
Faculdade de Engenharia da Universidade do Porto

Manufacturing Equipment Data

Collection Framework

Daniel José Barbudo Aguilar

Report of Project

Master in Informatics and Computing Engineering

Supervisor: Maria Teresa Galvão Dias (PhD)

July 2008

c© Daniel Aguilar, 2008

Manufacturing Equipment Data Collection
Framework

Daniel José Barbudo Aguilar

Report of Project

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: António Augusto de Sousa (PhD)

External Examiner: César Analide (PhD)

Internal Examiner: Maria Teresa Galvão Dias (PhD)

31st July, 2008

Abstract

The Bee Framework project is essentially a data collection framework used to collect
the data generated by equipments which intends to help improving the equipment
integration process. Even considering different equipment types, there are several
common data collection functionalities that can be easily reused just by doing a small
amount of light changes or even no changes at all. Some of these functionalities are,
for example, database access, folder monitoring actions, communication and data
collection, among others.

The main goal of the project described in this report is the elaboration of a
detailed specification for a data collection framework used to collect the data gener-
ated by several equipments in an assembly line. Additionally, the core requirements
of the framework should also be implemented and an equipment integration should
also be done as a proof of concept. This framework intends to control and monitor
these equipments so that the data they generate can be collected. This data will
be fed into data analysis solutions that provide the tools required to follow-up on a
continuous process evolution and optimization and process control.

However, the wide diversity of existing equipments used in such assembly lines is
a well-known problem that makes it hard to adopt a common integration solution.
Moreover, a large number of these equipments do not follow some of the interna-
tional standards for data collection and data control used in the semiconductor
industry. These strong difficulties to adopt a common solution lead to the software
development of a specific data collection solution for each new equipment type.

The Bee Framework has been designed with a modular architecture in order
to provide easier and general methods capable of integrating equipments and their
related systems. By using such a framework, it will not be necessary to develop
a specific data collection solution for each new equipment type’s integration, since
the core functionalities will already be available and ready for use. It will just be
necessary to configure the framework according the equipment being integrated and
adapt it to face the specific equipment requirements.

Beyond the aspects related to the framework architecture and specification de-
scribed in this document, this project has also considered the development of a proof
of concept. The main goal of the proof of concept is to show the resulting advan-
tages of using the framework in the equipment integration process. The equipment
type considered had already a specific solution to collect the data generated and is
integrated in the Qimonda assembly line using a different approach. So, this proof of
concept intends to establish a comparison regarding both the effort and time needed
to integrate the same equipment type using the framework approach instead of the
previous one.

i

ii

Resumo

O projecto descrito neste relatório e designado por Bee Framework é, essencial-
mente, uma framework de recolha de dados usada para a integração de equipamen-
tos, que pretende auxiliar e melhorar o processo de integração. Mesmo tratando-se
de equipamentos de tipos diferentes, existe um grande conjunto de funcionalidades
em comum no que à recolha de dados diz respeito, podendo assim proceder-se à
reutilização das funcionalidades comuns efectuando apenas ligeiras ou até mesmo
nenhumas alterações. Algumas destas funcionalidades são, por exemplo, o acesso a
bases de dados, monitorização de directórios, comunicação e recolha de dados.

O principal objectivo do projecto descrito é a elaboração de uma especificação
detalhada para uma framework de recolha de dados gerados por equipamentos uti-
lizados em linhas de produção. Adicionalmente, os requisitos nucleares da frame-
work devem também ser implementados, devendo ainda realizar-se a integração de
um equipamento como prova de conceito. Pretende-se assim um controlo e moni-
torização destes equipamentos de modo a recolher os dados por estes produzidos e
armazená-los em suportes que permitam posterior análise e interpretação dos mes-
mos, possibilitando uma cont́ınua evolução e optimização dos processos.

No entanto, devido à grande diversidade de equipamentos existentes numa linha
de produção e devido ao facto de alguns destes equipamentos não seguirem as normas
existentes utilizadas na indústria de semicondutores no que à recolha e controlo dos
dados diz respeito, torna-se necessário desenvolver soluções espećıficas de recolha de
dados para cada novo equipamento que se pretende integrar, de modo a proceder à
recolha dos dados que são gerados.

A Bee Framework possui uma arquitectura modular, de modo a fornecer me-
canismos fáceis e gerais capazes de integrar equipamentos e os sistemas com eles
relacionados. Utilizando uma framework deste género, não será necessário desen-
volver uma solução espećıfica para cada nova integração de um equipamento, uma
vez que as funcionalidades nucleares estarão já dispońıveis e prontas a utilizar. A
framework deverá apenas ser configurada de acordo com os requisitos espećıficos do
equipamento a integrar.

Para além dos aspectos relacionados com a arquitectura e especificação da frame-
work descritos neste relatório, este projecto contou ainda com o desenvolvimento de
uma prova de conceito. O seu principal objectivo é demonstrar as vantagens decor-
rentes da utilização da framework na integração de um equipamento, isto é, proceder
à recolha dos dados produzidos pelo equipamento quando este se encontra em fun-
cionamento numa linha de produção da Qimonda. Poderá assim ser efectuada uma
comparação relativa à quantidade de esforço e tempo requerido, já que o equipa-
mento considerado se encontrava já previamente integrado com outra abordagem.

iii

iv

Acknowledgments

I would like to thank Qimonda Portugal for giving me the required conditions I
needed to complete my project. I would like to thank all my work colleagues,
especially my project supervisor Nuno Soares, but also Rui Alves and all other
colleagues belonging to the Equipment Control team for being so supportive and
helping me better understand my project domain.

A special thank too for my project supervisor at Faculdade de Engenharia da
Universidade do Porto, professor Teresa Galvão, for giving me all the encouragement
and support I needed, not only in this project but also during the course of my
studies, always with honest interest and friendship.

I also would like to thank all the teachers that in some way contributed not only
to my education but also throughout my personal life.

Additionally, I extend my thanks to the English professor Sónia Nogueira for the
help she provided me in the reviewing of this document.

Finally, my biggest gratitude to my family, especially my parents and sister,
and to all my friends for all the support they give me, both in the good and bad
times, always helping me facing my problems and giving me the encouragement and
boldness I needed to keep going and achieve my goals. My sincere and special word
of thanks to all of you.

Daniel Aguilar

v

vi

To my family and friends

vii

viii

Contents

Abstract i

Resumo iii

Acknowledgments v

Contents ix

List of Figures xiii

List of Tables xv

Glossary xvii

1 Introduction 1
1.1 Project Introduction . 1
1.2 Project Motivation . 2
1.3 Project Goals . 3
1.4 Approach Methodology and Constraints 4
1.5 Report Structure . 5

2 Data Collection Problem Analysis 7
2.1 Data Collection Overview . 7
2.2 Data Collection in Semiconductor Industry 8
2.3 Data Collection at Qimonda . 9

3 State of the Art 11
3.1 Technology Review . 11

3.1.1 Programming Languages and Tools 11
3.1.2 Modeling Languages and Tools 14
3.1.3 RDBMS and Database Tools 15
3.1.4 Data Persistence . 17
3.1.5 Communication Technologies 20
3.1.6 Markup Languages . 22

3.2 Previous Work . 23
3.2.1 Collecting Data from Files . 24
3.2.2 Database Concurrency . 24
3.2.3 Handling Messages and Communication 26

ix

CONTENTS

3.3 Summary . 27

4 Framework Specification and Architecture 29
4.1 Framework Black-Box Overview . 29

4.1.1 Collecting Data . 30
4.1.2 Saving Data . 31

4.2 Framework White-Box Overview . 32
4.3 Framework Architecture . 34

4.3.1 Folder Monitor Module . 39
4.3.2 Backup Module . 42
4.3.3 Equipment Modules . 44
4.3.4 Message Handling . 48

4.4 Framework Services . 57
4.4.1 YODA Service . 58
4.4.2 Database Service . 58
4.4.3 Email Service . 59
4.4.4 Logging Service . 59
4.4.5 Framework Messages Service 60
4.4.6 Timer Service . 60

4.5 Summary . 61

5 Prototype Development 63
5.1 Prototype Goals . 63
5.2 AOI — Automatic Optical Inspection — Equipment Overview 64
5.3 Collecting Data From AOI Equipments 65
5.4 AOI Integration Use Cases . 67

5.4.1 Complementary Functions . 68
5.5 AOI Use Cases Implementation . 71

5.5.1 Process XML Files . 72
5.5.2 Notify XML Generation Down 72
5.5.3 Backup AOI Log Files . 73
5.5.4 Log Equipment Breakdown Reason 75

5.6 AOI Integration Architecture . 76
5.6.1 Global Logical View . 78
5.6.2 Bee Framework Logical View 81

5.7 AOI Integration Test Cases . 84
5.7.1 Process XML Files . 84

5.8 Summary . 86

6 Findings and Discussion 89
6.1 Event-based Framework . 89

6.1.1 Detecting Changes in Files . 89
6.1.2 Notifications . 90

6.2 Parsing XML Files . 92
6.3 Database Access and Saving Data . 93
6.4 Time Required for Integration . 94
6.5 Summary . 95

x

CONTENTS

7 Conclusions 97
7.1 Project Applicability . 97
7.2 Final Recommendations and Perspectives of Future Work 98
7.3 Final Conclusions . 100

References 101

Index 107

A Bee Framework Configurations 113

B Services Configurations 117
B.1 YODA and Message Services . 117
B.2 Database Service . 117
B.3 Email Service . 119
B.4 Logging Service . 120
B.5 Timer Service . 124

C AOI Integration Test Cases 127
C.1 Process XML Files . 127
C.2 Notify XML File Generation Down 129
C.3 Backup AOI Log Files . 130
C.4 Log Equipment Breakdown Reason 131

D AOI Database Schema 133
D.1 AOI Control Table . 133
D.2 AOI Raw Data Tables . 135
D.3 AOI Summary Tables . 136
D.4 AOI Target Table . 136

E AOI — SQL*Loader Usage 139
E.1 SQL*Loader Header Files . 140

E.1.1 Board Inspection Header . 141
E.1.2 Board Rework Header . 141
E.1.3 Location Inspection Header 141
E.1.4 Location Rework Header . 141

F AOI Configurations 143
F.1 Bee Framework Configuration File . 143
F.2 Folder Monitor Module Configuration File 143

F.2.1 CopyFile Message . 144
F.2.2 MoveFile Message . 144
F.2.3 LoadWatchers Message . 144
F.2.4 StartMonitoring Message . 145
F.2.5 ListFilesDirectory Message . 145

F.3 AOI Equipment Module Configurations 145
F.3.1 CommandLot Message . 145
F.3.2 Created.AOI Watcher and Created.AOI Log Watcher Messages 146

xi

CONTENTS

xii

List of Figures

1.1 Bee Framework logo . 2

3.1 Visual Studio logo . 12
3.2 Resharper logo . 13
3.3 NUnit logo . 14
3.4 UML logo . 14
3.5 Oracle Corporation logo . 16
3.6 Interdependencies of the Enterprise Library application blocks 18
3.7 Technology review . 28

4.1 Black-box overview . 30
4.2 White-box overview . 33
4.3 Framework architecture overview . 35
4.4 Singleton pattern . 36
4.5 Framework modules hierarchy . 37
4.6 Gang of Four — Factory Method pattern 38
4.7 Bee Framework — Factory Method pattern 38
4.8 Relationship between Observer pattern actors 40
4.9 Implemented architecture of the Observer pattern 40
4.10 FolderMonitor sequence diagram . 41
4.11 Automatic updates of external assemblies 43
4.12 Equipment modules hierarchy . 44
4.13 Start data collection flow . 45
4.14 Strategy pattern . 46
4.15 Implemented architecture of the Strategy pattern 47
4.16 Template Method pattern . 48
4.17 Architecture that supports message handling 49
4.18 Flow of actions performed when instantiating modules 50
4.19 Messages hierarchy and parameters 51
4.20 Chain of Responsibility pattern . 53
4.21 Sequence followed by a request in the chain 54
4.22 Implemented architecture of the Chain of Responsibility pattern . . . 55
4.23 Example of broadcasting a message in the chain 56

5.1 AOI equipment . 64
5.2 AOI integration overview . 67
5.3 FolderMonitorModule use cases . 68
5.4 AOIEquipmentModule use cases . 69

xiii

LIST OF FIGURES

5.5 Use case: Process XML files . 73
5.6 Use case: Notify XML generation down 74
5.7 Use case: Backup AOI log files . 75
5.8 Use case: Log equipment breakdown reason 76
5.9 AOI main flow . 79
5.10 AOI integration entities . 80
5.11 Bee Framework logical view . 83

D.1 AOI database schema . 134
D.2 AOI Control table . 134
D.3 AOI raw data tables . 135
D.4 AOI summary tables . 137
D.5 AOI Target table . 137

xiv

List of Tables

5.1 Process XML files — Test case description 84
5.2 Process XML files — Test case details 85

C.1 Process XML files — Test case description 127
C.2 Process XML files — Test case details 128
C.3 Notify XML file generation down — Test case description 129
C.4 Notify XML file generation down — Test case details 129
C.5 Backup AOI log files — Test case description 130
C.6 Backup AOI log files — Test case details 130
C.7 Log equipment breakdown reason — Test case description 131
C.8 Log equipment breakdown reason — Test case details 132

xv

LIST OF TABLES

xvi

Glossary

AOI Automatic Optical Inspection
API Application Programming Interface
Application block Software component designed to be as ag-

nostic as possible to the application archi-
tecture, so that it can be easily reused by
different software applications.

Assembly line Manufacturing process in which parts are
added to a product in a sequential man-
ner using optimized logistic and operations
plans in order to create a finished product
faster.

CFGmgr Configuration Manager
CLR Common Language Runtime — Virtual

machine component of Microsoft’s .NET
initiative.

CPU Central Processing Unit

DAB Data Access Block — Application block
provided by Microsoft Enterprise Library
related to database access architecture.

Daemon Computer program that runs as a back-
ground process.

Data collection Process of preparing, collecting and saving
the data generated by some type of source.

Data mining Process of sorting through large amounts
of data and picking out relevant informa-
tion.

Data warehouse Electronic repository of an organization’s
stored data

DDL Data Definition Language — Computer
language for defining data structures.

Deadlock Situation that occurs when two or more
competing actions are waiting for the other
to finish, and thus neither ever does.

Design pattern General reusable solution to a commonly
occurring problem in software design.

xvii

Glossary

DLL Dynamic Link Library
DMS Decision Making System — Computer-

based information system including
knowledge-based systems that support
decision-making activities. Also known as
Decision Support System (DSS).

ECMA European Computer Manufacturers As-
sociation — International and private
(membership-based) standards organiza-
tion for information and communication
systems.

EDA Equipment Data Acquisition — Collection
of SEMI standards for the semiconductor
industry to improve and facilitate commu-
nication between data collection software
applications and factory equipments.

EDC Engineering Data Collection — Engineer-
ing processes and tools used in data collec-
tion.

Event-based programming Programming paradigm in which the flow
of the program is determined by sensor
outputs, user actions, or messages from
other programs or threads.

Folder monitoring Process of observing the contents of a
folder and detect occurred changes in its
files or folders.

Framework Reusable design of a software system de-
scribed by a set of abstract classes and
by the way instances of these classes col-
laborate, allowing both the reutilization of
code and design architecture, which con-
siderably reduces the development effort
needed.

GNU Computer operating system composed en-
tirely of free software.

GoF Gang of Four — The group of authors
formed by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides.

GUI Graphical User Interface

xviii

Glossary

HTML HyperText Markup Language — Markup
language that provides a means to describe
the structure of text-based information in
a document.

IDE Integrated Development Environment —
Software application that provides com-
prehensive facilities to computer program-
mers for software development.

Integration tests Tests in which individual software modules
are combined and tested as a group.

Interface A Alternative name used to EDA (Equip-
ment Data Acquisition).

Inversion of Control Abstract principle describing an aspect
of some software architecture designs in
which the flow of a system is inverted in
comparison to the traditional architecture
of software libraries.

Locking (database) Mechanism used to prevent data from be-
ing corrupted or invalidated when multi-
ple users need to access a database con-
currently.

Lot (semiconductor) Set of semiconductor modules acting as a
sole unit.

LotEquipParamsHistSrv Lot Equipment Parameters History Server

Manufacturing equipment Semiconductor manufacturing equipment
consists of manufacturing equipment used
in a clean room for the fabrication of semi-
conductor chips, test equipment used in
the manufacturing and research and devel-
opment environment and to test semicon-
ductor manufacturing equipment, and fix-
tures in place to support a semiconductor
fabrication facility.

Message center Global access point of a software applica-
tion used to monitor flow of messages in-
side the application and that guarantees
the attending and dispatching of received
messages.

Message handling Comprises the concepts of sending, receiv-
ing and correctly routing messages in a
software application.

xix

Glossary

MSMQ Microsoft Message Queueing — Messaging
protocol that allows applications running
on disparate servers to communicate in a
failsafe manner.

OCL Object Constraint Language — Declara-
tive language for describing rules that ap-
ply to UML models.

OEDV Online Equipment Data Visualization —
Tools used to online visualization of the
data generated by equipments.

OMG Object Management Group — Consor-
tium focused on modeling and model-
based standards.

OOP Object-oriented programming — Pro-
gramming paradigm based on the use
and interaction of different software units
known as “objects”.

ORM Object-Relational Mapping — Program-
ming technique for converting data be-
tween incompatible type systems in rela-
tional databases and object-oriented pro-
gramming languages.

PCB Printed Circuit Board — Board used to
mechanically support and electrically con-
nect electronic components using conduc-
tive pathways etched from copper sheets
laminated onto a non-conductive sub-
strate.

PL/SQL Procedural Language / Structured Query
Language — Procedural extension to the
SQL database language.

Raw data Term used to refer unprocessed data (also
known as primary data).

RDBMS Relational Database Management System
Refactoring Rewriting of some pieces of software code

to improve its performance or to increase
its understanding, without changing its
initial meaning and behavior

Reflection (programming) Reflection is the mechanism of discovering
class information solely at runtime.

xx

Glossary

Rolling (log files) Rolling is a combination of rotation and
translation operations used when adding a
new log entry. Oldest entries are trans-
lated (or deleted if necessary) in favor of
new entries, keeping a log file always up-
dated with the recent entries.

RS-232 Recommended Standard 232 — Standard
for serial binary data signals commonly
used in computer serial ports.

SAM Statistical Appearance Model — Tech-
nique that detaches users from the param-
eter adjustment of complex algorithms and
that makes a more systematic use of train-
ing images during teaching steps.

SECS/GEM SEMI Equipment Communications Stan-
dard / Generic Equipment Module —
Standard interface used in semiconductor
industry for equipment communications.

SEMI Semiconductor Equipment and Materials
International — International organiza-
tion which main focus is the promotion of
the semiconductor industry and associate
manufacturers of equipment and materials
used in the fabrication of semiconductor
devices.

Semiconductor industry Collection of business firms engaged in the
design and fabrication of semiconductor
devices.

SGML Standard Generalized Markup Language
— ISO Standard metalanguage used to de-
fined markup languages for documents.

SMT Surface Mounting Technology — Method
for constructing electronic circuits in
which the components are mounted di-
rectly onto the surface of printed circuit
boards.

SMTP Simple Mail Transfer Protocol — Standard
for email transmissions across the Internet.

SQL Structured Query Language — Database
computer language designed for the re-
trieval and management of data in
RDBMS.

xxi

Glossary

SVN Subversion — Version control system used
to maintain current and historical versions
of files such as source code, web pages, and
documentation.

TCP/IP Transmission Control Protocol / Internet
Protocol — Set of communications proto-
cols that implement the protocol stack on
which the Internet and most commercial
networks run. Also known as Internet Pro-
tocol Suite.

TDD Test Driven Development — Software de-
velopment technique consisting of short it-
erations where new test cases covering the
desired improvement or new functionality
are written first, then the production code
necessary to pass the tests is implemented,
and finally the software is refactored to ac-
commodate changes.

Test automation Test automation is the use of software tools
to control the execution of tests automat-
ically.

TNS Transparent Network Substrate — Trans-
parent layer that enables a heterogeneous
network consisting of different protocols to
function as a homogeneous network.

UML Unified Modeling Language — Object
modeling and specification language used
in software engineering.

Unit test Automated test that validates if individual
units of source code are working properly.

W3C World Wide Web Consortium — Main in-
ternational standards organization for the
World Wide Web.

Wrapper (software) Refers to a type of packaging that hides
implementation code from end users and
just provides the required interfaces that
allow the execution of a wrapped function-
ality.

XML Extensible Markup Language — General-
purpose specification for creating custom
markup languages.

xxii

Glossary

YODA Your Own Data Adapter — Middleware
cross-platform application that allows dif-
ferent applications to exchange messages
in the same network.

xxiii

Glossary

xxiv

Chapter 1

Introduction

This first chapter introduces the relevant themes needed for a full understanding

of both the current document and the project context. The chapter includes five

different sections to describe the project summary, the project main motivations

and expected goals, the methodology used and finally a last section to describe the

report structure.

1.1 Project Introduction

The project Manufacturing Equipment Data Collection Framework - Bee Framework

- is essentially a framework specification for collecting the data generated by a wide

variety of equipments in an assembly line.

Its subtitle, Bee Framework, is a pure analogy with what happens in the animal

world of bee. Bees focus either on gathering nectar or on gathering pollen depending

on demand from a wide variety of sources. Bees also play an important role in

pollinating flowering plants, and are the major pollinator in ecosystems that contain

flowering plants. It is estimated that one third of the human food supply depends

on insect pollination, most of which is accomplished by bees [1]. Moreover, pollen

and nectar can then be used to produce a large number of products, such as honey,

candles and beeswax, among others, and its usage comprises areas like medicine,

food, cosmetics, beebread, pollination and even pollution monitoring [2, 3].

Similarly, the Bee Framework project is intended to provide the necessary tools

required to perform data collection from a wide source of manufacturing equipments.

The collected data needs then to be prepared and finally fed into the data analysis

solutions that support and help improving the manufacturing process. In summary,

1

Introduction

Figure 1.1: Bee Framework logo

data may be collected from many sources and may as well have many target desti-

nations, just like the pollen and nectar collected by bees that can be used in many

areas.

Most of the generated data is available through equipment local databases or file

systems. This means that this data needs to be collected by querying a database or

by reading, parsing and interpreting files, respectively. Since there is a large number

of different equipment types, integrating equipments and collecting the data they

generate becomes an unpleasant and difficult task. The Bee Framework must then

provide, most of all, the common methods to collect the generated data and the

crucial services generally used while integrating equipment, such as database access,

folder monitoring, communication, or logging, among others.

The impact of such a framework would be considerable in the equipment integra-

tion process, mostly because common requirements are general enough to be easily

used, decreasing the amount of effort and time needed to integrate equipments in

terms of collecting the data they generate.

1.2 Project Motivation

With the continuous development and improvement of existing and new data anal-

ysis and data mining software solutions, there is an increasing need to collect data.

However, these software tools only provide valid and reliable results if large amounts

of data are considered, otherwise the correctness of achieved results can be question-

able and controversial. Regarding this need, it becomes obvious that data collection

plays a critical role in the early phase of the process.

Nowadays, a growing variety of problem domains require the usage of this kind

of work and decision tools in order to follow-up a continuous process optimization

and control. In order to meet these demands from data analysis solutions, effective

and powerful data collection tools are also needed.

2

Introduction

A data collection framework enclosing common functionalities generally used to

collect data from a wide scope of sources and save the collected data into numerous

possible targets can then be particularly useful and critical. A framework meeting

these characteristics could then be used in a large set of problem domains with a

small amount of effort and in a very short time.

Moreover, since the problem domain considered is data collection in manufactur-

ing equipments, there are still some several interface constraints and limitations in

following international standards in the way equipments generate data and how these

data can be collected. With such restrictions in the current scenario, it generally

implies the development of new specific data collection solutions, without promoting

reusability and decreasing developers’ productivity by keeping them doing similar

approaches.

1.3 Project Goals

The main goal of this project is to come up with a detailed system specification

of a framework to be used for data collection in manufacturing equipments in an

assembly line. Additionally, the core requirements of the framework should also

be implemented and an equipment integration should also be done as a proof of

concept. The proposed solution must take in consideration some of the existing

data collection solutions and a wide range of possible equipments, so that it can

achieve a high-level of abstraction. This required level of abstraction will then make

it possible to collect data from different equipment types without much integration

effort.

The data collection framework must consider the existence of common data col-

lection functionalities and different approaches for integrating different equipment

types. These common functionalities are considered the central part of the frame-

work. They provide the necessary tools to promote code and components reusability

while integrating equipments and must be general enough so that no changes need

to be done when their usage is required.

Finally, a prototype should be built as a proof of concept of the proposed solu-

tion. This prototype should consider the core functionalities of data collection for

manufacturing equipments. Since the data collection problem is mostly related to

the equipment integration topic, the prototype should consider the integration of

an equipment type used in the Qimonda1 assembly line in terms of collecting and

saving the data it generates.

1http://www.qimonda.com

3

http://www.qimonda.com

Introduction

1.4 Approach Methodology and Constraints

This section will firstly describe the approach methodology used during the project.

Afterwards, some constraints that affected the normal progress of the project or

that imposed some restrictions in terms of project decisions are also referred.

The collection and analysis of equipment data collection requirements has been

the first task. Usual data collection flows and main requirements related to data

collection have been analyzed and some previous equipment integration solutions

regarding data collection have been studied, so that the common functionalities

could be identified.

At the same time, a research on the state of the art technologies that could

possibly be used in the prototype development has also been started, so that the

decisions about the choice of appropriate technologies and applications could be

made.

After collecting the major requirements needed for a data collection framework

and after studying both the previous work done about this theme and the technolo-

gies used, the design of the solution started almost in parallel with the development

of the framework core functionalities.

When the development of these core functionalities has been successfully com-

pleted, the prototype related to the effective data collection by integrating an equip-

ment and collect the data it generates has then started.

Throughout the prototype development, whenever it was possible a Test Driven

Development (TDD) methodology has been followed and the SVN (Subversion)

version control system has also been adopted. In addition, some notes about archi-

tecture design and a high-level design document about the data collection regarding

the AOI — Automatic Optical Inspection — equipments have been written. This

equipment type and its data collection process will be detailed in Chapter 5.

The constraints that affected the normal progress of the project are mostly re-

lated to technological characteristics and decisions about the applications and tech-

nologies to be used in the project. For example, both C# programming language

and UML modeling can be considered as being project normative.

These constraints are essentially correlated to software applications that could

possibly be used and the lack of the required licenses for using them. This situation

has lead to the usage of other software alternatives or, in most cases, to the usage

of older releases of the desired software. These technological constraints will be

detailed in the Technology Review section (section 3.1) of the State of the Art

chapter (Chapter 3).

4

Introduction

1.5 Report Structure

This report has been written and structured in order to help readers understanding

the document and the project by performing a top-down analysis. This writing

approach starts by giving readers a high-level overview of the project contents so

that they can immediately understand the global concepts of the project and what

it is intended to do. After this high-level overview, the document will then gradually

disclose all the details concerning the problem analysis and design, as well as the

current implementation of the proposed proof of concept solution.

According to this approach, this initial chapter elucidates the readers about the

project overview context, its main goals and motivation and the used approach

methodology that lead to the project conclusion.

Chapter 2 will present a more detailed analysis of the data collection problem.

It also will refer the main motivations that lead to the origin of the problem and the

expected results that may have a considerable impact improving the data collection.

The global problem that concerns data collection will then be divided into smaller

problems, detailing each one and presenting a review of the previous approaches.

Chapter 3 will focus on the State of the Art. The first section of this chapter will

present a technology review, focusing in the technologies and applications consid-

ered. An individual description of each one of these technologies and applications

will also be done. In addition, a comparative analysis relating these technologies

and the main reasons that lead to their adoption or abandon will also be provided.

The following section of this chapter will concern the previous work done regarding

data collection in manufacturing equipments used in the assembly line.

Chapter 4 will refer to the proposed Framework Architecture and Specification.

Initially, this chapter will focus on the main requirements identified for the presented

solution, especially regarding the data collection problem related to manufacturing

equipments. The following section of this chapter will then detail the proposed

architecture for fulfilling the requirements identified and explain the usage of design

patterns to solve some of those requirements and needs.

Chapter 5 will describe the project development and some of the technical deci-

sions taken at implementation level. This chapter will mainly focus in the related

characteristics of each requirement previously specified in the fourth chapter. More-

over, the chapter will explain the overall framework development, the required con-

figuration settings needed and finally how the application works. Since the project

is about data collection, specifically data collection from manufacturing equipments,

the development of the proof of concept regarding the equipment integration and

the consequent data collection for one type of equipment as an example will also be

considered in this chapter.

5

Introduction

In Chapter 6, the main findings will be discussed. Additionally, a comparison

between the proposed solution and the previous approaches will also be done. This

comparison will mostly comprise the integration of the same type of equipment

using both approaches in terms of effort and time needed as well as performance

evaluation.

Finally, the main conclusions achieved after the project conclusion will be related

in Chapter 7. Furthermore, the conclusions will also include some final recommenda-

tions and perspectives of future work to improve and expand the proposed solution.

6

Chapter 2

Data Collection Problem Analysis

This chapter presents a detailed description regarding the data collection problem,

relating the problem with manufacturing equipments. The needs that lead to the

origin of the problem and the expected results that may have a considerable impact

in tasks related to data collection will also be considered. The chapter starts by

giving an overview about the data collection problem in general, then refers to the

data collection problem considering the semiconductor industry and finally details

the problem taking in consideration the specific case data collection at Qimonda.

2.1 Data Collection Overview

People live in an information society in which the creation, distribution, diffusion,

use, and manipulation of information is significant for almost every activity. More

now than ever before, governments, industry and society need reliable information to

make better decisions in tackling these problems [4]. Consequently, the importance

of data collection mechanisms has been and still is growing considerably, so that the

collected data can be used to provide the adequate information required by society.

A data collection system collects data from the outside world and which main

goal is to feed other systems with this data, such as decision making systems (DMS),

usually for the purpose of controlling a system [5]. The concept beyond data

collection means collecting data from a wide range of possible data sources and

turn it into useful information that can be further used. This information can then

be critical not only to control a process or a system, but also to provide a better

understanding about the domain considered in the data collection process [6, 7].

