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Abstract

Abstract

The need of reducing greenhouse gas emissionseineléctrical energy supply field, recent
technological developments in the microgeneratiomain and electricity business restructuring aee th
main factors responsible for the growing interesmicrogeneration. Large scale integration of small
modular generation units - the microsources - \pilver ratings less than a few tens of kilowatts to
Low Voltage (LV) networks is leading with a new cept, the MicroGrid (MG).

A MG comprises a LV network, its loads, several nméources connected to it through inverter
interfaces and a hierarchical control and managemsgstem. Microgeneration technologies include
mainly renewable energy systems, such as small genérators and photovoltaics, microturbines, fuel
cells, and storage devices such as flywheels dered. The MG advanced control and management
system allows the MG operation as a flexible acte# either interconnected to the Medium Voltage
(MV) distribution network or isolated from it.

Large deployment of MG will lead with the Multi-MiaGrid (MMG) concept. In order to lead with
the future challenges of operation and developroétiese electrical networks exploiting adequately
the benefits provided by MG, namely whenever thetngam system has been lost, new computational
tools based on mathematical models are requiredieMer, in dynamic behaviour studies, the whole
MMG system cannot be represented in a detailed arabecause the huge system dimension implies a
computational burden that can render the study BMGVidynamic behaviour unfeasible. Therefore,
reduced order models for MG need to be derived.

This research work aimed to derive dynamic equivaléor MG in order to reduce the complexity
of the whole MMG to a computational feasible sizel,aat the same time, speed up numerical
simulations with limited technical resources. Ag tMG own features did not recommend classical
dynamic equivalency techniques commonly used tivelelynamic equivalents for conventional power
systems, the MG dynamic equivalents are built ujp@nnonlinear MG detailed models using system
identification techniques for a model defined oa Hasis of physical considerations and also expépit
Artificial Neural Networks.

The MG dynamic equivalents thus obtained are ablepresent the MG dynamic behaviour with
respect to the MV network following MMG islandingié during load following transients when the
MMG is operated autonomously. The performance ef developed MG dynamic equivalents was

assessed for different MMG, different types of alisinces as well as different operating conditions.







Resumo

Resumo

A necessidade de reduzir as emissfes de gasesfeitmde estufa aliada a reestruturacdo dos
mercados de energia eléctrica, bem como os recdasEvolvimentos tecnoldgicos no dominio da
microgeracao constituem os principais factoresaesfveis pelo crescente interesse neste dominio. A
interligacdo dessas pequenas fontes de geracdolaregjucom poténcias nominais nao excedendo
algumas dezenas de quilowatt, nas redes de dig&tde Baixa Tensdo (BT) da lugar a formacéo de
um novo tipo de sistema de energia — a Micro RHR) (

Uma MR é constituida por uma rede de BT a quah pm das cargas, estdo ligadas unidades de
microgeracao através de interfaces baseadas etrorlea de poténcia e por uma estrutura de controlo
hierarquico suportada por um sistema de comunisaggendo a gestdo de operacgbes feita de uma
forma centralizada. As tecnologias de microgerapémem, principalmente, fontes renovaveis, tais
como pequenos geradores eodlicos e painéis sotam®ftaicos, microturbinas, pilhas de combustével
unidades de armazenamento de energia, tais coraotgslde inérciaflywheel$ e baterias. As MR
devidamente controladas podem ser ligadas a redestlibuicdo de Média Tenséo (MT) ou operadas
de forma autonoma, quando isoladas da rede a ntentan

A integracdo de MR em larga escala ir4 dar lugloracéo de Multi-Micro Redes (MMR). De
modo a lidar com os desafios futuros associadosles@nvolvimento e exploracdo destas redes
eléctricas, tirando partido dos beneficios assosiad MR, nomeadamente quando a MMR é operada
de forma autébnoma, sdo necessérias ferramentasutamignais baseadas em modelos matematicos
adequados. No entanto, em regime dindmico, a repeegio da MMR de forma detalhada conduz a
sistemas com um elevado nimero de equacdes dif@sento lineares, cuja resolucdo podera
comprometer a realizagdo de estudos de comportanadgmimico, pelo que é necessario dispor de
modelos de ordem reduzida para as MR.

Este trabalho de investigacdo teve como objectiviegenvolvimento de equivalentes dinamicos
para MR de modo a reduzir a complexidade do madieIMMG e, em simultaneo, reduzir os elevados
tempos de simulagdo. Dado que as caracteristipasisas das MR ndo aconselham a aplicagdo das
técnicas convencionais, foram utilizadas técnicasidentificacdo de sistemas para desenvolver
equivalentes dinamicos para MR e adoptandas repegges matematicas baseadas em consideracfes
fisicas e em Redes Neuronais Artificiais. Os edei@s dindmicos obtidos permitem simular
correctamente o comportamento dindmico de MR velatente & rede de distribuicio de MT
considerando a passagem da MMR a rede isoladaigc®as subitas de carga, quando a MMR é
operada de forma autébnoma. O desempenho dos emiesldindmicos para MR foi avaliado

considerando MMR distintas e diferentes tipos deupeacoes.







Résumé

Résumeé

Le besoin de réduire les émissions de gaz en éffeterre alliée a la réorganisation des marchés
d'énergie électrique, ainsi que les récents dépeloegnts technologiques dans le domaine de la micro
génération constituent les principaux facteurs oesgbles du progressif intérét dans ce domaine.
L'interconnexion de ces petites sources de gépératbdulaires, avec des puissances nominaux en ne
dépassant pas quelques dizaines de kilowatt, danméseaux de distribution de Basse Tension (BT fa
place a la formation d'un nouveau type de systééredyie - le Micro Réseau (MR).

Un MR est constituée par un réseau de BT a laqledleinités de micro génération sont liées a
travers des interfaces basées sur I'électroniqupudsance ayant en plus une structure de contrdle
hiérarchique supportée par un systeme de commiorisaten présentant une gestion d'opérations
locale faite d'une forme centralisée. Les techrieBbde micro génération incluent principalement des
sources renouvelables, tels comme de petits génésagoliens et panneaux solaires photovoltaiques,
micro turbines, piles de combustible et unités ttekage d'énergie, tels comme volants d'inertie
(flywheel3 et batteries.

L'intégration sur large échelle de MR conduira fotaation de Multi Micro Réseaux (MMR). Afin
de traiter les défis futurs associés au développemiea I'exploration de ces réseaux électriques en
obtenant des bénéfices que MR peut fournir, notamopgand MMR est opéré de forme indépendante,
il nous faut des outils informatiques ajustés, ditisant des modeles mathématiques appropriés.
Cependant, dans le régime dynamique, on ne doitagapter des modeéles détaillés pour MMR,
puisque la résolution de systemes avec un élevémoniéquations différentielles non linéaires qui
décrivent le comportement des unités de micro gdioér exige un grand effort de calcul qui pourra
rendre impraticable I'analyse de MMR dans un régilyreamique. Donc, il faut disposer de modeles
d'ordre réduit pour les MR.

Ce travail de recherche a eu pour but le développertiéquivalents dynamiques pour MR afin de
réduire la complexité du modele de MMG et, simdtaent, de réduire les temps de simulation. Vu les
caractéristiques spécifiques de MR, l'applicaties techniques conventionnels, n'est pas recommandée
au cas de MR. En effect les correspondants équitgaldynamiques ont été construits a partir du
modele détaillé de MR en utilisant des technigueeutification de systemes pour un modele defini
sur la base des considérations physiques et aussipoitant des Réseaux de Neurones Artificieés L
équivalents dynamiques ainsi obtenus permettestrdeler correctement le comportement dynamique
de MR a I'égard du réseau de distribution de MTsdarpassage de MMR au réseau isolé et dans les
situations transitoires provoquées par les vanati&ubites de charge quand MMR est opérée de forme
indépendante. La performance des équivalents dypemidéveloppés a été évaluée pour de différents

MMR et pour différents types de perturbations etaoleditions d’operation.
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Chapter 1

Introduction

1.1  Preliminary considerations

Energy supply in Europe has been dominated byaigeIscale centralized combustion of
fossil fuels (coal, oil and gas), nuclear and hygower, with energy delivered over long
distances to consumers. Concerning the Europe isaiBta development, this traditional
economy of scale presents some drawbacks. On thband, a significant amount of Europe’s
generation capacity, both coal and nuclear fuelledeaching the end of its useful life and the
network infrastructure is also old, requiring intreents in a short-term on the transmission and
distribution systems. On the other hand, the cootis increasing demand for energy, in
particular for electricity, has stressed a numbideshortcomings:

» High level of dependency of imported fuels leadimgotential price rises and potential

supply disruptions;

e Large environmental impact on greenhouse gasestaed pollutants;

* Increased transmission losses;

* Necessity for continuous upgrading of transmissind distribution systems.

Whilst energy remains a major component of econagnawvth, such deficiencies have a
direct impact on the world economical developmstability concerning the security of energy
supply, environmental protection and well-beingmairld’s citizens. These issues provided the
main drivers for energy research within the framdwaf EU sustainable development.

Wind generators, photovoltaic panels, fuel celld amcroturbines — just to mention a few —
are new forms of electricity generation under depaient. They define the so called RES and
involve the exploitation of distributed sourcesoilngh the concept of DG. Today, wind power
and CHP are entering into a competitive level witditional forms of energy generation.
Tomorrow it is expected that one speaks also aboatogeneration (microturbines, micro-
CHP, photovoltaic systems and fuel cells).

RES and DG for heating, cooling and electricity dnathe potential to become the

foundation of a future more sustainable energy supgstem. Their large scale deployment
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will transform the energy landscape from a systemidated by the centralized combustion of
fossil fuels to a new one in which new technologes/ironmentally friendly, contribute to a

substantial development. On the other hand, DGoffan additional value to the grid system

operators by providing [1]:

« Deferral of investments to transmission and digtidn systems;

* Reduction of losses in the distribution system;

» Provision of network support services or ancillagyvices.

From an investment view point, it is generally easo find sites for RES and DG than for
large central power plants and, in addition, sucitsucan be installed in a short time, near to
the end consumer. The widespread integration of &ESDG together with energy efficiency,
covering supply and demand, have provided suppathieve the major EU policy objectives
[2, 3]

» Sustainable development, combating climate chaagdsreducing air pollutants. The
shift from the large scale combustion of fossill$ud a more decentralized energy
supply based on RES has contributed for meetindgf®#o commitments, regarding
the emission of greenhouse gases, particul@@y: 8% reduction of emissions from
1990 levels by 2008-2010 art) %y 2020 compared to 1990;

» Security and diversity of energy supply. Reducihg external energy dependence is
crucial for the development of a dynamic and suastasle economy for Europe;

* Increasing the penetration of RES, doubling thbare in energy supply quota from
6% to 12% of gross energy consumption and raising thent jra electricity
production froml4 %in 2001 to22 %is an objective to be attained by 2010;

* Energy market liberalization, increasing opportsifor smaller scale generators.

However, the integration of both RES and DG inte tverall power systems operation
requires that energy generation in both transmisaid distribution systems can no longer be
considered as a passive appendage. Reliabilitgtysahd quality of power are the main issues
linked to the large-scale deployment of DER so thetr effect on the European transmission
and distribution networks cannot be neglected. &atht must be addressed with a
comprehensive system approach [3].

Therefore, DG current issues are how to increasepémetration level of DER in order to
gain the highest benefits, ensuring, at the same,tifuture power supply reliability and

quality. In addition, major technological and regoly changes will be needed to
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accommodate the new open and unified electricityise market approach during the next
decades in Europe. For this purpose a substantiat@ntinued RTD effort is required.

The research projects successfully developed utiterTarget Action Ihtegration of
Renewable Energies and Distributed Generation iroRean Electricity NetworkRsn EU FP5
are considered as the start point for the developwiethe first generation of new architectures
for electricity grids. The EU cluster IRED involvegven projects dealing with the integration
of RES and DG. The MicroGrids projecticroGrids: Large scale integration of
MicroGeneration to Low Voltage Grid€ontract ENK5-CT-2002-00610 [4], is one of them
and was the first attempt at EU level to deal iptevith MicroGrids.

Activities in this area are continuing in FP6 widry promising large integrated projects, in
which more and more utilities and other stakehalder the electricity sector, usually
competitors in the international market, are showineir readiness to share know-how and
efforts [3] . More-MicroGrids Projectylore-MicroGrids: Advanced grid architectures foreth
integration of DER within local distribution netw, including MicroGrids Contract No.
019864 (SESG6) [5], is one of them, aiming the iasee of DER integration in electrical
networks through the exploitation of the MicroGeciohcept.

The Commission proposal for the FP7, within therteeenergy, confirms power networks
and distributed generation as a priority for futtesearch activities. The research area referred
to as ‘Smart Energy Networkss the natural evolution of both past and curi@iiD activities
on integration of DER. Thus, the objective of tlagea is to increase the efficiency and
reliability of the European electricity and gastsyss and networks e.g. by transforming the
current electricity grids into an interactive (cusiers/operators) service network, and to
remove the technical barriers to the large scajgogenent and effective integration of DER
[3].

Following the increasing penetration of DG in MVtwerks, dissemination of small size
dispersed microgeneration systems connected to Istilmition systems is expected to
become one of the means to face the continuous riergeowth. The need of reducing
greenhouse gas emissions, recent technologicalagewents related with the improvement of
microgeneration efficiency and the possibility apmiting RES are important factors that will
contribute, in a short term, to an effective intgm of microgeneration in LV grids. Such
large deployment of microgeneration is leading e adoption of the MicroGrid concept,

which was investigated within the framework of MeroGrids EU R&D project.
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A MicroGrid (MG) comprises a LV network, its loadseveral small and modular
generation units in the range of a few tens ofvkiltis or even less connected to it through
inverter interfaces and an embedded hierarchigalraband management system [6]. Thus, the
MG concept is defined as a LV distribution systethwDG sources - the microsources -
operated as a single coordinated entity, beingvaperadigm for the development of electric
power systems. Microgeneration technologies inclR&S, such as wind and PV generators,
DG, like microturbines and fuel cells, and alsaat@ devices such as flywheels or batteries.

A key economic potential of the application of dimited energy sources at customer
premises lies in the opportunity to use locally weeste heat from conversion of primary fuel to
electricity. There have recently been significanbgresses in developing small, kW-scale,
CHP applications, known as micro-CHP. These syst&ased currently on Stirling Engines,
will later use fuel cells and are expected to @ayery significant role in the MG of Northern
EU countries. On the other hand, PV systems aieipated to become increasingly popular in
Southern EU countries. The application of micro-CHRd PVs potentially increases the
overall efficiency of utilizing primary energy sam@&s and consequently provides substantial
environmental gains regarding carbon emissions.

In addition, MG offer considerable advantages tiwvoek operation due to their much more
sophisticated control capabilities. MicroGrids dsmostly operated interconnected to the MV
distribution network, but they can also be operagethted from the main grid, in case of faults
in the upstream network [6, 7]. Preliminary expeants on a real MG islanded operation were
performed in a prototype system installed in thédratories of the National Technical
University of Athens [8]. From the customer poiritview, MG can provide both thermal
power and electricity to feed the needs of localstmners, and in addition enhance local
reliability, reduce emissions, improve power qualily supporting voltage and reducing
voltage dips. MG can also provide network supportimes of stress by relieving branch
congestions. Reducing of LV consumer’s interruptiome can be performed by allowing MG
islanded operation until MV network is availabledapy exploiting the MG generation and
control capabilities to provide fast black-startla LV level, after a general system black-out
[9, 10].
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1.2  Motivations and objectives of this thesis

It is expected that, in a near future, several M@ be connected on several adjacent MV
feeders coexisting with MV loads and distributedngm@tion units. The MG operation
flexibility will then be extended to the MV levéiitough suitable control schemes, leading with
the Multi-MicroGrid concept, which is being devetapwithin the framework of the More-
MicroGrids project.

Large deployment of MG will have a considerable atipon the future operation and
development of electricity networks. Therefore, newls and simulation approaches are
required to address this subject and to quantéybnefits of MG. From the possibility to have
hundreds of these active cells connected to thendiWork, a large number of active sources
together with their inverter interfaces should bensidered and therefore a very high
dimensional system will arise. So, the use of tkdlamodels for MG components implies a
computational burden which will render the studyMfMG dynamic behaviour unfeasible,
justifying thus the need of appropriate dynamic ieglents for MG in order to speed up
numerical simulations.

Thus, the main objective of this thesis is to derdynamic equivalents for MG, able to
represent its dynamic behaviour with respect toMhenetwork when the MMG is operated
autonomously. The MG dynamic equivalents are thetabdéished from the MG nonlinear
detailed model and will replace MG in dynamic siatidn tools, reproducing their relevant
dynamics in time domain simulations.

Conventional dynamic equivalence techniques aralynaiased on either modal analysis or
coherency based methods. The first techniques Usearized version of the entire power
system state space model and have been used todst@mics related to small perturbations
around an operating point. In contrast, cohererasett methods allows to represent dynamic
nonlinearities and have been widely used to budadhic equivalents for conventional large
power systems. However, as these methods are bageé coherency concept and its key step
Is coherency recognition between generators, #gpptication to MG do not make sense, since
MS are connected to the LV grid through inverteeifaces and, in addition some of them, like
fuel cells and PV systems are not characterizewtny angles or angular speeds.

With technical advancements mainly in communicaicend computer technologies,
alternative methodologies do develop dynamic edenta are emerging. These methodologies
are based on system identification theory and tthemy use measurements of important




Chapter | — Introduction

signals/variables to find parameters for a suitalylem representation. Also ANN have been
used to derive power system dynamic equivalent®nigtfor conventional power systems, but
also for distribution networks containing a sigeéfint capacity of distributed generation,
without the need of a detailed knowledge of the @osubsystem to be reduced. This fact can
be viewed as an advantage to build dynamic equitafer MG.

Thus, the structure of this thesis follows the oigation presented in the following section.

1.3  Thesis organization

The research work presented in this thesis iststred over 7 chapters as follows.

Firstly, inchapter 1, an introduction is presented.

In chapter 2, both MicroGrid and Multi-MicroGrid concepts areepented. Mathematical
models able to represent the dynamic behaviouriofogeneration systems connected to the
LV network are also described. This involves theadgtion of their inverter interfaces as well
as of the integrated control inside the MG, focggnarticularly the case when the MMG is
operated autonomously following a disconnectiomfithe upstream main network.

In chapter 3 the state-of-the art of dynamic equivalent teghes used to derive dynamic
equivalents for conventional power systems is prese In order to pursue the development of
MG dynamic equivalents, a detailed analysis of enemin techniques, such modal analysis
and coherency based methods is presented andagmglicability to MG is also assessed.
Tacking into account the particular features thedracterize these new power systems, both
modal analysis and coherency based methods are@ecommended for developing MG
dynamic equivalents purposes.

In chapter 4, system identification theory is exploited in arde derive suitable dynamic
equivalents for MG. The theoretical concepts beliredmain techniques of nonlinear dynamic
systems identification as well as the state ofatief these main techniques are presented and
discussed, taking into account the physical knogéethat can be extracted from chapters 2
and 3 as well as the purpose of the MG dynamicvadgnts to be derived.

From this discussion two promising methodologiessarconcerning the MG mathematical
representation. They are black-box modelling apghtea based on ANN and physical
modelling approaches. However, their applicabilty MG deserves a more in-depth

investigation for two main reasons:
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« The classical stages to derive dynamic equivalémtsconventional power systems

have to be replaced by appropriate system ideatifio procedures;

« An acceptable trade-off between development efémd validity domain should be

achieved.

Therefore a common system identification procedsrealso presented and afterwards
identification techniques suitable to cope with tbdtlack-box and physical modelling
approaches are also addressechiapter 4.

In chapter 5 the development of the two promising solution rapphes identified in
chapter 4 is carried out. A dedicated dynamic satoih platform was developed for
generating high quality data sets and for valideparposes, playing the role of the numerical
set-up. Thus, two main simulation packages werkded:

e The MMG detailed model, which includes the dynamiodels of microgeneration

systems described in chapter 2 linked together thighLV network algebraic equations
in order to build the MG detailed model, which, turn, is connected to the MV
network. This module is used to generate high tudéta sets;

e The MMG equivalent model, in which the MG detailatbdel is replaced by the

derived MG dynamic equivalents in order to furtbealuate their performances.

In chapter 6, the two methodologies developed iaptdr 5 are applied to MG and the
performances of the dynamic equivalents thus obthiswe evaluated. For this purpose two
study cases are considered and the time domaionssg provided from both MMG detailed
and equivalent models following disturbances areared.

The main conclusions and future developments agepted irthapter 7.

Finally, the mathematical model of round rotor symmous machines as well as the
parameters corresponding to the dynamic models iofogeneration systems of the test

systems used in this thesis are presentegp@ndix A.




Chapter | — Introduction




Chapter Il — Models for Microgeneration and Micro@si

Chapter 2
Models for Microgeneration and
MicroGrids

2.1 Introduction

The Multi-Microgrid concept, which is being devetmpwithin the framework of the EU
R&D More-MicroGrids Project [5], involves a structuformed at the MV level, comprising
LV MicroGrids and distributed generation units ceoted at several adjacent MV feeders
together with MV loads. Technical operation of siacBystem requires the development of a
hierarchical control structure [5] able to manadge wistribution grid either in normal
interconnected mode or emergency mode. This emeygemde involves namely islanding
operation of MV distribution grid, which requirescareful dynamic behaviour assessment.
Adequate dynamic models for these microgeneratemicds are therefore required.

This chapter aims at the description of mathemlaticzdels able to represent the dynamic
behaviour of microgeneration devices connectechéoltV network, as well as the dynamic
behaviour of the MG with respect to the upstream M¥work over time ranges of a few tens
of milliseconds up to a few seconds, which involaéso the description of integrated control
of the microgeneration units inside the MG. Thesedefs were identified through a
bibliographic research from the available literatand developed within the framework of the
EU R&D MicroGrids Project. Concerning those modél® main issues must be stressed:

* The inverter interfaces are modelled based on twaitrol functions only, so that
switching transients, harmonics and inverter loggesneglected. This is considered
a general procedure as described in [11-15], dasetransient phenomena are not
relevant for the purpose of dynamic behaviour;

* Only three-phase balanced operation is consideleshite the fact that it is not a

common situation in LV networks.
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The microgeneration devices can be of differenesypand technologies, namely: fuel cells,
micro wind turbines, solar PV panels, microturbinascro CHP with Stirling engines, Diesel
generators, etc. In this thesis only the first Bagation devices are addressed.

Due to the lack of more realistic models reportedthe literature, this research deals
therefore with three-phase models of microgenemasygstems, which describe the MG
dynamic behaviour only under balanced conditionsesE models involve also models of
inverter interfaces. The development of models ablsimulate the dynamic behaviour of
single-phase microgeneration systems and MG opegratider unbalanced conditions as well
as the corresponding MG dynamic equivalents caustitright now, a subject for future
research.

The mathematical models adopted to represent theandig behaviour of each MG
generation system were adapted in order to be dirtkgether with the algebraic equations
describing the LV network forming thus the wholedabof a MG as a multi-machine power
system model [16, 17] in chapter 5. Particularrdite is given to represent the MG dynamic
behaviour when the MMG is operated autonomousljofdhg a disconnection from the
upstream main network.

Section 2.2 describes both MG and MMG conceptsti@e.3 is devoted to dynamic
models of microsources as well as the correspondiegface inverters. In section 2.4, control
strategies for MG operation are discussed andlyinal section 2.5, the summary and the main

conclusions are presented.

2.2  The MicroGrid and Multi-MicroGrid concepts

As already mentioned previously, the MG conceptaidogical evolution of simple
distribution networks with high penetration of D®licroGrids comprise LV distribution
systems, in which small and modular generationsyimtthe range of a few tens of kW or even
less, are connected together with loads and stategees. Furthermore, a MG is an extremely
flexible cell of the electrical power system if peyly controlled and managed. Advanced
control strategies allow two different operationdss [6, 7, 9, 10, 18, 19]:

* Normal interconnected mode, when the MG is conmketdghe MV network, being

either supplied from it or injecting some amounpofver into it;

10
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* Emergency mode, when the disconnection from theridivork occurs following a
fault in the upstream system.

Therefore, MG offer considerable advantages to agtwperation either from the utility or
from the customer view points. Thus, distributedeagation located close to loads will reduce
flows in both transmission and distribution systemth, at least, two important effects: loss
reduction and deferral of investments related tartugrid reinforcements and expansion, since
branch congestion can be controlled. On the ota@dhMG can provide both thermal and
electricity needs to consumers and, at the same, tenhance local reliability and improve
power quality by supporting voltage and reducindtage dips. In addition, MG potentially
lower costs of energy supply [4].

The increase of penetration of microgeneration lactécal networks through the
exploitation and extension of the MG concept leatith the MMG concept, which is being
developed within the framework of the EU More-MiGmids Project [5], as already mentioned
previously.

In order to highlight both MG and MMG concepts, itheontrol and management
architectures are presented in the following twiesgations.

2.2.1 The MicroGrid control and management architecture

The MG concept involves an operational architegtuteveloped within the EU R&D
MicroGrids project [4, 20], which is presented iguire 2.1.

This MG example includes:

« Several feeders supplying electrical loads;

* Microgeneration systems;

» Storage devices;

* A hierarchical-type management and control schampeated by a communication
infrastructure.

In terms of current available technologies, therogeneration systems can include several
types of devices, like fuel cells, small wind tumgs, PV systems and microturbines, typically
in the range of 25-100 kW powered by natural gasiorfuels. CHP is one of the most
promising applications, leading to an increasehefdverall energy effectiveness of the whole
system [20]. Most of the MS are not suitable for h&twork direct connection, due to the type

11
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of energy conversion system used. Therefore poleetrenic interfaces are required for grid
interconnection, as it can be observed from figuie

PV

Microturbine
= B

DC AC
AC

Wind Generator

Fuel Cell

. |AC
DC

AC

s 0}_@_[]_
4
AC

DC
Storage _L @
device

I Microturbine

LC

Figure 2.1. MicroGrid architecture comprising microsources, loads and control devices

A special issue related to MG operation concernssid® response to the control signals in
order to change the output power. Therefore, wienMG is operated autonomously, the
absence of synchronous machines connected to theelworks requires that power balance
during transients have to be provided by energsagdevices, either flywheels connected to
the LV network through AC/DC/AC power electronic tarfaces or batteries and
supercapacitors connected to the dc-link of micnegation systems, which are continuously
charged by the primary energy sources.

Although MG are dominated by inverter interfaced &t are inertia-less, they offer the
possibility of a very flexible operation allowingd MG ability to behave as a coordinated
entity in both interconnected and islanded opemnatitorage technologies become important
components with the duty of helping on MG stabti@a during transient phenomena and in
the moments subsequent to islanding. However, dierato achieve the full benefits from the
MG operation, a hierarchical control and managenssistems have also been envisaged,

which comprises three important control levelsdegicted in figure 2.1.
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» Local Microsource Controllers and Load Controlléree MC take advantage of the
MS power electronic interface and can be enhancéd warious degrees of
intelligence in order to control both voltage anmeéguency of the MG during
transient conditions based on only local informatio

e MicroGrid Central Controller. The MGCC functionsnceange from monitoring the
active and reactive power of MS to assuming fudpansibility of optimizing the
MG operation by sending set points to the MC and inCorder to control
microgenerators and controllable loads, respegtivel

» Distribution Management System, which can be ueetidnage the integration and

operation of a MG and the upstream distributionvoek.

2.2.2 The Multi-MicroGrid control and management architecture

As stated before, the MMG concept being developedeu the framework of Multi-
MicroGrid project is related to a higher level sture, formed at the MV level, consisting of
DG units and LV MicroGrids connected on several k¥ders. Microgrids, DG units and MV
loads under DMS control, can be considered as eatells for control and management
purposes. Technical operation of such systems megjihe adoption of a control structure,
where all these active cells, as well as MV/LV passubstations, should be controlled by the
CAMC to be installed at the MV bus level of a HV/Mbstation, under the responsibility of
the DSO [5].

The tremendous increase in dimension and compldgkiy the management of such a
distribution system presents requires the use ofleaible decentralized control and
management architecture. A central management DM& centre would not be effective
enough, due to the large amount of data to be pseckand treated, and would not assure an
autonomous management namely during islanding robdgeration. The CAMC is therefore
playing here a key role and being responsibleHerdata acquisition process, for enabling the
dialogue with the DMS upstream, for running specifietwork functionalities and for
scheduling the different active cells in the doweam network [5]. Generally speaking, this

new management and control architecture is repreden figure 2.2.
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Figure 2.2. Control and management architecture o& Multi-MicroGrid

The management of the MMG will be performed throufle CAMC, acting as an
intermediate DMS controller, that will receive infeation from the upstream DMS,
measurements from MV networks and RTU, existing MiG&nd will have to deal with
constraints and contracts to manage the MMG in Wéthinterconnected and emergency
modes of operation. This requires namely tackliritip whe following aspects: state estimation,
coordinated voltage support and flow control, cauated frequency support and emergency
functions. The effect of such a combined interactamd new global operation strategy is
expected to enable an increase of the global perwirof microgeneration.

The analysis of the dynamic behaviour of several Bt other DG units operating all
together is therefore required. However, dynamougiitions using detailed models of several
MS, spitted throughout different MG, together widl& units connected in the MV network,
requires a very large computational effort. In #éddj this is a very time consuming procedure.

Therefore dynamic equivalents for MG need to beavedrtaking into account the MS
connected to the MG, the storage devices instaltediell as the MG control strategies to be

followed when it is operated under the frameworkhef MMG concept.
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2.3 Dynamic modelling of MicroGrids

The technical feasibility of the MG concept desedlpreviously has been demonstrated
within the framework of the EU MicroGrids Projeet, [21]. For this purpose, a simulation
platform able to simulate the steady state and mhym@aperation of LV networks that include
micro generation sources was developed [6, 7, 9,180 19, 21-23]. This included several
models able to describe the MS dynamic behavioosidering their inverter interfaces over a
few tens of seconds [22, 23].

Microsources connected to the network through iteveinterfaces have been commonly
represented by a DC voltage source placed befermtterter [12], as depicted in figure 2.3.

Idc ea v
DC —Ff—>V,
P& —| Microsource —I:J_ C S II A
—|_ AC ec = _' » VC
A A
Pdem LC filter
PWM
We [rwna]
Va'vb'vc
Vie i,V
LN Control |«

Figure 2.3. Model of an inverter interfaced microsarce

The main blocks are:

* A DC voltage source connected to the DC stageeirtherter;

* An inverter interfacing the DC system to the ACwak. Limiting the analysis of
the fundamental frequency supplied by the inveriecan be modelled as the
generated fundamental amplitude,before the filter;

* Alow-pass LC filter which blocks the inverter geaied high frequency harmonics.
At the fundamental frequency it is representedufhothe equivalent impedance of
the filter, Z; .

A brief overview of dynamic models suitable to ddse the response of different
microsources and storage devices as well as thegrter interfaces in order to evaluate the
global response of the MG system namely duringidifag operating conditions is presented in
the following three subsections.
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2.3.1 Micro-sources modelling

Several MS models able to describe their dynami@bieur have been developed during
the last years and are available from the litemtuFhese models include the main
microgeneration technologies currently availablejchs as microturbines, fuel cells,
photovoltaic arrays and small wind generators.

There are essentially two types of microturbinesjciv differ basically from the shaft
construction [24]. One is a high-speed single-shait with both the compressor and turbine
mounted on the same shaft as the electrical synoigmachine. In this case, turbine speeds
mainly range from 50000 to 120000 rpm. The othgretypf microturbines is a split-shaft
designed one that uses a power turbine rotatir®0@00 rpm and a conventional generator
connected through a gearbox. Although this is agmaand robust technology, the split-shaft
design has not been widely used for small scaleep@&neration. Rather, it is typically used
for machine drive applications, since it does nequire power electronic interfaces [25].
Therefore, in this research only single-shaft ntiaroines are considered.

As stated before, fuel cells are an emerging clalssmall scale power generation
technology. Two types of fuel cells are likely te bsed as power plants, namely SOFC and
MCFC [26]. In order to study the dynamics of getiaaunits based on SOFC and MCFC
technologies several dynamic models have beentegpor the literature [22, 24, 27-39]. Most
of them are focused on SOFC system dynamic behawmadelling with the expectation that
the response of MCFC system would be similar [34,35, 36]. Therefore, in this research, the
SOFC model described in [24, 35] was adopted.

Concerning small wind turbines, although it is fleé most common solution, a dynamic
model based on an induction generator directly eotad to the network like in [7, 10] was
considered.

In order to model a PV system, it was assumed ttiatarray is always working at its
maximum power level for a given temperature anadiance as described in [23].

Then, the dynamic models for SSMT, SOFC, small wgederators and PV systems are

presented in the following subsections.
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2.3.1.1 Single-shaft microturbines

Single shaft microturbines are small and simpldecygas turbines with outputs ranging
from around 25 to 50&W [40], which have been used in small scale distetlgeneration
systems either for electrical power generation &fPCapplications. Although microturbines
can burn different fuels, most of the availableteys use natural gas as the primary fuel.

The basic technology used in microturbines is @etifrom aircraft auxiliary power systems
where the need for light weight, compact, high padegenerators has traditionally prevailed
over both the significant development and productiosts. However, R&D efforts in the last
years have changed the structure of these sys@mene hand microturbines are considered
one part of a general evolution in gas turbine netbgy, since techniques incorporated into
the larger machines to improve performance carypiedlly found in microturbines as well.

These techniques include recuperation, IO, technologies and the potential use of

advanced materials such as ceramics for hot sep@ots [41]. On the other hand, power
electronics, advanced control and communicationtesys are included in modern
microturbines [42].

Concerning to the operating principle, microturlsimkeal with the same combustion process
of gas turbines, involving a gas that is expandeaghly the same speed whether inside a
large turbine or a small one. Therefore, the tippthe microturbine blades have to move at high
speed in order to capture the energy from this edipg gas. This means that, in general, the
smaller the turbine the higher the revs [43]. lct féurbine speeds mainly range from 50 000 to
120 000 rpm while large gas turbines designed fiityuapplications turn at fairly standard
1000, 2000 or 3000 rpm depending on the numbeolelspuilt into the generator [43].

As already mentioned before, SSMT comprise a cosspreand a power turbine mounted
on the same shaft. They operate by forcing airugjinoa turbine, causing it to spin at a very
high speed. This high-speed power turbine is caedeto a generator, which generates electric
power at high and variable frequency. Therefore tfower is converted to DC and then an
inverter is employed to produce 50 Hz AC powerdommercial use. A block diagram of a
SSMT system [24, 42] is presented in figure 2.4.
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Figure 2.4: The single-shaft microturbine generatia system

In the single-shaft microturbine engine a radialflcompressor compresses the inlet air
that is then preheated in the recuperator usingfr@a the turbine exhaust. The recuperator is
a heat exchanger that transfers heat from theuhnine exhaust gas (typically around 1200°F)
to the compressed air (typically around 300°F) goimio the combustor, thereby reducing the
fuel needed to heat the compressed air to turbiet temperature. Depending on microturbine
operating parameters, recuperators can more thablelonachine efficiency [25]. Next, the
heated air from the recuperator mixes with fueltiie combustion chamber and the hot
combustion gas expands through the power turbitéghamurns both the compressor and the
generator. Finally the exhaust of the power turtignesed in the recuperator to preheat the air
from the compressor.

As it can be observed from figure 2.4, a SSMT hgasacombustion turbine integrated with
an electrical generator that produces electric pomigle operating at a high speed, ranging
from 50000 to 120000 rpm. The rotor is either a-twofour-pole permanent magnet design
and the stator is a conventional copper wound dg&i4]. Electric power is then produced at a
very high frequency three-phase voltage rangingnfdk00 to 4000 Hz. This high frequency
voltage is first converted to DC voltage and theverted back to a 50 Hz AC voltage by an
inverter in order to allow grid interconnection. elpower electronics interface provides the

protection and interconnection functionalities.dadition it provides power factor correction
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and control of the produced power. Among these ridgges of the single-shaft design, the
gearbox elimination should be mentioned.

In order to assess the dynamic behaviour of midootes connected to the LV network a
detailed nonlinear dynamic model should be usedvéver, while it is widely accepted that
microturbines play an important role in small scptaver generation, there is little work on
modelling these devices [40, 42].

Modelling of SSMT was reported in [32], where thengric model of the grid connected
microturbine converter is developed based on tls&maption that there is sufficient energy
storage on the DC bus to consider the microturlime constant DC voltage source. Other
works reported in the literature [40, 44, 45] cdesia one way frequency converter AC-DC-
AC with a diode rectifier that interfaces the higbaquency alternator and the DC bus. Based
on the dynamic model of combustion gas turbineschvinad been discussed in [46-48], a
dynamic model for microturbines is proposed in [Z&f purposes of load following
performance analysis. More recently, a bidirectidin@aquency changer interfacing a high-
speed PMSM with the grid considering the altermatmperation as either motoring or
generating was described in [42].

In order to describe the SSMT dynamics with respedhe LV network a microturbine
model focused on the microturbine’s electric-medatenbehaviour was developed based on
the models presented in [24, 42]. This SSMT moslélased on the following assumptions:

* The microturbine engine, while small in size, mi$ar to gas combustion turbines;

e The microturbine is under normal operating condsioStart-up, shutdown and fast
dynamics are not considered, since during thesesitnats the unit is not connected to
the grid;

e The recuperator is not included in the model as ibnly a heat exchanger to raise
engine efficiency. In addition, due to the recupara very slow response time, it has
little influence on the time scale of dynamic siatidns;

* Both the gas turbine temperature and acceleratbmtral are omitted in the turbine
model, since they are of no impact under normatltmms;

* Most microturbines do not have governors, so ttgavernor model is not considered.

Therefore the model of a microturbine unit consmstsnly of three parts: The active power
control, SSMT engine and the PMSM connected to AeDC bidirectional converter. A
simplified block diagram is presented in figure.2.5
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Figure 2.5: Block diagram of the single-shaft micreurbine model

The details of the SSMT main parts are presentéideifiollowing subsections.

2.3.1.1.1 Active power control

The active power control of the microturbine inedvonly a real power Proportional-
Integral (P1) control function, as depicted in fig2.6.

Figure 2.6: Load following control system model

where:
P

dem

is the demand power;

P, is the reference power:

P, is the power control variable to be applied tottmbine;
K, is the proportional gain in the Pl controller;

K, is the integral gain in the PI controller.

The controlled real poweR, , is then applied to the turbine [24].

2.3.1.1.2 SSMT engine

Similar to combustion gas turbine, the microturbiaegine mainly involves an air

compression section, a recuperator, a combustiambhar and a power turbine. The gas from
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the combustion chamber forces the high-pressurepessor turbine that drives the PMSM.
Therefore it is more suitable to model the micrbiioe engine as a simple-cycle single-shaft
gas turbine [24].

The GAST turbine-governor model is one of the namshmonly used dynamic models of
gas turbine units, since it is simple and followpi¢al modelling guidelines [48]. Thus, for

simplicity and wider acceptability, the microturbirengine is modelled as a GAST model

without the droop [24], as depicted in figure 2.7.
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Figure 2.7: Microturbine engine model

where:

P, is the mechanical power;

T, is the fuel system lag time constant 1,
T, is the fuel system lag time constant 2;
T, is the load limit time constant;

L. IS the load limit;

V... is the maximum value position;

V_ . is the minimum value position;

min

K; is the temperature control loop gain.
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2.3.1.1.3 PMSM, regulation and control

The model adopted for the electrical generatortisapoles PMSM with a nonsalient rotor.

The dynamics of this machine are described by thiewing equations written in thelq

reference frame [48]:

Electrical equations:

. : dig (t

)= Rial)- pea L 1) 1, %) 1)
: . di,(t

Vo(t) = R (6)+ pav,Luia 1) + Lq%+ P, (22)

T, =3 plo,i, +(L, - L, )i, ] 2.3

e_Ep mlq d q al ( : )

Mechanical equations:

T=3% i py 4T =% 7 = (2.4)
dt dt @

where:

L,,L, are thed andq axis inductances it ;

R, is the resistance of the stator winding<in

iq,i, are thed andq axis currents inA;

Vvy,V, are thed and gaxis voltages irV ;

w, is the angular velocity of the rotor rad/  sec

® . is the flux induced by the permanent magnetserstator windings iWb;
p is the number of pole pairs;

T, is the electromagnetic torque;

J is the combined rotor and load inertiakig (i’ ;
F is the combined rotor and load viscous friction;

6. is the rotor angular position;

22



Chapter Il — Models for Microgeneration and Micro@si

T, is the shaft mechanical torque.

