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Abstract

With the emergence of an information-oriented society it soon became clear that the
massive amount of information that was generated required effective ways for index-
ing and searching. From as early as the 50s in the 20th century, researchers have
sought ways to implement information retrieval systems. These systems, and in partic-
ular text retrieval systems, have evolved considerably and became a part of our daily
life. How we have now virtually the whole internet text content searchable and ac-
cessible in less than half a second is paradigmatic of this. The next natural step was
indexing also multimedia content besides text content. However, multimedia content
introduces additional problems to the indexing task. The large amount of informa-
tion and the complexity of its relations are factors that dramatically increase the dif-
ficulty in achieving highly successful indexing and searching results. For instance,
until recently, devising a system that could automatically detect and identify persons
in a complex scene, track them across multiple cameras and analyse their behaviour
in real-time would be too much of an arduous task. Though such a system is not yet
fully accomplished, many recent successful advances, mostly in computer vision and
machine learning, take us much nearer to that technological milestone.

In this dissertation we approach the issue of indexing content obtained from real-
world scenes. We define “real-world scene” as any scene captured continuously in
public or private spaces by automated and often passive sensors. These scenes are usu-
ally captured by multiple sensors of multiple types. The actions portrayed in the cap-
tured sequences consist of everyday actions, like people walking or running, cars pass-
ing by or parking, etc. An example of application is a surveillance system. Most of the
information in surveillance scenarios is conveyed by a sequence of images but, more
often than not, there is important information that can be obtained from analysing
other types of data, or modalities –multimodal scene analysis relies on that premiss. We
start by analysing the concepts and challenges that are part of multimodal analysis,
having in mind real-world scenes. Three processing areas are considered: object de-
tection, object recognition, and event analysis. With object detectionwe separate both
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in space and in time each object and associate a label to them. This label distinguishes
objects from one another but does not associate any semantic knowledge. That is the
goal of object recognition with which we associate an identity to the object from a set
of known classes. With event analysis on the other handwe identify relevant activities
and events that are defined by the context of the scene under analysis. For each area
we survey relevant algorithms and systems, and present original contributions.

The original contributions we propose in this dissertation follow a line of work that
have an emphasis on visual-based algorithms. In particular, we propose a visual seg-
mentation algorithm for the detection of generic objects. It uses a cascade of change de-
tection tests, including noise-induced changes, illumination variation and structural
changes. For the detection of structural changes the algorithm is based on other com-
monly used per-pixelmodelling algorithms. Additionallywe introduce an objectmatch-
ing system applicable to scenes captured with multiple views. Objects are first tracked
by a common single-view tracker and then the individual results are given as inputs
to the matching system. The system can possibly associate a known identity to those
tracks. Since typical scenes may present changes to the objects’ appearance and new
object may appear, the matching system is scalable in two distinct dimensions: an
undetermined number of new objects can be added at any given instant and, existing
object representations can be updated to reflect changes in time. This objectmatching
system is later extended to an event navigation system based on timelines representing
person appearances. From an application point of view, the complete system can be
seen as a summarisation system. Combining all contributions we obtain a system that
takes as inputs raw sequences, segments them into relevant objects (in this case, per-
sons), tracks the detected objects and processes the tracks. Multiple appearances of
persons are identified whether these are captured by the same camera, or by different
cameras in independent locations. This way it is possible to know the path followed
by a given person.

Finally, we also propose a multimodal framework that serves as a foundation for the de-
velopment of algorithms in the scope of this dissertation. Visual and audio analysis
algorithms are usually devised and tested using generic mathematical tools. However,
if the task involves integrating different types of data, this process can easily become
burdensome and inefficient. The framework follows a dataflow architecture where
complex networks of processing modules can be assembled and handle multiple and
different types of multimedia flows in a meaningful and efficient way.

Keywords – multimodal analysis, content indexing, object detection and tracking,
event analysis, ambient intelligence, surveillance systems



Resumo

A afirmação da sociedade de informação tornou clara que a enorme quantidade de da-
dos gerados requeria formas eficientes de indexação e de pesquisa. Desde tão cedo
quanto os anos 50 do século XX, a comunidade científica procurou desenvolver formas
de implementação de sistemas de pesquisade informação. Estes sistemas, e emparticular
os sistemas de pesquisa de texto, evoluíram consideravelmente e tornaram-se parte do
nosso dia-a-dia. A forma como actualmente temos virtualmente todo o conteúdo tex-
tual pesquisável e acessível emmenos demeio segundo é exemplificativo disto. O passo
seguinte foi indexar também conteúdo multimédia, para além de texto. No entanto, o
conteúdo multimédia origina problemas adicionais à tarefa de indexação. A grande
quantidade de informação e complexidade das suas relações são factores que dificul-
tam consideravelmente a indexação e pesquisa. Por exemplo, até recentemente, de-
senvolver um sistema capaz de automaticamente detectar e identificar pessoas numa
cena complexa, acompanhá-las através de multiplas câmaras e analisar o seu compor-
tamento em tempo real seria uma tarefa demasiado complexa. Apesar desse sistema
não ser ainda uma realidade, muitos avanços recentes, essencialmente em visão com-
putacional e aprendizagem máquina, aproxima-nos desse marco tecnológico.

Nesta dissertação abordamos a indexação de conteúdos obtidos a partir de cenas do
mundo real. Definimos “cenas do mundo real” como sendo aquelas que são continua-
mente capturadas em público ou espaços privados por sensores automatizados e fre-
quentemente passivos. Estas cenas são tipicamente capturadas por múltiplos sensores
demúltiplos tipos. As cenas retratadas nas sequências capturadas consistememacções
do quotidiano, como pessoas a andar ou correr, carros a passar ou estacionar, etc. Um
exemplo de aplicação será um sistema de vigilância. A maior parte da informação em
cenários deste tipo é veiculada por sequências de imagens mas frequentemente existe
informação importante que pode ser obtida a partir da análise de outros tipos de dados
– a análise multimodal baseia-se nesta premissa. Começamos por analisar os conceitos
e desafios que são parte da análise multimodal, tendo em mente as cenas do mundo
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iv Resumo

real. São consideradas três áreas de processamento: detecção de objectos, reconheci-
mento de objectos e análise de eventos. A detecção de objectos consiste na separação
destes tanto no espaço como no tempo. A cada objecto é atribuída uma etiqueta que
o diferencia dos outros objectos mas não lhe associa uma semântica. Este é o objec-
tivo do reconhecimento de objectos com o qual associamos um identidade ao objecto a
partir de um conjunto conhecido de classes de identidades. Por outro lado, através da
análise de eventos identificamos actividades e eventos relevantes, definidos de acordo
com o contexto da cena. Para cada área analisamos os algoritmos e sistemas relevantes
e apresentamos contribuições originais.

Foi definida uma abordagem comênfase em algoritmos baseados em informação visual
para o desenvolvimento de contribuições originais. Em particular, propomos um algo-
ritmo de segmentação visual para a detecção de objectos genéricos. O algoritmo baseia-se
na detecção em cascata de alterações, incluindo as provocadas por ruído, por variação
de iluminação e alterações estruturais. A detecção de alterações estruturais é feita com
base em métodos comummente usados para a modelização pixel-a-pixel. Introduzimos
ainda um sistema de matching de objectos aplicável a cenas capturadas a partir de múlti-
plas vistas. Os objectos são seguidos por um comum sistema de tracking. Os resultados
individuais são posteriormente passados ao sistema dematching que associa uma iden-
tidade aos objectos. Uma vez que em cenas típicas novos objectos podem aparecer e
outros objectos podem sofrer alterações na aparência dos objectos, o sistema dematch-
ing é “escalável” em duas dimensões distintas: um número indeterminado de objectos
pode ser adicionado em qualquer instante e a representação dos objectos conhecidos
podem ser actualizadas para reflectir as respectivas alterações ao longo do tempo. Este
sistema de matching de objectos é também usado num sistema de navegação de eventos
baseado em timelines que representam a presença de pessoas. Do ponto de vista da
aplicação, o sistema completo pode ser visto com um sistema de sumarização. O resul-
tado final de todas as contribuições é um sistema que recebe sequências não tratadas,
segmenta-as emobjectos relevantes –neste caso pessoas – segue os objectos detectados
e analisa-os. As múltiplas presenç de pessoas são identificadas, mesmo que capturadas
por diferentes câmaras em localizações independentes. Desta forma é possível saber
qual o percurso seguido por uma dada pessoa.

Finalmente, também apresentamos uma plataforma multimodal que foi usada com uma
base para o desenvolvimento de algoritmos no âmbito desta dissertação. Os algoritmos
de análise visual ou de áudio são geralmente desenvolvidos e testados usando ferra-
mentasmatemáticas genéricas. No entanto, se a tarefa envolve a integraçãodediferen-
tes tipos de dados, este processo pode tornar-se complexo e ineficiente. A plataforma
baseia-se numa arquitectura onde redes complexas de processamento de objectos po-
dem ser construídas, formando sistemas que podem manipular múltiplos e diferentes
tipos de fluxos multimédia de uma forma representativa e eficiente.

Palavras-chave – análise multimodal, indexação de conteúdos, detecção e tracking de
objectos, análise de eventos, inteligência ambiente, sistemas de vigilância



Résumé

L’émergence de la société de l’information a clairement indiqué que l’énorme quan-
tité de données générées nécessite de moyens efficaces d’indexation et de recherche.
Depuis les années 1950, la communauté scientifique a cherché à développer des sys-
tèmes de recherche d’information. Ces systèmes, en particulier les systèmes de recherche
de texte, ont considérablement évolué et sont devenus une partie intégrante de notre
quotidien. Le fait que la quasi-totalité des contenus textuels d’internet soient actuelle-
ment indexables et accessibles enmoins d’unedemi-seconde en est un exemple. L’étape
postérieure au texte a été de s’intéresser à l’indexation de contenumultimédia. Cepen-
dant, le contenu multimédia a créé des problèmes supplémentaires à la tâche d’ inde-
xation. La grande quantité d’informations et la complexité de leurs relations sont des
facteurs qui compliquent considérablement l’indexation et la recherche. Par exemple,
jusqu’à récemment, mettre au point un système capable de détecter et d’identifier au-
tomatiquement des personnes dans une scène complexe, de les suivre grâce à de mul-
tiples caméras et d’examiner leur comportement en temps réel était une tâche trop
complexe. Bien que ce système ne soit pas encore une réalité, beaucoup de progrès
récents, principalement dans la vision par ordinateur et l’apprentissage automatique,
nous rapproche de cette étape technologique.

Dans cette thèse nous nous intéressons à l’indexation de contenu obtenu à partir de
scènes du monde réel. Nous définissons les “scènes du monde réel” comme prises
dans des espaces publics ou privés, par des capteurs automatiques et souvent passifs.
Ces scènes sont généralement captées par de multiples capteurs de types divers. Les
scènes représentées dans les séquences capturées consistent en des actions quotidi-
ennes, comme des personnes en train demarcher ou de courir, ou des voitures en train
de passer ou de se garer, etc. Un exemple d’application est un système de surveillance.
La plupart de l’information dans ces scénarios se traduit par une séquence d’images,
mais des informations importantes peuvent être obtenu à partir de l’analyse d’autres
types de données – l’analyse multimodale est basée sur ce prémisse. Nous commençons
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par examiner les concepts et les défis de l’analyse multimodale, en gardant à l’esprit
les scènes du monde réel. Trois domaines de traitement sont envisagés: la détection
d’objets, la reconnaissance d’objets et l’analyse d’événements. La détection d’objets
est la séparation d’objets dans l’espace et dans le temps. A chaque objet une étiquette
unique est attribuée qui la différencie des autres objets, mais à laquelle aucune séman-
tique n’est associée. Tel est l’objectif de la reconnaissance d’objets par laquelle nous
associons une identité à l’objet à partir d’un ensemble de classes d’identités. Grâce à
l’analyse des événements, nous identifions des activités et des événements qui sont
définis dans le contexte de la scène. Dans chacun de ces domaine, nous analysons les
algorithmes et systèmes pertinents et présentons des contributions originales.

Nos contributions suivent une approche qui met l’accent sur les algorithmes basés sur
l’information visuelle pour le développement des contributions originales. En partic-
ulier, nous proposons un algorithme de segmentation visuelle pour la détection d’objets
génériques. L’algorithme est basé sur la détection de changements en cascade, y com-
pris ceux causés par du bruit, par des changements d’éclairage et des changements
structurels. La détection de changements structurels est basée sur les méthodes cou-
rantes de modélisation pixel par pixel. Nous introduisons également un système de
matching d’objets applicable à des scènes capturées à partir de plusieurs points de vue.
Les objets sont suivis par un système commun de tracking. Les résultats individuels
sont ensuite transmis au système qui associe une identité aux objets. étant donné
que, dans des scènes typiques, des objets peuvent changer d’apparence et de nouveaux
objets peuvent apparaître, le système de matching est extensible en deux dimensions
distinctes: un nombre illimité d’objets peut être ajouté à tout moment et la représen-
tation des objets connus peuvent être mis à jour pour refléter des changements dans
le temps. Ce système de matching des objets est également utilisé dans un système de
navigation basé sur les timelines d’événements qui constituent la présence de person-
nes. D’un point de vue applicatif, le système complet peut être vu comme un système
de résumé de scénes. Le résultat final de l’ensemble des contributions est un système
qui prend en entrée les séquences, les sépare en objets (dans ce cas, les personnes),
suit les objets détectés et traite les objects séparemment. La présence de personnes
sont identifiées même lorsqu’ils sont capturés par différentes caméras dans des lieux
indépendants. Il est donc possible de connaître le chemin suivi par une personne.

Finalement, nous présentons aussi une plate-forme multimodale qui a été utilisé comme
une base pour le développement d’algorithmes dans cette thèse. Les algorithmes pour
l’analyse visuelle ou audio sont généralement conçus et testés à l’aide d’ outils math-
ématiques génériques. Toutefois, si la tâche implique l’intégration de différents types
de données, ce processus peut devenir complexe et inefficace. La plate-forme est basée
sur une architecture où des réseaux complexes demodules de traitement peuvent être
assemblés pour former des systèmes qui peuvent gérer demultiples et différents types
de flux multimédia dans une manière représentative et efficace.

Mots-clés - analysemultimodale, indexation de contenu, détection et tracking d’objets,
analyse d’événements, intelligence ambiante, systèmes de surveillance
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more straightforward way of expressing how important both the institution and all
the people I met there were; from the earlier times with the MOG group to our more
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pressed in Prof. José Ruela, our hard-working coordinator. This work would not be
possible without them. Most of the work developed during that period would also not
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The patience and supportwithwhich Prof. Corte-Real accompanied thework through-
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nate task of supervisingmywork then – I was not particularly fond ofwhat I was doing,
I must admit. That changed over time. A lot. And, for themost part, Jaime was respon-
sible for that. He helpedme evolve and become a better researcher. For a long time the
team was basically us from video and Gustavo Martins from audio. Gustavo has been a
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1 Introduction
The huge amount of data generated when capturing real-world scenes demands ef-
ficient tools that could allow accessing, compiling and searching content. This data
needs to be summarised in semantic events to allow efficient searches in applications
such as surveillance for security, ambient intelligence, nature monitoring or health
care monitoring. The goal is to identify relevant objects and events that charac-
terise the captured scene. The semantics of content can be often found in multiple
forms or modalities, which are usually complementary, such as visual and audio data.
The methods for extracting additional information from visual and audio data have
become generalised but their integration has been limited.

1.1 Motivation

Until recently, devising a system that could automatically detect and identify persons
in a complex scene, track them across multiple cameras and analyse their behaviour
in real-time would be too much of an arduous task. Though such a system is not yet
fully accomplished, many recent successful advances, mostly in computer vision and
machine learning, take us much nearer to that technological milestone.

We have witnessed to the maturation of algorithms and techniques for multimedia
analysis, high-level representation ofmultimedia data and search and retrieval inmul-
timedia databases. Allied with the growing evolution of processing capabilities this
has provided promising results in real-time semantic analysis applications. Moreover,
with the proliferation of affordable sensor devices it became possible to easily create
networks of these devices in large scale to collect distributed information. In this type
of networks, different types of sensors, with or without spacial and temporal overlap-
ping, generate multimodal signals. These signals need to be summarised in semantic
events to allow efficient searches in applications such as surveillance for security.

Most of the security surveillance systems based in video are supported by centralised
architectures which collect all information in real time for storing, processing and
interpretation, usually by a human operator. This process implies very often a high
quantity of resources for storage because all information is recorded, even when no
relevant events are taking place. More recent systems try to overcome this problem
by reducing spacial and temporal resolutions to theminimumnecessary. For example,
by using motion detection to detect activity, we store only temporal segments instead
of recording everything. However this is done without analysing what is happening
and important events are still treated and stored the same way irrelevant events are.

1



2 Introduction

The correct identification of events may sometimes be jeopardised when insufficient
resolution is available. If the identificationhas real-time requirements, it is done “man-
ually” by the system operator, having to span its attention by several surveillance
points. The distributed processing of this information with the objective of automatic
event detection could help the operator, generating alarms when some meaningful
event is detected. Moreover the storage could be performedwith different resolutions,
based on the detected events. Relevant time segments could be stored with maximum
spacial and temporal resolutions and the others with inferior resolutions. These could
also be indexed based on information retrieved in real time. In an a posteriori analysis
scenario, operators could easily find past events. The surveillance network scalability
is therefore improved, due to better resource utilisation.

“Big brother is watching you” (Orwell, 1949) – without disregarding ethical concerns
with invasive and abusive surveillance, it is fairly consensual to state that, besides se-
curity purposes, a scenario where a person’s behaviour is automatically interpreted,
can serve a useful and benevolent purpose; examples of such a scenario include nature
monitoring or health care monitoring. Considering the broader concept of ambient
intelligence, understanding a person behaviour is essential to react to it or adapt the
environment appropriately. With the continuous ageing of the population, an effec-
tive way to aid the elderly is a growing need, and ambient intelligence can have an
important role.

Sensor

Scene analysis

Sensor

Scene analysis

Sensor

Scene analysis

Sensor

Scene analysis

Object and 
event DB

...

Query Interface

Figure 1.1: Generic architecture of a real-world scene analysis system. Multiple sensors
capture scene activity which is analysed and decomposed in detected objects and events.
These are stored for posterior querying.

In this dissertationweaddress theproblemof automatically describing real-world scenes
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captured by multiple sensors and multiple types of sensors. We define “real-world
scene” as any scene captured continuously in public or private spaces by automated
and often passive sensors. The actions portrayed in the captured sequences consist
of everyday actions, like people walking or running, cars passing by or parking, etc.
The typical scenario is of surveillance cameras in public spaces, but other scenarios
are conceivable. The ultimate goal is allowing faster browsing and searching of the
content. For critical areas a complementary goal could also be automatic triggering of
alarms to counter or prevent imminent peril. A representation of a system with these
goals is depicted in Figure 1.1.

1.2 The surveillance scenario

Part of the development of this thesis was done in parallel with VISNET II, a Network
of Excellence (NoE) funded by the sixth Framework Programme of the European Com-
mission. The focus of the NoE is on Networked Audiovisual Media Technologies. Our
contributions related to this thesis are in the scope of theWork PackageWP2.2 –Audio-
visual Analysis – and in particular in Activity 2.2.3 – Video segmentation and tracking.
In that activity, the scenario of visual surveillance using static cameras was consid-
ered as the target. Visual surveillance systems are widely applied in transport scenar-
ios, such as airports, railways, underground, and motorways as well as other public
spaces, such as banks and shopping malls.

Surveillance systems can be broadly classified into three generations, which are re-
lated to the evolution in video communications, processing and storage (Regazzoni
et al., 2001). First generation surveillance systems are basically extensions of the hu-
man visual perception capabilities in a spatial sense. Video cameras are used to cap-
ture visual signals from multiple remote locations and deliver them to a single phys-
ical location. Video signals are captured, transmitted and stored based on analogue
techniques and the analysis is solely based on human operators. Second generation
surveillance systems benefited from early advances in digital video communications
and processing that provide assistance to the human operator by detecting important
events. The goal of third generation surveillance systems is to provide digital solu-
tions for the whole architecture, starting at the sensor level, up to the presentation
level. Current research efforts focus on these third generation systems and aim to de-
vise smart surveillance systems (Hampapur et al., 2003; Javed et al., 2007; Pavlidis et al.,
2001; Valera and Velastin, 2005).

Themain goal of smart surveillance systems is to support the human operator by auto-
matically analysing the large amount of data and providing additional data and func-
tionality. Generally the analysis results can be used in two different ways (Hampapur
et al., 2003). For online use the automatic analysis can provide real time alerts or en-
hancement of the data to focus the attention of the operator to an important event. In
case an incident occurs, the automatically generated index can provide an efficient
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Figure 1.2: Visnet II surveillance scenario general architecture. This architecture incor-
porates detection and tracking capabilities, digital media coding and particularly Digital
Video Coding (DVC), audio-visual analysis including speaker detection and location, and
surveillance-based segmentation and tracking (adapted from Ha-Minh et al., 2007).

way for an offline forensic search and retrieval of relevant data. In Figure 1.2 the
surveillance architecture developed within VISNET II is represented. It consists of a
generic architecture that embodies different data analysis, coding and management
methods.

Many research projects dedicated to surveillance systems have been conducted in the
past due to the large number of potential applications and the increased need for
security systems, including the DARPA-funded projects VSAM (1997–1999) and Hu-
manID (2002–2004), as well as the EU-funded projects PRISMATICA (2000–2003), ADVI-
SOR (2000–2002), andAVITRACK (2004–2006) and its follow-upCO-FRIEND (2008–2011).
Another research project that had some media projection was IBM’s Smart Surveil-
lance System (S3) [7]1. Also, a new generation of systems for surveillance are starting
to be commercialised. Some examples (non-exhaustive list) of commercial surveil-
lance systems are the ones developed by iOmniscient [8], Keeneo [9], DETEC [10], 3VR
[11], and BRS Labs (AISight) [12].

Although we considered the surveillance scenario as the potential target benefiting
from the contributions of this thesis, other scenarios can also be considered. Ambient
intelligence and health care monitoring are examples of alternative scenarios where
1This reference notation indicates a relevant resource (typically a web page) that is compiled in a list of
resources at the end of the dissertation. More information about this is given in Section 1.5
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the algorithms and tools described in this dissertation can be directly applied.

1.3 Thesis scope

This work is largely based on biologically inspired systems. The human sensorial and
cognitive systems were looked as models since the earlier stages of artificial and ma-
chine intelligence. The work developed in cognitive psychology (Neisser, 1967) which
developed on the foundations laid by Gestalt psychology, has been prolific. The main
research areas in cognitive psychology areperception, categorisation,memory, knowl-
edge representation, language, and thinking. The foundations of perception – atten-
tion, pattern recognition, and object recognition – specifically in vision (De Valois,
2000; Findlay and Gilchrist, 2003; Gregory, 1978; Marr, 1982) and audition (Bregman,
1990; McAdams and Bigand, 1993) are in large part the base of the work presented in
this thesis. New fields of research applied to computer science have emerged from the
knowledge acquired from biological systems, and particularly from the human per-
ception system. Computer vision and computer audition are examples of such new re-
search fields. Both these extensive fields have spawnedmultiple areas, and in particu-
lar (Computer Visual) Scene Analysis (CVSA) (Duda and Hart, 1973) and Computational
Auditory Scene Analysis (CASA) (Rosenthal and Okuno, 1998).

Object detection

- Visual object segmentation
    - Foreground segmentation
- Generic audio segmentation
- Audio object localisation
- Person detection
    - Face detection
    - Speaker segmentation

Object recognition

- Visual object recognition          
  and tracking
    - Multi-camera tracking
    - Appearance-based object       
      matching
- Person recognition
    - Face recognition
    - Gait recognition
    - Speaker recognition
    - Multimodal recognition

Event analysis

- Event detection and 
recognition
- Event discovery
- Activity analysis
    - Detecting appearances
      of persons
    - Trajectory analysis
- Audio-based event detection 

Multimodal analysis

- Information fusion
- Multimodal AV scene analysis
- Multimodal data integration framework

Areas with original contributions are highlighted in bold.

Figure 1.3: Scope of the thesis. Although several areas are covered in this thesis, original
contributions have only been done to a smaller set of topics.

The scope of areas related to multimodal scene analysis are very broad. In Figure 1.3
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we summarise all areas that are covered by this dissertation. These research areas can
be divided in three larger areas, namely object detection, object recognition, and event
analysis. A transversal larger area that we refer as multimodal analysis area deals with
topics common to the top-level three. Each area represents a research challenge on
its own and addressing all would be unfeasible. As such, we propose original contribu-
tions in specific research topics. The line of work followed is represented in Figure 1.4.
Three layers of development were defined: framework layer, analysis layer, and ap-
plication layer. The former included devising a multimodal framework (Teixeira et al.,
2008; Tzanetakis et al., 2008) that could be used as a foundation for all analysis meth-
ods and generic multimodal application (Lagrange et al., 2007). For the development of
analysis methods we defined a coherent line of work that focused essentially on visual
object analysis. New methods were proposed for object segmentation (Cardoso et al.,
2009; Teixeira and Corte-Real, 2007; Teixeira et al., 2007), objectmatching (Teixeira and
Corte-Real, 2009) and activity analysis (Teixeira et al., 2009). Regarding the application
layer, surveillance was targeted as the application where analysis methods would be
applied (Duraes et al., 2008).

Object

detection

Object

tracking

Object

matching
Activity

analysis

Multimodal analysis framework

Multi-camera surveillance application

A
n

a
ly

s
is

F
ra

m
e

w
o

rk
A

p
p

lic
a

ti
o

n

Figure 1.4: Line of work of the thesis. Work evolved in three layers of development: frame-
work layer, analysis layer, and application layer.

1.4 Main contributions

Following the line of work defined in Figure 1.4 we developed in the course of this
thesis a set of relevant algorithms and tools. These represent the main contributions
of this thesis and can be summarised as follows.
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1.4.1 Object segmentation

The first contribution is a foreground segmentation algorithm and is described in detail
in Section 3.3. It consists of a method that models typical dynamic elements like ac-
quisition noise, illumination variation and slow or repetitive structural changes. This
model is then used to extract the foreground by testing if each pixel belongs to the
background or the foreground. It presents improved performance and results when
compared to commonly used methods. An objective comparison of background mod-
elling and subtraction methods was also done using a metric devised for this purpose.

1.4.2 Object matching

The second contribution is an appearance-based object matching algorithm which is de-
scribed in Section 4.3. This algorithm has the goal of being as an efficient method of
matching visual objects tracked across independent views using local descriptors and
the visual word paradigm. To accomplish that goal we defined a scalable representa-
tion and learning of generic visual objects. A direct result of this method is having a
base for a surveillance system interface browsable by object tracks.

1.4.3 Activity analysis

The third contribution of this thesis is a system to detect appearances of persons which is
detailed in Section 5.5. We developed an integrated segmentation/tracking/matching
system for detecting appearances of persons overmultiple uncalibrated cameras with-
out overlapping field of view. An algorithm for the verification a person identity was
defined for this purpose. This system also contributed to show that the performance
of person tracking can be aided by the identity verification of each tracked person.

1.4.4 Multimodal analysis framework

In parallel with the other contributions, a forth contribution is the creation of an ef-
ficient multimodal data integration framework that provides the ability to use or develop
new tools and algorithms handling different types of data. This framework is intro-
duced in Section 6.3. It follows a dataflow architecture where complex network of
processing objects can be assembled to form systems that can handle multiple and dif-
ferent types of multimedia flows with expressiveness and efficiency.

1.4.5 Related publications

Thework presented in this thesis has been presented in several publications, which are
available in PDF format at the author’s page [1]. The publications are divided in two
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groups. Specifically, the first group includes those with results directly related to this
thesis and consists of 3 international conference papers and 3 international journal
papers.

1. Luis F. Teixeira and Luis Corte-Real. Cascaded change detection for foreground
segmentation. In Proceedings of IEEE Winter Vision Meeting – Motion and Video Com-
puting, Austin, TX, February 2007. (Teixeira and Corte-Real, 2007)
Abstract | The extraction of relevant objects (foreground) from a background is an im-
portant first step in many applications. We propose a technique that tackles this problem
using a cascade of change detection tests, including noise-induced, illumination varia-
tion and structural changes. An objective comparison of pixel-wise modelling methods is
first presented. Given its best relation performance/complexity, themixture of Gaussians
was chosen to be used in the proposed method to detect structural changes. Experimen-
tal results show that the cascade technique consistently outperforms the commonly used
mixture of Gaussians, without additional post-processing andwithout the expense of pro-
cessing overheads.

2. Luis F. Teixeira, Jaime S. Cardoso, and Luis Corte-Real. Object segmentation us-
ing background modelling and cascaded change detection. Journal of Multimedia,
2(5):55–64, September 2007. (Teixeira et al., 2007)
Abstract | The automatic extraction and analysis of visual information is becoming gen-
eralised. The first step in this processing chain is usually separating or segmenting the
captured visual scene in individual objects. Obtaining a perceptually correct segmen-
tation is however a cumbersome task. Moreover, typical applications relying on object
segmentation, such as visual surveillance, introduce two additional requirements: (1)
it should represent only a small fraction of the total amount of processing time and (2)
real-time overall processing. We propose a technique that tackles these problems us-
ing a cascade of change detection tests, including noise-induced, illumination variation
and structural changes. An objective comparison of common pixel-wise modelling meth-
ods is first done. A cost-based partition-distance between segmentation masks is intro-
duced and used to evaluate the methods. Both the mixture of Gaussians and the kernel
density estimation are used as a base to detect structural changes in the proposed algo-
rithm. Experimental results show that the cascade technique consistently outperforms
the base methods, without additional post-processing and without additional processing
overheads.

3. Mathieu Lagrange, Luis G. Martins, Luis F. Teixeira, and George Tzanetakis.
Speaker segmentation of interviews using integrated video and audio change
detections. In Proceedings of International Workshop on Content-BasedMultimedia In-
dexing, pages 219–226, Bordeaux, France, June 2007. (Lagrange et al., 2007)
Abstract | In this paper, we study the use of audio and visual cues to perform speaker
segmentation of audiovisual recordings of formalmeetings such as interviews, lectures, or
courtroom sessions. The sole use of audio cues for such recordings can be ineffective due
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to low recording quality and high level of background noise. We propose to use additional
cues from the video stream by exploiting the relative static locations of speakers among
the scene. The experiments show that the combination of those multiple cues helps to
identify more robustly the transitions among speakers.

4. Luis F. Teixeira and Luis Corte-Real. Video objectmatching acrossmultiple inde-
pendent views using local descriptors and adaptive learning. Pattern Recognition
Letters, 30(2):157–167, January 2009. (Teixeira and Corte-Real, 2009)

Abstract | Object detection and tracking is an essential preliminary task in event analy-
sis systems (e.g. visual surveillance). Typically objects are extracted and tagged, forming
representative tracks of their activity. Tagging is usually performed by probabilistic data
association, however, in systems capturing disjoint areas it is often not possible to estab-
lish such associations, as data may have been collected at different times or in different
locations. In this case, appearance matching is a valuable aid. We propose using bag-of-
visterms, i.e., an histogram of quantised local feature descriptors, to represent andmatch
tracked objects. This method has proven to be effective for object matching and classi-
fication in image retrieval applications, where descriptors can be extracted a priori. An
important difference in event analysis systems is that relevant information is typically
restricted to the foreground. Descriptors can therefore be extracted faster, approach-
ing real time requirements. Also, unlike image retrieval, objects can change over time
and therefore their model needs to be updated continuously. Incremental or adaptive
learning is used to tackle this problem. Using independent tracks of 30 different persons,
we show that the bag-of-visterms representation effectively discriminates visual object
tracks and that it presents high resilience to incorrect object segmentation. Additionally,
this methodology allows the construction of scalable object models that can be used to
match tracks across independent views.

5. Luis F. Teixeira, Luis G. Martins, Mathieu Lagrange, and George Tzanetakis. Mar-
syasX: multimedia dataflow processing with implicit patching. In Proceedings of
ACM International Conference on Multimedia, pages 873–876, Vancouver, BC, Octo-
ber 2008. (Teixeira et al., 2008)

Abstract | The design and implementation of multimedia signal processing systems is
challenging especially when efficiency and real-time performance is desired. In many
modern applications, software systems must be able to handle multiple flows of various
types of multimedia data such as audio and video. Researchers frequently have to rely on
a combination of different software tools for each modality to assemble proof-of-concept
systems that are inefficient, brittle and hard to maintain. Marsyas is a software frame-
work originally developed to address these issues in the domain of audio processing. In
this paper we describe MarsyasX, a new open-source cross-modal analysis framework
that aims at a broader score of applications. It follows a dataflow architecture where
complex networks of processing objects can be assembled to form systems that can han-
dle multiple and different types of multimedia flows with expressiveness and efficiency.
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6. Luis F. Teixeira, Pedro Carvalho, Jaime S. Cardoso, and Luis Corte-Real. Auto-
matic description of object appearances in a wide-area surveillance scenario.
IEEE Transactions on Circuits and Systems for Video Technology, 2009. (submitted).
(Teixeira et al., 2009)

Abstract | Segmentation and tracking of objects in a 2D video sequence is an important
and challenging research areawithmany applications, amongwhich automaticmonitor-
ing of installations has gained vital importance. In these situations, algorithms or track-
ing systems must deal with several factors such as coverage of large areas, humans mov-
ing in a group, partial or total occlusion, fast changes in direction, illumination changes
and shadows, among others. To track people successfully we need to establish correspon-
dences between objects captured in different cameras. Therefore, trackers are hardly
ever the last link in the chain. Multi-camera systems demand for an additional element
in the chain, responsible for collecting information from each track and establishing cor-
respondences between objects detected in individual tracks. The output of this matching
module is then the basis of several higher-level algorithms featuring event detection or
semantic analysis. In this paper we present a complete system for object tracking over
multiple uncalibrated cameras without overlapping field of view. The system is able to
discover correspondences between different views of the same object. We employ an ap-
proach based on the bag-of-visterms to represent and match tracked objects. The tracks
are compared with a global object model based on an ensemble of individual object mod-
els. If an object is recognised, the corresponding track is labelled. Moreover, if multiple
objects are detected in a single track, the track is split and the partial tracks are labelled
accordingly. The output is a timeline representing the objects present in a given scene.
These timelines are compared with a ground-truth to evaluate the system’s performance.
The methods employed in the system are online and can be optimised to operate in real-
time.

The second group refers to publications with results partly related to this thesis. This
group includes 2 international conference papers and 1 journal paper.

7. Daniel Duraes, Luis F. Teixeira, and Luis Corte-Real. Building modular surveil-
lance systems based on multiple sources of information – architecture and re-
quirements. In Proceedings of International Conference on Signal Processing and Mul-
timedia Applications, Porto, Portugal, July 2008. (Duraes et al., 2008)

Abstract | Intelligent surveillance is becoming increasingly important for the enhanced
protection of facilities such as airports and power stations from various types of threats.
We propose a surveillance system architecture based on multiple sources of information
to apply on large scale surveillance networks. The main contribution of this paper is the
definition of the requirements for a flexible and scalable architecture that supports intel-
ligent surveillance using, alongside video, different sources of information, such as audio
or other sensors.
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8. George Tzanetakis, Luis G. Martins, Luis F. Teixeira, Carlos Castillo, Randy Jones,
and Mathieu Lagrange. Interoperability and the Marsyas 0.2 runtime. In Pro-
ceedings of International Computer Music Conference, Belfast, Ireland, August 2008.
(Tzanetakis et al., 2008)

Abstract | Marsyas is a software framework for building efficient complex audio pro-
cessing systems and applications. Although originally designed for Music Information
Retrieval (MIR) tasks in the past few years it has been expanded to include any type of
audio analysis or synthesis. Complex Audio processing systems are defined hierarchically
through composition using implicit patching. Both the specification of the processing net-
work and the control of it while data is flowing through can be performed at runtimewith-
out requiring recompilation. Compilation is required only when new processing objects
need to be defined. Therefore the Marsyas runtime provides considerable functionality
and flexibility. In this paper we demonstrate how the Marsyas runtime can be accessed
using a variety of different ways allowing non-trivial interactions with common software
frameworks and environments.

9. Jaime S. Cardoso, Pedro Carvalho, Luis F. Teixeira, and Luis Corte-Real. Partition-
distancemethods for assessing spatial segmentations of images and videos. Com-
puter Vision and Image Understanding, 113(7):811–823, July, 2009. (Cardoso et al.,
2009)

Abstract | The primary goal of the research on image segmentation is to produce bet-
ter segmentation algorithms. In spite of almost 50 years of research and development
in this field, the general problem of splitting an image into meaningful regions remains
unsolved. New and emerging techniques are constantly being applied with reduced suc-
cess. The design of each of these new segmentation algorithms requires spending careful
attention judging the effectiveness of the technique. This paper demonstrates how the
proposed methodology is well suited to perform a quantitative comparison between im-
age segmentation algorithms using a ground-truth segmentation. It consists of a general
framework already partially proposed in the literature, but dispersed over several works.
The framework is based on the principle of eliminating theminimum number of elements
such that a specified condition is met. This rule translates directly into a global opti-
misation procedure and the intersection-graph between two partitions emerges as the
natural tool to solve it. The objective of this paper is to summarise, aggregate and extend
the dispersed work. The principle is clarified, presented striped of unnecessary supports
and extended to sequences of images. Our study shows that the proposed framework for
segmentation performance evaluation is simple, general and mathematically sound.

Parts of this thesis also appears in two deliverables produced within the scope of the
VISNET II [6] network of excellence.

10. Thien Ha-Minh, Alessandro Tortelli, Luis F. Teixeira, Lutz Goldmann, Mustafa
Karaman, Stewart Worrall, Tim Masterton, and Charles Attwood. First set of
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contributions and evaluation of tools for video segmentation and tracking. De-
liverable D2.2.2, Visnet II consortium, November 2007. (Ha-Minh et al., 2007)
Abstract | This report aims at describing the progress of VISNET II activities in
video segmentation and tracking in the first 18 months of the project.

11. Thien Ha-Minh, Luis F. Teixeira, Pedro Carvalho, Lutz Goldmann, Mustafa Kara-
man, Stewart Worrall, Tim Masterton, Charles Attwood, and Krystian Ignasiak.
Update set of developments and evaluation of tools for video segmentation and
tracking. Deliverable D2.2.7, Visnet II consortium, August 2008. (Ha-Minh et al.,
2008)
Abstract | This report aims at describing the progress of VISNET II activities in
video segmentation and tracking during the second year of the project.

1.5 Structure of the dissertation

Given the broad scope of the topics covered in this thesis, it follows a “non-typical”
structure. Throughout the text we present overviews of thesis-related areas, the of-
ten called state of the art. In parallel we introduce the original contributions that were
developed in scope of this thesis. These novel contributions and respective evalua-
tions are present in all chapters and are signalled with §. Also, the sections signalled
with ¶ are the outcome of preliminary collaborations that have not yet resulted in a
publication. Another particularity is how references are mentioned in the text. We
considered two types of references: bibliographical references and resource refer-
ences. The former type of references follow the traditional structure of bibliographical
references – e.g. (Teixeira and Corte-Real, 2009); the latter type of references are used
to identify web resources, such as the webpage of an open-source project or other rel-
evant resources – e.g. [4]. Both types of references are compiled at the end of the dis-
sertation in chapters called Bibliography and Resources, respectively. The remainder
of the dissertation comprises the following chapters.

In Chapter 2 we start by presenting some concepts related tomultimodal scene analysis.
The methods associated to multimodal analysis are part of a broader research field,
namely information fusion. We also present relevant concepts related to information
fusion, such as early fusion, late fusion, temporal fusion, and adaptive fusion. In this dis-
sertation we focus onmultimodal analysis applied to Audio-Visual (AV) streams. With
that inmindwe discuss how AV signal are typically represented, as well as the types of
applications of AV-basedmultimodal scene analysis. To illustrate some of the concepts
introduced in the chapter, a proposal of a simple speaker identification application
based on AV analysis is explained.

Chapter 3 consists of a review of object detection, including audio and visual-based seg-
mentation. With segmentation we intend to separate complex scenes in its composing
objects. We start by discussing visual object segmentation, and particularly segmentation
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applied for real-world visual scenes. The most commonly used method in this case is
background modelling and subtraction. We present an overview of techniques with that
purpose, as well as a more in-depth comparison of methods. Furthermore, we propose
of a background modelling and subtraction method based on the cascaded detection of
changes. A particular case of object detection occurs when the goal is to detect persons.
We discuss specificmethods that can be applied, including face detection. Regarding au-
dio object segmentation, we consider four types of generic classes (silence, noise, music,
and speech) and use a method that is commonly applied for that purpose. Finally, we
present some methods that can be used to localise audio objects (or sources) relying on
AV joint analysis.

After object detection, in Chapter 4 we focus on object recognition. Object tracking com-
bines object detection and recognitionwith an additional temporal element. Wepresent
an overview of visual object trackingmethods using only one camera or multiple cam-
eras. Object recognition is the task of associating an identity to a given object from a
set of known classes, task closely related to object matching. We present afterwards a
proposal for a scalable object recognition method which relies on the matching of appear-
ance models based on local invariant features. An extensive evaluation of this method
is presented. In parallel with the previous chapter, we also consider in this chapter
the particular case of person recognition, including face recognition, gait recognition, and
speaker recognition. Combining these methods with the appearance-based recognition
system, we discuss how a multimodal person recognition system is possible.

Chapter 5 concludes the line of work regarding the methods employed in multimodal
scene analysis. Events can be defined as meaningful real-world occurrences and can be
valuable cues to index content. The scope of this chapter is event analysis andhow it can
be used to enhance for instance browsing of very long captured scenes, which is the
case of real-world scenes (e.g. surveillance). We present an integrated multicamera-
basedmethod comprising object segmentation, tracking, andmatching to detectwhen
and where persons appear. The result is a timeline that aids the navigation of content.
Also, we analyse amethod that can be used to retrieve events based on detected person
trajectories. A brief overview of audio event detection wraps up this chapter.

In Chapter 6 we presentMarsyasX, amultimodal analysis framework that was used to im-
plement the methods proposed in this thesis. The framework’s goal is provide a com-
mon tool to implement algorithms based on different modalities. Usually we need to
rely on a combination of different software tools for each modality to assemble proof-
of-concept systems. We start by presenting the architecture of Marsyas, the audio-
focused ancestral of MarsyasX. The new concepts introduced by the new framework
are discussed afterwards. Finally, examples of applications developed with MarsyasX,
including methods described in the previous chapters are shown.

The dissertation is summarised in Chapter 7. We also present possible future lines of
work, including improvements to the methods proposed in the previous chapters and
possible new methods. The chapter ends with some concluding remarks.
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Additionally, three appendices complement the main part of the thesis. In Appen-
dices A and B we describe the datasets and the evaluation methods, respectively, that
were used in the development of visual and audio analysis methods. The latter ap-
pendix includes a short description of a newmetric to compare foreground segmenta-
tions. Finally, in Appendix C we give an overview on local interest point detectors and
local descriptors, in particular SIFT that we use for object matching in Chapter 4.



2 Multimodal scene analysis
Human perception is in essence based in multimodality. Complex cross-modal in-
teractions occur when the human brain receives stimuli from multiple sources. It is
thus appropriate to establish a parallel, and perform computational analysis based on
the interaction between modalities. By combining information conveyed by different
modalities we aim to extract additional knowledge or to complement the knowl-
edge obtained analysing each modality separately. However, new challenges emerge,
namely how can we combine data having different representations, and how can we
make such combination effective.

2.1 Concepts

The term multimodal analysis is somewhat ambiguous since it can have different inter-
pretations, depending on the area it refers to. We can find references to multimodal
analysis in disparate areas, such as linguistics, cognitive psychology and computer sci-
ence. It is therefore important to define the underlying concepts and the context of
application.

