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Abstract 

The need of reducing greenhouse gas emissions in the electrical energy supply field, recent 

technological developments in the microgeneration domain and electricity business restructuring are the 

main factors responsible for the growing interest in microgeneration. Large scale integration of small, 

modular generation units - the microsources - with power ratings less than a few tens of kilowatts to 

Low Voltage (LV) networks is leading with a new concept, the MicroGrid (MG). 

A MG comprises a LV network, its loads, several microsources connected to it through inverter 

interfaces and a hierarchical control and management system. Microgeneration technologies include 

mainly renewable energy systems, such as small wind generators and photovoltaics, microturbines, fuel 

cells, and storage devices such as flywheels or batteries. The MG advanced control and management 

system allows the MG operation as a flexible active cell either interconnected to the Medium Voltage 

(MV) distribution network or isolated from it. 

Large deployment of MG will lead with the Multi-MicroGrid (MMG) concept. In order to lead with 

the future challenges of operation and development of these electrical networks exploiting adequately 

the benefits provided by MG, namely whenever the upstream system has been lost, new computational 

tools based on mathematical models are required. However, in dynamic behaviour studies, the whole 

MMG system cannot be represented in a detailed manner, because the huge system dimension implies a 

computational burden that can render the study of MMG dynamic behaviour unfeasible. Therefore, 

reduced order models for MG need to be derived. 

This research work aimed to derive dynamic equivalents for MG in order to reduce the complexity 

of the whole MMG to a computational feasible size and, at the same time, speed up numerical 

simulations with limited technical resources. As the MG own features did not recommend classical 

dynamic equivalency techniques commonly used to derive dynamic equivalents for conventional power 

systems, the MG dynamic equivalents are built upon the nonlinear MG detailed models using system 

identification techniques for a model defined on the basis of physical considerations and also exploiting 

Artificial Neural Networks. 

The MG dynamic equivalents thus obtained are able to represent the MG dynamic behaviour with 

respect to the MV network following MMG islanding and during load following transients when the 

MMG is operated autonomously. The performance of the developed MG dynamic equivalents was 

assessed for different MMG, different types of disturbances as well as different operating conditions. 
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Resumo 

A necessidade de reduzir as emissões de gases com efeito de estufa aliada à reestruturação dos 

mercados de energia eléctrica, bem como os recentes desenvolvimentos tecnológicos no domínio da 

microgeração constituem os principais factores responsáveis pelo crescente interesse neste domínio. A 

interligação dessas pequenas fontes de geração modulares, com potências nominais não excedendo 

algumas dezenas de quilowatt, nas redes de distribuição de Baixa Tensão (BT) dá lugar à formação de 

um novo tipo de sistema de energia – a Micro Rede (MR). 

Uma MR é constituída por uma rede de BT à qual, para além das cargas, estão ligadas unidades de 

microgeração através de interfaces baseadas em electrónica de potência e por uma estrutura de controlo 

hierárquico suportada por um sistema de comunicações, sendo a gestão de operações feita de uma 

forma centralizada. As tecnologias de microgeração incluem, principalmente, fontes renováveis, tais 

como pequenos geradores eólicos e painéis solares fotovoltaicos, microturbinas, pilhas de combustível e 

unidades de armazenamento de energia, tais como volantes de inércia (flywheels) e baterias. As MR 

devidamente controladas podem ser ligadas à rede de distribuição de Média Tensão (MT) ou operadas 

de forma autónoma, quando isoladas da rede a montante. 

A integração de MR em larga escala irá dar lugar à formação de Multi-Micro Redes (MMR). De 

modo a lidar com os desafios futuros associados ao desenvolvimento e exploração destas redes 

eléctricas, tirando partido dos benefícios associados às MR, nomeadamente quando a MMR é operada 

de forma autónoma, são necessárias ferramentas computacionais baseadas em modelos matemáticos 

adequados. No entanto, em regime dinâmico, a representação da MMR de forma detalhada conduz a 

sistemas com um elevado número de equações diferenciais não lineares, cuja resolução poderá 

comprometer a realização de estudos de comportamento dinâmico, pelo que é necessário dispor de 

modelos de ordem reduzida para as MR. 

Este trabalho de investigação teve como objectivo o desenvolvimento de equivalentes dinâmicos 

para MR de modo a reduzir a complexidade do modelo da MMG e, em simultâneo, reduzir os elevados 

tempos de simulação. Dado que as características especificas das MR não aconselham a aplicação das 

técnicas convencionais, foram utilizadas técnicas de identificação de sistemas para desenvolver 

equivalentes dinâmicos para MR e adoptandas representações matemáticas baseadas em considerações 

físicas e em Redes Neuronais Artificiais. Os equivalentes dinâmicos obtidos permitem simular 

correctamente o comportamento dinâmico de MR relativamente à rede de distribuição de MT 

considerando a passagem da MMR a rede isolada e variações súbitas de carga, quando a MMR é 

operada de forma autónoma. O desempenho dos equivalentes dinâmicos para MR foi avaliado 

considerando MMR distintas e diferentes tipos de perturbações.  
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Résumé 

Le besoin de réduire les émissions de gaz en effet de serre alliée à la réorganisation des marchés 

d'énergie électrique, ainsi que les récents développements technologiques dans le domaine de la micro 

génération constituent les principaux facteurs responsables du progressif intérêt dans ce domaine. 

L'interconnexion de ces petites sources de génération modulaires, avec des puissances nominaux en ne 

dépassant pas quelques dizaines de kilowatt, dans les réseaux de distribution de Basse Tension (BT) fait 

place à la formation d'un nouveau type de système d'énergie - le Micro Réseau (MR). 

Un MR est constituée par un réseau de BT à laquelle les unités de micro génération sont liées à 

travers des interfaces basées sur l'électronique de puissance ayant en plus une structure de contrôle 

hiérarchique supportée par un système de communications, en présentant une gestion d'opérations 

locale faite d'une forme centralisée. Les technologies de micro génération incluent principalement des 

sources renouvelables, tels comme de petits générateurs éoliens et panneaux solaires photovoltaïques, 

micro turbines, piles de combustible et unités de stockage d'énergie, tels comme volants d'inertie 

(flywheels) et batteries. 

L'intégration sur large échelle de MR conduira à la formation de Multi Micro Réseaux (MMR). Afin 

de traiter les défis futurs associés au développement et à l'exploration de ces réseaux électriques en 

obtenant des bénéfices que MR peut fournir, notamment quand MMR est opéré de forme indépendante, 

il nous faut des outils informatiques ajustés, en utilisant des modèles mathématiques appropriés. 

Cependant, dans le régime dynamique, on ne doit pas adopter des modèles détaillés pour MMR, 

puisque la résolution de systèmes avec un élevé nombre d'équations différentielles non linéaires qui 

décrivent le comportement des unités de micro génération exige un grand effort de calcul qui pourra 

rendre impraticable l'analyse de MMR dans un régime dynamique. Donc, il faut disposer de modèles 

d'ordre réduit pour les MR. 

Ce travail de recherche a eu pour but le développement d'équivalents dynamiques pour MR afin de 

réduire la complexité du modèle de MMG et, simultanément, de réduire les temps de simulation. Vu les 

caractéristiques spécifiques de MR, l'application des techniques conventionnels, n'est pas recommandée 

au cas de MR. En effect les correspondants équivalents dynamiques ont été construits à partir du 

modèle détaillé de MR en utilisant des techniques d'identification de systèmes pour un modèle defini 

sur la base des considérations physiques et aussi en exploitant des Réseaux de Neurones Artificiels. Les 

équivalents dynamiques ainsi obtenus permettent de simuler correctement le comportement dynamique 

de MR à l'égard du réseau de distribution de MT dans le passage de MMR au réseau isolé et dans les 

situations transitoires provoquées par les variations subites de charge quand MMR est opérée de forme 

indépendante. La performance des équivalents dynamiques développés a été évaluée pour de différents 

MMR et pour différents types de perturbations et de conditions d’operation. 
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Chapter 1 

Introduction 

1.1 Preliminary considerations 

Energy supply in Europe has been dominated by the large scale centralized combustion of 

fossil fuels (coal, oil and gas), nuclear and hydro power, with energy delivered over long 

distances to consumers. Concerning the Europe sustainable development, this traditional 

economy of scale presents some drawbacks. On the one hand, a significant amount of Europe’s 

generation capacity, both coal and nuclear fuelled, is reaching the end of its useful life and the 

network infrastructure is also old, requiring investments in a short-term on the transmission and 

distribution systems. On the other hand, the continuous increasing demand for energy, in 

particular for electricity, has stressed a number of shortcomings: 

• High level of dependency of imported fuels leading to potential price rises and potential 

supply disruptions; 

• Large environmental impact on greenhouse gases and other pollutants; 

• Increased transmission losses; 

• Necessity for continuous upgrading of transmission and distribution systems. 

Whilst energy remains a major component of economic growth, such deficiencies have a 

direct impact on the world economical development, stability concerning the security of energy 

supply, environmental protection and well-being of world’s citizens. These issues provided the 

main drivers for energy research within the framework of EU sustainable development. 

Wind generators, photovoltaic panels, fuel cells and microturbines – just to mention a few – 

are new forms of electricity generation under development. They define the so called RES and 

involve the exploitation of distributed sources through the concept of DG. Today, wind power 

and CHP are entering into a competitive level with traditional forms of energy generation. 

Tomorrow it is expected that one speaks also about microgeneration (microturbines, micro-

CHP, photovoltaic systems and fuel cells). 

RES and DG for heating, cooling and electricity have the potential to become the 

foundation of a future more sustainable energy supply system. Their large scale deployment 



Chapter I – Introduction 

2 

will transform the energy landscape from a system dominated by the centralized combustion of 

fossil fuels to a new one in which new technologies, environmentally friendly, contribute to a 

substantial development. On the other hand, DG can offer additional value to the grid system 

operators by providing [1]: 

• Deferral of investments to transmission and distribution systems; 

• Reduction of losses in the distribution system; 

• Provision of network support services or ancillary services. 

From an investment view point, it is generally easier to find sites for RES and DG than for 

large central power plants and, in addition, such units can be installed in a short time, near to 

the end consumer. The widespread integration of RES and DG together with energy efficiency, 

covering supply and demand, have provided support to achieve the major EU policy objectives 

[2, 3]: 

• Sustainable development, combating climate changes and reducing air pollutants. The 

shift from the large scale combustion of fossil fuels to a more decentralized energy 

supply based on RES has contributed for meeting the Kyoto commitments, regarding 

the emission of greenhouse gases, particularly 2CO : % 8  reduction of emissions from 

1990 levels by 2008-2010 and % 20  by 2020 compared to 1990; 

• Security and diversity of energy supply. Reducing the external energy dependence is 

crucial for the development of a dynamic and sustainable economy for Europe; 

• Increasing the penetration of RES, doubling their share in energy supply quota from 

% 6  to % 12  of gross energy consumption and raising their part in electricity 

production from % 14  in 2001 to % 22  is an objective to be attained by 2010; 

• Energy market liberalization, increasing opportunities for smaller scale generators. 

However, the integration of both RES and DG into the overall power systems operation 

requires that energy generation in both transmission and distribution systems can no longer be 

considered as a passive appendage. Reliability, safety and quality of power are the main issues 

linked to the large-scale deployment of DER so that their effect on the European transmission 

and distribution networks cannot be neglected. Rather, it must be addressed with a 

comprehensive system approach [3]. 

Therefore, DG current issues are how to increase the penetration level of DER in order to 

gain the highest benefits, ensuring, at the same time, future power supply reliability and 

quality. In addition, major technological and regulatory changes will be needed to 
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accommodate the new open and unified electricity service market approach during the next 

decades in Europe. For this purpose a substantial and continued RTD effort is required. 

The research projects successfully developed under the Target Action “Integration of 

Renewable Energies and Distributed Generation in European Electricity Networks” in EU FP5 

are considered as the start point for the development of the first generation of new architectures 

for electricity grids. The EU cluster IRED involved seven projects dealing with the integration 

of RES and DG. The MicroGrids project, MicroGrids: Large scale integration of 

MicroGeneration to Low Voltage Grids, Contract ENK5-CT-2002-00610 [4], is one of them 

and was the first attempt at EU level to deal in-depth with MicroGrids. 

Activities in this area are continuing in FP6 with very promising large integrated projects, in 

which more and more utilities and other stakeholders in the electricity sector, usually 

competitors in the international market, are showing their readiness to share know-how and 

efforts [3] . More-MicroGrids Project, More-MicroGrids: Advanced grid architectures for the 

integration of DER within local distribution networks, including MicroGrids, Contract No. 

019864 (SES6) [5], is one of them, aiming the increase of DER integration in electrical 

networks through the exploitation of the MicroGrid concept. 

The Commission proposal for the FP7, within the theme energy, confirms power networks 

and distributed generation as a priority for future research activities. The research area referred 

to as “Smart Energy Networks” is the natural evolution of both past and current RTD activities 

on integration of DER. Thus, the objective of this area is to increase the efficiency and 

reliability of the European electricity and gas systems and networks e.g. by transforming the 

current electricity grids into an interactive (customers/operators) service network, and to 

remove the technical barriers to the large scale deployment and effective integration of DER 

[3]. 

Following the increasing penetration of DG in MV networks, dissemination of small size 

dispersed microgeneration systems connected to LV distribution systems is expected to 

become one of the means to face the continuous demand growth. The need of reducing 

greenhouse gas emissions, recent technological developments related with the improvement of 

microgeneration efficiency and the possibility of exploiting RES are important factors that will 

contribute, in a short term, to an effective integration of microgeneration in LV grids. Such 

large deployment of microgeneration is leading to the adoption of the MicroGrid concept, 

which was investigated within the framework of the MicroGrids EU R&D project.  
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A MicroGrid (MG) comprises a LV network, its loads, several small and modular 

generation units in the range of a few tens of kilowatts or even less connected to it through 

inverter interfaces and an embedded hierarchical control and management system [6]. Thus, the 

MG concept is defined as a LV distribution system with DG sources - the microsources - 

operated as a single coordinated entity, being a new paradigm for the development of electric 

power systems. Microgeneration technologies include RES, such as wind and PV generators, 

DG, like microturbines and fuel cells, and also storage devices such as flywheels or batteries. 

A key economic potential of the application of distributed energy sources at customer 

premises lies in the opportunity to use locally the waste heat from conversion of primary fuel to 

electricity. There have recently been significant progresses in developing small, kW-scale, 

CHP applications, known as micro-CHP. These systems, based currently on Stirling Engines, 

will later use fuel cells and are expected to play a very significant role in the MG of Northern 

EU countries. On the other hand, PV systems are anticipated to become increasingly popular in 

Southern EU countries. The application of micro-CHP and PVs potentially increases the 

overall efficiency of utilizing primary energy sources and consequently provides substantial 

environmental gains regarding carbon emissions. 

In addition, MG offer considerable advantages to network operation due to their much more 

sophisticated control capabilities. MicroGrids can be mostly operated interconnected to the MV 

distribution network, but they can also be operated isolated from the main grid, in case of faults 

in the upstream network [6, 7]. Preliminary experiments on a real MG islanded operation were 

performed in a prototype system installed in the Laboratories of the National Technical 

University of Athens [8]. From the customer point of view, MG can provide both thermal 

power and electricity to feed the needs of local consumers, and in addition enhance local 

reliability, reduce emissions, improve power quality by supporting voltage and reducing 

voltage dips. MG can also provide network support in times of stress by relieving branch 

congestions. Reducing of LV consumer’s interruption time can be performed by allowing MG 

islanded operation until MV network is available and by exploiting the MG generation and 

control capabilities to provide fast black-start at the LV level, after a general system black-out 

[9, 10]. 
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1.2 Motivations and objectives of this thesis 

It is expected that, in a near future, several MG can be connected on several adjacent MV 

feeders coexisting with MV loads and distributed generation units. The MG operation 

flexibility will then be extended to the MV level through suitable control schemes, leading with 

the Multi-MicroGrid concept, which is being developed within the framework of the More-

MicroGrids project. 

Large deployment of MG will have a considerable impact on the future operation and 

development of electricity networks. Therefore, new tools and simulation approaches are 

required to address this subject and to quantify the benefits of MG. From the possibility to have 

hundreds of these active cells connected to the MV network, a large number of active sources 

together with their inverter interfaces should be considered and therefore a very high 

dimensional system will arise. So, the use of detailed models for MG components implies a 

computational burden which will render the study of MMG dynamic behaviour unfeasible, 

justifying thus the need of appropriate dynamic equivalents for MG in order to speed up 

numerical simulations. 

Thus, the main objective of this thesis is to derive dynamic equivalents for MG, able to 

represent its dynamic behaviour with respect to the MV network when the MMG is operated 

autonomously. The MG dynamic equivalents are then established from the MG nonlinear 

detailed model and will replace MG in dynamic simulation tools, reproducing their relevant 

dynamics in time domain simulations. 

Conventional dynamic equivalence techniques are mainly based on either modal analysis or 

coherency based methods. The first techniques use a linearized version of the entire power 

system state space model and have been used to study dynamics related to small perturbations 

around an operating point. In contrast, coherency based methods allows to represent dynamic 

nonlinearities and have been widely used to build dynamic equivalents for conventional large 

power systems. However, as these methods are based on the coherency concept and its key step 

is coherency recognition between generators, their application to MG do not make sense, since 

MS are connected to the LV grid through inverter interfaces and, in addition some of them, like 

fuel cells and PV systems are not characterized by rotor angles or angular speeds.  

With technical advancements mainly in communications and computer technologies, 

alternative methodologies do develop dynamic equivalents are emerging. These methodologies 

are based on system identification theory and then they use measurements of important 



Chapter I – Introduction 

6 

signals/variables to find parameters for a suitable system representation. Also ANN have been 

used to derive power system dynamic equivalents not only for conventional power systems, but 

also for distribution networks containing a significant capacity of distributed generation, 

without the need of a detailed knowledge of the power subsystem to be reduced. This fact can 

be viewed as an advantage to build dynamic equivalents for MG. 

Thus, the structure of this thesis follows the organization presented in the following section. 

1.3 Thesis organization 

The research work presented in this thesis is structured over 7 chapters as follows. 

Firstly, in chapter 1, an introduction is presented. 

In chapter 2, both MicroGrid and Multi-MicroGrid concepts are presented. Mathematical 

models able to represent the dynamic behaviour of microgeneration systems connected to the 

LV network are also described. This involves the description of their inverter interfaces as well 

as of the integrated control inside the MG, focusing particularly the case when the MMG is 

operated autonomously following a disconnection from the upstream main network. 

In chapter 3, the state-of-the art of dynamic equivalent techniques used to derive dynamic 

equivalents for conventional power systems is presented. In order to pursue the development of 

MG dynamic equivalents, a detailed analysis of these main techniques, such modal analysis 

and coherency based methods is presented and their applicability to MG is also assessed. 

Tacking into account the particular features that characterize these new power systems, both 

modal analysis and coherency based methods are not recommended for developing MG 

dynamic equivalents purposes. 

In chapter 4, system identification theory is exploited in order to derive suitable dynamic 

equivalents for MG. The theoretical concepts behind the main techniques of nonlinear dynamic 

systems identification as well as the state of the art of these main techniques are presented and 

discussed, taking into account the physical knowledge that can be extracted from chapters 2 

and 3 as well as the purpose of the MG dynamic equivalents to be derived. 

From this discussion two promising methodologies arose concerning the MG mathematical 

representation. They are black-box modelling approaches based on ANN and physical 

modelling approaches. However, their applicability to MG deserves a more in-depth 

investigation for two main reasons: 
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• The classical stages to derive dynamic equivalents for conventional power systems 

have to be replaced by appropriate system identification procedures; 

• An acceptable trade-off between development effort and validity domain should be 

achieved. 

Therefore a common system identification procedure is also presented and afterwards 

identification techniques suitable to cope with both black-box and physical modelling 

approaches are also addressed in chapter 4. 

In chapter 5, the development of the two promising solution approaches identified in 

chapter 4 is carried out. A dedicated dynamic simulation platform was developed for 

generating high quality data sets and for validation purposes, playing the role of the numerical 

set-up. Thus, two main simulation packages were included: 

• The MMG detailed model, which includes the dynamic models of microgeneration 

systems described in chapter 2 linked together with the LV network algebraic equations 

in order to build the MG detailed model, which, in turn, is connected to the MV 

network. This module is used to generate high quality data sets; 

• The MMG equivalent model, in which the MG detailed model is replaced by the 

derived MG dynamic equivalents in order to further evaluate their performances. 

In chapter 6, the two methodologies developed in chapter 5 are applied to MG and the 

performances of the dynamic equivalents thus obtained are evaluated. For this purpose two 

study cases are considered and the time domain responses provided from both MMG detailed 

and equivalent models following disturbances are compared. 

The main conclusions and future developments are presented in chapter 7. 

Finally, the mathematical model of round rotor synchronous machines as well as the 

parameters corresponding to the dynamic models of microgeneration systems of the test 

systems used in this thesis are presented in appendix A. 
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Chapter 2 

Models for Microgeneration and 

MicroGrids 

2.1 Introduction 

The Multi-Microgrid concept, which is being developed within the framework of the EU 

R&D More-MicroGrids Project [5], involves a structure formed at the MV level, comprising 

LV MicroGrids and distributed generation units connected at several adjacent MV feeders 

together with MV loads. Technical operation of such a system requires the development of a 

hierarchical control structure [5] able to manage the distribution grid either in normal 

interconnected mode or emergency mode. This emergency mode involves namely islanding 

operation of MV distribution grid, which requires a careful dynamic behaviour assessment. 

Adequate dynamic models for these microgeneration devices are therefore required. 

This chapter aims at the description of mathematical models able to represent the dynamic 

behaviour of microgeneration devices connected to the LV network, as well as the dynamic 

behaviour of the MG with respect to the upstream MV network over time ranges of a few tens 

of milliseconds up to a few seconds, which involves also the description of integrated control 

of the microgeneration units inside the MG. These models were identified through a 

bibliographic research from the available literature and developed within the framework of the 

EU R&D MicroGrids Project. Concerning those models, two main issues must be stressed: 

• The inverter interfaces are modelled based on their control functions only, so that 

switching transients, harmonics and inverter losses are neglected. This is considered 

a general procedure as described in [11-15], since fast transient phenomena are not 

relevant for the purpose of dynamic behaviour; 

• Only three-phase balanced operation is considered, despite the fact that it is not a 

common situation in LV networks. 



Chapter II – Models for Microgeneration and MicroGrids 

10 

The microgeneration devices can be of different types and technologies, namely: fuel cells, 

micro wind turbines, solar PV panels, microturbines, micro CHP with Stirling engines, Diesel 

generators, etc. In this thesis only the first 5 generation devices are addressed. 

Due to the lack of more realistic models reported in the literature, this research deals 

therefore with three-phase models of microgeneration systems, which describe the MG 

dynamic behaviour only under balanced conditions. These models involve also models of 

inverter interfaces. The development of models able to simulate the dynamic behaviour of 

single-phase microgeneration systems and MG operating under unbalanced conditions as well 

as the corresponding MG dynamic equivalents constitute, right now, a subject for future 

research. 

The mathematical models adopted to represent the dynamic behaviour of each MG 

generation system were adapted in order to be linked together with the algebraic equations 

describing the LV network forming thus the whole model of a MG as a multi-machine power 

system model [16, 17] in chapter 5. Particular attention is given to represent the MG dynamic 

behaviour when the MMG is operated autonomously following a disconnection from the 

upstream main network.  

Section 2.2 describes both MG and MMG concepts. Section 2.3 is devoted to dynamic 

models of microsources as well as the corresponding interface inverters. In section 2.4, control 

strategies for MG operation are discussed and finally, in section 2.5, the summary and the main 

conclusions are presented. 

2.2 The MicroGrid and Multi-MicroGrid concepts 

As already mentioned previously, the MG concept is a logical evolution of simple 

distribution networks with high penetration of DG. MicroGrids comprise LV distribution 

systems, in which small and modular generation units, in the range of a few tens of kW or even 

less, are connected together with loads and storage devices. Furthermore, a MG is an extremely 

flexible cell of the electrical power system if properly controlled and managed. Advanced 

control strategies allow two different operation modes [6, 7, 9, 10, 18, 19]: 

• Normal interconnected mode, when the MG is connected to the MV network, being 

either supplied from it or injecting some amount of power into it; 
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• Emergency mode, when the disconnection from the MV network occurs following a 

fault in the upstream system. 

Therefore, MG offer considerable advantages to network operation either from the utility or 

from the customer view points. Thus, distributed generation located close to loads will reduce 

flows in both transmission and distribution systems with, at least, two important effects: loss 

reduction and deferral of investments related to future grid reinforcements and expansion, since 

branch congestion can be controlled. On the other hand, MG can provide both thermal and 

electricity needs to consumers and, at the same time, enhance local reliability and improve 

power quality by supporting voltage and reducing voltage dips. In addition, MG potentially 

lower costs of energy supply [4]. 

The increase of penetration of microgeneration in electrical networks through the 

exploitation and extension of the MG concept leads with the MMG concept, which is being 

developed within the framework of the EU More-MicroGrids Project [5], as already mentioned 

previously. 

In order to highlight both MG and MMG concepts, their control and management 

architectures are presented in the following two subsections. 

2.2.1 The MicroGrid control and management architecture 

The MG concept involves an operational architecture, developed within the EU R&D 

MicroGrids project [4, 20], which is presented in figure 2.1. 

This MG example includes: 

• Several feeders supplying electrical loads; 

• Microgeneration systems; 

• Storage devices; 

• A hierarchical-type management and control scheme supported by a communication 

infrastructure. 

In terms of current available technologies, the microgeneration systems can include several 

types of devices, like fuel cells, small wind turbines, PV systems and microturbines, typically 

in the range of 25-100 kW powered by natural gas or bio fuels. CHP is one of the most 

promising applications, leading to an increase of the overall energy effectiveness of the whole 

system [20]. Most of the MS are not suitable for LV network direct connection, due to the type 
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of energy conversion system used. Therefore power electronic interfaces are required for grid 

interconnection, as it can be observed from figure 2.1. 

 

Figure 2.1. MicroGrid architecture comprising microsources, loads and control devices 

A special issue related to MG operation concerns MS slow response to the control signals in 

order to change the output power. Therefore, when the MG is operated autonomously, the 

absence of synchronous machines connected to the LV networks requires that power balance 

during transients have to be provided by energy storage devices, either flywheels connected to 

the LV network through AC/DC/AC power electronic interfaces or batteries and 

supercapacitors connected to the dc-link of microgeneration systems, which are continuously 

charged by the primary energy sources. 

Although MG are dominated by inverter interfaced MS that are inertia-less, they offer the 

possibility of a very flexible operation allowing the MG ability to behave as a coordinated 

entity in both interconnected and islanded operation. Storage technologies become important 

components with the duty of helping on MG stabilization during transient phenomena and in 

the moments subsequent to islanding. However, in order to achieve the full benefits from the 

MG operation, a hierarchical control and management systems have also been envisaged, 

which comprises three important control levels, as depicted in figure 2.1. 
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• Local Microsource Controllers and Load Controllers. The MC take advantage of the 

MS power electronic interface and can be enhanced with various degrees of 

intelligence in order to control both voltage and frequency of the MG during 

transient conditions based on only local information. 

• MicroGrid Central Controller. The MGCC functions can range from monitoring the 

active and reactive power of MS to assuming full responsibility of optimizing the 

MG operation by sending set points to the MC and LC in order to control 

microgenerators and controllable loads, respectively. 

• Distribution Management System, which can be used to manage the integration and 

operation of a MG and the upstream distribution network. 

2.2.2 The Multi-MicroGrid control and management architecture 

As stated before, the MMG concept being developed under the framework of Multi-

MicroGrid project is related to a higher level structure, formed at the MV level, consisting of 

DG units and LV MicroGrids connected on several MV feeders. Microgrids, DG units and MV 

loads under DMS control, can be considered as active cells for control and management 

purposes. Technical operation of such systems requires the adoption of a control structure, 

where all these active cells, as well as MV/LV passive substations, should be controlled by the 

CAMC to be installed at the MV bus level of a HV/MV substation, under the responsibility of 

the DSO [5]. 

The tremendous increase in dimension and complexity that the management of such a 

distribution system presents requires the use of a flexible decentralized control and 

management architecture. A central management for a DMS centre would not be effective 

enough, due to the large amount of data to be processed and treated, and would not assure an 

autonomous management namely during islanding mode of operation. The CAMC is therefore 

playing here a key role and being responsible for the data acquisition process, for enabling the 

dialogue with the DMS upstream, for running specific network functionalities and for 

scheduling the different active cells in the downstream network [5]. Generally speaking, this 

new management and control architecture is represented in figure 2.2.  
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Figure 2.2. Control and management architecture of a Multi-MicroGrid 

The management of the MMG will be performed through the CAMC, acting as an 

intermediate DMS controller, that will receive information from the upstream DMS, 

measurements from MV networks and RTU, existing MGCC and will have to deal with 

constraints and contracts to manage the MMG in both HV interconnected and emergency 

modes of operation. This requires namely tackling with the following aspects: state estimation, 

coordinated voltage support and flow control, coordinated frequency support and emergency 

functions. The effect of such a combined interaction and new global operation strategy is 

expected to enable an increase of the global penetration of microgeneration. 

The analysis of the dynamic behaviour of several MG and other DG units operating all 

together is therefore required. However, dynamic simulations using detailed models of several 

MS, spitted throughout different MG, together with DG units connected in the MV network, 

requires a very large computational effort. In addition, this is a very time consuming procedure. 

Therefore dynamic equivalents for MG need to be derived taking into account the MS 

connected to the MG, the storage devices installed as well as the MG control strategies to be 

followed when it is operated under the framework of the MMG concept. 
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2.3 Dynamic modelling of MicroGrids 

The technical feasibility of the MG concept described previously has been demonstrated 

within the framework of the EU MicroGrids Project [4, 21]. For this purpose, a simulation 

platform able to simulate the steady state and dynamic operation of LV networks that include 

micro generation sources was developed [6, 7, 9, 10, 18, 19, 21-23]. This included several 

models able to describe the MS dynamic behaviour considering their inverter interfaces over a 

few tens of seconds [22, 23]. 

Microsources connected to the network through inverter interfaces have been commonly 

represented by a DC voltage source placed before the inverter [12], as depicted in figure 2.3. 
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Figure 2.3. Model of an inverter interfaced microsource 

The main blocks are: 

• A DC voltage source connected to the DC stage of the inverter; 

• An inverter interfacing the DC system to the AC network. Limiting the analysis of 

the fundamental frequency supplied by the inverter, it can be modelled as the 

generated fundamental amplitude, e, before the filter; 

• A low-pass LC filter which blocks the inverter generated high frequency harmonics. 

At the fundamental frequency it is represented through the equivalent impedance of 

the filter, fZ . 

A brief overview of dynamic models suitable to describe the response of different 

microsources and storage devices as well as their inverter interfaces in order to evaluate the 

global response of the MG system namely during islanding operating conditions is presented in 

the following three subsections. 
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2.3.1 Micro-sources modelling 

Several MS models able to describe their dynamic behaviour have been developed during 

the last years and are available from the literature. These models include the main 

microgeneration technologies currently available, such as microturbines, fuel cells, 

photovoltaic arrays and small wind generators. 

There are essentially two types of microturbines, which differ basically from the shaft 

construction [24]. One is a high-speed single-shaft unit with both the compressor and turbine 

mounted on the same shaft as the electrical synchronous machine. In this case, turbine speeds 

mainly range from 50000 to 120000 rpm. The other type of microturbines is a split-shaft 

designed one that uses a power turbine rotating at 30000 rpm and a conventional generator 

connected through a gearbox. Although this is a proven and robust technology, the split-shaft 

design has not been widely used for small scale power generation. Rather, it is typically used 

for machine drive applications, since it does not require power electronic interfaces [25]. 

Therefore, in this research only single-shaft microturbines are considered. 

As stated before, fuel cells are an emerging class of small scale power generation 

technology. Two types of fuel cells are likely to be used as power plants, namely SOFC and 

MCFC [26]. In order to study the dynamics of generating units based on SOFC and MCFC 

technologies several dynamic models have been reported in the literature [22, 24, 27-39]. Most 

of them are focused on SOFC system dynamic behaviour modelling with the expectation that 

the response of MCFC system would be similar [24, 28, 35, 36]. Therefore, in this research, the 

SOFC model described in [24, 35] was adopted. 

Concerning small wind turbines, although it is not the most common solution, a dynamic 

model based on an induction generator directly connected to the network like in [7, 10] was 

considered. 

In order to model a PV system, it was assumed that the array is always working at its 

maximum power level for a given temperature and irradiance as described in [23]. 

Then, the dynamic models for SSMT, SOFC, small wind generators and PV systems are 

presented in the following subsections. 
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2.3.1.1 Single-shaft microturbines 

Single shaft microturbines are small and simple-cycle gas turbines with outputs ranging 

from around 25 to 500 kW  [40], which have been used in small scale distributed generation 

systems either for electrical power generation or CHP applications. Although microturbines 

can burn different fuels, most of the available systems use natural gas as the primary fuel. 

The basic technology used in microturbines is derived from aircraft auxiliary power systems 

where the need for light weight, compact, high powered generators has traditionally prevailed 

over both the significant development and production costs. However, R&D efforts in the last 

years have changed the structure of these systems. On one hand microturbines are considered 

one part of a general evolution in gas turbine technology, since techniques incorporated into 

the larger machines to improve performance can be typically found in microturbines as well. 

These techniques include recuperation, low xNO  technologies and the potential use of 

advanced materials such as ceramics for hot section parts [41]. On the other hand, power 

electronics, advanced control and communication systems are included in modern 

microturbines [42]. 

Concerning to the operating principle, microturbines deal with the same combustion process 

of gas turbines, involving a gas that is expanded at roughly the same speed whether inside a 

large turbine or a small one. Therefore, the tips of the microturbine blades have to move at high 

speed in order to capture the energy from this expanding gas. This means that, in general, the 

smaller the turbine the higher the revs [43]. In fact, turbine speeds mainly range from 50 000 to 

120 000 rpm while large gas turbines designed for utility applications turn at fairly standard 

1000, 2000 or 3000 rpm depending on the number of poles built into the generator [43]. 

As already mentioned before, SSMT comprise a compressor and a power turbine mounted 

on the same shaft. They operate by forcing air through a turbine, causing it to spin at a very 

high speed. This high-speed power turbine is connected to a generator, which generates electric 

power at high and variable frequency. Therefore this power is converted to DC and then an 

inverter is employed to produce 50 Hz AC power for commercial use. A block diagram of a 

SSMT system [24, 42] is presented in figure 2.4. 
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Figure 2.4: The single-shaft microturbine generation system 

In the single-shaft microturbine engine a radial flow compressor compresses the inlet air 

that is then preheated in the recuperator using heat from the turbine exhaust. The recuperator is 

a heat exchanger that transfers heat from the hot turbine exhaust gas (typically around 1200ºF) 

to the compressed air (typically around 300ºF) going into the combustor, thereby reducing the 

fuel needed to heat the compressed air to turbine inlet temperature. Depending on microturbine 

operating parameters, recuperators can more than double machine efficiency [25]. Next, the 

heated air from the recuperator mixes with fuel in the combustion chamber and the hot 

combustion gas expands through the power turbine, which turns both the compressor and the 

generator. Finally the exhaust of the power turbine is used in the recuperator to preheat the air 

from the compressor. 

As it can be observed from figure 2.4, a SSMT has a gas combustion turbine integrated with 

an electrical generator that produces electric power while operating at a high speed, ranging 

from 50000 to 120000 rpm. The rotor is either a two- or four-pole permanent magnet design 

and the stator is a conventional copper wound design [24]. Electric power is then produced at a 

very high frequency three-phase voltage ranging from 1500 to 4000 Hz. This high frequency 

voltage is first converted to DC voltage and then inverted back to a 50 Hz AC voltage by an 

inverter in order to allow grid interconnection. The power electronics interface provides the 

protection and interconnection functionalities. In addition it provides power factor correction 
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and control of the produced power. Among these advantages of the single-shaft design, the 

gearbox elimination should be mentioned. 

In order to assess the dynamic behaviour of microturbines connected to the LV network a 

detailed nonlinear dynamic model should be used. However, while it is widely accepted that 

microturbines play an important role in small scale power generation, there is little work on 

modelling these devices [40, 42]. 

Modelling of SSMT was reported in [32], where the generic model of the grid connected 

microturbine converter is developed based on the assumption that there is sufficient energy 

storage on the DC bus to consider the microturbine as a constant DC voltage source. Other 

works reported in the literature [40, 44, 45] consider a one way frequency converter AC-DC-

AC with a diode rectifier that interfaces the high frequency alternator and the DC bus. Based 

on the dynamic model of combustion gas turbines, which had been discussed in [46-48], a 

dynamic model for microturbines is proposed in [24] for purposes of load following 

performance analysis. More recently, a bidirectional frequency changer interfacing a high-

speed PMSM with the grid considering the alternation operation as either motoring or 

generating was described in [42]. 

In order to describe the SSMT dynamics with respect to the LV network a microturbine 

model focused on the microturbine’s electric-mechanical behaviour was developed based on 

the models presented in [24, 42]. This SSMT model is based on the following assumptions: 

• The microturbine engine, while small in size, is similar to gas combustion turbines; 

• The microturbine is under normal operating conditions. Start-up, shutdown and fast 

dynamics are not considered, since during these transients the unit is not connected to 

the grid; 

• The recuperator is not included in the model as it is only a heat exchanger to raise 

engine efficiency. In addition, due to the recuperator’s very slow response time, it has 

little influence on the time scale of dynamic simulations; 

• Both the gas turbine temperature and acceleration control are omitted in the turbine 

model, since they are of no impact under normal conditions; 

• Most microturbines do not have governors, so that a governor model is not considered. 

Therefore the model of a microturbine unit consists mainly of three parts: The active power 

control, SSMT engine and the PMSM connected to the AC-DC bidirectional converter. A 

simplified block diagram is presented in figure 2.5. 
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Figure 2.5: Block diagram of the single-shaft microturbine model 

The details of the SSMT main parts are presented in the following subsections. 

2.3.1.1.1 Active power control 

The active power control of the microturbine involves only a real power Proportional-

Integral (PI) control function, as depicted in figure 2.6.  
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Figure 2.6: Load following control system model 

where: 

 demP  is the demand power; 

 refP  is the reference power: 

 inP  is the power control variable to be applied to the turbine; 

 pK  is the proportional gain in the PI controller; 

 iK  is the integral gain in the PI controller. 

The controlled real power, inP , is then applied to the turbine [24]. 

2.3.1.1.2 SSMT engine 

Similar to combustion gas turbine, the microturbine engine mainly involves an air 

compression section, a recuperator, a combustion chamber and a power turbine. The gas from 
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the combustion chamber forces the high-pressure compressor turbine that drives the PMSM. 

Therefore it is more suitable to model the microturbine engine as a simple-cycle single-shaft 

gas turbine [24]. 

The GAST turbine-governor model is one of the most commonly used dynamic models of 

gas turbine units, since it is simple and follows typical modelling guidelines [48]. Thus, for 

simplicity and wider acceptability, the microturbine engine is modelled as a GAST model 

without the droop [24], as depicted in figure 2.7. 
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Figure 2.7: Microturbine engine model 

where: 

 mP  is the mechanical power; 

 1T  is the fuel system lag time constant 1; 

 2T  is the fuel system lag time constant 2; 

 3T  is the load limit time constant; 

 maxL  is the load limit; 

 maxV  is the maximum value position; 

 minV  is the minimum value position; 

 TK  is the temperature control loop gain. 
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2.3.1.1.3 PMSM, regulation and control 

The model adopted for the electrical generator is a two poles PMSM with a nonsalient rotor. 

The dynamics of this machine are described by the following equations written in the dq 

reference frame [48]: 

Electrical equations: 

( ) ( ) ( ) ( )
dt

tdi
LtiLptiRtv d

dqqrdsd +−= ω                                                                               (2.1) 
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Mechanical equations: 
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where: 

 qd LL  ,  are the d  and q  axis inductances in H ; 

 sR  is the resistance of the stator windings in Ω ; 

 qd ii  ,  are the d  and q  axis currents in A ; 

 qd vv  ,  are the d  and qaxis voltages in V ; 

 rω  is the angular velocity of the rotor in sec/rad ; 

 mΦ  is the flux induced by the permanent magnets in the stator windings in Wb; 

 p  is the number of pole pairs; 

 eT  is the electromagnetic torque; 

 J  is the combined rotor and load inertia in 2mkg ⋅ ; 

 F  is the combined rotor and load viscous friction; 

 rθ  is the rotor angular position; 
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 mT  is the shaft mechanical torque. 

The grid-side converter regulates the DC bus voltage while the machine-side converter 

controls the PMSM speed and displacement factor. This control structure decouples effectively 

the two converters control scheme. Therefore issues related to the inverter are addressed in 

subsection 2.3.2. 

