
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Towards the discovery of temporal
patterns in music listening using

Last.fm profiles

Mário João Teixeira Carneiro

Master in Informatics and Computing Engineering

Supervisor: Fabien Gouyon (PhD)

Supervisor: Luís Sarmento (PhD)

Supervisor: Eugénio Oliveira (PhD)

June 2011

Towards the discovery of temporal patterns in music
listening using Last.fm profiles

Mário João Teixeira Carneiro

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: Luís Filipe Pinto de Almeida Teixeira (PhD)

External Examiner: Rui Pedro Pinto Carvalho Paiva (PhD)

Supervisor: Luís Sarmento (PhD)

11st July, 2011

Abstract

On-line social communities are becoming a part of everyone’s daily life. Last.fm is a
music-themed social network which has the particularity of recording the listening pref-
erences of their users, and then using these same preferences to suggest new artists or
events that match each user’s taste. We developed a crawling application we then used to
collect the profiles of some these users, in order to investigate some of their behaviors in
terms of listening preferences, exploring the time component present in their profiles.

Research shows that there are users who exhibit seasonal and circadian preference for
a particular genre, for example, by preferring to listen to dance music in the summer or
folk music in the hours of the evening. Current research uses statistics-based methods to
analyze these preferences. We are exploring this particular problem using a data mining-
based methodology. We also explore the idea that users may also present a preference for
often mixing certain genres together in the same music listening session.

Our approach is based on data mining, particularly, applying the association rules
problem to these particular cases.

i

ii

Resumo

As comunidades sociais online estão cada vez mais a tornar-se parte da vida diária das
pessoas. O Last.fm é uma rede social baseada em música, que tem a particularidade de
guardar as preferências musicais dos seus utilizadores, e posteriormente utiliza-los para
lhes sugerir novos artistas e eventos que vão de encontro aos seus gostos. Desenvolvemos
uma aplicação de recolha de dados que posteriormente utilizámos para recolher os perfis
de alguns destes utilizadores, com o objectivo de investigar alguns dos seus comporta-
mentos em termos de preferências musicais, explorando a componente temporal presente
nos seus perfis.

A investigação feita nesta área mostra que existem utilizadores que exibem prefer-
ências sazonais e circadianas por certos géneros. Esta investigação utiliza metodologias
baseadas em estatística para analisar estas preferências. Este projecto investiga também
estas componentes, mas com uma metodologia diferente, baseada em data mining. Explo-
ramos também a ideia de que os utilizadores podem exibir uma preferência para misturar
certos géneros quando ouvem música.

A nossa metodologia é baseada em data mining, nomeadamente, na aplicação do prob-
lema de geração de regras de associação a estes casos em particular.

iii

iv

Acknowledgements

I would like to thank my supervisors, Prof. Fabien Gouyon and Prof. Luís Sarmento for
their valuable input and ideas during the time since I first started working in this project.

I would also like to thank all my friends who gave me ideas and encouragement, or
simply listened to me, often blabbing on about my work. A special thank you goes to Rui
Teixeira for all of his support.

Cheers! :)

Mário Carneiro

v

vi

Contents

1 Introduction 1
1.1 The Last.fm Social Platform . 2

1.1.1 Scrobbling and timestamps . 4
1.1.2 Social Tagging in Last.fm . 4

1.2 Objectives and Motivation . 6
1.3 Structure of this document . 7

2 Related Work 9
2.1 Towards time-aware contextual music recommendation: an exploration

of temporal patterns of music listening using Circular Statistics 9
2.2 Towards Time-Dependant Recommendation based on Implicit Feedback . 11
2.3 Statistical models of music-listening sessions in social media 12
2.4 Temporal dynamics in music listening behavior: a case study of online

music service . 13
2.5 Towards gathering and mining Last.fm user-generated data 14

3 Problem Definition 17
3.1 The Last.fm data . 17

3.1.1 User profiles . 17
3.1.2 Artist profiles . 19
3.1.3 Mapping times to genres . 20

3.2 Deriving genre information from the Last.fm social tags 20
3.3 Information hidden in the user’s profiles 22

3.3.1 When do people listen to music? 23
3.3.2 The relation between time and the music people listen to 24
3.3.3 Analyzing music listening sessions 24

4 Research Dataset 25
4.1 The Crawling Application . 25

4.1.1 The Last.fm API . 27
4.1.2 Technologies . 29
4.1.3 Summary of features . 30
4.1.4 Compliance with the Last.fm API Terms of Use 31

4.2 Methodology . 32
4.2.1 Database preparation . 33
4.2.2 Username discovery . 34
4.2.3 User information retrieval . 35

vii

CONTENTS

4.2.4 Filtering . 36
4.2.5 Random sample selection . 37
4.2.6 Listening history crawling . 37
4.2.7 Filtering, yet again . 37

4.3 Characteristics of the final dataset . 38
4.3.1 Demographic characteristics . 38
4.3.2 Characteristics of the users’ profiles 40
4.3.3 Characteristics related to the artists and genres 42

5 Data Analysis 47
5.1 Background . 47

5.1.1 Knowledge Discovery in Databases 47
5.1.2 Mining association rules . 49
5.1.3 Data mining platforms . 51
5.1.4 Generation of the test files . 51

5.2 Analysis of music listening sessions . 53
5.2.1 Analysis of individual users . 53
5.2.2 Analysis of the whole dataset 54

5.3 Analysis of played items with respect to time 55
5.3.1 Analysis of individual users . 55
5.3.2 Analysis of the whole dataset 60

6 Conclusions 63
6.1 Future Work . 64

References 65

A Description of the developed scripts 67
A.1 Crawler Application . 67
A.2 Data Transformation scripts . 68

A.2.1 TagPool script . 68
A.2.2 Timeline script . 68
A.2.3 CircularTimeline script . 69

A.3 Chart generation scripts . 70

viii

List of Figures

1.1 Web presentation of a Last.fm User Profile 3
1.2 Tags for Fiona Apple, a singer-songwriter in tag cloud form. A tag cloud

is a representation of user-generated content. 5
1.3 Tag cloud for Pink Floyd. This tag cloud is representative mostly of the

genres their career encompassed. 5

2.1 Two different Last.fm profiles analyzed using the circular statistics method-
ology described by Resa, concerning the hours of the day. The profile on
the left shows a tendency to listen to music during the hours of the night
while the profile on the right shows a preference for the hours of the af-
ternoon. The red slice represents the user’s centroid. 10

2.2 Two examples of a partition for a 24hour cyclic period. Illustration from
[BAA09]. 12

3.1 Last.fm presents to the user his listening history in this form. 18
3.2 The tag cloud for Rebecca Black, teen pop phenomenon. 21
3.3 Timeline for two particular last.fm users. The horizontal axis represents

days while the the vertical axis represents the time (hours). Each blue
square marks a day hour where music has been listened to. The inten-
sity of the blue represents the number of songs listened to. The images
represent a profile sample taken from July to December 2010. 23

4.1 Overall view of the crawling application modules and interaction with the
other systems involved in the process: the Last.fm API and the MySQL
database server . 26

4.2 Flowchart of the dataset construction process 33
4.3 Database diagram . 34
4.4 List of fields retrieved by the Last.fm Web API method User.getInfo . 35
4.5 Country distribution in the final dataset (for the top 40 countries) 38
4.6 Gender distribution in the final dataset 39
4.7 Age distribution in the final dataset . 39
4.8 Scatter plot of total played items and average played items per day 40
4.9 Total played items distribution per user (nominal scale on the x axis) . . . 41
4.10 Total played artists distribution per user (nominal scale on the x axis) . . . 41
4.11 Total played tracks distribution per genre (nominal scale on the x axis) . . 42
4.12 Total played tracks distribution per artist (nominal scale on the x axis) . . 43
4.13 Top 30 artists represented in the dataset 44
4.14 Top 30 genres represented in the dataset 44

ix

LIST OF FIGURES

5.1 The iterative process of KDD as presented in [FPsS96]. 48
5.2 The architecture of a typical data mining system as presented by [HK00]. 49
5.3 Overview of the system that allows the generation of the data files 52
5.4 Total rules found distribution per number of users 53
5.5 Tags Last.fm shows as being related to Rock artists 54
5.6 Total rules found distribution per number of users 56
5.7 20 most popular rules for this time partition 57
5.8 Total rules found distribution per number of users 58
5.9 20 most popular rules for this time partition 59
5.10 Total rules found distribution per number of users 60

x

List of Tables

2.1 Aggregated vision of the objectives, methodology and data sources used
by the related works . 16

3.1 A segment of a user listening profile . 19
3.2 Several partial artist tag profiles . 20
3.3 Composition of a user listening profile with the artist tag profiles of the

artists in his listening history . 21
3.4 Some tags for the artist Rebecca Black and respective weights. 22

4.1 Summary of the User.getFriends API method 28
4.2 Summary of the User.getInfo API method 28
4.3 Summary of the User.getInfo API method 29

A.1 Bash scripts included in the package . 67
A.2 Configuration files included in the package 67
A.3 Runnable scripts included in the package 67
A.4 Library scripts included in the package 68
A.5 Summary of the TagPool script . 68
A.6 Summary of the methods available in the timeline script 69
A.7 Summary of the class CircularTimeline 70
A.8 Plotting scripts included in the package 71

xi

LIST OF TABLES

xii

Chapter 1

Introduction

A lot has changed in the past decade in the way people consume and explore music. We
rely less on record stores and other traditional means to try new music, and we trust more
on the Internet to help us achieve this. We no longer rely on shelves to keep and organize
our physical personal collections, as we prefer to keep them as digital files within our
computers and portable media devices. Moreover, we do not even need to own any kind
of collection of music as we find a growing number of online services that stream audio
to our computers without the need of us having to keep the music we are listening to.

Examples of Web-based services that offer music in digital form to consumers are
online stores like the iTunes Store 1 and Internet radio services like Pandora 2, Spotify
3 and Last.fm 4. The latter is a case of particular interest as it offer services like those
mentioned previously and integrates them seamlessly with several social networking fea-
tures. Integral part of Last.fm’s service is its recommendations system, as it is able to
offer its users recommendations of artists, musical events and even other users that they
may find interesting. However, the feature that differentiates Last.fm from its peers is a
system that originated from a project called audioscrobbler — Last.fm builds a detailed
profile of each user’s musical taste and listening habits by recording details of the songs
the user listens to. It’s not hard to picture the amount of relevant data present in Last.fm
profiles if we consider the 40 million active users Last.fm claims to have [Jon09], some
with accounts that scrobble since 2005.

Music Information Retrieval, the main area this project is inserted in, is a cross-
discipline that encompasses many different fields of study. These fields of study have
one common objective — retrieving information within music and music-related content.

1Software-based online digital media store owned by Apple — http://www.itunes.com
2Automated music recommendation service and Internet radio. — http://www.pandora.com/
3Proprietary peer-to-peer music streaming service. — http://www.spotify.com
4The Last.fm service is of particular interest to this document and its features are described in detail further in this

document. — http://www.last.fm

1

Introduction

The increase in the availability of musical contents in digital form motivated the growth in
this area. Topics that concern Music Information Retrieval range from feature extraction
in songs (of rhythmic and melodic components) to the analysis of data concerning music
with music, i.e., music metadata — like the data existing in copious amounts in Last.fm.

In fact, there is a growing number of works and publications concerned with the anal-
ysis and presentation of Last.fm data. There exists work developed here, at INESC Porto5

with the objective of gathering artist information and data from Last.fm, with the objective
of applying data mining techniques to extract relevant information, like relationships be-
tween artists and genres[dCL09]. With a similar theme, this work is directed towards the
gathering of Last.fm user profile information, the application of data mining techniques to
the data gathered and the extraction of conclusions similar to those taken by the previous
work, but this time considering in as much detail as possible the element that was left out
in [dCL09]: The users of Last.fm and their listening habits.

1.1 The Last.fm Social Platform

Last.fm is a web-based social music platform with an array of features that make it dif-
ficult to categorize. Last.fm combines traditional social network features like commu-
nication with and discovery of other users with radio stations, several recommendation
services and other idiosyncratic features. It allows its users to listen to music, read infor-
mation about artists (created by the users themselves in a collaborative wiki-like fashion)
and discover artists that they do not know. In the Web 2.0 way, users are allowed to set up
their very own profile. This facilitates automatic recommendation of artists, videos, other
users and musical events in the user’s local area.

User’s profiles are constantly updated via a specific software. This software includes
plugins for several popular media players and uploads statistics about the music a partic-
ular user listens to. As such, these records are analyzed by Last.fm and serve as the base
for their music recommendation service.

