 5.11 Influence of hardening exponent on stress and hydrostatic damage evolutions. 

Keeping the same value for the hardening coefficient, a lower value of the hardening 

exponent n  leads to higher yield stress values, Figure 5.9b. In this way, the ratio 

/Y S  becomes higher for lower values of plastic strain and, consequently, leads to a 

faster evolution of the damage, in accordance with the damage evolution law. 

Therefore, the damage growth rate will be smaller for higher values of the exponent 

parameter considered in the hardening law. 

5.4.3 Influence of normal anisotropy 

Before addressing the influence of normal anisotropy, it is important to define this 

measure. The normal anisotropy parameter r  is the average value of the r-values 

obtained for different directions in the plane of sheet metal, calculated as: 

 0 45 90
2

4

r r r
r

+ +
=  (5.81) 

where 
0

r , 
45

r  and 
90

r  represents the anisotropic or Lankford coefficients determined for 

0º, 45º and 90º directions from rolling direction. Another important measure is the so-

called planar anisotropy parameter rΔ : 

 0 90 45
2

4

r r r
r

+ −
Δ =  (5.82) 

which represents the measure of the variation of normal anisotropy with the angle to 

the rolling direction [Banabic 2000]. In this study, one has consider 0rΔ =  and, so: 

 
0 45 90

r r r= = , (5.83) 
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and three different values for the normal anisotropy r : 0.5, 1.0 and 2.0. The influence 

of the normal anisotropy coefficient on principal damage values evolutions is presented 

in Figure 5.12, under uniaxial tension loading applied along 1-direction. 

 

Figure 5.12 Influence of normal anisotropy on damage evolutions under uniaxial tension. 

A change in damage evolutions for 
2

D  and 
3

D  is observed when one considers normal 

anisotropy coefficients lower and higher than one. To understand this change, let us 

consider again the anisotropic damage evolution law (Equation (5.78)). Principal 

damage values are given as: 
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Assuming a monotonic tensile loading and integrating the differential equation using 

1 2 3
0D D D= = =  for a equivalent plastic strain lower than p

D
ε  (which is considered 

equal to zero, Table 5.2), one reach: 
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. (5.85) 

By definition, anisotropic coefficient is given by the ratio: 

 2

3

p

p
r

ε

ε
=  (5.86) 
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where 
2
pε  and 

3
pε  are the plastic strains in the transverse and thickness directions. 

Substituting in Equation (5.86) the relation obtained in Equation (5.85), anisotropic 

parameter can be rewritten as: 

 2

3

D
r

D
= . (5.87) 

Therefore, under uniaxial tensile loading, the magnitude of the damage evolution in 

width and thickness direction will be dependent on the considered normal anisotropic 

coefficient. When 1r < , damage in thickness direction will assume a more important 

position in the failure calculation. 
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6. APPLICATION OF DAMAGE TO 

FAILURE PREDICTION 

Numerical tests were carried out and compared to 

corresponding experimental testings in order to evaluate the 

performance and accuracy of the proposed damage models in 

the failure prediction in sheet metal forming processes. A wide-

range of benchmark studies are conducted including classical 

testings for material characterization and complex applications 

involving plastic anisotropy and contact. Intrinsically, the 

adopted (and implemented) damage models are tested and a 

qualitative characterization of the capabilities of the proposed 

models is achieved. 

6.1 Tensile test 

The classical uniaxial tensile test was chosen to illustrate damage model features. This 

example corresponds to the simulation of a tensile test performed on a plate specimen 

subjected to monotonic axial stretching. The selected material is the aluminium alloy 

5182, in O temper state. This aluminium wrought material is largely used in 

automotive industry to produce internal and structural body parts.  

According to [LPMTM 2001], this aluminium alloy has a nearly isotropic 

behaviour in flow stress evolution and exhibits a pronounced saturation of the flow 

stress during monotonic loading. Also, the observed Bauschinger effect was rather small 

during reversed deformation of Bauschinger tests, thus a saturated isotropic hardening 

behaviour can be assumed for this material. In order to describe this behaviour, the 

most adequate hardening law is the Voce law given by the expression: 

 ( )0
1 exp p

Y Y sat R
R Cσ σ ε⎡ ⎤= + − −⎢ ⎥⎣ ⎦

 (6.1) 
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where 
0Y

σ  is the initial yield stress and 
sat

R  and 
R

C  are material parameters, 

determined from a single tensile test. This law is adequate to describe the behaviour of 

materials which exhibit a saturated isotropic hardening, with a weak or negligible 

kinematic hardening. Concerning anisotropic flow behaviour, although variation of 

anisotropy coefficients is not very large [LPMTM 2001], better results were achieved in 

the identification of the elastoplastic models using Hill48 criterion, when compared with 

the von Mises criterion. Therefore, it was concluded that the behaviour of this material 

can be satisfactorily described by using an isotropic hardening with saturation given by 

the Voce law, combined with Hill48 criterion. The material parameters are presented in 

Table 6.1 [LPMTM 2001] and the true stress – true strain curves at 0, 45 and 90 

degrees from rolling direction are depicted in Figure 6.1. 

Table 6.1 Material parameters of AA 5182-O. 

Property Symbol Value 

Young modulus [GPa] E  70 

Poisson coefficient ν  0.3 

Initial yield stress [MPa] 
0Y

σ  149 

Voce law parameter[MPa] 
sat

R  208.7 

Voce law parameter 
R

C  12.1 

r-values 
0 45 90
, ,r r r  0.79, 0.851, 0.7 

 

Figure 6.1 Uniaxial true stress – true strain curves of AA 5182-O. 

Concerning damage model parameters, a partial identification procedure, similar to 

the procedure proposed by Lemaitre et al. [2005], was used to determine parameters 

from available tensile test data. During a monotonic tensile loading, isotropic damage 

evolution law can be written as: 
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2

2

s

pD
ES
σ

ε
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

�� �  (6.2) 

where σ�  is the effective stress. Integrating the differential equation using 0D =  for a 

equivalent plastic strain lower than p
D
ε , one has: 

 ( )
2

2

s

p p
D

D
ES
σ

ε ε
⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜⎝ ⎠

�
. (6.3) 

Therefore, isotropic damage model needs the identification of 4 parameters: damage 

exponent s , damage threshold p
D
ε , critical damage 

C
D  and damage denominator S . 

Concerning damage exponent, it can be considered equal to 1 since multi-

experiments have shown that 1s ≈  [Lemaitre 1985b]. Plastic strain at damage 

threshold p
D
ε  can be defined as the value of plastic strain for which diffuse necking 

starts, corresponding to the true plastic strain attained when the maximum value in 

the engineering stress-strain curve is reached. Therefore: 

 p
D U
ε ε≈ . (6.4) 

Before addressing the partial identification procedure of the other two parameters, 

let us first define some concepts and establish some hypothesis. During the course of a 

tensile test, a ductile material becomes unstable and necks down before rupture. The 

local plastic strain attained in the necking zone corresponds to the equivalent plastic 

strain at rupture, p
R
ε , for which critical damage 

C
D  is attained. Usually, this local 

plastic strain at rupture in the neck is not available from the tensile test data. To 

estimate this value, one can use the plastic incompressibility condition in the necked 

region and the standard definition of true strain. True strain can be continuously given 

by the relation: 

 
0

ln
L
L

ε
⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠

. (6.5) 

Once the neck is formed, plastic strain will be localized in the neck and the use of the 

above equation is not easy since values for the initial length and current length of the 

neck are difficult to obtain. But, assuming volume constancy, one can define an 

equivalence between initial and final volumes as: 

 
0 0 R R

A L A L=  (6.6) 

where 
R

A  and 
R

L  are the area and length of the neck at rupture. Using this 

correspondence, it is possible to write: 
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 0

0

R

R

LA

A L
= , (6.7) 

from which it is possible to define the true plastic strain attained in the neck by the 

expression: 

 0lnp
R

R

A

A
ε

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠
, (6.8) 

or, in terms of the necking parameter Z , as: 

 
1

ln
1

p
R Z
ε

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ −⎝ ⎠
 (6.9) 

with: 

 0

0

R
A A

Z
A

−
= . (6.10) 

This parameter p
R
ε  represents the maximum true strain that the material can 

withstand before fracture and is related to the total strain to fracture of the engineering 

stress-strain curve. Using this local plastic strain, it is possible to calculate the 

corresponding effective (undamaged) stress at rupture, 
R

σ� , reached in the failure site, 

using the identified hardening law: 

 ( )p
R R

fσ ε=� . (6.11) 

To evaluate the damage denominator parameter S , it will be assumed that 

maximum damaged stress σ  is obtained when the local neck is formed. This 

assumption is justified by the fact that when diffuse necking is achieved, for a 

maximum engineering stress in the engineering stress-strain curve, and further 

deformation leads to the appearance of a local neck, there is a change in the stress and 

strain states from a uniaxial state to a state near plane strain path, and, thus, there is 

a change to a higher stress triaxiality. Another reason is related with the plastic strain 

rate when localized necking occurs. Once localization of plastic flow is verified, all 

plastic straining will be restrained to the necking region and a high plastic strain rate is 

reached in such region. Both these occurrences have a direct impact in the damage 

growth rate leading to a more accentuated decrease in the material stiffness in the 

necking region. To determine the starting point of the local necking, the condition 

postulated by Hill [1952] is used. In his criterion, necking is supposed to start when 

major tension reaches a maximum (see Section 7.2.1 for more details). After some 

straightforward algebra, Hill’s criterion for localized necking can be written as:  



Ch. 6 APPLICATION OF DAMAGE TO FAILURE PREDICTION 115 

 

 ( )= +
d

d

σ
β σ

ε
1

1
1

1  (6.12) 

where 
1

σ  and 
1
ε  are the major principal in-plane stress and strain, respectively, and β  

represents the strain ratio, defined as the relation between the major and minor 

principal in-plane strains: 

 =
d

d

ε
β

ε
2

1

. (6.13) 

Using this criterion, it is possible to determine the attained plastic strain when 

localized necking starts, p
neck
ε , and, by using the identified hardening law, the 

corresponding effective stress, 
neck

σ� . This point in the effective stress-strain curve will 

correspond to the maximum of damaged stress σ  in the damaged stress-strain curve, 

thus: 

 0
p p

neck

p

d

d ε ε

σ
ε =

= . (6.14) 

By means of the effective stress concept, Equation (6.14) can be rewritten as: 

 ( )1 0
p p

neck

p

d
D

d ε ε

σ
ε =

⎡ ⎤− =⎢ ⎥⎣ ⎦
� . (6.15) 

A straightforward algebra leads to an expression for damage attained at beginning of 

localized necking: 

 
'

1
p p

neck

neck
neck p

neck

dD
D

H d ε ε

σ

ε =

= −
�

 (6.16) 

where '
neck

H  is the hardening modulus calculated for the plastic strain p
neck
ε : 

 '

p p
neck

neck p

d
H

d ε ε

σ
ε =

=
�

 (6.17) 

and derivative pdD dε  is computed from the damage evolution law (Equation(6.3)) as: 

 ( )
1

' 2 2

2 2p p
neck

s s

p pneck neck neck neck
neck Dp

s HdD
ES ES ESd ε ε

σ σ σ
ε ε

ε

−

=

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜= − +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎝ ⎠ ⎝ ⎠

� � �
. (6.18) 

Using Equations (6.3) and (6.16) and the assumption of a unitary damage exponent, 

1s = , damage denominator parameter S  is given by: 

 ( )
2

'

3
2 2

p pneck neck
neck D

neck

S
E H

σ σ
ε ε

⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥⎣ ⎦

� �
, (6.19) 
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which, for a material that has isotropic hardening behaviour with saturation given by 

the Voce law, may be written as: 

 ( ) ( )
2 3

2 2 exp
p pneck neck
neck D p

sat R R neck

S
E R C C

σ σ
ε ε

ε

⎡ ⎤
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

� �
. (6.20) 

Finally, critical damage 
C

D  is then evaluated by the rupture stress 
R

σ�  and strain 
p
R
ε  values. In order to take into account the plane strain condition inside the neck, a 

correction to the stress is performed by introducing the notion of damage equivalent 

stress *σ  [Lemaitre 1985a] obtained as:  

 
1 2*
v

Rσ σ=  (6.21) 

where 
v

R  is the triaxiality function given by: 

 ( ) ( )
2

2
1 3 1 2

3
H

v
R

σ
ν ν

σ

⎛ ⎞⎟⎜ ⎟⎜= + + − ⎟⎜ ⎟⎟⎜⎝ ⎠
. (6.22) 

For a uniaxial case 1
v

R =  but, for the plane strain case, the triaxiality function will 

be given by: 

 
5 4

3
Rν

ν−
= . (6.23) 

Thus, critical damage 
C

D  is calculated as: 

 ( )
2

2

s

p pR
C R D

R
D

ES
νσ

ε ε
⎛ ⎞⎟⎜ ⎟⎜= −⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

�
. (6.24) 

For the selected aluminium alloy 5182-O, the mechanical properties are 

summarized in Table 6.2 [Wouters 2002], measured in a set of standard ISO 20x80 

tensile specimens. 

Table 6.2 Mechanical characteristics of AA 5182-O. 

Direction 

from RD 
0,2p

R
 

[MPa] 

m
R

 
[MPa] 

e m
R R

 
[%] 

g
A

 
[%] 

80
A

 
[%] 

n  
 

0º 149.5 283.8 52.7 20.7 24.4 0.335 

45° 148.2 279.4 53.1 20.6 28 0.307 

90º 151.6 280.3 54.1 24.5 26.2 0.365 

 

The ultimate engineering strain in the rolling direction is attained for 20.7 %. The 

corresponding ultimate true strain 
U
ε  of: 
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 ( )ln 1 0.188
U g

Aε = + = , (6.25) 

and, so, plastic strain to damage threshold is set to 0.188. Since the necking parameter 

Z  is difficult to obtain in a sheet specimen, the typical value for aluminium alloys will 

be used, which is near 35 % [DIN EN 10002 2001]. Therefore, inside the neck, true 

strain at rupture p
R
ε  is given by: 

 
1

ln 0.43
1 0.35

p
R
ε

⎛ ⎞⎟⎜ ⎟= ≈⎜ ⎟⎜ ⎟⎜ −⎝ ⎠
. (6.26) 

which corresponds to an effective stress at rupture: 

 ( )0
1 exp 356.6p

R Y sat R R
R C MPaσ σ ε⎡ ⎤= + − − =⎢ ⎥⎣ ⎦

� . (6.27) 

Using Hill’s necking criterion, localized necking starts at a plastic strain of: 

 0.214p
neck
ε = . (6.28) 

At this plastic strain level, the effective stress 
neck

σ� , given by the Voce law, is equal to: 

 ( )0
1 exp 342.0p

neck Y sat R neck
R C MPaσ σ ε⎡ ⎤= + − − =⎢ ⎥⎣ ⎦

� . (6.29) 

Using Equation (6.20), one gets for the damage denominator parameter S : 

 ( ) ( )
2 3

1.57
2 2 exp

p pneck neck
neck D p

sat R R neck

S MPa
E R C C

σ σ
ε ε

ε

⎡ ⎤
⎢ ⎥

= − + =⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

� �
. (6.30) 

Critical damage 
C

D  is then obtained from the values at rupture. Therefore, using 

values from Equations (6.26), (6.27) and (6.30) in Equation (6.24), critical damage is 

equal to: 

 ( )
2

0.18
2

s

p pR
C R D

R
D

ES
νσ

ε ε
⎛ ⎞⎟⎜ ⎟⎜= − ≈⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

�
. (6.31) 

The parameters identified by this partial identification procedure are summarized 

in Table 6.3. 

Table 6.3 Isotropic damage model parameters for AA 5182-O. 

Parameter Symbol Value 

Damage denominator [MPa] S  1.57 

Damage exponent s  1.0 

Damage threshold p
D
ε  0.188 

Critical damage value 
C

D  0.18 
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As already stated in Section 4.3.1, quantification of damage may be deduced from 

a set of experimental data using the elasticity modulus change. Using this data, further 

effort in the formulation of an identification procedure is required in order to identify 

the set of material parameters for the constitutive model which gives the best 

representation of a maximum volume of experimental data and information on a given 

material. Unfortunately, these experimental data are not commonly available. The 

described method allows obtaining material damage parameters for a specific material 

using typical properties derived from a unique or few tensile tests. It must be remarked 

that the rate of damage accumulation depends on the stress state in the process, and, 

therefore, tensile data may not be indicative of damage in other stress states. 

Nevertheless, obtained parameters can be seen as a good starting point for a precise 

identification procedure. 

6.1.1 Numerical modelling 

A mesh with a single layer of 900 eight-noded solid elements (C3D8R from the 

ABAQUS library [ABAQUS 2008]) was used in the specimen discretization. Due to 

symmetry, only one quarter of the problem was modelled and appropriate boundary 

conditions were imposed. The relevant process parameters are listed in Table 6.4 and 

specimen dimensions are presented in Figure 6.2. Tensile simulation was performed by 

applying a prescribed displacement on the specimen edge. Rolling direction is assumed 

to be along loading direction (Figure 6.3). 

Table 6.4 Tensile test numerical conditions. 

Blank 

Element type Reduced integration solid (8-noded) 

Element size [mm] 1.0x1.0x1.0 (gauge area) 

Number of layers 1 

Number of elements 900 

Process parameters 

Crosshead velocity [m/s] 1 

R1
2

80

120

220

3020

 

Figure 6.2 Sheet tensile test specimen dimensions (in mm). 
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Figure 6.3 Adopted numerical mesh for tensile test. 

6.1.2 Results and discussion 

The main purpose of this example is to show the predictive capabilities of the proposed 

damage methodology on a simple case for which plastic localization mode and failure 

location is known. Additionally, a critical assessment of the reliability of the partial 

identification procedure of the damage material parameters is also performed. Applying 

a monotonic loading, plastic strain is initially uniformly distributed along the gauge 

area, reaching a uniform plastic strain of 0.188. This point corresponds to the diffuse 

necking initiation and it is attained for a cross-head displacement of 12.8 mm. It is 

possible to infer this critical cross-head displacement by the visible change in the stress 

triaxiality evolution, which corresponds to the initiation of diffuse necking [Lee 2005], 

Figure 6.4. 

 

Figure 6.4 Evolution of stress triaxiality. 

Further displacement leads to the localization of plastic strain which, for the case of the 

uniaxial tensile, takes the form of a shear band. As can be seen in Figure 6.5, the 

damage coupled simulation gives a realistic localization mode, at an angle near 45 

degrees, where also high values of plastic strain are observed, Figure 6.6. 
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Figure 6.5 Tensile test damage contour. 

 

Figure 6.6 Tensile test equivalent plastic strain contour. 

For the element located in the center of the specimen, where meso-crack starts, the 

corresponding damaged and undamaged curves are presented in Figure 6.7.  

 

Figure 6.7 Stress-strain curves for tensile test. 