Machine-side converter control 

The machine-side converter in generating mode operates as a power source with controlled 

current [48]. This converter controls generator speed and phase between current and voltage at 

the output of the PMSM [49]. A block diagram of the machine-side converter controller 

presented in [42] is illustrated in figure 2.8. 
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Figure 2.8: Permanent magnet synchronous machine-side converter control 

The PI-1 controller that supplies a  current component reference, refqi  , to a second PI 

controller, PI-2, regulates the microturbine speed. The refdi   current component is precalculated 

and regulated by the PI-3 regulator to ensure a unity displacement factor. The turbine speed 

reference, refω , is also precalculated so that the microturbine operates with optimal efficiency 

[42]. 
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2.3.1.2 Solid Oxide Fuel cells 

As already mentioned previously, fuel cells are an emerging class of small-scale power 

generation technology. Although the basic principle of fuel cells operation was discovered by 

William Grove in 1839, the commercial potential of this technology was recognized only in 

1960 when fuel cells were successfully applied in the space industry [50]. In 1984, the Office 

of Transportation Technologies at the US Department of Energy began supporting research and 

development of fuel cell technology. As a result, commercialization of fuel cells for a variety 

of applications has been encouraged on by their reliability, efficiency and being 

environmentally friendly [51]. 

Actually there are a number of types and configurations of fuel cells, but they all use the 

same basic principle. A fuel cell consists basically of a cathode (positively charged electrode), 

an anode (negatively charged electrode) and an electrolyte (non-electrically conductive 

medium) [28]. A simplified diagram of a SOFC is presented in figure 2.9. 
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Figure 2.9: Simplified diagram of a solid oxide fuel cell 

Carbon monoxide, CO, and hydrocarbons such as methane, 4CH , can be used as fuels in 

SOFC. However, the −CO shift reaction is chemically favoured if the fuel gas contains water 

[24, 35]. Thus, the −CO shift reaction is 

222 HCOOHCO +→+                                                                                                     (2.5) 
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Therefore, hydrogen obtained from the −CO shift reaction and oxygen from the ambient 

air are fed into the SOFC through its anode and cathode, respectively, where the following 

electrochemical reactions take place [50]: 

−− +→+ eOHOH 22
2

2  (anode)                                                                                       (2.6) 

−→+ 2
2 2

2

1
OeO  (cathode)                                                                                               (2.7) 

Then, the overall SOFC reaction is 

OHOH 222 2

1 →+                                                                                                             (2.8) 

The SOFC electrolyte is a ceramic material, which is an excellent conductor of negatively 

charged ions, −2O , at high temperatures ( )Cº 1000800− , allowing the transportation of mobile 

ions between the electrodes. Moreover, it acts as a separator between hydrogen and oxygen in 

order to avoid mixing and the resulting direct combustion. As the free electrons cannot move 

through the electrolyte, they move through the external circuit that connects both anode and 

cathode. This movement of electrons is then controlled to generate DC electrical energy. 

2.3.1.2.1 A SOFC generating system 

A generic fuel cell plant involves mainly six basic systems: The fuel cell stack, the fuel 

processor, the power conditioning subsystems, air management, water management and 

thermal management. The design of each subsystem must be integrated with the characteristics 

of the fuel cell stack in order to provide a complete system [51] as can be observed from figure 

2.10. 
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Figure 2.10: Block diagram of a fuel cell generation system 

The complete mathematical model of a fuel cell generation system is very difficult to obtain 

because the fuel cell plant consists of many subsystems, each one interacting with the others in 

a complex manner, where the electrical, chemical and thermodynamic processes are strongly 

nonlinear in nature. Moreover, the parameters of such complex models are difficult to obtain 

[52]. Therefore, in a SOFC generation system, only the following three main parts have been 

considered for dynamic modelling purposes [22, 24]. 

• Fuel processor: The fuel processor converts fuel, such as natural gas, to hydrogen rich 

fuel stream. In the SOFC case, fuel processing from methane, 4CH , or carbon 

monoxide, CO, consists simply on desulfurizing and preheating the fuel stream before 

introducing it into the internally reforming anode compartment of the fuel stack. 

• Fuel cell stack: The fuel cell stack, also called power section, performs the fuel 

oxidation and delivers DC power by means of many individual cells combined in 

stacks. The number of cells is conditioned by the particular power application. 

• Power conditioner: Converts the DC to AC power according to the conditions that the 

network may require. It is addressed further in subsection 2.3.2. 

2.3.1.2.2 The SOFC power plant 

The cell DC voltage and current depend on the conditions that include fuel flow, oxidant 

flow, pressure, temperature and the demands of the load circuit. These parameters affect the 

electrochemical process that ultimately determines the generated power and terminal voltage. 

Changes in the load circuit or its demand for power change the operating conditions for the 
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SOFC. For example, an increased demand of power out of the SOFC must eventually be met 

with increased flow of reactants [29]. 

The SOFC dynamic model described in [24, 35], involves both the fuel processor and the 

SOFC dynamic model. In addition, it is based on the following assumptions: 

• The gases are ideal; 

• The channels that transport gases along the electrodes have a fixed volume, but their 

lengths are small, so that it is only necessary to define one single pressure value in their 

interior; 

• The exhaust of each channel is via a single orifice. The ratio of pressures between the 

interior and exterior of the channel is large enough to consider that the orifice is 

choked; 

• The temperature is stable at all times; 

• The only source of losses is ohmic, as the working conditions of interest are not close to 

the upper and lower extremes of current; 

• The Nernst equation can be applied. 

Under these assumptions, the potential difference between the anode and the cathode is 

determined using the Nernst equation, as 
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where: 

fcV  is the stack output voltage in V ; 

0N  is the number of fuel cells in series collected into the stack; 

0E  is the voltage associated with the reactions free energy in V ; 

r  describes the ohmic losses of the stack in Ω ; 

2Hp , OHp
2

 and 
2Op  are the partial pressures of hydrogen, water and oxygen, 

respectively in 2/ mN ; 

R  is the universal gas constant, ( )KmolJ º/ 31,8 ⋅ ; 

T  is the SOFC operating temperature in Kº ; 

F  is the Faraday constant, molC / 96487 ; 
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r
fcI  is the stack current in A . 

The SOFC stack dynamic model is presented in figure 2.11. 
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Figure 2.11: SOFC stack dynamic model 

where 

2Hτ , OH2
τ  and 

2Oτ  are time delay constants, which designate the response time of 

hydrogen, water and oxygen flows, respectively [24] in s; 

2HK , OHK
2

 and 
2OK , denote the molar constants for hydrogen, water and oxygen, 

respectively in ( )atmskmol ⋅/ . 

in
Hq

2
 and in

Oq
2
 are the input flows of hydrogen and oxygen, respectively, in skmol/ ; 

r
Hq

2
, r

OHq
2

 and r
Oq

2
are the flows that react for hydrogen, water and oxygen, 

respectively, in skmol/ . 

Determination of stack current 

According to [35], the hydrogen flow that reacts is given by: 
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where ( )FNK r 40=  is a constant defined for modelling purposes in ( )Askmol ⋅/ . 

From (2.8), the values of the flows that react for oxygen and water can be obtained as 
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The fuel utilization concept, fU , is defined as the ratio between the fuel flow that reacts and 

the fuel flow injected into the SOFC stack, as 

in
H
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f q

q
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2

2=                                                                                                                         (2.13) 

As described in [35], the desired range of fuel utilization is from 8,0  to 9,0  in order to 

avoid both overused and underused fuel conditions. An overused fuel condition could lead to 

permanent damage of the cells due to fuel starvation while underused fuel situations result in 

unexpectedly high voltages [35]. Therefore, for a certain input hydrogen flow, the demand 

current of the fuel cell can be limited in the range: 
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The electrical response time in SOFC is generally fast and mainly associated with a speed at 

which the chemical reaction is capable of restoring the charge that has been drained by the 

load. This dynamic response is modelled as first order transfer function with a time constant 

s 8,0=eT  [30]. Thus, for a given demanded power, demP , the SOFC stack current can be 

obtained as can be observed from figure 2.12. 
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Figure 2.12: SOFC stack current 

Determination of hydrogen and oxygen input flows 

The input fuel flow can be controlled in order to keep fU  at its optimum value, as 

opt

r
fcrin

H U

IK
q

2
2

=                                                                                                                   (2.15) 

where optU  is the optimal value of the fuel utilization, which is typically 85,0  [24]. 

Hydrogen and oxygen are fed into the stack, where the overall reaction described by (2.8) 

occurs. It shows that full reaction ratio between hydrogen and oxygen is 2 to 1. However, 

excess of oxygen should be provided in order to allow its complete reaction with hydrogen 

while the pressure difference between the anode and the cathode is kept below a certain 

threshold value. Hence, this means that 2_ <OHr , but typically 25.11 _ << OHr  [24, 53]. 

Therefore, the input oxygen flow in controlled by the speed control of the air compressor in 

order to match 

in
HOH

in
O qrq

22 _ ×=                                                                                                                (2.16) 

where OHr _  is the ratio between hydrogen and oxygen molar flows, which should be kept 

around 145,1  in order to maintain the SOFC pressure below kPa 4  under normal operation 

[35]. 
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The chemical response in the fuel processor is usually slow. It is associated with the time to 

change the chemical reaction parameters after a change in the flow reactants. This dynamic 

response function is modelled as a first order transfer function with a time constant s 5=fT  

[30]. Then, the fuel processor can be modelled as depicted in figure 2.13. 
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Figure 2.13: SOFC fuel processor block diagram 

The active DC power produced by the fuel cell is then given by 

r
fcfcfc IVP =                                                                                                                        (2.17) 

With the inverter, the SOFC system can supply not only real power, but also reactive power. 

2.3.1.3 Photovoltaic systems with MPPT 

The origin of PV energy conversion technology goes back in 1839, when Becquerel first 

discovered the PV effect. In 1954 the Bell Telephone Laboratories produced the first practical 

solar cell, a single crystal silicon type cell with energy conversion efficiency up to 6%. In 1955 

the Western Electric was the first company to commercialise solar cells, even the photovoltaic 

technology was mainly used to provide power to earth-orbiting satellites. As the technology 

improved and cost became more reasonable, photovoltaics were used in terrestrial applications. 

In the 1980s, PV became a popular power source for consumer electronic devices and for a 

variety of off-grid applications, including water pumping, rural residential and transportation 

safety systems. Today, a major international market for photovoltaics is providing power to the 

billions of people throughout the world who live without electrical service, for applications 

such as health care facilities, community centres, water delivery, purification systems and rural 

residences. In developed countries, grid-connected PV systems applications are now being 

deployed in great numbers not only for residential and commercial applications, but also for 

either centralized or distribution power generation [54]. 
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2.3.1.3.1 Solar cells and PV modules 

Photovoltaic or solar cells, as they are often referred to, are semiconductor devices that 

convert sunlight into direct current electricity. Silicon cells are the most widespread ones [54]. 

A typical silicon PV cell is a thin wafer consisting of an ultra-thin layer of phosphorus-doped 

( −N type) silicon on top of a thicker layer of boron-doped ( −P type) silicon. An electric field 

is created near the top surface of the cell where these two materials are in contact, called the 

NP −  junction. 

When sunlight hits on silicon, the photons will transmit their energy to the valence 

electrons of the semiconductor allowing it to break their link to atoms. As a result free 

electrons and gaps can be in motion inside the solid. The electric field provides momentum and 

direction for both free electrons and gaps, resulting in a flow of current when the cell is 

connected to an electrical load, as can be observed from figure 2.14 (a). 

 

Figure 2.14: A photovoltaic cell: (a) Simplified diagram; (b) Simplified single diode model 

Although there are several models of varying complexity to describe the behaviour of a PV 

cell [55, 56], the most widespread ones are based on the use of lumped circuits, such as single- 

and double-diode models [23]. The solar cell is commonly represented through a simplified 

single diode model as depicted in figure 2.14 (b), in which the current source and the diode 

represent the conversion of solar energy in electrical energy while the series resistance 

accounts for electrical losses [57]. Thus the solar cell output current can be determined as 














−=

−
C

t

C
S

C

mV

IRV

ph
C eII 1                                                                                                      (2.18) 



Chapter II – Models for Microgeneration and MicroGrids 

33 

where m  is the diode quality factor ( 1=m  for an ideal diode) and C
tV  is the cell thermal 

voltage. 

Usually manufacturers provide both the short-circuit current, C
SCI , and the open circuit 

voltage, C
OCV , of PV cells values, which were determined either under STC or NTC. 

Table 2.1: Irradiance and ambient temperature in NTC and STC 

 NTC STC 

Irradiation 2
, / 800 mWG refa =  2

0, / 1000 mWGa =  

Ambient temperature CT refa º20, =  CTC º250, =  

Figure 2.15 represents a typical current-voltage (I-V) characteristic of a generic solar cell. 

 

Figure 2.15: A typical I-V characteristic for a solar cell 

For arbitrary operating conditions (ambient irradiation, aG , and cell temperature, CT ), the 

solar cell can be characterized by the following fundamental parameters: 

• Short circuit current, C
SCI ; 

• Open circuit voltage, C
OCV ; 

• Maximum power point, MPP; 

• Maximum efficiency, 
ain GA

VP

P

P

×
×== maxmaxmaxη , where A  is the cell area; 
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• Fill factor, 
C
SC

C
OC IV

IV
FF

×
×= maxmax ; 

In practice, the operating conditions of PV systems differ from the STC. Then, under 

arbitrary operating conditions aG  and aT , the working temperature of the cells is given by  

800

20−+= NOTC
GTT aaC                                                                                                  (2.19) 

where NOTC is the normal operating temperature of the cell. 

The expression (2.18) can be rewritten as 
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At the cell operating temperature C
SCI , C

OCV  and C
tV  are given as follows 

( )[ ]0,0,
0,

CCI
C
SC

a

aC
SC TTI

G

G
I

SC
−+= µ                                                                                     (2.21) 

( )0,0, CCV
C

OC
C

OC TTVV
OC

−+= µ                                                                                             (2.22) 

q

KT
V CC

t =                                                                                                                        (2.23) 

where 

 C
SCI 0,  is the cell short-circuit current under STC; 

 C
OCV 0,  is the cell open voltage under STC; 

 
SCIµ  is the cell short-circuit current variation coefficient with temperature; 

 
OCVµ  is the cell open circuit voltage variation coefficient with temperature; 

 K  is the Boltzmann constant; 

 q  is the electron charge; 

As the output power of a single PV cells is relatively small, they are connected electrically 

in series and/or parallel circuits, as depicted in figure 2.16, in order to produce a desired I-V 

characteristic. 
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Figure 2.16: A schematic representation of photovoltaic modules 

The current and voltage of the PV module can be derived as 

C
PM

M INI =                                                                                                                     (2.24) 

C
SM

M VNV =                                                                                                                   (2.25) 

Manufacturers supply only a limited range of modules. Therefore, when designing a PV 

system, these modules are usually combined into panels, which will be connected together to 

built up the entire PV array in order to generate the required DC power. The current and 

voltage of the PV array are calculated as 

M
SA

A VNV =                                                                                                                    (2.26) 

M
PA

A INI =                                                                                                                      (2.27) 

where SAN  and PAN  represent the modules connected in series and parallel, respectively. 

2.3.1.3.2 Model of a PV array with integrated MPPT 

The grid connected PV system involves two main components:  

• The PV array containing PASA NNN ×=  PV modules; 
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• An inverter to convert the DC power to AC three-phase voltage. 

The PV array has an I-V characteristic with similar form to that presented in figure 2.15 for 

arbitrary operating conditions. Thus a MPPT control scheme is used to assure that the PV array 

generates the maximum power for all irradiance and temperature values [22]. The typical 

configuration of a grid connected PV system is presented in figure 2.17. 

aG aT

ae

be

ce

maxPP =  

Figure 2.17: A grid-connected PV system 

As the PV array with integrated MPPT control is a very simple model [22], it was adopted 

in this research. However, it is assumed that: 

• All the cells of the PV array are identical and they work with the same irradiance and 

temperature; 

• No losses in the PV array with MPPT system; 

• The PV array is always working on its maximum power point for a given irradiance and 

ambient temperature conditions; 

• If the irradiance and ambient temperature conditions change, the model instantaneously 

changes its maximum power point; 

• Temperature of the solar cells depends exclusively on the irradiance and ambient 

temperature. 

Under these assumptions the module output power can be estimated using the ambient 

temperature and the solar irradiance as inputs, as [22, 23] 

( )[ ]0,0,
0,

MMMax
M

Max
a

aM
Max TTPP

G

G
P −+= µ                                                                              (2.28) 

where: 

M
MaxP  is the PV module maximum power ( )W ; 

 M
MaxP 0,  is the PV module maximum power STC ( )W ; 
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 0,aG  is the irradiance at STC ( )2/ 1000 mW ; 

 MaxPµ  is the maximum power variation with module temperature ( )CW /º ; 

 MT  is the module temperature ( )Cº ; 

 0,MT  is the module temperature at NTC ( )Cº20 ; 

For arbitrary operating conditions aM TT =  and 0,MT  corresponds to the cell temperature at 

STC. Then the power output of the plant can be obtained as  
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where N  is the number of modules. 

2.3.1.4 Wind microgeneration systems 

Small wind generators comprise several subsystems that are modelled independently. 

These subsystems are the aerodynamic, the generator, the mechanical and the power converters 

in case of variable speed wind turbines [22]. Most of the micro wind generators require an 

electronic interface for grid connection. However, as already mentioned previously, in this 

research it was considered that the wind microgeneration system uses a squirrel-cage type of 

induction generator that is directly connected to the LV grid. Therefore the small wind 

generator model involves both the wind turbine and the induction generator models, as 

presented in the following two subsections. 

2.3.1.4.1 The wind turbine 

Focusing the wind turbine model on the electrical dynamic behaviour of the wind 

microgeneration system, the mechanical power extracted by the wind turbine from the wind 

kinetic energy, based on the aerodynamic coefficient curves, is given by [23]: 

( ) 3,
2
1

VACP pm ×××= βλρ                                                                                             (2.30) 

where 
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 mP  is the mechanical power in Watt; 

 ( )βλ,pC  is the dimensionless performance coefficient; 

 λ  is the tip speed ratio; 

 β  is the pitch angle; 

 ρ  is the air density; 

 2RA π=  is the rotor area; 

 V  is the wind speed; 

The mechanical torque can be obtained as  

r

m
m

P
T

ω
=                                                                                                                            (2.31) 

where mT  is the mechanical torque in mN ⋅  and rω  is the blade rotating speed in mechanical 

srad / . 

2.3.1.4.2 The induction machine 

For dynamic simulation purposes, it is a common practice to represent the induction 

machine through a third order model [58]. Then, the per unit induction machine electrical 

equations with the time represented in seconds can be written as follows 
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
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where: 

 sdv  and qsv  are the per unit rotor voltages; 

 de  and qe  are the per unit voltage components behind the transient reactance 'X ; 

 dsi  and qsi  are the per unit current components; 
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 X  is the per unit open circuit reactance; 

 0T  is the transient open-circuit time constant of the induction machine in seconds; 

 sf  is the system frequency in Hz ; 

 s is the slip; 

 sR  is the per unit stator resistance. 

The transient open-circuit time constant is given as 

rbase

mr

Rf

LL
T

×
+=

π20                                                                                                               (2.34) 

where rR  is the per unit rotor resistance. The transient reactance, 'X , as well as the open circuit 

reactance, X , in per unit are defined as 

mr

mr
s XX

XX
XX

+
×+='                                                                                                          (2.35) 

ms XXX +=                                                                                                                    (2.36) 

where sX  and rX  represent the per unit leakage reactances for the stator and rotor windings, 

respectively, and mX  is the per unit magnetising reactance. 

Concerning the slip, it can be derived as follows 

s

rs
ω
ω−= 1                                                                                                                         (2.37) 

where sω  is the per unit stator angular frequency. 

In order to complete the induction machine model, it is necessary to combine the 

differential equations describing the electrical voltage and current components of the machine 

with the rotor swing equation, as 

( )rem
r DTT

Jdt

d ωω −−= 1
                                                                                                 (2.38) 
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where J  is the moment machine inertia, D  is the damping and eT  is the per unit 

electromechanical torque, which is given as 

qsqdsde ieieT +=                                                                                                                 (2.39) 

2.3.2 Storage devices 

As mentioned previously, when a MG is operated in islanded mode, the power balance 

during transients must be provided by energy storage devices: MG main storage installed in the 

LV bus of the MV/LV transformer and frequently batteries connected to the DC bus of several 

MS [6, 9, 10, 18]. Flywheels are very promising units to be used as the MG main storage 

device. Unlike batteries, flywheel’s life is almost independent of the depth of discharge and can 

operate equally well on either frequently shallow discharges or on very deep discharges [59]. 

Considering the time period under analysis, storage devices, such as flywheels and 

batteries, are modelled as constant DC voltage sources using power electronic interfaces to be 

coupled with the electrical network (AC/DC/AC converters for flywheels and DC/AC inverters 

for batteries). These devices act as controllable AC voltage sources, with very fast output 

characteristics, to face sudden system changes such as in load-following situations [6, 9]. 

In spite of acting as voltage sources, these devices have physical limitations and thus a 

finite capacity for storing energy. The active power is injected into the MG using a 

proportional to frequency deviation control approach with a specified droop characteristic; the 

energy delivered to grid is evaluated as the time integral of the active power injected by the 

storage device for the simulation time considered [6]. 

2.3.3 Inverter modelling 

In a MG environment, the inverter interface model can be derived according to two possible 

control strategies [11]: 

• PQ inverter control: the inverter is used to supply a given active and reactive power 

according to a given set-point; 

• Voltage Source Inverter control logic: the inverter is controlled to “feed” the load with 

pre-defined values for voltage and frequency. Depending on the load, the VSI real and 
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reactive power output is defined. 

The control functions used to model both PQ inverter control and VSI control for purposes 

of MG dynamic behaviour analysis are described in the following two subsections. 

2.3.3.1 PQ inverter control 

The PQ inverter injects the power available at its input into the grid. The reactive power 

injected corresponds to a pre-specified value, defined locally using a local control loop or 

centrally from the MGCC. Thus, this control scheme was implemented as a current-controlled 

voltage source [6], as can be observed from figure 2.18. 

Current components in phase, acti , and in quadrature, reacti , are computed based on a method 

presented in [60] for power calculation in single-phase inverters. Power variations in the MS 

induce a DC link voltage error, which is corrected via the PI-1 regulator by adjusting the 

magnitude of the active current output delivered to the grid. The reactive power output is 

controlled via the PI-2 regulator by adjusting the magnitude of the inverter reactive current 

output. 
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Figure 2.18. PQ inverter control system 

This inverter can be operated with a unit power factor or receive a set-point (locally or from 

the MGCC) for the output reactive power. 
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2.3.3.2 Voltage source inverter control 

The voltage source inverter control scheme emulates the behaviour of a synchronous 

machine, controlling both voltage and frequency of the AC system [8, 15, 61]. The VSI acts as 

a voltage source with the magnitude and frequency of the output voltage controlled through 

droops as follows [6, 9]: 

PkP ×−= 0ωω                                                                                                                (2.40) 

QkVV Q ×−= 0                                                                                                                 (2.41) 

where P  and Q  are the inverter active and reactive power outputs, Pk  and Qk  are the droop 

slopes (positive quantities), 0ω  and 0V  are the idle values of the angular frequency and voltage, 

which correspond to the inverter angular frequency and terminal voltage at no load conditions, 

respectively. 

When a VSI is interconnected with a stiff AC system, characterized by an angular 

frequency gridω  and terminal voltage gridV , both voltage and frequency references are 

externally imposed [8]. In this case, the desired output powers 1P  and 1Q  can be obtained in the 

VSI output by adjusting the idle values of the angular frequency and voltage as follows: 

101 PkPgrid ×+= ωω                                                                                                          (2.42) 

101 QkVV Qgrid ×+=                                                                                                           (2.43) 

Figure 2.19 illustrates this procedure for the idle frequency case [10]. 
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Figure 2.19. Frequency versus active power droops 
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If a cluster of VSI operates in stand alone AC system, frequency variations leads 

automatically to power sharing, such that for a system with n  VSI, the following equality 

stands: 

∑
=

∆=∆
n

i
iPP

1

                                                                                                                     (2.44) 

where iP∆  is the power variation in the thi −  VSI. The frequency variation can be computed 

as [6]: 

( )[ ] iPiiiPiiiPii PkPPkPk ∆×=∆+×−−×−=∆ 00 ωωω                                                      (2.45) 

Similar considerations can be made for the voltage/reactive power VSI control mode based 

on droops [6, 15, 61]. However, as voltage has local characteristics, network cable impedances 

do not allow a precise sharing of reactive power among VSI [62]. 

Figure 2.20 represents a three phase balanced model of a VSI implementing the described 

droop concepts [10]. The VSI output voltage and current are measured to compute active and 

reactive power levels. This measuring stage introduces a delay that corresponds to a 

decoupling, performed through the Decoupling transfer functions presented in figure 2.20. 
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Figure 2.20. VSI three-phase control model 
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The active power determines the frequency of the output voltage by the active/frequency 

droop, Pk . Similarly, the reactive power determines the magnitude of the output voltage by the 

reactive power droop, Qk . A phase feed-forward control was included for stability purposes 

[62], corresponding to the ffK  in figure 2.20. The output voltages are the reference signals that 

control the VSI switching sequence using a PWM modulation technique. 

2.3.4 LV network and load modelling 

As stated before, the simulation of MG dynamic behaviour was performed considering only 

three-phase balanced operation. Thus, the LV grid is modelled as a balanced network through 

the corresponding nodal admittance matrix. LV loads are represented as constant impedances. 

The LV network and load modelling are addressed later, in chapter 6, where a more detailed 

description is presented. 

2.4 Control strategies for MicroGrid operation 

If a cluster of MS is operated within a MG and the main power supply (the MV network) is 

available, all the inverters can be operated in PQ mode, because there are voltage and 

frequency references. In this case, a sudden disconnection of the main power supply would 

lead to the loss of the MG, since there would be no possibility for load/generation balancing, 

and therefore for frequency and voltage control. However, if a VSI is used to provide a 

reference for frequency it is thus possible to operate the MG in islanded mode and a smooth 

moving to islanded operation can be performed without changing the control mode of any 

inverter [6, 8]. 

As already mentioned previously, the VSI can react to network disturbances based only on 

information available at its terminals. This working principle provides a primary voltage and 

frequency regulation in the islanded MG. After identifying the key solution for MG islanded 

operation, two main control strategies are possible, as identified from the research developed 

within the MicroGrids project [6, 7, 10, 18, 19, 21]:  

• Single Master Operation; 

• Multi Master Operation. 
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In both cases, a convenient secondary load-frequency and voltage-reactive power control 

during islanded operation must be considered to be installed in controllable MS. 

2.4.1 Single master operation 

In this case, a VSI – acting as master – can be used as voltage reference when the main 

power supply is lost; all the other inverters can then be operated in PQ mode (slaves). Droop 

settings of the VSI can be modified by the MGCC based on information about the state of 

charge of the storage device, according to the operating conditions and in order to avoid large 

frequency excursions and minimize load curtailment [6]. This SMO control scheme is 

presented in figure 2.21. 

iv  ,

iv  ,

 

Figure 2.21. Control scheme for single master operation 

The SMO control strategy should be used when the MG is operated in interconnected mode. 

Thus, if a fault occurs on the upstream network, a smooth moving of the MG operation from 

interconnected to islanded mode can be assured. Therefore, the MG is able for participating in 

primary frequency control of the MMG being operated autonomously. 

2.4.2 Multi master operation 

In a multi master approach, several inverters are operating as VSI with pre-defined 

frequency/active power and voltage/reactive power characteristics [6], as illustrated in figure 

2.22. Eventually, other PQ-controlled inverters may also coexist. 
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iv  ,
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Figure 2.22. Control scheme for multi master operation 

This control strategy can be used in MG islanding, when several MS have storage 

capabilities connected to the inverter DC link and is most relevant in the case of the definition 

of black start procedures at the LV microgrid, assuming that this MG is separated from the rest 

of the network [9, 10]. 

2.4.3 Secondary load frequency control 

Whenever the MG is operated in islanded mode, a steady state deviation from the nominal 

frequency will be observed following transients. As a result of the droop control implemented 

in the VSI, the main storage unit will support all power deviations by injecting or absorbing 

some amount of active power proportionally to the MG frequency deviation [6, 17]. 

Although acting as a voltage source, storage devices have a finite capacity for storing 

energy due to physical limitations. Therefore, the system frequency should be restored to the 

nominal value, 0ω , in order to the VSI active power returns to zero. For this purpose, two main 

secondary control strategies can be followed: local secondary control using a PI controller at 

each controllable MS or centralized secondary control mastered by the MGCC. In both cases, 
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target values for active power outputs of the primary energy sources are defined based on the 

frequency deviation error [6], as depicted in figure 2.23. 

Microsourcef ref = 50 Hz PI MC

f MG

-

P set

 

Figure 2.23. Local secondary load frequency control for controllable microsources 

For SMO, the target value is directly an active power set-point to the MC of a controllable 

MS as can be seen from figure 2.21. The MG operated under a SMO control strategy, provides 

also secondary load frequency control for MMG being operated autonomously. 

For MMO, the target value can be both an active power set-point for a controllable MS 

connected to a PQ inverter or a new value for the idle frequency of a VSI. 

Reactive power set-points can be sent to MC by the MGCC based on information about the 

MG load profile in order to optimize the voltage/reactive power control. 

2.5 Summary and main conclusions 

In this chapter both MicroGrid and Multi-MicroGrid concepts were presented as well as 

their corresponding advanced hierarchical control architectures. Suitable models to study the 

microgeneration systems and their inverter control schemes were also presented and discussed. 

Afterwards, control strategies for MG operation were also described. The SMO control 

strategy can be commonly used when the MG is operated in interconnected mode, thereby 

assuring a smooth MG moving to islanded operation if a fault occurs in the upstream MV 

network. Then, when the MMG is operated in islanded mode, the MG will participate in 

primary frequency control through the VSI control of the MG main storage device, and, in 

addition, will provide secondary load frequency control by means of the controllable 

microsources. This physical knowledge is exploited in chapter 4 as prior knowledge to derive 

dynamic equivalents for MG using system identification techniques. 
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Chapter 3 

Dynamic Equivalencing Techniques 

3.1 Introduction 

With the enhanced stability requirements to operate power systems in a reliable manner, 

system dynamic behaviour needs to be carefully studied online and offline, which includes 

system stability, dynamic security assessment, coordinating system control in a global manner, 

etc [63]. Concerning offline studies, transient stability analysis plays an important role in 

planning and operation. Such studies are performed almost exclusively by means of time 

domain simulations using numerical integration to solve the nonlinear differential equations 

that describe the power systems dynamics. With the growth in size and complexity of such 

systems, the cost to perform dynamic behaviour studies has increased significantly [64]. 

Although the computer technology advancements and the application of efficient numerical 

methods, detailed power system analysis may thus be too large and too complex, requiring a 

very high computational effort as well as excessive computation times, particularly when a 

large number of scenarios have to be studied [65]. Therefore reducing the problem to a 

solvable size and, at the same time, improving the solution speed without significantly loss of 

accuracy has been considered an important goal to overcome the difficulties related to dynamic 

behaviour analysis. As the main analysis are usually focused on a specific part of the power 

system, it has been a common practice to replace those subsystems that are not of primary 

interest by suitable dynamic equivalents. 

Owing to the dimension of large interconnected power systems it is neither practical nor 

necessary to perform dynamic studies using detailed models of their components. At high 

voltage levels it is necessary to obtain manageable models suitable for simulations and 

analysis, allowing to interpret the results and translate them into operating guidelines or 

planning recommendations. In addition, the complete structure of the neighbourhood networks 

as well as the parameters of their components are not known in detail. On the other hand, as the 

main analysis are focused on a specified portion of the interconnected systems, the subsystems 
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that are not of primary interest do not need too many details and therefore can be accurately 

approximated through suitable dynamic equivalents. 

In general, when performing dynamic studies, the whole power system is divided into two 

parts, called the study or internal subsystem and the external subsystem. The study subsystem 

model is retained in detail since the response of this part of the system is of direct interest and 

all disturbances and configuration changes are assumed to occur here. The remainder 

subsystem is the part of the system to be simplified and subsequently to be replaced by the 

reduced order model. Then dynamic equivalencing concerns to the process of reducing the 

complexity of the entire power system network to a computationally feasible size while 

maintaining a reasonable level of accuracy regarding the approximation of the external 

subsystem relevant dynamics with respect to the study subsystem. Obviously, the dynamics to 

retain will depend on both the application and the use of the dynamic equivalent. 

A dynamic equivalent is thus a reduced order model of the external subsystem that allows 

to reduce the storage and the computational burden that arises from dynamic simulation. In 

turn, the entire power system reduced order model is commonly referred in the literature as the 

equivalent model. It should also be noted that in any equivalencing procedure it is always 

important that the equivalent model preserves the important features of the original system 

when it is represented through its detailed model [66]. 

In what concerns to develop suitable dynamic equivalents for MG, the methodology to be 

followed should preserve these aims described previously. However, the main theoretical 

concepts behind the procedures commonly used to build dynamic equivalents for conventional 

power systems should be assessed, in order to determine its applicability to MG or even to 

exploit their main features for these purpose. These main questions are discussed in this 

chapter. 

Therefore, the background of power system dynamic equivalents is presented in section 3.2 

and the classical techniques that have been used to build dynamic equivalents for conventional 

power systems are described in section 3.3. Afterwards, in section 3.4, the main requirements 

arising from the widespread of DG into distribution networks are pointed out and the 

corresponding solutions concerning dynamic equivalents that represent the relevant dynamics 

of distribution systems integrating a large capacity of DG with respect to the high voltage level 

are addressed. In section 3.5, the applicability of the existing methodologies to build dynamic 

equivalents for MG is discussed. Finally, the main conclusions are presented in section 3.6. 
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3.2 Background of dynamic equivalents for large power systems 

Dynamic equivalents for large power systems were initially defined based on empirical 

methods, such as replacement of all the generators within the external subsystem by one 

equivalent generator [67] or determination of equivalent generators, one of each boundary bus, 

from an empirical distribution of the active powers and inertias of the external subsystem 

generators [68]. Both methods are based on the ideas proposed by Ward [69]. 

The methods reported later in the literature to derive dynamic equivalents are based mainly 

on modal analysis [70-72] or on the so-called coherency property, which means that coherent 

generators tend to swing together during transient periods [73-75]. There are also works with 

the aim of unifying the theoretical basis of calculations of dynamic equivalents based on both 

coherency and modal analysis [76]. 

Although the development of dynamic equivalencing techniques has a long history, few 

analysis tools have been available, mainly because the rigorous requirements to handle the 

complexity of modern interconnected power systems [77]. As a result, industry experience in 

the area of dynamic equivalencing is limited [63, 66, 78-80] and often reductions are done 

using heuristic methods [77]. 

Early work in power systems dynamic equivalents includes the development of modal 

equivalencing techniques [72, 81-83]. Methods based on modal analysis suggest that those 

modes of the system that are not easily affected by the disturbances can be eliminated. Since it 

is difficult to find these modes and additional modifications have to be made in the original 

dynamic simulation programs in order to make use of the state matrix form of the equivalent 

model, methods based on modal analysis have not been widely applied [84]. 

Alternative approaches are based on the coherency concept. Following a disturbance 

occurring in the study subsystem, coherency between generators belonging to the external 

subsystem should be recognized in order to subsequently form groups of coherent generators. 

Each one of these groups will be further replaced by one equivalent machine. The concept of 

coherency was previously used by Chang and Adibi [73]. A coherency based approach was 

developed further by Podmore [75] in the late of 1970s and integrated in Dynamic 

Equivalencing  software package – DYNEQ - developed under the American Electric Power 

Research Institute - EPRI [77]. 
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Taking into account that coherency is an observed phenomenon and coherency properties 

between generators depend on both the disturbance nature and location, some previous 

attempts to recognize coherency between generators were heuristically based [85]. Lee and 

Schweppe suggested in [86] a pattern recognition approach based on criteria involving 

generator inertia, admittance and machine acceleration to identify coherent generators [87]. 

Because of the lack of accuracy and consistency in the heuristic methods, the approach 

proposed by Podmore [75] involves numerically solving the simplified and linearized power 

system equations and then processing the swing curves through a clustering algorithm in order 

to determine coherent groups of generators. Although this approach had experimented some 

applications, several weaknesses have been pointed out, since for a large power system, time 

domain simulations require a considerable computational effort and generally the coherent 

groups were disturbance dependent. Therefore confidence was limited [66]. 

In order to overcome these limitations, several research effort resulted in the slow 

coherency or two-times-scale method proposed in [88] in the early 1980s. It was further 

improved in [89] and has been a commonly adopted method for coherency identification [44, 

65]. This is based on singular perturbations theory and combines the insights of both modal 

and coherency analysis to find groups of coherent machines [90-92]. In 1993s, Ontario Hydro 

developed a new EPRI dynamic equivalencing program, the DYNRED [48, 77], which 

included the techniques from the DYNEQ program and the slow coherency method [93]. 

DYNRED found many successful applications in large power systems. An evaluation of 

the performance of its dynamic equivalencing techniques in given in [66, 77] and provides a 

discussion of several factors that affect the quality of dynamic equivalents; coherency 

identification is the key step in the reduction procedure. In fact, this subject has been 

investigated extensively in the past and, as a result, many techniques have been reported in the 

literature [44, 64, 65, 76, 86, 87, 91-112]. Most of them used the linearized power system 

model to obtain some coherency identification criteria without solving the swing equations. 

After define and compute the coherency measure a suitable clustering algorithm is then applied 

to derive groups of coherent generators [64, 87, 113]. 

Coherency measures, such as the RMS [76, 112] and those based on the electromechanical 

distance measure [106, 114] have been proposed to identify groups of coherent generators. 

Several other methods are also reported in the literature, based on the rate of change of kinetic 

energy of the faulted system [109] and evaluation of the Lyapunov function [105]. This late 
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method was improved in [98], where coherency of generators is determined through some 

proposed coherency identification criteria based on critical energy required for system 

separation. Other authors [111] proposed the computation of the system singular point or the 

unstable equilibrium point to recognize coherent generators. This method was significantly 

improved in [99] through a combination of faulted system dynamics, unstable equilibrium 

points and electrical coupling measure between generators. The faulted generator angles are 

estimated through a Taylor series expansion [97]. More recently, several authors proposed 

other coherency identification methods based on neural networks [87, 103], fuzzy sets [110], 

epsilon decomposition [94] and on selective modal analysis [107], such as a synchronic modal 

equivalencing technique presented in [108]. 

Taking into account that many coherency methods do not consider the effect of voltage 

variation on the coherency of generators due to the weak coupling between real power and 

voltage, new enhancement techniques for coherency identification are reported in [44]. The 

accuracy of dynamic reduction techniques was further improved through incorporation of both 

voltage and rotor dynamics [65]. In an attempt to avoid the burden to find modes as the size of 

the power system becomes large, methods that allow to identify coherent groups of generators 

directly from the system state matrix were presented in [101, 115]. 

Once coherent groups of generators in a power system are identified, generators in the 

same group are aggregated and reduced to a single equivalent generator. DYNRED contains 

several weighted-average and least squares frequency domain algorithms to compute the 

parameters of the aggregated generator as well as its control models [116]. The simulation 

program Network Torsion Machine Control - NETOMAC [117] integrates an 

optimization/identification mode [118] for solving several optimization tasks and parameter 

estimation problems. With a modified Gauss-Newton algorithm readily integrated, network 

reduction can be executed under the dynamic conditions either in time or frequency domain in 

coping with the nonlinear nature of the system involved. In addition a newly developed 

dynamic coherency approach determines coherent generators on nonlinear basis in the time 

domain using cross correlation techniques, taking dynamic characteristics of the system 

involved into consideration [63]. 

More recently ANN based models were proposed in [119, 120] to directly derive dynamic 

equivalents from measurements at points connecting both the study and external subsystems. In 

these works a neural network is used to extract states of the reduced order equivalent and 
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another neural network is used to predict the new states values of the external system. Similar 

methodologies successfully applied to derive dynamic equivalents for large power systems are 

also presented in [121, 122]. In these works the external system is represented through an 

input-output formulation and only one neural network is used to predict its dynamic behaviour. 

Although the research in dynamic equivalencing area dates back to 1960s, few mature 

industrial analysis tools have been available, mainly because of the rigorous requirements to 

handle the complexity of modern interconnected power systems [77]. In fact three decades of 

research effort resulted in two industrial software packages, DYRED and NETOMAC. 

From the background of the existing techniques to derive dynamic equivalents for large 

power systems, one can say that with the exception of some earlier heuristic methods, many of 

the proposed techniques can basically be related to the following categories: Modal analysis, 

coherency based approaches and techniques that allow to derive dynamic equivalents from 

measurements also called system identification in [120, 121, 123, 124]. A general overview of 

these techniques is presented in the following subsections. 