5Private non-profit association for scientific research based on Porto, Portugal

2

Introduction

Figure 1.1: Web presentation of a Last.fm User Profile

The origin of Last.fm can be traced to a 2003 computer science project by Richard
Jones, a University of Southampton student, called Audioscrobbler. The core idea of
this project was the progressive construction of a user’s personal profile detailing his
taste in music. Through a specific software that monitors what a user listened to on
his computer, the website would present the user with information regarding his musical
listening preferences. Moreover, it would use this information as the basis for the delivery
of personalized recommendations of other artists similar to what a user listens to and other
users whose tastes are also similar to his.

In 2005 Audioscrobbler merged with Last.fm, an internet radio and music community
website. The resulting website kept Last.fm’s name, while Audioscrobbler’s name and
domain were used to refer to the backend that supports the construction of users’ profiles
and other features like the recommendation service.

Last.fm allows communication between users through two means: the more traditional
private messages and shoutboxes. A shoutbox is a section of a page in Last.fm where a
user can post a message (hopefully) regarding the content of the webpage. Shoutboxes are
omnipresent throughout Last.fm, as they not only exist in user pages, but also on pages
relating to pretty much everything in last.fm like tags, artists, albums and songs.

Last.fm also provides a Web API that allows anyone to build their own programs
using Last.fm data. The data available ranges from user-generated data like tags, shouts
and artist descriptions to a particular user’s complete listening history6.

6Provided the user has not made his profile private via his user settings.

3

Introduction

1.1.1 Scrobbling and timestamps

Scrobbling is the name given to the process of submitting information to Last.fm about
each song the user listens to. This information is stored in the last.fm servers and used to
build the users’ profiles based on what they listen to. The submission process is achieved
via specific software that can be installed on the user’s media player of choice as a plugin.
Scrobbling is not only possible in desktop applications but also on several musical web
applications like The Hype Machine7 and Grooveshark8.

Each submission sends to Last.fm details about the played track, like song name and
duration, artist and album information. A timestamp is also sent. These informations
are then stored in the Last.fm databases. However, the Scrobbling API details that the
timestamp sent must be in the Unix time format9. Sending the time information in this
fashion means purpusely discarding information about the scrobbling user’s time zone
and daylight saving. Instead, Last.fm relies on an option in the website preferences, where
each user can specify the time zone he’s located at. Last.fm then uses this setting to render
the correct time information from the viewer’s perspective.

There is no way to obtain the value of this setting for each user, as this is considered
private user information by Last.fm. This means that while the listening history of a user
is easily obtainable via the Web API, we can only know when a user listened to a given
song in a time frame relative to the UTC time standard. Therefore, we will have no notion
of when the given user listened to a song in his timezone, and will not be able to tell if he
did so during the morning or afternoon.

1.1.2 Social Tagging in Last.fm

A tag is a textual item associated with a piece of information, which it describes[Lam08].
Last.fm has a tag system that enables users to label artists, albums and songs using key-
words that define them. They are a source of valuable information, as they may con-
vey a lot of relevant information about an artist, such as genre, mood and instrumenta-
tion1.2[Cel08]. However, because of their free and unstructured nature, there is a lot of
irrelevant information and noise in the tags.

7Mp3 blog aggregator, which allows the playing of songs via streaming on a web interface
8Online music search and streaming service
9Unix time is a system for describing points in time, defined as the number of seconds elapsed since midnight

Coordinated Universal Time (UTC) of January 1, 1970

4

Introduction

Figure 1.2: Tags for Fiona Apple, a singer-songwriter in tag cloud form. A tag cloud is a repre-
sentation of user-generated content.

Social tags are the result of the colaboration between users, as an individual may apply
a short text annotation to an item in a collection to organize his personal content. In the
context of Last.fm, users are free to apply any number of tags to any artist, album or song.
These tags are then combined with those applied by other individuals to form a collective
body[Lam08]. With a large enough group of tags and taggers, a very rich view of the
tags emerges: a tag cloud. In this form of information visualization, tags are usually
organized alphabetically, with the relevance of each word represented by the font weight.
This allows for two ways of finding information[HK07]. The system of classification
derived from this practice is known as a folksonomy, a portmanteu of folk and taxonomy.

Figure 1.3: Tag cloud for Pink Floyd. This tag cloud is representative mostly of the genres their
career encompassed.

Tags are unstructured and free-form in nature, meaning that there is usually no restric-
tion on what a user may tag an item as. In the particular context of tagging music items in
Last.fm, one can, for example, tag a band one loves as "best band ever" and another one
loathes as "utter crap". These tags may convey information about many different facets

5

Introduction

of the music, like genre, instrumentation, rhythm and vocalization. Tags may also include
information about a user’s relation to a particular band. A trending example is the "seen
live" tag [Cel08].

Deriving genre information from the tags applied to artists is of great importance to
this project. The work preceding this thesis by [dCL09] involved the crawling of this
particular kind of user-generated data present in Last.fm. We began our work with a
database that contains tag information for over 1,000,000 artists.

1.2 Objectives and Motivation

It is a fair assumption that many Last.fm users will listen to music almost exclusively
through their computers and portable media devices. Considering this, their Last.fm pro-
file will be essentially a detailed log of a significant part of their music listening experi-
ence for the duration of their last.fm membership. The ultimate objective of this work is
to uncover some of the information latent in this data by describing the variables present
in the Last.fm user listening profiles and discovering relationships among them.

For example, two variables present in these profiles are time — the instant in which a
user listened to a particular song, and genre — the taxonomy given to the artist and song
the user listened to. These two could be related in the sense that some users might prefer
to listen to a particular genre at a particular point in time. More variables and relationships
between them are described chapter chapter 3.

A possible application of the relationship given as an example above would be in rec-
ommendation systems. Present-day recommendation systems are able to analyze a user’s
profile in order to offer personalized recommendations of items the system predicts the
user will be interested in[Ahn04]. However, the quality of a recommendation as per-
ceived by the user depends not only on the item itself, but also of the time the item is
delivered[BAA09]. A person that prefers listening to folk rock in the hours of the evening
might appreciate even more the artist recommended if they listen to it during the afore-
mentioned period of time. Also, as they grow, personal collections of music become
increasingly hard to manage. Although modern-day media players provide library man-
agement mechanisms like searching and browsing through music metadata (such as ID3
tags), a linear search through the user’s collection until a particular piece of music ap-
peals to the user as what he wants to hear at the moment is the main method of music
selection[JCJ04]. Knowing what a user listens to and when he likes to listen to it could
improve current methods of automatic playlist generation.

In detail, this work has the following goals:

• To develop a crawling application capable of retrieving and storing Last.fm user
profiles

6

Introduction

• To isolate a data set composed of users whose profiles are representative of their
music listening habits

• To develop a visual analysis of such data

• To develop a process capable of transforming the stored profiles into more adequate
representations

• And to analyze these representations using data mining algorithms with the goal to
uncover relationships and information already present there.

1.3 Structure of this document

This document is divided into six chapters. This chapter, Introduction, gives a general
context of this problem, as well as its particular objectives and motivations. It also delivers
some background information about the Last.fm platform. The second chapter, Related
Work, presents of review of several related works and scientific areas that are related
to this work. The third chapter, Problem Definition, presents a detailed description of the
problem and main goal of the research this thesis deals with. The fourth chapter, Research
Dataset presents in detail the process that led to the final dataset we will analyze. The
fifth chapter, Data Analysis, explains the data mining process we subjected the data we
gathered to as well as the conclusions that resulted from that process.The sixth and final
chapter, Conclusions presents a critical analysis of the developed work as well as the work
that we leave to be continued.

7

Introduction

8

Chapter 2

Related Work

This chapter presents a review of several works related with the analysis of the behavior
of music listeners, in some way with respect to time. They all researched with similar
datasets in form1. Resa et al. and Baltrunas et al. used data obtained from by Last.fm,
while Zheleva et al. used data provided by Zune Social2 and Park et al. used data provided
by Bugs Music3.

2.1 Towards time-aware contextual music recommendation: an ex-
ploration of temporal patterns of music listening using Circular
Statistics

The work developed by Resa et al.4 had the premise that the music we listen to and love
is a part of, and often, an extension of our personality. Since rhythm is an inevitable part
of human life, be it the circadian rhythm or the weekly or annual repetition we find in our
lives, we can come to the conclusion that these rhythms end up having an influence on
our music selection.[Res10]

Resa et al. considered that for some music listeners, their music listening history could
show patterns arising from a preference for certain genres and artists at certain times of
the day or of the week. Resa used circular statistics to analyze the listening history of
several Last.fm users, compiled in a publicly available dataset5. However, it neglected the
nature of the timestamps kept in the Last.fm databases6.

1consisting mainly of < user, playeditem, timestamp > tuples
2Music social network owned by Microsoft that has drawn comparisons to Last.fm
3Online music service popular in Korea
4[Res10] and [HRS]
5Accessible through http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/index.

html
6Please see 1.1.1

9

http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/index.html
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/index.html

Related Work

The methodology used by Resa was based on the use of circular statistics. This sub-
field of statistics is aimed at the analysis of circular data, i.e., data where angles have a
meaning. It involved two approaches. A user-artist approach, where the data subjected
to analysis was simply a list of < user,artist, timestamp > tuples, as obtained from the
dataset referred above. The other approach, a user-genre approach, involved the mapping
of an artist to a genre, using the Last.fm artist.getTopTags API method. In order to ex-
trapolate the desired artist-genre information, the obtained set of tags was then filtered
by weight (which indicates the tag relevance), uniformized (to remove underscores, hy-
phenation and other characters that would introduce ambiguity, like between hip-hop and
hiphop) and matched against a pre-compiled list of musical genres.

Their circular statistics methodology involved the mapping the points in time of the
listening history of users to the value of an angle, to outline the repeating (rotationally in-
variant) nature of days and weeks. It then modeled the user listening behavior by charac-
terizing the user’s listening tendencies with statistical parameters such as mean direction
and resultant mean vector length.

Figure 2.1: Two different Last.fm profiles analyzed using the circular statistics methodology de-
scribed by Resa, concerning the hours of the day. The profile on the left shows a tendency to listen
to music during the hours of the night while the profile on the right shows a preference for the
hours of the afternoon. The red slice represents the user’s centroid.

These are the descriptors of the listening tendencies of the users. They then showed
that these trends are relevant as the distributions are different from uniform (as illustrated
by 5.2)

Their user-artist and user-genre datasets were submitted to cleaning process, which
aimed to remove noise from the user’s profiles. Resa considered noise to be genres and

10

Related Work

artists that only appeared in the user profiles sporadically and would not be a significant
part of the user’s listening history or source of information.

Following a content-based approach, it was then split into two datasets. the prediction
dataset and the validation dataset. The prediction dataset contained the listening history
of all users from one point in time backwards, and the validation dataset contained the
listening history from the same point onwards. In this view, the user’s past behavior is
a reliable indicator of the user’s future behavior, so any conclusions drawn from the first
dataset could then be supported by the second dataset.

2.2 Towards Time-Dependant Recommendation based on Implicit
Feedback

Linas Baltrunas and Xavier Amatrin7 dealt with the improvement of user satisfaction (and
the perceived quality of the recommendations) by proposing an approach called micro-
profiling and with the long term goal of creating a time-aware recommendation system.
This approach splits a profile into several sub-profiles, each one representing the user in
a particular context. This approach assumes that the users’ preferences can evolve over
time, but exhibit some temporal repetition: listening to one genre while working and
another before going to bed. The main idea behind Baltrunas and Amatrin’s approach on
recommendations was the partition of a large user profile into smaller micro-profiles and
use of these multiple profiles on the recommendation instead of the single, larger one.
This work also used data provided by Last.fm, so they were able use large amounts of
time-enriched data. The data set included data collected during a two year period and
the profiles of 338 random Spanish users. Also, this work did not explicitly acknowledge
the nature of the timestamps kept by Last.fm8, although specifying a single country is a
possible way of dealing with this problem9

This work was based on the use of implicit feedback, meaning that data only gave
positive feedback about itself, i.e., feedback about the tracks the user listened to the most
and when the user prefers to listen to the artist, leaving behind any kind of negative feed-
back about any artists or time preferences, in contrast with other datasets that use explicit
feedback (i.e., the user himself rates the items, positively or negatively). Also, each rating
is given to an artist, and not to a genre or genres the artist belongs to.

7[BAA09]
8Please refer to 1.1.1
9We have to take into account the several timezones that may span across a country and its dependent territories,

which in the particular case of Spain are only GMT+00 and GMT+01.

11

Related Work

Figure 2.2: Two examples of a partition for a 24hour cyclic period. Illustration from [BAA09].