The grid-side converter regulates the DC bus veltadpile the machine-side converter
controls the PMSM speed and displacement factas ddntrol structure decouples effectively
the two converters control scheme. Therefore issekded to the inverter are addressed in

subsection 2.3.2.

Machine-side converter control

The machine-side converter in generating mode tg®is a power source with controlled
current [48]. This converter controls generatorespand phase between current and voltage at
the output of the PMSM [49]. A block diagram of theachine-side converter controller

presented in [42] is illustrated in figure 2.8.
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Figure 2.8: Permanent magnet synchronous machinee® converter control

The PI-1 controller that supplies a current congmnreferencej, .., to a second Pl
controller, PI-2, regulates the microturbine spédw i,,, current component is precalculated

and regulated by the PI-3 regulator to ensure & uhsplacement factor. The turbine speed

reference,w

ref ¥

is also precalculated so that the microturbinerajes with optimal efficiency

[42].
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2.3.1.2 Solid Oxide Fuel cells

As already mentioned previously, fuel cells areemmerging class of small-scale power
generation technology. Although the basic principliduel cells operation was discovered by
William Grove in 1839, the commercial potential tbfs technology was recognized only in
1960 when fuel cells were successfully appliedhim $pace industry [50]. In 1984, the Office
of Transportation Technologies at the US Departroéfinergy began supporting research and
development of fuel cell technology. As a resutimenercialization of fuel cells for a variety
of applications has been encouraged on by theirabibty, efficiency and being
environmentally friendly [51].

Actually there are a number of types and configonat of fuel cells, but they all use the
same basic principle. A fuel cell consists basyjcafla cathode (positively charged electrode),
an anode (negatively charged electrode) and antrelge (non-electrically conductive
medium) [28]. A simplified diagram of a SOFC is geated in figure 2.9.

26" Load

Fuel
(Carbon monoxide, methane) ——

Air
o [  (Oxygen)
2

Dep(ieted fueland . —— H:0
product gases out
Anode 1 T

Electrolyte

——— _ Depleted oxidant and
product gases out

Cathode

Figure 2.9: Simplified diagram of a solid oxide fukcell

Carbon monoxideCO, and hydrocarbons such as metha@kl,, can be used as fuels in

SOFC. However, th&€O - shift reaction is chemically favoured if the fuelsgcontains water
[24, 35]. Thus, theCO - shift reaction is

CO+H,0 - CO,+H, 12
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Therefore, hydrogen obtained from tk - shift reaction and oxygen from the ambient
air are fed into the SOFC through its anode antioch, respectively, where the following

electrochemical reactions take place [50]:

H,+0” - H,0+2e" (anode) (2.6)
1 2_
EOZ +2e - O (cathode) (2.7)

Then, the overall SOFC reaction is

H2+%OZ L H,0 2.8)

The SOFC electrolyte is a ceramic material, whglan excellent conductor of negatively
charged ionsQ?", at high temperature(ﬁOO—lOOOOC), allowing the transportation of mobile

ions between the electrodes. Moreover, it acts separator between hydrogen and oxygen in
order to avoid mixing and the resulting direct caistion. As the free electrons cannot move
through the electrolyte, they move through the meecircuit that connects both anode and

cathode. This movement of electrons is then cdetitdb generate DC electrical energy.

2.3.1.2.1 A SOFC generating system

A generic fuel cell plant involves mainly six basigstems: The fuel cell stack, the fuel
processor, the power conditioning subsystems, anagement, water management and
thermal management. The design of each subsystesnbauntegrated with the characteristics
of the fuel cell stack in order to provide a conplgystem [51] as can be observed from figure
2.10.
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Fuel Source——>{ Fuel Reformer >| Fuelin
Yy Fuel Cell Stack | pc AC
Power Power
Electric Power out i Power Conditioner gy
Water Management (<@ Water out Exhaust
Airin Heat out
N
A 4 y 4
P Exhaust
Air System  — Thermal Management _
P Heat

Figure 2.10: Block diagram of a fuel cell generatio system

The complete mathematical model of a fuel cell gaten system is very difficult to obtain
because the fuel cell plant consists of many suesys each one interacting with the others in
a complex manner, where the electrical, chemicdl taermodynamic processes are strongly
nonlinear in nature. Moreover, the parameters chaomplex models are difficult to obtain
[52]. Therefore, in a SOFC generation system, oiméyfollowing three main parts have been
considered for dynamic modelling purposes [22, 24].

* Fuel processor: The fuel processor converts fueh @s natural gas, to hydrogen rich

fuel stream. In the SOFC case, fuel processing froethane, CH,, or carbon

monoxide,CO, consists simply on desulfurizing and preheatheyfuel stream before
introducing it into the internally reforming anodempartment of the fuel stack.

* Fuel cell stack: The fuel cell stack, also calleswpr section, performs the fuel
oxidation and delivers DC power by means of mamngividual cells combined in
stacks. The number of cells is conditioned by thtigular power application.

» Power conditioner: Converts the DC to AC power aditm to the conditions that the

network may require. It is addressed further insgghion 2.3.2.

2.3.1.2.2 The SOFC power plant

The cell DC voltage and current depend on the ¢mmdi that include fuel flow, oxidant
flow, pressure, temperature and the demands olfotie circuit. These parameters affect the
electrochemical process that ultimately determthesgenerated power and terminal voltage.

Changes in the load circuit or its demand for poalgnge the operating conditions for the
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SOFC. For example, an increased demand of poweofale SOFC must eventually be met
with increased flow of reactants [29].

The SOFC dynamic model described in [24, 35], imgslboth the fuel processor and the
SOFC dynamic model. In addition, it is based onftilewing assumptions:

e The gases are ideal;

« The channels that transport gases along the eflastrbave a fixed volume, but their
lengths are small, so that it is only necessaefine one single pressure value in their
interior;

» The exhaust of each channel is via a single orifl¢e ratio of pressures between the
interior and exterior of the channel is large erfoug consider that the orifice is
choked,;

» The temperature is stable at all times;

* The only source of losses is ohmic, as the workmggitions of interest are not close to
the upper and lower extremes of current;

» The Nernst equation can be applied.

Under these assumptions, the potential differeretevden the anode and the cathode is

determined using the Nernst equation, as

V, = N{E0 +RT n(p”Z— V'OOZH—H - (2.9)

2F Pr.0

where:
V,. is the stack output voltage \;
N, is the number of fuel cells in series collected ithe stack;
E, is the voltage associated with the reactionsdresrgy inV ;
r describes the ohmic losses of the stacRin
Pu,» Puo and p, are the partial pressures of hydrogen, water axgbem,
respectively inN/m?;
R is the universal gas consta®31J /(molPK ) ;

T is the SOFC operating temperaturé€id ;
F is the Faraday constar#6487C/ mol ;
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|t is the stack current ir\.

C

The SOFC stack dynamic model is presented in figuté.

r
I f

Y Y
2K K r
r r
g 4
a—s(3)
in +
0o, (s )y
q'w, q'n.0 q'o,
Y Y
1 1 1
KH2 KHZO KOZ
l+7,s 1+7,08 l+zys
sz szo po2
Y Y Y

N, [Eo +RT| PuyPo, VPO} 4,@_.%
2F Ph.o +

Figure 2.11: SOFC stack dynamic model

where

Ty, Tuo and 7, are time delay constants, which designate theoresp time of

hydrogen, water and oxygen flows, respectively [B43;

Ky, Kuo and Ky , denote the molar constants for hydrogen, water @xygen,
respectively inkmol/(sCatm).

qLT2 and qg‘z are the input flows of hydrogen and oxygen, respely, in kmol/s;

Oy, Oi,0 and gy are the flows that react for hydrogen, water and/ger,

respectively, inkmol/s.

Determination of stack current

According to [35], the hydrogen flow that reactgigen by:
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Oy, = =2K, I, (2.10)

where K, =N, /(4F) is a constant defined for modelling purpose&nimol/(s[A).

From (2.8), the values of the flows that reactdwygen and water can be obtained as

=K, I (2.11)

qLZO =qy, = 2K, e (2.12)

The fuel utilization concept) , , is defined as the ratio between the fuel flowt teacts and
the fuel flow injected into the SOFC stack, as
= q:-lz

in
Hy

U, (2.13)

As described in [35], the desired range of fueliadiion is from 08 to 09 in order to

avoid both overused and underused fuel conditidnsoverused fuel condition could lead to
permanent damage of the cells due to fuel stanvatioile underused fuel situations result in
unexpectedly high voltages [35]. Therefore, forestain input hydrogen flow, the demand

current of the fuel cell can be limited in the rang

078qH2 S I ifn S 0’9qH2
2K ¢ 2K

r r

2.14)

The electrical response time in SOFC is generally &nd mainly associated with a speed at
which the chemical reaction is capable of restotimg charge that has been drained by the
load. This dynamic response is modelled as firdeotransfer function with a time constant

T,= 08s [30]. Thus, for a given demanded powd?,,, the SOFC stack current can be

obtained as can be observed from figure 2.12.
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Figure 2.12: SOFC stack current

Determination of hydrogen and oxygen input flows

The input fuel flow can be controlled in order &ebU , at its optimum value, as

2K 1
o = — (2.15)

opt

whereU,,, is the optimal value of the fuel utilization, whics typically 085 [24].

Hydrogen and oxygen are fed into the stack, wheeeoverall reaction described by (2.8)
occurs. It shows that full reaction ratio betweemrbgen and oxygen is 2 to 1. However,
excess of oxygen should be provided in order towalits complete reaction with hydrogen
while the pressure difference between the anodetlaadcathode is kept below a certain
threshold value. Hence, this means thgt, < , b@it typically 1<r, o< 125 [24, 53].

Therefore, the input oxygen flow in controlled thetspeed control of the air compressor in
order to match

as =Ty oXqp, (2.16)

where r,, , is the ratio between hydrogen and oxygen molavgjowhich should be kept

around 1, 145in order to maintain the SOFC pressure belbkPa under normal operation

[35].
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The chemical response in the fuel processor isllystlaw. It is associated with the time to
change the chemical reaction parameters after agehm the flow reactants. This dynamic

response function is modelled as a first ordersfiemfunction with a time constart, = 5s

[30]. Then, the fuel processor can be modelledegécted in figure 2.13.

-~ ~iNn
> H,

2K 1 1

Sy 1+T,s

in
—> (o,

\ 4
\ 4

opt rH_O

Figure 2.13: SOFC fuel processor block diagram

The active DC power produced by the fuel cell entlgiven by

P, =V, (2.17)

fc' fc

With the inverter, the SOFC system can supply mbt ceal power, but also reactive power.

2.3.1.3 Photovoltaic systems with MPPT

The origin of PV energy conversion technology gbask in 1839, when Becquerel first
discovered the PV effect. In 1954 the Bell Teleghtaboratories produced the first practical
solar cell, a single crystal silicon type cell weahergy conversion efficiency up to 6%. In 1955
the Western Electric was the first company to coneiaise solar cells, even the photovoltaic
technology was mainly used to provide power tolearbiting satellites. As the technology
improved and cost became more reasonable, phoatsslvere used in terrestrial applications.
In the 1980s, PV became a popular power sourcednsumer electronic devices and for a
variety of off-grid applications, including wateummping, rural residential and transportation
safety systems. Today, a major international makegbhotovoltaics is providing power to the
billions of people throughout the world who livetiaout electrical service, for applications
such as health care facilities, community centneger delivery, purification systems and rural
residences. In developed countries, grid-conneBXédsystems applications are now being
deployed in great numbers not only for residerdiadl commercial applications, but also for

either centralized or distribution power generafiof).
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2.3.1.3.1 Solar cells and PV modules

Photovoltaic or solar cells, as they are oftenrreteto, are semiconductor devices that
convert sunlight into direct current electricityli&®n cells are the most widespread ones [54].
A typical silicon PV cell is a thin wafer consigjimf an ultra-thin layer of phosphorus-doped
(N —type) silicon on top of a thicker layer of boronped (P —type) silicon. An electric field
is created near the top surface of the cell whaese two materials are in contact, called the
P-N junction.

When sunlight hits on silicon, the photons will risanit their energy to the valence
electrons of the semiconductor allowing it to brdakir link to atoms. As a result free
electrons and gaps can be in motion inside the.sbhe electric field provides momentum and
direction for both free electrons and gaps, resglin a flow of current when the cell is
connected to an electrical load, as can be obsdresdfigure 2.14 (a).

In

Phosphorous-doped (N-type) L <D V<

Load

“— Boron-doped (P-type)
(b)

@

Figure 2.14: A photovoltaic cell: (a) Simplified dagram; (b) Simplified single diode model

Although there are several models of varying coxipldo describe the behaviour of a PV
cell [55, 56], the most widespread ones are basdati@use of lumped circuits, such as single-
and double-diode models [23]. The solar cell is canly represented through a simplified
single diode model as depicted in figure 2.14 {)which the current source and the diode
represent the conversion of solar energy in elmdtrenergy while the series resistance

accounts for electrical losses [57]. Thus the soéfiroutput current can be determined as

VE-RgI€

1©=1,,/1-e ™ (2.18)
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where m is the diode quality factornf= for an ideal diode) an¥, is the cell thermal

voltage.

Usually manufacturers provide both the short-ctrauirrent, 1., and the open circuit

voltage, V.., of PV cells values, which were determined eitiiesler STC or NTC.

Table 2.1: Irradiance and ambient temperature in NTC and STC

NTC STC
aret =800W/m* | G, =1000W/m’

Irradiation G

Ambient temperature | T,  =20°C T, =25°C

Figure 2.15 represents a typical current-voltagé) (tharacteristic of a generic solar cell.

I

IC SC
IC max

Figure 2.15: A typical I-V characteristic for a sohbr cell

For arbitrary operating conditions (ambient irrdidia, G,, and cell temperaturd. ), the
solar cell can be characterized by the followingdamental parameters:

Short circuit current) &;
+ Open circuit voltageVS ;

e Maximum power point, MPP;

X
* Maximum efficiency,n = P — P Ve , Where A is the cell area;
P AxG,

in
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e Fill factor, FF =M;

C
OCX|SC

In practice, the operating conditions of PV systedifeer from the STC. Then, under

arbitrary operating condition§, andT,, the working temperature of the cells is given by

NOTC-20

T. =T, +G,
80C

where NOTC is the normal operating temperature of the cell.
The expression (2.18) can be rewritten as

VeV Ryl ©
— _ my©
=lg|1-e

At the cell operating temperatuté., V5. andV,© are given as follows

&=l

gc,o T Y sc (Tc _Tc 0 )]

a0

VoCc :Vocc ot H,, (Tc _Tc,o)

where

| Sco is the cell short-circuit current under STC;

Vse, is the cell open voltage under STC;

4, 1s the cell short-circuit current variation coeféint with temperature;

. 1s the cell open circuit voltage variation coeffiat with temperature;

K is the Boltzmann constant;

g is the electron charge;

(2)19

(2)20

(2.21)

(2.22)

(2.23)

As the output power of a single PV cells is relalyvsmall, they are connected electrically

in series and/or parallel circuits, as depictedigare 2.16, in order to produce a desired |-V

characteristic.
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Ngy PV cells in series
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Figure 2.16: A schematic representation of photovtdic modules
The current and voltage of the PV module can begias
M= Ney | ¢ (2.24)
vV = NSMVC (2.25)

Manufacturers supply only a limited range of modul€herefore, when designing a PV
system, these modules are usually combined intelpawhich will be connected together to
built up the entire PV array in order to generdte tequired DC power. The current and

voltage of the PV array are calculated as
VA =NV (2.26)
| A =Np, ™ (2.27)
where Ng, and N, represent the modules connected in series antlgbarespectively.

2.3.1.3.2 Model of a PV array with integrated MPPT

The grid connected PV system involves two main comepts:

» The PV array containing\ = Ng,x N, PV modules;
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* Aninverter to convert the DC power to AC three-gdhaoltage.

The PV array has an I-V characteristic with simftanm to that presented in figure 2.15 for
arbitrary operating conditions. Thus a MPPT congcileme is used to assure that the PV array
generates the maximum power for all irradiance terdperature values [22]. The typical
configuration of a grid connected PV system is @nésd in figure 2.17.

Gal l T,

J_ DC —> €,
PV array MPPT T —> €,
AC— e,

P=P

Figure 2.17: A grid-connected PV system

As the PV array with integrated MPPT control isesyvsimple model [22], it was adopted
in this research. However, it is assumed that:

* All the cells of the PV array are identical andytheork with the same irradiance and
temperature;

* Nolosses in the PV array with MPPT system;

» The PV array is always working on its maximum popeint for a given irradiance and
ambient temperature conditions;

e If the irradiance and ambient temperature conditiomange, the model instantaneously
changes its maximum power point;

« Temperature of the solar cells depends exclusieslythe irradiance and ambient
temperature.

Under these assumptions the module output powerbeaastimated using the ambient

temperature and the solar irradiance as inpuf{22a23]

PMN;x = GG_a[PN’\I/;x,O + [Pyax (TM Ty 0 )] (2.28)

a,0

where:

PM is the PV module maximum powén);

Pito i the PV module maximum power ST®);

&
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G,, is the irradiance at ST@OOOW /m?);
UP,., IS the maximum power variation with module temp.aarra(WPC);
T, is the module temperatufeC);
Ty o is the module temperature at NT2rC);
For arbitrary operating conditiong, =T, and T, , corresponds to the cell temperature at

STC. Then the power output of the plant can beiobtbas

G M NOCT-20
P =N—|p" 4+ T+G6 —~=—-25 2.29
Max 1000|: Max,0 IUPMax[ a a 800 j:| ( )

where N is the number of modules.

2.3.1.4 Wind microgeneration systems

Small wind generators comprise several subsystdras dre modelled independently.
These subsystems are the aerodynamic, the gendhetonechanical and the power converters
in case of variable speed wind turbines [22]. Moflsthe micro wind generators require an
electronic interface for grid connection. Howevas, already mentioned previously, in this
research it was considered that the wind microgeioer system uses a squirrel-cage type of
induction generator that is directly connected e LV grid. Therefore the small wind
generator model involves both the wind turbine dhd induction generator models, as
presented in the following two subsections.

2.3.1.4.1 The wind turbine

Focusing the wind turbine model on the electricghamic behaviour of the wind
microgeneration system, the mechanical power eeaby the wind turbine from the wind

kinetic energy, based on the aerodynamic coeffiaarves, is given by [23]:
1 3
P =§,0><Cp(/],ﬁ)>< AxV (2.30)

where
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P, is the mechanical power Watt;

Cp(A,,B) is the dimensionless performance coefficient;
A is the tip speed ratio;

[ is the pitch angle;

p is the air density;

A= 7R’ is the rotor area;

V is the wind speed,;

The mechanical torque can be obtained as

P

T ='m (2.31)
W

where T is the mechanical torque iN[m and w is the blade rotating speed in mechanical

rad/s.

2.3.1.4.2 The induction machine

For dynamic simulation purposes, it is a commonctwa to represent the induction
machine through a third order model [58]. Then, fpiee unit induction machine electrical

equations with the time represented in second®eawritten as follows

Vds = _Rslds +X Iqs +ed

| (232
Vqsz_&iqs_Xids-'-eq
d_ed:—i[ed_()(—x')xi | Hsx27f xe
T, ‘ !
) X (2.33)
& _ AN
—d=—"le +{X =X )xi |-sx27f_xe
dt To[q ( )] =
where:

Vs andy,g are the per unit rotor voltages;

g, ande, are the per unit voltage components behind thesigat reactanc ;

4 andi,, are the per unit current components;
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X is the per unit open circuit reactance;
T, is the transient open-circuit time constant ofitidiction machine in seconds;
f, is the system frequency ifz;
s is the slip;
R, is the per unit stator resistance.
The transient open-circuit time constant is given a

L, +L,

=—r 2.34
° 271:bas.ex R’ ( )

where R is the per unit rotor resistance. The transieattanceX , as well as the open circuit

reactance X , in per unit are defined as

X, xX_

2.35
X +X. (2.35)

X =X, +

X=X +X, (2.36)

where X, and X, represent the per unit leakage reactances fostttter and rotor windings,
respectively, andX , is the per unit magnetising reactance.

Concerning the slip, it can be derived as follows

g=1-% (2.37)

where w, is the per unit stator angular frequency.

In order to complete the induction machine modeljsi necessary to combine the
differential equations describing the electricaltage and current components of the machine
with the rotor swing equation, as

= 2T, ~T.-Dw) 2)38
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where J is the moment machine inertidD is the damping andl, is the per unit

electromechanical torque, which is given as

Te = edids-'-eqiqs (239)

2.3.2 Storage devices

As mentioned previously, when a MG is operatedsianded mode, the power balance
during transients must be provided by energy swodayices: MG main storage installed in the
LV bus of the MV/LV transformer and frequently kates connected to the DC bus of several
MS [6, 9, 10, 18]. Flywheels are very promisingtartio be used as the MG main storage
device. Unlike batteries, flywheel’s life is almastiependent of the depth of discharge and can
operate equally well on either frequently shallasctiarges or on very deep discharges [59].

Considering the time period under analysis, stordgeices, such as flywheels and
batteries, are modelled as constant DC voltagecesursing power electronic interfaces to be
coupled with the electrical network (AC/DC/AC contezs for flywheels and DC/AC inverters
for batteries). These devices act as controllab® Wltage sources, with very fast output
characteristics, to face sudden system changesasuohoad-following situations [6, 9].

In spite of acting as voltage sources, these dsviawe physical limitations and thus a
finite capacity for storing energy. The active pows injected into the MG using a
proportional to frequency deviation control apptoagth a specified droop characteristic; the
energy delivered to grid is evaluated as the tintegral of the active power injected by the

storage device for the simulation time considefgdd [

2.3.3 Inverter modelling

In a MG environment, the inverter interface modat be derived according to two possible
control strategies [11]:
* PQ inverter control: the inverter is used to supplgiven active and reactive power
according to a given set-point;
« Voltage Source Inverter control logic: the inverigercontrolled to “feed” the load with
pre-defined values for voltage and frequency. Ddp®non the load, the VSI real and
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reactive power output is defined.
The control functions used to model both PQ investatrol and VSI control for purposes

of MG dynamic behaviour analysis are describedhéfollowing two subsections.

2.3.3.1 PQ inverter control

The PQ inverter injects the power available atinfsut into the grid. The reactive power
injected corresponds to a pre-specified value,nééfilocally using a local control loop or
centrally from the MGCC. Thus, this control scheweas implemented as a current-controlled
voltage source [6], as can be observed from figut8.

Current components in phase,, and in quadrature are computed based on a method

eact ”
presented in [60] for power calculation in singleape inverters. Power variations in the MS
induce a DC link voltage error, which is correctad the PI-1 regulator by adjusting the
magnitude of the active current output deliveredhte grid. The reactive power output is
controlled via the PI-2 regulator by adjusting thagnitude of the inverter reactive current

output.

1 DC — P
Microsource —[_|_ Vie - >V,
AC — 1Y
'y T ¢

Pdem

MC
P
(Set Point)
thcref +/\- ,—l /J“\ iaC‘
> PI-1 X

Figure 2.18. PQ inverter control system

This inverter can be operated with a unit powetdiaor receive a set-point (locally or from
the MGCC) for the output reactive power.

41



Chapter Il — Models for Microgeneration and MicroGrids

2.3.3.2 Voltage source inverter control

The voltage source inverter control scheme emulttesbehaviour of a synchronous
machine, controlling both voltage and frequencyhef AC system [8, 15, 61]. The VSI acts as
a voltage source with the magnitude and frequeridye output voltage controlled through

droops as follows [6, 9]:
w=aw, -k, xP (2.40)
V =V, —k, xQ (2.41)

where P and Q are the inverter active and reactive power outpkiisand k, are the droop

slopes (positive quantitiesyy, andV, are the idle values of the angular frequency aithge,

which correspond to the inverter angular frequesiay terminal voltage at no load conditions,
respectively.
When a VSI is interconnected with a stiff AC systeamaracterized by an angular

frequency w,;;, and terminal voltageV, both voltage and frequency references are

grid ?
externally imposed [8]. In this case, the desiretpot powersP, and Q, can be obtained in the

VSI output by adjusting the idle values of the dagfrequency and voltage as follows:
a)Ol = wgrid + kP x Pl (242)
Vor =Vgia Ko X Q, (2.43)

Figure 2.19 illustrates this procedure for the fdégjuency case [10].

a A
w
max N %2
wgrid %1
a)min
Pt P P P

minl ' min2 max1 max2

Figure 2.19. Frequency versus active power droops
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If a cluster of VSI operates in stand alone AC ayst frequency variations leads
automatically to power sharing, such that for atayswith n VSI, the following equality
stands:

AP=Y AP (2.44)

i=1

where AP is the power variation in the—th VSI. The frequency variation can be computed

as [6]:
Aw=ay —ky xR _[woi —ky X(IDI +Api)] = kg AR (2.45)

Similar considerations can be made for the voltagetive power VSI control mode based
on droops [6, 15, 61]. However, as voltage hasl Idearacteristics, network cable impedances
do not allow a precise sharing of reactive poweomrgnVvSl [62].

Figure 2.20 represents a three phase balanced mabdeV/SI implementing the described
droop concepts [10]. The VSI output voltage andenirare measured to compute active and
reactive power levels. This measuring stage intedua delay that corresponds to a

decoupling, performed through the Decoupling trani&inctions presented in figure 2.20.

DC - > Va
VDC LT >V,
T | e
PWM v, i
v
v P.Q
(X )« sin(@) [«
) +
v, (. om 0 1] a 1 P
y _2m) 1 k
X sm(@ 3) @‘4-_ < - P Tes+1
+
@,
<V—°®< sin[6?+2:J | v K 1 Q
T__ - TdQS+1
Tvmax + VO

Decoupling

Figure 2.20. VSI three-phase control model
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The active power determines the frequency of thipudwoltage by the active/frequency

droop, k.. Similarly, the reactive power determines the nitagie of the output voltage by the

reactive power droopk,. A phase feed-forward control was included fobsity purposes
[62], corresponding to th& , in figure 2.20. The output voltages are the refeeesignals that

control the VSI switching sequence using a PWM ntatitan technique.

2.3.4 LV network and load modelling

As stated before, the simulation of MG dynamic b&ha was performed considering only
three-phase balanced operation. Thus, the LV griadelled as a balanced network through
the corresponding nodal admittance matrix. LV loadsrepresented as constant impedances.
The LV network and load modelling are addresseer Jah chapter 6, where a more detailed
description is presented.

2.4  Control strategies for MicroGrid operation

If a cluster of MS is operated within a MG and thain power supply (the MV network) is
available, all the inverters can be operated in AQde, because there are voltage and
frequency references. In this case, a sudden diection of the main power supply would
lead to the loss of the MG, since there would beossibility for load/generation balancing,
and therefore for frequency and voltage controlweler, if a VSI is used to provide a
reference for frequency it is thus possible to apethe MG in islanded mode and a smooth
moving to islanded operation can be performed withchanging the control mode of any
inverter [6, 8].

As already mentioned previously, the VSI can réactetwork disturbances based only on
information available at its terminals. This worgiprinciple provides a primary voltage and
frequency regulation in the islanded MG. After itigtng the key solution for MG islanded
operation, two main control strategies are poss#meidentified from the research developed
within the MicroGrids project [6, 7, 10, 18, 19,]21

» Single Master Operation;

e Multi Master Operation.
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In both cases, a convenient secondary load-frequand voltage-reactive power control
during islanded operation must be considered todtalled in controllable MS.

2.4.1 Single master operation

In this case, a VSI — acting as master — can bd asevoltage reference when the main
power supply is lost; all the other inverters cheant be operated in PQ mode (slaves). Droop
settings of the VSI can be modified by the MGCCedoasn information about the state of
charge of the storage device, according to theabipgr conditions and in order to avoid large
frequency excursions and minimize load curtailm@it This SMO control scheme is
presented in figure 2.21.

Droop Settings [ﬁ P&Q Settings
MGCC

L

. Q (set point)
L
Control T Control
v,i

l l Vie P (set point)
DC AC
Ve o L]* MicroSource
L AC|—4 f DC T
Main ’ LV

storage network

device
—— Loads

Figure 2.21. Control scheme for single master opetian

The SMO control strategy should be used when theidMdperated in interconnected mode.
Thus, if a fault occurs on the upstream networkmemoth moving of the MG operation from
interconnected to islanded mode can be assuredefthe, the MG is able for participating in

primary frequency control of the MMG being operaéedonomously.

2.4.2 Multi master operation

In a multi master approach, several inverters geraiing as VSI with pre-defined
frequency/active power and voltage/reactive poweracteristics [6], as illustrated in figure

2.22. Eventually, other PQ-controlled inverters raspo coexist.
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Droop Settings

P&Q Settings
MGCC
) Q (set point)
VSI Vil PQ < MC
Control Control
v, i .
Vae P (set point)
DC H AC
VD('_I_ 1] .
T \C _l_:| MicroSource
iy LV ¥ DC
Main network )
storage 5
device ——— Loads
—
VSI
Control MC
A
Ve P (set point)
DC
T :|— MicroSource
AC

Figure 2.22. Control scheme for multi master operabn

This control strategy can be used in MG islandimgyen several MS have storage
capabilities connected to the inverter DC link @ndnost relevant in the case of the definition
of black start procedures at the LV microgrid, assg that this MG is separated from the rest
of the network [9, 10].

2.4.3 Secondary load frequency control

Whenever the MG is operated in islanded mode, algtstate deviation from the nominal
frequency will be observed following transients. &sesult of the droop control implemented
in the VSI, the main storage unit will support ptwer deviations by injecting or absorbing
some amount of active power proportionally to thé fequency deviation [6, 17].

Although acting as a voltage source, storage dsvieve a finite capacity for storing
energy due to physical limitations. Therefore, siystem frequency should be restored to the

nominal value,a,, in order to the VSI active power returns to zé&or. this purpose, two main

secondary control strategies can be followed: Isealondary control using a PI controller at

each controllable MS or centralized secondary cbmrastered by the MGCC. In both cases,
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target values for active power outputs of the primenergy sources are defined based on the
frequency deviation error [6], as depicted in fig@r23.

P set

Sree=50 Hz PI MC

v

Microsource

v

S me

Figure 2.23. Local secondary load frequency contrdbr controllable microsources

For SMO, the target value is directly an active poaet-point to the MC of a controllable
MS as can be seen from figure 2.21. The MG openatel@ér a SMO control strategy, provides
also secondary load frequency control for MMG beipgrated autonomously.

For MMO, the target value can be both an active groget-point for a controllable MS
connected to a PQ inverter or a new value fordhefrequency of a VSI.

Reactive power set-points can be sent to MC byM@&CC based on information about the

MG load profile in order to optimize the voltagelcdve power control.

2.5 Summary and main conclusions

In this chapter both MicroGrid and Multi-MicroGricbncepts were presented as well as
their corresponding advanced hierarchical controhigectures. Suitable models to study the
microgeneration systems and their inverter corscbemes were also presented and discussed.

Afterwards, control strategies for MG operation &ealso described. The SMO control
strategy can be commonly used when the MG is ogerat interconnected mode, thereby
assuring a smooth MG moving to islanded operatfoa fault occurs in the upstream MV
network. Then, when the MMG is operated in islandedde, the MG will participate in
primary frequency control through the VSI contréltbe MG main storage device, and, in
addition, will provide secondary load frequency ttoh by means of the controllable
microsources. This physical knowledge is exploitedhapter 4 as prior knowledge to derive

dynamic equivalents for MG using system identif@atechniques.
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Chapter 3

Dynamic Equivalencing Techniques

3.1 Introduction

With the enhanced stability requirements to opepatw@er systems in a reliable manner,
system dynamic behaviour needs to be carefullyietudnline and offline, which includes
system stability, dynamic security assessment,dioating system control in a global manner,
etc [63]. Concerning offline studies, transientbdity analysis plays an important role in
planning and operation. Such studies are perforaletbst exclusively by means of time
domain simulations using numerical integration ¢dve the nonlinear differential equations
that describe the power systems dynamics. Withgtioeith in size and complexity of such
systems, the cost to perform dynamic behaviouriesuhs increased significantly [64].

Although the computer technology advancements laa@pplication of efficient numerical
methods, detailed power system analysis may thusddéarge and too complex, requiring a
very high computational effort as well as excessivenputation times, particularly when a
large number of scenarios have to be studied [GBgrefore reducing the problem to a
solvable size and, at the same time, improvingstiietion speed without significantly loss of
accuracy has been considered an important goalei@wame the difficulties related to dynamic
behaviour analysis. As the main analysis are ugdadlused on a specific part of the power
system, it has been a common practice to replazgetBubsystems that are not of primary
interest by suitable dynamic equivalents.

Owing to the dimension of large interconnected posystems it is neither practical nor
necessary to perform dynamic studies using detailedels of their components. At high
voltage levels it is necessary to obtain manageafbelels suitable for simulations and
analysis, allowing to interpret the results andhdtate them into operating guidelines or
planning recommendations. In addition, the compsdétecture of the neighbourhood networks
as well as the parameters of their componentsa@rkrmown in detail. On the other hand, as the

main analysis are focused on a specified porticth@finterconnected systems, the subsystems
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that are not of primary interest do not need tomyndetails and therefore can be accurately
approximated through suitable dynamic equivalents.

In general, when performing dynamic studies, thele/power system is divided into two
parts, called the study or internal subsystem aedekternal subsystem. The study subsystem
model is retained in detail since the responsdisffart of the system is of direct interest and
all disturbances and configuration changes are nasguto occur here. The remainder
subsystem is the part of the system to be simglified subsequently to be replaced by the
reduced order model. Then dynamic equivalencingceas to the process of reducing the
complexity of the entire power system network tac@mputationally feasible size while
maintaining a reasonable level of accuracy reggrdime approximation of the external
subsystem relevant dynamics with respect to théyssubsystem. Obviously, the dynamics to
retain will depend on both the application andubke of the dynamic equivalent.

A dynamic equivalent is thus a reduced order mofi¢he external subsystem that allows
to reduce the storage and the computational butidgnarises from dynamic simulation. In
turn, the entire power system reduced order madebimmonly referred in the literature as the
equivalent model. It should also be noted thatng aquivalencing procedure it is always
important that the equivalent model preserves thgortant features of the original system
when it is represented through its detailed mogié). [

In what concerns to develop suitable dynamic edenta for MG, the methodology to be
followed should preserve these aims described pusly. However, the main theoretical
concepts behind the procedures commonly used td Bunamic equivalents for conventional
power systems should be assessed, in order tonde&eits applicability to MG or even to
exploit their main features for these purpose. &hemin questions are discussed in this
chapter.

Therefore, the background of power system dynampigvalents is presented in section 3.2
and the classical techniques that have been udadlltbdynamic equivalents for conventional
power systems are described in section 3.3. Aftetsyan section 3.4, the main requirements
arising from the widespread of DG into distributioretworks are pointed out and the
corresponding solutions concerning dynamic equntal¢hat represent the relevant dynamics
of distribution systems integrating a large capacftDG with respect to the high voltage level
are addressed. In section 3.5, the applicabilitthefexisting methodologies to build dynamic

equivalents for MG is discussed. Finally, the n@inclusions are presented in section 3.6.
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3.2  Background of dynamic equivalents for large power ygstems

Dynamic equivalents for large power systems wertally defined based on empirical
methods, such as replacement of all the generatdhsn the external subsystem by one
equivalent generator [67] or determination of eglent generators, one of each boundary bus,
from an empirical distribution of the active poweasd inertias of the external subsystem
generators [68]. Both methods are based on the egosed by Ward [69].

The methods reported later in the literature tovéedynamic equivalents are based mainly
on modal analysis [70-72] or on the so-called cehey property, which means that coherent
generators tend to swing together during trangdeniods [73-75]. There are also works with
the aim of unifying the theoretical basis of caftidns of dynamic equivalents based on both
coherency and modal analysis [76].

Although the development of dynamic equivalenciaghhiques has a long history, few
analysis tools have been available, mainly becaliserigorous requirements to handle the
complexity of modern interconnected power systei1.[As a result, industry experience in
the area of dynamic equivalencing is limited [68, 88-80] and often reductions are done
using heuristic methods [77].

Early work in power systems dynamic equivalentdudes the development of modal
equivalencing techniques [72, 81-83]. Methods basednodal analysis suggest that those
modes of the system that are not easily affectethéylisturbances can be eliminated. Since it
is difficult to find these modes and additional nfications have to be made in the original
dynamic simulation programs in order to make uséhefstate matrix form of the equivalent
model, methods based on modal analysis have natvoieely applied [84].

Alternative approaches are based on the cohereangept. Following a disturbance
occurring in the study subsystem, coherency betwgmrerators belonging to the external
subsystem should be recognized in order to subs#lguerm groups of coherent generators.
Each one of these groups will be further replacgedie equivalent machine. The concept of
coherency was previously used by Chang and AdiBj. [A coherency based approach was
developed further by Podmore [75] in the late of7d® and integrated in Dynamic
Equivalencing software package — DYNEQ - developeder the American Electric Power
Research Institute - EPRI [77].
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Taking into account that coherency is an obsenteghpmenon and coherency properties
between generators depend on both the disturbaat@enand location, some previous
attempts to recognize coherency between generaters heuristically based [85]. Lee and
Schweppe suggested in [86] a pattern recognitiopromeh based on criteria involving
generator inertia, admittance and machine accedarad identify coherent generators [87].
Because of the lack of accuracy and consistencthén heuristic methods, the approach
proposed by Podmore [75] involves numerically suivithe simplified and linearized power
system equations and then processing the swingsuhvough a clustering algorithm in order
to determine coherent groups of generators. Althailngs approach had experimented some
applications, several weaknesses have been panitedince for a large power system, time
domain simulations require a considerable compartati effort and generally the coherent
groups were disturbance dependent. Therefore andewas limited [66].

In order to overcome these limitations, severalkeaesh effort resulted in the slow
coherency or two-times-scale method proposed i} {88he early 1980s. It was further
improved in [89] and has been a commonly adoptethadefor coherency identification [44,
65]. This is based on singular perturbations thesmrg combines the insights of both modal
and coherency analysis to find groups of cohereathimes [90-92]. In 1993s, Ontario Hydro
developed a new EPRI dynamic equivalencing progrdra, DYNRED [48, 77], which
included the techniques from the DYNEQ program tedslow coherency method [93].

DYNRED found many successful applications in lapgsver systems. An evaluation of
the performance of its dynamic equivalencing teghes in given in [66, 77] and provides a
discussion of several factors that affect the dyadif dynamic equivalents; coherency
identification is the key step in the reduction qgadure. In fact, this subject has been
investigated extensively in the past and, as dtresany techniques have been reported in the
literature [44, 64, 65, 76, 86, 87, 91-112]. Mo$ttleem used the linearized power system
model to obtain some coherency identification datevithout solving the swing equations.
After define and compute the coherency measurétabéel clustering algorithm is then applied
to derive groups of coherent generators [64, 83].11

Coherency measures, such as the RMS [76, 112]harseé bbased on the electromechanical
distance measure [106, 114] have been proposedetuify groups of coherent generators.
Several other methods are also reported in theditee, based on the rate of change of kinetic

energy of the faulted system [109] and evaluatibthe Lyapunov function [105]. This late
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method was improved in [98], where coherency ofegators is determined through some
proposed coherency identification criteria based aoitical energy required for system

separation. Other authors [111] proposed the coatiput of the system singular point or the
unstable equilibrium point to recognize coherentggators. This method was significantly

improved in [99] through a combination of faultegstem dynamics, unstable equilibrium

points and electrical coupling measure between rgéms. The faulted generator angles are
estimated through a Taylor series expansion [97QreVvrecently, several authors proposed
other coherency identification methods based omahenetworks [87, 103], fuzzy sets [110],

epsilon decomposition [94] and on selective modalysis [107], such as a synchronic modal
equivalencing technique presented in [108].

Taking into account that many coherency methods\atoconsider the effect of voltage
variation on the coherency of generators due towbak coupling between real power and
voltage, new enhancement techniques for coheredmytification are reported in [44]. The
accuracy of dynamic reduction techniques was fuaritheroved through incorporation of both
voltage and rotor dynamics [65]. In an attemptuoie the burden to find modes as the size of
the power system becomes large, methods that atladentify coherent groups of generators
directly from the system state matrix were presgmg101, 115].

Once coherent groups of generators in a power raysie identified, generators in the
same group are aggregated and reduced to a siggieakent generator. DYNRED contains
several weighted-average and least squares fregudmmain algorithms to compute the
parameters of the aggregated generator as wetk aomntrol models [116]. The simulation
program Network Torsion Machine Control - NETOMACL11[/] integrates an
optimization/identification mode [118] for solvingeveral optimization tasks and parameter
estimation problems. With a modified Gauss-Newttgothm readily integrated, network
reduction can be executed under the dynamic camditeither in time or frequency domain in
coping with the nonlinear nature of the system Iwed. In addition a newly developed
dynamic coherency approach determines coherentraeng on nonlinear basis in the time
domain using cross correlation techniques, takiggachic characteristics of the system
involved into consideration [63].