3.3 Conventional dynamic equivalencing techniques 

Conventional dynamic equivalencing techniques involve those methodologies that have 

been widely used to build dynamic equivalents for conventional power systems. Although 

coherency based approaches have been very popular, most often coherency recognition is 

performed using modal analysis, as described in the following subsections. 

3.3.1 Modal analysis 

Modal analysis approaches are traditionally based on a linearized description of the 

external subsystem dynamic model, 
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which is obtained through the Taylor expansion of the classical state space model around a 

steady state operating point. After linearization dominant modes are identified and the model 

reduction is achieved by neglecting the non-dominant modes. 

Therefore, modal analysis techniques attempt to reduce the size of the complex nonlinear 

representation of the external subsystem by building a reduced order linear state space 

equivalent model, while the detailed representation of the study subsystem is retained, as 

schematically represented in figure 3.1. 
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Figure 3.1: Dynamic equivalencing based on modal analysis approaches 

The dynamic equivalent is then a reduced order linear state space model, often called a 

modal equivalent [125] or simply a reduced order model [126]. 

Modal approaches can be interpreted as performing a given transformation on the system 

matrices yielding 
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where 1A  and 2A  contain the r  dominant and respectively the ( )rn−  non-dominant modes of 

A , defining then the reduced model on the basis of this partitioned representation, as 

represented in figure 3.1. 

As modal analysis methods are typically based on the linearization of the external 

subsystem, the obtained dynamic equivalents are not directly integrated into most standard 

simulation programs, as already mentioned previously. Thus they require data converting 

from/to a simulation program for receiving the established operating point and for verifying the 

results. Although the inputs and outputs of the linearized model vary from one approach to the 

other, a typical methodology is based on the Norton model, in which boundary bus voltages are 

used as inputs to the linear model and the outputs are injected currents [127]. 

Depending on the external system properties that have to be retained in the reduced order 

model, different model reduction methodologies can be applied. Hence, there are techniques 

based on directly identifying and preserving certain modes of interest – Modal truncation [71, 

72, 128, 129] – or based on the SVD, such as balanced realizations [130], focusing on the 

observability and controllability properties of the system, and optimal Hankel-norm 

approximation [131], which tries to achieve a compromise between a small worst case error 

and a small energy error [132]. Singular perturbations theory [133, 134], exploits the different 

time scales of power systems. Another family of modal analysis approaches is the moment 

matching methods in which the property of interest is the leading coefficients of a power series 

expansion of the transfer function of the reduced system around an user defined point that have 

to match those of the original system transfer function [126]. 

Modal analysis methods have been applied to derive dynamic equivalents for wind parks 

under transient situations. These reduced order models are able to retain the wind park relevant 

dynamics with respect to the utility grid, taking into account the effect of wind speed 

fluctuations, which constitute small perturbations around a steady state operating point [132]. 

Singular perturbations theory presented better performance [135]. 

More recently, in [136], the balanced realizations technique was used to build dynamic 

equivalents for a small distribution network containing different DG units suitable to describe 
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its dynamic behaviour with impact to the high voltage level. As the electrical distance from the 

fault to distribution network is significant, it is considered that all dynamic elements connected 

to the distribution network can be represented with sufficient accuracy by linear models. 

A brief overview of the most commonly used linear based approaches is given in the 

following subsections. 

3.3.1.1 Modal truncation 

Modal truncation is one of the first reduction schemes that has been applied to electric 

power systems [72]. This technique is based on pole location of the linear system and the 

reduced order model is then obtained by neglecting the fast decay poles and/or those associated 

with high frequencies. 

For this purpose, the matrix A  of the state space model should be described through the 

Jordan diagonal form, so that the state variables are transformed into modal variables 

corresponding at each Jordan block one pole location. The state space matrices are further 

transformed in order to take the form given by (3.2) and the reduced order model can thus be 

obtained by eliminating the non-dominant modes associated with the fast poles. However, 

either poles with very high absolute values, associated with high frequencies or poles with high 

real parts, in turn, related with fast decay responses, are formally defined as fast poles and 

therefore a suitable definition is required. 

The selection of the modes to be eliminated is a twofold problem. On the one hand, a 

suitable definition for rapid pole requires previous knowledge about the external subsystem 

features, which indicate what are the dominant modes. On the other hand, the suitable order 

determination stage lacks from an effective criterion. Since the model order is the key issue in 

a successful modal equivalent development, modal truncation is a very dependent application 

procedure. Moreover, although modal truncation is though to be well suited to steady state 

applications because the fast dynamic phenomena are neglected, a good performance in what 

concerns the transient behaviour is not expected. 
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3.3.1.2 Balanced realizations 

As already mentioned previously, balanced realizations are based on the input-output 

properties of the external system. The linear state space model is transformed through a special 

coordinate transformation into a balanced state space realization, which preserves several 

important properties of the original representation, such as the Hankel singular values, the 

Hankel-norm, both controllability and observability properties and also the balanced 

relationship between both the input to state behaviour and the state to output behaviour, while 

provides a rank ordering of the Hankel singular values [80]. The reduced order model is thus 

obtained by truncation of the states that are weakly controllable and observable, corresponding 

to small singular values, whereas the states associated with the large singular values, which are 

strongly influenced by inputs and simultaneously strongly connected to the outputs, are 

retained. 

Given a system described by the linear state space model (3.1), its controllability and 

observability Gramians, Q  and P , respectively, are defined as the single solutions of the 

following Lyapunov equations [135] 
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                                                                                                     (3.2) 

The square roots of the eigenvalues of the product of the two Gramians, QP , are called the 

Hankel singular values decomposition of (3.1) and are commonly denoted by σ . The largest 

singular value characterizes the Hankel norm [137]. 

According to Moore [130], balancing the linear state space model (3.1) means to find a 

linear coordinate transformation, such that, for the transformed state space model, both the 

observability and controllability Gramians, P  and Q , respectively, are identical 

Σ== QP                                                                                                                          (3.3) 

where 

( ) 0 ;,,, 2121 >≥≥=Σ KK σσσσσ ndiag                                                                           (3.4) 
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Based on the Hankel singular values, the balanced model can be divided into two 

subsystems like (3.2); one associated with the large singular values and the other associated 

with the small singular values. Therefore, the states corresponding to small singular values are 

eliminated and the reduced order model is thus described through the subsystem associated 

with the dominant or large singular values. However, like in modal truncation, the point of 

demarcation between large and small singular values is most often doubtful. 

Although producing good approximation of transient response, the main drawback of 

balanced reduction methods is the high reduction errors at low frequencies, so that these 

methods are not well suited for steady state applications. 

3.3.1.3 Optimal Hankel-norm 

As already mentioned in the previous subsection the Hankel-norm is defined as the largest 

Hankel singular value of the system (3.1), 1σ . 

If the system described by (3.1) is denoted by ( )nG , the reduced order method based on the 

Hankel norm attempts to find a discrete system ( )kG , with nk < , which minimizes the Hankel 

norm of ( ) ( )[ ]kGnG − , minimizing thus the error for the worst case [131]. 

Since both optimal Hankel-norm and balanced realizations share the same limitations, it is 

expected that the reduced order model thus obtained does not describe the steady state 

behaviour. Generally SVD based methods are hardly applicable to systems of very large 

dimensions, since singular values of the unreduced system have to be computed and such a 

computation might be cumbersome for systems of large order [135]. 

3.3.1.4 Singular perturbations theory 

The applicability of the previous modal analysis techniques is restricted, in the sense that 

both the Hankel norm and balanced realizations are not suitable for steady state applications 

while a good performance of the application of modal truncation in what concerns the transient 

behaviour is not expected, as referred in previous subsections. Moreover, due to the lack of an 

efficient modal dominance analysis procedure, modal analysis methods become very 

dependent of the specific system. Singular perturbations theory seems to be more general, 
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namely in what concerns the prediction of both steady-state and transient behaviour of the 

systems [132]. 

The interaction of fast and slow dynamic phenomena in a detailed model of power systems 

results in stiff numerical problems, which require expensive integration routines. In this sense, 

a singular perturbation approach alleviates both dimensionality and stiffness difficulties. First 

the model order is lowered by neglecting the fast phenomena and further the approximation is 

improved by reintroducing their effect as “boundary layer” corrections calculated in separate 

time scales [133]. 

The underlying assumption is that during the fast transients the slow variables remain 

constant and that by the time their changes become noticeable fast transients have already 

reached their quasi steady states. Based on this quasi steady state assumption and experience, 

the state variables are divided into n  slow states x  and m  fast states z , so that the full scale 

model can be written as [134] 

( ) ( ) 0
0  ,,, xtxtzxf

dt

dx ==                                                                                                   (3.5) 

( ) ( ) 0
0  ,,, ztztzxG

dt

dz ==                                                                                                    (3.6) 

Then, only the states z  are used for short term studies by neglecting the variations 

described by (3.5) and considering the states x  as constant parameters. In long term studies 

only the states x  are used and the differential equations for z  are reduced to algebraic or 

transcendental equations by formally setting 0=
dt

dz
. The quasi steady state model is thus 

( ) ( ) 0
0   ,,, xtxtzxf

dt

dx
ss

s ==                                                                                              (3.7) 

( )tzxG ss ,,0 =                                                                                                                    (3.8) 

An inconsistency of this classical quasi steady state approach is the requirement that sz  

equals a constant, as implied by 0=
dt

dzs , is violated by (3.8) which defines sz  as a time 

varying quantity. Furthermore, the initial condition for z  had to be dropped in (3.8), since 
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there is no freedom to satisfy it. If a quasi steady state model fails to provide a good 

approximation of the actual solution ( )tx  and ( )tz , there is no provision for improving the 

approximation [134]. The singular perturbations approach provides a tool to overcome this lack 

of provision that characterizes other reduction order techniques [132, 134]. 

Assuming that t  is properly scaled for the slow phenomena, a new time variable, τ , is 

introduced and scaled for the fast phenomena. The ratio of these time scales is a small positive 

parameter, ε , which allows the definition of the new time variable τ  as: 

ε
τ 'tt −=                                                                                                                             (3.9) 

The wider the separation of the time scales, the smaller ε  will be. On the other hand, the 

smaller ε  is, the larger τ  will be for a given ( )'tt −  interval. When τ  is sufficiently large, the 

fast phenomena have adequate time to reach their steady states, which, however, does not 

contradict the assumption that ( )'tt −  is sufficiently short to consider the slow variables as 

constants. Thus, the limit of 0→ε  is equivalent to the quasi steady state assumption, but 

without its inconsistencies [134]. 

If it is known that the dynamics of the states z  are 
ε
1

 times faster than x , then 
dt

dz
 is about 

ε
1

 times larger than 
dt

dx
 and G  can be rescaled as 

Gg ε=                                                                                                                             (3.10) 

such that f  and g  are of the same order of magnitude. The model (3.5) and (3.6) then 

becomes 

( ) ( ) 0
0  ,,, xtxtzxf

dt

dx ==                                                                                                 (3.11) 

( ) ( ) 0
0,,, ztztzxg

dt

dz ==ε                                                                                                 (3.12) 
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The above qualitative reasoning is based on some empirical estimates of 
dt

dx
 and 

dt

dz
. 

When this information is not available, then physical parameters are examined to determine 

which states are slow and which are fast. Not every choice of state variables will be separable 

in this sense. Where separable, a model (3.11), (3.12) will be obtained by expressing the small 

time constants and the inverses of the high gain coefficients as multiples of a single small 

parameter ε . 

In the limit 0→ε , the model (3.11) and (3.12) defines the quasi steady states ( )txs  and 

( )tzs , in the t  time scale, as 

( ) ( ) 0
0  ,,, xtxtzxf

dt

dx
sss

s ==                                                                                            (3.13) 

( )tzxg ss ,,0 =                                                                                                                   (3.14) 

To obtain the fast parts of x  and z , (3.13) and (3.14) can be written in the fast time scale 

τ . 

( )ετε
τ

+= ',, tzxf
d

dx
                                                                                                         (3.15) 

( )ετ+= ',, tzxg
dt

dz
                                                                                                           (3.16) 

When 0→ε  x  is constant in the fast time scale and the only fast variations are the 

deviations of z  from its quasi steady state sz , sf zzz −= . If 0=ε  in (3.16), the fast 

subsystem can be written as 

( )( ) ( ) 00
0

00 0  ,,, sffs
f zzztzzxg

dt

dz
−=+= τ                                                                     (3.17) 

With (3.13) and (3.14) describing the slow states and (3.17) associate with fast states, the 

approximations for x  and z  are then given by 

( ) ( )txtx s≅                                                                                                                        (3.18) 
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( ) ( ) 
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


 −+≅
ε

0tt
ztztz fs                                                                                                     (3.19) 

The application of singular perturbations theory allows to eliminate the inconsistencies of 

the classical quasi steady state approaches to model reduction due to the presence of the scaling 

parameter ε . 

While the full order models (3.11), (3.12), (3.15) and (3.16) are exact, the separated lower 

order models (3.13), (3.14) and (3.17) are in error, because they assume 0=ε , instead of 

0>ε . This parameter change is called singular perturbation, since it results in an inherent 

perturbation in model order. The approximations (3.18) and (3.19) can now be improved by 

constructing asymptotic expansions in ε  [134]. 

Concerning to the parameter ε , the problem now is to find a criterion to determine the 

separation between slow and fast states. In fact, there is no general parameter definition. 

Rather, the identification of the parameter ε  depends on several issues, such as experience 

acquired previously with the detailed system modelling, physical intuition that indicts the 

possibilities of choices or also preliminary analysis that will provide the selection bases. In 

order to reduce the model order it is supposed that 0=ε . However, it should be taken into 

account that this parameter is neglected only for a time because the fast transients owing the 

parameter ε  are subsequently introduced through an adjustment of the frontier conditions 

[132]. Due to this fact singular perturbations seem to be more general when compared with 

modal truncation and balanced realizations, namely in what concerns the prediction of both 

steady state and transient behaviours, as already mentioned previously. 

3.3.2 Coherency-based methods 

Linear methods cannot properly capture complex dynamics of power system, especially 

during major disturbances, such as critical faults. Thus, dynamic equivalents established to 

provide the desired performance at a small signal condition might not guarantee acceptable 

performance in events of major disturbances. Therefore, nonlinear approaches, also called 

coherency-based methods, have been proposed and widely used to reduce the computational 

effort associated with the study and analysis of power system dynamics. 
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Methods belonging to this category depend on the coherency concept to recognize coherent 

properties between generators, as already mentioned previously. Coherent generators are 

grouped in order to be further replaced by one equivalent machine, which it is expected to 

represent its dynamics of interest [75, 116, 126]. With this approach the obtained dynamic 

equivalents are based on nonlinear models similar to the replaced machines but with new 

parameters resulting from its aggregation and hence they are compatible with other 

components of the network. This fact can be viewed as an advantage, since it allows an easy 

attachment of the dynamic equivalent to the internal subsystem detailed model and, as a result, 

a direct integration of the standard dynamic simulation tools as depicted in figure 3.2. 

 

Figure 3.2: Dynamic equivalencing using coherency-based approaches 

The computations of coherency based methods can be divided into three separate and 

independent stages [66]: 

1. Determination of coherent groups of generators; 
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2. Aggregation of coherent generators within each coherent group onto one equivalent 

bus; 

3. Elimination of the remaining buses by network reduction. 

Based on a suitable coherency measure, generators coherent with others are recognized and 

included in the same group according to a pre-defined criterion. Groups of coherent generators 

are aggregated into one equivalent machine and, at last, the network is reduced. 

As already mentioned previously, in section 3.2, coherency recognition procedure is 

typically based on a linearized model of the entire power system. Then, in the following 

subsection, this model is presented and afterwards in subsections 3.2.3.2, 3.2.3.3 and 3.2.3.4, 

common procedures to carry out each one of the coherency based methods main stages is 

briefly addressed. 

3.3.2.1 The mathematical model 

Concerning with coherency recognition and grouping of coherent generators purposes, a 

simplified and linearized model is used to describe the dynamic behaviour of a power system 

under transient conditions [85]. This model has the following features: 

• The classical generator model is used to represent the synchronous machines; 

• The power system model is linearized; 

• The decoupling between active power phase angle and reactive power voltage 

magnitude is assumed. 

The linear model is usually justified considering that coherency properties between 

coherent generators are approximately independent of the disturbance magnitude as well as of 

the amount of detail in the generating unit’s models. Therefore linearized equations of the 

network and the classical model of synchronous machines have been used to reduce 

computational efforts without significant loss of accuracy regarding coherency recognition and 

subsequent grouping of coherent generators [64]. 

The classical synchronous generator model, widely used for a simplified analysis of power 

system dynamics, assumes that neither the −d axis armature current dI  nor the internal emf 

fE , representing the excitation voltage change very much during the transient state. In this 



Chapter III – Dynamic Equivalencing Techniques 

66 

model the generator is represented by the swing equation and a constant emf 'E  behind the 

transient reactance '
dX  [138], as follows. 

idt

d ωδ =                                                                                                                          (3.20) 

iigimiii DPP
dt

d
M ωω −−=                                                                                                (3.21) 

The linearized swing equations for the thi −  synchronous generator can be written as 

iidt

d ωωδ ∆=∆ 0                                                                                                                 (3.22) 

iigimiii DPP
dt

d
M ωω ∆−∆−∆=∆                                                                                      (3.23) 

where: 

deviations ∆  are counted from the specified pre fault steady state operating point; 

M  represents the inertia constant in ..up ; 

ω  represents the angular speed in ..up ; 

0ω  represents the synchronous speed in srad / ; 

δ  is the rotor angle in rad ; 

D  denotes the damping coefficient in ..up ; 

mP  is the mechanical input power in ..up ; 

gP  represents the electrical output power in ..up . 

The linearized decoupled load flow equations are used to represent the network [64]. The 

changes in active electrical power vectors gP∆  and lP∆  at the generator internal buses and at 

both generator terminal and load buses, respectively, can be expressed in the matrix form as 
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where ggH , glH , lgH  and llH  are sensitivity sub matrices obtained from the partial derivatives 

of active powers gP  and lP  with respect to the generator internal bus voltage angles, δ , and to 

generator and load bus voltage angles, θ . 

Underlying assumptions in (3.24) are that the changes in active powers with respect to 

voltage magnitudes are neglected and the partial derivatives or sensitivity coefficients are 

calculated using the voltages and angles at the pre-fault steady state operating point. 

3.3.2.2 Determination of coherent groups of generators 

For a given disturbance, a group of generators is defined as coherent if every generators 

within the group oscillate with the same angular speed and terminal bus voltages in a constant 

complex ratio [64]. 

According to [138], two terminal generator buses i  and j  are said to be coherent for a 

disturbance occurring at time 0t  if 

( )
( )

( )
( )

( ) ( )[ ] ( )
( )

( ) ( )[ ]
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ttj

j

ittj

j

i

j

i jiji e
tV

tV
e

tV

tV

tV

tV ϑθθθθ === −− 00

0

0  for all 0tt ≥                                         (3.25) 

If the voltage magnitude can be assumed to be constant, the coherency condition (3.25) 

simplifies to 

( ) ( ) ( ) ( ) ctttt jiji =−=− 00 θθθθ                                                                                         (3.26) 

for any constant c . 

As with the classical model of generators each generator emf behind its own transient 

reactance is assumed to be constant, two internal generator nodes i  and j  are coherent if the 

transient rotor angles satisfy the coherency condition (3.26) [138], that is 

( ) ( ) ( ) ( ) ctttt jiji =−=− 00 δδδδ  for all 0tt ≥                                                                    (3.27) 

for some constant c . This condition is equivalent to 

( ) ( )tt ji δδ ∆=∆  for all 0tt ≥                                                                                            (3.28) 
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where ( ) ( ) ( )0ttt iii δδδ −=∆  and ( ) ( ) ( )0ttt jjj δδδ −=∆ .  

Thus, two generators are coherent for a given disturbance if the response curves of their 

rotor angles have identical wave shape and a group of generators is said to be coherent if all the 

generators within the group are pair wise coherent within a given tolerance. 

For a small time increase the rotor angle of generators i  and j  could be approximated as 

( ) ( ) ( ) ttttt iii ∆+=∆+ ωδδ  and ( ) ( ) ( ) ttttt jjj ∆+=∆+ ωδδ                                              (3.29) 

where ( )tiω  and ( )tjω  denote, respectively, the rotor speeds of generators i  and j  at the 

instant t . Thus 

( ) ( ) ( ) ( )( ) tttttt jiijij ∆−=−∆+ ωωδδ                                                                                  (3.30) 

where ( ) ( ) ( )tttttt jiij ∆+−∆+=∆+ δδδ  and ( ) ( ) ( )ttt jiij δδδ −= . Then, for a fixed time interval, 

two generators are defined as coherent if 

( ) ( )tt ji ωω =                                                                                                                     (3.31) 

From the previous coherency conditions, (3.26), (3.27) and (3.31), the following coherency 

measures arise for two generators i  and j : 

( ) ( ) εδδ ±=− consttt ji  for 0tt ≥                                                                                     (3.32) 

( ) ( ) εδδ ≤∆−∆ tt ji  for 0tt ≥                                                                                           (3.33) 

( ) ( ) σωω ≤− tt ji  for 0tt ≥                                                                                               (3.34) 

where ε  and σ  denote tolerance parameters. Therefore both rotor angles and speeds can be 

used to recognize coherency between pairs of generators. 

However, coherency based methods will only give valid results if following a disturbance 

inside the internal subsystem the generators within each coherent group are effectively 

coherent. Therefore, the main problem is how to assess the coherency between generators. 



Chapter III – Dynamic Equivalencing Techniques 

69 

In section 3.2 it is highlighted that two major approaches have been used to recognize 

coherency between generators: The first one is to apply a disturbance directly and observe the 

swing curves of the generators. The second one is to assess generators coherency without the 

need for time domain simulation, that is, to evaluate coherency properties independently of the 

disturbance [92]. Analytical methods, such as weak links coupling [115] and slow coherency 

[88, 89, 92, 139, 140] have been used for this purpose and were also included in the DYNRED 

software package [118]. 

Linear time simulation is the classical method to check coherency between generators [75]. 

It involves mainly the numerical integration of the linearized power system dynamic equations 

presented in subsection 3.2.3.1 and then processing either the rotor angles or speeds trajectories 

by a clustering algorithm in order to form groups of coherent generators. Based on the fact that 

the high computational effort involved in this method may offset the advantages of the 

dynamic equivalencing strategy, simple and direct determination of coherent generators 

without explicitly solving the system dynamic equations have been reported in the literature. 

Most of them are based on the parameters of the transfer network matrix that links the 

boundary buses with the generator nodes of the external subsystem [138]. Therefore the 

following formulation should be considered. 

As already mentioned previously both study and external subsystems are linked through the 

tie lines which connect the boundary buses to the external subsystem as depicted in figure 3.3. 

Study 
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Figure 3.3: Schematic representation of the external subsystem 

In what concerns to the external subsystem, the currents BI  flowing through the tie lines 

become the injected currents of the boundary nodes. As all the generators are represented by 

the classic model and considering that all the load nodes have been eliminated, the incremental 

decoupled active power flow equations (3.24) can be written as 
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where GP∆ , BP∆ , δ∆  and θ∆  represent increments of the active power and angles at both the 

internal generator and boundary buses, respectively. 

All the generators in the external subsystem are represented by the linearized swing 

equations (3.22) and (3.23) and the following assumptions are considered [44]: 

• During the period of interest, the mechanical power is constant, 0=∆ mP ; 

• Damping terms does not affect natural frequencies and can thus be neglected. 

Under these assumptions, equation (3.23) simplifies to 

iii P
dt

d
M ∆−=∆δ

2

2

                                                                                                           (3.36) 

Any disturbance inside the study subsystem influences the generators in the external 

subsystem through the tie lines and boundary buses. From the external subsystem point of 

view, the disturbance is caused by a change in the voltage angle of boundary bus k  from the 

initial value 0
kθ  to a new value kkk θθθ ∆+= 0 . According to [138], as the voltages at generation 

nodes are kept constant the network equations (3.35) simplifies to θ∆=∆ GBG HP  and thus, the 

change in angle kθ  provokes a change in the power generation at bus i  equal to 

( ) kikki hP θθ ∆−≈∆∆                                                                                                          (3.37) 

where ( )00cos kiikkiik BVVh θδ −=  is the synchronizing power between a given generator { }Gi ∈  

belonging to the external subsystem and a given boundary bus { }Bk ∈ . iV  and kV are the 

magnitude of voltages at buses i  and k , respectively, ikB  is the line susceptance and both 0
iδ  

and 0
kθ  denote the initial values of the voltage angles at buses i  and k , respectively. Therefore, 

equation (3.36) can be written as 

k
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                                                                     (3.38) 
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Thus the considered disturbance yields the rotor acceleration of generator i  

( )
k

i

ik

i

ki
i M

h

M

P θθε ∆=∆∆=                                                                                                  (3.39) 

A similar expression for acceleration can be written for another generator in the external 

subsystem 

( )
k

j

jk

j

kj
j M

h

M

P
θ

θ
ε ∆=

∆∆
=                                                                                                 (3.40) 

Generators i  and j  are coherent if their rotor accelerations iε  and jε  caused by the 

disturbance are the same, that is when 

j

jk

i

ik

M

h

M

h =  for { }Gji ∈ , , { }Bk ∈                                                                                    (3.41) 

Equation (3.41) constitutes the coherency condition during the post fault state and means 

that the synchronizing power divided by the inertia constants must be identical. 

Taking into account that coherent generators have high coupling coefficients among them, 

in the weak links method the coherency is determined by analyzing the coupling coefficients of 

generators in the system state matrix A  [115]. 

On the slow coherency methods the coherency recognitions among generators is based on 

the modes of the system. The power systems network is partitioned into groups containing 

coherent generators based on the two time scale method [88]. The fundamental idea is based on 

the concept that a slow oscillation is caused by two groups of strongly coherent generators 

interconnected through weak ties. Thus, the coherency between two generators can be easily 

checked by means of the eigenvector associated with the mode of oscillation [118]. Using the 

state space matrix A , the slow eigenbasis matrix is calculated and the r  most linearly 

independent rows of this matrix will become the corresponding reference generators. A 

grouping algorithm is then applied to group non reference generators to the reference 

generators [92]. This method was applied not only for generators [140] but also for generators 

and weak tie lines [92]. 
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Slow coherency methods describe an algorithm for fault independent area grouping, by 

selecting only the lowest electromechanical modes of the linearized model [139]. The tolerance 

based slow coherency method is similar to the previous two time scale method, but includes 

additional constrains to ensure that widely separated generators are not aggregated [89]. Both 

methods require the computation of selected eigenvalues and eigenvectors of the full system 

and therefore, the modified Arnoldi eigenvalue solver [141] was added to allow the application 

of these methods to large power systems. 

3.3.2.3 Aggregation of generating units 

In this stage each group of coherent generators resulting from the application of any of the 

methods described in the previous subsection are aggregated in order to be replaced by one 

equivalent generating unit to be connected in parallel to the equivalent bus [138], as depicted in 

figure 3.4. 
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Figure 3.4: Grouping coherent generators and reduced model of the external subsystem 

As the original model of the power system contains a large number of both load and 

generation nodes already divided into coherent groups, { } { } { } { }nGGGG +++= L21 , after 

aggregation of coherent generators, the next step is to use Zhukov’s method to aggregate the 

nodes in these groups. The load nodes are either completely eliminated or aggregated into a 

few equivalent nodes using Dimo’s method [138]. These two later steps are addressed in 

subsection 3.3.2.4. This subsection is devoted to a brief review of generating units aggregation 

procedure. 
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While coherency identification have been covered quite extensively in the literature, 

generator aggregation is treated superficially in most of the works by considering either 

classical models or omitting the associated control devices [142]. However, other methods 

have been developed considering not only the detailed model of the synchronous generators, 

but also their control devices. Generally the methods developed in the past few decades for 

dynamic aggregation of the generating units can be classified into two forms: the classical 

aggregation and the detailed aggregation [143]. 

In classical aggregation each group of coherent generators is replaced by an equivalent 

generation unit represented by the classic model of synchronous generators. Under coherency 

conditions, a disturbance taking place in the study subsystem will not provoke any relative 

motions between coherent machines since they will remain in synchronism. To an observer 

outside the coherent area, the motions of these machines are seen as if they were originated 

from one single machine. From the mechanical view point, the rotors of coherent generators 

can be treated as if they rotated on one common rigid shaft [138], as depicted in figure 3.5. 
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Figure 3.5: Aggregation of coherent generators 

A group of such generators can be replaced by one equivalent generator with mechanical 

power input maP  and electric power output eaP  given by 

∑
=

=
n

i
mima PP

1

; ∑
=

=
n

i
eie PP

1

                                                                                                 (3.42) 

where miP  and eiP  are the mechanical power input and electrical power output, respectively, of 

the −i th generator. 

As the angular frequencies of coherent generators are identical and thus assumed to be ω , 

the swing equation of the equivalent generator can then be described as 
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where iM  and iD  denote the inertia coefficient and damping of the −i th generator and both 

aM  and aD  the coefficient inertia and damping of the equivalent generator. 

The transient reactance of the equivalent generator can be obtained by paralleling the 

transient reactances of all the coherent generators [84]: 
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Concerning to detailed aggregation, if some or all generators in a coherent group have 

similar control systems, they can be aggregated to a detail generator model with an equivalent 

exciter, stabilizer and governor [142, 143]. The parameters of the equivalent machine can be 

found by matching either the frequency or time domain response of the equivalent unit to the 

characteristics of the aggregated units. As already mentioned previously, DYNRED program 

contains several weighted average and least squares frequency domain algorithms to compute 

the parameters of the equivalent generators and its control models. This software package was 

used in [116] to perform the aggregation of an excitation system using a trajectory sensitivity 

method to tune the equivalent parameters, but the algorithms for parameter aggregation 

purposes have not been extensively tested [142, 144]. NETOMAC software package use 

iterative procedures to determine the equivalent parameters of generator and control systems in 

frequency domain [63]. Other methods based on nonlinear optimization algorithms have been 

reported in the literature to estimate parameters of the equivalent generator detailed model in 

time domain using measured data [145]. In [142, 144] an improved method using structure 

preservation in time domain is presented. In this method, the equivalent parameters are 

determined by structure preservation of the coefficient matrices in time domain representation 

in order to preserve the physical structure of the generating unit model and its control as well 

[143]. Technical literature extensively reports the use of ANN to estimate unknown parameters 

of a dynamic equivalent [146]. Proper input features of study system are extracted and transient 

stability indices are used to predict the inertia constant, reactances and other parameters of the 

equivalent machine. 
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3.3.2.4 Network reduction 

Once equivalent generators are recognized and grouped into coherent groups, the network 

reduction is performed. As already mentioned previously, this reduction is typically achieved 

in two steps: 

• The equivalent generators are inserted into the system and the generators in the 

associated coherent groups are removed. The network is modified to maintain the 

balanced steady state power flow conditions; 

• The load nodes are eliminated and/or aggregated. 

These two steps are described in the following. 

3.3.2.4.1 Aggregation of generating buses 

After generators aggregation, their terminal buses are lumped together to form an 

equivalent bus, as it can be shown in figure 3.4. This operation is performed by means of the 

Zhukov’s method [90, 138], as already mentioned previously. Given a group of coherent 

generators, { }iG , the boundary buses of the external subsystem have to be retained while the 

set of coherent nodes have to be aggregated, as represented in figure 3.6. These two sets of 

buses are then denoted by retained, { }R , and aggregated, { }A , respectively. 

{ } { }RB =

M

{ } { }AGi = { }R

M

 

Figure 3.6: Aggregation of generating buses using Zhukov’s method 

Aggregation of generating nodes must satisfy the following two conditions [138]: 

1. It does not change the currents and voltages RI  and RV  at the retained buses; 

2. The active and reactive power injections at the equivalent node must be equal to the 

sum of injections at the aggregated nodes, 
{ }
∑
∈

=
Ai

ia SS . 

The transformation of the network can be described by 
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where the subscripts refer to the appropriate set. 

The first condition is satisfied when 

aRaARAaRaRRRARARRR VYVVYVYVYVY =⇔+=+ Y                                                    (3.46) 

As this condition is to be satisfied for any vector AV , it must hold that 

ϑRARa YY =                                                                                                                       (3.47) 

where 
a

A

V

V=ϑ  is the vector of voltage transformation ratios between the aggregated and the 

equivalent nodes.  

Each terminal bus is connected through an ideal transformer with complex turns ratio to the 

equivalent bus as it can be shown in figure 3.7. The secondaries of transformers are then 

connected together to create the equivalent node a  and the nodal matrix equation for the 

reduced network can then be derived [138]. 
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Figure 3.7: Electrical interpretation of Zhukov’s aggregation 

The second condition is satisfied when the injection at the equivalent bus equals the sum of 

all the aggregates injections, 

**
A

T
Aaa IVIV =                                                                                                                    (3.48) 

Substituting into equation (3.48) AI  and aI  calculated from equation (3.45), yields 

********
AAA

T
ARAR

T
AaaaaRaRa VYVVYVVYVVYV +=+                                                                (3.49) 
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As this equation must be satisfied for any vector AV  the following two conditions must 

hold 

AR

T

aR YY *ϑ=                                                                                                                   (3.50) 

ϑϑ AA

T

aa YY *=                                                                                                                 (3.51) 

Equations (3.47), (3.50) and (3.51) describe the admittances of the equivalent network. The 

admittances of the equivalent branches linking the equivalent node with the retained nodes 

depend on the vector transformation ratios, ϑ , and on the voltage angle at the equivalent node. 

It is commonly assumed to be the weighted average of voltage angles at the aggregated nodes 
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where iS  is the apparent power injection at the aggregated node i  and iM  is the inertia 

coefficient of the unit installed at the thi −  aggregated node. 

3.3.2.4.2 Aggregation and/or elimination of load nodes 

For some power systems analysis problems it may be more convenient not to eliminate the 

load nodes altogether, but to replace a few of them by equivalent load nodes after to carry out 

some load aggregation procedure. The equivalent nodes can then be used to change the power 

demand of the external subsystem if a change in tie line flows is required.  

According to [147], load aggregation can be performed into two ways: 

1. Analytically, by lumping similar loads and then using pre-determined values of 

each parameter of the load; 

2. Selecting a load model and then performing parameter estimation using an 

appropriate identification technique. 

As already mentioned previously, aggregation of load nodes can be performed using 

Dimo’s method [138]. This method is illustrated in figure 3.8 and consists of replacing a group 

of nodes { }A  by an equivalent node a . As before { }R  is the set of retained buses. 
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Figure 3.8: Load bus aggregation using Dimos’s method 

In the first step of transformation, some fictitious branches are added to the aggregated 

nodes, { }A . Each branch admittance is chosen in such a way as to make the terminal voltage of 

all the added branches equal. Usually these admittances are made to correspond to the nodal 

injections at a given voltage in the aggregated nodes 

2

*

i

i
fi

V

S
Y =  for { }Ai ∈                                                                                                        (3.53) 

and then the voltage at the fictitious node f  is zero. As it is inconvenient to have an equivalent 

node operating at zero voltage, an extra fictitious branch with negative admittance is usually 

added to node f . A typical choice of the negative admittance is 

2
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This makes the voltage aV  at the equivalent node equal to the weighted average of the 

voltages at the aggregated nodes: 
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The auxiliary node f  is eliminated together with the nodes belonging to the set { }A , 

giving an equivalent network, referred to as the REI circuit [64, 138], connecting the 

equivalent node a  with the retained nodes { }R . 



Chapter III – Dynamic Equivalencing Techniques 

79 

If the operating conditions are different from the ones for which the reduction was 

performed, then the obtained equivalent will only imitate the external network accurately if the 

admittances of the fictitious branches (3.53) can be assumed to remain constant. For load nodes 

this is equivalent to assuming that the loads can be modelled as constant admittances [138]. 

Dimo’s method produces a large number of fictitious branches due to the elimination of 

node f  and nodes { }A . As aggregation introduces a branch with negative admittance, the 

branches in the final network model may have negative admittances. Moreover, large nodal 

injections in the aggregated nodes produce large resistance values in the equivalent branches. 

Negative branch admittances combined with large resistances may cause problems for some 

load flow programs [138]. 

Node elimination relies on modelling loads by constant admittances and eliminating them 

by using a Ward equivalencing technique, as illustrated in figure 3.9. 
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Figure 3.9: Elimination of nodes 

When nodes are eliminated from the network model, { }E , they must be removed in such a 

way that the currents and nodal voltages at the retained nodes, { }R , are unchanged. 

Before any nodes are eliminated the network is described by the following nodal equation 
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where the subscripts refer to the eliminated { }E  and retained { }R  sets of nodes. The eliminated 

voltages and currents can be swapped using simple matrix algebra to give 
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where 

EREERERRR YYYYY 1−−= , 1−= EEREL YYK , EREEV YYK 1−−=                                                 (3.58) 

The square matrix in equation (3.57) is the partial inversion of the admittance matrix. The 

nodal currents in the set { }R  are 

RRRR IVYI ∆+=                                                                                                             (3.59) 

where ELR IKI =∆  is the vector consisting of the equivalent currents replacing the eliminated 

nodes. 

Equation (3.59) describes the relationship between the currents and voltages of the retained 

nodes in the reduced network. As any electrical network is uniquely described by its 

admittance matrix, RY  corresponds to a reduced equivalent network that consists of the 

retained nodes and equivalent branches linking them. This network is often referred to as the 

transfer network and the matrix describing it as the transfer admittance matrix. Matrix LK  

passes the nodal currents from the eliminated nodes to the retained nodes and is referred to as 

the distribution matrix. Each equivalent current is a combination of the eliminated currents. 

Another form of equation (3.59) can be obtained by replacing the nodal power injection at 

each eliminated node by a constant shunt admittance 
2

*

i

i
Ei

V

S
Y =  added, with an appropriate 

sign, to the diagonal elements of the sub matrix EEY . The nodal injections at the eliminated 

nodes then become zero, 0=EI , and the reduced model does not contain any equivalent 

currents ( )0=∆ RI . This is quite convenient but has a drawback. The equivalent shunt branches 

have large conductance values, corresponding to the real power injections, which become part 

of the equivalent branches in the reduced model. Therefore, the branches of the equivalent 

network may have a poor RX /  ratio causing convergence problems for some load flow 

computer programs. 

Node elimination and aggregation can be done by separating the external subsystem from 

the study subsystem and by making the injected currents at the boundary nodes equal to the tie 

line currents [138]. 
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3.4 Dynamic equivalents derived from measurements 

Taking into account that analysis of transients is of greater importance for successful 

planning, operation and control of large interconnected power systems, industry trends and new 

technologies have changed the methods used by power systems engineers for this purpose over 

the last decades. 

In recent years, the desire to increase efficiency with concomitant reduction in both energy 

costs and losses as well as both the ongoing deregulation of the power utility industry and the 

interest in connecting generation to distributed networks will change the main issues in 

modelling and control of power systems for several reasons [148]: 

• The increase of both complexity and number of components with relevant dynamic 

behaviour will increase the complexity of models; 

• Technical advances in sensing, communication and computational capabilities allow to 

exploit alternative techniques. 

In response to the need to accurately analyse the dynamics of such power systems, the 

development of adequate dynamic equivalents for parts of the power system that are not in the 

primary focus of the study are required. Benefiting of the communications and computer 

technology to maintain a stable system operation, such models will have to be derived and 

validated from locally available prior information and measurements. In fact the availability of 

measurements opened a new research route in the field of power systems dynamic equivalents 

[119-124, 148]. 

Techniques based on measurements have been exploited to build dynamic equivalents for 

conventional power systems and for distribution networks with large penetration of DG. The 

different reasons that motivate their application to these two application fields are outlined in 

the following two subsections. 

3.4.1 Dynamic equivalents for conventional power systems 

The application of measurements based techniques to build dynamic equivalents for 

conventional power systems has been based on two main motivations. First, while most of the 

power systems components can be modelled by considering the physical laws that govern 

them, aggregating power system loads in order to obtain manageable models suitable for 
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dynamic analysis and simulations at high voltage levels, is quite a complicated exercise due to 

the absence of precise information. Therefore, one of the most reliable ways to obtain an 

accurate model is to apply an identification technique [147, 149, 150]. 

Taking into account that conventional dynamic equivalencing techniques require a 

considerable amount of knowledge about the external subsystem, as it can be concluded from 

section 3.3, the second motivation relies on the fact that in some cases the available knowledge 

may be not enough to develop accurate and reliable equivalents [119]. This is true especially in 

detailed aggregation with the development of equivalent regulators, such as suitable AVR and 

governors for the equivalent generator [44, 151]. When there is the need to improve the 

dynamic equivalent, the tuning task may prove difficult, since there is little indications about 

which parameters should be adjusted [152, 153] and there is still no common approach to 

analyse the identifiability of nonlinear models [30]. The industrial experience is also that 

dynamic equivalents derived from one class of events is typically not very successful for other 

classes [66, 77]. 