The main idea behind micro-profiling was the partition of a user profile u into several
micro-profiles u1,u2, ...,un, each one representing the user’s taste in a particular time span
— for example, representing the user in the morning, evening, weekend, summer, winter,
etc. In this context, the challenge presented was the discovery of meaningful partitions
based on time cycles, such that each partition represents a periodic instance of time (e.g.,
weekends) where the user has cyclic behaviour. This comes from the fact that for most
users the definitions of morning, afternoon, work hours and personal time will vary, so
using the same time partition for everyone would not work globally. This work also dealt
with the fact that continuous variables (like time in this case) do not appear frequently in
the recommendations problem.

The first main problem this work dealt with was to find which kind of partitioning
would be the most meaningful for a given user. The approach involved the creation of a
measure E of a partition T = T1,T2, ...,Tn that is defined to be the the weighted average
of all the errors (of the recommendation predictions made) on the partitions Ti of the time
domain. The best partition T would be the one that minimizes the value of E. The article
suggested several partitions for consideration. Tweek divided the week into working days
and weekends. Tday divided the day into morning and evening periods. It also included
a partition of even and odd hours to test the system’s behavior with a meaningless time
partition.

2.3 Statistical models of music-listening sessions in social media

Zheleva et al10 presented several definitions of statistical models that describe patterns of
song listening in an online music community (Zune Social). It dealt with the need to "han-

10[ZGMMF10]

12

Related Work

dle large-scale data logs" and "produce effective representations of media consumption"
to enable efficient processing. Considering the large numbers of users and songs present
in these types of communities, they stated that there is a need to create highly compact
data representations of these logs. It also presented a heuristic for the grouping of songs
in music listening sessions in the song listening logs we are dealing with, where the exact
length of a played item is, quite often, unknown. In fact, we can only say for sure that a
user was, in fact, listening to a particular item at a given time, while we can affirm nothing
about when he started and stopped listening to the played item. According to Zeleva et
al., a session S of media items (m1,m2, ...,mn) is a sequence of |S| songs that the user
has listened to such that the difference between the timestamps in two consecutive played
items is below a certain threshold α:

tn+1− tn < α

The playlist, as used by Zheleva et al. to refer to the full listening log of a given user,
consisting of a single sequence U = (m1,m2,m3) could then be divided into sessions as
U = (S1,S2, ...Sn) accordingly to the definition given above, given the error introduced by
the estimation of the α parameter. This error brings a simple implication: if a user listens
to a media item with duration above the α parameter, what would in reality be a single
music listening session would appear divided in two to the system.

2.4 Temporal dynamics in music listening behavior: a case study of
online music service

Park et al.11 were motivated by the lack of incorporation of the temporal context in
in traditional information filtering systems. It considered that the time variable stood
out among all the other contextual variables (like location) in the sense that it is both
continuous and periodic, therefore, the preference of the users on some information items
might itself be periodic. Park et al. focused on the temporal dynamics present in the
usage logs they obtained from Bugs Music. The usage logs Park et al. used in their
research had the form < user, playeditem, timestamp,service_length > form, meaning
that they had access to one more variable all the other works presented here had not:
the length of the listening event. They also had immediate access to the genre of each
played item (via one of several metadata tables). Since Bugs Music is an online music
streaming service, Park et al. also had access to the exact lengths of each played item.
The original log table contained billions of records. Since the goal of their paper was to
approximate the distribution of popularity, they sampled their original log down to 1% of
its volume.[PK10]

11[PK10]

13

Related Work

They then cleaned down the records which have noisy data. Having the length of the
listening event helped clean down the dataset because this way they could remove tracks
that were skipped by the user. They removed from their dataset every listening event in
which the duration of the event was less than half of the complete song length. Park et al.
performed several analyses on their dataset, like the change of a certain item’s popularity
over time but the ones relevant to this work were the periodicity analyses. First they
analyzed the number of listening events that belonged to each day of the year. It showed
a periodic decrease and increase in the usage of the system during the weekends, a period
of time in the Bugs Music website has less traffic. It then analyzed the number of played
items versus the days of the week and the hours of the day, showing that users listen to
a lot less music on weekends and on the hours of the night than on the weekdays and on
hours ranging from 10AM to 10PM.[PK10]

Park et al. also had immediate access to the genres of each played item. The next
step in their analysis was to determine how the time of day affects the users’ listening
preferences. They picked 10 genres to show the difference between them, and did so with
normalized values (since some genres may be preferred over others by the population
represented in their dataset). They performed a seasonal (months of the year) and a time
of day analysis (hours of the day). The genres considered were Ballad, Rock ballad,
Dance Pop, Pop Rock, RNB, Adult contemporany, Indie rock, Hip-Hop, Solo Instrumental
and Kids.

Considering their time of day analysis, they saw that minor genres like Kids and Solo
Instrumental showed a different pattern than all others, increasing during the morning and
having a peak at around noon and rapidly decreasing with the afternoon, while the other
genres showed a slower increase through the morning and afternoon, peaking around the
evening. This analysis also showed, for instance, that people prefer to listen to rhythm
and blues to dance pop at night[PK10]. Their seasonal analysis showed that people prefer
to listen to ballads over dance-pop songs, and that this difference became bigger dur-
ing the winter. They also showed that Christmas carol songs are highly unpopular (less
than 0.05% of all listening events) during the months that precede the holiday seasons,
becoming much more popular during the holidays (up to 4%).

2.5 Towards gathering and mining Last.fm user-generated data

Lima, João12 tried to discover patterns and knowledge about music among the copious
amount of user-generated data present in Last.fm. Lima developed a crawling applica-
tion capable of gathering artist information present in Last.fm, such as artist profiles, tag
clouds and discographies. Tag clouds are built by users and artist profiles are edited in a

12[dCL09]

14

Related Work

collaborative, wiki-like fashion. Lima performed several data mining tests with the gath-
ered data.

Summarily, these tests were:

• Using the clustering k-means algorithm to discover the percentage of similar artists
that share the same tags;

• Using the clustering k-means algorithm to cluster artists by evolution (in terms of
listeners) over the period of a month;

• Using the association Apriori algorithm to discover association rules between tags
in the artists’ tag clouds;

• Using the association Apriori algorithm to discover association rules between tags
of an artist and the tags of similar artists;

• Using the association Apriori algorithm to discover association rules between tags,
albums and popularity measures between similar artists.

While Lima did discover some interesting rules (for example, if an artist has the "pop
rock" tag, its most similar artist has the "rock tag, with 90% confidence)[dCL09], this
work did not include the users of Last.fm and their profiles, as they were out of the work’s
scope.

In the dataset construction process, Lima found many artist names that appear are
in fact created in Last.fm by users that scrobble tracks that have mis-formed mp3 (or
other kind of) tags in their music files. Lima solved this problem by recurring to the
MusicBrainz database13.

Summary

In this chapter we reviewed several works and scientific articles that somehow relate to
our problem. We conclude by showing an aggregated vision of all the objectives, method-
ologies and data sources used by all the related works in table 2.1.

13Open content music database, accessible at http://musicbrainz.org

15

http://musicbrainz.org

Related Work

Table
2.1:A

ggregated
vision

ofthe
objectives,m

ethodology
and

data
sources

used
by

the
related

w
orks

W
ork

O
bjectives

M
ethodology

C
onclusions

D
ata

Source
Tow

ards
tim

e-aw
are

contextual
m

usic
recom

m
endation2.1

Study
and

prediction
of

m
usical

preferences
for

certain
artists

or
genres

thatexhibita
cyclicalnature

overtim
e

A
pplication

ofcircularstatistics
D

iscovery
that

a
non-negligible

am
ountoflisteners

do
prefer

to
lis-

ten
to

certain
artists

and/or
genres

at
som

e
points

in
tim

e
that

have
a

repetitive
nature.

L
ast.fm

a

Tow
ards

tim
e-dependent

rec-
om

m
endation

based
on

im
plicit

feedback2.2

Im
proving

m
usic

recom
m

endations
w

ith
the

know
ledge

that
user

pref-
erences

do
evolve

overtim
e

butstill
exhibitsom

e
tem

poralrepetition

Partitioning
of

user
profiles

into
severalm

icro-profilesthatrepresent
partitions

oftim
e

ofa
repeating

na-
ture

Increase
of

the
rating

of
the

predic-
tion

offuture
listening

ofartists
and

genres

L
ast.fm

a

Statistical
m

odels
of

m
usic-

listening
sessions

in
social

m
e-

dia
2.3

C
reation

of
statistical

m
odels

for
the

characterization
of

user
prefer-

ences
in

socialm
edia

Partitioning
oflistening

history
logs

into
sessions

for
the

creation
and

of
statisticalm

odels
and

evaluation
using

baseline
tests

and
perplexity

com
parisons

w
ith

the
L

D
A

m
odel

C
reation

of
a

session-based
hierar-

chical
graphical

m
odel

that
has

a
low

er
perplexity

and
shorter

train-
ing

tim
e

thatthe
L

D
A

m
odel,used

forbaseline
com

parisons

Z
une

Social

Tem
poral

D
ynam

ics
in

M
usic

L
istening

B
ehavior2.4

Studying
the

tem
poraldynam

ics
of

userbehaviorin
m

usic
listening

C
om

parison
of

several
genres

and
artists

in
a

tem
poralcontext

Show
ed

that
certain

genres
and

artists
are

preferred
eitheron

a
spe-

cific
tim

e
of

day
or

on
a

seasonal
basis

B
ugs

M
usic

Tow
ards

gathering
and

m
ining

L
ast.fm

user-generated
data

2.5
G

athering
ofand

application
ofdata

m
ining

techniques
to

L
ast.fm

user
generated

data

C
reation

and
cleaning

of
a

dataset
foranalysis

w
ith

severaluses
ofthe

A
priori

and
k-m

eans
clustering

al-
gorithm

s

C
reation

of
a

data
m

ining
system

that
w

as
used

to
produce

associa-
tion

rulesofartists/genresin
several

differentcontexts

L
ast.fm

b

aD
atasetcom

piled
by

O
scarC

elm
a

accessible
via

h
t
t
p
:
/
/
w
w
w
.
d
t
i
c
.
u
p
f
.
e
d
u
/
~
o
c
e
l
m
a
/
M
u
s
i
c
R
e
c
o
m
m
e
n
d
a
t
i
o
n
D
a
t
a
s
e
t
/

bO
btained

w
ith

the
craw

ling
application

developed
in

this
w

ork

16

http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/

Chapter 3

Problem Definition

This section will describe the relevant part of the data Last.fm makes available to us and
that this work gathered. Then, it presents some of the information that might be hidden
in this data and that we are interested in discovering. It also describes the problem of the
derivation of musical genres from the information present in Last.fm and the solution we
used to go past it.

3.1 The Last.fm data

This section presents a formal definition of the data present in the user and artist profiles
and of the methods used to manipulate them.

3.1.1 User profiles

A Last.fm user listening profile contains a history of all the songs that the user has listened
to and the point in time at which the listening event has occurred. It can be formally
defined, for each user u, as a map pu between points in time and the songs that u has
listened to. Points in time are described using Unix time, defined as the number of seconds
elapsed since 00:00 January 1, 1970, UTC. This point in time is called the Unix epoch.

17

Problem Definition

Figure 3.1: Last.fm presents to the user his listening history in this form.

This makes our measure of points in time effectively a subset Nu of the natural num-
bers, with a lower bound as the number of seconds elapsed since the epoch event up to the
time of the user’s first scrobble, and the upper bound set to the number of seconds elapsed
since the epoch, up to the time of the user’s latest scrobble. The set Su contains all the
songs that belong to the user’s profile:

pu : Nu→ Su (3.1)

18

Problem Definition

With the mapping defined as:

pu(t) = s (3.2)

such that song s was being listened by the user u at time t. If no song is registered by
u at time t, we can say that a null element is mapped to t1. The set Su contains artist-song
tuples. What follows is an example of a partial Last.fm user listening profile:

u t ∈ Nu pu(t) ∈ Su

ticklemynausea 1284180564 Amusement Parks on Fire Inside Out
ticklemynausea 1284180888 Amusement Parks on Fire Raphael
ticklemynausea 1284181184 Slowdive Here She Comes
ticklemynausea 1284181325 Slowdive Souvlaki Space Station
ticklemynausea 1284181684 Slowdive When The Sun Hits
ticklemynausea 1284188504 Slowdive Crazy for You
ticklemynausea 1284188865 Slowdive Miranda
ticklemynausea 1284193723 Slowdive Souvlaki Space Station
ticklemynausea 1284194779 Neil Halstead No Mercy For The Muse
ticklemynausea 1284216450 Neil Halstead Sometimes The Wheels

Table 3.1: A segment of a user listening profile

For this profile, pu(1284193723) maps to Slowdive - Souvlaki Space Station and
pu(1284193799) maps to the null element. This does not mean that the user was not
listening to music at this point in time, it merely indicates that no song was registered by
Last.fm as being played at that point in time.