More recently ANN based models were proposed 9 [1P0] to directly derive dynamic
equivalents from measurements at points connebbitly the study and external subsystems. In

these works a neural network is used to extradestaf the reduced order equivalent and
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another neural network is used to predict the nites values of the external system. Similar
methodologies successfully applied to derive dyragquivalents for large power systems are
also presented in [121, 122]. In these works thiereal system is represented through an
input-output formulation and only one neural netvisrused to predict its dynamic behaviour.

Although the research in dynamic equivalencing atates back to 1960s, few mature
industrial analysis tools have been available, igddecause of the rigorous requirements to
handle the complexity of modern interconnected pasystems [77]. In fact three decades of
research effort resulted in two industrial softwpaekages, DYRED and NETOMAC.

From the background of the existing techniquesdoveé dynamic equivalents for large
power systems, one can say that with the excepfi@ome earlier heuristic methods, many of
the proposed techniques can basically be relatédetdollowing categories: Modal analysis,
coherency based approaches and techniques that @laerive dynamic equivalents from
measurements also called system identificatiod2®] 121, 123, 124]. A general overview of

these techniques is presented in the following ettins.

3.3 Conventional dynamic equivalencing techniques

Conventional dynamic equivalencing techniques imedhose methodologies that have
been widely used to build dynamic equivalents fonwentional power systems. Although
coherency based approaches have been very popubat, often coherency recognition is

performed using modal analysis, as described ifall@ving subsections.

3.3.1 Modal analysis

Modal analysis approaches are traditionally basedaolinearized description of the

external subsystem dynamic model,

%x(t)= Ax(t) + Bult)
y(t)=Cxt)+Du(t)
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which is obtained through the Taylor expansionha tlassical state space model around a
steady state operating point. After linearizatimmihant modes are identified and the model
reduction is achieved by neglecting the non-dontinamdes.

Therefore, modal analysis techniques attempt taaedhe size of the complex nonlinear
representation of the external subsystem by buyldanreduced order linear state space
equivalent model, while the detailed representatbrthe study subsystem is retained, as

schematically represented in figure 3.1.

External Subsystem

Internal Subsystem % % % %
Vo

Boundary
buses

Internal Subsystem

% % Dynamic equivalent

8 dx, _
=A% *Bu

i Boundary
buses

Figure 3.1: Dynamic equivalencing based on modal atysis approaches

The dynamic equivalent is then a reduced ordemtirstate space model, often called a
modal equivalent [125] or simply a reduced ordedei$126].
Modal approaches can be interpreted as performigiyen transformation on the system

matrices yielding

55



Chapter Il — Dynamic Equivalencing Techniques

{[A] [B]} o &) [a @2

P G ol ol

where A and A, contain ther dominant and respectively tHa—r) non-dominant modes of

A, defining then the reduced model on the basishig partitioned representation, as
represented in figure 3.1.

As modal analysis methods are typically based am lthearization of the external
subsystem, the obtained dynamic equivalents aredimettly integrated into most standard
simulation programs, as already mentioned prewouShus they require data converting
from/to a simulation program for receiving the étithed operating point and for verifying the
results. Although the inputs and outputs of thednmzed model vary from one approach to the
other, a typical methodology is based on the Nomaalel, in which boundary bus voltages are
used as inputs to the linear model and the ougmetinjected currents [127].

Depending on the external system properties thae ba be retained in the reduced order
model, different model reduction methodologies banapplied. Hence, there are techniques
based on directly identifying and preserving certaiodes of interest — Modal truncation [71,
72, 128, 129] — or based on the SVD, such as batanealizations [130], focusing on the
observability and controllability properties of thgystem, and optimal Hankel-norm
approximation [131], which tries to achieve a coampise between a small worst case error
and a small energy error [132]. Singular pertudraitheory [133, 134], exploits the different
time scales of power systems. Another family of alaghalysis approaches is the moment
matching methods in which the property of interseghe leading coefficients of a power series
expansion of the transfer function of the redugexdesn around an user defined point that have
to match those of the original system transfer fiomd126].

Modal analysis methods have been applied to detywemic equivalents for wind parks
under transient situations. These reduced ordeels@de able to retain the wind park relevant
dynamics with respect to the utility grid, takingta account the effect of wind speed
fluctuations, which constitute small perturbati@eund a steady state operating point [132].
Singular perturbations theory presented betteopmdnce [135].

More recently, in [136], the balanced realizatiagashnique was used to build dynamic
equivalents for a small distribution network contag different DG units suitable to describe
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its dynamic behaviour with impact to the high vgkdevel. As the electrical distance from the
fault to distribution network is significant, it @nsidered that all dynamic elements connected
to the distribution network can be represented witfficient accuracy by linear models.

A brief overview of the most commonly used lineaséd approaches is given in the

following subsections.

3.3.1.1 Modal truncation

Modal truncation is one of the first reduction stles that has been applied to electric
power systems [72]. This technique is based on fmmlation of the linear system and the
reduced order model is then obtained by neglet¢tiagast decay poles and/or those associated
with high frequencies.

For this purpose, the matrid of the state space model should be described ghrthe
Jordan diagonal form, so that the state variabkes teansformed into modal variables
corresponding at each Jordan block one pole latafibie state space matrices are further
transformed in order to take the form given by Y&&d the reduced order model can thus be
obtained by eliminating the non-dominant modes @ased with the fast poles. However,
either poles with very high absolute values, asgediwith high frequencies or poles with high
real parts, in turn, related with fast decay resgsn are formally defined as fast poles and
therefore a suitable definition is required.

The selection of the modes to be eliminated is afdld problem. On the one hand, a
suitable definition for rapid pole requires prewsoknowledge about the external subsystem
features, which indicate what are the dominant mo@m the other hand, the suitable order
determination stage lacks from an effective criteriSince the model order is the key issue in
a successful modal equivalent development, modaké#tion is a very dependent application
procedure. Moreover, although modal truncationhisugh to be well suited to steady state
applications because the fast dynamic phenomenaesglected, a good performance in what

concerns the transient behaviour is not expected.
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3.3.1.2 Balanced realizations

As already mentioned previously, balanced reabnatiare based on the input-output
properties of the external system. The linear stptee model is transformed through a special
coordinate transformation into a balanced statecespaalization, which preserves several
important properties of the original representgtisnch as the Hankel singular values, the
Hankel-norm, both controllability and observabilifgroperties and also the balanced
relationship between both the input to state behavand the state to output behaviour, while
provides a rank ordering of the Hankel singulamueal [80]. The reduced order model is thus
obtained by truncation of the states that are weadhtrollable and observable, corresponding
to small singular values, whereas the states adedcivith the large singular values, which are
strongly influenced by inputs and simultaneouslsorsgly connected to the outputs, are
retained.

Given a system described by the linear state spam#el (3.1), its controllability and

observability GramiansQ and P, respectively, are defined as the single solutiohshe

following Lyapunov equations [135]

3.2)

AQ+QA +BB' =0
ATP+PA+C'C =0

The square roots of the eigenvalues of the prooluitte two GramiansQP, are called the

Hankel singular values decomposition of (3.1) arel@mmonly denoted by . The largest
singular value characterizes the Hankel norm [137].
According to Moore [130], balancing the linear stapace model (3.1) means to find a

linear coordinate transformation, such that, fa@ thansformed state space model, both the

observability and controllability Gramian®, and Q, respectively, are identical
P=Q=% (3.3)
where

)o,20,2...>0 (3.4)
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Based on the Hankel singular values, the balancedemcan be divided into two
subsystems like (3.2); one associated with theelaiggular values and the other associated
with the small singular values. Therefore, theestaiorresponding to small singular values are
eliminated and the reduced order model is thusribest through the subsystem associated
with the dominant or large singular values. HoweVi&e in modal truncation, the point of
demarcation between large and small singular vatuesst often doubtful.

Although producing good approximation of transieasponse, the main drawback of
balanced reduction methods is the high reductioorerat low frequencies, so that these

methods are not well suited for steady state apipdios.

3.3.1.3 Optimal Hankel-norm

As already mentioned in the previous subsectiorHéawekel-norm is defined as the largest

Hankel singular value of the system (3.4),
If the system described by (3.1) is denoted&{y), the reduced order method based on the
Hankel norm attempts to find a discrete sys@(h), with k < n, which minimizes the Hankel

norm of [G(n)—G(k)], minimizing thus the error for the worst case [[131

Since both optimal Hankel-norm and balanced retidiza share the same limitations, it is
expected that the reduced order model thus obtadte$ not describe the steady state
behaviour. Generally SVD based methods are harppliGgable to systems of very large
dimensions, since singular values of the unredwystem have to be computed and such a

computation might be cumbersome for systems otlarger [135].

3.3.1.4 Singular perturbations theory

The applicability of the previous modal analysishi@ques is restricted, in the sense that
both the Hankel norm and balanced realizationsnatesuitable for steady state applications
while a good performance of the application of mdrdancation in what concerns the transient
behaviour is not expected, as referred in prevaussections. Moreover, due to the lack of an
efficient modal dominance analysis procedure, modahlysis methods become very

dependent of the specific system. Singular pertioha theory seems to be more general,
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namely in what concerns the prediction of both dyestate and transient behaviour of the
systems [132].

The interaction of fast and slow dynamic phenomaradetailed model of power systems
results in stiff numerical problems, which requingensive integration routines. In this sense,
a singular perturbation approach alleviates bothedisionality and stiffness difficulties. First
the model order is lowered by neglecting the fasnmmena and further the approximation is
improved by reintroducing their effect as “bound&yer” corrections calculated in separate
time scales [133].

The underlying assumption is that during the faahdients the slow variables remain
constant and that by the time their changes becontieeable fast transients have already
reached their quasi steady states. Based on th&s gteady state assumption and experience,
the state variables are divided imoslow statesx and m fast statesz, so that the full scale

model can be written as [134]

dx

i f(x zt), x(t,)=x° (B.5
d—Z:G(xzt) 2(t,)=2° &3
dt e e '

Then, only the statez are used for short term studies by neglecting taeations
described by (3.5) and considering the stateas constant parameters. In long term studies

only the statesx are used and the differential equations forare reduced to algebraic or

transcendental equations by formally sett%\fg: 0. The quasi steady state model is thus

dd—);s = f(x,z,t), x(t)=x° (3.7)
0=0G(x,, z,t) (3.8)

An inconsistency of this classical quasi steadyestgpproach is the requirement that

equals a constant, as implied %ztizo, is violated by (3.8) which defineg, as a time

varying quantity. Furthermore, the initial conditidor z had to be dropped in (3.8), since
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there is no freedom to satisfy it. If a quasi steatite model fails to provide a good
approximation of the actual solutiox(t) and zt), there is no provision for improving the

approximation [134]. The singular perturbationsrapgh provides a tool to overcome this lack
of provision that characterizes other reductioreotdchniques [132, 134].

Assuming thatt is properly scaled for the slow phenomena, a riewe tvariable, 7, is
introduced and scaled for the fast phenomena. atie of these time scales is a small positive

parameterg , which allows the definition of the new time vdiia 7 as:
r=—— (3.9)

The wider the separation of the time scales, thalleme will be. On the other hand, the
smaller¢ is, the largerr will be for a given(t —t') interval. Whenr is sufficiently large, the
fast phenomena have adequate time to reach theadyststates, which, however, does not
contradict the assumption thétt—t') is sufficiently short to consider the slow vareblas

constants. Thus, the limit of -~ & equivalent to the quasi steady state assumpition

without its inconsistencies [134].

If it is known that the dynamics of the stalzesare1 times faster tharx, then:i:—tZ is about
£

L times larger than(g and G can be rescaled as
£

g= G (3.10)

such thatf and g are of the same order of magnitude. The model) @l (3.6) then

becomes
dx _ 0
o f(x, z,t), x(to) =X (3.11)
dz _ 0
£qi” a(x,zt),2(t,) = (3.12)
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The above qualitative reasoning is based on somgrieal estimates ofi( and dz

dt
When this information is not available, then phgkiparameters are examined to determine
which states are slow and which are fast. Not eehpjce of state variables will be separable
in this sense. Where separable, a model (3.112)3vill be obtained by expressing the small
time constants and the inverses of the high gaefficeents as multiples of a single small

parametere .

In the limit £ ~ 0, the model (3.11) and (3.12) defines the quasidstestatesx_(t) and

z(t), in thet time scale, as

%= F(xzt), x(to) =X° (3.13)
0=g(x,2,t) (3.14)

To obtain the fast parts of and z, (3.13) and (3.14) can be written in the fast tgoale

.
X _ g (x,z,t"+er) (3.15)
dr
dz ,
G g(x, z,t"+er) (3.16)

When £ - 0 x is constant in the fast time scale and the on$t fariations are the

deviations of z from its quasi steady state,, z, =z-z. If £=0 in (3.16), the fast

subsystem can be written as

dz

“dt = g(xo, z; + 2, (T)’to)’ Z; (O) =2-z (3.17)

With (3.13) and (3.14) describing the slow stated €.17) associate with fast states, the

approximations forx and z are then given by

x(t) Ox(t) (3.18)
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) 02,02 19

The application of singular perturbations theorpwas to eliminate the inconsistencies of
the classical quasi steady state approaches tol memtiection due to the presence of the scaling
parametere .

While the full order models (3.11), (3.12), (3.26)d (3.16) are exact, the separated lower
order models (3.13), (3.14) and (3.17) are in erb@cause they assunze= , Mistead of
£>0. This parameter change is called singular pertimbasince it results in an inherent
perturbation in model order. The approximationd&3.and (3.19) can now be improved by
constructing asymptotic expansions&r134].

Concerning to the parameter, the problem now is to find a criterion to detammithe
separation between slow and fast states. In faetetis no general parameter definition.
Rather, the identification of the parameterdepends on several issues, such as experience
acquired previously with the detailed system mawag]l physical intuition that indicts the
possibilities of choices or also preliminary anaythat will provide the selection bases. In
order to reduce the model order it is supposed ¢&w0. However, it should be taken into
account that this parameter is neglected only foma because the fast transients owing the
parametere are subsequently introduced through an adjustroénbe frontier conditions
[132]. Due to this fact singular perturbations seenbe more general when compared with
modal truncation and balanced realizations, nanrelywhat concerns the prediction of both

steady state and transient behaviours, as alreadjioned previously.

3.3.2 Coherency-based methods

Linear methods cannot properly capture complex nhyos of power system, especially
during major disturbances, such as critical faultisus, dynamic equivalents established to
provide the desired performance at a small signabition might not guarantee acceptable
performance in events of major disturbances. Theeefnonlinear approaches, also called
coherency-based methods, have been proposed aety wiskd to reduce the computational

effort associated with the study and analysis ofgrosystem dynamics.
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Methods belonging to this category depend on tle@ncy concept to recognize coherent
properties between generators, as already mentipnedously. Coherent generators are
grouped in order to be further replaced by one\edeint machine, which it is expected to
represent its dynamics of interest [75, 116, 1X8ith this approach the obtained dynamic
equivalents are based on nonlinear models similathé replaced machines but with new
parameters resulting from its aggregation and hetimgy are compatible with other
components of the network. This fact can be vieag@n advantage, since it allows an easy
attachment of the dynamic equivalent to the intesnhsystem detailed model and, as a result,

a direct integration of the standard dynamic simmometools as depicted in figure 3.2.

External Subsystem

gL

il R
T=T0 I;w

! !

Internal Subsystem Dynamic equivalent

PEE o,
i

buses
Figure 3.2: Dynamic equivalencing using coherencydsed approaches

Internal Subsystem

The computations of coherency based methods cadiviided into three separate and
independent stages [66]:

1. Determination of coherent groups of generators;
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2. Aggregation of coherent generators within each &itegroup onto one equivalent
bus;
3. Elimination of the remaining buses by network reoturc

Based on a suitable coherency measure, generafoesent with others are recognized and
included in the same group according to a pre-ddficriterion. Groups of coherent generators
are aggregated into one equivalent machine andstathe network is reduced.

As already mentioned previously, in section 3.2herency recognition procedure is
typically based on a linearized model of the enpmwver system. Then, in the following
subsection, this model is presented and afterwiardsibsections 3.2.3.2, 3.2.3.3 and 3.2.3.4,
common procedures to carry out each one of therenobg based methods main stages is
briefly addressed.

3.3.2.1 The mathematical model

Concerning with coherency recognition and groupdfigcoherent generators purposes, a
simplified and linearized model is used to descth® dynamic behaviour of a power system
under transient conditions [85]. This model hasftlewing features:

* The classical generator model is used to représergynchronous machines;

* The power system model is linearized;

« The decoupling between active power phase angleraactive power voltage
magnitude is assumed.

The linear model is usually justified consideringatt coherency properties between
coherent generators are approximately independahedalisturbance magnitude as well as of
the amount of detail in the generating unit's medédlherefore linearized equations of the
network and the classical model of synchronous imashhave been used to reduce
computational efforts without significant loss aicaracy regarding coherency recognition and
subsequent grouping of coherent generators [64].

The classical synchronous generator model, widegduor a simplified analysis of power

system dynamics, assumes that neitherdheaxis armature current, nor the internal emf

E, , representing the excitation voltage change veughnduring the transient state. In this
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model the generator is represented by the swingteguand a constant enf' behind the

transient reactanc, [138], as follows.

4074 (3.20)
d
M, —w =P -P.-D (3.21)
Idt ( mi gi i"M

%Ad, =wAw (3.22)
M, %Aw, =APR, —-AP; -DAw (3.23)
where:

deviationsA are counted from the specified pre fault steadiestperating point;

M represents the inertia constantpm. ;
a represents the angular speedoin.;
w, represents the synchronous speethh/ s;

O is the rotor angle imad ;

D denotes the damping coefficient pwu. ;
P, is the mechanical input power . ;
P, represents the electrical output powerpio. .

The linearized decoupled load flow equations aexus represent the network [64]. The

changes in active electrical power vectéf§ and AR at the generator internal buses and at

both generator terminal and load buses, respegtivah be expressed in the matrix form as

8P, ]_[Hy Hyl [20 -
{AFJ_ Hy  Hy {AH} (824

66



Chapter Il — Dynamic Equivalencing Techniques

whereH , H,, H, and H, are sensitivity sub matrices obtained from theiglderivatives

g9’ gl

of active powersP; and R with respect to the generator internal bus vol@ggles,d, and to
generator and load bus voltage angis,

Underlying assumptions in (3.24) are that the ckanig active powers with respect to
voltage magnitudes are neglected and the partialadwes or sensitivity coefficients are

calculated using the voltages and angles at théapifesteady state operating point.

3.3.2.2 Determination of coherent groups of generators

For a given disturbance, a group of generatorefsied as coherent if every generators
within the group oscillate with the same angulagezpand terminal bus voltages in a constant
complex ratio [64].

According to [138], two terminal generator busesind j are said to be coherent for a

disturbance occurring at tintg if

Vi(t) ilawre ] — Vilto) ilato-a ) —
—oLe TR = S Ase T R = 9 forall t >t (3.25)
vt v(t) Vi (t,) °

If the voltage magnitude can be assumed to be aonghe coherency condition (3.25)

simplifies to

g(t)-6,(t)=6(t,)-6,(t) = ¢ (3.26)

J J

for any constant.
As with the classical model of generators each iggae emf behind its own transient

reactance is assumed to be constant, two inteer@rgtor nodes and j are coherent if the

transient rotor angles satisfy the coherency caml({8.26) [138], that is

a(t)-0,t)=3a(t)-0,{t,)=c forall t=t, (3.27)

J
for some constant . This condition is equivalent to

NS (t) = A8, (t) for all t >t (3.28)
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where Ad (t) = & (t)- 5 (t,) and Ad; (t) = 4, (t) - 3, (t,)-

J J
Thus, two generators are coherent for a given iiiahce if the response curves of their
rotor angles have identical wave shape and a ggbgpnerators is said to be coherent if all the
generators within the group are pair wise cohengthitin a given tolerance.

For a small time increase the rotor angle of ganesa and j could be approximated as
S(t+at)=4(t)+wt)at andgs,(t+at)= o, (t) + w (t)at (3.29)

where a),(t) and a)j(t) denote, respectively, the rotor speeds of generatand j at the

instantt. Thus
5, (t+at)- 5, (t) = (w(t) - o ()t (3.30)

where g (t +At) = & (t + At) -, (t+At) and 5, (t) = 5(t) - 5, (t) . Then, for a fixed time interval,

two generators are defined as coherent if
@(t)= o () (3.31)

From the previous coherency conditions, (3.26R{Band (3.31), the following coherency

measures arise for two generatorand j :

o:(t)—aj (t) = constt £ for t >t, (3.32)
85 (t)-A0(t) < & for t=t, (3.33)
@ (t)-e(t) < o for t=t, (3.34)

where £ and o denote tolerance parameters. Therefore both eotgles and speeds can be
used to recognize coherency between pairs of gemgra

However, coherency based methods will only givedvedsults if following a disturbance
inside the internal subsystem the generators witach coherent group are effectively

coherent. Therefore, the main problem is how tessthe coherency between generators.
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In section 3.2 it is highlighted that two major apgches have been used to recognize
coherency between generators: The first one ippbyaa disturbance directly and observe the
swing curves of the generators. The second one asgess generators coherency without the
need for time domain simulation, that is, to eveduaoherency properties independently of the
disturbance [92]. Analytical methods, such as wigads coupling [115] and slow coherency
[88, 89, 92, 139, 140] have been used for this gae@nd were also included in the DYNRED
software package [118].

Linear time simulation is the classical methodheak coherency between generators [75].
It involves mainly the numerical integration of tleearized power system dynamic equations
presented in subsection 3.2.3.1 and then processimgr the rotor angles or speeds trajectories
by a clustering algorithm in order to form grougsoherent generators. Based on the fact that
the high computational effort involved in this medhmay offset the advantages of the
dynamic equivalencing strategy, simple and direetednination of coherent generators
without explicitly solving the system dynamic eqoas have been reported in the literature.
Most of them are based on the parameters of thesfal network matrix that links the
boundary buses with the generator nodes of therrettesubsystem [138]. Therefore the
following formulation should be considered.

As already mentioned previously both study andresiesubsystems are linked through the

tie lines which connect the boundary buses to xtereal subsystem as depicted in figure 3.3.

Boundary nodes ’4* * * {
wl [ 1% o>e

o~—]
Study  e———e{ 11— External 0——0-4—@—@)
subsystem : : . subsystem : :
{8} 1 I
Tie lines

Figure 3.3: Schematic representation of the externagubsystem

In what concerns to the external subsystem, theects' |l ; flowing through the tie lines
become the injected currents of the boundary noélesll the generators are represented by
the classic model and considering that all the loades have been eliminated, the incremental
decoupled active power flow equations (3.24) cawbten as
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AR | _[Hee Hes] [0 (3.35)
AR, Hgs Hgg A
where AR, , AR,, Ad and A@ represent increments of the active power and aragléoth the

internal generator and boundary buses, respectively
All the generators in the external subsystem apresented by the linearized swing
equations (3.22) and (3.23) and the following agstions are considered [44]:
» During the period of interest, the mechanical poiw@onstantAP, = 0

« Damping terms does not affect natural frequenanglscan thus be neglected.

Under these assumptions, equation (3.23) simplifies

d2

M. —
' dt?

AS =-AP (3.36)

Any disturbance inside the study subsystem inflaesnthe generators in the external
subsystem through the tie lines and boundary busesn the external subsystem point of

view, the disturbance is caused by a change iwvaltage angle of boundary bus from the

initial value & to a new valueg, = & + A8, . According to [138], as the voltages at generation
nodes are kept constant the network equations)(3iBtplifies to AP, = H A8 and thus, the

change in angl#), provokes a change in the power generation ai lcual to
AR(AG,)= -h A6, (3.37)

where h, =V, B, codd’ -&°) is the synchronizing power between a given geoeidf{G}

belonging to the external subsystem and a givemdsmy busk O{B}. V, andV, are the

magnitude of voltages at busesind k , respectively,B, is the line susceptance and bath
and &’ denote the initial values of the voltage anglesusesi andk, respectively. Therefore,

equation (3.36) can be written as

d? d? h,

M;
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Thus the considered disturbance yields the rotoelacation of generatar

__R(86) _h,
: M. M.

A8, (3)39

A similar expression for acceleration can be wnitter another generator in the external
subsystem

AP (AB,) h,
£ = J|\5| ) :|vik. NG, (3.40)

] .
i i

Generatorsi and j are coherent if their rotor acceleratioss and &; caused by the

disturbance are the same, that is when

he _hye o
MM for i, j 0{G}, kO{B} (3.41)

J

Equation (3.41) constitutes the coherency conditioring the post fault state and means
that the synchronizing power divided by the inecoaistants must be identical.

Taking into account that coherent generators hagte ¢toupling coefficients among them,
in the weak links method the coherency is deterthimeanalyzing the coupling coefficients of
generators in the system state ma#i}{115].

On the slow coherency methods the coherency retogsiamong generators is based on
the modes of the system. The power systems netwgopiartitioned into groups containing
coherent generators based on the two time scaleoch§88]. The fundamental idea is based on
the concept that a slow oscillation is caused by groups of strongly coherent generators
interconnected through weak ties. Thus, the cologrbéetween two generators can be easily
checked by means of the eigenvector associatedthetimode of oscillation [118]. Using the
state space matrixA, the slow eigenbasis matrix is calculated and themost linearly
independent rows of this matrix will become theresponding reference generators. A
grouping algorithm is then applied to group nonerefce generators to the reference
generators [92]. This method was applied not ootygenerators [140] but also for generators

and weak tie lines [92].
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Slow coherency methods describe an algorithm falt fimdependent area grouping, by
selecting only the lowest electromechanical modékenlinearized model [139]. The tolerance
based slow coherency method is similar to the previtwo time scale method, but includes
additional constrains to ensure that widely separgenerators are not aggregated [89]. Both
methods require the computation of selected eigaasaand eigenvectors of the full system
and therefore, the modified Arnoldi eigenvalue solid41] was added to allow the application

of these methods to large power systems.

3.3.2.3 Aggregation of generating units

In this stage each group of coherent generatotdtirgg from the application of any of the
methods described in the previous subsection agesggted in order to be replaced by one

equivalent generating unit to be connected in peria the equivalent bus [138], as depicted in

figure 3.4.
{8} Y o6 (8}
Detailed @ @ Reduced
network of network of the &,
the external @ C {Gz} 3 external @ C 2
. subsystem —0—@—@ . subsystem :
. L

Figure 3.4: Grouping coherent generators and reduaemodel of the external subsystem

As the original model of the power system contaantarge number of both load and

generation nodes already divided into coherent ggodG} ={G}+{G,}+---+{G,}, after

aggregation of coherent generators, the next stép use Zhukov’'s method to aggregate the
nodes in these groups. The load nodes are eitmpletely eliminated or aggregated into a
few equivalent nodes using Dimo’s method [138]. Sehéwo later steps are addressed in
subsection 3.3.2.4. This subsection is devotedoeh review of generating units aggregation

procedure.
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While coherency identification have been coveredeqextensively in the literature,
generator aggregation is treated superficially iostmof the works by considering either
classical models or omitting the associated contmlices [142]. However, other methods
have been developed considering not only the a@etaiiodel of the synchronous generators,
but also their control devices. Generally the méghdeveloped in the past few decades for
dynamic aggregation of the generating units carclbssified into two forms: the classical
aggregation and the detailed aggregation [143].

In classical aggregation each group of coherenemgors is replaced by an equivalent
generation unit represented by the classic modslyon€hronous generators. Under coherency
conditions, a disturbance taking place in the stadlgsystem will not provoke any relative
motions between coherent machines since they willain in synchronism. To an observer
outside the coherent area, the motions of thesénimes are seen as if they were originated
from one single machine. From the mechanical viemtp the rotors of coherent generators
can be treated as if they rotated on one commaoh sltaft [138], as depicted in figure 3.5.

Figure 3.5: Aggregation of coherent generators

A group of such generators can be replaced by qoeaent generator with mechanical

power inputP,.. and electric power outplR,, given by
I:)ma = Z I:)mi ; Rs = Z I:3si (3)42

where P, and P,, are the mechanical power input and electrical pawéput, respectively, of

the i —th generator.
As the angular frequencies of coherent generatergdantical and thus assumed to de

the swing equation of the equivalent generatortban be described as
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(imijd—“’:ipmi—iai—(ioijw@ M. 9%-p _p-pw (3.43)
i=1 dt i=1 i=1 dt

i=1

where M, and D, denote the inertia coefficient and damping of theh generator and both
M, and D, the coefficient inertia and damping of the equewlgenerator.

The transient reactance of the equivalent generadar be obtained by paralleling the

transient reactances of all the coherent generfdts

(3.44)

Concerning to detailed aggregation, if some orgatherators in a coherent group have
similar control systems, they can be aggregatedetail generator model with an equivalent
exciter, stabilizer and governor [142, 143]. Theapaeters of the equivalent machine can be
found by matching either the frequency or time dionmasponse of the equivalent unit to the
characteristics of the aggregated units. As alreadgtioned previously, DYNRED program
contains several weighted average and least sqfraggency domain algorithms to compute
the parameters of the equivalent generators araitgol models. This software package was
used in [116] to perform the aggregation of an taticin system using a trajectory sensitivity
method to tune the equivalent parameters, but tberitnms for parameter aggregation
purposes have not been extensively tested [142]. NBETOMAC software package use
iterative procedures to determine the equivalerdrpaters of generator and control systems in
frequency domain [63]. Other methods based on neati optimization algorithms have been
reported in the literature to estimate parametéithe equivalent generator detailed model in
time domain using measured data [145]. In [142,] B improved method using structure
preservation in time domain is presented. In thisthod, the equivalent parameters are
determined by structure preservation of the coiefficmatrices in time domain representation
in order to preserve the physical structure ofgbeerating unit model and its control as well
[143]. Technical literature extensively reports tise of ANN to estimate unknown parameters
of a dynamic equivalent [146]. Proper input feasuséstudy system are extracted and transient
stability indices are used to predict the inerbastant, reactances and other parameters of the

equivalent machine.
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3.3.2.4 Network reduction

Once equivalent generators are recognized and gdounpo coherent groups, the network
reduction is performed. As already mentioned pnesiyg this reduction is typically achieved
in two steps:

* The equivalent generators are inserted into théesysand the generators in the
associated coherent groups are removed. The netisorkodified to maintain the
balanced steady state power flow conditions;

« The load nodes are eliminated and/or aggregated.

These two steps are described in the following.

3.3.2.4.1 Aggregation of generating buses

After generators aggregation, their terminal buses lumped together to form an
equivalent bus, as it can be shown in figure 3Hs Dperation is performed by means of the
Zhukov’'s method [90, 138], as already mentionedviptesly. Given a group of coherent

generators{Gi}, the boundary buses of the external subsystem toale retained while the

set of coherent nodes have to be aggregated, essegped in figure 3.6. These two sets of

buses are then denoted by retair{él},, and aggregate({A}, respectively.

(6} ={R} (6)=(a (A}
— F—eo<«— —
Detailed Reduced
— v e | metworkof |, . — » e | networkof a I
the external — ) the external
subsystem : subsystem
— F—eo<«— — V.
I=Ir L I —_—

Figure 3.6: Aggregation of generating buses usinghtikov’s method

Aggregation of generating nodes must satisfy thleviong two conditions [138]:
1. It does not change the currents and voltagesndV  at the retained buses;
2. The active and reactive power injections at thevedent node must be equal to the

sum of injections at the aggregated nodgsr Z§i :
ic{Af

The transformation of the network can be descried
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I_R — XRR XRA x \lR N I_R — XRR XRa x \lR (345)
I_A XAR XAA \lA l_a XaR Xaa \la
where the subscripts refer to the appropriate set.

The first condition is satisfied when
YerVr ¥ YV A =YV +YeV, = Yo V=YV, 48)
As this condition is to be satisfied for any vecty, it must hold that

Yra = Ygra? (3.47)

V, . . .
where & :\—/—A Is the vector of voltage transformation ratioswsstn the aggregated and the

—a
equivalent nodes.
Each terminal bus is connected through an ideastoamer with complex turns ratio to the
equivalent bus as it can be shown in figure 3.7e Shcondaries of transformers are then

connected together to create the equivalent n@dand the nodal matrix equation for the
reduced network can then be derived [138].

{”}
> e |
Detailed
P network of
the external
subsystem
P
Iz

a
l v

Figure 3.7: Electrical interpretation of Zhukov's aggregation

&~

The second condition is satisfied when the injecabthe equivalent bus equals the sum of
all the aggregates injections,

Vala=Vila (3.48)
Substituting into equation (3.48), and], calculated from equation (3.45), yields

VoYV e +V, YV, =VIY Ve +VLY LV, (3.49)
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As this equation must be satisfied for any vedfqr the following two conditions must

hold
Yo =2 Yo (3.50)

Yo =8 Y (3.51)

Equations (3.47), (3.50) and (3.51) describe thmitidnces of the equivalent network. The
admittances of the equivalent branches linking éqaivalent node with the retained nodes

depend on the vector transformation ratids,and on the voltage angle at the equivalent node.

It is commonly assumed to be the weighted averageltage angles at the aggregated nodes

= '% ordg, = %M (3.52)

ID{A} A}

where S, is the apparent power injection at the aggregaiede i and M, is the inertia

coefficient of the unit installed at the-th aggregated node.

3.3.2.4.2 Aggregation and/or elimination of load nodes

For some power systems analysis problems it mayndre convenient not to eliminate the
load nodes altogether, but to replace a few of thgraquivalent load nodes after to carry out
some load aggregation procedure. The equivalergsnodn then be used to change the power
demand of the external subsystem if a change imgeflows is required.

According to [147], load aggregation can be perkdimto two ways:

1. Analytically, by lumping similar loads and then ngipre-determined values of
each parameter of the load;

2. Selecting a load model and then performing parametimation using an
appropriate identification technique.

As already mentioned previously, aggregation ofdloedes can be performed using
Dimo’s method [138]. This method is illustratedfigure 3.8 and consists of replacing a group

of nodes{A} by an equivalent node. As before{R} is the set of retained buses.
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Figure 3.8: Load bus aggregation using Dimos’s met

In the first step of transformation, some fictittobranches are added to the aggregated
nodes {A}. Each branch admittance is chosen in such a way mske the terminal voltage of

all the added branches equal. Usually these adroétaare made to correspond to the nodal

injections at a given voltage in the aggregatecesod

S . -
Yq =5 fori 0{A} (3.53)
and then the voltage at the fictitious notleis zero. As it is inconvenient to have an equingle

node operating at zero voltage, an extra fictitibtench with negative admittance is usually

added to nodd . A typical choice of the negative admittance is

<

W= —§—g, whereS, = >'S, (3.54)
Va A
This makes the voltag¥, at the equivalent node equal to the weighted aeedd the

voltages at the aggregated nodes:

- 559

ity

The auxiliary nodef is eliminated together with the nodes belonginghe set{A},
giving an equivalent network, referred to as thel REcuit [64, 138], connecting the

equivalent node with the retained node4R} .
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If the operating conditions are different from tbees for which the reduction was
performed, then the obtained equivalent will omhyjtate the external network accurately if the
admittances of the fictitious branches (3.53) cam$sumed to remain constant. For load nodes
this is equivalent to assuming that the loads eambdelled as constant admittances [138].

Dimo’s method produces a large number of fictititmanches due to the elimination of

node f and nodes{A}. As aggregation introduces a branch with negatigmittance, the

branches in the final network model may have nggatidmittances. Moreover, large nodal
injections in the aggregated nodes produce largistamce values in the equivalent branches.
Negative branch admittances combined with largestaasces may cause problems for some
load flow programs [138].

Node elimination relies on modelling loads by canstadmittances and eliminating them
by using a Ward equivalencing technique, as ilatstt in figure 3.9.

{R {E} {R
—— —e—<«— ——
Detailed Reduced
— > network of e «— — > | network of
the external 3 the external
subsystem subsystem
—_—— | F——e—<«— ——
I Ir I

Figure 3.9: Elimination of nodes

When nodes are eliminated from the network mofig}, they must be removed in such a
way that the currents and nodal voltages at tteened nodes{R}, are unchanged.

Before any nodes are eliminated the network isriteest by the following nodal equation

P_R} _ |:XRR XREj| x|:\le| (3.56)
I_E XER XEE \lE
where the subscripts refer to the eliminaf&}l and retainedR} sets of nodes. The eliminated

voltages and currents can be swapped using simgtiéxnalgebra to give

Ig — Yr K, % Ve
L_/J{ﬁv \_(:J L} (3.57)
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where
Yr :XRR_XREX;EXER’ K, :XREX;E’ Ky = _X;EXER g8)

The square matrix in equation (3.57) is the parntaérsion of the admittance matrix. The

nodal currents in the s¢R} are

I =Yg

<

R +Olg (3.59)

where Al ; = K, I ¢ is the vector consisting of the equivalent cusaeplacing the eliminated
nodes.

Equation (3.59) describes the relationship betwibercurrents and voltages of the retained
nodes in the reduced network. As any electricawagt is uniquely described by its
admittance matrix,Y, corresponds to a reduced equivalent network tlasists of the
retained nodes and equivalent branches linking thighis network is often referred to as the
transfer network and the matrix describing it as transfer admittance matrix. MatriX
passes the nodal currents from the eliminated ntmd#dse retained nodes and is referred to as
the distribution matrix. Each equivalent currendisombination of the eliminated currents.

Another form of equation (3.59) can be obtaineddplacing the nodal power injection at

2

each eliminated node by a constant shunt admittzmgs\?—‘ added, with an appropriate

sign, to the diagonal elements of the sub mafiix. The nodal injections at the eliminated
nodes then become zerb, =0, and the reduced model does not contain any elguiva
currents(Al , = 0). This is quite convenient but has a drawback. &dgvalent shunt branches

have large conductance values, corresponding toetligoower injections, which become part
of the equivalent branches in the reduced modeérdfbre, the branches of the equivalent
network may have a pooK/R ratio causing convergence problems for some libaa
computer programs.

Node elimination and aggregation can be done bgragpg the external subsystem from
the study subsystem and by making the injectecentsrat the boundary nodes equal to the tie

line currents [138].
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3.4 Dynamic equivalents derived from measurements

Taking into account that analysis of transientsofisgreater importance for successful
planning, operation and control of large intercariad power systems, industry trends and new
technologies have changed the methods used by Eys&mMs engineers for this purpose over
the last decades.

In recent years, the desire to increase efficiemitly concomitant reduction in both energy
costs and losses as well as both the ongoing dateguof the power utility industry and the
interest in connecting generation to distributedwoeks will change the main issues in
modelling and control of power systems for sevezakons [148]:

* The increase of both complexity and number of camepts with relevant dynamic

behaviour will increase the complexity of models;

» Technical advances in sensing, communication antpatational capabilities allow to

exploit alternative techniques.

In response to the need to accurately analyse yhandgcs of such power systems, the
development of adequate dynamic equivalents fdsmdrthe power system that are not in the
primary focus of the study are required. Benefitmigthe communications and computer
technology to maintain a stable system operatianh snodels will have to be derived and
validated from locally available prior informati@md measurements. In fact the availability of
measurements opened a new research route in lhefipower systems dynamic equivalents
[119-124, 148].

Techniques based on measurements have been edptiteild dynamic equivalents for
conventional power systems and for distributionmoeks with large penetration of DG. The
different reasons that motivate their applicatiorthiese two application fields are outlined in

the following two subsections.

3.4.1 Dynamic equivalents for conventional power systems

The application of measurements based techniqueButid dynamic equivalents for
conventional power systems has been based on twomuivations. First, while most of the
power systems components can be modelled by comsidthe physical laws that govern

them, aggregating power system loads in order t@aimbmanageable models suitable for
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dynamic analysis and simulations at high voltagelk is quite a complicated exercise due to
the absence of precise information. Therefore, ohéhe most reliable ways to obtain an
accurate model is to apply an identification teglei [147, 149, 150].

Taking into account that conventional dynamic egléxcing techniques require a
considerable amount of knowledge about the exteulasystem, as it can be concluded from
section 3.3, the second motivation relies on tleetfzat in some cases the available knowledge
may be not enough to develop accurate and reledplesalents [119]. This is true especially in
detailed aggregation with the development of edaiMaregulators, such as suitable AVR and
governors for the equivalent generator [44, 151heW there is the need to improve the
dynamic equivalent, the tuning task may prove difti since there is little indications about
which parameters should be adjusted [152, 153]theck is still no common approach to
analyse the identifiability of nonlinear models [30’he industrial experience is also that
dynamic equivalents derived from one class of eventypically not very successful for other
classes [66, 77].