7

Data Collection Problem Analysis

2.2 Data Collection in Semiconductor Industry

The existing competitiveness in the semiconductor industry and the demands for

high quality and very reliable memory products lead companies in this sector to

adopt manufacturing processes based on a set of international standards, rules and

conventions in order to guarantee final products that meet customer quality de-

mands. The adoption of common standards is a sign of a mature industry. World-

wide semiconductor companies, through fierce competitors in the marketplace, have

shown remarkable willingness to cooperate in creating and adopting common stan-

dards for factory automation [8].

Manufacturing processes and equipments used in the semiconductor industry

have been continually improved. Along with the technical advances of the semicon-

ductor manufacturing processes themselves, factory productivity and efficient man-

ufacturing control are key to a fab’s success. In fact, that success increasingly relies

on the collection and analysis of growing amounts of detailed process, measurement

and operational data from the equipment to improve yield, efficiency, productivity

and more. As processes become more complex, it becomes more important to use

the data to reduce process variation, minimize the impact of excursions, and improve

overall equipment effectiveness [9].

During all the phases of the manufacturing processes, products are exhaustively

tested to ensure a high quality level. The equipments used either when the mem-

ory products are being mounted either when they are being tested generate large

amounts of data. This data is related to measurements, physical or electrical fail-

ures detected, temperatures or humidity values, tensions and voltages, or optical

inspections, for example.

The data generated by these different equipment types is extremely important

and plays a critical role in the improvement of manufacturing processes. Collection

of real data is a vital step in managing a modern manufacturing organization. This

data can be very useful since it provides Process engineers the required values that

can help them better understand all the manufacturing process stages and help

detect which steps can be improved and how these improvements should be achieved.

Furthermore, information is available immediately so problems can be identified and

corrected when a problem exists, not when it is noticed after a full day of incorrect

production [10].

In order to face the issues related to the semiconductor industry, an organization

have been founded during the decade of 1970. This organization is the Semicon-

ductor Equipment and Materials International — shortly SEMI — and its initial

main focus was to divulge and promote the semiconductor industry and associate

manufacturers of equipment and materials used in the fabrication of semiconductor

8

Data Collection Problem Analysis

devices such as integrated circuits, transistors, diodes, and thyristors [11]. Among

other activities, SEMI acts as a “clearinghouse” for the generation of standards

specific to the industry and the generation of long-range plans for the industry.

The most well known standard developed by this organization is the SECS/GEM

(SEMI Equipment Communications Standard / Generic Equipment Model). The

SECS/GEM interface is the semiconductor industry’s standard for equipment-to-

host communications. In an automated fab, the interface can start and stop equip-

ment processing, collect measurement data, change variables and select recipes for

products. The SECS/GEM standards do all this in a defined way, defining a common

set of equipment behavior and capabilities [12].

With the purpose of always trying to improve performance and productivity for

semiconductor fabs and equipment used, a new standard named Equipment Data

Acquisition (EDA) Interface, also known as Interface A, is available and ready to

be deployed in manufacturing organizations. Whereas the SECS/GEM standards

were created to improve tool control and to facilitate and support high levels of

factory automation, the EDA standards focus on improving process monitoring and

control, given the advancing technology and increasing complexity of semiconductor

manufacturing processes [13].

Although Interface A offers improved data ports over SECS/GEM, it does not

replace the SECS/GEM standards, which pertain to equipment control and config-

uration. It is also distinct from Interface B, which facilitates data sharing between

applications, and Interface C, which provides remote access to equipment data. In-

dustry adoption of Interface A has been gaining momentum, but more needs to be

done to fully implement the standard across the industry [14].

2.3 Data Collection at Qimonda

However, even considering the adoption of international standards by the industry,

some of the equipments used in Qimonda assembly lines are generically used not

only by the semiconductor industry. Consequently, some of these equipments do

not follow the SECS/GEM standards defined by the semiconductor industry, making

equipment integration tasks harder to perform and also introduces many difficulties

in the data collection process.

The integration of such equipments lead to the development of specific data

collection solutions for each equipment type considered. Since all these equipments

follow different conventions and rules not only in the way they are used but also in

how they generate data and how this data can be collected, it becomes very hard to

promote consistency.

9

Data Collection Problem Analysis

This situation led Qimonda equipment integration team to the development of

multiple and different approaches related to data collection from these manufac-

turing equipments. These approaches are designed and planned almost exclusively

taking in consideration a specific type of equipment, which causes a single and

unique architecture design. Consequently, the amount of time and effort required

from equipment integration team members increases, not only because they have

to think and implement a new architecture solution each time a new equipment

needs to be integrated but also because they have to document them. Obviously,

the productivity of the team members is then negatively affected.

The existing lack of consistency related to different integration architectures

approaches not only led developers to focus on specific equipments instead of a global

architecture but also led them to adapt some software components used in previous

integrations approaches achieved. The reutilization can be considered a positive

aspect but also has some negative consequences and turn downs. Since integration

solutions are developed focusing a single specific equipment, similar components can

not usually be directly reused without having to change and adapt it to the new

equipment requirements.

Consequently, these components have to be continuously adapted and devel-

opers recurrently face the same problems. Additionally, the reutilization of such

components also introduces some constraints related to technological issues. Old

versions of these software components are commonly used and this fact limits some

choices related to the technologies and implementation approaches used due to com-

patibility requirements. This way, even when considering the development of new

integration solutions, these solutions are limited since their beginning by out of date

technologies, which can considerably affect both the performance of solutions and

the maintenance effort needed.

A project to evaluate Qimonda EDA has looked at the problem of factory-wide

deployment of Interface A from a number of perspectives and has tried to incor-

porate the goals of the EDC — Engineering Data Collection — refactoring into a

comprehensive vision [15]. It is difficult to conclude with certainty how rapid and

pervasive the adoption of the nascent EDA standards will be.

Moreover, even considering this new standard, the problem related to data col-

lection is still not solved because there are still some equipments not following the

standards of the semiconductor industry and for which a data collection approach

is needed.

10

Chapter 3

State of the Art

This chapter introduces both the technologies used in the project and the previous

work done to help solving the data collection problem described in the second chap-

ter. Both introductions will be focused on the semiconductor industry, since some

of the technologies used to create the framework are related to this sector.

Additionally, some alternative technologies that could possibly be used to act

upon data collection will also be considered in this chapter. However, once again,

some decisions about different technological choices have been made considering the

semiconductor industry, so taking a decision about replacing a technology by other

one should always take this factor in consideration.

3.1 Technology Review

This section presents the main applications and technologies studied during the

initial phase of the project and later used in the project development. Additionally,

some alternative technologies and applications that were considered but not used in

the project will also be described. For these technologies, the main focus are the

pros and cons of using them in the data collection problem related to manufacturing

equipments and which were the main reasons that lead to their abandon.

3.1.1 Programming Languages and Tools

3.1.1.1 C# — C Sharp

C Sharp is a successfully adopted object-oriented programming language developed

by Microsoft as part of the .NET initiative and later approved as a standard by

ECMA [16]. C# 3.0 is the current version of the language and was released on

19 November 2007 as part of .NET Framework 3.5, but due to some technical and

11

State of the Art

licensing aspects, 2.0 version of the language and the 2.0 .NET Framework have

been used instead in this project. This programming language has a procedural,

object-oriented syntax initially based in the C family of languages but also including

very strong influences from several other aspects of programming languages (C++,

Python and most notably Java) with a particular emphasis on code simplification.

C# is intended to be a simple, modern, type-safe, general-purpose programming

language which allows the development of robust and durable applications. The lan-

guage includes strong type checking, array bounds checking, detection of attempts

to use uninitialized variables, source code portability, exception handling and auto-

matic garbage collection. This way, not only software robustness and durability are

considered by the language, but it also helps programmers using it, increasing their

productivity.

C# is an object-oriented language, but it further includes support for component-

oriented programming. Currently, software design relies more and more on software

components [17]. Key to such components is that they present a programming

model with properties, methods, and events; they also have attributes that provide

declarative information about the component and incorporate their own documen-

tation. One of the biggest advantages about using C# is that this language directly

supports all these concepts, making it a very natural language to create and use

software components.

C# can be considered a very high-level programming language when considering

other languages such as C or Assembly. Although C# applications are intended to

be economical concerning memory and processing power requirements, the language

cannot compete on performance with those low-level languages. C# applications,

like all programs written for the .NET tend to require more system resources than

functionally similar applications that access machine resources more directly.

Microsoft Visual Studio1 has been the development environment chosen to de-

velop the framework and the proof of concept. However, two different versions of

this product from Microsoft have been considered: Microsoft Visual Studio 2005

and Microsoft Visual Studio 2008.

Figure 3.1: Visual Studio logo

1http://www.microsoft.com

12

http://www.microsoft.com

State of the Art

Microsoft Visual Studio 2008

Visual Studio 2008 is the most recent version of this IDE — Integrated Development

Environment — from Microsoft and has been recently released in November 2007.

This version has been the one initially chosen and considered to develop the C#

components of the framework. However due to licensing difficulties, this choice has

been abandoned, which also has determined the choice of the .NET Framework and

C# language versions [18].

Microsof Visual Studio 2005

Visual Studio 2005 is the ancestor version of the Microsoft IDE referred in the

previous section and it was the one adopted as a development environment [19].

This product supports the features introduced by the .NET Framework 2.0 version.

Resharper

Furthermore, a trial version of Resharper 2.0 has been used. Resharper is a product

from JetBrains2 and is a refactoring add-in for Visual Studio which helps program-

mers increase their productivity while developing. Resharper allows code comple-

tion, easy refactoring, code analysis and assistance, code formatting, code generation

and templates, and also easier code navigation [20].

This work tool has been proven very useful, allowing an easier and quicker de-

velopment of the framework components.

Figure 3.2: Resharper logo

NUnit

NUnit3 is an open source unit-testing framework for all .Net languages. Initially

ported from JUnit (used with the same purpose for Java), it is written entirely in

C# and has been completely redesigned to take advantage of many .NET language

features, for example custom attributes and other reflection related capabilities [21].

This testing framework discovers test methods using code reflection and provides

test automation to control the execution of unit tests, the comparison of actual

outcomes to predicted outcomes, the setting up of test preconditions, and other test

control and test reporting functions [22].

2http://www.jetbrains.com
3http://www.nunit.org

13

http://www.jetbrains.com
http://www.nunit.org

State of the Art

Since a Test Driven Development [23] agile methodology has been adopted, this

unit-testing framework has been not only very useful but also fundamental in the

development process.

Figure 3.3: NUnit logo

3.1.2 Modeling Languages and Tools

3.1.2.1 UML — Unified Modeling Language

UML4 is a standardized visual specification language for object modeling used in

the software engineering field. UML is a general-purpose modeling language that

includes a graphical notation used to create an abstract model of a system, referred

to as a UML model. UML is the OMG’s — Object Management Group — most-

used specification, and the way the world models not only application structure,

behavior, and architecture, but also business process and data structure [24].

Figure 3.4: UML logo

Modeling is the designing of software applications before coding. Achieved mod-

els are very helpful since they let us work at a higher level of abstraction, helping

specification, visualization and documentation modeling tasks of software systems,

including their structure and design [25].

Its origin dates from 1994, when the large abundance of modeling languages was

slowing down the adoption of object technology. A unified method was needed and a

consortium with several organizations, named UML Partners, has been established

in 1996 with the purpose of coming up with a specification of a unified modeling

language. As a result of this collaboration, a strong UML 1.0 definition has been

4http://www.uml.org

14

http://www.uml.org

State of the Art

achieved. This modeling language was already well defined, expressive, powerful,

and generally applicable. It was submitted to the OMG in January 1997 as an

initial Request for Purposal response [26].

UML has matured significantly since its early versions. Several minor revisions

fixed shortcomings and bugs and the UML 2.0 major revision was adopted by the

OMG in 2003. There are actually four parts to the UML 2.x specification: the

Superstructure (defines the notation and semantics for diagrams and their model

elements), the Infrastructure (defines the core metamodel on which the Superstruc-

ture is based), the OCL — Object Constraint Language — (defines rules for model

elements) and finally the UML Diagram Interchange (defines how UML 2 diagram

layouts are exchanged). The current versions of these standards follow: UML Su-

perstructure version 2.1.2, UML Infrastructure version 2.1.2, OCL version 2.0, and

UML Diagram Interchange version 1.0.

Visio

Visio5 is a diagramming software originally developed by Vision Corporation, a

company that has been bought by Microsoft in 2000. It uses vector graphics to

create diagrams and follows the recent standards of UML modeling language.

Visio provides a wide range of templates - business process flowcharts, network

diagrams, workflow diagrams, database models, and software diagrams - that can

be used to visualize and streamline business processes, track projects and resources,

chart organizations, map networks, diagram building sites, and optimize systems

[27].

Visio 2007 is the most recent version of this software. The current version of

Visio has been used to model all UML diagrams referring to framework specification

and architecture.

3.1.3 RDBMS and Database Tools

3.1.3.1 Oracle

Oracle Database6 is a relational database management system (RDBMS) commonly

referred as simply Oracle which has become a major presence in database computing.

Oracle Corporation, which is the company that produces and markets this database

software, has been founded in late 70’s (1977) and since then many widespread

computing platforms have come to use the Oracle database extensively, making the

company to actually be the market leader [28].

The last version of Oracle Database has been recently released and this software

is currently in the 11g version. Once again, due to licensing and technical matters,

5http://office.microsoft.com
6http://www.oracle.com

15

http://office.microsoft.com
http://www.oracle.com

State of the Art

Figure 3.5: Oracle Corporation logo

the version considered while developing this proof of concept is the 9i. Moreover,

data collection generally involves large volumes of collected data, increasing the

risks of performing migrations of current database migrations. However, database

operations described in this report and used in the proof of concept should behave

the same expected way in recent releases of this software, even considering the grid-

computing technology that came with 10g or later versions.

Unlike the C# programming language referred before, a powerful development

database environment was not needed. Some database applications, such as SQL

Navigator or PL/SQL Developer have been considered but SQL Developer, which

already comes up with the Oracle Database Client, meet the necessary requirements.

SQL Developer

Oracle SQL Developer7 is a free graphical tool for database development. SQL

Developer can be used to browse, create and modify database objects, run SQL

statements and SQL scripts, and edit, run and debug PL/SQL statements. It can

also run any number of provided reports, as well as create and save new types of

reports. Additionally, SQL Developer allows to export / import data and DDL and

supports version control. SQL Developer is a tool that enhances productivity and

simplifies database development tasks [29].

SQL*Loader

SQL*Loader8 is a bulk loader utility used for moving data from external files into

the Oracle database. It comes with some configurable loading options and supports

various load formats, selective loading, and multi-table loads [30]. Its usage is

particularly recommended to load large volumes of data into Oracle Database be-

cause it consumes less resources, specially those related to time, memory and CPU

processing.

3.1.3.2 SQL Server, Access and PostgreSQL

Microsoft SQL Server9, Microsoft Access10 and PostgreSQL11 have been considered

as possible alternative database management systems. However, since data collec-

7http://www.oracle.com/technology/products/database/sql_developer/
8http://www.orafaq.com/wiki/SQL*Loader_FAQ
9http://www.microsoft.com/SQL

10http://office.microsoft.com/access
11http://www.postgresql.org

16

http://www.oracle.com/technology/products/database/sql_developer/
http://www.orafaq.com/wiki/SQL*Loader_FAQ
http://www.microsoft.com/SQL
http://office.microsoft.com/access
http://www.postgresql.org

State of the Art

tion can be very resource consuming, usually involving large volumes of data and

strongly related to mechanisms of data warehousing and data mining, Oracle has

been the natural database choice. The main reason for this choice is the well known

robustness and efficiency of Oracle databases in such situations. Nevertheless, the

data collection framework presented not only considers Oracle but also these al-

ternative databases. This topic will be detailed and explained in Chapter 5.

3.1.4 Data Persistence

3.1.4.1 Enterprise Library

Microsoft Enterprise Library12 or simply Enterprise Library is a collection of reusable

software components for the Microsoft .NET Framework. These components are

application blocks designed to assist software developers with common enterprise

development challenges and problems that commonly are faced from one project to

the next ones [31].

Application blocks are designed to encapsulate the Microsoft recommended best

practices for .NET applications. In addition, they can be added to .NET applica-

tions quickly and easily [32]. Application blocks are a type of guidance, provided

not only as source code but also as documentation that can be directly used, ex-

tended, or modified by developers to use on complex, enterprise-level line-of-business

development projects.

This guidance is based on real-world experience and goes far beyond typical

white-papers and sample applications. They provide proven architectures, produc-

tion quality code, and recommended engineering best practices. The technical guid-

ance is created, reviewed, and approved by a wide diversity of experienced people

including Microsoft architects, partners and customers, engineering teams, consul-

tants, and product support engineers. The result is a thoroughly engineered and

tested set of recommendations that can be followed with confidence when building

applications based on this guidance [33].

Enterprise Library and its applications blocks provide an API to facilitate best

practices in core areas of programming such as logging, validation, data access,

exception handling, and many others. However, application blocks are designed to

be as “agnostic” as possible to the application architecture, so that they can be

easily reused in different contexts.

Figure 3.6 shows the applications blocks available in the Enterprise Library 3.1

release and illustrates their interdependencies. [32] Both Data Access and Logging

Application Blocks have been used in the Bee Framework. Their usage will be

12http://msdn.microsoft.com/entlib

17

http://msdn.microsoft.com/entlib

State of the Art

Figure 3.6: Interdependencies of the Enterprise Library application blocks

explained later in the Framework Specification and Architecture chapter (Chapter

4) because they have significant impact in the proposed architecture.

Amongst the main benefits of using Enterprise Library we can identify the pro-

ductivity and testability enhancements: each of the application blocks provides

several interfaces meant to satisfy common concerns and a level of isolation that

allows individual testing of each block. Additionally, extensibility (developers can

customize the application blocks and extend their functionality to suit own needs),

consistency (design patterns are applied in similar fashion in all the blocks), ease of

use and integration (application blocks can be used as pluggable components) are

also strong advantages of using Enterprise Library [34].

Enterprise Library 4.0 is the most recent version and has just been released

recently in May 2008. This last release includes some bug corrections, new appli-

cations blocks, some performance improvements, and already supports Microsoft

18

State of the Art

Visual Studio 2008 and the .NET Framework 3.5 [35]. However, since this last

version has been released after the beginning of the project, the previous release

of Enterprise Library, version 3.1 - May 2007, has been used instead. Moreover,

as described before in the C# Technology Review section, Visual Studio 2005 and

.NET Framework 2.0 have been used, so using the last release of Enterprise Library

would be impossible due to software requirements.

3.1.4.2 NHibernate

NHibernate13 is a port of the famous Hibernate Core for Java to the .NET Frame-

work [36]. It is an Object-Relational Mapping (ORM) solution that provides an

easy to use framework for mapping an object-oriented domain module to a tradi-

tional relational database, handling persisting plain .NET objects to and from the

underlying database.

With this support to transparent persistence, object classes do not have to fol-

low a restrictive programming module. These persistent classes do not need to

implement any interface or inherit from a special base class. Just by giving a XML

description of the entities and relationships, NHibernate automatically generates

the necessary SQL for loading and storing the objects. This characteristic makes

it possible to design the business logic using plain .NET (CLR — Common Lan-

guage Runtime) objects and object-oriented idiom. This object-oriented approach

relieves the developer from a significant amount of relational data persistence-related

programming tasks.

NHibernate is free as open source software that is distributed under the GNU

Lesser General Public License and its most recent version number is 1.2.1. NHiber-

nate 2.0 is currently under development [37].

However, despite these apparent advantages and interesting features, NHiber-

nate has been abandoned in favor of Microsoft Enterprise Library, described in the

previous section. The reason for this choice is inspired by expressions as “no solu-

tion is final solution” and “all have pros and cons” because it depends on the the

data access layer architecture and how this layer is implemented. Each case must

be individually considered in order to determine whether a technology / application

is better or worst than other one.

The main reason for this decision is the type of application considered: a data

collection framework. When referring to a data collection framework, it is expected

that all database accesses can be abstract, not depending on which type of database

is used, which tables exists, which columns each table contains, and so on. Such a

13http://www.hibernate.org

19

http://www.hibernate.org

State of the Art

framework is expected to have a high level of abstraction, providing a wrapper that

can execute any kind of query, stored procedure, or transaction different databases.

Of course, each query, stored procedure or transaction must be defined when using

the framework services but the way of using database services remain exactly the

same whatever the database is.

By choosing NHibernate it would not be possible to attend the required universal

way because it would be necessary to generate the mapping XML files, then gener-

ate the SQL used for database access and finally generate all object-oriented class

files. Even considering the usage of automatic code generation tools for NHibernate,

such as MyGeneration14 or CodeSmith15, some adjustments in XML files and object

classes must usually be done specially when dealing with complex entity relation-

ships. This situation increases the complexity and difficulty of maintainability tasks

because it is easy to introduce an error and very hard to detect its origin.

Unlike NHibernate, the Data Access Block (DAB) from Enterprise Library makes

calling stored procedures very easy and uniform. The DAB manages the state of

existing database connections and also provides the required uniform way for data

access operations, making all the code look and behave similarly [38]. Moreover,

Enterprise Library supports multiple database types (Oracle, SQL Server, DB2, or

Access for example): due to its abstraction level regarding databases types and due

to the usage of multiple abstract factories design patterns, there is no need to change

a single line of code if the database type changes.

Additionally, Enterprise Library supports applications using multiple databases

and provides a simple way of choosing and alternating between all the configured

databases and connection strings.

3.1.5 Communication Technologies

3.1.5.1 TIBCO RendezVous

TIBCO Rendezvous16 is a software product from TIBCO Company that allows

messaging interchanging between different applications. It is a very efficient, robust,

reliable, scalable product and is the leading low latency-messaging product for real

time throughput data distribution applications. It is a widely deployed, supported,

and proven low latency messaging solution on the market today [39].

TIBCO Rendezvous can be integrated with external components and provides

different Application Programming Interfaces (API) to support the development of

applications in different programming languages.

14http://www.mygenerationsoftware.com
15http://www.codesmithtools.com
16http://www.tibco.com

20

http://www.mygenerationsoftware.com
http://www.codesmithtools.com
http://www.tibco.com

State of the Art

The basic message passing is conceptually simple. A message has a single subject

composed of elements separated by periods and has some message parameters, each

one following the name-value-type paradigm [40]. The message is then sent to a

single Rendezvous Daemon and a listener announces its subjects of interest to a

Daemon (with a wildcard facility). The messages with matching subjects are then

delivered to that Daemon [41].

The main components for an application using TIBCO Rendezvous are the fol-

lowing:

• the messages and their content parameters;

• the events related to the subscription, sending and receiving of messages;

• finally, the transport and the logical connection between different applications,

which includes the connection settings.

3.1.5.2 YODA

YODA is a middleware software solution developed by Infineon Technologies17.

YODA stands for Your Own Data Adapter and is a set of components and libraries

which are application, platform and technology independent. These components

and libraries have defined a set of well-defined rules and conventions [42].

YODA main goal is to achieve an efficient and complete integration between

distributed applications, using a reliable and quick method to exchange messages

between them. YODA is likely an internal network based protocol that allows differ-

ent applications running on different platforms to intercommunicate and exchange

information via YODA messages.

It is a high-level layer based on TIBCO Rendezvous software that allows appli-

cations to communicate through a network. YODA provides a uniform and easy

way to send and receive messages. The main advantage of using YODA is that

the communication between different applications is done by sending and receiving

messages via a network and both the sender and the receiver applications do not

need to know their locations on the network.

An application subscribes the messages by creating a transport, IfxTransport,

and specifying the subjects it wants to receive. When a message is available in the

network, it will be delegated accordingly to the applications that have subscribed

that message subject. These applications only have to install an event handler, so

that they can receive the delegated messages and process them.

17http://www.infineon.com

21

http://www.infineon.com

State of the Art

3.1.5.3 Microsoft Message Queuing

Microsoft Message Queuing (MSMQ) is a technology provided by Microsoft that

enables applications running at different times to communicate across different net-

works and systems. The main advantages of this technology are that it guarantees

message delivery, efficient routing, security and priority-based messaging. Addi-

tionally, it also can be used for implementing solutions for both synchronous and

asynchronous messaging scenarios, which means it also supports systems that may

be temporarily offline [43].

MSMQ is a middleware tool, not responsible for passing the messages themselves

bit by bit; this middleware leaves that low level work to already existing standards

and only provides a friendly interface API to help developers. Each computer par-

ticipating in the distributed application needs a message queue, which allows the

application to send asynchronous messages to a disconnected computer [44].

However, there is no need to use an advanced technology like MSMQ to support

communication, since most of its features are not required by the framework. Addi-

tionally, all the communications between different applications are already supported

by YODA, which is widely used in Qimonda universe.

3.1.6 Markup Languages

3.1.6.1 XML

XML stands for Extensible Markup Language and it is a W3C18 recommendation.

XML was developed by an XML Working Group (originally known as the SGML19

Editorial Review Board) formed under the auspices of the W3C in 1996 [45].

XML is a simple and very flexible text format originally designed to meet the

challenges of large-scale electronic publishing, XML is also playing an increasingly

important role in the exchange of a wide variety of data on the Web and elsewhere

[46]. XML is a markup language much like HTML, but XML is not a replacement for

HTML since they were designed with different goals. XML was designed to transport

and store data, with focus on what data is; HTML was designed to display data,

with focus on how data looks [47].

XML documents are made up of storage units called entities, which contain either

parsed or unparsed data. Parsed data is made up of characters, some of which form

character data, and some of which form markup. Markup encodes a description of

the document’s storage layout and logical structure. XML provides a mechanism

to impose constraints on the storage layout and logical structure. Unparsed data is

made by contents that may or not be text, and if text, may be other than XML.

18World Wide Web Consortium
19Standard Generalized Markup Language

22

State of the Art

XML language can then be used to describe any kind of data type because tags

are not predefined; used tags must be defined as needed, which makes XML to be

classified as an extensible language. This characteristic makes XML documents self-

descriptive because these documents are easier and intuitive to understand since

they are relatively human-legible and reasonably clear [48].

Amongst its main purposes are the facility of sharing and transport structured

data across different information systems (interoperability), the encoding of docu-

ments and the serialization of data. This data is stored in plain text format, which

provides a software and hardware independent way of storing data. This makes XML

straightforwardly usable because it is much easier to create data that different ap-

plications can share. Moreover, XML documents should not only be easy to create,

but the design of XML documents should also be formal, concise and quickly pre-

pared. These characteristics also help reducing the complexity of exchanging data

between incompatible systems, since the data can be read by different incompatible

applications [49].

3.1.6.2 XPath

XML Path or shortly XPath20 is a language for finding information in an XML

document. XPath is used to navigate through elements and attributes in an XML

document [50]. In addition, XPath may be used to compute values (strings, num-

bers, or boolean values) from the content of an XML document. XPath became a

W3C Recommendation in November 1999 and the current version of the language

is XPath 2.0 [51].

XPath operates on the abstract, logical structure of an XML document, rather

than its surface syntax. The XPath language is based on a tree representation of

the XML document, and provides the ability to navigate around the tree, selecting

nodes by a variety of criteria. XPath has a natural subset that can be used for

matching (testing whether or not a node matches a pattern) [52].

XPath gets its name from its use of a path notation for navigating through the

hierarchical structure of an XML document. XPath uses path expressions to select

nodes or node-sets in an XML document. These path expressions look very much

like the expressions you see when you work with a traditional computer file system.

3.2 Previous Work

This section concerns some of the previous work done regarding the data collection

in manufacturing equipments used in an assembly line. It presents the state of the

20http://www.w3.org/TR/xpath

23

http://www.w3.org/TR/xpath

State of the Art

art in terms of how data is collected from files generated by equipments, how the

questions related to database concurrency accesses are resolved and how commu-

nication is handled between both equipments and applications and also between

different components of the same application.

3.2.1 Collecting Data from Files

Some manufacturing equipments generate data and save it into files. These files are

usually saved in a folder configured in the data collection application settings. The

folder containing these generated files is usually accessed via a network mapping

using the TCP/IP protocol, which allows to access these remote files just like if

they were in the same computer of the data collection application.

This way, the problem related to accessing these files is solved. However, data

collection approaches used at Qimonda for collecting files have some limitations,

especially because applications do not know neither the exact moment a new file is

created neither when the file becomes available for use and unlocked by the equip-

ment software. Consequently, a periodic approach must be used. Depending on the

frequency equipment generates data, the time value used between two consecutive

folder inspections is adjusted. Because of these periodic inspections, it is impossible

to know a priori which files have been generated between two consecutive inspec-

tions, so each inspection needs to check all the existing files and folders existing in

the mapped network folder. This way, a list containing the files and folders existing

inside a directory must be kept in memory, so that comparisons between two con-

secutive inspections can be made. Additionally, the list should always be updated

at the end of each inspection, so that it can be used in the next inspection.

Another important point related to collecting data from files is related to file

contents. File contents need to be parsed and specific parsers must be configured

to match the requirements of each specific equipment. These parsing approaches

commonly used implement a sequential parsing of files, which leads to less tolerant

parsers if errors occur and also makes harder to find the desired information inside

the file contents.

3.2.2 Database Concurrency

Databases play a critical role in the data collection process: some of the data may

be collected from equipment local databases and mostly because the main target for

the data collected is usually a database.

However, database accesses should be handled carefully because there is the

possibility of having many reads and writes operations using the same data rows

at the same type. This may be potentially dangerous due to concurrency problems

24

State of the Art

related to concurrent accesses. These concurrent accesses could result in undefined

and generally wrong data being stored.

The only way to solve these concurrency problems is controlling concurrent ac-

cesses by performing locks in the database records. However, even if locking seems

to be the ideal solution, there is another problem rising: there are many approaches

for implementing locking, all of them with different strengths and weaknesses, so it

is not an easy at all to choose which one is more adequate to a specific concurrency

problem [53]. Typically, the common locking approaches to solve this problem are

pessimistic and optimistic concurrency control.