3.1.2 Artist profiles

We define the map between the set of all artists and the set of all tags that belong to artists
as:

t : A→ S (3.3)

With the mapping defined as:

t(a) = Sa (3.4)

Sa is the set of all tags that belong to artist a.

1Although the user could still be listening to a song at that particular time. Last.fm doesn’t keep track of the durations
of the songs in the scrobbling process, so these timestamps represent the time a user was listening to a particular song

19

Problem Definition

Also, we define a map between an artist/tag pair a, t, and the corresponding weight of
the association between a and t as:

w : A×T → N (3.5)

with the mapping:

wa(t) = n (3.6)

Such that the tag t applied to the artist a has the weight n. w has the range [0,100].

a tag wa(tag)
Slowdive shoegaze 100
Slowdive dreampop 49
Slowdive indie 23
Slowdive ambient 20

Amusement Parks on Fire shoegaze 100
Amusement Parks on Fire post-rock 30
Amusement Parks on Fire indie 28
Amusement Parks on Fire alternative 15

Neil Halstead singer-songwriter 100
Neil Halstead folk 93
Neil Halstead indie 72
Neil Halstead alt-country 38

Table 3.2: Several partial artist tag profiles

For the universe of tags above, t(Slowdive) maps to a set containing the tags shoegaze,
dreampop, indie and ambient, while wSlowdive(shoegaze) maps to the natural number 100.

3.1.3 Mapping times to genres

Define the tag-time mapping function for a user u as

ttu : Nu→ Sa (3.7)

with the mapping:

ttu(n) = {t(s),∀s ∈ pu(n)} (3.8)

3.2 Deriving genre information from the Last.fm social tags

As we discussed in 1.1.2, not all tags convey genre information about a particular artist.
Also, the social aspect of tags in Last.fm might pollute the tag clouds of various artist,

20

Problem Definition

u n ∈ Nu ttu(n)
ticklemynausea 1284180564 shoegaze, post-rock, indie, alternative
ticklemynausea 1284180888 shoegaze, post-rock, indie, alternative
ticklemynausea 1284181184 shoegaze, dreampop, indie, ambient
ticklemynausea 1284181325 shoegaze, dreampop, indie, ambient
ticklemynausea 1284181684 shoegaze, dreampop, indie, ambient
ticklemynausea 1284188504 shoegaze, dreampop, indie, ambient
ticklemynausea 1284188865 shoegaze, dreampop, indie, ambient
ticklemynausea 1284193723 shoegaze, dreampop, indie, ambient
ticklemynausea 1284194779 singer-songwriter, folk, indie, alt-country
ticklemynausea 1284216450 singer-songwriter, folk, indie, alt-country

Table 3.3: Composition of a user listening profile with the artist tag profiles of the artists in his
listening history

as some users will assign erroneous tags to particular artists. Let’s consider a somewhat
extreme example of an artist whose tag cloud is filled with garbage.

Figure 3.2: The tag cloud for Rebecca Black, teen pop phenomenon.

In fact, [Cel08] showed that users deliberately mistag items in order to provoke some
(usually undesired) effect. Table 3.4 shows that in the top 10 tags for this artist, only two
convey information about musical facets ("pop" and "female vocalists"), and of these,
only one is a valid music genre. With lower weights on the tag cloud are three genre tags
that certainly do not apply to Rebecca’s music.

One way to deal with this is to set a high enough threshold so that only the tags that
most users agree on are considered. The example above can’t be completely solved by
setting a high enough threshold, though it filters most garbage out. A way to work around
this problem is to have a previously defined set of valid genres. We expect that the use

21

Problem Definition

tag weight
fun fun fun fun 100

pop 93
Friday 69
legend 67

queen of pop 60
better than radiohead 32
atmospheric loligaze 25
better than lady gaga 25

female vocalists 25
diva 23

. . .
hip-hop 10

indie pop 9
punk 4

Table 3.4: Some tags for the artist Rebecca Black and respective weights.

of this set, together with a high enough threshold, will filter out the noise for most artists.
The list of genres we will consider valid contains 1645 words we obtained from Wikipedia
(removing hyphenation and spaces to cancel the ambiguity between tags such as hip hop,
hiphop and hip-hop.

This process will benefit from the work done by Lima, João2. Thanks to it we have
a fully developed process for crawling Last.fm artist information and several databases
kept up to date with artist tag information. However, not all artists we will encounter
when crawling user profiles will be present in our database. We will use fresh Last.fm
information to "cover the holes" and complete the database in such cases, as described in
5.1.4.

3.3 Information hidden in the user’s profiles

Our central belief is that there is a lot of meaningful information related to the users
listening habits hiding among the lines and lines of data that make up their profiles. This
section lists some aspects of music listening habits that can be looked for in a particular
user profile (to discover details about that particular user’s habits) or in a set of profiles
(to discover details in a particular user, population or population sample).

2check [dCL09]

22

Problem Definition

3.3.1 When do people listen to music?

The question we are asking is, is there any relation between time and the music a given
person listens to? To answer this question, we must first define what we mean by time
and what we mean by the music listened to.

In the section above we described in detail the data Last.fm provides us, which is a
very simple mapping between points in time (described by a timestamp with the accuracy
of a second) and the song that Last.fm registered as playing at that time.

If the limitation of the timestamps we described in 1.1.1 is not an issue (because we
know the user or users’ UTC offset), we can explore the circular (repeating) nature of
particular hours or times of the day (morning, afternoon or night), weeks (work days or
weekends) and months (which would reflect the impact of seasonal changes in the user’s
listening habits). It is worth noting that the timestamp limitation we identified becomes
less of an issue when the granularity of time becomes larger than twelve hours (which is
the maximum UTC offset).

What follows is a face to face comparison of two Last.fm profiles regarding the time-
line aspect of the problem.

Figure 3.3: Timeline for two particular last.fm users. The horizontal axis represents days while
the the vertical axis represents the time (hours). Each blue square marks a day hour where music
has been listened to. The intensity of the blue represents the number of songs listened to. The
images represent a profile sample taken from July to December 2010.

These images sum up some of the aspects referred to above. The regularity in the
image above shows that the user seldom listens to music during sleep hours. The user

23

Problem Definition

below shows no regularity of this kind.

3.3.2 The relation between time and the music people listen to

The time-related aspects refereed to above can be extended to encompass the other part
of the question left open in the beginning of this section: the music people listen to. In
fact, the following questions come to mind:

• Is there any relationship between the aspects of time referred above and the genres
that a user is familiar with?

• Which sequences (or sets) of genres usually appear together? Which genres do
people mix together in the same music listening session?

These aspects can always be extended to include demographic information available
to us via the Last.fm API, like gender, age and country. We have however to keep in
mind that this information might be incorrect, as it is (obviously) subjected to no kind of
verification.

3.3.3 Analyzing music listening sessions

A music listening session is a period of time in which a person listens to several songs
one after the other. In we presented the idea that an entire user’s profile can be divided
into several sessions. As it was explained there, the division is based on the played media
items’ timestamps. It might be interesting to look for association rules5.1.2 between
musical genres in a user’s or in a population of users’ session data. This would enable us
to see (for the user or users represented in the analyzed dataset) which genres are mixed
together more often.

Summary

In this chapter we explained how we approached the problem of extracting valid genre in-
formation from the artists’ tags, which often are polluted with garbage tags using thresh-
old values and a list of pre-compiled genres. This chapter also introduced the final goals
of this project, which are to investigate if time does in fact influence people’s choice of
genre and if the genres themselves influence the choice of other genres.

24

Chapter 4

Research Dataset

This section details the process of the construction of a dataset containing the complete
listening history of several hundreds of Last.fm users. This process involved several dif-
ferent uses of the Last.fm Web API, already introduced in 1.1. We used the Python pro-
gramming language to create automated and scalable scripts that gather Last.fm profiles in
a MySQL database. This section also details the filtering process applied to the retrieved
data, in order to ensure that the profiles present in the dataset are a faithful representation
of the user’s listening habits. We conclude with a series of charts that illustrate some of
the characteristics of the gathered dataset.

4.1 The Crawling Application

The crawling application was developed with Python 2.6.5, but it also proved compatible
with Python 2.7. It uses MySQLdb, a python MySQL client, and a custom fork of PyLast
for communication with the Last.fm API1.

1Some features were missing and some needed to be fixed. More in 4.1.2.

25

Research Dataset

Figure 4.1: Overall view of the crawling application modules and interaction with the other sys-
tems involved in the process: the Last.fm API and the MySQL database server

Figure 4.1 shows the interaction between the crawling application modules and the
other systems involved in this process. The crawling application is composed of nine
modules. These are:

• Usernames crawler, which performs a crawling of Last.fm usernames;

• User profiles crawler, which performs a crawling of Last.fm profile data, like age,
gender, country, etc;

• User tracks crawler, which performs a crawling of the entire (or part of) a user’s
profile up to his latest scroble;

• User tracks updater, which updates the database with the scrobbles in his profile
that weren’t yet present when the user tracks crawler module retrieved his informa-
tion;

• Request Limiter, responsible for limiting the number of requests each crawling
script can make to the Last.fm API in a pre-determined window of time (for com-
pliance with the API’s terms of use)

26

Research Dataset

• Activity Logging, responsible for logging the activity of all running scripts;

• Database Status, which shows the status of the crawling activity;

• Database Initialization, which is responsible for initializing the database for the
crawling process (creation of tables and indexes and insertion of seed usernames);

• Database Cleanup, responsible for the cleanup of forcibly interrupted crawling
activity.

The particular way these modules were used in the construction of the research dataset
is detailed in 4.2.

4.1.1 The Last.fm API

Last.fm’s web services provide a public API that allows anyone to build their own pro-
grams using Last.fm data, wether they’re on the web, the desktop or mobile devices. The
Last.fm API allows programmers to call methods that respond in REST style XML or
JSON. For example, an HTTP GET request to the following URL:

http://ws.audioscrobbler.com/2.0/?api_key=MY_API_KEY

&method=user.getrecenttracks&user=ticklemynausea&page=1&limit=1

27

Research Dataset

Would return this as an answer:

<?xml version="1.0" encoding="utf-8"?>

<lfm status="ok">

<recenttracks user="ticklemynausea" page="1" perPage="1" totalPages="45209">

<track>

<artist mbid="a6bf1276-9150-40fc-a94e-6b14f377fe3d">Airiel</artist>

<name>Jeanette</name>

<streamable>1</streamable>

<mbid></mbid>

<album mbid="">Melted</album>

<url>http://www.last.fm/music/Airiel/_/Jeanette</url>

<image size="small">http://userserve-ak.last.fm/serve/34s/8777317.jpg</image>

<image size="medium">http://userserve-ak.last.fm/serve/64s/8777317.jpg</image>

<image size="large">http://userserve-ak.last.fm/serve/126/8777317.jpg</image>

<image size="extralarge">http://userserve-ak.last.fm/serve/300x300/8777317.jpg</image>

<date uts="1289497088">11 Nov 2010, 17:38</date>

</track>

</recenttracks></lfm>

All calls to the Last.fm API are made through the PyLast library, which uses the
object-oriented paradigm to generate the requests and encapsulate the responses, in or-
der to allow the programmer to abstract himself from the parsing of the XML or JSON
responses.

Here is a summary of all the methods and respective parameters that were relevant to
this work.2

User.getFriends

Description Returns the usernames of the users that are friends with the given user

Relevance Useful in the discovery of new usernames

Parameters
username A Last.fm username

Table 4.1: Summary of the User.getFriends API method

User.getInfo

Description Returns the profile information of the given user

Relevance Useful for discovering the user’s demographics, like age or country of origin

Parameters
username A Last.fm username

Table 4.2: Summary of the User.getInfo API method

2The API specification is available online at http://www.last.fm/api/

28

http://www.last.fm/api/

Research Dataset

User.getRecentTracks

Description Returns a list of the recent tracks listened to by this user. "Recent" is actually

a misnomer, as this extends to the whole user profile.

Relevance Used in crawling the user’s listening profile. Also returns the total number of

pages/tracks present in the user profile.

Parameters
username A Last.fm username

limit Number of tracks to be retrieved (on a per-page basis)

page Number of the page to be retrieved

from UTC timestamp. Only tracks scrobbled after this point in time are returned

to UTC timestamp. Only tracks scrobbled before this point in time are returned

Table 4.3: Summary of the User.getInfo API method

4.1.2 Technologies

The following is a summary of the technologies involved in this project.