A confusion may arise with the termsmultimodal system andmultimedia system. Buxton
(1994) refers that multimedia focuses on the medium or technology rather than the ap-
plication or user. Conversely, a multimodal system focuses on the way a user interacts
with information. In a multimodal system, information is modelled at a higher level
of abstraction, more closely related to its meaning.

Considering Human-Computer Interaction (HCI), Nigay and Coutaz (1993) defined that
amultimodal system supports communicationwith the user through differentmodali-
ties such as voice, gesture, and typing. The termmodalmay cover the notion ofmodality
as well as that of mode. The modality defines the type of data exchanged, whereas the
mode determines the context in which the data is interpreted. Applying the same rea-
soning to automatic scene analysis, modality can be seen as the type of input data thatmodality
is analysed. It represents distinct ways of conveying information. In this case, com-
putational models detect and recognise objects and events by analysing the different
available modalities, in a similar way the human brain would do.

The main goal of multimodal scene analysis is to extract knowledge from differentmultimodal
scene analysis signals, potentially representing multiple modalities. Information often does not ap-

pear in single modalities, so we can explore the synergy existing across the different
modalities. By exploring interactions between modalities, new knowledge is obtained

15
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that would not be possible to obtain or would be incomplete otherwise. The additional
knowledge can be in the form of processed signals or descriptive information. Fig-
ure 2.1 depicts this paradigm.

Multimodal 
processing

and analysis

input
signals

processed
signals

descriptive
information

......

Figure 2.1: The multimodal processing and analysis paradigm. From multiple input signals
representing multiple modalities, obtain additional knowledge in the form of processed signals
and descriptive information.

Arbitrarily complex configurations of multimodal processing and analysis relations
are possible. Depending on the application the output could be translated into decision
or actions taken by an intelligent system, or structured in descriptive information for
posterior analysis. In Figure 2.2 an example of such configuration is shown.
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Figure 2.2: A multimodal processing network. Arbitrarily complex configurations of multi-
modal processing and analysis relations are possible.

Nigay and Coutaz (1993) proposed a design space to systematise the description of
multi-feature systems, such as a multimodal system. It considers three dimensions:
levels of abstraction, use ofmodalities and fusion. Figure 2.3 shows a three-dimensional
graphical representation of this model. As previously, we follow closely the authors’
definition applied to multimodal interaction but transpose it to the context of multi-
modal scene analysis.
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Figure 2.3: A multi-feature system design space. Three dimensions are considered: levels
of abstraction, use of modalities and fusion. (adapted from Nigay and Coutaz, 1993)

Data may be processed at multiple levels of abstraction. For example, speech inputlevels of
abstraction may be recorded as a signal, described as a sequence of phonemes, or interpreted as

a meaningful parsed sentence. Two levels of abstraction are defined: “Meaning” and
“No Meaning”.

The second dimension, use of modalities, expresses the temporal availability of multi-use of
modalities plemodalities. Two type of usemodalities are considered: “Sequential” and “Parallel”.

A system that supports parallel employs multiple modalities simultaneously, while a
system with sequential use does not.

Finally, fusion describes if the combination of different types of data is done or not.fusion
If no combination is done, the system is characterised as being “Independent”, and
if it is done, the system is referred to as “Combined”. According to the design space,
fusion may be performed with or without knowledge about the meaning of the data
exchanged. Fusion based on meaning mixes modalities to process information results
in an interpretation at a high level of abstraction.

Despite the efforts to study the theory supportingmultimodal systems such as Nigay’s,
traditionally the work on multimodal integration has been mostly based in the defini-
tion of heuristics. The lack of fundamental theory originates two important questions
when building a multimodal system: how can we choose the most suitable modalities?
how canwe optimally combine information frommultiplemodalities? There is no sys-
tematic way to determine an answer to these questions. Additionally, three trade-offs
need to be considered: modality independence, curse of dimensionality, and fusion model
complexity.
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2.2 Information fusion

The methods associated with multimodal analysis are included into the broader re-
search field of information fusion. In general, information fusion includes any area
that combines different information sources, either to generate one representational
format, or to reach a decision.

By performing information fusion, a decision or an action is generated that is expected
to be in some sense better than the one originated when only one source of informa-
tion was used. The acquisition of information by multiple sensors, capturing the same
reality, can be thought as the decomposition of the event into its components by the
sensors. By fusing, as optimally as possible, the information provided by the different
sensors one expects to reverse this inevitable decomposition. Ideally, the sensor fu-
sionwould be able to restore all inherent information of interest. The evaluation of the
action improvement may depend on the domain of application, and can be qualitative
or quantitative – for example, accuracy, robustness or error resilience.

The huge volume of information generated bymulti-sensor systems is one of themain
challenges faced by information fusion, especially when real-time constraints are im-
posed by the application in question. Moreover, this information is continuously cor-
rupted by noise and other disturbances which vary throughout its acquisition by the
multiple sensors making it even more challenging.

Information fusion is applied in areas like team decision theory, integration of multi-
ple sensors, distributed detection and distributed decision making. Dasarathy (2000)
refer different industrial applications areas where information fusion can be applied,
including: machining related problems, diagnostic and non-destructive testing, robot
navigation, human identity verification and manufacturing quality control. The goal
of fusion in the real-world scenarioswe are considering is combining information from
different sensors to detect the presence of an object or environmental condition, iden-
tify objects or events, and track an object or event over a period.

Traditionally, information fusion has been characterised in different hierarchical lev-
els according to the stage of processing at which the integration is performed. In
this sense, information fusion techniques are often classified in three main categories
(Dasarathy, 1997): data fusion, feature fusion and decision fusion. This classification is fur-
ther expanded into five fusion I/O-dependent categories, i.e., whether the fusion takes
as input sensor data, features or decisions as well as the output. Additionally, temporal
fusion is also considered when information is acquired and integrated over a period of
time. Temporal fusion can occur at any of the three previous levels and can be char-
acterised as orthonormal to the three-level categorisation. Sanderson (2002) propose
a two-category classification: pre-mapping fusion, or input-level fusion, when informa-
tion is combined before any use of classifiers; and post-mapping fusion, or output-level
fusion, when information is combined after mapping from sensor-data/feature space
into opinion/decision space. A combination of both categorisation proposals will be
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used in the remainder of this chapter. Also, the terms early fusion and late fusionwill be
used instead of pre-mapping and post-mapping fusion, respectively.

2.2.1 Early fusion

Early fusion can be further sub-divided in three categories: data in-data out fusion, data
in-feature out fusion and feature in-feature out fusion.

� Data in-data out fusion

Data in-data out fusion is at the lower level according to this classification. At this level,
data captured by sensors, is combined directly using one data merging method. It is
thus performed at the front-end of the processing stream, immediately after acquisi-
tion. Fusion at data level requires compatible sensors and both spatial and temporal
registration of data are very important to this effect.

Typically two methods are used for data level fusion: weighted summation or mosaic
reconstruction. The former can be used to combine, for example, visual and infrared
images into one image, or, acoustic data from two or more redundant microphones,
reducing noise. A more detailed description of weighted summation will be presented
next. Mosaic construction can be used, for example, to create one image out of images
captured by several cameras, where each camera captures part of the same scene or
object. Other examples of application areas include the processing techniques used in
multispectral data analysis applications. In this case pixel intensities are acquired by
different sensors and combined in a multispectral approach, which can be useful in
the extraction of fine details. Multidimensional data fusion can also be accomplished
through Principal Component Analysis (PCA) or other transform techniques.

The level of detail is highest at this data level, however the corruption of information
due to noise is also highest. The process of extracting relevant information at this
level, in the form of features or decisions, may result in the loss of some information
in levels of details, but can also reduce the noise that degrades the decision system’s
quality. In fact when fusion is performed at any level of information abstraction, there
is a inherent process of compactation, resulting in the loss of information thatwill only
be available at this level and will not be carried to the next level.

� Data in-feature out fusion

With data in-feature out fusion, data from different sensors are combined to derive
some form of a feature of the object in the environment or a descriptor of the event
under observation. Techniques based in this type of fusion were studied for machine
perception of depth in robotic systems. In some cases this may be the first step in a
processing chain with the previous mode being totally absent.
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� Feature in-feature out fusion

In this mode, both input and output are features. An initial processing is therefore
applied to data to extract sets of features from one or more sources of raw data. These
sets of features are then combined and processed either quantitatively, in a multidi-
mensional feature space processing, or qualitatively, within a heuristic decision logic
process, or through a combination of both. The latter two are particularly true when
sensors have different data structures and features obtainable from one are not deriv-
able from the other. If the features have a commonmeasure then the fusion can be per-
formed using weighted summation. Otherwise feature vector concatenation can be applied
and an aggregate feature vector is constructed by concatenating the feature vectors
obtained from each source. Some issues may however arise when using this method.
There is no explicit control over how much is the contribution of each individual fea-
ture vector in the final decision. Moreover, the aggregate feature vector may suffer
from the “curse of dimensionality” due to its usual large size. Applying methods in or-
der to reduce dimensionality may however obviate this problem. Finally, the feature
extraction must be synchronous, i.e., separate feature vectors must be available at the
same rate.

2.2.2 Late fusion

The late fusion approaches may be sub-divided into two other categories: feature in-
decision out fusion and decision in-decision out fusion. The latter can have different inter-
pretations if we are dealing with the combination of hard decisions provided by a set
of classifiers, or soft decisions (or opinions), given from a set of experts. Often the terms
decision fusion and opinion fusion are used interchangeably. However, since each ex-
pert provides an opinion and not a hard decision, the termopinion ismore appropriate
when an ensemble of experts is used.

� Feature in-decision out fusion

In this case, the inputs are features from different sensors and the output of the fu-
sion process is a decision, for example, a target class recognition. It is probably the
most common of the fusionmodes since pattern recognition systems with inputs from
multiple sensors have long been performing this type of fusion. A feature vector is
classified according with a priori knowledge or a model obtained in a training phase.
Therefore all techniques used for pattern recognition are directly applied when the
type of fusion is performed.
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� Decision in-decision out fusion

Both inputs and output are decisions in this type of fusion. The fusion of multiple
classifiers, was first proposed as a possible solution to the problems posed by the tradi-
tional pattern classification approachwhich involved selecting the best classifier from
a set of candidates based on their experimental evaluation – no classifier is known to
be the best for all cases. It was also motivated by requirements of many sensor fusion
applications, that induce natural decompositions of the information processing tasks
and demand for complex decision fusion architectures. Moreover, fusion at the lower
levels is not always possible. For example, if incompatible sensors are used and data
registration is not feasible, local decisions have to be performed and passed on to a
fusion processor where the individual decisions are integrated. Although fusion at the
decision level is not always necessary or the most interesting approach, it is always at
least feasible.

The classifiers used for decision fusion can be of the same type but working with dif-
ferent set of features (e.g. audio and video data). Other configurations include non-
homogeneous classifiers evaluating the same set of features or a hybrid configuration
using both of the previous. The main motivation to use non-homogeneous classifiers
with the same set of features is to take advantage of the classifier specialisation – i.e.,
a classifier can be good at evaluating a particular set of classes while being bad eval-
uating another different set of classes. This way it can be possible to overcome the
downsides of each classifier. Decisions can be combined bymajority voting, using AND
& OR operators or combination of ranked lists.

Withmajority voting, the final decision is the onewith the higher number of classifiersmajority
voting agreeing on that decision. An odd number of classifiers is required in order to avoid

ties. Moreover, the number of classifiersmust be greater than the number of decisions
to ensure that a decision is reached. For verification problems this last condition is not
a limitation.

With AND operator fusion, a class is only acceptedwhen all classifiers agree – thus, thisAND & OR
operators classification is very restrictive. For multi-class problems a no-decision situation may

be reached and is therefore mainly used when a low false acceptance is required. On
the other hand, with OR operator fusion, a class is accepted when at least one classifier
makes a positive decision. In opposition to the AND operator fusion, this type of fusion
is very relaxed and may lead to multiple possible decisions in multi-class problems. It
is mainly used when a low false rejection rate is required.

The final decision using combination of ranked list is reached by combining ranked listcombination of
ranked lists of class labels provided by each classifier. The lists of classes are sorted according the

degree of preference for each class and the top entry usually corresponds to the most
preferred. The final decision is reached by selecting the top ranked class of a combined
list. Theway this combined list is created depends on the application and can take into
account the reliability and discrimination ability of each classifier.
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� Decision vs. opinion fusion

Themain advantage of opinion fusionwhen compared to decision fusion is that the de-
cisions can be weighted. These weights can reflect the reliability and discrimination
ability of the individual experts. The opinions can be combined using weighted summa-
tion or weighted product approaches before using any classification criterion. Different
classification criteria to reach a decision are possible including hard-level combination
techniques such as the max the min and median rules. The max and min operators
rely on the classifier with the highest an the lowest best opinion scores, respectively,
and disregarding the decisions of the other classifiers. The max operator tends to
have high false accept rate, whereas the min operator is best suited for high security
applications. Both methods rely solely in opinion scores and do not employ additional
reliabilitymeasures. It is also possible to use soft-level combination techniques as clas-
sification criteria which, unlike the hard-level techniques, regard each coefficient as a
measure of reliability of each classifier. Reliability values Rp can assume fixed values
defined using a priori knowledge about the performance of each expert. Alternatively
it can be estimated adaptively for each decision instant.

Different types of experts can be used in opinion fusion, however the opinions are
usually required to have a common measure. This can be accomplished by mapping
the output of each expert to the [0, 1] interval.

Alternatively to weighted summation and product fusion techniques, a post-classifier
can be used to reach a decision using the opinions provided by the experts. In this
case opinions can be considered as features in the likelihood space. The opinions from
NE experts regarding NC classes form a NE × (NC − 1) dimensional opinion vector,
which is used by a post-classifier to make a final decision.

An important advantage of using a post-classifier approach is that the opinions do not
necessarily need to have a commonmeasure as in the two previous approaches. In this
case, the post-classifiermakes adequatemapping from the likelihood space to the class
label space. Notice that in a verification scenario, the dimensionality of the opinion
vector is only dependent on the number of experts since only two classes (accept /
reject) exist.

2.2.3 Temporal fusion

Temporal fusion happens typically when data is integrated over a period of time, such
as averaging of samples. An example of temporal fusion is the tracking function of an
objects or a person. It is applicable in any level of fusion previously presented and it
assumes an orthonormal dimension of the fusion process.
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2.2.4 Adaptive fusion

The first developments in adaptive fusion used several different expert networks and a
gating network that decidedwhich of the experts should be used for each specific case.
Later work extended the system in order that the system could learn how to allocate
new cases to experts by checking the output – if the output is incorrect, the weights
for the selected experts change in the gating network. Hence, there is no interference
with the weights of other experts that specialise to quite different cases. The experts
are therefore local in the sense that the weights in one expert are decoupled from the
weights in other experts. An error measure is usually used to compare the desired
output with a combination of local experts and adjust the weights to cancel this er-
ror. When the weights in one expert change, the same happens to the residual error,
and the error derivatives for all the other local experts. The strong coupling between
experts causes them to cooperate – associative learning – but tends to lead to solutions
where toomany experts are necessary. An alternative is the competitive learningwhere
only one expert is used for each case instead of combining the outputs of all experts.

2.3 AV-based multimodal scene analysis

During the last decades many studies have been made about the human perception of
visual and audio stimuli and how they interact. There are multiple known influences
between vision and audition. The McGurk effect (McGurk and MacDonald, 1976), and
the ventriloquist effect (Howard and Tempelton, 1966) are examples of what we see in-
fluences what we hear. In the samemanner, several phenomena have been discovered
that show influences from audition onto vision. For example, a sound may influence
the perceived direction of a bistable visualmotion display (Sekuler et al., 1997). Besides
effects on bistable visual stimuli, audition can affect even unambiguous visual stimuli.
A brief flash accompanied by two beeps is mostly perceived as two flashes. Speech
perception is also significantly influenced by seeing and hearing a speaker, compared
to just hearing. This is especially prominent with noisy signals, showing that the ad-
ditional visual information enhances speech perception (Sumby and Pollack, 1954).

In general, for a complete scene understanding, it is important to analyse all the avail-
able information and identify not only the objects that compose the scene but also its
nature and their relationship. In the context of audiovisual scene analysis, the nature
of the sources of information is usually restricted to the audio and the video signals.
Although visual and audio processing and analysis research areas had a considerable
amount of attention in the past two decades, work has progressed mostly in separate
paths. Some effort has been put more recently to understand how the integration
of these areas can help get a better understanding of the dynamics being analysed or
simply improve performance of already proven algorithms in either area. Some exam-
ples of the latter are the audiovisual speech processing, person authentication, docu-
ment retrieval and tracking of objects and humans, whereas for the former, examples
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of research applications are multimodal Human-Computer Interaction (HCI), emotion
recognition and intelligent systems.

Visual and audio sensors, or any other sensors capturing reality for that matter, carry
information about events that when combined correctly can provide complementary
perception of the same event. Multimodal contingency can therefore be used to help
determine which signals in different modalities share the same a common origin. This
allows signals to help locate and interpret each other. The integration of visual and au-
dio data can be performed at earlier or later processing stages. When performing early
integration all streams are merged and considered as one. However, we are assuming
there are dependencies at the lower level – at the frame level – but some higher infor-
mation dependencies might be missed – feature or semantic levels. The dependencies
can be taken into account at later stages, performing late integration.

Themain challengeswhen integrating audiovisual information arise from the increased
dimensionality and complexity (Wu et al., 2004). Often heuristics are needed to limit
the information space. Capturing long-term dependencies is naturally more difficult
than when analysing only one stream. Another challenge is the lack of largely avail-
able benchmark datasets that could provide common ground for multimodal analysis
research.

2.3.1 Representing AV signals

� Visual features

Many visual feature sets have been proposed throughout the years and, in general,
each set can be grouped in four possible categories: appearance-based, shape-based,
mixed-based, and motion-based features. We present a small overview of these cate-
gories, but for more in-depth information, refer to (del Bimbo, 1999; Gupta and Jain,
1997; Ojala et al., 1996; Wang et al., 2000).

⇀ Appearance-based features This group of features are generally directly re-
lated to the pixel-level structure of the images forming the visual signal. The features
may be analysed for the whole image or just a Region Of Interest (ROI). The ROI can as-
sumemany forms, depending on the prior knowledge of the dynamics and is therefore
application-specific - it may have irregular forms and may not be spatially connected,
for example, the result of an object segmentation.

An important discriminative visual feature is colour. Colour histograms, which rep-
resent colour distribution in an image, are a widely used and simple approach, yet
very effective (Swain and Ballard, 1991). Histograms are robust to change in view-
point and scale and to occlusion but depend highly on the used colour space. The RGB
representations are widely used but usually are not suited to capture the invariant
characteristics. A representation often used is HSV because of its proximity to the
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human perceptual organisation of colours. The main problem regarding colour his-
tograms is that spatial configuration of pixels is not considered, leading to completely
different images to have the same colour histogram. Several approaches have been
proposed to overcome this problem, like augmented colour histograms containing,
besides colour probability, also the mean, variance and entropy of pair-wise distances
among pixels with this colour. Other common colour-based features are colour mo-
ments (Stricker and Dimai, 1996) and colour correlograms (Huang et al., 1997), which
can salso be used to characterise the colour information. To overcome the problem of
high-dimensionality, Singular Value Decomposition (SVD) (Hafner et al., 1995), dom-
inant colour regions (Ravishankar et al., 1999) and colour clustering (Wan and Kuo,
1998) have also been proposed.

The object’s texture can also be used as an identifying characteristic. Texture mod-
els are concerned with representing regular patterns in an image. We can generally
classify texturemodels into two groups: statistical models and spectral models. Statis-
tical models collect statistics directly from the image. Themost simple texturemodels
include 1D grey-level histograms, co-occurrence matrices, and grey-level differences.
Also, the Haralick feature (Haralick et al., 1973), derived from co-occurrence matrixes,
models the spatial relationship of each pixel pair in the image. Spectral models, on
the other hand, collect statistics related to features computed in the frequency do-
main from the responses of filters applied to the image. Filtering methods are the
most commonly used techniques for the extraction of the texture features. One ad-
vantage of spectral models is that the filters are selective: they can enhance certain
features while suppressing others. For instance, Lindeberg and Lowe have shown that
the Laplacian and Laplacian of Gaussian filters (Lindeberg, 1998; Lowe, 2004) are good
at detecting edges in an image. Low-pass Gaussian filters are useful for blob detection.
Two-dimensional Gabor filters (Bovik et al., 1990) have proven to be popular for mod-
elling texture, due to their efficiency in detecting dominant frequency and orientation
in texture patterns.

⇀ Shape-based features Unlike appearance-based, shape-based features consider
that the relevant information is contained in shapes or parametricmodels. Thesemod-
els are usually application specific and require prior knowledge of its dynamics. For
example, for the specific case of visual speech recognition, different models can be
used such as the contours of the speaker’s lips or the face contours.

Many techniques, including moment invariants, Fourier descriptors, autoregressive
models and geometry attributes have been proposed for measuring shape. These fea-
tures can be further classified in global and local features. Global features represent
properties derived from the entire shape. Examples include roundness or circularity,
central moments, eccentricity and major axis orientation. Local features derive from
partial processing of a shape and do not depend on the entire shape; size and orienta-
tion of consecutive boundary segments, points of curvature, corners and turning angle
are some examples.
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Shape representation can be based in different techniques. Jain and Vailaya (1996)
proposed a shape representation based on the use of a histogram of edge directions.
Curvature scale-space has been proposed by Mokhtarian et al. (1996) to characterise
shape features of an object or region based on its contour. This representation can be
robust to non-rigid motion, partial occlusion, and perspective transformations due to
camera motion.

⇀ Mixed Features Although appearance- and shape-based features can be seen
as two different ways of looking to the information – low-level and high-level infor-
mation, respectively – it is possible to combine both in order to achieve better per-
formance. Typically, features of both type are simply concatenated and evaluated as
such, but more complex combined framework can be devised.

⇀ Motion-based features An important component of the human vision system
is motion detection. Themost common representation of motion is optical flow. Typi-
cally, optical flow represents motion as vectors originating or terminating at pixels in
the video, thoughother representations exist aswell. The seminalwork on optical flow
was byHorn and Schunck (1981), followed by the popular Lucas-Kanademethod (Lucas
and Kanade, 1981). Later methods computed optical flow more robustly over multiple
scales using a pyramid scheme. These methods, however, only compute motion be-
tween subsequent frames. More recently, methods have been proposed to compute
optical flow over longer time scales (Brox et al., 2004). While optical flow is concerned
with the motion of pixels, others have looked at the motion of low-level image fea-
tures, such as corners and the endpoints of lines, for finding motion of the scene or
the camera. In scene analysis, the most important motion features are: motion ac-
tivity, camera motion, and motion trajectory. Motion activity gives an idea about the
intensity of actions (Divakaran and Sun, 2000). The camera motion expresses the in-
tention of the viewer’s focus of attention, and can thus be used to discriminate events
(Jeannin et al., 2000). The motion trajectory of an object is a simple high-level descrip-
tion, and is defined as the localisation, in time and space, of one representative point
of this object.

� Audio features

Audio features used for scene analysis include typical measures of the audio waveform
already used in other well-known problems such as speech recognition, but also spe-
cific features. The audio features can be extracted in two levels: short-term frame level
and long-term clip level. The frame level is defined as a group of neighbouring samples
with duration between 10 and 40 ms, so that a stationary signal can be assumed. For a
feature to reveal the semantic meaning of an audio signal, analysis over amuch longer
period is necessary, usually from one second to several tens of second. This interval is
called an audio clip and it consists of a sequence of audio frames. The clip boundaries
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may be the result of audio segmentation such that the frame features within each clip
are similar. In fact, some authors proposed a direct segmentation of audio signals into
regions, based on temporal changes of selected features, without trying to classify the
content (Tzanetakis and Cook, 1999).

These twomain divisions can be further divided according to their processing domain
into time-domain features and frequency-domain features. Time domain features are
computed directly from the audiowaveform, and reflect temporal properties of the au-
dio signal. However, some differences between distinct classes of audio signals become
easier to identify in the frequency-domain than in the time-domain. The spectrum of
an audio frame is a representation of its frequency content, but using the spectrum
itself as a frame-level feature is not practical due to its high dimensionality. Conse-
quently, more succinct descriptors may be computed from the spectrum, resulting in
highly discriminative frequency domain features.

A brief description of the most relevant audio features used for scene analysis is pre-
sented next. For a more detailed overview of audio features for multimedia content
analysis, refer to Liu et al. (1998); Lu et al. (2002); Saunders (1996); Scheirer and Slaney
(1997); Wang et al. (2000).

⇀ Frame-level features Audio features extracted at the frame level capture the
short-term characteristics of an audio signal.

The easiest frame feature to compute frame is volume. It is a reliable indicator forvolume
silence detection, which may help to segment an audio sequence and to determine
clip boundaries. Volume is also known as loudness. Volume is approximated by the
rootmean square (rms) of themean energy of the signal within a frame and its squared
version, is also known as Short Time Energy (STE).

The Zero Cross Rate (ZCR) of a frame is computed by counting the number of times thezero
cross rate audio waveform crosses the zero axis per time unit after DC removal. It is a very use-

ful measure to discern between voiced/unvoiced speech, because typically unvoiced
speech has a low volume, but a high ZCR. By combining ZCR and volume together, it is
possible to classify low volume and unvoiced frames as silence.

Frequency Centroid (FC) is related to the human sensation of the brightness of a soundfrequency
centroid and gives discriminating results for music and speech, as well as for voiced and un-

voiced speech. This feature has a high correlation with the ZCR feature.

Flatness-oriented spectral features describe the flatness properties of the short-termspectral
flatness power spectrum of an audio signal. This family of features expresses the deviation

of the signal’s power spectrum over frequency from a flat shape (corresponding to
a noise-like or impulse-like signal). A high deviation from a flat shape may indicate
the presence of tonal components. Since the desired characteristics (tone vs noise-
likeness) are attributed to specific frequency bands rather than the entire spectrum,
these features will be applied on a frequency band basis.
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In speech processing, the Cepstral Coefficients (CC) are used to obtain the formantscepstral
coefficients from voiced phonemes. The information relevant to the formants is contained in the

first few coefficients of the cepstrum. The cepstrum can be computed as the inverse
Fourier transform of the logarithm of the spectrum.

Mel Frequency Cepstrum Coefficientss (MFCCs) are based on the human auditory sys-MFCC
temmodel of critical bands. Linearly spaced filters at low frequencies (below 1000 Hz)
and logarithmically at high frequencies (above 1000 Hz) have been used to capture the
phonetically important characteristics of speech (mel-frequency scale). The speech
signal is divided into frames of N samples, with adjacent frames being separated by
M (M < N ) samples. A Hamming window is used to minimise the signal discontinu-
ities at the borders of each frame. After this step the Fast Fourier Transformation is
applied and the absolute value is taken to obtain the spectrum magnitude. The signal
is then processed by the Mel-filterbank. Cepstrum is the final step where the log mel
spectrum is converted back to time using the Discrete Cosine Transform (DCT).

⇀ Clip-level features If a higher semantic content analysis is to be performed, it
is necessary to observe the temporal variation of frame features during longer time
intervals. This leads to the development of various clip-level features, which charac-
terise how frame-level features change over a clip.

Multiple volume-based features are proposed in the literature. Liu et al. (1998) did anvolume
-based extensive work on audio feature extraction and analysis. They proposed several au-

dio measures, such as the standard deviation normalised by the maximum volume in
a clip, the mean value of the volume within a clip, and the volume dynamic range.
Another feature volume-based, more suitable to detect music segments, is the pulse
metric proposed by Scheirer and Slaney (1997), which uses long-time band-passed au-
tocorrelations to determine the amount of “rythmicness” in a 5-second window.

Low Short Time Energy Ratio (LSTER) is defined as the ratio of the number of framesenergy
-based with an STE are less than 50%of the average short time energy in a 1swindow. LSTER is

an effective measure to distinguish between speech and music. Since there are more
silence frames in speech than in music, the LSTER measure of speech will be much
higher than that of music (Saunders, 1996). Energy entropy is another energy based
feature, computed by dividing each audio frame into segments ofK samples each. The
signal energy is computed over each of these segments and normalised by the overall
frame energy.

Some researchers have reported the usefulness of the standard deviation of the ZCR toZCR
-based differentiate between TV program categories. According to (Saunders, 1996), statistics

of the ZCR can be used to discriminate between speech andmusic audio segments with
high accuracy classification rate. Lu et al. (2002) propose amore discriminative feature
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based on the ZCR, known as High Zero Crossing Rate Ratio. This feature is defined as
the ratio of the number of frames whose ZCR are above 1.5-fold average Zero Crossing
Rate in an 1s window.

Spectrum Flux (SF) is defined as the average variation value of spectrum between thespectrum
flux adjacent two frames in a window. According to Lu et al. (2002), SF values of speech

are higher than those of music. In addition, environmental sounds present the high-
est values with more changes. Therefore, SF is a good feature to discriminate speech,
environmental sound and music.

Linear Spectral Pairs (LSP) are derived from Linear Predictor Coefficient (LPC), andLSP
distance have shown to have good discriminative power and to be highly robust in noisy con-

ditions (Lu et al., 2002). To measure the LSP dissimilarity between two 1-second audio
clips, an abbreviated Kullback-Leibler divergence measure may be used. This abbrevi-
ated distance measure is normally called divergence shape distance, and is similar to
the cepstral mean subtraction method use in speaker recognition to compensate the
effect of environment conditions and transmission channels. This dissimilarity mea-
sure provides good results when used to discriminate speech and noisy speech from
music. Furthermore, LSP divergence shape also proved to be a good feature for the
discrimination of different speakers (Lu et al., 2002).

� Pre- and post- processing

In most cases, the dimensionality d of the feature vector is too large and inhibits the
use of common statistical modelling (e.g. Hidden Markov Model (HMM)). To over-
come this problem, transformations to the feature space are often performed. The
most common are image transforms which are borrowed from the image compression
literature and aim to preserve all the important information while reducing dimen-
sionality. Typically, a D × d-dimensional linear transform matrix P is defined in order
that the D ≪ d-dimension transformed data vector yt = Pxt contains most informa-
tion necessary.

Principal Component Analysis (PCA) – The PCAminimises the square error between
the original vector xt and its transformation result vector yt. Appropriate data scal-
ing constitutes a problem in the classification of the resulting vectors. One proposed
implementation of PCA scales data according to the data inverse variance, and com-
putes the correlation matrix R. This matrix is then diagonalised as R = AΛAT where
A = [a1, . . . , ad] has as columns the eigenvectors of R, and Λ is a diagonal matrix con-
taining the eigenvalues of R. If theD highest eigenvalues are located at the j1, . . . , jD

diagonal positions, then the data projection matrix is PPCA = [aj1, . . . , ajD]T. In
short, the data vector xt is first element-wise mean and variance normalised, and then
its feature vector is extracted as yt = PPCAxt. PCA is especially useful when there is a
prior knowledge of the statistics.

Linear Discriminant Analysis (LDA) – LDA assumes two conditions: a set of classes
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C is a priori chosen; and the training set data vectors xl, l = 1, . . . , L are labelled as
c(l) ∈ C. Thematrix is then computed PLDA such that the projected training sample is
“well separated” into the set of classes C, according to a function of the training sample
within-class scatter matrix SW and its between-class scatter matrix SB. To estimate
PLDA, the generalised eigenvalues and right eigenvectors of the matrix pair (SB, SW ),
that satisfy SBF = SW FΛ, are first computed. The columns of matrix F = [f1, . . . , fd]
are the generalised eigenvectors. Assuming that theD largest eigenvalues are located
at the j1, . . . , jD diagonal positions of F, then PLDA = [fj1, . . . , fjd]T . It should be
noted that the rank of SB is at most |C| ≤ 1, where |C| denotes the number of classes
(the cardinality of setC); henceD ≤ |C|−1 should hold. In addition, the rank of thed×
d-dimensionalmatrix SW cannot exceedL−|C|, therefore having insufficient training
data, with respect to the input feature vector dimension d, is a potential problem.

Discrete cosine, wavelet and other image transforms – In place of P other linear
image transforms are also used. Examples include the Discrete Cosine Transform (DCT),
the Discrete Wavelet Transform (DWT) and the Hadamard and Haar transforms. Usually
separable transforms are used allowing fast implementations when M and N are pow-
ers of 2. In this case, the rows of matrix P are the image transform matrix rows that
maximise the transformed data energy over the training set or that correspond to a
priori chosen locations.

2.3.2 Measuring AV synchrony

In the absence of a formal definition of audio-visual synchrony, Hershey and Movel-
lan (1999) first interpreted synchrony as “the degree of mutual information between
audio and spatially localised video signals”. More recently other definitions for mea-
sures of synchrony between any visual stream and an associated audio stream were
proposed. In practice, the most appropriate definition of audio-visual synchrony may
vary according with the application.

First, let the acoustic signal be described by the feature vector at ∈ ℜn and the visual
signal be described by the feature vectorυt ∈ ℜm. The set of T audio and visual vectors
can therefore be defined by S = ((a1, υ1), . . . , (aT , υT )), sampled between instants 1
and T. Whereas the components of the audio feature vector can include cepstral coef-
ficients, pitch measurements, or the output of a filter bank, the visual feature vector
can be composed Gabor energy coefficients, RGB colour values, etc. The synchrony be-
tween both streams can be evaluated by themeasure of synchrony between the vector
sequences A = a1, . . . , aT and V = υ1, . . . , υT . Two types of measures are possible:
generic and specific.
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� Generic Measures

Consider each feature vector in S to be an independent sample form the joint dis-
tribution p(A, V ), instead of explicitly modelling temporal dependence in the indi-
vidual sequences. As previously said, one possible measure is the mutual information
I(A; V ) between random variablesA and V . In practice, the distributions p(A), p(V )
and p(A, V ) are unknown and some assumptions must be made to overcome this.
One possible assumption is to consider discrete distributions (Nock et al., 2002). This
requires however a preparation phase which constructs codebooks to quantise at, υt

and (at, υt) prior to discrete estimation at test time.

Another assumption is to consider continuous multivariate Gaussian distributions (Her-
shey andMovellan, 1999). Unlike discrete distributions, this assumption allows param-
eter estimation at test timewithout prior preparation. If we define synchrony at time t
as the estimate of mutual information between acoustic and visual components of the
process, we then have a measure of synchrony between audiovisual signals. A gener-
alisation of this approached was done by Slaney and Covell (2000). They use canonical
correlation analysis to deduce a relationship between the cepstral representation of
the audio and the visual information. These methods assume strong parametric as-
sumptions, limiting the capture of more complex dependencies. Moreover, the audio
and video joint densities are estimated by training on audio-video sequences. Fisher III
and Darrell (2004) proposed a method that does not make use of any previous model
training. Their method is based on a probabilistic generation model that is used to
learn audio and video linear features that maximise the mutual information between
the different modalities.

� Specific Measures

In this case themeasures are application-specific and are determined using some a pri-
ori knowledge of the environment constraints. An example of this is the usage of face
and speech signals, where A and V correspond to speech audio and images contain-
ing faces. Assume that the word sequence W spoken in the audio is represented by
A. The likelihood p(S|W) defines a measure of synchrony. In practiceW may be un-
known – audio-only speech recognition provides reasonable approximation – as well
as p(S|W). Possible implementations useHiddenMarkovModel (HMM) or Time-Delay
Neural Network (TDNN) trained on joint audio and visual data.
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2.3.3 Applications of AV-based multimodal scene analysis

It is possible to find in the literature multiple applications where the interaction of
audio and visual information is explored to achieve better results, compared to ap-
proaches based only in one modality. Possible fields of application include automatic
multimedia content annotation, surveillance, immersive and interactive environments,
ambient intelligence and life logging (e.g. MyLifeBits project – Bell andGemmell, 2007).
We can broadly divide the AV-based multimodal scene analysis applications accord-
ing to their scope, i.e., oriented toward: semantic analysis, intelligent systems, and
human-computer interaction and affective computing.

� Oriented toward semantic analysis

Content-based video indexing is the task of tagging semantic video units obtained from
content analysis to enable convenient and efficient content browsing, retrieval and adap-
tation. The goal is to automatically extract low- and mid-level features then partially
derive or understand the video semantics by analysing and integrating these features.
Current work extracts video events and speaker identity at the semantic level, based
on the integration of audio and visual knowledge. It is usually focused on specific ap-
plications and environments such as movies or news where it is possible to establish
some “rules of thumb”. More generically, multimodal-based analysis tries to fully ex-
ploit multimodal features and inferred concepts. Each concept relies on many differ-
ent features and associations, drawn from different input media sources – following
the paradigm depicted in Figures 2.1 and 2.2.

Semantic learning and inference uses automatic and semi-automatic (e.g. using rele-
vance feedback) approaches to detect and recognise semantically meaningful scenes,
objects and events present in the content. This process requires the association of
low-level and mid-level automatically extracted features with higher-level semantic
concepts. Examples of work in this area include automatic video annotation, video
indexing and summarisation (Adams et al., 2003; Li et al., 2004b; Tsekeridou and Pitas,
2001; Wang et al., 2000). Also, the EU-funded COST 292 action [13] has the goal of de-
veloping interoperable, semantic-based, multimodal analysis of digital content.

� Oriented toward intelligent systems

Unlike the previous, in this case data arises from real-world events and processes in a
less controlledway. Thedata is generatedmainly in the formof data-streams fromsen-
sors of all types and in particular from visual and/or audio sources, with the objective
of acquiring knowledge of the environment. The system uses the acquired informa-
tion to react or learn accordingly. In a simpler system a set of detectable events are
previously defined but in more complex systems, through learning algorithms it can
learn new events using automatic or semi-automatic approaches.
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The scope of this thesis is therefore based on this type ofmultimodal applications – ori-
ented toward intelligent systems. Related work include automatic meeting logging,
surveillance event detection and ambient intelligence. The past EU IST projects M4
[14] and AMI [15] developed systems to enable structuring, browsing and querying of
automatically analysed meetings captured in a room equipped with multimodal sen-
sors.

� Oriented toward HCI and affective computing

This scope of applications is a specialisation of the previous, using a human-centric
analysis. Human-computer interaction environments detect and track the user’s emo-
tional, motivational, cognitive and task states, and initiates communications based on
this knowledge. Sensing and tracking human body motion is a key technology for de-
veloping such interfaces. Processing is therefore oriented to human action, including
primarily human (based on face and body) detection, tracking and recognition as well
as gesture and emotion recognition.

In this case, multimodal analysis can be used, for example, to enhance gesture recogni-
tion in human-computer interfaces, behaviour analysis, and emotion recognition. In
general, the applications focus on improved and natural interfaces (Kollias and Kar-
pouzis, 2005), art and performance (Camurri et al., 2004), pervasive computing (MIT
Oxygen Project [16]), and ambient intelligence.

2.3.4 A multimodal application: speaker identification§

In Section 2.3 we noted that speech perception is regarded as an integration of visual
and auditory speech signals. As such, it should be instinctive to develop computational
models for speech recognition based on both visual and audio analysis and, in fact,
many relevant developments weremade in this area (Dupont and Luttin, 2000; Kaynak
et al., 2004; Potamianos et al., 2003; Tomlinson et al., 1996).

A distinct application, yet closely related, is speaker identification; the goal is to iden-
tify the temporal segments that correspond to a given speaker. A simplemethod using
both audio and visual information was proposed in (Lagrange et al., 2007); more details
about this method can be found in that article. We assume that only one person is
speaking at a time. Moreover, we also assume that one camera and onemicrophone are

§This section is based on the article Speaker Segmentation of Interviews Using Integrated Video and Audio
Change Detections published in the International Workshop on Content-Based Multimedia Indexing (La-
grange et al., 2007).
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used and the speakers are always visible, with a relatively static location. The acous-
tical cues are processed by an algorithm based on a causal two-stage approach, where
both metric and model-based criteria are used for unsupervised speaker turn detec-
tion. Concerning the visual cues, we exploit the above described assumptions. This
allows us to set up the video acquisition device in fixed and predefined positions and
to use a simple segmentation scheme to efficiently detect changes among speakers.
Moreover, the number of speakers is usually known beforehand. These constraints
render this method useful only to very specific scenarios, but allows to instantiate the
concepts presented thus far in this chapter.

� Acoustic speaker segmentation

The algorithm used for the speaker segmentation based on the acoustic speech sig-
nal, assumes no prior knowledge about the number of speakers or their identities. It
presumes that the audio input data contains only speech, or that non-speech audio
segments were already filtered by a previous audio segmentation module. It was in-
troduced by Lu and Zhang (2002) and a comparison of this method with other speaker
segmentation methods was done by Kotti et al. (2006).

The algorithm starts by downsampling the input speech audio to 8 kHz, 16 bits mono
audio format, and applies a pre-emphasis filter (using a first order FIR filter). The
speech stream is then divided into analysis frames of about 16 ms duration, without
overlap. From each audio frame 10-order LSP features are extracted. In a first stage,
speaker change detection is coarsely performed using a metric-based approach to cal-
culate theKullback-Leibler divergence shapebetween consecutive andnon-overlapping
speech segments. A potential speaker turn point is detected between two consecutive
segments whenever their divergence distance is a prominent local maximum. This
process is repeated over the incoming audio signal, using the circular buffer for achiev-
ing the sliding of the speech segments of about 27 frames at each iteration.

As an attempt to reduce the false alarm rate, Bayesian Information Criterion (BIC) is
additionally used in order to validate any potential speaker change point detected at
the coarse segmentation step. Since BIC is well known for suffering from insufficient
model estimation traitswhendealingwith small amounts of data (due to just using data
from two consecutive speaker segments stored in the circular buffer), as new speech
segments are received, the arriving data is used to incrementally update an internal
speaker model. When in the presence of a potential speaker change, this will allow
better model estimates, potentially increasing the accuracy of the BIC validation.

� Visual scene segmentation

Most of existing research for the segmentation of video content using visual cues uses
intensity or colorimetric changes (Wang et al., 2000). In our work such cues are not
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useful as the camera is supposed to be static. A very common approach relies on face
detection to identify potential speakers (Rehg et al., 1999). Alternatively, we explore
the relative static locations of speakers within the scene avoiding complex face and
mouth/lips detection algorithms, limiting to scenarios with only two speakers, such as
interviews or lectures. However, the proposed video scene segmentation can easily be
generalised to a larger number of speakers, provided that the locations of each speaker
are previously given.

Figure 2.4: Definition of visual regions where the possible speakers are located.

In order to identify the person speakingwewill be usingmotion estimation. Moreover,
since we are considering only sequences with two persons facing the camera it should
be safe to assume that there are two distinct visual regions associatedwith each person
(Figure 2.4). The separation of these regions is defined by a boundary β. For simplic-
ity this is kept as a vertical straight line splitting the image in two halves. It should
however be noted that the two regions could be arbitrarily complex and defined, for
example by binary masks. This scheme can be generalised to several speakers, by pre-
viously selecting several areas of interest. The motion centroid is calculated using the
absolute value of each component in each pixel as a weight. To avoid excessive jitter,
a median filter of order 5, i.e., the current and the past four estimates, is applied to
estimate a more accurate centroid. In a first approach, given the motion centroid for
each new frame, a simple classifying algorithm can be applied. It consists of a thresh-
old matching the previously defined boundary but with added hysteresis as shown in
Figure 2.4. Instead of marking a frame as a speaker change when the centroid crosses
the boundary, it is only marked as such if it crosses a new boundary displaced by a
tolerance set, for all sequences, as 5% of the frame width. Even if the speaker is always
moving while speaking, the amount of movement depends on each speaker, and may
change across time.
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� Multimodal identification algorithm

While the acoustic and video speaker change detectors could be used independently,
performing a combination will help improve the performance. We perform “decision
in-decision out” fusion of the audio and video cues by combining the speaker changes
boundaries detected using the two algorithms presented in the previous sections. The
audio and videomodalities can be considered to observe the same behaviour of the au-
diovisual scene, but in a different way. Indeed, people tend to move their bodies, arms
and lips before producing any sounds and the first sounds produced are usually non
speech vocalisations such as breath, etc. The speech segments happen lastly, usually
with half a second delay. The visual change detector is then more likely to be fired
before the audio one. Also, this last audio detector is more likely to detect the correct
boundary but with a higher false alarm rate due to the presence of non speech sounds
and background noise. We aim at designing a causal combination algorithm that takes
these two constraints into account. At a given time t advanced at video frame rate
(30 fps), we seek for audio and video speaker change boundaries, respectively noted
sa(k) and sv(k), such that it is below a given threshold δ, set to 1.6 seconds. Only
those boundaries are now considered. We then seek for the combination of an audio
boundary sa(kmin) such that abs(sa(k)) is minimal and a video boundary such that

sv(k) − sa(kmin < δ/2) (2.1)

and

abs(sv(k) − sa(kmin + δ/2)) < abs(sv(k) − sa(kmin + 1)). (2.2)

If those two conditions are met, sa(kmin) is used as a combined boundary and the
two boundaries are discarded. An example of the resulting boundaries is plotted on
Figure 2.5.