In order to overcome these difficulties, an alternative to conventional dynamic 

equivalencing techniques is to directly derive dynamic equivalents from measurements at 

points connecting the study subsystem with the remainder that will be reduced. Similar 

procedures have already been adopted for aggregation of loads, as mentioned previously. These 

methods aim to estimate a set of parameters belonging to a model that is assumed to represent 

the external subsystem, based on measurements of important signals. This kind of techniques 

has the advantage that detailed information of the external subsystem is not required. However, 

the key issues are the parameterization of the target model and the quality of the available 

signals. 

A linearized generator model was selected for this purpose and expected natural system 

fluctuations were used for parameter estimation in [154]. More recent works reported in the 

literature proposed the use of ANN to build dynamic equivalents for large power systems, 

providing a new way to answer a question presented in previous equivalencing procedures: Are 

equivalent synchronous generators a good target model under all operating conditions [120]? 

Following the steps of [154], and with the benefits of almost three more decades of 

technological advances, such as the huge development in communications, signal processing 

and computing tools, these recent works demonstrated both the feasibility and usefulness of the 

methodologies based on ANN to build dynamic equivalents for large power systems. With 
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these methods the dynamic equivalent is derived from measurements at points connecting the 

study subsystem with the external subsystem, which will be reduced using ANN based 

strategies. 

Once identified, such equivalent of external subsystem can be used in transient simulations 

and in other analysis and control design procedures, because ANNs are used as function 

approximators in a structure that assures the overall model compatibility with standard models 

of power systems components and therefore with transient stability formulations [119]. Since 

an ANN based dynamic equivalent is distinct from classic procedures, these works 

demonstrated also that it can work in conjunction with classic equivalents to reduce the effects 

of uncertainties, improving thus the accuracy [120]. 

In these works a neural network is used to extract states of the reduced order equivalent and 

another neural network is used to predict the new values of states of the external subsystem. In 

more recent works [121, 122], the external subsystem is represented in an input-output 

formulation and only one neural network is used to predict dynamic behaviour. The basis 

concept underlies the replacement of the nonlinear dynamic external area, considering all 

power system components, i.e., generators with controllers, by an ANN, which is connected to 

the study subsystem through tie lines and boundary buses. Using the ANN-based approaches 

the classical steps of dynamic equivalencing are omitted [122]. Simulation results proved the 

robustness of these approaches. 

3.4.2 Dynamic equivalents for distribution networks with DG 

Nowadays the number of dispersed generators is growing rapidly [136]. In the near future, 

it is expected that a considerable number DG units with significant capacity will be connected 

to the existing distribution systems [123, 124]. Approximating the dynamics of these networks 

using passive lumped loads, as it was done before, lacks the accuracy to simulate the dynamic 

behaviour of these systems with respect to the high voltage areas on large interconnected 

networks [124]. Therefore, replacing distribution systems that comprises a large number of 

active components with suitable dynamic equivalents is essential for power system dynamic 

analysis [155]. This arises not only due to the computational time saving but also from the 

difficulties of modelling a large number of active sources within the distributed area. 
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The classical methods to build dynamic equivalents have been developed for transmission 

systems with relatively small number of large synchronous generators concentrated into a few 

areas. In contrast, DG units are numerous and not limited only to synchronous generators. 

Many of them are based on induction machines, use power electronics and have quite different 

control systems which can be hardly aggregated [136]. Moreover, term coherency widely 

adopted by classical reduction methods becomes not so meaningful since induction generators 

do not have synchronizing torques and power electronic interfaces can almost completely 

separate, in a dynamic sense, the generator from the network. 

Therefore, some works reported in the literature proposed strictly mathematical techniques 

originated from system theory to develop dynamic equivalents for distribution networks 

considering mainly the impact of such active units on the dynamics of the high voltage 

networks and, at the same time, reduce the simulation times. 

As already mentioned previously, in [136] a balanced realizations method with truncation 

performed through singular perturbations theory was suggested and successfully applied to a 

small distribution network. However, taking into account that some restrictions may arise when 

applying this method to high dimensional systems [156] and based on the fact that linear 

models provide a limited accuracy to represent nonlinear dynamic distribution systems 

integrating a large number of different DG units with effective dynamic impact when major 

disturbances occur in the study subsystem, other authors developed a new equivalencing 

procedure that uses measurements provided by nonlinear time simulations. Then, a generic 

nonlinear dynamic equivalent model based on recurrent ANN is presented and used to replace 

such a distribution system in [123, 124]. 

The development of such dynamic equivalent did not obligate to specify a particular model 

configuration in advance. Rather, the target model is defined through both the structure and 

parameter description of the ANN. Concerning the lack of detailed information and the 

difficulty of modelling a large number of different active sources, this can be considered as an 

advantage. However, the authors recognize the need for measurements only at boundary buses 

between study and external subsystems as the main advantage of this dynamic equivalent. In 

addition, the accuracy of the developed model is not significantly affected by changing the 

operating point and hence it is not restricted to certain initial power flow conditions. Once well 

trained and tested, the ANN based dynamic equivalent can be used in simulation, analysis and 

control design procedures [123, 124]. 
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3.5 Some remarks of dynamic equivalencing techniques concerning 

suitable dynamic equivalents for MG 

Although research of power systems dynamic equivalents dates back to the late of 1960’s 

[83, 157], the work in this field still continuing today. This is not only due to advancements in 

power system dynamic simulation software, but also due to fast changes in power systems 

composition and operation. In fact, large-scale widespread of DG connected to the distribution 

networks leads to a gradual transition from the current vertically-operated power system, which 

is supported mainly by several big centralized generators, into a future horizontally-operated 

power system, having also a large number of small to medium size generators and therefore it 

will be not possible to neglect the dynamics introduced by generators connected on the 

distribution network with respect to the high voltage levels as referred in section 3.4. At the 

same time, detailed modelling of the whole power system is not practical due to computational 

and time constraints. Therefore, finding dynamic equivalents for distribution networks with 

DG will become more and more important [123, 124, 136]. 

On the other hand, large deployment of microgeneration in LV networks under the 

framework of the MicroGrid concept described in chapter 2 will extend the philosophy of 

horizontally-operated power systems to the LV level. Local equilibrium of load and generation 

in combination with the MG hierarchical control architecture, inverter controls and storage 

devices allows to operate the MG autonomously like a physical island. In turn, large 

deployment of MG, connected on several adjacent MV feeders, coexisting with MV loads and 

DG units, will extend the MG operation flexibility to the MV level through suitable control 

schemes, leading with the MMG concept also presented in chapter 2. MMG will operate with 

cooperation with the whole power system resulting in a manageable network, which can also 

be operated autonomously. 

In order to operate a MMG reliably, namely when it is operated in islanded mode, transient 

stability analysis should be performed at the MV level. Taking into account the possibility of 

having many MG connected to the MV network, an high dimensional system will arise and 

therefore the use of detailed models that are able to accurately simulate the MG dynamic 

behaviour with impact to the MV level will become not practical due to the considerable 

computational effort required to solve the resulting system of nonlinear differential equations, 

as already mentioned previously. Thus, in order to study the relevant dynamics of several MG 
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with respect to the MV networks, it is necessary to speed up numerical simulations with limited 

technical resources and therefore the development of dynamic equivalents for MG is required 

[16, 17]. 

For this purpose, the MG should be envisaged as a controllable and active cell similar to a 

controllable active source connected to the MV network, whose dynamics have an effective 

impact with respect to the MV network. Therefore, the dynamic equivalent to be developed 

will replace the MG detailed model, which is assumed to be the external subsystem, by a 

reduced order model according to the following guidelines: 

• The MG dynamic equivalent must be an accurate representation of the detailed 

model concerning the transient analysis to be performed; 

• The cost of building the dynamic equivalent must be much smaller than the cost of 

performing the transient analysis using the MG detailed model; 

• The obtained dynamic equivalent has to be integrated into dynamic simulation 

tools. 

When compared to a conventional power system, MG have no centralized synchronous 

machines. Rather, although their lower dimensions, MG can comprise many microsources with 

quite different technologies connected at several buses of the LV network through inverter 

interfaces. In addition different MG can have quite different compositions and to obtain 

detailed information about all of their components will be a difficult task. Therefore, in the 

following subsections the dynamic equivalencing techniques presented in this chapter are 

assessed regarding their applicability to build dynamic equivalents for MG, taking into account 

their main features. 

3.5.1 Modal analysis  

The power systems model order reduction using linear based approaches represents a 

simple task in spite of the long computing time required when dealing with large 

interconnected power systems. However, the linear based approaches have the following 

drawbacks: 

• It is difficult to define the modes, which could be safely eliminated without affecting 

the results. The reduced order model will not be adequate to study some modes if 

their dynamics are cancelled during the reduction process; 
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• The results are accurate only around the operating point at which the reduction has 

been developed and will not adequately represent the system when the operating point 

moves away from the base case; 

• Some restrictions arise when applying this method to strongly nonlinear problems; 

Furthermore, the weaknesses pointed out in subsection 3.4.2, concerning distribution 

networks with high penetration of DG, will extend for developing MG dynamic equivalents 

purposes. In addition considering the MG dynamics with respect to the MV network as small 

perturbations around a steady state operating point and representing all the MG components by 

linear models will lack the accuracy for the resulting MG dynamic equivalent. 

3.5.2 Coherency based methods 

Coherency based methods allow to build nonlinear dynamic equivalents for conventional 

power systems. As described in subsection 3.3.2, these methods are based on the coherency 

concept and all methods for coherency recognition analyse the electromechanical behaviour of 

the synchronous generators, which is described by rotor angles or speeds based on the 

linearized model of the entire power system. These variables are not suitable for MS since they 

are connected to the LV networks through power electronic interfaces. Furthermore the 

dynamic behaviour of several MS, such as fuel cells and PV is not characterized by rotor 

angles or angular speeds. Therefore, coherency based methods do not make sense for MG. On 

the other hand, since the MG is a very resistive network, decoupling between active and 

reactive powers is not practical and therefore the linearized model cannot be applied. 

3.5.3 ANN based dynamic equivalents 

As the main features outlined in the previous two subsections do not recommend the 

applicability of both modal analysis and coherency based methods to develop suitable dynamic 

equivalents for MG, methods based on power system measurements are assessed for this 

purpose. 

In contrast with conventional dynamic equivalencing techniques, ANN based dynamic 

equivalents have been characterized as approaches of general applicability. In fact, they have 
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been successfully applied to derive dynamic equivalents to replace some parts of conventional 

large power systems as well as distribution networks comprising a large number of DG units. 

The main features of ANN based methods recognized as advantages in these previous two 

applications seem to have no practical applicability restrictions to MG. Rather, the main 

characteristics of measurement based dynamic equivalents motivate the exploitation of 

methods based on system identification theory to develop suitable dynamic equivalents for 

MG. 

3.6 Summary and main conclusions 

This chapter presented the state-of-the-art of dynamic equivalents in the power system 

field. The conventional approaches, such as modal analysis and coherency based methods that 

have been used to develop dynamic equivalents for large power systems were described as well 

as the main theoretical concepts and practical issues behind them. 

With the technological and organizational advancements of conventional power systems 

new requirements of classical dynamic equivalencing approaches arose. In response alternative 

approaches, which are derived from system measurements have emerged. These approaches 

were also presented in this chapter. 

In order to build dynamic equivalents suitable to represent the MG dynamics with respect 

to the MV network when the MMG is operated in islanded mode, the applicability of these 

main approaches to MG was discussed, taking into account the nature of different MS and the 

MG own specificities. From this discussion two main conclusions arise:  

• Conventional dynamic equivalencing techniques are not practical for MG. 

• Due to its general applicability, ANN based dynamic equivalents seems to be a 

promising approach. 

Therefore, as a general conclusion, methodologies based on system identification theory 

should be exploited in order to develop suitable MG dynamic equivalents. Thus, the main 

nonlinear dynamic system identification techniques are addressed in chapter 4. 
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Chapter 4 

Development of Dynamic Equivalents for 

MicroGrids exploiting System Identification Theory 

4.1 Introduction 

System identification is the theory and art of building models of dynamic systems based on 

observed inputs and outputs related with some pattern of behaviour [158, 159]. As a scientific 

discipline it dates back to the first attempts to model time series using autoregressive and 

moving average techniques. Nowadays typical applications pass over simulation, prediction, 

fault detection and control systems design. Even though a substantial part of the development 

of system identification techniques can be linked to the control community, these techniques 

are basically built on statistical approaches, in particular on linear and nonlinear regression 

methodologies [160]. Thus, in general, if the burden associated with building a model using 

physical laws is considered overwhelming, system identification techniques are naturally of 

particular interest. 

Due to the large domain of application, system identification is a diverse field that can be 

presented in many different ways having different terminologies based on the historic 

development of models within different disciplines. Thus some expressions stem from time 

series modelling in economics [161] and [159, 162] established them as the now widely 

accepted standard in linear system identification. Since nonlinear system identification 

techniques emerge as natural extensions from the linear ones [161], the terminology used in 

[159, 162] was adopted in this thesis. 

System identification based on linear models is today well established in research and in 

practice. In contrast, algorithms and available theoretical support are more scattered in the 

nonlinear field. A first reason for this is that it is more difficult to find models with a wide 

application, although the general framework can be formulated [163]. However, motivated by 

the fact that, in practice, all systems exhibit some kind of nonlinear behaviour, a significant 

effort has been made on the development of different approaches to perform nonlinear systems 
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identification, even in control applications. One of the key players in this endeavour are the 

ANN [164]. In fact, with the introduction of ANN, fuzzy models and powerful optimization 

techniques a much wider class of nonlinear systems has been handled [161]. 

Neural networks constitute a very large research field with application in many areas, 

including power systems, particularly in the dynamic equivalencing field as described in 

chapter 3, since in a general sense they can learn nonlinear mappings from experience. When 

this experience is interpreted as knowledge about how certain inputs affect a system, it is 

obvious that neural networks must have something in common with the techniques applied in 

system identification. Additionally neural networks based tools allow the use of the same 

approach for a broad variety of systems, although almost each nonlinear system is unique. 

A system is a broad concept that plays an important role in system identification, since the 

modelling approaches are solved in a system oriented framework. Therefore, before starting 

any system identification procedure, a solid system definition should be given. Section 4.2 

provides the system definition concerning MicroGrids for finding MG dynamic equivalent 

purposes with identification techniques. In order to cope with this problem the fundamentals of 

nonlinear dynamic system identification are described in section 4.3 through the description of 

common system identification procedures. Model quality issues are also addressed in this 

section. 

As to build a nonlinear model is, in general, a very complex task, a general guideline is to 

make use of the available prior knowledge to derive a MG dynamic equivalent following its 

intended use with an acceptable trade-off between development effort and performance. Thus, 

in section 4.4, promising approaches to build dynamic equivalents for MG with identification 

techniques are formulated. Based on the available physical knowledge effectively used during 

the system identification procedure applied to this problem, two possible solution approaches 

are envisaged, which rely on using either a black box model structure based on MLP neural 

networks or a physical model structure. 

• The first one tries to exploit the full response of the MG when excited after a 

disturbance; 

• The second one tries to understand the physical behaviour of the different components 

of the MG. 

The most adequate procedures adopted to derive MG dynamic equivalents either in terms 

of models and parameter of these models are also presented and discussed in this section. 



Chapter IV – Development of Dynamic Equivalents for MicroGrids exploiting System Identification Theory  

91 

Although there is a vast literature on parameter estimation and system identification in general, 

section 4.4 is restricted to the theory that can be exploited to build suitable dynamic equivalents 

for MG. 

The summary and main conclusions are given in section 4.5. 

4.2 The MicroGrid system definition 

Like in a conventional power system, for purposes of analysis and to get a better sight to 

put up a reduced equivalent system, the detailed model of the whole MMG network is divided 

into two parts: The internal area that has to be retained for detailed analysis and the external 

area that has to be replaced by the equivalent model, as depicted in figure 4.1. 

⇓

 

Figure 4.1: MMG system: (a) before reduction; (b) after reduction 

As it can be observed from figure 4.1, the external area involves the MG detailed model 

while the internal area comprises the remaining MMG detailed model, corresponding to both 

the external and the study subsystems, respectively. In this sense, the dynamic system to be 

identified consists of a set of differential and algebraic equations corresponding to the dynamic 

models of the several microgeneration systems presented in chapter 2, describing the state 

evolution over time of the physical system – the MicroGrid. 
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Therefore the system identification procedure consists on finding just another mathematical 

representation of the physical MG built upon the corresponding MG detailed model. The 

evolution over time computed using the MG detailed model is called a process under system 

identification termination [161]. 

Since data is the main source of information, among other issues, the system definition 

involves to specify which signals are considered as inputs and which ones are considered as 

outputs in order to define where the measurements take place, that is, the system boundary. 

Afterwards suitable input signals have to be designed in order to collect informative enough 

data sets. 

In contrast with linear systems, PRBS are inappropriate for nonlinear systems and, 

probably due to the highly application specific nature of the problem, few tools exist and little 

research is devoted to this subject [161]. Aspects such as the purpose of the model, 

characteristics of different input signals, equal data distribution and dynamic properties should 

be taken into account in order to choose persistently exciting inputs. From this list of general 

guidelines, it follows that a high engineering expertise is required in order to design adequate 

input signals. 

Thus, in order to collect an informative enough data set, the MG detailed model has to be 

excited through efficiently generated disturbances scenarios into the internal area and the MG 

dynamics following these disturbance scenarios should be captured by means of the electrical 

variables, measured at the system boundary. Another issue to be taken into account concerns 

the electrical network reduction. As described in subsection 3.3.2.4 of chapter 3, node 

elimination and aggregation can be done by making the MG dynamic equivalent injected 

currents at the boundary bus equal to the currents in tie-lines. 

Therefore, boundary bus voltage expressed through its both −D  and −Q axis components 

and MMG system frequency are considered as inputs while the −D  and −Q axis components 

of the tie-line currents are considered as system outputs, as illustrated in figure 4.1. Thus, the 

dynamic equivalent will react to boundary bus voltage and system frequency changes resulting 

from the internal area disturbances scenarios, by varying the injected current into the retained 

subsystem. 

In order to derive dynamic equivalents for MG using system identification techniques 

based on this system definition, the fundamentals of nonlinear dynamic systems identification 

are addressed in the following section. 
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4.3 Fundamentals of nonlinear dynamic systems identification 

Although that almost all practical systems are in principle nonlinear, most of the available 

system identification literature has focused on dealing with models and controllers described 

by linear differential or difference equations, i.e., identification of linear systems. There are 

many reasons for this. Some of them derive from the fact that models have been used in many 

cases oriented towards control applications. Identification for control deals mainly with the 

question of how identify a model that serves as basis for control design and thus the goal is not 

a very accurate model but good control performance. In addition, it is much simpler to design 

controllers for a system described by a linear model [164]. Furthermore, linear system 

identification is less complicated to perform from a computation perspective and the analysis is 

less complicated from a statistical view point. 

Nowadays nonlinear dynamic systems identification is considered as a field of very active 

research; many new methods have been developed and old methods will be improved. 

Nevertheless, the linear underlying principles are valuable. In this sense local linear model 

approaches constitute a very promising approach to nonlinear systems identification. A 

practical case was NNSYSID software package, which is described in [165], as an extension of 

the System Identification Toolbox [166] developed for MATLAB®. However, building a 

nonlinear model is a much complex task than a linear one and some stages are not well 

established. Prior knowledge and intended purpose of the model are the general guidelines, as 

already mentioned previously. 

4.3.1 How to build mathematical models 

Models, in general, are derived from the knowledge of system properties, namely those that 

are considered relevant for the intended purpose of the model. This prior knowledge can result 

from two possible sources: 

• Mechanistic descriptions of the system; 

• Observations or measured data. 

Then mathematical models can be obtained either theoretically based on physical 

relationships – physical modelling – or empirically based on experimental data from the system 

[158], as it can be observed from figure 4.2. 
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Figure 4.2: The two basic principles for mathematical model building 

Many combinations of physical and empirical modelling have been pursued and, depending 

on the level of prior insight about the system effectively used, three different modelling 

approaches can be distinguished [164]. If the model is derived from measured data, assuming 

only a reduced knowledge about the physics of the system, the modelling approach is called 

black-box modelling; in contrast, white-box modelling is used for a pure physical modelling of 

the system. When a certain level of insight about the system exists and is used together with 

measured data to derive an empirical model, the gray-box modelling classification can be used. 

System identification is concerned with the development and analysis of methods for 

performing grey and black box modelling [158, 159, 162, 164, 167-169]. Differently from 

white-box modelling, that is intimately related to the specific knowledge domain, system 

identification covers a number of methodological issues that arise whenever data are processed 

to obtain a quantitative model, as it can be seen in the following subsection. 

4.3.2 A common system identification procedure 

According to [159, 162], the techniques to build and complement models from system 

measurements involve fundamentally three basic entities: 

• A data set; 

• A set of candidate models; 

• An identification criterion. 
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The beginning of all model building is the observed data. Then a data set is recorded during 

a specifically designed identification experiment. With a given observed data set, the system 

identification procedure main tasks are to decide on a set of candidate models and to estimate 

the model parameters in the sense of an identification criterion. However, an important 

question is whether the model is good enough for its intended purpose. Testing if a model is 

appropriate is known as model validation. 

The above considerations have lead to a general conceptual approach including the 

following basic steps. 

4.3.2.1 Identification experiment 

Although the available software packages do not assist the user in designing the 

experiment, the data set is the basis for any successful identification procedure, since system 

behaviour that is not represented within the data set cannot be described by the model, unless 

prior knowledge is explicitly incorporated. 

Since a typical data acquisition mode deals with input and output observations, the basic 

idea is to vary the system inputs and observe the corresponding impact on the outputs, as 

depicted in figure 4.3. 

( )ky

( )kv

( )ku

 

Figure 4.3: Scheme of the system to be identified 

When it has been decided upon where and what to measure, the next question is when to 

measure. Since both system inputs and outputs are observed at sample instants 

NkkTtk ,...2,1 , == , then a sampling time, T , has to be chosen. Finally a required number of 

measurements, N , to be collected should be defined. It can also be assumed that there are 

always signals beyond control, namely measurement noise and possibly uncontrollable inputs, 

denoted by ( )kv  in figure 4.3, which will affect the system output. For ease of notation, T  is 
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assumed to be one time unit and k  is used to enumerate the sampling instants. Thus, the data 

set of corresponding system inputs and outputs is given by: 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]{ }NyNuyuyuZ N  ,2 ,21 ,1 L=                                                             (4.1) 

However, the system experiment involves more issues than simply data collection. As the 

purpose of an identification experiment is to collect a set of data that describes how the system 

behaves over its entire range of operation, the design of appropriate excitation signals is an 

important task, since, independently of the modelling approach to be followed, the quality of 

the observed data will determine an upper bound on the accuracy that can be achieved by the 

model. Nevertheless, due to the fact that nonlinear models are significantly more complex, this 

task is even more decisive for nonlinear than for linear models since the data must contain 

considerably more information. 

4.3.2.2 Model structure selection 

In formal terms, after collecting a data set one is looking for a relationship between past 

observations, 11  , −− kk yu , and future outputs, ( )ky , as 

( ) ( ) ( )kvyugky kk += −− 11,                                                                                                   (4.2) 

where the additive term ( )kv  accounts for the fact that the next output ( )ky  will not be an 

exact function of the past data. 

In order to construct a model from data it should be assumed that ( )⋅g  belongs to a family 

of functions that is parameterized in terms of a finite number of parameters, commonly denoted 

by θ . This family of candidate model functions will be called a model structure and is defined 

in [159] as a differentiable mapping from the parameter domain, 
M

D , to the space of the 

parameterized model outputs, 

( ) ( ) ∗−−
∧

∈=→ MM θθθ ;,|: 11 kk yugky                                                                               (4.3) 

where 

[ ]θθθθθ nK21= : θθ nRD ⊂∈
M

                                                                             (4.4) 
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is the parameter vector with θn  parameters used to parameterize the mapping. Model 

structures have been commonly denoted by M  while a particular model corresponding to a 

parameter vector θ  is denoted by ( )θM . The set of candidate models is thus defined as 

( ){ }
M

MM D∈=∗ θθ |                                                                                                        (4.5) 

Formally speaking, the expression (4.3) is too general and it should be useful to write ( )⋅g  

as a concatenation of two mappings; one that takes the increasing number of past observations 

and maps them into a vector ( )θϕ ,k  of fixed dimensions and another that takes this vector to 

the space of the model outputs [169]. Thus 

( ) ( )[ ]θθϕθ ;,;, 11 kgyug kk =−−                                                                                              (4.6) 

where 

( ) ( )θϕθϕ ;,, 11 −−= kk yuk                                                                                                      (4.7) 

is the regression vector with its components referred to as the regressors. Therefore the model 

structure in (4.3) is decomposed into two partial problems for nonlinear dynamic systems: 

• How to choose the regression vector ( )θϕ ,k  from past inputs and outputs; 

• How to choose the nonlinear mapping ( )θϕ,g  from the regressor to the output space. 

The choice of an appropriate model structure is considered in the literature the most 

important and, at the same time, the most difficult decision the user has to make, because the 

lack of theoretical support [161]. Therefore, it is particularly important that the model structure 

will be linked to the intended use of the model, which means that prior knowledge, engineering 

intuition and insight about the system dynamics have to be combined with the formal 

properties of models in order to select a suitable mathematical representation for the system to 

be identified. 

Sometimes a model set is obtained after a careful physically modelling approach; the model 

parameters represent unknown values of system parameters that, in principle, have physical 

interpretation. In other cases, standard nonlinear models without reference to physical 

background may be employed. Such a model set, whose parameters are basically viewed as 

vehicles for adjusting the fit to the data, is called a set of ready-made or black box models. 
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Model sets with adjustable parameters with physical interpretation may accordingly be called 

tailor-made or gray-box models [158, 159, 161, 162, 164, 169]. 

4.3.2.3 The identification method 

The search for a good model is then carried out in terms of the parameters θ . The problem 

now is to decide upon how to use the information contained in the data set, NZ , to select a 

proper value, N

∧
θ , of the parameter vector and hence a proper member 







 ∧

NθM  of the set of 

models ∗
M . Thus, given a set of candidate models, ( ) ( )( ) ( )kvkgky += θϕ , , and a set of 

measured regressor-output pairs, 

( ) ( )[ ]{ }NkkykZ N
e  ..., ,1 :, == ϕ                                                                                           (4.8) 

the purpose of the identification method is to determine a mapping from N
eZ  to the set of 

candidate models 
M

D , 

M
DZ N

N
e ∈→

∧
θ                                                                                                                  (4.9) 

in order to obtain a model that provides predictions close to the system outputs in the sense of 

the identification criterion. The search for the optimal point, in an θn -dimensional parameter 

space, spanned by the parameter vector θ , is carried out through a suitable parameter 

estimation technique and the set of regressor-output pairs N
eZ  is referred to as the estimation 

data set, since the model parameter estimation will rely on it. 

The identification method is equivalent to reconstructing the hyper surface ( )( )θϕ ,kg  from 

the pairs ( ) ( )[ ]kyk ,ϕ . According to this view point, there are clear connections with function 

approximation, learning theory [170], neural networks [171, 172] and statistics [173] whenever 

the measurement errors are given in a probabilistic manner. Then this process is known, in 

statistical literature, as estimation and, for historical reasons, in the neural network community, 

it is usually called training or learning. Therefore the estimation data set is also known as 

training data set. This basic search concept is illustrated in figure 4.4 from a modelling view 

point. 
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( )ky

( )θ|ky
∧

( )kε

( )kv

( )kϕ

( )( )θϕ ,kg

 

Figure 4.4: The search for the optimal point under a modelling perspective 

Both system and model are fed with the same inputs, ( )kϕ , and the corresponding outputs, 

( )ky  and ( )θ|ky
∧

, respectively, are compared yielding an error signal,  

( ) ( ) ( )θθε |, kykyk
∧

−=                                                                                                     (4.10) 

which can be computed for Nk ,...,1=  and used in some sense for adapting the model. 

The parametric model has to be augmented with a suitable identification criterion that 

measures how well the model fits the system outputs and with an algorithm that will adapt the 

model parameters so that a minimum identification criterion can be achieved. Thus, the goal of 

the parameter optimization technique is to find the best approximation ( )θ|ky
∧

 of the measured 

output ( )ky , which may be spoilt with noise, by adapting the parameter vector θ . This 

procedure can be computationally intensive, but it is generally one of the easiest stages in the 

identification procedure. 

4.3.2.4 Model validation 

After settled the previous three stages a model has been estimated; the one, in the chosen 

set of models, that best describes the training data according to the identification criterion. 

Now, the obtained model must be evaluated in order to investigate whether or not it is valid for 

its intended purpose. Therefore two main aspects should be taken into account:  

• The model agrees sufficiently well with the observed data; 

• The model is good enough for its intended purpose. 



Chapter IV – Development of Dynamic Equivalents for MicroGrids exploiting System Identification Theory  

100 

Generally the method to lead with these questions is to confront the model 






 ∧

NθM  with as 

much information about the system as it is practical. This includes a prior knowledge, 

measurement data and experience of using the model. In a general identification application the 

most natural entity with which to confront the model is the data. Then model validation 

techniques tend to focus on the first aspect. However, since there is always a certain purpose 

with the modelling, what matters in practice is the second aspect and the ultimate validation 

step is then to test whether the problem that motivated the modelling exercise can be solved 

using the obtained model [158, 159, 161, 164]. 

For most applications this level of ambition is somewhat high. So, instead of investigate the 

particular properties of the models, it is a common procedure to apply standard tests in order to 

develop confidence in them. According to [158, 159], for a model structure physically 

parameterized, a natural and important validation is to confront the estimated values and their 

estimated variances with what is reasonable from prior knowledge. It is also good practice to 

evaluate the sensitivity of the input-output behaviour with respect to these parameters in order 

to check their identifiability. Concerning to black box models, the interest is focused on their 

input-output properties. While for linear models these properties are normally displayed as 

Bode diagrams, for nonlinear models they will be inspected by simulation and, in this sense, 

model validation is closely related to the concept of model quality [161, 164], which is 

addressed in subsection 4.3.3. 

4.3.2.5 The system identification loop 

As briefly described in the preceding subsections, in a common system identification 

procedure the user has to take a number of decisions: An experiment has to be designed, a 

model structure must be chosen, an identification criterion must be selected as well as the 

optimization technique and a procedure for validating the obtained model has to be devised. 

Each one of these choices will have an influence on both quality and amount of work of the 

resulting model. Thus, they may also to be revised a number of times during the identification 

procedure. 

In the model validation block it is checked whether all preceding steps have been carried 

out successfully or not in the sense of the validation criterion, which of course is highly 

problem dependent and also closely related to the intended use of the model. As depicted in 
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figure 4.5, the paths going from this block back to the previous stages indicate that the 

procedure is executed in an iterative manner [159]. 

 

Figure 4.5: The basic system identification loop 

It is quite likely that the model first obtained will not pass the model validation tests and 

then it is necessary to go back in the procedure and revise the various steps taking into account 

the reasons by which the model may be deficient. It should be necessary to determine a 

different model into the selected set of models, to try out another model structure or, in the 

worst case, even redo the experiment:  

• Path leading back to model estimation, when the numerical procedure failed to find the 

best model according to the identification criterion. 

• Path leading back to the model structure selection, when the model structure was not 

appropriate since it did not contain a good enough mathematical description of the 

system. 

• Path leading back to experiment, when it seems impossible to determine a suitable 

model because the data set was not informative enough to provide guidance in selecting 

good models. 
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The major part of an identification application consists of addressing these problems, in 

particular the model structure selection, in an iterative manner guided by prior knowledge and 

the outcomes of previous attempts. Interactive software obviously is an important tool for 

handling the iterative character of this problem. 

4.3.3 Model quality 

Based on the assumption that there is a set of mathematical equations representing exactly 

the true structure of the system, S , the identification task would be to determine the true values 

of the parameters from the estimation data set, which should be informative enough to 

distinguish between different model structures as well as properties of the model structure 

itself. Therefore, the equivalence of the estimated model to the true system is established 

through the convergence of the parameter estimate to the true parameters, 0θ . Then the 

convergence domain is defined as 

( ) { }0, θ=MSDT                                                                                                                (4.11) 

This set is empty if M∉S . Thus one important aspect to be taken into account in model 

structure selection is to chose M  so that (4.11) holds for a given description S . However, in 

practice, nonlinear complex systems can never be completely known so that it is not possible to 

know a priori if the parameter estimation will be well achieved. Thus, the identification 

problem becomes to find a member from a given model structure, which approximates 

reasonably well the system in the sense of the identification criterion. In a probabilistic 

framework the expectation of the square error may be used as a loss function [161] and then as 

a measure of model quality since it allows some important analytical results [174]. Suppose 

that the actual data can be described by 

( ) ( )( ) ( )kvkgky += ϕ0                                                                                                       (4.12) 

where 0g  is some unknown true model and ( )kv  is white noise with variance λ , the average 

generalization error is given by 

( ) ( ) ( )( ){ } ( )( ) ( )( ){ }2

0

2
,

2

1

2

1
,

2

1 θϕϕλθϕθ kgkgEkgkyEV −+=−=                               (4.13) 
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Unfortunately it is not possible to evaluate (4.13) in practice, but under suitable conditions 

[159], that is, 

( ) ( )N
eN

N
ZVV ,lim θθ

∞→
=                                                                                                       (4.14) 

and thus, ∗

∧
→θθ N  for ∞→N , when ∗θ  is the minimizer of (4.13). In particular, if the true 

system described by (4.12) was contained in the model structure, M∈S , the estimate would 

also be consistent: 0θθ =∗ . Then, within a given model structure parameterized by θ  of 

dimension θn , the best model can be defined according to the following quality measure 

[169]. 

( ) ( )θθθ
θ

Vn
D
M

∈
∗ = minarg                                                                                                       (4.15) 

It should be noted that ( )θθ n∗  will depend on the number of parameters and on the 

properties of ϕ . To measure the quality of a given model, N

∧
θ , one should use 

( )θθ nVVE N ∗

∧
=







                                                                                                            (4.16) 

Here the expectation is with respect to the model N

∧
θ . The measure (4.16) thus describes 

the model’s expected fit to the true system, when applied to a new data set with the same 

distribution of the regressors ϕ . For a given regressor properties and a given model structure 

family, it depends only on the number of model parameters, θn . 

4.3.3.1 Bias and variance 

Assuming that the estimate N
∧
θ  is obtained by minimization of MSE criterion and also the 

model ( )θθ n∗  is quite good in the sense that the model residuals are white noise, the model 

criterion ( )θnV∗  as defined in (4.16) can be expressed as 
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( ) ( )( ) ( )

{ ( ) ( )( ) ( )( )
44444 344444 21

4444 34444 21

variance

N

bias
noise

NN

gngEnggE

kgkgEVEnV

2
2

0

2

0

,,,           

,








−+−+≈

=






−+=






=

∧

∗∗

∧∧

∗

θϕθθϕθθϕϕλ

θϕϕλθθ

                          (4.17) 

As indicated, ( )θnV∗  can be approximately decomposed into two parts: one due to the bias, 

the other due to the variance of the estimation. They are further examined in the following. 

As ∞→N , ( )θθθ nN ∗

∧
→ , the variance error should be negligible and thus ( )θnV∗  will 

only involve the bias part. The estimate will thus converge to the best possible approximation 

of the true system for a given model structure and model size. Thus, the bias error describes the 

systematic deviation between the process and the model that, in principle, exist due to an 

insufficient model structure; i.e., M∉S . 

Since the test data set has a different noise realization, the estimated parameter vector, N

∧
θ  

will have a certain covariance matrix that describes its deviation from ( )θθ n∗ . Concerning to 

the variations in θ  with respect to the prediction performance, it can be shown [159] that for 

large estimation data sets the variance error increases approximately linearly with the number 

of model parameters. 

( ) ( ) ( )( )
N

n
nkgkgE N

θλθθϕθϕ ≈−







∗

∧ 2

,,                                                                       (4.18) 

Combining (4.17) and (4.18) gives,  

( ) ( ) ( )( ) ( )( )
N

n
nVnggE

N

n
VEnV N

θλθθθθϕϕθλλθθ +=−++=






= ∗∗

∧

∗
2

0 ,                 (4.19) 

A useful interpretation of (4.19) is that it displays the expected model performance on the 

validation data set. It is important to recognize that the expected value of the model 

performance when it is applied to the estimation data set, with MSE criterion, is quite different,  

( )( )
N

n
nVEV NN

θλθθθ −≈







∗

∧
                                                                                        (4.20) 
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In fact the variance error is only detected on fresh data that is when the model performance 

is evaluated on a validation data set, not used during training. Otherwise the variance error will 

decrease as θn  increases. 

4.3.3.2 Model structure flexibility 

The concept of model flexibility will be related to the number of parameters that the model 

possesses in the sense that a model becomes more flexible (more complex) if additional 

parameters are included and it becomes less flexible (simpler) if some parameters are removed, 

independently of the nonlinear mapping to be used. 

Under the context of model flexibility, from (4.17) it becomes clear that the bias error is 

large for less flexible models and decreases as the number of basis functions grows, 

approaching to zero for a large number of model parameters. On the other hand, for a finitely 

sized estimation data set, the variance error works on the opposite direction and reaches its 

maximum when the training data contains only as many data samples as there are parameters in 

the model [161]. In such a case, the degree of freedom allow to fit the model perfectly on the 

training data set, as in (4.20), which means that the parameters precisely represent the noise 

contained in the estimation data set and therefore it is expected that this model performs worse 

in a test data set, which contains a different noise realization, as (4.19) demonstrates. 

In fact bias and variance are in conflict in the sense that it is impossible to minimize both 

errors simultaneously. This is the well known bias/variance dilemma, which can be discussed 

under different disguises and particularly under a neural network framework in [175, 176]. 

Therefore the concept of optimal model flexibility represents the best overall solution for a 

specific model class. Directly from this fact follows the parsimony principle which states that 

from all models that can describe the process accurately, the simplest one is the best [159]. 

4.3.3.3 Evaluating the test error and alternatives 

A validation or test data set, TvZ , is commonly used for evaluating the model quality. In 

fact, as already mentioned previously, the variance error is detected only if a data set with 

different stochastic effects due to noise is used. Otherwise it could not be detected since the 
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error in the estimation data set consists mainly on the bias part for a large training data set 

when compared to the number of model parameters. 

This means that the error on the data set decreases with the model flexibility, while the 

error on test data set decreases only until the point of optimal flexibility, beyond which it starts 

to increase. If this effect is ignored, one typically ends up with overly complex models, which 

perform well on the estimation data set but poorly on the validation data set, since the model 

not only models the features of the system, but also the noise in the training data set. This 

effect is called overfitting. Likewise, the expression underfitting is used when the bias error is 

dominating, which means that the model have no flexibility enough to describe the system 

features. 

The quantity 






 ∧
T
vNT ZV ,θ  is interpreted as an estimate of the average generalization error. 

If 






≅






 ∧∧
T
vNTN ZVV ,θθ  is close to 







 ∧
N
eNN ZV ,θ  it is likely that N

∧
θ  is close to ∗θ  and that the 

obtained model is reasonably good. 

When the amount of available data is small other approaches must be pursued for model 

quality evaluation, like the use of information criteria or alternatively statistical tests and 

correlation based methods [159, 161, 164]. Typical choices of information criteria are AIC, 

BIC and FPE [167, 177]. However, in this research work, the amount of data is not limited and 

therefore those methods are not considered. 

4.4 Finding MG dynamic equivalents with identification techniques 

In order to build dynamic equivalents for MG exploiting system identification theory, a 

similar procedure than that one described in subsection 4.3 should be followed. Then, in this 

section, the problem of MG dynamic equivalents development is formulated under a system 

identification framework and the solution approaches are envisaged, taking into account the 

prior knowledge that has been derived from chapters 2 and 3 as well as the intended purpose of 

the model to be identified. Thus, subsection 4.4.1 is devoted to the identification problem 

formulation and subsequently promising solution approaches are considered based on suitable 

model structures selection. These approaches are described in subsection 4.4.2. Afterwards 

appropriate identification methods have to be selected. Then, identification criteria are 
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addressed in subsection 4.4.3 while parameter estimation methods are presented in subsection 

4.4.4, taking into account the model structures selected in subsection 4.4.2.  

Finally, MG reduced order model validation issues are described in subsection 4.4.5. 

4.4.1 Problem formulation 

As previously described in chapter 2, to develop a power system dynamic simulation, the 

equations used to model the different elements are collected together to form a set of 

differential equations, 

( )uxfx ,=
⋅

                                                                                                                       (4.21) 

and a set of algebraic equations 

( )uxg ,0 =                                                                                                                        (4.22) 

where x  is the state vector of the whole power system and u  represents the inputs. The 

differential equations describe the power systems dynamics and are mainly related with the 

several generating units whilst the algebraic equations describe the network, the static loads 

and the generator algebraic equations. 