• Python Programming Language Python is an interpreted, high-level, general-
purpose, object oriented programming language. It supports very different classes of
problems and has a very simple syntax, as Python’s design philosophy is centered
around code readability. Perhaps Python’s most known (and weird) feature is the
use of code indentation as block delimiters. Python’s standard library is extensive,
and covers areas such as string processing (Unicode, regular expressions), native
support for several Internet protocols, unit testing, profiling and operating system
interfaces. The reference implementation of Python, CPython, is free software, and
is licensed by the Python Software Foundation License. Python is cross-platform,
and is available in all major operating systems. Python supports multiple program-
ming paradigms, and has a dynamic typing system. Moreover, python’s popularity
has made it that there are several third party libraries with support for the interfaces
needed for this work: The MySQL relational database system and the Last.fm Web
API. The programmer’s experience with Python was also determinant in the choice
to use it as the main programming language, as it allowed for the fast development
and debugging of all the modules. Moreover, python was the language of choice for
all the tasks in this projected that to any extent involved programming.

• MySQL Database Server MySQL is a cross-platform relational database manage-
ment system that uses a client-server architecture and provides multi-user access to
a number of databases. It proved reliable and efficient, however it was very slow
when restoring databases from eventual database crashes we had due to power out-
ages.

29

Research Dataset

• MySQLdb is a thread-safe Python interface for the MySQL database server. MySQLdb
provides support for Python versions 2.5 through to 2.7 and for MySQL versions
3.23 through 5.1. It implements the Python Database API specification 2.0.

• PyLast PyLast is an open source implementation of the Last.fm Web API for Python.
It supports access to all the data accessible through the Last.fm Web API. A few
quirks were detected that motivated further development on this library:

– Fixed HTTP proxy support, which wasn’t working reliably and was required
at the time

– Added support for the paged retrieval of user track profiles in the API method
User.getRecentTracks

– Added support for the from and to parameters of the API method
User.getRecentTracks

4.1.3 Summary of features

The following is a list of features implemented by the crawling application. A list of the
files available in the installable package is available in A.1.

• Discovery of Last.fm usernames through any number of seed users and through
the User.getFriends API call. Username discovery is performed in a breadth-first
fashion, i.e, first the seed’s friends are gathered, then the seed’s friends’ friends are
gathered, etc.

• Retrieval of Last.fm user profile data (name, age, homepage, etc.)

• Retrieval of Last.fm user listening data, either partially or in their entirety

• Updating of Last.fm user listening data, collecting all the new tracks that were scrob-
bled since the last crawl

• Designed with scalability in mind, as any number of instances of the same script
may be running concurrently to speed up the crawling process

• All running scripts are aware of the limits imposed by the Last.fm Web API’s terms
of use, as no more than five requests per second should originate from the same IP
address

• Configurable through a text file, with no hard-coded parameters

• Maintains consistency of data through a cleanup script and through a rollback rou-
tine that is executed on script interruption

30

Research Dataset

4.1.4 Compliance with the Last.fm API Terms of Use

The terms of use of the Last.fm API require that no client shall make more than five
requests per second, averaged over a period of five minutes. This is respected by the
crawling application without harming its scalability.

Every time a request is made, a single call is made to a function tick(). This func-
tion checks to see if the number of requests has exceeded the allowed five requests per
second per five minutes. If this is the case, the function will halt for as many seconds as
necessary until the remainder of the window of five minutes has passed.

This is achieved using access to a MySQL table as a data structure that can be shared
between all concurrent processes. This table is stored using the InnoDB transactional
storage engine, which supports the lock/unlock mechanism necessary to correctly support
the concurrent access to this table. This table has a property-value structure, and the API
compliance system requires the use of two properties known to all concurrent processes:

• request_counter, A counter of all requests made to the Last.fm Web API

• request_clock, The time of the next projected reset to the request counter

Before the crawling process begins, both fields are set to 0. This algorithm, used by
tick(), is called after every call to the Last.fm API. The algorithm used in every call to
tick() is explained in below:

31

Research Dataset

Algorithm 1 Request limiting algorithm

function S: A data structure shared between all processes that keeps two fields: a request

counter, the current number of requests made and an expiration date, the time where the counter

should be set to zero

function get_current_time(): returns the UNIX timestamp for the current time

function request_window_duration: as specified by the terms of use, is 5 minutes

function max_requests: 1500 requests (a maximum of five requests per second in five minutes)

request_counter← S.read_request_counter()+1

expire_time← S.read_request_clock()

current_time← get_current_time()

if the condition below is true, then the five minutes have already passed without the limit being

hit. S should be updated in this case

if current_time > expire_time then
pro jected_next_reset← current_time+ request_window_duration

S.set_request_clock(pro jected_next_reset)

expire_time = pro jected_next_reset

end if

if we hit the limit, we set the request counter to zero, but not before sleeping. this way, other

processes will also hit the limit and go to sleep

if request_counter >= max_requests then
sleep_duration = expire_time− current_time

pause(sleep_duration)

S.set_request_counter(0)

else
S.set_request_counter(request_counter)

end if

4.2 Methodology

The dataset construction process begins with the discovery Last.fm usernames using the
User.getFriends API method and a given number of seed users. When enough user-
names are collected, the first crawling phase begins: we use the User.getInfo API
method to retrieve information about each known username that can then be used in a first
filtering process.

After the first filtering process is concluded, an iterative process begins with the selec-
tion of random users (sampling), the retrieval of their entire listening profiles and after-
wards, a second filtering process using the information retrieved previously. These three

32

Research Dataset

processes repeat, until the number of accepted profiles reaches the desired amount. Figure
4.2 illustrates this process.

Figure 4.2: Flowchart of the dataset construction process

4.2.1 Database preparation

The database preparation phase involves the creation of the tables, according to the spec-
ification illustrated in 4.3. It also involves the insertion of the seed usernames in the
known_users table, and the creation of the index structures that optimize the necessary
time for data retrieval, at the expense of disk space and insertion time. In this case indexes
are crucial, since these tables will grow to host several million lines. Excluding the index
created in the case of a table’s primary key (already shown in 4.3), the fields username
and artistname in the user_tracks table were also indexed, in order to allow a quicker
retrieval of rows based on criterea that uses those two fields.

33

Research Dataset

Figure 4.3: Database diagram

4.2.2 Username discovery

Username discovery is achieved through the User.getFriends Last.fm Web API method.
This method returns the list of users that are friends with a given user. We can then make
the same API call to the previously retrieved usernames, retrieving the friends of our
friends.

This process is performed in a breadth-first fashion (Algorithm 2), i.e, first the seed’s
friends are gathered, then the seed’s friends’ friends are gathered, etc. Results are stored
in the known_users table4.3 and this process is supported by the crawl_usernames
script.

It is interesting to notice that a process like this would not stop until all the user-
names that are part of the connected components (of the social network graph) the seed
users belong to have been discovered. The crawling application gathered a total num-
ber of 1,667,314 usernames over approximately a week, and was manually terminated
afterwards.

34

Research Dataset

Algorithm 2 Username discovery algorithm

function get_next_username() : Returns the next uncrawled username

function get_friends_of(username) : Returns the list of friends of username

function mark_as_crawled() : Marks the given user as examined

username_list← /0

while there are unexamined friends do
username← get_next_username()

f riends← get_friends_of(username)

for f riend in f riends do
if f riend 6∈ username_list then

username_list← username_list + f riend

mark_as_crawled(f riend)

end if
end for

end while

4.2.3 User information retrieval

The user information retrieval process retrieves personal information present in the Last.fm
profiles that does not include the listening data. Specifically, this information consists of
the fields listed in 4.4.

• The user’s real name

• The user’s profile image url

• The user’s country of origin

• The user’s age

• The user’s gender

• The user’s total played items

• The user’s total number of playlists3

• The user’s registration date

• The user is or isn’t a Last.fm premium subscriber

Figure 4.4: List of fields retrieved by the Last.fm Web API method User.getInfo

35

Research Dataset

The data is stored on the user_profiles table4.3, and the crawling process is sup-
ported by the crawl_userprofiles script. Of all the information fields that were
retrieved, only the total played items and registration date are useful to the process that
follows. Of the 1,667,314 usernames known, the crawling application queried the API
for the information above for a total number of of 1,135,615 users, effectively discarding
the rest. This information is stored in the user_profiles table and is supported by the
crawl_userprofiles script.

4.2.4 Filtering

We decided that our dataset would contain no users that do not specify a country of ori-
gin, as using this information could be used to circumvent the timestamp issue we encoun-
tered1.1.1 before. Using the country information is, in fact, a possible way to approximate
the UTC timestamp in the Last.fm logs to the user’s local time4.

We used a rough approximation of the number of tracks played per day (averaged
using the registration date and total played items) to decide if the the profile contains
enough data to be used in the process of retrieval of any significant information that we
may find regarding our objectives. We also use the registration date to filter profiles that
have not existed for long enough to contain enough data. Only profiles that are at least
one year old were considered valid and survived this filtering step.

Summarily, the following sequence of steps were applied to the dataset, using the
information retrieved by the User.getInfo Last.fm API method:

1. Excluding users that contained less than 20 and more than 160 tracks per day5

yielded a set of 409,683 users.

2. Excluding users that weren’t members for at least one year yielded a set of 335,956
users.

3. Excluding users that didn’t specify a country of origin yielded a set of 302,897 users.

This process was still subject to some errors, as we encountered disparities between
the data retrieved by the Last.fm Web API and what was actually present on the user’s
profiles. Namely, the total played items figure as retrieved by the API was different from
what the user actually had on his profile. To ensure the quality of the dataset we produced
in terms of our specified requirements, we had another filtering step that actually looks
through the data present on the users’ profiles.

4Provided that the user does not lie about his location
5Considering a rough approximation of 3 minutes per song, to users with less than 1 hour and more than 8 hours of

music per day

36

Research Dataset

4.2.5 Random sample selection

After all profiles with undesired characteristics have been discarded, we randomly se-
lected a smaller set of profiles that will be looked at in our final analyses. The two reasons
behind this are that the retrieval of complete listening profiles is a time expensive pro-
cess6 and that users that are near each other in the Last.fm user network will be near each
other (row wise) in the database. This could introduce bias in our dataset, since people
are likely to be friends with people with similar tastes or listening habits. Of the 302,897
usernames that survived the filtering process, a random sample of 10,000 was selected for
further crawling.

4.2.6 Listening history crawling

Obtaining the entire listening history of a user is a time expensive process. Suppose a user
has a listening history comprising 40,000 tracks. The Last.fm Web API can only retrieve
200 tracks at a time, so it would take 200 calls to the API to retrieve the entire history
for this user. If we consider a reasonable little more than three seconds of waiting for a
response, it’s over 10 minutes for a profile of such size.

This process registers data in the user_tracks table and was performed using the
crawl_usertracks script. The process gathered the complete listening history of all
the 10,000 users and terminated afterwards.

4.2.7 Filtering, yet again

We now possess a dataset with the complete listening history of 10,000 users. We used
the information retrieved by the User.getInfo to determine preemptively which users
would fit our established requirements. We have however verified that the information
retrieved by this method may be incorrect, and as such, another filtering step is required,
this time with an in-depth look through the complete listening history data. This step
firstly involved the retrieval of the following information from the database:

• Total number of played tracks in the user’s Last.fm profile

• The timestamps of the earliest and latest played item

And again, we applied the same filtering criteria as earlier. However, instead of using
the Last.fm API’s User.getinfo, we calculated the profile’s length in time using the
difference between the two retrieved timestamps and calculated the average number of
played tracks using the real number of items played, as retrieved by the API method
User.getRecentTracks.

6A single request to Last.fm takes about 2 seconds to complete (exarcebated if there are other crawling scripts
running) and returns, at most, 200 played items. Each profile made of several thousands.

37

Research Dataset

This process had to be performed iteratively until all users present in the final dataset
stood by our requirements. A total number of 587 users were rejected. Our final, com-
pletely filtered research dataset has 10,000 users that comply with the requirements we
specified earlier.

4.3 Characteristics of the final dataset

This section presents a series of charts that illustrate some of the characteristics of the
dataset we gathered. These are demographic characteristics, characteristics of the user
profiles (about the data we found in each profile) and artist/genre characteristics (relating
to the artists and genres we found in each user profile).

4.3.1 Demographic characteristics

We present an illustration of the characteristics of the dataset we gathered in terms of the
demographic information available (gender, age and country).