� Evaluation

In order to assess the performance of the proposed system, an audiovisual dataset
was created by recording two-speaker conversations using a consumer web camera
equipped with amicrophone. The dataset comprises 14 audiovisual sequences of 5 dif-
ferent speakers, with a mean duration of 60 seconds. This dataset is divided in two
smaller datasets with different scenarios, one formal and the other closer to a real in-
terview setting. In the first scenario, the speakers are asked to alternatively read 8
poetry sentences. The total number of speaker changes for each sequence is therefore
15, plus the 2 edges corresponding to the start and end of the speech sequence. The
speaker segments in this dataset have a mean duration of 4.14 seconds, with a stan-
dard deviation of 1.21 seconds. In the second one, the speakers are asked to improvise
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Figure 2.5: Example of the result obtained with combined speaker boundaries.

an interview without any prior preparation. The total number of speaker changes for
each sequence is around 8, plus the 2 edges. The speaker segments in this dataset have
a mean duration of 3.53 seconds, with a standard deviation of 6.68 seconds. We are
interested in detecting speaker turn points, based on the acoustical speaker changes,
so the boundaries that we are interested in correspond to those of the audio. The two
datasets have therefore been manually labelled using the audio stream as the refer-
ence.

FAR MDR recall precision F1

po
et
ry audio 63.52 (4.43) 7.63 (10.18) 92.37 (10.18) 34.6 (5.36) 50.21 (6.75)

video 43.62 (6.41) 43.82 (14.64) 56.18 (14.64) 41.94 (10.57) 47.83 (11.83)
a+v 36.68 (6.84) 30.02 (7.65) 69.98 (7.65) 54.72 (8.06) 61.27 (6.95)

in
te
rv
ie
w audio 53.38 (12.18) 20.71 (24.06) 79.29 (24.06) 39.63 (10.16) 51.4 (12.63)

video 40.3 (15.89) 24.54 (22.06) 75.46 (22.06) 52.18 (12.92) 59.23 (12.83)
a+v 36.26 (10.77) 35.26 (24.99) 64.74 (24.99) 51.84 (12.08) 56.04 (15.76)

Table 2.1: Performance results using different combinations of detectors.

The experimental results for the poetry reading dataset are summarised on Table 2.1.
The audio segmentation algorithm performs as expected, with a low Miss Detection
Rate (MDR) and a high False Acceptance Rate (FAR), leading to an F1-Measure around
50% (refer to Appendix B for details on these evaluation metrics). Concerning the use
of the video cues, two detectors are considered. The first uses a constant threshold
(presented as “video” in the tables). Their performance characteristics are of a bal-
anced FAR and MDR. The adaptive scheme outperforms the constant one and leads to
an improvement of 7% in terms of F1-Measure. Compared to the respective perfor-
mance of the two detectors, the combined one significantly decreases the FAR, while
averaging the MDR, leading to an improvement of 20% over the audio performance
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in terms of F1-Measure. In this formal setting, the proposed detection scheme per-
forms reasonably well. For the informal interview, the audio detector achieves similar
performances with a higher MDR rate.

From this, we can conclude that the proposed combination scheme takes advantage
of the complementary characteristics of the performance statistics of the two com-
bined detectors. Despite that, and due to the simplicity of the method, the perfor-
mance results are only fair. We perform a late fusion of audiovisual cues by combining
two speaker change detectors, but alternatively better results can be achieved with an
early fusion approach. Early fusion, or signal-level fusion, could be performedmeasur-
ing for example the synchrony of the audio and visual signals (refer to Section 2.3.2).
Cutler and Davis (2000a) propose exploiting the correlation between video and au-
dio, Fisher III and Darrell (2004) perform speaker motion and speech association using
signal-level fusion, and Monaci et al. (2006) consider that the primitive used to repre-
sent visual information is correlated with the audio signal over an observation time
slot, if the scalar product between the corresponding activation vectors is large.

Other localisation applications using AV combined analysis are possible. Kidron et al.
(2007) localise visual events associatedwith sound. Theirmethod is based on canonical
correlation analysis, where inherent ill-posedness is removed by exploiting sparsity of
cross-modal events, to detect the pixels that are associated with sound, while filtering
out other dynamic pixels. Bhanu and Zou (2004) propose a method to detect moving
objects in a cluttered environment. Their approach is based on a TDNN to fuse the
audio and video data at the feature level for detecting thewalkerwithmultiple persons
in the scene.

2.4 Summary

The concept ofmultimodal scene analysis relies on the premiss that, if adequatemeth-
ods are applied, additional information canbe extracted fromagiven scenewhenusing
a combination of different modalities. Nevertheless, some challenges need to be over-
come, namely, know which modalities are really relevant and how can the multiple
modalities be combined. It is possible to perform this combination at different levels;
before or after performing classification, commonly designated early and late fusion.

The concepts of Computer Vision (CV) and CASA are largely based on the mechanisms
of the human perception system. It is commonly known that the human perception
system relies on interactions between the different senses. However, with few excep-
tions both CV and CASA followed non-crossing paths despite this common ground. In
this thesis we focus on the automatic description of scenes essentially from AV infor-
mation. Despite the less-than-desirable dissemination between both research commu-
nities, in the recent years the combination of AV techniques has garnered some atten-
tion. One of the most prominent areas is speaker recognition, but also localisation of
a speaker or other audio sources, emotion recognition, among others, have been very
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active. We presented a simple example of a speaker segmentation application com-
bining an acoustic speaker segmentation method and a motion-based visual attention
method to perform speaker localisation. A late fusion is performed on the decisions
outputted by both methods to generate the combined decision. An early fusion ap-
proach is also possible, applying a common decision framework with the inputs from
both modalities being considered simultaneously.

In the next chapters we approach the description of real-world scenes by considering
two semantic entities: objects and events. It will be discussed how these entities can
be detected and assigned a meaning. In both cases an AV-based multimodal scene
analysis is performed, however, for object detection, this analysis is not based in a
tight integration of audio and visual cues.





3 Object detection
Before associating higher-level meaning to a audiovisual scene it is important to
identify parts that are indeed relevant. The first step for interpreting a scene is
thus to decompose it into meaningful objects. This is a complex process that may
comprise different ways of accomplishing a significant decomposition. In particular,
both bottom-up and top-down information can be used. An example of the former
is the use of a saliency characteristic like colour for visual scenes and intensity for
auditory scenes, to distinguish relevant objects. In contrast, examples of the use of
top-down information include typical human characteristics to find persons in a scene,
or rhythmic information to detect music.

3.1 Overview

An important initial step toward efficient audiovisual processing is the separation of a
complex scene in its composing objects. Each object can then be separately analysed,
identified, or classified. However, detecting or segmenting objects is a very complex
problem since, to attain results comparable to human-performed segmentations, se-
mantic or high-level a priori knowledge is also required.

Let us first consider an important perception mechanism, visual attention (refer to
Wolfe, 2000). When looking, for example, to a field and our attention is drawn to a
flower, we may be relying on our bottom-up mechanism of attention. In this case the
attention was not dependent of a priori knowledge about the flower and its character-
istics, it could be triggered solely by the fact that it is more visually salient then the
rest of the field. Conversely, when we look for a flower in the field, we base this on a
representation of the flower in a top-down fashion. A limited set of basic features were
found to be used by the bottom-upmechanisms of attention. Neisser (1967) introduced
the idea of a preattentive stage of visual processing, i.e., vision before attention. At this
stage, everything could be processed at once across the entire visual field. Evidence
suggests that visual attention can be guided by the preattentive processing of colour,
orientation,motion, size, curvature, various cues to depth, and several aspects of form.
The case for preattentive processing ofmore complex properties like object shape, let-
ters, or faces is weak though there is some evidence for efficient search. In our work
the preattentive stage will be modelled by a set of algorithms for object detection. Our
goal is to define areas of the field of view that may contain relevant areas that will be
further analysed and recognised. Paraphrasing Wolfe (2000), rather than saying that
attention (object detection) somehow identifies an object, we would say that attention
enables object recognition processes to work on a single item at a time. With auditory
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attention a similar rationale can be followed. In this case the features most relevant to
detect salient auditory elements are intensity, feature contrast, and temporal contrast
(Kayser et al., 2005).

This chapter presents currentmethods to detect both visual and auditory objects1. The
goal is to separate both in space and in time each object and associate to them a label.
This label distinguishes objects from one another but does not associate any semantic
knowledge.

Thedifferent nature of audio andvisual signals imply different approaches for analysing
each one of them. The detection of visual objects comprises segmentation which par-
titions a given image, i.e. a frame in a video sequence, into coherent objects. On
the other hand, detecting audio objects consists of separating different objects in two
dimensions: separate simultaneous audio objects – a process typically called sound
source separation – and define time intervals in which a given audio object is detected.
Both types of detection commonly take very different approaches, since the latter is
a simpler process to characterise. The spatial detection of sound objects – or sound
source localisation – can be achieved using both visual and audio cues by determin-
ing the synchronisation between them or can more generically rely on multiple mi-
crophones with known responses and configuration. We will only discuss the former
approach.

3.2 Visual object segmentation

Real-world scenes are composed of a very large number of visual patterns. In general,
these patterns form objects that are associated to a concept (e.g. person, car, bicycle,
cup, cat, ...). As discussed previously, without knowing prior information about the ob-
jects, computationally grouping visual patterns and associating high-level concepts is
often not possible. In fact, it is known that humans may segment an image differently.
Particularly, the same scene may be distinctively perceived by different persons, or
may attend to different parts of the scene, resulting in image segmentations of dif-
ferent granularities. Additionally, the analysis of objects in images is dependent on
how we can distinguish between the objects of interest (foreground) and “the others”
(background). In Figure 3.1 two examples of segmentations of a manually partitioned
scene is shown. While the segmentation in the left comprises a larger number of par-
titions (objects), the segmentation in the right consists solely of the person walking.
Both segmentations can be considered valid partitions of the original scene, but which
one is more adequate? The degree of “adequateness” depends on howwe define back-
ground and foreground. Numerous other valid segmentations are also possible if we
consider more or less detailed segmentations of the cars and the houses. For the type
1In the literature related to auditory analysis, the term source is often used instead of object using only
content-level knowledge. We opted for the latter to strengthen the parallel between audio and visual
analysis.
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of scenarios we are interested, themost adequate segmentation is the one in the right,
since we consider as background the elements that remain “static” or that suffer grad-
ual changes over time.

Figure 3.1: Examples of possible segmentations for a given scene. From left to right, original
image, more detailed segmentation, less detailed segmentation (from Cardoso, 2006).

In general, the segmentation task can be characterised by the partitioning of an image
into different meaningful regions with homogeneous characteristics, using disconti-
nuities or similarities of image components. A wide range of computational vision
problems can make use of segmented images if these segmentations can be reliably
and efficiently estimated. However, there is no universally applicable segmentation
technique that will work for all images, and no segmentation technique is perfect –
Figure 3.2 shows the results of three segmentation algorithms applied to the scene
depicted in Figure 3.1.

Figure 3.2: Examples of segmentations obtained using different well-known algorithms.
From left to right the algorithms are JSEG (Deng and Manjunath, 2001), Mean shift (Co-
maniciu and Meer, 2002), and NCut (Shi and Malik, 2000).

For typical real-time applications oriented to the analysis of visual scenes in order
to identify events and actions – such as intelligent surveillance systems and human-
machine interface systems – simplifications are needed. For these, motion is a key
factor helping the segmentation process. Objects that are moving or performing some
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action, are considered the foreground, and need to be separated from the other ele-
ments in the scene, the background.

Probably due to its simplicity, themost common approach for discriminating amoving
object from the background is background subtraction. The rationale is the subtraction
of the current image froma reference image, which is somehowacquired in a step prior
to subtraction. More generically, a background model is defined which is usually based
in a priori knowledge. Non-changing segments of the image are considered as being
part of the background, whereas the foreground consists of the changing segments –
including moving and new objects.

3.2.1 Background modelling and subtraction

If the background model is not modelled or updated adequately, background subtrac-
tion can be highly susceptible to environment conditions like illumination changes.
For example, a straightforward way of acquiring a reference image would be using
the previous “history” by obtaining a background model based on the statistical repre-
sentation of the previous N frames, for example a pixel-wise average image. After
estimating the reference image, the segmentation can be obtained from an efficient
thresholded subtraction operation. This simple approach, although efficient, may not
perform well in real-world, non-controlled environments. Changes in illumination
conditions and dynamic behaviour in the backgroundmay cause unacceptable rates of
false positives. To achieve robust background modelling, techniques that can better
adapt to dynamic behaviour are needed. Ideally, the performance should not depend
on the camera placement, nor should it be sensible to what happens in its visual field
or to lighting effects. It should also be capable of dealingwithmovement through clut-
tered areas, objects overlapping in the visual field, shadows, lighting changes, effects
of moving objects in the scene, slow-moving objects and objects being introduced or
removed from the scene. However, it is also important to stress that this operation is
often required to perform as fast as possible, since it is usually the first step in the pro-
cessing chain. Overly complex modelling schemes may reveal themselves unfeasible
despite performing at low error rates.

A possible classification of existing algorithms for backgroundmodelling divides them
in predictive and non-predictivemethods. Predictive methods model the scene as a timepredictive

methods series and develop a dynamic model to recover the current input based on past ob-
servations. Usually Kalman filters (Koller et al., 1994; Ridder et al., 1995; Toyama et al.,
1999) are employed to update slow and gradual changes in the background. In general,
these methods are mainly applicable to backgrounds consisting of stationary objects.
On the other hand, non-predictivemethods for backgroundmodelling do not considernon-predictive

methods the order of input observations and build a probabilistic representation (p.d.f.) of the
observations at a particular pixel. These are by far the most common methods and
many different proposals and adaptations can be found in the literature. In (Wren
et al., 1997) a unimodal distribution was proposed – a Gaussian distribution is used to
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model the background. If each pixel resulted from a particular surface under particu-
lar lighting, a single Gaussian would be sufficient to model the pixel value accounting
for acquisition noise. Moreover, if only lighting changed over time, a single, adaptive
Gaussian model per pixel would be sufficient. In practice this does not happen and
for that purpose a model based in the mixture of a fixed number of Gaussians distri-
butions has been frequently used (Lee, 2005; Stauffer and Grimson, 1999). In (Elgam-
mal et al., 2000), a non-parametric model is proposed, where a kernel-based function
is used to represent each pixel’s colour distribution. The kernel-based distribution is
a generalisation of the mixture of Gaussians which does not require parameter esti-
mation. In (Haritaoglu et al., 2000), a similar approach is followed, where the distribu-
tion of temporal variations in colour at each pixel is used to model the background.
Motion-based adaptive kernel density estimation is also proposed in (Mittal and Para-
gios, 2004). More recent approaches to background modelling include the principal
features approximation (Li et al., 2004a) that considers only themore relevant features
to create a model and the mean-shift method (Han et al., 2004; Piccardi and Jan, 2004),
which was also previously applied to image segmentation.

All of the previousmethods are based in pixel-wise backgroundmodelling. Other tech-
niques combine temporal and spatial modelling. In (Paragios and Ramesh, 2001), a
mixturemodel (Gaussians or Laplacians) is used to represent the distributions of back-
ground differences for static background points. AMarkov Random Field (MRF)model
incorporates the spatial coherence for robust foreground segmentation. Another ap-
proach to detectmoving objects is to extract groups ofmotion, either by accumulating
consistent flows in terms of direction over successive frames (Wixson, 2000) or by us-
ing layered approaches to fit a collection of motion models to the image data (Pundlik
and Birchfield, 2006; Wang and Adelson, 1994). Recently, an approach that defines
foreground objects as clusters of pixels salient with respect to both motion and colour
was presented (Bugeau and Pérez, 2007).

Additionally other authors propose a different approach that employs information
about the object’s structure to segment them. In (Dubuisson and Jain, 1995), the con-
tour of moving objects is estimated by fusing motion with colour segmentation and
edge detection. Active contours were employed in (Malladi et al., 1995) and, besides
edge information, prior models on the image intensity values inside and outside the
contour were also proposed (Chakraborty and Duncan, 1999). Thesemethods estimate
the object’s contour by minimising a global cost function and, although robust, the
estimates are achieved at a high computational cost. The main drawbacks are the
complexity and the need to generally assume some prior knowledge in order to avoid
ill-posed problems. However, this knowledge is not always available. Moreover, the
priors assumed by the techniques can be unsuitable to the problem in hands. More
recent work in this line of thought includes the use of layered models (Jojic and Frey,
2001) and rigid objects modelling (Aguiar and Moura, 2005).

A summary of background modelling methods for foreground segmentation is pre-
sented in Table 3.1.
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Method References
pi
xe

l-w
ise

pr
ed

ic
tiv

e Kalman filters Koller et al. (1994),
Ridder et al. (1995)
Toyama et al. (1999)

pi
xe

l-w
ise

no
n-
pr
ed

ic
tiv

e

unimodal Gaussian Wren et al. (1997)
Mixture of Gaussians (MoG) Stauffer and Grimson (1999),

Lee (2005)
Kernel Density Estimation (KDE) Elgammal et al. (2000),

Haritaoglu et al. (2000)
adaptive KDE Mittal and Paragios (2004)

principal features Li et al. (2004a)
mean shift Han et al. (2004),

Piccardi and Jan (2004)

co
m
bi
ni
ng

ot
he

rf
ea
tu
re
s spatial and temporal modelling Paragios and Ramesh (2001)

accumulation of consistent flows Wang and Adelson (1994),
Wixson (2000),

Pundlik and Birchfield (2006)
clusters of motion and colour (Bugeau and Pérez, 2007)

ot
he

r
ap

pr
oa

ch
es

active contours Malladi et al. (1995)
fusion of motion with Dubuisson and Jain (1995)

colour segmentation and contours
contours with prior models Chakraborty and Duncan (1999)

layered models Jojic and Frey (2001)
rigid objects modelling Aguiar and Moura (2005)

Table 3.1: Summary of the background modelling methods.

3.2.2 Comparative evaluation of background modelling methods§

In this section we present a small overview of some of background and modelling al-
gorithms mentioned in the previous section. A representative set of state of the art
techniques were implemented and tested. The Running Average background mod-
elling algorithm is used as a base performance index. To compare the segmentation
results of each technique, we used an objective metric detailed in (Cardoso et al., 2009)
and summarised in Appendix B.2.

§This section is based on the article Cascaded change detection for foreground segmentation published in the
Proceedings of IEEEWinterVisionMeeting –Motion andVideo Computing (Teixeira andCorte-Real, 2007)
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� Running Average (RAvg)

The background can bemodelled as the average of the previous frames but, in order to
avoid expensive memory requirements, this average is approximated by an adaptive
filter with a learning rate α. Each background pixel value at position (i, j) and time
instant t is given by:

B(i,j)(t) = αI(i,j)(t) + (1 − α)B(i,j)(t − 1).

Foreground is then estimated using a thresholded subtraction of the current frame
and the estimated background. This technique is probably the most naive but has a
very simple and very fast implementation. The results are therefore far from good in
particular with complex backgrounds. Sincewe are considering only a static represen-
tation of the background to perform the subtraction, whenever some kind of dynamic
behaviour in the background happens, it will be incorrectly classified as foreground.
Nevertheless, the running average should represent the base performance for these
types of algorithms. Each pixel is classified as foreground if its value exceeds the esti-
mated background by a threshold TRAvg of 15.

� Mixture of Gaussians (MoG)

Instead of estimating the background representation directly, another and more ef-
fective approach is to estimate a background model that can predict the behaviour in
each pixel, using the pixel’s “history”. By estimating the background probability den-
sity function (p.d.f.) we are able to do just that. Assuming that any structural changes
affecting the value of the pixel are caused by several processes, each modelled by a
Gaussian, we can therefore define the probability of observing its value as:

P (υt) =
K∑

k=1

P (Gk)P (υt|Gk) =
K∑

k=1

ωk · η(υt, µk, σk). (3.1)

where Gk is the k-th Gaussian of K distributions, ωk, µk and σk are, respectively, an
estimate of the weight, the mean value and the variance of the k-th Gaussian in the
mixture; η is the normal density function. Moreover, it can be easily shown (Lee, 2005)
that, given the current colour vectorυt in a pixel, the probability that the pixel belongs
to the background is:

P (B|υt) =
∑K

k=1 P (υt|Gk)P (Gk)P (B|Gk)∑K
k=1 P (υt|Gk)P (Gk)

. (3.2)

If P (B|υt) > TMoG the pixel is estimated as being part of the background. However,
two density estimation problems are left to resolve: firstly, estimating the distribu-
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tion of all observations, within a period of time, at each pixel location using the Gaus-
sianmixture in equation (3.1), which provides estimates of bothP (Gk) andP (υt|Gk);
and secondly, evaluating how likely each Gaussian in themixture represents the back-
ground, i.e.,P (B|Gk). To accomplish the first estimation, Stauffer and Grimson (1999)
proposed anonlineK-means approximation in order tomodel pixel variation over time
by a mixture of Gaussians, as given by equation (3.2). It uses a fixed learning rate to
update each Gaussian’s parameters over time and a Gaussian substitution algorithm
whenever no match is possible. However, using a fixed learning rate can often re-
sult in slow convergence. Following the same rationale, and in order to improve the
convergence speed, Lee (2005) proposed an adaptive learning rate schedule for each
Gaussian defined by a parameterα; we will be using this last approach. The estimation
of P (B|Gk) is based on application-specific heuristics (Lee, 2005).

The background image representation can be defined as the expected value of the
background process. Thus, the background pixel at (i, j) and time t is defined by
E[υi,j,t|B] which is evaluated by a weighted average of the Gaussian means.

E[υi,j,t|B] =
∑K

k=1 µkP (B|Gk)P (Gk)∑K
k=1 P (B|Gk)P (Gk)

(3.3)

The tests with MoG were done with the following parameters: K = 3, α = 0.005 and
TMoG = 0.05.

� Kernel Density Estimation (KDE)

It is possible to approximate each background’s pixel p.d.f. by the histogram of the
most recent values classified as background. This approach has however some prob-
lems namely, being the histogram of a step function, the p.d.f. modelling can reveal
itself erroneous. A non-parametric model based on KDE was proposed by Elgammal et
al. (2000). KDE guarantees a smoothed, continuous representation of the histogram.
The background p.d.f. is given by Equation (3.4) as a sum of Gaussian kernels centred
in the most recent N background values.

P (υt) =
1
N

N∑
k=1

η(υt − υk,Σk) (3.4)

Even if background values are not known, unclassified sample data can be used instead.
This inaccuracy will be recovered along model updates. Given equation 3.4, the pixel
with the colour vector υt is classified as foreground if P (υt) < TKDE , where TKDE

is a global threshold. An important issue in KDE is the estimation of Σk – the kernel
bandwidth. For simplicity, a diagonal matrix is considered and each variance is esti-
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mated in the time domain by analysing the set of differences between two consecutive
values

Model update consists in selectively updating the vector of the previousN background
values. The model proposed by Elgammal et al. (2000) also considers the use of two
concurrent similar models, one for long-term and the other for short-term memory.
In addition, spatial correlation is taken into consideration by the model. However, we
will not be considering both these modifications since we are comparing pixel-wise
modelling techniques. These types of considerations are transversal to all algorithms
we are evaluating. The tests executed with this algorithm used the following parame-
ters: N = 50 and TKDE = 10−6.

� Principal Features (PF)

More recently, other approaches were proposed to estimate the background p.d.f.. For
instance, the background can be represented at each pixel by the most frequent fea-
tures, or principal features (Li et al., 2004a).

The classification is done using a Bayesian framework, and it is shown that a pixel
represented by υ is classified as belonging to the background if:

2P (υ|B)P (B) > P (υ). (3.5)

Otherwise, it is classified as belonging to the foreground. We need however to know
a priori or estimate the probabilities P (υ|B), P (B) and P (υ). As stated previously,
one way to estimate these probabilities is to use a histogram of features. The impor-
tant contribution of Li et al. (2004a) is that they propose that these probabilities can be
estimated using solely the most representative features in the histogram, given that
these can represent the background effectively. Therefore, for a proper selection of
features, there would be a small value N of features (the principal features) that can
approximate well the background by

∑N
k=1 P (υk|B).

The learning and update process is done using a table of statistics for the possible prin-
cipal features of the background. The update of estimated probabilities through time
is done using a simple adaptive filter according to the type of change that occurred
(gradual or “once-off”).

Note also that the algorithm proposed by Li et al. (2004a) uses several types of features,
namely: spectral, spatial and temporal features. In our implementation we used only
the spectral features, i.e. colour information. Otherwise, the results for this algorithm
would be biased. The tests executed with principal features used the following param-
eters: α = β = 0.04 (rate for probability and background learning, respectively),
M = 50, N = 20 and M1 = 0.75 (for “once-off” detection).
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� Mean Shift (MS)

Finally, yet another way of estimating the background p.d.f. is to use the mean-shift
(Han et al., 2004; Piccardi and Jan, 2004) which is an iterative gradient-ascent method
to detect modes of a multimodal distribution and their covariance matrix. The only
parameter needed is the bandwidth range that is application-specific. The mean shift
algorithm states that, for a given set of points xi, i = 1, . . . , n, the mean shift vector
in the one-dimensional case can be expressed as:

m(x) =
∑n

i=1 xig
(

x−xi
h

)2∑n
i=1 g

(
x−xi

h

)2 − x.

where x is an arbitrary point in the data space, h is a positive value called the analysis
bandwidth and g(u) is a bounded support function, first derivative of another bounded
support function, k(u), or kernel profile. It can be proven that, for a kernel with a con-
vex and monotonically decreasing profile, the iterative procedure xl+1 = m(xl) + xl

converges. Piccardi and Jan (2004) introduced some optimisations in order to reduce
processing time, namely histogram-basemean shift computation – themean shift vec-
tor is calculated with respect to the numberN of histogram bins. This was themethod
implemented and tested.

All points xi, i = 1, . . . , tu belonging to a mode will converge to the same point, the
mode centre, or mean µu. Moreover, if we assume Gaussian modes, for each feature
– in this case the components of the colour vector υ – the p.d.f consists of a weighted
sum of the U modes modelled by a Gaussian distribution. A threshold test can simply
be applied to the estimated p.d.f.:

U∑
u=1

F∏
f=1

ω(u,f)η(xf , µ(u,f), σ
2
(u,f)) < TMS . (3.6)

Note that we are assuming that the features f, f = 1, . . . , F are independent. The
weights ω(u,f) also need to be estimated, and are generally defined by heuristics (Pic-
cardi and Jan, 2004). If the probability estimated for a given pixel value υ is smaller
than the threshold T , the pixel is classified as foreground. The mean shift algorithm
was tested with the parameters: N = 50, h = 3 and TMS = 10−20.

� Comparative evaluation

A comparative study of background modelling techniques was previously presented
in (Piccardi, 2004), however this study consists of a theoretical comparison of several
algorithms and no qualitative tests are presented. In order to get a better understand-
ing of the algorithms, we tested them in several sequences. The results for some of the
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Figure 3.3: Evolution of dc
sym using different methods for background modelling. From left

to right and top to bottom, results for the sequences SW, SH, OD and BR are presented.
We compare implementations based on kernel density estimation (KDE), mean-shift (MS),
mixture of Gaussians (MoG), principal features (PF) and running average (RAvg).

test set sequences are presented next – refer to appendix A.1 for more details on the
test sequences. All tests were executed using only colour vectors as features; the YUV
colour space was used.

In Appendix B.2 we introduce a cost-based partition distance dc
sym between segmen-

tation masks to evaluate the foreground segmentation methods.

Table 3.2 summarises the results obtained for each algorithm in each sequence; for
each algorithm-sequence combination the average distance to the “ground-truth” and
the throughput in frames per second (fps) are presented. No post-processing was em-
ployed on each algorithm’s output segmentations. Figure 3.3 shows the evolution of
the distance over time in the SW, SH, OD and BR sequences. All algorithms were tested
in a Pentium 4 3.4GHz with 1GB of RAM.

Results show that KDE perform better than the other methods. The principal features
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Table 3.2: Average dc
sym and frames per second for each method over the evaluated frames

of each sequence.

SW SH OD BR FT
RAvg dc

sym 0.185 0.302 0.347 0.357 0.336
fps 134 152 156 571 526

MoG dc
sym 0.160 0.267 0.317 0.678 0.307
fps 6.7 6.1 6.7 31.5 29.2

KDE dc
sym 0.109 0.267 0.261 0.285 0.093
fps 1.3 1.1 1.4 5.6 7.5

PF dc
sym 0.150 0.318 0.276 0.362 0.126
fps 2.9 2.2 2.9 13.7 14.7

MS dc
sym 0.218 0.333 0.372 0.460 0.157
fps 0.04 0.04 0.05 0.2 0.2

and the mixture of Gaussians modelling methods follow closely. Note that the results
obtained withMoG in the BR sequence are severely degraded by the initial state which
includes foreground objects. Since the analysed time window is not sufficient for the
model to recover, the results are continuously affected by it. Also, note that the mean
shift approach processing time is extremely high, invalidating its use for real-time ap-
plications. On the other hand the MoG method has a considerably better processing
frame rate than the other methods and is therefore better suited for real-time appli-
cations.

In summary, despite having the less average distance to the “ground-truth”, KDE’s
throughput makes it less interesting than MoG, which has the best relation perfor-
mance/complexity. Moreover, the segmentations produced by the MoG method are
prone to be improved even further since they are less fragmented than the ones pro-
duced by the other methods – this will become more evident in section 3.3.5.

3.3 An object segmentation algorithm using cascaded change
detection§

Consider a typical visual surveillance scene being capture by a static camera; most of
the background pixel values change slowly in time and can be caused by phenomena
of different nature. If it is possible to model these independently, better results can be
achieved. Before detailing the proposed algorithm let us first consider the following:

§This section is based on the article Object Segmentation Using Background Modelling and Cascaded Change
Detection published in the Journal of Multimedia (Teixeira et al., 2007)
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when no structural change occurs, the difference between a pixel value, represented
by a colour vector υ, in the current frameFc and a reference frameFr can essentially
result from two factors – illumination variation or noise. Illumination variation can be
accounted by a positivemultiplicative factor kwhichmodulates the signal, while noise
can be accounted by a superimposed vector υN , modelled by a Gaussian or Laplacian
distribution – Figure 3.4 represents this in a two-dimensional space.

Fr

k Fr

Fc

Figure 3.4: Effects of illumination variation and noise over a reference colour vector. The lat-
ter is modelled by a positive multiplicative factor which modulates the signal, while the former
is modelled by a superimposed vector, modelled by a Gaussian or Laplacian distribution.

Considering that the sophomore cause can be successfully eliminated, we are left with
the first. Hence, when a pixel change results solely from illumination variation, its
colour vector is necessarily collinear with the reference colour vector and a simple
test can be used to identify illumination variation-induced changes. Therefore, wewill
first address how we can effectively remove typical noise introduced by the capture
process in order to guarantee colour vector collinearity.

3.3.1 Identification of noise-induced changes

Assuming that we know the reference frame Fr, we will first address how we can ef-
fectively remove typical noise introduced by the capture process. For that purpose we
use amethod proposed by Aach et al. (1993) and previously used for simple background
subtraction (Cavallaro and Ebrahimi, 2001). It states that it is possible to assess what is
the probability that a value at a given position, in a given image, is due to noise instead
of other causes when compared to another image. It is assumed that the additive noise
affecting each image results from a Gaussian process with mean µN and standard de-
viation σN . Also, noise affecting successive images in the sequence is considered as
uncorrelated. The standard deviation σN can be obtained by computing the statistics
of the differenced(i,j) for eachpixel (i, j) between the reference image and the current
image. Now, consider a windowWn containing n pixels around the pixel under evalu-
ation with ∆2

(i,j) =
∑

(k,l)∈W n
i,j

d2
(k,l). It can be shown that the corresponding random

variable∆2 follows aχ2 distribution. Given the hypothesisH0 that∆2
(i,j) results from

noise and not from other factor, the probability that hypothesisH0 is satisfied is given



54 Object detection

by equation (3.7).

P (∆2 > ∆2
(i,j)|H0) =

Γ(n
2 ,

∆2
(i,j)

2σ2
c

)

Γ(n
2 )

(3.7)

with σ2
c = 2σ2

N and where Γ(n/2) is the Gamma function. The choice for the window
size n must take into consideration the trade-off between noise sensitivity and fore-
ground edge definition. Nevertheless, all experiments were performed using a win-
dow size of n = 25. When the estimated probability in equation (3.7) is smaller than a
threshold TN we consider that H0 is not satisfied at the pixel position (i, j).

Whereas for pixels that validate the hypothesis H0 we guarantee that changes were
originated solely by camera noise, for others we can safely assume that the effect of
noise is negligible when compared to any other change. In other words, if a pixel’s
colour vector is beingmodified by illumination variation and no structural change, we
have υFc ≃ kυFr .

This test defines a first set of pixels that can potentially be part of the foreground be-
cause all pixels that satisfy H0 are necessarily part of the background and are marked
as such for the current frame; all others need further analysis.

3.3.2 Identification of illumination variation-induced changes

After discarding noise-induced changes, a simple collinearity test is performed. As
previously stated, with this test anymodification introduced by illumination variation
is discarded. The test consists in evaluating the angle between the current pixel colour
vector υc and the reference colour vector υr.

cos θ =
υc · υr

∥υc∥ ∥υr∥
(3.8)

If cos θ is smaller than a threshold TI very close to 1, the vectors are not considered to
be collinear and the test is not validated. In practice, this test can become unstable and
to overcome this problem we consider a second threshold in the noise-identification
test; the second threshold usually is much smaller than TN . The identification of il-
lumination variation-induced changes is therefore only applied to pixels that fall be-
tween both these thresholds.

The set of potential foreground pixels is refined by marking as background the pix-
els that validate this second test. Pixels that have a probability less than the second
threshold in the previous test are maintained as foreground.
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3.3.3 Identification of dynamic background behaviour

The final estimation of whether a pixel is part of the background can be performed
only in the pixels that do not validate the statistical (3.7) nor the collinearity (3.8)
tests, resulting in a considerable reduction in execution time of the algorithm. This
is especially true for typical surveillance streams where the relevant moving objects
occupy a small fraction of the entire field of view. Another positive effect is the drastic
reduction of small artefacts which often need to be removed in typical modelling by
applying morphological filtering (e.g. connected operators).

To model and identify the dynamic background behaviour we will be using pixel-wise
background estimation approaches, namely the ones presented in section 3.2.2. The
head-to-head comparison revealed that the Mixture of Gaussians (MoG) modelling ap-
proachhad thebest performance/efficiency relation. Wewill therefore beusingmainly
MoG to identify dynamic background behaviour. In this case, if the probability defined
by equation (3.2) for a given pixel is larger than a threshold TS , the pixel is considered
to be part of the background. Also, background representation defined by the MoG
model and described by (3.3) is used as the reference image Fr. Figure 3.5(a) sum-
marises the algorithm in pseudo-code, called cascaded mixture of Gaussians (CMoG).
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(b) CKDE

Figure 3.5: Proposed algorithm in pseudo-code. Both are very similar with the exception of
the way dynamic background behaviour is modelled.

Alongside MoG, cascaded kernel density estimation (KDE) was also tested. For KDE, if
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the probability defined by equation (3.4) for a given pixel is larger than a threshold TS ,
that pixel is classified as background. The background representation can be defined
as the weighted average of the N most recent background values. The weights are
defined, for each previous background and for each pixel, by the probability in (3.4)
when a sample is tested against the other N − 1 previous backgrounds. For efficiency
reasons a simple running average of the incoming frames was used to estimate a back-
ground without significant errors in the final foreground estimation. In accordance
with CMoG, the KDE-based cascaded algorithm will be named CKDE hereafter and is
summarised in Figure 3.5(b).

3.3.4 Building the system

The proposed algorithm can be seen as a series of different techniques resulting in the
refinement of the segmentation provided by the previous as shown in Figure 3.6. First
we use the statistical test (3.7) to determine the set Sa of pixels that are identified as
being changed by anyphenomenonother thannoise – in ourmodel a structural change
or illumination variation. Then, on that set of pixels a simple collinearity test (3.8) is
performed in order to assert that the modification was not due to some modification
in illumination conditions, resulting in a new set Sb of candidate pixels. Finally, the
set is further refined eliminating any structural change that resulted from repetitive
dynamic behaviour of the background using pixel-wise background estimation. The
result is the final set of pixels Sc which are labelled as belonging to the foreground,
i.e., any relevant moving object. Although the different classification tests happen
in a cascade configuration, some interaction happens between them. Namely, if the
change results from camera noise and not fromother factor, themodel is updatedwith
the current background value instead of the new frame value. This way we effectively
reduce model error by only introducing modifications to the model when any other
phenomenon than noise changes the pixel value.

3.3.5 Results

Results are presented next and a comparison is first drawn between CMoG andMoG as
well as CKDE and KDE. An overall comparison between all is done last. Also, note that
all experiments used the YUV colour space as input features.

� CMoG

The CMoG configuration consisted of a MoG model composed by a mixture of 3 Gaus-
sians, a learning rateα of 0.005 and a threshold TS of 0.05. For the statistical test it was
used a significance threshold TN of 10−4. Finally, for the collinearity test a threshold
TI of 0.995 was used. All thresholds were found through empirical testing to be fairly
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Figure 3.6: Block representation of the proposed cascaded algorithm. The modules are con-
nected in cascade configuration with the exception of the background estimation feedback.

stable and can be used without modification for typical real-world scenes. The MoG
algorithm was tested with the same common parameters. Moreover, to reduce the
implementation complexity, for MoG implementation, a diagonal covariance matrix
was considered.

Figure 3.7 shows the evolution of the cost-based partition distance (dc
sym) for four se-

quences of the test set, namely OD, AP, BR and FT. It is clear that the proposed method
outperforms the mixture of Gaussians modelling method in all test sequences. Even
without post-processing the CMoGmethod performs significantly better than the reg-
ular MoG with post-processing. In fact, for the test set sequences, CMoG’s results with
and without post-processing do not differ much. In Table 3.3 the overall results are
presented for every sequence in the test set. Note that for noisy and highly dynamic
scenes, likeOD, the regularmethodwithout post-processing has theworst results. Also
note that for the AP and FT sequences a noticeable difference between the segmen-
tations and the “ground-truth” occurs at some point in time. This is due to sudden
changes of global illumination, that are not properly handled by pixel-wise estima-
tion of the background – in this case higher level input would be needed in order to
quickly adapt to the changes. Nevertheless, CMoG easily returns to the normal clas-
sification performance. Additionally, the proposed method is faster than the original
MoG: for 176× 144 sequences, MoG performs at 26fps, while CMoG performs at 32fps;
for 352 × 288 sequences, MoG performs at 7fps, while CMoG performs at 9fps.

In Figure 3.8 the results obtained with CMoG for the SH sequence at different frames
are shown. From top to bottom, the original frames, the intermediate results with
the different sets being represented by different colours, the final mask, and the fore-
ground are shown. The sets in the intermediate results are the outputs of the each
module of the algorithm, as shown in Figure 3.6. The representation in different sets
depicts the role of eachmodule, andwhat is the respective influence on the refinement
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Figure 3.7: Evolution of dc
sym for MoG and CMoG implementations. From left to right, the

results are presented for the sequences OD, AP, BR and FT, with and without post-processing.

of the foregroundmask. In fact, some particular events are worth noting. In frame 403
there is a global illumination change that is detected by the illumination-change detec-
tion module. This way we reduce significantly the portion of the frame that needs to
be analysed by the more computationally expensive dynamic change detection mod-
ule. Also, from frames 707 to 903, the person in front of the store is “absorbed” by the
background since he stand still for some time. However, it is clear that in 1218 this is
successfully corrected, despite the area where the person stood still being marked as
potential foreground by the first two detection modules.
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� CKDE

CKDE was tested with the same significance threshold TN and collinearity threshold
TI as CMoG and a sample size N of 50 and a threshold TS of 10−6. The KDE algorithm
was tested with the same common parameters.
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Figure 3.9: Evolution of dc
sym for KDE and CKDE implementations. From left to right, the

results are presented for the sequences OD, AP, BR and FT, with and without post-processing.

Figure 3.9 shows the evolution of dc
sym for the same four sequences tested with CMoG.

CKDE performs better than KDE but in general the gains are not as significant as com-
pared to CMoG. Also, the difference between the results obtained with and without
post-processing is small and, in some sequences, the results areworsewithpost-processing.
This is due to the fragmented masks typically produced by KDE. Some isolated frag-
ments, if small enough, will be incorrectly removed by post-processing. Speed-wise
KDE is very slow compared to MoG as already noted in Table 3.2. Also, CKDE is faster
than KDE: for 176×144 sequences, KDE performs at 5fps, while CKDE performs at 6fps;
for 352 × 288 sequences, KDE performs at 1fps, while CKDE performs at 2fps.
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Figure 3.10: Evolution of dc
sym for each sequence of the test set (part 1). From left to right

and from top to bottom, the graphs are from the sequences SW, SH, OD, MR, CAM and
LB.
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Figure 3.11: Evolution of dc
sym for each sequence of the test set (part 2). From left to right

and from top to bottom, the graphs are from the sequences SC, AP, BR, SS, WS and FT.
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MoG CMoG KDE CKDE
w/o pp w/ pp w/o pp w/ pp w/o pp w/ pp w/o pp w/ pp

SW 0.160 0.105 0.090 0.079 0.109 0.092 0.112 0.100
SH 0.267 0.213 0.119 0.115 0.267 0.289 0.235 0.238
OD 0.938 0.463 0.115 0.065 0.261 0.241 0.234 0.242
MR 0.808 0.391 0.118 0.086 0.325 0.351 0.325 0.365
CAM 0.782 0.272 0.480 0.214 0.080 0.034 0.151 0.031
LB 0.453 0.164 0.190 0.110 0.064 0.073 0.063 0.074
SC 0.355 0.203 0.111 0.115 0.133 0.140 0.108 0.114
AP 0.691 0.409 0.166 0.137 0.221 0.209 0.199 0.196
BR 0.678 0.594 0.286 0.292 0.285 0.299 0.190 0.204
SS 1.117 0.962 0.651 0.603 0.226 0.168 0.253 0.175
WS 0.223 0.100 0.102 0.089 0.322 0.356 0.329 0.365
FT 0.307 0.096 0.068 0.038 0.093 0.109 0.069 0.076

Table 3.3: Average dc
sym over the test set sequences. CMoG has the best performance with

an overall average distance of 0.162 compared to 0.331 for MoG, 0.182 for CKDE and 0.199
for KDE.

� Overall

Figure 3.12 shows, from left to right, the segmentation results for frames 365 and 415
of the SH sequence, frame 600 of the OD sequence and frame 2550 of the SW sequence.
The top row shows the original frame, the second row shows the results from theMoG
implementation (Lee, 2005) and the third and fourth rows show the results obtained
with CMoG and CKDE, respectively.