Since MatLab® Simulink® was used as the dynamic simulation tool these two sets of 

equations, (4.21) and (4.22), were implemented graphically in terms of a block diagram model, 

in which the differential equations were represented as integral equations in order to separate 

their static nonlinear transformations and integrations as depicted in figure 4.6, where each 

block within a block diagram defines an elementary dynamic system in itself and the 

relationships between each one are given by the use of signals connecting the blocks. 

Determining the system behaviour over time thus entails repeatedly solving the model at 

intervals, called time steps, from the start to the end of time span. Simulink® refers to this 

process as simulating the power system that the model represents. In this sense, simulations can 

be considered as an inexpensive and safe way to experiment with power systems and with 

effective computer power numerical experiments have been carried out. 

However, due to the excessive computing time required when running dynamic simulations 

in time domain together with practical limitations on the size of computer memory, power 

systems analysis programs do not usually model the complete system in detail. As already 



Chapter IV – Development of Dynamic Equivalents for MicroGrids exploiting System Identification Theory  

108 

mentioned previously, in chapter 3, only the internal subsystem is modelled in detail and the 

external subsystem is represented by a dynamic equivalent also called a reduced model. The 

model order reduction of the external system can be done by separating the external subsystem 

from the internal one and by making the injected currents at the boundary nodes equal to the 

tie-line currents, as already mentioned previously in section 4.2. 
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Figure 4.6: Power system block diagram for dynamic simulation 

In this sense, the reduction of the external system using a conceptual system identification 

procedure should be envisaged as a problem of identifying an external subsystem equivalent 

model, guided by the available prior knowledge and the goal that motivated the identification 

procedure as described in the following subsections. 

4.4.1.1 Physical insights 

As discussed in subsection 2.4.1 of chapter 2, the MG is operated under a SMO control 

strategy when it is connected to the upstream MV network, even upon MMG islanding. Thus, 

the available physical knowledge allows to distinguish between two different time scales 

concerning the dynamic responses among the several microgeneration systems into the MG: 
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• The main storage device with a VSI control inverter scheme displays fast dynamic 

responses; 

• The controllable MS with a PQ inverter control display slow dynamic responses.  

Additionally, those microgeneration systems connected to the LV grid through inverters 

with PQ control schemes are the main responsible for the large simulation times. 

Based on those previous assumptions, a suitable dynamic equivalent for MG comprises the 

detailed model of the main storage device VSI control and an aggregated model corresponding 

to the remainder MG detailed model, henceforth called the equivalent model of the MG slow 

dynamics, as depicted in figure 4.7. 

 

Figure 4.7: MG dynamic equivalent model 

Therefore, in this case, the aim of the system identification procedure is to identify the 

equivalent model of the MG slow dynamic behaviour. 

4.4.1.2 Purpose of the model 

Under system identification framework a model can be used in two configurations, either to 

perform prediction or simulation [161]. Prediction means that on the basis of previous process 

inputs and process outputs the model predicts one step into the future, requiring that the 

process output is measured during operation. In contrast, simulation means that on the basis of 

previous process inputs only, the model simulates future outputs. Thus, simulation does not 

require process output measurements during operation.  

As the MG dynamic equivalent is required to describe the MG dynamic behaviour without 

coupling to the MG system, the process output cannot be measured during operation and 

therefore the equivalent model of the MG slow dynamics should be identified to be used in 

simulation configuration. For this purpose suitable solution approaches should be carried out. 
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4.4.2 Solution approaches 

A possible solution approach based on the collected data set starts with the model structure 

selection task, which involves to decide between many sets of models, which in principle are 

adequate to describe the process in mind, as already mentioned in section 4.3. 

In order to select a suitable model structure to MG slow dynamics equivalent model, two 

assumptions are taken into account: 

• The composition of the MG is known and the physical laws that describe the MG slow 

dynamics under study are understood and effectively used; 

• The MG composition is not known or the available prior knowledge is not used to sort 

out the physical relationships. 

Therefore, concerning to the model structure selection, the first decision is mainly based on 

the available physical knowledge about the system to be modelled effectively used. In this 

sense, both physical and black-box models can be used leading with gray and black-box 

modelling approaches. 

Figure 4.8 gives a general overview of the possible solution approaches to be followed. 

 

Figure 4.8: Model structures for MG slow dynamics equivalent model 

4.4.2.1 Physical modelling 

When it is assumed that the physics of the system are understood and it is possible to 

represent them using a set of ordinary differential or difference equations with unknown 
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parameters a physical model structure should be chosen. Since most laws of physics are 

expressed in continuous time, it is easier to construct models with physical insight in 

continuous time than in discrete time and usually a physical model structure is a continuous 

time state space model of a given order as 

( ) ( ) ( )( )

( ) ( ) ( )( )







=

=
∧

θθ

θ

;,|

;,

tutxhty

tutxf
dt

tdx

                                                                                                   (4.23) 

where θ  is the parameter vector, ( )tx  represents the states and the regression vector 

corresponds to the actual inputs, ( )tu . Such a predictor is presented in a simulation 

configuration, since ( )θ|ty
∧

 is constructed by simulating a noise free model using the actual 

system inputs. If it is assumed that measurement noise is affecting the model output, this noise 

should be described as white noise. When more sophisticated noise modelling is required the 

Kalman filter should be used to compute ( )θ|ty
∧

 [159], [178]. 

From (4.23), it is possible to observe that the model structure is the point of contact 

between physical modelling and empirical modelling approaches, since after to obtain a model 

structure based on physical grounds, the values of the model parameters gathered into the 

parameter vector, θ , are missing and should be determined from measured data. Therefore a 

physical model has one important advantage which arises from the fact that the known physical 

relationships are built in and no parameters have to be wasted in order to estimate what is 

already known. Thus, the model is parsimonious with its parameters which often have a direct 

physical interpretation. This later fact has the added advantage that it helps to decide if the 

estimates are reasonable [178]. 

4.4.2.2 Black box modelling 

When it is assumed that the available prior knowledge does not allow to design a physically 

parameterized model structure, it is then possible to use standard models, which by experience 

are known to be able to handle a wide range of different system dynamics. For a modelling 

view point these models thus serve as ready made models since for a given model order it 

should be possible to find something that fits to data. A black box model is thus a flexible 
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mathematical structure that is capable of describing many different systems and its parameters 

might not have any physical interpretation. Therefore, some advantages should be 

acknowledged in black box modelling over physical modelling, namely it does not need to 

know both the model structure and order to get started quickly, many model structures can be 

estimated and compared in order to choose the best one and the universality. 

However, considering that there are no particular insight into the system’s properties, ( )⋅g  

would be parameterized in a flexible way covering all kinds of reasonable system behaviour, 

giving obviously a big family of nonlinear black-box models. Therefore, as already mentioned 

in subsection 4.3.2.2, the model structure selection task for modelling purposes involves, in 

general, two main additional decisions: 

• To choose a set of regressors; 

• To specify how to combine them into a one-step-ahead prediction. 

In particular, for deriving MG dynamic equivalents purposes, the possibilities of these two 

choices are briefly addressed in the following two subsections. 

4.4.2.2.1 NFIR vector of regressors 

As natural extensions of linear dynamic model structures, two nonlinear dynamic model 

classes can be distinguished: Input-output models and models with state space representation, 

which are the nonlinear counterparts of both linear models with polynomial and state space 

representation, respectively [159-161, 163-165, 169, 172]. Therefore two fundamentally 

different black-box modelling approaches are distinguished in [161] between internal and 

external dynamics as it can be observed from figure 4.8 presented in subsection 4.4.2. 

In the case when the system internal states can be measured, internal dynamics are of easy 

applicability and have been preferred over the input-output model structures. However, if the 

states have to be considered as unknown quantities they must be estimated as well. The high 

complexity generally involved in the simultaneous estimation of model states and parameters is 

the reason for the dominance of the much simpler nonlinear input-output models and, thus, the 

external dynamics approaches [161]. As the MG states can not be measured, nonlinear state 

space models cannot be applied directly and therefore internal dynamics approaches are not 

considered for deriving MG dynamic equivalents purposes. 
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In the external dynamics approaches the estimation of polynomials through either linear or 

pseudo-linear regressions [159, 162] extends to the problem of approximating the nonlinear 

function ( )⋅g , allowing to separate the dynamic model between the regression vector and the 

nonlinear mapping [161, 164, 169], as it can be observed from figure 4.9. 
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Figure 4.9: External dynamics approach 

The nonlinear mapping ( )⋅g  in figure 4.9 corresponds to a general nonlinear static 

approximator and the model dynamics are represented through an external dynamic filter bank. 

Typically, the filters are realized as simple time delays, 1−q , and are thus referred to as tapped 

delay lines while the regressors are commonly chosen in the same way as for the linear models: 

past measurements, past model outputs and possibly past prediction errors. 

Thus, if the regression vector is selected as for ARX models, the model structure is called 

NARX as the acronym for Nonlinear ARX. Likewise NARMAX, NOE and NFIR model 

structures are introduced as follows [161, 169]: 

NARX: ( ) ( ) ( ) ( ) ( )[ ]Tnakykynbkukugky −−−−=
∧

LL 11|θ                            (4.24) 

NARMAX: ( ) ( ) ( ) ( ) ( )[
( ) ( )]Tnckk

nbkykynbkukugky

−−

−−−−=
∧

εε
θ

L

LL

1                    

 11|                        (4.25) 

NOE: ( ) ( ) ( ) ( ) ( )
T

nfkykynakukugky 




 −−−−=
∧∧∧

LL 11|θ                               (4.26) 

NFIR: ( ) ( ) ( )[ ]Tnakukugky −−=
∧

L1|θ                                                                      (4.27) 
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It should also be noted that more complex noise model structures like NARMAX and NBJ 

are uncommon in nonlinear dynamic system identification [161]. 

NARX and NARMAX model structures can be used for prediction, since they require past 

system outputs as regressors while NOE and NFIR model structures can be used to perform 

simulation, as depicted in figure 4.10. Thus, for developing MG dynamic equivalent purposes, 

the model parameterization decision becomes between NOE and NFIR model structures. 

 

Figure 4.10: Nonlinear dynamic input-output model classes and common model structures 

The basic difference between NOE and NFIR model structures is that the first one involves 

output feedback, since the regression vector given by (4.26) comprises past model outputs. 

Although NOE model structures have been more widespread, a drawback of output feedback is 

that, in general, stability cannot be proven for this kind of models and the user is usually left 

with extensive simulations in order to check under what conditions the obtained model is 

stable. In addition, NOE models can discover an error accumulation that might lead to inferior 

accuracy or even model instability. These problems have been commonly circumvented by 

models without output feedback such as NFIR models. However, the price to be paid for the 

missing feedback is that the number of model inputs – the dynamic order – has to be chosen 

very large to describe the process dynamics properly and therefore a high dimensional input 

space arises for the nonlinear function ( )⋅g . This drawback is already known for linear models 

but has more severe consequences in the nonlinear case, which restrict the application of NFIR 

models only with approximators that can deal well with high dimensional input spaces [161]. 

From this previous discussion and concerning to development of MG dynamic equivalents, 

it is expected that those NOE unsuitable features will be more worsened in applications of 
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power systems dynamic simulations due to their own recurrence characteristics, as it can be 

observed from figure 4.6, in subsection 4.4.1. Therefore NFIR model structures will be applied 

for MG modelling purposes in order to avoid or, at least, minimize error accumulation 

problems and subsequently numerical instability over dynamic simulation. Concerning to the 

static approximator of figure 4.9, in principle, any model architecture can be chosen as 

nonlinear mapping ( )⋅g . However, when combined with NFIR model structures in a 

multivariate system, the approximator should be able to cope with high dimensional input 

spaces and therefore all model architectures that fully underlie the curse of dimensionality are 

not well suited to derive dynamic equivalents for MG. 

The term curse of dimensionality was introduced by Bellman [179] and basically expresses 

the intuitively clear fact that some general problems become harder to solve as the 

dimensionality of the input space increases, since the model complexity scales up 

exponentially with the input space dimensionality. Typical models that suffer from the curse of 

dimensionality are conventional look-up tables and fuzzy models, the so called lattice-based 

approaches [161]. 

Polynomials are the classical nonlinear approximators. However, their application is 

restricted to low dimensional input spaces [161]. Their severe shortcomings pointed out in 

[161] motivated the search for model architectures with better properties concerning external 

dynamics approaches, resulting in ANN. 

There are several neural network architectures, which can be distinguished solely by their 

specific type of hidden layer neurons. Among them, the MLP and the RBF are the two most 

common neural network architectures used for nonlinear dynamic modelling purposes [164, 

172, 180]. Some of the earliest examples are the works of [181] and [182] and the most 

comprehensive programme of work to date is [183] for the MLP architecture and [182] for the 

RBF network. From numerous practical applications published over the past years there seems 

to be substantial evidence that MLP indeed possess a notable ability to lead with complex 

systems. Lately, there have also been some theoretical results that attempt to explain the 

reasons for this success [168, 184]. The curse of dimensionality can be overcame best by 

projection based mechanisms as applied in MLP neural networks [161]. 

Therefore, MLP neural networks are used together with NFIR model structures to provide 

external dynamics approaches being the whole model usually called a TDNN [171, 185]. As 
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this whole model is used to derive dynamic equivalents for MG, the resulting model will be 

referred as the TDNN based MG dynamic equivalent. 

4.4.2.2.2 MLP neural networks as the nonlinear static approximator 

The nonlinear mapping, ( )θϕ,g , can be written as a basis function formulation [159, 161, 

169], as 

( ) ( )∑
=

Φ=
M

i
iiiig

0

,,, γβϕαθϕ                                                                                               (4.28) 

The model output is thus obtained as a weighted sum of the M  basis functions ( )⋅Φ i , which 

play a similar role in (4.28) to that of a functional space basis [169]. Typically iβ  is related to 

the scale or to some directional property of ( )⋅Φ i , and iγ  represents some position or 

translation parameter. 

For MLP neural networks, the multivariate basis functions (4.28) are constructed by 

elementary functions. Then, firstly a construction method is used to map the input vector 

[ ]Tdϕϕϕ K1=  to a scalar ix  with the help of the parameters, iβ  and iγ . Afterwards the 

activation function, ( )ixf , nonlinearly transforms the scalar ix  to the output iy , as depicted in 

figure 4.11. 

1ϕ

2ϕ

dϕ

M

ii γβ ,

ix ( )iiiiy γβϕ ,,Φ=

 

Figure 4.11: Multivariable basis function realization 
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According to [159, 161, 169], there are three most important mechanisms for constructing 

multivariable basis functions: Ridge construction, radial construction and tensor product. 

MLP neural networks comprise a set of hidden layer neurons resulting from the ridge 

construction method. Thus, the activation function operates on a scalar ix , which is obtained 

by projecting the regression vector on the parameter vector d
i R∈β  and adjusting the 

projection result through the inclusion of an offset parameter Ri ∈γ , as i
T
iix γϕβ += , giving 

( ) ( )i
T
ii f γϕβϕ +=Φ                                                                                                         (4.29) 

An MLP hidden neuron, the perceptron, as it is also called, is a processing element whose 

operation realizes the basis function (4.29). Thus, the perceptron output, iy , is given by 











+= ∑

=

d

j
ijiji wwfy

1
0ϕ                                                                                                     (4.30) 

where [ ]Tidii ww K1=β  represents the input weights and 0ii w=γ  is the bias or threshold, as 

depicted in figure 4.12. 
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Figure 4.12: Schematic diagram of the i -th processing element of an MLP 

The activation function can take any form, but common choices are functions of saturation 

type such as the logistic and hyperbolic tangent functions, (4.31) and (4.32), respectively, 

which are illustrated in figure 4.13. 

( ) ( )
ixii

e
xxf −+

==
1

1
logistic                                                                                            (4.31) 
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( ) ( )
ii

ii

xx
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ii
ee

ee
xxf −

−

+
−== tanh                                                                                             (4.32) 

 

Figure 4.13: Typical activation functions for the perceptron 

The logistic function has historically been a very popular choice [186] but since it is related 

to the hyperbolic tangent by a simple transformation 

( ) ( ) 12logistic2tanh −= ii xx                                                                                              (4.33) 

it makes no difference which of these two is used [164]. 

Then, a one hidden layer MLP can be written as  

( ) ∑ ∑
= =











Φ=

M

i

d

j
jijii wwg

0 0

, ϕθϕ  with ( ) 10 =⋅Φ  and 10 =ϕ                                                   (4.34) 

where iw  and ijw  denote the output layer and the hidden layer weights, respectively. The total 

number of parameters of an MLP with one hidden layer and one output layer is then 

( ) 11 +++ MdM                                                                                                               (4.35) 

where M  is the number of hidden layer neurons and d  is the number of inputs. 

The approximator inputs cannot all be directly influenced independently. Rather, only ( )ku  

is chosen by the user and all other delayed inputs follows as consequence of both the required 

system dynamic order and sampling time. Following directly from the fact that the sampling 

time has to be chosen small enough to capture the variations in the system output, the input 

space becomes higher for higher order systems but the data distribution characteristics stay 
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basically the same since the previous inputs are highly correlated and, as a result, wide regions 

in the input space are empty. 

Since MLP hidden neurons are able to find the main directions of a process nonlinearities 

[161], MLP neural networks are able to exploit this property in order to weaken the curse of 

dimensionality, so that the number of parameters increases only linearly with the input space 

dimensionality. Furthermore, the MLP network performs function approximation with a set of 

adaptive bases that are determined from the training data set. This means that the projection 

manifold is data dependent, since the hidden layer weights change the bases by orienting the 

manifold while the output layer weights find the best projection within the manifold. Training 

will find the set of these weights. 

Therefore MLP are relatively insensitive in what concerns to too higher dynamic orders 

because they can cope well with redundant inputs by driving the corresponding hidden layer 

weights toward zero. Nevertheless, the uneven data distribution that typically arises with the 

external dynamics approach [161] can easily be handled by MLP networks because the 

estimation of the hidden layer weights transforms the input axes in a suitable coordinate system 

anyway. Therefore this model architecture constitutes a promising solution to be combined 

with the NFIR regression vector for MG modelling purposes under the black-box modelling 

context. 

In practice MLP with one hidden layer are most common and sometimes two hidden layers 

are used. Its basis functions representation is more involved since the outputs of the first hidden 

layer neuron are the inputs of the second hidden layer neurons, as depicted in figure 4.14. Thus, 

it is clear that more hidden layers make the network harder to train and the parameters become 

more strongly nonlinear. Due to the structure, this type of network is often referred to as a 

feedforward. 

With 1M  and 2M  as the number of neurons in the first and second hidden layers, 

respectively, the basis function formulation becomes 

( ) ( ) ( ) ( ) ( )∑ ∑ ∑
= = =
























ΦΦ=

2

0

1

0 0

11
1

22,
M

l

M

i

d

j
jjiilll wwwg ϕθϕ , with ( )( ) 01

0 =⋅Φ , ( )( ) 02
0 =⋅Φ  and 10 =ϕ     (4.36) 

where the output layer weights are denoted as lw  and both the first and the second hidden layer 

weights are represented by ( )1
jiw  and ( )2

ilw , respectively. 
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Figure 4.14: A multilayer perceptron network with two hidden layers 

An MLP network consists of two types of parameters: The output layer weights that 

determine both the amplitude and operation point of the basis function and the hidden layer 

weights, which determine the directions, slopes and positions of the basis functions. The 

parameter vector θ  contains all the adjustable parameters of the MLP neural network, i.e., all 

the weights and biases, since in (4.36) the biases are interpreted as weights acting on an input 

clamped to the unity. The values of these parameters are further estimated through a suitable 

identification method. 

An MLP neural network is a universal approximator [187]. This means that an MLP can 

approximate any smooth function to an arbitrary degree of accuracy as the number of hidden 

neurons increases or alternatively using more than one hidden layer. The question which of 

these two possibilities performs better cannot be answered in general; rather it is very problem 

dependent [161, 164]. 

4.4.3 Finding suitable identification criteria 

As already mentioned previously, an identification method involves both an identification 

criterion and a parameter estimation technique in an attempt to find the optimal point within 
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the search space spanned by the parameter vector. Thus, for a certain model, ( )*θM , a guiding 

principle for parameter estimation is [163]: 

• Based on ( ) ( )[ ]{ }kykZ k
e ,ϕ= , compute the prediction error 

( ) ( ) ( )∗

∧

∗ −= θθε |, kykyk                                                                                                   (4.37) 

• At time Nk = , select N

∧
θ , so that the prediction errors 







 ∧

Nk θε , , Nk  , ,2 ,1 K=  

becomes as small as possible in the sense of the identification criterion. 

An identification criterion corresponds to the mathematical description of what has to be 

optimized. For nonlinear dynamic systems the several ways to fit models from data are based 

on the prediction error sequence (4.37) that can be seen as a vector in NR . The well known 

PEM form a scalar valued criterion function that measures the size of ε  according to some 

norm. 

Based on the traditional understanding of PEM, most of the system identification research 

is focused on using second order statistics as minimization criteria whether the system under 

consideration is linear or nonlinear. Even for nonlinear dynamic systems the assumption of a 

normal error distribution has been considered very reasonable and often approximately valid in 

practice [161, 164]. Under these assumptions further supported by the central limit theorem, 

which states that as the number of random variables increases its PDF approaches a Gaussian 

distribution, MSE would be able to extract all possible information from a signal whose 

statistics are solely defined by its mean and variance. Therefore, criteria that not only consider 

the second order statistics, but also take into account higher order characteristics of the error 

sequence are much desired. In a statistical learning sense a more appropriate approach would 

be to constrain directly the information content of error signals rather than simply their second 

order moments [188-190]. 

Entropy, as a measure of the average information contained in a signal, was first defined 

and proved to be useful by Shannon in communication systems domain [191]. Many other 

definitions followed the Shannon’s entropy. Among them Kullback-Leibler information 

distance [159] and Kolmogorov’s entropy [192] were very useful in system identification and 

statistics. However, a shortcoming of these entropy definitions is the lack of computationally 

simple and efficient estimators for random processes that can not be well described under the 
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Gaussian assumptions, particularly in high dimensional input spaces. Therefore, in order to 

overcome these drawbacks ITL approaches have been exploited in order to derive a 

computationally tractable definition of entropy [188-190]. Thus, both PEM and ITL criteria are 

presented in the following two subsections. 

4.4.3.1 Prediction error methods 

The size of the error sequence in (4.37) could be measured using any norm in NR . Thus a 

common procedure is to use a criterion function like 

( ) ( )( )∑
=

=
N

k

N
eN k

N
ZV

1

,
1

, θεθ l                                                                                              (4.38) 

as a measure of how well the model ( )θM  performs. 

This function is for a given N
eZ  a well defined scalar valued function of the model 

parameters, where ( )⋅l  represents some norm quadratic or no quadratic. The estimate N

∧
θ  is 

then defined by the minimization of (4.38) as 

( ) ( )N
eN

D

N
eNN ZVZ ,minarg θθθ

θ
M

∈

∧∧
==                                                                                          (4.39) 

Thus N

∧
θ  corresponds to the minimizing argument or a set of minimizing arguments, if the 

minimum is not unique and the mapping (4.9) is then defined implicitly by (4.39). Since the 

objective is to find the minimum of (4.38), ( )N
eN ZV ,θ  is also called the loss or cost function 

[161, 164, 172, 180]. The main well known and much used procedures are based on the 

previous procedure to estimate θ . The family of approaches that uses (4.38) as the 

identification criterion is called the prediction error methods [159], since the objective is to 

minimize a sum over some norm of the prediction errors. Particular methods are obtained as 

special cases of (4.38), depending on the choice of ( )⋅l , the choice of the model structures and 

the choice of the method by which the minimization is carried out. 

If the norm in (4.38) is defined as 
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( )( ) ( )θεθε ;,log, kfk e−=l                                                                                               (4.40) 

the ML method is obtained as a special case of (4.39). When the prediction errors are assumed 

to be Gaussian with zero mean and variance λ , 

( )( ) ( )
λ
ελθεθε

2

2

1
log

2

1
;,log, ++=−= constkfk el                                                        (4.41) 

If λ  is known, then (4.41) is equivalent to the most commonly used quadratic norm 

( ) 2

2

1εε =l                                                                                                                        (4.42) 

and (4.39) is specified in terms of a MSE type of criterion, 

( )∑
=∈

∧
=

N

kD
N k

N 1

2 ,
2

1
minarg θεθ

θ
M

                                                                                           (4.43) 

The reasons for the popularity of MSE are mainly concerned to its analytical tractability 

from both computational and analysis view points. The MSE criterion has been considered as a 

good choice for supervised parameter estimation methods [158] including neural networks 

training [180]. Sometimes other norms than the square are considered to conform to a 

particular noise distribution or, in the multi output case, to take into account different noise 

levels on different outputs [161]. 

4.4.3.2 Information theoretical learning criteria 

Along with the property that the convolution of two Gaussian functions is also a Gaussian, 

ITL criteria are based on the combination of Renyi’s quadratic entropy definition with Parzen 

windows in order to estimate the PDF of the error sequence in a manageable procedure [190]. 

For a random variable ε  with PDF ( )⋅ef , Renyi’s entropy [192] with parameter α  is defined 

as 

( )∫
+∞

∞−−
= εε

α
α

α dfH eR log
1

1
                                                                                              (4.44) 
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Renyi’s entropy shares the same extreme points of Shannon’s definition for all values of 

α , i.e., its minimum value occurs when ( )⋅ef  is a Dirac-δ  function while the maximum occurs 

when the PDF is uniform [190]. In fact, Renyi’s entropy represents a family of functions αRH  

depending on a parameter α . When 2=α , the Renyi’s quadratic entropy is given as 

( )∫
+∞

∞−

−= εε dfH eR
2

2 log                                                                                                     (4.45) 

The PDF of a random variable ε  for which the samples are given { }Nεεε ,,, 21 K  is 

obtained using the kernel function ( )⋅σκ , whose size is specified by the parameter σ , with the 

following expression 

( ) ( )∑
=

∧
−=

N

i
ie N

f
1

1 εεκε σ                                                                                                   (4.46) 

When α  was restricted to two, Gaussian kernels, ( )⋅G , were specifically used [189], 

yielding 
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                 (4.47) 

where σ  is the standard deviation of the Gaussian kernel used in Parzen windows and ( )ε
∧
V , 

the argument of the logarithm in Renyi’s entropy, is called the IP [190]. From (4.47) it can be 

noted that when the entropy is minimum all error samples are completely constants over the 

whole estimation data set. Therefore in training with entropy the algorithm will converge to a 

set of optimal parameters which may not yield zero mean error [188]. So, just after training 

ends the error mean should be deducted the model output in order to yield zero mean. 

As the entropy quantitative measures signals information, minimizing the error entropy is 

equivalent to minimize the average information content of the error sequence. Thus a practical 

criterion that is appropriate to be used as a loss function for ITL is the Minimum Error Entropy 

(MEE), which can be written as 
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( ) ( )( )θεθ ,, kHZV N
eN

∧
=                                                                                                    (4.48) 

( )N
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D
N ZV ,minarg θθ

θ
M

∈

∧
=                                                                                                   (4.49) 

When entropy in minimized all moments of the error PDF are constrained and therefore 

MEE extends MSE [188-190]. 

As can be shown in (4.47), minimizing the entropy corresponds to maximizing the IP for 

1>α . This means that in entropy manipulation it is possible to use simply the IP as cost 

function. In fact, the concept of IP fields generated by samples seen as information particles 

and the forces they exert on each other were defined and investigated for the quadratic Renyi’s 

entropy with Gaussian Kernels in [193]. The potential associated with an information particle 

(sample) jε  can be derived from the above IP expression, since the total IP energy is the sum 

of individual energies of the particles [190], as 

( ) ( )∑
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1 σεεε                                                                                            (4.50) 

From (4.50) it is possible to compute the total information forces ( )jF ε  acting on jε  by 

making the physical analogy with forces in potential fields as 
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If the goal is to adapt the parameters of a nonlinear mapping ( ) ( )θϕθ ,| gky =
∧

 in a function 

approximation framework, instead of the MSE an ITL criterion will be used based on the IP. 

The information forces are encountered when training an adaptive system with a parameter 

vector θ  with the IP criterion and using a gradient based method. The parameters are adapted 

by injecting the information force for sample jε  as the error. The gradient of the IP of the error 

with respect to the parameters consists of products of the information force acting on an error 

sample and the sensitivity of the model architecture at the error value [190]. 
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The gradient of the model output with respect to the parameters can be calculated using 

efficient methods depending on the model type; for an MLP it can be computed by back-

propagation. 

The superiority of the entropy criterion over the MSE in chaotic time series prediction with 

MLP neural networks was demonstrated in [188]. In contrast with MSE that is only based on 

both the norm and variance of the error sequence, the ITL criteria are estimated with pairs of 

error samples, which means that more information about the data set is being extracted. 

Although this superiority, ITL criteria will be computationally more expensive, ( )2NO , 

which becomes prohibitive for large estimation data sets or when numerical search methods are 

used [194]. Therefore, the MLP neural network will be trained with the classical MSE criterion 

and MEE will be exploited as the loss function when physical modelling approaches are used 

for deriving MG dynamic equivalents purposes. 

4.4.4 Finding suitable parameter estimation methods 

For many model structures, the loss function is a complicated function of θ  and the 

minimization value, N

∧
θ , must then be computed through a nonlinear optimization technique. 

Therefore, the choice of the optimization algorithm belongs firstly between local and global 

approaches, as depicted in figure 4.15. 

The combination of many identification criteria with the several techniques to compute it 

has lead to a wide and sometimes confusing variety of identification methods. The computation 

of the estimates is a model structure dependent issue and therefore this topic is covered in 

many articles and books on system identification literature and the basic techniques are also the 

subject of many studies in numerical analysis [195]. 
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Figure 4.15: General overview about nonlinear optimization techniques 

4.4.4.1 MLP training with Levenberg-Marquardt method  

Concerning ANN training in batch mode, gradient based methods, such as nonlinear least 

squares, have been widely used to find the minimum of the criterion. As it is useful to order the 

computations to use the particular structure of the neural network, the training method is called 

the back-propagation algorithm. In order to train an MLP neural network it is generally 

recommended to apply the Levenberg-Marquardt method [164]. It provides a fast convergence, 

is robust and it is not necessary for the user to initialize any strange design parameters [195]. 

Since this method was derived especially for MSE type of criteria, the identification method to 

be used with MLP based model structures comprises the Levenberg-Marquardt optimization 

algorithm and the MSE as the identification criterion. 

4.4.4.1.1 MLP structure optimization 

Concerning MLP neural networks, from subsection 4.3.3, it is clear that, in order to 

improve model quality, model structure selection is much more involved than just a matter 

selecting a number of hidden units, since the network need not be fully connected; in fact, it is 

likely that it will be advantageous to leave out weights connecting certain inputs with certain 

hidden units or certain hidden units with certain outputs. Therefore, it will lead to a large 

combinatorial problem if the model has to be picked on a trial and error basis approach. 
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Although in practice it is impossible to investigate all possible configurations, there are several 

useful methods that allow to obtain a trade off between doing a fair amount of computations 

and obtaining an architecture that is reasonably near the optimal for the particular structure of 

the regression vector [161, 164]. 

As one has access of an unlimited amount of both training and validation data, the neural 

network architecture determination becomes less important and it can be possible to restrict the 

attention to fully connected neural networks, for which the architecture selection task is 

reduced to choosing both the number of hidden layers and the corresponding number of hidden 

units and subsequently perform explicit of implicit structure optimization [161] in order to deal 

with the bias/variance dilemma. 

The term explicit means that the bias variance trade off is carried out by examining models 

with different numbers of neurons. In the context of MLP neural networks forward selection 

and backward elimination categories are very popular and widely applied through growing and 

pruning methods, respectively [196, 197]. Growing is the generic term for training techniques 

that increase the network complexity by adding neurons while pruning refers to decrease the 

network complexity by removing neurons. 

In contrast to explicit, implicit structure optimization or regularization techniques 

influences the complexity of a model although the nominal number of parameters does not 

change. When regularization techniques are applied, a model is not as flexible as it might 

appear from considering the number of parameters alone. Thus the model behaves as though it 

possesses few parameters that it really has, i.e., with fewer degrees of freedom. Therefore the 

bias error is increased and the variance error decreased. Loosely speaking, regularization works 

as follows: Not all parameters of the model are optimized in order to achieve the minimal loss 

function. Those parameters that are still used for minimizing the loss function are called 

effective parameters while the others that have only an insignificant influence of the loss 

function are called spurious parameters [161]. 

The most commonly used augmentation is the so-called simple weight decay. However, a 

similar effect can be accomplished by stopping the training session before the minimum of the 

criterion has been achieved [164]. This important regularization technique is known as early 

stopping. It can be applied when iterative optimization methods are used. Training is not 

performed until the model parameters have converged to their optimal values. Rather during 

the iterative training algorithm the model performance on a validation data set is monitored and 
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training is stopped when the validation error reaches its minimum. At the minimum of the 

validation error the best bias variance trade off is realized. At the left hand side of this 

minimum the model would underfit, while to the right hand side it would overfit the data. 

During the iterations the number of effective model parameters increases and if the training 

continued until convergence, all model parameters will become effective, resulting in large 

variance errors. 

In [169] the interesting result was shown that the effect of early stopping not only has an 

effect similar to regularization by weight decay, but also the two approaches are in fact closely 

related. However, the main reason for the early stopping popularity is its simplicity. 

Furthermore, it reduces the computational demand since training does not have to be 

completed. It is important to understand that for very flexible models, convergence of all 

parameters is not desired. Therefore, regularization by early stopping was adopted in order to 

avoid overfitting. In addition, the MSE on the validation data set was used as a primary 

validation criterion. 

4.4.4.2 EPSO as the optimizer in physical modelling approaches 

The nonlinear local optimization techniques start from an initial point in the parameter 

space and search in directions obtained by neighbourhood information such as first and 

possibly second order derivatives. As a consequence, such an approach leads to a minimum 

that is close to the starting point and, in general, not the global one. However, for many 

problems, local search is sufficient, especially if good initial parameter values are available. 

Then the simplest strategy for searching a good local optimum is a multi start approach, since 

each local run discovers a local minimum and the best one is chosen as the final result. In 

addition it allows to get a feeling for the quality and number of different local optima. 

However, if it is not possible to achieve a satisfactory solution, a global method may succeed 

[161]. 

In contrast with local approaches, nonlinear global optimization techniques, also known as 

stochastic search algorithms or meta-heuristics, try to find the global optimum or at least a 

good local optimum without many assumptions about the problems to be solved. Therefore 

they have been widely applied in learning and optimization problems of many areas of 

knowledge, including power systems. However, concerning particularly to system 

identification problems, the main drawbacks usually pointed out are twofold; the huge 
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computational demand and the slow convergence to the minimum prevents their applications to 

high dimensional input space problems. 

Since the search for the global minimum is performed into the parameter space, the 

required computational effort grows exponentially with the number of parameters, which does 

not depend on the specific algorithm applied. Additionally, as the whole parameter space has to 

be examined, although with no uniform density, the convergence to any minimum is very slow 

even after finding a region of a loss function minimum. Loosely speaking, global methods are 

good at finding regions while local methods are good at finding points. Therefore in system 

identification it is considered a good idea to use the estimated parameters from any global 

method as initial values for a subsequent local optimization procedure in order to accelerate the 

convergence of the method to the optimum [161]. 

Because all the optimization techniques have their specific advantages and drawbacks, in 

practice, it is often effective to combine different approaches. In this sense, EA have mainly 

two prominent features which distinguish themselves from other global search methods like 

Simulated Annealing, Tabu Search and Branch and Bound. First they are based on a population 

of individuals and second there are communication and information exchange among 

individuals in a population as the result of selection, competition and recombination. Different 

representations, selection schemes and search operators will define different EA, such as 

Evolution Strategies, Genetic Algorithms and Genetic Programming, but their algorithms 

analysis are easy to understand and therefore make possible to exploit hybrid methods [198]. 

While ES and GA are mainly used for parameter estimation techniques, GP operates on a 

higher level by optimizing tree structures [161] and therefore is not considered here. 

The classical PSO developed by Kennedy and Eberhart [199-201] was introduced in power 

systems area [202] and recently in nonlinear dynamic system identification [203]. Successful 

applications to function minimization [204], feedforward neural network design [205, 206] and 

a wide range of other optimization problems allow the many authors to claim superiority in 

speed and to recognise its searching potential. When compared with EA, PSO has some 

attractive characteristics and in many cases proved to be more effective [199]. However, tuning 

the algorithm has proven to be a hardly and problem dependent task. On the other hand, 

classical PSO lacks the EA learning ability, namely the σSA-ES [201], which benefit from an 

evolutionary process to progressively adapt the parameters that guide its own search.  
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Therefore, EPSO was built over the concepts of σSA-ES and PSO [207] in an attempt to 

combine the best of both techniques. As a result a more reliable and robust method was 

obtained, which may be seen as the first natural self adaptive convergent evolution of both 

approaches, although other attempts had been made [208, 209]. 

Applications of EPSO have already been reported in many power systems problems [207, 

210-213], where the superiority of EPSO was confirmed giving a faster convergence and better 

solutions when compared with other meta-heuristics, even for no smooth objective functions. 

More recently EPSO was successfully applied in training a FIS model under an entropy 

criterion for wind power prediction [214], denoting that EPSO performs well under different 

criteria, and its robustness has effectively been exploited as a nonlinear global parameter 

estimation tool to build dynamic equivalents for MG using MSE criterion [17]. 

As a hybrid of ES and PSO, EPSO grants a PSO scheme with both an explicit selection 

procedure and self adaptation properties of its parameters. Then, EPSO can be seen under two 

perspectives: A special class of self adaptive EA methods or a special PSO method. However, 

in order to get a better insight, the authors [207] have preferred to explain the method from an 

evolutionary view point. Thus, at a given generation, the set of potential solutions for loss 

function minimization is called a set of particles. Each particle is composed by a set of object 

and a set of strategy parameters, corresponding to the particle position into the parameter 

space, ( )θθθθθ iniii ,,, 21 K= , and to the weights that govern the movement rule, respectively, 

[ ]iii wP ,θ=  [207].  

A general scheme of EPSO can be done as follows. 

1. Choose an initial swarm of S  particles, [ ]0,0,20,10 SPPP K=Θ ; 

2. Iterate for ,...2,1=k  

3. Replicate each particle r  times ( ) rRnReplicatio kkR ,...,1 ,1, =Θ=Θ − ; 

4. Perform mutation of the weights of each particle 
( )

( )





=Θ=Θ
Θ=Θ

rRMutation

Mutation

kRkR

kk

,...,1 ,,,

; 

5. Each mutated particle generates an offspring according to the movement rule 

( )
( )





=Θ=Θ
Θ=Θ

rRMovement

Movement

kR
new

kR

k
new
k

,...,1 ,,,

; 

6. Evaluate the fitness of each particle, ( )new
kFit Θ , ( ) rRFit new

kR ,...,1 ,, =Θ ; 
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7. Perform selection, ( )new
kR

new
kk Selection ,,ΘΘ=Θ ; 

8. Test for the termination criterion and either go to step 3 or stop. 

A brief description of the operators is presented as follows 

4.4.4.2.1 Recombination operator or movement rule 

As in PSO, the position of each particle, is updated according to the movement rule. Given 

a particle position, k
iθ , into the parameter space, its new position, 1+k

iθ , results from 

11 ++ += k
i

k
i

k
i Vθθ                                                                                                                (4.53) 

( ) ( )k
igi

k
iii

k
ii

k
i bwbwVwV θθ −+−+= ∗∗∗∗+

321
1                                                                         (4.54) 

where ib  and gb represent the best point found by the particle i  upon to the generation k  and 

the best overall point found by the whole swarm in its past life, respectively. 1−−= k
i

k
i

k
iV θθ  is 

the velocity of particle i  at generation k . 1iw , 2iw  and 3iw  are weights conditioning the 

inertia, memory and cooperation terms, respectively. The symbol ∗  indicates that these 

parameters will undergo evolution under a mutation process. Thus, according to [207], the 

particle as well as its reproduction in EPSO are illustrated in figure 4.16. 

k
iθ

1+k
iθ

Inertia

Memory

ib

Cooperation

ib∗
ib

 

Figure 4.16: Particle reproduction in EPSO 
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Each particle generates an offspring at a location determined by the classical PSO 

movement rule. Thus the offspring receives a contribution from the global best parent and from 

both direct parent and its best ancestor. This means that, for practical purposes, this method 

includes a provision of elitism, because the particle best ancestor and the swarm global best are 

kept from generation to generation. On the other hand, the recombination operator is adaptive 

and evolve over the generations through the mutation of the particle strategy parameters. 

4.4.4.2.2 Mutation of strategy parameters 

As in σSA-ES, the particle object parameters are those giving the phenotypic description of 

a possible solution while strategy parameters are those that govern the particle evolution over 

iterations. According to [207], the basic mutation rule for the strategic parameters is the 

following 

( )[ ]τ1,0logNww ikik =∗                                                                                                        (4.55) 

where ( )1,0logN  is a random variable with lognormal distribution derived from the Gaussian 

distribution ( )1,0N  of zero mean and variance one and τ  is a learning parameter, fixed 

externally, controlling the amplitude of the mutations, since smaller values of τ  lead to high 

probability of having values close to the unity. 