A decrease in the flow stress is observed after damage threshold is attained, i.e., at 

0.188 plastic strain. Failure is assumed to occur when damage reaches the critical value 

of 0.18, which, for the element located in the necked region, is attained for a plastic 

strain of 0.48. A discrepancy exits between the value determined by numerical 

simulation, 0.48, and the value assumed as the true strain at rupture, 0.43, Equation 

(6.26). This difference can be related with the assumption made in the partial 

identification procedure of the critical damage parameter. As seen in Figure 6.4, stress 

triaxiality evolves almost linearly from the uniaxial tension up to the plane strain 

condition, resulting in a lower damage growth when compared to the assumed drastic 
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change in the deformation path after necking occurrence in the partial identification 

procedure. Naturally, this lower damage evolution postpones the critical damage 

achievement, allowing more straining until failure. Nevertheless, the obtained 

engineering stress - engineering strain curve for the tensile specimen is presented in 

Figure 6.8. 

 

Figure 6.8 Engineering stress- strain curve. 

An interesting observation in this example is concerned with the stress value in 

the failure zone, i.e., in the fully damaged zone. While for the simulation with damage 

consideration the stress value is zero in this location, Figure 6.9, the same numerical 

model, with no damage evolution and plastic softening taken into account, computes 

the maximum stress value in the damaged zone, Figure 6.10. This unrealistic situation 

provided by an uncoupled analysis reinforces the need of damage coupled formulations, 

that can lead to improved and more realistic modelling of the failure initiation 

phenomenon. 

 

Figure 6.9 Tensile test equivalent stress contour (coupled analysis). 

 

Figure 6.10 Tensile equivalent stress contour (uncoupled analysis). 
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6.2 Bulge test 

The standard uniaxial tensile test is a widely accepted method to obtain relevant 

properties of sheet metal materials. These fundamental parameters can be used in 

numerical modelling of sheet metal forming operations to predict and assess formability 

and to perform failure analysis. However, the range of strain obtained from tensile test 

is limited and, therefore, if one needs further information on material behaviour, 

extrapolation of tensile data is performed. The bulge test is an alternative method to 

obtain such deformation ranges, higher than the ones obtained in tensile test, thus 

being possible to obtain more realistic, non-extrapolated data for material behaviour. In 

this test, a sheet metal specimen is subjected to a hydraulic pressure that bulges the 

specimen up to failure. Final geometry of the bulged test specimen is defined by the 

geometry of the bulge die. Changing die geometry, one can impose different strain 

paths to the sheet metal, and, in this way, determine different points in the forming 

limit diagram. Besides the possibility to obtain higher strains, another advantage can 

be pointed out to this test when compared to similar tests, as for example, Nakajima 

test. There is no contact between the specimen and any active tool part in the 

sampling region and, thus, friction effect is eliminated from the material’s plastic 

behaviour assessment. 

In this example, a comparison between the isotropic and anisotropic damage 

models is performed. The cross-identification isotropic / anisotropic damage models 

procedure proposed by Desmorat and Otin [2008a] has been used to estimate the 

anisotropic damage parameters for the AA 5182-O. Considering that, for the monotonic 

uniaxial tension case, stress and damage tensor are given by: 

 

0 0

0 0 0

0 0 0

σ⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

σ  and 

1 0 0

0 1 2 0

0 0 1 2

D

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D , (6.32) 

the triaxiality function Rν , explicitly given as: 
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σ
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is different from one, unlike in the isotropic damage case. The effective hydrostatic 

stress 
H

σ�  and the effective von Mises stress σ�  are calculated for the anisotropic 

damage as: 

 
1 3 2

H
H

H
D D

σ σ
σ

η η
= =

− −
�  (6.34) 
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and the triaxiality function becomes dependent on damage values. Under uniaxial 

tension, this function is computed for the anisotropic damage model as: 

 ( ) ( )
2

2 2 2 1
1 3 1 2 1

3 3 1 1 2
R D

D Dν

η
ν ν
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. (6.36) 

The anisotropic damage evolution law can then be reduced to the differential equation: 
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Recommendations for this cross-identification procedure [Lemaitre 2005] is to keep 

the same damage exponent parameter s  (as identified for the isotropic model) and to 

assume a damage hydrostatic parameter η  equal to 3. Concerning the damage 

denominator S  and the critical damage 
C

D , it is required a re-identification of these 

parameters by using the monotonic tensile curve. Several simulations were performed 

varying the damage denominator. The best fit with the isotropic damage model was 

achieved for a damage denominator of 1.41 MPa. The corresponding damaged stress-

strain curves for both isotropic and anisotropic models are shown in Figure 6.11. 

 

Figure 6.11 Stress-strain curves for isotropic and anisotropic damage models. 

Using the anisotropic damage model, the same stress value decrease was obtained for a 

critical damage of 0.21. The cross-identified parameters for the anisotropic damage 

model are summarized in Table 6.5. 
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Table 6.5 Anisotropic damage model parameters for AA 5182-O. 

Parameter Symbol Value 

Damage denominator [MPa] S  1.41 

Damage exponent s  1.0 

Damage threshold p
D
ε  0.188 

Critical damage value 
C

D  0.21 

Damage hydrostatic parameter η  3 

 

6.2.1 Numerical modelling 

The problem consists of a circular sheet subjected to internal pressure. The sheet lies 

on a rigid cylindrical die and its edge is assumed clamped. The geometry and the 

adopted finite element mesh are shown in Figure 6.12 and Figure 6.13, respectively. 

 

Figure 6.12 Bulge test dimensions (in mm). 

 

Figure 6.13 Adopted numerical mesh for bulge test. 
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Due to the symmetry of the problem, only one quarter of the domain is considered 

in the finite element simulation. A mesh with a double layer of 4704 eight-noded solid 

elements is used in the discretization of the sheet metal specimen. The surface of the 

circular die is discretized by three-noded rigid triangular elements and no friction has 

been considered. Loading consists in a prescribed increasing pressure, defined by a 

linear ramped evolution until a value of 7.0 MPa is attained. The main process 

parameters are listed in Table 6.6. Rolling direction is assumed to be along 1-axis, 

Figure 6.13. The material properties employed in the numerical simulation are listed in 

Table 6.1 and damage parameters for the isotropic damage model are presented in 

Table 6.3. Parameters for the anisotropic damage model are listed in Table 6.5.  

Table 6.6 Bulge test numerical conditions. 

Blank 

Element type Reduced integration solid (8-noded) 

Element size [mm] 1.96x1.96x0.5 

Number of layers 2 

Number of elements 4704 

Tools 

Tool type Rigid elements 

Elements in radii 16 

Friction coefficient 0.0 

Process parameters 

Pressure evolution Ramped (Max. value 7.0 MPa) 

 

6.2.2 Results and discussion 

Regardless of the die geometry, be it circular or elliptical, a biaxial stretching state is 

always imposed to the sheet during a bulge test experiment. In this example, a circular 

die is considered and, consequently, an equibiaxial state is enforced to the sheet during 

the application of a continuously increased hydraulic pressure. This pressure will force 

the specimen to freely deform into a nearly spherical form. In the formed bulge center, 

i.e., in the dome pole, plastic strain reaches the highest value in experiments and this 

area will be prominent for failure occurrence. Numerical simulation using the isotropic 

damage model also follows such experimental trend. Isotropic model delivers the 

maximum value of plastic strain in bulge center, Figure 6.15, where also calculates the 

maximum damage value, Figure 6.14, and predicts the meso-crack initiation.  
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Figure 6.14 Bulge test equivalent plastic strain contour (isotropic damage model). 

 

Figure 6.15 Bulge test damage contour (isotropic damage model). 

In this test, damage localization is mainly dependent on the plastic strain rate, as 

seen by the similarity between damage and equivalent plastic strain distributions. 

Moreover, the effect of stress triaxiality on damage localization site is negligible since 

such stress ratio remains almost constant during the application of hydraulic pressure 

and has the same value in the whole bulge area, as presented in Figure 6.16. 

 

Figure 6.16 Bulge test stress triaxiality contour (isotropic damage model). 



Ch. 6 APPLICATION OF DAMAGE TO FAILURE PREDICTION 127 

 

Due to damage growth, a decrease in equivalent stress value is observed in the 

bulge center, Figure 6.17. This reduction in the flow stress, reflecting material strength 

degradation, endorses the localization of more plastic deformation in this weakened 

area. Higher plastic strain rate leads to a higher damage growth and corresponding 

decrease in flow stress. This is in straight contradiction with the plastic straining 

consequence which leads to a hardened behaviour in metallic materials, but in straight 

agreement with the concurrent effect between damage growth and hardening. 

 

Figure 6.17 Bulge test equivalent stress contour (isotropic damage model). 

A comparison of damage evolution with equivalent plastic strain between tensile 

and bulge test, for the element located in the center of the specimens that fails during 

loading, is presented in Figure 6.18. 

 

Figure 6.18 Damage evolution comparison between tensile and bulge tests (isotropic damage model). 

As can be seen, a higher damage growth is noticed for the bulge test case. The reason is 

intimately related with the higher stress triaxiality attained by the imposed biaxial 

strain state that has a direct effect on damage growth and its localization. Under such 
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loading condition, material fails for a lower equivalent plastic strain value than the one 

predicted for a uniaxial tensile case. This difference reinforces the idea that a failure 

criterion based only in a critical plastic strain value may be unsuccessful to deliver 

valid failure predictions and that stress triaxiality effect must be included in material 

failure calculations. 

The same numerical model was used to perform a simulation with the 

consideration of a distinctive damage evolution, i.e., using the anisotropic damage 

model. It can be seen in Figure 6.19 that anisotropic damage model also calculates 

maximum equivalent plastic strain in bulge pole, in accordance with experimental 

observations. 

 

Figure 6.19 Bulge test equivalent plastic strain contour (anisotropic damage model). 

For the case of anisotropic damage evolution, failure is assumed to occur when the 

critical damage value (defined for the anisotropic model) is reached by the maximum 

value attained in principal damage directions. The obtained damage distributions prior 

to failure are presented in Figure 6.20. For the bulge test case, damage component 

along thickness direction is the responsible component for the activation of the failure 

criterion. During bulging, a biaxial strain state is established on the sheet and a 

significant reduction in thickness direction is observed. The plastic strain rate achieved 

in this direction is, therefore, higher than the equivalent rates attained in sheet plane 

directions, which, according to anisotropic damage evolution law, leads to a damage 

growth rate also higher in the thickness direction. This damage rate difference is 

especially important in the case of aluminium alloys due to the fact that they usually 

present anisotropy coefficients lower than one, which means that forming mainly occurs 

through a reduction of sheet thickness, and, therefore, a higher deformation rate will be 

imposed in the thickness direction during biaxial stretching. 
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Figure 6.20 Bulge test damage contour (anisotropic damage model). 

The difference between damage components evolution in the anisotropic damage model 

and a comparison with isotropic damage evolution is provided in Figure 6.21. 

 

Figure 6.21 Bulge test damage evolution comparison between isotropic and anisotropic damage models. 

It is clear from Figure 6.21 that the damage component along thickness direction 
33

D  

has the most evident evolution and early reaches critical damage for an equivalent 

plastic strain of 0.42. Concerning in-plane damage values, 
11

D  and 
22

D , no significant 

difference in damage growth is seen, which is in accordance with the small variation of 

anisotropic coefficients observed for this alloy [LPMTM 2001]. But, despite the same 

triaxiality level attained by the isotropic and anisotropic damage implementations in 
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the bulged area, failure is detected earlier for the case with the consideration of a 

distinct evolution of damage in different directions. The explanation is clear in Figure 

6.21. A more accentuated damage growth of the critical damage component 
33

D  is 

observed when compared to the isotropic damage value growth due to the fact that 

anisotropic coefficients lower than one promote deformation in thickness direction.  

6.3 U shape geometry 

This benchmark corresponds to one of eight selected benchmarks used in a research 

work, part of the international project 3DS, Digital Die Design System [Col 2002]. One 

of the goals of the project was the improvement and validation of the ability of 

numerical codes to predict sheet metal forming behaviour as well as the final stamped 

geometry after springback. This particular benchmark is prone to develop 2D 

springback due to the bending / unbending over die radius that promotes a stress 

differential along thickness direction. Although failure behaviour was not planned for 

any benchmark, some coupling of experimental conditions and material were producing 

components with breakage. 

6.3.1 Experimental failure 

Experimental failure in this component is observed for a punch displacement of 36.4 

mm, with an applied initial blank holder force of 300 kN, using the aluminium alloy 

5182-O. However, in a total set of 5 experimental testings, failure did not occur for one 

of the components, as can be observed in Figure 6.22a. This indicates that this holding 

condition may represent the upper limit for the maximum applicable blank holder force 

for this material and geometry. 

 

Figure 6.22 Experimental part without rupture (left) and failed part (right) (AA 5182-O, initial blank 

holder force 300kN). 
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6.3.2 Numerical modelling 

Blank was modelled with a double layer of eight-noded solid elements. Due to 

symmetry and its intrinsic bidimensional characteristic, a reduced model was 

considered in order to reduce calculation time. The blank mesh was reduced to a single 

strip of elements along the perpendicular direction to the U channel. Naturally, 

appropriate boundary conditions were applied and holding force was adjusted to the 

reduced sheet surface. Concerning tools, rigid analytical surfaces were considered to 

model the active tool surfaces and interaction between sheet and tools has been 

performed with friction. A constant friction coefficient was adopted for all the surfaces 

of the different tool active parts, namely for the blank holder and die surfaces, die 

radius and punch. Regarding the blank holder force evolution with punch displacement, 

it was assumed a linear evolution up to a total punch displacement of 60 mm given by 

the relation: 

 
60

1.32
IBHF

F F=  (6.38) 

where 
60

F  is the blank holder force attained for 60 mm punch displacement and 
IBHF

F  

is the imposed initial blank holder force. Main numerical conditions are summarized in 

Table 6.7. Material properties are given in Table 6.1 and damage law parameters in 

Table 6.3. Rolling direction was considered to be along the U channel direction. 

Table 6.7 U shape geometry numerical conditions. 

Blank 

Element type Reduced integration solid (8-noded) 

Element size [mm] 1.67x5.0x0.5 

Number of layers 2 

Number of elements 178 

Tools 

Tool type Rigid analytical surface 

Friction coefficient 0.1 / 0.18 

Process parameters 

Punch travel [mm] 60 

Punch speed [m/s] 5 

Initial blank holder force [kN] 90 / 300 

6.3.3 Results and discussion 

In order to validate the applied numerical conditions and by the fact that only 

experimental results for a initial blank holder force of 90 kN are available, additional 

simulations were performed using this lower initial blank holder force. For this 
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condition, a springback calculation stage was also considered. Tools were removed and 

nodes were restrained to inhibit rigid body motion. In this stage, an implicit finite 

element solution strategy has been used (ABAQUS/Standard). Results show that 

applied numerical conditions during stamping stage and implicit calculation of 

springback allow an accurate modelling of the process, demonstrated by the similarity 

between the obtained experimental and numerical shapes, Figure 6.23. A comparison 

between experimental and numerical section profiles is also presented in Figure 6.24. 

  

Figure 6.23 U shape geometry experimental and numerical shapes (initial blank holder force 90 kN). 

 

Figure 6.24 U shape geometry experimental and numerical profiles (initial blank holder force 90 kN). 

For the 90 kN blank holder force condition, no damage evolution is observed in the 

part since equivalent plastic strain remains very low, Figure 6.25, bellow damage 

threshold value p
D
ε . It is important to understand the location of the maximum value 

of plastic strain. During forming under this lower blank holder force condition, 

deformation will be restricted to the vertical wall. Almost no deformation occurs in the 

top and flange areas of the part. Before bending / unbending, flange material does not 

experiences any previous straining during sliding between blank holder and die surfaces 

since the lower blank holder force allows the sheet to slide without any stretching. At 

the beginning of punch movement, material located near punch radius undergoes a 

bending over a 5 mm radius and material near die radius suffers a bending over a 10 

mm radius. This initial bending over the smaller radius of the punch is sufficient to 

promote material hardening up to 0.1 plastic strain. During forming, this hardened area 
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is the principal location where the punch interacts with blank and will support all the 

force required for the bending over die radius and unbending during sliding in the 

vertical wall of the flange material. 

 

Figure 6.25 U shape geometry equivalent plastic strain contour (initial blank holder force 90 kN). 

Another observation is concerned with deformation paths followed by the points 

that belong to the internal and external fibres. Internal and external points initially 

follow opposite directions. The internal point undergoes a positive deformation during 

bending in die radius and suffers a negative deformation during unbending and sliding 

in the vertical wall. The external point, being subjected to a compressive stress state in 

the die radius, initially undergoes a negative deformation during bending changing to a 

positive one during unbending, always following a strain path near plane strain 

condition. Although final equivalent plastic strain is very close for both points, the 

difference in the deformation history leads to a dissimilar stress state, Figure 6.26, 

responsible for the verified springback behaviour. 

 

Figure 6.26 U shape geometry stress contour (initial blank holder force 90 kN). 
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For the higher holding condition (300 kN), there is a similarity in the evolution of 

deformation path followed by internal and external points. The higher initial blank 

holder force promotes the deformation of the sheet material even during sliding 

between the die and blank holder surfaces, by applying a plane strain state to sheet to 

all section points along thickness direction. This effect is visible by measuring the final 

flange length of the part. Experimentally, there is an increase of about 10 mm in the 

flange length for the 300 kN holding force (final length for 90 kN is about 58 mm). This 

experimental result is also verified numerically, existing a closeness with experimental 

values. The bending / unbending over die radius and vertical wall does not change the 

previous deformation path and internal and external points reach almost the same 

point in the principal strain space. This equality in deformation history leads to an 

similar final stress state, Figure 6.27, justifying the almost non-existent springback in 

this rail, Figure 6.22a, under this holding condition. 

 

Figure 6.27 U shape geometry stress contour (initial blank holder force 300 kN). 

Under this higher blank holder force, a high plastic strain rate is reached near the 

punch radius, Figure 6.28.  

 

Figure 6.28 U shape geometry equivalent plastic strain contour (initial blank holder force 300 kN). 
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Without damage evolution, this high plastic strain would lead to an increased strength 

of the material, moving straining to other regions in the vertical wall. But, due to the 

concurrent effects of damage and hardening, this area will be softened by the increase 

of damage and prone to have more deformation due to the decrease in material 

strength. As a consequence of this plastic localization, damage will grow faster in this 

weakened zone, rapidly achieving the critical damage value and failure, Figure 6.29. 

Failure is estimated for a critical punch displacement of 37.5 mm, which is very close to 

the experimental value (36.4 mm). 

 

Figure 6.29 U shape geometry damage contour (initial blank holder force 300 kN). 

Failure calculation in this 2D bending is extremely dependent on the establish 

lubrication condition between sheet and blank holder and die surfaces. The reported 

experimental part that did not fail despite the severe imposed experimental conditions 

in terms of blank holder force may be related with a more efficient established 

lubrication condition. To assess and understand this occurrence, a numerical study was 

performed concerning the variation of the friction coefficient, in order to simulate 

different lubrication conditions. Corresponding predicted critical punch displacements 

to failure are presented in Figure 6.30. 

It is possible to verify that friction coefficient has a huge influence on the predicted 

punch displacement to failure. For friction values lower than 0.16, damage model does 

not provide any failure occurrence. The equivalent plastic strain reached in the critical 

area is lower than the required one to initiate damage phenomenon, p
D
ε . Sheet 

movement during sliding is assisted by the low friction and flange material easily flows 

into die cavity. The required punch force is small, being only needed a sufficient load to 

bend the material over die radius. For a friction coefficient value greater or equal to 

0.2, failure is predicted for a premature punch displacement near 20 mm. This punch 

stroke corresponds to the beginning of unbending process of the already bended 

material, near die radius. These high friction coefficients restrain the sheet movement 
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and higher punch forces are required to overcome such restraint. Since material has 

difficulty and / or does not flow into the die, deformation remains limited to the 

critical location (near punch radius) and damage threshold is quickly reached, leading 

to a fast material degradation and consequent failure. Between these two levels, 

intermediate values for critical punch displacement are predicted. The most similar 

critical displacement is obtained for a friction coefficient of 0.18 for which isotropic 

damage model delivers a critical punch displacement of 37.5 mm. 

