
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Generic patient search mechanism for
ALERT R© applications

Fábio Daniel Pinto de Oliveira

Report of Project

Master in Informatics and Computing Engineering

Supervisor: Maria Teresa Galvão Dias (PhD)

2008, July

c© Fábio Daniel Pinto de Oliveira, 2008

Generic patient search mechanism for ALERT R©

applications

Fábio Daniel Pinto de Oliveira

Report of Project

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: Jorge Manuel Gomes Barbosa (PhD)

External Examiner: José Luis Oliveira (PhD)

Internal Examiner: Maria Teresa Galvão Dias (PhD)

31st July, 2008

Agreement

In accordance with the terms of the internship protocol and the confidentiality agreement
executed with ALERT Life Sciences Computing, S.A. (”ALERT”), this report is confiden-
tial and may contain references to inventions, know-how, drawings, computer software,
trade secrets, products, formulas, methods, plans, specifications, projects, data or works
protected by ALERT’s industrial and/or intellectual property rights. This report may be
used solely for research and educational purposes. Any other kind of use requires prior
written consent from ALERT.

i

ii

Resumo

Num ambiente clı́nico é crı́tico que o sistema de informação que o suporte tenha tempos de
resposta curtos e ainda assim disponibilize informação relevante. No sistema ALERT R©,
desenvolvido pela ALERT Life Sciences Computing, S.A. (ALERT LSC), isto é garantido
pela integração dos vários fluxos de tarefas do pessoal clı́nico na aplicação. No entanto,
com tão grande quantidade de informação crı́tica guardada na base de dados é determi-
nante a existência de uma ferramenta que permita pesquisá-la garantindo mesmo assim
um tempo de resposta curto.

Num sistema com as caracterı́sticas do ALERT R©, a performance é um assunto a ter em
grande conta, principalmente com a carga a que a base de dados é sujeita. A grande quan-
tidade de dados a ser comunicada a cada momento para os vários terminais disponı́veis
nas instituições clı́nicas com este sistema, o facto de nenhum dado ser apagado e de ainda
estes poderem ser apresentados em várias lı́nguas são pontos que contribuem para uma
enorme carga de trabalho no servidor, principalmente a base de dados.

O projecto apresentado neste relatório tem como objectivo melhorar a performance
da ferramenta de pesquisa de pacientes do ALERT R©, uma ferramenta de pesquisa com
critérios disseminada pela maioria dos produtos clı́nicos ALERT R©. Para além da per-
formance é também desejado que a solução encontrada seja flexı́vel o suficiente para o
modelo de dados diferenciado que existe entre os vários produtos.

O sistema apresenta uma arquitectura de três camadas: Flash na interface com o uti-
lizador, Java na camada intermédia e Oracle na base de dados. Esta arquitectura permite
ter quase toda a lógica de negócio encerrada na base de dados, óptimo para um desen-
volvimento mais ágil e com equipas mais multidisciplinares. É então nesta camada que
estão organizadas, por pacotes PL/SQL, as funções que constituem a camada de acesso a
dados.

O levantamento de requisitos mostrou que no que diz respeito aos requisitos fun-
cionais, a ferramenta já os respeitava de forma completa, estando os problemas concentra-
dos na performance e na sua manutenção. O código SQL Dinâmico, usado para permitir
a construção dinâmica das interrogações das pesquisas, torna o código mais ilegı́vel pois
este não pode ser analisado para respeitar o estilo usado pelas melhores práticas instituı́das
na ALERT LSC nem os seus erros verificados no momento da compilação. Outro ponto
que prejudica a manutenção desta ferramenta é a não reutilização de código entre as várias
pesquisas já implementadas.

Durante o estudo e a pesquisa realizados para este projecto algumas abordagens foram
encontradas e avaliadas para dar resposta ao problema. A primeira consistia em encap-
sular o código SQL usado para a pesquisa num modelo que permitia a integração da
contagem do número de resultados numa só pesquisa evitando a repetição de trabalho

iii

para obter este número. No entanto o modelo era muito complexo, o que aliado ao uso de
código SQL Dinâmico tornaria a manutenção da aplicação ainda mais difı́cil.

A segunda abordagem era mais exótica, recorrendo a tecnologias muito recentes como
ı́ndices de texto Oracle Text indexando várias colunas de uma materialized view que rep-
resenta a pesquisa pretendida. Apesar de esta solução permitir a cache de resultados e uma
maior liberdade na criação de critérios graças à sintaxe do Oracle Text, o tempo passado a
refrescar as materialized views e o ı́ndice de texto seria demasiado para um ambiente tão
volátil como o da aplicação ALERT R©.

A terceira abordagem revelou ser a mais flexı́vel e consistente. Recorrendo a estru-
turas de dados PL/SQL para guardar os dados vindos da base de dados antes de efectuar
quaisquer cálculos sobre eles, esta solução permitia que nenhum esforço de cálculo fosse
desperdiçado. Com os dados em contexto PL/SQL, as operações realizadas sobre estes
não iriam sofrer com a troca de contexto que normalmente ocorre quando se chamam
funções PL/SQL dentro de interrogações SQL e que trazem sempre alguma perda de per-
formance.

Escolhida a abordagem, foram adicionadas algumas soluções extra para aumentar a
segurança e a modularidade tais como o uso de variáveis de contexto, tanto para introdução
dos critérios do utilizador tanto como para passar parâmetros para dentro de vistas, cri-
adas para conter toda a lógica da pesquisa e assim abstraindo o acesso a dados do resto
do processamento. Este encapsulamento também permitiu reduzir a quantidade de código
SQL Dinâmico usado, elevando a legibilidade do código e a facilitando a sua manutenção.

Testes foram feitos à performance e à facilidade da manutenção. Os testes de per-
formance revelam que a solução escolhida é mais rápida do que a anterior e que o uso
de materialized views aumentaria significativamente a sua escalabilidade. No que diz re-
speito à manutenção, a reutilização de código aliada à redução de código SQL Dinâmico
e à separação da lógica de acesso a dados das questões de formatação dos dados permite
uma melhor integração na aplicação e um acréscimo no ciclo de vida útil desta ferramenta.

A solução encontrada é rápida, mais escalável e flexı́vel à adição de novas funcionali-
dades. Isto permite que se possam imaginar desde já novos melhoramentos a desenvolver
para esta ferramenta. Estes podem ir desde a criação de novos tipos de entrada de dados,
à criação automática de documentação e código ou mesmo integrando uma ferramenta
deste tipo em todas as grelhas de pacientes da aplicação para permitir pesquisas mais
rápidas e mais próximas do utilizador.

iv

Abstract

In a clinical environment little response time and relevant information delivery are critical
subjects. In ALERT R©, developed by ALERT Life Sciences Computing, S.A. (ALERT
LSC), this is guaranteed by integrating main clinical workflow tasks into the application.
However, with such an amount of critical information stored it is important to have a tool
that enables to search for it and still guaranteeing a short response time.

In a system like ALERT R©, performance is a matter of great importance, mainly be-
cause of the load on the database. The quantity of information being traded to the several
terminals, the fact that no data is deleted from the database and that all text data can be
shown in several languages are very important reasons for the enormous work load on the
server, mainly in the database.

This project has the following goal: increase the patients search tool performance.
This tool enables criteria based search and it is already disseminated through several
ALERT R© products. Besides the performance improvement, it is also desired that the
solution found is flexible enough for the differentiate data model that exists between each
product.

ALERT R© system has a three layer architecture: Flash for the user interface, Java
in the intermediate layer and Oracle for the database. This architecture allows having
almost all the business logic within the database, great for a more agile development with
multidisciplinary teams. It is in this layer that all the data access layer functions are. They
are organized by PL/SQL packages.

Requirements specification revealed that the tool had already all the functional re-
quirements fully addressed being all the problems on the performance and maintainabil-
ity. Using Dynamic SQL code made code unreadable because it couldn’t be ‘beautified’
and its errors could only be detected at runtime. Maintainability also suffered from little
code reuse through the multiple searches already developed.

During the research some approaches were designed to face the problem. The first
one consisted in encapsulating query code inside a given model that allowed to integrate
the results counting in a sole search preventing from repeating any effort. But the query
model was too complex and would turn maintenance tasks even more difficult.

Second approach was a more exotic one, making use of very recent technologies like
Oracle Text indexes to index multiple columns from a materialized view, representing the
desired search. Although this approach would allow results caching and more freedom on
criteria creating due to Oracle Text syntax, materialized views refresh and index rebuild
times wouldn’t work for a volatile environment like ALERT R©.

The last approach revealed to be the most flexible and strong. Recurring to PL/SQL
data structures to store data from the database after any calculation allowed to seize any

v

calculation made. With data being in PL/SQL context any calculation over them would
not suffer from context switching preventing some performance loss.

After the approach was chosen some additional solutions were added to improve se-
curity and modularity like context variables use, both for entered criteria and for passing
parameters to a view hiding data access details. This encapsulation also reduces Dynamic
SQL code improving code legibility and also maintainability.