Approximations to this scheme could be obtained as 

( )[ ]1,01 Nww ikik τ+=∗                                                                                                         (4.56) 

provided that τ  is small and the outcome is controlled so that negative weights are ruled out. 

This scheme is preferable to additive mutations of the type 

( )1,0Nww ikik τ+=∗                                                                                                            (4.57) 

since in this case the absolute value of the mutation is insensitive to the value w . Therefore the 

mutation of weights ikw  for 3,2,1=k  are performed using (4.56). 

Concerning to the global best, gb , it is randomly distributed to give 

( )1,04Nwbb igg
∗∗ +=                                                                                                           (4.58) 



Chapter IV – Development of Dynamic Equivalents for MicroGrids exploiting System Identification Theory  

134 

where 4iw  is the forth strategy parameter associated with particle i , which is also mutated 

according to (4.56). Thus a general particle in EPSO can be represented as in figure 4.17. 

1,iθ 2,iθ L θθ ni , 1iw 2iw 3iw 4iw

 

Figure 4.17: A particle representation in EPSO 

The size of the neighbourhood of gb , where it is more likely to find the global best or at 

least a global better than the current one, is controlled by 4iw  allowing the search to focus on a 

given point, if it is convenient. 

4.4.4.2.3 Selection 

As it can be shown in the EPSO algorithm presented previously, at a given iteration, the 

operator replication generates r  clones of each particle, which undergo mutation in their 

strategy parameters like the original particle. Then, for each particle the recombination operator 

generates 1+r  offspring, corresponding to 1+r  different locations. 

The operator selection acts separately on each group of 1+r  offspring and, based on their 

fitness values, only one will survive for the following generation. Under the ( )λµ,  notation, 

usual in ES, for each particle an ( )1,1 +r σSA-ES is formed and the global process can be seen 

as a multiple, ( )1,1 +rS σSA-ES, where S  is the number of particles in the swarm. 

There is a solid theoretical background giving insight why ES achieve convergence and 

how a near optimal progress rate is obtained [215]. By application of genetic operators new 

individuals are generated and then selection provides a positive push towards the optimum. On 

the other hand, in classical PSO, each parent generates one offspring through the movement 

rule application and dies. It should be noted that the movement rule, only by itself, assures the 

progress to the optimum, which means that in average each generation will be better than the 

preceding one [215]. 

EPSO combines the action of these two mechanisms as follows: First the recombination 

operator, which makes use of the movement rule, induces a movement towards the optimum, 

producing not only better individuals but also an average better group. In a sequence, by 

selection, the offspring with better performance will survive assuring thus that the following 
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generation tends to be better than the preceding one. In addition the EPSO recombination 

operator is self adaptive, which avoids the need for fine tuning the strategy parameters because 

their evolution characteristics will learn about the best way to evolve towards the optimum 

[207]. All these features give robustness to EPSO models. In fact, experiences comparing 

EPSO with the classical PSO formulation and also with GA variants have shown that EPSO is 

in general more robust, as already mentioned previously. 

Therefore, it is expected that the main features of EPSO combined with these ones of the 

MEE criterion, mentioned previously in subsection 4.4.3.1, will result in a promising 

identification method for physical modelling approaches purposes, concerning the development 

of MG dynamic equivalents. 

4.4.5 Validation of MG dynamic equivalents  

For validation purposes, the MG dynamic equivalents derived from the application of the 

two promising approaches that emerged from the previous subsection have to be integrated in 

the dynamic simulation platform used to generate the data set in order to replace the MG 

detailed model. Thus, the final validation criterion relies on the evaluation of the MG dynamic 

equivalent performance, concerning the reproduction of the MG dynamic behaviour using the 

corresponding detailed model, with respect to the upstream MV network. 

Since the issues related with this ultimate validation step are very application dependent, 

they are addressed further in chapter 5. 

4.5 Summary and main conclusions 

This chapter described the fundamental theoretical concepts behind nonlinear dynamic 

system identification techniques. Also, a state-of-the-art regarding these main techniques has 

been included and a continuous exposition of the techniques that together constitute practical 

procedures for building dynamic equivalents for MG purposes has been given. 

Firstly, a solid system definition was given. Afterwards, common system identification 

procedures were presented and the main features related to each stage were outlined. Since 

nonlinear dynamic system identification techniques are very application dependent, there are 

no general guidelines to be followed. As a result, the main stages to be carried out during a 

process modelling should be guided by both the available prior knowledge and the intended use 
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of the model. Then the problem of build dynamic equivalents for MG was formulated under a 

system identification framework. 

Based on the prior knowledge about MG dynamic behaviour, described in chapter 2, 

effectively used for modelling purposes, two possible modelling approaches have been 

adopted: physical modelling and black-box modelling. The physical model structure will be 

selected based on the physical laws that potentially describe the MG dynamics and thus a 

continuous time state space model was directly adopted. In contrast, the selection of a black-

box model structure involved several important decisions, such as internal or external 

dynamics representation, the regression vector and the nonlinear mapping. These issues have 

been presented and discussed, taking into account the purpose of deriving MG dynamic 

equivalents. 

Finally, as a result, two distinct identification methodologies have been selected as 

promising approaches to derive MG slow dynamics equivalent models and therefore dynamic 

equivalents for MG: 

• TDNN based models, which combine an NFIR input structure with an MLP neural 

network as the nonlinear mapping. The TDNN model structures are trained using the 

Levenberg-Marquardt method and MSE criterion . In addition, the MLP neural network 

structure is optimized using early stopping; 

• Physical based models, in which the parameter estimation task is performed using 

EPSO as the global optimization tool and both MSE and MEE as the identification 

criteria. 

Both TDNN based methods and methods based on physical modelling constitute promising 

nonlinear dynamic system identification approaches to derive dynamic equivalents for MG. 

Therefore these two solution approaches are exploited in chapter 5. 
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Chapter 5 

MicroGrid Dynamic Equivalents based on 

Artificial Neural Networks and Physical 

Modelling Approaches 

5.1 Introduction 

In this chapter nonlinear dynamic equivalents for MG are developed based on the two 

promising approaches identified previously, in chapter 4. 

These two promising approaches are: 

• Black-box modelling. The MG dynamic equivalent is based on a TDNN model 

structure, which combines a NFIR configuration with an MLP neural network to 

represent the MG nonlinear dynamics. Internal parameters of the neural network are 

identified using a classic MSE criterion and a Levenberg-Marquardt algorithm; 

• Physical modelling. The MG dynamic equivalent corresponds to a physically structure 

parameterized model where EPSO is used together with either the MSE or the MEE 

criteria to identify the parameters of the model. 

The MG dynamic equivalents obtained through the application of these approaches are 

used to replace a MG in dynamic simulations when several disturbances at the MV level occur, 

like MMG islanding and load following in islanded mode. The derivation of dynamic 

equivalents capable of reproducing the MG dynamic behaviour during short circuits will be 

considered in future developments. 

As stated in previous chapters, system identification procedures for the derivation of 

dynamic equivalents for MG start with a numerical experiment design suitable to collect 

appropriate data sets and ends with a MG dynamic equivalent validation task. For these 

purposes a dedicated dynamic simulation platform was developed under MatLab® Simulink® 

environment, which comprises two main packages: 
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• The MMG detailed model: It contains all the several microsources dynamic models and 

their inverter controls, as described in chapter 2, providing in this way a MG detailed 

model connected to the MV network. This module is used to simulate the MG relevant 

dynamic behaviour with respect to the MV network in order to generate high quality 

data sets. 

• The MMG equivalent model: In this module the detailed MG model is replaced by the 

MG dynamic equivalents, to be developed, in order to evaluate their performances in 

the same environment. 

This dynamic simulation platform plays the role of the experimental set-up in system 

identification terminology [159, 161, 169]. Thus, under the framework of developing dynamic 

equivalents for MG, it is called the numerical set-up, since it allows to carry out numerical 

experiments with MG, as well as to validate the MG dynamic equivalents to be developed. 

This numerical set-up is described in section 5.2. TDNN based MG dynamic equivalents 

methodology is presented in section 5.3, while the physically modelling based approach is 

addressed in section 5.4. Section 5.6 describes the summary and main conclusions. 

5.2 The numerical set-up 

As stated before, the numerical set-up is a dedicated dynamic simulation platform able to 

design suitable numerical experiments with MG in order to collect informative enough data 

sets. On the other hand, the simulation platform should be able to evaluate the performance of 

the developed MG dynamic equivalent at the final stage of the identification procedure.  

Therefore, the dynamic simulation platform involves two main simulation packages 

developed for these two distinct purposes: The MMG detailed model and the MMG equivalent 

model, as described in the following two subsections. 

5.2.1 The MMG detailed model 

In order to collect informative enough data sets, the dynamic behaviour of the MG, when 

inserted in the upstream MV network should be simulated using the detailed mathematical 

description of a MG. Initially it is assumed that the MMG is operated in normal interconnected 

mode in parallel with the upstream power system. In turn, the MG is operated in normal 
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interconnected mode too, under a MMG operation philosophy. Following a MMG 

disconnection from the upstream system, MG will be kept in operation connected with the MV 

network, with the synchronous machines connected to the MV grid providing voltage and 

frequency control. Thus, as already mentioned previously in chapter 2, the MG is operated 

under a SMO control strategy, either importing or exporting a certain amount of power. 

Each MG is fully represented, which means that the LV network, the existing loads, their 

microsources and both the corresponding inverter interfaces and controls, the main storage 

device and both its interface and control are represented using the dynamic models described in 

chapter 2. At the MV level, a round rotor synchronous machine th 6  order model [216] was 

implemented to represent DG units connected to the MV network. Both the automatic voltage 

regulator and speed governor-turbine models were also included when associated to a given 

synchronous generator. 

The dynamic analysis of MG may span over time intervals conditioned by the slow 

responses of microgeneration systems, namely SOFC, which extend to several tens of seconds 

[6, 7, 9, 10]. A multimachine power system model was therefore derived to describe in a 

compact form the MMG network [216-218], employing a phasor-type representation of the 

electrical quantities, whereby all fast electrical transients, such as stator electric transients of 

both synchronous and induction machines are neglected [58, 216]. Moreover, the time 

constants associated with the network transients are very small and can be considered to be 

zero without significant loss of accuracy [219]. 

Dynamic models of all synchronous machines and microgeneration systems are 

interconnected through a balanced three-phase network of LR−  elements. These LR−  

elements are used to represent transformers, MV and LV network branches, in which 

capacitive effects have been neglected [219]. It is also assumed that all loads are balanced 

symmetrical three-phase LR−  elements. All sources are viewed from the network as emfs 

behind the corresponding impedance. 

Network equations are referred on the synchronous reference frame, QD − . When the 

MMG is operated in interconnected mode, the upstream network (infinite bus) provides this 

reference. Otherwise, as there are synchronous machines in the MV level, the reference speed 

is determined as the weighted average of all rotor speeds that is the centre of inertia reference. 
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The integration of dynamic models of both microgeneration systems and synchronous 

generators with the network algebraic equations and both LV and MV loads under a multi-

machine power system model is described in the following subsections. 

5.2.1.1 Round rotor synchronous machine 

Round rotor generators, also called high speed generators, are normally used for turbo-units 

driven by high-speed steam or gas turbines. To reduce centrifugal forces, they have low 

diameter but large axial length and are mounted horizontally. Typically they will have two or 

four electrical poles [138]. 

As already mentioned previously the dynamic behaviour of the round rotor synchronous 

machines is described through a th−6  order model, in which all quantities are expressed in per 

unit and referred to the qd −  internal machine reference frame [216], as described in appendix 

A. The automatic voltage regulator (IEEE type 1 model) and a governor-turbine system [218] 

were also included. 

According to this formulation and neglecting the stator transients, the generator terminal 

voltage can be described in vector form as [216] 
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where 

 gdE , gqE  are the qd −  components of generator internal voltage; 

 dV , qV  are the qd −  components of generator terminal voltage; 

 dI , qI  are the qd −  components of generator terminal current; 

 ''
dX , ''

qX  are the subtransient reactances of qd −  machine axis; 

 sR  is the stator resistance. 

Rotor oscillations of the synchronous machines are calculated from the respective swing 

equations and the internal voltages of generators resulting from the numerical integration are 

referred to the machine qd −  reference frame. As the network equations are expressed in the 
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system reference frame, the internal voltages should be transformed from the machine to the 

system reference frame, using the rotor angles. 

The −q axis of a given generator is shift with respect to the network real axis by the rotor 

angle δ  [216], as can be shown from the phasor diagram depicted in figure 5.1. 
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Figure 5.1: Relative position of the generator reference with respect to the network coordinates 

Thus, concerning to the generator internal voltages, the relationship between the two 

reference frames is given by the following axis transformation [216] 
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On the other hand, terminal currents must be transformed from the system reference frame 

to the qd −  machine reference using the inverse transformation, as 
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The stator equations given by equation (5.1) can be rewritten in the synchronous reference 

frame as [216] 
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where 
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and the per unit values of sR , ''
qX  and ''

dX  are expressed in the system base. 

For round rotor synchronous generators, it is a plausible assumption to consider ''''
qd XX =  

[220] and therefore [ ]Z  is not influenced by rotor angle δ [216]. Then the generator terminal 

voltage in (5.4) and (5.5) simplifies to 
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The model of the round rotor synchronous machine is schematically represented in figure 

5.2, where it can be observed their integration with the network equations. 
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Figure 5.2: Subtransient functional model of synchronous generator 

5.2.1.2 Microsources and inverter interfaces 

As stated before, the MG operated under a SMO control strategy comprises the following 

types of microgeneration systems: 

• The main storage device, which is connected to the LV network through a VSI control; 
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• Controllable MS, such as SSMT and SOFC, and PV systems connected to the LV 

network through PQ control inverters; 

• Micro wind turbines, which use an induction generator directly connected to the LV 

network. 

The mathematical description of the several microgeneration systems as well as the main 

storage device adopts the dynamic models described in chapter 2. Except the micro wind 

generator, all those models are solved in time domain, producing instantaneous values, which 

must be properly interfaced with the algebraic equations of the network. As the inverter 

interfaced microsources are presented to the LV grid as emfs behind the filter impedances, 

after determining the per unit values of emfs with respect to system voltage base, baseV , the 

Park’s transformation [221] is used to convert the emfs from the time domain to the QD −  

reference frame rotating at synchronous speed, as 
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is the Park transformation and θ  is the angular displacement. 

In order to back transform the voltage and current from the synchronous reference frame, 

QD − , to the time domain the Park’s inverse transformation [221] is used. Thus, 
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where baseI  is the system current base and 
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The integration of the main storage device and the inverter interfaced MS with the network 

can be schematically represented as depicted in figures 5.3 and 5.4, respectively. 
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Figure 5.3: Main storage device connected to the LV network through the VSI control scheme 
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Figure 5.4: Microsources connected to the LV network through PQ inverter control  
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It can be observed from figures 5.3 and 5.4 that the algebraic equations that connect the 

inverters to the LV network can be written in the synchronous reference frame as 
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where fR  and fX  are the per unit values of the filter resistance and reactance referred to the 

system base. 

Concerning micro wind generation systems, the per unit variables of the induction 

generator model described in chapter 2 are represented in a system reference frame rotating at 

synchronous speed. Therefore the stator equations can be directly integrated in the network 

matrix [217, 218]. 

5.2.1.3 Load modelling, transformers and compensation capacitor banks 

In this simulation platform loads are modelled as balanced symmetrical three-phase 

impedances, LLL jXRZ += . When the load active and reactive power, LP  and LQ  

respectively, and the bus voltage, tV , are known at steady-state then the values of resistance 

LR  and inductance LL  can be calculated by the relation: 

*2

LtLL YVjQP =+                                                                                                           (5.12) 

where 1−= LL ZY  and *
LY  denotes the conjugate of LY . 

The capacitor banks commonly used to compensate the reactive power that is absorbed 

from wind generators using induction machines are described in the dynamic simulation as 

injected currents into the network. After the elimination of transients, namely when there are 

no large deviations from the nominal frequency, 

C

t
C

X

V
jI =                                                                                                                        (5.13) 

and the reactance CX  can be introduced in the network admittance matrix. 
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Transformers are modelled as equivalent impedances. Thus, the variables associated with 

the transformers, loads and capacitor banks should be transformed to the synchronous rotating 

reference frame in order to be integrated in the network matrix. 

5.2.1.4 The MMG network equations 

Network branches are modelled by series resistance, TLR , and inductance, TLL , which are 

considered as concentrated for the total length of the line. The capacitance for small lines can 

be neglected. Thus, the network is modelled through the nodal admittance matrix, [ ]Y  [216]. 

As the other power system components, such as capacitors banks, transformers and loads, 

are represented by their corresponding equivalent admittances, they are also introduced in the 

network admittance matrix. Thus, the whole MMG dynamic model together with the static 

network and loads is depicted in figure 5.5. 
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Figure 5.5: Interconnection of generation sources with the network equations 
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In order to build the multi-machine power system matrices necessary for the numerical 

simulation it is convenient to number the various bus bars following a specific order which 

depends on the type of components that are connected at each bus bar, as can be observed from 

figure 5.5. For that purpose, the infinite bus was numerated first; bus bars where synchronous 

generators are connected were numerated next, following this one where the main storage 

device is connected. Nodes with PQ control inverters, asynchronous generators and static 

loads, respectively, were numbered afterwards. 

Under these previous assumptions, taking into account the subsections 5.2.1.1, 5.2.1.2 and 

5.2.1.3, and concerning the sources internal bus bars, which have [ ]TQDG EEE =  for their 

internal voltages, the MMG network equation of voltages and currents can be obtained as 

[216]: 
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where { }G  is the set of internal generator nodes, { }L  is the set of all other nodes, including the 

generator terminal bus bars, which are called load nodes. 

The matrix [ ]GGY  is a diagonal matrix of { }G  nodes admittances, obtained as follows 
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[ ]GLY  is a rectangular matrix comprising a diagonal submatrix with elements equal to iiY−  

of matrix [ ]GGY  and all other elements equal to zero. [ ]LGY  is the transpose of [ ]GLY . The matrix 

[ ]LLY  is a modified version of the total nodal admittance matrix, [ ]Y , whose diagonal terms 

now include the load and generator admittances at the rows corresponding to the load nodes 

and generator terminal nodes respectively. 

To simplify the analysis, all nodes other than the generator internal nodes are eliminated 

using the Khron reduction formula [138]. The admittance matrix in (5.14) is then reduced to 

[ ]RCY  with dimensions GG 22 × , where G  is the number of power systems bus bars where 

current is injected. The generation bus voltages and the corresponding injected currents are 

related by the following equation, which is written in the synchronous reference frame. 

[ ] [ ] [ ]GRCG EYI ×=                                                                                                             (5.16) 

where  

[ ] [ ] [ ] [ ] [ ]LGLL
T

GLGGRC YYYYY ××−= −1                                                                                 (5.17) 

is the reduced admittance matrix. 

The voltages of terminal generation buses and load buses are determined by solving the 

following algebraic equations: 
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The derived equations provide a fast solution on the necessary power system algebraic 

equations. 

5.2.2 The MMG equivalent model 

The MMG equivalent model is derived by replacing the MG through its dynamic 

equivalent, while the MV network model is retained in detail. 

As stated before, the MG dynamic equivalent comprises the dynamic model of the MG 

main storage device together with its VSI control interface and an aggregated model able to 

represent the MG slow dynamics. This equivalent model is represented as a current source 

directly connected to the boundary bus trying to make the injected current equal to the tie line 

currents in the MG detailed model. 

Thus, the MMG equivalent multi-machine power system matrices are then built taking into 

account the following assumptions with respect to the detailed model: 

• The MV network model is retained in detail; 

• The MG main storage device is connected to the LV network through its VSI control 

interface; 

• The same LV line is used to connect the MG main storage device to the boundary bus; 

• All the remaining MG components as well as both generation and load buses are 

eliminated. 

Therefore the MMG equivalent model formulated as a multimachine power system model 

is schematically represented in figure 5.6. 
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Figure 5.6: Interconnection of synchronous machine, main storage device and MS with the network 

equations 

In this case, the algebraic equations describing the MMG equivalent model are written in 

the synchronous reference frame, QD − , as 
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It should be noted that all the load buses injected currents, [ ]LI , are zero, except for the 

boundary bus. 
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5.2.3 The simulation algorithm 

As described in the previous subsections dynamic models of several MS and other power 

system components are used to develop an integrated dynamic simulation platform able to 

simulate the MG dynamic behaviour based on an appropriate simulation algorithm. Although 

this algorithm allows the simulation of the MG dynamics inside the LV network, the attention 

is focused on the MG dynamic behaviour with respect to the MV network, namely when the 

MMG is operated in islanded conditions. 

Therefore, the algorithm presented here is general and gives the possibility to analyse the 

relevant dynamics of MG considering arbitrary topologies with different numbers and types of 

microgeneration systems operating together under a SMO control strategy under different load 

and generation scenarios when several perturbation types take place in the MV network. The 

user interacts with the dynamic simulation platform by providing both the MMG input data and 

the simulation input parameters, as can be observed from figure 5.7. 

A given MMG is described through the power system parameters. The scenarios for 

perturbation conditions are defined a priori for the specified steady state operating conditions. 

This MMG input data is written in an input m-file. Concerning to the input parameters, they are 

supplied directly to the S-function mask provided by MatLab® Simulink® environment and 

involve the matrices associated with the disturbance or the sequence of disturbances to be 

simulated, according to the perturbation conditions defined in the MMG input data, and the 

time sequence in which the disturbances occur. Based on the MMG input data and on the input 

parameters, the entire procedure is carried out automatically during a specified time interval 

using one of the available solvers. 

Both the MMG detailed and equivalent models follow this simulation algorithm. However 

all the stages presented in figure 5.7 take into account the multimachine power system 

formulations presented in subsections 5.2.1 and 5.2.2, corresponding to the MMG detailed 

model and the MMG equivalent model, respectively. 
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Figure 5.7: Flow-chart of the integration algorithm in MatLab® and Simulink® 

The main components of this simulation tool are described in the following subsections. 

5.2.3.1 Initial conditions for network quantities, synchronous generators 

and microgeneration systems 

In order to calculate the initial values of bus bar voltages magnitudes and phase angles as 

well as the injected generating power under balanced steady state conditions, an initial load 

flow analysis is performed. The input data corresponds to a scenario describing the power 

system steady state generating and load conditions, taking into account the following 

assumptions: 
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• The MMG is connected to the upstream power system; 

• The active power production of each DG unit connected to the MV network is known 

and the terminal nodes considered as PV type; 

• Microgeneration systems are considered as generating units with positive active and 

reactive power injections. Their terminal buses are modelled as nodes type PQ; 

• The classical Newton-Raphson method is applied to solve the load flow problem due to 

its good convergence properties and applicability to high resistive networks. 

The results obtained from the load flow analysis are also used to determine the initial 

values of the state variables related with: 

• Synchronous machines as well as their voltage regulator and speed governor; 

• Microsources, such as SSMT, SOFC and small wind turbines; 

• Inverter interfaces, like PQ inverter and VSI controls; 

• MG slow dynamics equivalent model. 

5.2.3.2 Types of disturbances 

The main disturbances that occur in a MMG power system can be originated from sudden 

changes in the network conditions, such as MMG islanding, changes in the load of the system, 

short-circuits and changes in the mode of operation of the generation units. 

Both MMG islanding and short-circuits are simulated as changes in the network admittance 

matrix of equation (5.14). Load following is an important source of perturbations especially for 

an autonomous power system. Since loads are modelled as constant impedances, included in 

the admittance matrix, a change in the static load is also modelled as a change in the 

multimachine power system matrices. 

Concerning to changes in the mode of operation of one or more microsources, the 

following disturbances are considered: 

• Perturbations on the microsource operating conditions; 

• Connection and disconnection of microsources in the network. 

These disturbances are simulated directly on the dynamic models that describe the system 

dynamic behaviour, as can be observed from figure 5.7. 
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5.3 TDNN based dynamic equivalents for MG 

As described in chapter 4, TDNN based on MLP neural networks have high capability to 

deal with complicated nonlinear problems in a general framework, which allows their 

successful applications to new situations that were not used during a training phase. Therefore 

well trained TDNN can replace the MG slow dynamics and it is expected that it properly 

interacts with the retained network for a wide range of operating conditions. 

With the use of TDNN for dynamic modelling purposes, no information about the system 

structure is required and the use of complex mathematical analysis is avoided. This represents a 

significant advantage especially when there is a limited understanding of the relations between 

system variables. 

The application of TDNN for MG dynamic equivalent purposes involves four major steps, 

like the conceptual system identification procedure presented in chapter 4. These steps are: 

• Data generation; 

• Model structure selection; 

• Determination of the TDNN adjustable parameters; 

• Model validation. 

The first three steps are performed off-line. The MG slow dynamics equivalent model thus 

obtained is embedded in the validation module forming a MMG equivalent network. A brief 

description of these main steps is presented in the following subsections. 

5.3.1 Data generation 

As the data set is the basis of any successful identification procedure, a numerical 

experiment should be designed in order to produce a set of samples that describe how the 

system behaves over its entire range of operation. For this purpose the MMG detailed model is 

used taking into account the following issues: 

• The design of input signals which lead to an informative data set; 

• Techniques for preparing the data for neural network modelling. 

Based on the system definition presented in chapter 4 as well as in the engineering 

expertise, adequate input signals have been designed. Thus, after MMG islanding, several 

perturbations occurring in the MV network are simulated and both the input and output signals 
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are measured according to a suitable sample time. As already mentioned previously, boundary 

bus voltages expressed in the synchronous reference frame, QD − , and system angular 

frequency are considered as inputs while the boundary bus injected current from the tie line, 

expressed in the QD −  reference frame, are considered as outputs. Thus, the TDNN is 

disturbed by both boundary bus voltage and network frequency variations. It reacts to these 

variations by varying the injected currents into the boundary bus, operating according to the 

principles of a Norton model [16]. 

Boundary bus voltages, system frequency and injected currents are stored in a data base 

during the perturbation simulations in order to build suitable training patterns. Since the data 

set is almost the only source of information to build the TDNN based dynamic equivalent 

model, the number of samples should be large enough in order to form appropriate training and 

validation data sets. 

Concerning the data preparation for neural network modelling, many different methods can 

be considered in order to extract the most valuable information from the measured data and to 

make it suitable for neural network modelling. Since signals are likely to be measured in 

different physical units, it is recommended to remove the mean and scale all signals to the 

same variance in order to avoid the tendency that the signal of largest magnitude will be too 

dominating. Moreover, scaling makes the training algorithm numerically robust and leads to a 

faster convergence and tends to give better models [164]. 

In order to generate a more robust TDNN, which is able to simulate the MG dynamic 

behaviour under different operating conditions, normalized deviations of voltage, system 

frequency and currents from the corresponding steady state are used as in [16, 121-124]. 

5.3.2 Model structure selection 

Selecting a TDNN model structure basically implies to select the structure of regressors 

and to specify how to combine them into a one-step-ahead prediction through the MLP neural 

network. However, a combinatorial explosion of possible solutions arises from this procedure 

and therefore it is impossible to investigate all configurations. In this sense, the working 

procedure is to separate the two components of the problem by first selecting a particular 
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structure of the regression vector and subsequently to specify the number of hidden units in an 

attempt to determine good network architectures for this choice of regressors.  

As stated before, in chapter 4, the regressor vector is based on the NFIR model structure. 

However, a wrong choice of the number of signals used as regressors will lead to poor results. 

Too small lag spaces obviously implies that essential dynamics will not be modelled, but too 

large ones will contain redundant information and increase significantly the input space 

dimensionality. Although it is desirable to decide the number of past inputs based on physical 

insight, when the knowledge about the system is limited the method based on the Lipschitz 

quotients can be considered, since it can often provide a reasonable estimate of the model order 

for deterministic systems. However, to compute all quotients particularly if N  is large is a 

very time consuming task [164]. Therefore, taking into account that MLP can cope well with 

redundant inputs by driving the corresponding hidden layer weights toward zero, the number of 

past inputs selection becomes less important and the main objective is to assure the 

representation of the MG relevant dynamics. 

In what concerns to the MLP architecture, since one has access of an unlimited amount of 

training data the neural network architecture determination relies on fully connected neural 

networks. In this case, the architecture selection is reduced to a matter of choosing a number of 

hidden units and the activation functions types of an MLP neural network. A regularization 

technique is further applied in order to deal with the bias/variance dilemma. 

5.3.3 Determination of the TDNN adjustable parameters 

In this stage the collected data set is applied to pick the best model among the candidates 

contained in the specified MLP neural network architecture. Thus the neural network is trained 

in order to provide the best possible one step ahead prediction in a mean square sense. Neural 

network toolbox of MATLAB® is used for this purpose [222]. 

The backpropagation method with Levenberg-Marquardt algorithm is used during the 

learning procedure. Taking into account the discussion presented previously in subsection 

4.4.4.1.1 and due to its simplicity, early stopping is also used in order to avoid overfitting, 

realizing thus the best bias/variance trade-off. Since it is always desirable that the trained 

neural network model is also validated on a validation data set not used to extract training 

patterns, the collected data set is then split between the training and test or validation data sets. 
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Some care is taken into account in order to guarantee similar properties between the two data 

sets regarding the representation of the system entire operating range. 

As several MLP neural networks with randomly initialized parameters are trained, the 

validation error is also used as the first criterion to reject poor models. 

5.3.4 Model validation 

After the training procedure, the performance of the TDNN based equivalent models with 

less generalization error are evaluated in the dynamic simulation platform. A MG slow 

dynamics equivalent model is then embedded in the validation module forming the MMG 

equivalent model. The model performance is evaluated by comparing its response following 

perturbations that occur in the retained subsystem not used during the training phase with the 

response obtained using the MMG detailed model. 

For this purpose, in addition to the TDNN itself, this model requires two auxiliary 

functions to prepare the TDNN inputs and outputs to be integrated into the dynamic simulation. 

These two functions represent the interface between the TDNN and the retained network as 

depicted in figure 5.8.  
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Figure 5.8: TDNN based MG slow dynamics equivalent model 
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At each time step, the MG slow dynamics equivalent model recognizes the operating status 

of the retained network through the boundary bus voltage and system frequency. The 

normalized voltage and system frequency deviations, Dv∆ , Qv∆  and ω∆ , respectively, are 

computed through the function 1f . The TDNN is then used to determine the corresponding 

normalized current deviations, Di∆  and Qi∆ . Therefore the current to be injected into the 

retained network is computed using the function 2f . These normalized deviations are 

computed based on their initial steady state values as follows 

( )

max,

0

D

DD
D V

VV
v

∆
−=∆ ; 

( )

max,

0

Q

QQ
Q V

VV
v

∆
−

=∆ ; 
( )

max

0

ω
ωωω

∆
−=∆                                                         (5.21) 

( )0
max, DRDDDR IIiI +∆×∆= ; ( )0

max, QRQQQR IIiI +∆×∆=                                                         (5.22) 

where 

 Dv∆ , Qv∆ , Di∆ , Qi∆  are the normalized deviations of both voltage and current QD −  

components; 

 ω∆  is the normalized deviation of frequency; 

 max,DV∆ , max,QV∆ , max,DRI∆ , max,QRI∆  are the maximum variations considered to 

normalize both voltage and current QD −  components; 

 maxω∆  is the maximum frequency deviation considered to normalize frequency; 

 ( )0
DV , ( )0

QV , ( )0
DRI , ( )0

QRI  are the initial steady state values of both voltage and current 

QD −  components; 

 ( )0ω  is the nominal value of system frequency. 

The initial steady state values of boundary bus voltage and injected current of the MG slow 

dynamics equivalent model are determined through the initial load flow calculations. Their 

maximum deviations as well as frequency maximum deviation are obtained from the dynamic 

simulation of the largest amount of load connection and disconnection upon MMG islanding. 
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5.4 Dynamic equivalents for MG based on physical modelling  

In contrast with TDNN based MG dynamic equivalents, the second promising approach is 

based on the available physical knowledge about MG dynamics and composition. Therefore, 

the data set requirements are less demanding. 

Thus, the major issues are related to the model structure selection, the identification method 

and model validation, as described in the following subsections. 

5.4.1 Physically parameterized model structure 

As already mentioned previously, when the available knowledge allows to specify a 

physical model structure, the mathematical representation of the MG slow dynamics reduced 

model is commonly done by a continuous state space model of a given order. In this case the 

physical laws that approximate the MG slow dynamics under the study are similar to those that 

govern the active power control in a diesel group [17]. Thus, the physically parameterized 

model structure in represented under MatLab® Simulink® environment through the block 

diagram depicted in figure 5.9. 
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Figure 5.9: Model structure of the MG slow dynamics equivalent model 

The model structure parameters whose values have to be estimated during the identification 

procedure are gathered into the parameter vector θ , as 

[ ]DTTKKR 221=θ                                                                                 (5.23) 
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Since the MG slow dynamics equivalent model should be a current source, the 

instantaneous power theory [223] was used in order to determine the network injected current 

as depicted in figure 5.10. 

mP

DV

QV

θ

refQ
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Figure 5.10: Interface between the MG slow dynamics equivalent model and LV network 

The current source assumes the role of the inverter, by determining the current from both 

the active power delivered by the MG slow dynamics equivalent model, mP , and a given 

reactive power, refQ , which corresponds either to a pre-defined value linked to a given MS 

power factor or a reactive power set-point sent by the MGCC, according to the reactive power 

control strategies described in chapter 2. 

The instantaneous power theory was proposed in [223] for control of active power filters 

and has been used to control the PWM-VSI (Pulse Width Modulation – Voltage Source 

Inverter) or PWM-CSI (Pulse Width Modulation – Current Source Inverter). Voltages or 

current reference signals employed to turn on and turn off the switches of the inverter can be 

obtained from this theory [224, 225]. In this case, the instantaneous voltages and currents in 

three-phase circuits are adequately expressed as instantaneous space vectors in abc 

coordinates as depicted in figure 5.11. 



Chapter V – MicroGrids Dynamic Equivalents based on Artificial Neural Networks and Physical Modelling Approaches 

161 

axisa −

axisb−

axisc −

aa iv ,

bb iv ,

cc iv ,

3/2π

3/2π

3/2π
axis−α

axis−β

αα iv ,

ββ iv ,

 

Figure 5.11: abc to βα −  coordinates transformation 

In a balanced three-phase system the abc space vectors are easily transformed into α  and 

β  coordinates through the Clark transformation as follows: 
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where 

 ( )tva , ( )tvb  and ( )tvc  are the instantaneous voltages in abc coordinates, respectively; 

 ( )tia , ( )tib  and ( )tic  are the instantaneous currents in abc coordinates, respectively; 

 ( )tvα  and ( )tvβ  are the instantaneous voltages in βα −  coordinates, respectively; 

 ( )tiα  and ( )tiβ  are the instantaneous currents in βα −  coordinates, respectively; 

 C  is the Clark transformation given by 
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So, as described in [223], the instantaneous active and reactive powers are defined as: 
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where 

 ( )tp  is the instantaneous active power in W ; 

 ( )tq  is the instantaneous reactive power in VAr . 

In systems with sinusoidal balanced voltages and currents, the average value of ( )tq  is equal 

to the conventional reactive power and the instantaneous active power, ( )tp , is always equal to 

the conventional active power [223]. Thus, from equation (5.27) it is possible to obtain the 

currents reference signals to control the PWM-CSI depicted in figure 5.10 as follows 
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The references of currents, *
ai , *

bi  and *
ci  are calculated instantaneously without any time 

delay by using the boundary bus instantaneous voltages and both active and reactive power 

values. 
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The procedure described above was implemented in a Simulink S-function coded in MatLab 

m-file, following the scheme presented in figure 5.12. 
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Figure 5.12: Schematic representation of instantaneous power theory implementation 

5.4.2 The identification method 

In order to estimate the parameters of the physically parameterized model structure, a 

suitable identification method is required. As discussed in chapter 4, EPSO, as a global 

optimization tool, together with MSE or MEE criteria constitute promising approaches.  

Therefore, the algorithm presented in subsection 4.4.4.2 of chapter 4 is used. Under this 

context the parameter vector θ  given by (5.23) provides particle phenotype descriptions 

corresponding to the particle positions into the parameter space. The particle performances are 

expressed through the MEE given by equations (4.47), (4.48) and (4.49) described in 

subsection 4.4.4.2 of chapter 4. 

Since the identification method aims to find the values of parameters that minimize the error 

entropy and therefore the MSE, the MEE criterion plays the role of loss or cost function under 

system identification terminology as well as the particle fitness in an evolutionary sense. Thus, 

a suitable evaluation function was implemented for particles MEE calculation. In contrast with 

TDNN, the determination of the parameter vector given by (5.23) in carried out on-line. This 

means that the loss function of each particle is evaluated on the dynamic simulation platform. 

For this purpose the MG slow dynamics model structure is embedded in the validation package 

forming a potential MMG equivalent model. Therefore, some interaction between the EPSO 
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algorithm and the dynamic simulation platform, concerning the validation package, is required, 

as can be observed from the flow-chart depicted in figure 5.13. 
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Figure 5.13: Flow-chart of physical parameters estimation 

After defining the search space through both the minimum and maximum values of each 

parameter into the parameter vector, it is expected that the EPSO algorithm will perform the 

search to the global optimum or, at least, to a good local optimum under the MEE sense. For 

this purpose, after mutation has been performed by the EPSO algorithm, the following 

sequence of steps have to be carried out for each particle in the swarm. 

• The evaluation function sends the particle object parameters to the MG slow dynamics 

equivalent model; 

• A pre-specified set of disturbances occurring at defined time instants are simulated 

during a certain time period; 

• The MMG equivalent model response is compared with the target response, which was 

generated from the MMG detailed model, yielding an error sequence; 
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• The entropy of the error sequence is then calculated and sent back to the evaluation 

function; 

• Based on the error entropy information, EPSO algorithm performs selection in order to 

build the swarm corresponding to the next generation. 

The above procedure is repeated while the EPSO algorithm termination condition is not 

verified. A similar procedure is carried out if MSE is adopted as the loss function. 

5.4.3 Model validation 

Taking into account the particular fact that the parameter vector is estimated on-line, on the 

environment in which it will be used, model validation is in some sense embedded into the 

parameter estimation stage, since models with poor performances have been eliminated by the 

selection operator during the parameter estimation procedure. The set of particle object 

parameters thus identified allows the best performance of the MG slow dynamics equivalent 

model evaluated on the validation software package. 

Thus, as a final validation test, the model performance is evaluated considering 

disturbances not used during parameter estimation. 

5.4.4 Summary and main conclusions 

In this chapter two suitable approaches for deriving MG dynamic equivalents were 

developed. One exploits black-box modelling based on a TDNN while the other exploits 

physical modelling, being the physically parameterized model structure selected taking into 

account the available physical knowledge. 

The application of these two developed methodologies to MicroGrids yielded two kinds of 

MG dynamic equivalents: 

• The TDNN based MG dynamic equivalent; 

• The physical MG dynamic equivalent. 

In order to generate high quality data sets as well as to evaluate the performance of both 

types of MG dynamic equivalents, two dynamic simulation packages were also developed: The 

MMG detailed model and the MMG equivalent model, respectively. The integration of TDNN 

based MG dynamic equivalents into the MMG equivalent model for validation purposes was 
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also addressed. Concerning the physical MG dynamic equivalents, the MMG equivalent model 

is also used during the parameter estimation procedure. 
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Chapter 6 

MicroGrid Dynamic Equivalents Study Cases 

6.1 Introduction 

In this chapter the two methodologies developed in chapter 5 are applied to derive dynamic 

equivalents for MG, being their performances also evaluated through the comparison of the 

results obtained from both MMG detailed and equivalent models. For these purposes two 

MMG are considered corresponding to two different test systems denoted as TS-01 and TS-02. 

The developed dynamic equivalents will reproduce the MG dynamic behaviour during MMG 

islanding and load following in islanded mode. 

Thus, in section 6.2, the black-box modelling approach based on TDNN is applied to TS-01, 

yielding the TDNN based MG dynamic equivalents. The MG slow dynamics equivalent model 

is embedded into the dynamic simulation package corresponding to the MMG equivalent 

model of TS-01, being its performance evaluated. The results obtained are presented and 

discussed as well as some remarks concerning this methodology. 

In section 6.3 the physical modelling approaches are applied to derive dynamic equivalents 

for the MG of TS-02, yielding the physical MG dynamic equivalents. Their performances are 

evaluated considering the MMG of TS-02 and, in addition, compared with the performance of 

the TDNN based MG dynamic equivalent considering the MMG of TS-01. Afterwards, the 

performance of the physical MG dynamic equivalents are also evaluated using Eurostag®. The 

results obtained from dynamic simulations are also presented and discussed. 

Finally, the summary and main conclusions are presented in section 6.4. 