 

Figure 6.30 Influence of friction coefficient in predicted punch displacement to failure. 

Finally, it should be remarked that the consideration of the partial crack closure 

effect in this component does not lead to significant differences in results, since 

stamping with a blank holder force of 300 kN is mainly dominated by tensile stresses. 

6.4 Warping geometry 

This geometry, also studied in the 3DS research project [Col 2002], is prone to develop 

large wrinkles in the top surface (‘wrinkling’ defect) due to the curvature along the 

longitudinal direction that promote the appearance of compressive forces responsible for 

the wrinkling behaviour. Also, 2D springback defect can be obtained in this part due to 

the bending / unbending over die radius that creates a stress state differential along 

thickness in the vertical wall and thus flange region assumes a non-planar shape. As for 

the U channel, the main purpose of this part was to model the above-mentioned typical 

forming defects. But, some couplings experimental conditions / material have produced 

failed components. 

6.4.1 Experimental failure 

In this geometry, failure was experimentally experienced for a premature punch 

displacement of 15 mm using the aluminium alloy 5182-O, with the application of a 
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blank holder force of 200 kN. However, using a holding force of 152 kN, the component 

was successfully stamped [Kazama 2001], achieving the predefined draw depth of 60 

mm, as can be observed in Figure 6.31a. It is interesting to observe that the wrinkle in 

the top almost vanish when a blank holder force of 152 kN is used. 

 

Figure 6.31 Experimental part with 152 kN holding force (left) and failed part with a holding force of 200 

kN (right), AA5182-O. 

6.4.2 Numerical modelling 

Blank was modelled with a structured mesh using a double layer of eight-noded solid 

elements, Figure 6.32. Due to symmetry over two axes, only one quarter of the 

geometry was considered and appropriate symmetry boundary conditions were applied 

in the relevant edges. A total number of 5000 reduced integration linear brick elements 

were used in the discretization of the blank amounting to a total of 7803 nodes. 

Concerning tools, rigid elements were considered to model the active tool surfaces and 

interaction between sheet and tools has been performed with friction. A constant 

friction coefficient of 0.1 was used for the 90 kN holding force and a coefficient of 0.18 

was considered for the 200 kN blank holder force. The blank holder force evolution was 

considered to be given by Equation (6.38). Parameters adopted in the numerical 

analysis are listed in Table 6.8. Rolling direction is assumed to be along the channel 

direction (1-axis in Figure 6.32). 

6.4.3 Results and discussion 

As for the U shape geometry, an initial blank holder force of 90 kN was also considered 

to validate applied numerical conditions. Using this holding force, a large wrinkle 

develops in the top of the part due to the compressive stress state in the center of the 

curved section, Figure 6.33. A comparison between experimental and numerical profiles 

for a longitudinal section is presented in Figure 6.34. A similar shape for the wrinkle is 

obtained by the numerical simulation which confirms the adequacy of applied 

numerical conditions. 
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Table 6.8 Warping geometry numerical conditions. 

Blank 

Element type Reduced integration solid (8-noded) 

Element size [mm] 3x3x0.5 

Number of layers 2 

Number of elements 5000 

Tools 

Element type Rigid elements 

Elements in radii 12 

Friction coefficient 0.1 / 0.18 

Process parameters 

Punch travel [mm] 60 

Punch speed [m/s] 5 

Initial blank holder force [kN] 90 / 200 

 

Figure 6.32 Adopted numerical mesh for warping geometry. 

 

Figure 6.33 Warping geometry experimental and numerical shapes (initial blank holder force 90 kN). 
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Figure 6.34 Warping geometry experimental and numerical longitudinal profiles (initial blank holder force 

90 kN). 

 

Figure 6.35 Warping geometry damage contour (initial blank holder force 90 kN). 

 

Figure 6.36 Warping geometry equivalent plastic strain contour (initial blank holder force 90 kN). 

Despite the experimental successful stampings, a residual damage evolution is also 

calculated for this lower holding force (90kN). It is limited to punch radius region, near 

the fillet radius between the top and the curved section. In this area, equivalent plastic 

strain attains a value greater than damage threshold, Figure 6.36, and, therefore, 
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damage starts to evolve. But, due to its small value, the calculated damage is not 

sufficient to have an impact in the mechanical properties degradation. 

Using the initial blank holder force for which experimentally failure is experienced, 

i.e., 200 kN, damage model predicts rupture in the same area where the residual 

damage evolution is observed for the lower holding force condition, at a punch 

displacement of 17.67 mm. At this point, it is important to understand the strain path 

followed by the critical element where macro-crack initiation is predicted. During the 

holding stage, only the material located near the fillet radius between the flat and 

curved surfaces of the die suffers plastic straining. After this stage, punch starts to 

move towards the blank, already with a curved shape given by the blank holder and die 

curved surfaces, and the first contact between the punch and blank is establish in the 

critical area, where failure is predicted. The outer surface of this region is submitted to 

biaxial stretching along the two principal in-plane axes: a stretching due to the bending 

over fillet radius and another stretching due to bending over punch radius. Due to an 

uneven stretching, the material point of this region initially follows a strain path in the 

stretching zone, different from the equibiaxial stretching. After this initial bending, 

punch moves forward and the unbending effect of the bended material in the die radius 

starts to occur. Since the high blank holder force restrains sheet movement in the 

flange area, a high stress is reached in the initial contact zone along the perpendicular 

direction to the channel. In the longitudinal direction, a smaller stress is attained since 

this stress is the result of the effect of perpendicular stretching force due to punch 

geometry. This change on the stress state also changes the strain path initially followed 

by the critical element. During this second phase, the material point changes from 

biaxial stretching to a strain path as shown in Figure 6.37, where the minor in-plane 

plastic strain component, although remaining positive, is continuously decreasing. This 

reflects the high tensile force in the perpendicular direction to the channel in order to 

force sheet sliding. 

 

Figure 6.37 Strain path evolution of critical element. 
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This strain path change undergone by the critical material has almost no effect on 

damage evolution since it occurs at the same time as damage threshold value is 

reached. Following the second strain path, plastic strain increases and localizes in the 

critical zone, with damage also evolving under this deformation path. Due to 

localization of plastic deformation, critical damage value is rapidly attained and failure 

is predicted. 

Although overcoming the limit of validity of CDM approaches, in this case, the 

macro-crack propagation is successfully determined by the implemented damage model. 

As material fails in the punch radius, near the fillet radius between the top and the 

curved section, elements in this area are eroded from the numerical mesh and failure is 

gradually predicted for the elements in the punch radius area, propagating the macro-

crack towards blank edge, Figure 6.38.  

 

Figure 6.38 Warping geometry numerical and experimental crack evolution. 

This numerical behaviour is in accordance with the experimental result. 

Experimentally, failure also starts in the same critical area as in the numerical 

simulations and the crack evolves to blank edge along punch radius. After achieving 

the edge, the crack propagates in the opposite direction, towards the center of the part, 

as the penny-shaped crack visible in Figure 6.38a shows. 

6.5 Axisymmetric cup 

This geometry corresponds to an experimental test used to study the anisotropic 

behaviour of laminated sheets. The tool presented in Figure 6.39 is composed by three 

main parts, namely a die (diameter 62.5 mm and radius 10 mm), a flat blank holder 

and a cylindrical punch (diameter 60 mm and radius 5 mm). The blank is circular and 

has a central hole of 14 mm diameter, used to clamp the blank in the punch ensuring a 

perfect centering and avoiding any sheet sliding during stamping. Clamping device 

includes a drawbead in the top of the punch, positioned at 22 mm diameter. 

Additionally, in the experiments, a circular ring is used between the blank holder and 
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die surfaces, made of the same material as the blank, to limit the blank holder 

movement in the final phase of the stamping, avoiding the appearance of defects in the 

blank edge due to the concentration of the blank holder force in this area. 

Ø 62.4

Ø 60

Ø 119
R10

R5

Die

Blank
Holder

Punch

 

Figure 6.39 Axisymmetric cup tool geometry (in mm). 

6.5.1 Experimental failure 

Experimental tests [Duarte 2002] have shown that successful stampings are obtained 

with an initial blank size of 114 mm diameter for the aluminium alloy 5182-O. Using a 

larger blank (119 mm diameter), successful drawing was only obtained when a high 

lubrication condition is established, Figure 6.40a. When a poor lubrication is applied to 

blank, failure occurs in the sidewall, near punch radius, as shown in Figure 6.40b.  

  

Figure 6.40 Experimental geometry: fully drawn and failure. 

6.5.2 Numerical modelling 

Due to orthotropic symmetry, only a quarter of the blank domain was modelled by 

using a double layer of eight-noded elements, in a total of 1500 elements. Tool surfaces 

were considered completely rigid and were modelled by triangular rigid elements. A 
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constant blank holder force of 40 kN was set and a constant fiction coefficient was also 

considered to model tribological conditions established between blank and tool active 

parts. The low lubrication and high lubrication conditions were modelled by applying a 

low (0.05) and a high friction coefficient (0.2), respectively. Concerning material 

modelling, hardening and anisotropy parameters are presented in Table 6.1 and 

isotropic damage model parameters are presented in Table 6.3. Main applied numerical 

conditions are presented in Table 6.9. Rolling direction is assumed to be along 1-axis, 

Figure 6.41. 

Table 6.9 Axisymmetric cup numerical conditions. 

Blank 

Element type Reduced integration solid (8-noded) 

Element size [mm] 3.0x2.0x0.5 (max) 

Number of layers 2 

Number of elements 1500 

Tools 

Element type Rigid elements 

Elements in radii 12 

Friction coefficient 0.05 / 0.2 

Process parameters 

Punch travel [mm] 60 

Punch speed [m/s] 5 

Blank holder force [kN] 40 

 

Figure 6.41 Adopted mesh for axisymmetric cup. 

6.5.3 Results and discussion 

Deformation in this geometry is mainly restricted to the flange area of the blank. No 

deformation is supposed to occur in the bottom of the cup. But, since a clamping 
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device is used, a negligible deformation can be calculated in the bottom of the cup. 

During forming, material is bended over die radius and the flange material is subjected 

to two loadings: a stretching in the radial direction and a compression in the tangential 

direction. The effect of these large compressive forces is to promote thickness increase 

and resulting wrinkle development in the flange area. This wrinkling behaviour is 

prevented if a sufficient blank holder force is used. After bending in die radius, material 

is straightened during sidewall sliding. This straightening action requires a high punch 

force to unbend the already hardened material due to the bending over die radius. If 

material does not flow from the flange into die cavity due to high blank holder force 

and / or reduced sliding, a higher punch force is achieved and rupture occurs. In this 

case, the sidewall zone, near punch radius, is going to be the most stressed region since 

contact with blank is preferentially made in this area. As a result, an excessive thinning 

occurs in this zone and failure takes place.  

Numerical simulations of the high lubrication condition were carried out using the 

partially coupled isotropic damage model. Three different crack closure parameters 

were used in order to study its influence on failure predictions: 0
C

h =  corresponding 

to a full closure effect, 0.2
C

h =  corresponding to a partial closure effect using the 

typical value observed in experiments [Lemaitre 1996] and 1
C

h =  corresponding to the 

case where no closure effect is considered. Additionally, the same numerical model was 

also simulated with the fully coupled algorithm in order to compare its results with the 

ones obtained by the partially coupled algorithm, with 1
C

h = . 

In experiments, the cup was completely drawn for the high lubrication condition, 

numerically modelled by applying a low friction coefficient. In this case, a drawing ratio 

of almost 2 was reached. But, although in experiments no failure has occurred in this 

condition, failure was numerically detected when using the fully coupled algorithm and 

the partially coupled algorithm with no closure effect consideration. In both these cases, 

material located in blank edge, in the neighbourhood of rolling direction, failed during 

bending over die radius, for a punch displacement of about 37mm. A comparison 

between the equivalent plastic strains obtained by the four approaches at a punch 

displacement of 37 mm is presented in Figure 6.42. 

As can be noticed, no difference is found in the calculated plastic strain field when 

comparing different approaches. In all cases, plastic flow does not follow an 

axisymmetric distribution due to the privileged directions imposed by the orthotropic 

plasticity. Major plastic strain value is attained in the area located near the cup ear. 

This material in this area is located far from the center of the cup and is subjected to a 

larger tangential compressive stress during sliding between die and blank holder 

surfaces and, therefore, an increase of thickness is observed, Figure 6.43a. 
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Figure 6.42 Axisymmetric cup equivalent plastic strain contour (high lubrication condition). 

 

Figure 6.43 Thickness and equivalent plastic strain vs. initial distance from cup center for rolling direction 

section (high lubrication condition). 

The upper limit of this thickness increase is restricted by the gap between punch and 

die. As can be seen in Figure 6.43a, a plateau at 1.25 mm is observed in the thickness 

value for the elements originally located near the outer diameter of the blank. This 

indicates that ironing of cup borders occurs during deep drawing. 

Although a similar behaviour is observed for equivalent plastic strain distribution, 

a distinctive trend is seen for the damage value distribution. The corresponding 

comparison between the four approaches is presented in Figure 6.44. 
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Figure 6.44 Axisymmetric cup damage contours (high lubrication condition). 

For the fully coupled and partially coupled (no tension / compression distinction, 

1
C

h = ) algorithms, damage distribution follows the equivalent plastic strain 

distribution trend. Maximum value of damage variable is also attained in the cup 

borders and a similar non axisymmetric distribution is calculated. In both cases, 

damage distribution is mainly dominated by the calculated plastic strain ratio 

distribution. When unilateral effects are considered, either a full ( 0
C

h = ) or a partial 

closure effect ( 0.2
C

h = ), a different distribution of damage values are obtained. 

Higher values are attained in the middle of the vertical wall of the cup, as shown in 

Figure 6.45. Despite the same maximum value location, these two algorithms deliver 

different calculated damage values. Necessarily, this difference is related to the fact 

that, in the case of the algorithm with full crack closure, no damage growth is 

calculated during sliding and beginning of bending over die radius due to the negative 

triaxiality state. However, with a partial closure effect ( 0.2
C

h = ), damage grows even 

during this phase of the deep drawing process, although in a slower mode, in 

accordance with the adopted crack closure parameter. This difference in damage 

growth during this phase is visible in Figure 6.45. At a punch displacement of 37 mm, 

material located at blank edge is undergoing bending over die radius and a null damage 

value is obtained when a full closure effect is considered. 
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Figure 6.45 Damage vs. initial distance from cup center for rolling direction section (high lubrication 

condition). 

It is also important to note that damage has higher values on the outer surface of 

the cylindrical cup for models where 0 1
C

h≤ < , Figure 6.44. During bending over die 

radius, material in the outer surface is subjected to a compressive stress state that is 

transferred to positive stress values during unbending in the vertical wall. Once it 

reaches a positive triaxiality ratio, damage grows without a remarkable influence of the 

crack closure parameter. In turn, material that will form the inner surface of the cup 

also suffers a stress state characterized by a negative triaxiality ratio during sliding 

over blank holder surface that only becomes positive during bending over die radius. 

During unbending in vertical wall, material presents again a negative triaxiality ratio. 

Therefore, damage state in the inner surface will be highly dependent on adopted 

micro-crack closure parameter 
C

h . If a low or zero value is taken for this parameter, a 

reduced or no damage growth is calculated during unbending and major contribution to 

damage state will be given by damage growth calculated during bending over die 

radius. 

The low lubrication condition has also been performed by using the partial closure 

effect with the three distinct crack closure parameters. A higher friction coefficient was 

used to model the more severe contact condition. As in experiments, failure is expected 

to occur near punch shoulder. Equivalent plastic strain contours prior to failure for the 

four models are presented in Figure 6.46. 
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Figure 6.46 Axisymmetric cup equivalent plastic strain contours (low lubrication condition). 

As for the high lubrication condition, no remarkable difference is found in the 

calculated equivalent plastic strain value when comparing different approaches. A non 

axisymmetric distribution is again obtained and maximum value calculated for the 

rolling direction (1-direction). For this direction, an excessive thickening is calculated 

for a distance of 28.5 mm from cup center, Figure 6.47a, and, at the same location, a 

high value of plastic strain is reached, Figure 6.47b, overcoming damage threshold 

value. 

 

Figure 6.47 Thickness and equivalent plastic strain vs. initial distance from cup center for rolling direction 

section (low lubrication condition). 

But, unlike the high lubrication condition, damage distribution in low lubrication 

is not affected by the crack closure parameter. Using a higher friction coefficient, all 

damage algorithms predict failure in the same location as in the experimental setting 

and similar critical punch displacements up to failure are calculated. Failure is detected 

for all approaches in the vertical wall, near the bottom of the cup, at a punch 
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displacement of 14 mm, with a deviation of ± 0.02 mm between algorithms. A 

comparison between damage distributions obtained for the four approaches is presented 

in Figure 6.48. 

 

Figure 6.48 Axisymmetric cup damage contours (low lubrication condition). 

It is also noticeable in Figure 6.48 that damage presents a non axisymmetric 

distribution, influenced by the asymmetric distribution of the equivalent plastic strain 

variable. All approaches predict that damage starts to localize in rolling direction (1-

direction) and macro-crack evolves towards transverse direction, following the same 

radial position. The explanation for the nonexistent effect of the crack closure 

parameter is related to the fact that only positive principal stress are found in failure 

area, and, only this area reaches a equivalent plastic strain value greater than damage 

threshold.  

 

Figure 6.49 Damage vs. initial distance from cup center for rolling direction section (low lubrication 

condition). 
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Figure 6.50 Axisymmetric cup major principal stress component (low lubrication condition). 

 

Figure 6.51 Axisymmetric cup middle principal stress component (low lubrication condition). 

 

Figure 6.52 Axisymmetric cup minor principal stress component (low lubrication condition). 
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Therefore, for this severe contact condition between die, holder and blank, crack 

closure parameter 
C

h  has no influence in the stress distribution, Figure 6.50, Figure 

6.51 and Figure 6.52, neither in damage distribution and evolution, as shown in Figure 

6.48 and Figure 6.49. 

To complete the study of this benchmark, a numerical study concerning the 

variation of the friction coefficient was also performed. The evolution of predicted 

critical punch displacement with considered friction coefficient is shown in Figure 6.53. 

 

Figure 6.53 Influence of friction coefficient in predicted punch displacement to failure. 

For low friction values, up to 0.06, no failure indication is detected using the above 

damage models. The only exception is in the case of fully coupled algorithm and 

partially coupled algorithm with no tension / compression distinction that detect 

failure in cup borders, for a punch displacement near target punch stroke. For values of 

friction coefficient above 0.07, failure is early detected in vertical wall, near punch 

radius. The value of the critical punch displacement gradually decreases as one 

considers higher values for the friction coefficient. However, the change in critical 

punch displacement values is very small, being the difference between the predicted 

value between 0.08 and the severe condition of 0.3 of only 5.8 mm. 