Tests were runt to performance and to maintainability. Performance tests revealed
that the final solution is faster and that the use of materialized views would increase its
scalability. For what concerns to maintenance, reusing code, reducing Dynamic SQL
code and data access details encapsulation allowed to a better tool integration and a larger
life cycle.

This solution is fast, more scalable and flexible to new functionalities addition. This
allows thinking of new improvements for this tool: new criteria types; automatic docu-
mentation/code; or even integrating a tool like this in all ALERT R© patients grids to enable
quicker searches.

vi

Acknowledgements

I would like to thank my parents, Orlando and Carolina, and my girlfriend, Leonor, for
their support during this project development and for understanding my commitment to
this even through the hard times that passed.

I would also like to thank all my friends and colleagues, specially Diogo, Nelson,
Maia, Bruno, Gonçalo and David, who also developed their projects in ALERT LSC and
shared their thoughts, smiles or laughs, Eiras and Brito for their precious help and patience
and Neves who always had the right words for me.

I must not forget to thank José Silva, my manager, who was always able to get me the
help I need for my research and development and for being always by my side. I would
also like to thank my supervisor, Maria Teresa Galvão Dias, for being so patient with me
and for being able to make me look on the practical side of things.

Finally, I’d like to thank ALERT LSC, in the person of its human resources director
Maria João Oliveira and FEUP, in the persons of Raúl Moreira Vidal and António Augusto
de Sousa for having made this possible.

The author

vii

viii

“Nothing in life is to be feared. It is only to be understood.”

Marie Curie

ix

x

Contents

1 Introduction 1
1.1 Problem Contextualization . 1
1.2 Project . 2
1.3 Objectives . 2
1.4 Report Structure . 3

2 State of the Art 5
2.1 Technological Revision - PL/SQL Developer 5
2.2 Oracle Text . 6
2.3 Concatenated Datastore . 7
2.4 Oracle Optimization Techniques . 7

2.4.1 Pre-Aknowledgements . 8
2.4.2 PL/SQL Optimization . 11

2.5 Conclusions . 11

3 Problem Analysis 13
3.1 General Architecture/Design . 13

3.1.1 Overview . 13
3.1.2 Database . 15
3.1.3 Patients Search Tool Former State 17

3.2 Requirements Specification for a new Patients Search Approach 23
3.2.1 Functional Requirements . 23
3.2.2 Non-Functional Requirements 24
3.2.3 Design Requirements . 24
3.2.4 Former State Requirements Review 25

3.3 Patients Search Approaches . 26
3.3.1 1st Approach . 26
3.3.2 2nd Approach . 27
3.3.3 3rd Approach . 27
3.3.4 Comparison . 28

3.4 Conclusions . 29

4 Search Screens 31
4.1 Search Screen Architecture . 31

4.1.1 Overview . 31
4.1.2 Data Model . 32
4.1.3 General Function . 33

xi

CONTENTS

4.1.4 Parameterized Views . 35
4.1.5 Criteria . 35

4.2 Development . 35
4.3 Conclusions . 36

5 Solution Assessment 37
5.1 Performance . 37

5.1.1 Methodology . 37
5.1.2 Tests . 37
5.1.3 Results . 38

5.2 Maintainability . 38

6 Conclusions and Future Work 41
6.1 Results . 41
6.2 Project Overview and Highlights . 42
6.3 Future Work . 42

6.3.1 Extending Criteria Types . 42
6.3.2 Improving Modularity . 43
6.3.3 Self Documenting Searches . 43
6.3.4 New Scopes For Patients Search 43

References 46

xii

List of Figures

3.1 ALERT R© Network Architecture . 14
3.2 Grid Example . 15
3.3 Layered Architecture . 16
3.4 Search Button Localization . 18
3.5 Patients Search Use Case . 19
3.6 Activity Diagram . 20
3.7 Communication Between Components 21
3.8 Former Data Model . 22

4.1 Function Structure . 32
4.2 Classes Diagram for the Search . 33
4.3 Relational Diagram for the Search . 34
4.4 Communication Diagram . 34

xiii

LIST OF FIGURES

xiv

List of Tables

3.1 Functional Requirements Table . 23
3.2 Non-Functional Requirements Table . 24
3.3 Design Requirements Table . 24
3.4 Functional Requirements Review for Patients Search Tool Former State . 25
3.5 Non-Functional Requirements Review for Patients Search Tool Former

State . 25
3.6 Design Requirements Review for Patients Search Tool Former State . . . 25
3.7 Non-Functional Requirements Review for 1st approach 26
3.8 Design Requirements Review for 1st approach 26
3.9 Non-Functional Requirements Review for 2nd approach 27
3.10 Design Requirements Review for 2nd approach 28
3.11 Non-Functional Requirements Review for 3rd approach 29
3.12 Design Requirements Review for 3rd approach 29
3.13 Non-Functional Requirements Comparison 29
3.14 Design Requirements Comparison . 29

5.1 Tests Time Measurements . 38
5.2 Performance Improvements Comparisons 38

xv

LIST OF TABLES

xvi

Glossary

DBMS Data Base Management System
IDE Integrated Development Environment
PL/SQL Procedural Language/Structured Query Language
SGA System Global Area
SQL Structured Query Language
URL Uniform Resource Locator
XML eXtensible Markup Language

xvii

Glossary

xviii

Chapter 1

Introduction

“Information only exists when it reaches someone who understands it.”

In an information system it is of utter importance that the data is available to the person
who needs it when he needs it. Today, though, we cannot speak of information systems
without talking of computer information systems and information technology.

These systems make use of current technology to store, deliver and process data in
much faster, more complex way and more reliable way than paper based information
systems.

Computer information systems can find in databases (more commonly relational databases)
a great tool to store, deliver and also process data. The developments in database related
areas in the latest years allowed users 1) to have a more comprehensive search language
(or query language, SQL, which is the international standard for relational databases lan-
guage [JCC05]); 2) new semantic search capabilities and 3) more performance tuning
solutions.

So, when we think of computer information systems and their databases we need to
think of the way their users can search information. Here we need to take into consid-
eration the user needs in terms of data format and response time. Information can never
come to exist if these needs are not respected. We can never call information neither to
data which we don’t understand nor to outdated data.

1.1 Problem Contextualization

ALERT Life Sciences Computing, S.A. (ALERT LSC) is a Portuguese company fully ded-
icated to the development of clinical software solutions. Created in 1999 under the name
MNI- Médicos Na Internet, Saúde na Internet, S.A., ALERT LSC developed its own suite
of healthcare solutions, ALERT R©, adopted by 8,575 institutions all around the world.

1

Introduction

ALERT LSC’s success comes from the innovative nature of its products and its user base
stands over 35,000 certified trained users [ALE08], most of them clinical personnel.

Its paper-free philosophy simplifies the healthcare process but also means that it must
stand over a reliable system with complete data availability. Due to its clinical nature the
system must also have great responsiveness and be designed to give its users the most
relevant information for its current activity. This means that all the healthcare process
workflow must be present in ALERT R© products.

With such a great amount of data a search tool is of great relevance allowing users to
search within the database for the information they need. A tool like this has to respect
the same requirements above: responsiveness, availability and reliability.

The ALERT R© PAPER FREE HOSPITAL suite contains 8 products supported by the
same database in each institution. This represents an enormous amount of data circulating
between clients and the server at each moment. Plus, we should also consider that the
business logic is as well inside the database. The combination of these factors have put
the performance on a fragile situation.

1.2 Project

Every ALERT R© application counts with a patients/episodes search area where users can
specify multiple criteria to filter the results. This tool was differently programmed be-
tween products leading to bad maintainability and bad performance also.

The proposal was to optimize and modularize the ALERT R© search infrastructure so
as to allow every product to have it integrated into it.

The project here presented was proposed by ALERT LSC to Fábio Daniel Pinto de
Oliveira in the context of his course final project. In order to do that, he was allocated
in ALERT R© EDIS team - ALERT R© emergency department product - because of some
particular characteristics:

• It is one of the most used products and it is also one of the most affected by the
high database load since it integrates data from almost all of the other ALERT R©

products;

• Patients search has already got some development on it since it’s a critical point in
this product giving a good starting point to this project. However, performance still
had a long way to go to be satisfactory.

Despite these facts, this search tool is present in almost all ALERT R© clinical products.

1.3 Objectives

The project objectives are listed next:

2

Introduction

• To allow the system to choose the best way to access information based on user
criteria leading to maximum optimization;

• To achieve high performance;

• To achieve high security;

• To achieve high reliability.

This shall be done making use of the more innovative means available that guarantees
data base efficiency and high performance. This includes PL/SQL code, indexes, views,
materialized views and any other objects that can help in this task.

The project complexity lays on differentiate data model, sometimes between different
products and on the complex algorithms behind the data base engine.