6.2 MG dynamic equivalents based on TDNN 

The TDNN based approach presented in section 5.3 is used in this section to derive a 

dynamic equivalent for the MG of the test system presented in figure 6.1. The MMG system 

presented in figure 6.1 (a) comprises two round rotor synchronous machines of kVA 500  
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connected to the MV network together with MV loads and a LV feeder connected to a MV/LV 

distribution transformer – the MicroGrid. The MG contains an kW 80  SSMT, the main storage 

device (flywheel) and three PV panels with a total capacity of kW 45 . The amount of load 

connected to the LV network is around kVAj  60150+  and the MV load is kVAj  60400+ . A 

more detailed description of the electrical and mechanical parameters of the several 

components of this test system is presented in appendix A. 

 

Figure 6.1: Single-line diagram of TS-01: (a) MMG detailed model; (b) MMG equivalent model. 

The MG without the main storage device is replaced by a TDNN, which provides the NFIR 

model structure. This structure operating in parallel with the MG main storage device 

connected to the LV network through its VSI control forms the MG dynamic equivalent. The 

retained subsystem corresponds to the rest of the network, as can it be observed from figure 6.1 

(b). 
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6.2.1 MG dynamic equivalents using TDNN 

The idea behind the adopted approach is to replace all components belonging to the MG, 

except the main storage device feeder by a TDNN, which is connected to the retained 

subsystem through the boundary bus. 

For training purposes, several amounts of load connection and disconnection are simulated 

at different locations in the MV network, when it is operated in islanded mode, using the 

package corresponding to the MMG detailed model. The simulation of each sudden load 

change is carried out for s 40 , which is enough to restore the steady state conditions after these 

disturbances. Thus, the load is connected at st  2=  and disconnected at st  20= . The dynamic 

simulation is carried out using the variable step size solver ode15s with a relative tolerance 

6101 −× . 

A ms 10  sample time was selected through a trial and error approach in order to avoid too 

large training and validation data sets and to guarantee simultaneously informative enough data 

sets, allowing a good performance of the TDNN based model. Thus each amount of load 

connection and disconnection results in 4000 patterns. The QD −  components of boundary bus 

voltage, the QD −  components of the injected current from the MG slow dynamics subsystem 

(MG without the main storage device feeder) as well as system frequency are stored during the 

simulation and subsequently used to prepare suitable patterns for TDNN training and validation 

purposes, as described in subsection 5.3.1 of chapter 5. 

The TDNN has three inputs: QD −  components of normalized voltage deviations at 

boundary bus and the normalized system frequency deviations. However, the MLP neural 

network receives the outputs from the external dynamic filter bank, which in this case realizes 

the regression vector corresponding to the 5 past measurements of the TDNN inputs. Therefore 

the MLP neural network has 15 inputs. On the other hand, two outputs representing the 

normalized deviations of the QD −  injected current components at the actual time step are 

obtained from the MLP neural network. In what concerns the MLP neural network internal 

architecture, one and two hidden layers were considered with different number of hidden 

neurons, based on trial and error approaches and using the knowledge obtained from the first 

attempts. Therefore, a considerable number of MLP neural networks has to be trained and 
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evaluated in order to derive a MG slow dynamics equivalent model with good performance in 

the sense of the final model validation criterion, as it can be observed from figure 6.2. 
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Figure 6.2: TDNN based MG slow dynamics model estimation and validation 

Patterns corresponding to MMG islanding and 6 different load connection and 

disconnection sequences, upon MMG islanding, are used to train the MLP neural networks 

while patterns corresponding to 4 different load connection and disconnection sequences are 

kept for validation purposes. The training procedure was accomplished offline, as already 

mentioned previously in subsection 5.3.3. The obtained MLP neural networks are saved in 

order to be integrated in the validation dynamic simulation package, following the procedure 

described in subsection 5.3.4. For this purpose the command gensim(net,st) is used to create a 

Simulink system containing a block that simulates the neural network net with a sampling time 

st, which, in this case, is ms 10 . 

The best accuracy in the sense of the final model validation criterion was obtained from a 

two hidden layer feedforward neural network with 31 and 11 neurons in the first and second 
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hidden layers, respectively, with a tan-sigmoid activation function. The output layer has two 

neurons with linear activation functions. The training procedure was automatically stopped 

when the error in the validation data set started increasing in order to avoid overfitting. This 

happened when around 400 epochs were elapsed, being the MSE value near 6101 −×  (for the 

normalized deviations of QD −  components of the injected current). 

6.2.2 Simulation results and discussion 

As stated before, in order to evaluate the performance of the MG dynamic equivalent based 

on TDNN obtained as described in the previous section, the MG slow dynamics equivalent 

model is embedded in the dynamic simulation platform, replacing the detailed model of this 

subsystem and forming thus the MMG equivalent model. 

The accuracy and validity of the TDNN based MG dynamic equivalent is evaluated by 

comparing the time domain responses obtained from dynamic simulations of disturbances 

tacking place in the MV network using both simulation packages corresponding to the MMG 

equivalent and detailed models. 

It was assumed that the MMG is initially interconnected with the upstream power system 

and operated under the steady state conditions presented in table 6.1. 

Table 6.1: TS-01 operating conditions before MMG islanding 

  Generation Consumption 

MV network 

SM1 250 kW   

SM2 100 kW   

Total 350 kW  kVAj  60400+  

MicroGrid 

Storage device kVAr 10   

SSMT kVAj  23,53 +   

PVs kW 45   

Total kVAj  123,98 +  kVAj  8,589,148 +  
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Based on these operating conditions before MMG islanding, a general overview of the 

several microgeneration systems dynamic behaviour is given firstly. For this purpose, the 

following sequence of actions was carried out in the MMG detailed model: 

• MMG islanding at st  5= ; 

• Connection of an amount of load, kVAj  25100+ , to bus 9 of TS-01, as represented in 

the single line diagram of figure 6.1 (a), at st  20= ; 

• Disconnection of the amount of load previously connected at st  40= . 

Afterwards, for model validation purposes, this sequence of disturbances is simulated using 

both the MMG detailed and equivalent models and the obtained time domain responses are 

compared. It should be noted that this amount of load was not used to extract training patterns. 

The TDNN based dynamic equivalent performance was also evaluated under different 

operating conditions before MMG islanding taking into account new load and generation 

conditions in the MV network as well as in the MG. Thus, the following operating scenarios 

were considered. 

• Scenario 0: Initial steady state conditions presented in table 6.1; 

• Scenario 1: New generating conditions is MV network; 

• Scenario 2: New load conditions in MV network; 

• Scenario 3: New generating conditions in MicroGrid; 

• Scenario 4: New load conditions in MicroGrid. 

The TDNN based MG slow dynamics equivalent model is integrated into the simulation 

package corresponding to the MMG equivalent model following the procedure described in 

subsection 5.3.4. Thus, the initial values of the TDNN based MG slow dynamics equivalent 

model inputs and outputs as well as their maximum variations have to be determined in order 

to derive suitable mapping and demapping functions, 1f  and 2f , given by equations (5.21) and 

(5.22), respectively. 

The initial and maximum values obtained based on the initial steady state conditions 

presented in table 6.1 were updated for scenarios 1 to 4, as presented in table 6.2. 
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Table 6.2: TDNN based MG slow dynamics equivalent model inputs and outputs initial values and 

maximum deviations 

 Initial values (p.u.) Maximum deviations 

Scenario ( )0
DV  

( )0
QV  

( )0
DRI  

( )0
QRI  

( )0ω
 

max,DV∆
 

max,QV∆
 

max,DRI∆
 

max,QRI∆
 

maxω∆
 

0 1,0088 -9,56×10-3 -0,1230 0,1198 1 0,0322 0,1436 0,074 0,006 0,0247 

1 1,0092 -9,2×10-3 -0,1240 0,1198 1 0,0273 0,09853 0,0605 4,7×10-3 0,0247 

2 1,0078 -0,0106 -0,1240 0,1201 1 0,048 0,2073 0,0908 0,0103 0,0323 

3 1,0075 -0,0161 -0,1889 0,1215 1 0,0373 0,1657 0,0889 12×10-3 0,0254 

4 1,0136 -1,68×10-3 -0,0397 0,0857 1 0,0252 0,1274 0,0575 0.004 0,0250 

The results obtained from the numerical simulations are presented and discussed in 

subsection 6.2.2.1 to 6.2.2.6. Some remarks of TDNN based MG dynamic equivalents are 

described in subsection 6.2.2.7. 

6.2.2.1 Dynamic behaviour of microgeneration systems 

In order to provide a general overview about the dynamic behaviour of the microgeneration 

systems, the above sequence of disturbances was simulated using the MMG detailed model. 

The microgeneration systems active and reactive power responses are presented in figure 6.3. 

In turn, figure 6.4 shows the system frequency and the MG main storage device terminal bus 

voltage. 
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Figure 6.3: Active and reactive power outputs of microgeneration systems of TS-01 
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Figure 6.4: System frequency and MG main storage device terminal bus voltage of TS-01 
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When the MMG is operated in normal interconnected mode, all the microgeneration 

systems are supplying active and reactive powers according to the steady state operating 

conditions described in table 6.1. It should be noted that the PQ inverter controls of the PV 

systems are operated with a unity power factor, injecting in the LV network the maximum 

active power produced taking into account only the temperature and irradiance conditions, 

which are considered to be constant during the simulation time. Concerning the SSMT, it was 

considered as supplying a constant reactive power based on a given set-point defined centrally 

by the MGCC and sent to the MC embedded in its PQ inverter control. 

Following a MMG disconnection from the upstream system, the MG is kept in operation 

connected with the MV network. The synchronous machines connected to the MV level 

provide both voltage and frequency references, as already mentioned previously, and are also 

the main responsible to balance demand and supply. Both active and reactive power outputs of 

PV systems are kept constants. Although the SSMT reactive power output experiments small 

variations during transient situations, it can be considered approximately constant over the 

simulation time and equal to the pre-specified set-point. 

However, following the sequence of disturbance in the MV level, due to the load unbalance, 

transient system frequency changes and bus voltage variations arise. Therefore, the MG main 

storage device active and reactive power outputs experiment variations proportionally to the 

system frequency and bus voltage deviations from their nominal values, respectively, 

according to the frequency/active power and voltage/reactive power droops implemented in the 

VSI control interface. Thus, the active power is either injected or absorbed only during 

transients, whenever the system frequency deviations differ from zero, while the reactive 

power output is increased or decreased according to bus voltage deviations, as can be observed 

from figures 6.3 and 6.4. 

Concerning to the SSMT, the local secondary load frequency control tries to restore the 

system frequency to the nominal value through the definition of a new active power set point 

for the primary energy source, based on the frequency deviation error. Therefore, the MG 

contributes together with the synchronous machines to meet power demand upon MMG 

islanding. The MG main storage device acts as a primary load frequency control while the 

SSMT provides secondary load frequency control. These features are key issues to assure the 

MG operation in islanded mode, as already mentioned previously in subsection 2.4 of chapter 

2. 
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It can also be observed from figure 6.3 the two time scales that characterize the dynamic 

responses of the several microgeneration systems concerning the active and reactive power 

outputs. It should be noted that the MG system separation between the MG slow dynamics 

subsystem and the main storage device feeder was based on this physical knowledge and 

constitutes the basis for the developed MG dynamic equivalent methodologies, as stated before 

in chapter 4. 

6.2.2.2 Scenario 0: Initial steady state conditions 

After simulating the above sequence of disturbances, the TDNN based MG slow dynamics 

equivalent model outputs are compared with these ones obtained from the MG replaced 

subsystem. Figure 6.5 shows these comparisons. 

0 10 20 30 40 50 60
-0.14

-0.12

-0.1

-0.08

-0.06

ID
 (

p.
u.

)

 

 

0 10 20 30 40 50 60

0.116

0.118

0.12

0.122

0.124

0.126

Time (s)

IQ
 (

p.
u.

)

 

 

MMG detailed model

MMG equivalent model

 

Figure 6.5: TS-01 TDNN based MG slow dynamics equivalent model injected current in scenario 0 

The coincidence between the responses of the MG slow dynamics detailed and equivalent 

models indicates that the TDNN not only learned with success the nonlinear behaviour of the 
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replaced subsystem, but also presents a good generalization capability. This can also be 

observed from figure 6.6, where the performance of the TDNN based MG dynamic equivalent 

is compared with the one of the MG detailed model. The active and reactive power outputs of 

both models are very similar, demonstrating the effectiveness of this MG dynamic equivalent 

in reproducing the MG dynamic behaviour following MMG islanding and during load 

following transients when embedded in the dynamic simulation platform. 
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Figure 6.6: TS-01 MG dynamic equivalent power outputs in scenario 0 

Before MMG islanding the MG was importing active and reactive power in order to face the 

LV consumption, as it is indicated by the negative signs in figure 6.6. This importing scenario 

is also kept after MMG islanding. The SSMT increases its active power production following 

MMG islanding as well as when the load is connected, reducing the injected active power 

when the load is disconnected. These variations are guided by appropriate set-points based on 

the system frequency deviation, as already mentioned previously. The main storage device 

supplies active power only during transients and varies its reactive power output proportionally 

to the bus voltage deviations. These active and reactive power variations can also be observed 

from figure 6.6. The TDNN based MG dynamic equivalent performance is also evaluated on 
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the retained subsystem. Thus, in figure 6.7, a comparison between boundary bus voltage and 

system frequency obtained from the MMG detailed and equivalent models is presented. 
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Figure 6.7: TS-01 Boundary bus voltage and system frequency in scenario 0 

The quality of the results observed from figure 6.7 suggests that the TDNN based MG 

dynamic equivalent reproduces with high accuracy the MG dynamic behaviour with respect to 

the MV network, following MMG islanding as well as during both load following transients 

and steady state conditions when the MMG is operated in islanded mode. This can also be 

observed from figures 6.8 and 6.9, in which the active and reactive powers supplied by 

synchronous machines SM1 and SM2, respectively, are presented. 

In order to balance generation and demand following the MMG islanding and during load 

following situations the synchronous machines SM1 and SM2 adjusted their active and reactive 

power productions, as it can be observed from figures 6.8 and 6.9, respectively. 
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Figure 6.8: TS-01 SM1 active and reactive powers in scenario 0 
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Figure 6.9: TS-01 SM2 active and reactive powers in scenario 0 
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Several comparisons were carried out under new disturbances resulting from the connection 

and disconnection of different amounts of loads, when the MMG is operated in islanded mode. 

The MMG equivalent model responses are in a very good agreement with these ones of the 

MMG detailed model. This ensures a good performance of TDNN based MG dynamic 

equivalent in reproducing the MG dynamic behaviour under load following transient 

conditions upon MMG islanding. 

6.2.2.3 Scenario 1: New generating conditions in MV network 

In order to evaluate the MG dynamic equivalent capability to cover new operating 

conditions, its behaviour is studied for new power flow conditions before MMG islanding, by 

increasing the active power produced by SM2 from 100 to 150 kW . The generated power and 

demand in the MG are kept constant, so that the total power transferred to the LV network is 

not significantly changed. 

Figure 6.10 compares the powers supplied by the MG detailed model and by the TDNN 

based MG dynamic equivalent. 
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Figure 6.10: TS-01 TDNN based MG dynamic equivalent power outputs in scenario 1 
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Before MMG islanding, the MG is importing active and reactive power like in scenario 0. 

However, as the MMG active power generation was increased, the active power unbalance 

between demand and supply following MMG islanding was reduced and therefore the system 

frequency deviation from its nominal value is smaller than the one verified in scenario 0, as it 

can be observed from figure 6.10. As a result, the MG main storage device active power 

injection during this transient situation is smaller. 

Figure 6.10 shows a small loss of accuracy between the power response of the MG dynamic 

equivalent and the MG detailed model, being the maximum errors kW3  for active power and 

kVAr6,0  for reactive power. This is not surprising since the MLP neural network was not 

trained under this initial steady state conditions. However, the results obtained show that the 

performance of the MG dynamic equivalent performs in a good agreement with the MG 

detailed model. The use of normalized deviations extends the validity of the dynamic 

equivalent to cover new initial MV generating conditions before MMG islanding without 

significant loss of accuracy, as can it also be observed from figures 6.11, 6.12 and 6.13. 
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Figure 6.11: TS-01 boundary bus voltage and system frequency in scenario 1 
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Figure 6.12: TS-01 SM1 active and reactive powers in scenario 1 
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Figure 6.13: TS-01 SM2 active and reactive powers in scenario 1 
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It should be noted that the small loss of accuracy verified in the MG dynamic equivalent 

power responses does not affect significantly the accuracy of the results on the MV network, as 

it can be observed from figures 6.12 and 6.13, where power errors lower than kVAj  4,02,1 +  

are verified for both synchronous machines. 

Like in scenario 0, several simulations of connection and disconnection of different amounts 

of load were performed. In all of them the TDNN based MG dynamic equivalent presents a 

good matching with the MG detailed model during load following transients upon MMG 

islanding even under new operating conditions resulting from changes in the MV network 

steady state generation. 

6.2.2.4 Scenario 2: New load conditions in MV network 

The TDNN based MG dynamic equivalent performance was also evaluated under new MV 

network steady state load conditions. For this purpose an additional load, kVAjL  10100+= , 

connected to bus 12 of TS-01 was considered. Since the MG load and generation conditions 

were not changed, the power flow from the MV network to the MG when the MMG is operated 

in interconnected mode was not significantly modified, as it can be observed from figure 6.14. 
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Figure 6.14: TS-01 TDNN based MG dynamic equivalent power outputs in scenario 2 
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Figure 6.14 shows the active and reactive power outputs of both the TDNN based MG 

dynamic equivalent and the MG detailed model. Although a certain loss of accuracy can be 

observed, the dynamic behaviour of the TDNN based dynamic equivalent is identical to the 

MG detailed model over the whole simulation time. 

Like in scenario 1, the loss of accuracy verified in the TDNN based MG dynamic equivalent 

power outputs is not surprising, since both the sequence of disturbances and the steady state 

operating conditions are not in the training data base. In this case the experimented errors are 

lower than kW7  for active power and kVAr6,0  for reactive power. However, its effect at the 

MV level is reduced and the results present an acceptable level of accuracy, as can be observed 

from figures 6.15, 6.16 and 6.17. 
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Figure 6.15: TS-01 boundary bus voltage and system frequency in scenario 2 
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Figure 6.16: TS-01 SM1 active and reactive powers in scenario 2 
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Figure 6.17: TS-01 SM2 active and reactive powers in scenario 2 
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Before the disconnection from the main grid, the MMG active load demand in covered only 

in part by the local production of both synchronous machines, SSMT and PV systems, 

requiring a large power import from the upstream power system, which supplies the reactive 

power requirements as well. Upon MMG islanding the system frequency drops to a lower 

value and the MG main storage device as well as the synchronous machines increase their 

outputs to compensate the loss of MMG import. Although with a large time delay, the SSMT 

active power generation also increases, as it can be observed from figure 6.14, when the active 

power output of the MG main storage device is around zero. 

The effects of the loss of accuracy experimented by the MG dynamic equivalent based on 

TDNN can also be observed from figures 6.16 and 6.17. However, the maximum errors 

associated with the synchronous machines power responses obtained from the MMG 

equivalent model are lower than kVAj  13+  for both SM1 and SM2. Therefore, the previous 

four figures suggest that the TDNN based MG dynamic equivalent successfully captures the 

MG dynamic behaviour considering the changed load steady state operating conditions in the 

MV network. 

6.2.2.5 Scenario 3: New generating conditions in MicroGrid 

Most of the conventional dynamic equivalents fail to simulate the dynamic behaviour of 

power systems if any change occurs inside the external subsystem, requiring the development 

of a new dynamic equivalent [123, 124]. In this case, the performance of the TDNN based MG 

dynamic equivalent is also evaluated under new power flow conditions inside the MG. For this 

purpose the SSMT active power generation is considerably reduced from kW 3,53  to kW 20 . 

Under these new operating conditions the above sequence of disturbances was simulated 

again. The TDNN based MG dynamic equivalent active and reactive power outputs are 

presented in figure 6.18, where a good agreement can be observed. Since the MG active power 

generation was reduced, a larger amount of active power is being imported from the MV 

network before MMG islanding. 

The small loss of accuracy verified (the maximum deviations are less than kW 5,1  for active 

power and less than kW 5,0  for reactive power) is acceptable, since its effect on the boundary 

bus and studied subsystem is quite reduced, as can be observed from figures 6.19, 6.20 and 

6.21. 
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Figure 6.18: TS-01 TDNN based MG dynamic equivalent active and reactive power outputs in scenario 3 
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Figure 6.19: TS-01 boundary bus voltage and system frequency in scenario 3 
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Figure 6.20: TS-01 SM1 active and reactive power outputs in scenario 3 
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Figure 6.21: TS-01 SM2 active and reactive power outputs in scenario 3 
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In fact, figures 6.19, 6.20 and 6.21 show that the TDNN based MG dynamic equivalent 

reproduces with high accuracy the MG dynamic behaviour with respect to the studied 

subsystem following the study sequence of disturbances. 

Several amounts of load connection and disconnection were simulated under this steady 

state operating scenario and similar performances were observed, even when different SSMT 

active power production levels were considered. Therefore, the TDNN based MG dynamic 

equivalent effectiveness can also be extended to different generating conditions inside the MG. 

6.2.2.6 Scenario 4: New load conditions in MicroGrid 

In this case, the performance of the TDNN based MG dynamic equivalent is also evaluated 

under new power flow load conditions inside the MG. For this purpose the load 

kVAjL  3,156,3811 +=  was disconnected from bus 27 of TS-01. Under these steady state 

operating conditions the above sequence of actions is simulated again and the comparison 

between the MG dynamic equivalent and the MG detailed model power responses is presented 

in figure 6.22. 
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Figure 6.22: TS-01 TDNN based MG dynamic equivalent power outputs in scenario 4 
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As the active and reactive power consumptions into the MG were reduced, the local power 

unbalance was also reduced and therefore a less amount of both active and reactive power is 

being imported from the network when the MMG is operated in interconnected mode, as it can 

be observed from figure 6.22. Since the MMG power unbalance was also reduced, the system 

frequency deviation from its nominal value following MMG islanding is smaller than this one 

verified in scenario 0, as presented in figure 6.23. Therefore a smaller active power injection 

from the MG main storage device was experimented, as it can be observed from figure 6.22. 

Figure 6.22 displays a small loss of accuracy, being the errors experimented lower than 

kVAj  13+ . However, the effect of this small loss of accuracy in the study system is diminished 

as it can be observed from figures 6.23, 6.24 and 6.25. 
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Figure 6.23: TS-01 TDNN boundary bus voltage and system frequency in scenario 4 
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Figure 6.24: TS-01 SM1 active and reactive powers in scenario 4 
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Figure 6.25: TS-01 SM2 active and reactive powers in scenario 4 
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The maximum errors observed from figures 6.24 and 6.25 are around kVAj  6,05,1 +  for 

both synchronous machines. Thus, the MG dynamic equivalent based on TDNN reproduces the 

MG dynamic behaviour with high accuracy following the simulated sequence of disturbances. 

Several simulations of different amounts of load connection and disconnection were carried 

out under different MG steady state load conditions before MMG islanding and the MMG 

equivalent model responses are kept in a good agreement with these ones obtained using the 

MMG detailed model. Therefore, the TDNN based MG dynamic equivalent can also be used to 

replace the MG, even when its steady state load condition are changed. 

6.2.2.7 Some remarks of TDNN based MG dynamic equivalents  

The TDNN based MG dynamic equivalent thus obtained was implemented on the dynamic 

simulation package corresponding to the MMG equivalent model and its capability to 

reproduce the MG dynamic behaviour was investigated. The effectiveness of the TDNN based 

MG dynamic equivalent was demonstrated using the MG of TS-01. The results obtained allow 

to conclude that the TDNN based MG dynamic equivalent provided a very good matching with 

the results obtained using the MG detailed model over the whole simulation time, requiring 

simulation results or measurements only at the boundary bus. 

Several initial steady state load and generation conditions in both the MV network and 

inside the MG, before MMG islanding, were considered and a good performance was observed 

without modifications in the structure or parameters of the MLP neural network. The use of 

normalized deviations from the initial steady state values of both TDNN inputs and outputs 

extends the neural network generalization capability to simulate sequences of disturbances 

under steady state operating conditions not used to extract training patterns. Moreover the total 

simulation time of the studied sequence of disturbances is around 90 times faster with the 

MMG equivalent model than with the MMG detailed model. 

Under this context the TDNN seems to be an excellent tool to derive dynamic equivalents 

for MicroGrids. However, although the features presented before have been ambitious 

regarding the application of classical methodologies to conventional power systems, the 

following weaknesses have to be pointed out concerning MG dynamic equivalents. 

• High computational effort. To derive a TDNN based dynamic equivalent involves the 

following main stages: 1) Generation of very large data sets; 2) Pre-processing data; 3) 
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Training many MLP neural networks with different internal architectures in order to 

select the best ones in the sense of the MSE criterion verified for the validation data set; 

4) Integration of a number of MLP neural networks into the dynamic simulation 

package corresponding to the MMG equivalent model for final validation purposes. 

All these stages are very time consuming tasks. 

• High loss of accuracy when the TDNN is used to replace a new MG. To obtain a TDNN 

based MG dynamic equivalent with an acceptable performance requires a new MLP 

neural network, which has to be trained with a data set generated using the new MG.  

In order to overcome these drawbacks an alternative methodology exploiting the available 

physical knowledge has been developed, as described in the following section. 

6.3 MG dynamic equivalents based on the physical model approach 

The physical modeling approach described in section 5.4 is used in this section to derive a 

dynamic equivalent for the MG of the test system presented in figure 6.26 (a), denoted as TS-

02. 

 

Figure 6.26: Single-line diagram of TS-02: (a) MMG detailed model; (b) MMG equivalent model. 
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The MMG system presented in figure 6.26 (a) comprises two round rotor synchronous 

machines of kVA 500  connected to the MV network together with MV loads and to a MV/LV 

distribution transformer – the MicroGrid. This MG comprises two 30 kW  SSMT, a 30 kW  

SOFC and the main storage device (flywheel). The amount of load connected to the LV 

network is kVAj  1050+  and the load connected to the MV level is kVAj  100500+ . A more 

detailed description of the electrical and mechanical parameters of the several components of 

this test system is presented in appendix A. 

The physical model to be obtained replaces the MG slow dynamics subsystem, as depicted 

in figure 6.26 (b). Like in the TDNN based approach, the MG dynamic equivalent comprises 

this model operating in parallel with the MG main storage device feeder. 

6.3.1 Development of physical MG dynamic equivalents 

In this approach, like in the first one, the MG slow dynamics equivalent model to be 

derived represents a current source directly connected to the boundary bus. The injected current 

is predicted from the model structure described in subsection 5.4.1 of chapter 5 through a 

suitable set of values for the parameter vector given by (5.23). As already mentioned 

previously, in subsection 5.4.2 of chapter 5, the parameter estimation procedure of the physical 

model structure described in subsection 5.4.1 is performed online. For this purpose, the 

physical model structure is integrated into the dynamic simulation package corresponding to 

the MMG equivalent model and its parameter values are adjusted using the algorithm 

schematically represented through the flow chart depicted in figure 5.13 of chapter 5. 

In order to build an informative enough data set, only the following sequence of 

disturbances occurring at the MV level of test system TS-02, presented through its single line 

diagram in figure 6.26, is simulated using, obviously, the MMG detailed model simulation 

package: 

• MMG islanding at st  2= ; 

• Connection of the amount of load kVAj  25100+  at bus 8 of TS-02 at st  20= ; 

• Disconnection of the amount of load previously connected at st  40= . 

The simulation of this sequence of disturbances is carried out over s 60 , since those 

timings are sufficient to restore the steady state conditions following MMG islanding and 
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sudden load connection and disconnection as well. A variable step size solver ode15s available 

in Simulink is used with a relative tolerance of 6101 −× . 

It was assumed that the reactive power generated by SSMT1, SSMT2 and SOFC 

corresponds to the reactive power set-points, defined centrally by the MGCC and received by 

their MC, which are kept constant during the simulation time. Thus, the value of refQ  in figure 

5.10 of chapter 5 matches the initial reactive power flow from the MG slow dynamics 

subsystem, which is determined through the initial load flow calculations. For a given active 

power produced by the physical model structure depicted in figure 5.9 of chapter 5, the QD −  

components of the injected current are determined based on the boundary bus voltage, as it can 

be observed from figure 5.12 of chapter 5. 

Then, for a known and fixed value of refQ , to estimate the model parameters that fit the 

MG slow dynamics subsystem injected current is equivalent to estimate the model parameters 

that fit its active power output. Therefore the target output is done by the MG slow dynamics 

subsystem active power output and, therefore, the corresponding equivalent model simplifies to 

a MISO model. 

The data set thus obtained is stored in a file.mat, without pre-processing, in order to be used 

directly in the MMG equivalent model as the target output for parameter estimation purposes, 

as it can be observed from figure 5.13 of chapter 5. 

In order to find suitable parameters for the physical MG slow dynamics equivalent model, 

the EPSO algorithm with 20 particles, replication factor 1=r  (each parent gives birth to one 

descendant) and Gaussian mutation with learning rate 5,0=τ  was used. For the MEE criterion 

a Gaussian Parzen window with fixed size, 0001.0=σ , was adopted. The stopping criterion 

involves 10 consecutive generations without finding a better global fitness. 

After finding the parameter vector, which provides the best performance in the sense of the 

MEE, the average value of the error PDF has to be added to the active power output, mP , of the 

physical model structure depicted in figure 5.9 of chapter 5 and the physical MG slow 

dynamics equivalent model performance is evaluated by comparing the time domain responses 

obtained from the MMG equivalent model with those ones obtained from the MMG detailed 

model, as presented in the following subsections. 
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6.3.2 TS-02 simulation results and discussion 

For parameter estimation purposes it was assumed that the MMG is initially interconnected 

with the upstream power system and operated under the steady state conditions presented in 

table 6.3. 

Table 6.3: TS-02 operating conditions before MMG islanding 

  Generation Consumption 

MV network 

SM1 250 kW   

SM2 200 kW   

Total 450 kW  kVAj  100500+  

MicroGrid 

Storage device kVAr 5   

SSMT1 kVAj  220+   

SSMT2 kVAj  215+   

SOFC kVAj  210+   

Total kVAj  645+  kVAj  1050+  

In order to evaluate the performance of the physical MG dynamic equivalent a new 

sequence of disturbances occurring at the MV level was simulated under the steady state 

operating conditions presented in table 6.3, as well as under different operating conditions. 

Thus, the following scenarios were considered: 

• Scenario 0: Initial MMG operating conditions presented in table 6.3; 

• Scenario 1: New generation and load conditions in MV network; 

• Scenario 2: New generation conditions in MG; 

• Scenario 3: New MG composition and new MG load conditions. 

Under each one of the above scenarios corresponding to different steady state operating 

conditions before MMG islanding, the following sequence of disturbances was simulated: 

• MMG islanding at st  2= ; 
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• Connection of an amount of load, kVAj  1560+ , not used during parameter estimation 

to bus 8 of TS-02, represented through its single-line diagram in figure 6.26 (a), at 

st  20= ; 

• Disconnection of the amount of load previously connected at st  40= . 

Firstly, a general overview of the active and reactive power produced by the several MS is 

presented. Afterwards the results obtained from the dynamic simulations concerning the 

physical MG dynamic equivalent and the MG detailed model are compared and discussed. 

6.3.2.1 Dynamic behaviour of microgeneration systems of TS-02 

Figure 6.27 plots the active and reactive power outputs of all the microgeneration systems 

of TS-02 following the above mentioned sequence of disturbances. In addition it displays the 

fast and slow dynamics that characterize the microgeneration system responses. 

Before MMG islanding the MS active and reactive production levels are according to the 

steady state conditions presented in table 6.3. The MMG is importing a certain amount of 

power from the upstream system in order to balance the local power demand and supply. 
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Figure 6.27: TS-02 active and reactive powers generated by microgeneration systems 
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Following MMG islanding, the MG main storage device acts as a primary load frequency 

control, through its VSI control, in an attempt to balance active power demand and supply due 

to the loss of MMG imported power. Similar responses can be observed during transient 

situations following sudden load connection and disconnection. After the system frequency is 

restored to its nominal value, the main storage device active power output is kept around zero, 

as it can be observed from figure 6.27. The microturbines and SOFC vary their active power 

outputs according to the secondary load frequency control scheme implemented in their PQ 

inverter controls. However, the SOFC presents a very slow response regarding its active power 

output. The increasing/decreasing of SOFC active power output to the set-points derived from 

system frequency error involves timings around tens of seconds. 

Concerning the reactive power outputs, the controllable microsources with PQ inverter 

controls are supplying a constant reactive power according to its pre-specified reference 

defined centrally by the MGCC. The reactive power produced by the MG main storage device 

upon MMG islanding is proportional to the terminal bus voltage variations arising from MMG 

islanding and load following situations, as depicted in figure 6.27. 

6.3.2.2 Scenario 0: Initial steady state operating conditions 

Figure 6.28 shows a comparison between the active and reactive power outputs of the 

physical MG slow dynamics equivalent model. As it can be observed, a notable degree of 

accuracy of the predicted active power output is obtained following a non-trained amount of 

load connection and disconnection. Concerning the reactive power output, since refQ  was kept 

constant over the whole simulation time, a small error is displayed upon MMG islanding. 

However this error does not affect considerably the accuracy of results with impact at the MV 

network, as it can be observed from figure 6.28, since the physical MG dynamic equivalent 

power outputs experiment errors around kVAj  06,004,0 + . 

Before MMG islanding the MG is importing a small amount of active power to balance its 

own demand and supply, as the negative sign corresponding to the active power output in 

figure 6.29 indicates. In contrast, the reactive power produced into the MG is not fully 

absorbed from both the MG own load and losses, being the exceeding exported to the MV 

network. 
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Figure 6.28: TS-02 physical MG slow dynamics equivalent model power outputs in scenario 0 
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Figure 6.29: TS-02 physical MG dynamic equivalent active and reactive power outputs in scenario 0 
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Following MMG islanding transients the whole power system is balanced in a new steady 

state operating point in which the MG active and reactive power productions are increased as a 

result of the controllable microsources secondary load frequency control and the 

voltage/reactive power droop of the main storage device VSI control. In this situation the 

active power generated equals the MG demand and losses, so that the MG active power output 

is around zero. After load connection the MG exports a small amount of active power and 

increases the reactive power output. These active and reactive power variations are 

accomplished by boundary bus voltage variations and frequency deviations from its nominal 

value, as illustrated in figure 6.30. It should be noted that the physical MG dynamic equivalent 

reproduces with a high degree of accuracy the boundary bus voltage and system frequency 

behaviour. 
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Figure 6.30: TS-02 boundary bus voltage and system frequency in scenario 0 

A good response matching can also be observed from figures 6.31 and 6.32, regarding the 

synchronous machines output active and reactive powers. In fact, considering constant the 

reactive power output of the MG slow dynamics equivalent model over the whole simulation 

time does not degrade the quality of results. 
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Figure 6.31: TS-02 SM1 active and reactive powers in scenario 0 
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Figure 6.32: TS-02 SM2 active and reactive powers in scenario 0 
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Similar performances can also be observed for different amounts of load connection and 

disconnection, demonstrating the MG dynamic equivalent effectiveness under different load 

following conditions. Thus, it can be concluded that the physical MG dynamic equivalent thus 

obtained presents a good performance, concerning the MG dynamic behaviour with respect to 

the study subsystem under transient and steady state conditions. 

6.3.2.3 Scenario 1: New generation and load conditions at MV network  

The physical MG dynamic equivalent performance was also evaluated under different 

steady state operating conditions before MMG islanding. Then the active power produced by 

SM2 was increased from kW 200  to kW 300  and a new load, kVAjL  40200+= , was 

connected to bus 5 of the TS-02. Under these new steady state operating conditions before 

MMG islanding, the above sequence of actions was simulated again and the results obtained 

are presented. Figure 6.33 plots the physical MG dynamic equivalent power outputs. 
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Figure 6.33: TS-02 physical MG dynamic equivalent power outputs in scenario 1 
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Taking into account the previous scenario, a small loss of accuracy regarding the active 

power response can be observed from figure 6.33. The maximum error is experimented after 

transients and is lower than kW 1 . Concerning the reactive power output, basically the same 

performance was achieved. However, the effect of the physical MG dynamic equivalent 

response deviations from the responses of the MG detailed model with respect to the study 

subsystem is very small, as can be observed from figures 6.34, 6.35 and 6.36. 

The small loss of accuracy observed from figures 6.35 and 6.36 concerning the synchronous 

machines active power corresponds to a maximum error lower than kW 5,1 . Therefore figures 

from 6.34 to 6.36 suggested that the physical MG dynamic equivalent reproduces very well the 

dynamic behaviour of the MG with respect to the MV network. 
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Figure 6.34: TS-02 boundary bus voltage and system frequency in scenario 1 
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Figure 6.35: TS-02 SM1 active and reactive powers in scenario 1 
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Figure 6.36: TS-02 SM2 active and reactive powers in scenario 1 
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Similar performances can also be observed following different amounts of load connections 

and disconnections under these steady state operating conditions, demonstrating the physical 

MG dynamic equivalent ability to represent the MG relevant dynamics with respect to the MV 

network when the MV steady state operating conditions are changed, considering in 

simultaneous new load and generation. 

6.3.2.4 Scenario 2: New generation conditions inside the MG 

Now the performance of the MG dynamic equivalent is assessed under new power flow 

conditions inside the MG, resulting from a different generation scenario before MMG 

islanding. For this purpose the active powers of SSMT1, SSMT2 and SOFC were increased for 

kW 20  and the above sequence of actions was simulated again. 

Under these new initial steady state operating conditions the MG is exporting both active 

and reactive power before MMG islanding, as it can be observed from the positive sign in 

figure 6.37. 
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Figure 6.37: TS-02 physical MG dynamic equivalent active and reactive power in scenario 2 
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As the active power generation was increased and the load was kept constant, the MMG 

own generation and demand are nearly balanced being the MMG importing a small amount of 

active power. Therefore a small system frequency deviation from its nominal value was 

experimented following MMG islanding leading with a small power injection from the MG 

main storage device. After system frequency restoration the VSI active power output is kept 

near zero. Sudden load connection and disconnection leads with larger frequency deviations 

and therefore with larger amounts of active power injected or absorbed by the VSI of MG main 

storage device, as it can be observed from figures 6.37 and 6.38. 

Concerning to the reactive power, as the controllable microgeneration systems outputs are 

kept constant the MG main storage device is responsible for the reactive power variations 

based on its voltage/reactive power output. 

Figure 6.37 shows a good matching between the MG dynamic equivalent response and this 

one obtained from the MG detailed model, under these new MG generation conditions, being 

the errors experimented lower than kVAj  06,04,0 + . Thus, the MG dynamic behaviour 

reproduced by the physical MG dynamic equivalent is in good agreement with this one of the 

MG detailed model, as it can also be observed from figures 6.38, 6.39 and 6.40. 
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Figure 6.38: TS-02 boundary bus voltage and system frequency in scenario 2 
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Figure 6.39: TS-02 SM1 active and reactive powers in scenario 2 
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Figure 6.40: TS-02 SM2 active and reactive powers in scenario 2 
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Similar performances can also be observed when different amounts of load are connected 

and disconnected in different locations of MV network. This stresses the good performance of 

the MG dynamic equivalent under new initial steady state generating conditions into the MG. 

This is an important feature, since any equivalent model should be flexible enough to consider 

potential variations in the power supplied for microgeneration systems. 

6.3.2.5 Scenario 3: New MG load conditions and new MG composition 

The robustness of the physical MG dynamic equivalent was also evaluated considering one 

MG with a different composition. For this purpose the SSMT2 of TS-02 was replaced by one 

fuel cell. Before MMG islanding the active power production of SSMT1 as well as of each one 

of the SOFC is kW 20 , like in scenario 2. Concerning the reactive power production, each one 

of these controllable MS is kept on injecting a constant reactive power of kVAr 2 , according to 

the reactive power set point defined centrally by the MGCC. The load conditions inside the 

MG were also changed by adding a new load, kVAjL  315+= , to bus 16 of TS-02.  

The study sequence of disturbances was simulated again being the results obtained 

presented in figures 6.41 to 6.45. 
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Figure 6.41: TS-02 physical MG dynamic equivalent active and reactive power outputs in scenario 3 
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Figure 6.41 plots the active and reactive power outputs of the physical MG slow dynamics 

equivalent model. Concerning the active power output, a certain loss of accuracy is 

experimented by the physical MG slow dynamics equivalent model, namely during transients. 

This is due to the fact that the active power output of MG slow dynamics subsystem is 

dominated by the SOFC active power output. 

However, a good agreement between the physical MG dynamic equivalent and the MG 

detailed model responses can be observed from figure 6.42, being the errors experimented by 

the MG dynamic equivalent lower than kVAj  08,05,0 + . 