Table 3.3 shows the average distance for all the sequences in the data set and Fig-
ures 3.10 and 3.11 depicts the evolution of dc

sym in each sequence. In both figures
only the resultswith post-processing are presented to avoid excessive graph cluttering
Comparing CMoG and CKDE as well as their respective base algorithms, it can observed
that the CMoGhas the best performancewith an overall average distance of 0.162 com-
pared to 0.331 forMoG, 0.182 for CKDE and 0.199 for KDE. Again, it is clear that adapting
KDEwith a cascaded change detection configuration is not as advantageous as adapting
MoG. For the former an approximate gain of 8.5% is achieved while for the latter the
average distance between outputted segmentations and the “ground-truth” is more
than halved.
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Figure 3.12: Segmentation masks obtained using different methods. The top row shows
the original frame. The second row shows the results from the MoG implementation (Lee,
2005). The third row shows the results obtained with CMoG. Finally, the fourth row shows
the results with CKDE.

3.4 Audio object segmentation ¶

Following the same rationale used for visual sequences, we can define audio segmenta-
tion as the partitioning of an audio sequence in coherent or homogeneous partitions.
The partitions refer to temporal sections of the sequence that comply to a given homo-
geneity criterion. This criterion depends on the context of application and therefore
no generic rule of segmentation is feasible.

An indirect way of segmenting an audio stream is by classifying individual small time
windows, or frames. By grouping the classified frames we obtain the audio homoge-
neous segments. Frequently, the number of classes is defined beforehand and is kept

¶This section is based on a collaborationwith GustavoMartins as an extension to his Ph.D. work (Martins,
2009).



3.4. Audio object segmentation 65

unchanged. For most real-world scenarios we can consider four classes: silence, noise,
speech, and music. Hence, for a given audio signal, for example the one in Figure 3.13,
the segmentation algorithm should be able to decompose it into segments according
to the four known classes.

speech musicnoisesilence

Figure 3.13: Simple decomposition of an audio sequence in four classes. For real-world sce-
narios we assume that four sound classes can occur: silence, noise, speech, and music.

The goal is to obtain a set of time segments for an input audio signal, similarly to Fig-
ure 3.14. In that simple example, segments of different classes are concatenated in a
single stream and no overlap between classes is present. Ideally our audio object seg-
mentation algorithm should output the temporal segments with the assigned labels as
shown in that figure.

N SP M S SP S N M SP N S M

Figure 3.14: Temporal segmentation of an audio sequence. The audio object segmentation
algorithm should be able to output a define the segments shown in the figure, taking into
account the four known classes, i.e. silence (S), noise (N), speech (Sp), and music (M).

In order to accomplish this goal we will be using the algorithm depicted in Figure 3.15.
The audio stream is analysed separately for frames containingN samples (step 1). For
each frame a set of features are extracted and, according to a previously trainedmodel,
that frame is classified as one of the four possible classes {S,N, Sp, M} (step 2). The
frames are grouped into audio buffers containing a total of M samples. A majority
voting is performed taking as votes the classification for the frames comprising an
audio buffer (task 3). Finally, adjacent buffers with the same assigned label aremerged
to form the segments shown in Figure 3.14.
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Figure 3.15: Algorithm for audio segmentation based on frame classification. In step 1, the
audio stream is analysed separately for frames containing N samples; in step 2, for each
frame a set of features are extracted and classified, according to a previously trained model;
in step 3, the frames are grouped in audio buffers containing a total of M samples using a
majority voting scheme.

Defining suitable features as inputs to classify the segments is critical for the perfor-
mance of the overall algorithm (Scheirer and Slaney, 1997). As an example, Figure 3.16
depicts the probability of the 8th Mel Frequency Cepstrum Coefficients (MFCC) coeffi-
cient (refer to Section 2.3.1 for a description of MFCCs and other audio features) taking
a given value. While the average of that feature for an audio frame, shown in Fig-
ure 3.16(a), does not allow a clear distinction of the four classes, the variance offers
a better discriminative capability, especially between structured sounds (speech and
music) and the other classes (silence and noise). The features that were used to build
the model to classify the audio segments are summarised in Table 3.4.

The datasetDa
4 described in Section A.2 was used for the tests and two classifiers were

tested: k-Nearest Neighbour (k-NN) and Gaussian classifiers. The k-NN algorithm is a
simple machine learning algorithms that classifies an object by a majority vote of its
neighbours. The object is assigned to the class most common amongst its k nearest
neighbours. The parameter k is a typically small positive integer; in our experiments
we used k = 3. To determine the distance between objects the Mahalanobis distance
was used. The Gaussian classifier is a statistical classifier that assumes a Gaussian dis-
tribution of the data. The results using a 5-fold cross-validation test are summarised
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(b) Variance of the 8th MFCC coefficient.

Figure 3.16: Discriminative capability of features. The average of the 8th MFCC coefficient
presents a poor discriminative capability between the four defined classes. On the other
hand, the variance of the same MFCC coefficient presents a better discriminative capability,
especially between structured sounds (speech and music) and other classes (silence and noise).
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Feature Statistic
Spectral flatness average
Spectral flatness variance

Low energy perc. (25%) —
MFCC 2nd coef. variance
MFCC 3rd coef. variance
MFCC 4th coef. variance
MFCC 5th coef. variance
MFCC 6th coef. variance
MFCC 7th coef. variance
MFCC 8th coef. variance

Table 3.4: Audio features for frame classification.

in Table 3.5 only for the speech/music segmentation.

k-NN Gaussian
estimated class estimated class
Speech Music Speech Music

tr
ue

cl
as
s Speech 94.7 5.3 94.4 5.6

Music 3.9 96.1 12.4 87.6

Table 3.5: Confusion matrix using k-NN and Gaussian classifiers for audio segmentation for
two classes. The overall successful detection rate is of 96% for k-NN and 91.6 for the Gaussian
classifier.

After classifying a segment as a given class, that segment can be further processed
in a recognition step. For example, specific algorithms can be used to process noise,
speech and music segments. For music segments, the recognition task can include
genre recognition or music fingerprinting. The system introduced in Figure 3.13 can
therefore be expanded to incorporate these tasks, resulting the system in Figure 3.17.

3.5 Audio object localisation using AV features

Hershey andMovellan (1999) first tried to develop a system that uses audio visual syn-
chrony to locate sound sources (refer to Section 2.3.2 for a description about how to
measure AV synchrony). The system searches for regions of the visual field that cor-
relate highly with acoustic signals using an estimate of the Mutual Information (MI).
Only an audio feature, the average acoustic energy over a time interval correspond-
ing to interval between visual frames, and a visual feature, the pixel intensity were
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Figure 3.17: Hierarchical segmentation and recognition of an audio sequence. After classify-
ing a segment as a given class, that segment can be further processed. For example, specific
recognition algorithms can be used to process noise, speech and music segments. For music
segments, the recognition task can include genre recognition or music fingerprinting.

computed and analysed. A centroid was then calculated, corresponding to the esti-
mated acoustic source position. Alongside the assumption that the joint statistics are
Gaussian, another limitation of this method arises from the per-pixel measure which
invalidates the integration of themeasure over an image region withoutmaking unre-
alistic assumptions – e.g. pixel are independent of each other, conditioned by the audio
signal. Slaney and Covell (2000) proposed a more general approach, aiming specifi-
cally at optimizing temporal alignment between audio and visual signals. The authors
use a face-recognition algorithm and Canonical Correlation Analysis (CCA) to measure
audio-visual synchrony. The approach consists in deducing a relationship between the
cepstral representation of the audio and the video pixels by obtaining a canonical cor-
relation model. This is equivalent to maximum mutual information projection in the
jointly Gaussian case. The algorithm is processed in two stages: training of the model
and evaluating the fit of the model to the data. Like the Hershey and Movellan algo-
rithm, the Pearson’s correlation is also used to measure synchronisation. However, in
this case the optimal combination of audio and visual data is computed, unlike Her-
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shey’s approach which does not consider the mutual information between adjacent
pixels. The immediate consequence of computing the canonical correlation model is
the need for training data which may influence the performance of the algorithm and
condition its use to application-specific scenarios.

Nock et al. (2003) evaluate three different approaches to assess audio visual synchrony
in a speaker localisation application – two based in MI (histogram-based estimate over
vector quantised code-books and Gaussian estimate over feature vectors) and a third
one is based in HMMs. Several features were tested in all approaches, which included
MFCCs for audio and DCT and pixel intensity change for visual characterisation. The
Gaussian approach is reported as the one with the best results when using MFCC as
audio features and DCT coefficients as visual features. Fisher III and Darrell (2004)
proposed a methodology for testing audio-visual association in the absence of a prior
model and without requiring a training stage to estimate one. The methodology is
based on the probabilistic generation model, used to define projection rules on maxi-
mally informative subspaces. Densities are learnt using a non-parametric Parzen den-
sity estimator which can be used to represent complex joint densities of projected sig-
nals, and to successfully estimate MI. Butz and Thiran (2005) proposed an approach
based onMarkov chains tomodel audio and visual signals. The audiovisual consistency
is assessed by maximising the efficiency coefficient, i.e. the ratio between audiovisual
MI and the audio-video joint entropy. The distributions of audio-video features are
again estimated using Parzen density estimators. Regarding the audio signal, a linear
combination of power spectrum coefficients that present the higher entropy, and on
the other hand, pixel intensity change is analysed, in order to characterise the visual
signal. Gurban and Thiran (2006) have recently proposed learning the parameters of a
GaussianMixtureModel (GMM) that is used to estimate the joint density of audio-video
features. A video feature specific to the difference between the average optical flow
on the top and bottom halves of the central part of the mouth region is used. Audio
sources are localised on the video by finding the image regions where samples have
highest likelihood to have been generated by the learned joint density function.

While the former methods have a common rationale, the estimation of MI between
audio and visual signals, other approaches following different paths are also possible.
Cutler and Davis (2000a) followed an approach based on a TDNN. Audio-video correla-
tions are learned on positive and negative examples using the neural network, which
is then used to find in time and space a speaking person on the input data. Normalised
cross correlation between consecutive images is employed as video feature, while cep-
stral representation is used for the audio signal. Monaci et al. (2006) on the other hand
represent audio-visual signals using decompositions on over-complete dictionaries.
Activation vectors are built from audio energy peaks and the displacement peaks for
each video element (atom) are extracted. The synchronisation scores between the
audio activation vector and the video activation vectors are computed as the scalar
product between those signals. A summary of the audio localisation algorithms can be
found in Table 3.6.
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3.6 Person detection

The segmentation obtained with background modelling and subtraction returns a set
of candidate regions, but an identity still needs to be assigned to one or more of these
regions to form a relevant object. This is typically done at the recognition level, but if
the type of object is known, a priori information can be used to further improve the
detection result. For example, we know that humans have a particular shape, hence
shapemodels can be used. Also, for the subsequent tracking algorithm specific motion
models can be used, since a person’s movement follows certain rules. The periodicity
of the human locomotion can be an importance factor when designing a human detec-
tion and tracking system (Cutler and Davis, 2000b). In systems focused on people, like
surveillance systems, it is oftendesirable to use additional information to excludemov-
ing objects other than people from the tracking algorithm. Another difference when
approaching specific person tracking is that, while generic object tracking algorithms
typically only focus on tracking the object as a whole, person tracking algorithmsmay
also decompose the motion into global motion and limb motion. This allows to infer
additional information, such as posture or locomotion modes – standing, walking or
running. Object tracking is analysed in more detail in Section 4.2.

Considering only the detection task, let us consider the scenario of people detection in
Figure 3.18, where the segmentation results for three frames of the test sequence SH
are shown. If we look for isolated connected regions, we define a set of objects, shown
with different colours in each image. While in frame 397 the three objects (persons)
are correctly separated, the same does not occur for the two other frames. In frame
365, the segmentations of the two persons on the right merge, forming a single object,
and, in frame 407, errors in the segmentation algorithm originates incorrect objects.

(a) Frame 365 – 2 objects (b) Frame 397 – 3 objects (correct) (c) Frame 407 – 5 objects

Figure 3.18: Problems with simple foreground segmentation. The figures show three frames
from the SH sequence where each isolated region is labelled as an object. The inconsistencies
that occur between frames can be avoided if specific models for persons are used.

It is possible to take advantage of the camera being placed several meters above the
ground in typical scenarios, to avoid some situations of occlusion and reduce the prob-
ability of people heads being occluded. For this reason, head detection is used in the
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generationof humanhypothesis. Headdetectionhas beenused in several systems such
as (Denman et al., 2005; Haritaoglu et al., 2000; Siebel andMaybank, 2002). In Figure 3.19
the sameexample shown in Figure 3.18 is applied to a persondetection algorithmbased
on head detection.

(a) Frame 365 – 3 persons (b) Frame 397 – 3 persons (c) Frame 407 – 3 persons

Figure 3.19: Person detection based on the detection of persons’ heads. This assumption is
possible since in typical real-world scenes are captured using cameras located several meters
above the ground. Each person is represented by an ellipse with the respective major axis
following the person’s body orientation.

head

torso

bottom

Mtorso

Mbottom

Mhead

low variance

medium variance

high variance

hk

wk

points being
evaluated

Figure 3.20: Person model used to define the foreground pixels belonging to a person. The
models M{head,torso,bottom} define an occupancy probability such that it is higher for points
nearer to the centre line and smaller for points farther from the centre line. (adapted from
Kim, 2005)

A more complex way of assigning a foreground pixel to a person is to use the model
shown in Figure 3.20 which is based on the shape of a person. Depending on the height
hk of the point being analysed, one of three probabilistic modelsM{head,torso,bottom} is
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used. With these models an occupancy probability is defined such that it is higher for
points nearer (smaller values of wk) to the centre line and smaller for points farther
from the centre line (larger values of wk). Different variances are used for each model
since, for example, there are less variations for head heights between persons than for
bottom heights.

3.6.1 Face detection

The goal of face detection is to locate an unknown number of faces in an image or se-
quence of images. An example of successful results using a state-of-the-art algorithm
is shown in Figure 3.21. This is however not an easy task since there is a high variabil-
ity of size, shape, colour, and texture that result from differences in pose, presence
or absence of structural components, facial expressions, occlusions, different imaging
conditions, among other factors. Techniques for face detection can be divided in two
categories, and each into two sub-categories: knowledge-based, divided in bottom-up
or feature-based, and top-down; template-based, divided in template matching, and
appearance-based. For more in-depth information about face detection refer to the
surveys by Hjelmas and Low (2001) and Yang et al. (2002).

152 Viola and Jones

Figure 10. Output of our face detector on a number of test images from the MIT + CMU test set.

6. Conclusions

We have presented an approach for face detection
which minimizes computation time while achieving
high detection accuracy. The approach was used to con-
struct a face detection system which is approximately
15 times faster than any previous approach. Preliminary
experiments, which will be described elsewhere, show
that highly efficient detectors for other objects, such as
pedestrians or automobiles, can also be constructed in
this way.

This paper brings together new algorithms, represen-
tations, and insights which are quite generic and may
well have broader application in computer vision and
image processing.

The first contribution is a new a technique for com-
puting a rich set of image features using the integral
image. In order to achieve true scale invariance, almost
all face detection systems must operate on multiple
image scales. The integral image, by eliminating the
need to compute a multi-scale image pyramid, reduces
the initial image processing required for face detection
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all face detection systems must operate on multiple
image scales. The integral image, by eliminating the
need to compute a multi-scale image pyramid, reduces
the initial image processing required for face detection

Figure 3.21: Example results of a face detection algorithm. These results were obtained with
the AdaBoost algorithm using images from the MIT + CMU test-set (taken from Viola and
Jones, 2002)

.

� Knowledge-based

⇀ Top-down A priori knowledge about a face is expressed in terms of rules. Typ-
ically, these rules are based on the relationships between the facial features (Lv et al.,
2000; Yang and Huang, 1994). These methods perform well in frontal faces in unclut-
tered scenes but translating face knowledge into rules can be a difficult task. Also, it is
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difficult to extend this approach to detect faces in different poses since enumerating
all the possible cases is impractical.

⇀ Bottom-up or feature-based Face features, including position and relation-
ships between them, can be extracted regardless of the lighting conditions and pose
variations. Different features can be used for this task, namely facial features (Yow and
Cipolla, 1997), texture, skin colour (Hsu et al., 2002; Jones and Rehg, 2002), or a combi-
nation of multiple features. The main difficulty is to locate facial features in complex
backgrounds and due to changes caused by illumination, noise, and occlusion.

� Template-based

⇀ Template matching A standard face pattern is manually predefined or param-
eterized by a function. The correlations between an input image and the pattern are
computed to detect a face. In general, templates need to be initialised near face images.
Rigid templates (Govindaraju et al., 1989; Samal and Iyengar, 1995) were initially pro-
posed, but these can not deal with variations in scale, pose, and shape. Alternatively
deformable templates were also proposed (Kwon and da Vitoria Lobo, 1994; Yuille et
al., 1992).

⇀ Appearance-based A priori information of the face is implicitly incorporated
into the system through training schemes, learning “template” characteristics. This is
themost successful approach to face detection but can be relatively complex to imple-
ment. Machine learning techniques have been used, like neural networks (Rowley et
al., 1998) and Support Vector Machines (SVMs) (Osuna et al., 1997), as well as statistical
analysis (Turk and Pentland, 1991; Viola and Jones, 2002). The representation of faces
used for training can use an holistic approach, where each face image as awhole is rep-
resented by a vector of intensity values, or a block-based approach, each face image is
decomposed into a set of overlapping or non-overlapping blocks. Multiple scales can
be used or further processed can be applied using vector quantisation, PCA, or other
methods.

� AdaBoost

An important breakthrough on object detection, and face detection in particular, re-
sulted from the work by Viola and Jones (2001, 2002). Their method is based on boost-boosting
ing (a tutorial about boosting can be found in Freund and Schapire, 1999), a machine
learning meta-algorithm that relies on ensembles of classifiers whose joint decision
rule has arbitrarily high accuracy even though the component classifiers have poor
performance. The algorithms based on boosting alter the training data distribution
before each new bootstrap sample is obtained. The altered distribution ensures that
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more informative instances are drawn into the next dataset. Viola and Jones applied a
boosting-based algorithm named AdaBoost (Freund and Schapire, 1997) and used local
contrast features as inputs. Their method proved to be one of the most effective state
of the art methods for face detection. For this reason a more detailed description of
AdaBoost applied to face detection is presented next.

Local contrast features are extracted using Haar filters at different positions of an im-
age sub-window. These features are evaluated using weak classifiers that evaluate if
a given sub-window corresponds to face or not. While each of the individual classi-
fiers have a low performance rate, combining some of them to form a strong classifier
results a much higher successful detection rate. Using solely this approach it is possi-
ble to obtain more than 99% detection rates, but at the same time the false detection
rate reaches unacceptable values, more than 30%. The workaround proposed by Vi-
ola and Jones was a cascade of strong classifiers, or stages, trained using an adaptive
training scheme. Each stage is trained with all the examples that the previous stage
has misclassified plus some new ones. This leads to an optimal selection of features
in each cascade which are able to detect always harder examples. In other words, the
first stages can discard sub-windows which are very different from faces, whereas the
latter stages could reject more difficult examples like round objects.

3.6.2 Speaker segmentation

The goal of speaker segmentation is to find speaker change points in an audio stream.
It usually precedes audio recognition tasks such as audio indexing, speaker recogni-
tion (including identification, verification and tracking), automatic transcription. The
various segmentation algorithms that have been proposed in the literature, can be cat-
egorised as: metric-based segmentation, model-based segmentation, and hybrid seg-
mentation.

In speaker segmentation based inmetrics, a distance-likemetric is calculated betweenmetric
-based two neighbouring windows placed at each sample. Different metrics can be used such

as Kullback-Leibler (KL) divergence (Siegler et al., 1997), Log Likelihood Ratio (LLR)
(Bonastre et al., 2000) andmost commonly, Bayesian Information Criterion (BIC) (Chen
and Gopalakrishnan, 1998). The local maxima or minima of these metrics are consid-
ered to be the change points.

In alternative, model-based segmentation methods were also proposed (Gauvain etmodel
-based al., 2002; Kemp et al., 2000). These methods use different models e.g. GMM or HMM

for a fixed set of acoustic classes, i.e. speakers – similarly to the method described
in Section 3.4. For every speaker in the audio recording, a model is trained and then
MaximumLikelihood (ML) is performed to find thebest time-aligned speaker sequence.
Speaker change points are identified where there is a change in the acoustic class.

By combiningdifferent techniques, someauthors proposedhybridmethods that provedhybrid
to perform better than other approaches without needing prior data (Kim, 2005).
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A commonly used method to achieve real-time performance relies on a two-stage ap-
proach, where a coarse segmentation is obtained in the first stage and a refinement of
the potential speaker boundaries is done in the second stage (Wu et al., 2003). The
acoustic speaker segmentation algorithm that was used in the multimodal speaker
identification described in Section 2.3.4 follows a similar approach.

3.7 Summary

The extraction or detection of objects from an audiovisual scene is an important first
step of processing chains usually assembled to acquire higher level semantic knowl-
edge. The goal is to partition the visual and audio data in homogeneous segments.
These segments can then be further analysed independently using specific methods.
The different nature of audio and visual signals imply different detection approaches.

For the scenarios we are considering it is possible to rely on assumptions that simplify
the detection task. The segmentation of visual scenes is a difficult task that usually is
dependent on the context. In this case, we consider only two visual classes in a first
stage: foreground and background. The foreground is composed by the objects consid-
ered relevant, that present a dynamic behaviour that somehow differs from the “pre-
dictable” behaviour. Conversely, the background includes “static” (including changes
of the appearance due natural causes like illumination) components of the scene as
well as components that, despite having a dynamic behaviour, present a repetitive pat-
tern. A person detection algorithm using body or face detection algorithms can then
be applied to the foreground, subdividing it into visual objects associated to persons or
generic objects. Three object classes are thus considered: generic object, person (both
comprising the foreground) and background.

The objective of foreground segmentation is therefore to dissociate the regions con-
taining the relevant objects from regions composing the background. Due to typical
dynamical behaviour of the background and variations in illumination conditions it is
not always a straightforward task. An efficient method of extracting the foreground
objects consists of modelling each background pixel evolution, by estimating a proba-
bility density function (p.d.f.). Severalmethods to accomplish this have been proposed
in the past but no objective comparison of these methods has been done before. We
introduced a new method that takes in consideration that background changes are
caused by phenomena of different nature. The method consists of a cascaded evalua-
tion of typical dynamic elements that, although changing in time, are part of the back-
ground. These elements include acquisition noise, illumination variation and slow or
repetitive structural changes. The latter type of changes is classified using the meth-
ods that estimate a p.d.f. to model the background. Also, a statistical test and a sim-
ple collinearity test are used to classify changes originated by noise and illumination
changes, respectively. Two approaches were tested: one based inMoG and named cas-
caded MoG (CMoG), and another based in KDE named cascaded KDE (CKDE). The pro-
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posed methods CMoG and CKDE perform consistently better than the base methods.
While CMoG reduces the average distance to the “ground-truth” by 51%, CKDE has an
8.5% reduction. Overall, the best results are achieved by CMoG which, even without
post-processing, has similar or better performance than the base method with post-
processing.

The segmentation of audio scenes consists of defining time segments that correspond
to a specific audio class that presents homogeneous characteristics. An indirect way of
segmenting an audio stream is by classifying individual small timewindows, or frames.
By grouping the classified frameswe obtain the audio homogeneous segments. Assum-
ing that there is no overlapping of the time segments corresponding to audio objects
of different classes, the fixed-size frames are individually analysed and classified ac-
cording to a previously trained model. The number of classes is tipically defined be-
forehand and is kept unchanged. For typical scenarios we consider four audio object
classes: silence, noise, speech, and music. Besides temporal segmentation, audio ob-
ject detection also comprises spatial localisation. Using solely audio information this
can be achieve using two sources, following a similar model to human audition, or
using arrays of sources with known responses and configuration. However, visual in-
formation can be used to aid audio localisation using only one source of audio. Most
methods are based on the search for regions of the visual field that correlate highly
with acoustic signals using an estimate of the Mutual Information (MI). Different ap-
proaches are also possible such as learning a Time-Delay Neural Network (TDNN) or
measuring directly the co-occurrence of audio and visual events.

The step after detecting the objects comprising the scene is associating an identity to
them. This is typically done at the recognition level, but if the type of object is known,
a priori information can be used to further improve the detection result. In systems
focused on detecting people it is often desirable to use additional information to ex-
clude moving objects other than people from the tracking algorithm. Besides shape,
another cue to detect persons is through face detection. The goal of face detection
is to locate an unknown number of faces in an image or sequence of images. Current
state-of-the-art face detection methods can efficiently detect faces in typical scenes.
Nevertheless, differences in pose, structural components, facial expressions, occlu-
sions, or imaging conditions are challenges that need to be tackled in more complex
scenarios, like in surveillance systems. Audio streams can also be further segmented
by detecting changes in the speaker. Segments thatwere identified as speech are given
as input to speaker change detectionmethods. These methods are commonly based in
the distance-like metric that is calculated between neighbouring windows, or in clas-
sification changes done by previously trained models. While many of these methods
require multiple processing cycles for the whole stream, real-time methods are also
possible.

In the next chapter we will focus on the recognition of objects, taking as inputs the
results obtained with object detection.
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In real-world scenes, relevant objects appear in a cluttered environment and their
identification comprises detection and recognition. Object recognition is a funda-
mental task that relates to how the human cognitive system works. In general the
recognition process involves comparing an unknown sample with a model — match-
ing. A related task is object tracking that relies on both detection and recognition
to follow an object along time. The recognition is nonetheless simplified since the
set of samples and models to match are restricted to a time window. This reasoning
is applied to both vision and auditory systems, despite following somewhat different
cognitive processes.

4.1 Overview

Object recognition is the task of associating an identity to a given object from a set of
known classes. Therefore, object recognition can be seen as a problem of matching
models from a database with representations of those models. The object representa-
tion schemeadopted by the recognition system is crucial for the system’s performance.
A brief insight into the audio and visual features used for object representation in this
work was previously given in Section 2.3.1. Taking as example the case of a visual
object, storing in a database all possible object appearances with different views or
different lighting conditions is unfeasible. In this case, if we use features that are in-
variant to transformations in scale, rotation, and size we will be limiting the models
complexity. Two approaches are possible to deal with the many possible transforma-
tions that an object may undergo: firstly, determine the transformation and try to
reverse its effects, and secondly, as noted before, findmeasurements of the object that
are invariant to the typical transformations.

Formally, object recognition is a process of hypothesising an object-to-model corre-
spondence and then verifying that the hypothesis is correct. Generally an hypothesis
is considered successful if the error between the projectedmodel features and the cor-
responding object features is below some threshold. A recognition system comprises
two stages: the acquisition stage, where amodel library is constructed from certain de-
scriptions of the objects; and the recognition stage, where an unknown object is given
to the system and its identity is determined. Although typically the recognition task is
preceded by the object detection task (detailed in the previous chapter), the detection
(or localisation) of the object is not a requirement for object recognition. If this is the
case, the output of the object recognition systemwill simply be if a given class is shown
in the scene or not.

79
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A task that combines object detection and recognition with an additional temporal el-
ement is object tracking. The target objects must be detected and identified in each
frame, and correspondences must be drawn between objects from frame to frame so
that they have consistent identities. The matching between objects is thus limited
to the set of objects detected in each frame and the previous frames. This contrasts
with the typical recognition task that matches a given object with a global database
of known classes. Regarding tracking, we will focus on visual object tracking. Nev-
ertheless, the concept of tracking in audio has a parallel with that of tracking visual
objects. Object tracking, or more commonly source tracking in the audio community,
is part, for instance, of harmonic sound separation (a recent framework for predom-
inant melodic source separation using normalized cuts was proposed by Lagrange et
al., 2008). In the source separation process, sinusoidal modelling is used, consisting
of creating sound models from the summation of sine waves parameterized by time-
varying amplitudes, frequencies, and phases. The peaks of the magnitude spectrum in
these time-varying quantities are estimated and connected over time to form partials
(tracking). The partials are then grouped to form potential sound sources (formation).

A specific task of object recognition is person identification. The identification of a
person can be performed using different modalities: appearance, gait, speech, among
others. Similarly to generic object recognition, we define the identification task as
the process of searching a database for a reference model matching a submitted sam-
ple and if found, the corresponding identity is obtained. Two types of identification
are possible: open-set and closed-set. Generalising the definition provided by the
VoiceXML Forum for the more specific task of speaker identification (Skerpac, 2007),
an identification process is said to be open-set if the test subject does not necessarilyopen-set

identification have any representative reference model in the database of the recognition engine. In
this case, the person recogniser may either return an identity for the test speaker or
may reject the speaker as not-present in its database. On the other hand, an identifi-
cation process is said to be closed-set if the test subject is known to exist in the trainedclosed-set

identification database. In this case, the identification engine returns the identity of the person in
its database whose model most closely resembles the test sample.

In this chapter we present the basis of visual tracking and present a proposal of a
method to match unknown objects with an appearance-based model of generic visual
objects. This will provide an example of a typical application of object recognition
based on a single modality. The attention will then be on the specific task of recog-
nising persons, combining in this case multimodal information, namely appearance
(proposed method), face, gait and speech.



4.2. Visual object tracking 81

4.2 Visual object tracking

Object tracking consists of establishing correspondences between the regions defined
by an object detection algorithm for each frame, with other partitions in subsequent
frames. The goal is to generate the trajectory of an object over time by locating its posi-
tion in every frame of the video (Figure 4.1). The result may also include the complete
region in the image that is occupied by the object at every time instant. If additional
information is available, such as calibration information from the cameras that cap-
tured the scene, each frame can be associated with a global coordinate. During recent
years a very large community within computer vision has tackled object tracking with
a multitude of approaches. (Yilmaz et al., 2006) compiled an extensive survey; more
information about object tracking can be found there. We will nevertheless present
here an overview of the relevant concepts and approaches.

Figure 4.1: Example of the output of a person tracker. The output consists of the trajectory
of the person over time by locating its position in every frame of the video and the complete
region that is occupied by the person at every time instant.

Different shapes and appearance models can be used to represent the objects being
tracked. In the simplest form, an object can be represented by a single point poten-
tially representing that object’s centroid. This simple form of representation can be
used only with a translational model. However, more points located by an interest
point detector (Lowe, 2004; Mikolajczyk and Schmid, 2004) can alternatively be used
to describe the object, allowingmore complex transformationmodels. The association
of points comprising the individual detected objects in consecutive frames is based on
the previous object state which can include object position and motion. The methods
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following this approach are classified as point trackingmethods and can be divided intopoint
tracking two broad categories: deterministic and statistical methods. The deterministic meth-

ods use qualitativemotion heuristics (Veenman et al., 2001) to constrain the correspon-
dence problem, and probabilistic methods explicitly take the object measurement and
take uncertainties into account to establish correspondences.

Regarding the deterministic methods, Sethi and Jain (1987) solve the correspondence
by greedy approach using proximity and rigidity constraints, termedGreedy Exchange
(GE), later modified by Salari and Sethi (1990) to handle occlusions, and entries or ex-
its of new objects. More recently, Shafique and Shah (2005) proposed a multiframe
approach to preserve temporal coherency of the speed and position; correspondence
are formulated as a graph theoretic problem.

The statistical correspondencemethods use the state space approach to model the ob-
ject properties such as position, velocity, and acceleration. In the case where there
is a single object in the scene, the state can be simply estimated by two steps: pre-
diction (estimate prior pdf) and correction (estimate posterior pdf). Bar-Shalom (1988)
applied this method for object tracking using Kalman filtering (Kalman, 1960). For
linear and Gaussian systems, the optimal state estimate for the single object case is
given by the Kalman filter (implementation available at [39]). For non-linear systems,
adaptations like the extended Kalman filter and the unscented Kalman filter (imple-
mentation available at [40]) are possible. Also, with non-Gaussian systems, the Kalman
filter will give poor estimations of state variables. In the general case that object state
is not assumed to be a Gaussian, state estimation can be performed using particle fil-
ters (Kitagawa, 1987). Particle filter is a generic term for Sequential Monte Carlo (SMC)
techniques that are useful for object detection and tracking, among other applications
(tutorial by Arulampalam et al. (2002) and implementations available at [41]). Isard
and Blake (1998) applied particle filtering to the problem of visual tracking using ac-
tive contours. Other types of particle filters, and extensions to the traditional par-
ticle filter were introduced thereafter, including partitioned sampling (MacCormick
and Blake, 2000), and Markov Chain Monte Carlo (MCMC) particle filtering (Khan et al.,
2005).

Both Kalman and particle filtering assume a single measurement at each time instant,
limiting the state estimation to a single object. If there are multiple objects in the
scene, measurements need to be associated with the corresponding object states, re-
quiring a joint solution for the data association and state estimation problems. The
methods Joint Probability Data Association Filtering (JPDAF) (Fortmann et al., 1983)
and Multiple Hypothesis Tracking (MHT) (Reid, 1979) (later applied to visual tracking
by Cox and Hingorani, 1996) are commonly used for data association. The MHT algo-
rithm predicts multiple hypotheses for an object at each time step using a predictive
filter (often a Kalman filter), andmanages the hypotheses by clustering and pruning or
deferring difficult data association decisions until more data is received. While JPDAF
algorithm can not handle objects entering or leaving the Field of View (FOV), MHT
does but exhaustively enumerates all possible association, which is computationally
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exponential both in memory and time.

Using a geometric representation like an ellipse (as depicted in Figure 3.19), paramet-
ric motion models like affine or projective transformations are possible. This repre-
sentation form is associated with kernel tracking methods. Kernel refers to the objectkernel

tracking shape and appearance and can be a rectangular template or an elliptical shape with an
associated histogram. Objects are tracked by computing the motion of the kernel in
consecutive frames, usually in the form of a parametric transformation. Two types of
kernel tracking methods exist: templates and density-based appearance models, and mul-
tiview appearance models.

Templates and density-based appearance models have been widely used because of
their relative simplicity and low computational cost. Template matching is a brute
force method of searching the image for a region similar to the object template. As
an alternative to a brute force search for locating the object, Comaniciu et al. (2003)
use the mean-shift procedure (implementation of this method is available in OpenCV
as CAMSHIFT [17]). Prior to that Shi and Tomasi (1994) proposed the Kanade-Lucas-
Tomasi (KLT) tracker which iteratively computes the translation of a region centred
on an interest point (implementation of the method in [42]). All previous are single
object tracking methods, but within this type of methods, Tao et al. (2002) proposed an
object tracking method based on modelling the whole image as a set of layers for mul-
tiple object tracking. The appearance models (templates, histograms, etc.) are usually
generated online, representing themost recent object information. If, for example, an
object appears from a different view this appearance model may become incompati-
ble with the current appearance. Multiview appearance models (learned offline) can
therefore be used to overcome this problem. Two examples of this approach includes
the one proposed by Black and Jepson (1998) that used a eigenspace to compute the
affine transformation from the current image of the object to the image reconstructed
using eigenvectors, and Avidan (2004) that used a Support VectorMachine (SVM) clas-
sifier.

Both point and kernel representation forms are suitable to approximate the motion of
rigid objects. Tracking non-rigid objects requires nonetheless most descriptive repre-
sentations like the object’s silhouette. In this case, tracking is performed by estimating
the object region in each frame and describing it using appearance density and shape
models, usually in the form of a colour histogram, object edges or the object silhou-
ette. These methods are designated silhouette tracking methods, and can either followsilhouette

tracking a shape matching or silhouette evolution approach. Two types of silhouette tracking
are possible: shape matching and contour tracking.

Shapematching approaches search for the object silhouette in the current frame. Hut-
tenlocher et al. (1993) performed shape matching using an edge-based representation
and theHausdorff distance, while Sato andAggarwal (2004) proposed to generating ob-
ject tracks by applying Hough transform in the velocity space to the object silhouettes
in consecutive frames. Terzopoulos and Szeliski (1992) predict the silhouette using
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Kalman filtering, with the object state beingdefinedby thedynamics of the silhouette’s
control points. As mentioned previously, Isard and Blake (1998) and MacCormick and
Blake (2000) used particle filters for silhouette prediction. On the other hand, Chen
et al. (2001) rely on JPDAF to estimate the state transition probabilities of an HMM. In
contrast to shapematching approaches, contour tracking approaches, evolve an initial
contour to its new position in the current frame by either using the state space mod-
els or direct minimisation of an energy functional using greedy methods or gradient
descent. The contour energy is defined in terms of temporal information in the form
of either optical flow (Bertalmio et al., 2000), or appearance statistics generated from
the object and the background regions (Yilmaz and Shah, 2004).

Table 4.1 summarises the most relevant visual tracking approaches found in the liter-
ature.

4.2.1 Multi-camera object tracking

In typical visual surveillance or ambient intelligence systems, event analysis is based
on the tracking and identification of visual objects across multiple camera views. Ob-
jects are often captured in more than one view and it is desirable that these multiple
instances of the same visual object can be automatically identified. Consider the fol-
lowing visual surveillance scenario: a system operator identifies a suspicious person
crossing an area covered by a given camera and would like to be informed of where
and when that person was previously captured by the system. To accomplish this, the
surveillance systemwould have to track that person from the first moment it was cap-
tured by a camera and across all cameras whose field of view overlaps the person’s
path. The captured visual objects can be as diverse as people walking, riding a bicy-
cle or doing other activities, cars crossing a road, etc. The tracking of multiple visual
objects in one (usually static) view is a classic vision problem that has received much
attention and finds application not only in surveillance systems but also in other ma-
chine vision scenarios, such as robotics. Incidentally, multiple-view tracking has only
recently receivedmuch research activity. Themain advantages of usingmany cameras
for tracking in surveillance scenarios (Foresti et al., 2005; Wu et al., 2003) are: an arbi-
trarily large coverage of any given area since, for most environments, a single camera
is not able to provide adequate coverage; and, tracking performance improvement,
especially in critical areas and where more robustness against occlusion is desirable
(Mittal and Davis, 2003).

While a single-camera tracker searches for correspondences only between frames, the
task of a multi-camera tracker is also to establish correspondences between observa-
tions of objects across cameras. The ultimate goal is to correctly tag all instances of
the same visual object at any given location and at any given time instant.

Specific models can add constraints that simplify this task. For example, for human
tracking, Hu et al. (2004a) rely on the definition of principal axis. Moreover, for generic
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Type Occlusion
Method Handling Handling References

po
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· Deterministic
Greedy Exchange (GE) multiple no Sethi and Jain (1987)
Modified GE( MGE) multiple yes Salari and Sethi (1990)
Multiframe multiple yes Shafique and Shah (2005)
correspondence

· Statistical
Kalman filter single no Bar-Shalom (1988)
JPDAF multiple no citetBarShalom1988
MHT multiple yes Cox and Hingorani (1996)

ke
rn
el

tr
ac
ki
ng

· Templates and
density-based
appearance models
Mean-shift single partial Comaniciu et al. (2003)
KLT single partial Shi and Tomasi (1994)
Layering multiple yes Tao et al. (2002)

·Multiview app. models
EigenTracker single partial Black and Jepson (1998)
SVM single partial Avidan (2004)

co
nt
ou

rt
ra
ck
in
g

· Contour evolution
State-space model
Kalman filter single no Terzopoulos and Szeliski (1992)
Particle filter multiple no Isard and Blake (1998)

multiple yes MacCormick and Blake (2000)
JPDAF single no Chen et al. (2001)
Gradient descent
Temporal gradient single no Bertalmio et al. (2000)
Region statistics multiple yes Yilmaz and Shah (2004)

·Matching shapes
Template matching single no Huttenlocher et al. (1993)
Hough transform single yes Sato and Aggarwal (2004)

Table 4.1: Summary of visual object tracking algorithms.
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object tracking, a commonly used method is to find correspondences using featurefeature
matching matching. Matching colour or other features may be performed statistically using, for

example, Kalman filtering (Utsumi andOhya, 2000) or Bayesiannetwork inference (Nil-
lius et al., 2006; Qu et al., 2000). It is also possible to use camera calibration information
to learn more about the camera geometry and derive additional constraints. Cai and
Aggarwal (1999) use relative calibration between cameras and define correspondences
using a set of feature points in a Bayesian probability framework. Different camera
properties and illumination variations can contribute to different appearances of the
same object in different cameras. To overcome this, Javed et al. (2005) proposed learn-
ing the subspace of inter-camera brightness transfer functions. Ross et al. (2007), on
the other hand, presented a method that incrementally learns a subspace representa-
tion, adapting itself to appearance changes.

An alternative (or complement) to the previous method is to use a priori knowledge
of the captured area’s geometry, building a 3D model. Multiple cameras are used to re-3D model
cover the homographic relations between each camera view. In this case it is possible
to find correspondences by projecting the location of each object in the world coordi-
nate system, and establishing equivalences between objects that project to the same
location at the same time. Likewise, equivalences between views are established by
linking views that have similar projected 3D location. For example, Black et al. (2002)
use this method as well as a combined 2D/3D Kalman filter for object tracking. Creat-
ing the 3D model is not always a simple task, and therefore these methods are mostly
suitable for controlled environments. Alternatively, alignment-based approaches relyalignment

-based on recovering the geometric transformation between cameras automatically. This can
be done using spatial image alignment methods and incorporating time information
(Caspi and Irani, 2000) or by matching motion trajectories in different cameras (Lee et
al., 2000). Khan and Shah (2003) propose finding the limits of the field of view of each
camera that are visible by other cameras. Also, Zhao et al. (2005) propose a ground-
based fusion method for camera handover using space-time constraints and stereo
segmentation. However, using alignment requires overlapping fields of view which is
not always feasible. To avoid using overlapping field of views, cameras are located in
non-overlapping locations that nonetheless allow establishing path dependencies be-path

dependency tween them using probabilistic models (Javed et al., 2003; Kettnaker and Zabih, 1999).
On the other hand, Madden et al. (2007) relies on feature matching to find track corre-
spondences across multiple independent cameras.

In summary, most approaches of multi-camera tracking have one of the following
rationales: different angles of the same area, to improve tracking performance in clut-
tered environments; different but overlapping areas, simplifying the camera handover of
tracked objects; or non-overlapping areas with some path correlation between them, that can
be previously defined or automatically learned.
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Method Type References

fe
at
ur
e

m
at
ch

in
g

Kalman filtering DA Utsumi and Ohya (2000)
Bayesian network inference DA Nillius et al. (2006)

DA Qu et al. (2000)
Bayesian probability frame-
work using calibration between
cameras

DA Cai and Aggarwal (1999)

Learn subspace of inter-camera
brightness transfer functions DA Javed et al. (2005)

Learn incrementally subspace
representation DA Ross et al. (2007)

Find track correspondences for
independent cameras I Madden et al. (2007)

3D
m
od

el

Combined 2D/3D Kalman filter O Black et al. (2002)

al
ig
nm

en
t-

ba
se
d

Incorporate image alignment
and time information O Caspi and Irani (2000)

Match motion trajectories in
different cameras O Lee et al. (2000)

Find FOV limits O Khan and Shah (2003)
Fusion method using space-
time constraints and stereo
segmentation

O Zhao et al. (2005)

pa
th

de
pe

nd
en

cy

Probabilistic models NO Kettnaker and Zabih (1999)
NO Javed et al. (2003)

Table 4.2: Summary of visual object multi-camera tracking algorithms. Another classifica-
tion of most multi-camera tracking approaches is the underlying rationale: different angles of
the same area (DA), to improve tracking performance in cluttered environments; different but
overlapping areas (O), simplifying the camera handover of tracked objects; non-overlapping
areas with some path correlation between them (NO), that can be previously defined or
automatically learned; and, independent areas (I).
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4.3 Scalable object recognition using local features§

Inmany situations it is important to keep track of persons or other video objects across
independent areas, regardless of the time of capture, where it is not possible to rely
on the techniques mentioned in the previous section. For example, in a surveillance
scenariowithmultiple independent camerasweneed amethod that can reliably repre-
sent and identify the different visual objects. Since the number of objects is unknown
and existing objects can change their appearance, an incremental learning scheme is
also required. In this section we describe the proposed methodology to match tracked
objects across independent views, that can be scalable in two distinct dimensions: an
undetermined number of new objects can be added at any given instant and, existing
object representations can be updated to reflect changes in time. At the same time,
it needs to maintain performance at acceptable levels. As previously stated, when
trying to find correspondences between objects in independent views, methods like
alignment and path prediction are not suitable. Featurematching is therefore the best
alternative.