As conclusion, no significant difference was found between the two algorithms, 

fully coupled and partially coupled with 1
C

h = , in terms of failure prediction. So, the 

usage of explicit time integration codes allows that the partially coupled solution can 

be adopted without a considerable loss in precision in the evolution of progressive 

plastic softening during metal forming operations. Moreover, the adoption of the 

implemented partially coupled solution enables the usage of unilateral conditions, 

which, in this geometry, represents an important effect to take into account since stress 

condition in flange area is mainly dominated by a compressive stress state.  
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6.6 Cross shape geometry 

This example corresponds to a complex sheet metal part used in a research project 

which aimed the development of a tooling decision support system able to estimate an 

optimal selection of tool material and its optimal fabrication route according to a 

specific product, required lead time and expected production [Pinto 2008]. One of the 

tasks in the specific objectives of the project was the investigation of selected 

alternative tooling materials concerning their manufacturability and its service 

behaviour. For this task, a tool geometry representing the most severe conditions for 

production of parts, a cross shape geometry, as presented in Figure 6.54, was selected 

and a deep drawing quality steel, a mild steel DC04, 1 mm thickness, was used for the 

blank material, intending to represent the most usual production of sheet metal parts. 

Under the specified experimental conditions, the part was successfully drawn up to 56 

mm punch stroke with the selected mild steel. However, using the AA 5182-O material, 

a premature failure was experienced. 

  

Figure 6.54 Cross shape geometry tool and part dimensions (in mm). 

6.6.1 Experimental failure 

In order to avoid the effect of existent draw beads positioned in the four quadrants of 

the cross (Figure 6.54), a corner-cut was made to the initial 270 mm×270 mm square 

blank for the AA5182-O material. Using different corner-cut lengths, distinctive failure 

locations were experimentally observed. For a corner-cut length of 85 mm, experimental 

failure occurs in punch shoulder, near the edges of the cross, Figure 6.55a. For higher 

corner-cuts, failure is detected in the die radius, near the cross center, as presented in 

Figure 6.55b. 
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Figure 6.55 Experimental failures: corner-cut of 85 mm and 105 mm. 

6.6.2 Numerical modelling 

Only a quarter of the domain was considered in the numerical simulation. The total 

number of elements depends on the considered corner-cut length, Figure 6.56.  

 

Figure 6.56 Adopted numerical mesh for cross shape geometry. 

For the lowest corner-cut length, 85mm, blank mesh is composed by 4710 reduced 

integration solid elements, distributed in a double layer. For the higher corner-cut 

length (115mm), the total number of elements is reduced to 3762. Tools were 

considered rigid and a constant blank holder force of 100 kN was applied. An additional 

tool active part, a counter-pad, was also used in the simulation, which applies a 

constant force of 60 kN against punch top surface, preventing blank sliding over punch. 

Due to some uncertainty concerning tooling status, several friction coefficients were 

considered, ranging from 0.1 to 0.3, to model the tribological conditions established 

between blank and tool surfaces. A prescribed velocity of 5 m/s was set to punch and a 
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target punch displacement of 56 mm was defined, corresponding to the part height. 

The applied numerical conditions are summarized in Table 6.10 and material hardening 

and damage parameters are presented in Table 6.1, Table 6.3 and Table 6.5, 

respectively. The adopted mesh is presented in Figure 6.56. Rolling direction was 

assumed to be along 1-axis. 

Table 6.10 Cross shape geometry numerical conditions. 

Blank 

Element type Reduced integration solid (8- and 6-noded) 

Element size [mm] 2.5x2.5x0.5 

Number of layers 2 

Number of elements 4710 / 4426 / 4110 / 3762 

Tools 

Element type Rigid elements 

Elements in radii 12 

Friction coefficient 0.1~0.3 

Process parameters 

Punch travel [mm] 56 

Punch speed [m/s] 5 

Blank holder force [kN] 100 

6.6.3 Results and discussion 

In order to study the effect of friction and corner-cut length, numerical models 

regarding the variation of friction coefficient and corner-cut length were performed by 

using both isotropic and anisotropic damage models. In Figure 6.57, it is presented the 

calculated critical punch displacement for a corner-cut of 85 and 105 mm using the 

isotropic and anisotropic damage models for several friction coefficients, ranging from 

0.1 up to 0.3. Concerning damage model influence, no major differences were found in 

the critical punch displacement predictions given by the isotropic and anisotropic 

damage models for both corner-cut lengths, Figure 6.57. 

Concerning friction coefficient influence, a distinct behaviour is observed in the 

calculated punch displacement to failure for the two considered corner-cuts, 85 and 105 

mm. For the lower corner-cut (85 mm), no remarkable difference is found between a 0.1 

and a 0.15 friction coefficient value. For higher values, there is a nearly linear decrease 

of the predicted critical displacement, from 21.0 mm to 15.2 mm, as a higher friction 

coefficient value is considered. At this punch displacement and using this corner-cut 

length, there is still some material located on the edge of the cross between the blank 

holder and die surfaces, and the high blank holder force blocks the material to slide 

into die cavity. This sliding resistance given by the blank holder force is potentiated by 
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the use of a larger friction coefficient, and, thus, failure initiation is detected for lower 

values of punch displacement when higher friction coefficients are used. But, regardless 

of the considered friction coefficient value, failure always occurs in punch radius region, 

in the cross edge, for this corner-cut length, where either isotropic and anisotropic 

damage values localize, as seen in Figure 6.58, for the isotropic damage model case. 

 

Figure 6.57 Influence of friction coefficient in predicted critical punch displacement (corner-cuts 85 mm 

and 105 mm). 

 
Figure 6.58 Cross shape geometry damage contours prior to failure for different friction coefficient values 

(corner-cut 85mm, isotropic damage model). 
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In the case of a corner-cut of 105 mm, a higher influence of the friction coefficient 

is noticed. The critical punch displacement suffers almost a decrease of 50% when 

values of 0.1 and 0.3 for the friction coefficient are considered, Figure 6.57. In the most 

severe contact situation, the displacement reached by the punch before failure is 21.0 

mm while for the 0.1 friction coefficient value, punch reaches a stroke of 40.6 mm. So, a 

clear influence of the contact condition in predicted critical punch displacement is 

experienced for this corner-cut length. However, the friction value influence is not only 

restricted to the critical punch displacement prediction. The contact condition also 

influences failure initiation site. For the lower friction value, failure is detected in the 

die radius, near the blank edge, in the cross segment aligned with rolling direction. As a 

higher friction coefficient is used, the area where the macro-crack is firstly detected 

gradually shifts from the cross edge towards the cross center, and from the die radius 

region to the vertical wall area, as can be seen in Figure 6.59. 

 
Figure 6.59 Cross shape geometry damage contours prior to failure for different friction coefficient values 

(corner-cut 105 mm, isotropic damage model). 
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Figure 6.60 Cross shape geometry stress triaxiality ratio contours prior to failure for different friction 

coefficient values (corner-cut 105 mm, isotropic damage model). 

 

Figure 6.61 Cross shape geometry equivalent plastic strain contours prior to failure for different friction 

coefficient values (corner-cut 105 mm, isotropic damage model). 
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This change in failure location is intimately related with stress triaxiality and 

equivalent plastic strain distributions attained in the part, as can be seen in Figure 6.60 

and Figure 6.61.  

 

Figure 6.62 Draw-in evolution for different friction coefficients (corner-cut 105 mm, isotropic damage 

model). 

To understand this change in failure location, it is important to observe the 

evolution of the displacement of a node located at the edge of the plate, in the center of 

the quadrant of the cross, for several friction coefficients, presented in Figure 6.62. As 

the considered friction coefficient increases, there is a progressive decrease in the 

attained node displacement for the same punch stroke. This reduction in the draw-in 

value promotes the occurrence of higher deformations in the blank and, hence, there is 

a tendency for the development of increasingly important tension stress states, as 

shown by the inversion in the stress triaxiality sign in the center of the part, Figure 

6.60. For this corner-cut length (105 mm), it is also important to note that the material 

located near the edge of the cross undergoes bending over die radius in a very early 

stage of punch displacement, and early losses its status of critical area, being the 

critical zone for the strain localization transferred to the die radius region. For the 

lowest friction coefficient, the critical area will be located near the blank edge, in the 

cross segment aligned with rolling direction, Figure 6.59. But, increasing the force 

needed to slide the blank along the surface of the blank holder, the material located on 

the vertical wall will undergo important tension efforts due the restricted material that 

flows into die cavity from the blank edge. These important tension efforts experienced 

in the vertical wall tend to lead to strain localization in this area, instead of die radius 

region. The localization of deformation will also force damage to localize in the vertical 

wall, and, due to its dependence on triaxiality ratio, will develop more rapidly in the 

center of the cross where stress triaxiality ratio is higher (Figure 6.60), being this 
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location prone to failure. Finally, it is also interesting to see the influence of the corner-

cut length in the predicted punch displacement to rupture, expressed in Figure 6.63.  

 

Figure 6.63 Influence of corner-cut length in predicted critical punch displacement (friction coefficient 

0.10). 

 

Figure 6.64 Cross shape geometry damage contours prior to failure for different corner-cut lengths (friction 

coefficient 0.1, isotropic damage model). 

As for the friction coefficient influence, a similar performance is observed by the 

isotropic and anisotropic damage models concerning critical displacement predictions 

obtained for several corner-cut lengths. Globally, higher punch displacements to failure 

are attained for higher corner-cut lengths. However, the influence of this variable is 

more evident for cut length values below 105 mm. For the larger corner-cut length (115 
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mm), the predicted punch displacement to failure is very close to the one obtained for a 

cut of 105 mm. Bellow this value, namely for 95 mm and 85 mm, rupture is detected 

for values of punch displacement that decrease as a smaller corner-cut length is 

considered. It is also possible to notice that there is a dissimilar influence of the corner-

cut length between the ranges 85 to 95 mm and 105 to 115. This different outcome may 

be explained by the different predicted location for failure initiation. While for the two 

upper corner-cut lengths, 105 to 115mm, failure starts at die radius region, along blank 

edge, in the case of the lower corner-cut lengths, failure is initially predicted at punch 

radius, in the cross edge, as seen by the damage distribution prior to failure for several 

corner-cut lengths presented in Figure 6.64. 

6.7 Concluding remarks 

Numerical tests were carried out and compared with corresponding experimental 

testings in order to evaluate the performance and accuracy of the proposed damage 

models in the failure prediction in sheet metal forming processes. 

As a first remark, it is important to emphasize that if purely elasto-plastic models 

without damage consideration are used and the critical value of accumulated plastic 

strain is taken as the fracture criterion, crack initiation can be predicted in erroneous 

places. The axisymmetric notched bar tensile example [Pires 2003] is representative of 

this importance. Although maximum value of accumulated plastic strain is attained in 

the root of the notch, fracture initiation is predicted in the center of the specimen, in 

accordance with experiments, where stress triaxiality ratio has his highest value. This 

occurrence demonstrates the experimentally observed marked decrease in ductility as 

stress triaxiality increases for ductile materials. The use of damage models, introducing 

such effect in the damage growth and in the development of strain localization and 

consequent failure, promoting a constant stress and triaxiality redistribution, is, 

therefore, crucial in order to provide reliable and useful insights on failure analysis. 

But, although stress triaxiality value is particularly important in damage 

development, its sign can also have a tremendous effect in calculated failure 

predictions. In some geometries, especially those where high compressive stress states 

are achieved, the consideration of unilateral conditions in damage development is 

fundamental to achieve failure predictions in accordance with experiments. The 

presented simulation of the axisymmetric cup is representative of this importance. For 

a high lubrication condition, failure was detected in the cup borders under a 

compressive stress state when using a damage model without a distinction between 

tensile / compressive stress states, in disagreement with experiments that present a 

fully drawn cup for such lubrication condition. The inclusion of the distinctive damage 

evolution behaviour by using the partial coupling strategy was able to capture the 
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experimentally observed behaviour and, additionally, it was shown that decoupling 

stress and damage update algorithms do not influences significantly damage calculation 

when comparing with a fully coupled analysis.  

Another important issue revealed by numerical results is related with the 

modelling of tribological conditions established between blank and tool surfaces. 

Numerical results have shown that a small change in the friction coefficient can have a 

huge effect in failure predictions, not only in the predicted punch displacement up to 

failure but also in the crack initiation site. Therefore, the friction-contact situation is of 

a paramount importance in failure analysis since predictions are highly affected by the 

modelling of this phenomenon. Also, one can remark that the uncertainty of the 

tribological conditions together with a simplistic assumption of a constant friction 

coefficient, disregarding its dependence on several parameters (relative sliding speed, 

local surface pressure, temperature, etc. [Roll 2008]), can lead to significant changes in 

contact and frictional forces, imposing important changes in the stress state and 

affecting decisively failure predictions delivered by the implemented damage models.  

A remark can also be made to failure calculations provided by the isotropic and 

anisotropic damage models. No significant differences were found in the predicted 

punch displacements to failure given by the two models for the considered material and 

examples. Due to the fact that a weak anisotropic flow behaviour is observed in the 

material and no complex cases of non-proportional loadings were achieved in the 

simulated parts, it is decisive to conclude that, under these conditions, the 

consideration of a scalar representation to characterize damage is sufficient to provide a 

satisfactory prediction of failure occurrence in sheet metal forming. Despite this 

conclusion, the importance of a high-order damage representation will be shown in the 

next chapter that deals with necking occurrence prediction. 

Finally, some comments concerning the pathological effect of discretization 

dependence in local continuum theories, as the ones considered in this work. Even if 

not shown and highlighted in the presented numerical results, the discretization 

dependence is also experienced in these benchmarks. The most representative example 

is shown in Figure 6.65 concerning mesh refinement in the cross shape geometry. 

 

Figure 6.65 Mesh dependence in the cross shape geometry. 
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As seen in Figure 6.65, the adoption of a larger mesh size leads to a strain 

localization in the cross center while a more refined mesh predicts damage localization 

in the cross borders, using the same numerical conditions. The fact that the material 

behaviour is assumed to be independent of the influence of surroundings points can 

introduce such numerical stability problems. The adoption of a non-local theory will be 

studied in order to attenuate the discretization dependence by averaging the internal 

variable (damage) associated with the dissipative process. 

Nevertheless, despite the marked influence of tribological conditions, prediction of 

rupture occurrence using the implemented damage models are qualitatively in 

agreement with experimental results and it may be concluded that the use of these 

constitutive models can provide reliable failure predictions in metal forming processes, 

representing, therefore, an important decision tool in the development of new stamped 

products. 
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7. APPLICATION OF DAMAGE TO 

NECKING OCCURENCE 

This chapter proposes a new criterion for forming limits 

prediction based on an integrated approach between the 

anisotropic damage model described in Chapter 5 and the 

necking criterion proposed by Hora et al. [1996], combining the 

determination of the onset of the two last phases of plastic 

deformation: necking and failure. A review on forming limit 

diagrams modelling is provided and most important criterions 

are presented. The importance of the proposed coupled 

approach is highlighted since, in addition to providing an 

improved prediction of necking occurrence, it also allows to 

determine which phenomenon is the most restrictive event in 

sheet metal forming, particularly important in materials where 

fracture can occur before required conditions for necking are 

achieved.  

7.1 Introduction 

Formability is, by definition, the capability of the material to undergo plastic 

deformation to a given shape without defects. Failure, the most severe defect, is usually 

preceded by strain localization (necking) that causes a reduction of the part’s strength, 

worsens its appearance and is one of the major reasons for rejecting it. Thus, the 

occurrence of unstable, non-uniform deformation, which mainly takes the form of 

localized necking, defines the upper limit of the amount of useful plastic deformation 

that can be imposed on a part during a forming operation. These upper limits can be 

represented in the principal in-plane strains space for different strain paths, obtaining 

the so-called forming limit diagram. This forming limit diagram (FLD) concept was 

firstly introduced by Keeler and Backofen [1963] and Goodwin [1968], and stands as the 
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first safety criterion in deep drawing operations and still a conventional approach to 

assess formability. Although this concept is very simple and well understood for 

proportional and non-proportional complex loading paths, its experimental 

determination is rather complex, demanding a wide range of sheet forming tests. 

Moreover, forming limits of sheet metal are influenced by several physical factors 

(strain path history, hardening behaviour, anisotropy, etc.), thus, making its 

experimental determination tedious, expensive and, in some circumstances, impossible 

[Barata da Rocha 2009]. Therefore, an extensive effort has been devoted to the 

development of mathematical models capable of accurately determining the plastic flow 

occurrence in sheet metal forming. A large number of theories have been proposed, 

which can be differentiated in two broad theoretical frameworks: the necking theory in 

homogeneous sheets, based on the original work developed by Hill [1952] and Swift 

[1952], and the theory of sheet non-homogeneity proposed by Marciniak and Kuczynski 

[1967]. Since these theoretical models are based on plasticity analyses of instability, 

thus requiring a profound knowledge of continuum mechanics and mathematics, 

another brand of models, semi-empirical ones, based on experimental evidence, were 

also developed in recent years [Banabic 2000]. 

Usually, the appearance of necking is a limiting criterion in sheet metal forming. 

However, in some materials, particularly in advanced high strength steels (AHSS), 

fracture can occur before or after necking, depending on material’s ductility. This new 

generation of steels have caught the attention of industry due to its outstanding 

mechanical properties but its widespread use is still hampered by difficulties in 

predicting their forming behaviour through numerical simulations. AHSS steels are 

characterized by a relatively large hardening exponent, which raises the limiting major 

strain for necking, allowing more stretch under positive strain conditions. As a result, 

there is a high probability that increased limiting strains for necking rise above critical 

strains for fracture and, therefore, fracture will occur before necking [Shi 2006]. Those 

critical strains at fracture can also be represented in the principal in-plane strains 

space, originating the so-called fracture forming limit diagram (FFLD). 

Fracture usually occurs at larger strains than does localized necking so the fracture 

curve is usually well above the instability curve and decreases continuously with 

increasing triaxiality. When fracture occurs before necking, this means that the fracture 

forming limit diagram (FFLD) will intersect the theoretical FLD, which is defined for 

localized necking. An example of this case is presented in Figure 7.1, where 

experimental fracture has occurred without a typical localized neck for large positive 

and large negative minor strains [Keeler 1989]. 

This phenomenon is not only observed in these new-generation steels. Also, in 

aluminium alloys, this behaviour is experienced especially in the biaxial tension region. 
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This is illustrated in Figure 7.2 from LeRoy and Embury [1978] experiments, which 

shows that in equibiaxial stretching, fracture occurs before plane-strain necking, and, in 

this case, limit strains are governed by fracture rather than by local necking and a 

truncation must be performed to the forming limit curve as a result of its intersection 

with the fracture forming limit curve. This occurrence makes the entire forming 

predictive capabilities based only on necking analysis models not reliable enough. 

Therefore, a proper description of forming limits should include not only the localized 

necking appearance or the final fracture occurrence alone, but should address the 

determination of the onset of these two last phases of the plastic deformation, in order 

to verify which phenomenon is the most restrictive event in sheet metal forming. 

 

  

Figure 7.1 A high strength steel with a large 

number of inclusions can have a FFLD which will 

intersect the FLD [Keeler 1989]. 

Figure 7.2 Fracture and local necking strains in 

aluminium alloy 5154-O. Under equibiaxial 

stretching, failure occurs by fracture before local 

necking [LeRoy 1978]. 