Pessimistic control performs locking at the database records level, either by lock-

ing when the row is selected or on demand, preventing other processes from holding

the same lock. This pessimistic approach is both simple to implement and easy to

use, since the users are immediately notified if they cannot access a database row.

Another advantage is its security level, because locks are performed at database

level very reliably and no one will be able to ignore the lock and change data [54].

The main disadvantages of pessimistic locking are its prone to deadlocks, ex-

cessive and long locking, and the use of extra database resources and finally the

incompatibility of this mechanism in different types of databases. This concurrency

control method is very powerful and it is suited for use in environments where there

is heavy contention for data, where the cost of protecting data with locks is less

than the cost of rolling back transactions if concurrency conflicts occur.

Optimistic locking does not really occur at the database level and the data is

never really locked like in the pessimistic approach: conflicts are detected and solved

when writing to the database. While reading a row from the database, a “snapshot”

is done and then, when a row needs to be updated, the application must determine

if that row has changed or not since it was read by doing a comparison between the

snapshot and the current values before writing [55]. This kind of approach does not

use extra database resources, it is supported by all databases, it is easy to use and

implement and has lower risks of deadlocks occurrence than the pessimistic one.

Although, this approach is not very secure, it is single-row oriented and slows

down updates. Also, users are not notified if an update goes wrong and all applica-

tions updating a database must agree on a locking protocol for the columns involved,

making maintenance harder to perform. This method to deal with concurrency is

suited for use in environments with a low contention for data, with low updates

actions and where the cost of rolling back a transaction is not critical.

Other approaches are locking on a column or application-level locking. Locking

on a column approach is a combination of the two previous approaches previously

described, since it combines some of their advantages by trying to reduce the negative

25

State of the Art

impact of their disadvantages. This kind of locking may be understood as a soft

pessimistic or as a hard optimistic locking. Instead of directly locking database

rows, this approach uses a field (a column) to indicate whether a row is being used

(locked) or not [56].

This method lets the application decide when a lock should be done and also

makes possible to always know who did the lock and when it has been done. However,

this approach does not enforce a true lock and others may ignore it and change the

data anyway. Also, locked rows may remain in such state forever if the locks are not

removed manually and it requires extra database space and transactions to support

the new column and to set the lock, respectively.

Application-level locking is another locking mechanism but it is the hardest one

to implement and use. An updated list of the shared objects by all applications

that update the database must be kept. Unlike the previous locking method, no

extra space and processing is required at the database level. It also allows notifi-

cations while updating and it is surely the most flexible method described in this

section. However, it slows down performance, especially with large amounts of data

being updated and while synchronizing the list of objects with multiple applications

running.

Since data collection in semiconductor industry deals with large volumes of data

being updated and high contention, the optimistic method has been discarded due

to performance requirements. On the other hand, choosing locking on a column and

changing database schema to add a new column on each table would be completely

unfeasible, not only because the actual systems high dimension, but also because it

would require lots of extra database space. Application-level locking, with all the

disadvantages already mentioned before is also out of question.

Pessimistic locking is the safest approach and the easiest to use and implement.

It is suited for huge volumes of data and it is also the one that ensures better

performance, so it is the adequate locking mechanism. Additionally, this locking

approach to solve concurrency problems is natively supported by Oracle databases,

which also already has some means to deal with the mentioned disadvantages. Oracle

databases already have implemented mechanisms to solve deadlocks (by freeing a

locked resource) and they also support timeouts associated with operations to face

long locking problems.

3.2.3 Handling Messages and Communication

Handling messages and support effective communication between manufacturing

equipments and data collection systems is another crucial point related to the data

collection process. Data collection is a complex process that commonly involves at

26

State of the Art

least the equipment itself and its software to generate data, the application used to

collect data from the equipment, a final target to save the data collected. Conse-

quently, a mechanism to allow communication between all these different compo-

nents involved in the process is also required.

Message handling at Qimonda is actually supported by a middleware application

that uses a network protocol to allow communication between different applications

and software components, even if these components run in different platforms.

Since specific solutions are developed for each equipment type considered, inter-

nal components of a data collection application are typically highly coupled. This

way, there is no need to adopt advanced mechanisms supporting communication

between these components.

To support message handling, events are another option to handle messages be-

tween internal components of a data collection application. Event-based program-

ming is a simple and effective way to send and receive messages between components.

Moreover, the .NET framework already supports natively events and delegating ac-

tions.

However, even if events are natively supported, there also some kind of messages

that can not be handled by the .NET framework. In order to face these limitations

and to guarantee that all kind of possible messages can be supported, Windows

messages are also a possible solution. Windows messages are related to everything

that is happening in Windows operating system, just like a simple mouse click or

move, a key pressed, a window closed or even a shutdown action.

Windows messages provide a powerful mean to guarantee that every kind of

message can be supported. However, working directly with Windows messages is

clearly working at a very low level and it obviously increases development and imple-

mentation effort and it is also more time consuming than just working with simple

events.

3.3 Summary

Figure 3.7 shown bellow summarizes the areas related to technology review used in

the Bee Framework project. Some other technologies have been studied but only

the ones presented in the figure have been used. Each rounded rectangle contained

in the main figure represents an area as described in the Technology Review section

(section 3.1).

For each of the areas represented in the top of the figure, there are as well

two smaller rectangles: the first one represents the technologies themselves and the

second one the IDEs or applications used to work with them. In the bottom of the

27

State of the Art

figure, the remaining areas are represented as well as the respective technologies for

each area.

Figure 3.7: Technology review

The previous work related to data collection considered three different crucial

points:

• Collecting data from files.

Collecting files usually involves a periodic checking for new files in a listen-

ing directory. Parsing the contents of these files is typically done by using

sequential parsing approaches.

• Database concurrency accesses.

Managing concurrent accesses uses the native methods available in Oracle

databases, which are directly related to the pessimist approach for locking.

• Handling messages and communication.

Handling messages uses cross-platform middleware to ensure an effective com-

munication between applications, even when considering applications and soft-

ware components running in different platforms.

28

Chapter 4

Framework Specification and

Architecture

The problem analysis explained in Chapter 2 has already exposed some of the ex-

isting problems related to equipment integration. The study of the previous work

done while integrating equipments was also of great importance, since it has helped

identifying some common problems occurring in integration tasks.

This chapter presents a detailed description regarding the proposed framework

specification and architecture. Initially, the main focus of the chapter is related to

the main requirements identified, especially regarding the data collection problem

related to manufacturing equipments. The next section of this chapter refers to the

proposed architecture to satisfy the requirements found. This architecture section

also makes a comparison between the theoretical usage of design patterns and their

real usage in the proposed framework architecture.

Sections 4.1 and 4.2 present a black-box and a white-box overview of the frame-

work architecture. Black-box is a technical term for a system when it is viewed

primarily in terms of its input and output characteristics. The opposite of a black-

box is a system where the inner components or logic are available for inspection

which is known as a white-box.

4.1 Framework Black-Box Overview

Since the Bee Framework refers to a manufacturing equipment data collection frame-

work, the core requirements are obviously related to collecting data from different

equipment types and saving it in different locations. Figure 4.1 shows a global

overview of the Bee Framework collecting and saving data as a black-box.

29

Framework Specification and Architecture

Figure 4.1: Black-box overview

On the left of the figure 4.1, different equipment types or other external applica-

tions generate data, which can be available through different data sources. The Bee

Framework collects this generated data and then processes it. Finally, as shown in

the right part of the figure, the collected data can be saved in different targets.

4.1.1 Collecting Data

The equipments may vary from manufacturer to manufacturer which consequently

may result in different approaches to generate the data that will be collected. Such

differences about the way equipments generate data also implies that data needs to

be collected from different data sources and consequently different data collection

approaches must be taken in consideration. These generated data may become

available through:

1. Equipment local databases.

Equipments generate data and store it in its own local database. In such

situation, data information is initially stored in the equipment itself and data

30

Framework Specification and Architecture

collection will inevitably be done by querying the local equipment database in

order to retrieve the available records that contain the required information.

2. Files in different formats (such as XML, plain text, proprietary files).

Manufacturing equipments generate data and store it in the equipment local

file system. These files need to be retrieved from the equipment file system

and data collection will inevitably be done by reading, parsing and interpreting

those files.

3. YODA messages.

This possibility assumes that equipment generates data and immediately sends

it using the YODA network, which as been described previously in the Tech-

nology Review section (see section 3.1.5.2). In such case, data is encapsulated

into YODA messages and sent through the network.

4. TCP/IP and RS-232 (serial port).

Finally, TCP / IP and serial port data collection approaches will not be consid-

ered because data collection using such data sources is currently being aban-

doned in manufacturing equipments.

4.1.2 Saving Data

After collecting the data using one of the approaches referred in the previous section,

it needs to be saved so that it can be further used by other applications and feed

them with the required information to follow-up on process optimization and control.

Saving data is the second problem that needs to be taken in consideration. In-

dependently of how data is collected and what is the data information source, there

are different ways to save the collected data. These different ways are listed bellow:

1. Databases.

This is the common method used to save collected data. Databases are the

natural approach because they are a reliable and efficient method to save data

also allowing easy and quick access to information by performing queries.

2. File systems.

File systems are used as a complementary method of databases. Commonly,

when the data is available through files, these files are parsed to retrieve the

required information. This information is then stored into databases and the

files are moved to a server file system, keeping them in backup repositories.

31

Framework Specification and Architecture

3. YODA messages.

The last approach considered encapsulates the collected data into YODA mes-

sages and sends these messages through the YODA network. These messages

will then be collected by external applications subscribing these message sub-

jects and the encapsulated data will then be used as defined by the external

applications. The way these applications deal with the received YODA mes-

sages and the way they use the data received is out of the scope of this report.

4.2 Framework White-Box Overview

Collecting data from different equipment types and saving it into different target

locations are the visible and final results of the usage of the Bee Framework . Con-

sequently, when referring to data collection in an assembly line, the important ques-

tions to make by end users are:

• “Is data being generated correctly by the equipments?”

• “Is generated data being collected?”

• “Is collected data being saved?”

Obviously, for these end users data collection must be a black-box since they do

not need to know the “how questions” about:

• “How is the data generated by equipments?”

• “How is the data collected?”

• “How is the data saved?”

These last “how questions” are the critical path of data collection and should be

answered only by the equipment control team. This is where the framework plays

an important role.

Figure 4.2 represents the white-box Bee Framework logical overview. This figure

provides a better understanding about the global concepts and flow followed by

manufacturing equipment data collection using the Bee Framework .

In order to face the different approaches for collecting data from equipments, it is

needed a general interface to receive data from equipments (Data Receiver) and send

it to the Data Acquisition view. When receiving data information, Data Acquisition

checks configurations settings and validation rules for the specified equipment.

At this point, the framework has already started the data collection operations

but it is still needed to store the data in some target location. However, there is

32

Framework Specification and Architecture

Figure 4.2: White-box overview

still another problem to solve before storing the data: usually, there is no need to

save all the collected data and this data should be preprocessed and converted by

the Data Conversion interface before being saved by the Data Sender.

The Data Sender is similar to the Data Receiver, with the inverse functionalities

since it provides a general interface to save data. It analyzes the data format received

from Data Conversion and according to the configuration settings applicable, it

sends the data to the final target location. This target location has been previously

determined by the Configuration interface while checking configuration settings.

The framework should also provide a way to do some backup and housekeeping

operations, especially those related to server file systems and its log files. Performing

backups of log files is important, but there is obviously no need to keep these files

indefinitely. This way, Backup & Housekeeping interface should control how log files

are backed up and how long they must remain available.

Another important point related to the framework architecture is the framework

services provider. Those services are also shown on the bottom position of figure

4.2. They have not been considered framework modules since they are not related

to the data collection logic flow itself; they provide the framework some very helpful

functionalities that can be used by all modules, just by calling the desired service.

These services allow the following operations, for example:

• send or receive YODA messages;

• execute queries, stored procedures or transactions in a database;

33

Framework Specification and Architecture

• send emails;

• perform logging tasks;

• handle internal framework messages;

• install timers and generate alarm notifications.

These listed operations are just an overview to better understand the concepts

related to each service and which are their meanings and purposes. A detailed

description for each one of these services will be done in section 4.4.

4.3 Framework Architecture

The current section presents a global architecture overview of the Bee Framework.

Figure 4.3 contains a class diagram model that represents the conceptual entities of

the framework. Only the main entities are considered in the figure because the re-

maining entities are part of the framework services and are not considered critical to

the overall architecture. These remaining entities will be referred in the Framework

Services section (section 4.4).

The BeeFramework class is the framework main class and can be considered

as being the kernel of the framework. This class is responsible for launching the

framework itself and also all the selected modules specified in the configuration

file. Moreover, this class is closely related to the message center provider, receiving

not only messages from modules and YODA network but also sending messages to

modules or to the YODA network accordingly.

Since this class is considered the kernel of the framework there is absolutely no

need to have more than one instance of it. It must be ensured that this class has only

one instance with a global point of access to it. Such description and characteristics

correspond to a typical GoF — Gang of Four — creational design pattern, usually

known as Singleton pattern [57].

Using a global variable would make the required object accessible, but by doing so

it is impossible to guarantee that there is just a single object (singleton) instantiated.

The solution is making the class itself responsible for its sole instance and ensuring

that no other instance can be created, including by any threads that are running

[58].

The Singleton pattern is implemented by creating a class with a method that

creates a new instance of the BeeFramework class if one does not exist yet; if an

instance already exists, it simply returns a reference to that object. To make sure

that the object cannot be instantiated any other way, the constructor is made either

private or protected [59].

34

Framework Specification and Architecture

Figure 4.3: Framework architecture overview

This pattern avoids using global variables and allows refinement of architecture

design. The power of the Singleton pattern goes beyond just controlling the instance

count. As mentioned above, since access is controlled through a method, additional

logic can be added behind them [60].

The singleton pattern structure and its architecture implementation in the frame-

work are shown in figure 4.4: the GoF singleton design pattern is represented in 4.4a

and 4.4b shows the design proposed.

The framework contains a hierarchy of distinct modules (see figure 4.5). However,

even if each module has its responsibilities, behaviors and functionalities, there are

many aspects that are common amongst the different modules, such as module

instantiation, module configurations and module loading, for example.

Amongst the classes of the hierarchy, two main module classes can be considered

as being the most important ones because both are parent classes: BeeModule and

BeeEquipmentModule. BeeModule class is the parent class of all framework modules

35

Framework Specification and Architecture

(a) Gang of Four design, adapted from [57] (b) BeeFramework de-
sign

Figure 4.4: Singleton pattern

and contains the common module methods; BeeEquipmentModule is the parent class

of equipment modules classes.

The first level of child modules contains the following modules:

• BeeEquipmentModule — contains not only the methods and operations that

are common to other framework modules but also the commons methods that

are specifically related to equipment modules;

• BackupModule — contains the methods and operations to backup files and

check for updates;

• FolderMonitorModule — contains the methods and operations to monitor

directories and their content files.

The second level of the hierarchy comprises the equipment modules. Each mod-

ule having the BeeEquipmentModule as a parent class allows data collection and

equipment integration.

It would be nice if all the common characteristics of these modules could be

handled the same way for all of them. If common characteristics are encapsulated

into a parent abstract module, then all modules inheriting from the parent would

have not only its own specific methods and functionalities but also those from the

parent. Using such an architecture design, the BeeFramework class does not need

to know all the specific module types shown in the hierarchy represented in figure

4.5 and can then deal with all of them using the same common methods.

This approach promotes an abstraction and makes the architecture related to the

framework modules much easier to understand. Moreover, such an abstraction also

makes possible to expand the framework easily. If a new module is required, the new

module needs to inherit the parent module (the BeeModule class), which develops

the necessary code to support the new module and integrate it in the framework.

Since the main characteristics and behaviors of the new module remain the same,

the new module works together with the other modules available. This allows for

new derived modules to be introduced with no change to the code that uses the

36

Framework Specification and Architecture

Figure 4.5: Framework modules hierarchy

parent class [61]. It wouldn’t be necessary to change a single line of code in the

framework kernel, since the common operations will be the same. Additionally, if a

child module needs to define its own behavior, it can simply override the common

method with its own implementation without changing the method call.

Such description and characteristics are common in software architecture and

are widely used. Even if a large number of developers has already used this kind

of abstraction, most of them probably do not know that they are facing another

GoF creational design pattern, known as Factory Method. This pattern provides

an interface for creating an object but let subclasses decide which class to instanti-

ate. The pattern lets a class defer instantiation to subclasses, avoiding the need of

specifying the concrete classes.

The Factory Method pattern is strongly recommended for this situation because

the framework should be independent of how its modules are created, composed and

represented. The framework only knows when a module should be instantiated, not

what kind of module should be instantiated. The framework cannot anticipate the

class of modules it must create and wants the subclasses to specify the modules it

creates. The responsibility of instantiating a module is then delegated to one of

modules subclasses.

Amongst the several benefits usually provided by using the Factory Method pat-

tern, the most important ones concerning the framework are the isolation of concrete

classes and the promotion of consistency among modules [62]. Since the factory

encapsulates the responsibility and the process of creating modules, it isolates the

framework from implementation classes because the framework will only manipu-

late abstract interfaces both when creating modules and when referring to common

37

Framework Specification and Architecture

methods [63].

The Factory Method pattern structure and its implementation in the framework

are shown in the figures 4.6 and 4.7.

Participants of the Factory Method pattern shown in figure 4.6 are: [57]

• Product — defines the interface of objects the factory method creates;

• ConcreteProduct — implements the Product interface;

• Creator — declares the factory method, which returns an object of type

Product ;

• ConcreteCreator — returns an instance of a ConcreteProduct.

Figure 4.6: Gang of Four — Factory Method pattern, adapted from [57]

Figure 4.7 shows the analogy between the theoretical definition of the Factory

Method pattern and its actual implementation in the framework.

Figure 4.7: Bee Framework — Factory Method pattern

Similarly, the participants of the implemented Factory Method pattern are:

38

Framework Specification and Architecture

• BeeModule — defines the common interface of modules the factory method

creates;

• ConcreteModule1 — implements the BeeModule interface;

• BeeFramework — the application that contains the BeeModuleFactory, which

returns a concrete object of type BeeModule;

• BeeModuleFactory — returns an instance of a ConcreteModule type.

In the following subsections, framework modules will be presented and described.

4.3.1 Folder Monitor Module

The FolderMonitorModule, as its name reveals, is the module used to monitor folder

directories. Some equipments generate data and save it into different format files,

such as XML, ASCII or proprietary formats. These files contain the data that

needs to be collected and are saved into specific directories defined in the equipment

configurations. This way, it is of high interest to have a module with the capability

of monitoring one or more file system directories, being able to notify the framework

whenever a file is created, renamed, deleted or changed.

If some of these actions occur inside a directory being monitored, this module

will detect it and notify the BeeFramework class by delegating events containing

the information related to the event detected. The BeeFramework class has already

installed the handlers to catch these events sent by the FolderMonitorModule and

broadcast them each time it receives a notification. These topics related to handlers,

events, delegates and broadcasts are terms closely related to the framework message

center and the way the framework deals with messages. This message center and

this topics will be covered in the Message Handling section (see section 4.3.4).

A simple method to understand this module is to consider a database example:

an event is fired and some operations are executed when an insert, delete or update

action is performed in some table with a trigger associated.

The requirements identified for this module are listed bellow:

1. start and stop monitoring a directory;

2. detect changes related to created, renamed, deleted and changed actions;

3. receive messages and notify the framework about IO2 changes;

4. list all files existing inside a directory;

1ConcreteModule is used just to simplify the diagram. It can be any of the existing leaf modules of the
hierarchy presented in figure 4.5

2Input / Output

39

Framework Specification and Architecture

5. copy or move files;

6. allow regular expressions to filter files;

7. include subdirectories in folder monitoring.

These requirements and the characteristics of this module are related to another

design pattern: the Observer pattern [64]. Although numerous variations of the

Observer pattern exist, the basic premise of the pattern involves two actors: the

observer and the subject. The logical association between these two actors is visible

in figure 4.8. Whenever a change occurs in the subject, the observer observes this

change and updates accordingly.

Figure 4.8: Relationship between Observer pattern actors, adapted from [64]

The observer pattern has been implemented in the framework as shown in the fig-

ure 4.9. FolderMonitorModule and FolderWatcher classes play the roles of observer

and subject, respectively.

Figure 4.9: Implemented architecture of the Observer pattern

However, the proposed architecture of the Observer pattern is a slight variation

on the base pattern, which is known as Event pattern. The Event pattern is an

evolution of the Observer pattern. It is based on the usage of conventions related

to event-based applications and event-based programming events, such as delegates,

events and other related methods involved in event notification process.

In the current architecture design, when the FolderWatcher detects a change

in the state of the directory being monitored it notifies the FolderMonitorModule

40

Framework Specification and Architecture

by delegating a notification message containing the change detected. By receiving

the notification, the FolderMonitorModule will then know what kind of change has

been detected and update its own state accordingly. Moreover, when the Folder-

MonitorModule receives the notification from one of its FolderWatcher objects, the

module also notifies the BeeFramework and its message center. These notifications

and messages will be explained in the Message Handling section (see section 4.3.4).

This sequence actions and messages is visible in figure 4.10.

Figure 4.10: FolderMonitor sequence diagram

The main benefit of using this pattern is the abstract coupling achieved between

subject and observer, the FolderWatcher and the FolderMonitorModule, respec-

tively. The subject does not even need to know the concrete class of the observer,

making the coupling between them minimal. Due to this low coupling between

subject and observer, they can belong to different layers of the framework and the

lower-level subject still can communicate and inform the higher-level observer [65].

Moreover, this kind of abstraction also implies a support for broadcast commu-

nication. Unlike a normal request, the notification that the subject sends does not

need to specify the observer because the notification is automatically broadcast to

all observers that subscribed it [66]. In this situation, all changes detected by run-

ning FolderWatcher instances are broadcasted to the single observer interested, the

FolderMonitorModule.

41

Framework Specification and Architecture

4.3.2 Backup Module

As its name reveals, the BackupModule is used to backup files. This module is not

critical and it is not directly related to data collection. It is used mostly with the

two following purposes: backup files or check for updates.

The first purpose is quite simple: the module receives a message with the required

details to backup a file. These details include the name and path of the file to

backup, as well as the target destination. So, when such a message is received,

this module only creates a message that will be sent to the FolderMonitorModule.

The FolderMonitorModule receives the message and moves the file from its original

location to the backup directory.

The second purpose is perhaps the most important feature of this module. The

framework and its modules and services may use external assemblies to execute some

operations. It allows other teams to develop some new unit features. Since these

teams will only develop the code required for external assemblies, the framework

keeps as a black-box and developers of these teams do not need to know how the

framework works. Additionally, since they do not implement these features directly

in the framework, the introduction of possible errors in the framework kernel is

avoided.

The usage of these external assemblies should be used very carefully because

it not only takes out the control from the framework scope (in extreme cases, a

lot of primitive operations required may be defined in these assemblies) but also

because the required code for invoking the methods contained in these assemblies

becomes harder to understand. In fact, in order to use these assemblies, reflection3

must be largely used, which introduces a high level of abstraction in the code: using

reflection implies that classes need to be loaded at runtime and methods must also

be discovered at runtime by examining the classes.

Since these assemblies are kept outside the framework, automatic updates of

these assemblies without restarting the framework have been considered an inter-

esting feature. The flow followed by these automatic updates is shown in figure

4.11.

The BackupModule uses the FolderMonitorModule to monitor a deployment di-

rectory. This directory is used to deploy new versions that will cause an automatic

update. When the FolderWatcher that is monitoring the deployment directory de-

tects a new file, a message is delegated to notify the framework and then this message

is then forwarded to the framework modules, so that the BackupModule can receive

and handle it. However, three possibilities have been considered about the files

deployed in this directory:

3Reflection is the mechanism of discovering class information solely at runtime

42

Framework Specification and Architecture

Figure 4.11: Automatic updates of external assemblies

• the file may be the assembly itself, already compiled and ready to be loaded

and used;

• the file may be a class file;

• the file may be an XML file.

If the file is an assembly class (DLL), it can be directly used, so a backup of the

existing version of the assembly is done and the new detected file is moved to the

working directory. If the detected file is not a DLL file, then an assembly must be

firstly created so that it can be used.

To generate the assembly dynamically, both a class file and a XML file are

required: the class file contains the required code and the XML file contains the

references used by the class. So, whenever one of these two types of files are detected,

the BackupModule looks for both files in the deployment directory. If both files exist,

the BackupModule loads the references from the XML file and compiles the class

43

Framework Specification and Architecture

file, creating an assembly. However, before moving the new version files detected

from the deployment directory to the working directory, a backup of the existing

files is made, just like in the assembly case.

4.3.3 Equipment Modules

An equipment module is a module used to define a strategy of collecting the data

generated by a manufacturing equipment. Instead of having the BeeModule class as

their parent, another abstract class has been considered: the BeeEquipmentModule

class. The main purpose of using another abstract class as intermediate between

concrete equipment modules and the basis class BeeModule is to provide an abstrac-

tion about the equipment and module types.

Since equipment module types are directly related to a set of aspects regarding

the collection of data from equipments, inheriting from this intermediate class makes

it possible to handle equipment modules and their common characteristics in the

same way. Additionally, since the BeeEquipmentModule class also inherits from the

BeeModule class, all the concrete equipment module types can have access to the

common behaviors and characteristics of other modules. Figure 4.12 illustrates this

hierarchy.

Figure 4.12: Equipment modules hierarchy

To start collecting data from equipments, the framework must analyze the type

of all its instantiated modules. For each of its modules, a comparison is done to

check if the module type matches the BeeEquipmentModule class: if so, the com-

mon StartDataCollection method is used to start data collection in the equipment

44

Framework Specification and Architecture

module; otherwise, the framework proceeds to its next module. Figure 4.13 shows

the corresponding flow for this sequence of steps.

Figure 4.13: Start data collection flow

However, when referring to data collection, there are still two important points

related to equipment modules that have not been considered yet:

• different strategies to collect data;

• small changes inside the skeleton of an algorithm.

4.3.3.1 Different Strategies to Collect Data

Suppose that different versions of the same equipment are available. These dif-

ferent versions may introduce some variations in the way data is generated and

consequently in the way how this data should be collected, which would imply that

completely different strategies could be needed to face these variations.

For example, what if an equipment type generates data and saves it into plain

text files, while recent versions of the equipment saves the same data in XML files?

In such situation, multiple strategies exist to perform data collection and both are

required and appropriated at different times. This means that if the data collection

algorithm is directly used into the equipment module class that requires it, not only

the module becomes harder to understand but also becomes harder to change the

desired algorithm. Moreover, it becomes difficult to add new algorithms and vary

existing ones if data collection is an integral part of the equipment module.

45

Framework Specification and Architecture

These problems can be avoided by defining classes that encapsulate different

data collection algorithms. An algorithm that is encapsulated in this way is called

a strategy. These different classes are obviously related and differ only in their

behavior. By encapsulating its behavior inside a strategy, an equipment module

does not need to know the implemented algorithm and this algorithm is not exposed.

Such architecture corresponds to a behavior design pattern: the Strategy pattern.

The classical structure of this pattern is visible in figure 4.14.

Figure 4.14: Strategy pattern, adapted from [57]

The Context class is configured with a ConcreteStrategy and maintains a ref-

erence to a Strategy. The ConcreteStrategy class implements the algorithm using

the interface declared by the Strategy class and supported by all algorithms. This

way, Context can call the desired algorithm using the common AlgorithmInterface

method, without caring about the concrete strategy encapsulating this algorithm.

Both Strategy and Context classes interact to implement the chosen algorithm and

the context passes all data required by the algorithm to the strategy when the

algorithm is called.

For the Bee Framework , this pattern has been implemented as shown in figure

4.15.

Each BeeEquipmentModule (and consequently each concrete equipment module

inheriting from this class) contains an IntegrationContext. This context defines an

IntegrationStrategy, decoupling the algorithm used to start data collection from the

equipment module. Since the IntegrationContext needs to interact with the Integra-

tionStrategy so that the data required to execute the algorithm can become available

to the strategy, two additional methods have been defined to configure a bidirectional

communication between both classes. This way, each time a BeeEquipmentModule

requests to start data collection, it exclusively interacts with the context and this

last one forwards the request from the equipment module to the strategy.

46

Framework Specification and Architecture

Figure 4.15: Implemented architecture of the Strategy pattern

4.3.3.2 The Skeleton of an Algorithm

The usage of the Strategy design pattern brings some advantages, especially be-

cause it promotes an abstraction by decoupling the data collection strategies from

the equipment modules and by allowing the definition of the algorithm used for data

collection in each strategy. However, what if this algorithm needs some few adjust-

ments or improvements? Does this mean that a new integral strategy is required?

To answer the previous questions, another behavioral design pattern has been

used: the Template Method pattern. This pattern can be very useful because it

allows the definition of a skeleton of an algorithm in a strategy, deferring some steps

to subclasses. The interesting point about using this pattern is that the algorithm

remains the same: only some steps are redefined in subclasses. Figure 4.16 illustrates

this pattern architecture.

The CollectData method is called the template method. It defines the algorithm

in terms of the operations it must do and lets a subclass override these primitive

operations. This way, small changes of an algorithm are allowed but the skeleton

of the algorithm itself remains exactly the same. The IntegrationStrategy1 class

implements the skeleton of the algorithm and defines the primitive operations used

by the algorithm. Next, if some of the steps of the algorithm need some variations,

a new class IntegrationStrategy1’ is defined and overrides just the steps that should

47

Framework Specification and Architecture

Figure 4.16: Template Method pattern

vary.

The implementation of such design pattern in the framework architecture brings

some great advantages. It avoids the definition of a complete new strategy if only

some small parts vary inside the algorithm behavior. Consequently, the invariant

parts of an algorithm are implemented once and the behavior that can vary is left

to the subclasses.

Such architecture design is a fundamental technique to promote code reuse. This

technique is based on the Inversion of Control4 and follows the Hollywood Principle

— “Don’t call us, we’ll call you” — a software design methodology that takes its

name from the cliché response given to amateurs auditioning in Hollywood [69].

The basic idea of this principle is that a class says what it does by implementing an

interface and what it needs by requesting interfaces. Then, the framework decides

when to create it and what concrete instances to give it [70].