In order to overcome these difficulties, an altéuea to conventional dynamic
equivalencing techniques is to directly derive dyitaequivalents from measurements at
points connecting the study subsystem with the medes that will be reduced. Similar
procedures have already been adopted for aggregatioads, as mentioned previously. These
methods aim to estimate a set of parameters belgrigia model that is assumed to represent
the external subsystem, based on measurementgpoftant signals. This kind of techniques
has the advantage that detailed information okttternal subsystem is not required. However,
the key issues are the parameterization of theetargpdel and the quality of the available
signals.

A linearized generator model was selected for thigpose and expected natural system
fluctuations were used for parameter estimatiofilbd]. More recent works reported in the
literature proposed the use of ANN to build dynaraguivalents for large power systems,
providing a new way to answer a question presentpdevious equivalencing procedures: Are
equivalent synchronous generators a good targeeimodler all operating conditions [120]?
Following the steps of [154], and with the benefds almost three more decades of
technological advances, such as the huge develdpm&ommunications, signal processing
and computing tools, these recent works demonstiaith the feasibility and usefulness of the

methodologies based on ANN to build dynamic eqentd for large power systems. With
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these methods the dynamic equivalent is deriveth fneeasurements at points connecting the
study subsystem with the external subsystem, whwdh be reduced using ANN based
strategies.

Once identified, such equivalent of external sutesyscan be used in transient simulations
and in other analysis and control design proceduresause ANNs are used as function
approximators in a structure that assures the tvaoael compatibility with standard models
of power systems components and therefore wittsigan stability formulations [119]. Since
an ANN based dynamic equivalent is distinct fromassic procedures, these works
demonstrated also that it can work in conjunctiotihwlassic equivalents to reduce the effects
of uncertainties, improving thus the accuracy [120]

In these works a neural network is used to exstates of the reduced order equivalent and
another neural network is used to predict the nalwes of states of the external subsystem. In
more recent works [121, 122], the external subsysie represented in an input-output
formulation and only one neural network is usedptedict dynamic behaviour. The basis
concept underlies the replacement of the nonlimeramic external area, considering all
power system components, i.e., generators withralbeits, by an ANN, which is connected to
the study subsystem through tie lines and bountasgs. Using the ANN-based approaches
the classical steps of dynamic equivalencing arétedh[122]. Simulation results proved the

robustness of these approaches.

3.4.2 Dynamic equivalents for distribution networks with DG

Nowadays the number of dispersed generators isiggorapidly [136]. In the near future,
it is expected that a considerable number DG wniifis significant capacity will be connected
to the existing distribution systems [123, 124] pfgximating the dynamics of these networks
using passive lumped loads, as it was done befmks the accuracy to simulate the dynamic
behaviour of these systems with respect to the khimglage areas on large interconnected
networks [124]. Therefore, replacing distributiopstems that comprises a large number of
active components with suitable dynamic equivaléntessential for power system dynamic
analysis [155]. This arises not only due to the potational time saving but also from the
difficulties of modelling a large number of actiseurces within the distributed area.
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The classical methods to build dynamic equivaléwatge been developed for transmission
systems with relatively small number of large syondous generators concentrated into a few
areas. In contrast, DG units are numerous andimitetd only to synchronous generators.
Many of them are based on induction machines, asepelectronics and have quite different
control systems which can be hardly aggregated][18@reover, term coherency widely
adopted by classical reduction methods becomesaaoteaningful since induction generators
do not have synchronizing torques and power eleirinterfaces can almost completely
separate, in a dynamic sense, the generator fremettwork.

Therefore, some works reported in the literatugpsed strictly mathematical techniques
originated from system theory to develop dynamiaigents for distribution networks
considering mainly the impact of such active urots the dynamics of the high voltage
networks and, at the same time, reduce the simulétnes.

As already mentioned previously, in [136] a balahoealizations method with truncation
performed through singular perturbations theory waggested and successfully applied to a
small distribution network. However, taking intccaant that some restrictions may arise when
applying this method to high dimensional systens6]land based on the fact that linear
models provide a limited accuracy to represent ineal dynamic distribution systems
integrating a large number of different DG unitghmeffective dynamic impact when major
disturbances occur in the study subsystem, oth#roesi developed a new equivalencing
procedure that uses measurements provided by eanlitime simulations. Then, a generic
nonlinear dynamic equivalent model based on rent®&IN is presented and used to replace
such a distribution system in [123, 124].

The development of such dynamic equivalent didatdigate to specify a particular model
configuration in advance. Rather, the target masl@efined through both the structure and
parameter description of the ANN. Concerning thek laf detailed information and the
difficulty of modelling a large number of differeattive sources, this can be considered as an
advantage. However, the authors recognize the foeedeasurements only at boundary buses
between study and external subsystems as the rdaami@ge of this dynamic equivalent. In
addition, the accuracy of the developed model issmgnificantly affected by changing the
operating point and hence it is not restrictedeidain initial power flow conditions. Once well
trained and tested, the ANN based dynamic equival@m be used in simulation, analysis and

control design procedures [123, 124].
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3.5 Some remarks of dynamic equivalencing techniques roerning

suitable dynamic equivalents for MG

Although research of power systems dynamic equiNsldates back to the late of 1960’s
[83, 157], the work in this field still continuingday. This is not only due to advancements in
power system dynamic simulation software, but alse to fast changes in power systems
composition and operation. In fact, large-scaleesptead of DG connected to the distribution
networks leads to a gradual transition from theentrvertically-operated power system, which
is supported mainly by several big centralized gatoes, into a future horizontally-operated
power system, having also a large number of sroathédium size generators and therefore it
will be not possible to neglect the dynamics introed by generators connected on the
distribution network with respect to the high vgkalevels as referred in section 3.4. At the
same time, detailed modelling of the whole powestesy is not practical due to computational
and time constraints. Therefore, finding dynamicieajents for distribution networks with
DG will become more and more important [123, 1235]1

On the other hand, large deployment of microgermrain LV networks under the
framework of the MicroGrid concept described in miea 2 will extend the philosophy of
horizontally-operated power systems to the LV lelzekcal equilibrium of load and generation
in combination with the MG hierarchical control litecture, inverter controls and storage
devices allows to operate the MG autonomously l&kephysical island. In turn, large
deployment of MG, connected on several adjacentfd®ders, coexisting with MV loads and
DG units, will extend the MG operation flexibility the MV level through suitable control
schemes, leading with the MMG concept also presemtehapter 2. MMG will operate with
cooperation with the whole power system resultim@ imanageable network, which can also
be operated autonomously.

In order to operate a MMG reliably, namely wheisibperated in islanded mode, transient
stability analysis should be performed at the MVele Taking into account the possibility of
having many MG connected to the MV network, an hiljimensional system will arise and
therefore the use of detailed models that are #blaccurately simulate the MG dynamic
behaviour with impact to the MV level will becometnpractical due to the considerable
computational effort required to solve the resgltsystem of nonlinear differential equations,
as already mentioned previously. Thus, in ordesttmly the relevant dynamics of several MG
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with respect to the MV networks, it is necessarggeed up numerical simulations with limited
technical resources and therefore the developmfedyramic equivalents for MG is required
[16, 17].

For this purpose, the MG should be envisaged amtaatlable and active cell similar to a
controllable active source connected to the MV wekwwhose dynamics have an effective
impact with respect to the MV network. Thereforlee dynamic equivalent to be developed
will replace the MG detailed model, which is assdnte be the external subsystem, by a
reduced order model according to the following gliites:

« The MG dynamic equivalent must be an accurate septation of the detailed
model concerning the transient analysis to be pewd;

* The cost of building the dynamic equivalent mustniech smaller than the cost of
performing the transient analysis using the MG itetanodel;

* The obtained dynamic equivalent has to be intedratéo dynamic simulation
tools.

When compared to a conventional power system, M@ h® centralized synchronous
machines. Rather, although their lower dimensibffs,can comprise many microsources with
quite different technologies connected at seveusleb of the LV network through inverter
interfaces. In addition different MG can have qud#ferent compositions and to obtain
detailed information about all of their componentidl be a difficult task. Therefore, in the
following subsections the dynamic equivalencinghtegues presented in this chapter are
assessed regarding their applicability to buildadgic equivalents for MG, taking into account

their main features.

3.5.1 Modal analysis

The power systems model order reduction using firesed approaches represents a
simple task in spite of the long computing time uieed when dealing with large
interconnected power systems. However, the linemeth approaches have the following
drawbacks:

* It is difficult to define the modes, which could bafely eliminated without affecting
the results. The reduced order model will not beqadte to study some modes if

their dynamics are cancelled during the reductiacess;
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* The results are accurate only around the opergtiigt at which the reduction has
been developed and will not adequately represensybtem when the operating point
moves away from the base case;

* Some restrictions arise when applying this metloostitongly nonlinear problems;

Furthermore, the weaknesses pointed out in subse@i4.2, concerning distribution
networks with high penetration of DG, will extenor fdeveloping MG dynamic equivalents
purposes. In addition considering the MG dynamid wespect to the MV network as small
perturbations around a steady state operating poishtrepresenting all the MG components by
linear models will lack the accuracy for the resigtMG dynamic equivalent.

3.5.2 Coherency based methods

Coherency based methods allow to build nonlinearadyc equivalents for conventional
power systems. As described in subsection 3.3esetimethods are based on the coherency
concept and all methods for coherency recognititalyse the electromechanical behaviour of
the synchronous generators, which is described dvgr rangles or speeds based on the
linearized model of the entire power system. Thes&bles are not suitable for MS since they
are connected to the LV networks through power tedae interfaces. Furthermore the
dynamic behaviour of several MS, such as fuel cafid PV is not characterized by rotor
angles or angular speeds. Therefore, coherencyl lmasthods do not make sense for MG. On
the other hand, since the MG is a very resistivevokk, decoupling between active and
reactive powers is not practical and therefordittearized model cannot be applied.

3.5.3 ANN based dynamic equivalents

As the main features outlined in the previous twibsgctions do not recommend the
applicability of both modal analysis and coherebhaged methods to develop suitable dynamic
equivalents for MG, methods based on power systegasaorements are assessed for this
purpose.

In contrast with conventional dynamic equivalenciteghniques, ANN based dynamic

equivalents have been characterized as approatlgEneral applicability. In fact, they have
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been successfully applied to derive dynamic eqamtsl to replace some parts of conventional
large power systems as well as distribution netwaxkmprising a large number of DG units.

The main features of ANN based methods recognisegidaantages in these previous two
applications seem to have no practical applicabiléstrictions to MG. Rather, the main
characteristics of measurement based dynamic dquoiga motivate the exploitation of
methods based on system identification theory teeld@ suitable dynamic equivalents for
MG.

3.6 Summary and main conclusions

This chapter presented the state-of-the-art of whymaequivalents in the power system
field. The conventional approaches, such as maaklysis and coherency based methods that
have been used to develop dynamic equivalentsafgelpower systems were described as well
as the main theoretical concepts and practicaésbehind them.

With the technological and organizational advanags@f conventional power systems
new requirements of classical dynamic equivalenaipgroaches arose. In response alternative
approaches, which are derived from system measutsnave emerged. These approaches
were also presented in this chapter.

In order to build dynamic equivalents suitable @épresent the MG dynamics with respect
to the MV network when the MMG is operated in islad mode, the applicability of these
main approaches to MG was discussed, taking intouat the nature of different MS and the
MG own specificities. From this discussion two meamclusions arise:

» Conventional dynamic equivalencing techniques atgractical for MG.

 Due to its general applicability, ANN based dynaneiquivalents seems to be a

promising approach.
Therefore, as a general conclusion, methodologesed on system identification theory
should be exploited in order to develop suitable Myhamic equivalents. Thus, the main

nonlinear dynamic system identification techniqaesaddressed in chapter 4.

88



Chapter IV — Development of Dynamic Equivalents for Micrd&exploiting System Identification Theory

Chapter 4
Development of Dynamic Equivalents for

MicroGrids exploiting System ldentification Theory

4.1 Introduction

System identification is the theory and art of Buigg models of dynamic systems based on
observed inputs and outputs related with some pattebehaviour [158, 159]. As a scientific
discipline it dates back to the first attempts todel time series usingutoregressiveand
moving averagdechniques. Nowadays typical applications pass ewaulation, prediction,
fault detection and control systems design. Evenidgh a substantial part of the development
of system identification techniques can be linkedhte control community, these techniques
are basically built on statistical approaches, amtipular on linear and nonlinear regression
methodologies [160]. Thus, in general, if the burdessociated with building a model using
physical laws is considered overwhelming, systeeniification techniques are naturally of
particular interest.

Due to the large domain of application, system tifieation is a diverse field that can be
presented in many different ways having differeatminologies based on the historic
development of models within different disciplinéhus some expressions stem from time
series modelling in economics [161] and [159, 168}ablished them as the now widely
accepted standard in linear system identificati®mce nonlinear system identification
techniques emerge as natural extensions from mtieariones [161], the terminology used in
[159, 162] was adopted in this thesis.

System identification based on linear models iayodell established in research and in
practice. In contrast, algorithms and availableotbgcal support are more scattered in the
nonlinear field. A first reason for this is thatist more difficult to find models with a wide
application, although the general framework caridomulated [163]. However, motivated by
the fact that, in practice, all systems exhibit sokind of nonlinear behaviour, a significant

effort has been made on the development of diffeapproaches to perform nonlinear systems

89



Chapter IV — Development of Dynamic Equivalents for Micrd&exploiting System Identification Theory

identification, even in control applications. Onktloe key players in this endeavour are the
ANN [164]. In fact, with the introduction of ANN,uzzy models and powerful optimization
techniques a much wider class of nonlinear systeasdeen handled [161].

Neural networks constitute a very large researehd fivith application in many areas,
including power systems, particularly in the dynaneiquivalencing field as described in
chapter 3, since in a general sense they can tearimear mappings from experience. When
this experience is interpreted as knowledge abowumt bertain inputs affect a system, it is
obvious that neural networks must have somethingpmmon with the techniques applied in
system identification. Additionally neural networkssed tools allow the use of the same
approach for a broad variety of systems, althouigtost each nonlinear system is unique.

A system is a broad concept that plays an impor@atin system identification, since the
modelling approaches are solved in a system odefitenework. Therefore, before starting
any system identification procedure, a solid systfinition should be given. Section 4.2
provides the system definition concerning MicroGribr finding MG dynamic equivalent
purposes with identification techniques. In ordecope with this problem the fundamentals of
nonlinear dynamic system identification are desatin section 4.3 through the description of
common system identification procedures. Model itpassues are also addressed in this
section.

As to build a nonlinear model is, in general, ayvesmplex task, a general guideline is to
make use of the available prior knowledge to deavi®lG dynamic equivalent following its
intended use with an acceptable trade-off betweseldpment effort and performance. Thus,
in section 4.4, promising approaches to build dyicaquivalents for MG with identification
techniques are formulated. Based on the availaiysipal knowledge effectively used during
the system identification procedure applied to pmsblem, two possible solution approaches
are envisaged, which rely on using either a black model structure based on MLP neural
networks or a physical model structure.

* The first one tries to exploit the full response tbe MG when excited after a

disturbance;

* The second one tries to understand the physicavialr of the different components

of the MG.

The most adequate procedures adopted to derive Wwh@ntic equivalents either in terms

of models and parameter of these models are aksepred and discussed in this section.
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Although there is a vast literature on parameteémegion and system identification in general,
section 4.4 is restricted to the theory that cam@oited to build suitable dynamic equivalents
for MG.

The summary and main conclusions are given in@edts.

4.2  The MicroGrid system definition

Like in a conventional power system, for purpostaralysis and to get a better sight to
put up a reduced equivalent system, the detailedeiaf the whole MMG network is divided
into two parts: The internal area that has to laimed for detailed analysis and the external

area that has to be replaced by the equivalent inaslepicted in figure 4.1.
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Figure 4.1: MMG system: (a) before reduction; (b) &er reduction

As it can be observed from figure 4.1, the extearah involves the MG detailed model
while the internal area comprises the remaining Mi&Eailed model, corresponding to both
the external and the study subsystems, respectiirelthis sense, the dynamic system to be
identified consists of a set of differential andediraic equations corresponding to the dynamic
models of the several microgeneration systems pteden chapter 2, describing the state

evolution over time of the physical system — thefdGrid.
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Therefore the system identification procedure cxiesin finding just another mathematical
representation of the physical MG built upon theresponding MG detailed model. The
evolution over time computed using the MG detaiteoldel is called a process under system
identification termination [161].

Since data is the main source of information, amotigr issues, the system definition
involves to specify which signals are considerednasits and which ones are considered as
outputs in order to define where the measuremekis place, that is, the system boundary.
Afterwards suitable input signals have to be desigim order to collect informative enough
data sets.

In contrast with linear systems, PRBS are inappatgrfor nonlinear systems and,
probably due to the highly application specificuratof the problem, few tools exist and little
research is devoted to this subject [161]. Aspexish as the purpose of the model,
characteristics of different input signals, equatiaddistribution and dynamic properties should
be taken into account in order to choose persigtenciting inputs. From this list of general
guidelines, it follows that a high engineering ettise is required in order to design adequate
input signals.

Thus, in order to collect an informative enoughadset, the MG detailed model has to be
excited through efficiently generated disturbansesnarios into the internal area and the MG
dynamics following these disturbance scenarios Ishbe captured by means of the electrical
variables, measured at the system boundary. Anadkee to be taken into account concerns
the electrical network reduction. As described ubsection 3.3.2.4 of chapter 3, node
elimination and aggregation can be done by makireg MG dynamic equivalent injected
currents at the boundary bus equal to the curieris-lines.

Therefore, boundary bus voltage expressed thragdioith D — and Q —axis components
and MMG system frequency are considered as inphie whe D — and Q —axis components

of the tie-line currents are considered as systetputs, as illustrated in figure 4.1. Thus, the
dynamic equivalent will react to boundary bus vgétaand system frequency changes resulting
from the internal area disturbances scenarios,dnying the injected current into the retained
subsystem.

In order to derive dynamic equivalents for MG usiygstem identification techniques
based on this system definition, the fundamentalsoalinear dynamic systems identification

are addressed in the following section.
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4.3 Fundamentals of nonlinear dynamic systems identifettion

Although that almost all practical systems arerim@ple nonlinear, most of the available
system identification literature has focused onlidgavith models and controllers described
by linear differential or difference equations,. i.@lentification of linear systems. There are
many reasons for this. Some of them derive fromfdloethat models have been used in many
cases oriented towards control applications. Ifieation for control deals mainly with the
question of how identify a model that serves asstfas control design and thus the goal is not
a very accurate model but good control performahtaddition, it is much simpler to design
controllers for a system described by a linear rmddé4]. Furthermore, linear system
identification is less complicated to perform francomputation perspective and the analysis is
less complicated from a statistical view point.

Nowadays nonlinear dynamic systems identificat®reansidered as a field of very active
research; many new methods have been developedoldndnethods will be improved.
Nevertheless, the linear underlying principles @atiable. In this sense local linear model
approaches constitute a very promising approacindolinear systems identification. A
practical case wadNSY SIDsoftware package, which is described in [165amgxtension of
the System ldentification Toolbokl66] developed forMATLAB®. However, building a
nonlinear model is a much complex task than a tireee and some stages are not well
established. Prior knowledge and intended purpbsieeomodel are the general guidelines, as

already mentioned previously.

4.3.1 How to build mathematical models

Models, in general, are derived from the knowledfygystem properties, namely those that
are considered relevant for the intended purposkeomodel. This prior knowledge can result
from two possible sources:

* Mechanistic descriptions of the system;
* Observations or measured data.
Then mathematical models can be obtained eitheorgkieally based on physical
relationships — physical modelling — or empiricdllgsed on experimental data from the system

[158], as it can be observed from figure 4.2.
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System to be
modelled
Physical laws Experimental data

N

Physical modelling Empirical modelling

Model

Figure 4.2: The two basic principles for mathematial model building

Many combinations of physical and empirical modgjlhave been pursued and, depending
on the level of prior insight about the system difeely used, three different modelling
approaches can be distinguished [164]. If the ma&dderived from measured data, assuming
only a reduced knowledge about the physics of flstem, the modelling approach is called
black-box modelling; in contrast, white-box modadjiis used for a pure physical modelling of
the system. When a certain level of insight abbetgystem exists and is used together with
measured data to derive an empirical model, thg-lgox modelling classification can be used.

System identification is concerned with the develept and analysis of methods for
performing grey and black box modelling [158, 1882, 164, 167-169]. Differently from
white-box modelling, that is intimately related toe specific knowledge domain, system
identification covers a number of methodologicaliss that arise whenever data are processed

to obtain a quantitative model, as it can be seéha following subsection.

4.3.2 A common system identification procedure

According to [159, 162], the techniques to buildd amomplement models from system
measurements involve fundamentally three basitiestti

* A data set;

* A set of candidate models;

+ An identification criterion.

94



Chapter IV — Development of Dynamic Equivalents for Micrd&exploiting System Identification Theory

The beginning of all model building is the obserdedla. Then a data set is recorded during
a specifically designed identification experimeéitith a given observed data set, the system
identification procedure main tasks are to decideaet of candidate models and to estimate
the model parameters in the sense of an identditatriterion. However, an important
question is whether the model is good enough omitended purpose. Testing if a model is
appropriate is known as model validation.

The above considerations have lead to a generateptual approach including the

following basic steps.

4.3.2.1 Identification experiment

Although the available software packages do notistigbe user in designing the
experiment, the data set is the basis for any ssbéaeidentification procedure, since system
behaviour that is not represented within the datacannot be described by the model, unless
prior knowledge is explicitly incorporated.

Since a typical data acquisition mode deals withuirand output observations, the basic
idea is to vary the system inputs and observe theegponding impact on the outputs, as

depicted in figure 4.3.

u(k) y(k)

————> System to be identified —————>

v(k)| 0

Disturbance/noise

Figure 4.3: Scheme of the system to be identified

When it has been decided upon where and what teuneathe next question is when to
measure. Since both system inputs and outputs drgeneed at sample instants
t, =kT,k=12,..N, then a sampling timel , has to be chosen. Finally a required number of
measurementsN , to be collected should be defined. It can alscabgumed that there are
always signals beyond control, namely measuremeiserand possibly uncontrollable inputs,

denoted byv(k) in figure 4.3, which will affect the system outpior ease of notatiori; is
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assumed to be one time unit akds used to enumerate the sampling instants. Tthasjata

set of corresponding system inputs and outputsendoy:

2" ={lu(@. y@)] [u@).y@)] - [u(N). y(N)] (4.1)

However, the system experiment involves more issii@s simply data collection. As the
purpose of an identification experiment is to ociila set of data that describes how the system
behaves over its entire range of operation, thegdesf appropriate excitation signals is an
important task, since, independently of the modgllapproach to be followed, the quality of
the observed data will determine an upper bountheraccuracy that can be achieved by the
model. Nevertheless, due to the fact that nonlineadels are significantly more complex, this
task is even more decisive for nonlinear than foedr models since the data must contain

considerably more information.

4.3.2.2 Model structure selection

In formal terms, after collecting a data set onéoaking for a relationship between past

observationsy“*, y**, and future outputsy(k), as

y(k) = glu, y<2)+ v(k) .

where the additive ternv(k) accounts for the fact that the next outpifk) will not be an
exact function of the past data.
In order to construct a model from data it showdassumed thag([)] belongs to a family

of functions that is parameterized in terms ofndtdi number of parameters, commonly denoted
by 6. This family of candidate model functions will balled a model structure and is defined

in [159] as a differentiable mapping from the paeten domain,D,,, to the space of the

parameterized model outputs,

m]
Mm:6 - y(k|6)= g(u"’l,y"‘l;H)DﬁvlIj (4.3)
where
6=[6, 6, .. 6,]: 60D, OR™ (4.4)
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is the parameter vector witlng parameters used to parameterize the mapping. Model
structures have been commonly denotedabywhile a particular model corresponding to a

parameter vectoé is denoted byw(6). The set of candidate models is thus defined as
w”={m(6)|60D,,} (4.5)

Formally speaking, the expression (4.3) is too garend it should be useful to Writga([)]
as a concatenation of two mappings; one that tddeegicreasing number of past observations
and maps them into a vectgfk,d) of fixed dimensions and another that takes thigtoreto

the space of the model outputs [169]. Thus

glu ™, y*:6)= glg(k.6).6] (4.6)
where
#(k,6)= (U, y**;6) 4.9)

is the regression vector with its components retéto as the regressors. Therefore the model
structure in (4.3) is decomposed into two partralgbems for nonlinear dynamic systems:

* How to choose the regression vecﬁ(k,H) from past inputs and outputs;
« How to choose the nonlinear mappig{p,d) from the regressor to the output space.

The choice of an appropriate model structure issictamed in the literature the most
important and, at the same time, the most diffidgitision the user has to make, because the
lack of theoretical support [161]. Therefore, iparticularly important that the model structure
will be linked to the intended use of the modeljehimeans that prior knowledge, engineering
intuition and insight about the system dynamicsehaw be combined with the formal
properties of models in order to select a suitald¢hematical representation for the system to
be identified.

Sometimes a model set is obtained after a caréfydipally modelling approach; the model
parameters represent unknown values of system ptessnthat, in principle, have physical
interpretation. In other cases, standard nonlineadels without reference to physical
background may be employed. Such a model set, whassemeters are basically viewed as
vehicles for adjusting the fit to the data, is edlla set of ready-made or black box models.
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Model sets with adjustable parameters with physit@rpretation may accordingly be called
tailor-made or gray-box models [158, 159, 161, 124, 169].

4.3.2.3 The identification method

The search for a good model is then carried otenms of the paramete. The problem

now is to decide upon how to use the informationtaimed in the data seg", to select a

m] O
proper value,@n, of the parameter vector and hence a proper memMéé?rNj of the set of

models %". Thus, given a set of candidate modeydk)=g(¢(k),8)+v(k), and a set of

measured regressor-output pairs,
z,' ={[g(k). y(k)] :k = 1...,N} (4.8)

the purpose of the identification method is to datee a mapping fromz!' to the set of

candidate model®,, ,

O
zN . 6, 0D,, (4.9)

in order to obtain a model that provides predidictose to the system outputs in the sense of
the identification criterion. The search for theiogl point, in anné -dimensional parameter
space, spanned by the parameter vedoris carried out through a suitable parameter
estimation technique and the set of regressor-oytaiss Z.' is referred to as the estimation
data set, since the model parameter estimatiorrellon it.

The identification method is equivalent to recomsting the hyper surfacg(¢(k), 8) from
the pairs[¢(k), y(k)]. According to this view point, there are clear mections with function

approximation, learning theory [170], neural netkgofl71, 172] and statistics [173] whenever
the measurement errors are given in a probabilmsaoiner. Then this process is known, in
statistical literature, as estimation and, fordrisial reasons, in the neural network community,
it is usually called training or learning. Theredothe estimation data set is also known as
training data set. This basic search conceptustithted in figure 4.4 from a modelling view

point.
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>  System 2 ylk)

4l \ E)&
Model —
g(¢(k), 5) )D/(k | 9) Criterion

\

Figure 4.4: The search for the optimal point undera modelling perspective

Both system and model are fed with the same inp}ﬁl@s), and the corresponding outputs,

O
y(k) and y(k|t9), respectively, are compared yielding an erroraign

£(k,6)= y(k)- y(k|6) 19)

which can be computed fadr=1,...,N and used in some sense for adapting the model.
The parametric model has to be augmented with tldai identification criterion that
measures how well the model fits the system outpntswith an algorithm that will adapt the

model parameters so that a minimum identificatioteigon can be achieved. Thus, the goal of

m]
the parameter optimization technique is to findlbst approximatiory(k|6?) of the measured
output y(k), which may be spoilt with noise, by adapting thergmeter vectord. This

procedure can be computationally intensive, big generally one of the easiest stages in the

identification procedure.

4.3.2.4 Model validation

After settled the previous three stages a modebkas estimated; the one, in the chosen
set of models, that best describes the training datording to the identification criterion.
Now, the obtained model must be evaluated in aim@rvestigate whether or not it is valid for
its intended purpose. Therefore two main aspedsldibe taken into account:

* The model agrees sufficiently well with the obserdata;

« The model is good enough for its intended purpose.
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m]
Generally the method to lead with these questisiie confront the modeM(ﬁNj with as

much information about the system as it is prattiddis includes a prior knowledge,
measurement data and experience of using the madegeneral identification application the
most natural entity with which to confront the mbde the data. Then model validation
techniques tend to focus on the first aspect. Hewesince there is always a certain purpose
with the modelling, what matters in practice is #eEond aspect and the ultimate validation
step is then to test whether the problem that rat#t the modelling exercise can be solved
using the obtained model [158, 159, 161, 164].

For most applications this level of ambition is sahat high. So, instead of investigate the
particular properties of the models, it is a comrpoocedure to apply standard tests in order to
develop confidence in them. According to [158, 158y a model structure physically
parameterized, a natural and important validat®toiconfront the estimated values and their
estimated variances with what is reasonable froior pnowledge. It is also good practice to
evaluate the sensitivity of the input-output bebaviwith respect to these parameters in order
to check their identifiability. Concerning to blablox models, the interest is focused on their
input-output properties. While for linear modelsedk properties are normally displayed as
Bode diagrams, for nonlinear models they will bspiected by simulation and, in this sense,
model validation is closely related to the conceptmodel quality [161, 164], which is
addressed in subsection 4.3.3.

4.3.2.5 The system identification loop

As briefly described in the preceding subsectiansa common system identification
procedure the user has to take a number of desisitm experiment has to be designed, a
model structure must be chosen, an identificatiorer@don must be selected as well as the
optimization technique and a procedure for valmatihe obtained model has to be devised.
Each one of these choices will have an influencéath quality and amount of work of the
resulting model. Thus, they may also to be revesedimber of times during the identification
procedure.

In the model validation block it is checked whethérpreceding steps have been carried
out successfully or not in the sense of the vabacriterion, which of course is highly
problem dependent and also closely related torttended use of the model. As depicted in
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figure 4.5, the paths going from this block backthe previous stages indicate that the

procedure is executed in an iterative manner [159].

Prior knowledge

Experiment

Building estimation
data set, Z,"

Model structure
selection , M

Identification
criterion

User interaction or automatic algorithm

Model estimation

Not accepted

Model validation |«

Accepted

Figure 4.5: The basic system identification loop

It is quite likely that the model first obtainedlmmnot pass the model validation tests and
then it is necessary to go back in the proceduderavise the various steps taking into account
the reasons by which the model may be deficienshltuld be necessary to determine a
different model into the selected set of modelstryoout another model structure or, in the
worst case, even redo the experiment:

» Path leading back to model estimation, when thearigal procedure failed to find the

best model according to the identification critario

e Path leading back to the model structure selectidren the model structure was not

appropriate since it did not contain a good enoogithematical description of the
system.

« Path leading back to experiment, when it seems ssipte to determine a suitable

model because the data set was not informativegintmuprovide guidance in selecting
good models.
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The major part of an identification application swmts of addressing these problems, in
particular the model structure selection, in aratige manner guided by prior knowledge and
the outcomes of previous attempts. Interactivewsof obviously is an important tool for

handling the iterative character of this problem.

4.3.3 Model quality

Based on the assumption that there is a set ofamattical equations representing exactly
the true structure of the syste’, the identification task would be to determine titue values
of the parameters from the estimation data setchwishould be informative enough to
distinguish between different model structures &l &s properties of the model structure
itself. Therefore, the equivalence of the estimataoblel to the true system is established

through the convergence of the parameter estinmtthd true parametersq,. Then the

convergence domain is defined as
D, (s,m)={6,} (4.11)

This set is empty ifSOM . Thus one important aspect to be taken into adcioumodel
structure selection is to chose so that (4.11) holds for a given descriptiSn However, in
practice, nonlinear complex systems can never bwtaiely known so that it is not possible to
know a priori if the parameter estimation will beslivachieved. Thus, the identification
problem becomes to find a member from a given madrlcture, which approximates
reasonably well the system in the sense of thetifd=tion criterion. In a probabilistic
framework the expectation of the square error neysed as a loss function [161] and then as
a measure of model quality since it allows someartgnt analytical results [174]. Suppose
that the actual data can be described by

y(k)= g, (@ (k) +v(k) (4.12)

where g, is some unknown true model amfk) is white noise with variancd , the average

generalization error is given by

V(6)= % Ely()- o(p(k).6)°}= 51+ 2 el (#()- el o)} 413)
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Unfortunately it is not possible to evaluate (4.iBpractice, but under suitable conditions
[159], that is,

v(e)=limv,(6,2") (4.14)
O
and thus,On — g, for N — o, when &, is the minimizer of (4.13). In particular, if theue

system described by (4.12) was contained in theemstducture, SO % , the estimate would

also be consistentd,=8,. Then, within a given model structure parameteriby 6 of

dimension né@, the best model can be defined according to ttlewmmg quality measure
[169].

8.(n6) =argminv (8) (4.15)

60D,

It should be noted tha#.,(ng) will depend on the number of parameters and on the

]
properties ofg . To measure the quality of a given modgl,, one should use

E\_/(ENJ =V(né) (4.16)

]
Here the expectation is with respect to the ma#lel The measure (4.16) thus describes
the model’s expected fit to the true system, whepliad to a new data set with the same

distribution of the regressorg. For a given regressor properties and a given freidecture

family, it depends only on the number of model paeters,né .

4.3.3.1 Bias and variance

O
Assuming that the estimai\ is obtained by minimization of MSE criterion andathe

model 8.(n6) is quite good in the sense that the model residas# white noise, the model

criterion VD(nH) as defined in (4.16) can be expressed as
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2

V()= Ev(ENj S J+E

au(0() o[ 961 |

ol¢.0.0)-o[ .64

variance

2 , (4.17)
= A +E|g,(4)-0(p.6.nO))" +E

noise

bias

As indicated,VD(nH) can be approximately decomposed into two parts:due to the bias,

the other due to the variance of the estimatioeyTdre further examined in the following.

As N - w, Oy - 8.(nd), the variance error should be negligible and thy®8) will
only involve the bias part. The estimate will thamverge to the best possible approximation
of the true system for a given model structure model size. Thus, the bias error describes the
systematic deviation between the process and thagelrtbat, in principle, exist due to an

insufficient model structure; i.eSOw .

0
Since the test data set has a different noisezegan, the estimated parameter vectdy,
will have a certain covariance matrix that desailie deviation fromg.(né). Concerning to

the variations ind with respect to the prediction performance, it baenshown [159] that for
large estimation data sets the variance error &s&® approximately linearly with the number

of model parameters.

O

EHg(qf(k),eNj—g(¢(k),em(ne»

2
nég
= 4.18
N (4.18)

Combining (4.17) and (4.18) gives,

V(16)= V[ 8 | =1 +27 + Elay(0)- olp 6.08))f =V(6.(n6))+ A" (4.19)

A useful interpretation of (4.19) is that it dispdathe expected model performance on the
validation data set. It is important to recognifeatt the expected value of the model

performance when it is applied to the estimatioiadat, with MSE criterion, is quite different,

EVN(E?NJ=\7(6?D(n6))—/]nW9 (4.20)
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In fact the variance error is only detected ontfrdata that is when the model performance
is evaluated on a validation data set, not usethglairaining. Otherwise the variance error will

decrease ané increases.

4.3.3.2 Model structure flexibility

The concept of model flexibility will be related the number of parameters that the model
possesses in the sense that a model becomes megialefl (more complex) if additional
parameters are included and it becomes less feegdonpler) if some parameters are removed,
independently of the nonlinear mapping to be used.

Under the context of model flexibility, from (4.1%)becomes clear that the bias error is
large for less flexible models and decreases asntimaber of basis functions grows,
approaching to zero for a large number of modeampa&ters. On the other hand, for a finitely
sized estimation data set, the variance error workshe opposite direction and reaches its
maximum when the training data contains only asyntita samples as there are parameters in
the model [161]. In such a case, the degree otifn@eallow to fit the model perfectly on the
training data set, as in (4.20), which means thatgarameters precisely represent the noise
contained in the estimation data set and therefaseexpected that this model performs worse
in a test data set, which contains a differentencgzslization, as (4.19) demonstrates.

In fact bias and variance are in conflict in thaessethat it is impossible to minimize both
errors simultaneously. This is the well known brasiance dilemma, which can be discussed
under different disguises and particularly undemearal network framework in [175, 176].
Therefore the concept of optimal model flexibilitgpresents the best overall solution for a
specific model class. Directly from this fact folle the parsimony principle which states that

from all models that can describe the process atelyr the simplest one is the best [159].

4.3.3.3 Evaluating the test error and alternatives

T
v !

A validation or test data sef,, , is commonly used for evaluating the model quality

fact, as already mentioned previously, the variagwer is detected only if a data set with
different stochastic effects due to noise is ugsttherwise it could not be detected since the
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error in the estimation data set consists mainlyhenbias part for a large training data set
when compared to the number of model parameters.

This means that the error on the data set decreasiethe model flexibility, while the
error on test data set decreases only until thet pdioptimal flexibility, beyond which it starts
to increase. If this effect is ignored, one tydicands up with overly complex models, which
perform well on the estimation data set but poorlythe validation data set, since the model
not only models the features of the system, but #ie noise in the training data set. This
effect is called overfitting. Likewise, the expriessunderfitting is used when the bias error is
dominating, which means that the model have noildigy enough to describe the system

features.

O
The quantityV; (BN ZVTj is interpreted as an estimate of the average gkregion error.

e

—( O O O O
If V(HNJ OV; (HN ,ZVTj is close tov, (HN ,ZNJ it is likely that & is close togd, and that the

obtained model is reasonably good.

When the amount of available data is small othgr@gches must be pursued for model
quality evaluation, like the use of informationteria or alternatively statistical tests and
correlation based methods [159, 161, 164]. Typatadices of information criteria are AIC,
BIC and FPE [167, 177]. However, in this researchmkythe amount of data is not limited and
therefore those methods are not considered.

4.4  Finding MG dynamic equivalents with identification techniques

In order to build dynamic equivalents for MG expilng system identification theory, a
similar procedure than that one described in sulmsed.3 should be followed. Then, in this
section, the problem of MG dynamic equivalents tlgsment is formulated under a system
identification framework and the solution approalage envisaged, taking into account the
prior knowledge that has been derived from chaemsd 3 as well as the intended purpose of
the model to be identified. Thus, subsection 4i4.Hevoted to the identification problem
formulation and subsequently promising solutionrapphes are considered based on suitable
model structures selection. These approaches ailed in subsection 4.4.2. Afterwards

appropriate identification methods have to be ¢$etec Then, identification criteria are
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addressed in subsection 4.4.3 while parameter astimmethods are presented in subsection
4.4.4, taking into account the model structuresdet in subsection 4.4.2.
Finally, MG reduced order model validation issuesa@escribed in subsection 4.4.5.

4.4.1 Problem formulation

As previously described in chapter 2, to develgmwer system dynamic simulation, the
equations used to model the different elements catected together to form a set of

differential equations,

m]

x = f(x,u) (4.21)
and a set of algebraic equations

0= g(x,u) (4.22)

where x is the state vector of the whole power system andepresents the inputs. The
differential equations describe the power systegrgaohics and are mainly related with the
several generating units whilst the algebraic @équatdescribe the network, the static loads
and the generator algebraic equations.

Since MatLab® Simulin®® was used as the dynamic simulation tool these sets of
equations, (4.21) and (4.22), were implementedhgcafly in terms of a block diagram model,
in which the differential equations were represeérds integral equations in order to separate
their static nonlinear transformations and integret as depicted in figure 4.6, where each
block within a block diagram defines an elementadgnamic system in itself and the
relationships between each one are given by thefusgnals connecting the blocks.

Determining the system behaviour over time thusientepeatedly solving the model at
intervals, called time steps, from the start to ¢émel of time spanSimulini® refers to this
process as simulating the power system that theehredresents. In this sense, simulations can
be considered as an inexpensive and safe way terimgnt with power systems and with
effective computer power numerical experiments Haean carried out.

However, due to the excessive computing time reguivhen running dynamic simulations
in time domain together with practical limitations the size of computer memory, power

systems analysis programs do not usually modelctimneplete system in detail. As already
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mentioned previously, in chapter 3, only the in&rsubsystem is modelled in detail and the
external subsystem is represented by a dynamic/@&egut also called a reduced model. The
model order reduction of the external system caddre by separating the external subsystem
from the internal one and by making the injectedrants at the boundary nodes equal to the

tie-line currents, as already mentioned previousection 4.2.