As it can be observed from figures 6.43, 6.44 and 6.45, the physical MG dynamic equivalent 

provides quite identical results than these ones obtained using the MG detailed model. The 

maximum errors experimented from the synchronous machines active and reactive powers are 

lower than kVAj  02,01+ . 
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Figure 6.42: TS-02 physical MG dynamic equivalent active and reactive power outputs in scenario 3 
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Figure 6.43: TS-02 boundary bus voltage and system frequency in scenario 3 
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Figure 6.44: TS-02 SM1 active and reactive power outputs in scenario 3 
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Figure 6.45: TS-02 SM2 active and reactive power outputs in scenario 3 

Several sequences of disturbances were also simulated under these initial steady state 

operating conditions (scenario 3), considering different amounts of load connection and 

disconnection. Similar levels of accuracy can be observed, so that it can be concluded that the 

physical MG dynamic equivalent thus developed is appropriate to represent the MG dynamic 

behaviour of TS-02 with respect to the MV network following MMG islanding and during load 

following conditions when the MMG is operated in islanded mode. 

Although the MG composition was changed, a good performance was achieved without 

modifications in the model structure or parameters. However, in the case of the MG active 

power response be predominantly dominated by fuel cells, if an unacceptable loss of accuracy 

of the MG dynamic equivalent performance arises, the model parameters have to be estimated 

again or the possibility of the MG slow dynamics equivalent model be represented by more 

than one physical model structure should be considered. 
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6.3.2.6 Some remarks of physical MG dynamic equivalent 

In this subsection the performance of the physical MG dynamic equivalent derived as 

described in section 5.4 of chapter 5 was evaluated considering MMG islanding and load 

following is islanded mode. For this purpose several initial steady state conditions were 

considered and for each one of them an amount of load not used during training is connected 

and disconnected. 

The comparison of the results obtained using both MMG detailed and equivalent models 

demonstrate the success of the physical MG dynamic equivalent in reproducing the MG 

dynamic behaviour with respect to the MV network, even when the MG detailed model 

composition was changed. Moreover, the simulation time is quite reduced. The MMG 

equivalent model runs around 130 times faster than the MMG detailed model under the same 

time domain simulation conditions. 

On the other hand, the computational effort and therefore the elapsed time to derive the 

physical MG slow dynamics equivalent model are largely reduced, regarding the procedure 

carried out to derive the TDNN based MG slow dynamics equivalent model. In addition, the 

required used interaction is also largely reduced not only during the data generation procedure, 

but also during the model validation stage. It should be stressed that the physical model is 

easier to integrate into the dynamic simulation tools and no parameter updates are required 

when the initial steady state conditions are changed. 

Finally, EPSO allowed the introduction of the MEE criterion as the objective function, 

constituting an identification method successfully used to derive the physical MG dynamic 

equivalent. 

6.3.3 Comparing physical models obtained using MEE and MSE criteria 

In this subsection the performance of the physical MG dynamic equivalent obtained 

previously is compared with this one of another physical MG dynamic equivalent obtained 

through the same procedure described in section 5.4 of chapter 5, but using the MSE as the 

fitness or loss function instead of MEE. When the termination criterion was verified (10 

successive generations without finding a better global fitness) the training procedure was 
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stopped. The number of generations evaluated, the total elapsed time in both cases and the 

value of the errors entropy is presented in table 6.4. 

Table 6.4: Number of generations and timings required to obtain the MSE and MEE physical models 

 Number of generations Elapsed time (s) Entropy 

MSE physical model 30 11270 -5.8513 

MEE physical model 15 6400 -6.3152 

It is interesting to notice that for MEE model the parameter vector values were found during 

the first 5 generations with smaller error entropy, while the MSE model required the evaluation 

of 20 generations. As a result, a considerable reduction of both computational effort and time 

consuming was verified, without loss of accuracy, when the MEE criterion was used as the loss 

function. 

The performance of both MSE and MEE physical models was evaluated considering the 

same sequence of disturbances simulated in the previous subsection, but under new steady state 

operating conditions inside the MG, corresponding to a new scenario of TS-02, denoted as 

scenario 4. 

6.3.3.1 Scenario 4: New MG generation and load conditions 

In this scenario the active the active power productions of SSMT1, SSMT2 and SOFC were 

increased for kW 20  and a new load, kVAjL  310+= , was connected to bus 16 of TS-02. The 

comparison between the results obtained from both physical models, and from the MG detailed 

model is presented in the following figures. 

Figure 6.46 shows the active power outputs of both MG slow dynamics equivalent models. 

Both MEE and MSE models display similar performances over the whole simulation time. 

Concerning the MG slow dynamics subsystem active power output, an acceptable agreement 

can be observed and therefore, a similar degree of accuracy. This can also be observed from 

figures 6.47 and 6.48. 



Chapter VI – MicroGrid Dynamic Equivalents Study Cases 

214 

0 10 20 30 40 50 60
-6000

-4000

-2000

0

2000

4000

6000

8000

Time (s)

P
 (

W
)

 

 

MG detailed model
MEE model
MSE model

 

Figure 6.46: TS-02 physical MG slow dynamics equivalent models active power output in scenario 4 
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Figure 6.47: TS-02 physical MG dynamic equivalent active power output in scenario 4 
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Figure 6.48: TS-02 physical MG dynamic equivalent reactive power output in scenario 4 

In fact, as it can be observed from figures 6.47 and 6.48, the power outputs of both physical 

MG dynamic equivalents present a very good matching between them, either in steady state or 

during the transient periods. Comparing their responses with the power outputs obtained from 

the MG detailed model allows to conclude that both equivalent models represent with high 

accuracy the MG dynamic behaviour with respect to the MV network following MMG 

islanding as well as under load following conditions upon MMG islanding. 

Therefore, the reduction of both computational effort and time that arises when MEE 

criterion was used as the loss function is an important advantage concerning the development 

of MG dynamic equivalents based on the physical modeling approaches. Thus, the use of 

EPSO as the optimizer together with the MEE loss function constitutes a very useful 

identification method. 

6.3.4 TS-01 simulation results and discussion 

The robustness of the physical MG dynamic equivalent trained with MEE was also 

evaluated in a different MMG. For this purpose, the MG slow dynamics subsystem of TS-01 
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was replaced by this physical MG slow dynamics equivalent model. It was also assumed that 

the MMG is initially operated in interconnected mode under the steady state operating 

conditions corresponding to the scenario 4 of TS-01 described in subsection 6.2.2.6. The same 

sequence of disturbances used to evaluate the TDNN based MD dynamic equivalent 

performance in TS-01 was simulated using both the MMG detailed model and the MMG 

equivalent model simulation packages and the obtained results are plotted in the figures 

presented in the following. 

Figure 6.49 shows the active and reactive power outputs of the physical MG dynamic 

equivalent. It can be observed that the physical MG dynamic equivalent active and reactive 

power outputs are in a good agreement with these ones of the MG detailed model of TS-01 

following the simulated sequence of disturbances. The power outputs experiment errors lower 

than kVAj  15,2 + , which are, in turn, inferior to these ones experimented by the TDNN based 

MG dynamic equivalent, concerning namely the active power output. 

The impact of the physical MG dynamic equivalent at the study subsystem can be observed 

from figure 6.50, in which the boundary bus voltage and system frequency are represented. 
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Figure 6.49: TS-01 physical MG dynamic equivalent active and reactive powers in scenario 3 
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Figure 6.50: TS-01 boundary bus voltage and system frequency in scenario 3 
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Figure 6.51: TS-01 SM1 active and reactive powers in scenario 3 
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Figure 6.52: TS-01 SM2 active and reactive powers of scenario 3 

As it can be observed from figures 6.50, 6.51 and 6.52 the physical MG dynamic 

equivalent response is in a good agreement with this one obtained using the MMG detailed 

model. Moreover the total simulation time of the considered sequence of disturbances is around 

120 times faster with the MMG equivalent model than with the MMG detailed model. 

Considering the TDNN based MG dynamic equivalent, a better performance was achieved 

using the physical MG dynamic equivalent under the same validation conditions, since the 

accuracy of results was improved and, at the same time, the time domain simulation speeds up. 

Concerning the last aspect, this is due to the fact that the TDNN based MG dynamic equivalent 

was derived based on a given sample time (ms 10 ), which limits the maximum step size, 

although the time domain simulation be carried out with a variable step size while the MMG 

equivalent model based on the physical MG dynamic equivalent runs without step size 

constrains. 

A similar prediction quality can also be obtained when other sudden load connection and 

disconnections are simulated, demonstrating that the physical MG dynamic equivalent can 

replace the MG detailed model, without structure modification or parameters adjusting, 

preserving its dynamic behaviour with respect to the MV network with a notable accuracy. 
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6.3.5 TS-02 simulation results using Eurostag ® 

The performance of the physical MG dynamic equivalent was also evaluated when it is 

embedded in a different dynamic simulation tool, commonly used to simulate the dynamic 

behaviour of large conventional power systems. For this purpose, the MMG detailed and 

equivalent models of TS-02 was implemented in the simulation platform developed under the 

framework of the More-MicroGrids Project using Eurostag ®  [226]. 

The microgeneration systems of TS-02 were implemented in Eurostag ® environment as 

power injectors, based on their dynamic models described in chapter 2. A quite simple model 

was implemented concerning the VSI control of the MG main storage device. It is also 

modelled as a power injector and is programmed to emulate the behaviour of a synchronous 

machine, injecting active power when system frequency drops proportionally to grid frequency 

deviations. The voltage/reactive power droop was not considered. Rather a voltage regulation 

system was implemented, so that the VSI reacts to voltage variations like a synchronous 

machine of constant excitation [226]. 

For synchronous machines SM1 and SM2 an th 6  order model available from Eurostag ® 

library was used. Concerning the MG slow dynamics equivalent model, it was directly 

connected to the boundary bus without instantaneous power theory implementation, injecting 

the active power predicted by the physical model and a constant reactive power value, refQ . 

It was assumed that initially the MMG is interconnected with the upstream power system 

under changed generation conditions inside the MG, regarding these ones described in table 

6.3. The active power output of SSMT1 and SSMT2 were decreased to kW 15  and the SOFC 

active power was increased to kW 15 . Under these initial steady state conditions, 

corresponding to a new scenario of TS-02, the scenario 5, the following sequence of 

disturbances was simulated: 

• MMG islanding at st  2= ; 

• Connection of an amount of load, kVAj  2080+  to bus 8 of TS-02, not used during 

parameter estimation, at st  20= ; 

• Disconnection of the amount of load previously connected at st  40= . 

The results obtained using both the MMG detailed and equivalent models are presented and 

compared in order to evaluate the performance of the physical MG dynamic equivalent. 
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Figure 6.53 and 6.54 plot the active and reactive power outputs, respectively, of both MG 

detailed model and physical MG dynamic equivalent. As it can be observed from these figures, 

the physical MG dynamic equivalent active and reactive power outputs present an acceptable 

agreement with these ones provided by the MG detailed model over the whole simulation time. 

 

Figure 6.53: TS-02 physical MG dynamic equivalent active power output in scenario 5 

 

Figure 6.54: TS-02 physical MG dynamic equivalent reactive power output in scenario 5 
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An acceptable performance can also be observed from boundary bus voltages and system 

frequency presented in figures 6.55 and 6.56, respectively. 

 

Figure 6.55: TS-02 boundary bus voltage in scenario 5 
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Figure 6.56: TS-02 system frequency in scenario 5 
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Concerning the active and reactive power of synchronous machines SM1 and SM2, a good 

matching can also be observed from figures 6.57, 6.58, 6.59 and 6.60. 

 

Figure 6.57: TS-02 MS1 active power in scenario 5 

 

Figure 6.58: TS-02 MS1 reactive power in scenario 5 
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Figure 6.59: TS-02 MS2 active power in scenario 5 

 

Figure 6.60: TS-02 MS2 reactive power in scenario 5 



Chapter VI – MicroGrid Dynamic Equivalents Study Cases 

224 

The results obtained stress the effectiveness of the physical MG dynamic equivalent when a 

different dynamic simulation tool, such as Eurostag ®, was used. A good performance was 

achieved following MMG islanding as well as during load following conditions upon MMG 

islanding without modifications on both structure and parameters. The physical MG dynamic 

equivalent preserves the important features of the MG system when it is represented through its 

detailed model. 

6.4 Summary and main conclusions 

Both TDNN based and physical MG dynamic equivalents were integrated into the dynamic 

simulation platform in order to evaluate their performances following MMG islanding and 

under load following conditions upon MMG islanding considering two studied cases. The 

results obtained allow to present the following main conclusions. 

The TDNN based MG dynamic equivalent reproduces with high accuracy the MG dynamic 

behaviour under several operating conditions, even differing far from those ones used to extract 

training patterns. In addition, a notable speed up was achieved. However, a considerable 

computational effort is required to derive the TDNN based MG dynamic equivalent which is a 

very time consuming task requiring a frequently user interaction. Moreover, although the 

additional mapping and demapping functions required to embed the TDNN into the dynamic 

simulation platform extended its generalization capability, the initial values of both TDNN 

inputs and outputs as well as their maximum deviations from the initial values have to be 

updated whenever the initial steady state conditions are changed. 

Although the high computational effort, the TDNN based MG dynamic equivalent domain 

of validity is restricted to the test system used to generate the data set. To replace a different 

MG requires another training procedure. 

These weaknesses were overcame through the physical MG dynamic equivalent 

development. On the one hand, the computational effort required to derive the MG dynamic 

equivalent is quite reduced and, on the other hand, its domain of validity is largely extended. 

At the same time, the time domain simulations can be speed up without loss of accuracy, 

concerning the results obtained using both MMG detailed and equivalent models. 

In fact, the use of the available physical knowledge allowed to select an appropriate model 

structure with physical representation, which can be easily integrated in dynamic simulation 
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tools commonly used to study power system dynamics. These features together with an 

effective identification method, exploiting both EPSO and MEE, contributed largely for the 

computational effort reduction assuring, simultaneously, a good model performance. This 

identification method constitutes a powerful tool to derive dynamic equivalents for MG. 
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Chapter 7 

Conclusions and Future 

Developments 

7.1 Conclusions and main contributions 

Large scale integration of small modular RES and DG units in LV distribution systems 

exploiting the MG concept allows the transition from the vertically operated power systems to 

a future horizontally operated ones extended to the LV distribution systems. When dealing with 

such distribution networks, it will not be possible to neglect the dynamics introduced by MG 

connected to the MV distribution system, especially when several MG are operated under a 

MMG philosophy, being the MMG operated autonomously. On the other hand, the use of 

detailed models that are able to accurately simulate the MG dynamic behaviour becomes not 

practical due to the considerable computational effort required to solve the resulting system 

with a large number of nonlinear ordinary differential equations. 

Thus, the major focus of this research work was to develop dynamic equivalents for MG 

able to reproduce their dynamic behaviours with respect to the MV distribution system, 

following MMG islanding and during load following transients upon MMG islanding. Since 

conventional dynamic equivalencing techniques have no practical applicability concerning MG 

dynamic equivalents, system identification techniques were exploited for this purpose. Then 

the main stages of classical methods, such as modal analysis and coherency based methods, are 

replaced by common system identification procedures, which aim to find a reduced order 

model built upon the corresponding MG detailed model, creating thus, the conditions for the 

development of dynamic equivalents able to describe the MG dynamic behaviour with respect 

to the upstream MV distribution system. 

Based on the studies presented and discussed over this thesis, the main conclusions and 

contributions are presented in the following subsections. 
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7.1.1 Suitable approaches 

The MG is an inverter dominated LV distribution system integrating microgeneration 

systems with different technologies controlled in a coordinate manner as a single entity. When 

connected to the upstream MV distribution network, even upon MMG islanding, the MG is 

operated according a SMO control strategy. Therefore, the MG is able for participating in 

primary frequency control as well as in secondary load frequency control of the MMG being 

operated autonomously. 

Thus, concerning the transient analysis to be performed, two different time scales and 

phenomena are distinguished among the controllable MS, allowing the MG system to be 

spitted between two subsystems:  

The MG main storage device;  

The MG slow dynamics subsystem.  

In fact, the MG main storage device connected to the LV network through a VSI control 

interface displays a fast dynamic response allowing the MG to participate in primary frequency 

control, while the remaining MG subsystem displays slow dynamic responses, according to the 

time constants of SSMT and SOFC connected to the LV network through PQ inverter controls. 

These controllable MS allow the MG to participate in secondary load frequency control. In 

turn, non controllable MS, such as PV and small wind generators, are considered to generate a 

constant active power over the simulation time. 

As the MG slow dynamics subsystem is the responsible for the large simulation times, the 

MG dynamic equivalent involves the equivalent model of the MG slow dynamics subsystem, 

represented as a current source, and the detailed model of the MG main storage device, both 

connected to the boundary bus. 

Under a system identification framework, concerning the MG slow dynamics subsystem, 

two suitable model structures (mathematical representations) were selected and subsequently 

appropriate identification methods were adopted and developed, leading to the following two 

proposed approaches: 

• Black-box modelling: The model structure is based on TDNN, which comprise MLP 

neural networks to combine the NFIR regressors into one-step-ahead predictions. The 

ANN adjustable parameters are estimated using the Levenberg-Marquardt algorithm 
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and the classical MSE criterion, being the best bias/variance trade-off achieved by 

means of early stopping. 

• Physical modelling: A physically parameterized model structure was adopted to 

represent the MG slow dynamics subsystem dynamic behaviour. EPSO is exploited, as 

the global optimization tool, together with both MSE and MEE criteria, as fitness 

functions, to estimate the parameters of the physical model. 

These approaches were successfully applied to derive dynamic equivalents for MG, yielding 

two kinds of MG dynamic equivalents: The TDNN based MG dynamic equivalents and the 

physical MG dynamic equivalents. 

7.1.2 The numerical set up 

In order to derive dynamic equivalents for MG a numerical set-up was developed. It 

contains two dynamic simulation packages: 

• The MMG detailed model, which comprises a fully representation of the MG connected 

to the MV network. The dynamic models of microgeneration systems as well as their 

inverter interfaces and controls were linked with the algebraic equations describing the 

LV network and loads, as a multi-machine power system model. This dynamic 

simulation package allows the simulation of the MG relevant dynamic behaviour with 

respect to the MV network, under transient and steady state conditions, generating high 

quality data sets.  

• The MMG equivalent model is obtained by replacing the detailed model of the MG 

slow dynamics subsystem by its corresponding equivalent model. This dynamic 

simulation package is used not only for validation of the derived MG slow dynamic 

equivalent models, but also for estimating the parameters of the physically 

parameterized model structure purposes.  

The inverter interfaces modelling based on their control functions only was an important 

assumption concerning the simulation of MG dynamic behaviour with respect to the MV 

network and subsequent data set generation. 

The experience acquired previously with the detailed system modelling suggested the MG 

system separation between slow and fast dynamics. In addition, it provided the physical 

intuition that guided selection of the proposed physically parameterized model structure, 
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concerning the physical MG dynamic equivalent, as well as the development of its interface 

exploiting power instantaneous theory. 

7.1.3 The TDNN based MG dynamic equivalents 

The TDNN based MG dynamic equivalent preserves the MG dynamic behaviour with 

respect to the upstream MV network, being the MG represented through its detailed model, 

with a considerable computational time saving. It is valid for several initial steady state 

operating conditions, even far from the ones used to extract training patterns, considering 

different load and generation conditions either in the MV network or inside the MG. 

This TDNN based MG dynamic equivalent success was achieved through a wide range data 

set and the normalization of both TDNN inputs and outputs magnitudes with respect to an 

initial steady state operating point. For a practical view point, the fact that only data collected 

at the boundary bus was required to derive the TDNN based MG dynamic equivalents can be 

considered as an advantage. 

However, the TDNN based MG dynamic equivalent domain of validity is restricted to the 

MG that was used to generate the data set. Thus, in order to replace another MG in dynamic 

simulations a new system identification procedure has to be carried out using another data set. 

In addition, the cost of building TDNN based MG dynamic equivalents is very high concerning 

both the computational effort and the time consumed. These main drawbacks may render the 

proposed black box modelling approach applicability to MG unfeasible. 

7.1.4 The physical MG dynamic equivalents 

The physical MG dynamic equivalents successfully replace the MG detailed model in 

dynamic simulations considering new initial steady state generation and load conditions either 

in the MV network or inside the MG, allowing a considerable time saving. Very similar 

performances were achieved regarding both dynamic equivalent models derived using MSE 

and MEE. 

In contrast with TDNN based MG dynamic equivalents, the required computational effort as 

well as the time consumed to derive the physical MG dynamic equivalents are quite reduced. 

This is especially stressed when the MEE is used as the loss function. In fact, EPSO combined 
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with MEE is an effective identification method to derive dynamic equivalents for MG. In 

addition, the physical MG dynamic equivalents perform better than the TDNN based MG 

dynamic equivalents improving the solution speed. 

Moreover, the physical MG dynamic equivalent domain of validity extends to MG not used 

to generate the reduced data set. Thus, the weaknesses pointed out concerning the performance 

of TDNN based MG dynamic equivalents were overcame by the physical MG dynamic 

equivalent. The cost of building a physical MG dynamic equivalent is, of course, much smaller 

than the cost of performing the dynamic behaviour analysis, considering the detailed models of 

many MG. 

The physical MG slow dynamics equivalent model has an important advantage, which 

arises from the fact that the known physical relationships are built in and no parameters have to 

be wasted. The physical interpretation of model parameters suggests that this physical model 

can be exploited in order to derive dynamic equivalents for MG in an expedite way. 

Furthermore, the physical MG dynamic equivalent is compatible with other components in 

electrical networks allowing its successful and easy integration in dynamic simulation tools 

used to simulate the dynamic behaviour of large power systems, such as Eurostag ®. 

7.1.5 Expected impact 

The approaches and MG dynamic equivalents presented in this thesis, concerning especially 

the physical MG dynamic equivalents, will contribute to develop new tools and simulation 

approaches required to perform dynamic behaviour studies of MMG, providing contributions 

to: 

• Overcome the lack of knowledge regarding large scale integration of microgeneration 

in LV distribution systems exploiting the MG concept and, simultaneously, ensuring 

future power supply reliability and quality; 

• Quantify the benefits of MG; 

• Allow the identification of technical and regulatory changes that will be required as a 

result of a large deployment of MG; 

• Dissemination and development of microgeneration technologies. 
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7.2 Future developments 

The derived MG dynamic equivalents can be used to replace MG in dynamic simulations 

when several disturbances at the MV level occur, like MMG islanding and load following in 

islanded mode. However, some simplifications were considered over the development of this 

thesis. Thus, future developments include: 

• To exploit the physical meaning of parameters concerning the physical model in order 

to derive dynamic equivalents for MG in an expedite way; 

• To derive dynamic equivalents including more appropriate models of loads, like 

motors; 

• To include the intermittent effects of renewable energy systems, such as micro wind 

systems and PV, in MG dynamic equivalents; 

• The derivation of dynamic equivalents capable of reproducing the MG dynamic 

behaviour during short-circuits; 

• The development of models able to simulate the dynamic behaviour of single-phase 

microgeneration systems and MG operating under unbalanced conditions; 

• The derivation of MG dynamic equivalents with capacity to reproduce the MG dynamic 

behaviour under unbalanced conditions. 
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Appendix A 

Round Rotor Synchronous Machine 

Modelling and Test Systems Parameters 

A.1 Introduction  

In this appendix the mathematical model of the round rotor synchronous machine is 

presented as well as the parameters of the several microgeneration systems and electrical 

networks corresponding to test systems TS-01 and TS-02 used over this thesis. 

A.2 Round rotor synchronous machine 

The equations of synchronous generator are obtained from the modified Park’s equations of 

[216] after some simplifications. 

• Stator transients are neglected since they are much faster compared to the rotor ones; 

• The mechanical damping is usually small and it is also neglected, 0≈D ; 

• It was assumed that the rotor speed is near the synchronous speed, sωω = , in transient 

and subtransient states. 

Thus, the round rotor synchronous machines presented in TS-01 and TS-02 are modelled 

using the 6th order model described in [216] through the following fundamental equations. 

Algebraic equations of stator in per unit 

dsqqgdd IRIXEV −+= ''                                                                                                      (A.1) 

qsddgqq IRIXEV −−= ''                                                                                                      (A.2) 

where 
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Differential equations of rotor transients and subtransients in per unit/s 
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Swing equation in per unit/s 

( )em TT
Hdt

d −=
2
1ω

                                                                                                         (A.11) 

Electrical rotor angle in radians 

1−= ωδ
dt

d
                                                                                                                      (A.12) 

Electromagnetic torque equation in per unit 

( ) qdqdddqqe IIXXIEIET '''''''' −++=                                                                                    (A.13) 

Since ''''
qd XX =  for round rotor synchronous machines, the equation (A.13) simplifies to 

ddqqe IEIET '''' +=                                                                                                              (A.14) 

where: 

 dV  and qV  are the generator terminal voltages in direct d  and quadrature q  axis, 

respectively; 

 gdE  and gqE  are the generator internal voltages in direct d  and quadrature q  axis, 

respectively; 

 dI  and qI  are the generator terminal currents in direct d  and quadrature q  axis, 

respectively; 

 '
dE  and '

qE  are the transient voltages in direct d  and quadrature q  axis, respectively; 

 ''
dE  and ''

qE  are the subtransient voltages in direct d  and quadrature q  axis, 

respectively; 

 fdE  is the synchronous generator field voltage; 

 '
0dT  and '

0qT  are the open circuit transient time constants of direct d  and quadrature q  

axis, respectively, in seconds; 
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 ''
0dT  and ''

0qT  are the open circuit subtransient time constants of direct d  and quadrature 

q  axis, respectively, in seconds; 

 mT  and eT  are the mechanical and electrical torques, respectively; 

 sR  is the stator resistance; 

 dX  and qX  are the stator reactances in direct d  and quadrature q  axis, respectively; 

 '
dX  and '

qX  are the stator transient reactances in direct d  and quadrature q  axis, 

respectively; 

 ''
dX  and ''

qX  are the stator subtransient reactances in direct d  and quadrature q  axis, 

respectively ( ''''
qd XX =  for a round rotor synchronous machine); 

 lX  is the leakage reactance in the direct d  axis of the stator coil; 

 ω  is the rotor angular velocity; 

A.2.1 Automatic voltage regulator 

The purpose of the AVR is to provide the proper field voltage, fdE , to the synchronous 

machine in order to maintain the desired voltage. The most commonly used AVR general 

models are those defined by the IEEE, especially the type 1 model [58], as depicted in figure 

A.1, 
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Figure A.1: Automatic voltage regulator, IEEE type 1 model 

where: 
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 RV , AV , FV  and EV  are the voltage values from the control subsystems, rectifier, 

amplifier, stabilization and exciter, respectively; 

 Rk , Ak , Fk  and Ek  are the gains of each one of the control subsystems; 

 RT , AT , FT  and ET  are time constants of each one of the control subsystems; 

 refV  is the reference voltage value; 

 fdE  is the voltage field 

The saturation effect was neglected and thus the saturation function in figure A.1, ( )fdEf , 

was not considered. 

A.2.2 Governor-turbine system 

A governor is a mechanical or electromechanical device used to automatically control the 

speed of a prime mover in order to keep the system frequency near to its nominal value. In this 

thesis a diesel engine was adopted as the prime mover. The speed regulator comprises both the 

primary and secondary control functions. 

Thus, the static increase in diesel engine power output is directly proportional to the static 

frequency. The value of R  is considered always positive and since the frequency and power 

variations are in per unit, R  is also in per unit. After the primary control function, which brings 

the system to an equilibrium state with a permanent frequency error, the secondary control 

(frequency error signal integrator) is needed to establish the nominal rotational speed by 

eliminating the static frequency error [217]. The model for speed-governing system is a first 

order model with a time constant 2τ , representing the governor delay and the prime mover is 

represented by a simplified first order model [58], as depicted in figure A.2, 
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Figure A.2: Governor-turbine system model 
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where: 

 ω∆  is the frequency deviation; 

 R  is the diesel engine permanent speed droop (statism); 

 IK  is the governor summing loop amplification factor (integral gain); 

 2k  is the fuel actuator gain constant; 

 2τ  is the governor time delay; 

 m∆  is the fuel variation; 

 DT  is the diesel engine time delay; 

 mT  is the mechanical torque 

A.3 Test systems parameters 

In this subsection, the parameters used in the several test systems and models are presented, 

taking into account the dynamic models adopted to describe the dynamic behaviour of 

microgeneration systems described in chapter 2, the round rotor synchronous machine model 

and the models of the remain electrical network components (loads, branches and transformer) 

described in chapter 5 for TS-01 and TS-02. 

A.3.1 Test system TS-01 

The TS-01 electrical network represented through the single line diagram in figure 6. 14 

comprises two round rotor synchronous generators, the MG main storage device, one SSMT 

and three PV systems. Their parameters are presented in tables A1 to A6. Tables A.7 and A.8 

present the parameters of branches and transformers, respectively. 

Parameters of generators at MV level 

System base quantities: kVASb  500= ; Voltage base: VVb  690= ; 
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Table A.1: Parameters of TS-01 round rotor synchronous machine units SM1 and SM2  

Round rotor synchronous generator * 
( )kVASn  ( )VVn  ( )..upRs  ( )..upXd  ( )..upXq  

500 690 0,0014 1,25 1,22 
( )..' upXd  ( )..' upXq  ( )..'' upXd  ( )..'' upXq  .).( upH  

0,232 0,715 0,120 0,120 1 
( )..upX l  ( )sTd

'
0  ( )sTq

'
0  ( )sTd

''
0  ( )sTq

''
0  

0,134 4,75 1,5 0,059 0,210 
Prime mover: sTD  1=  

Speed governor 
( )..upR  ( )..upkI  ( )..2 upk  ( )s2τ  
0,25 1,5 1 0,1 

Automatic voltage regulator 

Rk  ( )sTR  Ak  ( )sTA  

1 0,01 15 0,05 

Ek  ( )sTE  Fk  ( )sTF  

1 0,5 0,02 0,8 

*The per unit parameter quantities are referred to the machine base ( )VVkVAS bb  690 ; 500 ==  

Parameters of microgenerators of TS-01 

System base quantities: kVASb  500= ; Voltage base: VVb  400= ; 

Table A.2: Parameters of TS-01 VSI control of MG main storage device 

Parameter Reference Value Unit 

nP  Nominal power 30 kW 

nV  Nominal voltage 400 V 

dPT  Active power delay 1,2 s 

dQT  Reactive power delay 0,25 s 

PK  Frequency versus active power droop -1,2566×10-4 rad/W 

QK  Voltage versus reactive power droop -1,6×10-6 V/VAr 

ffK  Phase feed-forward gain -3,333×10-6 - 

invT  Inverter time constant 0,0001 s 

fZ  Filter impedance 2314,0005,0 j+  Ω 
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Table A.3: Parameters of TS-01 PV systems 

Parameter Reference Value Unit 

nV  Nominal voltage 400 V 

aG  Ambient irradiance 870 2/ mW  

aT  Ambient temperature 20 ºC 

0,MaxP  Module maximum power at STC 25 W 

MaxPµ  Maximum power variation with module temperature -0.005 - 

NOCT Normal cell operation temperature 47 ºC 

1N  Number of modules of PV1 system 400 - 

2N  Number of modules of PV2 system 800 - 

3N  Number of modules of PV3 system 600 - 

Table A.4: Parameters of TS-01 PQ inverter of PV systems: PV1, PV2 and PV3  

Parameter Reference Value Unit 

nP  Nominal power 30 kW 

nV  Nominal voltage 400 V 

fZ  Filter impedance 0,01+j0,1571 Ω 

C  DC link capacitor 0,008 F 

refdcV ,  Voltage reference of DC link 800 V 

1Pk  Proportional gain of PI-1 -5 - 

1Ik  Integral gain of PI-1 -3 - 

2Pk  Proportional gain of PI-2 0 - 

2Ik  Integral gain of PI-2 100 - 
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Table A.5: Parameters of SSMT system of TS-01 

Parameter Reference Value Unit 

nP  Nominal power 80 kW  

nV  Nominal voltage 400 V 

Active power control 

pK  Proportional gain 4 - 

iK  Integral gain 0,2 - 

Single shaft microturbine engine 

1T  Fuel system lag time constant 1 15 s 

2T  Fuel system lag time constant 2 0,2 s 

3T  Load limit time constant 3 s 

maxL  Load limit 1,5 s 

maxV  Maximum value position 1,2 - 

minV  Minimum value position -0,1 - 

TK  Temperature control loop gain 1 - 

Permanent magnet synchronous machine 

dL  d-axis inductance 6,875×10-4 H 

qL  q-axis inductance 6,875×10-4 H 

sR  Resistance of the stator windings 0,25 Ω 

mΦ  Flux induced in the stator windings 0,0534 Wb 

p  Number of poles pairs 1 - 
J  Combined rotor and load inertia 0,003 2.mKg  

F  Combined rotor and load viscous friction 0,0000005  
Machine side converter control 

1Pk  Proportional gain of PI-1 30 - 

1Ik  Integral gain of PI-1 10 - 

2Pk  Proportional gain of PI-2 100 - 

2Ik  Integral gain of PI-2 150 - 

3Pk  Proportional gain of PI-3 50 - 

3Ik  Integral gain of PI-3 20 - 

Secondary load frequency control 

Pk  Proportional gain 12,5 - 

Ik  Integral gain 2 - 
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Table A.6: Parameters of TS-01 PQ inverter of SSMT 

Parameter Reference Value Unit 

nP  Nominal power 30 kW 

nV  Nominal voltage 400 V 

fZ  Filter impedance 0,005+j0,0785 Ω 

C  DC link capacitor 0,008 F 

refdcV ,  Voltage reference of DC link 800 V 

1Pk  Proportional gain of PI-1 -5 - 

1Ik  Integral gain of PI-1 -3 - 

2Pk  Proportional gain of PI-2 0 - 

2Ik  Integral gain of PI-2 100 - 

Parameters of branches and transformers of TS-01 

Table A.7: Parameters of branches of TS-01 

Line Bus i Bus j R ( )Ω  X ( )Ω  

1 1 9 0,1757 0,219618 

2 9 10 0,8 1 

3 9 12 2 1,85 

4 12 13 0,8 1 

5 15 16 0,004 0,01 

6 16 17 0,016 0,008 

7 16 18 0,008 0,011 

8 16 19 0,0534 0,0156 

9 19 20 0,0085 0,0025 

10 20 21 0,0114 0,0033 

11 21 22 0,10164 0,011 

12 21 23 0,0153 0,0045 

13 23 24 0,0094 0,0027 

14 24 25 0,0256 0,0075 

15 25 26 0,0094 0,0027 

16 25 27 0,0626 0,0126 

17 25 28 0,02535 0,0051 
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Table A.8: Parameters of transformers of TS-01 

Transformer Bus i Bus j ( )kVVV ji  /  ( )kVASn  ( )%x  

T1 10 11 69,0/15  800 5 

T2 13 14 69,0/15  800 5 

T3 12 15 4,0/15  400 5 

A.3.2 Test system TS-02 

The TS-02 electrical network presented through its single line diagram as depicted in figure 

6. 39 comprises two round rotor synchronous generators, the MG main storage device, two 

single shaft microturbines, SSMT1 and SSMT2, and one SOFC. The synchronous machines in 

this test system are those used in TS-02. The parameters of microgeneration systems are 

presented in tables from A9 to A12 while the parameters of branches and transformers are 

presented in tables A.13 and A.14, respectively. 

Parameters of microgenerator systems of TS-02 

System base quantities: kVASb  500= ; Voltage base: VVb  400= ; 

Table A.9: Parameters of TS-02 VSI control of MG main storage device 

Parameter Reference Value Unit 

nP  Nominal power 30 kW 

nV  Nominal voltage 400 V 

dPT  Active power delay 1,2 s 

dQT  Reactive power delay 0,25 s 

PK  Frequency versus active power droop -1,2566×10-4 rad/W 

QK  Voltage versus reactive power droop -3,3×10-6 V/VAr 

ffK  Phase feed-forward gain -3,333×10-6 - 

invT  Inverter time constant 0,0001 s 

fZ  Filter impedance 2,0005,0 j+  Ω 
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Table A.10: Parameters of SSMT1 and SSMT2 of TS-02 

Parameter Reference Value Unit 

nP  Nominal power 30 kW  

nV  Nominal voltage 400 V 

Active power control 

pK  Proportional gain 4 - 

iK  Integral gain 0,2 - 

Single shaft microturbine engine 

1T  Fuel system lag time constant 1 15 s 

2T  Fuel system lag time constant 2 0,2 s 

3T  Load limit time constant 3 s 

maxL  Load limit 1,5 s 

maxV  Maximum value position 1,2 - 

minV  Minimum value position -0,1 - 

TK  Temperature control loop gain 1 - 

Permanent magnet synchronous machine 

dL  d-axis inductance 6,875×10-4 H 

qL  q-axis inductance 6,875×10-4 H 

sR  Resistance of the stator windings 0,25 Ω 

mΦ  Flux induced in the stator windings 0,0534 Wb 

p  Number of poles pairs 1 - 
J  Combined rotor and load inertia 0,003 2.mKg  

F  Combined rotor and load viscous friction 0,0000005  
Machine side converter control 

1Pk  Proportional gain of PI-1 30 - 

1Ik  Integral gain of PI-1 10 - 

2Pk  Proportional gain of PI-2 100 - 

2Ik  Integral gain of PI-2 150 - 

3Pk  Proportional gain of PI-3 50 - 

3Ik  Integral gain of PI-3 20 - 

Secondary load frequency control 

Pk  Proportional gain 12,5 - 

Ik  Integral gain 2 - 
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Table A.11: Parameters of SOFC of TS-02 

Parameter Reference Value Unit 

nP  Nominal power 30 kW  

nV  Nominal voltage 400 V  

CV  Cell desired voltage 338,8 V  

T  Absolute temperature 1273 ºK 
F  Faraday’s constant 96487 C/mol 
R  Universal gas constant 8,314 ( )KmolJ º/ ⋅  

0E  Ideal standard potential 1,18 V 

0N  Number of cells in series in the stack 384 - 

maxU  Maximum fuel utilization 0,90 - 

minU  Minimum fuel utilization 0,80 - 

optU  Optimal fuel utilization 0,85 - 

2HK  Valve molar constant for hydrogen 8,43×10-4 ( )atmskmol ⋅/  

OHK
2

 Valve molar constant for water 2,81×10-4 ( )atmskmol ⋅/  

2OK  Valve molar constant for oxygen 2,52×10-3 ( )atmskmol ⋅/  

2Hτ  Response time for hydrogen flow 26,1 s 

OH2
τ  Response time for water flow 78,3 s 

2Oτ  Response time for oxygen flow 2,91 s 

r  Ohmic loss 0,126 Ω  

eT  Electric response time 0,8 s 

fT  Fuel processor response time 5 s 

OHr −  Ratio of hydrogen to oxygen 1,145 - 

Secondary load frequency control 

Pk  Proportional gain 12,5 - 

Ik  Integral gain 2 - 
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Table A.12: Parameters of SSMT1, SSMT2 and SOFC PQ inverter of TS-02 

Parameter Reference Value Unit 

nP  Nominal power 30 kW 

nV  Nominal voltage 400 V 

fZ  Filter impedance 0,005+j0,0785 Ω 

C  DC link capacitor 0,008 F 

refdcV ,  Voltage reference of DC link 800 V 

1Pk  Proportional gain of PI-1 -5 - 

1Ik  Integral gain of PI-1 -3 - 

2Pk  Proportional gain of PI-2 500 - 

2Ik  Integral gain of PI-2 800 - 

Parameters of branches and transformers of TS-02 

Table A.13: Parameters of branches of TS-02 

Line Bus i Bus j R ( )Ω  X ( )Ω  

1 1 2 0,1757 0,219618 

2 2 3 0,8 1 

3 2 5 2 1,85 

4 5 6 0,8 1 

5 8 9 0,016 0,008 

6 9 10 0,005 0,2 

7 8 11 0,004 0,01 

8 8 12 0,004 0,01 

9 12 13 0,004 0,01 

10 12 14 0,004 0,01 

Table A.14: Parameters of transformers of TS-02 

Transformer Bus i Bus j ( )kVVV ji  /  ( )kVASn  ( )%x  

T1 9 10 69,0/15  800 5 

T2 12 13 69,0/15  800 5 

T3 11 14 4,0/15  400 5 

 



 

 

 


	Capa
	Acknowledgements
	Abstract
	Resumo
	Résumé
	Table of contents
	List of tables
	List of figures
	List of abbreviations
	1. Introduction
	2. Models for microgeneration and microgrids
	3. Dynamic equivalencing techniques
	4. Development of dynamic equivalents for microgrids exploiting system identification theory
	5. Microgrid dynamic equivalents based on artificial neural networks and physical modelling approaches
	6. Microgrid dynamic equivalents study cases
	7. Conclusions and future developments
	Bibliographic references
	Appendix A - Round rotor synchronous machine modelling and test systems parameters