4.3.4 Message Handling

Message handling is a crucial point in the framework architecture. In order to guar-

antee a robust architecture, framework modules and services should be divided into

different components, promoting a framework with a modular architecture. How-

ever, separating these components introduces a important difficulty: the components

cannot be tightly coupled, but they still need to have some kind of interaction be-

tween them.

Messages cannot simply be sent by direct invocation because this approach leads

to a tight coupling. Moreover, such approach will cause the architecture to become

harder to maintain if the number of interactions between framework components

4Inversion of Control is an abstract principle describing an aspect of some software architecture designs
in which the flow of control of system is inverted in comparison to the traditional architecture of software
libraries [67, 68]

48

Framework Specification and Architecture

increases significantly: changing a single component will probably cause changes in

all other components directly interacting with it. Obviously, this approach cannot

be considered scalable and expansible.

In order to promote an architecture with low coupling between framework com-

ponents, an uniform way to send and receive messages is required to allow efficient

communication both inside the framework domain and even with external applica-

tions. As described in section 4.3 the proposed architecture already considers an

uniform way to deal with all modules using the same common methods, so it can

be expanded to include the support of message handling. Figure 4.17 shows the

architecture that makes message handling possible.

Figure 4.17: Architecture that supports message handling

Since all modules have the BeeModule as a parent class, then all modules in-

heriting from this class will also have its parent module methods available. These

common methods can then be used globally by every single module to subscribe all

the messages it wants to receive, i.e. the messages that it should receive when they

become available inside the framework domain or via the YODA network. Addition-

ally, these methods should not only allow each module to receive its desired messages

but also to send its own messages to the framework message center. The BeeFrame-

work class contains the message center, which is jointly used with MessageHandler

class to control the flow of messages.

Figure 4.18 shows the sequence of executed actions when modules are instanti-

ated.

Each module has its own configuration file and each file contains the message

subjects that the module must subscribe so that it can receive the messages with

those subjects. By doing so, the responsibility of handling messages is translated

49

Framework Specification and Architecture

Figure 4.18: Flow of actions performed when instantiating modules

from the framework kernel and its message center to the modules. Hence, if a module

needs to subscribe a new message there is no need to change the basis and nuclear

classes of the framework itself; only the required code to handle the new message

is needed in the module that wants to receive that new message and perform the

actions related to the received message. Consequently, with such architecture the

coupling between all the modules themselves and between the modules and the

framework is considerably reduced.

BeeModule class uses a common event and the common SendMessageToFrame-

work method to delegate a message to the framework message center existing in

the BeeFramework class. Since the message is always delegated using the common

event of BeeModule, no particular and concrete modules are considered and the

framework just needs to deal with this single event instead of dealing with multiple

events (one for each module). The BeeFramework class installs this common event

to catch the delegated messages sent through events from its modules and has the

MessageCenter method to firstly receive the messages. Next, this method uses the

MessageHandler class to attend and dispatch every received message, broadcasting

it to all modules interested in receving it.

Once again, this approach helps promoting scalability and reduces framework

maintenance effort required. It not only helps in the goal of achieving a good design

architecture but also keeps code cleaner, making it easy for developers to implement

and debug the code: messages are sent and received uniformly, not caring at all

neither about who is the sender module neither about who are the possible receiver

modules.

Figure 4.19 shows the hierarchy used for messages and their composition in terms

of parameters.

Framework messages and YODA messages, BeeMessage and YodaMessage classes

respectively, are the two support types of messages. These two different types of

messages are in fact very similar and both have the Message class as their parent

50

Framework Specification and Architecture

Figure 4.19: Messages hierarchy and parameters

class. The biggest difference between these messages is the fact that YODA mes-

sages can be used to exchange information with external framework applications.

Moreover, YODA messages need to specify the sending type, because they can just

be a publish, a request or a reply message. Framework messages do not need to

specify this attribute value because they are only used internally and consequently

controlled by the message center of the BeeFramework class. Moreover, since there

are just a few differences between both types of messages, a BeeMessage can be

easily converted into a YodaMessage and vice-versa.

Each Message contains a set of parameters that follow the name-value-type

paradigm, allowing an abstraction regarding the parameters supported by messages.

Instead of guessing how many parameters a message may have and which parameter

types may be possibly used, this paradigm abstraction only requires a Message to

have a set of parameters that can be uniquely identified which can be achieved if

using different names. With this abstraction, a mapping between the parameter

name and both parameter type and value is then established and a MessageParam-

eter can encapsulate any object type. The main advantage of this abstraction is

that a message can handle all parameters exactly the same way, without taking in

consideration if the parameter represents a string, a boolean, an integer, or even a

complex value. To get the value of a message parameter, the parameter must be

retrieved by its unique name and a cast considering the parameter type should be

done.

However, there is still a set of questions related to message handling not yet

considered in the approach described in the previous paragraphs, namely:

51

Framework Specification and Architecture

• How to broadcast a message to the framework modules interested in receiving

it?

• What if a module wants to send a message to the YODA network? How to

send it?

• How does a module receive a message from the YODA network?

4.3.4.1 Broadcast a Message to the Framework Modules

As described previously in this section, when modules are being instantiated, each

module subscribes the list of messages it wants to receive. However, as also has been

said before, a low coupling between modules is required, so this low coupling also

should be taken in consideration when referring to messages. Senders should not

be coupled to receiver modules and the relationships between senders and receivers

should also not be of the responsibility of the framework. The low coupling required

can be achieved by giving each module the chance of handling a request. It would

be better to have a chain of modules and pass a message along the chain, so that

all modules can have the chance to handle it.

Creating a chain of modules may seem a contradiction because it seems modules

are being coupled together. However, to build this chain of modules there is no

need to specify concrete modules classes: the only class required is the abstract

BeeModule class, which is the parent class of all modules, keeping the abstraction

intact and avoiding the direct coupling between modules.

Such architecture of building a chain of modules and passing requests (messages)

along the chain corresponds to a behavioral design pattern: the Chain of Responsi-

bility pattern. The main idea of this pattern is to decouple senders and receivers by

giving multiple objects an opportunity to handle a request. The request gets passed

along a chain of objects until one of them handles it. This pattern promotes the

idea of loose coupling, which is considered a programming best practice [71].

This design pattern is recommended to broadcast a message to the framework

modules interested in receiving it because more than one module may handle a

request, the handler is not known a priory and the receiver should not be directly

specified. Figure 4.20 shows the architecture of the Chain of Responsibility pattern.

The Client initiates the request to a ConcreteHandler object on the chain. The

request is then passed along the ConcreteHandler objects of the chain. Each of these

objects forward the request to its ConcreteHandler successor. When receiving a

request, each ConcreteHandler can then decide if it is or not responsible for handling

the request. The typical sequence followed by a request in the chain is illustrated

in figure 4.21.

52

Framework Specification and Architecture

Figure 4.20: Chain of Responsibility pattern, adapted from [57]

However, this pattern has been implemented with some differences. Usually, a

request passes along the chain only until an object handles the request. In the

framework architecture, this is not true and a request passes along all the chain

because it can be eventually be handled by multiple modules. The implementation

of this pattern without following its classic restrictions is visible in figure 4.22.

Each module inheriting from BeeModule has its own method — HandleRequest()

— to handle a request, implementing the abstract method of their base class, which

defines the common interface for handling requests (just like Handler class in figure

4.20). The BeeFramework class is the Client that initiates the message in the chain

and passes it to the first concrete module. This module checks if it can handle the

message and also passes it through the chain so that other concrete modules can

receive the same request.

When a module wants to send a message, in order to guarantee that it starts at

the begin of the chain, it has to delegate it to the message center of BeeFramework

class. This message center will then initiate the request in the chain. An example of

this situation is illustrated in figure 4.23. Suppose that FolderMonitorModule wants

to send a message that only EquipmentModuleN can handle. The message is del-

egated to the BeeFramework using the SendMessageToFramework method. Then,

the message is initiated in the chain and passes through the BackupModule, the Fol-

derMonitorModule and finally reaches its destination because EquipmentModuleN

can handle it.

Even if this pattern primary benefit is that it provides loose coupling between

the sender and the receiver, this pattern has other important benefit: using this

pattern implies an increase of flexibility in assigning responsibilities to objects. It

makes it easy to add a new potential receiver for a message or new ways a message

can be received. This way, adding or changing responsibilities for handling a request

53

Framework Specification and Architecture

Figure 4.21: Sequence followed by a request in the chain

becomes easier because responsibilities are distributed among objects. However, the

chain of responsibility must be handled carefully because there are no guarantees

that a request will be handled by a receiver if the chain is broken or not specified

properly [72].

4.3.4.2 Send a Message to the YODA Network

This section only intends to give an overview of how the proposed architecture is

used to send a message to the YODA network. The details related to the different

available options of sending a message to the YODA network will be presented in

the YODA Service section (see section 4.4.1).

The main reason for the existence of the MessageHandler class is to provide an

interface with the YODA network. Of course, all modules can send a message to

the YODA network, but since these messages will be sent outside the framework, it

is convenient to have a single point of access to send the messages instead of having

multiple ones, one for each module.

Whenever a module wants to send a message to the YODA network, the Message

type used is the YodaMessage. So, similarly as previously described for internal

framework messages, the module uses the same SendMessageToFramework method

to delegate the message to the framework message center. However, instead of

initiating the received message in the chain of modules, the BeeFramework detects

the message as being a YodaMessage and uses the MessageHandler and its YODA

configuration settings to send the message to the YODA network.

4.3.4.3 Receive a Message from the YODA Network

Just like has been described in the Send a Message to the YODA Network section,

receiving a message from the YODA network also uses the MessageHandler class as

54

Framework Specification and Architecture

Figure 4.22: Implemented architecture of the Chain of Responsibility pattern

an interface. The purpose is also exactly the same, to avoid each module to have

its own direct interaction with the network. When the modules are instantiated,

each module subscribes the YODA subjects it wants to receive. These subjects cor-

respond, obviously, to the messages that can be handled by the module which has

subscribed them. However, there are not the modules who perform these subscrip-

tions; The MessageHandler is used to subscribe them. This means that only the

MessageHandler has subscribed YODA messages, which makes it the only access

point to receive messages.

When the MessageCenter receives a message from the YODA network, this mes-

sage should be broadcasted to the modules. However, after reading the previous

paragraph, it becomes obvious that the module(s) which subscribed the message

with the subject received aren’t unknown at this point. The approach used to re-

ceive messages from the YODA network takes advantage of the architecture for

handling messages previously described. The use of the Chain of Responsibility

pattern helps solving this problem: the low coupling achieved by the usage of the

pattern implies that there is no need to know a priori who the receivers are.

So, after converting the received message into a BeeMessage, this converted

message is broadcasted to the modules just like a framework message. The only

difference in these approaches regarding internal framework messages and YODA

message is the source of the message: when referring to internal messages, the source

is a framework module and the message is sent from its source using the SendMes-

sageToFramework method; when referring to YODA messages, the source is the

YODA network and the MessageHandler catches an event when a YODA message

with a subscribed subject becomes available in the network.

55

Framework Specification and Architecture

Figure 4.23: Example of broadcasting a message in the chain

4.3.4.4 Framework vs. YODA Messages

After reading the previous section, you will probably conclude that framework and

YODA messages are very similar. Both need to subscribe message subjects to receive

the corresponding messages, both need to publish and delegate messages so that

they can be caught and processed by others, both use the same base and typical

message structure composed my parameters, both use the standard name-value-type

paradigm to describe each parameter.

YODA is a software that is surely in a very mature state of development, use and

stability, especially if compared with the framework internal messages. Also, being

a middleware widely used by several running applications at Qimonda and having

full time teams maintaining and supporting it, YODA would be a natural choice to

support all message handling, easily replacing internal messages.

A question can raise then: why does the framework need both types of messages

support? It seems a pointless attempt to “reinvent the wheel”, adding no value and

wasting time, increasing framework complexity and turning it difficult to maintain

and support. The usage of both approaches is related to important issues that need

to be considered, especially those related to performance.

Being so identical, the abandon of internal framework messages has even been

considered because YODA seemed to be a good and effective choice to support mes-

sage handling. However, some charge tests using both approaches under the same

conditions have been done and the results were quite impressive and concluding.

These charge tests are described next.

56

Framework Specification and Architecture

Framework module 1 send a message to module 2, using both approaches. This

message only contains two parameters:

• a string attribute type with the same name and value fields;

• a date/time attribute type which value corresponds to the sending time.

In both approaches, as soon as module 2 received the message sent by module 1,

it checked the current time again and perform a subtract operation. In order to have

a wide range of results, these tests have been done for a thousand messages and the

times have been measured. The result times achieved while using YODA messages

were about three times higher than while using framework internal messages. The

average result time for sending a message using internal messages was approximately

30 milliseconds and using YODA around 90 milliseconds.

Internal framework messages just use events and delegates to handle messages,

so it is a direct way of sending and receiving messages within the framework and its

modules. Messages using YODA need to use a network, so the introduced overhead

by sending and receiving messages via a network is naturally higher than the exist-

ing one related to internal messages. Additionally, in order to receive a delegated

message, even using YODA services, there is still needed to install an event handler,

just like it is done using internal messages.

There is also another disadvantage about using YODA. Since the messages are

sent or published in the network, the control of handling messages wouldn’t be done

just by the framework itself. If not used carefully, some other applications could

also be listening the same message subjects and perform some undesired actions.

These two possibilities should then be supported, giving the framework a high

level of flexibility and a wide range of possible future features to add. Moreover, since

both framework and YODA messages are similar, the complexity of understanding

and supporting both does not increase much because the messages structure is iden-

tical.

4.4 Framework Services

This section presents a detailed specification of the requirements identified. It details

the requirements of each service previously referred in the White-Box Overview

section (section 4.2). The current section only focus on requirements. It does not

take in consideration issues related to architecture or implementation details of the

services. For further details related to framework services configurations, please

consult Appendix B.

57

Framework Specification and Architecture

4.4.1 YODA Service

YODA is a very important middleware solution that is widely used at Qimonda

assembly line and that allows a high level of integration between manufacturing

equipments, servers and a large number of different applications running in different

operating systems. So, referring to a data collection framework to be used in this

assembly line without considering an effective support to YODA would cause the

framework to have a lesser impact.

The main requirements identified for this framework service are listed bellow:

1. create transport configurations for messages;

2. subscribe / unsubscribe message subjects;

3. send messages to the network using different sending types:

• publish;

• blocking reply-request;

• unblocking reply-request;

• reply.

4. receive messages from the network;

5. convert YODA messages into framework messages;

6. retrieve configurations setting using the Configuration Manager.

4.4.2 Database Service

Database Service is perhaps the most important Bee Framework service. This service

assumes a great importance because it is both related to the sources and targets of

collect data. It can be used either to collect data from equipments (sources) or to

save collected data into target databases.

This service should be able to:

1. create database instances;

2. create database connections;

3. open and close database connections;

4. execute queries;

5. execute stored procedures;

6. prepare stored procedures;

58

Framework Specification and Architecture

7. use binding variables;

8. open, commit and rollback transactions;

9. execute queries inside open transactions;

10. load large volumes of data from text files using SQL*Loader.

4.4.3 Email Service

Email Service main purpose is sending emails using a defined SMTP valid configura-

tion. Email Service is not a core service of the framework, but can be very useful for

example to send a notification if data collection in some equipment is not working

as expected.

The two identified requirements for the Email Service are:

1. load configurations and define SMTP host settings;

2. send emails using SMTP configurations.

4.4.4 Logging Service

Logging Service is a complementary and very useful service of the framework. This

service allows the framework to write messages about the application running and

the data collection itself in log files, so that this information can be available further

to manual consultation. Register events using the logging service can then be used

to track erroneous situations and plays an important role by providing an audit trail

that can be used to diagnose problems.

The requirements identified for the logging service are:

1. support different message severities / priorities;

2. support multiple logging categories;

3. allow different types of log file rolling5;

4. control the number of files by specifying a maximum number of log files;

5. support different age units and control maximum age of log files;

6. support different size units and control maximum size of log files;

7. allow backups of oldest log files.

5Rolling is a combination of rotation and translation operations used when adding a new log entry.
Oldest entries are translated (or deleted if necessary) in favor of new entries, keeping a log file always
updated with the recent entries

59

Framework Specification and Architecture

4.4.5 Framework Messages Service

Framework Messages service is similar to YODA Service but used internally only

by the Bee Framework , ensuring that messages are received and sent inside the

framework domain. It is a YODA complementary service which main benefit is

avoiding a network overload with unnecessary YODA messages.

The requirements for this service are:

1. subscribe / unsubscribe messages;

2. send and receive messages;

3. broadcast messages inside the framework domain;

4. convert framework messages into YODA messages.

4.4.6 Timer Service

A timer is like an alarm clock used to measure time in the application, which can be

useful to perform some actions based on elapsed time, such as regular and periodic

operations or simple single time operations.

Such a service can be very useful to generate alarm events to notify the main

application. These alarms work as internal “reminders” which allow the application

to be notified at a desired date and time in order to perform the processing as

needed. If largely used by an application, timers can also be used as an agenda

or even schedule, since a set of different timers can be configured and installed to

trigger events that occur at different moments.

The requirements identified for the timer service are:

1. trigger an event just only once;

2. trigger periodic events given a time interval value;

3. start triggering events immediately or just after a specified given start date

time value;

4. trigger events indefinitely or stop triggering events at a given date time value;

5. allow a timer to be restarted at any time, keeping the same time interval but

changing the date time of the following events triggered by reseting the start

time;

6. stop a timer at any moment.

60

Framework Specification and Architecture

4.5 Summary

This chapter described the proposed architecture of the framework. It considered a

black-box overview of the framework as well as a white-box description in order to

provide readers a better understanding of the framework architecture. It described

the framework in terms of its main components, namely the modules, the message

handling and the services.

A global overview in terms of classes used has been presented using a class

diagram. Then, this class diagram has been consecutively decomposed in order

to better explain and detail the classes related to specific problems and how their

associations helped solving those problems with a concrete design architecture.

The proposed architecture to solve those problems most of times used design

patterns in order to achieve a good architecture design. This way, when presenting

each problem, the design pattern used to solve it has also been described. Addition-

ally, the existing parallelism between the classical architecture of each design pattern

considered and the way it has been implemented in the proposed architecture is also

illustrated. The main advantages and consequences of using each design pattern to

solve a specific problem have also been referred in terms of how the usage of such

design patterns promoted a better design architecture for the Bee Framework.

The design patterns used in the framework architecture are:

• Singleton — ensures a single instance of the framework;

• Factory Method — provides an abstraction to consider all framework modules

the same way;

• Observer — observes and listens directories to detect changes;

• Chain of Responsibility — ensures the message handling between modules;

• Strategy — allows different strategies to perform data collection;

• Template Method — defines the skeleton of the algorithm used by a strategy

to collect data.

The framework modules described are:

• FolderMonitorModule — contains the methods and operations to monitor

directories and their content files;

• BackupModule — contains the methods and operations to backup files and

check for updates;

61

Framework Specification and Architecture

• BeeEquipmentModule — contains not only the methods and operations that

are common to other framework modules but also the commons methods that

are specifically related to equipment modules.

The services considered are presented in the following list. Each service has been

described and detailed considering their requirements.

• YODA Service — send or receive YODA messages;

• Database Service — execute queries, stored procedures or transactions in a

database;

• Email Service — send emails;

• Logging Service — perform logging tasks;

• Message Service — handle internal framework messages;

• Timer Service — install timers and generate alarm notifications.

62

Chapter 5

Prototype Development

This chapter presents the prototype development and some of the technical decisions

taken at implementation level. It complements Chapter 4 by exposing the framework

architecture and its services in practice. The chapter focus on the overall framework

development and its configuration settings (consult Appendix A for details related

to framework configurations). Additionally, this chapter also focus on the data

collection process related to a real manufacturing equipment recently introduced in

the assembly line.

5.1 Prototype Goals

The architecture of the framework and its services referred in Chapter 4 intend

to help the process of collecting the generated data by manufacturing equipments.

However, in order to prove the real utility and adequacy of the proposed architecture

and services solution, a prototype has been developed.

The development of such a prototype works as proof of concept and intends to

validate the architecture in a level that goes beyond than just the theoric demon-

stration. In order to present the framework utility regarding data collection in

manufacturing equipments context, a real equipment used in the assembly line has

been chosen. This equipment name is AOI, standing for Automatic Optical Inspec-

tion. Consequently, the main goals of the prototype are not only the validation of

the theoric concepts previously referred related to the architecture and services but

also to provide a new integration solution for this type of equipment.

The equipment should not be changed due to this new solution because the new

strategy intends to act like a black-box. Both the format of the generated data that

needs to be collected and the final target used to save this data remains exactly

63

Prototype Development

the same; the only thing that needs to change is the internal process related to the

data collection strategy used. This way, the final results of the data collection itself

should be the same as the ones achieved with the previous approach, but the new

strategy should also include some performance improvements.

5.2 AOI — Automatic Optical Inspection — Equipment

Overview

AOI is one of the equipments of the SMT line. It is the equipment that inspects

the modules1 after they have been completely assembled. Figure 5.1 shows this

equipment.

Figure 5.1: AOI equipment

The AOI equipment provides an automated optical inspection system which com-

bines an advanced detection with faster speed and higher resolution. It features an

unique technology that yields robust defect detection, high measurement accuracy,

and inherently low false-call rates. This equipment can meet all of the PCB assem-

bly inspection needs from defect screening to process monitoring. No matter how

the system is employed, this equipment will help increase yields, reduce scrap, and

decrease field returns [73].

1in the semiconductor industry, a module is an electronic package containing multiple integrated circuits
but used as a single one

64

Prototype Development

The AOI equipment employs CyberOptics’2 proprietary Statistical Appearance

Modeling (SAM) vision technology to provide the most comprehensive defect de-

tection method in the industry. By simply showing SAM examples of acceptable

components, solder joints, or other PCB feature, the system works out for itself how

to distinguish the good from the bad. In addition, SAM learns process and feature

variations by simply adding images to the model producing the lowest false-call rate

of any AOI machine [74].

Programming the inspection tasks performed by the equipment is quite simple.

Using the equipment software, the inspection locations are defined by drawing a

box around the component, joint, or other feature. There are no parameters to

adjust and no algorithms to select. This simple programming combined with a

simple mechanical design yields the simplest inspection machine. In addition, the

equipment software also contains defect review software which helps categorize real

defects for rework for scrap.

This equipment is used in Qimonda assembly line to automatically inspect the

modules. Operators define which lot of modules will be inspected by the equipment

and configure it to inspect the modules of the defined lot. The equipment will

then inspect each PCB module one by one and, for each one, it generates a XML

containing the results of the measurements retrieved by the optical inspection. Each

of these modules contain several board components and each of this boards contain

a very large number of locations. These locations correspond to the inspected places

and the inspection results are related to the measurements retrieved with the optical

inspection.

These measurements correspond to the data that needs to be collected. By

collecting this data it will be possible to know how many locations have defects,

how many boards of the module have passed and how many have failed. With these

measurements, it is also possible to decide which defects can be repaired if a rework

is done or if the board is definitely lost and could not be recovered.

There is currently one equipment integration solution available for these equip-

ments. This solution has been developed by an equipment control team by adapting

some previous similar approaches. However, a new integration solution using the

Bee Framework has been developed and is now available, so it will be possible to

establish a comparison between both approaches. The integration details of the AOI

integration using the Bee Framework will be explained along this chapter.

5.3 Collecting Data From AOI Equipments

The three main actions to achieve in order to integrate this equipment are:

2http://www.cyberoptics.com

65

http://www.cyberoptics.com

Prototype Development

1. collect the XML result files using the FolderMonitorModule;

2. parse the result files to extract the required data information;

3. consolidate the complete results (raw data plus summaries) into an AOI specific

database schema.

The AOI equipments are responsible for XML files creation for each one of the

lot3 runs, containing the necessary data to integrate in target system. The collection

of XML files is done by the FolderMonitorModule. When a file is created this

module triggers an event and sends a message to the framework message center.

This message contains some information about the event triggered, such as the

name and the full path of the file. The message center broadcasts the received

message to other available modules and the AOIEquipmentModule is the module

that receives and handles the message. Then, the AOIEquipmentModule collects

the XML files, parses and processes them and insert all raw data into the database.

Summary information will be created also in the same database, based on imported

raw data.

AOIEquipmentModule interfaces with Configuration Manager (CFGmgr), through

YODA middleware, in order to get specific application configuration parameters.

Finally, the Remote GUI is available to operators to interact with AOIEquipment

Module and to get notification messages from it. This module also interacts with

the Lot Equipment Parameters History Server, so that equipment break downs can

be effectively logged.

Desirably, only one instance of the Bee Framework should be used for each one

of the AOI equipments. However, the same instance of the Bee Framework can

be used to multiple equipment modules, by creating an AOIEquipmentModule for

each equipment. Additionally, all AOI equipment modules running in the same

Bee Framework instance must use Folder Watchers identified by unique names. In

this context, a FolderWatcher works like a folder “observer” or “spy” that sends a

notification each time a change is detected in the folder that is being “observed”.

Using unique names ensures that the each XML file detected is only processed by

the correct AOIEquipmentModule and that this module also refers to the correct

AOI equipment.

Figure 5.2 explains how the AOI integration should be done.

3In this context, lot is a set of semiconductor modules acting as a sole unit. The modules contained in
each lot are inspected by the AOI equipment

66

Prototype Development

Figure 5.2: AOI integration overview

5.4 AOI Integration Use Cases

This section presents the use cases that specify the required functionalities of a

system, showing the collaboration among the actors. The first use case diagram is

mainly focused in the FolderMonitorModule and the second one in the AOIEquip-

mentModule.

FolderMonitorModule only contains FolderWatchers that are responsible for mon-

itoring folders and send notifications each time a change is detected. AOIEquipment-

Module is the core module of this integration, since it defines an integration strategy

mostly related to the collection, parsing and processing of XML files. Figures 5.3

and 5.4 show the use case diagrams for both modules, respectively.

The use cases diagram presented in figure 5.4 illustrates the use cases directly

related to the AOI integration itself, since they are specific for this equipment type.

Collecting the data this equipment type generates cannot just take in consideration

the collection of the data existing in the XML files. There are some complementary

67

Prototype Development

Figure 5.3: FolderMonitorModule use cases

functionalities not directly related to the data collection tasks themselves but that

are also very important in the whole process of collecting data, namely:

1. starting or ending a lot inspection;

2. sending notifications if the equipment is not generating XML files;

3. backing up the equipment log files;

4. logging equipment breakdown reason.

5.4.1 Complementary Functions

The following subsections describe the complementary functions enumerated in the

previous list.

5.4.1.1 Lot Start and Lot End Commands

Lot start and lot end commands are basically two instructions that equipment op-

erators manually execute to tell the AOI equipment that a new lot will start to

be inspected or that the defined lot inspection has finished, respectively. The in-

structions to execute these two commands are done via the equipment Remote GUI.

68

Prototype Development

Figure 5.4: AOIEquipmentModule use cases

Operators use this remote interface to interact with the equipment and, each time

an operator executes one of these command instructions, a message is sent using

the YODA network in order to communicate the operation action to the application

performing the data collection.

Since the Bee Framework has a service to support the handling of YODA mes-

sages, the framework is able to catch these messages and consequently become aware

of the instructions executed by the operator in the Remote GUI interface. This way,

the framework can then trigger both the lot start and lot end events and update the

settings about the current lot accordingly.

The YODA message used to send both instructions has the same message subject

which stands for CommandLot. This YODA message encapsulates the command

lot type by using its message parameters and its message subject is subscribed

by the AOIEquipmentModule, which means the module would be able to get the

message as expected. When receiving a message with such subject, the module

checks the parameters in order to retrieve the associated command type encapsulated

in the message parameters. Depending on the command lot type received, the

AOIEquipmentModule either configures and updates the settings and rules for a

69

Prototype Development

new lot (start lot command) or ends the lot processing and resets the settings and

rules for the current lot previously defined (end lot command).

Even if this complementary functionality is directly related to data collection

itself, its importance is high. The commands referred are the ones that allow the

AOIEquipmentModule to define the required lot information that would be used to

validate each XML file and decide whether a file should or not be ignored.

5.4.1.2 Notification of XML File Generation Down

Since data collection from this equipment depends exclusively on the generated XML

files that contain the results of optical inspections, informing operators when the

equipment is not generating files is critical. If such a situation occurs, it means that

the equipment is not working as expected and, consequently, there is no available

data to collect from XML files. This way, knowing when a generation down occurs

is of high importance so that operators can check why the equipment is not working

correctly.

The Bee Framework, and more concretely the AOIEquipmentModule, is able to

detect when XML result files are not being generated by the equipments and notify

operators of this situation so that they can check what is cause of the generation

down and correct the problem. The notification when such situation occurs is sent

both via email to the Process engineers and also via the YODA network so that

operators can receive the notification in a message box on the equipment Remote

GUI.

The method used to determine when then generation of files is not happening is

based on the amount of time elapsed between the generation of two consecutive result

XML files. If this amount of time is higher than the existing value in equipment

configuration settings, the notification should be sent.

The detection of XML file generation down is made by using the framework

Timer Service. Once installed, the timer used to notify XML file generation down

will send a notification if the elapsed time event is triggered. This event is triggered

if the time elapsed since last XML file detection is larger than the configured time

of that framework Timer Service.

Obviously, these notifications only happen when a lot is defined in the AOIEquip-

mentModule (defined using the start lot command). Otherwise, if no lot is currently

defined, it means that the equipment is in stand by and that it is not performing

any optical inspection. In such situation, the equipment is not generating XML files

and the timer must be paused because notifications do not make sense. However, if

a lot is defined, the timer counter must be restarted each time a file is parsed.

70

Prototype Development

5.4.1.3 Backup of Equipment Log Files

During the data collection process, the AOIEquipmentModule controlling an AOI

equipment logs the errors detected, as well as warnings and application messages.

These log files should be collected from the equipment file system and placed on the

server to keep them available on-line.

However, these files should not be available indefinitely because this would lead

to a large number of files on servers, most of them never used and just kept for

backup purposes. This way, it is important to have backups of these files but since

only the most recent information is required, they should be deleted when their last

modification date reaches a configurable age or must be reused if the file size grows

and reaches a maximum file size.