X
\ 4 o
u—>f1(x,u) X, J' X
X X LN u
L 7 o > g(x,u)=0 Vg “—F
e e
UT
X
\ 4 0
SIS (V9T NN

Figure 4.6: Power system block diagram for dynamisimulation

In this sense, the reduction of the external sysisimg a conceptual system identification
procedure should be envisaged as a problem ofiigiagt an external subsystem equivalent
model, guided by the available prior knowledge #ra goal that motivated the identification

procedure as described in the following subsections

4.4.1.1 Physical insights

As discussed in subsection 2.4.1 of chapter 2Mkeis operated under a SMO control
strategy when it is connected to the upstream Mok, even upon MMG islanding. Thus,
the available physical knowledge allows to distisgubetween two different time scales

concerning the dynamic responses among the seweralgeneration systems into the MG:
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« The main storage device with a VSI control invedeheme displays fast dynamic
responses;

e The controllable MS with a PQ inverter control déspslow dynamic responses.

Additionally, those microgeneration systems coneedb the LV grid through inverters
with PQ control schemes are the main responsiblthéolarge simulation times.

Based on those previous assumptions, a suitablenagrequivalent for MG comprises the
detailed model of the main storage device VSI arénd an aggregated model corresponding
to the remainder MG detailed model, henceforthedathe equivalent model of the MG slow

dynamics, as depicted in figure 4.7.

Boundary
bus
Ip, 1, Ipg, 1
<D’_Q 2% MG slow dynamics
equivalent model
4—
Vo Vo | Ipssidos =T

VSI

Figure 4.7: MG dynamic equivalent model

Therefore, in this case, the aim of the systemtifiestion procedure is to identify the
equivalent model of the MG slow dynamic behaviour.

4.4.1.2 Purpose of the model

Under system identification framework a model carubed in two configurations, either to
perform prediction or simulation [161]. Predictioreans that on the basis of previous process
inputs and process outputs the model predicts tee isto the future, requiring that the
process output is measured during operation. Itrast) simulation means that on the basis of
previous process inputs only, the model simulatesré outputs. Thus, simulation does not
require process output measurements during operatio

As the MG dynamic equivalent is required to desetire MG dynamic behaviour without
coupling to the MG system, the process output cameomeasured during operation and
therefore the equivalent model of the MG slow dyegnshould be identified to be used in
simulation configuration. For this purpose suitadxdéution approaches should be carried out.
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4.4.2 Solution approaches

A possible solution approach based on the colledted set starts with the model structure
selection task, which involves to decide betweemyrsets of models, which in principle are
adequate to describe the process in mind, as glreadtioned in section 4.3.

In order to select a suitable model structure to 8iéw dynamics equivalent model, two
assumptions are taken into account:

e The composition of the MG is known and the physlaals that describe the MG slow

dynamics under study are understood and effectivedyl;

e« The MG composition is not known or the availabl®pknowledge is not used to sort

out the physical relationships.

Therefore, concerning to the model structure sielecthe first decision is mainly based on
the available physical knowledge about the systerbe modelled effectively used. In this
sense, both physical and black-box models can led lsading with gray and black-box
modelling approaches.

Figure 4.8 gives a general overview of the possblation approaches to be followed.

Nonlinear Model
Structures

Physical Models Discrete Time Models «—» Black-box Models

y

Continuous Time
State Space Models

Internal Dynamics External Dynamics

I I

Models with State Space
Representation

Input Output Models

Figure 4.8: Model structures for MG slow dynamics quivalent model

4.4.2.1 Physical modelling

When it is assumed that the physics of the systemuaderstood and it is possible to
represent them using a set of ordinary differentialdifference equations with unknown
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parameters a physical model structure should beerhoSince most laws of physics are
expressed in continuous time, it is easier to canstmodels with physical insight in
continuous time than in discrete time and usualpghgsical model structure is a continuous

time state space model of a given order as

%: f (x(t)ut)} )

0 43)
y(t16)=h(x(t)u(t):6)

where 6 is the parameter vectorx(t) represents the states and the regression vector

corresponds to the actual inpute(t). Such a predictor is presented in a simulation

O
configuration, sincey(tlH) is constructed by simulating a noise free modéeigishe actual

system inputs. If it is assumed that measuremesens affecting the model output, this noise

should be described as white noise. When more stigdtied noise modelling is required the

0
Kalman filter should be used to compugt |9) [159], [178].

From (4.23), it is possible to observe that the ehagtructure is the point of contact
between physical modelling and empirical modellpgproaches, since after to obtain a model
structure based on physical grounds, the valuethefmodel parameters gathered into the
parameter vectord, are missing and should be determined from medsiaéa. Therefore a
physical model has one important advantage whisesafrom the fact that the known physical
relationships are built in and no parameters havbet wasted in order to estimate what is
already known. Thus, the model is parsimonious wihparameters which often have a direct
physical interpretation. This later fact has thelextl advantage that it helps to decide if the

estimates are reasonable [178].

4.4.2.2 Black box modelling

When it is assumed that the available prior knog#edoes not allow to design a physically
parameterized model structure, it is then posdblese standard models, which by experience
are known to be able to handle a wide range otuifit system dynamics. For a modelling
view point these models thus serve as ready madielssince for a given model order it

should be possible to find something that fits &dad A black box model is thus a flexible
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mathematical structure that is capable of desagilbany different systems and its parameters
might not have any physical interpretation. Themefosome advantages should be
acknowledged in black box modelling over physicaldelling, namely it does not need to
know both the model structure and order to getedaguickly, many model structures can be
estimated and compared in order to choose theobesand the universality.

However, considering that there are no particularght into the system’s propertieg([)]

would be parameterized in a flexible way coveritigkends of reasonable system behaviour,
giving obviously a big family of nonlinear blacksbonodels. Therefore, as already mentioned
in subsection 4.3.2.2, the model structure selediask for modelling purposes involves, in
general, two main additional decisions:

e To choose a set of regressors;

* To specify how to combine them into a one-step-dipeadiction.

In particular, for deriving MG dynamic equivalemsrposes, the possibilities of these two

choices are briefly addressed in the following subsections.

4.4.2.2.1 NFIR vector of regressors

As natural extensions of linear dynamic model stmgs, two nonlinear dynamic model
classes can be distinguished: Input-output modadisnaodels with state space representation,
which are the nonlinear counterparts of both lineadels with polynomial and state space
representation, respectively [159-161, 163-165,, 1682]. Therefore two fundamentally
different black-box modelling approaches are dgtished in [161] between internal and
external dynamics as it can be observed from figu8epresented in subsection 4.4.2.

In the case when the system internal states candasured, internal dynamics are of easy
applicability and have been preferred over the tiquiput model structures. However, if the
states have to be considered as unknown quarttigggsmust be estimated as well. The high
complexity generally involved in the simultaneogsireation of model states and parameters is
the reason for the dominance of the much simplafimear input-output models and, thus, the
external dynamics approaches [161]. As the MG staéan not be measured, nonlinear state
space models cannot be applied directly and therefdernal dynamics approaches are not

considered for deriving MG dynamic equivalents joses.
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In the external dynamics approaches the estimatignolynomials through either linear or
pseudo-linear regressions [159, 162] extends tgptbblem of approximating the nonlinear
function g([)] allowing to separate the dynamic model betweenrégression vector and the

nonlinear mapping [161, 164, 169], as it can beepled from figure 4.9.

Nonlinear dynamic model

Figure 4.9: External dynamics approach

The nonlinear mappingg([)] in figure 4.9 corresponds to a general nonlindatics
approximator and the model dynamics are represehtedgh an external dynamic filter bank.
Typically, the filters are realized as simple tidelays,q™, and are thus referred to as tapped

delay lines while the regressors are commonly anoséhe same way as for the linear models:
past measurements, past model outputs and pogsisiyrediction errors.

Thus, if the regression vector is selected as feiXAnodels, the model structure is called
NARX as the acronym for Nonlinear ARX. Likewise NARX, NOE and NFIR model
structures are introduced as follows [161, 169]:

NARX: y(k|6)=glulk-1) - ulk-nt) y(k-1) - y(k-na] (4.24)

NARMAX: }D’(kW):g[u(k_l) u(k_nb) Y(k_l) Y(k_nb) (4.25)
ek-1) - &k-nd|

O

NOE: )D/(k|6):g[u(k—1) - ulk-na) y(k-1) - y(k—nf)T (4.26)

NFIR: )D/(klﬁ):g[u(k—l) - u(k-na)]' (4.27)
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It should also be noted that more complex noiseahstluctures like NARMAX and NBJ
are uncommon in nonlinear dynamic system identifice[161].

NARX and NARMAX model structures can be used fagdaction, since they require past
system outputs as regressors while NOE and NFIReinstductures can be used to perform
simulation, as depicted in figure 4.10. Thus, feveloping MG dynamic equivalent purposes,

the model parameterization decision becomes betiNéxdh and NFIR model structures.

Models with external dynamics

Models for prediction Models for simulation
NARX NARMAX NFIR OE

Figure 4.10: Nonlinear dynamic input-output model ¢asses and common model structures

The basic difference between NOE and NFIR modatsires is that the first one involves
output feedback, since the regression vector ghwer{4.26) comprises past model outputs.
Although NOE model structures have been more widegl a drawback of output feedback is
that, in general, stability cannot be proven fas tkind of models and the user is usually left
with extensive simulations in order to check undérat conditions the obtained model is
stable. In addition, NOE models can discover aareaccumulation that might lead to inferior
accuracy or even model instability. These problérage been commonly circumvented by
models without output feedback such as NFIR modétsvever, the price to be paid for the
missing feedback is that the number of model inputee dynamic order — has to be chosen
very large to describe the process dynamics prg@artl therefore a high dimensional input

space arises for the nonlinear functig([)]. This drawback is already known for linear models

but has more severe consequences in the nonliasar which restrict the application of NFIR
models only with approximators that can deal wethvinigh dimensional input spaces [161].
From this previous discussion and concerning telbgpment of MG dynamic equivalents,

it is expected that those NOE unsuitable featurdisb® more worsened in applications of
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power systems dynamic simulations due to their o@gurrence characteristics, as it can be
observed from figure 4.6, in subsection 4.4.1. €m@e NFIR model structures will be applied
for MG modelling purposes in order to avoid or, laast, minimize error accumulation
problems and subsequently numerical instabilityralsgamic simulation. Concerning to the
static approximator of figure 4.9, in principle, yamodel architecture can be chosen as

nonlinear mappingg([)]. However, when combined with NFIR model structuiies a

multivariate system, the approximator should bee abl cope with high dimensional input
spaces and therefore all model architectures thigt inderlie the curse of dimensionality are
not well suited to derive dynamic equivalents fo6M

The term curse of dimensionality was introducedlliman [179] and basically expresses
the intuitively clear fact that some general praide become harder to solve as the
dimensionality of the input space increases, sitice model complexity scales up
exponentially with the input space dimensionalitypical models that suffer from the curse of
dimensionality are conventional look-up tables &mzy models, the so called lattice-based
approaches [161].

Polynomials are the classical nonlinear approximsatéHowever, their application is
restricted to low dimensional input spaces [161jeif severe shortcomings pointed out in
[161] motivated the search for model architectusgth better properties concerning external
dynamics approaches, resulting in ANN.

There are several neural network architectureschvban be distinguished solely by their
specific type of hidden layer neurons. Among théme, MLP and the RBF are the two most
common neural network architectures used for nealirdynamic modelling purposes [164,
172, 180]. Some of the earliest examples are theksvof [181] and [182] and the most
comprehensive programme of work to date is [188}tie MLP architecture and [182] for the
RBF network. From numerous practical applicationblighed over the past years there seems
to be substantial evidence that MLP indeed posaesstable ability to lead with complex
systems. Lately, there have also been some thearetsults that attempt to explain the
reasons for this success [168, 184]. The curseirokmksionality can be overcame best by
projection based mechanisms as applied in MLP heetavorks [161].

Therefore, MLP neural networks are used togethér WFIR model structures to provide
external dynamics approaches being the whole masighlly called a TDNN [171, 185]. As
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this whole model is used to derive dynamic equiviador MG, the resulting model will be

referred as the TDNN based MG dynamic equivalent.

4.4.2.2.2 MLP neural networks as the nonlinear static approxmator

The nonlinear mappingg(¢,9), can be written as a basis function formulatiob91161,

169], as

0(¢.6)=3a.0,(¢.5.) (4.28)

i=0

The model output is thus obtained as a weighted siithe M basis functions®d, (I, which
play a similar role in (4.28) to that of a functadrspace basis [169]. Typicallg is related to
the scale or to some directional property dbf([)] and y; represents some position or

translation parameter.
For MLP neural networks, the multivariate basis clions (4.28) are constructed by

elementary functions. Then, firstly a constructimethod is used to map the input vector
[ :[¢l ¢d]T to a scalarx, with the help of the parameterg, and y;. Afterwards the

activation function, f (xi ) nonlinearly transforms the scalgr to the outputy, , as depicted in

figure 4.11.
B.Y;
h—t—
7 Construction X Activation Py =0 (¢ BV )
: q . >
: method function E
o—t—

Figure 4.11: Multivariable basis function realization
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According to [159, 161, 169], there are three mimgtortant mechanisms for constructing
multivariable basis functions: Ridge constructiadial construction and tensor product.
MLP neural networks comprise a set of hidden layeurons resulting from the ridge

construction method. Thus, the activation functiperates on a scalag, which is obtained
by projecting the regression vector on the parameteztor S OR® and adjusting the

projection result through the inclusion of an offsarametery, R, asx, = 8¢ + y;, giving

o (¢)=f(8¢+y) (4.29)

An MLP hidden neuron, the perceptron, as it is alsiled, is a processing element whose

operation realizes the basis function (4.29). Thus perceptron outpuy, , is given by

Yi = f(iwﬁjj +Wioj .30)

j=1

whereg =[w, ... w,] represents the input weights apd= w, is the bias or threshold, as

depicted in figure 4.12.

¢1.\

@, o—_

V:'<

e

Figure 4.12: Schematic diagram of thd -th processing element of an MLP

The activation function can take any form, but camnnehoices are functions of saturation
type such as the logistic and hyperbolic tangemntctions, (4.31) and (4.32), respectively,
which are illustrated in figure 4.13.

34)

f(x ) =logistic(x ) =

1+e™
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f(x)=tanh(x)==—=- (4.32)
€ t+e
logistic hyperbolic tangent

1 1

Yi 05 Yi 0
0 -1
-4 -2 0 2 4 -4 -2 0 2 4

Xi Xj

Figure 4.13: Typical activation functions for the gerceptron

The logistic function has historically been a vpppular choice [186] but since it is related
to the hyperbolic tangent by a simple transfornratio

tanh(x ) = 2logistic(2x ) -1 (4.33)
it makes no difference which of these two is usksl].

Then, a one hidden layer MLP can be written as
M d

g(¢,0)=2wi¢i(2wij¢jj with ®o((J)=1 and¢, = 1 4.34)
i=0 j=0

wherew, andw; denote the output layer and the hidden layer visjgespectively. The total

number of parameters of an MLP with one hiddenrayel one output layer is then
M(d+1)+M +1 (4.35)

where M is the number of hidden layer neurons @hds the number of inputs.

The approximator inputs cannot all be directlyuefhced independently. Rather, om16k)
is chosen by the user and all other delayed infmlitsvs as consequence of both the required
system dynamic order and sampling time. Followiirgally from the fact that the sampling
time has to be chosen small enough to capture dhatwons in the system output, the input

space becomes higher for higher order systemsheutlata distribution characteristics stay
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basically the same since the previous inputs aelyicorrelated and, as a result, wide regions
in the input space are empty.

Since MLP hidden neurons are able to find the nd#iections of a process nonlinearities
[161], MLP neural networks are able to exploit thimperty in order to weaken the curse of
dimensionality, so that the number of parametecseases only linearly with the input space
dimensionality. Furthermore, the MLP network pemigrfunction approximation with a set of
adaptive bases that are determined from the tigidata set. This means that the projection
manifold is data dependent, since the hidden lawgghts change the bases by orienting the
manifold while the output layer weights find thesbgrojection within the manifold. Training
will find the set of these weights.

Therefore MLP are relatively insensitive in whaincerns to too higher dynamic orders
because they can cope well with redundant inputdriwyng the corresponding hidden layer
weights toward zero. Nevertheless, the uneven diatebution that typically arises with the
external dynamics approach [161] can easily be ledndy MLP networks because the
estimation of the hidden layer weights transforhesihput axes in a suitable coordinate system
anyway. Therefore this model architecture cons#uh promising solution to be combined
with the NFIR regression vector for MG modellingrposes under the black-box modelling
context.

In practice MLP with one hidden layer are most canmand sometimes two hidden layers
are used. Its basis functions representation i®nmwolved since the outputs of the first hidden
layer neuron are the inputs of the second hiddger laeurons, as depicted in figure 4.14. Thus,
it is clear that more hidden layers make the ndtiarder to train and the parameters become
more strongly nonlinear. Due to the structure, tigige of network is often referred to as a
feedforward.

With M, and M, as the number of neurons in the first and secodden layers,

respectively, the basis function formulation beceme

M2

g(¢,9)=Zw¢52)(§wﬁz)¢£l)(iW§?)¢jD, with (=0, ®P(J)=0 andg, = 1 (4.36)

1=0

where the output layer weights are denoteavaand both the first and the second hidden layer

weights are represented m%}) and vvi(,z), respectively.
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Input layer 1. hidden layer 2. hidden layer Output layer
" ol

7
o ()

o i) ()

Figure 4.14: A multilayer perceptron network with two hidden layers

An MLP network consists of two types of parametéfbe output layer weights that
determine both the amplitude and operation pointhefbasis function and the hidden layer
weights, which determine the directions, slopes poditions of the basis functions. The
parameter vectof contains all the adjustable parameters of the Mé&ral network, i.e., all
the weights and biases, since in (4.36) the biaszterpreted as weights acting on an input
clamped to the unity. The values of these paramatergurther estimated through a suitable
identification method.

An MLP neural network is a universal approximatb8q]. This means that an MLP can
approximate any smooth function to an arbitraryrdegf accuracy as the number of hidden
neurons increases or alternatively using more thran hidden layer. The question which of
these two possibilities performs better cannotima@red in general; rather it is very problem
dependent [161, 164].

4.4.3 Finding suitable identification criteria

As already mentioned previously, an identificatrmethod involves both an identification

criterion and a parameter estimation techniquenirattempt to find the optimal point within
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the search space spanned by the parameter vectm, fbin a certain modem(a), a guiding
principle for parameter estimation is [163]:

« Based onz! ={[¢(k), y(k)]}, compute the prediction error
m]
g(k, HD) = y(k) B y(k | BD) (#)3

O O
* At time k=N, select n, so that the prediction errors(k,HNj, k=212...,N

becomes as small as possible in the sense ofehéfidation criterion.
An identification criterion corresponds to the neatiatical description of what has to be

optimized. For nonlinear dynamic systems the séweags to fit models from data are based

on the prediction error sequence (4.37) that casee®m as a vector iR". The well known
PEM form a scalar valued criterion function that swgas the size of according to some
norm.

Based on the traditional understanding of PEM, nobshe system identification research
is focused on using second order statistics asnmeation criteria whether the system under
consideration is linear or nonlinear. Even for noaéir dynamic systems the assumption of a
normal error distribution has been considered veagonable and often approximately valid in
practice [161, 164]. Under these assumptions fursi@ported by the central limit theorem,
which states that as the number of random varidhlzeases its PDF approaches a Gaussian
distribution, MSE would be able to extract all pbks information from a signal whose
statistics are solely defined by its mean and wagaTherefore, criteria that not only consider
the second order statistics, but also take int@w@adchigher order characteristics of the error
sequence are much desired. In a statistical legqus@mse a more appropriate approach would
be to constrain directly the information contenteafor signals rather than simply their second
order moments [188-190].

Entropy, as a measure of the average informatiotacwd in a signal, was first defined
and proved to be useful by Shannon in communicasigstems domain [191]. Many other
definitions followed the Shannon’s entropy. Amongern Kullback-Leibler information
distance [159] and Kolmogorov’s entropy [192] weeey useful in system identification and
statistics. However, a shortcoming of these entm@initions is the lack of computationally
simple and efficient estimators for random procgesbkat can not be well described under the
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Gaussian assumptions, particularly in high dimemaionput spaces. Therefore, in order to
overcome these drawbacks ITL approaches have bgploited in order to derive a
computationally tractable definition of entropy g:&890]. Thus, both PEM and ITL criteria are

presented in the following two subsections.

4.4.3.1 Prediction error methods

The size of the error sequence in (4.37) could basored using any norm iR". Thus a

common procedure is to use a criterion functioa lik

v, (6.2 ):%ié(g(k,ﬁ)) (4.38)

k=1

as a measure of how well the mode(6) performs.

This function is for a givenzZ) a well defined scalar valued function of the model

m|
parameters, Wheré([)] represents some norm quadratic or no quadratic.eBlimateé&n is

then defined by the minimization of (4.38) as

O =§N(Z£‘)=ar5%aninVN (6,22 (4.39)

Thus E?N corresponds to the minimizing argument or a sehioimizing arguments, if the
minimum is not unique and the mapping (4.9) is thefined implicitly by (4.39). Since the
objective is to find the minimum of (4.38Y,, (H,ZeN) is also called the loss or cost function
[161, 164, 172, 180]. The main well known and muwsged procedures are based on the
previous procedure to estimaté. The family of approaches that uses (4.38) as the
identification criterion is called the predictiomr& methods [159], since the objective is to
minimize a sum over some norm of the predictiomrstrParticular methods are obtained as
special cases of (4.38), depending on the choioﬁ[ﬁ)fthe choice of the model structures and
the choice of the method by which the minimizati®rarried out.

If the norm in (4.38) is defined as
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1(£(6,k))=-log f (£,k; 8) (4.40)

the ML method is obtained as a special case 0Dj4When the prediction errors are assumed
to be Gaussian with zero mean and variahce
1&°

t(e(k,0))=-log f,(£,k; 8) = const+%|og/] +§7 (4.41)

If A is known, then (4.41) is equivalent to the moshownly used quadratic norm
1,
ﬂ(s):?f (4.42)
and (4.39) is specified in terms of a MSE typerdkdon,

On :argminilegz(k,H) (4.43)
gD, k=1
The reasons for the popularity of MSE are mainly eoned to its analytical tractability
from both computational and analysis view pointse MSE criterion has been considered as a
good choice for supervised parameter estimatiorhoast [158] including neural networks
training [180]. Sometimes other norms than the sEume considered to conform to a
particular noise distribution or, in the multi outpcase, to take into account different noise

levels on different outputs [161].

4.4.3.2 Information theoretical learning criteria

Along with the property that the convolution of t&aussian functions is also a Gaussian,
ITL criteria are based on the combination of Renguadratic entropy definition with Parzen
windows in order to estimate the PDF of the eremugnce in a manageable procedure [190].

For a random variable with PDF fe([)], Renyi’s entropy [192] with parameter is defined

as

Hp, = ﬁlog [ £ (e)de (4.44)
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Renyi’'s entropy shares the same extreme pointshahi®n’s definition for all values of
@, i.e., its minimum value occurs whefp(() is a Diracd function while the maximum occurs
when the PDF is uniform [190]. In fact, Renyi's iamy represents a family of functiort$,,

depending on a parameter. Whena = 2, the Renyi’s quadratic entropy is given as
He, =~log [ f7(¢)de (4.45)

The PDF of a random variable for which the samples are give[rzl,ez,...,gN} IS

obtained using the kernel functioq,([)], whose size is specified by the parameterwith the

following expression
N
NOESWACEE) @4
i=1

When a was restricted to two, Gaussian kerne®{fJ, were specifically used [189],

yielding

(4.47)

O
where o is the standard deviation of the Gaussian kersedliin Parzen windows and(e),

the argument of the logarithm in Renyi's entrogycalled the IP [190]. From (4.47) it can be
noted that when the entropy is minimum all errangkes are completely constants over the
whole estimation data set. Therefore in trainindhvantropy the algorithm will converge to a
set of optimal parameters which may not yield zes@an error [188]. So, just after training
ends the error mean should be deducted the motjmitan order to yield zero mean.

As the entropy quantitative measures signals inftion, minimizing the error entropy is
equivalent to minimize the average information eontof the error sequence. Thus a practical
criterion that is appropriate to be used as afiosstion for ITL is the Minimum Error Entropy

(MEE), which can be written as
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vy (6.2)= Hielk, ) 18)
EN =argminV, (6?, ZeN) @4

When entropy in minimized all moments of the effRDF are constrained and therefore
MEE extends MSE [188-190].

As can be shown in (4.47), minimizing the entropyresponds to maximizing the IP for
a >1. This means that in entropy manipulation it is fmesto use simply the IP as cost
function. In fact, the concept of IP fields genethby samples seen as information particles
and the forces they exert on each other were dbfind investigated for the quadratic Renyi’s
entropy with Gaussian Kernels in [193]. The potdrassociated with an information particle

(sample)e; can be derived from the above IP expression, sime¢otal IP energy is the sum

of individual energies of the particles [190], as
O
v(sj)zN—ZG(s,. -£,0%) (4.50)

From (4.50) it is possible to compute the totabinfation forcesF (gj) acting ong; by

making the physical analogy with forces in potdrtedds as

O
Fle,)= a\gﬁsj)zéie‘(gj - £ 20°) (4.51)
i iZ]

If the goal is to adapt the parameters of a noahm&apping;ul(kW) = g(#,6) in a function
approximation framework, instead of the MSE an [Titecion will be used based on the IP.
The information forces are encountered when traigingadaptive system with a parameter
vector 8 with the IP criterion and using a gradient basedhod. The parameters are adapted

by injecting the information force for samp#e as the error. The gradient of the IP of the error

with respect to the parameters consists of prodofctise information force acting on an error
sample and the sensitivity of the model architexatrthe error value [190].
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Y m] m]
OV(g)_ N GV(gl.)agj N %_%
06 _; de, 06 _;F(‘g" 0 06 (4.52)

The gradient of the model output with respect to jaeameters can be calculated using
efficient methods depending on the model type;dorMLP it can be computed by back-
propagation.

The superiority of the entropy criterion over the Mi& chaotic time series prediction with
MLP neural networks was demonstrated in [188].dnteast with MSE that is only based on
both the norm and variance of the error sequemeel|TiL criteria are estimated with pairs of

error samples, which means that more informaticruaithe data set is being extracted.
Although this superiority, ITL criteria will be cqmtationally more expensiveO(Nz),

which becomes prohibitive for large estimation dats or when numerical search methods are
used [194]. Therefore, the MLP neural network wdltbained with the classical MSE criterion
and MEE will be exploited as the loss function whéygical modelling approaches are used
for deriving MG dynamic equivalents purposes.

4.4.4 Finding suitable parameter estimation methods

For many model structures, the loss function isommicated function oféd and the

minimization vaIue,E?N, must then be computed through a nonlinear opétita technique.
Therefore, the choice of the optimization algoritbelongs firstly between local and global
approaches, as depicted in figure 4.15.

The combination of many identification criteria witte several techniques to compute it
has lead to a wide and sometimes confusing vaoieiyentification methods. The computation
of the estimates is a model structure dependent iasd therefore this topic is covered in
many articles and books on system identificatitarditure and the basic techniques are also the

subject of many studies in numerical analysis [195]
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Nonlinear
optimization techniques

/\

Local Global
Evolution strategies
Genetic algorithms
Particle swarm optimization
Direct search Gradient based search Evolutionary particle swarm optimization
Simplex search
Hooke-Jeeves
General Nonlinear Constrained
approaches least squares methods
Steepest descent Gauss-Newton Sequential quadratic programming
Newton Levenberg-Marquardt Penalty function approaches

quasi-Newton

Figure 4.15: General overview about nonlinear optirization techniques

4.4.4.1 MLP training with Levenberg-Marquardt method

Concerning ANN training in batch mode, gradientdshmethods, such as nonlinear least
squares, have been widely used to find the miniratithe criterion. As it is useful to order the
computations to use the particular structure ofrtbxeral network, the training method is called
the back-propagation algorithm. In order to tram MLP neural network it is generally
recommended to apply the Levenberg-Marquardt mefth@4]. It provides a fast convergence,
is robust and it is not necessary for the usenittalize any strange design parameters [195].
Since this method was derived especially for MSEe tgpcriteria, the identification method to
be used with MLP based model structures comprised_evenberg-Marquardt optimization

algorithm and the MSE as the identification critario

4.4.4.1.1 MLP structure optimization

Concerning MLP neural networks, from subsection.3.3 is clear that, in order to
improve model quality, model structure selectiormiach more involved than just a matter
selecting a number of hidden units, since the nétweed not be fully connected; in fact, it is
likely that it will be advantageous to leave outights connecting certain inputs with certain
hidden units or certain hidden units with certautpots. Therefore, it will lead to a large

combinatorial problem if the model has to be piclked a trial and error basis approach.
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Although in practice it is impossible to investigatll possible configurations, there are several
useful methods that allow to obtain a trade offr@ein doing a fair amount of computations
and obtaining an architecture that is reasonabdy ttee optimal for the particular structure of
the regression vector [161, 164].

As one has access of an unlimited amount of baihitrg and validation data, the neural
network architecture determination becomes les®itapt and it can be possible to restrict the
attention to fully connected neural networks, fohiethh the architecture selection task is
reduced to choosing both the number of hidden fagad the corresponding number of hidden
units and subsequently perform explicit of impl&itucture optimization [161] in order to deal
with the bias/variance dilemma.

The term explicit means that the bias variance tcdfless carried out by examining models
with different numbers of neurons. In the conteiktMdP neural networks forward selection
and backward elimination categories are very popara widely applied through growing and
pruning methods, respectively [196, 197]. Growisdhe generic term for training techniques
that increase the network complexity by adding aesirwhile pruning refers to decrease the
network complexity by removing neurons.

In contrast to explicit, implicit structure optinaton or regularization techniques
influences the complexity of a model although tlemimal number of parameters does not
change. When regularization techniques are appéechodel is not as flexible as it might
appear from considering the number of parametersealThus the model behaves as though it
possesses few parameters that it really haswiith,fewer degrees of freedom. Therefore the
bias error is increased and the variance erroredsed. Loosely speaking, regularization works
as follows: Not all parameters of the model arenojzed in order to achieve the minimal loss
function. Those parameters that are still used farirmzing the loss function are called
effective parameters while the others that havey @ml insignificant influence of the loss
function are called spurious parameters [161].

The most commonly used augmentation is the so-callegle weight decay. However, a
similar effect can be accomplished by stoppingtthming session before the minimum of the
criterion has been achieved [164]. This importagularization technique is known as early
stopping. It can be applied when iterative optiric@a methods are used. Training is not
performed until the model parameters have convetgddteir optimal values. Rather during
the iterative training algorithm the model perfoma on a validation data set is monitored and
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training is stopped when the validation error regckts minimum. At the minimum of the

validation error the best bias variance trade effrealized. At the left hand side of this
minimum the model would underfit, while to the rigmand side it would overfit the data.

During the iterations the number of effective mogatameters increases and if the training
continued until convergence, all model parameteitk begcome effective, resulting in large

variance errors.

In [169] the interesting result was shown that éfffect of early stopping not only has an
effect similar to regularization by weight decayt llso the two approaches are in fact closely
related. However, the main reason for the early@tag popularity is its simplicity.
Furthermore, it reduces the computational demamdesitraining does not have to be
completed. It is important to understand that feryvflexible models, convergence of all
parameters is not desired. Therefore, regularizdiioearly stopping was adopted in order to
avoid overfitting. In addition, the MSE on the valithn data set was used as a primary

validation criterion.

4.4.4.2 EPSO as the optimizer in physical modelling approdwes

The nonlinear local optimization techniques staoinfran initial point in the parameter
space and search in directions obtained by neighbod information such as first and
possibly second order derivatives. As a consequenssh an approach leads to a minimum
that is close to the starting point and, in genemnak the global one. However, for many
problems, local search is sufficient, especiallgadbd initial parameter values are available.
Then the simplest strategy for searching a good lggmum is a multi start approach, since
each local run discovers a local minimum and thst lo@e is chosen as the final result. In
addition it allows to get a feeling for the qualignd number of different local optima.
However, if it is not possible to achieve a satisfay solution, a global method may succeed
[161].

In contrast with local approaches, nonlinear glaijgimization techniques, also known as
stochastic search algorithms or meta-heuristigsiarfind the global optimum or at least a
good local optimum without many assumptions abbet problems to be solved. Therefore
they have been widely applied in learning and op@ton problems of many areas of
knowledge, including power systems. However, camogr particularly to system
identification problems, the main drawbacks usuallyinted out are twofold; the huge
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computational demand and the slow convergencestonithimum prevents their applications to
high dimensional input space problems.

Since the search for the global minimum is perfatneto the parameter space, the
required computational effort grows exponentiallghtmthe number of parameters, which does
not depend on the specific algorithm applied. Addilly, as the whole parameter space has to
be examined, although with no uniform density, ¢bavergence to any minimum is very slow
even after finding a region of a loss function mmom. Loosely speaking, global methods are
good at finding regions while local methods are dyab finding points. Therefore in system
identification it is considered a good idea to tise estimated parameters from any global
method as initial values for a subsequent locahapation procedure in order to accelerate the
convergence of the method to the optimum [161].

Because all the optimization techniques have thécific advantages and drawbacks, in
practice, it is often effective to combine diffetaapproaches. In this sense, EA have mainly
two prominent features which distinguish themseliresn other global search methods like
Simulated Annealing, Tabu Search and Branch and &dtirst they are based on a population
of individuals and second there are communicatioml @anformation exchange among
individuals in a population as the result of setettcompetition and recombination. Different
representations, selection schemes and searchtansessill define different EA, such as
Evolution Strategies, Genetic Algorithms and Gené&rogramming, but their algorithms
analysis are easy to understand and therefore padsble to exploit hybrid methods [198].
While ES and GA are mainly used for parameter esiimaechniques, GP operates on a
higher level by optimizing tree structures [161¢iaherefore is not considered here.

The classical PSO developed by Kennedy and Ebert@29t201] was introduced in power
systems area [202] and recently in nonlinear dynasystem identification [203]. Successful
applications to function minimization [204], feedfard neural network design [205, 206] and
a wide range of other optimization problems alldwe thany authors to claim superiority in
speed and to recognise its searching potential. M\dmmpared with EA, PSO has some
attractive characteristics and in many cases provéa more effective [199]. However, tuning
the algorithm has proven to be a hardly and probtspendent task. On the other hand,
classical PSO lacks the EA learning ability, nambb/cSA-ES [201], which benefit from an
evolutionary process to progressively adapt thampaters that guide its own search.
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Therefore, EPSO was built over the concepts®A-ES and PSO [207] in an attempt to
combine the best of both techniques. As a resutioge reliable and robust method was
obtained, which may be seen as the first natudélaskaptive convergent evolution of both
approaches, although other attempts had been r2@d8eZ09].

Applications of EPSO have already been reportedanyrpower systems problems [207,
210-213], where the superiority of EPSO was confdmiing a faster convergence and better
solutions when compared with other meta-heurisBegn for no smooth objective functions.
More recently EPSO was successfully applied in ingira FIS model under an entropy
criterion for wind power prediction [214], denotitigat EPSO performs well under different
criteria, and its robustness has effectively beeploted as a nonlinear global parameter
estimation tool to build dynamic equivalents for M&ng MSE criterion [17].

As a hybrid of ES and PSO, EPSO grants a PSO schetmédaeth an explicit selection
procedure and self adaptation properties of itarpaters. Then, EPSO can be seen under two
perspectives: A special class of self adaptive EAhous or a special PSO method. However,
in order to get a better insight, the authors [2@&]e preferred to explain the method from an
evolutionary view point. Thus, at a given generatithre set of potential solutions for loss
function minimization is called a set of particl&ach particle is composed by a set of object
and a set of strategy parameters, correspondintpetgparticle position into the parameter

space,d =(0,.4,....,6,,), and to the weights that govern the movement maspectively,
R =[g,w] [207].

A general scheme of EPSO can be done as follows.

1. Choose an initial swarm db particles,©, :[Pw Py - PS,OJ;
2. lterate fork =12 ,...

3. Replicate each particle times O, = Replicaticn(@k_l), R=1...r;

. . [k =Mutation(©
4. Perform mutation of the weights of each part ‘ Hta |o_r( ") ;
Ork = Mutatlor(@Rvk), R=1..r

5. Each mutated particle generates an offspring aaugrdd the movement rule

0. =Moveme 6k) .
Ory = Moveme 5R,k), R=1..r’

6. Evaluate the fitness of each particl%jt(@’k‘ew), Fit(@';f,?), R=L1..r;
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7. Perform selection®, = Selectio(@ﬂew,e';‘f{”);

8. Test for the termination criterion and either gatiep 3 or stop.

A brief description of the operators is presentefofiows

4.4.4.2.1 Recombination operator or movement rule

As in PSO, the position of each particle, is updatecording to the movement rule. Given

a particle positiong*, into the parameter space, its new posit@fi;, results from
0ik+l - Hik +Vik+l (4.53)
Vit =WVt i b -6 )+ o) -6 (4.54)

where b, and b, represent the best point found by the particlgpon to the generatiok and

the best overall point found by the whole swarnitsrpast life, respectively, =8 -9" is

the velocity of particlei at generationk. w,, w, and w, are weights conditioning the

inertia, memory and cooperation terms, respectiv@lye symbol"” indicates that these
parameters will undergo evolution under a mutapoocess. Thus, according to [207], the

particle as well as its reproduction in EPSO atesitiated in figure 4.16.

Figure 4.16: Particle reproduction in EPSO
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Each particle generates an offspring at a locatieterchined by the classical PSO
movement rule. Thus the offspring receives a coution from the global best parent and from
both direct parent and its best ancestor. This m#aats for practical purposes, this method
includes a provision of elitism, because the plrtiest ancestor and the swarm global best are
kept from generation to generation. On the otheddhéhe recombination operator is adaptive

and evolve over the generations through the mutatidhe particle strategy parameters.

4.4.4.2.2 Mutation of strategy parameters

As in6SA-ES, the patrticle object parameters are thosagithie phenotypic description of
a possible solution while strategy parameters laosed that govern the particle evolution over
iterations. According to [207], the basic mutatiore for the strategic parameters is the

following
w, =w, [logN(og)] (4.55)

where logN(07) is a random variable with lognormal distributioeriged from the Gaussian
distribution N(01) of zero mean and variance one andis a learning parameter, fixed

externally, controlling the amplitude of the mutais, since smaller values of lead to high
probability of having values close to the unity.
Approximations to this scheme could be obtained as

w = w, [L+2N(0L)] (4.56)

provided thatr is small and the outcome is controlled so thatatieg weights are ruled out.

This scheme is preferable to additive mutation$eftype
W, =w, +7N(01) (4.57)

since in this case the absolute value of the nantas insensitive to the valug . Therefore the

mutation of weightsn, for k = 1,23 are performed using (4.56).

Concerning to the global bedt, , it is randomly distributed to give

b, =b, +w,N(01) (4.58)

g
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where w, is the forth strategy parameter associated wittigha i, which is also mutated

according to (4.56). Thus a general particle in ER8®be represented as in figure 4.17.

9i,1 gi,z Hi,nH Wip | Wi | Wiz | Wiy

Object parameters Strategy parameters

Figure 4.17: A particle representation in EPSO

The size of the neighbourhood bf, where it is more likely to find the global bestat

least a global better than the current one, isrotdetl by w, allowing the search to focus on a

given point, if it is convenient.

44423 Selection

As it can be shown in the EPSO algorithm presentediqusly, at a given iteration, the
operator replication generatas clones of each particle, which undergo mutationthair
strategy parameters like the original particle. THeneach particle the recombination operator
generates +1 offspring, corresponding to+1 different locations.

The operator selection acts separately on each group-1 offspring and, based on their

fitness values, only one will survive for the fallmg generation. Under th(au,/]) notation,
usual in ES, for each particle 4br +1)cSA-ES is formed and the global process can be seen
as a multiple S(1,r +1) 6SA-ES, whereS is the number of particles in the swarm.

There is a solid theoretical background giving ihsigghy ES achieve convergence and
how a near optimal progress rate is obtained [2B$]application of genetic operators new
individuals are generated and then selection pesvalpositive push towards the optimum. On
the other hand, in classical PSO, each parent geseone offspring through the movement
rule application and dies. It should be noted thatmovement rule, only by itself, assures the
progress to the optimum, which means that in aweeagh generation will be better than the
preceding one [215].