 0

 500

 1000

 1500

 2000

 2500

U
S

P
L

U
K

B
R

D
E

R
U

F
I

C
A

A
U

N
L

S
E

E
S

M
X

U
A

F
R

IT J
P

T
R

C
Z

P
T

C
L

B
E

R
O

L
T

H
R

N
O

B
G

A
T

A
R

G
R

H
U

IE C
H

L
V

C
O

B
Y

E
E

ID R
S

U
s
e
rs

Countries

Country distribution for the top 40 countries

Figure 4.5: Country distribution in the final dataset (for the top 40 countries)

38

Research Dataset

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

male female undisclosed

U
s
e
rs

Gender

Gender distribution

Figure 4.6: Gender distribution in the final dataset

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600
u
n
d
is

c
lo

s
e
d

1 2 3 4 5 6 7 8 9 1
1

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
9

6
0

6
1

6
2

6
3

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
7

7
8

8
0

8
1

8
3

8
5

9
1

9
3

9
4

9
7

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

U
s
e
rs

Age

Age distribution

Figure 4.7: Age distribution in the final dataset

39

Research Dataset

These charts summarize the demographic information retrieved for the 10,000 users in
our dataset. 4.5 shows that about one fifth of the users in our dataset are from the United
States. Interestingly, the second most represented country is Poland, with more users than
the UK, in the third position. 4.6 shows that the majority of the users in our dataset say
that they are male. 4.7 show that the ages of the users peak at 22 years old. It has to be
reminded to the reader that this data is subjected to no kind of verification by Last.fm and
many users may lie about their demographics7.

4.3.2 Characteristics of the users’ profiles

We present three charts that summarize the amount of information (played items) present
in each user profile.

 20

 40

 60

 80

 100

 120

 140

 160

 0 50000 100000 150000 200000 250000 300000 350000 400000

a
v
e

ra
g

e
 t

ra
c
k
s
 p

e
r

d
a

y

total playcounts

Tracks per day vs. total tracks played

Figure 4.8: Scatter plot of total played items and average played items per day

7Also, we find hard to believe that our crawling process found so many Centenarians in the Last.fm community.

40

Research Dataset

 1000

 10000

 100000

 1e+06

 0 2000 4000 6000 8000 10000

P
la

y
e
d
 t
ra

c
k
s

Users

Played tracks distribution

Figure 4.9: Total played items distribution per user (nominal scale on the x axis)

 1

 10

 100

 1000

 10000

 100000

 0 2000 4000 6000 8000 10000

P
la

y
e
d
 a

rt
is

ts

Users

Played artists distribution

Figure 4.10: Total played artists distribution per user (nominal scale on the x axis)

4.8 shows where each user is in terms of total played items and the average of the
items played daily. We can easily see that the large majority of the users are concentrated

41

Research Dataset

below sixty average played tracks per day and have less than 100,000 tracks recorded in
their profiles.

4.9 and 4.10 show how many played items and different artists each user listened to.
These are represented using a logarithmic scale on the y axis due to the large range of
values that need to be represented.

4.3.3 Characteristics related to the artists and genres

These charts reflect the popularity (in terms of number of played items) of the genres and
artists we encountered.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000 1200 1400

P
la

y
e
d
 t
ra

c
k
s

Genres

Played genres distribution

Figure 4.11: Total played tracks distribution per genre (nominal scale on the x axis)

42

Research Dataset

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50000 100000 150000 200000 250000

P
la

y
e
d
 t
ra

c
k
s

Artists

Played artists distribution

Figure 4.12: Total played tracks distribution per artist (nominal scale on the x axis)

Figures 4.11 and 4.12 present the distribution of played tracks over each genre and
each artist that we’ve encountered in a logarithmic scale, due to the wide range of the val-
ues we want to represent. Both are clear examples of long tail distributions. In these kind
of distributions, a small part of the population (in these case, artists and genres) holds the
most popularity, while the largest part of the population rests within the tail where the less
popular items are. Long tail distributions are often found in music consumption[Cel08].
In fact, nearly 70% percent of the artist names we found have only one played track.

There is some noise in figure 4.12, as we did not made any work towards filtering
names of artists that contain typos or have any other kind of information next to the artist
name in the mp3 ID3 tag8. This problem was also encountered in Lima’s work[dCL09].

8For example, one of these scrobbled artists is ! ! ! (Chk Chk Chk), which refers to an artist whose real name is !!!
but pronounced chk chk chk.

43

Research Dataset

 5800

 6000

 6200

 6400

 6600

 6800

 7000

 7200

 7400

 7600

 7800

R
a
d
io

h
e
a
d

L
a
d
y
 G

a
g
a

P
e
a
rl J

a
m

T
h
e
 B

e
a
tle

s

C
o
ld

p
la

y

M
u
s
e

P
in

k
 F

lo
y
d

T
h
e
 D

o
o
rs

P
o
rtis

h
e
a
d

N
irv

a
n
a

F
o
o
 F

ig
h
te

rs

M
e
ta

llic
a

Q
u
e
e
n

L
e
d
 Z

e
p
p
e
lin

T
h
e
 K

ille
rs

R
h
ia

n
n
a

F
ra

n
z
 F

e
rd

in
a
n
d

D
a
ft P

u
n
k

T
h
e
 S

m
a
s
h
in

g
 P

u
m

p
k
in

s

A
rc

tic
 M

o
n
k
e
y
s

T
h
e
 W

h
ite

 S
trip

e
s

S
y
s
te

m
 o

f a
 D

o
w

n

A
rc

a
d
e
 F

ire

B
o
b
 D

y
la

n

K
a
n
y
e
 W

e
s
t

D
a
v
id

 B
o
w

ie

D
e
p
e
c
h
e
 M

o
d
e

R
e
d
 H

o
t C

h
ili P

e
p
p
e
rs

K
a
ty

 P
e
rry

Q
u
e
e
n
s
 o

f th
e
 S

to
n
e
 A

g
e

T
h
e
 R

o
llin

g
 S

to
n
e
s

U
s
e
rs

Artists

Artists distribution

Figure 4.13: Top 30 artists represented in the dataset

 7000

 7500

 8000

 8500

 9000

 9500

in
d
ie

ro
c
k

c
la

s
s
ic

ro
c
k

p
o
p

a
lte

rn
a
tiv

e

e
le

c
tro

n
ic

s
in

g
e
rs

o
n
g
w

rite
r

p
u
n
k

s
o
u
n
d
tra

c
k

h
ip

h
o
p

fo
lk

g
ru

n
g
e

ja
z
z

p
ro

g
re

s
s
iv

e
ro

c
k

n
e
w

w
a
v
e

h
a
rd

ro
c
k

trip
h
o
p

e
x
p
e
rim

e
n
ta

l

p
o
s
tp

u
n
k

b
ritp

o
p

b
lu

e
s

c
o
u
n
try

c
la

s
s
ic

a
l

in
d
u
s
tria

l

d
a
n
c
e

fu
n
k

a
m

b
ie

n
t

p
o
s
tro

c
k

th
ra

s
h
m

e
ta

l

n
u
m

e
ta

l

U
s
e
rs

Genres

Genre distribution

Figure 4.14: Top 30 genres represented in the dataset

4.14 and 4.13 show how many users listen to the top 30 different artists and genres
represented in our dataset. These charts do not illustrate artist or genre preference, as they

44

Research Dataset

do not differentiate between listening to an artist/genre one or a greater number of times
and therefore indicating preference.

Summary

In this chapter we presented some of the most relevant parts of the crawling application
we developed, as well as those of the Last.fm API that the application is based upon. We
showed in detail the construction process we used to build our dataset and used charts
to describe some relevant features of the dataset we developed. We came to the conclu-
sion that the distribution of played tracks of the artists and genres does in fact follow a
long tail distribution. We also encountered several artist names that are misspeled, cor-
rupted or do not represent a real artist, a problem that also Lima found (and solved) in his
work[dCL09].

45

Research Dataset

46

Chapter 5

Data Analysis

This chapter describes the step that followed the development of the crawler and the con-
struction of the research dataset: extracting information from the retrieved data, the final
goal of this project. It describes the methods used to process the gathered data into struc-
tures that are adequate for our final goal of knowledge discovery. Finally, it presents the
two analyses we have made. We show an analysis of music listening sessions (as de-
scribed in 3.3.3), where we try to determine if certain genres influence people to listen to
other genres in the same session. We also show an analysis of genres with respect to time,
where our goal was to find out how time influences people’s choice of genre.

5.1 Background

5.1.1 Knowledge Discovery in Databases

Knowledge Discovery in Databases (KDD) is the field concerned with the development
of methods and techniques for “making sense of data”[FPsS96]. It deals with the process
of mapping voluminous low-level data, which is in nature too hard to analyze into other,
more compact, forms that are easier to understand. This may seem to clash with the
definition of the more popular term data mining, as data mining itself is only one step
of the larger, more encompassing process of knowledge discovery. The motivation for
the development of KDD comes from the fact that copious amounts of data are more and
more available nowdays. Just because we may think that information is inherently present
in the data, such information is not easily accessible. KDD helps turning such data into
useful information and concepts with a wide range of applications[HK00].

47

Data Analysis

The KDD process

The KDD process is an interactive, iterative process that involves many different steps and
at various points the user is required to take many decisions.[FPsS96]. The KDD process
consists of an iterative sequence of seven sequential steps[HK00]:

1. Data Cleaning is the first step of the process. It has the responsibility of removing
any noise and inconsistencies that are not relevant (and are potentially hazardous)
for the overall extraction of the knowledge;

2. Data Integration accounts for the combination of data from multiple sources into
a single source;

3. Data Selection retrieves the relevant data for the analysis;

4. Data Transformation transforms data into appropriate forms for the next process;

5. Data Mining consists of the processes where intelligent methods are applied to the
data, in order to extract patterns;

6. Pattern Evaluation is the process of evaluating the patterns detected in the previous
step, to determine those that contain truly valuable information;

7. Knowledge Representation consists of using visualization and knowledge repre-
sentation techniques in order to present the extracted information.

[FPsS96] complements these seven steps with two more that precede them:

• The development of an understanding of the domain of the problem at hand and of
all the relevant prior knowledge to the rest of the KDD process

• The creation of a target data set – the creation of the set of raw data in which the
knowledge discovery process will be performed.

Figure 5.1: The iterative process of KDD as presented in [FPsS96].

48

Data Analysis

Figure 5.2: The architecture of a typical data mining system as presented by [HK00].

5.1.2 Mining association rules

Mining association rules is closely related to the frequent item sets problems. As the name
implies, an item set is a set of items that is called frequent when it appears frequently in
some data. The importance of frequent itemset mining is that it allows the derivation of
interesting association rules between items from the raw data[Goe]. For example, if we
say that an user obeys the rule "played from 8pm to 10pm" => "indie rock" with 80%
support and 90% confidence, we are saying that if such user is playing a song from 8pm
to 10pm, we can assert with 90% confidence that the genre he is listening to is indie rock.
The 90% support value shows that 80% of the data analyzed showed this particular rule.
These two values, confidence and support are therefore a measure of the interestingness
of a rule.

Association rule appears in many data mining tasks where the objective is the discov-
ery of association or correlation relationships in a large set of data items. The identifi-
cation of sets of items that occur together is itself, one of the most basic tasks in Data
Mining. The original motivation for the definition of the frequent set problem came

49

Data Analysis

from market basket analysis – the need to analyze supermarket transaction data, con-
cretely, the analysis of the customers’ preferences in terms of the products they purchase
together[Goe][HK00].

The frequent set problem operates over ι , a set of items. A transaction over ι is a tuple
T = (tid, I), where tid is an identifier unique to each transaction and I is a set, I ∈ ι . A
database D is defined is a set of transactions over I.

Our particular goal is to apply the association rules mining problem to our particular
problem, namely:

• to see if there are genres that users frequently mix together in the same music lis-
tening session;

• to see of there are genres that users associate with a particular time of the day.

These two particular problems can be easily formulated as an association rules prob-
lem. The first one is trivial, as we let the set ι be composed of all genres in our universe,
and each transaction T be the set of all genres that belong in each session. Each session
will correspond to a transaction.

For the second one, we let the set ι be composed of all genres in our universe, united
with the set of all possible time partitions of a day that we are considering. As each
transaction corresponds to a played item in the user’s history, it will contain only two
elements: the time partition the played item’s timestamp corresponds to and the genre the
played item belongs to.

5.1.2.1 Apriori algorithm

The Apriori algorithm is a seminal algorithm proposed by R. Agrawal and R. Srikant in
1994 [SA97]used in the association rules problem for Boolean association rules. It ex-
plores the Apriori (monotonicity) property: all nonempty subsets of a frequent itemset are
themselves frequent. At the kth iteration, for k≥ 2, it forms frequent k-itemset candidates
based on frequent (k− 1)-itemsets, and scans the database once to find the complete set
of frequent k-itemsets, Lk. The Apriori algorithm solves the complete association rule
mining problem, and there are several optimizations (involving transaction reduction and
hashing) available that makes this procedure more efficient. Other variations include the
partitioning of the data (mining each partition and combining the results) and sampling
the data (mining a subset of the dataset)[Goe][HK00].