5.4.1.4 Log Equipment Breakdown Reason

When an equipment breakdown is detected, it is important to know the cause be-

yond the malfunction of the equipment. Whenever a breakdown occurs, operators

should register the reason of the breakdown. Some of these reasons are related to

maintenance operations, optical inspection defects or equipment fails, for example.

Whenever an equipment breakdown occurs operators should log the reason of

the breakdown by interacting with the Remote GUI. Using this interface, operators

can select the equipment in which the breakdown is related to, select the reason

from a pre-determined list of reasons and also insert an optional comment.

A message containing the breakdown information is then sent using the YODA

network and it will be caught by a service listening the subject of that message.

This service name stands for LotEquipParamsHistSrv and the subject it needs to

subscribe in order to receive the messages is gathered from the INI Table config-

uration settings through the CFGmgr. This way, when an equipment breakdown

message becomes available in the network, the LotEquipParamsHistSrv service will

get the breakdown information and make it available for query in OEDV.

5.5 AOI Use Cases Implementation

This section describes how a XML file is processed in terms collecting its data and

also how the complementary functions referred in the Complementary Functions

section (see section 5.4.1) have been implemented. The implementation of the use

cases regarding the AOI integration is described in the following subsections. The

description of each use case implementation will also be complemented by sequence

diagrams.

71

Prototype Development

5.5.1 Process XML Files

Whenever the XMLFolderWatcher detects that a file has been created in the folder

being monitored, it signals the FolderMonitorModule by delegating an IOEvent.

When this modules receives the delegated event, it sends an internal framework

message (BeeMessage) to the framework MessageCenter, which will then broadcast

this message to all available modules. Since the message content was about a new

eligible XML file in the listening folder, this message request will then be handled

by the AOIEquipmentModule.

Next, when the AOIEquipmentModule receives the message, it loads the XML

file by reading its contents, parses the required file to retrieve the information related

to the lot. This information is critical because they allow the module to perform

some comparisons between the existing information for the current lot defined in

the module and the lot information contained in the XML file. This comparison is

helpful to validate the file and decide whether the rest of the file should be parsed

or immediately rejected.

If the validation of the file is successful, the AOIEquipmentModule uses its con-

figured strategy to parse the file, retrieve the data related to the panel and boards

information. The relevant data related to each measurement is called raw data and

it is finally inserted into the target database. However, the data related to each

single measurement do not provide much information itself. This way, all the mea-

surements are considered so that this data can be summarized in total values, such

as how many failures have been detected or how many boards passed, for example.

Depending on the result of the file parsing operation and after inserting the

data into the target database, each XML file will then be moved either to the

processed, ignore or error folder. To move the file, an internal framework message

containing both the source and target path is created and sent to the framework

MessageCenter. This message is then broadcasted to all available modules and is

handled by the FolderMonitorModule, which will move the file to the desired target

destination.

Figure 5.5 illustrates these sequence of actions related to the processing of a

XML file.

5.5.2 Notify XML Generation Down

The AOIEquipmentModule has a Timer Service configured when the module starts.

The timer uses a duration that is a predefined value loaded from configurations.

Whenever the timer reaches the configured amount of time since the counting has

started, it means that no new XML file has been processed during a batch lot

72

Prototype Development

Figure 5.5: Use case: Process XML files

processing. If such a situation occurs, the elapsed time event is triggered, so that a

notification can be sent.

This event will be caught by AOIEquipmentModule and a notification of the file

generation down will then be sent to the Remote GUI. Additionally, if the defined

settings also include the required email parameters for sending email messages, then

an email is also sent to the configured target users.

The Timer Service plays a critical role to monitor the time elapsed since the

last XML file generation. The timer is initiated when the AOIEquipmentModule

receives the lot start command and is stopped when the module receives the lot end

command. Additionally, when a XML file becomes eligible in the listening directory

it means that a new file has been generated and the timer is reset, so that the

counting of the elapsed time can start again.

Figure 5.6 illustrates these sequence of actions related to the sending of notifica-

tions in case of XML generation down.

5.5.3 Backup AOI Log Files

There are two available options to backup or archive the log files each equipment

generates. If both XML and log files are created in the same folder, only one Fold-

73

Prototype Development

Figure 5.6: Use case: Notify XML generation down

erWatcher is needed but the AOIEquipmentModule must firstly check the filename

to determine which kind of file has been created and then process it accordingly. If

XML and log files aren’t created in the same folder then two FolderWatchers are

needed. In such case, when a file is detected the AOIEquipmentModule immediately

knows which kind of file has been detected. Both options are easy to implement,

but the second one implies a second thread running to monitor different folders,

reducing performance.

The best approach is a third option which considers the best of both previous

options. XML and log files are created in different folders, but both folders have

the same parent folder. Using this approach, only one FolderWatcher instance is

needed, which improves performance and provides a better understanding of the

configurations used. If using this alternative option, the FolderWatcher instance

must be configured in order to consider the monitoring in subdirectories.

Whenever the BackupFolderWatcher detects that a file has been created in the

folder being monitored, it signals the FolderMonitorModule by delegating an IO-

74

Prototype Development

Event. This module will then send an internal framework message to the framework

MessageCenter, which will broadcast this message to all available modules. This

request will then be handled by the AOIEquipmentModule. This situation is similar

to the one previously related in the Process XML file section (see section 5.5.1).

The AOIEquipmentModule creates a new message containing both the source

path of the log file detected and the target destination path where the file should

be backed up. This new message is then sent to the MessageCenter. Once again,

this message will be broadcasted to all modules and, in this specific situation, it will

be handled by the FolderMonitorModule, which will move (backup) the file to the

desired target destination.

Figure 5.7 illustrates these sequence of actions related to the backup of log files.

Figure 5.7: Use case: Backup AOI log files

However, this use case and the corresponding UML sequence diagram shown in

figure 5.7 are applicable only if doing an extra backup of the log files is needed. The

Logging Service already provides the necessary tools to control the size and age of

the log files, the maximum number of log files allowed and even backups the files in

a specified folder directory. This way, the use case presented can be avoided if the

Logging Service configuration is done properly, specifying the backup directory and

the age / size conditions desired for log files.

5.5.4 Log Equipment Breakdown Reason

Whenever an AOI equipment breaks down, the user currently operating the equip-

ment can log a message using the Remote GUI interface and send the breakdown

75

Prototype Development

message via the YODA network. The subject of this message is already subscribed

by the framework MessageCenter, so it will be able to catch the message and broad-

cast it to the available modules.

The AOIEquipmentModule handles the message and uses the information con-

tained in its message parameters. This breakdown information is then retrieved from

the parameters and will then be sent to the LotEquipParamsHistSrv server. Once

again, in order to send this message to the server, a YODA message is used and

when the server receives such message it can effectively log the equipment breakdown

reason. The event type sent is “LogBreakdown” service.

Figure 5.8: Use case: Log equipment breakdown reason

5.6 AOI Integration Architecture

This section describes the integration architecture used to integrate the AOI equip-

ment. It starts by describing the main flow required to collect and save the data

the AOI equipment generates. This flow is described in the following paragraphs of

this section and, in order to better understand this flow, figure 5.9 should be ana-

lyzed because it illustrates the sequence of actions textually described. Additionally,

this section also details both the global and Bee Framework logical views used to

integrate the AOI equipment.

76

Prototype Development

After loading the required framework and equipment configuration settings, the

data collection process is ready to start. A Timer Service must then be started

so that the use case related to notifications about XML file generation down can

be possible. This timer will trigger the event that occurs when the time elapsed

without any XML file being generated is reached. A notification is sent whenever

this situation occurs, signaling the XML file generation down.

About the data collection itself and the gathering of the generated XML files,

the FolderWatcher used to monitor the listening directory should also be started by

the FolderMonitorModule, so that new XML files can be detected and their contents

retrieved.

However, there is an important characteristic that should be referred and ex-

plained at this point. Both the file creation detection and the time elapsed are

triggered using events. This means that after installing and starting the Timer Ser-

vice and the launching the FolderWatchers of the FolderMonitorModule, both will

stay in an idle state. They will only be enabled again when the action they are lis-

tening occurs. If an event related to these actions is triggered, it means that either

the time was elapsed or a file was created, respectively. This avoids the periodic

checking (“ping”) approach to decide whether an action should or not be performed,

reducing the overhead of possible unnecessary checking.

Whenever a XML file is detected in the folder being monitored, some initial

validations regarding the lot information contained in the file data and what the

expected results were are performed. If this validations fails, the file will not be

considered and will just be moved to an ignore folder, previously defined in con-

figuration settings. On success, the Timer Service must be restarted so that the

counting time without any file generation can also be restarted.

The file is then parsed to extract the panel, boards and locations measurements

data. This information represents the raw data that needs to be saved into the

target database. There are two possible approaches available to load this data into

the database: using normal SQL queries and stored procedures or using SQL*Loader

tool (consult Appendix D and Appendix E for further details related to AOI database

schema and SQL*Loader usage, respectively).

In the first approach, a transaction must be opened and, as soon as the required

fields of a database record are complete when parsing the XML file, the record is

immediately inserted in the correct database table. These approach considers that

each database insert should be done using the open transaction and immediately

when the data becomes available during the parsing. The transaction is committed

at the end of the file parsing if no errors are detected during this phase; otherwise,

the transaction must be rolled back, the file is moved to the error folder defined in

configuration settings and a notification is sent both to the Remote GUI and also

77

Prototype Development

via email.

The second approach uses SQL*Loader tool to send collected data from XML

file to the database. Instead of inserting each record one by one in the database,

the records are stored in a temporarily file. At the end of the parsing, that file will

be fully loaded to the database at once. This approach is specially suitable for huge

volumes of data because its performance increases by decreasing the amount of time

required to parse and save the data of the XML file.

After saving the file contents into the database (either using queries or the

SQL*Loader tool), the measurements related to the XML file just parsed are pro-

cessed in order to calculate the total values related to the measurement results for

the lot and panel defined in the file. Finally, if all steps are successful until this

point, the file should be moved to the folder containing the XML files processed

without any errors.

Figure 5.9 represents the main flow used on AOI equipment integration and the

process used to collect the data this equipment type generates.

5.6.1 Global Logical View

This section considers the high-level logical view structure of the process related to

data collection from the AOI equipment. It also refers the positioning and the im-

portance of each component in the overall system, the existing relationships existing

with external services, applications and databases.

At the beginning of the chain process, there are the AOI equipments that generate

the inspection results and save them into XML files. Additionally, each equipment

is also responsible for generating its own log files containing the errors, warnings and

application messages logged during the process. These generated log files and their

content information should also be collected. On the server’s side, one instance of

the developed prototype using the Bee Framework is running for each different AOI

equipment. Each instance of the prototype is the “brain” of all the data collection

process and fully controls how the main flow steps are achieved.

The running prototype instance retrieves some of its configurations from the

IniTable Admin GUI and also from its own local configurations available through

XML files. Local configurations are available through a single file that contains the

general framework settings and also through multiple XML files, one for each of

the modules required. Configuration settings are then retrieved from local XML

configuration files in order to load both the framework and its modules settings.

These configuration files are loaded and parsed, so that configuration settings can

be retrieved. The additional required settings must be retrieved from the INI Table

and are gathered using a YODA interface. INI Table configurations are accessed via

78

Prototype Development

Figure 5.9: AOI main flow

79

Prototype Development

YODA connection and are retrieved using the Configuration Manager (CFGmgr),

which will receive these requests and reply with the necessary configuration settings.

Generated files are detected by the Bee Framework and their data contents are

collected. This retrieved raw data is then saved , by inserting it into the target

Oracle database defined through a TNS connection.

The Bee Framework also serves as a relay to interface with Remote GUI and

LotEquipParamsHistSrv on equipment breakdown reason notifications. It also no-

tifies the Remote GUI about XML file generation down timeouts and sends notifi-

cation messages to desired target e-mails previously configured in the settings.

Figure 5.10 represents the overall architecture used in the AOI integration and

regarding the collection of the data generated by this equipment type.

Figure 5.10: AOI integration entities

80

Prototype Development

5.6.2 Bee Framework Logical View

This subsection describes the Bee Framework logical view used in the AOI equipment

integration and complements the text description of the previous section (section

5.6.1). Appendix F contains some useful information about AOI configurations used.

Two framework modules are required: the FolderMonitorModule, which inter-

acts directly with the equipment file system, and the AOIEquipmentModule, which

contains the implementation and definition of the main flow represented in the state

model of figure 5.9.

The FolderMonitorModule is responsible for detecting the creation of new XML

files generated by the AOI equipment in the listening folder and send a message

notification to the main application class, the BeeFramework. Then, the AOIEquip-

mentModule is notified about these new eligible XML files and loads their contents

so that they can be processed. This means that the AOIEquipmentModule already

knows which files are available for parsing.

The file starts being parsed and some data content validations are performed.

Finally, if these validations are successful, the retrieved raw data is inserted into the

target database. Additionally, this module is also responsible to process the mea-

surement results retrieved from the file during the parsing step in order to calculate

the total values related to the measurements and send the final summary data to

the same target database.

The AOIEquipmentModule also has its own folder structure to save the detected

files depending on the results of data validation and file parsing. These files can be

either successfully processed or rejected or ignored, so that the module can decide

which target destination is adequate for each XML file detected. Furthermore, this

module has its own logging system which backups files automatically by checking the

configurations of the Logging Service in use. However, log files can also be backup

by detecting the creation of the log files in a listening directory (just like XML files)

or by periodically checking the listening folder to retrieve the log files existing there.

These modules do not interact directly with each other and all interactions be-

tween them must be done by using internal framework messages and by sending them

to the MessageCenter, which will then attend the received requests and broadcast

them so that other modules can receive these messages.

The MessageCenter is also responsible for handling the interactions related to

YODA Service, comprising both the subscription and the diffusion of YODA mes-

sages. The YODA messages each module is interested in receiving are subscribed in

the MessageCenter and whenever a message with a subscribed subject is available

in the network the MessageCenter notifies the adequate framework modules. If a

81

Prototype Development

module needs to send a YODA message, the message will be sent by using the same

MessageCenter. The message will then be dispatched and, depending on the mes-

sage type, the MessageCenter may have to wait for a possible reply or for a timeout.

The MessageCenter and the interaction between different modules using it is

important due to scalability issues: if every module would interact directly with

all available others, it would be very difficult to maintain this interaction between

all modules, especially if the number of modules increases significantly. Using the

MessageCenter as intermediary, the only thing that needs to be done while adding a

new module is defining it in the global configuration file used by the Bee Framework,

specifying its type and the path for its own XML configuration file.

Finally, the most important part of the AOI equipment integration is related

to the AOIEquipmentModule and with the Bee Framework services it uses. The

following paragraphs will describe those services in a high level view, just to refer

how and why each service is used in the AOI equipment integration.

Logging is an important but no critical service because it is used to record mes-

sages about application execution, such as error messages, warning messages or

merely information messages. The logs can then be analyzed to better understand

how application is behaving and identify the causes of possible errors.

The critical path of integrating an equipment is not only collect the data it gener-

ates but also save that data. The data generated by AOI equipments is collected and

saved into a database, so the database service can be considered the most important

service used to integrate such type of equipments. There are two possibilities con-

cerning the usage of this service: the usage of normal queries and stored procedures

inside an open transaction or the usage of an external application, SQL*Loader, to

improve performance when the volumes of data are huge.

Timer is a service used to control the time related to the generation of XML

files. It’s a service used to monitor the interval time of consecutive generated files,

so that problems can be quickly detected and notifications sent if the equipment is

not working properly.

Email is a service that is just used in case of equipment failures. It provides

general methods to send emails if notifications must be sent. Global email settings

and target destinations are defined in the XML configuration file of AOIEquipment-

Module.

Finally, the last service considered is a wrapper to YODA. All messages consid-

ered have the same format of internal framework messages, but with a flag to find

out if the message is a YODA message or not. If a flag has a true value in a message,

it means that the message considered is a YODA message. In such cases, when a

82

Prototype Development

message is sent and handled by the MessageCenter, the flag will be checked, the

message will be converted into a YODA message format and it will then be sent to

the YODA network.

This YODA wrapper service also interfaces with two particular YODA services:

CFGmgr and LotEquipParamsHistSrv. CFGmgr is used to acquire some configura-

tion values about an equipment. These values directly influence the way the data

is collected, specially about what concerns lot validations and the loading of data

into the database. LotEquipParamsHistSrv is used to record equipment breakdown

reasons.

Figure 5.11 illustrates both the existing interactions between the AOI equip-

ments and the framework and between the framework and external applications.

Additionally, it represents the internal interactions existing between the framework

components, namely its modules, message center and services.

Figure 5.11: Bee Framework logical view

83

Prototype Development

5.7 AOI Integration Test Cases

This section presents the integration test cases used to validate the implementation

of the prototype. These test cases are related to the collection of data generated by

AOI equipments and also with the complementary functions required to fully and

effectively integrate this type of equipment.

For each integration test case, two tables are considered. The first table provides

a description of the test in terms of identifier, test name, small description and cre-

ation date. Additionally, the first table also enumerates the pre-conditions required

for running the test so that the expected results can be achieved. The second table

of each test provides the required details in terms of the ordered sequence of steps

required to run the test. Each step of the test case has a small description and

has the expected results after the end of the step. Some additional notes are also

presented for each step.

The list of integration test cases considered are:

• process XML files;

• notify XML file generation down;

• backup AOI log files;

• log equipment breakdown reason.

The following section shows an example of an integration test case related to

the “Process XML files” use case. The remaining test cases are available in the

appendix C.

5.7.1 Process XML Files

This test is the most important integration test case. It is directly related to data

collection tasks: it considers the detection of new eligible XML files, performs the

required validations, does the file parsing and inserts the collected data into the

target database. Tables 5.1 and 5.2 illustrate the description of this test and the

details related to the sequence of steps required to execute the test, respectively.

Table 5.1: Process XML files — Test case description

Test ID Test T1

Test name Process XML files

Test description This test verifies if the AOIEquipmentModule inserts all

necessary records into customized database (raw and

summary data)

Continued on next page

84

Prototype Development

Table 5.1 –continued from previous page

Test date 29th May 2008

Pre-conditions TNS connection properly configured and targeted to de-

sired database.

Prototype must be running and data collection from

AOI equipment must be enabled.

SQL*Loader definitions must exist in the INI Table.

SQL*Loader header files must exist.

All directories for processed files and SQL*Loader temp

files must exist.

Expected results Raw and Summary records exist in target database.

XML files detected must be moved from the listening

directory to the directory of processed files after the pro-

cessing.

Table 5.2: Process XML files — Test case details

Sequence Step

type

Step description Expected

results /

state

Notes

1 Action Start the Bee Framework

and begin data collec-

tion.

The ap-

plication

should

have

started.

See other pre-

conditions on

test case de-

scription.

2 Action Trigger Start Lot event

with Remote GUI.

Start Lot

event

triggered.

The

AOIEquip-

mentModule

must have

received the

Lot Start

event.

3 Action Ensure that AOI equip-

ment XML files are cre-

ated in the listening

folder.

Equipment

XML files

are cre-

ated in

the input

folder.

Continued on next page

85

Prototype Development

Table 5.2 – continued from previous page

Sequence Step

type

Step description Expected

results /

state

Notes

4 Test AOIEquipmentModule

parses and processes

XML files.

XML

files are

moved to

processed

directory.

A lot must

be defined,

otherwise the

file will be

ignored.

5 Test Query the target

database for processed

lot number.

Raw and

summary

data exist

in target

database

for that lot

number.

6 Test Check if the XML files

exist in the directory of

processed files.

Files do

not exist

in the

listening

directory

and exist

in the

directory

used for

already

5.8 Summary

The present chapter gives an overview of the AOI equipment and relates it to the

semiconductor industry. The chapter describes the prototype main goal, which is

the integration of the AOI equipment in terms of data collection. By completing

such integration, not only a new integration solution for these equipment becomes

available but also the concepts related to the architecture proposed in the Chapter

4 are used in a real environment, going beyond the theoretic domain.

This chapter also explains the process of how data is generated by these equip-

ments and how this data should be collected and saved: XML files are the result of

optical inspections and are created in a listening directory; whenever a new file is

86

Prototype Development

detected, the file is processed and if validations are successful the file is parsed and

its data is saved into a target database.

The chapter also focused in the required use cases to integrate such equipment

and perform data collection. At first instance, these use cases are explained and

detailed conceptually. Then, the implementation of these use cases using the frame-

work architecture and the services provided by it is described. These use cases

are:

• process XML files;

• notify XML files generation down;

• backup of equipment log files;

• log equipment breakdown reason.

After the description of the implementation of the uses cases regarding the AOI

equipment, the architecture used in the integration is described. Firstly, the main

flow required to collect data from AOI equipments is detailed. Then, the global

logical view related to the AOI integration and the external applications and com-

ponents it uses is detailed. Furthermore, the Bee Framework logical view regarding

how the framework modules interact and which services are used is also described.

Finally, this chapter presented the integration test cases related to the data

collection from AOI equipments. These test cases are directly related to the use cases

referred, provide a high-level description in terms of pre-conditions and expected

results. Additionally, the sequence of steps to run each test is also referred.

87

Prototype Development

88

Chapter 6

Findings and Discussion

This chapter presents the main findings related to the development of the framework

and the integration of the Automatic Optical Inspection equipment. Additionally,

a comparison between the proposed integration solution for the AOI equipment and

the previous approach will also be done. This comparison is done along this chapter

and mostly comprises the differences related to the AOI integration using both

approaches, in terms of effort and time needed as well as performance evaluation.

6.1 Event-based Framework

The proposed architecture for the manufacturing equipment data collection frame-

work is essentially based on events, delegates and handlers to catch these events.

Combining object-oriented approach with the event-based paradigm brought several

advantages in terms of performance questions.

Some of the advantages about this event-based framework are related to the

detection of new files and with timer and message notifications.

6.1.1 Detecting Changes in Files

Without using events to monitor folder directories, the solution to control changes

resides on periodic verifications. These verifications generally imply that a list of

files and folders must be in memory, so that consecutive verifications can make a

comparison between the existing list and the files and folders found. Moreover,

these verifications not only need to compare the names of files and folders but also

compare changes in modification times and permissions.

Additionally, these validations usually require a different thread to be running

and, even worst, they require multiple threads to check changes in subdirectories.

89

Findings and Discussion

This approach implies that developers must synchronize all the threads before re-

turning the results containing the changes, which can be not only a painful task but

also increases the probability of committing errors and leads to memory deadlocks.

Using an approach based on periodic verifications and comparisons is then more

resource consuming in terms of memory and processor usage. The list of existing

files inside a directory must always be kept updated and to achieve this performance

degree it implies that the list must be updated after every single verification. Even

if no changes have occurred between two consecutive validations, the list still need

to be refreshed. In this case, the waste of resources is even higher because there was

no need to perform a new verification, a new comparison and a new refresh of the

list of files structure.

However, using an event-based framework and using events to monitor a direc-

tory and its subdirectories so that changes in files can be detected brings several

performance improvements. Events provide a very clean method to detect changes

that occur inside a directory without having to periodically perform verifications to

check which files have been created, renamed, changed or deleted. Moreover, no list

of files need to be maintained in memory, so there is also no need to do comparisons

between two consecutive lists of files retrieved from verifications.

Using an event-based approach, the painful periodic verifications and compar-

isons are completely avoided. Using events the framework simply gets notified only

and only when a change in the file is detected. Moreover, the type of change and

the file where it has occurred are known a priori instead of having to match two

possible long lists of files and match them to get the differences between them.

No additional verifications are required and there are also other positive aspects

related to the detection of changes in files inside a monitored directory: the decision

of including or not including subdirectories in the monitoring is easier because it

only involves the configuration of a parameter flag. Being a configuration setting,

it becomes quite simple to change this option without the need of developing new

code and without changing any code at all. Filters are another advantage of using

an event-based monitoring: when using a filter for monitoring a directory, only

the filenames that match the regular expression of the filter cause an event to be

fired. This is also a good improvement, since these validations are done without the

explicit knowledge of developers.

6.1.2 Notifications

Events are also very useful when referring to timer and messages notification. With-

out using a timer based on events notifications it is very hard to monitor elapsed

90

Findings and Discussion

time or to generate alarms at specific desired times. This implies the need of, just

like the monitoring of directories, periodic verifications to compare the amount of

time elapsed or to check if the time for firing an alarm has been reached. This

approach is not only resource consuming but also can lead to time imprecisions. It

would be very hard to exactly match the verification time with the alarm time, in

order to get a result with just some milliseconds of delay or, even harder, with no

delays.

Moreover, it would require developers to implement thread running loops to do

these periodic verifications. Having an isolated thread to simply monitor and control

time is not the ideal solution, specially if the number of alarms required start to

considerably increase. Additionally, if some configurations like defining the start

and end time were needed (as described in 4.4.6, for example), it would be even

harder to guarantee the synchronism required when monitoring time.

Using an event-based timer approach, these verifications are avoided and there

is no need to periodically check the value of current time and compare it with all

existing alarms. This event approach follows exactly the inverse of the periodic

checking: instead of performing periodic validations to check if a specific time has

been reached, the event-based approach tells us at the right moment that time is

reached, just like an alarm clock. This way, while developing the necessary code to

integrate an equipment that needs time monitoring, developers only have to focus in

defining alarms correctly so that they can fire notifications at the desired date time

values. Also, when using a timer service based on event notifications, the framework

only needs to wait for the notification sent when the desired times are reached.

Events also play an important role in what refers to messages notification. If

no events were used to inform the framework when a module wants to send a new

message, the framework message center would have to ask periodically each module

about new messages. Using an event-based approach, the framework not only avoids

this periodic questioning but also turns message handling more efficient and effective.

The framework message center does not have to worry about when messages are

available because it is notified about such situations instead. When a module needs

to send a message, it has to delegate it to the framework and this one does not even

need to know which module sent the message.

A similar situation happens not only about framework internal messages but

also when referring to YODA messages. The message center obviously needs to be

listening to the network so that it can be aware of the messages available in the

network. However, it does not need to tell the framework each time a new YODA

message becomes available; since the messages have been previously subscribed, the

framework message center will only be notified through an event when a message

with a subscribed subject becomes available in the network. Moreover, it not only

91

Findings and Discussion

notifies the message center about a new subscribed message available but also gets

the message from the network and immediately captures it. By doing so, the frame-

work does not need neither to compare all messages that become available neither

to check all messages to retrieve the one desired.

6.2 Parsing XML Files

The equipment considered in the proof of concept generates data and makes it

available through XML files. Because of this specific equipment, collecting data

from XML files has been highly focused during the prototype development. In

previous approaches regarding the data collection from these files format type, the

approach used to parse XML files was similar to the parsing of a plain ASCII text

file: a sequential parsing was implemented and regular expressions to match XML

tags were widely used. This kind of parsing not only is more difficult to implement

but it is also harder to understand and less fault tolerant if some error occur during

the parsing.

The approach used to parse XML files using XPath language has brought some

advantages related to the parsing operations. Using XPath language, the parsing

does not need to be done sequentially. Using XPath, there is no need to keep

accessing tags sequentially, using the order they appear in the file. XPath allow

XML tags and their values to be easily accessed and using random accesses without

losing performance. This characteristic is a great advantage because allowing a

random parsing of the files increases the level of flexibility.

The way an equipment generates a XML file and its internal structure usually

depends on the manufacturer of the equipment. By using a random access parsing,

this dependency level is reduced because the team integrating an equipment can

implement the methods required for collecting data without taking in consideration

the file format specifications provided by the manufacturer. This approach becomes

particularly useful if some validations about the existing data in the file are required:

instead of parsing all the file sequentially until the required tags are reached, these

tags can be directly accessed, which is a performance improvement.

Moreover, the usage of XPath makes the parsing easy to understand. The path

for a tag is identified by the sequence of nodes existing in the hierarchy, since the

root of the XML document until the required tag. Since this approach is identical

to the one used by operating systems to define the paths for directories and files, it

also helps understanding the hierarchy of paths for accessing tags because users and

developers are already familiarized with it. This way, by using XPath, it becomes

easier to understand how a XML file is being parsed and which tags are being

accessed.

92

Findings and Discussion

Additionally, when a XML file is loaded using XPath, the document is scanned

once and all its tags are indexed. Having the tags of a XML document indexed

increases significantly the performance when accessing the path of a XML file be-

cause when searching for a tag only the tags are considered. This way, instead of

parsing and considering all existing data as happens in the sequential parsing, only

the indexed tags are used during a search and the parsing of contents and values of

all tags is avoided.

6.3 Database Access and Saving Data

Database access and saving data into databases are another crucial aspect of the

framework. Having a pool of database connections clearly reduces the time required

for database operations because once a connection is open it remains open for further

databases accesses and it is closed when the application exits. The main advantage

of such a pool of connections occurs because it avoids the need of open and close a

connection each time an access is required.

Another interesting finding is related to the use of cache and binding variables

when doing multiple database accesses executing queries with the same structure

but with different parameter values. By using binding variables the queries are

cached and their execution plan remains the same. Since the execution plan remains

unchanged, the database does not need to calculate a new execution plan for each

query and uses the one it has in cache. This way, calculating an execution plan for

each similar required is not necessary and database operations are executed quickly,

reducing the time needed for each operation and increasing performance.

A similar situation occurs when referring to stored procedures. Since a pool of

stored procedures is used, it is possible to cache and prepare a stored procedure when

it runs for the first time. This way, just like using binding variables, stored proce-

dures can be cached and reused whenever they are required in future attempts. By

doing so, the time required to execute a stored procedure multiple times decreases,

which also allows a significant enhancement in terms of performance.

Even if database accesses have already been considerably improved, the usage

of SQL*Loader application introduced even more performance improvements, es-

pecially by reducing the time required to save the collected data into an Oracle

database. This required time to save data using this approach is significantly lesser

than using the optimized approaches described in the previous paragraphs. Consid-

ering the nonexistence of errors in the data that should be saved, this approach is

strongly recommended to all cases using an Oracle database as final target. It not

only avoids the use of SQL queries and stored procedures but also provides a very

efficient method to save data into a database.