1.4 Report Structure

This report counts with 6 chapters being the first chapter this one. On chapter 2 it is
possible to find the state of the art with a list of development tools/methodologies. It is
possible to read through some findings and useful concepts for the global report under-
standing. Chapter 3 describes the analysis made for this project in search for the better
solution from three different approaches. On chapter 4 a more detailed description of the
chosen solution will be available as well as some development details. The solution as-
sessment for performance and maintainability will be made on chapter 5. The report ends
on chapter 6, Conclusions, giving an overview of the project, detailing on its highlights
and previewing some possible future developments.

3

Introduction

4

Chapter 2

State of the Art

In this chapter will be presented the state of the art and the development methodologies
used throughout the research and development of this project.

There are core concepts needed to understand the rest of the report and the presented
ideas.

2.1 Technological Revision - PL/SQL Developer

This section serves to show the main tool used through the development of this project.
As all the project was done on the database layer of the application a single tool was used
for all the development and study.

PL/SQL Developer is an IDE developed by AllRound Automations [AA08] for the
development, testing, debugging and Oracle database code optimization. This tool allows
creating and editing every Oracle database object i.e.: procedures, functions, packages,
triggers, views, tables, indexes.

It is possible to highlight some important features:

• Breakpoint debugging;

• Code complete;

• Command line;

• Context help;

• Database objects navigation;

• Explain plan1 window;
1Explain plan is going to be explained below.

5

State of the Art

• Multi-session environment;

• PL/SQL code beautifier2;

• Plug-in architecture;

• Query constructor;

• Visual schema diagrams.

For the project performance component some specific features were used. These will
be reviewed next.

PL/SQL Profiler

The PL/SQL Profiler tool is based on the DBMS PROFILER [ORA03] package intro-
duced in Oracle’s DBMS 8i version. This package allows profiling PL/SQL code for
detecting bottlenecks retrieving the number of times that each line was runt and the time
statistics for each line.

This PL/SQL Developer tool is a graphical tool for the DBMS PROFILER package.
Here it is possible to see the code, line by line and watch the associated statistics. It is
also possible to filter code by package. Time spent in each code is also displayed in bar
style to help detecting the lines that took most time.

Explain Plan

Explain plan [Ora02c] is a SQL command that shows the plan made by the Query Op-
timizer to run the desired query listing the accessed tables, the join methods and a cost
for each operation. This is the cost used by the optimizer to choose the best plan to run a
query, choosing the plan with the lower cost.

PL/SQL Developer has also a visual interface to this where it is possible to see the
various join operations in tree form and its associated costs and join methods.

2.2 Oracle Text

Formerly known as Intermedia, Oracle Text [Ora07] uses standard SQL to allow searching
for keywords in a great amount of text. Oracle Text indexes text in tables and files so that
it is possible to find any keyword in a text in a very fast way.

It then delivers search results in various formats e.g., raw, HTML, PDF. Oracle Text
also supports multiple languages and ranks results by relevance for those languages by ap-
plying some strategies like context search, Boolean operators, pattern matching, HTML/XML

2Beautify is to parse the code to make it look the same by applying the same style.

6

State of the Art

section searching, etc. It already supports meta information indexing for new applications
for a semantic web [W3C01] approach.

Oracle Text has several ways of indexing text [Ora05] depending on the kind of infor-
mation you want to store or the way you want to access it.

2.3 Concatenated Datastore

A Datastore [Ora01b], in Oracle context, is a way of defining how the data is to be indexed
by Oracle Text. This can be used to include XML tags in text or index multiple columns
from a table or multiple tables.

The default datastore is the DIRECT DATASTORE which creates a document for
each row in a single table column. This is the way that text is indexed without specifying
any specific datastore. But when it is needed to search in multiple columns it is better to
have a single index for those columns from a performance point of view [Ora02b]. It is
possible to do this using MULTI COLUMN DATASTORE which creates a document for
each row in multiple columns in a table.

As other indexing methods are available both for indexing data in files or at a URL
there is also a method to create the document to index by defining the procedure that
synthesizes the data called USER DATASTORE.

A useful Datastore created by Roger Ford from Oracle Corporation is the CON-
CATENATED DATASTORE [Ora00a]. This Datastore is a USER DATASTORE that
allows indexing multiple columns in a single table in an Oracle Text index. Each col-
umn can be associated with a XML tag allowing to use the WITHIN operator; it is
possible to index numeric fields and timestamps and do range search on them based
on a Friedman’s [BFM78] algorithm for range searching; it hides the logic to create a
procedure that synthesizes the data; and allows creating a trigger to update the index
whenever any of the selected columns are updated. A performance study of the CON-
CATENATED DATASTORE [Ora00b] reveals the improvements against mixed queries
(queries with Oracle Text indexes and regular indexes) reaching 34 times improvement
on a mixed query with range search.

2.4 Oracle Optimization Techniques

This chapter has the purpose to document some of the ways to develop database applica-
tions with special attention to performance. Those readers without experience on SQL or
PL/SQL language may have some difficulty understanding this particular chapter.

Note that these techniques were learned through on-line documentation, discussions
with colleagues and through Oracle tools to evaluate results.

7

State of the Art

2.4.1 Pre-Aknowledgements

In order to optimize PL/SQL, it is necessary to understand some concepts related to Oracle
and databases in general.

DML, DDL, DCL and SELECT [Kya06]

DML DML means data manipulation language. It includes the following SQL com-
mands: insert, update, delete and merge and allows modifying the table’s content.

DDL DDL means data definition language and its commands embrace create, alter, and
drop allowing to create objects in the database.

DCL DCL means data control language and includes grant and revoke commands. A
DCL command we can define in some ways user’s permissions to execute DML or DDL.

Select is not included in these definitions, since it does not change database status by
itself, it is just a reading command.

Context switching

Inside a typical PL/SQL block it is allowed to query using a simple select. Oracle has
a very modular architecture, so the process executing PL/SQL is usually different from
the one executing SQL. To step the queries SQL commands to another one (DML, DCL,
DDL or select), these two processes have to communicate. This can be made in several
ways, like pipes or shared memory but the creation of a communication channel between
processes and the crossing information has got performance losses. So, in PL/SQL, it is
advisable to minimize the number of SQL commands from a PL/SQL block or PL/SQL
function calls from SQL code. This technique may bring a simpler PL/SQL code [Feu06]
and avoid the accumulation of logic inside the commands SQL, which get more and more
complex.

Cursor

A cursor [HP92] is a data structure which allows the process of multiple rows returned
by a select. A cursor, when declared is associated to a SQL query. In order to read
the cursor’s contents, opening it is needed, as well as reading it row by row and then
close it, so as to allow the server to clean the allocated resources, so the cursor can still
be in the memory. Once it’s opened, it is asked to the database management process to
read the cursor’s result. This process keeps in memory the ActiveSet, which is a data
structure that contains query’s results. An ActiveSet can be iterated row by row and has
information about the type of data of the returning columns. Each fetch from cursor asks

8

State of the Art

the management process to return the actual row of the ActiveSet as well as to point to the
nest row. When it reaches the end of the cursor, further fetches always return NULL for
all the columns and the property %NOTFOUND of the cursor’s variable returns TRUE.
To read exactly one row, it is used select/into which expects just one row to be returned.
If not, it throws an exception. The following code gives an example of the cursor’s use.

Bulk binding

As seen before, cursors can read SQL query’s results row by row which brings to the
application the context switching load and so, performance problems in very concurrency
applications. Bulk binding lets PL/SQL and SQL to exchange a huge amount of rows.
Oracle soon knew this problem and so, in 1997 decided to include in version 8 the possi-
bility to exchange several rows between the two (PL/SQL and database) contexts. There
are two situations to know: carriage of several lines to the database at the same time
and the reading of some Data Base rows to PL/SQL context [Feu06]. The first situation
is done through forall command and the respective DML. Forall allows to look over a
PL/SQL varray or nested table through a cycle, doing a DML command in each iteration.
Varrays and nested tables can be compared to arrays in other programming languages. It
is possible to loop in PL/SQL using loop, but forall is different from for+loop because
forall is a DML itself and is executed differently in the Data Base, so, there is no context
switching in each loop iteration. For Data Base rows reading, there is bulk collect letting
a query result to be in a varray or nested table simultaneously instead of iterating over a
cursor and read ActiveSet row by row. But if it is desirable, it is possible to iterate over
the resulting array or nested table.

SQL Optimizer

Every SQL queries before their execution are evaluated by their structure and by statistics
preserved by the database about its tables. From this evaluation results an execution
plan [MG02]. The used tools have functionalities such as execution plan analysis of a
specific query. This execution plan parts in several algorithms to look into the tables and
put together the intermediate results. Typical row search algorithms on tables are, by
decreasing performance order, index, unique scan, index range scan, index fast full scan,
index full scan and table access full. Depending on this algorithms, there are other ones to
put together the resulting table rows like hash join, nested loops or merge join Cartesian.
Depending on the amount of returning data, each one of this algorithms has different
performances, The fastest, based on indexes are really efficient when it’s desirable to read
few lines or access by primary key. However, for a huge amount of data, these algorithms
seriously degrade performance, once they use complex data structure, such as B-trees.
So, in this cases, it is advisable to use table access full which has the complexity O(N),

9

State of the Art

being N the number of lines in the table. The algorithms to joint intermediate results are
not always controllable because they directly depend of the number of returned rows and
the previous used algorithm to obtain them. These amount of intermediate data contain
structure and context information that is necessary to query evaluation.