50

Data Analysis

5.1.3 Data mining platforms

Weka

Weka (Waikato Environment for Knowledge Analysis)1 is a suite of machine learning
software written in Java. Originating from the University of Waikato, New Zealand, Weka
is free software available under the GNU General Public License. Weka supports several
data mining tasks, namely, data preprocessing, clustering, classification, regression, visu-
alization and feature selection. Weka provides a GUI but its implemented algorithms can
also be called from a command line. For Weka to process any kind of data, it must first
be converted to the ARFF (atribute-relation) file format.

Rapidminer

Rapidminer2, formerly known as YALE (Yet Another Learning Environment) is a suite for
machine learning, text mining, data mining, predictive analytics and business analytics. It
is an open source application distributed under the AGPL license. Rapidminer is written
in Java and a GUI mediates the creation of data mining experiments between the user
and their internal XML representation. This representation can be used to launch the
platform and run the experiments without the use of the GUI. It allows (via plug-ins) the
integration of all the algorithms available in Weka and allows the execution of large scale
experiments via a scripting language. Rapidminer can process data from various sources,
including files in the ARFF format.

5.1.4 Generation of the test files

The Data Integration step of the KDD aims to merge data from various sources into a
single dataset. A key part of this project is to be able to link two separate databases
together, as we need to map an artist name to the music genres that describe it 3.1.3.
Unfortunately MySQL does not support cross-database queries, so this had to be done
one layer above, at application level. The TagPool script is able to query the artist
database to retrieve the tags associated with the given artist. It uniformizes all tags to
remove ambiguity and discards all tags that are below a given threshold, as described in
3.2.

When queried about an artist that is not present in the database, it fetches and saves
the data using the Last.fm API. It also caches all results in memory so that they can be
retrieved faster on subsequent queries. This script was used in the integration of the users
and the artist’s database, to produce a new database containing a table user_genres

with <username, timestamp, genre> tuples.

1http://www.cs.waikato.ac.nz/ml/weka/
2http://rapid-i.com/content/view/181/190/

51

Data Analysis

Figure 5.3: Overview of the system that allows the generation of the data files

This figure illustrates the interaction between the modules created for the purpose of
transforming and generating the data, the Last.fm Web API and the MySQL database.
Data is retrieved from the users database by the Timeline script. This script uses the
TagPool script, whose chief function is to associate a set of genres with an artist. This
is done using an artists’ database, a file which contains the universe of genres, and in the
event that an artist is not present in the database, retrieves fresh data from Last.fm.

The aspect of circularity in a timeline is handled by the CircularTimeline script,
which uses the data structures created by the Timeline script to group them into buckets
of circular nature, like the hours of the day or days of the week. These scripts facilitated
the generation of the ARFF data files that we’ll use in our analysis.

This system also filtered out the junk artists3 from our database, as these won’t be
matched to any genre by the TagPool script. A more in-depth description of all the
methods developed for each of these scripts is available in .

3Artists that appear in the Last.fm pages that are caused by a user scrobbling a track with a mis-formed artist name
tag.

52

Data Analysis

5.2 Analysis of music listening sessions

5.2.1 Analysis of individual users

With this analysis, we want to find out how many users exhibit these session patterns in
their profiles. We have generated one individual data file for each one of the 10,000 users
in our database and processed each one of them. Weka was configured to generate rules
that have a minimum confidence of 30% and to generate, at most, 100 rules. The chart
below summarizes the results that we have encountered.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
u
s
e
rs

Number of rules found

Distribution of the number of rules found

Figure 5.4: Total rules found distribution per number of users

First it’s interesting to notice that for nearly 9% of the users in our dataset no rules
were found. As we are considering rules with a relatively low confidence we believe that
this means that these users do not mix the same genres often enough in the same session.

It’s interesting to notice that for 2% of our users, we hit the maximum number of rules.
A very high number of rules was obtained for a very large percentage of the population,
as one can observe in 5.4. We looked into several of these results and found that these
rules have very high confidence values and are made of permutations of the same genres.
We believe that these users listen to shuffled playlists very often, and are not showing any
preference for a particular set of genres when listening to others.

53

Data Analysis

5.2.2 Analysis of the whole dataset

With this analysis, we want to discover which genres users prefer to listen to together in
the same music listening session. In order to reduce the very high processing times and
distortion in the results that might occur by the presence of genres that are less common
in our dataset, we have restricted our analysis to the top 30 genres in our dataset4.14.
We have only considered sessions with length greater than thirty minutes and we have
also discarded sessions that are composed of a single genre. An implication of this is
that sessions which are composed exclusively of played items of the same artist (which
will occur, for example, when listening to a record) will not be a part of this analysis.
The data file was partitioned into two, one for analysis with 70% of the data, and the
other for verification, with 30%. The split was done by randomly selecting sessions, not
sequentially.

• If a user listens to a song of the indie genre, he will listen to a song of the rock genre
in the same session. (76% confidence)

• If a user listens to a song of the progressive rock genre, he will listen to a song of
the rock genre in the same session. (69% confidence)

• If a user listens to a song of the hard rock genre, he will listen to a song of the classic
rock genre in the same session. (76% confidence)

• If a user listens to a song of the grunge genre, he will listen to a song of the rock
genre in the same session. (90% confidence)

• If a user listens to a song of the alternative genre, he will listen to a song of the rock
genre in the same session. (76% confidence)

• If a user listens to a song of the brit pop genre, he will listen to a song of the
alternative genre in the same session. (54% confidence)

Figure 5.5: Tags Last.fm shows as being related to Rock artists

It’s interesting to notice that the significant rules Apriori has found and that we have
validated revolve around sub-genres of Rock music. The genres presented in these are

54

Data Analysis

actually not very distant. For example, Last.fm has The Rolling Stones tagged as rock,
Queen tagged as classic rock and Pink Floyd tagged as progressive rock. People’s taste
varies, but mixing these and similar artists together in a session is a behavior that might
be recurrent among many Last.fm users. In fact, figure 5.5 shows that Last.fm considers
these tags related among them (in terms of the tagged artists’ similarity).

5.3 Analysis of played items with respect to time

Due to the issue with the timestamps Last.fm uses we identified and described in 1.1.1,
we chose to analyze a smaller subset of our 10k users dataset, composed of only the users
that live in fifteen European countries that belong to a single timezone. That way we can
easily change the timestamps to each user’s local time. Our dataset was thus reduced from
10,000 users to 4,423 users.

5.3.1 Analysis of individual users

We applied Weka’s implementation of the Apriori algorithm to each data file for the
10,000 users in our database. We configured Weka to output only rules with a minimum
confidence of 40%, and to generate, at most, 100 rules. The charts below summarize the
distribution of rules for each user, in a logarithmic scale. This test makes no particular
assessment to the quality of each rule produced.

55

Data Analysis

Dividing the day in 3 eight-hour periods

Distribution of rules

 1

 10

 100

 1000

 10000

0 1 2 3 4 5 6

N
u
m

b
e
r

o
f
u
s
e
rs

Number of rules found

Distribution of the number of rules found

Figure 5.6: Total rules found distribution per number of users

Figure 5.6 shows that for over 67% of the users in our reduced dataset no rules were
found. This means that these users exhibit no patterns in terms of a certain preference for
a genre in the three time partitions this test considered. However, we have found at least
one rule for the rest of the dataset, and a very small number of users (about 2%) have at
least three rules indicating preference for a genre in one of these three time partitions.

56

Data Analysis

 0

 20

 40

 60

 80

 100

 120

 140

1
6
h
-
2
4
h

>
>

i
n
d
i
e

1
6
h
-
2
4
h

>
>

r
o
c
k

0
8
h
-
1
6
h

>
>

i
n
d
i
e

1
6
h
-
2
4
h

>
>

p
o
p

0
8
h
-
1
6
h

>
>

c
l
a
s
s
i
c
r
o
c
k

0
8
h
-
1
6
h

>
>

r
o
c
k

1
6
h
-
2
4
h

>
>

c
l
a
s
s
i
c
r
o
c
k

1
6
h
-
2
4
h

>
>

a
l
t
e
r
n
a
t
i
v
e

0
8
h
-
1
6
h

>
>

p
o
p

1
6
h
-
2
4
h

>
>

e
l
e
c
t
r
o
n
i
c

1
6
h
-
2
4
h

>
>

h
i
p
h
o
p

0
8
h
-
1
6
h

>
>

a
l
t
e
r
n
a
t
i
v
e

1
6
h
-
2
4
h

>
>

p
u
n
k

0
8
h
-
1
6
h

>
>

p
u
n
k

0
0
h
-
0
8
h

>
>

i
n
d
i
e

0
0
h
-
0
8
h

>
>

p
o
p

0
8
h
-
1
6
h

>
>

s
i
n
g
e
r
s
o
n
g
w
r
i
t
e
r

0
8
h
-
1
6
h

>
>

f
o
l
k

0
0
h
-
0
8
h

>
>

r
o
c
k

0
0
h
-
0
8
h

>
>

p
o
p

U
s
e

rs

Rules

Rule popularity

Figure 5.7: 20 most popular rules for this time partition

Figure 5.7 shows the distribution of the 20 most popular rules found in all users for
this particular time partition.

57

Data Analysis

Dividing the day in 8 four-hour periods

Distribution of rules

 1

 10

 100

 1000

 10000

0 1 2 3 4 5

N
u
m

b
e
r

o
f
u
s
e
rs

Number of rules found

Distribution of the number of rules found

Figure 5.8: Total rules found distribution per number of users

This time the maximum number of rules we encountered was 5, but for less than 1% of
our reduced dataset. With more time partitions, the number of users which exhibited no
rules rose to 79%. Still, at least one or two rules were found for roughly 20% of the users
in our dataset.

58

Data Analysis

 0

 20

 40

 60

 80

 100

1
6
h
-
2
0
h

>
>

i
n
d
i
e

1
6
h
-
2
0
h

>
>

r
o
c
k

2
0
h
-
2
4
h

>
>

i
n
d
i
e

1
2
h
-
1
6
h

>
>

i
n
d
i
e

1
6
h
-
2
4
h

>
>

p
o
p

2
0
h
-
2
4
h

>
>

r
o
c
k

1
2
h
-
1
6
h

>
>

c
l
a
s
s
i
c
r
o
c
k

2
0
h
-
2
4
h

>
>

r
o
c
k

2
0
h
-
2
4
h

>
>

p
o
p

1
6
h
-
2
0
h

>
>

c
l
a
s
s
i
c
r
o
c
k

1
6
h
-
2
0
h

>
>

a
l
t
e
r
n
a
t
i
v
e

1
2
h
-
1
6
h

>
>

r
o
c
k

1
6
h
-
2
0
h

>
>

p
o
p

1
6
h
-
2
0
h

>
>

e
l
e
c
t
r
o
n
i
c

2
0
h
-
2
4
h

>
>

h
i
p
h
o
p

1
2
h
-
1
6
h

>
>

a
l
t
e
r
n
a
t
i
v
e

1
6
h
-
2
0
h

>
>

p
u
n
k

2
0
h
-
2
4
h

>
>

e
l
e
c
t
r
o
n
i
c

1
6
h
-
2
0
h

>
>

p
u
n
k

2
0
h
-
2
4
h

>
>

a
l
t
e
r
n
a
t
i
v
e

U
s
e

rs

Rules

Rule popularity

Figure 5.9: 20 most popular rules for this time partition

Figure 5.9 shows the distribution of the 20 most popular rules found in all users for
this particular time partition.

59

Data Analysis

Dividing the day in 24 one-hour periods

Distribution of rules

 10

 100

 1000

 10000

0 1

N
u
m

b
e
r

o
f
u
s
e
rs

Number of rules found

Distribution of the number of rules found

Figure 5.10: Total rules found distribution per number of users

This chart shows that when we consider time partitions for the day as small as an hour,
we don’t get positive results. This time, less than 0.5% of the users show that they listen
to a particular genre often in a given hour of the day.

We believe that while there are users that exhibit genre preference in a particular frame
of time, these users are not part of the majority. We are not assessing the quality of each
rule individually, but rather taking the number of rules found as an indicator of genre
preference over time for particular users.

5.3.2 Analysis of the whole dataset

Our methodology was the same as we used in 5.3.1. We divided our dataset in two, one
for analysis with 70% of the data, and the other for verification, with 30%. Again, the
split was done by random selection. We tried to search for rules for the same partitions of
a day.