EPSO combines the action of these two mechanisnfisllas/s: First the recombination
operator, which makes use of the movement ruleydesl a movement towards the optimum,
producing not only better individuals but also arerage better group. In a sequence, by
selection, the offspring with better performancdl survive assuring thus that the following
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generation tends to be better than the precedirg lnaddition the EPSO recombination
operator is self adaptive, which avoids the needife tuning the strategy parameters because
their evolution characteristics will learn aboue thest way to evolve towards the optimum
[207]. All these features give robustness to EPSQ@leiso In fact, experiences comparing
EPSO with the classical PSO formulation and alst Wi\ variants have shown that EPSO is
in general more robust, as already mentioned pusiyo

Therefore, it is expected that the main featureER$O combined with these ones of the
MEE criterion, mentioned previously in subsection .34 will result in a promising
identification method for physical modelling appecbas purposes, concerning the development

of MG dynamic equivalents.

4.4.5 Validation of MG dynamic equivalents

For validation purposes, the MG dynamic equivalelg@gved from the application of the
two promising approaches that emerged from theiguevsubsection have to be integrated in
the dynamic simulation platform used to generate data set in order to replace the MG
detailed model. Thus, the final validation criteri@ies on the evaluation of the MG dynamic
equivalent performance, concerning the reproduadiotihe MG dynamic behaviour using the
corresponding detailed model, with respect to {petneam MV network.

Since the issues related with this ultimate valadastep are very application dependent,

they are addressed further in chapter 5.

4.5 Summary and main conclusions

This chapter described the fundamental theoretioacepts behind nonlinear dynamic
system identification techniques. Also, a statehefart regarding these main techniques has
been included and a continuous exposition of tohrtigues that together constitute practical
procedures for building dynamic equivalents for [@poses has been given.

Firstly, a solid system definition was given. Afterds, common system identification
procedures were presented and the main featuratedeilo each stage were outlined. Since
nonlinear dynamic system identification techniqaes very application dependent, there are
no general guidelines to be followed. As a regsul, main stages to be carried out during a
process modelling should be guided by both thelavai prior knowledge and the intended use
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of the model. Then the problem of build dynamic gglénts for MG was formulated under a
system identification framework.

Based on the prior knowledge about MG dynamic belay described in chapter 2,
effectively used for modelling purposes, two pokssimodelling approaches have been
adopted: physical modelling and black-box modellilge physical model structure will be
selected based on the physical laws that potentidscribe the MG dynamics and thus a
continuous time state space model was directly tediopn contrast, the selection of a black-
box model structure involved several important siecis, such as internal or external
dynamics representation, the regression vectortlamchonlinear mapping. These issues have
been presented and discussed, taking into acctenfptrpose of deriving MG dynamic
equivalents.

Finally, as a result, two distinct identificationethodologies have been selected as
promising approaches to derive MG slow dynamicswvedgent models and therefore dynamic
equivalents for MG:

 TDNN based models, which combine an NFIR input $tm&c with an MLP neural
network as the nonlinear mapping. The TDNN modelcttines are trained using the
Levenberg-Marquardt method and MSE criterion . Ilditah, the MLP neural network
structure is optimized using early stopping;

e Physical based models, in which the parameter asbm task is performed using
EPSO as the global optimization tool and both MSE BiitE as the identification
criteria.

Both TDNN based methods and methods based on physickelling constitute promising

nonlinear dynamic system identification approacteslerive dynamic equivalents for MG.

Therefore these two solution approaches are exgloitehapter 5.
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Chapter 5
MicroGrid Dynamic Equivalents based on
Artificial Neural Networks and Physical

Modelling Approaches

51 Introduction

In this chapter nonlinear dynamic equivalents foG Mre developed based on the two
promising approaches identified previously, in deag.

These two promising approaches are:

* Black-box modelling The MG dynamic equivalent is based on a TDNN model
structure, which combines a NFIR configuration wah MLP neural network to
represent the MG nonlinear dynamics. Internal patars of the neural network are
identified using a classic MSE criterion and a Léxeng-Marquardt algorithm;

* Physical modelling.The MG dynamic equivalent corresponds to a phylgistiucture
parameterized model where EPSO is used togethereitlier the MSE or the MEE
criteria to identify the parameters of the model.

The MG dynamic equivalents obtained through the iegipbn of these approaches are
used to replace a MG in dynamic simulations whemise disturbances at the MV level occur,
like MMG islanding and load following in islandedoole. The derivation of dynamic
equivalents capable of reproducing the MG dynanelaliour during short circuits will be
considered in future developments.

As stated in previous chapters, system identificatprocedures for the derivation of
dynamic equivalents for MG start with a numericaperiment design suitable to collect
appropriate data sets and ends with a MG dynamusvaignt validation task. For these
purposes a dedicated dynamic simulation platforrs developed undeviatLab® Simulini

environment, which comprises two main packages:
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* The MMG detailed model: It contains all the sevenatrosources dynamic models and
their inverter controls, as described in chapteprdyiding in this way a MG detailed
model connected to the MV network. This module isdu® simulate the MG relevant
dynamic behaviour with respect to the MV networkomndler to generate high quality
data sets.

» The MMG equivalent model: In this module the dethiMG model is replaced by the
MG dynamic equivalents, to be developed, in ordeevaluate their performances in
the same environment.

This dynamic simulation platform plays the role bk texperimental set-up in system
identification terminology [159, 161, 169]. Thus,den the framework of developing dynamic
equivalents for MG, it is called the numerical gpt-since it allows to carry out numerical
experiments with MG, as well as to validate the By@amic equivalents to be developed.

This numerical set-up is described in section 5.2NWNlbased MG dynamic equivalents
methodology is presented in section 5.3, while ghgsically modelling based approach is

addressed in section 5.4. Section 5.6 describesutinenary and main conclusions.

5.2  The numerical set-up

As stated before, the numerical set-up is a deslicdyynamic simulation platform able to
design suitable numerical experiments with MG ideorto collect informative enough data
sets. On the other hand, the simulation platforoukhbe able to evaluate the performance of
the developed MG dynamic equivalent at the finagstof the identification procedure.

Therefore, the dynamic simulation platform involvego main simulation packages
developed for these two distinct purposes: The MM@&ited model and the MMG equivalent
model, as described in the following two subsedion

5.2.1 The MMG detailed model

In order to collect informative enough data sdte, dynamic behaviour of the MG, when
inserted in the upstream MV network should be satad using the detailed mathematical
description of a MG. Initially it is assumed thaetMMG is operated in normal interconnected

mode in parallel with the upstream power systemtuim, the MG is operated in normal
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interconnected mode too, under a MMG operation ogbphy. Following a MMG
disconnection from the upstream system, MG wilkbpt in operation connected with the MV
network, with the synchronous machines connectethéoMV grid providing voltage and
frequency control. Thus, as already mentioned pushoin chapter 2, the MG is operated
under a SMO control strategy, either importing xjpating a certain amount of power.

Each MG is fully represented, which means that tWenketwork, the existing loads, their
microsources and both the corresponding invertarfaces and controls, the main storage
device and both its interface and control are greed using the dynamic models described in
chapter 2. At the MV level, a round rotor synchramanachine6th order model [216] was
implemented to represent DG units connected tdvilenetwork. Both the automatic voltage
regulator and speed governor-turbine models wese imicluded when associated to a given
synchronous generator.

The dynamic analysis of MG may span over time irdlsrwconditioned by the slow
responses of microgeneration systems, namely S@RICh extend to several tens of seconds
[6, 7, 9, 10]. A multimachine power system modelswiberefore derived to describe in a
compact form the MMG network [216-218], employingohasor-type representation of the
electrical quantities, whereby all fast electritrainsients, such as stator electric transients of
both synchronous and induction machines are neglef38, 216]. Moreover, the time
constants associated with the network transierdgsvary small and can be considered to be
zero without significant loss of accuracy [219].

Dynamic models of all synchronous machines and ogmmeration systems are
interconnected through a balanced three-phase retafo R—L elements. TheseR-L
elements are used to represent transformers, MV lahdnetwork branches, in which
capacitive effects have been neglected [219]. kIs® assumed that all loads are balanced
symmetrical three-phasB—-L elements. All sources are viewed from the netwaskemfs
behind the corresponding impedance.

Network equations are referred on the synchronefesrence frameD -Q. When the
MMG is operated in interconnected mode, the upstreatwork (infinite bus) provides this
reference. Otherwise, as there are synchronousineschn the MV level, the reference speed

is determined as the weighted average of all speeds that is the centre of inertia reference.
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The integration of dynamic models of both microgatien systems and synchronous
generators with the network algebraic equations laotti LV and MV loads under a multi-

machine power system model is described in theviatlg subsections.

5.2.1.1 Round rotor synchronous machine

Round rotor generators, also called high speedrgans, are normally used for turbo-units
driven by high-speed steam or gas turbines. Tocedientrifugal forces, they have low
diameter but large axial length and are mountedzbotally. Typically they will have two or
four electrical poles [138].

As already mentioned previously the dynamic behavaf the round rotor synchronous
machines is described througtéath order model, in which all quantities are exprddgeper
unit and referred to thd —q internal machine reference frame [216], as desdrib appendix
A. The automatic voltage regulator (IEEE type 1 modell a governor-turbine system [218]
were also included.

According to this formulation and neglecting thatst transients, the generator terminal

voltage can be described in vector form as [216]

Vd_Egd_RS —X;xld
{VqHEgJ {x; Rj H (5.1)
where

E., Ey are thed —g components of generator internal voltage;

gd
Vy, V, are thed —gq components of generator terminal voltage;
l4, 1, are thed —q components of generator terminal current;
X4, X, are the subtransient reactancesiofq machine axis;

R, is the stator resistance.
Rotor oscillations of the synchronous machinescateulated from the respective swing
equations and the internal voltages of generatsslting from the numerical integration are

referred to the machind —q reference frame. As the network equations areesged in the
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system reference frame, the internal voltages shbaltransformed from the machine to the
system reference frame, using the rotor angles.

The g-axis of a given generator is shift with respectht® network real axis by the rotor
angled [216], as can be shown from the phasor diagranctkpin figure 5.1.

QA

E,
d

Figure 5.1: Relative position of the generator refence with respect to the network coordinates

Thus, concerning to the generator internal voltagles, relationship between the two
reference frames is given by the following axisigf@armation [216]

Ep T x Eqa _ sind cosd y Eqa
Eq Eyq| |—COsO sind| |E

gq

(5.2)

On the other hand, terminal currents must be toamsdd from the system reference frame
to thed —q machine reference using the inverse transformatisn

B b eesedChd

(5.3)

The stator equations given by equation (5.1) caretseitten in the synchronous reference
frame as [216]

VD_ED_le lexlo 54
Vo | |Eq {zﬂ zzj Iy (5.4)
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where
Z, Z, _ sind c9s§x RS - X, y sind —cpsd (5.5)
Z, Z, -cos0 sind| | X, R cosd0  sino

and the per unit values @i, X; and X are expressed in the system base.

For round rotor synchronous generators, it is agitde assumption to considet, = X;

[220] and therefore[Z] Is not influenced by rotor anglé [216]. Then the generator terminal
voltage in (5.4) and (5.5) simplifies to

Va Eq Xs R I
The model of the round rotor synchronous machingckematically represented in figure

5.2, where it can be observed their integratiom whe network equations.

T I D! IQ )

Iyl
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AVR Round rotor
synchronous X
machine 6™ order m R, d

model T Ep, Eq FH—AW\—" ]
’\_/ID, Ig
Turbine 0 00O O qgan
and m | Eq4Eq By Ep @O VoV
speed governor

Differential equations | Algebraic equations

Gy

Figure 5.2: Subtransient functional model of synchonous generator

5.2.1.2 Microsources and inverter interfaces

As stated before, the MG operated under a SMO abstrategy comprises the following

types of microgeneration systems:

* The main storage device, which is connected to thaétwork through a VSI control,
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» Controllable MS, such as SSMT and SOFC, and PV mysteonnected to the LV

network through PQ control inverters;

* Micro wind turbines, which use an induction generatirectly connected to the LV

network.

The mathematical description of the several micregation systems as well as the main
storage device adopts the dynamic models desciibathapter 2. Except the micro wind
generator, all those models are solved in time donproducing instantaneous values, which
must be properly interfaced with the algebraic éiqua of the network. As the inverter
interfaced microsources are presented to the LW gs emfs behind the filter impedances,

after determining the per unit values of emfs witspect to system voltage basg,.., the
Park’s transformation [221] is used to convert ¢émefs from the time domain to thB -Q

reference frame rotating at synchronous speed, as

S v, &)

base

E]__ | V3
e

p=2x (5.8)

is the Park transformation arétlis the angular displacement.
In order to back transform the voltage and curfesth the synchronous reference frame,
D -Q, to the time domain the Park’s inverse transforomgi221] is used. Thus,

e i
2 E 2 I
eo :P_1x|: Dj|x\/§>(vba3e; ib :P—1x|: Dj|>< 2x|base (59)
. E, J3 i lq
wherel, ... is the system current base and

143



Chapter V — MicroGrids Dynamic Equivalents based on iaidif Neural Networks and Physical Modelling Approaches

b
I

(5.10)

The integration of the main storage device andrtherter interfaced MS with the network

can be schematically represented as depictedunesgh.3 and 5.4, respectively.

\/E vaase
73 <
Vo Vo V3
VSI
control J2 x @ pace 1€
v[y[v| el
PWM
€, b
DC abc
& V3
—I_— AC eC D _ Q \/E xVbase
Main storage T
device 7

_: . Rf(p'u) Xf(p-u)

lD‘lQ(p'u) v V( )
b1 YolPU

Figure 5.3: Main storage device connected to the L¥etwork through the VSI control scheme

Microsource
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Figure 5.4: Microsources connected to the LV netwdrthrough PQ inverter control
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It can be observed from figures 5.3 and 5.4 thatalgebraic equations that connect the

inverters to the LV network can be written in tlyachronous reference frame as

V E R, -X I
Vo Eo| | Xi R lo
where R; and X, are the per unit values of the filter resistance eeactance referred to the

system base.

Concerning micro wind generation systems, the peit uariables of the induction
generator model described in chapter 2 are repied@m a system reference frame rotating at
synchronous speed. Therefore the stator equatiamsbe directly integrated in the network
matrix [217, 218].

5.2.1.3 Load modelling, transformers and compensation capaior banks

In this simulation platform loads are modelled adahced symmetrical three-phase

impedances,Z, =R_+ jX . When the load active and reactive powd?, and Q.
respectively, and the bus voltage,, are known at steady-state then the values ofteasie

R, and inductancé., can be calculated by the relation:
P +iQ. =Y. (5.12)

whereY, =Z* andY, denotes the conjugate ¥f .

The capacitor banks commonly used to compensateetieive power that is absorbed
from wind generators using induction machines ascdbed in the dynamic simulation as
injected currents into the network. After the ehation of transients, namely when there are

no large deviations from the nominal frequency,

Y
.= =4 5.13
L X, ( )

and the reactanc¥_. can be introduced in the network admittance matrix
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Transformers are modelled as equivalent impedandess, the variables associated with
the transformers, loads and capacitor banks shHmikdansformed to the synchronous rotating

reference frame in order to be integrated in thevokk matrix.

5.2.1.4 The MMG network equations

Network branches are modelled by series resistaRge,and inductancel;, , which are
considered as concentrated for the total lengtth@fiine. The capacitance for small lines can
be neglected. Thus, the network is modelled thrabgmodal admittance matriEt_{L] [216].

As the other power system components, such as iteqsalbanks, transformers and loads,
are represented by their corresponding equivalémitéances, they are also introduced in the
network admittance matrix. Thus, the whole MMG dyia model together with the static

network and loads is depicted in figure 5.5.
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Figure 5.5: Interconnection of generation sources ith the network equations

146



Chapter V — MicroGrids Dynamic Equivalents basedatificial Neural Networks and Physical Modellidgproaches

In order to build the multi-machine power systemtnmas necessary for the numerical
simulation it is convenient to number the various lbars following a specific order which
depends on the type of components that are corthattach bus bar, as can be observed from
figure 5.5. For that purpose, the infinite bus wiasnerated first; bus bars where synchronous
generators are connected were numerated nextwiotiothis one where the main storage
device is connected. Nodes with PQ control invertasynchronous generators and static
loads, respectively, were numbered afterwards.

Under these previous assumptions, taking into aucine subsections 5.2.1.1, 5.2.1.2 and

5.2.1.3, and concerning the sources internal bus, behich havek, :[ED EQ]T for their

internal voltages, the MMG network equation of agks and currents can be obtained as
[216]:

I o1 Ep
| o Ea
I DG EDG
I QG | — |:[YGG] [YGL]j| x EQG
= 5.14
0 [YLG] [YLL] Vi ( )
0 VQl
0 Vo
L 0 i _VQL

where{G} is the set of internal generator nodfs, is the set of all other nodes, including the
generator terminal bus bars, which are called rozdes.

The matrix[Y,,] is a diagonal matrix ofG} nodes admittances, obtained as follows
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Rqy —Xe| 00 00

o el lod o B
0 0] R -x,T" 00

Yeel=| |0 o L(; RJ {0 0} (5.15)

[0 0] 0 0 R -X.'

| [0 ol {0 0} [xs Rj _

[YGL] IS a rectangular matrix comprising a diagonal satomx with elements equal teY;

of matrix [YGG] and all other elements equal to ze{hQG] is the transpose c[‘f(GL]. The matrix

[YLL] is a modified version of the total nodal admitmatrix, [\_(] whose diagonal terms
now include the load and generator admittancebeatrdws corresponding to the load nodes
and generator terminal nodes respectively.

To simplify the analysis, all nodes other than ¢femerator internal nodes are eliminated
using the Khron reduction formula [138]. The adamtte matrix in (5.14) is then reduced to
[Vec] with dimensions2Gx 2G, where G is the number of power systems bus bars where
current is injected. The generation bus voltages the corresponding injected currents are

related by the following equation, which is writtenthe synchronous reference frame.

[IG]:[YRC]X[EG] (5.16)
where
[Yee]= Yool =[Ye I X[V ] x[Vi6 ] (5.17)

Is the reduced admittance matrix.
The voltages of terminal generation buses and eks are determined by solving the

following algebraic equations:

SR SEE

148



Chapter V — MicroGrids Dynamic Equivalents basedatificial Neural Networks and Physical Modellidgproaches

The derived equations provide a fast solution an nilecessary power system algebraic

equations.

5.2.2 The MMG equivalent model

The MMG equivalent model is derived by replacing tMG through its dynamic
equivalent, while the MV network model is retainedietail.

As stated before, the MG dynamic equivalent conegridhe dynamic model of the MG
main storage device together with its VSI contrdkiface and an aggregated model able to
represent the MG slow dynamics. This equivalent ehasl represented as a current source
directly connected to the boundary bus trying tkenthe injected current equal to the tie line
currents in the MG detailed model.

Thus, the MMG equivalent multi-machine power systeatrices are then built taking into
account the following assumptions with respechtodetailed model:

* The MV network model is retained in detail;

« The MG main storage device is connected to the ewvark through its VSI control

interface;

* The same LV line is used to connect the MG mairagi® device to the boundary bus;

* All the remaining MG components as well as bothegation and load buses are

eliminated.

Therefore the MMG equivalent model formulated amswdtimachine power system model

is schematically represented in figure 5.6.
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Figure 5.6: Interconnection of synchronous machinanain storage device and MS with the network

equations

In this case, the algebraic equations describiegMMG equivalent model are written in

the synchronous reference frani2;-Q, as

e e o

where

[YG] = [YGG] - [YGL]X [YLL ]_1 X [YLG]

K ]=[Ye]x[Y. ]

LOES NN (5.20)
[ZLL] = [YLL]_l

It should be noted that all the load buses injea:nercdents,[l L], are zero, except for the

boundary bus.
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5.2.3 The simulation algorithm

As described in the previous subsections dynamidefsoof several MS and other power
system components are used to develop an integdyteaimic simulation platform able to
simulate the MG dynamic behaviour based on an gpjate simulation algorithm. Although
this algorithm allows the simulation of the MG dymias inside the LV network, the attention
is focused on the MG dynamic behaviour with respedhe MV network, namely when the
MMG is operated in islanded conditions.

Therefore, the algorithm presented here is gerardlgives the possibility to analyse the
relevant dynamics of MG considering arbitrary tampés with different numbers and types of
microgeneration systems operating together un@w@ control strategy under different load
and generation scenarios when several perturbatpes take place in the MV network. The
user interacts with the dynamic simulation platfdsynproviding both the MMG input data and
the simulation input parameters, as can be obsdresdfigure 5.7.

A given MMG is described through the power systearameters. The scenarios for
perturbation conditions are defined a priori foe 8pecified steady state operating conditions.
This MMG input data is written in an input m-fil€oncerning to the input parameters, they are
supplied directly to the S-function mask provideg MatLab® Simulini environment and
involve the matrices associated with the disturbaoc the sequence of disturbances to be
simulated, according to the perturbation conditidefined in the MMG input data, and the
time sequence in which the disturbances occur.dasgdhe MMG input data and on the input
parameters, the entire procedure is carried ownaatically during a specified time interval
using one of the available solvers.

Both the MMG detailed and equivalent models follduws simulation algorithm. However
all the stages presented in figure 5.7 take intooacst the multimachine power system
formulations presented in subsections 5.2.1 an® 5d@rresponding to the MMG detailed

model and the MMG equivalent model, respectively.
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Figure 5.7: Flow-chart of the integration algorithmin MatLab® and Simulink®

The main components of this simulation tool arecdbed in the following subsections.

5.2.3.1 Initial conditions for network quantities, synchronous generators

and microgeneration systems

In order to calculate the initial values of bus baltages magnitudes and phase angles as
well as the injected generating power under balhrsteady state conditions, an initial load
flow analysis is performed. The input data corresfsoto a scenario describing the power
system steady state generating and load condititaisng into account the following

assumptions:
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 The MMG is connected to the upstream power system;

* The active power production of each DG unit cone@¢d the MV network is known
and the terminal nodes considered as PV type;

* Microgeneration systems are considered as gengratiits with positive active and
reactive power injections. Their terminal busesmcelelled as nodes type PQ;

* The classical Newton-Raphson method is appliedlgeshe load flow problem due to
its good convergence properties and applicabiitigigh resistive networks.

The results obtained from the load flow analysie also used to determine the initial

values of the state variables related with:

* Synchronous machines as well as their voltage atgudnd speed governor,

* Microsources, such as SSMT, SOFC and small wirtarngs;

* Inverter interfaces, like PQ inverter and VSI cofgy

* MG slow dynamics equivalent model.

5.2.3.2 Types of disturbances

The main disturbances that occur in a MMG powetesgscan be originated from sudden
changes in the network conditions, such as MMGdilag, changes in the load of the system,
short-circuits and changes in the mode of operaifdhe generation units.

Both MMG islanding and short-circuits are simulagedchanges in the network admittance
matrix of equation (5.14). Load following is an iorpant source of perturbations especially for
an autonomous power system. Since loads are mddsdleeonstant impedances, included in
the admittance matrix, a change in the static IEmdlso modelled as a change in the
multimachine power system matrices.

Concerning to changes in the mode of operation rig or more microsources, the
following disturbances are considered:

» Perturbations on the microsource operating corntio

» Connection and disconnection of microsources imgtevork.

These disturbances are simulated directly on tmauglyc models that describe the system

dynamic behaviour, as can be observed from figufe 5
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5.3 TDNN based dynamic equivalents for MG

As described in chapter 4, TDNN based on MLP nenefivorks have high capability to
deal with complicated nonlinear problems in a gahdramework, which allows their
successful applications to new situations that vmeteused during a training phase. Therefore
well trained TDNN can replace the MG slow dynam&ogl it is expected that it properly
interacts with the retained network for a wide f operating conditions.

With the use of TDNN for dynamic modelling purpases information about the system
structure is required and the use of complex madiieal analysis is avoided. This represents a
significant advantage especially when there isnéitdéid understanding of the relations between
system variables.

The application of TDNN for MG dynamic equivalenirposes involves four major steps,
like the conceptual system identification procedumresented in chapter 4. These steps are:

» Data generation;

* Model structure selection;

* Determination of the TDNN adjustable parameters;

* Model validation.

The first three steps are performed off-line. Th& Blow dynamics equivalent model thus
obtained is embedded in the validation module fogra MMG equivalent network. A brief

description of these main steps is presented ifoll@ving subsections.

5.3.1 Data generation

As the data set is the basis of any successfultifibtion procedure, a numerical
experiment should be designed in order to produsetaof samples that describe how the
system behaves over its entire range of operdatonthis purpose the MMG detailed model is
used taking into account the following issues:

* The design of input signals which lead to an infatine data set;

» Techniques for preparing the data for neural ndtwoodelling.

Based on the system definition presented in chaftas well as in the engineering
expertise, adequate input signals have been desigrieus, after MMG islanding, several
perturbations occurring in the MV network are siatatl and both the input and output signals
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are measured according to a suitable sample timali®ady mentioned previously, boundary

bus voltages expressed in the synchronous referéracee, D -Q, and system angular

frequency are considered as inputs while the baynlas injected current from the tie line,

expressed in theD —-Q reference frame, are considered as outputs. Timas,TDNN is

disturbed by both boundary bus voltage and netvi@m§uency variations. It reacts to these
variations by varying the injected currents inte thoundary bus, operating according to the
principles of a Norton model [16].

Boundary bus voltages, system frequency and injecterents are stored in a data base
during the perturbation simulations in order tolthiguitable training patterns. Since the data
set is almost the only source of information toldhuhe TDNN based dynamic equivalent
model, the number of samples should be large enwugider to form appropriate training and
validation data sets.

Concerning the data preparation for neural netvmookielling, many different methods can
be considered in order to extract the most valuadigmation from the measured data and to
make it suitable for neural network modelling. ®mgignals are likely to be measured in
different physical units, it is recommended to remadhe mean and scale all signals to the
same variance in order to avoid the tendency tmatsignal of largest magnitude will be too
dominating. Moreover, scaling makes the trainingpathm numerically robust and leads to a
faster convergence and tends to give better mbiedy.

In order to generate a more robust TDNN, which bt d&o simulate the MG dynamic
behaviour under different operating conditions, nmalized deviations of voltage, system
frequency and currents from the corresponding gtetade are used as in [16, 121-124].

5.3.2 Model structure selection

Selecting a TDNN model structure basically impliesselect the structure of regressors
and to specify how to combine them into a one-siiegad prediction through the MLP neural
network. However, a combinatorial explosion of pllessolutions arises from this procedure
and therefore it is impossible to investigate ahfegurations. In this sense, the working
procedure is to separate the two components oftbblem by first selecting a particular
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structure of the regression vector and subsequemspecify the number of hidden units in an
attempt to determine good network architectureshisrchoice of regressors.

As stated before, in chapter 4, the regressor véstoased on the NFIR model structure.
However, a wrong choice of the number of signatduass regressors will lead to poor results.
Too small lag spaces obviously implies that esakdifnamics will not be modelled, but too
large ones will contain redundant information amdrease significantly the input space
dimensionality. Although it is desirable to decitie humber of past inputs based on physical
insight, when the knowledge about the system istéunthe method based on the Lipschitz
guotients can be considered, since it can oftenigheca reasonable estimate of the model order
for deterministic systems. However, to computeqailbtients particularly ifN is large is a
very time consuming task [164]. Therefore, takingpiaccount that MLP can cope well with
redundant inputs by driving the corresponding hididgrer weights toward zero, the number of
past inputs selection becomes less important aed ntlain objective is to assure the
representation of the MG relevant dynamics.

In what concerns to the MLP architecture, since loa access of an unlimited amount of
training data the neural network architecture dheteation relies on fully connected neural
networks. In this case, the architecture selediorduced to a matter of choosing a number of
hidden units and the activation functions typesaofMLP neural network. A regularization
technique is further applied in order to deal with bias/variance dilemma.

5.3.3 Determination of the TDNN adjustable parameters

In this stage the collected data set is appliepi¢k the best model among the candidates
contained in the specified MLP neural network aeatture. Thus the neural network is trained
in order to provide the best possible one stepdpeadiction in a mean square sense. Neural
network toolbox oMATLAE is used for this purpose [222].

The backpropagation method with Levenberg-Marqualdorithm is used during the
learning procedure. Taking into account the disomspresented previously in subsection
4.4.4.1.1 and due to its simplicity, early stoppiagalso used in order to avoid overfitting,
realizing thus the best bias/variance trade-offic&iit is always desirable that the trained
neural network model is also validated on a vailmhatdata set not used to extract training
patterns, the collected data set is then split etwthe training and test or validation data sets.
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Some care is taken into account in order to gueeasimilar properties between the two data
sets regarding the representation of the systemmeegerating range.
As several MLP neural networks with randomly idited parameters are trained, the

validation error is also used as the first criterio reject poor models.

5.3.4 Model validation

After the training procedure, the performance & TiDNN based equivalent models with
less generalization error are evaluated in the mhymasimulation platform. A MG slow
dynamics equivalent model is then embedded in @delation module forming the MMG
equivalent model. The model performance is evatlate comparing its response following
perturbations that occur in the retained subsystetrused during the training phase with the
response obtained using the MMG detailed model.

For this purpose, in addition to the TDNN itselhist model requires two auxiliary
functions to prepare the TDNN inputs and outputseantegrated into the dynamic simulation.

These two functions represent the interface betwieenTDNN and the retained network as

depicted in figure 5.8.

TDNN
@ Av,
> f, = :
N
Vo Vo :
]
l ors | QR AVQ
MLP Aig
Boundary ! neural
: network Ai
bus Q
Aw
] f2 :
TDNN based MG slow dynamics
equivalent model

Figure 5.8: TDNN based MG slow dynamics equivalenmnhodel
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At each time step, the MG slow dynamics equivaheatlel recognizes the operating status
of the retained network through the boundary bu#iage and system frequency. The
normalized voltage and system frequency deviatidng,, Av, and A, respectively, are
computed through the functiof,. The TDNN is then used to determine the corresipond
normalized current deviationg)i, and Ai,. Therefore the current to be injected into the
retained network is computed using the functidn. These normalized deviations are

computed based on their initial steady state vahsesllows

_y ) \VARYIC) — /0

AVD :M’ AvQ :u' Aw= W= w (521)
AVD ,max AVQ ,max A wmax

I DR = AID XAI D,max + I |(30F)<, IQR = AIQ XAI Q,max + I((QOI% (522)

where
Av,, Av,, Ai,, Ai, are the normalized deviations of both voltage emdent D —Q

components;

Ac is the normalized deviation of frequency;

AV, AV,

Q,max?

Al pg maxs Dlormax  @re the maximum  variations considered to

D,max?
normalize both voltage and curredt—-Q components;

Aw,,. 1s the maximum frequency deviation consideredaionalize frequency;
VO, VO, 1818 are the initial steady state values of both veltamd current
D -Q components;

@ is the nominal value of system frequency.
The initial steady state values of boundary busagal and injected current of the MG slow
dynamics equivalent model are determined throughinitial load flow calculations. Their
maximum deviations as well as frequency maximumad®n are obtained from the dynamic

simulation of the largest amount of load connectiod disconnection upon MMG islanding.
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5.4  Dynamic equivalents for MG based on physical modetig

In contrast with TDNN based MG dynamic equivaleti®, second promising approach is
based on the available physical knowledge aboutd@amics and composition. Therefore,
the data set requirements are less demanding.

Thus, the major issues are related to the modedtsiie selection, the identification method

and model validation, as described in the followsndysections.

5.4.1 Physically parameterized model structure

As already mentioned previously, when the availakh®wledge allows to specify a
physical model structure, the mathematical reptesienm of the MG slow dynamics reduced
model is commonly done by a continuous state spawdel of a given order. In this case the
physical laws that approximate the MG slow dynanoieder the study are similar to those that
govern the active power control in a diesel grolp].[ Thus, the physically parameterized
model structure in represented undéatLab® Simulin€ environment through the block

diagram depicted in figure 5.9.

_l Tm,max
R [
Ggria + A m | 1 |T,=h
- Tps+1l
K _J
a‘ref =1 S T,

Figure 5.9: Model structure of the MG slow dynamicsequivalent model

The model structure parameters whose values have éstimated during the identification

procedure are gathered into the parameter vetiais

6=[R K, K, T, T,] (5.23)
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Since the MG slow dynamics equivalent model shobkl a current source, the
instantaneous power theory [223] was used in daléetermine the network injected current

as depicted in figure 5.10.

P Instantaneous

— power
theory |

Figure 5.10: Interface between the MG slow dynamicsquivalent model and LV network

The current source assumes the role of the inyvastedetermining the current from both

the active power delivered by the MG slow dynamecgiivalent model,P,, and a given

reactive power,Q,., which corresponds either to a pre-defined vainkel to a given MS

ref 1
power factor or a reactive power set-point sentheyMGCC, according to the reactive power
control strategies described in chapter 2.

The instantaneous power theory was proposed in] [B23ontrol of active power filters
and has been used to control the PWM-VBuI¢e Width Modulation — Voltage Source
Inverter) or PWM-CSI Pulse Width Modulation — Current Source Inveytevoltages or
current reference signals employed to turn on ana off the switches of the inverter can be
obtained from this theory [224, 225]. In this calfe instantaneous voltages and currents in
three-phase circuits are adequately expressed stanianeous space vectors #bc

coordinates as depicted in figure 5.11.
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Figure 5.11: abC to @ — [ coordinates transformation

In a balanced three-phase system a@he space vectors are easily transformed imt@and

[ coordinates through the Clark transformation ésvics:
t)
) ul
=Cx| vt 5.24
{ () v, t) (5.24)
. i (t)
t

E”B}:Cx i, (t) (5.25)

B .

where
v,(t), v, (t) andv,(t) are the instantaneous voltagesatic coordinates, respectively;
i.(t), i,(t) andi_(t) are the instantaneous currentsaloc coordinates, respectively;
v,(t) andv,(t) are the instantaneous voltageszirt B coordinates, respectively;
i, (t) andi,(t) are the instantaneous currentsiir 8 coordinates, respectively;

C is the Clark transformation given by

(5.26)
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So, as described in [223], the instantaneous aatidereactive powers are defined as:
p(t)} {va(t) vﬁ(t)Hia(t)}
= . 5.27
L(t) “vpt) v, ()]0 20

p(t) is the instantaneous active poweit
q(t) is the instantaneous reactive powekir .
In systems with sinusoidal balanced voltages amcents, the average value q{t) is equal
to the conventional reactive power and the insteuas active powerp(t), is always equal to

the conventional active power [223]. Thus, from aqn (5.27) it is possible to obtain the
currents reference signals to control the PWM-Gflicted in figure 5.10 as follows

et

where
L] w0 %O [
Lg(t)}[—vﬁ(t) va(t)} {QHJ (5.29)
and
I 1 0 |
Ctl= §x —1 ﬁ (5)30
2 2 2
1 43
L 2 2]

The references of currents,, i, andi_ are calculated instantaneously without any time

delay by using the boundary bus instantaneous gedtand both active and reactive power

values.

162



Chapter V — MicroGrids Dynamic Equivalents basedatificial Neural Networks and Physical Modellidgproaches

The procedure described above was implementedsimalinkS-function coded iMatLab

m-file, following the scheme presented in figuré2.

Vo(V) | D= 2, Vy

V, (pu.) —> 2 o(v) Q " abc
(pul—o V5™ Par
VolpU.)J— VQ(V) abe v, R iy
g
l i*

FnW ' - L (A e
P.(pu)—> s nW) v, v,17 la Ja-p L abc o )= 1 or(PU)
QrEf(p'U')—) B » |7V Va F abc i; - D-Q > \/Exlbase —

Qref (VAr) Iﬂ > IQ(A) IQR(p'U')

ol

Figure 5.12: Schematic representation of instantamis power theory implementation

5.4.2 The identification method

In order to estimate the parameters of the physgiqarameterized model structure, a
suitable identification method is required. As disged in chapter 4, EPSO, as a global
optimization tool, together with MSE or MEE crit@iconstitute promising approaches.

Therefore, the algorithm presented in subsectidm4£ of chapter 4 is used. Under this
context the parameter vectd given by (5.23) provides particle phenotype dgsdicms
corresponding to the particle positions into theap®eter space. The particle performances are
expressed through the MEE given by equations (4.44)48) and (4.49) described in
subsection 4.4.4.2 of chapter 4.

Since the identification method aims to find théuea of parameters that minimize the error
entropy and therefore the MSE, the MEE critericayplthe role of loss or cost function under
system identification terminology as well as thetipke fitness in an evolutionary sense. Thus,
a suitable evaluation function was implementedpfanticles MEE calculation. In contrast with
TDNN, the determination of the parameter vectoegiby (5.23) in carried out on-line. This
means that the loss function of each particle e&wated on the dynamic simulation platform.
For this purpose the MG slow dynamics model stmectsiembedded in the validation package

forming a potential MMG equivalent model. Therefoseme interaction between the EPSO
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algorithm and the dynamic simulation platform, cemming the validation package, is required,

as can be observed from the flow-chart depictdajure 5.13.

Search space definition

EPSO algorithm Scenarios for the
¥ perturbation conditions

= Replication

=  Mutation

= Evaluation function v

K Changing multimachine Power system
= Selection power system matrices matrices in D-Q

Dynamic simulation of

H MMG equivalent model
i
Dynamic models , Algebraic
= Synchronous machines Ep. EQ equa.tmns of MMG
i I > equivalent model
Error entropy = Main storage device with VSI control
calculation |1 - .
X * MG slow dynamics equivalent bR'7QR | Stmulink S-function
> coded in MatLab m-file
model
Data set . . . . . . Steady state network solution
E(’[) Time domain solution of differential equations and controls
A
- +
Target z\:

Figure 5.13: Flow-chart of physical parameters estiation

After defining the search space through both theimam and maximum values of each
parameter into the parameter vector, it is expetitatithe EPSO algorithm will perform the
search to the global optimum or, at least, to adgocal optimum under the MEE sense. For
this purpose, after mutation has been performedthey EPSO algorithm, the following
sequence of steps have to be carried out for eaticlp in the swarm.

* The evaluation function sends the particle objecameters to the MG slow dynamics

equivalent model,

» A pre-specified set of disturbances occurring dinedd time instants are simulated

during a certain time period,

« The MMG equivalent model response is compared thightarget response, which was

generated from the MMG detailed model, yieldingearor sequence;
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* The entropy of the error sequence is then calalilated sent back to the evaluation
function;

» Based on the error entropy information, EPSO allgoriperforms selection in order to
build the swarm corresponding to the next genamnatio

The above procedure is repeated while the EPSQitllgotermination condition is not

verified. A similar procedure is carried out if M$Eadopted as the loss function.

5.4.3 Model validation

Taking into account the particular fact that theapaeter vector is estimated on-line, on the
environment in which it will be used, model validat is in some sense embedded into the
parameter estimation stage, since models with pedormances have been eliminated by the
selection operator during the parameter estimapoocedure. The set of particle object
parameters thus identified allows the best perfoceaof the MG slow dynamics equivalent
model evaluated on the validation software package.

Thus, as a final validation test, the model perfamge is evaluated considering

disturbances not used during parameter estimation.

5.4.4 Summary and main conclusions

In this chapter two suitable approaches for degvMG dynamic equivalents were
developed. One exploits black-box modelling basadaoTDNN while the other exploits
physical modelling, being the physically parametedi model structure selected taking into
account the available physical knowledge.

The application of these two developed methodototgpeMicroGrids yielded two kinds of
MG dynamic equivalents:

e The TDNN based MG dynamic equivalent;

» The physical MG dynamic equivalent.

In order to generate high quality data sets as aslio evaluate the performance of both
types of MG dynamic equivalents, two dynamic sirtialapackages were also developed: The
MMG detailed model and the MMG equivalent modespexctively. The integration of TDNN

based MG dynamic equivalents into the MMG equivialandel for validation purposes was

165



Chapter V — MicroGrids Dynamic Equivalents basediatificial Neural Networks and Physical Modellidgproaches

also addressed. Concerning the physical MG dynanquévalents, the MMG equivalent model

is also used during the parameter estimation proeed
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Chapter 6

MicroGrid Dynamic Equivalents Study Cases

6.1 Introduction

In this chapter the two methodologies developechapter 5 are applied to derive dynamic
equivalents for MG, being their performances algalwated through the comparison of the
results obtained from both MMG detailed and eq@milmodels. For these purposes two
MMG are considered corresponding to two differest systems denoted as TS-01 and TS-02.
The developed dynamic equivalents will reproduee MG dynamic behaviour during MMG
islanding and load following in islanded mode.

Thus, in section 6.2, the black-box modelling appiobased on TDNN is applied to TS-01,
yielding the TDNN based MG dynamic equivalents. M@ slow dynamics equivalent model
iIs embedded into the dynamic simulation packageesponding to the MMG equivalent
model of TS-01, being its performance evaluatede Tésults obtained are presented and
discussed as well as some remarks concerning #tisoaiology.