Views & Materialized Views

View A view is a type of an object which only contains a generic SQL query without
variable dependencies and they can be used transparently in other SQL query like if
they were a table. A view allows putting together all the code so that reutilization is
easier. When a view’s column is not used, the SQL optimizer knows how to ignore
that column and all the necessary calculation algorithms;

Materialized View [Bur02] [Ora02a] A materialized view is used in the same way as a
view but has got a different behavior. While a view is evaluated through execution
time, a materialized view is pre calculated and its results are recorded in a cache,
which is, internally, another table. But to do this pre-calculation, the materialized
view has to be explicitly refreshed by package dbms mview methods which is part
of an Oracle database installation by default. A materialized view can be also be
refreshed periodically and automatically or when a commit is executed, changing
core tables. Materializes views can be normally used in databases with very sim-
ilar great amount of data and whose reliability is not important. They can also be
used to maintain remote data tables available DB links because there is delay be-
tween creation of data and their availability that has to be balanced with application
performance. Materialized views refreshing can be complete or fast. A complete
refreshing is done when a materialized view was not already calculated or when
doesn’t have the chance to know the changes made in the core tables. It’s advis-
able to avoid complete refreshing so as there are huge performance repercussions
because it has to reevaluate the entire query again. So, to allow quick refreshing
materialized view logs are created in the core tables. Internally, they create tables
where done table DML’s are recorded Then it’s necessary to change the view’s query
so that it can obey to some restrictions such as to return rowids or primary keys and
so, refreshing used on materialized view logs can access to the modified rows using
the index and query’s structure is not very complex. Every rules about refreshing
materialized views are documented in Oracle9i Data Warehousing Guide. Option-
ally, performance of SQL queries can be improved over the materialized view by
creating indexes in their columns.

10

State of the Art

2.4.2 PL/SQL Optimization

Avoid Cursors [SF01]

Cursors, comparing to select/into seems to be more flexible because they don’t throw
exceptions depending on the number of returning rows and allows to group every SQL
queries on the PL/SQL block declarative zone. However, each command evocation about
a cursor has the cost of a context switching besides it silently fails when it was expected
just one row. It is rather to choose an explicit exception in case of an error because it
allows to control the application running and detect errors in a better and easier way. As
seen before, a cursor has to be declared before PL/SQL blocks in the declarative zone
which difficult reading of big code blocks because every time a cursor is found, to know
exactly what it returns, it is necessary to go back to the declarative zone and analyze the
query. At last, cursors can only be treated row by row, causing context switching problems
again. So, is better to read results all at one by using bulk collect and so avoid several
information requests to the database. It should be noted that bulk collect is used directly
with select/into which also avoids creating ActiveSet and mitigate an extra weight in the
database.

Use and abuse on explain plan [MG02]

This functionality is very important and every developer must do an effort to understand
it. Optimizing query’s performance requires knowing the algorithms used in some detail
and explain plan allows knowing the algorithm used for each query join. Manipulating the
explain plan to reach the best plan is a main task for every performance expert. Explain
plan punctuation a great clue to follow the right lead as it returns punctuation to the
algorithms used by the optimizer and to the amount of involved data. The lower the
punctuation the higher SQL performance.

2.5 Conclusions

The available tools to performance optimization on Oracle databases are of great number
being difficult to know all of them and to be able to choose the appropriate one for a given
task or problem.

Oracle documentation on performance lacks detail and is by searching books, discus-
sions and opinions from Oracle gurus like Steven Feuerstein and Tom Kyte and millions
of Oracle users around the world that it is possible to learn about the most recent tech-
niques available to address performance problems on Oracle databases. This require a
very hands-on approach study as all experts advise not to take their conclusions for cer-
tain and test each one for each specific case.

11

State of the Art

Most of this project study was over SQL and PL/SQL optimization techniques ending
in a somewhat profound knowledge about the database internals, its indexing mechanisms
and the available optimization methods.

This knowledge was very useful to develop distinct approaches to the project’s prob-
lem with distinct technologies and concepts and later for optimizing each specific search
that was integrated in the chosen architecture.

12

Chapter 3

Problem Analysis

This chapter gives an overview to the problem and its technological details with the goal
of showing some alternatives after describing the final solution, in the next chapter.

First we start to get an overview of the application architecture where it is possible to
learn about its layers and the communication between them.

It will be possible to have a detailed view of the database layer and its organization. It
will be done some digging down the tool specifics, learning about its previous state.

The requirements appear next as a result of the previous analysis to the application
needs. These will be used to evaluate the former state of the tool.

Next there are presented some approaches to the problem solution which are then
compared with each other by terms of requirements fulfillment.

3.1 General Architecture/Design

In an institution that have adopted ALERT R© the first thing we are able to notice is a num-
ber of touch-screen enabled screens around. These computers allow clinical personnel
to make track of their tasks and register all the workflow. Its patented user interface is
designed to help and be intuitive even to those who are unfamiliar to computers.

ALERT R© applications can be set to work with printers and/or image scanners. It is
also compatible with existing billing systems.

3.1.1 Overview

The following sections will give an overview over the ALERT R© architecture and design
solutions.

13

Problem Analysis

Network

Every clinical product from ALERT LSC lies over a client-server network architecture
like the following (figure 3.1).

Figure 3.1: ALERT R© Network Architecture

There are a number of terminals distributed in the clinical institution where every
professional can log in with its fingerprint. From there he can access every information he
is allowed to as every computer is connected to the same server inside the same institution.

Grids

One common design resource in ALERT R© applications are grids. Grids are used through
several places in the user interface as they serve as a useful and ready way to show in-
formation to the user. They are more commonly found in the entrance screen to help
professionals finding the list of the patients currently in the emergency department, the
current tasks list or the physician’s patients (figure 3.2), just to name a few.

These grids have several lines, e.g., one per patient, each one with relevant information
(1). They are fully navigable (2)1 and show context information once selected (3).

Grids are also used to list the patients search results.

Layered Communication

The user interface is designed in Flash R© and the communications between each client and
the server are done through Flash Remoting (figure 3.3) (1).

1Pressing ok button at this point would take the user to patient health record screen.

14

Problem Analysis

Figure 3.2: Grid Example

With a Flash Remoting module in server side, all requests are translated to a service
call to Java (2). By its turn, Java has that service mapped upon database functions and
takes structured data from cursors (3). This data is then sent back to the client in order to
fulfill its request.

3.1.2 Database

As ALERT R© business logic resides mostly in its database it is important to learn about its
structure. There will be no data model details observed as this is not relevant to this project
development. However it will be possible to learn about its data abstraction layer organi-
zation and some technical details like data localization capabilities and performance.

Data Abstraction Layer

Every service referenced by Java calls a database function to perform some action on the
database. The response can be received both from the output parameters and the function
return. Receiving a complex data structure is only possible through a cursor due to the
library used to communicate with the database.

15

Problem Analysis

Figure 3.3: Layered Architecture

Database functions are all grouped inside specific packages. The grouping is made by
context to optimize the package loading into cache whenever a function is called.

Almost all the data abstraction is based on PL/SQL functions. This is useful for devel-
oping in big, multidisciplinary teams but makes no use of the set evaluation of the SQL
Engine and the SQL Optimizer leading to less performance.

Data Localization

All the data inside the database that shall appear on the user interface can be localized2.
This is done for text strings and timestamps:

• Each text string that is to be shown to the user can be localized as a unique reference
is stored in a table for translations. This table stores several translations for each
reference, one per supported language, so that each user can be free to choose his
language in the application;

• Each stored date or timestamp is automatically converted in comparisons between
dates or timestamps. There are also specific packages for dates and timestamps
conversions. The timezone is defined per institution.

2Translated to a given language or different timezone.

16

Problem Analysis

Performance

Performance in ALERT R© is a critical issue for it is a real-time application and due to its
decision support role.

Because no data is deleted some databases have thousands of episodes stored. This
represents a heavy load in the database in most of the grid loads and other data intensive
queries.

Some techniques used to improve database performance are:

• Materialized views;

• Updated index statistics.

Despite these techniques some functionalities remain slow and performance is still an
issue to deal.

3.1.3 Patients Search Tool Former State

At the project beginning the patients search tool was already implemented in every clinical
product.

This section aims to capture the initial state of the tool at the time the project began
covering every relevant aspect and addressing them to the requirements listed above.

Overview

The patients search tool is one of the main use cases available to users (figure 3.5)3. It can
be accessed directly from the main screen (figure 3.4).