Our work can be seen as a complement to classic tracking techniques rather than a di-
rect alternative. It takes as inputs the results obtained by an object tracking algorithm
and establishes correspondences between objects, independently of their location and
the time of capture. Whereas most multi-camera tracking methods rely on geome-
try models, overlapping fields of view or on correlated paths between cameras, our
method does not assume any of these priors. A recent proposal by Madden et al. (2007)
finds some common points with our work, namely the rationale of relying on feature
matching to find track correspondences across multiple cameras. It also considers as
inputs the segmentations and tags of each object track detected system-wide but a dif-
ferent representation is used. Scalability issues also are not approached, namely the
storage of descriptors of increasingnumber of objects of tracks. With a very large num-
ber of tracks, the matching would require a one-to-one comparison between tracks
whichmay become easily unfeasible; in the article the authors only present results for
a small number of objects/tracks.

Object matching using appearance features is a well studied problem, especially in the
context of image retrieval. The joint use of interest point detectors and local descrip-
tors for object detection, recognition and classification has grown significantly (Lowe,
2004). Building on top of these descriptors, Sivic and Zisserman (2003), Willamowski
et al. (2004), and more recently Quelhas et al. (2007), showed the usefulness of relat-
ing image invariant local descriptors to visual words, or visterms. Sivic and Zisserman
(2003) successfully applied this approach to retrieve shots frommovies. Theyproposed
a description scheme where descriptors are extracted from local affine invariant re-
gions and quantised in visterms, reducing noise sensitivity in matching. Objects are
thenmatched and frames with similar content (i.e., visual objects) can be retrieved ef-

§This section is based on the articleVideo objectmatching acrossmultiple independent views using local descrip-
tors and adaptive learning published in the Pattern Recognition Letters. (Teixeira and Corte-Real, 2009)
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ficiently using inverted files. Nevertheless, this work still proposes solving a problem
closely related to classic image retrieval and does not take into account inherent con-
straints of real-time video capturing systems, such as scalability – namely storage and
computational restrictions. We use local descriptors and the bag-of-visterms paradigm
for object representation to match tracks detected in a visual surveillance scenario.
For this specific case, we are usually interested only in the foreground objects that are
captured by the system. Taking this into consideration, two differences arise when
comparing this work to others like the one by Sivic and Zisserman (2003): (1) descrip-
tor extraction can be restricted to the foreground, which can greatly increase speed
and (2) each object representation can change over time – for instance, a person can
have different appearances, depending on the capture angle – which implies updating
each object model continuously.
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Figure 4.2: Typical scenario handled by the visual objectmatching system. The same person
is tracked at different instants, although captured by the same camera; due to incomplete
appearance information it is labelled incorrectly but as new information is acquired the label
is corrected.

Figure 4.2 depicts an example of a typical scenariowewould like to address: one person
is detected and tracked; its description is extracted and stored and an identification
is assigned; in another instant, the same person is again detected and tracked; even
if initially a different identity is assigned, when more information is processed, it is
correctly identified. This process involves three distinct steps: (1) obtaining an object
description, (2) creating and updating a model of the objects, and (3) classifying the
object, given its captured track.
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4.3.1 Describing visual objects

Choosing a representation scheme for visual objects which is compact and representa-
tive at the same time is important to assure a feasible solution to the object matching
problem. The descriptors used to represent objects need to accommodate different
appearances – due to different camera characteristics, capture position, illumination
variations, etc. Madden et al. (2007) addressed this by a compact colour histogram
representation dubbed Major Colour Spectrum Histogram Representation (MCSHR)
which describes the object’s main colours. An incremental MCSHR (IMCSHR) is com-
puted over a period of time to compensate for small, short-term changes in the object’s
pose. Finally, a transformation is applied to IMCSHR to compensate for illumination
variations. The MCSHR description scheme is further discussed and evaluated in Sec-
tion 4.3.6. As an alternative to the representation scheme used in our method, we
also implemented MCSHR and evaluated it on the dataset presented in detail in Sec-
tion 4.3.6.

(a) Person01 (b) Person12

Figure 4.3: Example frames with superimposed points defined by the random point selector.

Local descriptors arewidely used for image retrieval applications, andwe nowpropose
to apply local descriptors to object track matching. For each object frame comprising
the full object track, a set of descriptors is extracted in specific keypoints. These points
are defined by an interest point detector (number of points depends on the image con-
tent) or by a random point selection (number of points is fixed and pre-defined). For
object matching and classification, the number of words extracted from the image is
the most important factor influencing performance (Nowak et al., 2006). Since objects’
images are usually very small, interest point detectors tend to select an insufficient
number of points to efficiently represent them. We used therefore random point se-
lection from a pyramid with regular grids, as suggested by Nowak et al. (2006), since
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this method provides a dense representation of each object image. In Figure 4.3 we
show example frames for two visual objects with superimposed points defined by the
random point selector.

A 128-dimensional vector is extracted in each keypoint using the SIFT descriptor de-
veloped by Lowe (1999). The descriptor is then quantised to form visual words using
a pre-defined vocabulary. Features obtained by SIFT are invariant to image scale, ro-
tation, and robust to changes in viewpoints and illumination. For most types of ap-
plications, it compares favourably with other local descriptor schemes (Mikolajczyk
and Schmid, 2005). When affine invariance is required, SIFT is more prone to perform
worse thanmore complex affine-invariant descriptors. Amore thourough description
of SIFT can be found in appendix, Section C.2.

4.3.2 Building the vocabulary

The Bag-Of-Visterms (BOV) concept derives from the bag of words model commonly
used in natural language processing to represent documents. It ignores words order
and allows a vocabulary-based modelling of a document. Similarly, with BOV, images
are modelled by a set of visual words, or visterms, according to a previously defined
vocabulary.

Most BOV approaches rely on k-means clustering of local descriptors to create a vo-
cabulary. The descriptor vectors of a training set are extracted and quantized into a
pre-defined number of words. Nistér and Stewénius (2006) proposed an adaptation
to this approach which, instead of creating a “flat” vocabulary, creates a hierarchical
relation of visual words in the form of a vocabulary tree. This allows a more efficient
search which, in turn, enables the use of large vocabularies. In our work, using a large
vocabulary is a key factor since we will not be using any information of the geomet-
ric layout of visual words extracted from an image. On the other hand, given the rate
at which frames are acquired and analysed, an efficient search of visual words is also
required. This trade-off needs to be taken into consideration when building the vo-
cabulary.

To build the vocabulary tree, an initial k-means clustering is first run on the training
data, defining k cluster centres. The data is then partitioned into k groups, where each
group consists of the descriptor vectors closest to a particular cluster centre, forming
quantisation cells, orwords. The sameprocess is then recursively applied to each group
of descriptor vectors, splitting each quantisation cell into k new parts. The vocabulary
tree is created level by level, up to a maximum number of L levels.

When a new object’s image needs to be classified, each extracted descriptor is prop-
agated down the tree by comparing the descriptor vector at each level to the k can-
didate cluster centres and choosing the closest one. At each level k dot products are
performed, resulting in a total of kL dot products. If k is not too large, the vocabulary
tree can be very efficient, compared to an equivalent “flat” vocabulary defined by the
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total number nodes M in the tree, which is given by:

M =
L∑

i=1

ki =
kL+1 − 1

k − 1
− 1. (4.1)

To account for different relevancies of tree nodes, a weightwi is assigned to each node,
and is defined by:

wi = ln N

Ni
(4.2)

where N is the total number of images in the model and Ni is the number of images
having at least one path through node i, i.e., containing the word represented by that
node.

The training process of the tree uses a large set of descriptor vectors in an unsuper-
vised fashion. Two data sources have been tested to build the vocabulary tree: (1) the
segmented objects from the dataset’s sequences (defined in Section A.3) as training
data forming a specific vocabulary Vs and (2) object frames from a different source as
training data forming a generic vocabularyVg . By using both vocabularies it is possible
to assess the performance impact of having a generic vocabulary to represent a wide
variety of objects.

� Descriptor vector

All extracted 128-dimensional SIFT vectors are quantised in visual words using the
vocabulary tree to define the final descriptor vector. For a given object c, its segmented
image Ic

t at instant t is represented by:

υ(Ic
t ) = {x1, x2, . . . , xi}i ∈ 1, . . . ,M (4.3)

where M is the number of words in the vocabulary, given by equation (4.1). Each
element xi of (4.3) is the weighted histogram of the words defined by the vocabulary;
xi is therefore given by:

xi = niwi (4.4)

where ni is the number of input descriptors containing the visual word i and wi is
the weight defined by equation (4.2). Unless stated otherwise, all experiments used
a vocabulary with k = 10 and L = 4, resulting in a representation vector of size
M = 11110.
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4.3.3 Adaptively updating and learning object models

In order to effectively update the previous model as new data becomes available, the
model should (1) be compact, that would not imply having all previous history stored,
and (2) be scalable, that would imply classifying visual objects that change in time,
while also having the ability to learnnewones. Recently, somemethodshave beenpro-
posed to solve this problem, such as Learn++ (Polikar et al., 2001). Learn++ draws its in-
spiration from AdaBoost, which in turn relies on an ensemble of classifiers trained us-
ing adaptive bootstrap techniques. It is iteratively updated by new sets of data, possi-
bly containing new classes. A modification called Learn++.MT, proposed by Muhlbaier
et al. (2004), improves the performancewhen new classes are added. Learn++.MTmeets
the compact and scalable requirements, andwas used to create our visual objectmodel.
A brief description of it follows.

� Learn++.MT algorithm

For each new datasetDk, the inputs to Learn++.MT are: (1) a sequence of training data
instances xi and their correct labels yi, (2) the classification algorithm BaseClassifier,
and (3) Tk, the maximum number of classifiers.

As in typical boosting learning algorithms, data is drawn according to a distribution
Dt. For the first set, Dt is initialised as a uniform distribution. From the second set
onwards, this distribution is updated according to the performance of the ensemble
on the new data. Tk classifiers are added to the ensemble when a new dataset is added.
For each new classifier, a subset ofDk is drawn, according toDt, and evaluated against
the new classifier to obtain the hypothesis ht. The classifier error is estimated by
ϵt =

∑
i:ht(xi) ̸=yi

Dt(i) and if ϵt > 1
2 , a new subset is drawn, discarding the classi-

fier. A dynamic weight voting (DWV) algorithm is then called to obtain a composite
hypothesis Ht. It represents the ensemble decision of all classifiers trained until now.
The distribution Dt is updated according to the performance of Ht. This process is
repeated until all new Tk classifiers have been trained.

The essential difference from Learn++.MT to its parent method is the voting scheme.
As in Learn++, voting is based on the weights assigned to each classifier but with DWV
these weights are modified according to the classification of the specific testing in-
stance. This is achieved by adjusting weights of classifiers that have not been trained
with a given class. The adjustment is proportional to the ensemble’s confidence on
that class.

4.3.4 Classifying objects

The goal of object classification is to attribute a known label to each input object frame
comprising that object’s track. This can be seen as amulti-class classification problem,
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with a variable number of classes. As described previously, we use the Learn++.MT al-
gorithm to handle class variability, and opted to use SVMs (Burges, 1998) as the re-
spective BaseClassifier.

SVMs are commonly used in machine learning problems, especially with large dimen-
sional input spaces – which is the case for the object classification problem. Standard
SVMs rely on margin optimisation to learn a decision function h(x), such that, if x be-
longs to the target class, h(x) is large and positive; otherwise, h(x) is negative. SVMs
are thus binary classifiers but can be adapted to multi-class problems; we opted for
the one-against-one approach, where n(n− 1)/2models are constructed for a n-class
problem. Additionally, we used linear kernel SVMs, mainly for processing speed pur-
poses. Specific kernels could alternatively be used, such as the pyramid match kernel
proposed by Grauman and Darrell (2005) for multi-resolution histograms.

4.3.5 Building the system

In summary, themain steps involved in the proposed solution for the surveillance sce-
nario from Figure 4.2 are: (1) detect objects, including segmenting and tracking them
for each view, (2) obtain a compact object description, yet sufficiently discriminative,
and (3) compare the object with the current visual object model, updating it if appro-
priate. A block representation of these steps is shown in Figure 4.4. While the first
step is performed independently for each camera/view, the third step aggregates in-
puts from all views. The second step, on the other hand, combines object description
which is performed independently for each view, and a common part to all views. This
common part consists of obtaining a histogram representation of the visterms found in
each object. A vocabulary of visterms, with which object descriptors are compared, is
obtained a priori and is kept unchanged.

Multiple appearances of an object are detected by matching a newly tracked object
with the visual object model. The matching process takes the object tracks (i.e., se-
quences of segmented images) detected by any given tracking algorithm as inputs and
finds multiple object occurrences. From an application point of view, it would act as a
linking mechanism between sequences. An operator analysing a sequence containing
an object would have the ability to know every other appearance of that object, and
the possibility to jump to another sequence, pinpointed by time and location. Numer-
ous other possibilities would than be possible, like using the previous knowledge of
camera location (if any) to represent graphically the known path of an object/person.

4.3.6 Validation

In order to assess the performance of our methodology, a dataset D30 was created.
More information about this dataset can be found in appendix, Section A.3.
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Figure 4.4: Block representation of the proposed method. Objects detected in each view are
first segmented and tracked; a description is extracted and quantised by a common global
vocabulary; finally, the visual object model is updated accordingly.

� Discriminative capability

To test the discriminative capability of the representation scheme, D30 was divided
in random training (fixed size) and validation (remaining) set partitions. We tested
two representation schemes: MCSHR (Madden et al., 2007) and bag-of-visterms us-
ing a vocabulary tree defined from SIFT descriptors, which we designate hierarchical
bag-of-visterms HBOV. Both consist of a descriptor vector for each image but, while
Hierarchical Bag-Of-Visterms (HBOV) defines a fixed-size vector, MCSHR’s size is vari-
able. Due to this, evaluation consisted of a majority voting classification procedure.
Each descriptor vector extracted from the test set images is compared with the train-
ing set descriptor vectors and votes are cast for the 10 closestmatching, using a 1-norm
distance metric. Results are obtained using a 5-fold cross validation. The SVM-based
classification method described in section 4.3.4 will only be used later.

The vocabulary for the HBOV was trained with datasetD30, i.e., with the same dataset
to be described by the vocabulary. We tested two different vocabulary tree sizes: 125
leaf visual words (k = 5 and L = 3) and 10000 leaf visual words (k = 10 and L = 4).
The overall results are shown in table 4.3.

The HBOV representation presents much better results, even with a descriptor size
similar to the ones obtainedwithMCSHR. If we increase the vocabulary size, and hence
the descriptor size, the results are further improved. Moreover, classification perfor-
mance with MCSHR is less resilient to similar objects, as denoted in the confusion ma-
trix shown in Figure 4.5(a) in opposition to Figure 4.5(c). With HBOV, and especially
with a larger vocabulary, all classes present a very high classification performance,
which clearly shows both the discriminative capability and stability of the represen-
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Vocabulary Classification rate Descriptor size
MCSHR 71.6 (17.7) variable,∼ 200

HBOV-125 82.9 (13.1) fixed, 155
HBOV-10000 95.0 (5.2) fixed, 11110

Table 4.3: Average classification rate and standard deviations. Results using MCSHR and
HBOV with different descriptor sizes are shown.

tation scheme described in Section 4.3. The MCSHR scheme is used as a comparison
baseline for the remaining experiments.

Since it is required that the descriptors are extracted in the shortest amount of time,
it is also important that MCSHR evaluate the time cost. For non-optimised implemen-
tations, while MCSHR descriptors can be extracted at a rate of approximately 3.7 typ-
ical track images per second1, HBOV-125 can be processed at 2.9 images per second
and HBOV-10000 at 2.7 images per second. As expected, due to higher complexity, the
HBOV extraction process is slower but nevertheless an optimised real-time implemen-
tation is equally feasible. Note that most of the time consumed in obtaining a HBOV
description for an image is spent extracting the SIFT descriptor vector (≈ 2/3 of the
total time). Due to this, the difference between HBOV-10000 and HBOV-125 is not very
significant.

Despite a relatively high time cost, this methodmeets the needs of a real-time surveil-
lance system since an optimised implementation could explore parallelization, redun-
dancy of track images in short periods of time (< 1s) and inactivity.

� Impact of using a generic vocabulary

The appearance of objects captured by a surveillance system is typically not known
a priori. Hence, it is useful to create a vocabulary from images that are not directly
related to the captured visual objects. We analyse the performance of such generic vo-
cabulary with a similar setup as before. For each image of the generic datasetDg 128-
size SIFT descriptors were extracted in the points defined by a Laplacian of Gaussians
(LoG) interest point detector (Lowe, 2004). The input for the vocabulary tree construc-
tion algorithm described in Section 4.3.2 consisted of the concatenation of all descrip-
tor vectors from all images.

The dataset D30 was again divided in random training and validation partitions. In
Table 4.4 we show the average performance of different types of vocabularies using in
each case a single multi-class SVM.While the first four vocabularies were created with
dataset D30, the last four were created with the generic dataset Dg . For both groups
we tested four different vocabulary sizes: 125 leaf words, with k = 5 and L = 3; 625
1Results obtained with a C++ implementation running on a Pentium IV 3.4GHz with 1GB of RAM
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Figure 4.5: Confusionmatrices of the object classification. Visual representation of confusion
matrices for different representation schemes.
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leaf words, with k = 5 and L = 4; 1000 leaf words, with k = 10 and L = 3; and, 10000
leaf words, with k = 10 and L = 4. Results show that the use of a generic dataset to
train the vocabulary does not affect significantly its performance.

Vocabulary Classification rate
baseline 71.6 (17.7)
V125

s 82.9 (13.1)
V625

s 92.7 (7.1)
V1000

s 93.6 (6.3)
V10000

s 95.0 (5.2)
V125

g 78.7 (14.8)
V625

g 91.4 (7.9)
V1000

g 91.6 (6.4)
V10000

g 93.3 (6.2)

Table 4.4: Average classification rate and standard deviations. Results using different vo-
cabularies are shown – specific Vs and generic Vg vocabularies, with tree sizes of 125, 625,
1000 and 10000 leaf words.

All experiments henceforth use V10000
g . Also, the SVM-based model trained withD30,

using V10000
g , will be designatedM30.

� Object representation adaptability

In the previous subsection each person’s data used to train the model consisted of in-
formation collected from a single track. However, it is important to know how the
classification performance stands with new captured tracks. For that purpose we used
M30 model to classify several different tracks. Table 4.5 shows the results obtained
for 8 new different tracks of 6 different persons. The first three new tracks have a
similar viewing angle to the tracks used for training; the five other new tracks have a
very different viewing angle and most of the time only the person’s profile is visible
(an example of both camera angles is shown in Figure A.4). The classification perfor-
mance using the baseline method is also presented. Unsurprisingly, the classification
rate using the previous model M30 (second column) is much higher for the first set
of new tracks. However, if we update the model with a random sample containing 50
images from each new track and retrain themodel also with these samples, the results
improve significantly (third column).

These results show that, given a correctmodel update, the visual object representation
effectively adapts to the object’s changes in time. Note also that the performance of
the baseline method has a high variability, presenting either a high or very low clas-
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person
ID

baseline previous
modelM30

updated
model

# of
frames

sim
ila

r
vi
ew

an
gl
e 01 57.5 (5.1) 76.8 (0.8) 93.4 (2.9) 331

12 84.3 (2.6) 71.6 (1.0) 95.9 (2.3) 293
20 11.9 (3.9) 43.1 (0.5) 83.4 (2.2) 422

di
ffe

re
nt

vi
ew

an
gl
e 01 19.6 (8.4) 50.1 (0.6) 89.6 (3.7) 280

06 14.1 (1.5) 12.7 (1.7) 97.2 (2.5) 86
12 70.9 (6.1) 12.0 (1.3) 83.8 (4.7) 272
29 24.5 (2.5) 17.5 (1.4) 93.1 (3.6) 146
30 14.7 (1.9) 26.8 (1.4) 94.4 (2.3) 176

Table 4.5: Classification rate of different tracks using M30. Results are obtained for (1)
the baseline, (2) the model M30 trained previously and (3) an updated model, including a
sample of the new track.

sification performance. This confirms the conclusions drawn previously regarding its
discriminative capability.

� Resilience to incorrect segmentation

Until now, all objects were tested with the respective segmentations defined by the
ground-truth’s bounding box. In a real scenario the only information about the ob-
ject’s location is the segmentation obtained using for example a background subtrac-
tionmethod. However, with such automatic segmentationmethods errors occurmore
often. An example of an incorrect segmentation is shown in Figure 4.6. The segmen-
tation shown in green is very different from the true segmentation. It suffers from
false positives errors – the person shadow to the left – as well as false negatives – part
of the person is not correctly classified. Also, part of the same person is merged with
the segmentation shown in red. It is clear that segmentation errors will inevitably
penalise the overall performance. In order to assess the effect of imperfect segmenta-
tion on our classification performance, we used the segmentation algorithm proposed
in Section 3.3 and classified the segmented objects according to the ground-truth.

In Table 4.6 the confusion matrix of a model trained and tested with the images ob-
tained with background subtraction algorithm is shown. The model consists only of
the 4 classes of objects considered in this scenario and in this case a good discrimina-
tion is achieved.

If we test the object images extracted with the background segmentation algorithm
withM30 model, results deteriorate. In Table 4.7 we summarise the results obtained
with thismodel and the baseline, both using as inputs the segmentation algorithm and
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Figure 4.6: Incorrect segmentation example. From left to right: Person01 (blue segmenta-
tion), Person20 (red segmentation), Person06 (green segmentation).

estimated class # of
01 05 06 20 frames

tr
ue

cl
as
s 01 96.8 0.0 3.0 0.1 356

05 1.7 98.0 0.1 0.2 601
06 1.1 0.8 96.5 1.6 390
20 1.1 0.7 0.2 98.0 1246

Table 4.6: Confusion matrix of the tracks segmented using a background subtraction algo-
rithm.

the ground-truth. Despite a smaller classification rate of the first 3 visual objects, all
are successfully discriminated. The baseline representation method shows a signifi-
cantly worse performance, probably due to its less resilience to occlusions and incor-
rect segmentation of objects. Interestingly, the results for Person20 are better proba-
bly due to a good overall track segmentation. In theory, with a perfect segmentation, a
better object description is achieved since the background is removed while the object
is kept, but this is often not the case.

� Incremental model learning

One of the requirements defined earlier for the object model was that it should be
adaptable to changes. In a visual surveillance scenario the objects’ appearances can
vary, depending on the viewing angle they are captured. We need therefore a way
to incorporate these changes in the model. The straightforward approach to accom-
modate this variability of incoming data is to recreate a new model whenever a new
set of data is available (similar to the approach tested in Section 4.3.6). When, for in-
stance, newdata becomes available, the previousmodel is forgotten and anewmodel is
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person segmentation ground-truth
ID baseline M30 baseline M30

01 51.5 (2.4) 95.1 (0.2) 65.2 (2.1) 97.5 (1.5)
05 39.4 (3.5) 94.9 (0.5) 65.4 (1.7) 99.0 (0.1)
06 30.8 (1.7) 96.4 (0.5) 58.9 (1.9) 98.8 (0.8)
20 35.0 (2.1) 76.1 (0.1) 62.9 (2.3) 73.5 (2.5)

Table 4.7: Average classification rates and standard deviations. Results using the segmented
tracks (second and third columns) and the ground-truth (fourth and fifth columns) are shown.
For each case, results are shown for the baseline and theM30 model.

trainedwith that data, as well as with previous data. This approach, despite being sim-
ple, is unfeasible in real systems since it requires ever increasing storage resources, as
well as computational resources. Nevertheless, this approach provides a performance
reference to which our incremental learning will be compared to. The experimental
setup consisted of training amodel based on amulti-class SVM for all the data available
until thatmoment. The incoming data consists of the subsetsDi defined in Section A.3
and represented in Figure A.6.

The incremental learning approach described in Section 4.3.3 was tested in a similar
fashion as the model rebuild approach. However, in this case, whenever a new set of
data becomes available, only that set’s data is provided to the classifier. The model
is then updated, providing that new classes that appear are learnt and classification
performance of other classes is kept. The number of classifiers added to Learn++.MT
when a new set is added was of Tk = 4.

type of model update
subset retrain all incremental # of frames
D1 98.9 (2.0) 83.9 (16.8) 1864
D2 97.5 (5.0) 45.5 (34.2) 2813
D3 98.1 (2.8) 58.0 (22.4) 3158
D4 95.9 (6.0) 37.7 (16.9) 2770
D5 91.0 (8.5) 47.7 (13.1) 1951

test set 98.0 (2.9) 52.2 (20.5) 1500

Table 4.8: Classification rate for the simplified model update. At each new set a new model
is built using all current available data. Classification performance is kept at a very high rate.
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We evaluated the two update methods using a 5-fold cross-validation, and the over-
all results are shown in Table 4.8. For each subset, the total number of frames is also
shown. Comparing the classification rates, it is clear that performance drops signifi-
cantly if we use an incremental model update instead of the simplified approach. With
a large number of new classes appearing in each new incoming data, the model is not
able to adapt as promptly. Nevertheless, the overall classification rate of object images
reaches around 50%, which is an acceptable value given the number of object classes.
Also, an increase of performance in the last subset suggests that with more data the
model adapts adequately. Table 4.9 shows the partial results for each subset. Note that
only the performance results for half of the classes are shown for brevity (no particular
choice).

A better measure of performance of our system is how successfully can the system
classify the whole track. In our case, track classification is performed for each time
window. The window, or segment, comprises a large number of images – 150 in this
case – and a simple classification rule can be applied: a segment is classified as the
visual object gathering the largest amount of frames labelled as that object. The last
line in Table 4.9 shows the results for track classification, with an overall correct clas-
sification rate of 76.2%. Note that this result is for the model that resulted from all
incremental updates.

4.4 Person recognition

The appearance analysis proposed in the previous section has some limitations. Al-
though for typical cases heuristics can be used to narrow the number of objects, this
type of matching is only effective for a limited time window (maybe a day), since a
person’s appearance including her/his clothes changes. Alongside appearance spe-
cific features may also be used, and humans have distinctive features that distinguish
one person from another. In this section we analyse face, gait and speaker recognition
methods and discuss a possible multimodal person recognition system.

4.4.1 Face recognition

A distinctive characteristic used by humans to recognise other humans is the face.
The recent evolution of automatic recognition of faces raised this technology to a level
where it can now be used for both verification and identification (open-set and closed-
set) of persons. In Figure 4.7 the typical process of face recognition is depicted.

The first systems followed a semi-automatic approach, where features such as eyes,
ears, nose, and mouth were manually located and measures were taken automatically
afterwards (an example of an early work in this area is the one by Goldstein et al., 1971).
In these earlier stages of automatic face recognition, Kanade (1977) also explored the
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Figure 4.7: Face recognition task. An image with unknown identity is first compared with
the ones in the database using a face recognition algorithm. If the person is in the database,
a match occurs and the identity is returned. The database may contain more than one image
of each person, with different illumination conditions, expression and pose. (images are from
the FERET database Phillips et al., 1998).

automatic location of these features. Face recognition methods can broadly be classi-
fied either as holistic or analytic approaches.

Holistic methods make use of the information derived from the whole face. An ex-holistic
methods ample is the application of the principle of Principal Component Analysis (PCA) to

face recognition by Kirby and Sirovich (1990). Their work demonstrated that a rel-
atively small number of values were required to accurately code a suitably aligned
and normalised face image. The algorithm by Turk and Pentland (1991), although lim-
ited by environmental factors, enabled the creation of reliable real-time automatic
face recognition systems; image face data is processed by PCA in order to reduce its
dimensionality The result is a set of uncorrelated components – eigenfaces – which,
combined through a weighted sum, represent a face. Each new image to be tested
is compared with the known faces by measuring the distance between their respec-
tive feature vectors. A limiting requirement of PCA is that face images must be the
same size and must first be normalised to line up the eyes and mouth of the subjects
within the images. Also, although good results are achieved with full frontal faces,
poor performance is obtained otherwise. Many other adaptations of this method were
also proposed, namely probabilistic eigenfaces (Moghaddam and Pentland, 1997) and
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modular eigenfaces (Pentland et al., 1994). Belhumeur et al. (1997) applied Fisher Lin-
ear Discriminant (FLD)/Linear Discriminant Analysis (LDA)(Fisher, 1938). LDA defines
a projection that maximises between-class variance and minimises within-class vari-
ance, defining fisherfaces. When dealing with high dimensional face data, this tech-
nique faces the small sample size problem that arises where there is a small number
of available training samples compared to the dimensionality of the sample. For that
reason PCA is usually used to reduce the feature dimension before LDA (Zhao et al.,
1998). Other methods were also proposed to solve the small sample size such as regu-
larised LDA (Lu et al., 2003) and direct LDA (Yu and Yang, 2001). Independent Compo-
nent Analysis (ICA), that uses higher-order statistics, can be used as an alternative to
PCA (Bartlett et al., 2002). In order to achieve greater generalisation, learningmethods
like probabilistic decision-based Neural Network (NN) (Lin et al., 1997) and evolution-
ary pursuit (Liu and Wechsler, 2000) were proposed.

Alternatively to holistic methods, analytic methods compare only salient facial fea-analytic
methods tures. The earlier approaches Kanade (e.g. 1977) described previously can be defined

as analyticmethods aswell asmore recent approaches. An example aremethods based
on HiddenMarkovModel (HMM), that do not find the exact locations of facial features
(Nefian and Hayes III, 1998). Local features are generally considered to be more robust
to complex distortions of face information that can be caused by variations in illumi-
nation, facial expression and pose. Wavelet analysis, and in particular wavelets based
on Gabor functions (Gabor, 1946), have demonstrated to have these properties (Shen
and bai, 2006). The application of Gabor wavelets to face recognition was initially pro-
posed by Lades et al. (1993) using a dynamic link architecture. Faces are represented
by a rectangular graph with local features based on Gabor wavelets extracted at de-
formable nodes. Wiskott et al. (1997) extended this method to EBGM. A Gabor wavelet
transform creates a dynamic link architecture that projects the face onto an elastic
grid. The Gabor jet is a node on the elastic grid that results from the convolution of
the image with a Gabor filter; it describes the image behaviour around a given pixel.
Recognition is based on the similarity of the Gabor filter response at each Gabor node.
The crucial point of EBGM for a successful recognition system is to obtain an accu-
rate landmark localisation where Gabor jets are extracted. This is however a difficult
task and can be achieved using differentmethods, for example combining PCA and LDA
methods. Similar approaches that extract local information from salient facial features
have been exploredmore recently, namely Line EdgeMap (LEM) (Gao and Leung, 2002)
and Directional Corner Point (DCP) (Gao and Qi, 2005).

Methods following other types of approaches can also be found in the literature – flex-
ible shape models (Lanitis et al., 1997), recognition based on depth-maps and surface
curvature (Gordon, 1991), and 3Dmorphablemodel (Huang et al., 2003), just tomention
a few examples. Detailed reviews of face recognition methods can be found in (Zhao et
al., 2003) and (Abatea et al., 2007).
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Method References

ho
lis
tic

Principal Component Analysis (PCA)
Eigenfaces Kirby and Sirovich (1990),

Turk and Pentland (1991)
Probabilistic eigenfaces Moghaddam and Pentland (1997)
Modular eigenfaces Pentland et al. (1994)

Linear Discriminant Analysis (LDA)
Fisherfaces Belhumeur et al. (1997),
(PCA+LDA) Zhao et al. (1998)
Regularized LDA Lu et al. (2003)
Direct LDA Yu and Yang (2001)

Independent Component Analysis (ICA) Bartlett et al. (2002)
probabilistic decision-based NN Lin et al. (1997)
Evolutionary pursuit Liu and Wechsler (2000)

an
al
yt
ic

Geometry-based methods
earlier methods Kanade (1977)
recent methods Cox et al. (1996)

Dynamic link architecture (DLA)
original DLA Lades et al. (1993)
EBGM Wiskott et al. (1997)

Line edge map (LEM) (Gao and Leung, 2002)
Directional corner point (DCP) (Gao and Qi, 2005)
Hidden Markov Model (HMM) Nefian and Hayes III (1998)

ot
he

r Flexible shape model Lanitis et al. (1997)
Depth-maps and surface curvature Gordon (1991)
3D morphable model Huang et al. (2003)

Table 4.10: Summary of face recognition methods.
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Figure 4.8: Elastic Bunch GraphMatching (EBGM). The grid nodes are positioned automat-
ically using the EBGM algorithm. Note that the grids adapt to different poses. (image from
Wiskott et al., 1997).

4.4.2 Gait recognition

Theway apersonusuallywalks is a distinctive feature thatmaybeused for recognition.
Gait is an idiosyncratic characteristic (Johansson, 1975; Troje et al., 2005) and relates to
the way a person walks. It is a complex spatiotemporal biometric that can be used to
distinguish individuals. The recognition based on gait analysis typically proceeds by
extracting the silhouette of the walking person and by analysing that silhouette se-
quence over time. The interest in using gait as a biometric feature to identify a person
has grown recently, especially for automated person identification systems at a dis-
tance, where for instance face information is not available in high enough resolution
for recognition. Also, gait is more difficult to conceal than other biometric features
(Nixon et al., 1999).

The analysis of gait encompasses two components: shape and motion; most meth-
ods proposed in the literature use primarily one of them. Regarding the shape fea-
tures, average silhouette is commonly used (Han and Bhanu, 2004; Veres et al., 2004).
Other shape-based gait features include clustered silhouette stances using HMM and
dynamics-normalised shape cues (Liu and Sarkar, 2006). On the other hand, motion-
based methods include those that use body part moments extracted from a human
body silhouette (Lee et al., 2003), eigengait space (BenAbdelkader et al., 2002) andHMMs
(Kale et al., 2004). Even though shape-based methods were shown to outperform the
motion-basedmethods (Sarkar et al., 2005), shape suffers from greater variance within
the same individual, influenced by external conditions like footwear, clothing and load
carrying. Therefore, more robust gait recognition can be achieved by taking into ac-
count variations of both types of features. For instance, Collins et al. (2002) used shape
cues like body height, width, part proportions in combination with motion cues like
stride length and the amount of arm swing to improve recognition results. An alter-
native approach that combines information from shape and temporal variation (in
essence, motion) are spatio-temporal patterns. Examples of these patterns are self
similarity plot (difference values of all pairs of images) (Cutler and Davis, 2000b), frieze
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patterns (projection of silhouette images along horizontal and vertical axis) (Liu et al.,
2004), and Gait Energy Image (GEI) (Han and Bhanu, 2006), among others.

4.4.3 Speaker recognition

Speaker recognition is the task of identifying a person from the his or her voice char-
acteristics that are automatically extracted and analysed. A related concept is speech
recognition, but whereas in speaker recognition we are interested in recognising who
is speaking, in speech recognition we are interested in recognising what is being said.

Speaker recognition can be broadly used in two application areas: speaker verification
and speaker identification. In this case the difference between both is more subtle. In
the case of speaker verification the goal is to verify if the identity claimed by a given
speaker is in fact correct. On the other hand, speaker identification occurs when the
goal is to identify an unknown speaker. In ourworkwe are interested in the latter area.
Also note that, given the context of use of the speaker verification methods – typically
authentication systems – their precision should be very high to avoid unwanted intru-
sions due to false positives. The same does not apply necessarily to speaker identifica-
tion systems.

The methods for speaker recognition can be divided into text-dependent and text-
independent methods. The difference between both lies in the enforcing of accept-
able text corpora. While the former requires the speaker to provide utterances of
known words or sentences, the latter does not require that a specific text is spoken.
Text-dependent methods can directly exploit voice individuality associated with each
phoneme or syllable, which results in a higher recognition performance. Neverthe-
less, these methods can only to be used in a limited scope of applications, usually
authentication-related.

Markel and Davis (1979) introduced text-independent speaker recognition using long-
term statistics such as the mean and variance of spectral features over a series of ut-
terance. Later codebook models for Vector Quantization (VQ) (Soong et al., 1985), and
statistical models with GMMs (Reynolds and Rose, 1995) were also proposed. VQ ap-
proaches have the goal to compress the training data of the otherwise impractical rep-
resentation of short-term training feature vectors of a speaker. A somewhat dated but
comprehensive tutorial about speaker recognition by Campbell, Jr. (1997) provides de-
tails on these approaches.

More recently, advances have been made to speaker recognition methods, being the
introduction of discriminative techniques and advanced channel compensationmeth-
ods. The variability of the channel and environment is an important factor affecting
the performance of text-independent speaker recognition systems, and techniques
model-based for channel compensation are usually used. GMM-based methods are
usually used, but other methods have been also proposed, such as Nuisance attribute
projection (NAP) (Solomonoff et al., 2005) and factor analysis (FA) (Kenny et al., 2005),
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both proving to reduce error rates. Regarding the introduction of discriminative tech-
niques, SVMs in combination with standard GMMs resulted in improved performance,
with examples such asGeneralized LinearDiscriminant Sequence (GLDS) kernels (Camp-
bell et al., 2006b), and GMM Supervector Linear (GSL) kernel (Campbell et al., 2006a).

4.4.4 Multimodal recognition

The different person recognitionmodules can be combined to form amore robust sys-
tem. Rather than alternatives, face, gait and speaker recognition methods can be used
in cooperation. Whenever the visual data does not carry enough information to iden-
tify a person but speech is detected (refer to Section 3.4 for details on audio detection),
the speaker recognition module can provide that information. In Figure 4.9 a possible
system architecture of a multimodal person recognition system is shown. Initially the
visual scene is segmented into visual objects (1a) and tracked along time (2). Also, the
time segments containing speech are obtained (1b). The results of appearance analysis
(3a), face analysis (3b), gait analysis (3c), and speaker analysis (3d) are matched with
the objects stored in the object model (3e). Finally, the combined recognition result is
obtained (4) and the object model is updated if necessary (5).

Camera

Object 

Segmentation

Object

Tracking

Appearance 

Analysis

Face Analysis

Gait Analysis

Speaker 

Analysis

Multimodal 

Identity 

Verification

Audio Audio 

Segmentation

1a 2 3a
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3d
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5

Visual

4

Object model

1b

Figure 4.9: Block representation of the multimodal person recognition system. Initially the
segmented visual objects are extracted from the raw data (1a) and the time segments con-
taining speech are obtained (1b); the visual objects are also tracked in time (2); the results of
appearance analysis (3a), face analysis (3b), gait analysis (3c), and speaker analysis (3d) are
matched with the objects stored in the object model (3e); the combined recognition result
is obtained (4) and the object model is updated if appropriate (5).

In an early work in this area, Shakhnarovich et al. (2001) showed that integrated face
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andgait recognitionprovides improvedperformance over eithermodality alone. Com-
bining gait and face information can result from an early fusion method, combining
data at the feature level. A recent work by Zhou and Bhanu (2008) integrates infor-
mation from side face and gait at the feature level. The features of face and gait are
obtained separately using PCA from enhanced side face image and gait energy image
(GEI), respectively. Multiple discriminant analysis is employed on the concatenated
features of face and gait to obtain discriminating synthetic features.

Bernardin et al. (2008) integrate in a probabilistic model tracking cues as well as face
and voice identification cues from several non-intrusive cameras and microphones,
whenever these cues can be captured with a sufficient degree of confidence. Themain
difficulty of using audio cues captured only with far-field sensors (as in the case of
surveillance) is that, without audio localisation, no association can be done between
speech and speaker. Speaker information can also be combined with the other bio-
metric information using late fusion, due to the different nature of the features. The
fusion is thus performed at the decision level, combining identification information
from gait/face recognition and speaker recognition modules.

A final reference to Mistral [43], an open-source project that aims to provide an effi-
cient platform. Mistral implements in a single recognition engine support formultiple
modalities, primarily voice and face and implements some of the methods described
previously.

4.5 Summary

Object recognition is the task of associating an identity to a given object from a set of
known classes, which relates to the problem of matching models from a database with
an unknown sample. A recognition systemcomprises two stages: the acquisition stage,
where a model library is constructed from certain descriptions of the objects; and the
recognition stage, where an unknown object is given to the system and its identity
is determined. Object tracking is a task that combines the detection of target objects
in each frame, and the identification of correspondences frame to frame between de-
tected objects so that they have consistent identities. Object tracking is in part related
to object recognition in the sense that matching between objects is required to estab-
lish correspondences. Nevertheless both processes rely on differentmethods, keeping
inmind that tracking has the additional temporal element. We presented an overview
of visual object tracking methods in a single camera or across multiple cameras. The
concept of tracking can also be applied to audio signals, but was not considered in this
work.

In this chapter we also presented a method for appearance-based object recognition.
A combined representation scheme and incremental object model was used to find
matches between visual object tracks. We relax the assumption of dependence be-
tween views, since: (1) no calibration information is used, (2) no spatial registration is
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made, and (3) no correlation is assumed between tracks detected by different cameras.
The scheme was experimentally validated for a surveillance scenario using a publicly
available dataset. The description scheme relies on SIFT local descriptors and a text-
like bag-of-words representation. Object images are identified by a histogram of visual
words that are identified in the image. Results show that this object representation
scheme can be used to aid tracking of generic objects in visual surveillance systems,
since it can discriminate a large quantity of different visual objects very well, and can
be adapted to reflect object changes. It also presented a good resilience to incorrect
segmentations when extracting the visual objects from complex scenes. The object
model is updated through incremental learning, avoiding excessive data storage while
maintaining performance and allowing new objects to be learnt by the system. This
appearance analysis is effective for a limited time window since a person’s appearance
including her/his clothes changes. A more effective methodology relying on human-
specific distinctive features, like face, gait and voice could be used. We analysed the
typically used methods for each individual task and discussed how they can be com-
bined to create a multimodal person recognition system.

In the next chapterwewill focus on the last area defined in the thesis scope (Figure 1.3)
– event analysis.





5 Event analysis
In a library of sequences captured by multiple cameras and covering a large area
it is essential to have a way to efficiently browse the content. If we want to obtain
expeditious answers of what occurred in a given time interval, direct manual inspection
may not be possible. Event analysis methods that identify relevant activities and
events are therefore needed. Event analysis comprises event detection and recognition
tasks which are usually intrinsically related. While object analysis is essentially related
to the content, event analysis has a strong context-dependent component. This means
that, in order to understand what is a relevant event, we must know the context of
the captured scene.

5.1 Overview

Automatically detected events are important cues for indexing and browsing very long
audiovisual sequences that otherwise would be difficult and time-consuming to exam-
ine, for example for forensic analysis in a surveillance system. In this scenario, events
can also generate alarms for an operator if detected in real-time. Xie et al. (2008) define
events as real-world occurrences that unfold over space and time. Events are based in a
more generic concept – actions. Zelnik-Manor and Irani defined actions (or behaviours)
(Zelnik-Manor and Irani, 2006) as long-term temporal objects spanning several frames.
The length of the action, which is directly related to the number of frames that need to
be analysed may vary significantly, depending on the type of event, which further in-
creases the difficulty of segmenting them in an arbitrary sequence. These actions can
then be mapped into events, depending on the type of application. Note that, whereas
actions can be classified regardless of the application, events usually are associated
with a context. For example, a door opening will necessarily be detected by a surveil-
lance system and can generate a relevant event if that door was not supposed to be
opened; on the other hand, if that door opens very frequently it may not be desirable
to trigger events in this case.