In section 6.3 the physical modelling approachesaqplied to derive dynamic equivalents
for the MG of TS-02, yielding the physical MG dynianequivalents. Their performances are
evaluated considering the MMG of TS-02 and, in addj compared with the performance of
the TDNN based MG dynamic equivalent considering MMG of TS-01. Afterwards, the
performance of the physical MG dynamic equivalemesalso evaluated usigirostag® The
results obtained from dynamic simulations are plesented and discussed.

Finally, the summary and main conclusions are prteskin section 6.4.

6.2 MG dynamic equivalents based on TDNN

The TDNN based approach presented in section 5i18esl in this section to derive a
dynamic equivalent for the MG of the test systemspnted in figure 6.1. The MMG system

presented in figure 6.1 (a) comprises two roundrr@ynchronous machines &00kVA
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connected to the MV network together with MV loadtsl a LV feeder connected to a MV/LV
distribution transformer — the MicroGrid. The MGntains an80kW SSMT, the main storage
device (flywheel) and three PV panels with a ta@apacity of 45kW . The amount of load
connected to the LV network is aroutt80+ j60kVA and the MV load is400+ J60kVA. A

more detailed description of the electrical and maedcal parameters of the several

components of this test system is presented inrefppé\.

Infinite bus —|— 1 Infinite bus —|— 1

10 T1 11 2 10 T1 11 2

o[ HOHHD sw OO sw

L, 14 3 13 14 3
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—— 15 —— 15
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LlOl ! 8 L
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Lzl
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Figure 6.1: Single-line diagram of TS-01: (a) MMG eétailed model; (b) MMG equivalent model.

The MG without the main storage device is repldmgé TDNN, which provides the NFIR
model structure. This structure operating in patalvith the MG main storage device
connected to the LV network through its VSI confimims the MG dynamic equivalent. The

retained subsystem corresponds to the rest ofetveonk, as can it be observed from figure 6.1

(b).
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6.2.1 MG dynamic equivalents using TDNN

The idea behind the adopted approach is to re@hamponents belonging to the MG,
except the main storage device feeder by a TDNNiclwls connected to the retained
subsystem through the boundary bus.

For training purposes, several amounts of load eciion and disconnection are simulated
at different locations in the MV network, when & operated in islanded mode, using the
package corresponding to the MMG detailed modek $mulation of each sudden load
change is carried out fat0s, which is enough to restore the steady statditons after these
disturbances. Thus, the load is connectetl=a2 s and disconnected at=20s. The dynamic
simulation is carried out using the variable stee solverodel5swith a relative tolerance
1x107°.

A 10ms sample time was selected through a trial amat eqpproach in order to avoid too
large training and validation data sets and to @jutae simultaneously informative enough data
sets, allowing a good performance of the TDNN basedlel. Thus each amount of load

connection and disconnection results in 4000 pstérheD —Q components of boundary bus
voltage, theD —Q components of the injected current from the MGuvsttynamics subsystem

(MG without the main storage device feeder) as aglsystem frequency are stored during the
simulation and subsequently used to prepare saifadterns for TDNN training and validation
purposes, as described in subsection 5.3.1 of eh&pt

The TDNN has three inputsD-Q components of normalized voltage deviations at

boundary bus and the normalized system frequengiatitns. However, the MLP neural

network receives the outputs from the external dyodilter bank, which in this case realizes
the regression vector corresponding to the 5 passsarements of the TDNN inputs. Therefore
the MLP neural network has 15 inputs. On the oth&nd, two outputs representing the

normalized deviations of th® —Q injected current components at the actual timp sre

obtained from the MLP neural network. In what cansethe MLP neural network internal
architecture, one and two hidden layers were censdl with different number of hidden
neurons, based on trial and error approaches and tiee knowledge obtained from the first

attempts. Therefore, a considerable number of MeBral networks has to be trained and
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evaluated in order to derive a MG slow dynamicsivjant model with good performance in

the sense of the final model validation criteriag,it can be observed from figure 6.2.

Training data set ‘ ’ Validation data set
MLP 1 LP1
Model 1 ogdl 1
Mo('lel 2 'el 2
Model 5 Model
MLP 2 MLP 2 MLP 2
Model 1 7777777777777777777777777
Model 2 Model 2 i Model 2
Model 5 Model 5 MLP2
— > : — Model
MLP 3 ILP 3 T . | Model2
U Validation Final model
{ Model 1 ogd 1 error ILPT validation s
Model 2 el 2 oddl 1
Model 5 Model el 2
"""""""""""""" Model 2 Accepted models
MLPT MLPT
E— E—— Model validation on-line
i Model 1 Model 1
{ Model 2 | Model 2
| Model 5 | Model 5

Training procedure carried out off-line using early stopping

Figure 6.2: TDNN based MG slow dynamics model estiation and validation

Patterns corresponding to MMG islanding and 6 dkifé load connection and
disconnection sequences, upon MMG islanding, aesl us train the MLP neural networks
while patterns corresponding to 4 different loadireection and disconnection sequences are
kept for validation purposes. The training procedwas accomplished offline, as already
mentioned previously in subsection 5.3.3. The olethiMLP neural networks are saved in
order to be integrated in the validation dynamimwdation package, following the procedure
described in subsection 5.3.4. For this purposedmemandyensim(net,stjs used to create a
Simulinksystem containing a block that simulates the newetvorknetwith a sampling time
st, which, in this case, i$0ms.

The best accuracy in the sense of the final modkdiation criterion was obtained from a

two hidden layer feedforward neural network with&id 11 neurons in the first and second
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hidden layers, respectively, with a tan-sigmoidvation function. The output layer has two
neurons with linear activation functions. The tmagn procedure was automatically stopped

when the error in the validation data set startexelasing in order to avoid overfitting. This

happened when around 400 epochs were elapsed, theifgSE value neatx10® (for the

normalized deviations ob —Q components of the injected current).

6.2.2 Simulation results and discussion

As stated before, in order to evaluate the perfacaaf the MG dynamic equivalent based
on TDNN obtained as described in the previous gectihe MG slow dynamics equivalent
model is embedded in the dynamic simulation platforeplacing the detailed model of this
subsystem and forming thus the MMG equivalent model

The accuracy and validity of the TDNN based MG dgitaequivalent is evaluated by
comparing the time domain responses obtained frgmamic simulations of disturbances
tacking place in the MV network using both simwatipackages corresponding to the MMG
equivalent and detailed models.

It was assumed that the MMG is initially intercootegl with the upstream power system
and operated under the steady state conditionsmessin table 6.1.

Table 6.1: TS-01 operating conditions before MMG ianding

Generation Consumption

SM1 250 kW

MV network SM2 100 kW
Total 350 kw 400+ j60kVA

Storage device 10kVAr

_ _ SSMT 533+ j2kVA
MicroGrid
PVs 45kwW
Total 983+ j12kVA 1489+ j588kVA
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Based on these operating conditions before MMGnditey, a general overview of the
several microgeneration systems dynamic behavieugiven firstly. For this purpose, the
following sequence of actions was carried out 8aMMG detailed model:

e MMG islanding att =5s;

« Connection of an amount of loati)0+ j25kVA, to bus 9 of TS-01, as represented in

the single line diagram of figure 6.1 (a),tat 20s;

« Disconnection of the amount of load previously cxtad att = 40s.

Afterwards, for model validation purposes, thisusatpe of disturbances is simulated using
both the MMG detailed and equivalent models anddbiained time domain responses are
compared. It should be noted that this amount ad vas not used to extract training patterns.
The TDNN based dynamic equivalent performance wiae a&valuated under different
operating conditions before MMG islanding takingoimraccount new load and generation
conditions in the MV network as well as in the MGhus, the following operating scenarios
were considered.

* Scenario O:Initial steady state conditions presented in té&ble
» Scenario 1:New generating conditions is MV network;

» Scenario 2:New load conditions in MV network;

» Scenario 3:New generating conditions in MicroGrid,;

» Scenario 4:New load conditions in MicroGrid.

The TDNN based MG slow dynamics equivalent modehisegrated into the simulation
package corresponding to the MMG equivalent modibwing the procedure described in
subsection 5.3.4. Thus, the initial values of tH2NN based MG slow dynamics equivalent
model inputs and outputs as well as their maximamations have to be determined in order
to derive suitable mapping and demapping functidnsand f,, given by equations (5.21) and
(5.22), respectively.

The initial and maximum values obtained based am ithtial steady state conditions

presented in table 6.1 were updated for scenariogilas presented in table 6.2.
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Table 6.2: TDNN based MG slow dynamics equivalent adel inputs and outputs initial values and

maximum deviations

Initial values (p.u.) Maximum deviations
Scenario 0 0 0 0 0
VO VE 8T @) AV AV ey | Alogmad Al orme| A
0 1,0088| -9,56x18 | -0,1230 | 0,119 1| 0,032 0,143 0,074 0,006  0,0247
1 1,0092| -9,2x18 | -0,1240 | 0,198 1| 0,0273 0,09853  0,0605  4,7x100,0247
2 1,0078| -0,0106 | -0,1240 0,120 1 0,048  0,20f3  0,09080,0103 | 0,0323
3 1,0075| -0,0161 | -0,1889 0,121 1 00373 01657 088 12x10° | 0,0254
4 1,0136| -1,68x18 | -0,0397 | 0,0857 1| 10,0252  0,1274  0,0575 0.004  0,0250
The results obtained from the numerical simulati@me presented and discussed in

subsection 6.2.2.1 to 6.2.2.6. Some remarks of TO#dNed MG dynamic equivalents are

described in subsection 6.2.2.7.

6.2.2.1 Dynamic behaviour of microgeneration systems

In order to provide a general overview about theasyic behaviour of the microgeneration

systems, the above sequence of disturbances wadatach using the MMG detailed model.

The microgeneration systems active and reactiveepoasponses are presented in figure 6.3.

In turn, figure 6.4 shows the system frequency daredMG main storage device terminal bus

voltage.
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Figure 6.3: Active and reactive power outputs of mirogeneration systems of TS-01
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Figure 6.4: System frequency and MG main storage ae&e terminal bus voltage of TS-01
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When the MMG is operated in normal interconnectedde) all the microgeneration
systems are supplying active and reactive powecsrding to the steady state operating
conditions described in table 6.1. It should beeddahat the PQ inverter controls of the PV
systems are operated with a unity power factoectimpg in the LV network the maximum
active power produced taking into account only tleperature and irradiance conditions,
which are considered to be constant during the laitionn time. Concerning the SSMT, it was
considered as supplying a constant reactive poasedon a given set-point defined centrally
by the MGCC and sent to the MC embedded in itsiR@rter control.

Following a MMG disconnection from the upstreamteys the MG is kept in operation
connected with the MV network. The synchronous nrash connected to the MV level
provide both voltage and frequency references/rasady mentioned previously, and are also
the main responsible to balance demand and suBpti. active and reactive power outputs of
PV systems are kept constants. Although the SSM€tikee power output experiments small
variations during transient situations, it can lmmsidered approximately constant over the
simulation time and equal to the pre-specifiedpseiH.

However, following the sequence of disturbancéhnMV level, due to the load unbalance,
transient system frequency changes and bus voltagations arise. Therefore, the MG main
storage device active and reactive power outpuperaxent variations proportionally to the
system frequency and bus voltage deviations fromir tmominal values, respectively,
according to the frequency/active power and voliagetive power droops implemented in the
VSI control interface. Thus, the active power ishei injected or absorbed only during
transients, whenever the system frequency devitdiffer from zero, while the reactive
power output is increased or decreased accordibgdosoltage deviations, as can be observed
from figures 6.3 and 6.4.

Concerning to the SSMT, the local secondary loaguency control tries to restore the
system frequency to the nominal value through #fendion of a new active power set point
for the primary energy source, based on the freqpueleviation error. Therefore, the MG
contributes together with the synchronous machitmesneet power demand upon MMG
islanding. The MG main storage device acts as ma load frequency control while the
SSMT provides secondary load frequency control.s€éhfeatures are key issues to assure the
MG operation in islanded mode, as already mentigrediously in subsection 2.4 of chapter
2.
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It can also be observed from figure 6.3 the twoetiscales that characterize the dynamic
responses of the several microgeneration systemsenang the active and reactive power
outputs. It should be noted that the MG system ragipa between the MG slow dynamics
subsystem and the main storage device feeder wsed ban this physical knowledge and
constitutes the basis for the developed MG dynaqigvalent methodologies, as stated before

in chapter 4.

6.2.2.2 Scenario O: Initial steady state conditions

After simulating the above sequence of disturbanitess TDNN based MG slow dynamics
equivalent model outputs are compared with theses avbtained from the MG replaced

subsystem. Figure 6.5 shows these comparisons.

0.118 —— MMG detailed model 4
"""" MMG equivalent model
0.116 i
1 1 1 1 1
0 10 20 30 40 50 60

Time (s)

Figure 6.5: TS-01 TDNN based MG slow dynamics equident model injected current in scenario 0

The coincidence between the responses of the M@ dymamics detailed and equivalent

models indicates that the TDNN not only learnechvgiticcess the nonlinear behaviour of the
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replaced subsystem, but also presents a good ¢jeatom capability. This can also be
observed from figure 6.6, where the performanchefTDNN based MG dynamic equivalent
is compared with the one of the MG detailed modkke active and reactive power outputs of
both models are very similar, demonstrating theati¥eness of this MG dynamic equivalent
in reproducing the MG dynamic behaviour followingM®& islanding and during load

following transients when embedded in the dynanmw#ation platform.

g
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Figure 6.6: TS-01 MG dynamic equivalent power outpts in scenario 0

Before MMG islanding the MG was importing activedaeactive power in order to face the
LV consumption, as it is indicated by the negasigns in figure 6.6. This importing scenario
is also kept after MMG islanding. The SSMT increadgs active power production following
MMG islanding as well as when the load is connecteducing the injected active power
when the load is disconnected. These variationgaided by appropriate set-points based on
the system frequency deviation, as already merdigreviously. The main storage device
supplies active power only during transients arnikbgats reactive power output proportionally
to the bus voltage deviations. These active anctiveapower variations can also be observed

from figure 6.6. The TDNN based MG dynamic equinélperformance is also evaluated on

177



Chapter VI — MicroGrid Dynamic Equivalents Studys€a

the retained subsystem. Thus, in figure 6.7, a @m®mpn between boundary bus voltage and

system frequency obtained from the MMG detailed equivalent models is presented.
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Figure 6.7: TS-01 Boundary bus voltage and systemefguency in scenario 0

The quality of the results observed from figure 6ufgests that the TDNN based MG
dynamic equivalent reproduces with high accuraeyMitG dynamic behaviour with respect to
the MV network, following MMG islanding as well akiring both load following transients
and steady state conditions when the MMG is opérateislanded mode. This can also be
observed from figures 6.8 and 6.9, in which thevactind reactive powers supplied by
synchronous machines SM1 and SM2, respectivelypr@sented.

In order to balance generation and demand followivegMMG islanding and during load
following situations the synchronous machines Skd 8M2 adjusted their active and reactive

power productions, as it can be observed from ég.8 and 6.9, respectively.

178



Chapter VI — MicroGrid Dynamic Equivalents Studys€s

=

=
a

Q (KVAN)

350-

100

Q(kVA)
[e)]
o

—— MMG detailed model
""" MMG equivalent model

|
10 20 30 40 50 60
Time (s)

Figure 6.8: TS-01 SM1 active and reactive powers iscenario 0
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Figure 6.9: TS-01 SM2 active and reactive powers iscenario 0
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Several comparisons were carried out under newrtighces resulting from the connection
and disconnection of different amounts of loadsemvthe MMG is operated in islanded mode.
The MMG equivalent model responses are in a vendgagreement with these ones of the
MMG detailed model. This ensures a good performaocelDNN based MG dynamic
equivalent in reproducing the MG dynamic behaviaurder load following transient

conditions upon MMG islanding.

6.2.2.3 Scenario 1: New generating conditions in MV network

In order to evaluate the MG dynamic equivalent bdjg to cover new operating
conditions, its behaviour is studied for new poWew conditions before MMG islanding, by
increasing the active power produced by SM2 frof tD150kW . The generated power and
demand in the MG are kept constant, so that tred pawer transferred to the LV network is
not significantly changed.

Figure 6.10 compares the powers supplied by the dd@iled model and by the TDNN

based MG dynamic equivalent.
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Figure 6.10: TS-01 TDNN based MG dynamic equivalerppower outputs in scenario 1
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Before MMG islanding, the MG is importing activedareactive power like in scenario 0.
However, as the MMG active power generation wasei®ed, the active power unbalance
between demand and supply following MMG islandingsweduced and therefore the system
frequency deviation from its nominal value is smathan the one verified in scenario 0, as it
can be observed from figure 6.10. As a result, M@ main storage device active power
injection during this transient situation is smalle

Figure 6.10 shows a small loss of accuracy betwleepower response of the MG dynamic
equivalent and the MG detailed model, being theimar errors3kW for active power and

06kVAr for reactive power. This is not surprising sirtbe MLP neural network was not

trained under this initial steady state conditiadewever, the results obtained show that the
performance of the MG dynamic equivalent performsai good agreement with the MG
detailed model. The use of normalized deviationsereds the validity of the dynamic
equivalent to cover new initial MV generating cdiahis before MMG islanding without

significant loss of accuracy, as can it also bespled from figures 6.11, 6.12 and 6.13.
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Figure 6.11: TS-01 boundary bus voltage and systefrequency in scenario 1
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Figure 6.12: TS-01 SM1 active and reactive powers scenario 1
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Figure 6.13: TS-01 SM2 active and reactive powers scenario 1
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It should be noted that the small loss of accunaayfied in the MG dynamic equivalent
power responses does not affect significantly ttoeiacy of the results on the MV network, as
it can be observed from figures 6.12 and 6.13, wipawer errors lower thah2+ j 04kVA
are verified for both synchronous machines.

Like in scenario O, several simulations of conr@tand disconnection of different amounts
of load were performed. In all of them the TDNN &&sViG dynamic equivalent presents a
good matching with the MG detailed model duringddallowing transients upon MMG
islanding even under new operating conditions tegulfrom changes in the MV network

steady state generation.

6.2.2.4 Scenario 2: New load conditions in MV network

The TDNN based MG dynamic equivalent performance alao evaluated under new MV
network steady state load conditions. For this psepan additional load, =100+ j10kVA,
connected to bus 12 of TS-01 was considered. ShedIG load and generation conditions
were not changed, the power flow from the MV netwvorthe MG when the MMG is operated
in interconnected mode was not significantly madifias it can be observed from figure 6.14.
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Figure 6.14: TS-01 TDNN based MG dynamic equivalerfiower outputs in scenario 2
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Figure 6.14 shows the active and reactive poweputsitof both the TDNN based MG
dynamic equivalent and the MG detailed model. Aligiilo a certain loss of accuracy can be
observed, the dynamic behaviour of the TDNN basgthchic equivalent is identical to the
MG detailed model over the whole simulation time.

Like in scenario 1, the loss of accuracy verifiediie TDNN based MG dynamic equivalent
power outputs is not surprising, since both theusaqge of disturbances and the steady state
operating conditions are not in the training dadaeb In this case the experimented errors are

lower than7kW for active power and,6kVAr for reactive power. However, its effect at the

MV level is reduced and the results present anpabe level of accuracy, as can be observed
from figures 6.15, 6.16 and 6.17.
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Figure 6.15: TS-01 boundary bus voltage and systefrequency in scenario 2
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Figure 6.16: TS-01 SM1 active and reactive powers scenario 2
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Figure 6.17: TS-01 SM2 active and reactive powers scenario 2
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Before the disconnection from the main grid, the @ Mctive load demand in covered only
in part by the local production of both synchronauachines, SSMT and PV systems,
requiring a large power import from the upstreanvg@osystem, which supplies the reactive
power requirements as well. Upon MMG islanding #ystem frequency drops to a lower
value and the MG main storage device as well assyimehronous machines increase their
outputs to compensate the loss of MMG import. Alifo with a large time delay, the SSMT
active power generation also increases, as it eawbberved from figure 6.14, when the active
power output of the MG main storage device is adagro.

The effects of the loss of accuracy experimentedhbyMG dynamic equivalent based on
TDNN can also be observed from figures 6.16 and’.6However, the maximum errors
associated with the synchronous machines poweromesg obtained from the MMG

equivalent model are lower tha@w j1kVA for both SM1 and SM2. Therefore, the previous

four figures suggest that the TDNN based MG dynaegjaivalent successfully captures the
MG dynamic behaviour considering the changed |ldaeddy state operating conditions in the
MV network.

6.2.2.5 Scenario 3: New generating conditions in MicroGrid

Most of the conventional dynamic equivalents failsimulate the dynamic behaviour of
power systems if any change occurs inside the mattesubsystem, requiring the development
of a new dynamic equivalent [123, 124]. In thisezabe performance of the TDNN based MG
dynamic equivalent is also evaluated under new pdlee conditions inside the MG. For this
purpose the SSMT active power generation is coralfereduced fronb33kW to 20kW .

Under these new operating conditions the aboveeseguof disturbances was simulated
again. The TDNN based MG dynamic equivalent actwel reactive power outputs are
presented in figure 6.18, where a good agreemenbeabserved. Since the MG active power
generation was reduced, a larger amount of actoxgep is being imported from the MV
network before MMG islanding.

The small loss of accuracy verified (the maximumiaksons are less thah5kW for active
power and less thaB@5kW for reactive power) is acceptable, since fiisce on the boundary

bus and studied subsystem is quite reduced, abeabserved from figures 6.19, 6.20 and
6.21.
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Figure 6.18: TS-01 TDNN based MG dynamic equivalerdctive and reactive power outputs in scenario 3
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Figure 6.19: TS-01 boundary bus voltage and systefrequency in scenario 3
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200- B
2150 7
[a
100 B
| | | | |
0 10 20 30 40 50 60
10
80r e Lk il
T 60 ]
z
o 40- B
20+ —— MMG detailed modell
""" MMG equivalent model
O [ [ [ [ [
0 10 20 30 40 50 60

Time (s)

Figure 6.21: TS-01 SM2 active and reactive power ¢puts in scenario 3
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In fact, figures 6.19, 6.20 and 6.21 show that TRNN based MG dynamic equivalent
reproduces with high accuracy the MG dynamic behaviwith respect to the studied
subsystem following the study sequence of disturbsn

Several amounts of load connection and disconnmeastiere simulated under this steady
state operating scenario and similar performancae wbserved, even when different SSMT
active power production levels were considered.rd@foee, the TDNN based MG dynamic

equivalent effectiveness can also be extendedfereint generating conditions inside the MG.

6.2.2.6 Scenario 4: New load conditions in MicroGrid

In this case, the performance of the TDNN based dy@amic equivalent is also evaluated
under new power flow load conditions inside the M&or this purpose the load
L11=386+ j153kVA was disconnected from bus 27 of TS-01. Under tlsteady state
operating conditions the above sequence of acti®rsmulated again and the comparison
between the MG dynamic equivalent and the MG dedanhodel power responses is presented

in figure 6.22.
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Figure 6.22: TS-01 TDNN based MG dynamic equivalerpiower outputs in scenario 4
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As the active and reactive power consumptions tioMG were reduced, the local power
unbalance was also reduced and therefore a lessrirabboth active and reactive power is
being imported from the network when the MMG is igped in interconnected mode, as it can
be observed from figure 6.22. Since the MMG powdralance was also reduced, the system
frequency deviation from its nominal value follogiMMG islanding is smaller than this one
verified in scenario 0, as presented in figure 6. &%refore a smaller active power injection
from the MG main storage device was experimented, @n be observed from figure 6.22.

Figure 6.22 displays a small loss of accuracy, dpéire errors experimented lower than

3+ j1kVA. However, the effect of this small loss of accyracthe study system is diminished

as it can be observed from figures 6.23, 6.24 aP8.6
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Figure 6.23: TS-01 TDNN boundary bus voltage and syem frequency in scenario 4
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Figure 6.25: TS-01 SM2 active and reactive powers scenario 4
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The maximum errors observed from figures 6.24 adb Gre aroundL5+ j 06 kVA for

both synchronous machines. Thus, the MG dynamit/algnt based on TDNN reproduces the
MG dynamic behaviour with high accuracy followirgetsimulated sequence of disturbances.
Several simulations of different amounts of loadreection and disconnection were carried
out under different MG steady state load conditibefore MMG islanding and the MMG
equivalent model responses are kept in a good mgrewith these ones obtained using the
MMG detailed model. Therefore, the TDNN based M@alyic equivalent can also be used to

replace the MG, even when its steady state loaditton are changed.

6.2.2.7 Some remarks of TDNN based MG dynamic equivalents

The TDNN based MG dynamic equivalent thus obtawed implemented on the dynamic
simulation package corresponding to the MMG eqeralmodel and its capability to
reproduce the MG dynamic behaviour was investigalee effectiveness of the TDNN based
MG dynamic equivalent was demonstrated using thed1GS-01. The results obtained allow
to conclude that the TDNN based MG dynamic equivgbeovided a very good matching with
the results obtained using the MG detailed modelr dke whole simulation time, requiring
simulation results or measurements only at the darynbus.

Several initial steady state load and generatiamditions in both the MV network and
inside the MG, before MMG islanding, were consideaed a good performance was observed
without modifications in the structure or parametef the MLP neural network. The use of
normalized deviations from the initial steady stasdues of both TDNN inputs and outputs
extends the neural network generalization capgbibtt simulate sequences of disturbances
under steady state operating conditions not usedttact training patterns. Moreover the total
simulation time of the studied sequence of distacka is around 90 times faster with the
MMG equivalent model than with the MMG detailed rabd

Under this context the TDNN seems to be an exdettani to derive dynamic equivalents
for MicroGrids. However, although the features présd before have been ambitious
regarding the application of classical methodolsgie conventional power systems, the
following weaknesses have to be pointed out comegMG dynamic equivalents.

» High computational effort. To derive a TDNN basgghamic equivalent involves the

following main stagesl) Generation of very large data se2}Pre-processing datd)
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Training many MLP neural networks with differentamal architectures in order to
select the best ones in the sense of the MSEiontgerified for the validation data set;
4) Integration of a number of MLP neural networksoirthe dynamic simulation
package corresponding to the MMG equivalent moalefifial validation purposes.

All these stages are very time consuming tasks.

» High loss of accuracy when the TDNN is used toaepla new MG. To obtain a TDNN
based MG dynamic equivalent with an acceptableopmdnce requires a new MLP
neural network, which has to be trained with a datagenerated using the new MG.

In order to overcome these drawbacks an alternatiehodology exploiting the available

physical knowledge has been developed, as desarilibd following section.

6.3 MG dynamic equivalents based on the physical modepproach

The physical modeling approach described in sedidns used in this section to derive a
dynamic equivalent for the MG of the test systemspnted in figure 6.26 (a), denoted as TS-
02.

Infinite bus —l—l Infinite bus - 1

SM1

SM2
q
15 Physical model
4
I MicroGrid
L Dynamic Equivalent

(b)

Figure 6.26: Single-line diagram of TS-02: (a) MM &etailed model; (b) MMG equivalent model.
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The MMG system presented in figure 6.26 (a) conagrisvo round rotor synchronous
machines of500kVA connected to the MV network together with Mds and to a MV/LV
distribution transformer — the MicroGrid. This M@mprises two 3GkW SSMT, a 30kW
SOFC and the main storage device (flywheel). Th@uh of load connected to the LV
network is50+ j10kVA and the load connected to the MV level5@0+ j100kVA. A more

detailed description of the electrical and mechanparameters of the several components of
this test system is presented in appendix A.

The physical model to be obtained replaces the M®& dynamics subsystem, as depicted
in figure 6.26 (b). Like in the TDNN based approattte MG dynamic equivalent comprises

this model operating in parallel with the MG maiarage device feeder.

6.3.1 Development of physical MG dynamic equivalents

In this approach, like in the first one, the MG vglalynamics equivalent model to be
derived represents a current source directly caeddo the boundary bus. The injected current
is predicted from the model structure describedubsection 5.4.1 of chapter 5 through a
suitable set of values for the parameter vectoemgiby (5.23). As already mentioned
previously, in subsection 5.4.2 of chapter 5, taemmeter estimation procedure of the physical
model structure described in subsection 5.4.1 i$opwed online. For this purpose, the
physical model structure is integrated into theaigit simulation package corresponding to
the MMG equivalent model and its parameter values adjusted using the algorithm
schematically represented through the flow chapiaded in figure 5.13 of chapter 5.

In order to build an informative enough data setlyothe following sequence of
disturbances occurring at the MV level of test sys{TS-02, presented through its single line
diagram in figure 6.26, is simulated using, obvigushe MMG detailed model simulation
package:

 MMG islanding att = 2s;

e Connection of the amount of lod®0+ j25kVA at bus 8 of TS-02 at=20s;

e Disconnection of the amount of load previously axtiad att = 40s.
The simulation of this sequence of disturbancesaisied out over60s, since those

timings are sufficient to restore the steady staieditions following MMG islanding and
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sudden load connection and disconnection as welharfable step size solvedel5savailable

in Simulinkis used with a relative tolerance bf107°.
It was assumed that the reactive power generatedS®yIT1, SSMT2 and SOFC
corresponds to the reactive power set-points, ddfeentrally by the MGCC and received by

their MC, which are kept constant during the sitiatatime. Thus, the value @, in figure

5.10 of chapter 5 matches the initial reactive poWew from the MG slow dynamics
subsystem, which is determined through the inltald flow calculations. For a given active

power produced by the physical model structureaegiin figure 5.9 of chapter 5, tH2-Q

components of the injected current are determirzesedb on the boundary bus voltage, as it can
be observed from figure 5.12 of chapter 5.

Then, for a known and fixed value @}, to estimate the model parameters that fit the

ef 1
MG slow dynamics subsystem injected current is\ajent to estimate the model parameters
that fit its active power output. Therefore thegtroutput is done by the MG slow dynamics
subsystem active power output and, therefore, ah@sponding equivalent model simplifies to

a MISO model.

The data set thus obtained is stored fileamat without pre-processing, in order to be used
directly in the MMG equivalent model as the targetput for parameter estimation purposes,
as it can be observed from figure 5.13 of chapter 5

In order to find suitable parameters for the phgisddG slow dynamics equivalent model,
the EPSO algorithm with 20 particles, replicatiactbr r =1 (each parent gives birth to one

descendant) and Gaussian mutation with learnirggrat 05 was used. For the MEE criterion

a Gaussian Parzen window with fixed sizez0.  00@&s adopted. The stopping criterion
involves 10 consecutive generations without findangetter global fitness.
After finding the parameter vector, which provides best performance in the sense of the

MEE, the average value of the error PDF has toddedto the active power outp, , of the

physical model structure depicted in figure 5.9 cblapter 5 and the physical MG slow
dynamics equivalent model performance is evaluayedomparing the time domain responses
obtained from the MMG equivalent model with thogsee® obtained from the MMG detailed

model, as presented in the following subsections.
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6.3.2 TS-02 simulation results and discussion

For parameter estimation purposes it was assunaedhd MMG is initially interconnected
with the upstream power system and operated umg@esteady state conditions presented in
table 6.3.

Table 6.3: TS-02 operating conditions before MMG ianding

Generation Consumption
SM1 250 kw
MV network SM2 200 kW
Total 450 kW 500+ j100kVA
Storage device 5kVAr
SSMT1 20+ j2kVA
MicroGrid SSMT2 15+ j2kVA
SOFC 10+ j2kVA
Total 45+ j6kVA 50+ j10kVA

In order to evaluate the performance of the physM& dynamic equivalent a new
sequence of disturbances occurring at the MV leva$ simulated under the steady state
operating conditions presented in table 6.3, ad aglunder different operating conditions.
Thus, the following scenarios were considered:

» Scenario O:Initial MMG operating conditions presented in @bl 3;

» Scenario 1:New generation and load conditions in MV network;

» Scenario 2:New generation conditions in MG;

* Scenario 3:New MG composition and new MG load conditions.

Under each one of the above scenarios correspondinifferent steady state operating
conditions before MMG islanding, the following semqae of disturbances was simulated:

e MMG islanding att = 2s;
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e Connection of an amount of loa@D+ j15kVA, not used during parameter estimation

to bus 8 of TS-02, represented through its singke-tliagram in figure 6.26 (a), at
t=20s;
« Disconnection of the amount of load previously cotad att = 40s.
Firstly, a general overview of the active and rex@cpower produced by the several MS is
presented. Afterwards the results obtained from digeamic simulations concerning the
physical MG dynamic equivalent and the MG detarfeatiel are compared and discussed.

6.3.2.1 Dynamic behaviour of microgeneration systems of T82

Figure 6.27 plots the active and reactive powepuist of all the microgeneration systems
of TS-02 following the above mentioned sequencdisturbances. In addition it displays the
fast and slow dynamics that characterize the mamegation system responses.

Before MMG islanding the MS active and reactivedurction levels are according to the
steady state conditions presented in table 6.3. MIN&S is importing a certain amount of

power from the upstream system in order to balémedocal power demand and supply.
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Figure 6.27: TS-02 active and reactive powers geraed by microgeneration systems
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Following MMG islanding, the MG main storage deviaas as a primary load frequency
control, through its VSI control, in an attempti@liance active power demand and supply due
to the loss of MMG imported power. Similar respas@n be observed during transient
situations following sudden load connection anctammection. After the system frequency is
restored to its nominal value, the main storagecgeactive power output is kept around zero,
as it can be observed from figure 6.27. The michotes and SOFC vary their active power
outputs according to the secondary load frequemyral scheme implemented in their PQ
inverter controls. However, the SOFC presents g slew response regarding its active power
output. The increasing/decreasing of SOFC actiwegpmutput to the set-points derived from
system frequency error involves timings around te#rseconds.

Concerning the reactive power outputs, the coratibbd microsources with PQ inverter
controls are supplying a constant reactive powerming to its pre-specified reference
defined centrally by the MGCC. The reactive powerdpiced by the MG main storage device
upon MMG islanding is proportional to the termitais voltage variations arising from MMG

islanding and load following situations, as depidtefigure 6.27.

6.3.2.2 Scenario O: Initial steady state operating conditios

Figure 6.28 shows a comparison between the actikereaactive power outputs of the
physical MG slow dynamics equivalent model. Asande observed, a notable degree of
accuracy of the predicted active power output igioled following a non-trained amount of

load connection and disconnection. Concerning ¢aetive power output, sind@,, was kept

constant over the whole simulation time, a smalbrers displayed upon MMG islanding.
However this error does not affect considerablyabeuracy of results with impact at the MV
network, as it can be observed from figure 6.28¢esithe physical MG dynamic equivalent
power outputs experiment errors aroud@d4+ j 006kVA.

Before MMG islanding the MG is importing a small @umt of active power to balance its
own demand and supply, as the negative sign camnelspg to the active power output in
figure 6.29 indicates. In contrast, the reactivav@o produced into the MG is not fully
absorbed from both the MG own load and losses,gbtfie exceeding exported to the MV

network.
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Figure 6.28: TS-02 physical MG slow dynamics equivant model power outputs in scenario 0
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Figure 6.29: TS-02 physical MG dynamic equivalent&ive and reactive power outputs in scenario 0
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Following MMG islanding transients the whole povesistem is balanced in a new steady
state operating point in which the MG active amactive power productions are increased as a
result of the controllable microsources secondaoad!| frequency control and the
voltage/reactive power droop of the main storageicgeVSI control. In this situation the
active power generated equals the MG demand asddpso that the MG active power output
is around zero. After load connection the MG exp@tsmall amount of active power and
increases the reactive power output. These activé @eactive power variations are
accomplished by boundary bus voltage variations feegliency deviations from its nominal
value, as illustrated in figure 6.30. It shouldrim¢ed that the physical MG dynamic equivalent
reproduces with a high degree of accuracy the bamyndus voltage and system frequency

behaviour.

Vrms (p.u.)
[N
o
an

50.5

f (Hz)

50

—— MMG detailed model
""" MMG equivalent model

[ L L L L
49. 10 20 30 40 50 60

Time (s)

Figure 6.30: TS-02 boundary bus voltage and systefrequency in scenario 0

A good response matching can also be observed figures 6.31 and 6.32, regarding the
synchronous machines output active and reactiveepown fact, considering constant the
reactive power output of the MG slow dynamics eglaat model over the whole simulation

time does not degrade the quality of results.
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Figure 6.31: TS-02 SM1 active and reactive powers scenario 0
26
240- |
:
o 220+ -
200 *
| | | | |
0 10 20 30 40 50 60
80
. 60 } }‘& B
<
<
@ a0 :
—— MMG detailed model
""" MMG equivalent model
| | | | |
200 10 20 30 40 50 60

Time (s)

Figure 6.32: TS-02 SM2 active and reactive powers scenario 0
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Similar performances can also be observed for r@iffeamounts of load connection and
disconnection, demonstrating the MG dynamic eqeivakffectiveness under different load
following conditions. Thus, it can be concludedtttiee physical MG dynamic equivalent thus
obtained presents a good performance, concernadyltA dynamic behaviour with respect to
the study subsystem under transient and steadyiatlitions.

6.3.2.3 Scenario 1: New generation and load conditions at M network

The physical MG dynamic equivalent performance &0 evaluated under different
steady state operating conditions before MMG islaopndThen the active power produced by
SM2 was increased fron200kW to 300kW and a new loadl =200+ j40kVA, was
connected to bus 5 of the TS-02. Under these neadgtstate operating conditions before
MMG islanding, the above sequence of actions waslilsited again and the results obtained
are presented. Figure 6.33 plots the physical M@&dyc equivalent power outputs.
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Figure 6.33: TS-02 physical MG dynamic equivalent gwer outputs in scenario 1
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Taking into account the previous scenario, a stoal of accuracy regarding the active
power response can be observed from figure 6.38.maximum error is experimented after
transients and is lower thatkW . Concerning the reactive power output, basictile same
performance was achieved. However, the effect ef physical MG dynamic equivalent
response deviations from the responses of the M&ilelé model with respect to the study
subsystem is very small, as can be observed frgunes 6.34, 6.35 and 6.36.

The small loss of accuracy observed from figur@s @nd 6.36 concerning the synchronous

machines active power corresponds to a maximunr Eweer than15kW . Therefore figures

from 6.34 to 6.36 suggested that the physical M@adyic equivalent reproduces very well the
dynamic behaviour of the MG with respect to the K&twork.
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Figure 6.34: TS-02 boundary bus voltage and systefrequency in scenario 1
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Figure 6.36: TS-02 SM2 active and reactive powers scenario 1
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Similar performances can also be observed followiiffigrent amounts of load connections
and disconnections under these steady state appmaiinditions, demonstrating the physical
MG dynamic equivalent ability to represent the MgBvant dynamics with respect to the MV
network when the MV steady state operating conaticare changed, considering in

simultaneous new load and generation.

6.3.2.4 Scenario 2: New generation conditions inside the MG

Now the performance of the MG dynamic equivalenassessed under new power flow
conditions inside the MG, resulting from a differegeneration scenario before MMG
islanding. For this purpose the active powers df1$8, SSMT2 and SOFC were increased for
20kW and the above sequence of actions was simudgtad.

Under these new initial steady state operating itiond the MG is exporting both active
and reactive power before MMG islanding, as it t@nobserved from the positive sign in
figure 6.37.
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Figure 6.37: TS-02 physical MG dynamic equivalent&ive and reactive power in scenario 2
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As the active power generation was increased aadotd was kept constant, the MMG
own generation and demand are nearly balanced tleengIMG importing a small amount of
active power. Therefore a small system frequencyiatien from its nominal value was
experimented following MMG islanding leading withsaall power injection from the MG
main storage device. After system frequency restorahe VSI active power output is kept
near zero. Sudden load connection and disconneldars with larger frequency deviations
and therefore with larger amounts of active powgdted or absorbed by the VSI of MG main
storage device, as it can be observed from figbu®s and 6.38.

Concerning to the reactive power, as the contri@dlaticrogeneration systems outputs are
kept constant the MG main storage device is resplen$or the reactive power variations
based on its voltage/reactive power output.

Figure 6.37 shows a good matching between the M@amyc equivalent response and this
one obtained from the MG detailed model, underdhesy MG generation conditions, being
the errors experimented lower tha®4+ jO06kVA. Thus, the MG dynamic behaviour

reproduced by the physical MG dynamic equivalenhigood agreement with this one of the

MG detailed model, as it can also be observed figures 6.38, 6.39 and 6.40.
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Figure 6.38: TS-02 boundary bus voltage and systefrequency in scenario 2
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Figure 6.39: TS-02 SM1 active and reactive powers scenario 2
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Figure 6.40: TS-02 SM2 active and reactive powers scenario 2
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Similar performances can also be observed wheerdiit amounts of load are connected
and disconnected in different locations of MV netkval his stresses the good performance of
the MG dynamic equivalent under new initial steathte generating conditions into the MG.
This is an important feature, since any equivateatel should be flexible enough to consider

potential variations in the power supplied for rogeneration systems.