Concerning fracture initiation modelling, theories that consider material 

inhomogeneities are usually employed, namely, theories that describe the mechanism of 

internal damaging in ductile materials, conveniently coupled with plasticity theory, 

either by using a micromechanics-based formulation [Gurson 1977] or a Continuous 

Damage Mechanics (CDM) approach, popularized by Lemaitre [1985a] through the 

thermodynamics of irreversible processes. Both frameworks have already proven to be 
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efficient for determination of ductile failures in sheet metal forming [Lemaitre 1985b] 

[Murakami 1988] [Doege 1995] [Pires 2003] [Al-Rub 2003] [Saanouni 2006] [Teixeira 

2006], but, for the analysis of onset of necking using these models, some difficulties 

arise since a unique critical damage value for all strain paths evolutions cannot be 

easily defined, as it is made for fracture. An alternative approach for strain localization 

condition modelling, using continuous damage mechanics, is to introduce into the 

analysis an instability criterion, responsible for the necking prediction. The coupled 

approach between plastic softening evolution and instability criteria can lead to more 

reliable and more accurate predictions of localized necking due to the strong 

dependency of the onset of necking with the strain path evolution that can encompass 

numerous complex interacting physical phenomena including mechanical properties 

degradation. 

In this chapter, a integrated approach between the presented anisotropic damage 

model (Chapter 5) and the necking criterion proposed by Hora et al. [1996] is 

formulated. First, a brief review of the forming limit diagrams modelling activities is 

provided (a more complete review can be found in [Aretz 2004] and [Stoughton 2004]) 

and the most relevant criteria are presented. Subsequently, developments on forming 

limit calculation with damage consideration are also reviewed and, finally, the proposed 

approach is presented together with the corresponding evaluation of its performance in 

the calculation of forming limits for an aluminium alloy.  

7.2 Forming limit diagrams modelling review 

The forming limit diagram concept, introduced by Keeler and Backofen [1963] and later 

by Goodwin [1968], is a constructive concept for characterizing the sheet metal 

formability. It consists of a map, plotted in the principal in-plane strains space, which 

separates safe combinations of major and minor in-plane principal strains states, from 

more severe strains states, that a material could sustain without the risk of the 

occurrence of visible defects like necking and fracture. Although this concept has more 

than 40 years-old, still represents nowadays one of the most important safety criterions 

in sheet metal forming operations. 

Since the experimental determination of FLDs requires a wide range of sheet 

forming tests, a large variety of expensive equipment and tremendous experimental 

effort, many attempts have been made to predict the FLDs, taking into account the 

theory of plasticity, material parameters and instability conditions. A large number of 

different theoretical approaches have been proposed to explain the localized necking in 

biaxial tensile fields and can be divided into two main frameworks [Banabic 2000]: the 

linear necking theory, based on the plastic instability of homogeneous sheet metals 

which describes the initiation of localized band of straining in an otherwise uniform 
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sheet, and the theory of non-homogeneous sheet metals, based on the plastic instability 

of heterogeneous sheet metals, where it is assumed an initial weakness, imperfection or 

inhomogeneity in the sheet, which gradually develops into a neck as straining proceeds.  

7.2.1 Hill’s localized necking criterion 

The earliest approaches to predict instabilities were based on the study of bifurcations. 

The first model is due to Hill [1952], who has described localized necking in thin sheets 

under plane stress states. Consider a specimen, with a thickness t , subjected to a 

proportional loading [Marciniak 2002], as seen in Figure 7.3. 

 

Figure 7.3 Local neck formed in a continuous sheet oriented at an angle θ  to the maximum principal 

stress. 

Let us first define the stress α  and strain β  ratios, given as relations between the 

major and minor principal in-plane stresses and strains, respectively, as: 
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As the process is proportional, the stress ratio α  and the strain ratio β  will remain 

constant. The stress state can be given by: 
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The condition postulated by Hill [1952] for localized necking is that necking will start 

when the major tension, T
1
, reaches a maximum. Therefore: 

 =dT
1

0 . (7.3) 

The major tension, T
1
, is the maximum force per length along a section in a sheet and 

is equal to the product between the major stress, σ
1
, and the thickness, t : 
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Differentiating Equation (7.4), we obtain: 
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or, rearranging the equation dividing by T
1
, Equation (7.4), one may write: 
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Using the definition of strain for the thickness direction, we know that: 
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and, we can substitute in Equation (7.6), obtaining: 
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Using Equation (7.1) and assuming that material is incompressible, i.e., the volume 

remains constant during straining, the condition: 

 + + =d d dε ε ε
1 2 3

0  (7.9) 

is satisfied, and the strain increment in the thickness direction dε
3
 is given by: 
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Using Equation (7.3) and Equation (7.10), Equation (7.8) can be rewritten as: 
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and finally as: 
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This last equation corresponds to the criterion proposed by Hill [1952]. For a material 

that obeys the generalized stress-strain law given by: 

 ( )=
n

pKσ ε , (7.13) 

it is possible to demonstrate that the equivalent stress, σ , and the major principal 

stress ,σ
1
, are equal, and differentiating Equation (7.13), we obtain: 
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Therefore, the major principal in-plane strain ε*
1
 obtained for maximum tension is 

given by: 

 =
+
n

ε
β

*
1 1

 (7.15) 

and the corresponding minor principal in-plane strain ε*
2
 as: 
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+
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. (7.16) 

This maximum tension criterion represents a line in the principal strains diagram 

(Figure 7.5) and provides a reasonable theoretical model for local necking strains when 

the strain ratio is negative ( <β 0 ). This criterion states that the local neck can only 

develop along a line of zero extension. This statement can be explained by the fact that 

once the uniform region outside the neck (zone A in Figure 7.3) ceases to strain, 

implying that necking process has become catastrophic, strain increment parallel to the 

neck will be zero (in the t  direction in Figure 7.3). Due to the geometric constraint, 

the strain increment in the t  direction in the necking region (zone B in Figure 7.3) will 

also be zero. This “zero extension” direction of the neck can be easily found by 

imposing that the strain in t  direction (Figure 7.3) is equal to zero.  

7.2.2 Swift’s diffuse necking criterion (MFC) 

The Hill's criterion predicts localized plastic deformation in the characteristic directions 

of zero extension, which can only happen for the strain states where one of the surface 

strains is negative. However, localized necking can be experimentally observed in 

biaxial stretched sheets, as both practical experience and later experiments have 

demonstrated [Barata da Rocha 1985]. To describe this experimental behaviour, Swift 

[1952] proposed a criterion for predicting the onset of diffuse necking with the 

assumption that plastic instability occurs at a maximum load for proportional loading, 

applying the Considère uniaxial analysis [Considère 1885] to determine the limit strains 

in a biaxial stress state. He analysed a sheet element loaded along two perpendicular 

directions and applied the Considère criterion [Considère 1885] for each direction. 

Consider a specimen, with a length l , width w  and thickness t , subjected to a 

proportional biaxial stretching loading [Marciniak 2002] as represented in Figure 7.4. 

Also, consider σ
1
 and σ

2
 to be the stresses along the two principal in-plane directions 

and the corresponding traction forces, F
1
 and F

2
. 
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Figure 7.4 Sheet element subjected to a biaxial stretching loading. 

Assuming a proportional loading, one can state that if the resultant force F  reaches a 

maximum then also F
1
 and F

2
 attain a maximum value, simultaneously: 

 
⎧⎪ =⎪= ⇒ ⎨⎪ =⎪⎩

dF
dF

dF
1

2

0
0

0
. (7.17) 

Knowing that traction forces F
1
 and F

2
 are given by: 

 
⎧⎪ =⎪⎨⎪ =⎪⎩

F wt

F lt

σ
σ

1 1

2 2

, (7.18) 

one may write that: 

 
⎧⎪ = + + =⎪⎨⎪ = + + =⎪⎩

dF d wt dwt wdt

dF d lt dlt ldt

σ σ σ
σ σ σ

1 1 1 1

2 2 2 2

0

0
 (7.19) 

or, rearranging, as: 

 

⎧⎪⎪ = + + =⎪⎪⎪⎪⎨⎪⎪ = + + =⎪⎪⎪⎪⎩

dF d dw dt
F w t
dF d dl dt
F l t

σ
σ
σ
σ

1 1

1 1

2 2

2 2

0

0
. (7.20) 

Using the definition of strain for principal directions, we know that: 

 =
dl

d
l

ε
1

; =
dw

d
w

ε
2

; =
dt

d
t

ε
3

 (7.21) 

and, substituting in Equation (7.20), we obtain: 
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1 3

2

. (7.22) 

Assuming that material is incompressible, i.e., the volume remains constant during 

straining, the condition: 

 + + =d d dε ε ε
1 2 3

0  (7.23) 

verifies, and Equation (7.22) becomes: 

 

⎧⎪⎪ =⎪⎪⎪⎪⎨⎪⎪ =⎪⎪⎪⎪⎩

d
d

d
d

σ
ε

σ
σ

ε
σ

1
1

1

2
2

2

. (7.24) 

It is interesting to note that this result has the same formalism of Considère criterion 

[Considère 1885]. After a straightforward manipulation and assuming an isotropic yield 

criterion and a power law hardening rule as: 

 ( )=
n

Kσ ε , (7.25) 

the principal in-plane strains ε*
1
and ε*

2
 for a maximum load are given by: 

 

( )
( )( )

( )
( )( )
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n

β β
ε

β β β

β β β
ε

β β β

2

*
1 2

2

*
2 2

2 1

1 2 2

2 1

1 2 2

. (7.26) 

It is important to remark that, at maximum load, the major in-plane strain ε*
1
 is equal 

to the hardening exponent n  for uniaxial tension, plane strain ( =β 0 ) and equibiaxial 

stretching ( =β 1). Figure 7.5 shows the forming limit curve obtained through the 

Swift criterion, being known as Swift curve or diffuse necking curve. 

In contrast to Hill’s criterion [Hill 1952], Swift's analysis can be applied to the 

whole range or deformation, i.e., from uniaxial tension to equibiaxial stretching, but the 

predicted limit strains are much lower than the experimental data in the drawing zone, 

i.e., when the strain ratio is negative. Using the predictive capabilities of this criterion 

under positive strain ratios, Lee and Kobayashi [1975] and later Korhonen [1978] 

combined the Swift criterion and Hill’s analysis, making a distinctive calculation for 

negative and positive strain ratios. Main conclusions of their work was that a change 
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towards equibiaxial tension increases forming limits and a change towards plane strain 

has the opposite effect, thus showing that instability is strain path dependent. 

n

-n -n/2

2n

nn/2

SWIFT
HILL

 

Figure 7.5 Hill’s and Swift’s forming limit curves. 

7.2.3 Marciniak-Kuczynski analysis (M-K analysis) 

In 1967, Marciniak and Kuczynski (M–K) [1967] proposed the first realistic 

mathematical model for theoretical determination of FLDs, based on the assumption 

that necking develops from local regions of initial heterogeneity. In order to define this 

heterogeneity, they supposed an infinite sheet metal containing a region of local 

imperfection where heterogeneous plastic flow develops and localizes. Rigid plasticity, 

plane stress condition and isotropic work hardening of the material are assumed. A 

detailed description of the theoretical M–K analysis, schematically illustrated in Figure 

7.6, can be found in several publications [Marciniak 1967] [Barata da Rocha 1985] 

[Banabic 2000]. 

 

Figure 7.6 Schematic representation of M-K analysis [Marciniak 1967]. 
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Essentially, the model is based on the growth of an initial defect in the form of a 

narrow band with an angle ψ
0
 with respect to the principal axis, as represented by 

zone B in Figure 7.6 [Barata da Rocha 2009]. This two-zone material is subjected to 

plastic deformation by applying a constant incremental stretching Adε  in the 

homogeneous part (zone A in Figure 7.6). In zone A, the stress tensor in the 

orthotropic referential frame of anisotropy A
xyz

σ[ ]  is calculated as well as the 

corresponding stress matrix A
ntz

σ[ ]  in the groove reference frame ( )n t z, ,  (see Figure 

7.6) using the yield function (Φ = − =A A A
Y

σ σ 0) along with the stress ratio definition 

=α σ σ
2 1

, within the framework of Theory of Plasticity. The flow rule permits the 

determination of the strain increment tensor A
xyz

dε[ ]  in the principal axis of 

anisotropy, which transposed in the strain matrix A
ntz

dε[ ]  in the groove reference 

frame, give the strain increment in the longitudinal direction of the groove A
tt

dε . 

In order to compute the equivalent increment strain Bdε  and the stress value in 

longitudinal direction of the groove B
tt

σ , the equilibrium and compatibility requirements 

are used. The equilibrium condition that indicates the same force perpendicular to the 

necking band in region A and B conforms to: 

 
⎧⎪ =⎪⎪⎨⎪ =⎪⎪⎩

A A B B
nn nn
A A B B
nt nt

t t

t t

σ σ

σ σ
 (7.27) 

where A
nn

σ , A
nt

σ  and B
nn

σ , B
nt

σ  are components of stress tensor in the groove reference 

frame ( )n t z, ,  for zones A and B, respectively, while At  and Bt  are the current sheet 

thickness outside and inside the groove respectively, given by: 

 
( )
( )

=

=

A A A
zz

B B B
zz

t t

t t

ε

ε
0

0

exp

exp
. (7.28) 

The force equilibrium condition between zones A and B allows to calculate the 

flow stress value in the normal direction of the groove and the flow shear stress in the 

groove. The compatibility requirement assumes that the elongation in the direction of 

the necking band is identical in both regions: 

 =A B
tt tt

d dε ε . (7.29) 

The strain matrix increment in the imperfection region (region B in Figure 7.6) 
B

xyz
dε[ ]  is determined in the orthotropic referential frame of anisotropy and, then, the 

deformation in the longitudinal direction of the groove is computed. Using the 

described requirements, the following two nonlinear equations in Bdε  and B
tt

σ  can be 

written: 



174 Forming limit diagrams modelling review Ch. 7 

 

 
( )
( )

⎧⎪ = − =⎪⎪⎨⎪ = − =⎪⎪⎩

B B B B
tt YF

B B A B
tt tt tt

G d

G d d d

ε σ σ σ

ε σ ε ε

1 , 0
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where G1 and G2  are two polynomial functions which represents the yield criterion 

and the deformation compatibility requirement in longitudinal direction of the necking 

band, respectively. From these equations, the iterative formula for Newton–Raphson’s 

method [Butuc 2002] is described as follows: 
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+ −
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G dd d

G d
J

ε σε ε

σ σ ε σ
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1

1 ,

2 ,
 (7.31) 

where J  represents the matrix of first partial derivatives of functions G1 and G2  in 

order to Bdε  and B
tt

σ . When absolute values of functions ( )+ +
B B
i tt i

G dε σ
1 1

1 ,  and 

( )+ +
B B
i tt i

G dε σ
1 1

2 ,  becomes less than an imposed error, the solution of the problem is 

achieved. In this analysis, one assumes that plastic flow localization occurs when the 

equivalent strain increment in imperfection region ( Bdε ) is 10 times greater than in 

homogeneous zone ( Adε ). So, when the necking criterion is reached the computation is 

stopped and the corresponding strains ( )A A
xx yy
ε ε,  accumulated until that moment in the 

homogeneous zone are the necking limit strains. The analysis is repeated for different 

values of ψ
0
 (between 0º and 90º) and the limit point on the FLD is obtained after 

minimization of the curve A
xx
ε  versus ψ

0
. The determination of forming limits in the 

case of complex strain paths, approximated by sequences of two-stage linear strain 

paths, involves a prestrain of the homogeneous zone and then a drastic change in strain 

path: 

 
if
if

= <

= >

β β ε ε

β β ε ε

*
1 1

*
2 1

 (7.32) 

where β
1
 and β

2
 are two distinct strain paths that are applied and ε*  is the prestrain 

value. As Barata da Rocha et al. [1985] have shown in previous work, the band 

orientation ψ  which minimizes the critical strain depends on the level of prestrain and 

on the sequence of strain paths. The minimization of the critical strain is achieved as a 

function of the initial band orientation at the beginning of the first stage. If the initial 

band orientation ψ
0
 is not a principal direction, rotation of the groove will occur 

during straining and the angle (that defines its orientation) at the beginning of the 

second strain path must be equal to the final band orientation at the end of the first 

stage. As for linear strain paths, the analysis is repeated for different values of ψ
0
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(between 0º and 90º) at the beginning of the first stage and the limit point in the FLD 

is obtained after minimization of the curve A
xx
ε  versus ψ

0
. 

After the pioneering work of Marciniak and Kuczynski [1967], many others 

researchers adopted this theory. Several enhancements were performed to the original 

theory: introduction of kinematic hardening [Tvergaard 1978] and mixed hardening 

models [Hiwatashi 1998] (associated with the dislocation structure using the Teodosiu-

Hu model [Teodosiu 1995]), inclusion of strain rate sensitivity [Marciniak 1973], 

extension to describe necking in viscoplastic materials [Mesrar 1998] and 

implementation of several yield criteria (Hill48 [Hill 1948] by Sowerby and Duncan 

[1971] and Barata da Rocha et al. [1985]; Hill79 [Hill 1979] by Parmar and Mellor 

[1978] and Bassani et al. [1979]; Hill93 [Hill 1993] by Banabic [1996], Texture-based 

yield surface [Houtte 1995] by Hiwatashi et al. [1998], Yld96 [Barlat 1997b] by Butuc et 

al. [2002], etc.). 

Other developments have focused on the extension of the model to predict limit 

strains under bilinear strain paths evolutions [Barata da Rocha 1985], new algorithmic 

strategies [Butuc 2002] and combined approaches with diffuse necking models [Tadros 

1975]. 

The original model and the proposed enhancements were extensively studied in 

order to quantify the model’s sensitivity to different mechanical properties (strain-

hardening [Sowerby 1971], shape of the anisotropic yield surface [Bassani 1979], 

influence of anisotropic behaviour [Sowerby 1971] [Barata da Rocha 1985]), 

imperfection orientation [Hutchinson 1978a] [Barata da Rocha 1985] and also for strain 

paths changes [Barata da Rocha 1985] [Mesrar 1998] [Butuc 2002]. 

Especially important is the work developed by Hutchinson and Neale [1978b], who 

extended M–K theory using a J2 deformation theory and their predictions were in close 

agreement with experiments. This extension allowed that the left and right hand sides 

of the forming limit diagram could be calculated using M–K analysis. Their work 

represents an important contribution to gain insight into the roles of constitutive 

equations and plasticity theories on FLDs. Additionally, Hutchinson and Neale [1978a] 

[1978b] found that an orientation of the imperfection non-perpendicular to the principal 

strain direction, considered perpendicular in the original M-K model, gives the 

minimum limiting strain for each proportional strain path on the left hand side of 

FLDs. Later, Barata da Rocha et al. [1985] pointed out that the limiting strains are 

sensitive to the groove orientation, even on the right hand side of the FLD. 

Although very popular among the sheet metal forming community, the main 

objection that can be posed to this framework is connected to the definition of the 

initial geometrical imperfection parameter f
0
, calculated as the ratio between the initial 
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thicknesses of the groove and homogeneous zones ,which evaluation remains rather 

questionable [Col 2006].  