93

Findings and Discussion

6.4 Time Required for Integration

Finally, the most interesting finding is related to the required time to integrate

the AOI equipment, collect the data it generates and then save it into an Oracle

database. The time required to implement and develop the previous integration

approach already used in Qimonda was about a man month. After specifying and

developing the core architecture of the framework and its services, a new integration

and data collection effort using the Bee Framework has started.

The required framework configurations to integrate the AOI equipment have

been defined. At this point, only the specific integration strategy to collect data

generated by this equipment was required. Since the framework architecture and its

core services were already specified and implemented, the time required to integrate

an equipment started counting. The time spent since the start of the development

of the integration strategy until its end has been approximately 1.5 weeks (with a

person working on it full time).

The difference between the required time to integrate an equipment in terms

of collecting its data and saving is considerable and quite significative. The global

framework architecture was already implemented and ready to use; the same way,

the framework services had already been previously developed and were ready to

use. Consequently, the only components required to integrate the AOI equipment

were a new module and a concrete integration strategy. This strategy only had to

be implemented accordingly with the equipment and data collection needs, taking

full advantage of the existing services and architecture.

This approach only had to consider the necessary adjustments required for an

integration strategy regarding the AOI equipments. By making the architecture

and framework services available and ready to use, the development of an integra-

tion solution for a new equipment only has to focus in the main characteristics of

integration itself. No development regarding message handling, database accesses,

email or logging is required; they are available and should be used by the integration

strategy.

Even if these services are required to integrate an equipment, they do not play a

critical role in the integration process and the development should be almost exclu-

sively focused on data collection tasks. These are the expected results the usage of

the Bee Framework intends to achieve: avoid or reduce considerably need of devel-

oping complementary services that are not directly related to integration and data

collection and make them available and ready to use instead. This is basically the

main reason that explains the existence of such a big difference between the previous

integration solution and the integration achieved using the Bee Framework.

94

Findings and Discussion

6.5 Summary

This chapter presents the findings achieved with the development of the Bee Frame-

work , namely:

• the benefits of using an event-based approach, especially those related to de-

tection of changes in files and notifications;

• the achieved improvements related to the parsing of XML files;

• the main conclusions and enhancements regarding the used database access

approach;

• the time required to integrate the AOI equipment.

Using an event-based approach avoids the need of periodic verifications and com-

parisons because the framework is notified when an event is triggered. Since the

framework is notified when such events occur, unnecessary verifications are avoided

and performance increases because no additional processing and memory resources

are required.

XML parsing using XPath essentially allows nodes and XML tags to be indexed,

which makes random access possible and also makes parsing tasks easier to imple-

ment and understand. Additionally, accessing a specific node is direct and quick

because the nodes are indexed, which decreases parsing time.

Having pools for database connections and for stored procedures makes database

accesses more efficient in terms of performance and required time. Using binding

variables and prepared stored procedures reduces significantly the time required

to execute database access operations. SQL*Loader is strongly recommended to

large volumes of data because loading and saving data into a database becomes

considerably faster.

The difference between the amounts of time required to integrate the AOI equip-

ment with and without using the Bee Framework is considerable. Without the

framework the time was about a month; with the framework this time has been

reduced to a week and a half. The main reason for this big difference is the focus

only in the data collection integration strategy for a specific equipment. With the

additional and complementary services as well as the core global architecture imple-

mented, they are ready to use and the development does not need to focus on them

again.

95

Findings and Discussion

96

Chapter 7

Conclusions

This chapter describes the main conclusions achieved with the elaboration of the

project. The chapter refers to the concrete applicability of the Bee Framework and

the new approach to integrate the AOI equipment and collect the data it generates.

Furthermore, this chapter also includes some final recommendations and perspec-

tives of future work to improve and expand the proposed solution.

7.1 Project Applicability

This section describes the practical applicability of the framework and the AOI inte-

gration approach developed using the Bee Framework . Beyond the specification and

development of a framework architecture following some good architecture practices

based on design patterns, the framework design provides an easier method to inte-

grate manufacturing equipments. The framework provides an architecture that can

be used to easily plug other equipments and start collecting the data they generate.

Moreover, the core services commonly used in the data collection have been

identified, specified and implemented. This way, not only the framework has been

designed with a modular architecture to help improving the equipment integration

and data collection processes, but also provides these services. These services are

ready to be used and can be easily configured by changing the settings in XML

configuration files. This means that no new code is required to immediately start

using these services and use them in the integration strategies to perform data

collection in manufacturing equipments.

Both the architecture and the services proposed and implemented allow an equip-

ment integration team to focus only in the development of the integration strategy

97

Conclusions

itself needed to integrate a new equipment type. This way, developers do not have

to worry about the integration architecture for each new equipment. Additionally,

they also do not have to worry through the definition of the complementary services

not directly related to the data collection process itself, but required to achieve a

robust equipment integration. Since these services are already available, they do not

need to focus their attention on the architecture and requirements for these services.

Developers only need to know which services are available and how to configure them

correctly so that they can be used as desired.

When integrating an equipment using the Bee Framework , instead of adapting

some of the components required and previously developed in other equipment in-

tegrations, these components remain unchangeable. This way, instead of using an

approach inspired by the expression “adapt and reuse”, integrating an equipment

using the framework and its services is based on the expression “configure and use”.

Consequently, using the Bee Framework significantly reduces the amount of time

and effort required to integrate an equipment and perform data collection.

Beyond the functionalities and easy reutilization of framework components in

other equipment integrations, the usage of the Bee Framework to collect data also

has another great advantage: it promotes consistency. If collecting data from manu-

facturing equipments starts to progressively use this framework, the data collection

process will have a tendency to become very uniform both on new equipment in-

tegrations and on maintenance tasks, even considering different equipment types.

This desired consistency level will not only help the framework to become more

mature and stable, but will also lead to new releases considering new improvement

issues or even new requirements.

Since Qimonda assembly lines are working non stop 24h per day and because

they follow very rigorous and strict security and safety rules, the migration of the

data collection process regarding AOI equipments must be carefully planned. The

impact of an emergency stop in Qimonda assembly line is extremely harmful, so

this new integration approach using the Bee Framework must also be exhaustively

tested to ensure that no problems are detected. This is essentially the main reason

that justifies why this new approach is still not fully operational.

7.2 Final Recommendations and Perspectives of Future Work

This section details some final recommendations about the Bee Framework project

and describes some perspectives of future work and improvements. Even if the

framework architecture and its services have been tested, especially when referring

to the AOI equipment integration, they should be exhaustively tested in the same

conditions of the assembly line, executing stress tests to ensure that everything

98

Conclusions

works as expected and to guarantee that the data collection approach using the

framework can be safely used in the assembly line.

The perspectives of future work regarding the Bee Framework at short and middle

term are related to new requirements or improvements. Some of these perspectives

are:

• Automatic update of the framework modules and services.

This perspective of future work is perhaps the most important. It is similar to

the one described in section 4.3.2 regarding the automatic updates of assembly

files (DLLs). This feature has been implemented in the cases related to ex-

ternal assemblies, because they do not have dependencies with the framework.

However, when an update is found it has to unload the DLLs currently used,

load the new ones and ensure the new ones will be used afterward. These

automatic updates are consequently harder to do than the updates related to

external assemblies.

• Monitor the state of all framework modules and their properties.

Monitoring the state of the framework modules is other interesting perspec-

tive. This perspective can be useful to check what the module is doing, which

internal framework messages or YODA messages it has subscribed, or other

internal properties related to each specific module.

• Monitor the state of all framework services.

This item is similar to the previous one. Monitor a framework service could

be useful to check if the service is working properly or which configurations

are currently used. For example, when considering the database service, it

would be good to see which databases are available or monitor the state of the

different connections (open or closed).

• Monitor the messages handled by the MessageCenter.

This perspective is related to the framework MessageCenter. It considers the

development of a new interface to monitor all the messages sent or received.

Furthermore, this interface would also consider the parameters of each frame-

work message, allowing users to inspect which messages have been handled and

which are their characteristics in terms of parameters.

• Graphical interface to configure module and services (instead of XML files).

Currently, the framework loads its own configurations and the settings related

to each module and service from XML files. This means that all configurations

must be defined manually using a XML file editor, which may increase the

99

Conclusions

number of errors committed. Consequently, it would be very helpful to have a

graphical user interface to configure all the settings required by the framework.

This way, XML files could still be used, but users would not have to know the

XML language syntax or the exact syntax configurations need.

• Include new methods for collecting data, such as the RS-232 (serial port).

As described before in section 4.1.1, there are other possible sources for col-

lecting data from equipments, such as the serial port. In order to provide a

better coverage in terms of possible data sources, new additional methods for

collecting data from these source should be considered and implemented in

the framework. This way, the framework domain for collecting data would be

expanded and the number of equipments covered by the framework in terms

of data collection would also increase.

• Read configurations from system Registry.

Some equipment types use the system Registry to read some of the required

configurations used in the data collection process. This perspective of future

work is not hard to implement and is not critical but would be nice to have

this feature available and ready for use just like the other framework services.

• Generate statistics related to data collection.

This final perspective of future work is useful to evaluate the framework per-

formance itself. For example, it could be used to calculate the time required to

send messages between modules or to send messages to the YODA network, to

calculate the average time to load data into a database or the time required to

parse a file. These calculated values could then be used to generate statistical

reports about the data collection process related to the Bee Framework .

7.3 Final Conclusions

The results achieved with this project are positive and it is expected to integrate

the AOI equipment in the productive environment of the Qimonda assembly lines

using this approach shortly.

In a middle term it is also expected that other different equipment types can also

be integrated using the Bee Framework , especially the new equipment types that can

be acquired by Qimonda. In a long term, the previous integration approaches used in

data collection for existing equipment types may as well be progressively migrated

in order to use the framework solution proposed. This would clearly lead to a

higher level of consistency regarding the data collection process from manufacturing

equipments in Qimonda assembly lines.

100

References

[1] Danforth, B.N., Sipes, S., Fang, J., Brady, S.G. The History of Early Bee Di-
versification Based on Five Genes Plus Morphology. Proceedings of the National
Academy of Sciences 103, 2006.

[2] LocalHarvest, Inc. Honey and Bee Products, 2008. Available from http:

//www.localharvest.org/store/bee-prods.jsp, last accessed at 3rd June
2008.

[3] Krell, R. Value-Added Products From Beekeeping. Food and Agriculture
Organization, 1996. Available from http://www.fao.org/docrep/w0076e/

w0076e00.htm, last accessed at 3rd June 2008.

[4] Information Society: The Next Steps Coming Soon, January 2006.
Available from http://topics.developmentgateway.org/special/

informationsociety/index.do, last accessed 30th June 2008.

[5] Ozkul, T. Data Acquisition and Process Control Using Personal Computers.
CRC, April 1996.

[6] Park, J., Mackay, S. Practical Data Acquisition for Instrumentation and Control
Systems. Newnes, First edition, June 2003.

[7] James, K. PC Interfacing and Data Acquisition. Newnes, August 2000.

[8] Iskow, J. SEMI Equipment Data Acquisition Standards. June 2005. Avail-
able from http://www.semiconductor.net/article/CA604510.html, last ac-
cessed at 30th June 2008.

[9] Rubow, B. The Standard Pieces of SEMI’s Interface A. July 2005. Avail-
able from http://www.semiconductor.net/article/CA621798.html, last ac-
cessed at 30th June 2008.

[10] Data Collection — Process and Data Automation, 2008. Available from http:

//www.processanddata.com/data-collection/, last accessed at 28th June
2008.

[11] SEMI, 2008. Available from http://www.semi.org, last accessed at 29th June
2008.

[12] PANalytical. SECS/GEM, 2008. Available from http://www.panalytical.

com/index.cfm?pid=204, last accessed at 29th June 2008.

101

http://www.localharvest.org/store/bee-prods.jsp
http://www.localharvest.org/store/bee-prods.jsp
http://www.fao.org/docrep/w0076e/w0076e00.htm
http://www.fao.org/docrep/w0076e/w0076e00.htm
http://topics.developmentgateway.org/special/informationsociety/index.do
http://topics.developmentgateway.org/special/informationsociety/index.do
http://www.semiconductor.net/article/CA604510.html
http://www.semiconductor.net/article/CA621798.html
http://www.processanddata.com/data-collection/
http://www.processanddata.com/data-collection/
http://www.semi.org
http://www.panalytical.com/index.cfm?pid=204
http://www.panalytical.com/index.cfm?pid=204

REFERENCES

[13] Crispieri, G. Improving Fab Productivity with New Standards for Equipment
Data Acquisition. January 2007.

[14] Aaron, H. Fab Automation Gets Boost From Interface A, June 2005. Avail-
able from http://www.semiconductor.net/article/CA6343501.html, last
accessed at 30th June 2008.

[15] Marsh, T., Eisfeld, M. Qimonda EDA Evaluation — Final Recommendations
Report. Technical report, February 2008. Qimonda internal document with
restricted access.

[16] Microsoft Corporation. Visual C# Developer Center, 2008. Available
from http://msdn.microsoft.com/en-us/vcsharp/default.aspx, last ac-
cessed at 3rd June.

[17] Microsoft Corporation. C# Language Specification Version 3.0.
2007. Available from http://download.microsoft.com/download/

3/8/8/388e7205-bc10-4226-b2a8-75351c669b09/CSharp%20Language%

20Specification.doc, last accessed at 3rd June 2008.

[18] Microsoft Corporation. Visual Studio Developer Center, 2008. Available
from http://msdn.microsoft.com/en-us/vstudio/default.aspx, last ac-
cessed at 3rd June 2008.

[19] Microsoft Corporation. Visual Studio 2005 Developer Center, 2005. Avail-
able from http://msdn.microsoft.com/en-us/vs2005/default.aspx, last
accessed at 3rd June 2008.

[20] Resharper:: The Most Intelligent Add-In To Visual Studio, 2008. Available from
http://www.jetbrains.com/resharper/, last accessed at 4th June 2008.

[21] Nunit, 2007. Available from http://www.nunit.org/, last accessed at 4th June
2008.

[22] Dustin, E. Automated Software Testing. Addison Wesley, 1999.

[23] Cockburn, A. Agile Software Development. Pearson Education, First edition,
October 2001.

[24] Object Management Group — UML, 2008. Available from http://www.uml.

org, last accessed at 4rd June 2008.

[25] Introduction to OMG UML, September 2008. Available from http://www.omg.

org/gettingstarted/what_is_uml.htm, last accessed at 6th June 2008.

[26] History of UML. Available from http://atlas.kennesaw.edu/~dbraun/

csis4650/A\&D/UML_tutorial/history%_of_uml.htm, last accessed at 6th
June 2008.

[27] Microsoft Corporation. Microsoft Office Visio 2007 Product Overview — Visio
— Microsoft Office Online, 2008. Available from http://office.microsoft.

com/en-us/visio/HA101656401033.aspx, last accessed at 6th June 2008.

102

http://www.semiconductor.net/article/CA6343501.html
http://msdn.microsoft.com/en-us/vcsharp/default.aspx
http://download.microsoft.com/download/3/8/8/388e7205-bc10-4226-b2a8-75351c669b09/CSharp%20Language%20Specification.doc
http://download.microsoft.com/download/3/8/8/388e7205-bc10-4226-b2a8-75351c669b09/CSharp%20Language%20Specification.doc
http://download.microsoft.com/download/3/8/8/388e7205-bc10-4226-b2a8-75351c669b09/CSharp%20Language%20Specification.doc
http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://msdn.microsoft.com/en-us/vs2005/default.aspx
http://www.jetbrains.com/resharper/
http://www.nunit.org/
http://www.uml.org
http://www.uml.org
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.omg.org/gettingstarted/what_is_uml.htm
http://atlas.kennesaw.edu/~dbraun/csis4650/A\&D/UML_tutorial/history% _of_uml.htm
http://atlas.kennesaw.edu/~dbraun/csis4650/A\&D/UML_tutorial/history% _of_uml.htm
http://office.microsoft.com/en-us/visio/HA101656401033.aspx
http://office.microsoft.com/en-us/visio/HA101656401033.aspx

REFERENCES

[28] Oracle Corporation. Oracle Database, 2008. Available from http://www.

oracle.com/database/index.html, last accessed at 6th June 2008.

[29] Oracle Corporation. What is SQL Developer?, 2008. Available from
http://www.oracle.com/technology/products/database/sql_developer/

files/what_is_sqldev.html, last accessed at 6th June 2008.

[30] SQL*Loader FAQ — Oracle FAQ, 2008. Available from http://www.orafaq.

com/wiki/SQL*Loader_FAQ, last accessed at 6th June 2008.

[31] Microsoft Corporation. Enterprise Library, 2008. Available from http:

//msdn.microsoft.com/en-us/library/cc467894.aspx, last accessed at 4th
June 2008.

[32] Microsoft Corporation. Enterprise Library 3.1 — May 2007, 2007. Available
from http://msdn.microsoft.com/en-us/library/aa480453.aspx, last ac-
cessed at 4th June 2008.

[33] Pereira, L. Microsoft Patterns & Practices: The Enterprise Library.
2008. Available from http://www.dotnetheaven.com/Uploadfile/leonpere/

EnterpriseLibrary02012006061856AM/EnterpriseLibrary.aspx, last ac-
cessed at 4th June 2008.

[34] Microsoft Corporation. Enterprise Library Documentation, 2007.

[35] Microsoft Corporation. Enterprise Library 4.0 — May 2008, 2008. Available
from http://msdn.microsoft.com/en-us/library/cc512464.aspx, last ac-
cessed at 4th June 2008.

[36] Red Hat Middleware. NHibernate for .NET, 2006. Available from http://

www.hibernate.org/343.html, last accessed at 6th June 2008.

[37] Red Hat Middleware. NHibernate for .NET - Download Overview, 2006. Avail-
able from http://www.hibernate.org/6.html, last accessed at 6th June 2008.

[38] Enterprise Library, 2005. Available from http://www.theserverside.net/

discussions/thread.tss?thread_id=32864, last accessed at 6th June 2008.

[39] TIBCO Software Inc. TIBCO Rendezvous, 2008. Available from http://www.

tibco.com/software/messaging/rendezvous/default.jsp, last accessed at
6th June 2008.

[40] Donohoe, D. J., Neth, S. R., Kim, Y. B., Zak, B. D. Name Type Value Storage.
Available from http://www.freepatentsonline.com/6401092.html, last ac-
cessed at 6th June 2008, YEAR=2002, MONTH=June.

[41] Microsoft Corporation. TIBCO Rendezvous Concepts, December 2007. Avail-
able from http://www.gorillatraining.com/en-us/library/aa559569.

aspx, last accessed at 6th June 2008.

[42] YODA qShare Site, 2008. Available from http://qshare.qimonda.com/

sites/it-mfg-yoda/quickplace/default.aspx, last accessed at 6th June
2008. Qimonda internal page with restricted access.

103

http://www.oracle.com/database/index.html
http://www.oracle.com/database/index.html
http://www.oracle.com/technology/products/database/sql_developer/files/what_is_sqldev.html
http://www.oracle.com/technology/products/database/sql_developer/files/what_is_sqldev.html
http://www.orafaq.com/wiki/SQL*Loader_FAQ
http://www.orafaq.com/wiki/SQL*Loader_FAQ
http://msdn.microsoft.com/en-us/library/cc467894.aspx
http://msdn.microsoft.com/en-us/library/cc467894.aspx
http://msdn.microsoft.com/en-us/library/aa480453.aspx
http://www.dotnetheaven.com/Uploadfile/leonpere/EnterpriseLibrary02012006061856AM/EnterpriseLibrary.aspx
http://www.dotnetheaven.com/Uploadfile/leonpere/EnterpriseLibrary02012006061856AM/EnterpriseLibrary.aspx
http://msdn.microsoft.com/en-us/library/cc512464.aspx
http://www.hibernate.org/343.html
http://www.hibernate.org/343.html
http://www.hibernate.org/6.html
http://www.theserverside.net/discussions/thread.tss?thread_id=32864
http://www.theserverside.net/discussions/thread.tss?thread_id=32864
http://www.tibco.com/software/messaging/rendezvous/default.jsp
http://www.tibco.com/software/messaging/rendezvous/default.jsp
http://www.freepatentsonline.com/6401092.html
http://www.gorillatraining.com/en-us/library/aa559569.aspx
http://www.gorillatraining.com/en-us/library/aa559569.aspx
http://qshare.qimonda.com/sites/it-mfg-yoda/quickplace/default.aspx
http://qshare.qimonda.com/sites/it-mfg-yoda/quickplace/default.aspx

REFERENCES

[43] Microsoft Corporation. Message Queueing (MSMQ), 2008. Available from
http://msdn.microsoft.com/en-us/library/ms711472.aspx, last accessed
at 16th March 2008.

[44] Mitchell, S. Microsoft Message Queue — An Overview. April 2000. Avail-
able from http://www.4guysfromrolla.com/webtech/041300-1.shtml, last
accessed at 16th March 2008.

[45] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F.
Extensible Markup Language (XML) 1.0. World Wide Web Consortium,
Fourth edition, August 2006. Available from http://www.w3.org/TR/2006/

REC-xml-20060816/, last accessed at 6th June 2008.

[46] Extensible Markup Language (XML), May 2008. Available from http://www.

w3.org/XML/, last accessed at 6th June 2008.

[47] XML Introduction — What is XML?, 2008. Available from http://www.

w3schools.com/xml/xml_whatis.asp.

[48] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F.,
Cowan, J. Extensible Markup Language, 2004. Available from http://

www.stylusstudio.com/w3c/xml11/sec-intro.htm, last accessed at 6th June
2008.

[49] XML Usage, 2008. Available from http://www.w3schools.com/xml/xml_

usedfor.asp.

[50] Introduction to XPath, 2008. Available from http://www.w3schools.com/

Xpath/xpath_intro.asp, last accessed at 7th June 2008.

[51] Clark, J., DeRose, S. XML Path Language, 2004. Available from http://www.

stylusstudio.com/w3c/xpath/index.htm, last accessed at 7th June 2008.

[52] Berglund, A., Boag, S., Chamberlin, D., Fernández, M. F., Kay, M., Robie, J.,
Siméon, J. XML Path Language (XPath) 2.0. World Wide Web Consortium,
January 2007. Available from http://www.w3.org/TR/xpath20, last accessed
at 7th June 2008.

[53] Haddad, P., Donoghue, T. Choosing an Approach for Locking, 1998. Available
from http://developer.apple.com/documentation/legacytechnologies/

webobjects/webobjects_4.5/System/Documentation/Developer/

WebObjects/Topics/ProgrammingTopics.2a.html#15618, last accessed
at 4th March 2008.

[54] De Beijer, M. Database Concurrency Conflicts in the Real World. July/Au-
gust 2006. Available from http://www.code-magazine.com/article.aspx?

quickid=0607081\&page=1, last accessed at 4th March 2008.

[55] Microsoft Corporation. Optimistic Concurrency. Available from http:

//msdn2.microsoft.com/en-us/library/aa0416cz(VS.71).aspx, last ac-
cessed at 4th March 2008.

104

http://msdn.microsoft.com/en-us/library/ms711472.aspx
http://www.4guysfromrolla.com/webtech/041300-1.shtml
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3schools.com/xml/xml_whatis.asp
http://www.w3schools.com/xml/xml_whatis.asp
http://www.stylusstudio.com/w3c/xml11/sec-intro.htm
http://www.stylusstudio.com/w3c/xml11/sec-intro.htm
http://www.w3schools.com/xml/xml_usedfor.asp
http://www.w3schools.com/xml/xml_usedfor.asp
http://www.w3schools.com/Xpath/xpath_intro.asp
http://www.w3schools.com/Xpath/xpath_intro.asp
http://www.stylusstudio.com/w3c/xpath/index.htm
http://www.stylusstudio.com/w3c/xpath/index.htm
http://www.w3.org/TR/xpath20
http://developer.apple.com/documentation/legacytechnologies/webobjects/webobjects_4.5/System/Documentation/Developer/WebObjects/Topics/ProgrammingTopics.2a.html#15618
http://developer.apple.com/documentation/legacytechnologies/webobjects/webobjects_4.5/System/Documentation/Developer/WebObjects/Topics/ProgrammingTopics.2a.html#15618
http://developer.apple.com/documentation/legacytechnologies/webobjects/webobjects_4.5/System/Documentation/Developer/WebObjects/Topics/ProgrammingTopics.2a.html#15618
http://www.code-magazine.com/article.aspx?quickid=0607081\&page=1
http://www.code-magazine.com/article.aspx?quickid=0607081\&page=1
http://msdn2.microsoft.com/en-us/library/aa0416cz(VS.71).aspx
http://msdn2.microsoft.com/en-us/library/aa0416cz(VS.71).aspx

REFERENCES

[56] Haddad, P., Donoghue, T. Locking on a Column, 1998. Available from
http://developer.apple.com/documentation/legacytechnologies/

webobjects/webobjects_4.5/System/Documentation/Developer/

WebObjects/Topics/ProgrammingTopics.2b.html#10467, last accessed
at 4th March 2008.

[57] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Sixth edition, April 1996.

[58] Reilly, D. Introducing the Singleton - “The Single Java Object”,
June 2006. Available from http://www.javacoffeebreak.com/articles/

designpatterns/index.html, last accessed at 24th March 2008.

[59] Microsoft Corporation. Singleton, 2008. Available from http://msdn.

microsoft.com/en-us/library/ms998426.aspx, last accessed at 24th March
2008.

[60] Singleton Pattern, October 2007. Available from http://c2.com/cgi/wiki?

SingletonPattern, last accessed at 24th March 2008.

[61] Cohen, T., Gil, J. Better Construction with Factories. Journal of Ob-
ject Technology, 2007. Available from http://tal.forum2.org/static/cv/

Factories.pdf, last accessed at 24th March 2008.

[62] Goel, A. ONDotnet.com — The Factory Design Pattern, August
2003. Available from http://www.ondotnet.com/pub/a/dotnet/2003/08/11/

factorypattern.html, last accessed at 19th June 2008.

[63] Data & Object Factory. Factory Method Design Pattern in C# and VB.NET.
Available from http://ww.dofactory.com/Patterns/PatternFactory.aspx,
last accessed at 19th June 2008.

[64] Purdly, D., Richter, J. Exploring the Observer Pattern, January 2002. Available
from http://msdn.microsoft.com/en-us/library/,ms954621.aspx, last ac-
cessed at 20th June 2008.

[65] Vlissides, J. Design Patterns Project, August 2001. Available from http:/www.

research.ibm.com/designpatterns/example.htm, last accessed at 20th June
2008.

[66] Minka, T. Introduction to Software Pattern — Observer Pattern, Jan-
uary 1997. Available from http://alumni.media.mit.edu/simtpminka/

patterns/Observer.html, last accessed at 20th June 2008.

[67] Fowler, M. Inversion of Control Containers and the Dependency Injection
Pattern, January 2004. Available from http://martinfowler.com/articles/

injection.html#InversionOfControl, last accessed at 23rd June 2008.

[68] Johnson, R., Foote, B. Designing Reusable Classes. Journal of Object-Oriented
Programming, June/July 1988. Available from http://www.laputan.org/drc/

drc.html, last accessed at 23rd June 2008.

105

http://developer.apple.com/documentation/legacytechnologies/webobjects/webobjects_4.5/System/Documentation/Developer/WebObjects/Topics/ProgrammingTopics.2b.html#10467
http://developer.apple.com/documentation/legacytechnologies/webobjects/webobjects_4.5/System/Documentation/Developer/WebObjects/Topics/ProgrammingTopics.2b.html#10467
http://developer.apple.com/documentation/legacytechnologies/webobjects/webobjects_4.5/System/Documentation/Developer/WebObjects/Topics/ProgrammingTopics.2b.html#10467
http://www.javacoffeebreak.com/articles/designpatterns/index.html
http://www.javacoffeebreak.com/articles/designpatterns/index.html
http://msdn.microsoft.com/en-us/library/ms998426.aspx
http://msdn.microsoft.com/en-us/library/ms998426.aspx
http://c2.com/cgi/wiki?SingletonPattern
http://c2.com/cgi/wiki?SingletonPattern
http://tal.forum2.org/static/cv/Factories.pdf
http://tal.forum2.org/static/cv/Factories.pdf
http://www.ondotnet.com/pub/a/dotnet/2003/08/11/factorypattern.html
http://www.ondotnet.com/pub/a/dotnet/2003/08/11/factorypattern.html
http://ww.dofactory.com/Patterns/PatternFactory.aspx
http://msdn.microsoft.com/en-us/library/,ms954621.aspx
http:/www.research.ibm.com/designpatterns/example.htm
http:/www.research.ibm.com/designpatterns/example.htm
http://alumni.media.mit.edu/simtpminka/patterns/Observer.html
http://alumni.media.mit.edu/simtpminka/patterns/Observer.html
http://martinfowler.com/articles/injection.html#InversionOfControl
http://martinfowler.com/articles/injection.html#InversionOfControl
http://www.laputan.org/drc/drc.html
http://www.laputan.org/drc/drc.html

REFERENCES

[69] Hollywood Principle, February 2008. Available from http://c2.com/cgi/

wiki?HollywoodPrinciple, last accessed at 23rd June 2008.

[70] Hadlow, M. Code rant: The Hollywood Principle, October 2007. Available from
http://mikehadlow.blogspot.com/2007/10/hollywood-principle.html,
last accessed at 23rd June 2008.

[71] Grand, M. Patterns in Java: A Catalog of Reusable Design Patterns Illustrated
with UML. Wiley, Second edition, September 2002.

[72] Lewis, M. C. Lecture 3 — Chain of Responsibility and Iterator, December
2007. Available from http://sol.cs.trinity.edu/~mlewis/CSCI3394-F07/

Lectures/Lect3.pdf, last accessed at 21st June 2008.

[73] CyberOptics Corporation. Automatic Optical Inspection. Available from http:

//www.cyberoptics.com/products/aoi/aoi/, last accessed at 28th June
2008.

[74] CyberOptics Corporation. Flex Ultra — Automatic Optical Inspec-
tion, 2006. Available from http://www.cyberoptics.com/client_files/

documents//8010020-Rev_B_-_Flex_Ultra.pdf, last accessed at 28th June
2008.