6.3.2.5 Scenario 3: New MG load conditions and new MG comzation

The robustness of the physical MG dynamic equivalas also evaluated considering one
MG with a different composition. For this purpose SSMT2 of TS-02 was replaced by one
fuel cell. Before MMG islanding the active powepguction of SSMTL1 as well as of each one
of the SOFC i20kW , like in scenario 2. Concerning the reactive @oproduction, each one
of these controllable MS is kept on injecting astant reactive power akVAr, according to
the reactive power set point defined centrally by MGCC. The load conditions inside the
MG were also changed by adding a new ldae;, 15+ j3kVA, to bus 16 of TS-02.

The study sequence of disturbances was simulat@sh dgeing the results obtained

presented in figures 6.41 to 6.45.
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Figure 6.41: TS-02 physical MG dynamic equivalent&ive and reactive power outputs in scenario 3
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Figure 6.41 plots the active and reactive poweputst of the physical MG slow dynamics
equivalent model. Concerning the active power dut@u certain loss of accuracy is
experimented by the physical MG slow dynamics egjent model, namely during transients.
This is due to the fact that the active power outpluMG slow dynamics subsystem is
dominated by the SOFC active power output.

However, a good agreement between the physical M@ardic equivalent and the MG
detailed model responses can be observed fromefi§u2, being the errors experimented by
the MG dynamic equivalent lower thab+ j 008kVA.

As it can be observed from figures 6.43, 6.44 ad8,8he physical MG dynamic equivalent
provides quite identical results than these ondaimméd using the MG detailed model. The
maximum errors experimented from the synchronoushinas active and reactive powers are

lower thanl+ j 002kVA.
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Figure 6.42: TS-02 physical MG dynamic equivalent&ive and reactive power outputs in scenario 3
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Figure 6.43: TS-02 boundary bus voltage and systefrequency in scenario 3
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Figure 6.44: TS-02 SM1 active and reactive power ¢puts in scenario 3
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Figure 6.45: TS-02 SM2 active and reactive power ¢puts in scenario 3

Several sequences of disturbances were also sedulatder these initial steady state
operating conditions (scenario 3), considering edéht amounts of load connection and
disconnection. Similar levels of accuracy can bgeoled, so that it can be concluded that the
physical MG dynamic equivalent thus developed igrapriate to represent the MG dynamic
behaviour of TS-02 with respect to the MV netwaskdwing MMG islanding and during load
following conditions when the MMG is operated ifaisded mode.

Although the MG composition was changed, a goodopmiance was achieved without
modifications in the model structure or parametéfswever, in the case of the MG active
power response be predominantly dominated by feikd,af an unacceptable loss of accuracy
of the MG dynamic equivalent performance arises,ntodel parameters have to be estimated
again or the possibility of the MG slow dynamicsiieglent model be represented by more

than one physical model structure should be conside
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6.3.2.6 Some remarks of physical MG dynamic equivalent

In this subsection the performance of the physM& dynamic equivalent derived as
described in section 5.4 of chapter 5 was evaluatetsidering MMG islanding and load
following is islanded mode. For this purpose selvamdial steady state conditions were
considered and for each one of them an amountaof twt used during training is connected
and disconnected.

The comparison of the results obtained using boMGVidetailed and equivalent models
demonstrate the success of the physical MG dynagigvalent in reproducing the MG
dynamic behaviour with respect to the MV networkere when the MG detailed model
composition was changed. Moreover, the simulatimetis quite reduced. The MMG
equivalent model runs around 130 times faster tharMMG detailed model under the same
time domain simulation conditions.

On the other hand, the computational effort andetioee the elapsed time to derive the
physical MG slow dynamics equivalent model are éirgeduced, regarding the procedure
carried out to derive the TDNN based MG slow dyresrequivalent model. In addition, the
required used interaction is also largely reduastdonly during the data generation procedure,
but also during the model validation stage. It $tidae stressed that the physical model is
easier to integrate into the dynamic simulationlgand no parameter updates are required
when the initial steady state conditions are chdnge

Finally, EPSO allowed the introduction of the MEEterion as the objective function,
constituting an identification method successfulsed to derive the physical MG dynamic

equivalent.

6.3.3 Comparing physical models obtained using MEE and ME criteria

In this subsection the performance of the physi& dynamic equivalent obtained
previously is compared with this one of anothergitgl MG dynamic equivalent obtained
through the same procedure described in sectiorofschapter 5, but using the MSE as the
fitness or loss function instead of MEE. When tkemination criterion was verified (10

successive generations without finding a bettebalditness) the training procedure was
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stopped. The number of generations evaluated,ata¢ ¢lapsed time in both cases and the

value of the errors entropy is presented in table 6

Table 6.4: Number of generations and timings requied to obtain the MSE and MEE physical models

Number of generations | Elapsed time (s Entropy|

MSE physical model 30 11270 -5.8513

MEE physical model 15 6400 -6.3152

It is interesting to notice that for MEE model tberameter vector values were found during
the first 5 generations with smaller error entropitjle the MSE model required the evaluation
of 20 generations. As a result, a considerableatemiu of both computational effort and time
consuming was verified, without loss of accuraclhiewthe MEE criterion was used as the loss
function.

The performance of both MSE and MEE physical modeds evaluated considering the
same sequence of disturbances simulated in théoprgesubsection, but under new steady state
operating conditions inside the MG, correspondingatnew scenario of TS-02, denoted as

scenario 4.

6.3.3.1 Scenario 4: New MG generation and load conditions

In this scenario the active the active power prtidns of SSMT1, SSMT2 and SOFC were
increased foROkW and a new load, =10+ j3kVA, was connected to bus 16 of TS-02. The

comparison between the results obtained from bbysipal models, and from the MG detailed
model is presented in the following figures.

Figure 6.46 shows the active power outputs of i slow dynamics equivalent models.
Both MEE and MSE models display similar performanceer the whole simulation time.
Concerning the MG slow dynamics subsystem actiwvegegpautput, an acceptable agreement
can be observed and therefore, a similar degreeafracy. This can also be observed from
figures 6.47 and 6.48.
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Figure 6.48: TS-02 physical MG dynamic equivalenteactive power output in scenario 4

In fact, as it can be observed from figures 6.4d @48, the power outputs of both physical
MG dynamic equivalents present a very good matchatgieen them, either in steady state or
during the transient periods. Comparing their resps with the power outputs obtained from
the MG detailed model allows to conclude that betuivalent models represent with high
accuracy the MG dynamic behaviour with respectte MV network following MMG
islanding as well as under load following condisarpon MMG islanding.

Therefore, the reduction of both computational mffand time that arises when MEE
criterion was used as the loss function is an itgpdradvantage concerning the development
of MG dynamic equivalents based on the physical eting approaches. Thus, the use of
EPSO as the optimizer together with the MEE lossction constitutes a very useful

identification method.

6.3.4 TS-01 simulation results and discussion

The robustness of the physical MG dynamic equivaleained with MEE was also

evaluated in a different MMG. For this purpose, & slow dynamics subsystem of TS-01

215



Chapter VI — MicroGrid Dynamic Equivalents Studys€a

was replaced by this physical MG slow dynamics egjent model. It was also assumed that
the MMG is initially operated in interconnected neodinder the steady state operating
conditions corresponding to the scenario 4 of T€dcribed in subsection 6.2.2.6. The same
sequence of disturbances used to evaluate the Thidded MD dynamic equivalent
performance in TS-01 was simulated using both tHdGvidetailed model and the MMG
equivalent model simulation packages and the obthiresults are plotted in the figures
presented in the following.

Figure 6.49 shows the active and reactive powepuisitof the physical MG dynamic
equivalent. It can be observed that the physical 8§@amic equivalent active and reactive
power outputs are in a good agreement with thegs oh the MG detailed model of TS-01
following the simulated sequence of disturbancdg power outputs experiment errors lower
than 25+ j1kVA, which are, in turn, inferior to these ones expented by the TDNN based
MG dynamic equivalent, concerning namely the agbie@er output.

The impact of the physical MG dynamic equivalenthat study subsystem can be observed

from figure 6.50, in which the boundary bus voltagel system frequency are represented.

P (kW)

Q (KVAN)

-35 * —— MMG detailed model g
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Figure 6.49: TS-01 physical MG dynamic equivalentive and reactive powers in scenario 3
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Figure 6.52: TS-01 SM2 active and reactive powerd ecenario 3

As it can be observed from figures 6.50, 6.51 arsk &he physical MG dynamic
equivalent response is in a good agreement with dhe obtained using the MMG detailed
model. Moreover the total simulation time of thexsilered sequence of disturbances is around
120 times faster with the MMG equivalent model thath the MMG detailed model.

Considering the TDNN based MG dynamic equivaleridgtier performance was achieved
using the physical MG dynamic equivalent under $hene validation conditions, since the
accuracy of results was improved and, at the samee the time domain simulation speeds up.
Concerning the last aspect, this is due to thetfattthe TDNN based MG dynamic equivalent
was derived based on a given sample tirh@ngs), which limits the maximum step size,
although the time domain simulation be carried wilh a variable step size while the MMG
equivalent model based on the physical MG dynanguoivalent runs without step size
constrains.

A similar prediction quality can also be obtaineden other sudden load connection and
disconnections are simulated, demonstrating thatpttiysical MG dynamic equivalent can
replace the MG detailed model, without structuredification or parameters adjusting,

preserving its dynamic behaviour with respect MV network with a notable accuracy.
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6.3.5 TS-02 simulation results usingeurostag®

The performance of the physical MG dynamic equivaleas also evaluated when it is
embedded in a different dynamic simulation toolmomonly used to simulate the dynamic
behaviour of large conventional power systems. thes purpose, the MMG detailed and
equivalent models of TS-02 was implemented in theukation platform developed under the
framework of the More-MicroGrids Project usiigrostag® [226].

The microgeneration systems of TS-02 were implegstein Eurostag® environment as
power injectors, based on their dynamic modelsridsst in chapter 2. A quite simple model
was implemented concerning the VSI control of th& Mhain storage device. It is also
modelled as a power injector and is programmednialae the behaviour of a synchronous
machine, injecting active power when system freguetrops proportionally to grid frequency
deviations. The voltage/reactive power droop wascoosidered. Rather a voltage regulation
system was implemented, so that the VSI reactsottage variations like a synchronous
machine of constant excitation [226].

For synchronous machines SM1 and SM26dh order model available frofurostag®
library was used. Concerning the MG slow dynamigsivealent model, it was directly
connected to the boundary bus without instantangouser theory implementation, injecting

the active power predicted by the physical moddlaconstant reactive power valg,, .

It was assumed that initially the MMG is intercoatsl with the upstream power system
under changed generation conditions inside the kGarding these ones described in table
6.3. The active power output of SSMT1 and SSMT2ewdecreased th5kW and the SOFC
active power was increased tb5kW . Under these initial steady state conditions,
corresponding to a new scenario of TS-02, the swmera the following sequence of
disturbances was simulated:

e MMG islanding att = 2s;

» Connection of an amount of loa80+ j20kVA to bus 8 of TS-02, not used during

parameter estimation, at 20s;

» Disconnection of the amount of load previously aextad att = 40s.

The results obtained using both the MMG detailed @quivalent models are presented and
compared in order to evaluate the performanceepttysical MG dynamic equivalent.
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Figure 6.53 and 6.54 plot the active and reactawegy outputs, respectively, of both MG
detailed model and physical MG dynamic equival@stit can be observed from these figures,
the physical MG dynamic equivalent active and rigagbower outputs present an acceptable

agreement with these ones provided by the MG @etailodel over the whole simulation time.
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Figure 6.53: TS-02 physical MG dynamic equivalent&tive power output in scenario 5
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Figure 6.54: TS-02 physical MG dynamic equivalenteactive power output in scenario 5
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An acceptable performance can also be observed iaimdary bus voltages and system
frequency presented in figures 6.55 and 6.56, ctsedy.
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""" [MMG equivalent model] VOLTAGE AT NODE :N08  Unit : kV

Figure 6.55: TS-02 boundary bus voltage in scenari®

50.4-

50.2-

49.8-

49.6-

T T T T T 1S
0 10 20 30 40 50 60

— [MMG detailed model] MACHINE : SM1  SPEED Unit: Hz
""" [MMG equivalent model] MACHINE : SM1 SPEED Unit: Hz

Figure 6.56: TS-02 system frequency in scenario 5
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Concerning the active and reactive power of synabws machines SM1 and SM2, a good

matching can also be observed from figures 6.58,®&.59 and 6.60.
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Figure 6.57: TS-02 MS1 active power in scenario 5
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Figure 6.58: TS-02 MS1 reactive power in scenario 5
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Figure 6.59: TS-02 MS2 active power in scenario 5
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Figure 6.60: TS-02 MS2 reactive power in scenario 5
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The results obtained stress the effectivenessegpilysical MG dynamic equivalent when a
different dynamic simulation tool, such Esirostag®, was used. A good performance was
achieved following MMG islanding as well as durilegad following conditions upon MMG
islanding without modifications on both structuredgparameters. The physical MG dynamic
equivalent preserves the important features oMfesystem when it is represented through its

detailed model.

6.4 Summary and main conclusions

Both TDNN based and physical MG dynamic equivalevese integrated into the dynamic
simulation platform in order to evaluate their pemiances following MMG islanding and
under load following conditions upon MMG islandirgnsidering two studied cases. The
results obtained allow to present the following meonclusions.

The TDNN based MG dynamic equivalent reproduceh high accuracy the MG dynamic
behaviour under several operating conditions, elering far from those ones used to extract
training patterns. In addition, a notable speedwgs achieved. However, a considerable
computational effort is required to derive the TDAsed MG dynamic equivalent which is a
very time consuming task requiring a frequently rusgeraction. Moreover, although the
additional mapping and demapping functions requiceémbed the TDNN into the dynamic
simulation platform extended its generalization atality, the initial values of both TDNN
inputs and outputs as well as their maximum dewmgtifrom the initial values have to be
updated whenever the initial steady state conditame changed.

Although the high computational effort, the TDNNskbd MG dynamic equivalent domain
of validity is restricted to the test system usedyénerate the data set. To replace a different
MG requires another training procedure.

These weaknesses were overcame through the phyB&l dynamic equivalent
development. On the one hand, the computationalteféquired to derive the MG dynamic
equivalent is quite reduced and, on the other hasdiomain of validity is largely extended.
At the same time, the time domain simulations canspeed up without loss of accuracy,
concerning the results obtained using both MMGitetaand equivalent models.

In fact, the use of the available physical knowkedtjowed to select an appropriate model

structure with physical representation, which canelsily integrated in dynamic simulation
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tools commonly used to study power system dynamit¢sese features together with an
effective identification method, exploiting both &0 and MEE, contributed largely for the
computational effort reduction assuring, simultarsdp, a good model performance. This

identification method constitutes a powerful tambierive dynamic equivalents for MG.
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Chapter 7
Conclusions and Future

Developments

7.1 Conclusions and main contributions

Large scale integration of small modular RES and s in LV distribution systems
exploiting the MG concept allows the transitionnfréhe vertically operated power systems to
a future horizontally operated ones extended td_Ythdistribution systems. When dealing with
such distribution networks, it will not be possiliéeneglect the dynamics introduced by MG
connected to the MV distribution system, especialhen several MG are operated under a
MMG philosophy, being the MMG operated autonomoush the other hand, the use of
detailed models that are able to accurately siraula¢ MG dynamic behaviour becomes not
practical due to the considerable computationareffequired to solve the resulting system
with a large number of nonlinear ordinary diffeiahequations.

Thus, the major focus of this research work wadewelop dynamic equivalents for MG
able to reproduce their dynamic behaviours withpees to the MV distribution system,
following MMG islanding and during load followingansients upon MMG islanding. Since
conventional dynamic equivalencing techniques haveractical applicability concerning MG
dynamic equivalents, system identification techegjuwere exploited for this purpose. Then
the main stages of classical methods, such as naodh}sis and coherency based methods, are
replaced by common system identification proceduvdsch aim to find a reduced order
model built upon the corresponding MG detailed nhode=ating thus, the conditions for the
development of dynamic equivalents able to desahbeViG dynamic behaviour with respect
to the upstream MV distribution system.

Based on the studies presented and discussed lugethésis, the main conclusions and

contributions are presented in the following subises.
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7.1.1 Suitable approaches

The MG is an inverter dominated LV distribution ®ya integrating microgeneration
systems with different technologies controlled ioomrdinate manner as a single entity. When
connected to the upstream MV distribution netwaken upon MMG islanding, the MG is
operated according a SMO control strategy. Theeeftire MG is able for participating in
primary frequency control as well as in secondaadlfrequency control of the MMG being
operated autonomously.

Thus, concerning the transient analysis to be peaedd, two different time scales and
phenomena are distinguished among the controllsde allowing the MG system to be
spitted between two subsystems:

The MG main storage device,

The MG slow dynamics subsystem.

In fact, the MG main storage device connected &U¥X network through a VSI control
interface displays a fast dynamic response allowhegVG to participate in primary frequency
control, while the remaining MG subsystem displslgsv dynamic responses, according to the
time constants of SSMT and SOFC connected to theéfwork through PQ inverter controls.
These controllable MS allow the MG to participatesecondary load frequency control. In
turn, non controllable MS, such as PV and smalldngenerators, are considered to generate a
constant active power over the simulation time.

As the MG slow dynamics subsystem is the respomddil the large simulation times, the
MG dynamic equivalent involves the equivalent moafethe MG slow dynamics subsystem,
represented as a current source, and the detael@!rof the MG main storage device, both
connected to the boundary bus.

Under a system identification framework, concernihg MG slow dynamics subsystem,
two suitable model structures (mathematical reptas®ns) were selected and subsequently
appropriate identification methods were adopted @exkloped, leading to the following two
proposed approaches:

* Black-box modelling The model structure is based on TDNN, which cosepMLP

neural networks to combine the NFIR regressors ame-step-ahead predictions. The
ANN adjustable parameters are estimated using theeriberg-Marquardt algorithm
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and the classical MSE criterion, being the best/baiance trade-off achieved by
means of early stopping.

Physical modelling: A physically parameterized model structure was péetb to
represent the MG slow dynamics subsystem dynantiaveur. EPSO is exploited, as
the global optimization tool, together with both BMI&nd MEE criteria, as fitness

functions, to estimate the parameters of the phaysimodel.

These approaches were successfully applied toaddyimamic equivalents for MG, yielding
two kinds of MG dynamic equivalents: The TDNN ba$d@ dynamic equivalents and the

physical MG dynamic equivalents.

7.1.2 The numerical set up

In order to derive dynamic equivalents for MG a muical set-up was developed. It

contains two dynamic simulation packages:

The MMG detailed model, which comprises a fullynegentation of the MG connected
to the MV network. The dynamic models of microgetien systems as well as their
inverter interfaces and controls were linked witk algebraic equations describing the
LV network and loads, as a multi-machine power eystmodel. This dynamic
simulation package allows the simulation of the Mg&vant dynamic behaviour with
respect to the MV network, under transient anddstestate conditions, generating high
guality data sets.

The MMG equivalent model is obtained by replacihg tetailed model of the MG
slow dynamics subsystem by its corresponding etpntamodel. This dynamic
simulation package is used not only for validatainthe derived MG slow dynamic
equivalent models, but also for estimating the mpatars of the physically

parameterized model structure purposes.

The inverter interfaces modelling based on themtrad functions only was an important

assumption concerning the simulation of MG dynaiméhaviour with respect to the MV

network and subsequent data set generation.
The experience acquired previously with the dedafigstem modelling suggested the MG

system separation between slow and fast dynammcsadtition, it provided the physical

intuition that guided selection of the proposed gitsily parameterized model structure,
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concerning the physical MG dynamic equivalent, &il aws the development of its interface

exploiting power instantaneous theory.

7.1.3 The TDNN based MG dynamic equivalents

The TDNN based MG dynamic equivalent preserves M@ dynamic behaviour with
respect to the upstream MV network, being the M@egented through its detailed model,
with a considerable computational time saving.sltvalid for several initial steady state
operating conditions, even far from the ones use@xtract training patterns, considering
different load and generation conditions eithethim MV network or inside the MG.

This TDNN based MG dynamic equivalent success whiaed through a wide range data
set and the normalization of both TDNN inputs amdpats magnitudes with respect to an
initial steady state operating point. For a pradtidew point, the fact that only data collected
at the boundary bus was required to derive the Tidsed MG dynamic equivalents can be
considered as an advantage.

However, the TDNN based MG dynamic equivalent dondivalidity is restricted to the
MG that was used to generate the data set. Thuzwder to replace another MG in dynamic
simulations a new system identification proceduas to be carried out using another data set.
In addition, the cost of building TDNN based MG dymic equivalents is very high concerning
both the computational effort and the time consuniéwse main drawbacks may render the

proposed black box modelling approach applicabibtiMG unfeasible.

7.1.4 The physical MG dynamic equivalents

The physical MG dynamic equivalents successfullplaee the MG detailed model in
dynamic simulations considering new initial steatlyte generation and load conditions either
in the MV network or inside the MG, allowing a caterable time saving. Very similar
performances were achieved regarding both dynaguévalent models derived using MSE
and MEE.

In contrast with TDNN based MG dynamic equivalettig, required computational effort as
well as the time consumed to derive the physical 8§Gamic equivalents are quite reduced.

This is especially stressed when the MEE is usdatieatss function. In fact, EPSO combined
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with MEE is an effective identification method te@rd/e dynamic equivalents for MG. In
addition, the physical MG dynamic equivalents perfdbetter than the TDNN based MG
dynamic equivalents improving the solution speed.

Moreover, the physical MG dynamic equivalent domaivalidity extends to MG not used
to generate the reduced data set. Thus, the wesdspsinted out concerning the performance
of TDNN based MG dynamic equivalents were overcamgethe physical MG dynamic
equivalent. The cost of building a physical MG dym@aequivalent is, of course, much smaller
than the cost of performing the dynamic behaviaalysis, considering the detailed models of
many MG.

The physical MG slow dynamics equivalent model hasimportant advantage, which
arises from the fact that the known physical retahips are built in and no parameters have to
be wasted. The physical interpretation of modehpesters suggests that this physical model
can be exploited in order to derive dynamic eq@ntd for MG in an expedite way.

Furthermore, the physical MG dynamic equivalentampatible with other components in
electrical networks allowing its successful andyeiegration in dynamic simulation tools

used to simulate the dynamic behaviour of largegraystems, such &urostag®.

7.1.5 Expected impact

The approaches and MG dynamic equivalents presemtlds thesis, concerning especially
the physical MG dynamic equivalents, will contrieub develop new tools and simulation
approaches required to perform dynamic behaviaudies of MMG, providing contributions
to:

* Overcome the lack of knowledge regarding largeesaakgration of microgeneration
in LV distribution systems exploiting the MG contegmmd, simultaneously, ensuring
future power supply reliability and quality;

* Quantify the benefits of MG;

« Allow the identification of technical and regulagochanges that will be required as a
result of a large deployment of MG;

« Dissemination and development of microgeneratichrielogies.
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7.2

Future developments

The derived MG dynamic equivalents can be use@éptace MG in dynamic simulations

when several disturbances at the MV level occig MMG islanding and load following in

islanded mode. However, some simplifications weres@lered over the development of this

thesis. Thus, future developments include:

To exploit the physical meaning of parameters conog the physical model in order
to derive dynamic equivalents for MG in an expeuitgy;

To derive dynamic equivalents including more appeip models of loads, like

motors;

To include the intermittent effects of renewablergy systems, such as micro wind
systems and PV, in MG dynamic equivalents;

The derivation of dynamic equivalents capable qgfraducing the MG dynamic

behaviour during short-circuits;

The development of models able to simulate the miymdehaviour of single-phase
microgeneration systems and MG operating underlanbad conditions;

The derivation of MG dynamic equivalents with capato reproduce the MG dynamic

behaviour under unbalanced conditions.
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Appendix A
Round Rotor Synchronous Machine

Modelling and Test Systems Parameters

A.1 Introduction

In this appendix the mathematical model of the tbuwator synchronous machine is
presented as well as the parameters of the semgcabgeneration systems and electrical

networks corresponding to test systems TS-01 an@2T&ed over this thesis.
A.2 Round rotor synchronous machine

The equations of synchronous generator are obtdinedthe modified Park’s equations of

[216] after some simplifications.
» Stator transients are neglected since they are fiastér compared to the rotor ones;
* The mechanical damping is usually small and itss aeglectedD = 0
* It was assumed that the rotor speed is near thehsymous speedy = w,, in transient
and subtransient states.

Thus, the round rotor synchronous machines predentdS-01 and TS-02 are modelled

using the & order model described in [216] through the follog/fundamental equations.

Algebraic equations of stator in per unit

Vd=Egd+X;Iq—I1Id AD
Vq=qu—X(;Id—RSIq A.2)
where
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E,o =k, i‘* ii‘* E + iq : i' E, (A.3)
q | q |
E, =k, >><< - >)<( £+ i 3 (A4)
q
_ e Xa =X X - X))
k, =1+ (x:—x;:')(xz -XI|) (A.5)
_ (xq - X )(xq — XI)
b ) o
Differential equations of rotor transients and sufainsients in per unit/s
I B U ) D ) S O e ) o | P
Tl xe-xJ T X-xf )7
(A.7)
(Xq — Xc‘a)(xq B Xq)
Xq= X, a
dE, 1 (%, =X X, =x2), o[ (g =x X =x) o |
F _ﬁ[Ew +A (X(‘,d— XT 2 ‘ kqu L1 X(',d— XT)z : Eq
(A.8)
(X=X )%= Xg),
X, =X, ‘
o ke B (A9)
q
951t k.E -E +(x, - )] (A.10)
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Swing equation in per unit/s

d 1
d_‘t° = E(Tm -T.) (A.11)

Electrical rotor angle in radians

9 _ -1 (A.12)
dt

Electromagnetic torque equation in per unit
T, =El +E;l, +(X; = X1, (A.13)
Since X, = X; for round rotor synchronous machines, the equd#oi3) simplifies to

T, = El, +El, (A.14)

where:

V, andV, are the generator terminal voltages in dirdctand quadratureg axis,

respectively;

E, and E,, are the generator internal voltages in dirdctand quadraturey axis,

respectively;
I, and I, are the generator terminal currents in directand quadratureg axis,

respectively;

E, and E('q are the transient voltages in direttand quadrature axis, respectively;
E, and E; are the subtransient voltages in diredt and quadratureq axis,

respectively;

E,, is the synchronous generator field voltage;
T4, and T, are the open circuit transient time constantsimafctid and quadrature

axis, respectively, in seconds;
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Ty andT,, are the open circuit subtransient time constahtirect d and quadrature
g axis, respectively, in seconds;

T, andT, are the mechanical and electrical torques, reseégt

R, is the stator resistance;

X4 and X, are the stator reactances in dirdcand quadraturg axis, respectively;
X4 and X, are the stator transient reactances in digkcand quadraturey axis,
respectively;

X, and X; are the stator subtransient reactances in doleeind quadrature] axis,
respectively X, = X, for a round rotor synchronous machine);

X, is the leakage reactance in the dirécaxis of the stator coil,

a 1s the rotor angular velocity;

A.2.1 Automatic voltage regulator

The purpose of the AVR is to provide the propeldfieoltage, E,,, to the synchronous

machine in order to maintain the desired voltagee TMost commonly used AVR general
models are those defined by the IEEE, especiaéiytype 1 model [58], as depicted in figure
Al,

f(Eq)

ref
v+ Efd,max £
Vi ke Ve 5 Ka 1 /_ o
1+Tes - 1+T,s v, ke +Tes |/
A
Rectifier Ve |~ Amplifier Vamin Exciter  Efdmin
kes
1+T.s |
Stabilizer

Figure A.1: Automatic voltage regulator, IEEE typel model

where:
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Vi, V., V- and V. are the voltage values from the control subsysteetifier,
amplifier, stabilization and exciter, respectively;

ks, K., k. andk. are the gains of each one of the control subsystem
T:, T,, Tz andT; are time constants of each one of the controlysiesis;

V. Is the reference voltage value;

E, Is the voltage field

The saturation effect was neglected and thus theadin function in figure A.1,f (Efd),

was not considered.

A.2.2 Governor-turbine system

A governor is a mechanical or electromechanicaicdeused to automatically control the
speed of a prime mover in order to keep the sy$tequency near to its nominal value. In this
thesis a diesel engine was adopted as the primemmblie speed regulator comprises both the
primary and secondary control functions.

Thus, the static increase in diesel engine powgsubus directly proportional to the static
frequency. The value oR is considered always positive and since the fregquend power
variations are in per uniR is also in per unit. After the primary control tition, which brings
the system to an equilibrium state with a permarfiesguency error, the secondary control
(frequency error signal integrator) is needed ttaldsh the nominal rotational speed by
eliminating the static frequency error [217]. Thedual for speed-governing system is a first

order model with a time constanj, representing the governor delay and the primeema/

represented by a simplified first order model [%8],depicted in figure A.2,

a‘ref %
+ - Tm,max
Ceg R Z A kZS Am N 1 Tm
-2/ 1+7,5 T 1+T,s
+ T
_ﬁ m,min

Figure A.2: Governor-turbine system model
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where:
Acw is the frequency deviation;
R is the diesel engine permanent speed droop (sfatis
K, is the governor summing loop amplification fadfiotegral gain);
k, is the fuel actuator gain constant;
7, is the governor time delay;
Am is the fuel variation;
T, is the diesel engine time delay;

T, is the mechanical torque

A.3 Test systems parameters

In this subsection, the parameters used in theaest systems and models are presented,
taking into account the dynamic models adopted éscdbe the dynamic behaviour of
microgeneration systems described in chapter 2rated rotor synchronous machine model
and the models of the remain electrical network ponents (loads, branches and transformer)
described in chapter 5 for TS-01 and TS-02.

A.3.1 Testsystem TS-01

The TS-01 electrical network represented throughdimgle line diagram in figure 6. 14
comprises two round rotor synchronous generatbesMG main storage device, one SSMT
and three PV systems. Their parameters are presentables Al to A6. Tables A.7 and A.8

present the parameters of branches and transfqrrespectively.

Parameters of generators at MV level

System base quantitie§;, = 500kVA; Voltage baseV, =690V ;

252



Appendix A - Round Rotor Synchronous Machine Miode#ind Test Systems Parameters

Table A.1: Parameters of TS-01 round rotor synchroonus machine units SM1 and SM2

Round rotor synchronous generator

S (VA v,) R (pu) X,(ou] [ X(pu)
500 690 0,0014 1,25 1,22
X;(pu.) X, (pu.) X;(pu.) X (pu.) H(pu.)
0,232 0,715 0,120 0,120 1
X, (pu) ToolS) Too(S) ToolS) Too(S)
0,134 4,75 1,5 0,059 0,210
Prime mover:T, =1s
Speed governor
R(pu.) k, (pu.) k,(pu.) r,(s)
0,25 1,5 1 0,1
Automatic voltage regulator
e Ta(s) Ka Ta(s)
1 0,01 15 0,05
ke Te(s) ke T-(s)
1 0,5 0,02 0,8

"The per unit parameter quantities are referreti¢aniachine basgs, = 500kVAV, = 690V)

Parameters of microgenerators of TS-01

System base quantitie§;, = 500kVA, Voltage baseV, =400V ;

Table A.2: Parameters of TS-01 VSI control of MG min storage device

Parameter Reference Value Unit
P Nominal power 30 kw
V. Nominal voltage 400 \%
T Active power delay 1,2 S
Tio Reactive power delay 0,25 S
K, Frequency versus active power drodp -1,2566x10" rad/W
Ko Voltage versus reactive power droop -1,6x10° VIVAr
K Phase feed-forward gain -3,333x10° -
L Inverter time constant 0,0001 S
Z. Filter impedance 0,005+ j0,2314 Q
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Table A.3: Parameters of TS-01 PV systems

Parameter Reference Value Unit
A Nominal voltage 400 \%
G, Ambient irradiance 870 W/ m?
T, Ambient temperature 20 °C
Praxo Module maximum power at STC 25 W
WP Maximum power variation with module temperature -0.005 -
NOCT Normal cell operation temperature 47 °C
N, Number of modules of PV1 system 400 -
N, Number of modules of PV2 system 800 -
N, Number of modules of PV3 system 600 -

Table A.4: Parameters of TS-01 PQ inverter of PV stems: PV1, PV2 and PV3

Parameter Reference Value Unit
P, Nominal power 30 kw
V. Nominal voltage 400 \%
Z, Filter impedance 0,01+j0,1571 Q
C DC link capacitor 0,008 F
Vi ref Voltage reference of DC link 800 Vv
Koy Proportional gain of PI-1 -5 -
K, Integral gain of PI-1 -3 -
Ko, Proportional gain of PI-2 0 -
K, Integral gain of PI-2 100 -
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Table A.5: Parameters of SSMT system of TS-01

Parameter Reference Value Unit
P Nominal power 80 kW
V. Nominal voltage 400 \Y

Active power control
K, Proportional gain 4 -
K. Integral gain 0,2 -
Single shaft microturbine engine
T, Fuel system lag time constant 1 15 S
T, Fuel system lag time constant 2 0,2 S
T, Load limit time constant 3 S
Lo Load limit 15 S
V. Maximum value position 1,2 -
A/ Minimum value position -0,1 -
K, Temperature control loop gain 1 -
Permanent magnet synchronous machine
L, d-axis inductance 6,875x10 H
L, g-axis inductance 6,875x10 H
R, Resistance of the stator windings 0,25
O3 Flux induced in the stator windings 0,0534 Wb
p Number of poles pairs 1 -
J Combined rotor and load inertia 0,003 Kg.m?
F Combined rotor and load viscous friction 0,0000005%
Machine side converter control
Koy Proportional gain of PI-1 30 -
K, Integral gain of PI-1 10 -
Ko, Proportional gain of PI-2 100 -
K, Integral gain of PI-2 150 -
Kos Proportional gain of PI-3 50 -
K s Integral gain of PI-3 20 -
Secondary load frequency control
Ko Proportional gain 12,5 -
K Integral gain 2 -
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Table A.6: Parameters of TS-01 PQ inverter of SSMT

Parameter Reference Value Unit
P, Nominal power 30 kw
V. Nominal voltage 400 \%
Z, Filter impedance 0,005+j0,078 Q
C DC link capacitor 0,008 F
Vi ref Voltage reference of DC link 800 Vv
Koy Proportional gain of PI-1 -5 -
K, Integral gain of PI-1 -3 -
Ko, Proportional gain of PI-2 0 -
K, Integral gain of PI-2 100 -
Parameters of branches and transformers of TS-01
Table A.7: Parameters of branches of TS-01
Line Bus i Bus j R (Q) X (Q)
1 1 9 0,1757 0,219618
2 10 0,8 1
3 12 2 1,85
4 12 13 0,8 1
5 15 16 0,004 0,01
6 16 17 0,016 0,008
7 16 18 0,008 0,011
8 16 19 0,0534 0,0156
9 19 20 0,0085 0,0025
10 20 21 0,0114 0,0033
11 21 22 0,10164 0,011
12 21 23 0,0153 0,0045
13 23 24 0,0094 0,0027
14 24 25 0,0256 0,0075
15 25 26 0,0094 0,0027
16 25 27 0,0626 0,0126
17 25 28 0,02535 0,0051
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Table A.8: Parameters of transformers of TS-01

Transformer | Busi | Busj | Vi/V, (kv) | S,(kvA) | x(%)

T1 10 11 15/069 800 5
T2 13 14 15/069 800 5
T3 12 15 15/04 400 5

A.3.2 Test system TS-02

The TS-02 electrical network presented througisinigle line diagram as depicted in figure
6. 39 comprises two round rotor synchronous geoexathe MG main storage device, two
single shaft microturbines, SSMT1 and SSMT2, anel 8OFC. The synchronous machines in
this test system are those used in TS-02. The pmdeasnof microgeneration systems are
presented in tables from A9 to A12 while the par@mseof branches and transformers are

presented in tables A.13 and A.14, respectively.

Parameters of microgenerator systems of TS-02

System base quantitie§;, = 500kVA, Voltage baseV, =400V ;

Table A.9: Parameters of TS-02 VSI control of MG min storage device

Parameter Reference Value Unit
P Nominal power 30 kw
V. Nominal voltage 400 \%
T Active power delay 1,2 S
Teo Reactive power delay 0,25 S
K, Frequency versus active power drogp -1,2566x10 rad/W
Ko Voltage versus reactive power droop -3,3x10° VIVAr
K Phase feed-forward gain -3,333x10° -
L Inverter time constant 0,0001 S
Z. Filter impedance 0,005+ j0,2
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Table A.10: Parameters of SSMT1 and SSMT2 of TS-02

Parameter Reference Value Unit
P Nominal power 30 kW
V. Nominal voltage 400 \%

Active power control
K, Proportional gain 4 -
K. Integral gain 0,2 -
Single shaft microturbine engine
T, Fuel system lag time constant 1 15 S
T, Fuel system lag time constant 2 0,2 S
T, Load limit time constant 3 S
L, o Load limit 1,5 [
(VA Maximum value position 1,2 -
A/ Minimum value position -0,1 -
K, Temperature control loop gain 1 -
Permanent magnet synchronous machine
L, d-axis inductance 6,875x10 H
L, g-axis inductance 6,875x10 H
R, Resistance of the stator windings 0,25
®, Flux induced in the stator windings 0,0534 Wb
p Number of poles pairs 1 -
J Combined rotor and load inertia 0,003 Kg.m?
F Combined rotor and load viscous friction 0,000000%
Machine side converter control
Ko, Proportional gain of PI-1 30 -
K, Integral gain of PI-1 10 -
Ko, Proportional gain of PI-2 100 -
K, Integral gain of PI-2 150 -
Koo Proportional gain of PI-3 50 -
K, Integral gain of PI-3 20 -
Secondary load frequency control
K, Proportional gain 12,5 -
K Integral gain 2 -
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Table A.11: Parameters of SOFC of TS-02

Parameter Reference Value Unit
P Nominal power 30 kW
V. Nominal voltage 400 V
V, Cell desired voltage 338,8 V
T Absolute temperature 1273 Ko
F Faraday’s constant 96487 C/mol
R Universal gas constant 8,314 J /(moIE]K)
E, Ideal standard potential 1,18 V
N, Number of cells in series in the stack 384 -
U, . Maximum fuel utilization 0,90 -
Ui Minimum fuel utilization 0,80 -
Uopt Optimal fuel utilization 0,85 -
Ky, Valve molar constant for hydrogen 8,43%10 kmol/(s[atm)
Ko Valve molar constant for water 2,81%10 kmol/(s&tm)
Ko, Valve molar constant for oxygen 2,52%10 kmol/(s[atm)
Ty, Response time for hydrogen flow 26,1 S
Tuo Response time for water flow 78,3 S
To, Response time for oxygen flow 2,91 s
r Ohmic loss 0,126 Q
T, Electric response time 0,8 S
T, Fuel processor response time 5 S
Mo Ratio of hydrogen to oxygen 1,145 -
Secondary load frequency control
K, Proportional gain 12,5 -
K Integral gain 2 -
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Table A.12: Parameters of SSMT1, SSMT2 and SOFC P@verter of TS-02

Parameter Reference Value Unit
P, Nominal power 30 kw
V. Nominal voltage 400 \%
Z, Filter impedance 0,005+j0,078 Q
C DC link capacitor 0,008 F

Vi ref Voltage reference of DC link 800 Vv
Koy Proportional gain of PI-1 -5 -
K, Integral gain of PI-1 -3 -

Ko, Proportional gain of PI-2 500 -
K, Integral gain of PI-2 800 -
Parameters of branches and transformers of TS-02
Table A.13: Parameters of branches of TS-02
Line Bus i Bus j R (Q) X (Q)
1 1 2 0,1757 0,219618
2 2 3 0,8 1
3 2 5 2 1,85
4 5 6 0,8 1
5 8 9 0,016 0,008
6 9 10 0,005 0,2
7 8 11 0,004 0,01
8 8 12 0,004 0,01
9 12 13 0,004 0,01
10 12 14 0,004 0,01
Table A.14: Parameters of transformers of TS-02
Transformer | Busi | Busj | V/V, (kv) | S,(kvA) | x(%)
T1 9 10 15/069 800 5
T2 12 13 15/069 800 5
T3 11 14 15/04 400 5
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