A classification was proposed by Polana and Nelson (1993) comprising three types of
temporal objects, according to their spatial and temporal uniformity: 1) temporal tex-
tureshave indeterminate spatial and temporal extent, for examplewind swinging trees
or flowing water, 2) activities are temporarily periodic but spatially restricted, for ex-
ample a person walking or running, and 3) motion events are isolated actions that do
not repeat either in space or time, for example a door opening. Each of these types are
associated with a characteristic approach for modelling and recognition.

113
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Another possible classification of events consists of distinguishing their commonness
of occurrence. Events can either be usual or unusual (alternatively, normal or abnor-
mal). This differs from other commonly used classification that considers the event’s
frequentness – events are defined as regular or sporadic. Note that sporadic events
may or may not be considered abnormal, but regular events are almost always nor-
mal. As before, these event properties affect how the event analysis is devised. For
example, regular and sporadic events can both be detected with a set of trained clas-
sifiers, but detecting unusual events often means finding outliers that do not fit the
current set of models.

A substantial part of the effort in recent years in event analysis focused on the detec-
tion of events in sports videos (Chen et al., 2006; Ekin et al., 2003; Leonardi et al., 2004;
Sadlier andO’Connor, 2005; Zhang andChang, 2002; Zhou et al., 2000). Since the types of
events is usually limited and their characterisation well defined, a good performance
can be achieved. Event detection is typically performed in two steps. Firstly, low-level
descriptors are extracted to represent the content in a compact set; and secondly, a
decision is made whether an event was detected, usually based on a machine learning
technique. Considering a real-world scenario, for example visual surveillance, typi-
cally three distinct modules comprise the automatic surveillance system. The previ-
ously mentioned object detection and object tracking, and event detection. While the
two former provide a spatial or spatio-temporal segmentation of the scene, event de-
tection segments the video temporally by detecting interesting or unusual events. The
definition of these events depends on the context of application and may include de-
tection of abandoned luggage, loitering, unusual movements, abnormal crowd move-
ments, vandalism, etc.

In the literature it is common to find references to event detection. This definition
is rather generic and refers in fact to different tasks and diverse goals. The following
tasks can be defined in event analysis: detection, recognition, and discovery.

This chapter presents the concepts of event analysis and some of the previous work
done in this area. Similarly to other chapters, we will not present an exhaustive study
and evaluation of the methodologies used to analyse events. An extensive review of
event analysis in multimedia streams was very recently done by Xie et al. (2008). In
there, references to more work in this area can be found, including some not directly
related to the scope of this thesis.

5.2 Event detection and recognition

The task of event detection is commonly performed in event analysis systems, since it
is often used as a preliminary step for other analysis tasks. This task consists of com-
paring the input data with a known event or event model in order to define if that
event has occurred. The output for a given sequence is binary, stating if a given event
happened or not in that sequence. Event recognition is closely related to event detec-
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tion. Both tasks are often associated in a single task. The goal of event recognition
is to recover from the data a description of the event. This description can include
attributes that identify the event, the location, and the associated object (if any).

Many approaches have been proposed to handle event detection and recognition. A
simple method is comparing distances of pixel-based features that represent changes
in time and space of the input data and templates. For controlled environments where
the camera position is known these methods can be effective. For example, Davis
and Bobick (1997) use a motion history image that integrates motion intensity with a
memory-related weighting factor. Action recognition is done comparing the distance
between these images and templates. Zelnik-Manor and Irani (2001) detect events by
clustering themotion data using the local intensity gradient as input features. A view-
invariant method proposed by Rao et al. (2002) is achieved with the motion curvature
method and dynamic segmentation of the object in space and time.

The most common approaches to model actions focus on periodic activities and tem-
poral textures (Polana and Nelson, 1993; Saisan et al., 2001; Szummer and Picard, 1996).
A simple approach to model structured activities is to represent objects using distri-
butions of features at multiple scales. While Chomat and Crowley (1999) proposed us-
ing distributions of motion features at multiple spatial scales, Zelnik-Manor and Irani
(2006) used multiple temporal scales. Other approach proposed by Efros et al. (2003)
consists in comparing templates of dense optical flow fields. This approach however
does not handle correctly objects with different sizes and shapes or with different
phases of the motion.

The conceptual similarity between events and a structured aggregation and evolution
of tracked objects influenced many authors to use grammars and graphs to encode
event relationships. Medioni et al. (2001) rely on graphs and represent tracked ob-
ject parts as the nodes, and the tracking likelihoods as edge weights. Events are then
matched with known events using a finite state automaton. An example of an ap-
proach using grammars, is the work by Ivanov and Bobick (2000). They use as stochas-
tic context-free grammar (SCFG) to recognise complex action sequences. Low-level
objects are initially segmented and tracked and SCFG is used to analyse the sequence
of object transitions. Seong-Wook and Chellappa (2006) extended SCFG with an at-
tribute grammar. Shi et al. (2004), on the other hand, propose propagation networks
to recognise activity, with the inference process being done by particle filtering.

A different approach consists of using statistical models. It is however necessary that
enough training data is available. As previously mentioned for other tasks (for exam-
ple, in Chapter 4, face and gait recognition)HMMs is commonly used for stochastic rep-
resentation of sequences. In the case of event analysis, extensions of traditional HMM
methods, like CoupledHMM (CHMM) (Brand et al., 1997) were proposed. CHMMexplic-
itly models the temporal dependencies among different streams for multi-object ac-
tion recognition. Chen et al. (2004) use a dynamic Bayesian network (DBN) for inferring
events in a multi-camera home surveillance scenario. In a recent proposal, Gupta and
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Davis (2007) follow a different approach andmerge object recognition, object tracking,
and event recognition in a single recognition framework. Bayesian networks are also
used to accomplish this.

Although generative models, like HMMs, are typically more suited for modelling tem-
poral evolution, some authors also considered discriminative methods. For example,
a variant of NNs called functional link network was used by Eng et al. (2003) for de-
tecting drowning and distressing events in swimming pools. SVMs can also be used on
kernels generated from HMM likelihoods and parameters from input feature streams
(Ebadollahi et al., 2006).

5.3 Event discovery

Event discovery aims to find events without previously knowing its semantics. Auto-
matically detecting events that were not learned beforehand, rely on finding regular
events and unusual events.

Regular patterns are typically found using clustering operations with various features
and models. Clarkson and Pentland (1999) cluster AV streams with HMMs to identify
different user locations. Pavan Turaga (2007) build linear dynamic systems on opti-
cal flow features for surveillance action events, with temporal, affine, and view in-
variance. Zhu et al. (2005) use association rules on mid-level AV features to discover
events.

Unusual events are identified as deviations from usual activity collected previously,
and are detected using an underlying distance/similarity metric. Zhou and Kimber
(2006) trained a coupled HMM with the usual events in typical surveillance streams
and detect unusual events as outliers in the likelihood values. Other methods to find
unknown events worth mentioning include analysis of co-occurrence matrix (Zhong
et al., 2004), multilevel Self-Organizing Map (SOM) clustering (Petrushin, 2005), and n-
grams (usually used in natural language processing and genetic sequence analysis) and
suffix trees (Hamid et al., 2005).

5.4 Activity analysis

Activity analysis based on object trajectories is one of the basic problems in event anal-
ysis for video surveillance. The term activity analysis is often confusedwith behaviour
analysis. Makris (2004) distinguishes both terms the following way. Activity describes
the global motion of an object within a scene, which is defined as the sequence of tar-
get positions over time. This sequence is commonly referred to as object trajectory.
On the other hand, behaviour is usually more complex and considers human motion,
which comprises also the particular motion of the target’s subparts. While the de-
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scriptions of activity can be verbal phrases as “goes from area A to B”, “stops in area
C”, “moves fast”, typical descriptions of behaviour are “walks”, “runs”, “picks up”,
“jumps”, “leans”, etc. Activity is also closely related to the structure of the scene, while
behaviour is usually independent of the scene.

5.5 Detecting appearances of persons§

In this section we describe a complete system for detecting appearances of persons
over multiple uncalibrated cameras without overlapping field of view. The system
is able to discover correspondences between different views of the same object. We
employ the approach detailed in Section 4.3 to match tracked objects. The tracks are
compared with a global object model based on an ensemble of individual object mod-
els. If an object is recognised, the corresponding track is labelled. Moreover, if mul-
tiple objects are detected in a single track, the track is split and the partial tracks are
labelled accordingly. The output is a timeline representing the objects present in a
given scene. These timelines are compared with a ground-truth to evaluate the sys-
tem’s performance.

5.5.1 System overview

The system can be transparently applied for wide area coverage with multiple disjoint
cameras, for single area coverage withmultiple cameras or even amix of these scenar-
ios since it is agnostic of the camera deployment. The goal is to automatically obtain
a description of where and when each person is detected by the system. A person
that crosses multiple camera fields of view is tracked independently for each camera
and the resulting information collected from each track (sequence of object images) is
compared with a global visual object model. For the same visual object, the system es-
tablishes links between that object’s tracks. No camera calibration information is used
in this procedure, only appearance information of the visual objects. This method can
be used in generic scenes containing persons or other objects. However, throughout
the text we use indistinctly the terms “person” and “object” to refer to the relevant
elements in the scene being tracked.

Fig. 5.1 shows an example scenario of application for this system. This scenario consists
of a set of disjoint areas covered by a single camera. People move around, crossing
one or more areas. Since tracking is to be performed for the full monitored area it is
necessary to establish a global identity for each tracked object. This type of scenarios
presents several problems.

§This section is based on the article Automatic description of object appearances in a wide-area surveillance
scenario submitted to the IEEE Transactions on Circuits and Systems for Video Technology (Teixeira et al.,
2009).
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Figure 5.1: Problem characterisation and system output. On the top a graphic illustration
of a possible scenario containing multiple cameras covering disjoint areas. On the bottom
a possible output of the system consisting of a timeline for each detected object, where the
period tracked with each camera is marked.

Consider the following situation. Three different persons are detected by the tracking
system in a given time interval. Person A and person B walk side by side while they
are captured by camera 1. Person C enters camera 2 field of view and meets person B.
In camera 3, person A and person C start walking side by side. Finally, both are again
captured by camera 4, after switching their relative positions. In this simple scenario,
there are potential problems for typical tracking systems, namely: when persons B and
C cross mutual occlusion may occur and identities can be switched; when person A is
accompanied by person B or C, groupmovement (both are identified as a single object)
and prolonged occlusion may occur leading to track lost or mistaken identities.

The output is a timeline similar to the one shown in the bottom of Fig. 5.1. For each
person, time intervals aremarked and labelled according to the area where the person
was detected. Alternatively, we could create a timeline where, for each camera, time
intervals indicate which person was detected.
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In Fig. 5.2 the block diagram of the proposed system is shown. The main steps in-
volved in the process are: (1) obtain the location of potential objects using an object
segmentation algorithm, (2) track each object using a single-view tracking algorithm,
(3) match the track with a global visual objectmodel, which comprises (a) obtaining an
appearance description and (b) comparing it with the model to verify its identity, (4)
update the model with the new track information, and (5) optionally, use the identity
information to give feedback to the tracking algorithm. Each of the steps are described
in the next sections. Note that steps 3 and 4 are described as a single object matching
operation.

Object Model

Camera N

Object 
Segmentation

Object
Tracking

Appearance 
Description

Identity 
Verification

1 2 3 4

5

Figure 5.2: Block diagram of the system architecture.

5.5.2 Object segmentation

The first step in the processing chain aims to obtain the possible location of relevant vi-
sual objects. Many approaches have been proposed, but the most common and widely
adopted is obtaining a background model and perform a “subtraction” filtering to in-
coming frames. An overview about backgroundmodelling and subtraction algorithms
can be found in Section 3.2.1. The object segmentation algorithm integrated in the sys-
tem is based on the cascaded detection of common types of changes that is presented
in Section 3.3.

5.5.3 Object tracking

This section briefly describes the tracking algorithm used for the purpose of building
the system depicted in Figure 5.2. It also presents changes made to the original al-
gorithm and a brief assessment of its behaviour. Although the depicted architecture
refers to a generic object tracker, considering a visual surveillance scenario as an ex-
ample of a study case, we chose the algorithm proposed by Zhao and Nevatia (2004)
as it aims to achieve a good compromise between processing performance and robust-
ness, and because it is was developed for the purpose of tracking people. Note that
other algorithms, possibly targeting generic objects, could also have been used.
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Zhao’s algorithm was designed for a single stationary camera placed above people’s
head in an inclined position looking down. It uses camera calibration information and
the assumption that humans move in the ground plane to perform transformations
between the physical world and the image; humans are detected by identifying their
heads and an ellipsoid is used as a coarse human shape model to constraint the shape
of an upright human. Processing is done in two stages: detection, where the shape and
cameramodels are used in boundary analysis of foreground objects to compute human
hypothesis; tracking, where each human hypothesis is tracked in subsequent frames
using a Kalman filter and object appearance constraints. As in other person tracking
algorithms (Denman et al., 2005; Haritaoglu et al., 2000; Siebel andMaybank, 2002), head
detection is used in the generation of human hypothesis. This technique takes advan-
tage of the placement of the camera several meters above the ground, which helps to
avoid some situations of occlusion and to reduce the probability of people heads being
occluded. The camera calibration parameters are an essential factor of the algorithm.
Also, the user is required to provide information about the entrances and exits from
the scene, which is used to determine when a track should be generated or removed.

The necessity to use camera calibration parameters prevents the algorithm frombeing
used in situationswhere such information is not available. The texture and probability
templates aid in the correct matching of tracked objects. However, in case of gradual
and prolonged superimposition of objects track drift may occur, i.e, the label assigned
to an object being tracked is assigned to a different object. Both the boundary analysis
and the matching process depend on point by point operations leading to a loss of
performance with the increase of the image and object size as well as with the number
of foreground objects present. For objects far away from the camera, i.e., objects with
reduced dimensions in the image, the rate of miss detections and track loss increases.

In our implementation, enhancements have been made to the original algorithm. We
are not using camera calibration parameters. We assume that the camera is placed so
that the vertical axis of the image corresponds to the vertical axis of the scene and
approximate the height variation of objects due to their distance to camera by a lin-
ear function. Some information regarding reference measures are still required, but
different techniques can be used to obtain the required points. Since all measures are
made in the image, unlike the proposed algorithm we do not use a constant velocity
model. Also, in the Kalman filter we followed the approach proposed by Weng et al.
(2006) which uses the occlusion rate to adjust the estimate parameters of the filters: if
the occlusion rate is small the measurement is considered more trust worthy; other-
wise the prediction is trusted completely.

5.5.4 Object matching

Multiple appearances of an object are detected by matching a newly tracked object
with the visual object model. The matching process takes the sequences of segmented
object images detected by the tracking algorithm as inputs. The matching method is
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based on the one presented in Section 4.3 but a different learning strategy is used.

� Classifying object images

The goal of object classification is to attribute a known label to an object frame. For
this purpose we propose using a modelM that consists of C classifiers. Each individ-
ual model Mk, k = 1, . . . , C is associated with an object known by the system and
outputs one of two results: +1,−1. The results correspond to acknowledging or not,
respectively, that the frame being tested contains the object k. As new object classes
are detected by the system, more of these individual models can be added. The main
advantage of such an approach compared to the approaches applied in Section 4.3, is
that we only need to train a binary model when a new object class is added.

⇀ Training the individual models Each model is trained using AdaBoost (Freund
and Schapire, 1997), which is an ensemble-based algorithm (we previously described
the application of AdaBoost to face detection in Section 3.6.1). The training process
of AdaBoost consists of training B WeakClassifiers. When a new WeakClassifier
is trained, a bootstrap sample is drawn from a distribution. This distribution is iter-
atively updated between training steps, depending on the classifier performance. By
updating the distribution, subsequent classifiers focus on samples causingmore errors.
The classification is based on the weighted majority voting of each classifier. A short
description of the AdaBoost algorithm for the binary case is presented in Table 5.1.

The WeakClassifiers comprising the models are based in linear kernel SVMs.

⇀ Obtaining the global hypothesis Given the global model M, and the input
frame described by x, the global hypothesis H(x) consists of the combination of the
individual hypothesisHk(x), k = 1, . . . , C where C is the total number of objects. For
each modelMk, an hypothesisHk(x) is defined as

Hk(x) =

{
{Ok}, if H(x) = 1

∅, otherwise
(5.1)

whereOk is the label defined for object k (for example, Person01) and ∅ is the empty
set. The aggregate set of hypothesis H̃ is thus given by:

H̃(x) =
C∪

k=1

Hk(x) (5.2)
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Table 5.1: Algorithm: AdaBoost.

Given S = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ X, yi ∈ {−1,+1}

Initialize D1(i) = 1
n , i = 1, . . . , n

for b = 1, 2, . . . , B:
1) Draw bootstrap training data S∗

b according to the current distribution Db

2) Train classifier b with S∗
b

3) Obtain hypothesis hb and calculate the weighted error ϵb

ϵb =
∑

i Db(i)[hb(xi) ̸= yi], if ϵb > 1
2 , abort

where [hb(xi) ̸= yi] = 1 if hb(xi) ̸= yi and 0 otherwise
4) Calculate classifier weight

αb = 1
2 ln 1−ϵ

ϵ
5) Update distribution Db

Db+1(i) = Db(i)e
−αbyihb(xi)

Zb

where Zb is a normalisation factor such that
∑n

i=1 Db+1 = 1

Hypothesis obtained by weighted majority voting
H(x) = sign(

∑B
b=1 αbhb(x))

where x is the input data under evaluation

Finally, the global hypothesis is based on the cardinality of the aggregate set of hy-
pothesis, such that:

H(x) =


U , if #H̃(x) = 0

H̃(x), if #H̃(x) = 1
rand(H̃(x)), otherwise

(5.3)

where # is the set cardinality, rand is a random operator with uniform distribution,
and U represents the label Unknown.

5.5.5 Identity verification

The task of identifying each visual object’s identity is done in multiple steps, as de-
picted in Fig. 5.3. Each track outputted by the tracking algorithm is first divided into
segments comprising N frames. The segments are analysed separately by associating
a label Li to the respective segment i. This analysis consists of comparing each of the
N frames with the global object model (refer to Section 4.3.4) and performing a simple
majority voting to obtain a single label. When two or more labels are tied for the most
voted label, one is chosen randomly between those most voted.
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This process is repeated while there are segments in a track to be analysed, and the
final estimation for the object label L̂ is again done bymajority voting. In this case the
votes correspond to the segment labels Li. A common tracking error is identity drift-
ing thus it is possible that a track outputted by the tracking algorithm contains more
than one object. To help correct this we apply the following test: for each segment i, if
Li−P = · · · = Li−1 = Li ̸= L̂i the track is split, otherwise the analysis proceeds with
the current track. The splitting consists of two sub-steps 1) close the current track
and attribute a final label L̂, 2) start a new track containing the last P + 1 frames and
continue analysing the remaining segments, associated with this new track. We chose
to set P to 2, as shown in Fig 5.3.

analyse frame by frame and 

assign labels to the segments by 

majority votingLi−1L1 L2

1 

2 

{
split track if Li−2 = Li−1 = Li != L̂i

keep track otherwise 4 

extract descriptors for 

segments of N frames

verify if the track label changed, 

i.e. if the last 3 labels are equal and 

at the same time different from the 

current estimate

LiLi−2

define current estimate        by 

majority voting among _________

if no more segments are available, 

associate it to the track as final label

3 

N

track

segments

L̂i {L1, . . . ,Li}
L̂i

Figure 5.3: Algorithm to verify the identity of objects present in a given track. The algorithm
consists of 4 steps that are done iteratively for the incoming track.

By dividing the track in segments we are in fact smoothing the errors caused by incor-
rect object description. It is often the case that the description extracted from a frame
is incorrectly classified, essentially due to a deficient segmentation. Using sufficiently
large segments these errors can be attenuated. For all experiments we considered seg-
ments of N = 25 frames.

The identity verification can be performed online, since all tracks are analysed inde-
pendently and we only need to keep the last 3 segment labels for each track. However,
this process introduces a delay of 3N frames, which for a frame rate of 25fps and
N = 25 corresponds to a 3s delay.
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5.5.6 Experimental setup and results

� Dataset

The training set consists of the D30 dataset, described in Section A.3. The evaluation
dataset consists of 11 sequences also from the CAVIAR shopping set [44] with two dif-
ferent views. Each sequence contains more than one person and some persons appear
multiple times. However, the ground-truth provided for the sequences does not pre-
serve the labels for persons that leave the field of view and reappear later on. In order
to evaluate the labelling process, all tracks contained in the original ground-truthwere
labelled manually, according to the labels defined in the global object model.

The CAVIAR dataset comprises sequences of the same area captured by two cameras
with different fields of view. Nonetheless, the usage of that dataset does not oppose
the proposed scope for the system, since the system is agnostic of the camera displace-
ment, treating each camera independently. Hence, it is irrelevant if the two cameras
are covering the same area or non-overlapping ones. Nevertheless, to complement the
results with the CAVIAR dataset, we captured 3 additionally sequences and formed a
dataset containing track images from 5 persons that appearmultiple times in these se-
quences (described in Section A.4). A model representing these 5 persons was created
in a similar manner as the modelM described earlier. However, for these sequences
the modelM includes the 5 persons alongside the 30 persons of the CAVIAR training
dataset.

� Model evaluation

As described previously, the model we will be using consists of an ensemble of binary
individual models. Each of these individual models is associated with a given object
class. If, for instance, the global model “knows” 30 different objects, it should contain
30 different individual models that classify a given image as being a “known” object
or an “unknown” object. We compared this model with the straightforward approach
of having a multi-class SVM. To train the individual AdaBoost-based models we used a
random sample of 1000 images from other objects to represent the “unknown” object.

The evaluation consisted of randomly dividing the training dataset described previ-
ously into train and validation subsets and perform a 5-fold cross-validation. The orig-
inal sample is partitioned into 5 subsamples, and each of the subsamples is validated
individually with the remaining datasets being used as training data. The 5 results
from the folds are average to produce a single result that is shown in Fig. 5.4. In that
figurewe show the visual representation of the confusionmatriceswhere each column
of the matrix represents the predicted class and each row represents the actual class.

Using the ensemble of models, the performance drops significantly from an average
successful classification rate of 94.6% to 73.3%. By considering the object class “un-
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Figure 5.4: Confusion matrices of the object classification. Visual representation of the
confusion matrices using different approaches to build a global object model.
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known”, we are contributing to the performance degradation since the sample used
to represent it may be insufficient to obtain the best discriminative model between
classes. However, in the trade-off between complexity and performance we opted for
simpler and more feasible models in detriment of performance. For instance, if a new
object needs to be added to the global model we do not need to retrain everything,
just the individual object model. The same applies if we want to update an individual
model with new information. For the task of track classification it is possible to afford
this penalisation, as we show in the next subsections.

� Timeline generation

Timelines are generated from the combination of the results produced by the tracking
algorithm and the identity verification process. Fig. 5.5 shows some examples of au-
tomatically generated timelines and the respective ground-truth. These can be con-
sidered successful cases, since all known objects are correctly identified. The main
difference to the ground-truth is the length of the detected tracks. The result tracks
usually are shorter essentially due to two reasons: when the objects are distant, the
tracking results are usually unstable; and, when the objects leave the field of view, the
rules defined specifically for person tracking (refer to Section 5.5.3) filter out those
object images.

In Fig. 5.6 results for crowded scenes are shown. The larger number of unknown per-
sons introduces errors in the timeline generation. To understand the effect of un-
known persons in the system performance, we assigned a label to some of the un-
known persons and added them to the global model. For the EnterExitCrossingPaths1
sequence, a new individual model was trained and for the WalkByShop1 sequence, we
added two additional individualmodels of two other unknown persons. Therefore, the
global model used in this test consisted of 33 persons, instead of the previous 30. It is
possible to observe that the generated timelines with the updated model are closer to
the ground-truth.

Timelines from different views can be combined to analyse the appearance of objects
throughout the area covered by the camera system. Fig. 5.7 shows an example of that
for theWalkByShop1 andWalkByShop1front sequences. In the scene captured by both
cameras, Person01 and Person12 at some point in time enter a shop, leaving the first
field of view and entering the second. These instants are marked with the rounded
labels A and B.

� Objective evaluation of the generated timelines

To evaluate the timeline generation quality we rely on the commonly used precision
and recall measures, defined in Section B.1.1.
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ground-truth

automatically generated

(a) OneLeaveShopReenter1.

ground-truth

automatically generated

(b) OneLeaveShopReenter2.

ground-truth

automatically generated

(c) OneShopOneWait1.

Figure 5.5: Examples of automatically generated timelines. Each timeline is compared with
the respective ground-truth.

The values of number of true positives Ntp, false positives Nfp, and false negatives
Nfn are calculated as follows. Consider St andRt the sets containing the labels of the
object present at the time instant t (frame) both in the timeline to be evaluated and
the reference (ground-truth), respectively. For a sequence containing T frames, Ntp

and Nfp and Nfn are given by equations (5.4), (5.5) and (5.6), respectively.

Ntp =
T∑

t=1

#(Rt ∩ St) (5.4)

Nfp =
T∑

t=1

#(St\Rt) (5.5)

Nfn =
T∑

t=1

#(Rt\St) (5.6)
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ground-truth

automatically generated

automatically generated
(with new model for Person31)

(a) EnterExitCrossingPaths1.

ground-truth

automatically generated

automatically generated
(with new models for Person32 and Person33)

(b) WalkByShop1.

Figure 5.6: Examples of timelines generated with updated models for previously unknown
objects. The results are better for both cases.
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corridor view

front view

BA

Figure 5.7: Generated timelines for two different cameras capturing the same scene from
different views. The rounded labels A and B mark the instants when Person01 and Person12
enter the shop, leaving one field of view and entering the other. To avoid excessive clutter
only the relevant objects present in both views are represented.

Ameasure that combines both precision and recall is called F-measure (defined in Sec-
tion B.1.3). In our case, lower values for the recall shouldmean that the resulting time-
line hasmany gaps, while lower values of the precision represent incorrect labelling. If
the tracking algorithm wrongly ignores objects in the scene, the recall will essentially
reflect this. Since we are not evaluating the tracking algorithm itself, we will be using
as the main measure Fβ with β = 0.5, i.e., F0.5.

The results for the 14 sequences are presented in Table 5.2. As expected, precision is
generally higher than the recall. With a better tracking output (including segmenta-
tion and tracking algorithms) we can further improve these results. The worst results
are for OneStopMoveEnter1 which consists of a crowded scene. The tracking outputs a
large number of fragmented tracks that end up being incorrectly classified. With three
sequences, marked with ♢, an additional test was made. As previously mentioned,
for the sequences EnterExitCrossingPaths1 and WalkByShop1, we updated the global
model with information about unknown persons. Using the updated global model the
matching corrects some tracking errors thatwould not be corrected otherwise. Fig. 5.6
shows the improved results, and the objective evaluation supports this. For OneStop-
MoveEnter1 a similar approach was followed. In all cases, results improve, especially
in theWalkByShop1 sequence. This is due to the fact that the fragmented tracks of the
previously unknown persons were grouped correctly afterwards (confirmed by the
number of detected objects that changed from 14 to 11).

We also observe that in more crowded sequences the performance measures are con-
siderably lower. This is largely due to the high number of unknown objects. To better
evaluate the performance of the identity verification algorithm we also present in Ta-
ble 5.2 the precision, recall and F0.5 of the generated timelines considering only the
known objects. In otherwords, all tracks labelled in the ground-truthwith an Unknown
tag are not considered for evaluation.
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5.5.7 Interaction with tracking

Until now we assumed that captured tracks were the inputs for our method and no
further interaction happened. However, track matching can be integrated with the
tracking algorithm to improve the overall performance. The interaction between both
can be two-fold:

1) Tracking helps building the database – the same person can have a different de-
scription depending on the view angle. By tracking a personwithmore than one
camerawith overlapping fields of viewing, for example, we can providemore in-
formation to the database, knowing that it’s the same person.

2) Objectmatching can correct incorrect tagging –matching canhelp disambiguate
two tracks when, for example, two or more objects cross in the field of view.

While the first interaction is largely explored in our approach, the second interaction
is discussed in this section.

Consider the scenario depicted in Figure 5.8(a). Objects A and B are tracked across a
single FOV and at some point in time both tracks cross. Without depth information
or another view over the same area, disambiguating the tracks can be difficult. As
objects get closer, typical segmentation outputs a single large combined object. When
objects eventually are again farther apart, the tracking system should assign A and B
to A′ and B′, respectively, but errors often occur. An example of this using a particle
filtering tracker (Chateau et al., 2005) is depicted in Figure 5.9. Using a track matching
method, inconsistent assignments could be detected and corrected.

Another similar problem occurs when a tracked object leaves the field of view and
re-enters later, as depicted in Figure 5.8(b). In most tracking systems, the track cor-
responding to the re-entrance of the object would have a new tag assigned to it. The
same object would then have two different identities. By comparing the visual repre-
sentation of the new track with the visual objects model would correct the previous
assignment.

The second type of interaction can also be extended to multiple independent views,
where typical tracking methods can not be used. A track produced by the tracking
algorithm at a given view ismatchedwith a globalmodel. An existing tag is assigned to
it, or a new one, if the object is not known. In multi-camera systems with overlapping
FOVs, the spatial information can be a useful help in matching. Although this is a
possibility, it is not explored in thiswork aswedonot assume anydependence between
views.

We are not evaluating the tracking results but it is nevertheless important to observe
how the tracking results are improved by the matching step. In Fig. 5.10 two different
tracking results are shown, as well as the respective ground-truth. In Fig. 5.10(b) the
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d

d

object tagging with 

classic tracking has 

less reliability

FOV

(a) Object occludes another object – as objects cross the tracking algo-
rithm can incorrectly assign the label A to B′ and B to A′.

A

A’

object exits FOV

FOV

(b) Object exits and re-enters FOV – the track A′, corresponding to the
re-entrance of the object, would have a new assigned tag.

Figure 5.8: Scenarios where typical trackingmethods often fail to correctly track/identify an
object.

track is obtained without matching. At some point in time there is an identity drift
between the two persons, resulting in incorrect labelling afterwards. If we apply both
the object matching method and the identity verification algorithm, the drift is de-
tected and the track is split correctly, as shown in Fig. 5.10(c). These results can be
further explored in the future. By providing a tighter integration between tracking
and matching we expect to obtain better performance results.
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Figure 5.9: Common tracking error using a state-of-the-art particle filtering tracker. The
tracker changes targets because the new target has a higher classifier score then the initial
one. (Chateau et al., 2005)

(a) Ground-truth. (b) Without matching. (c) With matching.

Figure 5.10: Tracks for Person29 and Person30 in the sequence ShopAssistant2. Without
the matching step the tracks outputted by the tracking algorithm are wrongly assigned. The
matching step corrects these errors.

5.6 Visual trajectory representation for event retrieval §

Many applications such as scene monitoring require tracking for different purposes
(refer to Section 4.2 for further details on visual object tracking). Typically, tracking
information inmonitoring applications is used as an input of decision-makingmodules
(e.g. alarm generation) but is also stored for later analysis. The amount of informa-
tion stored can easily become overwhelming for a human operator to find a specific
event. Hence, the task of automatically detecting and understanding events is an es-
sential task for effective monitoring in surveillance systems. Methods for indexing
and retrieval of object trajectories in large surveillance databases are therefore of ma-

§This section is based on a collaboration with Pedro Quelhas as an extension to his Ph.D. work (Quelhas,
2006).
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jor importance for data accessibility. Also, learning trajectories patterns described by
tracked objects can be used for anomaly detection and behaviour prediction.

A large variety of different schemeswere proposed in the past to describe object-based
trajectories. Most of them rely on polynomial models and other function approxima-
tions to create a compact descriptor for the trajectory (Aghbari et al., 2003; Chang et al.,
1998; Jin and Mokhtarian, 2004; Jung et al., 2001). Also, Chebyshev polynomials were
used by Cai and Ng (2004). Johnson and Hogg (1996) and Hu et al. (2004b) alternativ-
elly used discrete point-based flow vectors. Discrete Fourier Transform (DFT) was also
shown to improve the clustering quality of trajectories by Naftel and Khalid (2006).

Regarding the techniques applied to identify trajectory patterns, Johnson and Hogg
(1996) proposed a statistical model of object trajectories based on a structure with
two layers modelling the probability density function (pdf) of possible instantaneous
movements and trajectories inside the scene using a neural net of competitive unsu-
pervised Learning Vector Quantisation (LVQ). Owens and Hunter (2000) applied a sin-
gle layer SOM, incorporating second order information to the flow vectors that code
the trajectory, besides position and instantaneous speed. Naftel and Khalid (2006) also
relied in SOM for their method with DFT as input features. Distance metrics are also
used to identify trajectories, namely the Hausdorff (Lou et al., 2002). Amore robust dis-
tance metric based on the concept of Longest Common Subsequence (LCSS) between
two trajectories was used by Buzan et al. (2004).

In the remaining of this section we present a possible representation for object trajec-
tories. Motion trajectories are represented as the location which the object occupies
in the image and themotion from each location to the next. To classify trajectories we
use latent aspect modelling.

5.6.1 Application scenario

The shopping scene used in previous sections was also used for trajectory analysis.
Specifically, we used the datasetDe defined in appendix, Section A.5. The dataset con-
sists of 124 trajectories, each associated to one out 5 of trajectories. These trajectories
are related to the activities of people in the shopping, such as walking through the
corridor or entering the store from different directions; these are illustrated in Fig-
ure 5.11. For each characteristic trajectory we also take into account the direction of
the movement (for example: entering or leaving the store).

5.6.2 Trajectory representation

Our approach to trajectory representation is based on the quantisation of the trajec-
tory using a grid, and tracking the transition between grid locations of the object being
tracked. To simplify the processwe consider that fromeach location the trajectory can
move only to its 4 neighbours (city block metric).
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Figure 5.11: Characteristic trajectories to classify/index. Five trajectories were identified:
1) crossing the whole corridor (blue and dot-dot-dashed line), 2) entering/leaving the shop
from/to the corridor on the left of the shop (yellow and short dashed line), 3) entering/leaving
the shop from/to the corridor on the right of the shop (green and solid line), 4) enter-
ing/leaving the shop from/to the corridor in front of the shop (red and dot-dashed line), and
5) entering/leaving the shop from/to the far corridor on the right of the shop (magenta and
long-dashed line).

The trajectory t = {(xi, yi), ...} is represented by directional elements t′ = {ei, ...},
which represents themovement of the object being tracked, from a point on the quan-
tisation grid to another (represented by green arrows in Figure 5.12).

The final representation is the histogram of the occurrence of each directional ele-
ment, whose dimensionality is independent of the trajectory size (Figure 5.13). This
representation is compact and easy to compare.

5.6.3 Trajectory classification

In the case of trajectory classification we used a k-NN classifier, with k = 1. We used
“leave one out” cross-validation, resulting in a total of 124 experimental runs, each
one with either success or failure as a result. The results are presented in Table 5.3.

Compared with the polynomial representation, using the grid quantisation method
we improved the trajectory classification performance. However, further work can be
done in the definition of the base grid in which the representation is based. Making a
specific grid for this scenario can lead to improved performance in the trajectory rep-
resentation. On the other hand, this would increase the complexity and would make
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Figure 5.12: Trajectory representation concepts. The graphical representation of the quan-
tisation grid (black dots), the original trajectory (red dotted line), and the resulting motion
elements (green arrows) are shown.

method error(%)
polinomial 45.2

grid quantisation (10x10) 29
grid quantisation (10x15) 27.4
grid quantisation (15x15) 24.2

Table 5.3: Results of trajectory classification. Two representation schemes were used –
polinomial and grid quantisation.

more difficult the portability of the method.

5.6.4 Using latent aspect modelling

The trajectory representation presented in the previous section suffers from sparsity,
ambiguities and some remaining sensitivity to translation. To address these issues we
introduced latent aspect modelling.

Several latent aspectmodels such as Probabilistic Latent SemanticAnalysis (PLSA) (Hof-
mann, 2001), Latent Dirichlet Allocation (LDA) (Blei et al., 2003), and Multinomial PCA
(MPCA) (Buntine, 2002) have been proposed in the literature for discrete components
analysis.

In this work, we consider the PLSA model (Hofmann, 2001), that assumes each occur-
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Figure 5.13: Example of how the trajectory representation is created. The sampling grid
of 10x10 points (left), the trajectory quantisation (center), and the resulting histogram
representation (right) are shown.
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rence of a motion element ej to be independent from the trajectory it belongs to given
the latent variable zk, that corresponds to the joint probability expressed by:

P (ej , zk, ti) = P (ti)P (zk | ti)P (ej | zk). (5.7)

The joint probability of the observed variables is the marginalisation over the NA la-
tent aspects zk as expressed by:

P (ej , ti) = P (ti)
NA∑
k=1

P (zk | ti)P (ej | zk). (5.8)

The multinomial distributions P (z | ti) and P (e | zk) are estimated with an EM al-
gorithm on a set of training documents. Since each motion element ej represents a
specific location and direction (see previous section) we can represent P (e | zk) for a
specific zk.

The aspect indices have no intrinsic relevance to a specific class, given the unsuper-
vised nature of the PLSA model learning. We can however inspect each aspect to ob-
serve themeaning that theymayhave in terms of our target characteristic trajectories.
Aspects can be conveniently illustrated by theirmost probable trajectories in a dataset.
Given an aspect z, trajectories can be ranked according to:

P (t|z) =
P (z|t)P (t)

P (z)
∝ P (z | t), (5.9)

where P (t) is considered as uniform.

Figure 5.14 displays the 8 best-ranked trajectories for 6 aspects to illustrate its poten-
tial “semantic meaning”. Among these 6 aspects it is possible to clearly identify the
5 defined trajectories. If we compare with Figure 5.11, the aspects from left to right
and from top to bottom can be generally associated with trajectories 5, 3, 1, 2, 1, and 4,
respectively.

Finally, we performed the same test described in the previous section, but in this case
using PLSA. The results are summarised in Table 5.4.

method error(%)
PLSA (10x10) 28.2
PLSA (10x15) 18.6
PLSA (15x15) 20.1

Table 5.4: Results of trajectory classification using PLSA.
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Figure 5.14: Highest ranking 8 trajectories for 6 aspects from the PLSAmodel. If we compare
to the trajectories defined in Figure 5.11 it is possible to verify that generally each aspect
can be associated to one trajectory.
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5.7 Audio events detection

Most automatic event detection systems for real-world scenes, such as surveillance
systems, are only based on visual analysis. However, the detection of many abnormal
situations can benefit from the information conveyed by audio (Smeaton andMcHugh,
2006). The hierarchical approach discussed in Section 3.4 can be used for this purpose.
Specific models can be trained to detect abnormal events, like panic situations, gun
shots, explosions, etc. Clavel et al. (2005) follow a similar approach to detect sounds
produced by gun shots. The authors follow a statistical novelty detection approach
(Markou and Singh, 2003), based on the comparison between the input audio and pre-
trained models – an hierarchical model of gun shots of different nature and an envi-
ronment sounds model. Both models rely on Gaussian Mixture Models (GMMs).

Many other event detection systems are based on binary GMM classifiers laid on an
hierarchical classification scheme. However, different systems use different features
to characterise the input audio signal. Mel Frequency Cepstrum Coefficients (MFCC)
in combination with other features are often used, but essentially it depends on the
scope of application and the events to be detected. With the goal of distinguishing
four events/activities (talk, shout, knock and footsteps), Atrey et al. (2006) showed that
Linear Predictor Coefficient (LPC) performwell with foreground/background segmen-
tation and in distinguishing normal talk and shouting accurately, while Log Frequency
Cepstral Coefficients (LFCCs) are more suited to segregate vocal and non-vocal events.
Zhuang et al. (2008) proposed a method for feature selection to be used for audio event
detection.

A major difficulty in audio detection systems is related to environmental noise. This
noise is typically non-stationary and may have more energy than the audio event to
detect. Cristani et al. (2004) introduced an online adaptive background modelling for
audio (a very similar approach was also followed by Radhakrishnan et al., 2005). They
follow a similar rationale to Mixture of Gaussians (MoG), used for visual background
modelling and subtraction as previously discussed in Section 3.2.1. The same authors
also proposed combining audio and visual foreground/background segmentation to
findmultimodal events (Cristani et al., 2006). The association between audio and visual
information is done by analysing a AV Concurrence (AVC) matrix, which encodes the
degree of simultaneity of audio and video. Valenzise et al. (2007) on the other hand,
use solely audio sensors. They combined a GMM-based classifier system that identify
screams and gun shots with a microphone array sound localisation system; the aim is
to detect and localise the audio events in public spaces.

5.8 Summary

The automatic detection of events is an important task in order to effectively index and
browse large libraries of multimedia content. Otherwise it would be difficult and time-
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consuming to examine for example the sequences captured by a large-area surveil-
lance system.

Events can be defined as real-world occurrences that unfold over space and time and
can be classified according to their spatial and temporal uniformity. For example,
temporal textures have indeterminate spatial and temporal extent, for example wind
swinging trees or flowing water, activities are temporarily periodic but spatially re-
stricted, for example a person walking or running, and motion events are isolated ac-
tions that do not repeat either in space or time, for example a door opening. Each
of these types are associated with a characteristic approach for modelling and recog-
nition. Alternatively, events can be distinguished according to their commonness of
occurrence. Events can either be usual or unusual (alternatively, normal or abnormal).

In this chapter we focused on devising a complete system for detecting multiple ap-
pearances of persons, featuring a standard tracking algorithm,whose outputwas given
to amulti-tracker objectmatching algorithm. The systemoutputs timelines represent-
ing the presence of persons in the different cameras along time. If a person is matched
with the stored model of persons, the associated track is labelled accordingly. The ob-
tained results demonstrate that the system is able to deal with scenarios composed of
multiple cameras covering the same field of view or non-overlapping ones. Moreover,
it is able to cope with differences in illumination and scale between the multiple cam-
eras without using camera calibration parameters or a priori information. With this
system, detecting and tracking a person is possible, even when observations of objects
are not available for relatively large time periods. We evaluated the system using a
dataset of sequences with diverse scenes. The more crowded scenes presented more
difficulties and worse results were obtained.

In addition to the evolution in time approach of which the timeline representation
of the appearances of persons is an example, event retrieval can also be based on the
analysis of trajectories. We have evaluated a compact and simple representation for
trajectories in video which can easily be adapted to many applications. We based tra-
jectory classification in latent aspect modelling in order to create a space where the
trajectory representation is invariant to occlusions, loss of tracking and noise.

Visual analysis can be found in nearly all recent intelligent analysis systems of real-
world scenes, such as surveillance systems. However, the detection of many abnormal
situations can benefit from the information conveyed by audio. We briefly discussed
how recent work in audio-based event analysis is bringing a valuable contribution to
these intelligent analysis systems.

In the next chapter we introduce a framework that can be used to integrate the mul-
tiple methods mentioned until now. The ultimate goal is to simplify the development,
including testing and prototyping, of algorithms that rely on various modalities and
with intricate relations between them.
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The design and implementation of multimedia signal processing systems is challeng-
ing especially when efficiency and real-time performance is desired. Researchers fre-
quently have to rely on a combination of different software tools for each modality to
assemble proof-of-concept systems which are inefficient, brittle and hard to maintain.
MarsyasX, a new open-source cross-modal analysis framework follows a dataflow ar-
chitecture where complex networks of processing objects can be assembled to form
systems that can handle multiple and different types of multimedia flows with expres-
siveness and efficiency.

6.1 Overview

Over the last decade we have witnessed a proliferation of multimedia content that is
easily and widely accessible. One of the main challenges facing multimedia research
is how to analyse and search such huge amounts of information. The multimedia sig-
nal processing community has been actively working on these problems. Often this
research is pursued by multiple groups in different and very specific areas. There are
currently several examples of frameworks developed under such specific scenarios.