106

http://c2.com/cgi/wiki?HollywoodPrinciple
http://c2.com/cgi/wiki?HollywoodPrinciple
http://mikehadlow.blogspot.com/2007/10/hollywood-principle.html
http://sol.cs.trinity.edu/~mlewis/CSCI3394-F07/Lectures/Lect3.pdf
http://sol.cs.trinity.edu/~mlewis/CSCI3394-F07/Lectures/Lect3.pdf
http://www.cyberoptics.com/products/aoi/aoi/
http://www.cyberoptics.com/products/aoi/aoi/
http://www.cyberoptics.com/client_files/documents//8010020-Rev_B_-_Flex_Ultra.pdf
http://www.cyberoptics.com/client_files/documents//8010020-Rev_B_-_Flex_Ultra.pdf

Index

.NET Framework, 11–13, 17, 19, 27
AOIEquipmentModule, 66, 67, 70–75, 81,

82
BackupModule, 36, 42, 44, 53, 61
BeeEquipmentModule, 36, 44, 45, 53, 61
BeeFramework, 39, 41, 49, 50, 53
BeeModuleFactory, 39
BeeModule, 36, 37, 39, 44, 49, 50, 52, 53
FolderMonitorModule, 36, 39–42, 53, 61,

66, 67, 72, 75, 77, 81
FolderWatcher, 40–42, 66, 67, 74, 77
IntegrationContext, 46
IntegrationStrategy, 46, 48
MessageHandler, 49, 54, 55
XMLFolderWatcher, 72

Agile methodology, 14
AOI, 63–66, 71, 74, 76, 78, 81–84, 86, 89,

94, 95, 97–100
API, 17, 20, 22
Application block, 17, 18
Application-level locking, 25, 26
ASCII, 39
Assembly line, 3, 9, 23, 32, 63, 65, 98–100
Automatic Optical Inspection, 4, 63, 89

Backup, 33, 68, 71, 74, 75, 81, 87
Backup directory, 44
Bee, 1
Binding variables, 58, 93, 95
Black-box, 29, 30, 32, 42, 60, 64
Breakdown reason, 68, 71, 76, 87
Broadcast message, 41, 42, 51, 52, 55, 66,

72, 76, 81, 82

C#, 4, 11–13, 16, 19
C# class file, 43
Chain of Responsibility pattern, 52, 55,

61

Collecting files, 24, 28, 31, 39, 66, 87
CommandLot, 70
Common Language Runtime, 19
Communication, 2, 20, 26, 28
Configuration, 33, 75, 100
Configuration Manager, 58, 66, 71, 80, 83

Data Access Block, 20
Data Acquisition, 32
Data analysis, 1, 2
Data Conversion, 33
Data mining, 2, 17
Data persistence, 17, 19
Data Receiver, 32
Data Sender, 33
Data source, 30, 31, 58
Data warehouse, 17
Database, 2, 15, 19, 24, 25, 28, 31, 33,

58, 62, 77, 78, 81, 82, 87, 93, 95,
99

Database access, 2, 17, 19, 20, 24, 28,
93–95

Database concurrency, 24, 25, 28
Database locking, 25, 26
Database Management System, 17
Database migration, 16
Deadlock, 25, 90
Decision Making System, 7
Deployment directory, 44
Design pattern, 18, 34, 37, 40, 46, 47, 52,

61
Distributed applications, 21
DLL, 43, 99

Email, 34, 59, 62, 73, 78, 80, 82, 94
Engineering Data Collection, 10
Equipment Control team, 32, 65
Equipment Data Acquisition, 9, 10
Equipment module, 36, 44, 45

107

INDEX

Event pattern, 40
Event-based programming, 40, 89–91, 95
Exception handling, 17
External application, 30, 32, 57, 78, 82,

83
External assemblies, 42, 99

Factory automation, 9
Factory Method pattern, 37, 38, 61
File generation down, 68, 70, 73, 80, 82,

87
File system, 2, 31, 33, 39, 81
Folder monitoring, 2, 36, 39, 89, 90
Framework message, 34, 51, 55–59, 62,

72, 75, 81, 83, 92, 99
Framework module, 33, 37, 42, 45, 50,

60, 61, 80, 82, 99
Framework service, 2, 33, 34, 57, 60, 61,

83, 94, 97–99

Gang of Four, 34, 35, 37

Hollywood Principle, 48
Housekeeping, 33

Information society, 7
INI Table, 71, 80
Integration process, 2
Integration test, 84
Interface A, 9, 10
Interface B, 9
Interface C, 9
International standards, 3, 8, 9
Inversion of Control, 48

Local database, 2, 24, 30
Locking on a column, 25
Log command, 68, 69
Log file, 33, 59, 71, 74, 75, 78, 82, 87
Logging, 2, 17, 34, 59, 62, 68, 75, 81, 82,

94
Lot Equipment Parameters History Server,

66, 71, 76, 80, 83

Manufacturing equipment, 1, 3, 8, 10, 23,
24, 26, 29–32, 63, 78, 92

Manufacturing process, 8
Markup language, 22

Message center, 34, 39, 49, 50, 54, 55, 66,
72, 75, 76, 81–83, 91, 99

Message handling, 21, 26–28, 41, 48, 56,
60, 91, 92, 94, 99

Message parameters, 51
Microsoft Access, 17, 20
Microsoft Enterprise Library, 17–20
Microsoft Message Queuing, 22
Microsoft Visio, 15
Microsoft Visual Studio, 13, 19
Modeling, 4
Modeling language, 14

Name-value-type paradigm, 21, 51, 56
Network protocol, 21
NHibernate, 19, 20
Notification, 34, 68, 70, 73, 77, 80, 82, 91
NUnit, 13

Object-oriented programming, 12, 89
Object-Relational Mapping, 19
Observer pattern, 40, 61
OEDV, 71
OMG, 14, 15
Optical inspection, 65, 70, 87
Optimistic locking, 25
Oracle database, 15–17, 20, 26, 28, 80, 93

Parsed data, 23
Parsing, 2, 24, 31, 66, 67, 72, 77, 78, 81,

87, 92, 95
PCB, 64, 65
Periodic approach, 24, 77, 89–91
Pessimistic locking, 25, 26, 28
PL/SQL, 16
PostgreSQL, 17
Programming language, 4, 11, 12, 16

Qimonda, 3, 9, 22, 24, 27, 58, 65, 94, 98,
100

Random parsing, 92, 95
Raw data, 81
RDBMS, 15
Receiving messages, 21
Refactoring, 13
Reflection, 42
Registry, 100
Remote GUI, 69–71, 80

108

INDEX

Resharper, 13
Rolling, 59

SAM, 65
SECS/GEM, 9
SEMI, 8
Semiconductor industry, 8, 9, 26, 64, 86
Sending messages, 21
Sequential parsing, 24, 92
Serial port, 31, 100
Singleton pattern, 34, 35, 61
SMTP, 59
SQL, 16, 19, 20, 77, 93
SQL Developer, 16
SQL Navigator, 16
SQL Server, 17, 20
SQL*Loader, 16, 58, 77, 78, 82, 93, 95
Strategy pattern, 46, 47, 61
Subscribing messages, 21, 49, 92
Subversion, 4
Summary data, 81

TCP/IP, 24, 31
Template Method pattern, 47, 61
Test Driven Development, 4, 14
Thread, 90, 91
TIBCO Rendezvous, 20, 21
Timer, 34, 60, 62, 70, 73, 77, 82, 91
TNS, 80

UML, 4, 14, 15, 75
UML Partners, 15
Unit testing, 13
Unparsed data, 23

Validation, 17, 70, 72, 77, 81, 87

W3C, 22, 23
White-box, 29, 32, 60
Windows message, 27
Working directory, 44

XML, 19, 20, 22, 23, 39, 43, 66, 68, 70–
75, 77, 78, 80–82, 87, 92, 93, 95,
99

XPath, 23, 92, 93, 95

YODA, 21, 22, 32, 33, 49, 54–56, 58, 61,
66, 69, 70, 80, 82, 83

YODA message, 21, 31, 32, 34, 51, 54–59,
61, 76, 92, 99, 100

109

INDEX

110

Appendices

111

Appendix A

Bee Framework Configurations

This appendix illustrates how the XML file related to the global framework settings
must be configured. This XML file is required when starting the application and
considers two main XML nodes: modules and services.

As it name reveals, the main node modules contains the XML nodes related
to the common definitions used by framework modules. Each of these sub nodes
contain the follow information:

• name — the name of the module.

The module can have any desired name. However, the value of this node
should be chosen so that it can be easily distinguished from other modules. A
meaningful name should also be used, so that the module purpose can also be
immediately understood when the module is referred. The only limitation for
this node value is that it has to be different from all other module names, so
that it can be uniquely identified by the framework.

• type — the framework module type.

This node refers to the module type internally used by the framework. This
value must be one of the defined module types known by the framework. Be-
cause of the abstraction used to build the modules considering the Factory
Method pattern explained in 4.3 section, these values are used to identify the
module type that should be created. Additionally, multiple modules from the
same type may co-exist, with the condition of respecting the unique names
rules explained in the previous item.

• ConfigurationPath — the path for the XML configuration file of the module.

This node value contains the path for the XML configuration file used by the
framework module to load specific module configurations. The path of this
XML file can be either relative to the path of the application or absolute.

Each module configuration file must also define, at least, the subjects of both
internal framework and YODA messages that it wants to subscribe. To specify
these message subjects, two main nodes are used: messages and YodaMessages,
respectively. These main nodes can then contain a variable number of child nodes,
each one specifying a message subject. The names of these child nodes are message

113

Bee Framework Configurations

or YodaMessage, depending if they are related to internal framework messages or
with YODA messages, respectively.

An example is illustrated in the following XML extract:

<messages>
<message>List </message>

</messages>

<YodaMessages>
<YodaMessage>CommandLot</YodaMessage>

</YodaMessages>

The services node contains the definitions for the services which configurations
are global to the framework, namely the YODA Service and the Email Service.

Since multiple YODA configurations can be used, there is main node to define
the YODA configurations required. The parent node or this service is the yodas

node, which defines both the global settings related to YODA configurations and
the list of possible YODA configurations.

The global settings related to YODA are:

• CFGmgrSubject — the subject of the Configuration Manager service.

The Configuration Manager is a service listening the YODA network, so that
it can receive the messages sent asking for the configuration settings of an
application or equipment, for example. Consequently, if an equipment frame-
work module needs to know which settings should be used to collect from an
equipment, a YODA message with the required settings (usually the name
of the parameters settings) should be sent to the YODA network using this
Configuration Manager subject.

• BaseSubject — the base subject common to all YODA messages related to
Bee Framework.

In order to decrease the probability of mixing and wrongly receiving messages
from the YODA network, a base subject is used to all YODA messages related
to the framework. Obviously, each YODA message has its own subject, but it
is mandatory that it starts by this base subject. This way, there is no need to
specify the complete subject of YODA messages.

• default — the name of the default YODA configuration used when any
configuration is specified.

Since multiple YODA configurations can be defined and used, this node value
defines the name of the YODA configuration that should be used by default
when any YODA configuration is defined. This information is useful to avoid
developers to always need to specify the YODA configuration required. Since
most of times the default configuration will be used, they will not need to
specify the desired YODA configuration each time the YODA Service is used.

Additionally, for each YODA configuration, a parent node standing for yoda

should encapsulate all the nodes required for defining a YODA configuration set-
tings. The yoda node should be located inside the yodas node. The required settings
for each YODA configuration are detailed next:

114

Bee Framework Configurations

• name — the name of the YODA configuration.

• AppName — the name of the application.

• SubjectPrefix — the IFX Subject Prefix.

• RvNetwork — the main transport configuration for the Network.

• RvDaemon — the main transport configuration for the Daemon.

• RvService — the main transport configuration for the Service.

• LongRequests — the node that defines the configurations of long requests
messages.

Long requests allows applications to send YODA messages following a request-
reply mechanism. However, unlike simple normal request-reply messages, ap-
plications do not need to “block” waiting for the reply. When the reply for the
request is available in the YODA network, the application simply gets notified
and catches the reply. The settings used by long requests are presented next:

– LRFile — the file used to store pending request-reply messages.

In order to avoid the need of keeping the pending requests in memory, a
file is used to store information.

– Interval — the amount of time (in seconds) to clean the file used for
long requests.

The file used to store pending request-reply messages is periodically clean,
so that the requests that have caused timeout or that have been attended
between two consecutive inspections can be removed from the file. This
helps maintaining the long requests file only with the necessary informa-
tion and avoids that it keeps continually growing in size.

– Subject — the subject an application requires to receive the replies.

Since the application do not need to wait for a reply, it has to be notified
when the reply becomes available in the network. Consequently, it has
to subscribe a subject to catch the reply messages still present in the file
used to store long requests.

Finally, the last configurations of these global settings file is related to the email
definitions in terms of the SMTP server used to send emails with the Email Service.
The global configurations required have the email node as a parent node. These
configuration are:

• smtpHost — the host used by the SMTP server.

• smtpPort — the port number used by the SMTP server.

An example of a Bee Framework configuration file is presented next.

<?xml ve r s i on =”1.0” encoding=”utf−8” ?>
<framework>

<modules>

115

Bee Framework Configurations

<module>
<name>Folder Monitor</name>
<type>Folder Monitor Module</type>
<Configurat ionPath>FolderMonitorConf igurat ion . xml</Conf igurat ionPath>

</module>
<module>

<name>Automatic Opt ica l Inspec t ion </name>
<type>AOI Equiment Module</type>
<Configurat ionPath>AOIModuleConfiguration . xml</Conf igurat ionPath>

</module>
<module>

<name>Backup</name>
<type>Backup Module</type>
<Configurat ionPath>BackupConfiguration . xml</Conf igurat ionPath>

</module>
</modules>

<s e r v i c e s >
<yodas>

<CFGmgrSubject>YOD D.ITPAESEC.CFGmgr</CFGmgrSubject>
<BaseSubject>BeeFw.</ BaseSubject>
<de fau l t >DefaultYodaConf igurat ion </de fau l t >
<yoda>

<name>DefaultYodaConf igurat ion </name>
<AppName>Bee Framework</AppName>
<Subjec tPre f ix >YOD D</Sub jec tPre f ix >
<RvNetwork > ;239.255.28.99 </ RvNetwork>
<RvDaemon>7777</RvDaemon>
<RvService >7777</RvService>
<LongRequests>

<LRFile>l o n g r e q u e s t s . l r </LRFile>
<In t e rva l >60</In t e rva l >
<Subject>POR.MEI .EC.BEEFW.LONGREQUESTS.REPLY</Subject>

</LongRequests>
</yoda>

</yodas>

<email>
<smtpHost>smtp−por . i n t r a . qimonda . com</smtpHost>
<smtpPort>25</smtpPort>

</email>

</s e r v i c e s >
</framework>

116

Appendix B

Services Configurations

This appendix describes the configurations related to the Bee Framework services
referred in section 4.4.

B.1 YODA and Message Services

As described in the Message Handling section (see section 4.3.4), both YODA and
Message services are part of the framework kernel. Consequently, these services
are directly related to the framework configurations and module configurations that
have been already described in Appendix A.

The Message Service is simpler than the YODA Service because it does not re-
quire additional configurations. Each framework module only has to contain in its
XML configuration file a parent node named messages. This parent node encapsu-
lates the subjects of internal framework messages. Each message subject must then
be defined inside a child node tag named message (see Appendix A) .

These are the only definitions required to use the message service. The framework
is responsible read this information from each module configuration file and then
configure the MessageCenter so that it can deliver the received messages accordingly
to the framework modules.

The YODA Service is also related to the MessageCenter, so its configurations
are also related to the framework main configuration file (as described in Appendix
A).

Each framework module contains in its XML configuration file a parent node
named YodaMessages. This parent node encapsulates the subjects of YODA mes-
sages. Each YODA message subject must then be defined inside a child node tag
named YodaMessage (see Appendix A). These subjects must be simple, without con-
sidering the base subject. To avoid the need of specifying the complete subject for
all YODA messages, a base subject is defined and the framework is then responsible
to append the base subject to all YodaMessage subjects.

B.2 Database Service

The configurations related to Database Service are mostly related to the XML con-
figuration file required. In order to use the Data Application Block from Enterprise

117

Services Configurations

Library, a XML file is required to define database configurations used by the cor-
responding service. A new XML file is necessary only because the values used to
database configurations may be directly accessed without any additional parsing
operations. This file must be named App.config and must be present in the same
directory of the executable file so that their configurations can be accessed.

This XML file contains four sections:

• configSections — It is related to the Microsoft Enterprise Library settings
in order to allow the inclusion of the configurations required to allow database
abstractions to be used.

• dataConfiguration — It defines the default database that should be used
when no database is specified.

• oracleConnectionSettings — This section defines additional configurations
related to Oracle database connection strings, namely those related to Oracle
packages.

• connectionStrings — This section is the most important because it defines
the connection strings that can be used by the data collection application.
Each connection string is added by using the add node, which contains the
following attributes:

– name — the name of the connection string. Any name may be used,
but it has to be unique so that the connection string can be uniquely
identified.

– connectionString — the connection string itself.

– providerName — the provider name that refers to the database type
(Oracle or SQL Server, for example).

The settings existing in this XML file can be automatically generated if using
the Enterprise Library Configuration GUI and exporting the configurations to the
App.config file.

The XML code presented bellow shows an example of an App.config file, which
sections are described in the following items:

• The first section, configSections defines the Microsoft Enterprise Library
configurations required that are related to database and Oracle connection
string settings.

• dataConfiguration section defines the default database used if no database is
specified in a database operation. In this example, the default database is the
database identified by the connection string named AOI Connection String.

• The third section, oracleConnectionSettings, defines the name of the Oracle
packages used by each database. In the following example, a package named
Oracle Package is related to the database identified by AOI Connection String.

118

Services Configurations

• Last section of the example bellow contains three different connection strings,
obviously related to three different databases. If a database operation related to
a database different from the default one is required, the name of the connection
string that refers to the required database must be specified.

<con f i gu ra t i on >

<c o n f i g S e c t i o n s >
<s e c t i o n name=”dataConf igurat ion ”

type=”Microso f t . P r a c t i c e s . Ente rp r i s eL ib ra ry . Data .
Conf igurat ion . DatabaseSett ings ,

Mic roso f t . P r a c t i c e s . Ente rp r i s eL ib ra ry . Data ,
Vers ion =3 .1 . 0 . 0 ,
Culture=neutra l ,
PublicKeyToken=b03f5 f7 f11d50a3a ” />

<s e c t i o n name=”orac l eConnec t i onSe t t i ng s ”
type=”Microso f t . P r a c t i c e s . Ente rp r i s eL ib ra ry . Data . Oracle .

Con f igurat ion . Orac leConnect ionSett ings ,
Mic roso f t . P r a c t i c e s . Ente rp r i s eL ib ra ry . Data ,
Vers ion =3 .1 . 0 . 0 ,
Culture=neutra l ,
PublicKeyToken=b03f5 f7 f11d50a3a ” />

</c o n f i g S e c t i o n s >

<dataConf igurat ion de fau l tDatabase=”AOI Connection St r ing ” />

<orac l eConnec t i onSet t ings >
<add name=”AOI Connection St r ing”>

<packages>
<add p r e f i x=”AOI Oracle Package”

name=”Oracle Package” />
</packages>

</add>
</orac l eConnec t i onSet t ings >

<connec t i onSt r ings >
<add name=”APT Connection St r ing ”

connec t i onSt r ing=”Data Source=LPCTEST; P e r s i s t Se cu r i ty In f o=True ;
User ID=APT; Password=APTTEST; Unicode=True ; ”

providerName=”System . Data . Orac l eC l i en t ” />
<add name=”Local Connection St r ing ”

connec t i onSt r ing=”Data Source=l o c a l h o s t ; P e r s i s t Secu r i ty In f o=True ;
User ID=DANIEL; Password=4Bee Qpt”

providerName=”System . Data . Orac l eC l i en t ” />
<add name=”AOI Connection St r ing ”

connec t i onSt r ing=”Data Source=LPCTEST; User ID=EC BEE;
Password=DCF#Bee EC4”

providerName=”System . Data . Orac l eC l i en t ” />
</connec t i onSt r ings >

</con f i gu ra t i on >

B.3 Email Service

The configurations of the Email Service have already been presented in Appendix
A. These configurations are related to the SMTP server settings, namely the SMTP

119

Services Configurations

host and the port number. An example of these configurations is presented in the
following XML code.

<email>
<smtpHost>smtp . por . i n t r a . qimonda . com</smtpHost>
<smtpPort>25</smtpPort>

</email>

Then, to use this service, the method SendEmailMessage should be used. This
method have multiple overloads, but the most complete has the following parame-
ters:

• from — Email address of the sender;

• displayName — Display name of the sender;

• to — List of email addresses of the receivers (emails separated by semi-colons);

• subject — The subject of the email;

• body — The body of the email text;

• cc — List of email addresses of the CC receivers (emails separated by semi-
colons);

• bcc — List of email addresses of the BCC receivers (emails separated by
semi-colons);

• attachments — Array of attachments file paths.

B.4 Logging Service

The settings for a Logging Service are defined in the XML configuration file of
the module that wants to use the service. The Logging Service is defined in the
loggings node. This parent node have the following child nodes:

• the name of the logging identifier that should be used if no logging definitions
are specified. This name refers to the name of the logging service and its value
is encapsulate inside the DefaultLogging node.

• at least one log node. Each log node contains the settings of a Logging Service.
Multiple Logging Services may be defined if ensuring that their names are
unique, so that Logging Services can be uniquely identified by the framework.

Each log node contains the following settings:

• name — The name of the Logging Service.

It is used to uniquely identify a Logging Service. Consequently, the value of
this node must be unique and can not be used as the name for other Logging
Services.

120

Services Configurations

• filename — The full path of the main file used by the Logging Service.

Each time the Logging Service is requested to log a message, the file specified
by this node value is used. Depending on rolling settings, a rolling operation
may be performed. However, when a message is logged, this message is the
most recent log message so it will always be logged in this file.

• type — The type of the Logging Service.

The type of a Logging Service may assume the following values:

– Flat — If this type is used it means that no control about the size or age
of the log file is done by the Logging Service. This is the simplest type of
Logging Service, since all messages will be logged to the file specified in
filename and the log file size will grow without any control as messages
are logged.

– Rolling — This type is more complex than the previous one because it
allows better control of log files. Logging messages using a Logging Service
with this type allows the control of log files size, age and the maximum
number of log files in the same directory.

• header — The header of a log message.

Each time a message is logged using a Logging Service, the header message
defined in this node is used. If the node has an empty value, no header is
written when the Logging Service is requested to log a message.

• footer — The footer of a log message. This node behavior is similar to the
header node.

• SizeUnit — The unit used to control the size of log files. The size itself is
specified by the value of the size node.

This node can have the following values:

– Kilobytes;

– Megabytes;

– Gigabytes;

– None — If such value is used, a Logging Service using Rolling type does
not perform rolling operations based on the size of log files.

• size — The maximum size allowed for log files.

The value of this node is used in combination with the value of the previous
node, SizeUnit. For example, if the value of this node is 2 and the SizeUnit

is configured as Kilobytes, the maximum size allow for the log files of that
Logging Service is 2KB.

The value of this node is affected by the SizeUnit node value in two particular
conditions:

– If the size unit value configured in SizeUnit node is different from None,
the value of the size node must be an integer value higher than zero.

121

Services Configurations

– If the size unit value configured in SizeUnit node is equal to None, the
value used to control the size of log files of the Logging Service is imme-
diately set to zero, without taking in consideration the value specified in
the size node. Consequently, no control based on the size of files is done.

• AgeUnit — The unit used to control the age of log files. The age itself is
specified by the value of the age node.

This node can have the following values:

– Minutes;

– Hours;

– Days;

– Weeks;

– Months;

– None — If such value is used, a Logging Service using Rolling type does
not perform rolling operations based on the age of log files.

• age — The maximum age allowed for log files.

The value of this node is used in combination with the value of the previous
node, AgeUnit. For example, if the value of this node is 3 and the AgeUnit is
configured as Days, the maximum age allowed for the log files of that Logging
Service is 3 days.

The value of this node is affected by the AgeUnit node value in two particular
conditions:

– If the age unit value configured in AgeUnit node is different from None,
the value of the age node must be an integer value higher than zero.

– If the age unit value configured in AgeUnit node is equal to None, the value
used to control the age of log files of the Logging Service is immediately
set to zero, without taking in consideration the value specified in the age

node. Consequently, no control based on the age of files is done.

• MaxNumberFiles — The maximum number of log files allowed in the same
directory.

When a Logging Service has its type specified as Rolling, a control based on
the size and / or age of log files is typically done. This means that when the
size or age limits are reached, a new log file may possibly be created depending
on the number of log files in the logging directory. If the maximum number of
log files allowed and the limits for both age and size values are reached, two
special cases may occur when a message is logged:

– the oldest log file is deleted so that a new log file can be created and the
message logged;

– the oldest log file is moved to a backup directory and a new log file may
then be created.

122

Services Configurations

If this node value is equal to 0 (zero), no control based on the maximum number
of files allowed in the logging directory is done. Consequently, new log files are
created in the logging directory if the age or size values of a log file are reached.
In such situation, all files stay in the logging directory, the same of the main
log file.

• BackupDirectory — The path of the directory used to backup log files.

The value of this node is affected by the following conditions:

– If the value of MaxNumberFiles node is zero, the value of this node is
ignored because no rolling operations are based on the maximum number
of files allowed and consequently files are not moved.

– If the value of this node is empty then no backup directory is specified.
Consequently, if the maximum number of log files in the logging directory
is reached, the file is deleted and no backup of log files is done.

The following XML code shows an example of the logging structure that should
be used. It contains two Logging Services named Logging Service 1 and Logging
Service 2. When logging a message, if no Logging Service is specified, Logging
Service 1 is used by default.

<l ogg ings >
<DefaultLogging>Logging S e r v i c e 1</DefaultLogging>
<log>

<name>Logging S e r v i c e 1</name>
<f i l ename > . . . </ f i l ename>
<type>Flat | Rol l ing </type>
<header > . . . </ header>
<f oo t e r > . . . </ foo t e r >
<SizeUnit>Ki lobytes | MegaBytes | Gigabytes | None</SizeUnit>
<s i z e > . . . </ s i z e >
<AgeUnit>Minutes | Hours | Days | Weeks | Months | None</AgeUnit>
<age > . . . </ age>
<MaxNumberFiles > . . . </ MaxNumberFiles>
<BackupDirectory > . . . </ BackupDirectory>

</log>
<log>

<name>Logging S e r v i c e 2</name>
<f i l ename > . . . </ f i l ename>
<type>Flat | Rol l ing </type>
<header > . . . </ header>
<f oo t e r > . . . </ foo t e r >
<SizeUnit>Ki lobytes | MegaBytes | Gigabytes | None</SizeUnit>
<s i z e > . . . </ s i z e >
<AgeUnit>Minutes | Hours | Days | Weeks | Months | None</AgeUnit>
<age > . . . </ age>
<MaxNumberFiles > . . . </ MaxNumberFiles>
<BackupDirectory > . . . </ BackupDirectory>

</log>
</logg ings >

After specifying the Logging Services settings in the XML files of the modules
that want to use them, a message can be logged by using the following methods,
which already consider the different categories and severity levels:

• LogErrorMessage — Logs an error message.

123

Services Configurations

• LogWarningMessage — Logs a warning message.

• LogApplicationMessage — Logs an application message.

B.5 Timer Service

The settings for a Timer Service are defined in the XML configuration file of the
module that wants to use the service. The Timer Service is defined in the timers

node. This parent node must the contain at least one timer node. Each timer node
contains the settings of a Timer Service. Multiple Timer Services may be defined
if ensuring that their names are unique, so that Timer Services can be uniquely
identified by the framework.

Each timer node may contain the following settings:

• name — The name of the Timer Service.

It is used to uniquely identify a Timer Service. Consequently, the value of
this node must be unique and can not be used as the name for other Timer
Services.

• repeat — A boolean flag used to configure if notifications should or not be
sent after the first elapsed time event.

If configured as true, a notification will be sent periodically when the configured
time is elapsed, depending on the interval specified.

It is not a mandatory node and if this node is not specified the flag value is
automatically set to false, which means that the elapsed time event will be
triggered only once.

• IntervalUnit — The unit used to control the amount of time elapsed. The
time itself is specified by the value of the interval node.

This node can have the following values:

– Millisecond;

– Second;

– Minute;

– Hour;

– Day;

– Week;

– None — If such value is used, the interval node is not considered. How-
ever, in such situation, the ComplexInterval node must exist and should
be correctly configured. This node will be explained soon in this list of
items.

The value of this note only considers a single time unit at each time. In order
to use multiple time units, ComplexInterval node must be used.

124

Services Configurations

• interval — The amount of time used to trigger the time elapsed event.

The value of this node is used in combination with the value of the previ-
ous node, IntervalUnit. For example, if the value of this node is 5 and
the IntervalUnit is configured as Minute, the Timer Service will trigger the
elapsed time event and send a notification 5 minutes after receiving the order
to start counting elapsed time.

The value of this node is affected by the IntervalUnit node value in two
particular conditions:

– If the interval unit value configured in IntervalUnit node is different from
None, the value of the interval node must be an integer value higher than
zero.

– If the interval unit value configured in IntervalUnit node is equal to
None, the value used to specify the interval is immediately set to zero,
without taking in consideration the value specified in the interval node.
In such situation, interval node is ignored and the ComplexInterval

node is mandatory.

• ComplexInterval — The amount of time used to trigger the time elapsed
event, but using multiple time units.

Unlike IntervalUnit node, the ComplexInterval node allows a Timer Service
to specify the amount of time elapsed till a notification is sent in multiple time
units. If this node is used, the following child nodes must also be defined and
configured:

– millisecond;

– second;

– minute;

– hour;

– day;

– week.

All the previous child nodes must have a non-negative integer value and at
least one of them must be higher than zero. Using this node allows the Timer
Service to be defined with a very precise value without having to convert the
desired time to one of the interval units values allowed by the IntervalUnit

value.

For example, if the values of child nodes hour, minute and second are 1, 30 and
15, respectively, the Timer Service will trigger the time elapsed event exactly
1h30m15s after it had been started.