It allows any professional to find relevant patient information by simply entering some
criteria to filter the information. Then, after he gets the results, he can change the criteria
entered and execute other search or navigate from the results to get more patients details.

The information is then presented to them in the form of a grid that allows navigating
to a patient’s health record by simply selecting him.

In figure 3.6 there’s an activity diagram that illustrates this.
This diagram starts with the user entrance in the patients search screen and ends when-

ever the user exits the search screen either by choosing other option or navigating to user’s
health record.

Showing Results

Each search has a product-specific grid showing only relevant information for its con-
text. This grid is filled with information retrieved from the database and lets users order
columns by its value.

3This fade out effect serves to highlight the use case to be studied and show that there are other use cases also.

17

Problem Analysis

Figure 3.4: Search Button Localization

Usually, in each patient’s search the user is presented with a grid containing multiple
rows each per patient’s episode in the institution. These grid’s characteristics are most of
the times reused from the main product grids.

For collecting the results there is a specific function for each search (although they can
be reused through products) with a common structure:

1. Based on the parameters chosen by the user, construct a string that can be appended
to the WHERE list of a query;

2. Run a SELECT against the database to count the number of results. This query can
be simpler than the main query because it doesn’t need almost none of the outer
joins (those that don’t affect the final number of results). This query must append
the parameters string;

3. Test the number of results and set any necessary message;

4. Run the main query. This query must append the parameters string too;

5. Return the results cursor.

18

Problem Analysis

Figure 3.5: Patients Search Use Case

This structure allowed the user to choose whether results should be filtered by patient’s
name, by date of birth or/and by episode number (just to name a few). This also respected
the main architecture which requires that any structured data from a database function
should be passed inside a cursor to the Java layer.

Although every search function share this structure the code is repeated for each one
of them making it hard to maintain or modify.

19

Problem Analysis

Figure 3.6: Activity Diagram

Entering Criteria

The first screen a user sees when he enters a search screen is a list of criteria to be filled.
This screen is constructed in run-time with the criteria set information he gets from the
database and calls the screen responsible to show the results after the user presses the
‘OK’ button.

The filled criteria list is passed to the following screen and posteriorly passed to the
function that gets the searching result where these criteria are checked.

Each criterion can be of a type:

• Text;

• Numeric;

20

Problem Analysis

Figure 3.7: Communication Between Components

• Date;

• Multichoice.

This will enable a different data entering method to be shown to the user varying on the
type. The method used to gather the data that appears in the multichoice is stored inside
the database for each criterion. The data model used to handle the criteria is showed next
in figure 3.8.

Table BUTTON CRITERIA works to define the criteria set that appears for each
search (identified by the ID BUTTON of the button associated to it in the user inter-
face). Each criterion has some properties associated to it as its visible or mandatory flag
that are specific for each criteria set.

The text to be appended to the query is stored in the field TEXT. It uses special tokens
that are replaced by user text when the search is executed.

21

Problem Analysis

Figure 3.8: Former Data Model

Issues

The main issue in the search tool was its non-functional requirements, mainly the per-
formance, and its difficulty to implement new searches or to maintain previous searches
whenever the business rules changed.

Next it’ll be presented, in detail, what were the issues with the search tool.

Security In order to allow user to choose the active criteria set it was needed that the
SQL query was built in runtime. This was accomplished with Dynamic SQL.

So, whenever a search was run, each criterion text was appended into the query text.
This could lead to security issues through a technique called ‘SQL Injection’ [Int04] as
the user inserted text that gets replaced inside the criterion text could contain malicious
code.

This was overcome by truncating any quotation mark in the text the user has inputted
translating any code to a simple text string.

Performance Patients search tool have some performance issues. This is because most
of the accessed tables are core tables like the patient’s personal data and each episode
information. Most of the time, though, is spent doing calculation by PL/SQL function
calls (about 75%).

Because of these performance problems it was decided that the search should return
no results if the results set size was to pass 1504 results. This would avoid some extra
effort and oblige user to choose a tighter criteria set. Every approach presented will take
this into account for its development.

Maintainability Another approach to achieve some of the results desired to this project
was to give the developers tools to build their own searches and one of the problems
found was that none of the code was being reused between searches leading to a great
effort reproducing the required structure resulting in a more error prone task too.

4Although this value may be configured it’ll be used throughout this report to refer to the results number limit for
the sake of convenience and readability.

22

Problem Analysis

A recurring maintainability problem is whenever any search query is updated. This
required that the corresponding query counting the number of results was also modified.

3.2 Requirements Specification for a new Patients Search Approach

In this chapter it will be presented a requirements analysis. This requirements were ob-
tained from the projects objectives, the existing product state and internal company ob-
jectives.

They are to be defined in a unambiguous and consistent way. This is so that it is
possible to compare a set of possible solutions and evaluate them in terms of requirements
fulfillment.

These requirements will be used throughout this section as a term of comparison be-
tween different approaches.

3.2.1 Functional Requirements

A search tool must have a way to gather the information needs from the user and return
relevant information based on that understanding.

Also, the information relevancy should be measured in terms of information needs
satisfaction and results precision5 (FR#2). Said so, the criteria set available must capture
the user needs in the most complete manner (FR#1). This then enables users to define his
search strategy and reiterate over it (FR#4).

A search screen should not be the end of the way for its user. Navigation should be
possible from each result (FR#3). This allows to get more detail about a specific patient
and even allow some action over it.

As some results sets can be quite extensive it should also be possible to order each
column by its value (FR#5) making possible to scroll through the results more objectively.

We can observe in table 3.1 the functional requirements or, in other words, what users
may be able to do in each search screen.

Table 3.1: Functional Requirements Table

Identifier Description
FR#1 Input some criteria for the search
FR#2 Limit each result set to 150 results
FR#3 Navigate from each result to get more detail
FR#4 Change the search criteria text
FR#5 Order each column by its value

5It is of no use delivering an unlimited number of results to the user because he’ll never navigate through all of
them.

23

Problem Analysis

3.2.2 Non-Functional Requirements

Each search is a critical access in many ways. First, from the performance perspective,
each search must deliver the results as fast as possible (NFR#6) as part of its decision
support role. Second, from the security perspective, each search is a personified access
to the database where lays much confidential information also in patient health record
and company business rules (NFR#4). Third and last, from the reliability perspective, the
results must be as accurate as possible (NFR#5). A physician will be making life or death
decisions based on the information he gets.

Relevant info should be delivered to user to help him understand the results he gets.
This includes any error/information messages but also localized data.

In table 3.2 it is possible to find the non-functional requirements, searches musts.

Table 3.2: Non-Functional Requirements Table

Identifier Description
NFR#1 Deliver search results in accordance to user locale and language preferences
NFR#2 Show message to the user if there are no results
NFR#3 Show message to the user if there are no results
NFR#4 Be secure
NFR#5 Be reliable
NFR#6 Be fast

3.2.3 Design Requirements

The major problem with maintaining each search is that with a changing business logic
each search must be modified. One way to avoid this difficulty is to modularize the search,
enabling code reuse (DR#1) and individual module maintenance (DR#2).

One should not write the same code many times as this can be more error prone. Being
able to reuse code leads to less errors. Less code is also important in PL/SQL context as
this code stays in the SGA memory when pre-compiled.

Maintaining code is also easier in these conditions. One would not need to modify the
same code in different places. In more specific maintenance tasks it is important to have
readable code and to separate business logic from presentation matters.

These needs can be translated to a grid of design requirements, table 3.3.

Table 3.3: Design Requirements Table

Identifier Description
DR#1 Module reuse
DR#2 Business logic maintenance

24

Problem Analysis

3.2.4 Former State Requirements Review

In its former state, all the functional requirements were fully incorporated leaving nothing
to do in the scope of this project.

We can see a listing of the functional requirements review in table 3.4.

Table 3.4: Functional Requirements Review for Patients Search Tool Former State

Identifier Comment Evaluation
FR#1 Data Model allows criteria set creation Great
FR#2 Function verifies number of results Great
FR#3 Each result in grid is navigable Great
FR#4 Entered criteria text is recorded for one time Great
FR#5 Grid allows ordering columns Great

For what it concerns on non-function requirements, performance is the only require-
ment to be far from being satisfied. From now on requirement NFR#5 will refer to per-
formance improvements because “be fast” is too sparse to evaluate. Check table 3.5 for
non-functional requirements review this tool former state.

Table 3.5: Non-Functional Requirements Review for Patients Search Tool Former State

Identifier Comment Evaluation
NFR#1 Data Model allows translations and timezone differences Great
NFR#2 Count query returns number of results Great
NFR#3 Count query returns number of results Great
NFR#4 SQL Injection proof is guaranteed by programming techniques Good
NFR#5 Search is always available Great
NFR#6 The patient’s search tool is reported to be very slow Poor

As reliability is guaranteed by the system architecture and it is not addressed to any
data model question it won’t appear in any posterior requirements review. This will hap-
pen to NFR#1 too.