7.2.4 Modified maximum force criterion (MMFC) 

Based on the classical formulation of the maximum force criterion (MFC) proposed by 

Swift [1952], Hora et al. [1996] have concluded that the proposed homogeneous stress 

condition is only correct at the beginning of diffuse necking but, after necking 

development, a multiaxial stress condition is settled inside the neck. So, they have 

proposed a new criterion, known as modified maximum force criterion (MMFC), which 

reads: 

 
∂ ∂ ∂

+ ≤
∂ ∂ ∂

σ σ β
σ

ε β ε
1 1

1
1 1

 (7.33) 

in order to take into account the experimentally confirmed fact that the onset of 

necking depends significantly on the strain ratio β . The fundamental principle of this 

modified maximum force criterion is based on the fact that, in addition to the purely 

material-related work hardening, another work hardening effect can appear, triggered 

by the deviation from the initial, homogeneous stress condition to the stress condition 

of local necking and, with this, to the point of plane strain, Figure 7.7 [Hora 1996]. 

 

Figure 7.7 Additional hardening effect through change in deformation state. 

After a straightforward mathematical manipulation and using the derivative chain 

rules, the MMFC equation can be rewritten in a form which is compatible with 

numerical implementation into computer codes as: 

 ( ) ( ) ( ) ( )
( ) ( )

' '
1

' p
Y

f gH
g

f

α β α α
α

σ α β α ε
− ≤  (7.34) 

defined in the principal stress directions for proportional straining 

( = =� �β ε ε ε ε
2 1 2 1

), where α  is the stress ratio, β  the strain ratio, 'H  the tangent 
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modulus to the hardening curve, 
Y
σ  the current yield stress, pε  the equivalent plastic 

strain, and the functions ( )f α  and ( )g α  are defined as: 

 
( )

=
f

σ σ
α 1

1
; ( )=p gε α ε

1
. (7.35) 

The terms ( )f α'  and ( )β α'  correspond to the partial derivatives of ( )f α  and ( )β α  

in order to the stress ratio α . 

A more general analytical form of this criterion can be establish by combining it 

with Hill’s quadratic yield criterion [Hill 1948] for a general plane stress state [Brunet 

1998]. Relative to coordinates along the principal directions of orthotropy, the 

quadratic yield criterion was originally cast in the form [Hill 1990]: 

 
( )( ) ( )( )

( )( )

2 22
11 22 11 22

2 2 2
11 22 12

1 1
4

4 4
1

2
2

F G F G H

F G N

σ σ σ σ σ

σ σ σ

= + + + + + −

− − − +
 (7.36) 

where σ  is the Hill’s equivalent stress, σ
11

, σ
22

 and σ
12

 are the in-plane components 

of Cauchy stress and F ,G ,H  and N  are the Hill’s anisotropic parameters. In order 

to find the intrinsic formulation for a general plane stress case, Hill’s quadratic criterion 

must be written in terms of principal stresses, σ
1
 and σ

2
. Replacing in Equation (7.36) 

the following relations: 
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+ = +

− = −
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σ σ σ σ

σ σ σ σ θ

σ σ σ θ

11 22 1 2

11 22 1 2

12 1 2

cos2

2 sin2

 (7.37) 

where θ  corresponds to the angle described between the orthotropic axes and the 

principal axes, the yield criterion expression can be rearranged to: 

 ( ) ( ) ( )= + −a b cσ θ σ θ σ θ σ σ2 2 2
1 2 1 2

2  (7.38) 

with: 
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and angle θ  can be determined by: 

 −
⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜ −⎝ ⎠

σ
θ

σ σ
1 12

11 22

21
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2
. (7.40) 
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Through the relation between the two principle in-plane stresses defined as =σ ασ
2 1

, 

one obtains the equivalent stress σ  as a function of the stress ratio α , orientation 

angle θ  and the major in-plane principal stress σ
1
 as: 

 ( ) ( ) ( ) ( )( )= + −a b cσ σ α θ θ θ α θ α σ
1

2 2
1 1
, , 2 . (7.41) 

Therefore, the relation between the current yield stress and the major principal in-

plane stress, denoted as f , is given by: 

 ( ) ( ) ( ) ( )( )
−

= + −f a b cα θ θ θ α θ α
1

2 2, 2 . (7.42) 

Evoking the associate flow rule of plasticity, one has: 

 
∂

=
∂

� �pε
σ
σ

γ  (7.43) 

which allows us to deduce the strain ratio β , expressed as: 
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The function ( ),g α θ  can also be given in an explicit form. Its inference is also made by 

using the associative flow rule. Knowing that: 

 
∂

=
∂

� � σ
ε γ

σ1
1

 (7.45) 

and that the equivalent plastic strain � pε  is equal to the plastic consistency parameter 

�γ  for this yield criterion: 

 = �� pγ ε , (7.46) 

along with the definition presented in Equation (7.35), lead us to the following form for 

the function g , 

 ( )
( ) ( ) ( )( )

( ) ( )
+ −

=
−

a b c
g

a c

θ θ α θ α
α θ

θ θ α

1
2 22
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The partial derivatives ∂ ∂f α  and ∂ ∂β α  may be explicitly found from Equation 

(7.42) and (7.44), respectively. 

The main advantage of this necking criterion is the fact that no additional 

material parameters are required, such as the ambiguous thickness ratio in the M-K 

analysis [Marciniak 1967] and critical strains can be directly calculated for a given 

strain path without the need to perform an incremental analysis. Also, due to its 
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differential form, it can be used for necking prediction in non-linear strain paths 

evolutions [Tong 2002]. However, it is considered too conservative with regard to 

reality. To improve the performance of the MMFC, the same authors have introduced 

an extension to the MMFC, the so-called “Enhanced MMFC” (eMMFC) [Hora 2007] 

for plastic instability prediction in thermo-sensitive sheet metal forming processes by 

including the influence of sheet thickness and temperature in the necking occurrence, 

expressed as: 

 ( )1 1 1
1

1 1 1

1 ,
2
t T

e E t
R T

σ σ σβ
σ

ε β ε ε

⎡ ⎤∂ ∂ ∂∂ ∂⎢ ⎥+ + + + ≤⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦
 (7.48) 

where t  is the sheet thickness, R  is the sheet curvature radius, T  is the temperature 

and function e  is calculated as: 

 ( ) 0
0

,

p

t
e E t E

t

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠
 (7.49) 

where 
0

t  is the initial sheet thickness and 
0

E  and p  are material constants. The newly 

developed criterion has shown to predict better results for failure prediction for 

stainless steels when compared to the classical MMFC model [Krauer 2007].  

Mattiasson et al. [2007] have also observed a general tendency of the MMFC to 

severely under predict critical strains on the right-hand side of the FLD, although good 

predictions are achieved by this criterion on the left-hand side. The explanation is due 

to the loss of accuracy that the MMFC incurs by the approximation of the derivative 

∂ ∂β ε
1
. So, to overcome this approximation, they proposed a new method, the 

“Extended MFC” (EMFC) [Mattiasson 2006], based on the MFC fundamental 

equation, where an incremental calculation scheme is performed after diffuse necking is 

achieved, defined by the original Swift criterion. According to authors, this new 

approach does not introduce additional approximations to the original Swift’s work 

but, although better predictions were achieved by the newly developed approach, still 

some underestimation of the limit strains on the right hand side of the FLD was 

experienced [Mattiasson 2007].  

Recently, Banabic et al. [2009] proposed an improvement to the MMFC by 

introducing two fitting coefficients (A  and B ) in the original MMFC equation, that 

are calibrated by using two experimental points that represent different limit states: 

 1 1
1

1 1

A B
σ σ β

σ
ε β ε

∂ ∂ ∂
+ ≤

∂ ∂ ∂
. (7.50) 
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They achieved better results in the stretching area of the FLD, due to the enforcement 

of the theoretical curve to catch two experimental points used for parameter 

identification.  

Besides the underestimation of critical strains in the right-hand side of the FLD, 

another disadvantage of the MMFC is due to the fact that a singularity can occur if 

the yield locus used in necking simulation exhibits straight line segments [Aretz 2004], 

leading to singularities in the predicted forming limit curve or even in total failure in 

forming limit diagram prediction. Nevertheless, due to its simplicity and easiness to 

implement, this criterion is suitable to be used as a necking criterion in finite element 

codes. 

7.2.5 Other theoretical methods of necking prediction 

Although not so popular between the sheet metal forming community, other models 

were proposed to theoretically predict necking occurrence in sheet metals. 

Storën and Rice [1975] (S-R) proposed the so-called “vertex theory” to predict 

localized necking over the entire range of the forming limit diagram. They have 

incorporated the J2 deformation theory into the classical bifurcation analysis. The 

proposed model postulates that localized necking is due to the development of a corner 

on the yield surface thus there is no theoretical restriction to localized necking. The 

analysis of the forming limit curve behaviour was done by imposing force equilibrium 

between the neck and non-necked region of the metal. Enhancement to this theory was 

later proposed by Gotoh [1985] who had a relevant contribution by using an original 

yield condition expressed as a polynomial function of fourth degree. Based on the S-R 

theory, Zhu et al. [2001] proposed a unified bifurcation analysis of sheet metal forming 

limits, by including the moment equilibrium in their study in addition to the force 

equilibrium condition. They have found that the shear terms due to the perturbation 

vanish inside the localized neck of a region of deformation, thus the two-dimensional 

problem could be simplified to a one-dimensional problem. Based on this simplified 

version of the vertex theory, Chow et al. [2003] developed a generalized method to 

predict forming limits of sheet metals considering several isotropic and anisotropic yield 

criteria. In their work, the influence of the yield function is only noticeable on the right 

hand side of the forming limit diagram and, typically, a higher order yield function 

leads to lower limit strains.  

Motivated by experimental observations at the failure site, Bressan and Williams 

[1983] introduced the “Through Thickness Shear Instability Criterion” (TTIC). This 

model takes into account the experimental fact that the fracture plane lies in a 

direction near to that of maximum shear stress. The model proposed by Bressan and 

Williams [1983] takes into account this shear fracture mode and was applied in the 
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determination of the onset of failure in sheet metal forming. A more general form of 

this criterion was presented by Brunet and Clerc [2007], considering that the principal 

stress directions do not coincide with the orthotropic anisotropy axes. 

Jones and Gillis [1984] have proposed a new method (further known as “Jones-

Gillis theory (J-G)”) for calculating the right hand side of the forming limit diagram of 

a sheet metal. The prediction of localized necking was made by assuming that biaxial 

stretching occurs in the three stages of deformation: perfectly homogeneous 

deformation, strain concentration at constant load and finally localized necking due to 

a rapidly load decrease. Later, Choi et al. [1989] has extended the J-G theory to the 

negative strains ratios, allowing the modelling of the entire forming limit curve.  

In 1991, Dudzinski and Molinari [1991] introduced the linearised theory of 

perturbations. They first used the concept of effective instability and successfully 

adopted the instability method for prediction of forming limit diagrams. The 

dependence of the limit strains on the value of the instability intensity parameter 

presents the same tendencies as the dependence of the limit strains on the amplitude of 

the initial defect in the M-K analysis.  

Another branch of forming limit calculation method was recently proposed by Bai 

and Wierzbicki [2008], based on the concept of “cumulative forming severity”. Such 

approach makes use of a representation of the forming limit diagram in the space of the 

equivalent strain to neck and the Lode angle parameter. For non-proportional loadings, 

they introduced a non-linear accumulation of the forming severity thus improving the 

prediction of the loading history effect. Although good results were obtained for an 

aluminium alloy and a steel material, no physical interpretation of the “accumulation 

of the forming severity” was provided.  

7.3 Forming limit calculation with damage consideration review 

Since damage mainly occurs as a result of nucleation, growth and coalescence of 

cavities around particles during sheet metal forming operations, the internal 

degradation phenomenon can have an important effect in the limit strains that can be 

achieved before the appearance of localized necking, and, therefore, forming limit 

analysis should account for this mechanical degradation. Early works related with this 

damage consideration dates back to the late 1970’s and constitutes an important phase 

of the research works on the localized necking of sheet metals.  

First considerations of damage in necking calculations was made by Needleman 

and Triandafyllidis [1978] by considering a micromechanics-based formulation to 

describe the internal damaging process. Their calculation was based on the concept of 

imperfection, similar to the M-K model, but defining the imperfection as the ratio 

between the initial volume concentration of voids inside and outside the necking band 
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and considering the damaging process governed by the Gurson’s void growth model. 

This same approach was also employed by Chu and Needleman [1980], Jalinier and 

Schmitt [1982], Barata da Rocha [1989] and Barlat [1989b] in order to analyse the 

effects of internal damage on the limit strains. An extension of this work was later 

proposed by Huang et al. [2000] by including a macroscopic yield criterion for 

anisotropic porous sheet metals in order to develop a failure prediction methodology in 

anisotropic damaged metals. Using the same methodology but adopting another void 

growth model, namely the Cocks and Ashby’s model [Cocks 1982], Tjotta [1992] and 

Hu et al. [1998] have also considered a combined approach between internal damage 

growth and the M-K model. 

But, after the developments of the Continuous Damage Mechanics framework 

during the 1980’s, several researchers began to use CDM models in the localization 

analysis, namely using a scalar continuous variable to describe the internal damage 

evolution [Bontcheva 1994] [Doghri 1995] [Rizzi 1995] [Schreyer 1996] [Benallal 1996] 

and including the micro-crack closure effect in the isotropic damage models [Ekh 2000]. 

Combined approaches between isotropic damage models and the M-K model were also 

proposed by Tai [1988], Lee et al. [1997] and Tang and Tai [2000] within the framework 

of Continuous Damage Mechanics theory. Another approach was exploited by Boudeau 

and Gelin [2000], who have applied the linearised perturbation technique [Dudzinski 

1991] combined with an isotropic damage model to theoretically determine the necking 

occurrence.  

Especially important contributions were the works developed by Brunet et al. and 

Chow et al. An attempt to improve the MMFC model [Hora 1996] has made by Brunet 

et al. [1998] by introducing softening behaviour in the MMFC model, described by the 

micromechanical-based damage model GTN, taking the necking criterion the following 

form: 

 1 1
1

1 1Y

σ σσ β
σ

σ ε β ε

⎛ ⎞∂ ∂ ∂ ⎟⎜ ⎟⎜ + ≤⎟⎜ ⎟⎟⎜∂ ∂ ∂⎝ ⎠

�
 (7.51) 

where 
Y
σ  is the yield stress of the fully dense material and σ�  is the effective stress of 

the Gurson’s potential. They have found that a good correlation between predicted and 

experimental FLD is achieved using this coupled analysis for aluminium alloys and 

almost no damage effect was observed in the necking predictions for the investigated 

mild steel. Later, a more advanced model was proposed by the same authors [Brunet 

2001] including the influence of a triaxial stress state in the incipient neck through a 

correction of the uniform major stress. An approximate method was defined for this 

correction based on geometrical considerations for the necking profile.  
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Coupling the incremental theory of plasticity with an anisotropic damage evolution 

law, Chow et al. [1997] proposed a unified approach for forming limit diagrams 

prediction, based on the definition of a critical damage to necking, valid for 

proportional and non-proportional loading conditions. In view of the two distinct 

physical phenomena governing the cases of positive and negative strain ratios, two 

instability criteria were proposed to predict localized necking under drawing ( ≤β 0 ) 

and biaxial stretching ( >β 0 ). Critical damage to necking is defined as a function of 

the strain ratio, damage tensor and an additional material parameter. This orthotropic 

damage model has been employed to predict the FLD of VDIF steel and an excellent 

agreement between the predicted and measured results has been achieved. Later, the 

same authors [Chow 2001a] [Chow 2001b] extended their theory to incorporate a 

viscoplastic constitutive model of anisotropic damage, taking into account the effect of 

rotation of the principal damage coordinates on the deformation and damage 

behaviour.  

Based on the simplified version of the vertex theory [Zhu 2001] and in their 

previous work [Chow 2003], Chow et al. [2004] combined the same anisotropic damage 

model with the modified vertex theory to generate a damage-coupled localization 

criteria, applicable on both sides of FLD. Using this approach, critical damage value for 

necking can be calculated as a function of stress / strain states and strain paths. They 

concluded that damage has a definite effect on forming limits and its consideration on 

necking determination enables the theoretical prediction to yield a better correlation 

with test results. 

Recently, Chow et al. [2005] developed a localized necking criterion based on the 

singularity of the acoustic tensor. This criterion, applicable to materials exhibiting 

strain-softening behaviour, assumes that the critical condition for localized necking can 

be treated as an eigenvalue problem of second-order acoustic tensor. This criterion was 

applied to predict the FLD of the aluminium alloy 6061 at high temperature (450ºC) 

and a good agreement with tests were achieved. Further investigations lead Chow et al. 

[2007] to include on the acoustic tensor method an anisotropic damage model. A review 

of the works developed by Chow et al. can be found in [Chow 2009]. 

Other recent developments are attributed to Haddag et al. [2009]. Although the 

Rice’s localization criteria [Rudnicki 1975] is seldom applied to the to study ductility 

limit of metal sheets (more suitable to describe localization on pressure-sensitive 

dilatant materials), Haddag et al. [2009] used a combined approach between an 

isotropic damage model, an elastic-plastic constitutive behaviour with hardening 

described by the Teodosiu-Hu model [Teodosiu 1995] and Rice’s localization criteria to 

predict forming limits for linear and two-path straining modes. The trends predicted by 

this coupled approach were in accordance with the results obtained by the M-K model. 
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7.4 Proposed damage-coupled criterion (MMFC+AD) 

Following the works addressed in previous section, a new damage-coupled criterion is 

proposed in this section. It is based on an integrated approach between the anisotropic 

damage model (presented in Chapter 5) and the MMFC necking criterion, proposed by 

Hora et al. [1996] (presented in Section 7.2.4). The choice for the MMFC model is 

intrinsically related with its advantages: easiness to implement, no additional 

parameters are required and is independent from the strain path trajectory, due to its 

differential form [Tong 2002]. Naturally, the introduction of the anisotropic damage 

mechanics concept into the MMFC instability criterion requires the definition of a new 

set of relations (as the ones defined in Section 7.2.4). It is important to refer that the 

definition of new relations does not change the instability model concept; only 

establishes new dependencies for the variables. Therefore, including the described 

anisotropic damage model, the variables that were originally only a function of the 

stress ratio α , Equation (7.34), now become also dependent of the damage tensor D , 

introduced in the instability model as a parameter, not as a variable. This means that 

functions f  and g , the strain ratio β  and the partial derivatives f '  and β '  with 

respect α  must be now expressed in terms of the stress ratio, α , and damage 

components. Thus, the proposed damage-coupled criterion is represented by the 

relation: 
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where D  is the damage tensor, α  the stress ratio, β  the strain ratio, 
Y
σ  the current 

yield stress, H '  the tangent modulus to the hardening curve and pε  the equivalent 

plastic strain. 