• DateStart — The date time value used to start counting the time.

This node value is useful to tell the Timer Service when it should start counting
the time. This node is not mandatory and if not defined the Timer Service
only starts counting time when it is explicitly required to do so. Otherwise, if
this node exists, the Timer Service automatically starts counting time at the
value specified by the node.

125

Services Configurations

• DateEnd — The date time value used to stop counting the time.

This node value is useful to tell the Timer Service when it should stop counting
the time. This node is not mandatory and if not defined the Timer Service only
stops counting time when it is explicitly required to do so or when the time
specified in interval node is reached (considering repeat flag equal to false).
Otherwise, if this node exists, the Timer Service automatically stops counting
time at the value specified by the node.

If specified, the value of this node must be both higher than the current time
and higher than the value (if specified) of DateStart node.

The following XML code shows an example of the timer structure that should
be used. It contains two Timer Services: Timer 1 and Timer 2. The first timer
uses the IntervalUnit node to define a simple interval unit and timer 2 uses the
ComplexInterval node to define multiple interval units.

<t imers>
<timer>

<name>Timer 1</name>
<repeat > . . . </ repeat>
< i n t e r v a l > . . . </ i n t e r v a l >
<Inte rva lUn i t > . . . </ Inte rva lUn i t >
<DateStart > . . . </ DateStart>
<DateEnd > . . . </DateEnd>

</timer>
<timer>

<name>Timer 2</name>
<repeat > . . . </ repeat>
<ComplexInterval>

<mi l l i s e cond > . . . </ mi l l i s e cond >
<second > . . . </ second>
<minute > . . . </ minute>
<hour > . . . </ hour>
<day > . . . </day>
<week > . . . </week>

</ComplexInterval>
<DateStart > . . . </ DateStart>
<DateEnd > . . . / DateEnd>

</timer>
</timers>

126

Appendix C

AOI Integration Test Cases

This appendix presents the integration test cases related to the AOI equipment
integration use cases presented in Chapter 5, most specifically in section 5.7. For
each integration test case presented in the following sections, both a description and
the sequence of steps required to execute each test are described.

C.1 Process XML Files

Table C.1: Process XML files — Test case description

Test ID Test T1
Test name Process XML files
Test description This test verifies if the AOIEquipmentModule inserts all

necessary records into customized database (raw and
summary data)

Test date 29th May 2008
Pre-conditions TNS connection properly configured and targeted to de-

sired database.
Prototype must be running and data collection from
AOI equipment must be enabled.
SQL*Loader definitions must exist in the INI Table.
SQL*Loader header files must exist.
All directories for processed files and SQL*Loader temp
files must exist.

Expected results Raw and Summary records exist in target database.
XML files detected must be moved from the listening
directory to the directory of processed files after the pro-
cessing.

127

AOI Integration Test Cases

Table C.2: Process XML files — Test case details

Sequence Step
type

Step description Expected
results /
state

Notes

1 Action Start the Bee Framework
and begin data collec-
tion.

The ap-
plication
should
have
started.

See other pre-
conditions on
test case de-
scription.

2 Action Trigger Start Lot event
with Remote GUI.

Start Lot
event
triggered.

The
AOIEquip-
mentModule
must have
received the
Lot Start
event.

3 Action Ensure that AOI equip-
ment XML files are cre-
ated in the listening
folder.

Equipment
XML files
are cre-
ated in
the input
folder.

4 Test AOIEquipmentModule
parses and processes
XML files.

XML
files are
moved to
processed
directory.

A lot must
be defined,
otherwise the
file will be
ignored.

5 Test Query the target
database for processed
lot number.

Raw and
summary
data exist
in target
database
for that lot
number.

6 Test Check if the XML files
exist in the directory of
processed files.

Files do
not exist
in the
listening
directory
and exist
in the
directory
used for
already

128

AOI Integration Test Cases

C.2 Notify XML File Generation Down

Table C.3: Notify XML file generation down — Test case description

Test ID Test T2
Test name Notify XML file generation down
Test description This test verifies if the notification of XML File genera-

tion down is done successfully.
Test date 29th May 2008
Pre-conditions The parameters for specifying the recipients of the mes-

sage and the message itself must be configured in the
XML configuration file.
Bee Timer Service settings used for notifications must
be present in the XML configuration file.
Listening folder must be defined in the XML configu-
ration file. A Folder Watcher must be related to that
listening folder.
The prototype must be running and data collection from
AOI equipment must be enabled.
A lot must also be defined (notifications will not be sent
if no lot is defined).
SMTP service must be up and running.
Remote GUI must be running.

Expected results Each recipient should receive an e-mail message as con-
figured previously.
Remote GUI should be notified.

Table C.4: Notify XML file generation down — Test case details

Sequence Step
type

Step description Expected
results /
state

Notes

1 Action Start the Bee Framework
and begin data collec-
tion.

The ap-
plication
should
have
started.

See precondi-
tions in test
case descrip-
tion.

2 Action Trigger Start Lot event
with Remote GUI

Start Lot
Event
triggered.

The AOI
Equipment
Module must
have received
the Lot Start
event.

Continued on next page

129

AOI Integration Test Cases

Table C.4 – continued from previous page
Sequence Step

type
Step description Expected

results /
state

Notes

3 Test Configured delay without
any XML file being cre-
ated in listening folder
was reached.

Remote
GUI and
target
users
e-mail
should be
notified.

C.3 Backup AOI Log Files

Table C.5: Backup AOI log files — Test case description

Test ID Test T3
Test name Backup AOI log files
Test description This test verifies if the AOI equipment log files are

backed up.
Test date 29th May 2008
Pre-conditions AOI log files are created in the specified logging direc-

tory and logging type defined is “Rolling”.
Max number of files in the logging directory must be
specified and either age or size units must have a value
different from “None”.
The backup directory exists and must be correctly spec-
ified in the Logging Service definitions.

Expected results AOI equipment log files were automatically moved from
logging directory to logging backup directory.

Table C.6: Backup AOI log files — Test case details

Sequence Step
type

Step description Expected
results /
state

Notes

1 Action Configure the Logging
Service XML node in the
equipment module XML
File in order to force a
low number of maximum
log files and with either
low size or low age units.

Parameters
changed.

See precondi-
tions in test
case descrip-
tion.

Continued on next page

130

AOI Integration Test Cases

Table C.6 – continued from previous page
Sequence Step

type
Step description Expected

results /
state

Notes

2 Action Load Bee Framework
configurations and start
AOI data collection.

Application
up and
running.

Application
must perform
some logs
until the
maximum
number of log
files allowed
in the logging
directory is
reached.

3 Test The next log message
that exceeds file size or
age limits will cause a
rolling operation and the
oldest log will be moved
to the backup directory.

Files
backed up.

C.4 Log Equipment Breakdown Reason

Table C.7: Log equipment breakdown reason — Test case description

Test ID Test T4
Test name Log equipment breakdown reason
Test description This test verifies if the equipment breakdown reason no-

tification is available in OEDV tool.
Test date 29th May 2008
Pre-conditions The subject for incoming and outgoing messages must

be properly configured in the INI Table for the AOI
Equipment Module.
LotEquipParamHistorySrv service must be up and run-
ning.
The prototype must be running and data collection from
AOI equipment must be enabled.
A lot must also be defined (notifications will not be sent
if no lot is defined).
Remote GUI must be running.

Expected results AOI equipment log files were automatically moved from
logging directory to logging backup directory.

131

AOI Integration Test Cases

Table C.8: Log equipment breakdown reason — Test case details

Sequence Step
type

Step description Expected
results /
state

Notes

1 Action Start the Bee Framework
and begin data collec-
tion.

The ap-
plication
should
have
started.

See precondi-
tions in test
case descrip-
tion.

2 Action Send equipment break-
down reason message
from Remote GUI.

The mes-
sage sent
is collected
by the Bee
Frame-
work,
handled by
the AOI
Equipment
and sent
to the
LotEquip-
ParamHis-
torySrv
service.

3 Test Query the target
database with OEDV
tool.

The
Equip-
ment
Break-
down
Reason
must be
viewed by
OEDV.

Usually,
the target
database is
the EQC
database too.

132

Appendix D

AOI Database Schema

The current appendix refers to the database schema used to save the data generated
by the AOI equipments and collected from XML files. This appendix explains the
database design model that holds the data collected from XML files that is inserted
by the AOIEquipmentModule into the target database, so that it can be later used
by external reporting tools.

The appendix only considers an high-level design, presenting both the required
tables and their relationships without considering a description for all attributes.
The existing mapping between the node tags from XML files and the attributes
from database tables is not considered in this report. For further details, equipment’s
documentation should be consulted.

As referred in section 5.2 in terms of which data is present in each XML file
generated by the equipment, the database schema must take in consideration the
following statements:

• AOI equipment inspects multiple lots of modules;

• each module contains multiple panels;

• each XML file only contains data referring to a single panel of a lot;

• each panel contains multiple boards;

• and each board contains multiple location measurements.

Moreover, the XML file generated by an AOI equipment may result from a normal
inspection or from a rework inspection, after correcting some of the errors detected
by the first optical inspection.

Figure D.1 illustrates the overall database schema used to save the data collected
from AOI equipments. This schema will be detailed in the following sections of this
appendix.

D.1 AOI Control Table

This table is the entry point to the XML file loading. It generates a new LotID
for each unique combination of LotNumber, RecipeName, EquipmentID and a Lot-
Counter. This way the same SMT line can process both sides of the panels for one

133

AOI Database Schema

Figure D.1: AOI database schema

LotNumber without conflicting with primary key tables. Also, it would be possi-
ble to create foreign key constraints that will guarantee data integrity between all
raw/summary tables with this one as the master table.

To avoid primary key violation when the same lot is inspected more than once
with the same recipe and the same panel side (same recipe), the LotCounter column
will guarantee the generation of a new LotID in order to allow multiple inspections
for the same lot. This allows not only the data generated from the first inspection
to be saved into the database but also to save the data resulting from further rework
inspections if these are necessary.

Figure D.2 shows the AOI Control table schema. This table serves as the master
control table of the AOI database model.

Figure D.2: AOI Control table

134

AOI Database Schema

D.2 AOI Raw Data Tables

The raw data tables contain the records directly gathered from AOI XML equipment
files. Each one of the generated XML files contains one panel information for one
given LotNumber, identified by PanelID. A panel contains a group of boards, each
one identified by the BoardNumber. Finally, each board contains a group of locations,
each one identified by its own Location number.

The raw data tables also consider the two possible types of XML files generated
by AOI equipment: inspection and rework types. Obviously, the main three level
structure described in the previous paragraph remains the same. However, records
information retrieved from XML files are different and consequently the collected
data must also be stored using different raw data tables.

This three level combination results in the raw data tables schema for both
inspection and rework types is illustrated in figure D.3, with foreign key integrity
enabled constraints to ensure valid data.

Figure D.3: AOI raw data tables

135

AOI Database Schema

D.3 AOI Summary Tables

The summary tables represent an aggregation of the raw data tables. These sum-
maries are LotID based and therefore can contain multiple inspections for the same
LotNumbers. The schema illustrated in figure D.4 is also enabled with foreign key
integrity constraints from the master table AOI Control. Once again, just like for
raw data tables, summaries must be differenced according the type of XML file
(inspection or rework).

D.4 AOI Target Table

AOI Target table is a table that was requested by end users. This table is not directly
related to the data collection process itself and that is intended to be maintained
only by end users.

136

AOI Database Schema

Figure D.4: AOI summary tables

Figure D.5: AOI Target table

137

AOI Database Schema

138

Appendix E

AOI — SQL*Loader Usage

This appendix describes the usage of SQL*Loader tool used to load large volumes
of data with higher efficiency and performance. It also refers to the required format
of the header files used to load data.

Each utilization of SQL*Loader to load data into a database considers three
different files, namely:

• control file.

The control file is the main file used by the SQL*Loader tool. Such file is
divided into two sections, the first one related to the settings used to load data
and the second one related to the data itself.

• log file.

When loading data, SQL*Loader tool generates a file used to log all information
related to the loading process.

• “bad” file.

Finally, the “bad” file is a file generated by SQL*Loader containing the data
entries that could not be loaded into the database due to some error occurred
during the loading process.

Whenever SQL*Loader is used to load data, it is important to check if the load
was successful or if some errors have occurred during the whole process. Since
large volumes of data are usually considered in such loading operations and it is
infeasible to check the correctness of all database records, the errors during loading
are detected by examining the files generated by SQL*Loader tool:

• log files are always generated, so if such file does not exist after a supposed
loading operation is complete, then something went wrong and data has not
been loaded into the target database;

• “bad” files only are generated if at least one error occurs during the loading
process. If these files are not generated by SQL*Loader tool then it is a good
sign: it means that no errors have occurred.

Consequently, the best way to ensure no errors have occurred during loading is
to check the existence of the log file and the non existence of the “bad” file.

139

AOI — SQL*Loader Usage

The following section explains the format of header files and presents the header
files used to load the data collected from the XML files generated by AOI equipments.

E.1 SQL*Loader Header Files

This section presents the SQL*Loader header files used to save the data collected
from the XML files generated by AOI equipments. These header files are used to
define how data must be inserted into database tables.

As described previously in section 5.2 and also referred in appendix D, each
XML file contains information related to a single panel from a specific lot. Con-
sequently, it does not make sense to use a tool like SQL*Loader to insert a single
row to associate the panel with the lot, either in AOI Raw Data Inpection Panel or
in AOI Raw Data Rework Panel, depending if the XML file type is related to an
inspection or a rework.

However, since each XML file contains a high number of measurements related
to boards and locations that need to be saved, SQL*Loader can be very useful to
reduce the amount of time required to save collected data into the target database.
This data that needs to be loaded is appended at the end of the header specification
and then the SQL*Loader tool uses the resulting file as an argument.

Each header specification contains the following information:

• the path of the file to load.

The path of the file containing the header and the data is commonly specified by
an asterisk in order to make the header settings global to all files. This asterisk
allows the header to be used by all files and is replaced by each specific path
at runtime by the SQL*Loader tool.

• the name of the database table.

The name of the table is specified using the APPEND INTO TABLE code,
followed by the name of the database table where data should be loaded.

• the character used as delimiter to delimit the data representing each table
record.

Since every row of data represents a record to insert into the database table
specified in the header, a character must be used as a delimiter to delimit
the data related to the multiple columns. In order to specify the delimiter,
FIELDS TERMINATED BY code should be used.

• the order of data columns.

Since there is no need to specify a SQL query for each insert statement, a
match between the existing order of the data fields in the file used and the
columns of the database table target must be specified. Consequently, when
loading the data existing in the file to the target database table, SQL*Loader
is able to match the fields and insert data into the database correctly.

The following subsections present the header files required to save data related
to boards and locations for both inspection or rework file types.

140

AOI — SQL*Loader Usage

E.1.1 Board Inspection Header

LOAD DATA
INFILE ∗
APPEND INTO TABLE AOI RAW DATA INSPECTION BOARD
FIELDS TERMINATED BY ’ | ’
(LOTID, PANELID, BOARDNUMBER, BOARDSTATUS, TOTALBOARDFEATURES,
TOTALBOARDLOCATIONS, BOARDFAILEDLOCATIONS, BOARDFAILEDFEATURES,
BOARDSETUPFAILURES, BOARDPLACEMENTFAILURES, BOARDAPPEARANCEFAILURES)
BEGINDATA

E.1.2 Board Rework Header

LOAD DATA
INFILE ∗
APPEND INTO TABLE AOI RAW DATA REWORK BOARD
FIELDS TERMINATED BY ’ | ’
(LOTID, PANELID, BOARDNUMBER, BOARDSTATUS, BOARDFAILEDCATEGORY)
BEGINDATA

E.1.3 Location Inspection Header

LOAD DATA
INFILE ∗
APPEND INTO TABLE AOI RAW DATA INSPECTION LOC
FIELDS TERMINATED BY ’ | ’
(LOTID, PANELID, BOARDNUMBER, LOCATION, LOCATIONSTATUS, FEATURE, FEATURESTATUS)
BEGINDATA

E.1.4 Location Rework Header

LOAD DATA
INFILE ∗
APPEND INTO TABLE AOI RAW DATA REWORK LOC
FIELDS TERMINATED BY ’ | ’
(LOTID, PANELID, BOARDNUMBER, LOCATION, LOCATIONDEFECTIVE,
LOCATIONFAILEDCATEGORY, LOCATIONREWORKERROR, FEATURE, FEATUREDEFECTIVE,
FEATUREFAILEDCATEGORY, FEATUREREWORKERROR)
BEGINDATA

141

AOI — SQL*Loader Usage

142

Appendix F

AOI Configurations

This appendix presents the XML configuration files used in the AOI integration.
Some of the XML nodes from files have already been explained in Appendix A and
in Appendix B, so these nodes will not be explained again. The remaining XML
nodes from these files will be detailed in the following sections.

F.1 Bee Framework Configuration File

The Bee Framework XML configuration file is the same given as an example in
Appendix A.

F.2 Folder Monitor Module Configuration File

This section refers to the configurations related wit the FolderMonitorModule XML
configuration file. This module is quite simple and just defines the messages the
module should to subscribe. The following subsections describe the behavior of the
module for both internal framework and YODA messages existing in the following
XML code:

<?xml ve r s i on =”1.0” encoding=”utf−8” ?>
<FolderMonitor>

<messages>
<message>CopyFile</message>
<message>MoveFile</message>
<message>LoadWatchers</message>
<message>StartMonitor ing </message>
<message>L i s t F i l e s D i r e c t o r y </message>

</messages>

<YodaMessages>
<YodaMessage>CopyFile</YodaMessage>
<YodaMessage>MoveFile</YodaMessage>

</YodaMessages>

</FolderMonitor>

143

AOI Configurations

F.2.1 CopyFile Message

The CopyFile message has the purpose of copying a file from its source path to a
destination path. The message behavior is identical for both internal framework or
YODA messages. This message contains the following parameters:

• SourcePath — The full path of the file that should be copied.

• DestinationPath — The full path of the destination target.

• Overwrite — A boolean flag that specifies a file with the same name in the
target directory should or not be overwritten.

F.2.2 MoveFile Message

The MoveFile message has the purpose of moving a file from its source to a destina-
tion path. Like the CopyMessage, the message behavior is identical for both internal
framework or YODA messages. This message parameters are also the same as the
previous message, but it does not consider the Overwrite parameter.

F.2.3 LoadWatchers Message

The LoadWatchers message has the purpose of configuring and preparing the list
of FolderWatchers of the FolderMonitorModule, as described in section 4.3.1. This
message only has a parameter: the Watchers parameter. These parameter is a XML
node, which may contain multiple child nodes, each one referring to a watcher with
the following configuration:

• name — The name of the FolderWatcher. It must allow the FolderMonitor-
Module to uniquely identify a FolderWatcher.

• path — The full path of the directory being monitored.

• subdirectories — A boolean flag specifying if the subdirectories of the
directory being monitored should also be included in the monitoring.

The following XML code shows an example of the watchers configuration:

<watchers>
<watcher>

<name>AOI Watcher</name>
<path>C:\UserData\ c l a s s e s \Working d i r\</path>
<s u b d i r e c t o r i e s >False </s u b d i r e c t o r i e s >

</watcher>
<watcher>

<name>AOI Log Watcher</name>
<path>C:\UserData\Bee\Framework\Logs\</path>
<s u b d i r e c t o r i e s >False </s u b d i r e c t o r i e s >

</watcher>
</watchers>

144

AOI Configurations

F.2.4 StartMonitoring Message

The StartMonitoring message is used to tell the FolderMonitorModule that it should
start monitoring the directories specified in its list of FolderWatchers previously
configured with the LoadWatchers message.

F.2.5 ListFilesDirectory Message

The ListFilesDirectory message is used get the list of existing files inside a directory.
This message may contain the following parameters:

• Directory — The full path of the desired directory.

• Filter — The filter to use as a regular expression.

Using a filter, only the files that match the regular expression specified are
retrieved. This parameter is not mandatory and if not present, all file names
will be retrieved, not taking in consideration the file name.

• Locked — A boolean flag used check if each file from the desired directory is
or not locked.

If this flag is set to true, each file is checked to see if it is being used by other
process. If this flag is set to true and a file is being used by other process,
this filename will not be listed as a result. Otherwise, if the flag is set to false,
all the files matching the regular expression used as filter will be listed in the
result, whether they are in use or not by other process.

F.3 AOI Equipment Module Configurations

This section describes the AOIEquipmentModule configurations, including the mes-
sages subscribed and other settings related to services and the equipment itself. The
complete XML code is in the end of this section.

F.3.1 CommandLot Message

The CommandLot message is a message received from the YODA network and is
related to a command executed by operators in the AOI equipment Remote GUI.
Such message contains the following main parameters:

• EquipmentName — The name of the equipment on which the command has
been executed through the Remote GUI.

• IFX SERVICE — The service that identifies the command executed by opera-
tors. It may have the following values:

– DefineLot — The message contains the required parameters to define
the settings of the new lot that will inspected by the AOI equipment.

– EndLot — The CommandLot message contains the required parameters
to end the current lot being inspected by the AOI equipment.

145

AOI Configurations

– GetCurrentLotInformation — The message contains the parameters
that uniquely identify the lot being processed, so that full lot information
can be retrieved.

– LogBreakDown — The message contains the required parameters to log
a message related to a breakdown.

F.3.2 Created.AOI Watcher and Created.AOI Log Watcher Messages

Both the Created.AOI Watcher and Created.AOI Log Watcher messages are related
to notifications sent by the FolderMonitorModule. These messages are the result
of the FolderWatchers monitoring and are created either when a new XML file is
generated by the AOI equipment or when a log file is moved to the backup directory.

Both these messages contain the following parameters:

• FullPath — The full path of the file created.

• Name — The short name of the file created.

XML File

The following XML code shows the complete configuration file used by the AOIEquip-
mentModule.

<?xml ve r s i on =”1.0” encoding=”utf−8” ?>
<AOIModule>

<name>MDAAOI−0001</name>
<ApplicationName>AOI DBLoader</ApplicationName>

<modules>
<module>

<name>Folder Monitor</name>
<watchers>

<watcher>
<name>AOI Watcher</name>
<path>C:\UserData\ c l a s s e s \Working d i r\</path>
<s u b d i r e c t o r i e s >False </s u b d i r e c t o r i e s >

</watcher>
<watcher>

<name>AOI Log Watcher</name>
<path>C:\UserData\Bee\Framework\Logs\</path>
<s u b d i r e c t o r i e s >False </s u b d i r e c t o r i e s >

</watcher>
</watchers>

</module>
</modules>

<s e r v i c e s >
<t imers>

<timer>
<name>Generation Down Timer</name>
< i n t e r v a l >360</ i n t e r v a l >
<Inte rva lUn i t >Second</Inte rva lUn i t >
<repeat>True</repeat>

</timer>
</timers>

146

AOI Configurations

<database>
<DateFormat>MM/DD/YYYY HH24 :MI : SS</DateFormat>
<connect ion>AOI Connection Str ing </connect ion>

<SqlLoader>
<headers>

<header name=”BoardInspect ion”>
SQLLoaderHeaderFile4BoardInspection </header>

<header name=”BoardRework”>
SQLLoaderHeaderFile4BoardRework</header>

<header name=”Loca t i on In spec t i on”>
SQLLoaderHeaderFi le4LocationInspect ion </header>

<header name=”LocationRework”>
SQLLoaderHeaderFile4LocationRework</header>

</headers>
</SqlLoader>

</database>

<l ogg ings >
<DefaultLogging>Log1</DefaultLogging>
<log>

<name>Log1</name>
<f i l ename>C:\UserData\Bee\Framework\ l og . txt </f i l ename>
<type>Rol l ing </type>
<header></header>
<f oo t e r ></foo t e r >
<SizeUnit>Kilobytes </SizeUnit>
<s i z e >1</s i z e >
<AgeUnit>None</AgeUnit>
<age>0</age>
<MaxNumberFiles>10</MaxNumberFiles>
<BackupDirectory>C:\UserData\Bee\Framework\Logs\</BackupDirectory>

</log>
</logg ings >

</s e r v i c e s >

<f o l d e r s >
<OkFolder>C:\UserData\AOI\OK Folder </OkFolder>
<IgnoreFolder>C:\UserData\AOI\ Ignore Folder </IgnoreFolder>
<ErrorFolder>C:\UserData\AOI\Error Folder </ErrorFolder>

</ f o l d e r s >

<messages>
<message>Created . AOI Watcher</message>
<message>Created . AOI Log Watcher</message>

</messages>

<YodaMessages>
<YodaMessage>CommandLot</YodaMessage>

</YodaMessages>

</AOIModule>

Beyond the nodes used to define which internal framework and YODA message
subjects are subscribed, this configuration file also contains the following main nodes:

• name — The name of the AOI equipment.

147

AOI Configurations

• ApplicationName — The application name defined in the INI Table.

• modules — This node name is used just to help understanding the configura-
tions of the XML file.

It has a reference for the name of the framework module that contains the
FolderWatchers required by the AOIEquipmentModule. These FolderWatchers
are configured so that the AOIEquipmentModule can be notified when a new
XML or a log file in the backup directory becomes eligible.

• services — This node contains the information related to the Timer and
Logging Services required by the AOIEquipmentModule.

Additionally, it also contains some definitions related to the header files used
by SQL*Loader tool.

– Timer Service — The configurations used by the Timer Service that allows
the module to send notifications if the equipment is not generating XML
files. For further details related to this service, please consult Appendix
B.

– Logging Service — The configurations used by the Logging Service that
allows the AOIEquipmentModule to log messages related to the data col-
lection process concerning the AOI equipment.

– Database — This node contains the name of the connection string that
corresponds to the database used by the AOIEquipmentModule to save the
collected data. It also includes the format to be used by datetime fields.
Finally, this node contains the name of the SQL*Loader wrappers, so that
the corresponding loading operations using this tool can be configured by
the database service.

• folders — The node that contains the full paths of the folders used to save
the XML files depending on the success of the parsing applied to the XML files
generated by the AOI equipment. It considers the following folders:

– OkFolder — The path of the folder used to save the XML files if the
parsing and the loading of the data into the database succeeds without
any error.

– IgnoreFolder — The path of the folder used to save the XML files if
no lot information has been previously defined. The XML file is ignored
in such situation.

– ErrorFolder — The path of the folder used to save the XML files if the
parsing or the loading of the data into the database is not successful.

148

	Front Page
	Abstract
	Resumo
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Project Introduction
	1.2 Project Motivation
	1.3 Project Goals
	1.4 Approach Methodology and Constraints
	1.5 Report Structure

	2 Data Collection Problem Analysis
	2.1 Data Collection Overview
	2.2 Data Collection in Semiconductor Industry
	2.3 Data Collection at Qimonda

	3 State of the Art
	3.1 Technology Review
	3.1.1 Programming Languages and Tools
	3.1.2 Modeling Languages and Tools
	3.1.3 RDBMS and Database Tools
	3.1.4 Data Persistence
	3.1.5 Communication Technologies
	3.1.6 Markup Languages

	3.2 Previous Work
	3.2.1 Collecting Data from Files
	3.2.2 Database Concurrency
	3.2.3 Handling Messages and Communication

	3.3 Summary

	4 Framework Specification and Architecture
	4.1 Framework Black-Box Overview
	4.1.1 Collecting Data
	4.1.2 Saving Data

	4.2 Framework White-Box Overview
	4.3 Framework Architecture
	4.3.1 Folder Monitor Module
	4.3.2 Backup Module
	4.3.3 Equipment Modules
	4.3.4 Message Handling

	4.4 Framework Services
	4.4.1 YODA Service
	4.4.2 Database Service
	4.4.3 Email Service
	4.4.4 Logging Service
	4.4.5 Framework Messages Service
	4.4.6 Timer Service

	4.5 Summary

	5 Prototype Development
	5.1 Prototype Goals
	5.2 AOI --- Automatic Optical Inspection --- Equipment Overview
	5.3 Collecting Data From AOI Equipments
	5.4 AOI Integration Use Cases
	5.4.1 Complementary Functions

	5.5 AOI Use Cases Implementation
	5.5.1 Process XML Files
	5.5.2 Notify XML Generation Down
	5.5.3 Backup AOI Log Files
	5.5.4 Log Equipment Breakdown Reason

	5.6 AOI Integration Architecture
	5.6.1 Global Logical View
	5.6.2 Bee Framework Logical View

	5.7 AOI Integration Test Cases
	5.7.1 Process XML Files

	5.8 Summary

	6 Findings and Discussion
	6.1 Event-based Framework
	6.1.1 Detecting Changes in Files
	6.1.2 Notifications

	6.2 Parsing XML Files
	6.3 Database Access and Saving Data
	6.4 Time Required for Integration
	6.5 Summary

	7 Conclusions
	7.1 Project Applicability
	7.2 Final Recommendations and Perspectives of Future Work
	7.3 Final Conclusions

	References
	Index
	Appendices
	A Bee Framework Configurations
	B Services Configurations
	B.1 YODA and Message Services
	B.2 Database Service
	B.3 Email Service
	B.4 Logging Service
	B.5 Timer Service

	C AOI Integration Test Cases
	C.1 Process XML Files
	C.2 Notify XML File Generation Down
	C.3 Backup AOI Log Files
	C.4 Log Equipment Breakdown Reason

	D AOI Database Schema
	D.1 AOI Control Table
	D.2 AOI Raw Data Tables
	D.3 AOI Summary Tables
	D.4 AOI Target Table

	E AOI --- SQL*Loader Usage
	E.1 SQL*Loader Header Files
	E.1.1 Board Inspection Header
	E.1.2 Board Rework Header
	E.1.3 Location Inspection Header
	E.1.4 Location Rework Header

	F AOI Configurations
	F.1 Bee Framework Configuration File
	F.2 Folder Monitor Module Configuration File
	F.2.1 CopyFile Message
	F.2.2 MoveFile Message
	F.2.3 LoadWatchers Message
	F.2.4 StartMonitoring Message
	F.2.5 ListFilesDirectory Message

	F.3 AOI Equipment Module Configurations
	F.3.1 CommandLot Message
	F.3.2 Created.AOI Watcher and Created.AOI Log Watcher Messages