Every search is handled by a single function. The main query is written in Dynamic
SQL which could not be ‘beautified’ and it is only parsed at run-time preventing Oracle
to check its syntax. This is summarized in table 3.6.

Table 3.6: Design Requirements Review for Patients Search Tool Former State

Identifier Comment Evaluation
DR#1 Each search is represented by a unique function Poor
DR#2 Great amount of Dynamic SQL Poor

25

Problem Analysis

3.3 Patients Search Approaches

Through the study there were developed some approaches to the solution. These were
original ideas that had to be tested so a series of proofs of concept were developed for that
purpose.

The next section serves to describe each approach concept, having their strengths and
weaknesses identified and finally compared.

There won’t be no review for functional requirements as the former state already fulfill
the tool’s needs.

3.3.1 1st Approach

“No previous counting”

In an early analysis to the search functions structure it was easy to identify one possible
improvement, which was trying to eliminate the need to query almost the same tables
twice. It would be possible to avoid this embedding the results count into the main query
in a dummy row. This way it would be possible to fetch the row, test the value and return
the rest of the cursor. This had the desired effect of not having to run the same query twice
and hence improving the search performance.

One setback was that the query model that made it possible to create that dummy
row was too big and complex. As all the search queries were made in Dynamic SQL (to
allow appending the parameters string) this would led to a complex string, much harder to
code and much, much harder to maintain. But the improvement in performance was too
significant to drop this solution. It was clear that the path was, somehow, to allow count
the number of the results without having to run a second query.

Requirements Review

Table 3.7: Non-Functional Requirements Review for 1st approach

Identifier Comment Evaluation
NFR#2 Previous fetch allows testing the number of results Great
NFR#3 Previous fetch allows testing the number of results Great
NFR#4 SQL Injection proof is guaranteed by programming techniques Good
NFR#6 One query only but cannot avoid some calculations Better

Table 3.8: Design Requirements Review for 1st approach

Identifier Comment Evaluation
DR#1 Each search is represented by a unique function Poor
DR#2 Great amount of Dynamic SQL Poor

26

Problem Analysis

3.3.2 2nd Approach

“Concatenated Datastore”

The second approach was to previously cache the search results making use of mate-
rialized views. This would also allow to build a text index on the materialized view over
most of its columns6.

The materialized view would cache the search data for faster response times and the
text index would allow more comprehensive searches. Originally, the text index would be
on the patient’s name column but as there is more columns to be searched, creating one
index over the most used columns would be faster. This led to the use of a datastore, more
specifically the concatenated datastore, in order to do range search over dates or integers.

Having criteria text constructed with a less complex syntax (Oracle Text context in-
dexes) and without table aliases would make it easy to construct a criteria set for the user
to use it. Also, the separation of business logic from presentation matters with the creation
of a materialized view for each search would help with maintenance tasks.

But materialized views refresh times plus the indexes rebuild in a high volatile data
environment like ALERT R© would be bad for performance. And although there would be
no need to use Dynamic SQL the query model suggested in the previous approach would
have to be applied to get the results set size. Also it would not be possible to prevent some
effort if the results were not to be shown.

Requirements Review

Table 3.9: Non-Functional Requirements Review for 2nd approach

Identifier Comment Evaluation
NFR#2 Previous fetch allows testing the number of re-

sults
Great

NFR#3 Previous fetch allows testing the number of re-
sults

Great

NFR#4 Criteria are passed through a parameter. No SQL
Injection

Great

NFR#6 One query only but cannot avoid some calcula-
tions. Materialized Views and Oracle Text re-
fresh times

Better

3.3.3 3rd Approach

“Table function”
6See 2.3 Concatenated Datastore.

27

Problem Analysis

Table 3.10: Design Requirements Review for 2nd approach

Identifier Comment Evaluation
DR#1 Each search is represented by a materialized view Good
DR#2 No Dynamic SQL but rather complex query model Good

Other approach to take was to minimize the quantity of context switching because
of the high quantity of PL/SQL function calls per row for formatting purposes. One
possibility was to gather all the data from database to a PL/SQL collection and do all the
formatting over the collection data but this was not possible due to the necessity to send
an open cursor to the Java layer to pass the search results. The solution was to create a
table function and do all the work there and selecting it into a cursor after.

This would automatically lead to a new module creation for each search, the table
function, where all the specific work for search would be made freeing the previously
existing function to do all the common work. One possibility arise with this that was to
create a unique function that would know what table function to call for each specific
search.

This would enable other interesting developments:

• One could check the results set size after doing any calculations by just checking
the collection size;

• As all the function calls were to be made in PL/SQL context a PL/SQL cache could
be created for functions with less variable results.

Reducing context switching for 1,500 function calls (about 10 function calls per row)
brought a little performance improvement but it was the ability to query the data only
once and avoid unnecessary work that brought the most improvement.

The table function needed that its return type was defined previously. This requires
creating a SQL Type that describes the type of each column returned. Although this means
some extra work and some maintenance effort it can eventually be done automatically and
besides, this would only be needed while sending a PL/SQL collection into Java is not
supported.

Requirements Review

3.3.4 Comparison

Regarding the project objectives, performance was the most meaningful result obtained.
This highlights the Table Function approach as the right one to choose. It should be taken
into account that this is also the most flexible solution allowing a big step on modularity
with a unique function for common tasks on searches.

28

Problem Analysis

Table 3.11: Non-Functional Requirements Review for 3rd approach

Identifier Comment Evaluation
NFR#2 Test number of results before calculations Great
NFR#3 Test number of results before calculations Great
NFR#4 SQL Injection proof is guaranteed by program-

ming techniques
Good

NFR#6 Counting takes part before all the calculations.
PL/SQL calls are made in PL/SQL context

Even Better

Table 3.12: Design Requirements Review for 3rd approach

Identifier Comment Evaluation
DR#1 Each search is represented by a ta-

ble function. Unique function to
handle common search tasks

Good

DR#2 Less Dynamic SQL Good

Table 3.13: Non-Functional Requirements Comparison

Identifier 1st approach 2nd approach 3rd approach Final Comment
NFR#2 Great Great Great All approaches guarantee this
NFR#3 Great Great Great All approaches guarantee this
NFR#4 Good Great Good With no Dynamic SQL no SQL

Injection is possible through here
on 2nd approach

NFR#6 Better Better Even Better 3rd approach can avoid much
more effort than the other ap-
proaches. Other approaches al-
ways added extra work one way or
the other

Table 3.14: Design Requirements Comparison

Identifier 1st approach 2nd approach 3rd approach Final Comment
DR#1 Poor Good Good Having a unique function to han-

dle all common tasks is great for
code reuse on 3rd approach

DR#2 Poor Good Good Separating presentation purpose
function calls from data gathering
helps with maintainability either
on 2nd and 3rd approaches

3.4 Conclusions

In this section it was possible to learn about the application architecture and how the
database plays its role revealing details about its functional organization. The patients
search tool was analyzed as a main use case and as a very important tool to help users

29

Problem Analysis

finding relevant data for their tasks. The requirements for this project were listed in order
to understand the amount of work left to do. These requirements were used to compare
three different approaches and help choosing one.

The next chapter will develop the chosen approach in more detail.

30

Chapter 4

Search Screens

In the previous chapters the various approaches created have been described and it was
possible to compare them. It was also possible to understand why the Table Function
approach was chosen to be developed.

In this chapter the designed solution will be described expanding it and adding new im-
provements. Development details like integration details will be described in section 4.2.

4.1 Search Screen Architecture

The solution’s description will be resumed to architecture’s details, with no implementa-
tion details at all. So, it will be available a general vision on the architecture, seizing the
opportunity to resume what’s behind and then to show some improvements made in the
final solution as well as their finalities. Among these improvements there are introduction
of parameterized views, modifications made on the criteria list and the generic function’s
structure.

4.1.1 Overview

This solution is based on the approach presented on the previous chapter, Table Function.
The idea is to load every necessary data from the database into a PL/SQL collection and
make any additional calculation on that collection, in PL/SQL context. By doing so, many
context switching can be avoided. To achieve it, it was necessary to use Table Functions
to let SQL engine create a cursor with the results and send it to the Java layer.

Before, it was said that this approach is quite versatile allowing to get more control
over the calculations. By doing so, it is possible to avoid some testing repeats and to cache
function’s results. So, the greatest advantage of this solution is the possibility of testing
the number of returned results before making any previous calculations over their data.

31

Search Screens

The scheme presented in figure 4.1 represents the functional organization with param-
eters being passed among the several components. So, in this scheme is possible to see
that the business logic in each search can be found in the results screen grid and in the
table function, the only components that could not be generalized. For this version, the
table function’s name to be called is not yet saved in the database, being instead kept in
the results screen’s grid.

Figure 4.1: Function Structure

Additional modifications are described next.

4.1.2 Data Model

One basic1 modification was to create the Search Screen entity. This is what names the
solution as it reveals the identity of each Search in the database and is used to gather some
unique information for each screen like the name of the grid used to display the results.
This is useful for any future developments concerning modularity.