Unfortunately, our results for this test came empty as we were not able to validate any
rules. We believe that the cause for this comes from the fact that the population of users
in our dataset is very disperse in terms of the listening preferences and in the hours that
they are active in Last.fm listening to music.

60

Data Analysis

With this, our conclusion is that this work would benefit greatly if we worked towards
clustering users based on the similarity of their listening preferences and of the hours that
they listen to music, and only then should we try to make this kind of analysis on each
cluster. We believe this would produce the results we sought to achieve.

Summary

In this chapter we made a shallow revision of the Knowledge Discovery in Databases
process and described the system we developed for the generation of the test files. We
used the Weka implementation of the Apriori algorithm to run several tests, with the goal
to see what genres people associate with certain times of the day and what genres people
play together in the same music listening session. While we were able to extract and
verify a set of rules for mixing genres in a session, we were unable to do so for the times
of the day. We also did an individual analysis of each profile, and showed that a large
number of users does in fact show a preference for at least one genre in a specific time of
the day.

61

Data Analysis

62

Chapter 6

Conclusions

We believe that of all the contributions this work presents, the one that had more success
was the development of a crawling application and of a very large dataset containing
information about a sample of Last.fm users. This and the data transformation scripts and
data file generators we developed will surely prove useful to whoever uses this work as
their state of the art.

We also took some interesting conclusions from the results of our tests. Our analysis
of music listening sessions is groundbreaking work, as there is no research around this
particular problem. We produced a small, yet concise set of rules that show how users
like to mix genres in their listening sessions, and showed that a large number of users do
show some preference for mixing together genres in the same session.

Our genre-time of day analysis did prove fruitful to some extent as we showed once
more, but with a different methodology than what we found in the state of the art, that
it exists a non-negligible amount of users that like to associate a particular genre with a
particular time of day.

We came to the late conclusion that perhaps the conditions we established for the cre-
ation of our research dataset were not the best. Our dataset is composed of the entire
listening history of 10,000 Last.fm users. This is perhaps more indicated towards the
analysis of individual profiles, something we did but which was not our initial goal. Per-
haps aiming to the extraction of a smaller period’s worth of played tracks of a much larger
number of users would best suit our goals.

While we did select 10,000 users at random from about a million of usernames we
discovered, the randomness of the dataset can be criticized for two main reasons:

• The seed usernames we used were all based in Porto, Portugal. Choosing seed
usernames from various places in the world would yield us a more varied dataset, in
terms of artist choices and genre preferences.

63

Conclusions

• The username discovery process was performed in a breadth-first fashion. Changing
this to a depth-first strategy would perhaps distance us even more from the seed
usernames in the Last.fm social graph.

A possible effect of these two reasons can be observed in the country distribution of the
dataset in 4.3.1, as there is no reason for Poland being the second most represented country
in the dataset, with more users than the United Kingdom, where Last.fm originates from.

6.1 Future Work

We did not explore the time component of this problem to its maximum extent. There
are more repeating patterns in time we did not analyze, like those in the cyclical nature of
weeks and years. Research shows that these, like the days of the year, have an influence on
the listener’s choice. We leave for future work to apply this methodology to this particular
component of the problem.

We came to the conclusion that while there are users that exhibit an influence of time
in their music listening choices, we found out that the large majority does not. Perhaps
working towards the clustering of the users either in terms of their genre preferences
and/or the time that they are active (listening to music) would help us achieve the results
we did not find.

We saw some results that did make sense in our session-genre analysis. It was, how-
ever, limited to a small number of genres. Again, applying a clustering of the users in
terms of genre preference would help us extend this analysis to less popular genres and
produce rules specific to certain classes of users.

64

References

[Ahn04] JoongHo Ahn. Collaborative filtering for recommender systems: a scala-
bility perspective. International Journal of Electronic Business, 2(1):77,
2004.

[BAA09] Linas Baltrunas, Xavier Amatriain, and Via Augusta. Towards Time-
Dependant Recommendation based on Implicit Feedback. 2009.

[Cel08] Oscar Celma. Music Recommendation and Discovery in the Long Tail.
PhD thesis, Universitat Pompeu Fabra, Barcelona, Spain, 2008.

[dCL09] João Norberto Fernandes da Costa Lima. Towards gathering and mining
last.fm user-generated data. Master’s thesis, Faculdade de Engenharia da
Universidade do Porto, Rua Dr. Roberto Frias, s/n 4200-465 Porto POR-
TUGAL, 2009.

[FPsS96] Usama Fayyad, Gregory Piatetsky-shapiro, and Padhraic Smyth. From
Data Mining to Knowledge Discovery in Databases. AI Magazine,
17(3):37–54, 1996.

[Goe] Maimon, Oded Goethals, Bart. Data Mining and Knowledge Discovery
Handbook. Springer-Verlag New York, Inc. Secaucus, NJ, USA c©2005.

[HK00] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Tech-
niques (The Morgan Kaufmann Series in Data Management Systems). Mor-
gan Kaufmann, 2000.

[HK07] Martin J. Halvey and Mark T. Keane. An assessment of tag presentation
techniques. Proceedings of the 16th international conference on World
Wide Web - WWW ’07, page 1313, 2007.

[HRS] Perfecto Herrera, Zuriñe Resa, and Mohamed Sordo. Rocking around the
clock eight days a week: an exploration of temporal patterns of music lis-
tening. Information Retrieval, pages 7–10.

[JCJ04] Steve Jones, Sally Jo Cunningham, and Matt Jones. Organizing digital
music for use: an examination of personal music collections. In ISMIR,
2004.

[Jon09] Richard Jones. Last.fm Radion Announcement, March 2009. http:
//blog.last.fm/2009/03/24/lastfm-radio-announcement,
last accessed on July 9, 2009.

65

http://blog.last.fm/2009/03/24/lastfm-radio-announcement
http://blog.last.fm/2009/03/24/lastfm-radio-announcement

REFERENCES

[Lam08] Paul Lamere. Social Tagging and Music Information Retrieval. Journal of
New Music Research, 37(2):101–114, June 2008.

[PK10] Chan Ho Park and Minsuk Kahng. Temporal Dynamics in Music Listen-
ing Behavior: A Case Study of Online Music Service. 2010 IEEE/ACIS
9th International Conference on Computer and Information Science, pages
573–578, August 2010.

[Res10] Zuriñe Resa. Towards time-aware contextual music recommendation: an
exploration of temporal patterns of music listening using Circular Statistics.
2010.

[SA97] Ramakrishnan Srikant and Rakesh Agrawal. Mining generalized associa-
tion rules. Future Gener. Comput. Syst., 13:161–180, November 1997.

[ZGMMF10] Elena Zheleva, John Guiver, Eduarda Mendes Rodrigues, and Nataša
Milić-Frayling. Statistical models of music-listening sessions in social me-
dia. Proceedings of the 19th international conference on World wide web -
WWW ’10, page 1019, 2010.

66

Appendix A

Description of the developed scripts

A.1 Crawler Application

The installable package of the crawler application contains the following files

Bash scripts
batch.sh Bash script for the execution of a batch crawling
logger.sh Bash script that redirects a process’s output to pro-

cesspid.log
stopjobs.sh Bash script that stops all running scripts

Table A.1: Bash scripts included in the package

Configuration files
configuration.py Python script that serves as a configuration file, defining

several run-time variables

Table A.2: Configuration files included in the package

Runnable scripts
preparation.py Preparation and maintenance script
status.py Presents a summary of the crawling process
crawl_usernames.py Crawls Last.fm user names
crawl_userprofiles.py Crawls Last.fm user profiles
crawl_usertracks.py Crawls Last.fm user listening profiles
update_usertracks.py Updates Last.fm user listening profiles

Table A.3: Runnable scripts included in the package

67

Description of the developed scripts

Libraries
pylast.py PyLast Library
connection.py Connection module. Supports connection to MySQL

and to Last.fm
timecontroller.py API request limit compliance module
util.py Functions shared between scripts

Table A.4: Library scripts included in the package

A.2 Data Transformation scripts

A.2.1 TagPool script

The TagPool script is responsible for helping in the integration of the Users and the Artists
database. When the genre of an artist that is not present in the database is requested, it
fetches fresh data from Last.fm and stores it in the database.

TagPool
TagPool(threshold)
Initializes an instance of TagPool with the given threshold as the default for validating tags
get_genre(artist)
Returns a list of tags that were determined by the script to describe the given artist’s genre
facet

Table A.5: Summary of the TagPool script

A.2.2 Timeline script

The Timeline script is responsible for retrieval of the data from the Users database.

68

Description of the developed scripts

Timeline
get_listening_data(username)
Returns a python list of python tuples containing each played item for the given username
get_time_to_playeditem(username)
Returns a python dictionary (map) that associates each timestamp with each
item played by the given user
get_time_to_playeditem_filtered_by_genre(username, genreset)
Returns a python dictionary (map) that associates each timestamp with each item played
by the given user, with the option to include only items that are associated with the genres
in the given tag set
get_time_to_playeditem_filtered_by_artists(username, artistset)
Returns a python dictionary (map) that associates each timestamp with each item played
by the given user, with the option to include only items that are associated with the artists
in the given artist set
get_time_to_genre(username)
Returns a python dictionary (map) that associates each timestamp with the tag
(genre) of each item played by the given user
get_genre_to_time(username)
Returns a python dictionary (map) that associates each tag (genre) in the given user’s
profile with the set of timestamps where they ocurred
get_session_data(username)
Returns a python list of python tuples that contain the beginning and ending
timestamps and the played items that fall in each music listening session
in the given user’s profile
get_session_genre_data(username)
Returns a python list of python tuples that contain the beginning and ending
timestamps and the genres associated with the played items that fall in
each music listening session in the given user’s profile
get_session_lengths(username)
Returns a list of session lengths for each existing session in the given user’s profile
get_all_artists(username)
Returns a list of all the artists in the given user’s profile
get_all_genres(username)
Returns a list of all the genres in the user’s profile

Table A.6: Summary of the methods available in the timeline script

A.2.3 CircularTimeline script

The CircularTimeline script is responsible for retrieval of the data from the Users database
and its transformation into a timeline of circular nature.

69

Description of the developed scripts

CircularTimeline
get_months_to_playeditems(username)
Returns a python dictionary (map) between months and items played by the given user
get_months_to_playeditems_filtered_by_genres(username,
genreset)
Returns a python dictionary (map) between months and items played by the given user,
filtering out
played items which are not associated with the genres in the given genre set
get_months_to_playeditems_filtered_by_artists(username,
artistset)
Returns a python dictionary (map) between months and items played by the given user,
filtering out
items which are not associated with the artists in the given artist set
get_weekdays_to_playeditems(username)
Returns a python dictionary (map) between weekdays and items played by the given user
get_weekdays_to_playeditems_filtered_by_genres(username,
genreset)
Returns a python dictionary (map) between weekdays and items played by the given user,
filtering out
items which are not associated with the genres in the given tag set
get_weekdays_to_playeditems_filtered_by_artists(username,
artistsset)
Returns a python dictionary (map) between weekdays and items played by the given user,
filtering out
items which are not associated with the artists in the given artist set
get_dayhours_to_playeditems(username)
Returns a python dictionary (map) between day hours and items played by the given user
get_dayhours_to_playeditems_filtered_by_enres(username,
genreset)
Returns a python dictionary (map) between day hours and items played by the given user,
filtering out
items which are not associated with the genreset in the given tag set
get_dayhours_to_playeditems_filtered_by_artists(username,
artistset)
Returns a python dictionary (map) between day hours and items played by the given user,
filtering out
items which are not associated with the artists in the given artist set
get_dayhours_to_genres(username)
Returns a python dictionary (map) between day hours and the genres (genres) associated
with the items played by the given user that fall on each day hour

Table A.7: Summary of the class CircularTimeline

A.3 Chart generation scripts

This section describes the scripts that were developed in order to generate charts and plots
that allow us to visualize the data for a given user.

70

Description of the developed scripts

Plotting scripts
plot_days.py
Creates a circular plot that shows how much music has been listened to in each of the 24
hours of the day.
Created using python-matplotlib.
plot_weekdays.py
Creates a plot that shows how much music has been listened to in each of the 7 days of the
week.
Created using python-matplotlib
plot_months.py
Creates a plot that shows how much music has been listened to in each of the 12 months of
the year.
Created using python-matplotlib
plot_timeline.py
Creates a plot that represents graphically the user’s profile timeline. Created using
gnuplot

plot_genre_timeline.py
Creates a plot that represents graphically a particular genre’s timeline.
Created using gnuplot

Table A.8: Plotting scripts included in the package

71