In the audio analysis and processing community, many examples of well known open
source software frameworks exist, such as CLAM (Amatriain, 2007) [22], PD (Puckette,
1997) [23], Chuck (Wang and Cook, 2004) [24], FAUST (Orlarey et al., 2006) [25], STK
(Scavone and Cook, 2005) [26], HTK [27] (Young et al., 2002), among others. Commercial
tools also exist in this area, as is the example of MAX/MSP [29].

In what regards visual processing tools, there are also many open libraries that deal
exclusively with image or video processing, namely OpenCV [17], LTI-Lib [18], VXL
[19], and The Recognition and Vision Library (RAVL) [20], just to mention few. All
these projects focus exclusively on computer vision and can be seen as utility libraries
since they do not provide mechanisms to easily assemble algorithms based in building
blocks.

Although such area-centric frameworks have been successfully and increasingly used
byuserswithin their respective areas, the lack of intercommunicationwith other fields
of research leads to excessive overheads, re-implementation of similar techniques or
even constant reinventions. It is very likely that the current small number of cross-
fertilisation examples between different areas in multimedia analysis and processing
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may be a result of the lack of common tools and frameworks. Such software tools are
key factors in bridging the differences and distances between those communities.

MarsyasX is anopen-sourceC++ framework that builds upon theoriginalMarsyas project,
and aims at just that – provide a common ground so that different methodologies and
techniques with roots in different areas can coexist and cooperate towards a more in-
tegrated solution. In fact, MarsyasX represents a new line of development for Marsyas
[21], an open-source software framework which finds its roots in the Music Informa-
tion Retrieval community. Its name stands forMusic Analysis, Retrieval and SYnthesis
for Audio Signals, and the current version 0.2 (Tzanetakis, 2008) evolved fromMarsyas
0.1 (Tzanetakis and Cook, 2000) which focused mostly on audio analysis, being espe-
cially suited for the development, testing and prototyping of analysis, processing and
machine learning algorithms for audio signals. Marsyas was recently used for the sub-
mission of several algorithms to the MIREX2007 evaluation exchange [47], showing
comparable results to other state-of-the-art algorithms (e.g. it was ranked first in the
Audio Mood Classification task and second in the Audio Artist Identification task). Interest-
ing to note are the computational runtimes achieved by the Marsyas algorithms when
compared to those of other contestants which were systematically lower in several
orders of magnitude (e.g. in the Audio Mood Classification task, the Marsyas based algo-
rithm, ranked first, took 122 seconds per fold against the 521 seconds per fold taken by
the second fastest, though ranked last, algorithm). Similar results were more recently
achieved in the 2008 edition of MIREX [47].

Other frameworks and tools already exist that allow the integrated processing of audio
and video streams. Although not originally created asmultimodal platforms, Pd can be
extended with visual processingmodules from GEM [30], and Jitter [31] adds video and
image processing abilities to the MAX/MSP environment. EyesWeb [32], on the other
hand, has been originally conceived for supporting research on multimodal expres-
sive interfaces and multimedia interactive systems (Camurri et al., 2004), but although
being freely available, is not an open-source initiative. These frameworks are mostly
geared towards real-time applications. In addition to supporting real-time applica-
tions, MarsyasX has been designed with multimedia mining and retrieval applications
in mind and has support for batch processing, machine learning tools, and interoper-
ability with mining tools such as the Weka machine learning framework (Witten and
Frank, 2005) [34].

In this chapter we will present the main architectural concepts of Marsyas, as well as
the innovations brought by MarsyasX to incorporate multimodal analysis capabilities.
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6.2 Marsyas architecture§

Systems in Marsyas are expressed as interconnected dataflow networks of processing
modules. Each processing module performs a specific task that always consists of a
matrix transformation. Processing networks are assembled using implicit patching.

6.2.1 Dataflow programming

Dataflow programming is based on the idea of expressing computation as a network of
processing nodes/components connected by a number of arcs/communication chan-
nels. Dataflow programming has a long history. The original (and still valid) motiva-
tion for research into dataflowwas to take advantage of parallelism. Motivated by crit-
icisms of the classical vonNeumannhardware architecture (Ackerman, 1982), dataflow
architectures for hardware were proposed as an alternative in the 1970s and 1980s.
During the sameperiod a number of textual dataflow languages such as Lucid (Ashcroft
and Wadge, 1977) were proposed. Despite expectations that dataflow architectures
and languages would take over from von Neumann concepts this didn’t happen. How-
ever during the 1990s there was a new direction of growth in the field of dataflow vi-
sual programming languages that were domain specific. In such visual languages pro-
gramming is done by connecting processing objects with “wire” to create “patches”.
Successful examples include LabView, Simulink and in the field of Computer Music
MAX/MSP (Zicarelli, 2002) and Pure Data (Puckette, 1997). In fact, expressing audio
processing systems as dataflow networks has several advantages (Tzanetakis, 2008).
The programmer can provide a declarative specification of what needs to be computed
without having to worry about the low level implementation details of how it is com-
puted. The resulting code can be very efficient and have a small memory footprint as
data just “flows” through the network without having complicated dependencies. In
addition, dataflow approaches are particularly suited for visual programming. One of
the initialmotivations for dataflow ideas was the exploitation of parallel hardware and
therefore dataflow systems are particularly good for parallel and distributed compu-
tation. A comprehensive overview of audio processing frameworks from a Software
Engineering perspective can be found in (Amatriain, 2007). Another recent trend has
been to view dataflow computation as a software engineering methodology for build-
ing systems using existing programming languages (Manolescu, 1997).

As a result, the idea of dataflow programming has been determinant in the design of
Marsyas 0.2, where complex networks of processing objects can be assembled to form
systems that can handle audio and data flows with expressiveness and efficiency.

§This section is in part based on the article Interoperability and the Marsyas 0.2 runtime published in the
International Computer Music Conference (Tzanetakis et al., 2008).
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6.2.2 Implicit patching

To assemble multimedia processing systems, modules are implicitly connected using
hierarchical composition. Special “Composite” modules such as Series, Fanout, Paral-
lel are used for this purpose. For example, modules added to a Series composite will
be connected in series, following the order they were added - the first module’s out-
put is shared with the second module’s input and so on. Moreover, the tick() method
is called sequentially following the same order. Figure 6.1 shows an example of how
composite andnon-compositemodules can be used. This paradigmdiffers from typical
processing tools based on explicit patching such as CLAM (Amatriain, 2007), MAX/MSP
(Puckette, 1991) or PD (Puckette, 1997). In explicit patching the user would first create
the modules and then connect them by explicit patching statements. The interested
reader may find a comprehensive discussion about the differences between implicit
and explicit patching in (Bray and Tzanetakis, 2005)

Series (network)

Series (series1) Fanout (fanout1)

Series
(series2)

...

Module
(module1)

Module
(module2)

Series (series2)...

Fanout (fanout2)

...

Module
(module3)

Legend:               Controls ProcessingControl link

Figure 6.1: Building blocks in Marsyas 0.2.

6.2.3 Basic processing units and networks

As previously described, systems inMarsyas are expressed as interconnected dataflow
networks of processingmodules. Each processingmodule performs a specific task that
always consists of a matrix transformation.

Audio and other types of data are represented by matrices with some semantics as-
sociated with them: rows represent observations (over time) and columns represent
samples in time. For instance, a stereo audio signal might be processed in chunks of
2 observations (i.e., two channels) and 512 samples in time. This clean data structure,
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although quite specific, suits well audio processing applications. All modules process
one input matrix (known as a slice) and store the result on another matrix so it can be
shared with the next processing module. Hence, each module accepts only one input
and produces one output. Processing is performed on defined chunks of data and is
executed whenever the tick() function of the module is called.

All processing blocks in Marsyas are called MarSystems and provide the basic compo-
nents out of whichmore complicated networks can be constructed. Essentially any au-
dio processing algorithm can be expressed as a large composite MarSystem (discussed
below)which is assembled by appropriately connected basicMarSystems. Some repre-
sentative examples ofMarSystems include sound file reading andwriting (e.g. wav, au,
mp3 and ogg audio file formats), real-time audio input and output (i.e., from and to a
soundcard), signal processing algorithms (e.g. filters, STFT, DWT), feature extraction
(e.g. MFCC, centroid, rolloff, flux) and machine learning modules (e.g. k-NN, GMM,
SVM, PCA, SOM).

To assemble multimedia processing systems, modules are implicitly connected using
hierarchical composition. Special “Composite” modules such as Series, Fanout, Paral-
lel are used for this purpose. The basic idea behind implicit patching (Bray and Tzane-
takis, 2005) is to use object composition rather than explicitly specifying connections
between input and output ports in order to construct the dataflow network. For in-
stance, modules added to a Series composite will be connected in series, following the
order they were added – the first module’s output is shared with the second module’s
input and so on. Moreover, the tick() method is called sequentially following the same
order. As an example, consider a small network consisting of a Series module which
contains three other modules: a source, a processing module and a sink. When tick() is
called in the Series, implicitly the tick() method is called in all three modules as shown
in Figure 6.2.

Dataflow in Marsyas is synchronous which means that at every “tick” a specific slice
of data is propagated across the entire dataflow network. This eliminates the need
for queues between processing nodes and enables the use of shared buffers which im-
proves performance. This is similar to the way UNIX pipes are implemented but with
audio specific semantics.

6.2.4 Dynamic access to modules and controls

In Marsyas, eachmodule in a processing network can be accessed by querying the sys-
tem with a path-like string. Taking the example shown in Figure 6.1, if we wanted to
reach the processing module named module1, the query path would be:

/Series/network/Series/series1/Module/module1

The first “/” indicates the outermost module and the rest of the path is always com-
posed by the concatenation of Type/Name strings. This naming scheme was inspired
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Series
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Sink
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chunk

not used copy 
input

2) tick algorithm1) tick source 3) tick sink

slice slice slice slice

File

Figure 6.2: Processing chunks of data in Marsyas.

from the way messages are exchanged in Open Sound Control (OSC) (Wright et al.,
2003). It is possible to have access to some of the internal parameters of the mod-
ules using controls. Each module exports a list of controls which may be of different
types (e.g. integers, floats, strings, vectors, or arbitrary user-defined types). They can
be accessed for reading or writing by specifying the path to their parent module plus
the Type/Name corresponding to the control.

One of themost useful characteristics ofMarSystems is that they can be instantiated at
run-time. Because they are hierarchically composed that means that any complicated
audio computation expressed as a dataflow network can be instantiated at run-time.
For examplemultiple instances of any complicated network can be created as easily as
the basic primitive MarSystems. This is accomplished by using a combination of the
Prototype and Composite design patterns (Gamma et al., 1994).

6.2.5 Dynamic linking of controls

Controls can be linked as shown in Figure 6.1, so that changes to the value of one con-
trol are automatically propagated to all the others. There are plenty of interesting uses
for this feature: parameter values that must be passed to more than one module in a
system; feedback loops where results from modules ahead in the processing network
are sent back to the first modules in the chain; shortcuts for other links, etc. Links can
be defined (both at compile-time and at run-time) for controls with the same value
type, either belonging to a samemodule, or to any other module in the network. Links
can also be used to create proxy controls – in order to create a shortcut to a control from



6.2. Marsyas architecture 149

a module deep inside other composite modules, it is possible to link it to a proxy control
in the outmost module, created on demand for this task. This way multiple and easy
to understand views for the control of the same algorithm can be created.

6.2.6 Interoperability

Considerable effort has been directed to developing interoperability layers with other
software packages or projects. The objective is two-fold: on one hand to make use of
features alreadyprovided by these packages or projects, and on the other hand tomake
Marsyas an important library other applications can interface with and build upon.

� MATLAB

MATLAB is a powerful and widely used tool in several areas of research and develop-
ment, with a large community of users and available routines formath andmultimedia
analysis and processing algorithms. Additionally, MATLAB provides easy to use and
advanced plotting facilities, a major asset for researchers developing algorithms for
audio, image and video processing. Until recently, developers always had to make a
hard choice regarding their development language: either opt for the flexibility and
ease of use ofMATLABor decide in favour of efficiency andperformance as provided by
an Object-Oriented Programming (OOP) language like C++. In its latest versions, MAT-
LAB includes the ability to exchange data in run-time with applications developed in
Fortran, C or C++, through and API named MATLAB Engine. Marsyas implements a
singleton wrapper class for the MATLAB Engine API, enabling Marsyas developers to
easily and conveniently send and receive data (i.e., integers, doubles, vectors and ma-
trices) to/fromMATLAB in run-time. It is also possible to execute commands in MAT-
LAB from calls in the C++ code as if they have been called in theMATLAB command line.
This enables the execution of MATLAB scripts and the access to all MATLAB functions
and toolboxes from within Marsyas C++ code. The MATLAB wrapper class in Marsyas
provides three basic methods:

• PUTVAR(Marsyas_var, MATLAB_var_name);
• GETVAR(Marsyas_var, MATLAB_var_name);
• EVALUATE(MATLAB_cmd);

By means of function overloading, these three methods allow exchanging different
types of variables fromMarsyas/C++. They can be called from anywhere in theMarsyas
C++ code without any need of changes in the Marsyas interfaces, making it simple to
send data structures to MATLAB for convenient inspection and analysis, calculations
and plotting, and then get them back in Marsyas for additional processing. These fea-
tures are only available when MATLAB is installed in the system and Marsyas is built
with MATLAB Engine support. Any MATLAB Engine calls in Marsyas code are auto-
matically ignored otherwise. A C++ snippet code is presented next, illustrating how a



150 Multimodal analysis framework

vector of real values can be processed and exchangedwithMATLAB, using theMarsyas
MATLAB Engine wrapper class:

// create a std::vector of real numbers
std::vector<double> vector_real(4);
vector_real[0] = 1.123456789;
vector_real[1] = 2.123456789;
vector_real[2] = 3.123456789;
vector_real[3] = 4.123456789;

// send a std::vector<double> to MATLAB
MATLAB_PUT(vector_real, ”vector_real”);

// do some dummy math in MATLAB
MATLAB_EVAL(”mu = mean(vector_real);”);
MATLAB_EVAL(”sigma = std(vector_real);”);
MATLAB_EVAL(”vector_real = vector_real/max(vector_real);”);

// get values from MATLAB
double m, s;
MATLAB_GET(m, ”mu”);
MATLAB_GET(s, ”sigma”);
MATLAB_GET(vector_real, ”vector_real”);

� Qt4

Trolltech’s Qt is a comprehensive development toolkit that includes features, capabil-
ities and tools that enable the development of cross-platform C++ applications. Such
features includemulti-platformApplicationProgramming Interfaces (APIs) and classes
for thedevelopment of GraphicalUser Interfacess (GUIs), signalling, andmulti-threaded
execution. In its 4th version, Qt is available as a dual-license software toolkit for all the
supported platforms (i.e., Linux,MacOSX andWindows). For open source applications
such as Marsyas one of the licences is open-source General Public Licence (GPL).

Marsyas, although not bound specifically to Qt, uses this toolkit as its preferred so-
lution for the development of GUIs. Its use is however totally optional, allowing the
developer to choose any other library, or even including no GUI support at all (missing
in this case all of the GUI extra features already implemented in some Marsyas classes
and applications). There are currently two approaches available for GUI development
using Qt4 in Marsyas.

The first way is using a delegation design pattern, where the core C++ Marsyas classes in
charge of the actual processing are wrapped by an entity that takes care of all themes-
sage passing between the GUIs and the processing network. Additionally, using Qt’s
multithread features, this wrapper makes sure that GUIs and the processing code are
executed in independent threads. This allows the implementation of responsive GUIs
and the best use of the last generation multi-core processors. This approach is most
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suited for the development of customized GUI front-ends for Marsyas based applica-
tions. It allows interacting with the processing network (by means of reads/writes to
its module’s controls) in an intuitive and real-time manner.

The second way is conditionally making all Marsyas modules inherit from Qt’s base
class QObject. This automatically embeds Qt’s most advanced features (such as signals
and slots) into most Marsyas core classes. This avoids the use of middle-layers for mes-
sage exchange between GUIs and the processing modules. Additionally to improving
efficiency, this approach facilitates the implementation of more advanced function-
alities for GUI and multi-threaded processing. As a drawback, this implies a tighter
compile-time bind between Marsyas and Qt, which can make the desired indepen-
dence between the two frameworks more difficult to assure and maintain. Given the
additional features inherited from Qt, this approach allows the common implementa-
tion of GUIs for all Marsyas modules, such as widgets for viewing/modifying the list of
controls from any Marsyas module, or even the creation of specialised GUIs for data
plotting or parameter modification.

� Open Sound Control

Open Sound Control (OSC) (Wright et al., 2003) is a protocol for communication among
computers, sound synthesisers, and other multimedia devices that is optimised for
modern networking technology. There are many implementations of OSC and most
computermusic environments (such asMax/MSP, PD, Chuck, CSound) have the ability
to send and receive open sound control messages.

The control mechanism in Marsyas was inspired from OSC so the mapping of controls
to OSC messages is very straightforward. The path notation is used to specify the full
name of the control and the value of the message is directly mapped to the value of
the control.

The mapping of OSC messages to Marsyas controls is part of the Qt4/Marsyas integra-
tion code. OscMapper is the interface between OSC, Marsyas and Qt4. It acts as both
an OSC server and client and allows particular OSC hosts and clients to be associated
with particular MarSystems. The communication is abstracted as signals and slots fol-
lowing the way Qt4 structures communicate between interface components. The user
interface programmer only needs to specify the information aboutwhere theOSCmes-
sages will be coming from and all the rest is taken care directly by the mapping layer.
For example, this way it is straightforward to use PD to send OSC messages to modify
the parameters of a phasevocoder running in Marsyas. The data flowing through a
Marsyas network is also accessible through controls so audio information can also be
exchanged
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� Marsyas runtime as a Max/MSP external

Max/MSP7 allows the creation of so called “external” processing units which can be
written in C/C++ following a specific API. These externals can then be used as building
blocks in the visual programming environment.

Efforts have been put into the implementation of a general external that can be used
to load any audio processing system expressed in Marsyas. The main challenge was
to completely decouple the audio buffer rate of Max/MSP from the audio buffer size
used by theMarsyas runtime. This is achieved through a dynamic rate adjusting sound
source and sound sink for the input and output to the Marsyas part of the patch.

For example if the audio buffer size of the Max/MSP patch is 64 samples and Marsyas
requires buffers of 256 samples then four buffers of 64 samples will be accumulated
before sent to Marsyas for processing. Similarly at the Marsyas output the 256 sam-
ples will be broken into 64 sample buffers to be sent back to Max/MSP. Arbitrary sizes
are supported and there is no requirement that one buffer should be smaller than the
other. This is achieved by using circular buffers with dynamically adjustable length.
Controls can be read and written through control outlets and inlets of the external.

6.3 MarsyasX – a step toward cross-modal analysis§

MarsyasX stands for Marsyas “cross-modal” and borrows from Marsyas 0.2 most of the
concepts, namely the hierarchical composition paradigm and the implicit patching of
modules. Similarly, data is processed in defined chunks by calling a tick() function and
eachmodule also has a set of controls that are used to access their internal parameters.
The main conceptual difference is in the way data is exchanged between processing
modules. Instead of using shared matrices of real values, MarsyasX exchanges data
through a payload mechanism. Whenever data is produced in a given module at each
tick, a payload is created. This payload, “carrying” the data, is then sent to the out-
put channel as depicted in 6.3. A channel is a connection between adjacent modules
where payloads are stacked while waiting to be processed. It is important to note that
channels are established implicitly, according to the type of composite being used.

This data exchange mechanism is highly generic and flexible, supporting any type of
data (e.g. images, audio frames, MIDI, XML, lists of points, etc.). However, it does not
live without its own specific issues such as timing and synchronisation that are ad-
dressed later in this text. In addition, payloads canbehierarchically grouped into flows
to enable typing and naming of time series of payloads. Alongside with this fundamen-
tal difference when compared to the previous version, MarsyasX includes additional
improvements, like an integrated implementation of events associated with controls
that can (1) trigger predefined actions, (2) connect controlswith expressions (similarly

§This section is based on the articleMarsyasX:multimedia dataflow processingwith implicit patching published
in the ACMMultimedia conference (Teixeira et al., 2008).
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Figure 6.3: Payload architecture in MarsyasX.

toMarsyas 0.2), (3) synchronise with GUIs and (4) support distributed networks. These
concepts are explained in more detail in the following subsections.

6.3.1 Payloads

Payloads are the basic transport entities of data across the network. They are sent and
received from the channels connecting the modules, forming the processing network.
A payload stores generic data and a set ofmetadata fields that characterise the payload,
as summarised in Table 6.1.

Metadata field Description
Type Flow type identifier
Name Flow name identifier
TOC Time of Capture
TTS Time to Schedule

Factory Origin factory identifier
TemplateID Template identifier
Header Array of flow controls that changed

Table 6.1: List of metadata fields contained by a payload.

A more thorough description of the metadata fields is given in the following subsec-
tions.
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6.3.2 Data flows

Different payloads can be grouped together in abstract entities called flows. A flow
consists of all payloads that have the same type and are tagged with the same name.
Hence it is always identified by the tuple (Type,Name). The first twometadata fields
shown in Table 6.1 form such a tuple.

The flow type field is used to distinguish different types of flows. Each payload of a given
type must contain the same type of data. For example, a Visual flow payload should
always contain an image, an Audio flow payload, an audio frame, and so on. Note that
despite being of the same type, payloads of the same flow type may contain data with
different characteristics – for example: images of different sizes or represented in dif-
ferent colour spaces.

On the other hand, the flow name field identifies different flows of the same type. In-
herently, the same rules are applied for flows of the same type. Distinguishing flows
of the same type can be useful for handling, for example, multiple video feeds – we
might want to handle differently each feed. Moreover, it is often mandatory to distin-
guish different sources of data since many modules have stateful processing. If multi-
ple sources are propagated as the same flow unexpected behaviour on these modules
will occur.

Currently 5 types of flows are supported, namely Audio, Visual, XML, Multidata and
Legacy. Each flow type is closely related to a data structure: matrix vector for multi-
channel audio frames, image supporting multiple colour spaces, XML tree structure,
vector of independentmatrices for generic data, and amatrix compatiblewithMarsyas
0.2 for legacy flows (detailed in Section 6.3.7).

6.3.3 Timing and synchronisation

It is important to preserve timing relations and constraints between data. For that
purpose, payloads have two time metadata fields. The first, Time of Capture TOC, stores
at what time the data held by the payload was created or captured. This time infor-
mation is not supposed to change across the network. The Time to Schedule TTS field
stores the time when the data should be processed by the modules that handle the
payload. Unlike Time Of Capture (TOC), Time To Schedule (TTS) can be changed by
the processing modules – for example, its value may be increased by a delay module.
The difference between both TOC and TTS at the time when the payload is first cre-
ated appears subtle although significant. Whereas TOC is used to synchronise data of
different flows (with the same or different types and names), TTS is used to schedule
payloads for processing. The latter is especially important if, for optimisation reasons,
wewant to parallelise thework loadwhile at the same timemaintaining coherent time
relations. Both fields are integer values and are always referenced to a system-wide
time base TB . This time base is defined once at the beginning of the processing and
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must remain fixed (e.g. 1ms). Whenever a new tick is triggered the current time Tcur

is advanced by one unit of TB . If there are any payloads of the respective flow on the
input channel, such that Tcur ≥ TTS, these are processed immediately and the result
is output in a new payload. In case new data is created or if it is an in-place transforma-
tion, the same payload is forwarded. Any other payloads not satisfying this condition
will remain in the input channel. This discrete behaviour implies a maximum time
resolution error of ϵmax = TB

2 . Therefore, choosing TB requires some knowledge of
the time resolution required by the data being processed.

Let’s consider the typical case of video and audio frames. In Figure 6.4 the values of
TOC and TTS set at creation time for different frames are depicted.

TOC1= 
TTS1

TOC2= 
TTS2

TOC3= 
TTS3

TOC1 TTS1=
TOC2

TTS2=
TOC3

TTS3

Video
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TTS1

TOC1 TTS1
Video Audio

Figure 6.4: Timing information associated to payloads.

For the video case, each frame is “carried” by a payload with the same TOC and TTS.
However, for the audio frames, the TOCwill not be the same as the TTS since a frame of
audio corresponds to an accumulation of samples along a period of time. The TOC will
reference the time associated with the first sample while the TTS will be associated
with the last sample.

6.3.4 Memory management

When a payload reaches a module that consumes the data without forwarding it or
when it reaches the end of the network it becomes no longer useful. From an effi-
ciency point of view, creating and destroying payloads continuously would be compu-
tationally expensive. To avoid this overhead, a simple recycling mechanism is used.
If a module is a source of payloads, it will have an associated payload factory. A data
template is attached to each factory – for instance, an image with a given dimension,
planes, etc. If the properties of the data to be outputted do not change, this template
should only be attached once and remain the same till further notice. When a payload
is required, it will be requested to the factory, which will either reuse an existing one
or create a new payload (i.e., allocate memory for it). The fields Factory and TemplateID
are also set accordingly at this stage. If a new payload is required, the template will be
used to create a copy of it, generating a payload with the exact same properties. When
the same payload is no longer needed anywhere in the processing network, it will be
returned to the corresponding factorywhere it will be stored in a recycle bin for future
use. However, if the TemplateID no longer corresponds to the one currently assigned
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to the factory (i.e., the properties have changed) it will be destroyed. This means that
payloads of the same flowmay contain at a given instant datawith different properties.
A simple example would be a network containing a Source, a Delay and a Sink module.
If the source changes its properties after some time, no immediate reconfiguration is
done across the network. The payloads in standby at the Delay module will still be
able to be processed as before. When the payloads with the new properties reach the
following modules any required reconfiguration will then be performed. The mech-
anism that flags and propagates these changes is based on the Header metadata field.
This is a form of highly efficient type-specific garbage collection (or more accurately
recycling) that is enabled by the strict semantics of time and dataflow processing used
in MarsyasX.

In order to evaluate the impact in the performance of a typical network we tested
the payload architecture alongside the slice architecture that is currently adopted by
Marsyas 0.2. The setup consisted of a source and N test MarSystems. The source cre-
ates a 500x500 image at each tick and test MarSystems do nothing to the incoming
image. Whereas the payload architecture avoids copying the whole image at each
MarSystem tick, the slice architecture does not (cf. Figure 6.1). The impact of this
can be verified in Figure 6.5. While the time taken to process 10 ticks rapidly increases
with increasedN for the slice architecture, the elapsed time remains almost stable for
the range ofN depicted in that figure. With such overheads the slice architecture can
become unfeasible for typical visual processing networks.

Nevertheless, the overhead using the payload architecture increases, albeit slowly. In
Figure 6.6 we show that a significant impact to the performance happens only for a
very large number of MarSystems (> 10000).

6.3.5 Initial configuration and propagation of flow control updates

Many processing modules require some kind of initialisation like buffer allocation or
device configuration. Often these depend on the type of data being processed and its
properties. Again, for the video case, it is expected that the source module reading,
for example, a local file, “knows” the width and height of each frame and therefore
somehow propagates this information to the other modules. Moreover, if the file sud-
denly changes and so do the frame dimensions, it is oncemore expected that the other
modules are informed of the changes. In MarsyasX this information is passed across
the network the sameway data is: using payloads. Each payload has a Headermetadata
field that contains a list of controls that have changed and whose change needs to be
notified. Not all controls need to be propagated, only flow controls. When a module
and the corresponding controls are created, the latter can be tagged as flow or local
controls. Moreover, if themodule has (ormight have) different input and output prop-
erties, two controls are added: an in-flow control and an out-flow control. Whenever one
flow control changes its value the next payload sent by the module will have the con-
trol’s name and value included in the header. All other modules receiving the same
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Figure 6.5: Comparison of performance between the slice and payload architectures. The
experimental setup consisted of 10 ticks in a network comprising one 500x500 image source
and N test MarSystems. While with the slice architecture the time taken to process the ticks
increases rapidly with N , using the payload architecture results in a much less noticeable
ascent. Values were taken with a Pentium 4 3.4GHz with 1GB of RAM.

flow will automatically read the header, update their own controls accordingly and
forward the changes the same way. For the in- and out-flow controls, only the latter is
sent and, naturally, only the corresponding in-flow control is set automatically. Ide-
ally, all modules processing the same type of data should share the same set of flow
controls. However, if no control exists in the current module with a name included in
the header it is ignored but nevertheless forwarded. Figure 6.7 shows an example of
how this process unfolds.

Before the first tick is triggered, it is also possible to explicitly request that all changes
are propagated at once, avoiding unexpected delays due to initialization overheads.

6.3.6 Events

When a control changes its value an Event Manager is notified as shown in Figure 6.7.
The role of this manager is to handle the propagation of the change across the sys-
tem. Note that by system we are referring not only to all the modules composing the
network but also other remote networks and modules, GUI widgets connected to the
control and other registered “observers” or “listeners”. The event CHANGED is always
sent when the control’s value changes but other events can be defined. Probes such as
Threshold, HysteresisThreshold and Peak can be attached to controls and send custom
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Figure 6.6: Evolution of the performance using the payload architecture. We used a log10
scale and with this scale it is noticeable that the overhead increases with the number of
MarSystems, but in much smaller proportion than with the slice architecture. The same
experimental setup described in Figure 6.5 was used.

events like MAXREACHED, ZEROREACHED, etc. Controls can be connected directly through a
link (see Section 6.2.4) or through an expression. For example, supposewewant towatch
the Peak Signal-to-Noise Ratio (PSNR) calculated by a specific module and change the
parameter of an algorithm if it rises above a certain maximum value and falls under
a minimum value. To achieve this, a HysteresisThreshold probe could be attached to
the PSNR control and two connections, possiblywith an expression, would bemade be-
tween PSNR and the algorithm’s parameter control: one for the case MAXREACHED event
occurs and another for MINREACHED.

An implementation of events already exist inMarsyas 0.2 but have a different objective
(Burroughs and Tzanetakis, 2006). The next step, under development, is to integrate
the Marsyas 0.2 events systems under the same event framework described here.

6.3.7 Legacy interface with Marsyas 0.2

An important feature of MarsyasX is the legacy interface with Marsyas 0.2. Undoubt-
edly it is very important to still be able to use the large collection of modules available
now and or in the future in Marsyas 0.2 releases. Since the framework base follows
closely the previous, it is rather straightforward to support legacy modules. Figure 6.8
shows how this is done. A MarsyasX module called MarSystemLegacy wraps a legacy
module and synchronises the controls of both. The most important difference is the
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way data is exchanged between modules. It is also the most costly operation, since it
implies copying the data stored in the payload to the input slice of the legacy mod-
ule and, after processing, from the output slice to the payload that will be sent to the
output channel.
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Figure 6.8: Legacy interface with Marsyas 0.2.
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6.3.8 Modules

The similar architecture of MarsyasX and Marsyas 0.2, simplifies the porting of mod-
ules. Moreover, with the legacy interface it is possible to mix modules created with
both versions. The plethora of Marsyas 0.2 modules for reading audio files, feature
extraction, and audio analysis and synthesis can easily be made available for Marsy-
asX users. In addition to that, visual processing modules are being created, including
modules for video and image IO, filtering, optical flow estimation, segmentation and
feature extraction. Support for XML handling is also available. This is an ongoing pro-
cess and more modules are expected to be developed.

Despite the complex architecture underlying the MarsyasX modules, the process of
creating modules has been simplified. Typically, a user only needs to define the input
and output flows and create a process function accepting the data according to the de-
fined flows. This does not require any knowledge about the payloadmechanism. Addi-
tionally, modules are managed using a simple plugin system. Plugins are dynamically
loaded whenever necessary. Each plugin includes modules that are somewhat related.
This has multiple advantages, namely: avoids excessive startup times due to module
initialisation, allows the deployment of smaller packages containing only the strictly
necessary, and opens the possibility for third-party modules (possibly with different
licenses).

� Creating new modules

Although the underlying some concepts ofMarsyas 0.2 andMarsyasX can be somewhat
complex to fully grasp, the process of creating new modules is fairly straightforward.
In fact, the user can be oblivious of core details like payloads and factories. Starting
with the simpler case, if we want to create a module that accepts an image, processes
it, and outputs it, the C++ class would be something like:

class SimpleVisualModule : public MarSystemVisual
{
public:

SimpleVisualModule(std::string name) :
MarSystem(‘‘SimpleVisualModule’’, name),
MarSystemVisual()

{
}

MarSystem* clone() const
{

return new SimpleVisualModule(*this);
}

void build()
{
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configureFlows(
new Flow(FlowHandlerVisual::type(), ‘‘*’’, Flow::FLOW_INOUT),
&SimpleVisualModule::process

);

MarSystemVisual::build();
}

bool process(mrs_image &img)
{

//... do something with img ...
return true;

}
};

The typical methods that need to be defined in a new module are: the constructor with
the name of themodule as an argument, a clonemethod that is called by amoduleman-
ager called MarSystemManager, a build method where the handled flows are config-
ured, and a processmethod where the actual processing occurs. The key to avoid han-
dling directly with payloads and factories is the configureFlows call in the buildmethod.
Flows are associated with different types of handling; in this example the handling is
in-out, but in and out are also possible. With the in-out handling mode the data
carried by a flow is given as input to the module and outputted after the respective
processing. With in handling flow data is inputted but never outputted. On the other
hand, with out handling a new flow is outputted with no inputs. Arbitrarily complex
combinations of flow type and flow handling are possible. For instance, if we need to
create a module that handles both audio and video, the C++ class would be similar to:

class SimpleAVModule : public MarSystemVisual, public MarSystemAudio
{
public:

SimpleAVModule(std::string name) :
MarSystem(‘‘SimpleAVModule’’, name),
MarSystemVisual(),
MarSystemAudio()

{
}

MarSystem* clone() const
{

return new SimpleAVModule(*this);
}

void build()
{

configureFlows(
new Flow(FlowHandlerAudio::type(), ‘‘*’’, Flow::FLOW_INOUT),
&SimpleAVModule::processAudio

);
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configureFlows(
new Flow(FlowHandlerVisual::type(), ‘‘*’’, Flow::FLOW_INOUT),
&SimpleAVModule::processVisual

);

MarSystemAudio::build();
MarSystemVisual::build();

}

bool processAudio(mrs_audioframe &frame)
{

//... do something with frame ...
return true;

}

bool processVisual(mrs_image &img)
{

//... do something with img ...
return true;

}
};

If for instance we need to update themodule to generate a visual representation of the
audio frame, only two changes are needed. First, add the new visual flow by changing
the first configureFlows call:

configureFlows(
new Flow(FlowHandlerAudio::type(), ‘‘*’’, Flow::FLOW_INOUT),
new Flow(FlowHandlerVisual::type(), ‘‘*’’, Flow::FLOW_OUT),
&SimpleAVModule::processAudio

);

and update the processAudio method accordingly:

bool processAudio(mrs_audioframe &frame, mrs_image &out_img)
{

//... do something with frame and out_img ...
return true;

}

For more complex flow handling a lower-level access to the underlying payloads and
factories is also possible. However this is rarely necessary for typical data handling.



6.3. MarsyasX – a step toward cross-modal analysis 163

6.3.9 Scripting with Python

A very important motivation of building and using Marsyas is to have a way to rapidly
assemble a prototype and batch test it with different parameters, test sets, network
configurations, etc. One way of doing it is to have an interface of Marsyas to a script-
ing language, like Python. Other scripting languages such as Ruby, Perl or Lua can also
be adopted, based on the same rationale. Marsyas has been designed to expose a lot
of functionalities at run-time including module creation, network assembly, changing
of controls, and starting/stopping processing. Essentially the only part that requires
compilation is the addition of newprocessingmodules or changing theprocessing code
of existing modules. This was a conscious decision as it is essential for fast perfor-
mance. All the run-time functionalities of Marsyas can be interfaced to a scripting
language.

Python is an interpreted, interactive, object-oriented programming language that has
a increasingly large supporting community. Its clean syntax, small number of powerful
high-level data types, easy integration with C/C++ and large set of supporting tools are
decisive features. Using the Python C API it is possible to create extensions to Python.
The extensions are implemented in dynamic-load libraries whose functionalities are
then accessed by Python. Having created an extension containing Marsyas, Python
can be used to create batch tests or simple applications faster than with C/C++. The
first obvious reason is that if some part of the code needs to be changed to do, for
example a different test, a compilation that usually is time consuming, is not needed.
And, since it consists only of a thin wrapper over Marsyas, the overhead is minimal
and the execution time should be very close to an equivalent C/C++ implementation.

Let us consider a simple example. To create an application that estimates themotion of
a video, calculates its centroid and displays both the video and the estimated motion,
wewould first import themarsyasmodule, create amanager – which is responsible for
the creation of newmodules – and load the needed extensionswhich in this casewould
only be visual-ext and av-ext – containing visual processing algorithms, such as the
MotionDetector and audiovisual utility modules like FFMPEGFileSource, respectively.

import marsyas
manager=marsyas.MarSystemManager()
manager.loadExtension(’marsyas-visual-ext’)
manager.loadExtension(’marsyas-av-ext’)

Next, the network needs to be created. This is accomplished using the manager by
passing as arguments a type and a name for the new module. The network will only
consist of a file source, a motion detector that estimates the motion and a visual sink
to display both the original video and the motion vectors and centroid. Some of the
details of how data flows between modules will become clear along Section 6.3.

series=manager.create(’Series’, ’network’)
series.addMarSystem(manager.create(’VisualSource’, ’src’))
series.addMarSystem(manager.create(’MotionDetector’, ’motion’))
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series.addMarSystem(manager.create(’VisualSink’, ’snk’))

Initialisation of the modules is performed through the controls, using the updctrl
method. To simplify the use of paths we can beforehand create proxy controls by link-
ing them to internal controls. Finally the bootstrap is called to completely initialise
the network before starting the processing.

series.linkctrl(’mrs_string/filename’,
’VisualSource/src/mrs_string/filename’)

series.linkctrl(’mrs_bool/notEmpty’,
’VisualSource/src/mrs_bool/notEmpty’)

series.updctrl(’mrs_string/filename’, ’test.avi’)
series.updctrl(

’MotionDetector/motion/mrs_natural/blockSize’, 4)
series.updctrl(

’MotionDetector/motion/mrs_bool/drawVectors’, True)
series.bootstrap()

Finally, we use the tickmethod to process each chunk of data, which in this case corre-
sponds to the video frames – in each tick called a frame will be processed and nothing
else.

notEmpty=series.getctrl(’mrs_bool/notEmpty’)
while notEmpty.isTrue():

series.tick()

Note thatmost of the code is rather generic, i.e., the C/C++would be very similar to this,
differing only in the syntax, however with the added flexibility of scripting and easy
prototypingwithout recompilation. The example applications described in Section 6.4
were implemented using the Python interfaces.

6.4 Example applications

In this section we present some examples of applications that can be implemented in
MarsyasX. The focus is on howone can do it rather than on the algorithmic details. The
first can actually be considered simplistic but are meant to be so in order to simplify
comprehension. Some additional information as well as these and other examples are
presented online [4] with code available for download. Also, the MarsyasX library is
available in a SourceForge SVN repository [5].

6.4.1 Simple motion detection

The first example is a simple network that can be used for motion detection (as rep-
resented in Figure 6.9). In Section 6.3.9 we discussed the Python code to create this
network. The network comprises simply three modules – one source, one processing
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module, and one sink. The processing module estimates motion with an optical flow
estimation algorithm, for instance the Lucas-Kanademethod (Lucas andKanade, 1981).
Optical flow vectors are outputted as a Multidata data type and, since the drawVectors
control is set to true, the vectors are also visually represented and overlaid on the input
image. Finally, the resulting image with the vectors is shown by the VisualSink.

Series (main network)

VisualSource

Visual

Optical
FlowEstimation
accepts: Visual

VisualSink
accepts: Visual

Note: Only relevant module controls are represented to avoid cluttering.

Legend:           Flow source

Controls

Control link

Multidata

Figure 6.9: Network used for motion detection.

6.4.2 Segmentation of audio streams

This application example takes an audio stream and automatically segments it in two
classes: music and speech (as in Section 3.4). The network configuration employed for
this purpose is shown in Figure 6.10.

We start by extracting some discriminative features from the audio signal, as depicted
in Figure 6.10. A Fanout composite module is used for concatenating features such as
Zero Crossings andMFCC coefficients into a single feature vector. The figure also depicts
the use of pre-defined prototype for the calculation of spectral features (in this case,
Spectral Centroid, Spectral Rolloff and Spectral Flux), without the need to redefine its use
each time they need to be calculated. The resulting feature vector is then fed into a
Classifer module, which implements a simple multi-dimensional Gaussian model. In a
training setup, the feature vectors come from labelled audio files (i.e., either music or
speech signals) and are used to train the Gaussian model for the corresponding class.
Afterwards, it is possible to configure the same network (using a control available at
the Classifer module for setting training/classification mode) to a classification setup.
In this mode, feature vectors extracted from an unknown audio stream are sent to
the classifier, which outputs the most likely class according to its internal pre-trained
models.
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6.4.3 Speaker segmentation using audio and video

The algorithm used in this example for the speaker segmentation is based on the the
one presented in Section 2.3.4. The algorithm and the corresponding network can be
broadly separated in three parts: the audio speaker segmentation algorithm, the visual
motion estimation and centroid calculation, and finally amultimodal speaker segmen-
tation module that combines the visual and audio results. The processing network is
depicted in Figure 6.11.

The audio algorithm used for the speaker segmentation assumes no prior knowledge
about the number of speakers or their identities and presumes that the audio input
contains only speech. Themethod follows ametric-based approach for coarse speaker
segmentationusing Line Spectral Pairs (LSP),which is subsequently validatedbymeans
of the Bayesian Information Criterion (BIC).

The visual algorithm part of the network considers scenarios with only two speakers
facing the camera, such as interviews or lectures. It is assumed that the speaker will be
located in the region containing the most amount of motion. The separation of these
regions is defined by a boundary that for simplicity is kept as a vertical straight line
splitting the image in two halves. A centroid of the motion is calculated and is used to
detect the potential speaker.

The multimodal speaker segmentation algorithm takes into account two constraints:
people tend to move their bodies, arms and lips before producing any sounds and the
first sounds produced are usually non speech vocalisations such as breath, etc, hence
the visual change detector is thenmore likely to be fired before the audio one; also, this
last audio detector is more likely to detect the correct boundary but with a higher false
alarm rate due to the presence of non speech sounds and background noise. When a
speaker segmentation is detected by themultimodalmodule it is signalled in a control.
This control is linked to the VisualSink that will display which speaker is speaking.

This work implements a late fusion scheme where one classifier is attached to each
modality and the decisions of the classifiers are finally combined. Future work will
concentrate on early fusion, namely the use of only one classifier that considers all
the modalities at once, which is usually considered more reliable but harder to imple-
ment. MarsyasX can be powerful in such scenarios, since audio and video data can be
conveniently aligned and combined within the same network of data.

6.4.4 Simple surveillance with multiple inputs

This application includes inputs from multiple cameras and microphones capturing
different areas. The goal is to select the input with the most relevant activity. For this
simple example we will consider two features for the activity detection: one audio fea-
ture, the short-time energy, and a video feature, the global motion. A simple weighted
average of the normalised feature values are used as a measure of activity.
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Figure 6.12 shows the network that is used for this scenario. To read the input videos
we use the AVSource module that produces two flows: Audio and Visual. This means
that, when a video frame is captured a new payload containing an image is sent to the
output channel and, when an audio frame is captured another payload is outputted
containing now a vector of audio samples. Note that despite the two depicted in-
puts, more are possible. For the two sources case we will have a total of four flows:
(V isual, Area1), (Audio,Area1), (V isual, Area2) and (Audio,Area2). The next
module is a Classifier which is represented by a prototype. A prototype is another
module, possibly composite, that is registered in the module manager with a given
name. This classifier is in fact a Series containing a Fanout and the Activity Detector.
The Fanout is a composite that sends the input to each module inside, like a Parallel
but, unlike the latter, aggregates the flows at the output. In this case, bothmodules in-
side the Fanout will produce a new flow: Features. The output of this Fanout will then
be a feature matrix containing the two features. In the flow aggregation, the payload
timing information is used to correctly align the features in time, since the visual and
audio sources have different output rates. Finally the Activity Detector will take both
features to calculate the activitymeasure and store it in a control which is linked to the
Classifier module. A control is used to signal the AVSink which source (i.e., audio and
visual flows) to display. Another link is used between each Classifier and the AVSink
using an expression. The expression, in Python, could be:

if in1 >= in2: out = ”Area1”
else: out=”Area2”

with in1 and in2 representing the activity measures of each source, and out repre-
senting the selected source. Whenever the control that selects the input is changed
the AVSink starts displaying it.