The classes diagram for the search it is presented in figure 4.2.

In this diagram it is important to notice a few things:

• Each Search Screen is associated to a button in the user interface;

1Basic as in basis and easy also.

32

Search Screens

Figure 4.2: Classes Diagram for the Search

• The connection class is used to define some specific properties for each criteria in a
search screen like if it is visible, mandatory and its relative position in the screen;

• Each criteria has a text associated to it.

The previous class diagram can be translated to the data model in figure 4.3.

4.1.3 General Function

In section 3 was said that the third approach included the creation of a function which
reunited every common tasks in the search tool.

In fact, this development was already possible in other approaches but in this case the
impact was bigger as the creation of a table function per search doubles the number of
functions.

So, this generic function becomes responsible for the following tasks:

• Create the text to be used to filter the results based on introduced criteria by the user;

• Open a cursor calling a table function;

• Check if it any result was found or if these result’s set surpassed the bounds and
define any necessary message;

33

Search Screens

Figure 4.3: Relational Diagram for the Search

• Return the cursor to Java’s layer.

The resulting communication sequence diagram between layers is shown in figure 4.4.

Figure 4.4: Communication Diagram

34

Search Screens

4.1.4 Parameterized Views

Reducing the amount of Dynamic SQL is one of the techniques that can be used to achieve
better maintainability. But so that the criteria text can be appended to filter results Dy-
namic SQL must be used.

A solution for this is saving the query in a view. It’s not easy to do this though,
because it is impossible to input parameters into a view directly. To solve this there were
used context variables [Ora01a] that can be set for the user session and accessed from
inside the SQL query.

This made possible to create a view for each search containing all the SQL code that
is used to get the necessary data for the search. This is a step in modularity and main-
tainability both abstracting data model details from presentation details and reducing the
amount of Dynamic SQL.

4.1.5 Criteria

A problem in reusing criteria text is that the defined names for tables’ aliases vary from
query to query. An advantage in the use of parameterized views is to be possible to define
only one alias to use in every criteria, increasing their reuse among the different searching
queries.

It was said previously that code input by the user should have their quotation marks
truncated in order to avoid the introduction of malicious code (SQL Injection). Plus, there
is another problem. When a query is being built with hard coded parameters, the variation
of one of these values will force an hard parse from the query each time one of these
parameters is modified.

The solution to this problem, one more time, consisted by using context variables. As
context variables are seen as bind variables the change of one value in a parameter doesn’t
force to hard-parse the whole query again. Besides, for security purposes any text passed
to a context variable can not be interpreted as code.

4.2 Development

In this chapter the first stage of the implementation of this solution will be described. This
first stage was integrated in the development of the last product’s version ALERT R© and
aimed the integration of all EDIS’ searches, 4 searches total.

These searches differed from their information requirements and deep knowledge in
SQL query optimization was required in order to guarantee the best execution plan for
each one of them. This also shows how the patients search can have all kinds of queries
and how they can be used in any product regardless of their data model.

35

Search Screens

With data model change it was necessary to update every function that made use of that
part of the data model. This obliged the author to search in the database code for every
functions recurring to some of these tables and inform related teams that these needed
reformulation.

This change had much bigger consequences in the flash layer. To support the verifi-
cation of filling in the mandatory fields, the numbers that screens used to identify them
were from BUTTON CRITERIA table. With the change of this check to the interface,
the used identifiers become those of the criteria table. This forced the modification of all
the screens that used this check and the recompilation of all screens that depended of the
first ones.

Obviously, one function that had to be modified was the one responsible for compiling
the criteria’s test to be used in the search queries. The tasks of this function are now:

• Obtain the code of each filled criterion by the user;

• Create a context variable for each criterion with the filled text by the user;

• Return a text string with every compiled criteria.

An introduced modification to allow some performance gains was the creation of an
index in the patient’s birth date. As this column is many times used to filter the search,
it makes sense to have an index that allows, from the beginning, greatly bound the set of
results.

4.3 Conclusions

The designed solution revealed to be very flexible and strong. Its modularity and perfor-
mance details guarantees that the tool’s life cycle is now extended with less maintenance
effort.

The current state of integration guarantees that every search that was upgraded keeps
full functionality as well as those who weren’t upgraded yet. This planning did have to
consider that all of present information requirements were to be kept. This required great
attention to the integration, specially to query optimization.

36

Chapter 5

Solution Assessment

5.1 Performance

Performance revealed to be a very relative term to consider. Every performance expert
advises that tests should be runt in each specific database before implementing any new
performance hint they came to discover. The test part of an application’s performance
must be done in a controlled environment to prevent any wrong conclusions to be taken.

5.1.1 Methodology

To correctly test performance improvements all tests that will have their results compared
shall run in similar environments in terms of work load.

A variety of tests will be chosen and these will be runt in different environments.
First, all the tests will be compared with each other on the same environment. Finally
these results will be compared to reach some final conclusions.

Tests will be runt in a Test Window in PL/SQL Developer and times will be gathered
from the execution times that appear at the status bar.

An arithmetic mean of 4 consecutive measures will be calculated to reach the final
measures used.

5.1.2 Tests

Three different tests were chosen to run:

1. Original solution;

2. Table function as described in the previous chapter;

3. Table function making use a materialized view.

37

Solution Assessment

These tests will be runt in two different environments:

1. Server with more than 10,000 episodes and high concurrency;

2. Server with more than 70,000 episodes and low concurrency.

5.1.3 Results

The times measured appear on table 5.1 and they reveal that the Table Function solution
has 33% improvement in relation to the original solution (table 5.2). The improvement is
noticeable in both environments. Using a Materialized View is also a good choice as it
gives more performance improvements.

Table 5.1: Tests Time Measurements

Test 1 Test 2 Test 3
Environment 1 1,588 ms 1,065 ms 1,041 ms
Environment 2 2,080 ms 1,555 ms 1,342 ms

Table 5.2: Performance Improvements Comparisons

1 - Test 2/Test 1 1 - Test 3/Test 1
Environment 1 32.9% 34.4%
Environment 2 25.2% 35.6%

As it is possible to see the performance improvement is of about 30% in a little
database and about 25% for a bigger database. This is because the results counting query
is actually more scalable than the the main query, so the improvement of not running it
comes to be less for bigger databases.

An improvement for this scalability matter is using a materialized view leading to
improvements of 10% in bigger databases.

5.2 Maintainability

One of the problems in the way the tool was implemented was that the architecture was
not documented. This led to the implementation of new searches by copying the code and
adapting it, making the architecture’s maintainability very painful for who had to make it.
It was necessary to spread any modification for all the search implementation.

Due to the fact that there were no documented architecture, every search was adapted
according to necessities. There was common to find searches where there were introduced
some extra steps to the defined structure in section 3.1.3, pushing them away from the
possibility to be integrated in a structure with a common architecture.

38

Solution Assessment

The achieved solution allows to get a more objective maintainability because it sepa-
rates the details of the data access. This allows that, in the future, more general views are
built and can be used in some more specific cases, depending of the passed parameters,
so that can be reused between searches.

39

Solution Assessment

40

Chapter 6

Conclusions and Future Work

6.1 Results

The solution here presented gives a common structure to all the patients search throughout
different products. This project’s goal was to give each team a strong tool to develop new
ways to search in its products.

This new architecture also brings performance improvements to the patients search
tool but, unfortunately, this project scope did not allowed more improvements as it would
require data model reformulations and some specific functions to be changed. How-
ever, much of the project was spent researching performance techniques giving the author
knowledge on query optimization.

This knowledge was useful as each reformulated search query was extensively opti-
mized but this research suffered from the lack of official documentation on Oracle opti-
mization.

Maintainability was also made easier and more objective. Now developers don’t have
to face mountains of Dynamic SQL code and they can also check for errors at compilation
time. This is less error prone and leads to better code legibility.

Maintainability also profited from the increased modularity. Now a search screen can
have their presentation details reviewed without having to care about data abstraction
details and vice versa. Creating a new search is also easier as more information is stored
inside the database and not scattered through the various layers requiring less work for
Flash developers.

41

Conclusions and Future Work

6.2 Project Overview and Highlights

Oracle database is very flexible and it presents multiple solutions for developers problems.
This project showed three different approaches to a single problem, all of them making use
of different Oracle tools like Oracle Text, datastores, materialized views, table functions
and context variables.

This study approached different aspects like security, performance, maintainability
and usability and the resulting project brought new improvements in all of these aspects:

• This project can take advantage of the cost based optimizer and makes extensive use
of bind variables, avoiding query hard-parses;

• It does not compromise application security preventing the use of SQL Injection;

• Avoids a great amount of context switching despite the fact that most of the data
abstraction layer relies on PL/SQL functions;

• Allows better performance as it avoids repeated access to tables;

• Reduces the amount of Dynamic SQL to a minimum increasing maintainability;

• Increases code reuse from an increased modularity.