The consideration of the anisotropic damage model, instead of the isotropic one, 

introduces in the necking model a important feature related with the effective stress 

definition proposed by Lemaitre et al. [2000a]. An effective triaxial stress state �σ  is 

developed from a general damaged plane stress state σ , with the appearance of an 

effective stress in the thickness direction (denoted by �σ
33

, being direction 3 the 

thickness direction). This effective triaxial stress state can be shown if one considers a 

damaged representative volume element (RVE) in the orthotropic frame ( )G G G
x x x

1 2 3
, ,  

subjected to a monotonic biaxial loading in principal stress directions. Assuming an 

isotropic material, having his plastic behaviour described by the von Mises criterion, 

the Cauchy stress tensor σ  is given by: 
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and the corresponding plastic strain rate tensor as: 
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Using the anisotropic damage evolution law, the damage tensor is: 
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having three principal components D
1
, D

2
 and D

3
. Applying the effective stress 

definition [Lemaitre 2000a], the components of the effective stress tensor �σ  will be 

given by: 
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So, an effective stress state �σ  that contains two components in the in-plane principal 

directions and, additionally, a component in the thickness direction is obtained. The 

influence of this effective triaxial stress state and of the anisotropic damage evolution is 

introduced in the necking criterion by means of the functions ( );f α D  and ( );g α D , 

strain ratio ( );β α D  and partial derivatives ( )' ;f α D  and ( )' ;β α D . Taking function 
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f  as an example, which is defined as the ratio between the major in-plane principal 

stress σ
1
 and the current yield stress 

Y
σ , and replacing the stress σ  by the effective 

stress �σ  in the von Mises yield criterion, one obtains: 
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where functions ( )p D , ( )q D  and ( )r D  are dependent upon principal damage values 

(D
1
, D

2
, D

3
) and can be explicitly written as: 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜= + + +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟− − − −⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
⎛ ⎞⎟⎜ ⎟⎜+ − + ⎟⎜ ⎟⎜ ⎟− − ⎟⎜⎝ ⎠

p
D D D D

D D

D

2 2

1 2 2 3
2

3 1

1 1 2 1 2 1
2 23 1 3 1 3 1 3 1

1 1 1
2 3 1 3 1

 (7.60) 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

⎛ ⎞⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜= + +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟− − − −⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜+ + −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟− − − −⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜+ + − +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟− − − −⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠

q
D D D D

D D D D

D D D D

D
1 2 1 2

2 3 2 3

3 1 3 1

2 1 1 2

3 1 3 1 3 1 3 1

2 1 1 1

3 1 3 1 3 1 3 1

1 2 1 1

3 1 3 1 3 1 3 1

 (7.61) 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜= + + − +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟− − − −⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
⎛ ⎞⎟⎜ ⎟⎜+ + ⎟⎜ ⎟⎜ ⎟− − ⎟⎜⎝ ⎠

r
D D D D

D D

D

2 2

1 2 2 3
2

3 1

1 2 1 1 1 1
2 23 1 3 1 3 1 3 1

1 1 2
2 3 1 3 1

. (7.62) 

Hence, if a distinctive damage evolution is considered, function f  value will be affected 

by the damage values calculated for each direction. It is possible to infer from 

Equations (7.60) to (7.62) that a damage increase leads to an increase of the values of 

the functions ( )p D , ( )q D  and ( )r D  which, consequently, leads directly to a 

decrease of the value of function f . Furthermore, if no damage occurs, the effective 

stress, �σ
3
, along thickness direction is eliminated and functions ( )p D , ( )q D  and 

( )r D  will be equal to: 
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recovering, therefore, as a limiting case, the classical definition for function f : 

 ( )
2

1
;

1
f α

α α
=

− +
0 . (7.64) 

A remark can be made concerning the use of the MMFC model coupled with an 

isotropic damage model. If damage is considered as an isotropic scalar variable D , the 

effective stress tensor �σ  is obtained from the Cauchy stress tensor by multiplying the 

factor ( )−D1 1  as: 

 
1

1 D
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−
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and, in this case, the effective triaxial stress state is not established. For an isotropic 

yield material, the strain ratio β , its derivative in order to stress ratio β '  and the 

function g , defined as the ratio between the current equivalent plastic strain and the 

major in-plane principal strain ε
1
, are independent on the scalar damage value D . 

Function f  and corresponding derivative f '  are dependent on the scalar damage 

value: 
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However, its influence on the MMFC model is removed in the ratio f f'  and therefore 

the original MMFC is recovered: 
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To the author’s knowledge, the computational implementation of the above 

coupled approach has not been addressed yet. This is probably due to the fact that an 

increased degree of complexity is introduced by using a second-order definition for the 

damage variable and corresponding intricacy in effective stress calculation when 

compared with the isotropic damage model.  

7.5 Application of MMFC+AD for forming limit diagrams prediction 

The material selected to illustrate the performance of the proposed criterion is the 

aluminium alloy AA6014. The material data as well as the FLD data were taken from 

Mattiasson et al. work [2007]. According to Mattiasson et al. [2007], this material 

exhibits a distinct necking behaviour before fracture and shows minor strain rate 
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dependence. The material mechanical properties are presented in Table 7.1, as well as 

the corresponding damage parameters for its characterization [Lemaitre 2005]. The 

material is assumed to have isotropic hardening described by the Voce law and Hill48 

yield criterion was used to describe the orthotropic anisotropy of the rolled sheet. Two 

values are presented for the damage denominator parameter, 1.22 and 0.976 MPa, 

corresponding to the value identified by Lemaitre et al. [2005] for the isotropic model 

and the value identified for the anisotropic damage model using the cross identification 

procedure proposed by Desmorat and Otin [2008a] (see Section 6.2 for more details), 

respectively. 

Table 7.1 Material parameters of AA 6014. 

Property Symbol Value 

Young modulus [GPa] E  70 

Poisson coefficient υ  0.33 

Initial yield stress [MPa] 
Y
σ

0
 125 

Yield stress [MPa] 
Y
σ  −−

p

e ε5.738350.72 225.72  

r-values r r r
0 45 90
, ,  0.75, 0.5, 0.62 

Damage denominator [MPa] S  1.22,0.976 

Damage exponent s  2.0 

Damage threshold p
D
ε  0.05 

Critical damage value (failure) 
C

D  0.36 

Damage hydrostatic parameter η  2.6 

 

In order to establish a starting point for the illustration of the performance of the 

proposed integrated approach, the computation of the theoretical FLDs calculated by 

using the M-K model [Marciniak 1967] and the original MMFC model [Hora 1996] were 

performed. A comparison between experimental necking points and theoretical FLDs 

for linear strain paths (LSP) is presented in Figure 7.8. 

Using Hill’s quadratic criterion and an imperfection factor of =f
0

0.990 , M-K 

analysis computes limit strains that follows the experimental tendency in the stretching 

zone, i.e., in the right hand side of FLD, but, near the equibiaxial stretching path, 

computed strains are heavily overestimated, Figure 7.8. It is known that the yield 

function has a strong effect on the shape of the yield surface and a tremendous effect 

on the level of the forming limit diagram in the biaxial region as previous studies also 

have shown [Barlat 1987] [Barata da Rocha 2009] and, thus, the use of more advanced 

constitutive models can lead to more satisfactory computed limit strains in this region 

[Butuc 2004]. 



Ch. 7 APPLICATION OF DAMAGE TO NECKING OCCURENCE 189 

 

 

Figure 7.8 Comparison between experimental and theoretical FLDs for AA 6014. 

Also, M-K analysis with an imperfection factor of 0.990 shows to be conservative 

in the drawing zone, i.e., in left hand side of FLD, predicting necking strains lower than 

the experimental ones. Using higher values for the imperfection factor f
0
, the predicted 

forming limit curve has a shift to upper values of limit strains, improving the numerical 

predictions in the drawing zone and in the plane strain trajectory. Although better 

agreement is observed in the drawing zone, the overestimation of critical strains 

observed in the equibiaxial stretching path for a lower value of f
0
 is extended to the 

entire biaxial stretching zone, as shown in Figure 7.8.  

Concerning the forming limit curve computed by the MMFC model, it is shown 

that it is capable to represent reasonably well the experimental points at tension-

compression state ( <β 0 ) but, as already was observed by others authors [Mattiasson 

2007], critical strains for tension-tension stress states ( >β 0 ) are usually 

underestimated by this criterion, Figure 7.8. A better agreement in this region is 

achieved by using the proposed damage-coupled criterion (MMFC+AD), following 

more closely the experimental tendency in the biaxial strain region ( >β 0 ), Figure 

7.9. 

The explanation for this behaviour is connected with the consideration of a 

distinctive tridimensional damage evolution that promotes the appearance of an 

effective triaxial stress state. Introducing the non-planar damage evolution, a correction 

is made in the variables of the original MMFC model that induces a delay in the 

necking criterion, postponing neck formation prediction and, therefore, allowing that an 

additional hardening effect occurs before necking condition is achieved, Figure 7.10. 
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Figure 7.9 Comparison between experimental and theoretical FLDs for AA 6014. 

 

Figure 7.10 Additional hardening promoted by the introduction of anisotropic damage model into the 

MMFC criterion. 

A similar additional hardening effect was also described by Gotoh et al. [1995], 

who has investigated the effect of out-of-plane stresses in forming limits. The 

theoretical study was shown that out-of-plane stress (even small compared to the 

equivalent stress) may notably raise the forming limit strain and, thus, it can be 

effectively used to avoid earlier failure during sheet metal forming. The main difference 

to the current study is that here there is no imposition of a triaxial stress state. The 

effective stress definition from the anisotropic damage law naturally develops a gradual 

non-planar effective stress, induced by the increase of damage in this direction, 

retarding necking prediction. As can be seen in Figure 7.9, this damage induced 
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delaying effect has almost no importance on tension-compression states but its influence 

is clear in the biaxial stretching zone. To explain this, we need to recall the anisotropic 

damage evolution law (Section 5.3.1.3). The effective damage energy release rate Y  

variable, present in the evolution law, given as: 
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is dependent on the stress triaxiality, defined by the ratio between the effective 

hydrostatic stress 
H

σ�  and the von Mises equivalent stress σ� . Such dependence means 

that higher stress ratios will correspond to higher stress triaxialities and, thus, to faster 

damage growths under biaxial tension stress states. This increased damage evolution 

adds an increase influence of the damage values on the necking criterion, observed by 

the growing difference of the curves in Figure 7.10. Moreover, necking in biaxial tension 

is slowed down by a stabilization effect which allows attaining higher values of plastic 

strains and, therefore, higher values of damage will occur, turning the influence of 

anisotropic damage more pronounced. This can be seen in Figure 7.11, where higher 

damage values up to necking are calculated for higher strain ratios. Also, it is shown 

that it is not possible to define a constant critical damage value for necking, as is done 

for fracture, since the critical value depends on strain ratio and stress state. 

 

Figure 7.11 Critical damage values for necking. Damage value in thickness direction reaches more 

important values on the right hand side of the FLD. 

In the plane strain path, the damage effect in the forming limit calculation is 

eliminated due to the fact that strain ratio β  is equal to zero, thus eliminating all the 

second term of the first member in Equation (7.52), rewritten here: 
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This implies that theoretical predictions for this strain path using the proposed 

criterion are identical to the original MMFC model and, by the same reason, this last 

criterion reduces to Swift model [Swift 1952] and Hill model [Hill 1952] calculations.  

An important phenomenon occurs near the equibiaxial stretching path. As 

indicated by the truncated shape of the experimental forming limit curve in Figure 7.9, 

one can expect that the material has failed in ductile fracture in this area [Mattiasson 

2008]. Therefore, limit strains in this zone are governed by ductile failure rather than 

by local necking and a correction to the forming limit curve must be performed due to 

the abrupt failure. The calculations using only necking models will necessarily 

overestimate the limit strains in this region (Figure 7.8) since no fracture occurrence 

modelling is performed. The coupled approach of the proposed criterion allows us to 

model this “fragile” behaviour of the material, as seen in Figure 7.9. At these 

trajectories, the critical damage for failure is achieved before plastic instability, 

determined by the necking model, is attained and, therefore, fracture is the most 

restrictive event in this material under these loading conditions. This phenomenon 

illustrates the importance of the coupled calculation of forming limits considering not 

only the appearance of localized necking but also final fracture occurrence.  

Also important is the contribution of each damage values on failure occurrence. In 

the drawing zone (left hand side of FLD), the damage component along the loading 

direction 
1

D  (in this case coincident with the principal stress and strain directions) is 

the most important value and is responsible for the activation of the critical damage 

criterion. The values attained in the transverse and perpendicular directions to the 

loading direction, 
2

D  and 
3

D  respectively, are significantly lower and assume distinct 

values, according to the anisotropic behaviour of the material. The importance of this 

component decreases gradually with increasing triaxiality and strain ratio until the 

plane strain path is reached. In this strain path, since plastic straining only occurs in 

loading and thickness directions, no damage will occur in the transverse direction, 

2
0D =  and, according to volume constancy condition, plastic strains in the loading 

and thickness direction, although with different sign, have the same absolute value and, 

therefore, same damage values for both directions are calculated 
1 3

D D= , as seen in 

Figure 7.11. In the stretching zone, i.e., under positive strain ratios ( 0β > ), the 

contribution of the in-plane damage values are relegated to “second place”, assuming 

the damage value in the thickness direction 
3

D  the leading role as the most critical 

damage value. The importance of this component will be higher as higher strain ratios 
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are considered and will be particularly relevant in materials that present a normal 

anisotropy value lower than one (as is the case with a 1r < ). 

The proposed criterion allows also the determination of limit strains in complex 

strain paths evolutions, as those that are undergone by industrial parts during a single 

or multi-pass forming process. The assessment of sheet material behaviour under such 

non-linear strain paths is often examined by means of different combination of linear 

deformation paths.  

 

Figure 7.12 Experimental procedure and samples involved in determination of bilinear strain paths limits: 

uniaxial tension + equibiaxial stretching (UT-BS) and equibiaxial stretching + uniaxial tension (BS-UT). 

Two different types of complex FLDs can be used to determine the effect of strain 

path changes on the formability of the material [Barata da Rocha 1985]: one 

preliminary deformation followed by proportional straining at different strain ratios and 

one linear prestrain up to different deformation levels and subsequent straining at a 

fixed strain ratio. Figure 7.12 shows the experimental procedure and required samples 

in order to determine forming limits in such bilinear strain paths evolution [Barata da 

Rocha 2009]. In Figure 7.13, the predicted forming limit curves for a complex FLD is 

presented, involving a bilinear strain path composed by prestraining in biaxial 

stretching followed by uniaxial tension (BS-UT). 
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Figure 7.13 Theoretical FLDs for biaxial stretching followed by uniaxial tension (BS-UT) (AA 6014). 

This strain path change (BS-UT) is usually characterized by premature 

instabilities occurrences, especially for higher values of prestrain in biaxial stretching. 

However, an enhancement of subsequent uniaxial tension limit strains is observed for 

small amounts of prestrain under biaxial stretching. Additionally, there is a shift of the 

FLD lowest point to higher values of ε
2
 and, so, necking can occur with combinations 

of strains below the standard FLD, obtained under linear strain paths evolutions. For 

this particular case, the anisotropic damage effect is more pronounced for higher values 

of prestrain under biaxial stretching. The calculated forming limits using the proposed 

criterion give lower limit strains than the ones calculated using the original MMFC for 

such high prestrain levels. At those levels, high values of damage are attained in the 

first strain path and a drastic change to uniaxial tension causes early necking 

occurrence. To perceive this event, it is necessary to define a variable called risk factor 

k  [Tong 2002], given by: 
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which, according to the proposed criterion in Equation (7.52), necking is detected 

when: 

 1k ≤ . (7.72) 

The evolution of such risk factor k  for the MMFC criterion and the proposed criterion 

(MMFC+AD) is presented in Figure 7.14 for a prestrain value of 0.32 under biaxial 

stretching. 
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Figure 7.14 Risk factor evolution for a biaxial stretching followed by uniaxial tension strain path (prestrain 

of 0.32). 

Before the strain path change, the risk factor k  calculated by the MMFC+AD 

criterion is higher than the one calculated by the original MMFC criterion. This effect 

reveals the delay in necking formation prediction due to the damage evolution, 

similarly to the effect already observed during linear strain paths evolutions. But, when 

the drastic change to uniaxial tension takes place, risk factor calculated by the 

MMFC+AD criterion falls to a value lower than the one computed by the MMFC 

criterion and, following a similar evolution, necking is predicted for lower plastic strains 

with the proposed criterion. This indicates that, besides the additional hardening effect 

promoted by the increase of damage, the softening effect, originated by mechanical 

properties degradation that affects yielding, plays an inverse role in the analysis of the 

complex mechanism of triggering localized necking, causing the lowering of forming 

limits. Therefore, anisotropic damage establishes a combined effect between 

supplementary hardening and decrease of load-carrying capability. On one hand, the 

presence of a non-planar effective stress state and distinctive evolutions of damage is 

responsible for the increase of hardening, postponing necking formation but, on the 

other hand, damage induces a mechanical degradation that promotes early neck 

development. This combination of mechanisms has a strong influence on the FLD level 

and will be dependent on strain and stress history. 

The other type of studied strain path change is the one defined by a prestrain in 

uniaxial tension until different deformation levels followed by straining in equibiaxial 

stretching up to necking / failure (UT-BS). The predicted forming limit curves for this 

strain path change are presented in Figure 7.15 using the original MMFC and the 

proposed criterion (MMFC+AD).  



196 Application of MMFC+AD for forming limit diagrams prediction Ch. 7 

 

 

Figure 7.15 Theoretical FLDs for uniaxial tension followed by biaxial stretching (UT-BS) (AA 6014). 

Imposing uniaxial tension as the preloading path, there is a considerable increase 

in forming limit strains and combinations of in-plane plastic strains are possible well 

above the standard FLD without risk of necking occurrence [Barata da Rocha 1985] 

[Butuc 2003] [Barata da Rocha 2009]. For this bilinear strain path, the proposed 

criterion (MMFC+AD) predicts that failure will occur before necking and the 

computed failure limit strains are significantly lower than the ones calculated by the 

original MMFC for necking, Figure 7.15. In this case, the influence of the anisotropic 

damage induced hardening effect, observed for linear strain paths evolutions under 

positive strain conditions, is negligible since the raise in limiting strains is hampered by 

the occurrence of premature failure.  

Another question aroused in Figure 7.15 is the difference between the critical 

strains values attained for failure in linear and this bilinear strain path evolution, near 

equibiaxial stretching. To show this difference, Figure 7.16 presents the calculated 

fracture forming limit curves (FFLDs) for the linear and the bilinear strain path 

evolution, uniaxial tension followed by biaxial stretching. As can be seen in Figure 7.16, 

there is an effect of strain path change in the fracture forming limit locus. Considering 

the same final point in the principal strain space, higher values for damage are 

computed for the bilinear strain path combination when compared with the ones 

attained for a linear strain path evolution, and, therefore, a decrease on material 

ductility will be observed. This fact can be explained by the damage evolution law and 

its dependencies. 
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Figure 7.16 Theoretical FFLDs for linear strain paths and for uniaxial tension followed by biaxial 

stretching (UT-BS) strain paths using MMFC+AD (AA 6014). 

At the beginning of the second strain path, material has already accumulated 

damage in all three directions, being the major value in the loading direction (in this 

case D
1
). A change to a biaxial stretching loading condition will increase stress 

triaxiality, implying a higher damage rate, and, due to the fact that here we are not 

considering any healing effect, damage will grow rapidly under these conditions and will 

promptly attain the defined critical value. Naturally, the difference between the linear 

and the bilinear computed critical strains will be larger as more damage is accumulated 

during straining in the first strain path.  