6.4.5 Person detection system

The last example of application implements a persondetection systembased on the ob-
jectmatching algorithm described inmore detail in Section 5.5. Only visual processing
modules are used. The algorithm consists of five steps: (1) segment and track each rel-
evant visual object, (2) extract a representation for each tracked object, (3) compare
this representation with a database of objects, (4) if a given object is known, label it
accordingly, and (5) update the database with the new information, if it is found rele-
vant. InMarsyasX each of these steps corresponds to one ormoremodules performing
a specific task.

Themainmodules for this application include: backgroundmodelling and subtraction
for object segmentation, object tracking, extractionof local descriptors andvocabulary-
based representation, and object classification. The first twomodules are incorporated
in the network shown in Figure 6.13a and the other two modules are part of the net-
work shown in Figure 6.13b. The former network outputs the multiple object tracks
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detected by the combined ObjectSegmenter (described in Section 3.3) and Object-
Tracker (described in Section 5.5.3). This network is combinedwith the Appearance-
Analysermodule (described in Section 4.3) to identify persons. The object identity of
each frame extracted is outputted by a control which in turn is linkedwith an Identi-
tyVerification module. The system can be further improved by integrating other
modalities, like face, gait, and speech information (all discussed in Section 4.4). The
modularity of MarsyasX simplifies this process and only straightforward changes are
needed (Figure 6.13c).

6.5 Summary

Creating applications that rely on audio or visual processing can often be a cumber-
some task. There is awide offer of specific tools and libraries both commercial and free
(open source or not) but if one wants to combine some of these problems arise. The
first problem is that data structure and semantics are almost always different and the
user ends up creating customwrappers or sometimes re-implementing functionalities.
This is even more evident with a combination of audio and visual processing libraries.
In fact, cross-modal processing is an important and growing field of research among
the scientific community. Having the ability to, under the same framework, use or de-
velop new tools and algorithms is undoubtedly important. By abstracting both data
structures as well as its flow, and by using uniform procedures to define and set pa-
rameters a considerable effort of integration can be removed from the user. We have
described in this chapter MarsyasX, a broad framework that attempts to solve these
problems.

MarsyasX is based in Marsyas 0.2, an established framework for music and audio sig-
nals analysis. With Marsyas, processing networks are assembled using configurable
pre-implemented modules by means of implicit patching, differing from most com-
monly used frameworks. MarsyasX extends the functionalities of Marsyas 2 to visual
support alongside audio. It is however not limited to audio and visual processing but
can in fact be seamlessly used for generic data processing. Data is exchanged between
modules using timed payloads, which in turn are implicitly grouped in flows. A flow
“carries” data of the same type along the network always following its topology. The
topology is defined implicitly by the use of composite modules that aggregate other
modules (simple or composite) in an arbitrarily complex configuration. Typical com-
posite modules include Series, Parallel, Fanin, Fanout, etc. The payload timing infor-
mation consists of two timestamps – time of creation (TOC) and time-to-schedule (TTS)
– which are used to synchronise different flows. This flow of data across the network
can be classified as synchronous as opposed to the asynchronous behaviour of control
data flow. Controls interfaces to the modules and are used to read or set internal val-
ues of the modules and can be accessed at all times. However, any change that will
imply the modification of the flow will be propagated synchronously by the data flow.
These and any other changes are at the same time asynchronously notified by events.
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Event recipients can be defined or registered by other modules or by higher layers,
like a GUI.

Some example applications showed how simple ormore complex algorithms can easily
be implemented in MarsyasX. As the framework evolves more modules are expected
to be included allowing the creation of much more complex networks. It is also en-
visioned that multiple processing networks will be able to work on top of distributed
systems, transparently exchanging payloads between them.





7 Conclusions
Building a complete solution to automatically describe real-world scenes is a complex
undertaking. Such solution comprises different methods performing various associated
tasks. Each of these tasks represent per se a research challenge. Also, often real-
world scenes encompass multiple modalities that convey information in different forms.
Typically modalities are processed independently and the resulting output is then
aggregated. However, in many cases the information conveyed by modalities have
interactions that can be explored to better extract their intrinsic information. The
analysis of each modality as well as the way individual modalities should be combined,
represents a multidimensional challenge.

7.1 Discussion

Systems that can automatically detect and identify events in complex scenes and track
objects acrossmultiple cameras in real-time still present technological challenges that
need to be tackled. Currently, systems that are employed for these tasks (e.g. surveil-
lance systems) are almost all operated manually. Tedious and error-prone inspection
of long hours of data are often the only possible method to know when an event oc-
curred. Typically these systems rely only on data acquired by cameras capturing low
quality images at a small frame rate, whichmakes the posterior analysis evenmore ar-
duous. Themain reason behind this option is the difficulty of storing thehuge amounts
of data being captured, if no selection of data is performed. Some recent systems only
store segments that have some activity, based on the motion estimated by the system.
Although this significantly reduces the amount of information, it hardly provides the
necessary means to efficiently search for particular events.

Most of the information in scenarios like surveillance is conveyed by the sequence
captured images but, more often than not, there is important information that can
be obtained from analysing other types of data, or modalities. In fact, the concept of
multimodal scene analysis relies on that premiss, i.e., if adequate methods are applied,
additional information can be extracted from a given scene when using a combination
of different modalities. Some challenges need to be overcome in this process, namely,
to know which modalities are really relevant and how can the multiple modalities be
combined.

The description of real-world scenes can be approached considering two semantic en-
tities: objects and events. Different methods are employed to analyse both – methods
for object analysis and methods for event analysis. Object analysis can further be sub-
divided in object detection and object tracking. From object detection in a complex
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scene results a separation in its composing objects. Each object can then be separately
analysed, identified, or classified. However, detecting or segmenting objects is a very
complex problem since, to attain results comparable to human-performed segmenta-
tions, semantic or high-level a priori knowledge is very often required. Object recog-
nition on the other hand involves comparing an unknown sample with a model. A
related task is object tracking that relies on both detection and recognition to follow
an object along time. Finally, with event analysis, activities and events that are con-
sidered relevant are identified. Similarly to object analysis, detection and recognition
tasks are also performed but, unlike in object analysis, these tasks usually are intrinsi-
cally related in event analysis. Also, while object analysis is essentially related to the
content, event analysis has a strong context-dependent component. This means that,
to understand what is a relevant event, we must know the context of the captured
scene.

With this thesis we presented some original contributions that are related to object
detection, object recognition, and event analysis. Regarding the former area, we pre-
sented a visual object segmentation algorithm. In scene description object segmen-
tation is an important first step, which means that it should represent a very small
fraction of processing time while performing as effectively as possible. The proposed
algorithm uses a cascade of change detection tests, including noise-induced changes,
illumination variation and structural changes. For the detection of structural changes
the algorithm is based on other commonly used per-pixelmodelling algorithms. When
compared to these, our algorithm achieves faster processing and results show that
even without additional post-processing segmentation quality is better.

Object recognition usually follows object detection. In this scope we introduced an
object matching system for multiple cameras. The goal is to match tracked objects
based on their appearance across independent views. The objects are first tracked
by commonly used single-view tracking algorithms and these individual results are
the inputs of the matchingmethod. This methodology is suitable for implementing an
“object handover system” between cameras with non overlapping views. Encouraging
results were obtained using static models for a set of known objects. However typical
scenes may present changes to the objects’ appearance; also, new object models may
also need to be included. The matching method should therefore be scalable in two
distinct dimensions: an undetermined number of new objects can be added at any
given instant and, existing object representations can be updated to reflect changes
in time. For this purpose we proposed and tested an incremental model which also
presented a good recognition performance.

This object matching system was later extended to an event navigation system based
on timelines representing person appearances. From an application point of view, the
complete system can be seen as a summarisation application that finds multiple ob-
ject occurrences. These occurrences can be captured by the same camera or by any
other cameras, located in completely independent positions. The system takes as in-
puts raw sequences, segments them into relevant objects, tracks the detected objects
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and processes the tracks to find multiple person appearances. This in essence acts as
a linking mechanism between sequences. The result is a timeline that allows more
efficient browsing through the scene.

Developing these types of algorithms and related systems is a problem in itself. Typ-
ical visual and audio analysis algorithms are created and tested using generic mathe-
matical tools like Matlab. However, faster implementations need to be carried out in
lower-level languages and frameworks (typically C/C++). It is possible to find numer-
ous libraries that help with this task but if the scope of the task involves integrating
different types of data, this process can easily become burdensome and inefficient.
Another contribution of the work developed in this thesis is a multimodal framework
called MarsyasX that could process many types of data following a common scheme.
The framework follows a dataflow architecture where complex network of processing
objects can be assembled to form systems that can handle multiple and different types
of multimedia flows with expressiveness and efficiency.

7.2 Current work

The ultimate goal when outlining this work was to have an efficient way of brows-
ing the history of a wide-area multi-camera system capturing real world scenes – with
surveillance systems representing the prominent instance of such systems. We envi-
sioned a multimodal system that could separate and represent relevant objects cap-
tured along time, such as persons. Moreover, the objects’ representation should allow
a search by content. In this case, the search query would be the object itself and the
search target would be the collection of other appearances of the same object. Recall-
ing Figure 1.3 in Chapter 1, we identified then the different areas related tomultimodal
scene analysis. We also defined a coherent line of work encompassing some of the
identified areas and essentially centred on visual data analysis. That path was pursued
during the development of the work that is reported in this thesis and in a number of
peer-reviewed publications as well (refer to Section 1.4.5).

The current tangible result is a system that integrates all the methods devised until
now and implemented in the multimodal framework and generates browsable time-
lines summarising captured scenes. Multiple appearances of persons captured by the
same or by different cameras are identified in the process, allowing also to know the
path followed by a given person.

7.3 Future work

Multiple future directions can be envisioned for thiswork. We can broadly divide them
in global and specific lines of work. The former are related to the systemperspective of
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this work, while the latter include specific improvements to the algorithms developed
in the scope of the thesis.

Regarding the global lines of work, the ultimate goal is the development of a com-
plete system that gathers data from different types of sources – mainly visual and au-
dio sources, but other inputs from other sensors should also be incorporated. As we
mentioned in the previous section, most of the work until now has been on the de-
velopment of visual object analysis algorithms. A near-term goal is to incorporate au-
dio processing algorithms, especially for two purposes: improve person identification
and improve event detection. Audio sensors are often not used in typical surveillance
scenarios but, when available, the information extracted from the additional audio
sources may be valuable to improve detection and recognition performance.

In Figure 1.4 we defined three layers in which development would occur – framework
layer, analysis layer, and application layer. Until now the two lower layers (framework
and analysis) received themost attention. Amid-term goal is to develop an application
that manages the system sensors, the analysis algorithms and the output these algo-
rithms generate. These outputs should typically be in the form of information about
the analysed content, usually defined as metadata. The way metadata is visualised de-
pends greatly on the type of application. In this casewe identify two forms ofmetadata
visualisation – temporal-based and spatial-based. The temporal-based metadata con-
sists of identified events that can be presented as a timeline (or timelines) such as the
ones created for the specific case of person (described in Section 5.5). The timeline rep-
resentation provides a good way of showing when objects are detected and synchroni-
sation relationships between events. Layout is specified per object per time unit, so an
overview of all objects at a given time is possible. More information about metadata
representation for visual object editing can be found in (Teixeira, 2004). Regarding
spatial-based metadata, each captured image is enriched by the processed metadata,
such as identification about persons and other objects, localisation of audio sources,
etc. If additional information about the covered area is available, amap representation
of the area with overlaid information can also be displayed.

Regarding specific lines ofwork, it is possible to identify various possible paths. Specif-
ically, further improvements should be done on the object segmentation algorithm
to effectively handle challenging sequences with difficult illumination changes. Us-
ing hybrid solutions is a possible way, i.e., combining region segmentation and global
measurements with per-pixel modelling. Also, the use of additional information like
depth can contribute to better segmentation results. Finally, we expect to include lay-
ered modelling that can “memorise” current and past objects. The layered modelling
would allow to significantly improve performance in scenarios where objects with a
moving-static-moving behaviour are present.

Thework on the object trackmatchingmethodwill be further developed. In particular,
the information gathered by object matching can be used as feedback to the tracking
algorithm in order to improve tracking performance. This was already discussed in
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Section 5.5.7 but a more thorough analysis still needs to be conducted. Also, better
incremental models need to be devised in order to achieve higher scalability.

Finally, the proposed multimodal framework MarsyasX is an ongoing work that is
expected to have a significant impact when it becomes the engine of the Marsyas
project. Until now it has been an experimental branch of Marsyas but there is a con-
sensus among developers that MarsyasX will play an important role in Marsyas’ fu-
ture. Among the long list of goals, the most important considering a near-term time
window include: developing a more stable and tested core; devising a complete event
management system; adding support for XML-based flows (e.g. MPEG-7, MPEG-4 XMT,
X3D, etc), MIDI-based flows, and OSC-based flows; and, more ambitiously, support dis-
tributed processing networks.

7.4 Final thoughts

An endeavour as challenging as this and covering as many topics could never be con-
cluded here. The initial collaborations described in Sections 3.4 and 5.6 are examples
of that. Additional theses are also expected to be spawned from this, such as the work
that currently explores the possibility of improving person tracking taking as input
the results of object segmentation and using as feedback the results of object match-
ing (Carvalho, 2009). We believe that this work lays the foundation for other efforts.
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A Datasets

A.1 Segmentation dataset Ds

The Ds dataset used to evaluate the proposed method performance consists of 12 se-
quences, shown in Figure A.1, which were manually segmented in selected frames,
shown in Figure A.2. The test set is available at the BGMS page [3]. The first sequence,
called shopping (SH) shows a view of a shopping corridor and is one of the test case
scenarios made publicly available by the EC Funded CAVIAR project/IST 2001 37540
(Fisher et al., 2002). The scene consists of people walking, browsing the stores’ dis-
plays or waiting for others. It has stable illumination conditions, except for a small
portion in the right side of the field of view. However, hard shadows and reflections
in the floor and in the display’s glass are present. The second sequence, labelled out-
door (OD) shows an outdoor scene with several people passing along the camera field
of view and is available in theMPEG-7 test set (results are presented for stream A). The
sequence has somenoise and although the illumination conditions are fairly stable, the
background presents significant vegetation swing. The speedway (SW) sequence was
captured from a bridge over a speedway and is also available in the MPEG-7 test set. It
shows different sorts of vehicles moving in both directions. Overall, it is the most sta-
ble stream regarding background changes but some relevant shadows are present. The
following framesweremanually segmented by visual inspection: 350, 355,... and 400 in
the SH sequence; 880, 885,... and 930 in the OD sequence; and 2510, 2515,... and 2560 in
the SW sequence. Besides these three sequences, the test set also includes nine openly
available segmented sequences, namely: meeting room with moving curtain (MR),
campus with wavering tree branches (CAM), lobby in an office building with switching
on/off lights (LB), shopping centre (SC), hall of an airport (AP), restaurant (BR), sub-
way station (SS), water surface (WS), and fountain (FT). All sequences from this data
set present challenging scenes with considerable background activity – mainly in MR,
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CAM, WS and FT – and sudden changes of illumination conditions are also present –
with special difficulty in LB. More details about these sequences can be found in (Li et
al., 2004a).

Figure A.1: Segmentationdataset (original frames). Segmentation dataset (original frames).
From left to right, and from top to bottom, shopping (SH), outdoor (OD), speedway (SW),
moving curtain (MR), campus with wavering tree branches (CAM), lobby in an office building
with switching on/off lights (LB), shopping centre (SC), hall of an airport (AP), restaurant
(BR), subway station (SS), water surface (WS), and fountain (FT).

A.2 4-class audio dataset Da
4

The audio dataset Da
4 is used to test the segmentation of audio streams in 4 possible

classes: silence, noise, speech, and music. The files comprising the dataset were col-
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Figure A.2: Segmentation dataset (masks). Segmentation dataset (masks). From left to
right, and from top to bottom, shopping (SH), outdoor (OD), speedway (SW), moving
curtain (MR), campus with wavering tree branches (CAM), lobby in an office building with
switching on/off lights (LB), shopping centre (SC), hall of an airport (AP), restaurant (BR),
subway station (SS), water surface (WS), and fountain (FT).
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lected from audio CDs, television videos and web radio streams. It represents a wide
spectrum of real-world sequences, subject in some cases to adverse capturing con-
ditions. In particular, background noise is present, as are linear and non-linear dis-
tortions. Also, some recordings originally had different sampling rates, but for this
dataset all were resampled to 44100Hz with one channel and 16-bit resolution.

In total, approximately one hour of audio for each of the 4 classes is stored in 342 10-
second files.

A.3 Object matching dataset D30

The datasetD30 consists of individual sequences containing 30 visual objects extracted
from the Shopping Center dataset of the CAVIAR project [44]. We extracted each visual
object from the 26 sequences that comprise the original set, using the provided CVML-
based ground-truth information. The ground-truth consists of a bounding box defined
in each frame, for each object.

Figure A.3: Images of all 30 visual objects used in the dataset. First row shows Person[01-10],
second row shows Person[11-20] and third row shows Person[21-30]. The dataset consists of
a total of 14506 images, with an average of 468.5 images per person.

The total number of images used to train and test the complete system is 14506. This
number includes 30 individual tracks of 30 different persons. Fig. A.3 shows all vi-
sual objects composing the dataset. Individual tracks were extracted from the original
video according to the bounding box defined in the ground-truth. These tracks in-
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clude images with partial occlusions as well as severe occlusions by other persons (see
Fig. 4.6 for an example). Additionally, we tested different tracks of the same person,
captured at different instants and areas (see Fig. A.4 and Fig. A.4 for examples); they
were however not used for training.

Figure A.4: Same visual object captured at different instants by different cameras.

(a) Person01 (b) Person12

Figure A.5: Different perspectives of the same person are present in the dataset. Two exam-
ples of this diversity in appearance is shown in the figure.

Ageneric vocabularywas createdwith thePASCALVisual Object Classes (VOC) database
[45]. All objects tagged as PASperson and all its variants (Sitting, Standing and Walking)
were extracted from the VOC 2006 contest (Everingham et al., 2006) dataset; these im-
ages formed the generic dataset Dg . The total number of images for this vocabulary
training set is 2688.

The dataset D30 was further partitioned into subsets Di, i ∈ {1, 2, . . . , 5} to test the
learning adaptability of the system. Each subset represents a time interval of 5 seconds
(150 frames at 30 fps) of accumulated data. In Fig. A.6 a representation of how the
subsets are created is depicted. Note that no frames are repeated between sets and
that all frames from D30 are included in the subsets, such that

∪10
i=1 Di = D30 and
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∩10
i=1 Di = ∅. This incremental dataset simulates a typical visual surveillance scenario

where objects are detected at different time instants. Initially only some objects are
represented but, as new subsets are added new objects are added. Likewise, objects
previously detected can no longer be represented in future subsets.

person ID

1

01

2

3

4

5

02 03 04 05 06 07 08 09 10 11 ... 29 30

s
u
b
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Figure A.6: Subsets Di, i ∈ {1, 2, . . . , 5} created to test incremental learning of objects.
Each object starts to be captured in a given instant and leaves the field of view at an-
other instant – the time interval when objects are is represented by the bars. Each dataset
corresponds to 5 seconds of activity.

A.4 Independent views dataset D5

To complement the results with the CAVIAR dataset we captured 3 additionally se-
quences at two independent locations (FigureA.7). These sequenceswerenamedHall1,
Lobby1, and Lobby2 and present challenging situations with cluttered scenes, high
rates of occlusion, different illumination conditions as well as different scales of the
persons being captured. Similarly to D30, a set of track images from 5 persons was
extracted from the sequences, forming in this case theD5.

A.5 Event detection dataset De

The event dataset uses also CAVIAR dataset [44]. The scene consists of the surveillance
sequences capturing the area in front of a store. During the videos people enter and
leave the store from several directions, others just pass by the store. Figure A.8 is an
image of the area under the camera field of view.

The full dataset contains 26 sequences with a total of 235 ground-truth tracks. From
the set of existing tracks we selected those which are not interrupted in the sequence.
These are the tracks which begin and end on the limits of the video frame. The final
dataset consists of 124 trajectories, each annotated which one of the 5 characteristic
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(a) Hall scene (b) Lobby scene

Figure A.7: Two additional independent locations. Distinct conditions of capture are visible,
namely different scale and illumination.

Figure A.8: Image of the area in front of a store where the sequences were recorded.

trajectories defined in Section 5.6. In Figure A.9 we show the full 124 trajectories, di-
vided into the specific characteristic trajectories.
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Figure A.9: Aglomerated plot of all tracks in the database. The tracks are divided into 5
diferent directions (124 tracks in total).



B Evaluation metrics

B.1 Performance metrics

B.1.1 Precision and recall

precision =
Ntp

Ntp + Nfp
(B.1)

recall =
Ntp

Ntp + Nfn
(B.2)

where Ntp is the number of true positives, Nfp is the number of false positives and
Nfn is the number of false negatives.

B.1.2 False Acceptance Rate (FAR) and Miss Detection Rate (MDR)

FAR =
Nfp

Ntp + Nfn + Nfp
(B.3)

MDR =
Nfn

Ntp + Nfn
(B.4)

The relation between the pairs (FAR, MDR) and (precision, recall) is given by:

FAR =
recall · Nfp

precision · Ntp + recall · Nfp
(B.5)

MDR = 1 − recall (B.6)
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B.1.3 F-measure

Ameasure that combines both precision and recall is called F-measure. Themost com-
monly used, F , is defined by:

F = 2
precision · recall

precision + recall
(B.7)

This is a special case for a more generic Fβ measure with β = 1. Fβ weighs either the
precision if β < 1 or the recall if β > 1.

Fβ = (1 + β2)
precision · recall

β2 · precision + recall
(B.8)

B.2 A metric to compare foreground segmentations§

When working with object-based spatial segmentation of video, the major objective
is to design an algorithm that produces appropriate segmentation results for the par-
ticular goals of the application being addressed. The demonstration of the usefulness
of a particular algorithm entails necessarily a comparative analysis of the algorithm
against similar algorithms. And the fair assessment requires suitable metrics provid-
ing a meaningful and objective measure of performance.

We proposed recently a unifying model for the comparison of image segmentations
(Cardoso and Corte-Real, 2005, 2006). Here, we recover the general framework and
instantiate a new metric, particularly adapted for the application at hand.

§This section is in part based on the article Partition-distance methods for assessing spatial segmentations of
images and videos accepted for publication in the Computer Vision and ImageUnderstanding international
journal (Cardoso et al., 2009).
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Figure B.1: Intersection-graph for two segmentations. The weights shown correspond to
the number of pixels in the intersection.

At the core of the framework is the intersection-graphbetween two segmentations, de-
fined as the bipartite graph with one node for each region of the segmentations. Two
nodes are connected by an undirected, weighted edge if and only if those two regions
intersect each other. Figure B.1 exemplifies such setting. The intersection-graph asso-
ciatedwith two image segmentations can nowbe used as a factory of indices of similar-
ity between partitions. The partition-distance (Cardoso and Corte-Real, 2005) has been
defined as the problem of finding a maximum weighted matching in the intersection-
graph. The sum of the weights of the unmatched edges on this matching process pro-
vides the distance between both segmentations. And the pixels corresponding to these
unmatched edges constitute a informative error mask.

The weight assigned to an edge should express the importance of the corresponding
intersection. The simplest way is to assign the area of the intersection to the weight
of each edge. But this formulation is not necessarily the one better capturing the per-
ceived quality of a segmentation. In particular, all pixels in the same intersection of
two regions are being equally weighted. However, to accommodate human percep-
tion, the different error contributions should be weighted according to their visual
relevance. Therefore, it is, arguably, more sensible that the cost of erring a pixel in-
creases with pixel distance to the object border.

The foregoing argumentmotivates the introductionof the cost-basedpartition-distance,
dc

sym, as a generalisation of the partition-distance. Start by computing the distance of
each pixel to the object border in both segmentations, d1 and d2. Define a monoton-
ically increasing cost function on these two distances, C(d1, d2). Different laws can
be considered, such as linear, exponential or logarithmic. A suitable strategy is to set
C(d1, d2) = max(d1, d2) orC(d1, d2) = 2max(d1,d2). Finally, the weight of an edge will
be the mere sum of the individual costs of the pixels in the intersection. Note that set-
ting C(d1, d2) = 1 results in edges weighted by the area of the intersection. The cost-
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based partition-distance will be the sum of the weights of the unmatched edges on the
matching process that follows. The cost-based partition-distance will penalise thick
discrepancies between two segmentations, favouring thin, along the borders, differ-
ences. This metric can also be seen as generalisation of the perceptual spatial measure
proposed by Cavallaro et al. (2002).

It is possible to confirm that the cost-based partition-distance still enjoys of most of
the useful properties of the original partition-distance (Cardoso and Corte-Real, 2005).
Most notably, the cost-based partition-distance is still non-negative (being zero iff the
two partitions coincide), symmetric, and transitive. It is, therefore, ametric. The tran-
sitive property is especially significant in the context of comparing more than two
algorithms. It conveys the desirable behaviour that if segmentation A is similar to seg-
mentation B and segmentation B is similar to segmentation C, then segmentation A is
similar to segmentation C.



C Local descriptors

C.1 Overview

Local interest point detectors and descriptors are designed to extract specific points
from images and produce features that allow for a robust matching between similar
points across images. Pointmatching is an essential task in thewide-baselinematching
process. Wide-baseline matching is the task of finding corresponding points between
images of the same scene or object, in the case where the images are taken fromwidely
separated viewing angles.

Local interest point detectors are designed to localise points that contain distinctive
information in their local surrounding area andwhose extraction is stablewith respect
to geometric transformations and noise. These points are characteristic points in the
image, where the signal changes bi-dimensionally. In addition, local interest point
detectors need to automatically specify an area around the characteristic point that
will have a certain amount of invariance to image transformations. Wewill refer to this
area as local interest area. Invariance to transformationsmeans that given two images of
a certain object taken from different viewing angle, the detector will be able to extract
local points and areas in both images that correspond to the same point on the surface
of the object.

Local descriptors are compact and distinct features, extracted from local interest ar-
eas. These descriptors are designed to be as specific as possible, while providing some
invariance to imaging conditions and to compensate for possible errors in the local
interest area definition. Local interest points must be as specific as possible because
each local interest point is compared with a large amount of other local interest points
to assess the similarity between each possible pair of points. This is especially impor-
tant in the case of wide-baseline matching, where the point-to-point correspondence
between images is the final objective.
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Local point detectors anddescriptorswere originally proposed to enable efficient point-
to-point matching in wide-baseline matching problems (Lowe, 2004; Mikolajczyk and
Schmid, 2004). In more recent work these techniques have been exploited in other ar-
eas like object recognition, scene recognition, image annotation, image segmentation
and video browsing.

These new applications explore the use of local descriptors in quantised form, where
quantised local descriptors are usually entitled visterms. This quantisation allows, by
counting the number of visterms’ instances in an image, to produce a global image rep-
resentation, the Bag-Of-Visterms (BOV). Due to the different nature of the application
of local descriptors for image categorisation, instead of point-to-pointmatching, it has
been argued that some properties that are important when performing point-to-point
matching may not be necessary when applying visterms to image categorisation, and
may even by detrimental to the performance.

Oneof themost important local descriptors scheme is Scale-Invariant FeatureTransform
(SIFT). This was the local descriptor used in this thesis (refer to Section 4.3).

C.2 SIFT

The SIFT feature describes the local interest area using a concatenation of local his-
tograms of edge orientation computed over the a grid sub-division of the local interest
area’s gradient map (Lowe, 1999, 2004).

SIFT features have becomewidely used for bothwide-baselinematching and quantised
local descriptor approaches and have been found to perform best for many tasks by
several authors (Lowe, 2004; Mikolajczyk and Schmid, 2004; Quelhas, 2006).

The SIFT extraction process is based on the extraction of gradient samples from the im-
age at the scale of the local interest point to describe. In its original formulation (Lowe,
1999), SIFT feature extraction was coupled with the scale-space representation of the
Difference of Gaussians (DoG) interest point detector. To increase the speed of the fea-
ture extraction process, the author used the pre-computed scale-space smoothed im-
ages to compute the SIFT descriptor feature. If we apply the SIFT descriptor together
with some other local interest point detector, which does not have a scale-space rep-
resentation, we must Gaussian smooth (or re-sample) the image to the scale of the
detected point. We consider the case where we have access the scale-space represen-
tation which was used to extract the local interest point.

The SIFT feature extraction process, as illustrated in Figure C.1, is summarised in Fig-
ure C.2. In short, the image’s gradient is sampled and its orientation is quantised. Us-
ing a grid division of the local interest area, local gradient orientation histograms are
created where the gradient magnitude is accumulated. The final feature is the con-
catenation of all the local gradient orientation histograms. A Gaussian weighting is in-
troduced in the SIFT feature extraction process (Figure C.2) to givemore importance to
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(a) (b) (c)

(d)

Figure C.1: Illustration of the SIFT feature extraction process. (a) original image with
the local interest point to describe, showing the detected location, scale and area used
for sampling. (b) local interest area with gradient samples at each grid point, blue circle
illustrates the Gaussian weighting window. (c) local individual orientation histograms which
result of accumulating each sample into the corresponding bin of its local histogram. (d)
final 128 dimensional SIFT feature (before normalisation). (image from Quelhas et al., 2007)

samples closer to the centre of the local interest area. This contributes to a greater in-
variance of the SIFT descriptor, since samples closer to the centre of the local interest
areas are more robust to errors in the local interest area estimation.

Lowe (2004) found that the best compromise between performance an speed was ob-
tained by using a 16 × 16 gradient sampling grid and a 4 × 4 sub-histogram grouping
(cf. Figure C.1). The final descriptor proposed in this formulations is 128 (4x4x8) di-
mensional.

As mentioned in the beginning of this subsection, the SIFT descriptors is one of most
prominent local interest point descriptor. One of the main reasons for its success is its
lowcomplexity, whichmakes this detector fast and easy to implement. Another reason
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SIFT feature extraction procedure.

1. select the Gaussian smoothed image corresponding to the local interest
point’s characteristic scale (σD),

2. sample the image gradient based on the scale and orientation of the local in-
terest point, using a regular grid around the local interest point location xi

(Figure C.1(b)),

3. normalise the sampled gradient’s orientation with relation to the local inter-
est point’s orientation,

4. apply a Gaussian weighting to the gradient’s magnitude, with σ = σD/2.
(light blue circle in Figure C.1(b)),

5. quantise the gradients orientation intonorientations (n = 8 in Figure C.1(c)),

6. create grid division orientation histograms in which to accumulate the
magnitude of the previously quantised local gradient (yellow grid in Fig-
ure C.1(b)),

7. form a vector by concatenating the grid histograms (Figure C.1(c)) into one
histogram (Figure C.1(d)),

8. normalise the feature vector to further increase illumination invariance.

Figure C.2: SIFT feature extraction process. SIFT feature extraction process (more details
in Lowe, 2004).

for the success of SIFT is the intrinsic invariance to small errors in the calculation of
the position and area, resulting from representing the local image information with a
histogram.
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Resources

Thesis

1. Author’s page
http://www.fe.up.pt/~lfpt

2. UVic internship
http://www.fe.up.pt/~lfpt/UVic

3. Background Modelling and Subtraction
http://www.fe.up.pt/~lfpt/BGMS

4. MarsyasX
http://www.fe.up.pt/~lfpt/MarsyasX

5. MarsyasX SVN repository
http://marsyas.svn.sourceforge.net/viewvc/marsyas/MarsyasX

6. VISNET II Network of Excellence
http://www.visnet-noe.org/

Surveillance projects and applications

7. IBM Smart Surveillance System
http://www.research.ibm.com/peoplevision/

8. iOmniscient
http://www.iomniscient.com/
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9. Keeneo
http://www.keeneo.com/uk_index.php

10. DETEC
http://www.detec.no/

11. 3VR
http://www.3vr.com/

12. BRS Labs
http://www.brslabs.com/

Multimodal-based projects

13. Semantic Multimodal Analysis of Digital Media – COST 292
http://www.cost292.org/

14. M4 – MultiModal Meeting Manager
http://www.dcs.shef.ac.uk/spandh/projects/m4/

15. AMI – Augmented Multi-party Interaction
http://www.amiproject.org/

16. Oxygen Project
http://oxygen.csail.mit.edu/

Generic libraries and frameworks

Visual

17. OpenCV
http://www.intel.com/research/mrl/research/opencv

18. LTI-Lib
http://ltilib.sourceforge.net

19. VXL
http://vxl.sourceforge.net

20. Recognition And Vision Library (RAVL)
http://ravl.sourceforge.net

http://www.keeneo.com/uk_index.php
http://www.detec.no/
http://www.3vr.com/
http://www.brslabs.com/
http://www.cost292.org/
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Audio

21. Marsyas
http://marsyas.sf.net/

22. CLAM
http://www.iua.upf.es/mtg/clam

23. Pd – Pure Data
http://puredata.info/

24. Chuck – Strongly-timed, Concurrent, and On-the-fly Audio Programming Lan-
guage
http://chuck.cs.princeton.edu/

25. Faust Signal Processing Language
http://faust.grame.fr/

26. Synthesis ToolKit in C++ (STK)
http://ccrma.stanford.edu/software/stk/

27. HTK Speach Recognition Toolkit
http://htk.eng.cam.ac.uk/

28. SPro – Speech signal processing toolkit
http://gforge.inria.fr/projects/spro

29. MAX/MSP
http://www.cycling74.com/products/maxmsp

Multimodal

30. Graphics Environment for Multimedia (GEM) for Pd
http://gem.iem.at/

31. Jitter for MAX/MSP
http://www.cycling74.com/products/jitter

32. EyesWeb
http://www.infomus.org/EywMain.html

Learning

33. LIBSVM – A Library for Support Vector Machines
http://www.csie.ntu.edu.tw/~cjlin/libsvm

34. Weka Machine Learning Project
http://www.cs.waikato.ac.nz/~ml

http://marsyas.sf.net/
http://www.iua.upf.es/mtg/clam
http://puredata.info/
http://chuck.cs.princeton.edu/
http://faust.grame.fr/
http://ccrma.stanford.edu/software/stk/
http://htk.eng.cam.ac.uk/
http://gforge.inria.fr/projects/spro
http://www.cycling74.com/products/maxmsp
http://gem.iem.at/
http://www.cycling74.com/products/jitter
http://www.infomus.org/EywMain.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.cs.waikato.ac.nz/~ml
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Other

� Local descriptors extraction

35. SIFT in C/MATLAB (David Lowe’s reference)
http://www.cs.ubc.ca/~lowe/keypoints/

36. SIFT in C (Krystian Mikolajczyk)
http://www.robots.ox.ac.uk/~vgg/research/affine/

37. SIFT in C++ (Andrea Vedaldi)
http://vision.ucla.edu/~vedaldi/code/siftpp/siftpp.html

38. Speeded Up Robust Features (SURF)
http://www.vision.ee.ethz.ch/~surf

� Kalman and particle filtering

39. Kalman filter toolbox for Matlab
http://www.cs.ubc.ca/~murphyk/Software/Kalman/kalman.html

40. Recursive Bayesian Estimation Library (ReBEL)
http://choosh.csee.ogi.edu/rebel

41. Sequential Monte Carlo methods software
http://www-sigproc.eng.cam.ac.uk/smc/software.html

� Tracking

42. KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker
http://www.ces.clemson.edu/~stb/klt

� Biometrics authentication

43. Mistral – Open Source platform for biometrics authentification
http://mistral.univ-avignon.fr/en/

Datasets and competitions

Visual

44. CAVIAR Test Case Scenarios
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

http://www.cs.ubc.ca/~lowe/keypoints/
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://vision.ucla.edu/~vedaldi/code/siftpp/siftpp.html
http://www.vision.ee.ethz.ch/~surf
http://www.cs.ubc.ca/~murphyk/Software/Kalman/kalman.html
http://choosh.csee.ogi.edu/rebel
http://www-sigproc.eng.cam.ac.uk/smc/software.html
http://www.ces.clemson.edu/~stb/klt
http://mistral.univ-avignon.fr/en/
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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45. PASCAL Visual Object Classes (VOC) database
http://www.pascal-network.org/challenges/VOC/

46. PETS: Performance Evaluation of Tracking and Surveillance
http://www.cvg.rdg.ac.uk/slides/pets.html

Audio

47. Music Information Retrieval Evaluation eXchange (MIREX)
http://www.music-ir.org/mirex/2007/index.php/Main_Page (MIREX2007)
http://www.music-ir.org/mirex/2008/index.php/Main_Page (MIREX2008)

Multimodal

48. CUAVE Database – Audio-Visual Speech Processing
http://www.ece.clemson.edu/speech/cuave.htm

http://www.pascal-network.org/challenges/VOC/
http://www.cvg.rdg.ac.uk/slides/pets.html
http://www.music-ir.org/mirex/2007/index.php/Main_Page
http://www.music-ir.org/mirex/2008/index.php/Main_Page
http://www.ece.clemson.edu/speech/cuave.htm
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In International Conference on Signal Processing and Multimedia Ap-
plications, pages 320–324, Porto, Portugal, July 2008
Jaime S. Cardoso, Luis F. Teixeira, and Maria J. Cardoso.
Automatic breast contour detection in digital photographs.
In Proceedings of International Conference on Health Informatics,
pages 91–98, Funchal, Portugal, January 2008
Luis F. Teixeira, Jaime S. Cardoso, and Luis Corte-Real.
Object segmentation using background modelling and cascaded
change detection.
Journal of Multimedia, 2(5):55–64, September 2007
M. J. Cardoso et al.
Turning subjective into objective: The BCCT.core software for evalu-
ation of cosmetic results in breast cancer conservative treatment.
The Breast, 16(5):456–461, October 2007
Mathieu Lagrange, Luis G. Martins, Luis F. Teixeira, and George
Tzanetakis.
Speaker segmentation of interviews using integrated video and audio
change detections.
In Proceedings of International Workshop on Content-Based Multi-
media Indexing, pages 219–226, Bordeaux, France, June 2006
Luis F. Teixeira and Luis Corte-Real.
Cascaded change detection for foreground segmentation.
In Proceedings of IEEE Winter Vision Meeting - Motion and Video
Computing, Austin, TX, February 2007
Luis F. Teixeira and Luis Corte-Real.
Integrated multimedia authoring and description framework.
In Proceedings of the International Workshop on Image Analysis for
Multimedia Interactive Services, pages 265–268, Incheon, South Ko-
rea, April 2006



Luis F. Teixeira.
Editing and description framework for video objects.
Master’s thesis, Faculdade de Engenharia da Universidade do Porto,
Porto, Portugal, July 2004
Summary: 4 international journal articles, 9 international conference
articles, 2 theses

Projects

IST NoE VISNET II (2006–2009) – Audiovisual systems and algo-
rithms. Researcher/Ph.D. student. Research tasks: develop seg-
mentation and tracking algorithm for visual surveillance systems.
IST NoE VISNET (2004–2005) – Audiovisual systems and algo-
rithms. Sporadic contributions as Ph.D. student.
IST NUGGETS (2003–2004) – Distributed systems for digital televi-
sion. Researcher and implementation responsibilities within a team
of 2 elements. Development tasks: MXF SDK support.
IST ASSET (2003) – Distributed systems for digital television. Re-
searcher and implementation responsibilities within a team of 3 ele-
ments. Development tasks: Metadata handling SDK in C++.
MXF SDK (2002) – Distribution formats for digital television. Imple-
mentation responsibilities within a team of 5 elements. Development
tasks: MXF SDK implementation in C++.
IST METAVISION (2002–2003) – Distributed systems for digital tele-
vision. Researcher and implementation responsibilities within a team
of 3 elements. Development tasks: Distributed audiovisual file man-
agement system in C++.
ORBIT (2001–2002) – Video processing, distributed systems for dig-
ital television. Researcher and implementation responsibilities within
a team of 15 elements. Development tasks: CORBA modules in C++
and video annotation GUI in JAVA.

Supervisory activities

– Luís António Alves Ferreira, M.Sc. FEUP, “Hyperbolic tree visu-
alization on mobile devices”, co-supervisor with Professor Ademar
Aguiar, 2009.
– Daniel Filipe Martins Durães, M.Sc. FEUP, “Arquitectura de sistema
de vigilância integrada” (Integrated surveillance system architecture),
co-supervisor with Professor Luís Corte-Real, 2008.
– Guilherme Artur Conceição Capela, M.Sc. FEUP, “Reconheci-
mento de símbolos musicais manuscritos na framework Gamera”
(Recognition of handwritten musical symbols in the framework Gam-
era), co-supervisor with Professor Jaime S. Cardoso, 2008.
– Filipe Emanuel Amaro Coelho, M.Sc. FEUP, “Sistema automático
de reconhecimento do montante de um cheque” (Automatic system
for the recognition of check amounts), co-supervisor with Professor
Jaime S. Cardoso, 2008.
– Moisés Emanuel Adrega Medeiros, final year project FEUP, ‘De-
scrição e manipulação de objectos para composição de multimédia”
(Description and manipulation of objects for multimedia composition),
co-supervisor with Professor Luís Corte-Real, 2005.

Invited presentations

– Marsyas and MarsyasX, University of Minho, March 2008



– Object segmentation, Laboratory for System Integration, Master in
Electrical and Computers Engineering, University of Porto, December
2007

Reviewer of scientific articles

– International Conference on Image Analysis and Recognition
(ICIAR)
– International Computer Music Conference (ICMC)
– Pattern Recognition Letters

Participation in conferences and other events

– ACM Multimedia 2008, Vancouver, BC, Canada, 27-31 October,
2008.
– IEEE Winter Vision Meeting - Motion and Video Computing (Motion
2007), Austin, TX, 23-24 February, 2007.
– Data and Models in Engineering, Science and Business, Parts I
& II short summer course organized by the Massachusetts Institute
of Technology Professional Institute (MIT-PI), Cambridge, MA, USA,
10-13 July, 2006.
– Summer School NN2005 on Neural Networks, Porto, Portugal, 4-8
July, 2005.
– International Symposium on 3D Data Processing, Visualization and
Transmission (3DPVT 2002), Padova, Italy, 19-21 June, 2002.

Additional information

References

Luís Corte-Real (Associate Professor at FEUP and Senior Re-
searcher at INESC Porto) – supervised both the M.Sc. and Ph.D.
theses
José Ruela (Associate Professor at FEUP and Coordinator of the
Telecommunications and Multimedia Unit at INESC Porto) – coordi-
nated research activities
George Tzanetakis (Assistant Professor at University of Victoria and
Coordinator of the MISTIC research group) – supervised the intern-
ship at UVic

Honors and awards

Doctoral scholarship awarded by the FCT (portuguese foundation for
science and technology), 2004-2008
Master’s scholarship awarded by the FCT (portuguese foundation for
science and technology), 2003-2004

Main contributions to open-source projects

Marsyas/MarsyasX [http://marsyas.sf.net] – Several core contribu-
tions to the Marsyas project, an audio processing library; main de-
veloper of MarsyasX, an evolution of Marsyas toward multimodal pro-
cessing.
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Anonymous

...brick walls are there for a reason. The
brick walls are not there to keep us out.
The brick walls are there to give us a
chance to show how badly we want
something. Because the brick walls are
there to stop the people who don’t want
it badly enough. They’re there to stop
the other people.

—Randy Pausch, 2007