6.3 Future Work

There is still some work to do on the current solution integration as there are still some
searches to be adapted to the new architecture. This integration phase is to end when all
the maintenance work is passed back to each product’s team. Until then it is necessary
to develop some tools to help with the maintenance tasks and to do some automatic code
generation.

With a common structure behind ALERT R© Patients Search Tool is easier to think of
new functionalities to add.

6.3.1 Extending Criteria Types

The available types of criteria should be extended to support choosing multiple values in
a multichoice criterion e.g., selecting multiple values in a multichoice, or giving user the
ability to view some available values in the database for that field e.g., in searching for a
patient’s name.

42

Conclusions and Future Work

6.3.2 Improving Modularity

Other possible improvement in the structure is the creation of a criteria set entity. This
would enable multiple search screens to reuse the same criteria set. At the moment every
search screen requires the creation of a criteria set of its own many times repeating the
criteria set used by other screens.

6.3.3 Self Documenting Searches

This structure also enables each search to reuse grids requirements information require-
ments. The ability to document these requirements may enable some grids (both main
grids and search screen grids) to be automatically generated given its columns.

6.3.4 New Scopes For Patients Search

One interesting development that would revamp the search screens role is to enable users
to filter the results grid. Nowadays users may use the patients search when they don’t
want to scroll through an enormous list looking for a specific patient. Creating this filter
functionality on grids would also make possible to users to input their criteria while they
scroll through the search results, all in the same screen, improving usability.

43

Conclusions and Future Work

44

References

[AA08] AllRound Automations. AllRound Automations, 2008. http://www.
allroundautomations.nl/, 19 June 2008.

[ALE08] ALERT Life Sciences Computing, S.A. alert.pt Company Overview, 2008.
http://www.alert.pt, 18 June 2008.

[BFM78] Jon Louis Bentley, Jerome H. Friedman, and H. A. Maurer. Two Pa-
pers on Range Searching: A Survey of Algorithms and Data Structures
for Range Searching. Efficient Worst-Case Data Structures for Range
Searching., 1978. http://stinet.dtic.mil/oai/oai?verb=
getRecord&metadataPrefix=html&identifier=ADA060584, 19
June 2008.

[Bur02] Burleson Consulting. SQL tuning performance optimization with Oracle ma-
terialized views, April 2002. http://www.dba-oracle.com/art_mv.
htm, 19 June 2008.

[Feu06] Steven Feuerstein. Everything you need to know about collections, but were
afraid to ask - best practices for pl/sql, 2006.

[HP92] Hewlett Packard. ALLBASESQL FORTRAN Application Program-
ming Guide, 1992. http://docs.hp.com/en/36216-90079/
36216-90079.pdf, 20 June.

[Int04] Integrigy Corporation. An Introduction to SQL Injection Attacks for Ora-
cle Developers, January 2004. http://www.net-security.org/dl/
articles/IntegrigyIntrotoSQLInjectionAttacks.pdf, 19 June
2008.

[JCC05] JCC Consulting, Inc. JCC’s SQL Standards Page, 2005. http://www.jcc.
com/sql.htm, 18 June 2008.

[Kya06] KyaPoocha.com. What are the difference between
ddl, dml and dcl commands?, August 2006. http:
//kyapoocha.com/oracle-interview-questions/
what-are-the-difference-between-ddl-dml-and-dcl-commands/,
20 June 2008.

[MG02] Mark Gurry. Oracle SQL Tuning Pocket Reference, January 2002.

45

http://www.allroundautomations.nl/
http://www.allroundautomations.nl/
http://www.alert.pt
http://stinet.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA060584
http://stinet.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA060584
http://www.dba-oracle.com/art_mv.htm
http://www.dba-oracle.com/art_mv.htm
http://docs.hp.com/en/36216-90079/36216-90079.pdf
http://docs.hp.com/en/36216-90079/36216-90079.pdf
http://www.net-security.org/dl/articles/IntegrigyIntrotoSQLInjectionAttacks.pdf
http://www.net-security.org/dl/articles/IntegrigyIntrotoSQLInjectionAttacks.pdf
http://www.jcc.com/sql.htm
http://www.jcc.com/sql.htm
http://kyapoocha.com/oracle-interview-questions/what-are-the-difference-between-ddl-dml-and-dcl-commands/
http://kyapoocha.com/oracle-interview-questions/what-are-the-difference-between-ddl-dml-and-dcl-commands/
http://kyapoocha.com/oracle-interview-questions/what-are-the-difference-between-ddl-dml-and-dcl-commands/

REFERENCES

[Ora00a] Oracle Corporation. The Concatenated Datastore - A Utility for Ora-
cle Text, 2000. http://www.oracle.com/technology/sample_
code/products/text/htdocs/concatenated_text_datastore/
cdstore_readme.html, 19 June 2008.

[Ora00b] Oracle Corporation. Concatenated Datastore - Performance Improve-
ments, 2000. http://www.oracle.com/technology/sample_
code/products/text/htdocs/concatenated_text_datastore/
cdstoreperf.html, 19 June 2008.

[Ora01a] Oracle Corporation. Ask Tom “Parameterized View & Truncation of Ta-
ble”, 2001. http://asktom.oracle.com/pls/asktom/f?p=100:
11:0::::P11_QUESTION_ID:1448404423206, 19 June 2008.

[Ora01b] Oracle Corporation. Datastore Types, 2001. http://www.peacetech.
com/flipper/oracle9i/901_doc/text.901/a90121/cdatadi3.
htm#34439, 19 June 2008.

[Ora02a] Oracle Corporation. Materialized View Concepts and Architecture,
2002. http://download-uk.oracle.com/docs/cd/B10501_01/
server.920/a96567/repmview.htm, 19 June 2008.

[Ora02b] Oracle Corporation. Selecting an Index Strategy, 2002. http:
//www.stanford.edu/dept/itss/docs/oracle/9i/appdev.
920/a96590/adg06idx.htm, 19 June 2008.

[Ora02c] Oracle Corporation. Using EXPLAIN PLAN, 2002. http:
//download-uk.oracle.com/docs/cd/B10501_01/server.
920/a96533/ex_plan.htm, 19 June 2008.

[ORA03] ORACLE-BASE.com. Oracle9i DBMS PROFILER, 2003. http:
//www.oracle-base.com/articles/9i/DBMS_PROFILER.php, 19
June 2008.

[Ora05] Oracle Corporation. Indexing with Oracle Text, 2005. http://youngcow.
net/doc/oracle10g/text.102/b14217/ind.htm, 19 June 2008.

[Ora07] Oracle Corporation. Oracle Text, 2007. http://www.oracle.com/
technology/products/text/index.html, 19 June 2008.

[SF01] Steven Feuerstein. Oracle PLSQL Best Practices, April 2001.

[W3C01] W3C Semantic Web. W3C Semantic Web Activity, 2001. http://www.w3.
org/2001/sw/, 19 June 2008.

46

http://www.oracle.com/technology/sample_code/products/text/htdocs/concatenated_text_datastore/cdstore_readme.html
http://www.oracle.com/technology/sample_code/products/text/htdocs/concatenated_text_datastore/cdstore_readme.html
http://www.oracle.com/technology/sample_code/products/text/htdocs/concatenated_text_datastore/cdstore_readme.html
http://www.oracle.com/technology/sample_code/products/text/htdocs/concatenated_text_datastore/cdstoreperf.html
http://www.oracle.com/technology/sample_code/products/text/htdocs/concatenated_text_datastore/cdstoreperf.html
http://www.oracle.com/technology/sample_code/products/text/htdocs/concatenated_text_datastore/cdstoreperf.html
http://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:1448404423206
http://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:1448404423206
http://www.peacetech.com/flipper/oracle9i/901_doc/text.901/a90121/cdatadi3.htm#34439
http://www.peacetech.com/flipper/oracle9i/901_doc/text.901/a90121/cdatadi3.htm#34439
http://www.peacetech.com/flipper/oracle9i/901_doc/text.901/a90121/cdatadi3.htm#34439
http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96567/repmview.htm
http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96567/repmview.htm
http://www.stanford.edu/dept/itss/docs/oracle/9i/appdev.920/a96590/adg06idx.htm
http://www.stanford.edu/dept/itss/docs/oracle/9i/appdev.920/a96590/adg06idx.htm
http://www.stanford.edu/dept/itss/docs/oracle/9i/appdev.920/a96590/adg06idx.htm
http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96533/ex_plan.htm
http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96533/ex_plan.htm
http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96533/ex_plan.htm
http://www.oracle-base.com/articles/9i/DBMS_PROFILER.php
http://www.oracle-base.com/articles/9i/DBMS_PROFILER.php
http://youngcow.net/doc/oracle10g/text.102/b14217/ind.htm
http://youngcow.net/doc/oracle10g/text.102/b14217/ind.htm
http://www.oracle.com/technology/products/text/index.html
http://www.oracle.com/technology/products/text/index.html
http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/