 

Figure 7.17 Damage evolution comparison between plane strain trajectory (PS) and bilinear strain path 

(UT-BS). 
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An example of such effect is shown for the plane strain trajectory (PS) and the 

bilinear strain path comprised by a prestrain of 0.33 in uniaxial tension followed by an 

equibiaxial stretching (UT-BS). Both of these strain path evolutions lead to predicted 

failure strains in the major plastic strain axis (
2

0ε = ). The latter strain path indicates 

that failure occurs for a major plastic strain of 0.428 while for the linear plane strain 

path, failure is detected for a higher major plastic strain, namely 0.566. Damage growth 

for both strain paths evolutions are presented in Figure 7.17. As shown in Figure 7.17, 

for the plane strain loading (PS), the evolution of damage in the loading and thickness 

directions are identical (
1 3

D D= ) and, according to the plane strain condition, no 

damage is computed in the transverse direction (
2

0D = ). Under this loading 

condition, critical damage is attained simultaneously by 
1

D  and 
3

D  when an 

equivalent plastic strain of 0.618 is attained. Concerning the damage development in 

the non-linear path (UT-BS), it is necessary to distinguish between growth rates before 

and after the change in strain path, i.e., during uniaxial loading and during biaxial 

loading. During loading in uniaxial tension, there is an uneven increase of damage 

tensor components, being the component in the loading direction 
1

D  the one that has a 

more evident growth, mainly dominated by the plastic strain rate attained in this 

direction. But, after the change in the deformation path, there is a clear change in the 

growth of damage in the different directions. One witnesses an exponential growth of 

damage component in the thickness direction 
3

D , as a result of the higher established 

stress triaxiality and the higher plastic strain rate in the thickness direction. Although 

with a lower magnitude, also damage in transverse direction 
2

D  has an increase in the 

growth rate and a marked decrease in the growth rate is observed for the component 

under which pre-loading in uniaxial tension was made, 
1

D . These two in-plane 

components tend to achieve the same value, in accordance with the equality of 

corresponding plastic strains rates, proper of an equibiaxial stretching state. The 

exponential evolution of the component 
3

D  promotes a rapid material degradation and 

this component quickly reaches the condition for the macro-crack initiation and failure 

is detected. Therefore, computed critical strains will be largely dependent on the strain 

and damage state reached in the preloading path. In the linear strain path case, 

straining starts from an undeformed and undamaged material. Damage will evolve only 

after damage threshold is reached and his evolution rate will be proportional to the 

stress triaxiality for the specific loading path, which is lower than the value for 

equibiaxial stretching. This will lead to lower values of accumulated damage and, by its 

turn, to higher computed critical strains to failure, when compared to the ones 

obtained for a bilinear combination.  
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7.6 Concluding remarks 

A model for necking and fracture initiation prediction was presented in this 

chapter. It is based on an integrated approach between the Modified Maximum Force 

criterion (MMFC) proposed by Hora et al. [1996] and the anisotropic damage evolution 

law proposed by Lemaitre et al. [2000a]. The main advantage of the proposed criterion 

is the fact that it allows the prediction of necking and fracture initiation, especially 

important in materials that may suffer abrupt fracture before any visible localized 

necking, raising questions in the applicability of the conventional forming limit curve. 

Another enhancement provided by the proposed model is the improved necking 

prediction, shown by the obtained good correlation between experimental FLDs and 

the predicted forming limits using the necking criterion coupled with anisotropic 

damage. This improvement can be related with the distinct damage evolution on 

different directions that promotes the appearance of an effective triaxial stress state 

and the correction of the functions in the MMFC model, which are responsible for the 

delay effect in the necking criterion, allowing the additional hardening before necking 

process. Besides the additional hardening effect promoted by the increase of damage, 

the softening effect originated by mechanical properties degradation also plays a 

significant role in the analysis of the complex mechanism of triggering localized 

necking. A lowering of forming limits due to the mechanical properties degradation was 

experienced for the bilinear strain path combination composed by equibiaxial stretching 

followed by uniaxial tension, denoting that anisotropic damage introduces a combined 

effect between supplementary hardening and decrease of load-carrying capability into 

the necking criterion. A dependence of the fracture forming limit curve level on the 

strain path evolution was also observed. The fracture forming limit curve calculated for 

a linear strain path evolution presents higher limits strains then the ones calculated for 

the bilinear strain path combinations. The higher dissimilarity is observed for the 

combination of uniaxial tension followed by biaxial stretching, explained by the 

imposed damage growth in the second deformation trajectory that imposes a more 

drastic reduction of the mechanical behaviour of the material, leading to a premature 

failure. The validation of this coupled approach using other materials and the 

evaluation of the model’s performance on necking prediction under linear and non-

linear strain paths evolutions is one of the future developments that will be analysed as 

well as the further investigation of the dependence of fracture strain limits on the strain 

path evolution. 
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8. CONCLUSION AND FINAL 

REMARKS 

Some global conclusions of this work are presented. 

Additionally, it is also referred some future work perspectives. 

8.1 General conclusions 

The interest shown by industry in the use of numerical tools, especially by the 

automotive industry, is high. The main purpose of the use of these numerical tools in 

the simulation of sheet metal forming is to accurately predict the occurrence of any 

defects in the stamped component during its design and development phases. However, 

due to the high complexity, nonlinearity and interactivity of several phenomena 

involved in the deep drawing process, the numerical results may not match the 

experimentally observed behaviour. In the last decades, there has been a significant 

evolution of these numerical tools in order to reproduce in a reliable manner, the 

industrial reality. The introduction of new constitutive models for mechanical 

characterization, the growing desire to provide results in reasonable time from an 

industrial and economical standpoint, the correct prediction of residual stresses, the 

effects of springback and its compensation have been subject of intense research to 

meet the requirements placed by industry. One of the defects that can occur during a 

sheet metal forming operation is the rupture occurrence, which has assumed a 

prominent position in recent years. Usually, this phenomenon is preceded by the 

occurrence of a plastic instability, a localized neck, which is taken as the criterion for 

the rejection of stamped parts. Traditionally, the prediction of necking is performed by 

the analysis of the deformations of the final stamped part, comparing the achieved 

strain values with the forming limit curve, an experimental (or theoretical) curve that 

defines the limiting values for necking, according to the deformation trajectory 

undergone by each material point. However, the usage of new materials in sheet metal 
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forming has brought new challenges to the stamping industry and to the numerical 

simulation of metal forming processes. These new materials are characterized by higher 

values of tensile strength but present lower ductility when compared to the so-called 

traditional materials. This lower ductility makes these materials particularly prone to 

breakage during processing, without any prior indication of necking occurrence. This 

unexpected fracture raises questions on the use of the conventional forming limit 

diagram concept to evaluate the formability of these materials and has promoted the 

need to introduce new failure criteria to predict such behaviour. Current trend is to 

replace the forming limit diagram concept by the use of theories that introduce ductile 

failure indicators based on the definition of an internal variable that represents the 

state and evolution of internal degradation of the mechanical properties of the material. 

The work presented in this thesis follows this trend and interest shown by industry 

on such theories and aims to contribute to the improvement of numerical codes in 

determining fracture in sheet metal forming by adopting ductile damage models, within 

the framework of Continuum Damage Mechanics theory. For such purpose, the basic 

concepts of the Continuum Damage Mechanics theory were introduced and, using a 

scalar definition for the damage variable, a damage model including anisotropic flow 

behaviour was formulated. For the implementation of the devised model, two 

algorithms were proposed: a fully coupled algorithm, considering a strong link between 

the two dissipative phenomena, plasticity and damage, and a partially coupled 

algorithm, in which, although with damaging phenomenon affecting plasticity, the two 

phenomena are treated and integrated independently. In the latter algorithm, an 

additional enhancement to the original theory was introduced: the micro-crack closure 

effect, included in the damage evolution law by means of a tensile / compressive split of 

the stress tensor. This effect assumes that, when subjected to compressive stress states, 

micro-cracks may partially close and, thus, limits the damage growth under such 

conditions. This unilateral effect on damage growth has proved to be important in the 

deep drawing of a cylindrical cup, capturing the observed experimental behaviour. Also, 

a comparison between the fully coupled and partially coupled strategies performed in 

this benchmark has shown that the partial coupled algorithm can be adopted in explicit 

time integration codes for failure predictions in metal forming operations without a 

significant loss in the accuracy of the evolution of progressive plastic softening. 

A higher order definition for the damage variable, namely a second order tensor 

definition, was further presented in order to describe the directional behaviour of micro-

cracking, inevitably guided by the directions of loading and plastic flow. Analogously to 

the isotropic scalar damage variable, a model accounting for anisotropic plastic 

behaviour that characterizes the rolled sheet metals was formulated for the second-

order damage definition and the corresponding integration algorithm addressed.  
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Concerning the comparison between the scalar and tensorial damage definitions, 

no significant differences were found in the predicted punch displacements to failure 

provided by the two approaches. For the presented numerical cases and using the 

considered aluminium alloy, one may conclude that the adoption of an isotropic scalar 

definition for damage can provide satisfactory failure predictions in accordance with 

experimental results, thus introducing a lower complexity in the constitutive model 

and, consequently, reducing computation time. However, this conclusion cannot be 

directly extrapolated to other sheet materials and more complex stamping cases, 

involving highly non-proportional loadings. A further study using more complicated 

examples and other sheet materials should be conducted. 

A huge influence of the tribological conditions established between the blank and 

the active tool surfaces on the predicted failure site and computed critical punch 

displacements was revealed by the numerical examples. It was found that a small 

change in the friction coefficient can lead to unreliable failure predictions delivered by 

the implemented damage models. So, one may remark that it is crucial to impose 

higher requirements in the contact with friction modelling in order to obtain reliable 

failure predictions. These requirements may include the formulation of new frictional 

constitutive equations, the adoption of variable friction coefficients (dependent upon 

parameters such as pressure, sliding speed, temperature, slip direction, roughness 

evolution, etc.) and the development of experimental techniques that allow a reliable 

and systematic characterization of the tribological behaviour, taking into account the 

interactivity between the numerous phenomena involved in the sheet-tool contact. 

The failure prediction ability, by itself, does not fulfil all the necessary 

requirements for formability assessment in sheet metal forming operations. A general 

formability criterion should also address the determination of the amount of useful 

deformation that can be imposed to a part before the occurrence of localized necking. 

With such purpose, an integrated approach between a plastic instability model and the 

anisotropic damage model was proposed. The new approach allows the prediction of the 

two last phases of plastic deformation, necking and failure, and is capable to determine 

which phase represents the most restrictive event in a sheet metal forming operation. 

Using the proposed methodology, numerical results have highlighted the importance of 

the coupled approach due to the occurrence of fracture before necking near equibiaxial 

stretching strain path. Also, results have shown that the introduction of distinctive 

damage evolutions in the plastic instability criterion produces improved necking 

predictions, following more closely the experimental tendency, due to the appearance of 

an effective triaxial stress state and correction of variables of the necking criterion that 

triggers an additional hardening effect.  
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8.2 Future work 

Some perspectives concerning the continuity of the present work and potential topics 

for future research are the following: 

• Extensive experimental program for damage models validation and 

parameters determination. An important effort should be devoted in the 

development of a methodology for identification of material parameters to 

be used in such models, throughout inverse techniques and minimization 

procedures to fully characterize the developed models and determine forming 

limit behaviour for different materials; 

• Enhancement of local continuum theories by adopting scalar and high order 

regularization formulations. This is an ongoing research work that is being 

carried out within the group the author is involved with. However, a high 

order gradient non-local model for the anisotropic damage model is still 

needed to overcome its pathological effect of discretization dependence in 

size and orientation; 

• Development and application of more advanced friction models (with 

possible introduction of dissipative and damaging behaviour), to improve 

contact-friction modelling and treatment; 

• Fully thermo-mechanical analysis of forming operations and extension of the 

constitutive models by using more advanced plasticity models and including 

strain rate sensitivity and temperature dependency parameters towards the 

increase of accuracy in failure and necking predictions. 
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NOTATION, NOMENCLATURE AND 

ABBREVIATIONS 

List of symbols 

0    - Second order null tensor 

A    - Cross-sectional area 

0
A    - Initial cross-sectional area 

D
A    - Total area of defects in A  

A�    - Effective (resistant) cross-sectional area 

A    - Generic set of thermodynamical forces 

B    - Generic body 

∂B    - Boundary of B  

C    - Right Cauchy-Green strain tensor 

C ,ε
0
,n   - Swift law parameters (isotropic hardening) 

d    - Rate of deformation tensor 
ed    - Elastic rate of deformation tensor 
ed    - Plastic rate of deformation tensor 

D    - Scalar damage 

C
D    - Critical damage value 

H
D    - Hydrostatic damage 

D    - Non-local damage variable 

D    - Second order damage tensor 

D
1
,D

2
,D

3
  - Principal damage values 

e    - Specific internal energy 

E    - Young modulus 

E�    - Effective Young modulus 

E    - Linear elasticity tensor 

E�    - Effective linear elasticity tensor 
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f
0
   - Imperfection factor (M-K model) 

F    - Generic uniaxial force 

f    - Body force vector field 

F    - Deformation gradient 
eF    - Elastic deformation gradient 
pF    - Plastic deformation gradient 

F ,G ,H ,L M ,N  - Hill48 criterion anisotropic parameters 

G    - Shear modulus or modulus of rigidity 

g    - Temperature gradient 

C
h    - Micro-crack closure parameter 

H '    - Hardening modulus 

H    - Second order damage effect tensor 

I    - Second order identity tensor 

I    - Fourth order identity tensor 

I
1
,I

2
,I

3
  - First, second and third invariant of Cauchy stress tensor σ  

J    - Jacobian of the deformation map 

J    - Jacobian matrix 

J
1
,J

2
,J

3
  - First, second and third invariant of deviatoric stress tensor s  

k    - Risk factor (MMFC model) 

K ,n    - Power law parameters (isotropic hardening) 

l    - Length scale value, Generic length 

l    - Velocity gradient tensor 
el    - Elastic velocity gradient tensor 
pl    - Elastic velocity gradient tensor 

L    - Fourth order damage effect tensor 

M    - Consistent mass matrix 

M    - Hill’48 criterion fourth order operator 

n    - Generic normal vector 

N    - Plastic flow vector 

N�    - Effective plastic flow vector 

p    - Pressure 

p    - Generic material point 

P    - First Piola-Kirchhoff stress tensor 

q    - Heat flux vector field 

Q    - Generic orthogonal or rotation tensor 

Q    - Fourth order tensor operator (anisotropic damage model) 

r  - Density of heat production; isotropic hardening internal variable 

R  - Isotropic hardening associated variable 

R�    - Effective isotropic hardening associated variable 

R    - Rotation tensor obtained from the polar decomposition of F  
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r
0
,r

45
,r

90
  - Lankford anisotropic coefficients 

sat
R ,

R
C   - Voce law parameters (isotropic hardening) 

s    - Exponent parameter from Lemaitre’s damage evolution law; entropy 

S    - Denominator parameter from Lemaitre’s damage evolution law 

s    - Deviatoric stress tensor 

S    - Second Piola-Kirchhoff stress tensor 

S    - Generic surface 

t    - Generic time (instant), Generic thickness 

T    - Temperature 

X
T    - Stress triaxiality 

t    - Surface traction 

v    - Velocity field 

u    - Displacement vector field 

U    - Right stretch tensor 

U    - Space of vectors in the three-dimensional Euclidean space 

v    - Velocity field 

V    - Left stretch tensor 
eV    - Elastic left stretch tensor 
pV    - Plastic left stretch tensor 

V    - Space of virtual displacements 
pW    - Plastic Work 
eW    - Elastic Work 

w    - Generic width 

w    - Continuum spin or vorticity tensor 

x    - Generic point in space 

X    - Back stress tensor 

X�    - Effective back stress tensor 

Y    - Strain energy release rate 

Y    - Effective elastic energy density 

Y    - Elastic energy density tensor 

Z    - Necking parameter 

α    - Stress ratio 

α    - Generic set of internal state variables 

β    - Strain ratio 

β    - Back-strain tensor 

δ    - Infinitesimal operator for iterative variations 

Δ    - Finite operator for incremental variations 

ε    - Uniaxial strain 
pε    - Equivalent plastic strain 
p
D
ε    - Damage threshold accumulated plastic strain 
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ε    - Generic strain tensor 
eε    - Elastic strain tensor 
pε    - Plastic strain tensor 
pε
1

, pε
2

, pε
3

  - Principal strain values of plastic strain tensor 

ϕ    - Deformation map 

Φ    - Yield function 

γ    - Consistence parameter; plastic multiplier 

η    - Hydrostatic sensitivity damage parameter 

η    - Virtual displacement field 

λ ,μ    - Lamé coefficients 

μ    - Friction coefficient 

ν    - Poisson ratio 

θ    - Temperature, Rotation angle (MMFC) 

ρ    - Density 

σ    - Uniaxial stress 

σ�    - Uniaxial effective stress 

σ    - Equivalent stress 

�σ    - Effective equivalent stress 

σ*    - Damage equivalent stress 

H
σ    - Hydrostatic stress 

Y
σ

0
   - Initial yield stress 

Y
σ    - Yield stress 

σ
1
,σ

2
,σ

3
  - Principal stress values of Cauchy stress tensor 

�σ
1
, �σ

2
, �σ

3
  - Principal stress values of effective stress tensor 

σ    - Cauchy stress tensor 

�σ    - Effective stress tensor 
+σ , −σ   - Positive and negative components of stress tensor σ  

τ    - Kirchhoff stress tensor 

ω    - Material integrity 

Ω    - Angular velocity tensor 

Ξ    - Dissipation potential 

ψ    - Helmholtz specific free energy, band orientation (M-K model) 
edψ    - Elastic-damage component of Helmholtz specific free energy 
pψ    - Plastic component of Helmholtz specific free energy 

0
ψ    - Initial band orientation (M-K model) 

Ψ    - Dissipation potential 
dΨ    - Damage dissipation potential 
pΨ    - Plastic dissipation potential 
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List of abbreviations 

3DS  - Acronym of “Digital Die Design System” 

AA  - Aluminium Alloy 

AD  - Anisotropic Damage model 

AHSS  - Advanced High Strength Steel 

BS  - Equibiaxial Stretching strain path 

BS+UT - Bilinear strain path evolution composed by Equibiaxial Stretching followed by 

Uniaxial Tension 

CAD  - Computer-Aided Design 

CAE  - Computer-Aided Engineering 

CAM  - Computer-Aided Manufacturing 

CDM  - Continuous Damage Mechanics 

DOF  - Numerical model Degrees Of Freedom 

DP  - Dual Phase steel 

eMMFC - Enhanced Modified Maximum Force Criterion 

EMFC  - Extended Maximum Force Criterion 

FEM  - Finite Element Method 

FFLC  - Fracture Forming Limit Curve 

FFLD  - Fracture Forming Limit Diagram 

FLC  - Forming Limit Curve 

FLD  - Forming Limit Diagram 

FLD-T  - Temperature dependent Forming Limit Diagram 

GTN  - Gurson-Tvergaard-Needleman damage model 

Hill48  - Hill 1948 yield criterion 

Hill79  - Hill 1979 yield criterion 

Hill93  - Hill 1993 yield criterion 

HSS  - Conventional High Strength Steel 

IBVP  - Initial Boundary Value Problem 

ID  - Isotropic Damage model 

J-G  - Jones-Gillis theory 

LHS  - Left Hand Side of Forming Limit Diagram (drawing zone) 
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